

Lecture Notes in Computer Science 4162
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Rastislav Královič Paweł Urzyczyn (Eds.)

Mathematical
Foundations of
Computer Science 2006

31st International Symposium, MFCS 2006
Stará Lesná, Slovakia, August 28-September 1, 2006
Proceedings

13

Volume Editors

Rastislav Královič
Comenius University
Bratislava, Slovakia
E-mail: kralovic@dcs.fmph.uniba.sk

Paweł Urzyczyn
Warsaw University, Poland
E-mail: urzy@mimuw.edu.pl

Library of Congress Control Number: 2006930918

CR Subject Classification (1998): F.1, F.2, F.3, F.4, G.2, E.1

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-540-37791-3 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-37791-7 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11821069 06/3142 5 4 3 2 1 0

Preface

The series of Mathematical Foundations of Computer Science symposia has
a well-established tradition dating back to 1972. Since the first meeting held
in the Polish town of Jabłonna, the conference has gradually gained interna-
tional recognition as an event bringing together researchers in all branches of
theoretical computer science, promoting international cooperation, and encour-
aging high-quality research.

The present volume is a collection of papers presented at the 31st MFCS held
in Stará Lesná, Slovakia, from August 28 to September 1, 2006. The scientific
program of the 31st MFCS consisted of 62 contributed papers selected from the
record high number of 174 submissions representing various areas of theoretical
computer science and its mathematical foundations, complemented by 7 invited
talks given by prominent researchers in the area. The symposium took place
in the Academia Hotel resort situated at the foot of the Lomnický peak in the
eastern part of the Vysoké Tatry Mountains in Slovakia, on the border of the
Tatra National Park, close to the picturesque towns of Tatranská Lomnica and
Starý Smokovec.

During its rich history, MFCS has been held in a number of places in Poland,
Slovakia, and the Czech Republic, always striving to present the highest quality
research in areas ranging from algorithms and data structures, to complexity,
automata, semantics, logic, formal specifications, models of computation, con-
currency theory, computational geometry, parallel and distributed computing,
networks, bioinformatics, quantum computing, cryptography, knowledge-based
systems, artificial intelligence, to mention just a few. The 2006 meeting added
a new page to this history, an addition that was made possible thanks to the
effort of many people.

As editors of these proceedings, we are very much indebted to all contribu-
tors to the scientific program. Our thanks are due to all authors who submitted
their papers, thus showing their interest in MFCS, to all invited speakers who
were willing to attend the event and share their insights, to all members of the
Program Committee who did excellent work in the very difficult decision pro-
cess, and to all external referees without whose help it would not be possible to
evaluate so many contributions in so little time. We also gratefully acknowledge
the use of the EasyChair conference system. Our thanks extend to the orga-
nizing team lead by Vanda Hambálková and Dana Pardubská, without whom
this meeting could not take place. Finally, we would like to thank Springer for
their professional co-operation in printing this volume, and to all participants
for attending MFCS 2006.

June 2006 Rastislav Královič and Paweł Urzyczyn

Organization

Program Committee

Viviana Bono (Turin) Joachim Niehren (Lille)
Ilaria Castellani (Sophia Antipolis) Jaroslav Opatrný (Montreal)
Iliano Cervesato (New Orleans) José Rolim (Geneva)
János Csirik (Szeged) Michael I. Schwartzbach (Århus)
Jurek Czyzowicz (Gatineau) Christian Scheideler (Munich)
Andrzej Filinski (Copenhagen) Sergei Soloviev (Toulouse)
Yuri Gurevich (Redmond WA) Andrzej Szepietowski (Gdańsk)
Juraj Hromkovič (Zurich) Jacobo Torán (Ulm)
Joanna Jędrzejowicz (Gdańsk) Paweł Urzyczyn (Warsaw),

Co-chair
Juhani Karhumäki (Turku) Andrei Voronkov (Manchester)
Rastislav Královič (Bratislava), Co-chair Imrich Vŕto (Bratislava)
Luděk Kučera (Prague) Igor Walukiewicz (Bordeaux)
Alberto Marchetti-Spaccamela (Rome) Gerhard Woeginger (Eindhoven)
Burkhard Monien (Paderborn) Shmuel Zaks (Haifa)
Peter D. Mosses (Swansea)

Organization

Vanda Hambálková Edita Máčjová
Vladimír Koutný Marek Nagy

The conference was organized by the Slovak Society for Computer Science and
Comenius University in Bratislava.

Previous Symposia

Jabłonna, Poland, 1972 Štrbské Pleso, Czechoslovakia, 1981
Štrbské Pleso, Czechoslovakia, 1973 Prague, Czechoslovakia, 1984
Jadwisin, Poland, 1974 Bratislava, Czechoslovakia, 1986
Mariánske Lázně, Czechoslovakia, 1975 Karlovy Vary, Czechoslovakia, 1988
Gdańsk, Poland, 1976 Porąbka-Kozubnik, Poland, 1989
Tatranská Lomnica, Czechoslovakia, 1977 Banská Bystrica, Czechoslovakia,

1990
Zakopane, Poland, 1978 Kazimierz Dolny, Poland, 1991
Olomouc, Czechoslovakia, 1979 Prague, Czechoslovakia, 1992
Rydzyna, Poland, 1980 Gdańsk, Poland, 1993

VIII Organization

Košice, Slovakia, 1994 Bratislava, Slovakia, 2000
Prague, Czech Republic, 1995 Mariánske Lázně,

Czech Republic, 2001
Kraków, Poland, 1996 Warsaw, Poland, 2002
Bratislava, Slovakia, 1997 Bratislava, Slovakia, 2003
Brno, Czech Republic, 1998 Prague, Czech Republic, 2004
Szklarska Poręba, Poland, 1999 Gdańsk, Poland, 2005

Referees

Eric Allender
Luca Allulli
Giuseppe Ateniese
Cedric Bastien
Tugkan Batu
Marek Bednarczyk
Giuseppe Berio
Simona Bernardi
Luca Bernardinello
Dietmar Berwanger
Sergei Bezrukov
Vittorio Bilò
Manuel Bodirsky
Mikołaj Bojańczyk
Vincenzo Bonifaci
Sem Borst
Béatrice Bouchou
Claus Brabrand
Franck van Breugel
Gerth Brodal
Anne Brüggemann-Klein
Andrei Bulatov
Peter Bürgisser
Hal Burch
Nadia Busi
Hans-Joachim

Böckenhauer
Tiziana Calamoneri
Anne-Cécile Caron
Dario Catalano
Bogdan Chlebus
Piotr Chrząstowski
Andrea Clementi
Eugen Czeizler

Flavio D’Alessandro
Ivan Damgård
Ferruccio Damiani
Carsten Damm
Robert Dąbrowski
Rocco De Nicola
Olivier Devillers
Srikrishnan Divakaran
Stefan Dobrev
Debora Donato
Arnaud Durand
Jean-Louis Durieux
Pavol Ďuriš
Roy Dyckhoff
Stefan Dziembowski
Robert Elsaesser
Zoltán Ésik
Piotr Faliszewski
Angelo Fanelli
Tomas Feder
Uriel Feige
Rainer Feldmann
Louis Feraud
Guillaume Fertin
Barbara Fila
Philippe Flajolet
Rudolf Fleischer
Michal Forišek
Enrico Formenti
Lance Fortnow
Wit Foryś
Gudmund S. Frandsen
Martin Gairing
William Gasarch

Marie-Claude Gaudel
Fanica Gavril
Dan Geiger
Blaise Genest
Hugo Gimbert
Françoise Gire
Christian Glaßer
Anna Gomolińska
Paweł Górecki
Chris Gray
Sven Grothklags
Dan Gutfreund
Vesa Halava
Carmem Hara
Tero Harju
Nick Harvey
Herman Haverkort
Pinar Heggernes
Keijo Heljanko
Miki Hermann
Andreas Herzig
Daniel Hirschkoff
Tom Hirschowitz
Mika Hirvensalo
John Hitchcock
Piotr Hoffman
Juha Honkala
Karol Horodecki
Peter Høyer
Paweł Idziak
Lucian Ilie
Kazuo Iwama
Matthias Jantzen
Aubin Jarry

Organization IX

Alan Jeffrey
Markus Junker
Michael Kaminski
Jarkko Kari
Tomi Karki
Marek Karpinski
Branislav Katreniak
Dan Kenigsberg
Peter G. Kimmel
Christian Kirkegaard
Ralf Klasing
Bartek Klin
Martin Kochol
Łukasz Kowalik
Mirosław Kowaluk
Richard Kralovič
Dieter Kratsch
Andrei Krokhin
Piotr Krzyżanowski
Grégory Kucherov
Narayan Kumar
Joachim Kupke
Giovanni Lagorio
Sławomir Lasota
Aurélien Lemay
Stéphane Lengrand
Pierre Leone
Arto Lepisto
Jerome Leroux
Peter Leupold
Asaf Levin
Stefan Lietsch
Maciej Liśkiewicz
Satyarayana V. Lokam
Sylvian Lombardy
Ulf Lorenz
Christof Löding
Jack Lutz
Olivier Ly
Daniel Marx
Ralph Matthes
Marios Mavronicolas
Daniel Meister
Michael Mislove
Angelo Montanari

Tal Mor
Luminita Moraru
Luca Moscardelli
Philippe Moser
Andrzej W. Mostowski
Marian Mrozek
Makoto Murata
Anca Muscholl
Tobias Mömke
Anders Møller
Boaz Nadler
Alfredo Navarra
Roman Nedela
Calvin Newport
Hung Son Nguyen
Rolf Niedermeier
Edward Ochmański
Enno Ohlebusch
Alexander Okhotin
Nicola Olivetti
Catuscia Palamidessi
Dana Pardubská
Paweł Pączkowski
Marcin Peczarski
Rudi Pendavingh
Carla Piazza
Rom Pinchasi
Wojciech Plandowski
Leszek Plaskota
Piotr Pokarowski
Olivier Powell
Gian Luca Pozzato
Gabriele Puppis
Danny Raz
Maxime Rebout
Wolfgang Reisig
Renato Renner
Andrea Ribichini
Éric Rivals
Antoine Rollet
Yves Roos
Guenter Rote
Jörg Rothe
Andrzej Ruciński
Wojciech Rytter

Kalle Saari
Kai Salomaa
Piotr Sankowski
Nicolae Santean
Thomas Sauerwald
Marcus Schaefer
Stefan Schamberger
Peter Schneider-Kamp
Florian Schoppmann
Ulf-Peter Schroeder
Christoph Schwarzweller
Sebastian Seibert
Olivier Serre
Peter Sewell
Géraud Sénizergues
Jiří Sgall
Hadas Shachnai
Farhad Shahrokhi
Andrea Silvestri
Jens Simon
Mitali Singh
Christian Sohler
Paul Spirakis
Jeremy Sproston
Ladislav Stacho
Martin Strecker
Michał Strojnowski
Madhu Sudan
Maxim Sviridenko
Marcin Szczuka
Błażej Szepietowski
Siamak Taati
Jean-Marc Talbot
Patrizia Tavella
P.S. Thiagarajan
Karsten Tiemann
Sophie Tison
Fabien Torre
Géza Tóth
Stephen Travers
Tobias Tscheuschner
Jerzy Tyszkiewicz
Tomasz Urbański
Jorge Urrutia
Frits Vaandrager

X Organization

György Vaszil
Venkat Venkateswaran
Annamaria Vernone
Maria-Grazia Vigliotti
Andrea Vitaletti
Tjark Vredeveld

Klaus Wagner
Uli Wagner
Charles R. Wallace
Pascal Weil
Michael Weiss
Duminda Wijesekera

Mordechai Shalom
Hans Zantema
Zhenjie Zhang
Andrei Zinovyev
Alex Znamenshchykov

Table of Contents

Invited Talks

A Core Calculus for Scala Type Checking . 1
V. Cremet, F. Garillot, S. Lenglet, M. Odersky

Tree Exploration with an Oracle . 24
P. Fraigniaud, D. Ilcinkas, A. Pelc

Distributed Data Structures: A Survey on Informative Labeling
Schemes . 38

C. Gavoille

From Deduction Graphs to Proof Nets: Boxes and Sharing in the
Graphical Presentation of Deductions . 39

H. Geuvers, I. Loeb

The Structure of Tractable Constraint Satisfaction Problems 58
M. Grohe

On the Representation of Kleene Algebras with Tests 73
D. Kozen

From Three Ideas in TCS to Three Applications in Bioinformatics 84
M. Li

Contributed Papers

Decompositions, Partitions, and Coverings with Convex Polygons and
Pseudo-triangles . 86

O. Aichholzer, C. Huemer, S. Kappes, B. Speckmann, C.D. Tóth

Approximate Shortest Path Queries on Weighted Polyhedral Surfaces . . . 98
L. Aleksandrov, H.N. Djidjev, H. Guo, A. Maheshwari,
D. Nussbaum, J.-R. Sack

A Unified Construction of the Glushkov, Follow, and Antimirov
Automata . 110

C. Allauzen, M. Mohri

Algebraic Characterizations of Unitary Linear Quantum Cellular
Automata . 122

P. Arrighi

XII Table of Contents

A Polynomial Time Nilpotence Test for Galois Groups and Related
Results . 134

V. Arvind, P.P. Kurur

The Multiparty Communication Complexity of Exact-T : Improved
Bounds and New Problems . 146

R. Beigel, W. Gasarch, J. Glenn

Crochemore Factorization of Sturmian and Other Infinite Words 157
J. Berstel, A. Savelli

Equations on Partial Words . 167
F. Blanchet-Sadri, D. Dakota Blair, R.V. Lewis

Concrete Multiplicative Complexity of Symmetric Functions 179
J. Boyar, R. Peralta

On the Complexity of Limit Sets of Cellular Automata Associated with
Probability Measures . 190

L. Boyer, V. Poupet, G. Theyssier

Coloring Random 3-Colorable Graphs with Non-uniform Edge
Probabilities . 202

U. Brandes, J. Lerner

The Kleene Equality for Graphs . 214
A. Carayol, D. Caucal

On the Repetition Threshold for Large Alphabets . 226
A. Carpi

Improved Parameterized Upper Bounds for Vertex Cover 238
J. Chen, I.A. Kanj, G. Xia

On Comparing Sums of Square Roots of Small Integers 250
Q. Cheng

A Combinatorial Approach to Collapsing Words . 256
A. Cherubini, P. Gawrychowski, A. Kisielewicz, B. Piochi

Optimal Linear Arrangement of Interval Graphs . 267
J. Cohen, F. Fomin, P. Heggernes, D. Kratsch, G. Kucherov

The Lempel-Ziv Complexity of Fixed Points of Morphisms 280
S. Constantinescu, L. Ilie

Partially Commutative Inverse Monoids . 292
V. Diekert, M. Lohrey, A. Miller

Learning Bayesian Networks Does Not Have to Be NP-Hard 305
N. Dojer

Table of Contents XIII

Lower Bounds for the Transition Complexity of NFAs 315
M. Domaratzki, K. Salomaa

Smart Robot Teams Exploring Sparse Trees . 327
M. Dynia, J. Kuty�lowski, F. Meyer auf der Heide, C. Schindelhauer

k-Sets of Convex Inclusion Chains of Planar Point Sets 339
W. El Oraiby, D. Schmitt

Toward the Eigenvalue Power Law . 351
R. Elsässer

Multicast Transmissions in Non-cooperative Networks with a Limited
Number of Selfish Moves . 363

A. Fanelli, M. Flammini, G. Melideo, L. Moscardelli

Very Sparse Leaf Languages . 375
L. Fortnow, M. Ogihara

On the Correlation Between Parity and Modular Polynomials 387
A. Gál, V. Trifonov

Optimally Fast Data Gathering in Sensor Networks 399
L. Gargano, A.A. Rescigno

Magic Numbers in the State Hierarchy of Finite Automata 412
V. Geffert

Online Single Machine Batch Scheduling . 424
B. Gfeller, L. Peeters, B. Weber, P. Widmayer

Machines that Can Output Empty Words . 436
C. Glaßer, S. Travers

Completeness of Global Evaluation Logic . 447
S. Goncharov, L. Schröder, T. Mossakowski

NOF-Multiparty Information Complexity Bounds for Pointer Jumping . . . 459
A. Gronemeier

Dimension Characterizations of Complexity Classes 471
X. Gu, J.H. Lutz

Approximation Algorithms and Hardness Results for Labeled
Connectivity Problems . 480

R. Hassin, J. Monnot, D. Segev

An Expressive Temporal Logic for Real Time . 492
Y. Hirshfeld, A. Rabinovich

XIV Table of Contents

On Matroid Representability and Minor Problems . 505
P. Hliněný

Non-cooperative Tree Creation . 517
M. Hoefer

Guarantees for the Success Frequency of an Algorithm for Finding
Dodgson-Election Winners . 528

C.M. Homan, L.A. Hemaspaandra

Reductions for Monotone Boolean Circuits . 540
K. Iwama, H. Morizumi

Generalised Integer Programming Based on Logically Defined Relations . . 549
P. Jonsson, G. Nordh

Probabilistic Length-Reducing Automata . 561
T. Jurdziński

Sorting Long Sequences in a Single Hop Radio Network 573
M. Kik

Systems of Equations over Finite Semigroups and the #CSP Dichotomy
Conjecture . 584

O. Kĺıma, B. Larose, P. Tesson

Valiant’s Model: From Exponential Sums to Exponential Products 596
P. Koiran, S. Perifel

A Reachability Algorithm for General Petri Nets Based on Transition
Invariants . 608

A.E. Kostin

Approximability of Bounded Occurrence Max Ones 622
F. Kuivinen

Fast Iterative Arrays with Restricted Inter-cell Communication:
Constructions and Decidability . 634

M. Kutrib, A. Malcher

Faster Algorithm for Bisimulation Equivalence of Normed Context-Free
Processes . 646

S. Lasota, W. Rytter

Quantum Weakly Nondeterministic Communication Complexity 658
F. Le Gall

Minimal Chordal Sense of Direction and Circulant Graphs 670
R.S.C. Leão, V.C. Barbosa

Table of Contents XV

Querying and Embedding Compressed Texts . 681
Y. Lifshits, M. Lohrey

Lempel-Ziv Dimension for Lempel-Ziv Compression 693
M. Lopez-Valdes

Characterizing Valiant’s Algebraic Complexity Classes 704
G. Malod, N. Portier

The Price of Defense . 717
M. Mavronicolas, L. Michael, V. Papadopoulou, A. Philippou,
P. Spirakis

The Data Complexity of MDatalog in Basic Modal Logics 729
L.A. Nguyen

The Complexity of Counting Functions with Easy Decision Version 741
A. Pagourtzis, S. Zachos

On Non-Interactive Zero-Knowledge Proofs of Knowledge in the Shared
Random String Model . 753

G. Persiano, I. Visconti

Constrained Minimum Enclosing Circle with Center on a Query Line
Segment . 765

S. Roy, A. Karmakar, S. Das, S.C. Nandy

Hierarchical Unambiguity . 777
H. Spakowski, R. Tripathi

An Efficient Algorithm Finds Noticeable Trends and Examples
Concerning the Černy Conjecture . 789

A.N. Trahtman

On Genome Evolution with Innovation . 801
D. Wójtowicz, J. Tiuryn

Author Index . 813

A Core Calculus for Scala Type Checking

Vincent Cremet1, François Garillot2, Serguëı Lenglet3, and Martin Odersky1

1 École Polytechnique Fédérale de Lausanne
INR Ecublens, 1015 Lausanne, Switzerland

2 École Normale Supérieure
45 rue d’Ulm, 75230 Paris, France

3 École Normale Supérieure de Lyon
46 alle d’Italie, 69364 Lyon, France

Abstract. We present a minimal core calculus that captures interesting
constructs of the Scala programming language: nested classes, abstract
types, mixin composition, and path dependent types. We show that the
problems of type assignment and subtyping in this calculus are decidable.

1 Introduction

The programming language Scala proposes a new model for component systems
[28]. Components in this model are classes, which can be combined using nest-
ing and mixin composition. Classes can contain abstract types which may be
instantiated in subclasses. The Scala component model thus provides a single
framework for the construction of objects and modules. Modules are identified
with objects, functors with classes, and signatures with traits.

The advantage of this approach is that a single fairly small set of language
constructs is sufficient for core programming as well as the definition of com-
ponents and their composition. Furthermore, the identification of modules and
objects provides new ways to formulate standard programming tasks such as the
expression problem [14,33,27] and family polymorphism [12,28].

Scala’s approach to component modeling is based on three programming lan-
guage constructs: modular mixin composition, abstract type members, and ex-
plicit self-types. All three have been studied in the νObj calculus [25]. A key
concept of the νObj calculus, path-dependent types, is also present in Scala.
However, some other constructions of νObj do not correspond to Scala language
constructs. In particular, νObj has first-class classes which can be passed around
as values, but Scala has not.

First-class classes were essential in establishing an encoding of F<: in νObj,
which led to a proof of undecidability of νObj by reduction to the same property
in F<: [29]. However, since Scala lacks first-class classes, the undecidability result
for the calculus does not imply that type checking for the programming language
is undecidable.

In this paper, we study the problem of decidability of Scala type checking. We
construct (algorithmic) Featherweight Scala, abbreviated FSalg, a minimal core
calculus of classes that captures an essential set of features of Scala’s type system.

R. Královič and P. Urzyczyn (Eds.): MFCS 2006, LNCS 4162, pp. 1–23, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

2 V. Cremet et al.

Classes can have types, values, methods and other classes as members. Types,
methods, and values can be abstract. The calculus is designed to be syntactically
a subset of Scala (with the deviation of explicit self-names, explained below). Its
typing rules correspond closely to the ones implemented in the Scala compiler.

An important aim in developping Featherweight Scala was to show that Scala’s
core type-checking rules are decidable. One particular problem in this respect are
cyclic definitions that relate members of different classes. Featherweight Scala
allows cyclic references between members of different mixin classes. Because
cycles cannot be ruled out by construction, they have to be detected by the type
checker. The typing rules achieve this by keeping track of the sets of definitions
that have already been visited in a typing proof. This gives the calculus an
algorithmic flavor, hence the name FSalg.

All presented deduction rules are syntax-directed and thus lead directly to
procedures for subtyping and type assignment. The central result of this paper
is that these procedures are algorithms, i.e. that they terminate in each case.

Related Work: Scala’s component constructions provide a middle ground be-
tween the worlds of object-oriented programming and functional module sys-
tems [15,21]. Many of the concepts in both worlds are unified. Mixin compo-
sition in Scala borrows from mixin-modules [3,4,16], as well as from the more
linear object-oriented mixin composition [6,5]. Components in Scala can be mu-
tually recursive, a property which is also addressed by work on recursive modules
[9,23]. Abstract types in Scala are also present in SML style signatures [21,15],
and correspond almost exactly to virtual classes in Beta [22].

Later work on virtual classes [11,13] is more general in that classes, and not
just types, can be abstract. However, references to abstract types in [13] can
only refer to members of an enclosing “self”, not to members of an arbitrary
path. Several other variations on virtual types [32,17,24] and some alternative
proposals [8,31,7,20] have also been researched. Typed class-based calculi for
describing Scala’s static analysis are described in [2] and [1] but the authors do
not address the problem of their decidability.

The focus in the paper is on a minimal calculus that captures the essential
features of an existing programming language. In this motivation it follows the
work on Featherweight Java [19]. Both calculi model a simple, purely functional
core language of objects with fields and methods in a nominal class-based type
system. They also take some similar shortcuts in the interest of conciseness. For
instance, both assume call-by-name evaluation in order not to have to deal with
the thorny initialization issues of their underlying languages. However, the set of
more advanced language constructs that are modeled are different in each case.
Featherweight Java models type casts, and has extensions that model generics
as well as inner classes [18]. Featherweight Scala models inner classes, member
type abstraction, as well as path-dependent types. It can also model most of the
generic constructs in FGJ [19] via encodings.

The rest of this paper is structured as follows. Section 2 explains Scala’s model
of abstract types and path dependent types from a programmer’s perspective.
Section 3 introduces the Featherweight Scala calculus FSalg. Section 4 shows that

A Core Calculus for Scala Type Checking 3

trait Any extends { this0 | }
trait Nat extends Any { this0 |

def isZero(): Boolean
def pred(): Nat
trait Succ extends Nat { this1 |

def isZero(): Boolean = false
def pred : Nat = this0

}
def succ(): Nat = { val result = new Succ {}; result }
def add(other : Nat): Nat = {

if (this0.isZero()) other else this0.pred.add(other.succ())
}
def subtract(other : Nat): Nat = {

if (other.isZero()) this0 else this0.succ().subtract(other.pred)
}

}
val zero = new Nat { this0 |

def isZero(): Boolean = true
def pred : Nat = error(”zero.pred”)

}

Fig. 1. Definition of Peano numbers

subtyping and type-assignment are decidable in this calculus. Section 5 relates
the obtained results to the situation in the Scala language. Section 6 concludes.

2 Programming in Featherweight Scala

Featherweight Scala is a fairly small subset of Scala, but it is expressive enough
for one to write meaningful programs in it. In the following, we show how some
common classes and programming idioms can be encoded in the calculus.

Peano Numbers. We start with an encoding of Peano numbers, shown in
Figure 1. This encoding presents a trait Nat with five member methods. Methods
isZero and pred are abstract, that is, they lack an implementation in trait Nat.
By contrast, methods succ, add and subtract are concrete. A trait in Scala is an
abstract class which may be combined with other traits using mixin composition.

References from one member of a Nat object to another always go via the
“self” reference of the class. The name of the self-reference is given after the
opening brace of the class body. In the example above it is this0. The name can
be freely chosen, but in the examples in this paper we always use thisN, where N
is the nesting level of the enclosing class. As a shorthand notation we sometimes
omit the definition of a self-name which is never used in the class body that
follows.

Class Nat also contains a nested class Succ which defines the successor value
of the current object this0. This class is an extension of Nat, which gives concrete
definitions for the two abstract members of Nat: isZero returns always false and

4 V. Cremet et al.

the predecessor method pred always returns the self-reference of the outer Nat
class.

The successor method succ simply creates a new instance of the Succ class and
returns it. Note that Featherweight Scala allows instance creation expressions
such as new Succ {} only as right-hand sides of value definitions; that’s why we
were forced to define in the body of succ an intermediate value result. Regular
Scala does not have this restriction, and also provides many other shorthands
that would make the example more pleasant to write and read.

The final two methods, add and subtract, define addition and subtraction in
terms of the previous three methods. Their implementation uses standard syntax
for field selection, method calls, and recursion.

Figure 1 also gives a definition of the zero value for Peano numbers. This value
is defined as a direct specialization of class Nat, which also defines the natural
implementations of Nat’s abstract methods isZero and pred. The right-hand
side of zero’s definition combines a definition of a new anonymous class and a
creation of an instance of this class in a single syntactic construct. Alternatively,
one could also proceed in two steps, by defining a subclass Zero of Nat, and then
creating an instance value val zero = new Zero {}.

The preceding example used exclusively the constructs of the Featherweight
Scala calculus, with two exceptions: First, we assumed a type Boolean with
values true and false and a if-then-else construct. Second, we assumed an error
function which aborts a program with a given error message.

In the example we have also taken some liberty in presenting top-level defini-
tions for Nat and zero. By contrast, a Featherweight Scala program is simply an
expression, which typically contains embedded definitions for classes and values.
To get a complete program which computes 2+2 one could combine the program
fragments in Figure 1 as follows:

val universe = new { global |
class Nat { ... }

}
val zero = new universe.Nat { ... };
val two = zero.succ().succ();
two.add(two)

In this program, references from one top-level definition in universe to another
would go via the top-level self-reference global.

The syntax used in the examples in this section is also regular Scala, with
one exception: Scala does not have a clause { thisN | ... } which names the
self-reference thisN of the enclosing class. Instead, one always uses the reserved
word this. Self-references of an outer class C can be denoted by prefixing this
with the name of the outer class, e.g., C.this.

Lists. As a second example, Figure 2 presents a class hierarchy for lists in
Featherweight Scala. There are three classes: A base class List and two subclasses
Cons and Nil that define non-empty and empty lists, respectively.

A Core Calculus for Scala Type Checking 5

trait List extends Any { this0 |
type Elem
type ListOfElem = List { this1 | type Elem = this0.Elem }
def isEmpty(): Boolean
def head(): this0.Elem
def tail(): this0.ListOfElem

}
trait Nil extends List { this0 |

def isEmpty(): Boolean = true
def head(): this0.Elem = error(”Nil.head”)
def tail(): this0.ListOfElem = error(”Nil.tail”)

}
trait Cons extends List { this0 |

val hd : this0.Elem
val tl : this0.ListOfElem
def isEmpty(): Boolean = false
def head(): this0.Elem = hd
def tail(): this0.ListOfElem = tl

}

Fig. 2. Definition of the List class hierarchy

Lists can have arbitrary element types. In the standard Scala library, this is
expressed by a parameterized type, but the featherweight version does not have
type parameters. Instead, we use abstract types to express the genericity of the
list abstraction.

The element type of a given list is represented by the type member Elem
of class List. The member is defined as an abstract type in class List. Hence,
when a List object is created, a concrete implementation of this type has to be
provided. For instance, the definition

val nilOfNat = new Nil { type Elem = Nat }

defines a value nilOfNat as an empty list with element type Nat. The type alias
type Elem = Nat is used to “fill in” the abstract type member Elem that Nil
inherits from List.

The List class also contains a type alias which defines ListOfElem as a type
name for lists whose element type is the same as the element type of the list in
question. This alias does not implement an abstract type member in a parent
class; it is there only for convenience.

The List class also defines a test method isEmpty, as well as methods which
return the head and tail of a list. Method head returns values of type Elem
whereas tail returns values of type ListOfElem. All three methods are abstract
in class List.

The subclass Nil of List represents empty lists. It defines method isEmpty to
return true. Selecting the head or tail of an empty list always results in an error.

The subclass Cons of List represents nonempty lists. The head and tail of a
non-empty list are kept in the fields hd and tl of class Cons. Scala uses val for a

6 V. Cremet et al.

definition of a local value or a field of a class, whereas def is used for a method
definition. Classes in Featherweight Scala do not have constructors; however, one
can use member-redefinition to initialize the values of an object. For instance,
the following code defines two lists of element type Nat which contain the values
(2) and (1, 2), respectively.

val list2 = new Cons { this0 |
type Elem = Nat
val hd : Nat = zero.succ().succ()
val tl : this0.ListOfElem = nilOfNat

}
val list12 = new Cons { this0 |

type Elem = Nat
val hd : Nat = zero.succ()
val tl : this0.ListOfElem = list2

}
The List example showed how genericity can be encoded using abstract types. In
fact, there is a general encoding that lets one encode all forms of parameterized
types in Scala into types with abstract members. Details are found in [1].

trait Function extends Any { this0 |
type Dom
type Range
def apply(x : Dom): Range

}
val inc = new Function { this0 |

type Dom = Nat
type Range = Nat
def apply(x : this0.Dom): this0.Range = x.succ()

}

Fig. 3. Definition of first-class functions

Higher-Order Functions. Featherweight Scala has methods, i.e. function-
valued class-members, but it has no function-valued parameters or results. How-
ever, it is possible to encode first-class functional values as instances of a standard
Function class, which is presented in Figure 3. The current Scala implementation
uses a similar encoding to map functional values to the JVM.

Class Function gives an interface for functions with arbitrary domain and
range types. The interface specifies two abstract types Dom and Range as well
as an method abstract method apply that takes arguments of type Dom and
that yields results of type Range.

A first-class functional value is then a concrete implementation of class Func-
tion, which gives types for Dom and Range as well as an implementation for
method apply. Figure 3 shows as an example a first-class incrementer function
inc over Peano numbers.

A Core Calculus for Scala Type Checking 7

trait Mapper extends Any { this0 |
type A
type B
def map(f : Function { type Dom = this0.A; type Range = this0.B },

xs : List { type Elem = this0.A }): List { type Elem = this0.B } =
if (xs.isEmpty()) {

val result = new Nil {
type Elem = this0.B

};
result

} else {
val result = new Cons {

type Elem = this0.B
val hd = f.apply(xs.head())
val tl = this0.map(f, xs.tail())

};
result

}
}

Fig. 4. Encoding of the higher-order map function

Since first-class functions are objects, they can be passed around like any
other value. To apply as first-class function, one simply invokes its apply method
(regular Scala defines syntactic sugar so this is done automatically whenever a
first-class function value appears in function position in an application).

As an example, Figure 4 presents a map function which applies a given argu-
ment function to all elements of a given list and returns a list consisting of all
the results of these applications. In regular Scala, this function would be defined
as follows:

def map[A, B](f : A ⇒ B, xs : List[A]): List[B] =
if (xs.isEmpty) Nil else f(x.head) :: map(f, xs.tail)

Since map is conceptually a polymorphic method, its encoding in Featherweight
Scala makes use of a wrapper class Mapper which defines two abstract types A
and B, representing the element types of the argument and result lists, respec-
tively.

The map method in Mapper takes as arguments a function f from type A to
type B, and a list xs of element type A. It returns a list of element type B. An
application of map would be written as follows:

val list23 = new Mapper { type A = Nat; type B = Nat }.map(inc, list12)

This instantiates the Mapper class with type Nat as the element type of the
argument and result list, and invokes the map method of the instantiation with
inc and list12 as arguments. The expression would return the encoding of the
list (2, 3).

The example shows that monomorphic functions such as inc can be first-
class values. However, the construction cannot be generalized to polymorphic

8 V. Cremet et al.

functions. The reason is that polymorphic functions like map have to be en-
coded using wrapper classes. Such wrapper classes are first-class values neither
in Featherweight nor in regular Scala. By contrast, the νObj calculus has classes
as first class values, and therefore can encode polymorphic functional values.

3 The Algorithmic Featherweight Scala Calculus

The FSalg calculus aims at describing some central aspects of the Scala type
system in a simple and formal way. The features whose study has been privi-
leged in this work are: method overriding, mixins, inner classes, virtual types,
singleton types and types with member refinements. The calculus does not model
objects with state and has no concept of type parameters in classes or methods.
Genericity can be encoded using types with member refinements.

3.1 Syntax

The abstract syntax of FSalg is given in Figure 5. Amongst the names occurring
in a program, we distinguish the variables that are used as binders for objects
and can be α-conversed, the value labels that designate the members defining
a field or a method, and the type labels that designate the members defining a
class or a virtual type.

A member can be a value field, a method, a type field or a class. A value field is
immutable and refers to an object. The types of value fields, method parameters
and method results must be given explicitly. Value fields and methods can be
either concrete or abstract. A declaration is called abstract if the right-hand side
is absent. For instance, a declaration like valna : T = t defines a concrete field a
with value t, whereas the field declaration valna : T is abstract. In order to fac-
torize abstract and concrete declarations we use the notation valna : T (= t)?.
Type fields are also either concrete or abstract, a concrete type field being some-
times called a type alias. A class member traitnA extends

(
T
) {

ϕ | M}
declares

a class A with parents T and members M , the variable ϕ denotes the current
instance of the class. Class members cannot be abstract.

Every occurrence of a declaration in a program is tagged with a unique integer
n. This integer has no computational meaning, it is simply used for detecting
cycles during the static analysis.

The terms of the calculus are standard. A variable x can represent the current
instance of a class, a method parameter, or the name of an object which has been
created locally. Field selections and method calls have the same syntax as in
Java. The construct val x = new T ; t allows the user to define a new instance
of the type T , with a name x whose scope is limited to the term t.

A FSalg program is simply a term, which is usually of the form

val z = new
{
ϕ | M}

; t .

It consists of a list of member declarations M that together make up a universe
object z and a main term t to be evaluated in the context of z. The variable

A Core Calculus for Scala Type Checking 9

Syntax

x, y, z, ϕ Variable
a Value label
A Type label

P ::= Program˘
x |M t

¯

M, N ::= Member decl

valna : T (= t)? Field decl

defna
`
y : S

´
: T (= t)? Method decl

typenA (= T)? Type decl

traitnA extends
`
T

´ ˘
ϕ |M

¯
Class decl

s, t, u ::= Term
x Variable
t.a Field selection
s.a

`
t
´

Method call
val x = new T ; t Object creation

p ::= Path
x Variable
p.a Field selection

S, T, U ::= Type
p.A Type selection
p.type Singleton type`
T

´ ˘
ϕ |M

¯
Type signature

Reduction

valna : T = t ∈ Σ(x)

Σ ; x.a → Σ ; t
(red-value)

defna
`
z : S

´
: T = t ∈ Σ(x)

Σ ; x.a(y) → Σ ; [y/z]t
(red-method)

Σ � T ≺x M

Σ ; val x = new T ; t → Σ, x : M ; t
(red-new)

Σ ; t → Σ′ ; t′

Σ ; e[t] → Σ′ ; e[t′]
(red-context)

Lookup

∀ i, Σ � Ti ≺ϕ Ni

Σ �
`
T

´ ˘
ϕ |M

¯
≺ϕ

`U
i Ni

´
�M

(lookup-sig)

traitnA extends
`
T

´ ˘
ϕ |M

¯
∈ Σ(y)

Σ �
`
T

´ ˘
ϕ |M

¯
≺ϕ N

Σ � y.A ≺ϕ N
(lookup-class)

typenA = T ∈ Σ(y)
Σ � T ≺ϕ M

Σ � y.A ≺ϕ M
(lookup-alias)

where

e ::= (term evaluation context)
〈〉
e.a
e.a (t)
x.a (s, e, u)
val x = new E; t

E ::= (type evaluation context)
e.A`
T , E, U

´ ˘
ϕ |M

¯

Fig. 5. The FSalg Calculus : Syntax & Reduction

10 V. Cremet et al.

Path Typing

x : T ∈ Γ

S, Γ �path x : T
(path-var)

S, Γ � p.type 	 valna : T (= t)?

S, Γ �path p.a : T
(path-select)

Type Assignment

S, Γ �path p : T

S, Γ � p : p.type
(path)

S, Γ � t : S t is not a path

S, Γ � S 	 valna : T (= u)?

S, Γ � t.a : T
(select)

S, Γ � s : S

S, Γ � t : T ′ S, Γ � T ′ <: T

S, Γ � S 	 defna
`
x : T

´
: U (= u)?

S, Γ � s.a
`
t
´

: U
(method)

S, Γ, x : T � t : S x
∈ fn(S)

S, Γ � T ≺ϕ Mc S, Γ � T wf
S, Γ � val x = new T ; t : S

(new)

Expansion

S, Γ � p.type 	 traitnA extends
`
T

´ ˘
ϕ |M

¯
{n} ∪ S, Γ �

`
T

´ ˘
ϕ |M

¯
≺ϕ N n
∈ S

S, Γ � p.A ≺ϕ N
(≺-class)

S, Γ � p.type 	 typenA = T

{n} ∪ S, Γ � T ≺ϕ M n
∈ S
S, Γ � p.A ≺ϕ M

(≺-type)

∀ i, S, Γ � Ti ≺ϕ Ni

S, Γ �
`
T

´ ˘
ϕ |M

¯
≺ϕ

`U
i Ni

´
�M

(≺-signature)

Membership

S, Γ � p � q S, Γ �path q : T

ψ(p) ∪ S, Γ � T ≺ϕ M ψ(p)
⊆ S
S, Γ � p.type 	 [p/ϕ]Mi

(-singleton)

T is not a singleton type

S, Γ � T ≺ϕ M ϕ /∈ fn(Mi)

S, Γ � T 	 Mi

(-other)

Fig. 6. The FSalg Calculus : Type Assignment, Expansion & Membership

ϕ is an alias of z; it represents the self reference of the universe object which
contains all top-level declarations.

We distinguish a subcategory of terms that can be used inside types, and that
we call paths. A path is either a variable or the selection of a field on a term
that is itself a path. The introduction of paths is motivated by their property of
always evaluating to the same object value and of being strongly normalizable.
Both properties are needed if we want type soundness to hold. However, this
goes beyond the scope of the present paper.

Our calculus has a rich syntax of types. A type selection p.A is either a class
type if A is a class label, a virtual type if A is an abstract type label, or an alias

A Core Calculus for Scala Type Checking 11

Well-Formedness

S, Γ �path p : T ψ(p)
⊆ S
ψ(p) ∪ S, Γ � T wf
S, Γ � p.type wf

(wf-singleton)

S, Γ � p.type 	 traitnA extends
`
T

´ ˘
ϕ |M

¯

S, Γ � p.A wf
(wf-class)

S, Γ, ϕ :
`
T

´ ˘
ϕ |M

¯
�

`
T

´ ˘
ϕ |M

¯
wfϕ

S, Γ �
`
T

´ ˘
ϕ |M

¯
wf

(wf-signature)

S, Γ � p.type 	 typenA (= T)?“
{n} ∪ S, Γ � T wf n
∈ S

”?

S, Γ � p.A wf
(wf-type)

MemberWell-Formedness

(S, Γ � T wf)?

S, Γ � typenA (= T)? wfx

(wf-x-type)

S, Γ � T wf
(S, Γ � t : T ′ S, Γ � T ′ <: T)

?

S, Γ � valna : T (= t)? wfx

(wf-x-field)

S, Γ, ϕ : x.A �
`
T

´ ˘
ϕ |M

¯
wfϕ

S, Γ � traitnA extends
`
T

´ ˘
ϕ |M

¯
wfx

(wf-x-class)

S, Γ � S, T wf
S does not contain singleton types`

S, Γ, x : S � t : T ′ S, Γ � T ′ <: T
´?

S, Γ � defna
`
x : S

´
: T (= t)? wfx

(wf-x-method)

∀i, S, Γ � Ti ≺ϕ Ni S, Γ � M wfϕ

S, Γ � T wf ∀ (i, j), S, Γ � (Ni+j , M) � Ni

S, Γ �
`
T

´ ˘
ϕ |M

¯
wfϕ

(wf-x-signature)

Path Alias Expansion

S, Γ �path p : q.type
ψ(p) ∪ S, Γ � q � q′ ψ(p)
⊆ S

S, Γ � p � q′
(�-Step)

S, Γ �path p : T
T is not a singleton type

S, Γ � p � p
(�-Refl)

Fig. 7. The FSalg Calculus : Well-Formedness and Path Alias Expansion

type of A is a concrete type label. A class type p.A has as values all instances
of class A whose enclosing instance associated with A is the object denoted
by p. Virtual and alias types p.A have a rather different meaning: they repre-
sent the type held by the type field A in the object p. A singleton type p.type
represents the type of which p is the unique element. Finally, a type signature(
T
) {

ϕ | M}
combines the concepts of intersection types and member refine-

ments: it represents the intersection of types T with additional constraints on
members expressed by declarations M .

3.2 Operational Semantics

Figure 5 contains the inference rules that define a small-step operational seman-
tics for our calculus. It is composed of a reduction relation and a lookup relation.

12 V. Cremet et al.

Type Alias Expansion

S, Γ � p.type 	 typenA = T
{n} ∪ S, Γ � T � U n
∈ S

S, Γ � p.A � U
(�-type)

S, Γ � p.type 	 typenA

S, Γ � p.A � p.A
(�-abstype)

S, Γ � p.type 	 traitnA extends
`
T

´ ˘
ϕ |M

¯

S, Γ � p.A � p.A
(�-class)

S, Γ �
`
T

´ ˘
ϕ |M

¯
�

`
T

´ ˘
ϕ |M

¯
(�-signature)

S, Γ � p.type � p.type (�-singleton)

Algorithmic Subtyping

S, Γ � T � T ′ S, Γ � U � U ′

S, Γ �∗ T ′ <: U ′

S, Γ � T <: U
(<:-unalias)

S, Γ � p � p′ S, Γ � q � p′

S, Γ �∗ p.type <: q.type
(<:-singleton-right)

U is not a singleton type
S, Γ � p � q S, Γ �path q : T S, Γ � T <: U

S, Γ �∗ p.type <: U
(<:-singleton-left)

S, Γ � p � p′ S, Γ � q � p′

S, Γ �∗ p.A <: q.A
(<:-paths)

A
= A′ {n} ∪ S, Γ � Ti <: p′.A′ n /∈ S
S, Γ � p.type 	 traitnA extends

`
T

´ ˘
ϕ |M

¯

S, Γ �∗ p.A <: p′.A′

(<:-class)

S, Γ � Ti <: p.A

S, Γ �∗
`
T

´ ˘
ϕ |M

¯
<: p.A

(<:-sig-left)

T is not a singleton type

∀i, S, Γ � T <: Ti S, Γ � T ≺ϕ N

dom(M) ⊆ dom(N) S, Γ � N � M

S, Γ �∗ T <:
`
T

´ ˘
ϕ |M

¯
(<:-sig-right)

Member Subtyping

S, Γ � T <: T ′

S, Γ � valna : T (= t)? <: valma : T ′ (= t′)?

(<:-member-field)

S, Γ � typenA = T <: typenA (= T)?

(<:-member-type)

S, Γ � traitnA extends
`
T

´ ˘
ϕ |M

¯
<: traitnA extends

`
T

´ ˘
ϕ |M

¯
(<:-member-class)

S, Γ � S′ <: S S, Γ � T <: T ′

S, Γ � defna
`
x : S

´
: T (= t)? <: defma

`
x : S′´ : T ′ (= t′)?

(<:-member-method)

Fig. 8. The FSalg Calculus : Subtyping

Both relations use the concept of evaluation environment Σ, which is a list of
bindings x : M that associates an object name x with its set of members. The
reduction relation Σ ; t → Σ′ ; t′ reduces t to t′ in the environment Σ. The
reduction of a term can imply the creation of new objects that are added to the

A Core Calculus for Scala Type Checking 13

environment, leading to a new environment Σ′. The lookup relation Σ � T ≺ϕ M
collects all declarations M in a type T . Together with the concept of evaluation
context for terms and types, the rule red-context lets us reduce inside a term.
The evaluation of a program val z = new

{
ϕ | M}

; t consists in repeatedly re-
ducing the term t in the environment context z : [z/ϕ]M until reaching a term
that is a value, i.e. a variable y. Such a semantics is needed if we want to state
and prove a theorem of type safety. Note that in this semantics the value at-
tached to a field member is re-evaluated each time the field is selected, which
corresponds to a call-by-name semantics.

3.3 Type System

The type system of FSalg is described by an algorithmic system of inference rules.
In such a system, any judgment is matched by the conclusion of at most one
rule, which means that the application of rules is completely deterministic. Typ-
ing FSalg requires the definition of several auxiliary judgments about types in
addition to the classical judgment that assigns a type T to a term t: membership
(S, Γ � T � M), subtyping (S, Γ � T <: U), expansion (S, Γ � T ≺ϕ M) and
type well-formedness (S, Γ � T wf). Most of the judgments are parameterized
by a typing context S, Γ , where S is a set of indices representing locked decla-
rations, and Γ is a set of bindings x : T between variables and types such that
all variables x are pairwise distinct.

Type assignment. The first two boxes of Figure 6 present the judgments that
assign types to terms. The judgment S, Γ � t : T always assigns the most precise
type to a term, in particular a path p always receives the type p.type according
to this judgment, provided it can be assigned a bound T (rule path). A field
selection t.a is typable if it is possible to type t and to establish, using the
membership judgment that the type S of t contains a field declaration valna :
T (= u)?; in this case type T is assigned to the selection t.a (rule select). Note
that this rule is only applicable if t is not a path. In case t is a path p, we fall
back to rule path. Rule method allows to type method calls s.a

(
t
)
: the type of

s must contain a declaration for the method a, and each argument must have a
type which is compatible with the one required by the method declaration, i.e.
which is a subtype of the expected type. If these conditions are fulfilled, the type
announced by the method declaration is given to the term s.a

(
t
)
. Finally, rule

new allows the typing of a local object creation val x = new T ; t. Such a term
gets the type of t if several conditions are satisfied. The members declared inside
type T must be concrete: the expansion judgment S, Γ � T ≺ϕ M returns all
the member declarations M of a type T such that x represents the self reference.
The type T must be well-formed. The term t must be typable in the environment
Γ extended with the binding x : T . Finally, because the scope of x is limited to
t, the variable x must not appear in the type S of t.

The judgment S, Γ �path p : T is a typing judgment specialized for paths.
Contrary to the previous judgment, it does not always return the singleton type
p.type for a path p. Rather, it returns the less precise but more informative type

14 V. Cremet et al.

associated with it, called its bound. If p is a variable x, its bound is the type
associated with x in the environment (rule path-var), if p is a selection p′.a, its
bound is the declared type T of a as seen from p′ (rule path-select).

Membership and expansion. In FJ, there is a lookup relation that computes
the most precise signature of a method visible from a given class. In FSalg the
member judgment S, Γ � T � M presented at the bottom of Figure 6 generalizes
this relation to the computation of any kind of declaration (not just methods)
visible from any kind of type (not just class types). In FJ the lookup relation is
quite simple, it returns the signature of the method as it appears in the program;
in FGJ, since classes can have type parameters and since a member signature can
refer to some type parameters of its enclosing class, the lookup relation requires
also the computation of type values for such type parameters. In FSalg, things are
more complicated: because types depend on paths, the signature of a member
can depend on the self reference x of its enclosing class, or more generally on
the self reference of any enclosing class, direct or indirect. Thus, the result of
the lookup must replace x with the actual value of the enclosing instance. To
illustrate this, suppose we have a method declaration defna () : x.A in a class C
where x is the self reference. If the starting type T of the membership judgment
is a singleton type p.type, then it is possible to replace x with p and obtain p.A.
But if the starting type T is a class type q.C, then the lookup fails because there
is no available instance of C with which to replace x. However, if the signature
of a does not depend on x (for instance if the return type of a is an external
type root.Int), then the lookup succeeds, even from q.C (because in root.Int
there is no self reference to be replaced). Rules �-singleton and �-other
respectively implement the situation where the starting type T is a singleton
type and where it is not. In the first case, the path p is first expanded into q
with the path alias expansion judgment. Then, we take the type T of q which,
by construction, is not a singleton type. Using the type expansion judgment we
collect all declarations M of T and we substitute p for the self reference ϕ in the
declaration we are interested in. In case the starting type T is not a singleton
type, we can immediately collect its declarations, but we have to check that the
declaration we are looking for does not contain the self reference ϕ.

The type expansion judgment S, Γ � T ≺ϕ M (third box of Figure 6) collects
all declarations M of a type T where ϕ is used to represent the self reference
inside declarations M . The expansion of a class type p.A is the expansion of the
type signature

(
T
) {

ϕ | M}
composed of its parents T and its direct members M

(rule ≺-class). The index n of the class is added to the set S of locks in order
to avoid falling in an infinite expansion (for instance if a class extends itself).
Rule ≺-type is completely analogous. It expands a type alias while performing
the same actions on locks in order to prevent infinite alias expansion. Finally,
rule ≺-signature expands a type signature: it starts by expanding all parents
T and then merges all collected declarations N with the direct members M of
the type signature. The concatenation with rewriting of common members � of
several sets of declarations is defined by M � N = M |dom(M)\dom(N), N , where
the domain dom(M) of a sequence of declarations is the set of labels it defines

A Core Calculus for Scala Type Checking 15

and the restriction M |L of declarations M to a set of labels L consists of all of
those declarations in M that define labels in L.

Type and path alias expansion. We introduce here two auxiliary judgments,
type alias expansion and path alias expansion that will be used when defining the
subtyping judgment. The idea of the type alias expansion judgment S, Γ � T �
U is very simple: we take a type T and if T is a type alias p.A for another type
T ′, we recursively expand T ′ until we reach a type that is no longer a type alias.
This simple behavior is formalized by the five rules in the first box of Figure 8.

There exists also a relation of aliasing between paths. For instance, with a
field declaration valna : p.type in a class where x is the self reference, the path
x.a has type p.type. Because p.type is a singleton type and x.a belongs to this
type, this really means that x.a and p represent the same object, or equivalently
that x.a is an alias for p. In this reasoning, we have performed a one-step alias
expansion going from x.a to p. The judgment defined at the bottom of Figure 7
implements the complete alias expansion of a path by repeating the operation
we have performed in this example. Once again, we prevent falling into a loop
by adding an index to the set S of locks (rule �-Step). This index is the one of
the last field selected in the considered path p. It is computed by the function
ψ(p). This function takes as implicit arguments the environments S and Γ and
is defined as follows.

ψ(p.a) = n if S, Γ � p.type � valna : T (= t)?

ψ(x) = x

The expansion terminates when we reach a path that cannot be given a sin-
gleton type (rule �-Refl).

Subtyping. The subtyping judgment S, Γ � T <: U (central box of Figure 8) is
used to compare two types T and U . In theory, such a relation must be defined by
considering all possible kinds of types for T and all possible kinds of types for U .
But in practice it is possible to factorize and eliminate a great number of cases.
First we expand both types into types T ′ and U ′ (rule <:-unalias). This simple
operation allows to quickly eliminate all cases where T ′ or U ′ is an abstract
type p.A, because if a type is still abstract after alias expansion nothing can be
said about it. As a consequence, in the auxiliary judgment S, Γ �∗ T <: U we
assume that T and U are not abstract types. If U is a singleton type q.type, then
only another singleton type p.type can be a subtype of it (rule <:-singleton-
right), and in this case paths p and q must be equivalent, i.e. they must be
aliases for the same path p′. If the left-hand side is a singleton type p.type and
the right-hand side U is not, then we just take the bound T of p and recursively
compare it with U (rule <:-singleton-left). If both types are a selection of
the same type label A (rule <:-singleton-left), then their prefixes must be
equivalent. Suppose now that the right-hand side is a class type. We just have to
consider the cases where the left-hand side is a class type or a type signature. If
the left hand-side is a class type p.A then we recursively check that there exists
one parent of the class that is a subtype of p′.A′ (rule <:-class). If the left-hand

16 V. Cremet et al.

side is a type signature
(
T
) {

ϕ | M}
the procedure is analogous. Finally, we are

left with the case where the right-hand side is a type signature
(
T
) {

ϕ | M}
.

There are then two things to check: first that the type T is a subtype of all
parents T in the type signature, which expresses the fact that a type signature
represents the intersection of its parents. And secondly, that type T satisfies the
constraints expressed by the declarations M . This is the case if T expands to
a set of declarations N , with a greater domain than M , and if the declarations
that are common to N and M are more precise in N , which is expressed by the
subtyping test between members S, Γ � N � M .

The subtyping between members is standard (bottom of Figure 8): it is co-
variant for the types of field declarations and for the result types of methods,
contravariant for the method parameter types, and invariant for type and class
declarations. The invariance for type aliases is crucial since an alias conceptually
represents an equality between types. The member subtyping relation is lifted
to sequences of members using the following definitions:

N � N ′ ⇔ (∀(N, N ′) ∈ N × N ′, dom(N) = dom(N ′) ⇒ N <: N ′)
Well-formedness. There are two well-formedness judgments: one for types
S, Γ � T wf (top of Figure 7), and one for members S, Γ � M wfϕ (top of
Figure 7)

For a singleton type p.type to be well-formed, the path p must be typable
(rule wf-singleton). In order to avoid a cyclic dependence between a path and
its type, we also check the well-formedness of the bound T of p. Because we
do not want to fall into a loop, we extend the set of locked indices with ψ(p).
For a class type p.A to be well-formed (rule wf-class), it is sufficient to check
that a class named A is accessible from p, which is expressed by a membership
judgment starting from the type p.type. For an abstract type p.A, a declaration
of the type A must also be visible from p. In addition, if the type is an alias for
a type T we also check that T is well-formed. This is needed since we do not
want type aliases to let us define recursive types. Such a test serves for detecting
illegal cycles, as for the rule wf-singleton. Finally, the well-formedness of a
type signature is checked by first putting a binding with the type signature in
the environment (rule wf-type).

The well-formedness of fields and methods is standard. For a field declara-
tion the type T ′ of the optional value t must conform to the declared bound T
(rule wf-x-field). For a method, the types of parameters S and the method
type T must be well-formed in the current environment, which means that the
judgment excludes the possibility for the type of a parameter to depend on an-
other parameter. The body t of the method must be typable in an environment
extended with the parameters, and its type T ′ must conform to the return type
(rule wf-x-method). Note that we require parameter types not to contain sin-
gleton types. This restriction has almost no impact on expressiveness and it has
the advantage of simplifying the termination proof of path alias expansion. The
well-formedness of a type declaration is equivalent to the well-formedness of the
type T it is an alias for (rule wf-x-type). Eventual cycles in this definition are

A Core Calculus for Scala Type Checking 17

detected indirectly by the well-formedness of T . For typing a class declaration
(rule wf-x-class) we check the well-formedness of its associated type signature(
T
) {

ϕ | M}
composed of its parents and direct members, in an environment

extended with a binding for the class self reference ϕ. It might be surprising
that here we do not check for the absence of cycles in the class hierarchy, but
such cycles are actually detected by the well-formedness of the type signature: if
a class inherits, directly or indirectly, of itself, there cannot exist an expansion
of the parents T . A type signature

(
T
) {

ϕ | M}
(rule wf-x-signature) is well-

formed w.r.t. a self reference ϕ if the T can be expanded, which forbids singleton
types and abstract types in the parents of a signature, and if all new members
of the type, directly present in M , are compatible. The compatibility of a list of
groups of members is defined in such a way that a member declaration is always
more precise than another declaration defined in a previous group in this list,
which is expressed by the formula ∀ (i, j), S, Γ � (Ni+j , M) � Ni.

4 Decidability of the Algorithmic Type System

Lemma 4.1. If a term t can be assigned a type T by the Path Typing judg-
ment, then it is unique.

Proof. It is easy to see that a variable only has a single type assignement in the
context at any time, so all that remains to prove is that field declarations of the
form valna : T (= t)? for a given a are unique in a given p.type. We do it by
induction on the Expansion judgment and pathselect, using the semantics
of �, a method that we are going to detail in the following.

Lemma 4.2. The calculus defines a deterministic algorithm.

Proof. The rules are syntax-directed (the form of the input determines the rule
that must be used, and all the parameters of any recursive calls), except for
≺-class, ≺-type and �-step.

≺-class and ≺-type seem to create an ambiguity, but they are in fact algo-
rithmically equivalent, since they only differ on the member that will be sought
in the expansion of the type of the path that is in the conclusion.

The path in the premises of �-step is uniquely defined by the Path Typing
judgment using Lemma 4.1.

Lemma 4.3. The Path Typing, Expansion, Membership, and Path Alias
Expansion judgments terminate on all inputs.

Proof. We start by inlining the membership rule �-singleton in the recursive
calls of the three other judgments, leading to the following rules:

S , Γ � p � q S , Γ �path q : T

ψ(p) ∪ S , Γ � T ≺ϕ M, [ϕ/p](valna : T ′ (= t)?), M ′ ψ(p)
⊆ S
S , Γ �path p.a : T ′ (path-select)

18 V. Cremet et al.

S , Γ � p � q S , Γ �path q : T

ψ(p) ∪ S , Γ � T ≺ϕ M, [ϕ/p](traitnA extends S x |N , M ′) ψ(p)
⊆ S
{n} ∪ S , Γ � S x |N ≺x N ′ n /∈ S

S , Γ � p.A ≺x N ′

(≺-class)

S , Γ � p � q S , Γ �path q : T

ψ(p) ∪ S , Γ � T ≺ϕ M, [ϕ/p](typenA = S), M ′ ψ(p)
⊆ S
{n} ∪ S , Γ � S ≺x N ′ n /∈ S

S , Γ � p.A ≺x N ′ (≺-type)

The other rules are left unchanged, and the system with those updated rules is
trivially equivalent to the previous one. We prove the termination of the Ex-
pansion, Path Typing and Path Alias Expansion judgments by mutual
induction, reasoning by case on the last rule of the derivation. The result is then
easily extended to the Membership judgmement by inspection.

Cases �-refl and pathvar are easy. For the others, we consider that several
rules in those jugements make all their recursive calls on a strictly larger set of
locked symbols, and can therefore appear at most a finite number of times in
any derivation. We can then concentrate on the remaining case, ≺-signature.
Let us define the size of a type by the lexicographical pair (N, L) where N
is the number of its members and L its textual size. Then this size is finite
and positive, and ≺-signature only makes recursive calls on strictly smaller
types. Those recursive calls conclude when reduced to a type signature with no
inherited types, in which case the conclusion is true by vacuity.

Corollary 1. The Type Alias Expansion judgment terminates on all inputs.

Proof. Easy induction, considering that the rule �-type can only be applied a
finite number of times.

Lemma 4.4. The Algorithmic Subtyping and Member Subtyping judg-
ments terminate on all inputs.

Proof. We proceed by mutual induction on those two jugements, and then by
case on the last step of the derivation. Using Corollary 1, we can concentrate on
the subtyping of unaliased terms (�∗) using rule <:-unalias.

Case 1 (Algorithmic Subtyping). Cases <:-singleton-right and <:-paths
are easy using Lemma 4.3. Moreover, it is easy to show using the Path Alias
Expansion judgment, that the type T in the premises of <:-singleton-left is
not a singleton type. This rule therefore allows us to unfold a subtyping problem
referring to a singleton type to a subtyping problem between non-singleton types
in a single step. Since our subtyping rules do not contain singleton types in their
premises, the only singleton types we can encounter in a subtyping derivation
are those explicitly mentioned in the program, and their number is finite. We
can therefore consider that we work modulo this unfolding.

A Core Calculus for Scala Type Checking 19

Using the definition of the size of a type given in the proof of Lemma 4.3, we
can show that all the recursive calls to the Algorithmic Subtyping judgment
are made on a strictly smaller type, noticing in the case of <:-class that a given
trait can not extend itself.

The remaining case is <:-sig-right, where the call to the Member Subtyp-
ing judgment could potentially create a cycle. Let us proceed by contradiction:
if there is such a cycle, it means that we have found a type signature

(
T
) {

x | M}
such that one of its member declarations contains a declared type that is is ei-
ther

(
T
) {

x | M}
or some

(
S
) {

y | N}
such that ∃ i, Si =

(
T
) {

x | M}
. Then the

textual length of this type is larger than the textual length of the type signature
that contains it, which is absurd.

Case 2 (Member Subtyping). Easy with the previous case.

Lemma 4.5. The Type Assignement, Well-Formedness and Member
Well-Formedness judgments terminate on all inputs.

Proof. We proceed by mutual induction on those jugements, then by case on the
last rule of the derivation.

Case 3 (Member Well-Formedness). Considering wf-x-signature, we no-
tice that, in a similar way to the problem we encountered with rule <:-sig-right
in Case 1 of Lemma 4.4, we are in presence of a judgement that makes several
potentially cyclic recursive calls to the Well-Formedness judgment. However,
since the judgment is syntax-directed, we notice that such a cycle would require
us to find a type signature

(
T
) {

x | M}
directly containing a member whose

declared type lexically contains
(
T
) {

x | M}
itself, which would give this type

signature an infinite textual length.
The remaining interesting cases are wf-x-field and wf-x-method. in both

cases, making a derivation involving those rules cyclic requires defining a type
signature that directly contains a field or method whose value contains an in-
stantiation of this very type signature:

M � valna : T = val x = new
(
T
) {

x | M}
; t

This would again give an infinite textual length to the term
(
T
) {

x | M}
.

Case 4 (Well-Formedness). We start by noticing that wf-singleton and
wf-type can only occur a finite number of times, since they make their re-
cursive calls on a strictly larger set of recursive types. We then conclude using
the previous case and the termination lemma for the Membership judgment
(Lemma 4.3).

Case 5 (Type Assignement). We conclude remarking that we make recursive
calls to the Type Assignement judgment on structurally smaller terms, and
using the previous termination lemmas.

20 V. Cremet et al.

5 Type Checking and Type Inference in Scala

The previous section showed that type-checking in FSalg is decidable. Does the
same hold for full Scala? It is at present too hard to give a definite answer since
full Scala is too complicated to admit a formalization of its type system which is
complete yet still manageable enough to admit a proof of decidability. But one
can conjecture. To do this, we need to compare full Scala with Featherweight
Scala. Most of the additional syntactic constructs in full Scala do not cause
particular problems for type-checking. However, unlike Featherweight Scala, full
Scala has local type inference [30,26].

Local type inference needs to construct least upper bounds and greatest lower
bounds (wrt the subtype ordering) of sets of types. The decidability of these lub
and glb operations in FSalg is currently an open question. To see the problem,
consider the following three class definitions.

trait A { this0 |
type T
def fromT(x : T): A

}
trait B { this0 |

type T
def fromT(x : T): B

}
trait C extends A with B { this0 |

def fromT(x : T): C
}

Now assume that we want to find the greatest lower bound of A and B. Clearly,
C is a lower bound of A and B, but it is not the greatest one. A greater lower
bound is represented by the following refinement type:

A with B { this0 | fromT(x : T): C }

One can apply the same step to the result type of fromT to obtain a still greater
lower bound. Repeating this step infinitely often one obtains the following limit
of an ascending chain of lower bounds:

A with B { this0 |
fromT(x : T): A with B { this1 |

fromT(x : T): A with B { this2 |
fromT(x : T): A with B { this3 |

...
}

}
}

}

This limit does not exit as a finite type in FSalg, but the natural algorithm for
computing lower bounds is likely to try to construct it, and this would result in

A Core Calculus for Scala Type Checking 21

non-termination. A similar infinite approximation can be constructed for the lub
operation by using the contravariance of method parameters. An example is the
lub of the two refinements

{ def f(x : A): Boolean } and { def f(x : B): Boolean } .

The problem of infinite approximations of lub’s and glb’s also occurs when type-
checking Java 1.5 programs with generics and wildcards [34]. The decidability
of the latter is currently open [35].

The scalac compiler addresses this problem by imposing a maximum size on
the types computed by its lub and glb operations. It is currently set at 10 levels
of parameterizations or refinements. If a type computed by lub or glb exceeds
this limit the system will reply with an error such as the one below:

error : failure to compute least upper bound of types
(A) ⇒ scala.Int and (B) ⇒ scala.Int;
an approximation is :
(A with B{

def fromT(this.T): (A with B{
def fromT(this.T): (A with B{

def fromT(this.T): (A with B{...})})})}) ⇒ Int
additional type annotations are needed

if (cond) (x : A) ⇒ 1 else (x : B) ⇒ 1
ˆ

The Scala compiler thus turns the potential problem of undecidability of type
inference into a completeness problem: local type inference might now fail to give
a solution even if a best type would exist. However, in practice such complicated
types arise very rarely. Moreover, it is always possible to guide the type inference
process by adding more type annotations, so that infinite approximations are
avoided.

In the failed example above, the problem would have been avoided by giving
an explicit annotation of the desired type of the problematic conditional. For
instance, the following compiles without error.

(if (cond) (x : A) ⇒ 1 else (x : B) ⇒ 1): (C ⇒ int)

To summarize, the results on type-checking Featherweight Scala give some degree
of confidence that type-checking regular Scala is also decidable. Furthermore, the
formalization of locks in FSalg corresponds closely to the present implementation
in the Scala compiler, so that there is hope that this implementation does in fact
represent an algorithm for type checking Scala programs. Type-inference, on the
other hand, needs to compute lub’s and glb’s of types and is believed to be
undecidable. The Scala compiler avoids potential non-termination at the price
of incompleteness by imposing an upper limit on the size of the types computed
by a lub or glb.

Note that we have classified here the typing of an if-then-else expression as
a type-inference problem, not a type checking problem. The justification of this
classification is that it is possible (and, at rare occasions, necessary) to provide
a type for the expression with an explicit annotation.

22 V. Cremet et al.

6 Conclusion

We have presented a calculus for type-checking core Scala programs. Feather-
weight Scala decribes the central constructs for programming components in
Scala: nested classes, modular mixin composition, abstract types, type aliases,
and path-dependent types. Unlike previous work on foundations of Scala [25],
this calculus is decidable and admits a straight-forward type-checking algorithm.

Featherweight Scala programs are essentially a syntactic subset of regular
Scala programs. The subset is kept minimal, so that one can concentrate on a
small set of typing issues. In future work it would be interesting to extend the
calculus to a larger fragment of Scala. Among the most interesting extensions
are a call-by-value semantics, polymorphic methods, and mutable state.

The correctness of the calculus also remains to be verified. The operational
semantics of FSalg is defined by a small-step reduction semantics. We intend to
show in future work that it satisfies the subject-reduction and type-soundness
properties. Judging from our experience with previous calculi [25,10] this looks
plausible, but a formal proof still needs to be completed.

Acknowledgement. We thank Rachele Fuzzati for proofreading the formal de-
scription of the calculus.

References

1. P. Altherr. A Typed Intermediate Language and Algorithms for Compiling Scala
by Successive Rewritings. PhD thesis, EPFL, March 2006. No. 3509.

2. P. Altherr and V. Cremet. Inner Classes and Virtual Types. EPFL Technical
Report IC/2005/013, March 2005.

3. D. Ancona and E. Zucca. A primitive calculus for module systems. In Principles
and Practice of Declarative Programming, LNCS 1702, 1999.

4. D. Ancona and E. Zucca. A calculus of module systems. Journal of Functional
Programming, 2002.

5. G. Bracha. The Programming Language Jigsaw: Mixins, Modularity and Multiple
Inheritance. PhD thesis, University of Utah, 1992.

6. G. Bracha and G. Lindstrom. Modularity meets inheritance. In Proceedings of the
IEEE Computer Society International Conference on Computer Languages, pages
282–290, Washington, DC, 1992. IEEE Computer Society.

7. K. Bruce. Some challenging typing issues in object-oriented languages. In Elec-
tronic notes in Theoretical Computer Science, volume 82(8)., 2003.

8. K. B. Bruce, M. Odersky, and P. Wadler. A statical safe alternative to virtual
types. In Proceedings of the 5th International Workshop on Foundations of Object-
Oriented Languages, San Diego, USA, 1998.

9. K. Crary, R. Harper, and S. Puri. What is a recursive module? In SIGPLAN Con-
ference on Programming Language Design and Implementation, pages 50–63, 1999.

10. V. Cremet. Foundations for Scala: Semantics and Proof of Virtual Types. PhD
thesis, EPFL, May 2006. No. 3556.

11. E. Ernst. gBeta: A language with virtual attributes, block structure and propagating,
dynamic inheritance. PhD thesis, Department of Computer Science, University of
Aarhus, Denmark, 1999.

A Core Calculus for Scala Type Checking 23

12. E. Ernst. Family polymorphism. In Proceedings of the European Conference on
Object-Oriented Programming, pages 303–326, Budapest, Hungary, 2001.

13. E. Ernst, K. Ostermann, and W. Cook. A virtual class calculus. In ACM Sympo-
sium on Principles of Programming Languages (POPL’06), Jan. 2006.

14. J. Garrigue. Code reuse through polymorphic variants. In In Workshop on Foun-
dations of Software Engineering, Sasaguri, Japan, November 2000., 2000.

15. R. Harper and M. Lillibridge. A type-theoretic approach to higher-order mod-
ules with sharing. In Proceedings of the 21st ACM Symposium on Principles of
Programming Languages, January 1994.

16. T. Hirschowitz and X. Leroy. Mixin modules in a call-by-value setting. In European
Symposium on Programming, pages 6–20, 2002.

17. A. Igarashi and B. C. Pierce. Foundations for virtual types. Information and
Computation, 175(1):34–49, 2002.

18. A. Igarashi and B. C. Pierce. On inner classes. Inf. Comput., 177(1):56–89, 2002.
19. A. Igarishi, B. Pierce, and P. Wadler. Featherweight Java: A minimal core calculus

for Java and GJ. In Proc. OOPSLA, Nov. 1999.
20. P. Jolly, S. Drossopoulou, C. Anderson, and K. Ostermann. Simple dependent

types: Concord. In Proc. FTfJP, 2004.
21. X. Leroy. A syntactic theory of type generativity and sharing. In ACM Symposium

on Principles of Programming Languages (POPL), Portland, Oregon, 1994.
22. O.L.Madsen,B.Møller-Pedersen, andK.Nygaard. Object-OrientedProgramming in

theBETAProgrammingLanguage. Addison-Wesley, June 1993. ISBN0-201-62430-3.
23. K. Nakata, A. Ito, and J. Garrigue. Recursive object-oriented modules. In Proc.

FOOL 12, Jan. 2005.
24. N. Nystrom, S. Chong, and A. Myers. Scalable extensibility via nested inheritance.

In Proc. OOPSLA, pages 99–115, 2005.
25. M. Odersky, V. Cremet, C. Röckl, and M. Zenger. A nominal theory of objects

with dependent types. In Proc. ECOOP’03, Springer LNCS, July 2003.
26. M. Odersky, C. Zenger, and M. Zenger. Colored local type inference. In Proceedings

of the 28th ACM Symposium on Principles of Programming Languages, pages 41–
53, January 2001.

27. M. Odersky and M. Zenger. Independently extensible solutions to the expres-
sion problem. In Proc. FOOL 12, Jan. 2005. http://homepages.inf.ed.ac.uk/

wadler/fool.
28. M. Odersky and M. Zenger. Scalable component abstractions. In Proc. OOPSLA,

2005.
29. B. C. Pierce. Bounded quantification is undecidable. Information and Computa-

tion, 112(1):131–165, July 1994.
30. B. C. Pierce and D. N. Turner. Local type inference. In Proc. POPL, 1998.
31. D. Rémy and J. Vuillon. On the (un)reality of virtual types. available from

http://pauillac.inria.fr/remy/work/virtual, Mar. 2000.
32. M. Torgersen. Virtual types are statically safe. In 5th Workshop on Foundations

of Object-Oriented Languages, San Diego, CA, USA, January 1998.
33. M. Torgersen. The expression problem revisited: Four new solutions using generics.

In Proc. ECOOP 2004, volume 3086 of Springer LNCS, pages 123–143. Springer-
Verlag, July 2004.

34. M. Torgersen, C. P. Hansen, E. Ernst, P. vod der Ahé, G. Bracha, and N. Gafter.
Adding wildcards to the Java programming language. In Proceedings SAC’04,
pages 1289–1296, Nicosia, Cyprus, Mar. 2004. ACM Press.

35. S. Zdancewic. Type inference for Java 5: Wildcards, F-bounds, and undecidability.
http://www.cis.upenn.edu/~stevez/note.html, 2006.

Tree Exploration with an Oracle

Pierre Fraigniaud1, David Ilcinkas2, and Andrzej Pelc3

1 CNRS, Laboratoire de Recherche en Informatique (LRI)
Université Paris-Sud
91405 Orsay, France

pierre@lri.fr
2 Laboratoire de Recherche en Informatique (LRI)

Université Paris-Sud
91405 Orsay, France
ilcinkas@lri.fr

3 Département d’informatique, Université du Québec en Outaouais
Gatineau, Québec J8X 3X7, Canada

pelc@uqo.ca

Abstract. We study the amount of knowledge about the network that
is required in order to efficiently solve a task concerning this network.
The impact of available information on the efficiency of solving network
problems, such as communication or exploration, has been investigated
before but assumptions concerned availability of particular items of infor-
mation about the network, such as the size, the diameter, or a map of the
network. In contrast, our approach is quantitative: we investigate the min-
imum number of bits of information (minimum oracle size) that has to
be given to an algorithm in order to perform a task with given efficiency.

We illustrate this quantitative approach to available knowledge by the
task of tree exploration. A mobile entity (robot) has to traverse all edges
of an unknown tree, using as few edge traversals as possible. The quality
of an exploration algorithm A is measured by its competitive ratio, i.e.,
by comparing its cost (number of edge traversals) to the length of the
shortest path containing all edges of the tree. Depth-First-Search has
competitive ratio 2 and, in the absence of any information about the
tree, no algorithm can beat this value.

We determine the minimum number of bits of information that has
to be given to an exploration algorithm in order to achieve competi-
tive ratio strictly smaller than 2. Our main result establishes an exact
threshold oracle size that turns out to be roughly log log D, where D is
the diameter of the tree. More precisely, for any constant c, we construct
an exploration algorithm with competitive ratio smaller than 2, using an
oracle of size at most log log D − c, and we show that every algorithm
using an oracle of size log log D − g(D), for any function g unbounded
from above, has competitive ratio at least 2.

1 Introduction

For many network problems (such as leader election, minimum spanning tree,
rendezvous, wakeup, broadcasting, etc.), the quality of the algorithmic solutions

R. Královič and P. Urzyczyn (Eds.): MFCS 2006, LNCS 4162, pp. 24–37, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Tree Exploration with an Oracle 25

often depends on the amount of knowledge given to nodes of the network, or given
to mobile entities moving in the network, about its topology. Local knowledge
given to every node and/or to every mobile entity is its identity and, for a node,
its degree (or the list of neighbor identities). Any other knowledge (e.g., the total
number of nodes, network diameter, the total number of mobile entities, partial
maps of the network, etc.) is global knowledge. Many results illustrate the impact
of global knowledge on the ability and efficiency of solving network problems.
For instance, it is proved in [4] that, if an upper bound n̂ on the number n
of nodes of a graph is known, then a robot can explore this graph in time
polynomial in n̂, using one pebble, while without this knowledge, Θ(log log n)
pebbles are necessary and sufficient. Broadcasting in radio networks is another
subject where global information significantly influences efficiency. In [22] it is
shown that if nodes have complete knowledge of the network then deterministic
broadcasting can be done in time O(D + log3 n), for n-node radio networks
with diameter D. (This result has been recently improved to O(D + log2 n)
in [24]). On the other hand, in [9] a lower bound of Ω(n log D) is proved on
deterministic broadcasting time in radio networks in which nodes know only
their own identity. (An almost matching upper bound of O(n log2 D) is proved
in [10]). In fact, the impact of global knowledge is significant in many areas of
distributed computing, as witnessed by [19,25] where hundreds of impossibility
results and lower bounds for distributed computing are surveyed, many of them
depending on whether or not the nodes are given exact or approximate values of
global parameters providing partial knowledge of the topology of the network.
Finally, notice that the amount of global knowledge has also a strong impact on
computing in anonymous networks (cf., e.g., [23], where the impact of knowing
the total number of nodes is studied in depth).

We model global knowledge, given to the nodes or to the mobile entities,
by an oracle. Given a problem P with the set of instances I, an oracle is a
function O : I → {0, 1}∗ that maps any instance I to a binary string O(I).
Solving problem P using oracle O consists in designing an algorithm that, given
the binary string O(I), but unaware of I, returns a P-scheme for I, i.e., a
sequence of instructions executed by the nodes or the mobiles entities, solving
P for I. In this setting, the amount of global knowledge is measured by the
size of the oracle on every instance I, i.e., the length of the binary string O(I).
Typical questions of interest are then: ”What is the minimum size of an oracle
for solving problem P?” or ”What is the minimum size of an oracle for solving
P within some amount of time?”. The novelty and significance of our modeling
of global knowledge is that it enables asking such quantitative questions about
the required knowledge, regardless of what kind of knowledge is supplied. This
should be contrasted with the traditional approach that assumes availability of
particular items of global information.

Modeling knowledge about the network by an oracle has already proved useful
in the context of communication problems. In a recent paper [21], we showed
tight bounds on oracle size required for an efficient execution of two fundamental
communication tasks: broadcast and wakeup. It turns out that the minimum

26 P. Fraigniaud, D. Ilcinkas, and A. Pelc

oracle size required for broadcast with a linear number of messages is strictly
larger than that required for wakeup with a linear number of messages. In this
paper, we address similar quantitative questions about knowledge required for
one of the fundamental problems in mobile computing: the exploration problem.
We prove a tight bound of roughly log logD on the size of an oracle enabling the
design of an exploration algorithm with competitive ratio strictly less than 2, on
trees of diameter D.

1.1 The Background of Tree Exploration

A robot has to traverse all edges of an undirected connected graph, using as few
edge traversals as possible. Graph exploration is most often performed when the
robot lacks some essential information on the explored graph. In such case, the
quality of an exploration algorithm A is measured by comparing its cost (number
of edge traversals) to the length of the shortest covering walk (i.e., the shortest
path containing all edges of the graph). This ratio, maximized over all graphs
and all starting nodes, is called the competitive ratio R(A) of algorithm A. The
situation here is similar to the context of online algorithms, where competitive
ratio first appeared. In both cases, the performance of an algorithm lacking some
essential knowledge about the environment is compared to that of an algorithm
that has this knowledge: in the case of online algorithms, this knowledge concerns
future events, and in the case of exploration, it concerns the topology of the graph
and its labeling. (An algorithm provided with a fully labeled copy of the explored
graph, showing which port at a visited node leads to which neighbor, can find
the shortest covering walk off line.)

Depth-First-Search has competitive ratio 2 and it was shown in [14] that
no exploration algorithm can beat this value for arbitrary graphs, even when
provided with an unlabeled isomorphic copy of the explored graph with the
starting node marked. It turns out that merely the absence of labels of ports
and nodes in the map is sufficient to confuse any algorithm on some graphs,
making it not better than DFS. On the other hand, in the absence of any global
information whatsoever, beating competitive ratio 2 was shown impossible even
for the family of trees. This leads to the question if competitive ratio smaller
than 2 is possible to achieve for tree exploration, if the algorithm is provided
with some partial information concerning the explored environment. In [14] a
positive answer to this question was given in the case of very large additional
information: the robot was provided with an unlabeled map of the tree. However,
this assumption is not very realistic. Indeed, exploration is often used as a tool
to construct a map of an unknown network, and usually a priori information
about the explored network is much more restricted.

1.2 The Problem

We consider the problem of the amount of information needed to achieve tree
exploration with competitive ratio smaller than 2. (Recall that the reason of
restricting attention to trees is the above mentioned negative result for general
graphs, showing that already relatively simple graphs force competitive ratio at

Tree Exploration with an Oracle 27

least 2 even with extensive additional information, namely an entire unlabeled
copy of the explored graph.)

The problem is formalized as follows. In the framework of tree exploration,
we define an oracle to be a function O from the class of all trees to the class of
binary strings. Specifically, for every tree T , an exploration algorithm is provided
with the string O(T) and returns an exploration scheme for T . Such a scheme,
starting at any node u, traverses all edges of T . The size of the oracle for tree T is
the length of the string O(T). We ask what is the minimum size of an oracle for
which there exists an exploration algorithm achieving competitive ratio smaller
than 2, for all trees.

1.3 Our Results

We use the notion of oracle to measure the minimum amount of information
required for the design of an efficient exploration algorithm. Our main result
establishes an exact threshold oracle size to achieve competitive ratio smaller
than 2 for tree exploration. This threshold turns out to be roughly log logD,
where D is the diameter of the tree. More precisely, for any constant c we con-
struct an exploration algorithm with competitive ratio smaller than 2, using an
oracle of size at most log log D − c, and we show that every algorithm using an
oracle of size log log D − g(D), for any function g unbounded from above, has
competitive ratio at least 2.

It is interesting to note the structure of the oracle in our positive result.
For any tree T , this is a string s of bits depending only on D, and giving an
approximation of it, plus an additional bit b that allows the robot to choose
between two types of exploration. This additional bit b (depending on D and on
the size of the tree) is very important. Indeed, while the string s depends only on
D and has length smaller than log log D, we show that even the full knowledge
of D, but without b, is not sufficient to beat competitive ratio 2. More precisely,
we show that every exploration algorithm knowing only the diameter of the tree
must have competitive ratio at least 2.

1.4 Related Work

Exploration of unknown environments has been extensively studied in the liter-
ature, both in the geometric and in the graph setting. In the first scenario the
environment is modeled, e.g., as a terrain with obstacles that may be convex
[7], polygonal [11] or rectangular [3]. Another way is to represent the unknown
environment as a graph, assuming that the robot may only move along its edges.
The graph model is further specified in two different ways. In [1,4,5,13,20] the
robot explores strongly connected directed graphs and it can move only in the
direction from tail to head of an edge, not vice-versa. In [1,13] the authors study
competitive ratio of algorithms exploring directed graphs. The constructed algo-
rithms have competitive ratio exponential in the deficiency d of the graph [13],
or competitive ratio dO(log d)m, where m is the number of edges [1]. Recently, the
first exploration algorithm with competitive ratio polynomial in the deficiency
of the graph has been given in [20].

28 P. Fraigniaud, D. Ilcinkas, and A. Pelc

In [2,8,14,18,26,27] the explored graph is undirected and the robot can traverse
edges in both directions. In some papers additional restrictions on the moves of
the robot are imposed. It is assumed that the robot has either a restricted tank
[2,8], forcing it to periodically return to the base for refueling, or that it is
tethered, i.e., attached to the base by a rope or cable of restricted length [18].

Another direction of research concerns exploration of anonymous graphs (di-
rected or undirected). In this case it is impossible to explore arbitrary graphs
and stop, if no marking of nodes is allowed. Hence the scenario adopted in [4,5] is
to allow pebbles which the robot can drop on nodes to recognize already visited
ones, and then remove them and drop in other places. The authors concentrate
attention on the minimum number of pebbles allowing efficient exploration of
arbitrary directed graphs. Exploring anonymous trees without the possibility of
marking nodes is investigated in [15]. The authors concentrate attention not on
the cost of exploration but on the minimum amount of memory sufficient to
carry out this task. Exploration of anonymous graphs was also considered in
[12,16,17].

2 Terminology and Preliminaries

For any tree T we denote by |T | the number of nodes of T , and call it the size
of this tree. For a given tree T and starting node u, we denote by opt(T, u)
the length of the shortest covering walk of T starting from u, i.e., the length of
the shortest path in T starting from u and containing all edges of T . Clearly,
opt(T, u) = 2(n−1)−ecc(u), where n is the size of T and ecc(u) is the eccentricity
of the starting node u, i.e., the distance from u to the farthest leaf. Depth-First-
Search ending in the leaf farthest from the starting node u uses fewest edge
traversals.

We assume that all ports at a node v are numbered 1,...,deg(v). Hence the
robot can recognize already visited nodes and traversed edges. However, it cannot
tell the difference between yet unexplored edges incident to its current position.
The robot executes a given exploration scheme that, at every node v, makes
one of the following decisions: take a specific already explored edge, or take an
unexplored edge. If the scheme decides to take an unexplored edge, the actual
choice of the edge belongs to an adversary, as we are interested in worst-case
performance.

We want an oracle to provide information on the topology of the explored
tree, independently of any labeling, hence we define it as a function O from the
class of all unlabeled trees to the class of binary strings. For any string s, a tree
T such that O(T) = s is called compatible with s. If a tree exploration algorithm
A takes the string O(T) as input for any tree T , we say that A uses O.

Consider an exploration algorithm A using oracle O. For any string s in the
range of O, algorithm A produces an exploration scheme that explores all trees
compatible with s. For any such tree T and starting node u, the cost A(T, u) of
this scheme, run on tree T from the starting node u, is the worst-case number
of edge traversals taken over all of the above mentioned choices of an adversary.

Tree Exploration with an Oracle 29

The competitive ratio of A is defined as

R(A) = supT,u

A(T, u)
opt(T, u)

,

where the supremum is taken over all trees T and all starting nodes u of T .
The fact that an oracle is defined on unlabeled rather than labeled trees is

an important distinction. For example, for the class of lines, we will prove that
an oracle of (asymptotic) size log log n is needed to achieve competitive ratio
smaller than 2, where n is the length of the line. However, for a given labeling, a
single bit (indicating the port at the starting node leading to the closer endpoint
of the line) is enough to achieve competitive ratio 1: DFS starting toward the
closer endpoint achieves it.

The following remark will be useful for proving lower bounds on the competi-
tive ratio of exploration algorithms. Suppose that the robot, at some point of the
exploration, is at node v, then moves along an already explored edge e incident
to v, and immediately returns to v. For any set of decisions of an adversary, an
algorithm causing such a pair of moves, when run on a tree T from some starting
node u, has cost strictly larger than the algorithm that skips these two moves.
Hence, we restrict attention to exploration algorithms that never perform such
returns. We call them regular.

In [14] the authors introduced the following classification of exploration algo-
rithms for the class of lines (they considered exploration algorithms that know
the length n of the line). Fix n and let type k be the set of algorithms that
always do at most k returns before reaching an endpoint, and that do exactly
this many returns for some combination of starting node and (adversary) choice
of the initial direction. They proved the following result that permits to restrict
attention to relatively simple algorithms exploring lines, when looking for mini-
mum competitive ratio.

Lemma 1. [14] Fix n ≥ 11. For every exploration algorithm A for the line Ln

of length n there exists an algorithm A′ for Ln, such that A′ is of type 1 and
maxu∈Ln

A′(Ln,u)
opt(Ln,u) ≤ maxu∈Ln

A(Ln,u)
opt(Ln,u) .

In our setting, an algorithm does not know the length of the line but only the
value of the oracle. Hence we change the notion of type in the following way.
Consider an algorithm A using oracle O. Fix a string s in the range of O and
consider the exploration scheme produced by A for this string. This scheme is of
type k if it always does at most k returns before reaching an endpoint, for any
line Ln of length n compatible with s, and any starting node u, and if it does
exactly this many returns for some line compatible with s, some starting node
and some adversary choice of the initial direction.

In the proof of Lemma 1, the algorithm A′ is obtained from A independently
of n. Hence this lemma implies that in our setting the best competitive ratio for
the class of lines is achieved by an exploration algorithm that, for any string s,
produces a scheme of type 1. This type consists of simple exploration schemes
that go x steps in one direction (unless an endpoint is met), then return and

30 P. Fraigniaud, D. Ilcinkas, and A. Pelc

go to an endpoint, then return and go to the other endpoint. For any scheme of
type 1, this integer x will be called the probing distance of the scheme.

The next lemma describes the performance of schemes of type 1 as a function
of the probing distance. The proof of the lemma will appear in the full version
of the paper.

Lemma 2. For any positive integer n and any α < 1, let Sα,n be the explo-
ration scheme of type 1 for the line Ln of length n, with probing distance �αn�,
and let tα,n(u) be the cost of this scheme for starting node u. Let Fn(α) =
maxu∈Ln

tα,n(u)
opt(Ln,u) . Then, there exists a positive integer N0, such that for any

n ≥ N0, the function Fn is strictly decreasing in the interval (0,
√

3−1
2], and

supn>0 Fn(α) < 2, for any α in this interval.

3 The Upper Bound

In this and the next section, we prove our main result, establishing the exact
threshold on the size of an oracle for which an exploration algorithm can have
competitive ratio smaller than 2. This result is presented in two theorems, one of
which establishes an upper bound on the size of such an oracle, by constructing
an appropriate exploration algorithm, and the other, in section 4, proves a match-
ing lower bound. In this section, we establish the upper bound, by constructing
exploration algorithm SKE(c) (for Small-Knowledge-Exploration(c)), for
an arbitrary positive integer constant c. This algorithm has competitive ratio
smaller than 2, and uses an oracle Oc of size at most max(1, log log D − c), for
any tree of diameter D.

We first describe the oracle Oc. Fix c > 0. Given a tree T of diameter D, the
oracle Oc outputs a bit called choice and, if choice = 1, an integer k using
�log�log D�� − (c + 3) bits. The bit choice is used by the algorithm to make
a decision concerning two alternative ways of exploration, and the integer k is
used to obtain an approximation D0 of the diameter.

Let N0 be an integer (whose existence is guaranteed by Lemma 2) such that,
for all n ≥ N0, the function Fn is strictly decreasing in the interval (0,

√
3−1
2],

and supn>0 Fn(α) < 2, for any α in this interval. For α ∈ (0,
√

3−1
2], let β(α) =

supn>0 Fn(α). Let T be any tree and let n and D be, respectively, its number of
nodes and its diameter. Take ε such that D = (1− ε)n. We will use the following
abbreviations: λ =

√
3−1
2 , and γ = 22c+3+1. We now define a threshold ε∗ on the

value of ε that will serve to define the bit choice. Let ε1 = λ
16γ , β1 = β(ε1),

ε2 = 2−β1
624 , and ε∗ = min(ε1, ε2). The oracle sets choice to 1 if

(ε < ε∗) ∧ (D ≥ 22c+3
) ∧ (n ≥ N0) ,

and sets choice to 0 otherwise. If choice = 1, the oracle computes k = � �log D�
2c+3 �.

Given choice and k, Algorithm SKE(c) returns an exploration scheme. If
choice = 0, then this scheme is an arbitrary DFS. To fix attention, we take

Tree Exploration with an Oracle 31

the DFS that always chooses the smallest yet unused port number at every
node. Note that choice is set to 0 when the diameter of the tree is significantly
smaller than its size, or when the diameter is bounded, or when the tree itself is
small.

We now describe the much more subtle scheme Xc produced by the algorithm
when choice = 1. The scheme Xc uses Procedure DPDFS(v) (for Doubling-
Partial-Depth-First-Search(v)) that is called at a node v of the explored
tree, outputs the two edges connecting v to the two largest subtrees rooted at
neighbors of v, completely explores all other subtrees, and eventually returns to
v. In the sequel, we will use the notion of a subtree pending from v as an equiv-
alent to the notion of a subtree rooted at a neighbor of v. Procedure DPDFS(v)
is described in Figure 1.

Procedure DPDFS(v)
i ← 1;
S ← set of edges incident to v, connecting v to subtrees

not yet completely explored;
while |S| ≥ 3 do

S′ ← S;
while S′
= ∅ do

let e ∈ S′ and let T (e) be the subtree connected to v by edge e;
explore T (e) by DFS until min(|T (e)|, 2i − 1) nodes are visited;
return to v;
S′ ← S′ \ {e};
if T (e) is completely explored then S ← S \ {e};

i ← i + 1;
if |S| = 2 then return S;
if |S| = 1 then let e′ be the edge connecting v to the largest

explored subtree and return S ∪ {e′};
if S = ∅ then let e′ and e′′ be the edges connecting v to the two largest

explored subtrees and return {e′, e′′};

Fig. 1. Procedure DPDFS

The proof of the following lemma will appear in the full version of the paper.

Lemma 3. Let v be any node of degree at least 3. Let T1, . . . , Tp be the enumer-
ation of the subtrees pending from v in decreasing order of their sizes. Procedure
DPDFS(v) returns two edges corresponding to two largest subtrees (up to size
equality), and completely explores all other subtrees pending from v. Moreover,
the cost of Procedure DPDFS(v) is at most 22

∑p
i≥3 |Ti|.

The intuitive idea of the exploration scheme Xc (returned by Algorithm SKE(c)
when choice = 1) is the following. Let D0 = 2k·2c+3−1. We will prove that
D0 approximates the diameter D as follows: D0 ≤ D < γD0. The robot uses
Procedure DPDFS(v) to identify the two edges connecting the current node v to

32 P. Fraigniaud, D. Ilcinkas, and A. Pelc

the largest subtrees pending from it. Then the robot moves along one of the
edges and applies the procedure again. These consecutive applications define a
path of length approximately equal to the diameter of the tree. On this path
the robot applies a scheme of type 1 for lines: go at probing distance �λD0/2�,
return and go to the endpoint of the path, return and go to the other endpoint
of the path. The approximation D0 of the diameter is tight enough to guarantee
good performance of the scheme on this path. On the other hand, the part of
the tree disjoint from this path is negligible (this is implied by the conditions of
setting choice to 1). These two facts (shown in detail in the proof of Theorem 1)
imply that the competitive ratio of scheme Xc is smaller than 2.

The description of the exploration scheme Xc is provided in Figure 2. In the
description, moves performed during the calls to Procedure DPDFS are called
internal, and all other moves are called external. During the entire exploration,
the robot stores the results of all previous actions, and constructs a map of the
portion of the tree that has been explored so far.

The proof of the following lemma will appear in the full version of the paper.

Lemma 4. Algorithm SKE(c) is correct.

Theorem 1. Let c be an arbitrary positive integer constant. Algorithm SKE(c)
uses an oracle of size at most max(1, log log D − c), for any tree of diameter D,
and has competitive ratio smaller than 2.

Proof. The result is true for n = 1 or n = 2, as any algorithm is optimal in this
case. In the following, we assume that n ≥ 3.

Recall that k = � �log D�
2c+3 �. The oracle Oc uses at most �log k� + 1 bits, hence

at most max(1, log log D − c) bits. The definition of k implies the inequality
k ≤ �log D�

2c+3 < k + 1, hence k · 2c+3 ≤ �log D� < k · 2c+3 + 2c+3, and finally
2k·2c+3−1 ≤ D < 2k·2c+3 · 22c+3

. From the definition of D0 and γ we get D0 ≤
D < γD0.

First assume that the oracle sets choice to 0. Since the exploration scheme
in this case is a DFS, the cost of the scheme is at most 2(n − 1) − 1 = 2n − 3.
The cost opt(T, u), where u is the starting node, is 2(n − 1) − ecc(u). We have
ecc(u) ≤ D = (1 − ε)n. We obtain

opt(T, u) ≥ 2(n − 1) − (1 − ε)n = (1 + ε)n − 2 .

Since D ≤ n − 1, we have ε ≥ 1/n, or equivalently εn ≥ 1. Hence the ratio in
this case is at most

2n − 3
(1 + ε)n − 2

=
2n − 3

(1 + ε/2)n − 2 + εn/2
≤ 2n − 3

(1 + ε/2)n − 1.5
≤ 2

1 + ε/2
.

If ε ≥ ε∗, then 2
1+ε/2 ≤ 2

1+ε∗/2 < 2. Assume that ε < ε∗. Let D∗ = 22c+3
.

Therefore, choice is set to 0 because either D < D∗ or n < N0. If D < D∗,
then n < D∗

1−ε . Let N1 = D∗
1−ε∗ . Then we have n < D∗

1−ε ≤ D∗
1−ε∗ = N1. Hence,

Tree Exploration with an Oracle 33

Exploration scheme Xc

while the exploration is not completed do
let v be the current node;
{Internal moves:}
if deg(v) ≥ 3 then

unless Procedure DPDFS(v) has already been applied in a previous
step, apply it to get edges e, e′ connecting v to the two largest
subtrees pending from v;

{External move:}
if there is only one edge connecting v to a subtree not completely
explored then

leave v by this edge;
else

{e, e′ are the two edges connecting v to the two subtrees
not yet completely explored}
if during the last external move (if any), the robot did not
come to v by e or e′ then

leave v by edge e;
else

assume w.l.o.g. that the robot came to v by edge e;
if the robot is for the first time at distance �λD0/2� from the
starting node then

leave v by edge e;
else leave v by edge e′;

endwhile

Fig. 2. Exploration scheme Xc

both when D < D∗ and when n < N0, we have n < N∗ = max(N0, N1). Let
ε3 = 1/N∗. We have ε ≥ 1/n ≥ 1/N∗ = ε3. We obtain 2

1+ε/2 ≤ 2
1+ε3/2 < 2.

Hence the ratio of the cost of DFS (returned by Algorithm SKE(c) when choice
is set to 0) to opt(T, u), is at most max(2

1+ε∗/2 , 2
1+ε3/2) < 2.

From now on, we assume that the oracle sets choice to 1, hence Algorithm
SKE(c) returns exploration scheme Xc.

In the analysis of the cost of exploration scheme Xc, we use the following
terminology. Assume that the robot enters some node of degree at least 3 by
edge e and applies Procedure DPDFS(v). If the procedure outputs two edges
different from e, then we say that the current node v is a fork. Now consider
edges traversed during external moves. These edges form a subtree T ′ of T . For
any node v, there exist at most two incident edges such that any external move
of the robot leaving v takes one of them. Hence, all nodes are of maximal degree
3 in this subtree. Nodes of degree exactly 3 in T ′ are forks. Let v1, . . . , vq be the
forks of T ′, if any, in order of their first visit by the robot. Let ei be the edge
connecting vi to the subtree pending from it and containing the starting node
u. In view of the definition of a fork, the robot never makes an external move on
edge ei from node vi. Let u′ be the last fork vq, if any, or u′ = u, if T ′ does not
contain any fork. Finally, let P be a path of length D in the tree and let P ′ be

34 P. Fraigniaud, D. Ilcinkas, and A. Pelc

the set of nodes in T ′ visited by an external move after u′. P ′ is a path because
it does not contain any fork other than possibly u′. Finally, let C be the length
of a shortest covering walk in path P ′ starting at node u′.

In our analysis, the cost of the scheme Xc is split into the cost of internal
moves, and the cost of external moves. The proofs of the following claims will
appear in the full version of the paper.

Claim 1. The total number of internal moves is at most 154εn.

Claim 2. The total number of external moves is at most β1C + 2εn.

Claim 1 and Claim 2 imply that the total cost of the scheme Xc is at most
β1 · C + (154 + 2)εn = β1 · C + 156εn.

It remains to bound the ratio ρ of this cost to opt(T, u). The shortest covering
walk starting at u visits u′ before any other node of P ′. It has then to visit the
path P ′ starting from u′. Therefore, the length of the shortest covering walk
starting at u cannot be less than C (the optimal number of moves on P ′ starting
from u′). This gives ρ ≤ β1·C+156εn

C . We have ε ≤ ε2 = 2−β1
624 . Together with

C ≥ |P ′| ≥ n/2 (for the latter inequality, see the proof of Claim 2), this implies

β1 +
156εn

C
≤ β1 +

156εn

n/2
≤ β1 + 2 · 156

2 − β1

624
= β1 +

2 − β1

2
= 1 +

β1

2
< 2 .

It follows from the above obtained estimates that the competitive ratio of
Algorithm SKE(c) is at most

max(
2

1 + ε∗/2
,

2
1 + ε3/2

, 1 +
β1

2
) < 2 ,

which completes the proof of the theorem. ��

4 The Lower Bound

This section is devoted to establishing a lower bound on the size of an oracle
for which there exists an algorithm with competitive ratio smaller than 2. This
lower bound exactly matches the upper bound shown previously, and it holds
even for the class of lines. Indeed, we show that for oracles whose size for all
lines Lk, of diameter (i.e., length) k ≤ n, is smaller than log log n, and differs
from it by an unbounded number of bits, every algorithm has competitive ratio
at least 2.

Theorem 2. Let O be an oracle and let f(n) denote the maximum of sizes of
O(Lk), for k ≤ n. Let g : IN → IR be defined by the formula f(n) = log log n −
g(n). If g is a function unbounded from above, then every exploration algorithm
using oracle O has competitive ratio at least 2.

Proof. We will use the following claim.

Claim 3. For every positive integers M and γ, there exist integers n1 > n2 ≥ M ,
such that O(Ln1) = O(Ln2) and n1/n2 ≥ γ.

Tree Exploration with an Oracle 35

Suppose that the claim does not hold. Take M and γ that refute it. Let ψ :
{n : n > M} → IR be the sequence defined by the formula ψ(n) = log γ log n

log n−log M .
The sequence ψ converges to log γ, hence it is bounded. Let A be such that
ψ(n) < A for all n. Since g is an unbounded function, there exists n0 > M for
which g(n0) > log A. Let x be the size of the set {O(Lk) : k ≤ n0}. We have

x ≤ 2f(n0) = 2log log n0−g(n0) < 2log log n0−log A < 2log log n0−log log γ log n0
log n0−log M

and therefore x < log n0−log M
log γ . All integers k with O(Lk) = O(LMγi) must be

smaller than Mγi+1, for i ≥ 0. Hence all oracle values for lines LMγi are distinct,
and there are x such values. We have n0 < Mγx because O(Ln0) = O(LMγi),
for some i < x, and hence n0 < Mγi+1 ≤ Mγx. Consequently, log n0 ≤ log M +
x log γ < log M + log n0 − log M . This contradiction proves Claim 3.

We will now show that any algorithm using oracle O must have competitive
ratio at least 2. In view of Lemma 1 it is enough to restrict attention to algo-
rithms producing exploration schemes of type 1 for the class of lines. The probing
distance of such a scheme for line Ln depends only on O(Ln). Consider an algo-
rithm A producing a scheme of type 1 with probing distance φ(O(Ln)). Fix any
constant 3/2 < β < 2. Choose γ such that 2γ

γ+2 > β and M such that 2M−1
M+1 > β.

Hence γ > 6. Let n1 > n2 ≥ M be integers for which O(Ln1) = O(Ln2) and
n1 ≥ γn2. Their existence is guaranteed by Claim 3. Let y = φ(O(Ln1)). Hence
the scheme makes the first change of direction after y steps, both in Ln1 and in
Ln2 , unless an endpoint is encountered earlier. Consider two cases.

If y ≤ n2 then consider the behavior of A on Ln1 , with the starting node u
at distance y + 1 from the endpoint toward which the robot starts. Since γ > 6,
this is the endpoint closer to u. Then

A(Ln1 , u)
opt(Ln1 , u)

=
y + 2n1 − 1
y + n1 + 1

≥ n2 + 2n1 − 1
n2 + n1 + 1

≥ (2γ + 1)n2 − 1
(γ + 1)n2 + 1

≥ (2γ + 1) − 1
(γ + 1) + 1

=
2γ

γ + 2
> β .

If y > n2 then consider the behavior of A on Ln2 with the starting node u at
distance n2 − 1 from the endpoint toward which the robot starts. Then

A(Ln2 , u)
opt(Ln2 , u)

=
2n2 − 1
n2 + 1

≥ 2M − 1
M + 1

> β .

This proves that the competitive ratio of algorithm A is at least 2. ��

5 Exploration Knowing the Diameter

We have shown in Section 3 that very little information (less than log logD
bits) is needed to beat competitive ratio 2, and in fact, most of this information
(all bits except one) concerns the value of the diameter D itself, and is used to
establish a lower bound on it. This extra bit, however, cannot be deduced from

36 P. Fraigniaud, D. Ilcinkas, and A. Pelc

D alone, and turns out to be crucial. In this section we prove a surprising result
that even an algorithm that knows D exactly (i.e., is provided with all �log D�
bits of it), but does not have any additional knowledge, cannot beat competitive
ratio 2. Notice that a similar argument proves that the exact knowledge of the
number n of nodes, with no extra information, is not enough for this purpose
either. The proof of the following theorem will appear in the full version of the
paper.

Theorem 3. Let A be any tree exploration algorithm that, for every tree T , is
given the diameter of T as input. Then A has competitive ratio at least 2.

Acknowledgment. Pierre Fraigniaud and David Ilcinkas were partially sup-
ported by the projects PairAPair of the ACI Masses de Données, and FRAGILE
of the ACI Sécurité Informatique. Additional support from the INRIA project
”Grand Large”.

Andrzej Pelc was partially supported by NSERC discovery grant and by
the Research Chair in Distributed Computing of the Université du Québec en
Outaouais. This work was done during the visit of Andrzej Pelc at LRI. Ad-
ditional supports from the Ministère des Relations Internationales du Québec,
from University of Paris-Sud, and from the project PairAPair of the ACI Masses
de Données.

References

1. S. Albers and M. R. Henzinger, Exploring unknown environments, SIAM Journal
on Computing 29 (2000), 1164-1188.

2. B. Awerbuch, M. Betke, R. Rivest and M. Singh, Piecemeal graph learning by a
mobile robot, Proc. 8th Conf. on Comput. Learning Theory (1995), 321-328.

3. E. Bar-Eli, P. Berman, A. Fiat and R. Yan, On-line navigation in a room, Journal
of Algorithms 17 (1994), 319-341.

4. M.A. Bender, A. Fernandez, D. Ron, A. Sahai and S. Vadhan, The power of a
pebble: Exploring and mapping directed graphs, Information and Computation
176 (2002), 1-21.

5. M.A. Bender and D. Slonim, The power of team exploration: Two robots can learn
unlabeled directed graphs, Proc. 35th Ann. Symp. on Foundations of Computer
Science (FOCS 1994), 75-85.

6. P. Berman, A. Blum, A. Fiat, H. Karloff, A. Rosen and M. Saks, Randomized
robot navigation algorithms, Proc. 7th ACM-SIAM Symp. on Discrete Algorithms
(SODA 1996), 74-84.

7. A. Blum, P. Raghavan and B. Schieber, Navigating in unfamiliar geometric terrain,
SIAM Journal on Computing 26 (1997), 110-137.

8. M. Betke, R. Rivest and M. Singh, Piecemeal learning of an unknown environment,
Machine Learning 18 (1995), 231-254.

9. A.E.F. Clementi, A. Monti and R. Silvestri, Selective families, superimposed codes,
and broadcasting on unknown radio networks, Proc. 12th Ann. ACM-SIAM Sym-
posium on Discrete Algorithms (SODA 2001), 709-718.

10. A. Czumaj and W. Rytter, Broadcasting algorithms in radio networks with un-
known topology, Proc. 44th Ann. Symposium on Foundations of Computer Science
(FOCS 2003), 492-501.

Tree Exploration with an Oracle 37

11. X. Deng, T. Kameda and C. H. Papadimitriou, How to learn an unknown environ-
ment I: the rectilinear case, Journal of the ACM 45 (1998), 215-245.

12. X. Deng and A. Mirzaian, Competitive robot mapping with homogeneous markers,
IEEE Transactions on Robotics and Automation 12 (1996), 532-542.

13. X. Deng and C. H. Papadimitriou, Exploring an unknown graph, Journal of Graph
Theory 32 (1999), 265-297.

14. A. Dessmark and A. Pelc, Optimal graph exploration without good maps, Theo-
retical Computer Science 326 (2004), 343-362.

15. K. Diks, P. Fraigniaud, E. Kranakis and A. Pelc, Tree exploration with little mem-
ory, Journal of Algorithms 51 (2004), 38-63.

16. G. Dudek, M. Jenkin, E. Milios and D. Wilkes, Robotic exploration as graph con-
struction, IEEE Transactions on Robotics and Automation 7 (1991), 859-865.

17. V. Dujmović and S. Whitesides, On validating planar worlds, Proc. 12th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA 2001), 791-792.

18. C.A. Duncan, S.G. Kobourov and V.S.A. Kumar, Optimal constrained graph ex-
ploration, Proc. 12th Ann. ACM-SIAM Symp. on Discrete Algorithms (SODA
2001), 807-814.

19. F. Fich and E. Ruppert. Hundreds of impossibility results for distributed comput-
ing, Distributed Computing, 16 (2003), 121–163.

20. R. Fleischer and G. Trippen, Exploring an unknown graph efficiently, Proc. 13th
Ann. European Symposium on Algorithms (ESA 2005), LNCS 3669, 11-22.

21. P. Fraigniaud, D. Ilcinkas and A. Pelc. Oracle size: a new measure of difficulty
for communication tasks, Proc. 25th Annual ACM Symposium on Principles of
Distributed Computing (PODC 2006), to appear.

22. L. Gasieniec, D. Peleg and Q. Xin, Faster communication in known topology ra-
dio networks, Proc. 24th Annual ACM Symposium on Principles of Distributed
Computing (PODC 2005), 129-137.

23. T. Kameda and M. Yamashita. Computing on anonymous networks: Part I – char-
acterizing the solvable cases. IEEE Transactions on Parallel and Distributed Sys-
tems, 7 (1996), 69-89.

24. D. Kowalski and A. Pelc, Optimal deterministic broadcasting in known topology
radio networks, manuscript.

25. N. Lynch. A hundred impossibility proofs for distributed computing. Proc. 8th
Ann. ACM Symposium on Principles of Distributed Computing (PODC 1989),1-
28.

26. P. Panaite and A. Pelc, Exploring unknown undirected graphs, Journal of Algo-
rithms 33 (1999), 281-295.

27. P. Panaite and A. Pelc, Impact of topographic information on graph exploration
efficiency, Networks, 36 (2000), 96-103.

28. C. H. Papadimitriou and M. Yannakakis, Shortest paths without a map, Theoret-
ical Computer Science 84 (1991), 127-150.

Distributed Data Structures: A Survey on

Informative Labeling Schemes

Cyril Gavoille�

LaBRI, Université Bordeaux 1
351, Cours de la Libération,

33405 Talence, France
gavoille@labri.fr

Abstract. In this talk, we will survey the role of data structures for
compactly storing and representing various types of information in a
localized and distributed fashion. Traditional approaches to data repre-
sentation are based on global data structures, which require access to the
entire structure even if the sought information involves only a small and
local set of entities. In contrast, localized data representation schemes
are based on breaking the information into small local pieces, or labels,
selected in a way that allows one to infer information regarding a small
set of entities directly from their labels, without using any additional
(global) information.

Keywords: data-structures, distributed algorithm, labeling scheme,
graphs.

� Supported by the project “PairAPair” of the ACI Masses de Données.

R. Královič and P. Urzyczyn (Eds.): MFCS 2006, LNCS 4162, p. 38, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

From Deduction Graphs to Proof Nets: Boxes

and Sharing in the Graphical Presentation of
Deductions

Herman Geuvers and Iris Loeb

Radboud University Nijmegen, Institute for Computing and Information Sciences,
6500 GL Nijmegen, The Netherlands
{H.Geuvers, I.Loeb}@cs.ru.nl

Abstract. Deduction graphs [3] provide a formalism for natural deduc-
tion, where the deductions have the structure of acyclic directed graphs
with boxes. The boxes are used to restrict the scope of local assump-
tions. Proof nets for multiplicative exponential linear logic (MELL) are
also graphs with boxes, but in MELL the boxes have the purpose of
controlling the modal operator !. In this paper we study the apparent
correspondences between deduction graphs and proof nets, both by look-
ing at the structure of the proofs themselves and at the process of cut-
elimination defined on them. We give two translations from deduction
graphs for minimal proposition logic to proof nets: a direct one, and a
mapping via so-called context nets. Context nets are closer to natural
deduction than proof nets, as they have both premises (on top of the
net) and conclusions (at the bottom). Although the two translations
give basically the same results, the translation via context nets provides
a more abstract view and has the advantage that it follows the same
inductive construction as the deduction graphs. The translations behave
nicely with respect to cut-elimination.

1 Introduction

Deduction graphs [3] provide a formalism for natural deduction where the de-
ductions have the structure of an acyclic directed graph with boxes. The main
advantage of this formalism is the re-use of sub-proofs, which is simply done by
putting several arrows to its conclusion. Because we do not see this as a logi-
cal step, we call this kind of sharing implicit. This makes deduction graphs a
generalization of both Gentzen-Prawitz style natural deduction and Fitch style
natural deduction. Because of the graph structure, one has to be explicit about
local assumptions, so the boxes are used to limit the scope of an assumption.

In proof nets for multiplicative exponential linear logic (MELL) [4], the re-use
of formulas is done by contraction links, and is therefore explicit. Proof nets also
have boxes. Here they sequentialise the proof net in order to introduce the global
modality “!” (of course).

There are some well-known translations from simply typed λ-terms to proof
nets. There are three reasons why a translation from deduction graphs to proof

R. Královič and P. Urzyczyn (Eds.): MFCS 2006, LNCS 4162, pp. 39–57, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

40 H. Geuvers and I. Loeb

nets is more difficult. Firstly, parts of a deduction graph can be shared. We
want a translation to somehow reflect this sharing. Simply typed λ-terms do
not have sharing, except for the variables. Secondly, deduction graphs contain
boxes. We would like a translation to associate a proof net box to a deduction
graph box. Furthermore, the sharing and the boxes are both affected during the
process of cut-elimination on deduction graphs. We want the cut-elimination
on deduction graphs to behave similarly to cut-elimination on proof nets (on
the translated deduction graphs). Thirdly, deduction graphs may have many
conclusions, unlike simply typed terms, which have just one type. In this paper
we present two translations from deduction graphs to proof nets, which mainly
differ in the way they handle multiple conclusions.

We start by presenting deduction graphs with explicit sharing, SG, which is a
variant of the usual definition of deduction graphs. The main difference is that
in SG, sharing is handled as a logical step (Section 2). Furthermore we add a
step, “loop”, that allows to distinguish between conclusions and garbage, that
is between formulas that we can use as the premises of next steps and formulas
that will not be used any more.

The translation (−)∗ of Girard is used to translate formulas of minimal propo-
sition logic to formulas of MELL (Section 3). This translation is the most suitable
to our needs because it allows to nicely map deduction graph boxes to proof net
boxes.

The direct translation (Section 4) uses tensors (⊗) to connect the various
conclusions. Just as most translations from λ-calculus to proof nets, assumptions
Γ occur in the translation as terminal nodes Γ ∗⊥, so as the negation of the
translated formulas. An advantage of the direct translation is, that it only uses
concepts that are already known from the theory of proof nets. A disadvantage
is, that it works from conclusions to assumptions. So to translate a deduction
graph, we must know that the construction of the graph has been finished. If we
would decide to extend the graph later, we would have to translate the whole
graph again.

Context nets (Section 5) form an extension of the concept of proof nets. They
have terminal nodes, but they also permit so called initial nodes. We argue that
there are several sensible translations from deduction graphs to proof nets, the
translation of Section 4 being one of them, and that the translation to context
nets generalises them by investigating the common parts of those proof nets.
The translation from deduction graphs to context nets also reveals a symmetry
between assumptions and conclusions: not only do the assumptions Γ associate
to terminal nodes Γ ∗⊥, but the conclusions ∆ associate to initial nodes ∆∗⊥ as
well. Moreover, the translation can be done in the same order as the construction
of the deduction graph, allowing to work with graphs that are not yet finished.
In fact, the construction of the translation of a deduction graph looks like the
construction of the original deduction graph “up side down”.

In Section 6 it is shown that the translation via context nets after a slight
modification, yields the same results as the direct translation. Section 7, finally,
shows that the translations behave well with respect to cut-elimination.

From Deduction Graphs to Proof Nets 41

2 Deduction Graphs with Explicit Sharing

In [3], we have defined the notion of deduction graph (DG), which is a gener-
alization of both Gentzen-Prawitz style natural deduction and Fitch-style flag-
deduction. A deduction graph is an acyclic directed graph with boxes satisfying
some conditions. The boxes take care of local assumptions that can be discharged:
a box restricts the scope of nodes and a box is a node itself. The nodes in the
graph are labelled with formulas and if, e.g. node k is labelled with A→B and
node m is labelled with A, there can be a node n labelled with B with one
edge pointing to (k, A→B) and one pointing to (m, A). The general idea is that
the inverse of the edges represents logical derivability: if from node n with label
A there are edges to nodes n1, . . . , nk with labels A1, . . . , Ak then A should be
derivable from A1, . . . , Ak using a logical rule. In [3], an inductive definition of
the notion of deduction graph for minimal propositional logic is given. We do
not repeat the definition here, but give as an example the left graph in Figure
1, which should also clarify the use of boxes.

�
�
�
�
�
�
�
�
�
�
�
�
�
�
� �

�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��

��
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�

��
��
�

�
�
�
�

���
���

���
��

	
	
	
	
	

(4, A→B)

(2, A)(1, A)

(5, B)

(3, A→A→B)

(6, A→B)

(7, (A→B)→A)

(8, A)

(9, B)

�
�
�
�
�
�
�
�
�
�
�
�
�
�
� �

�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��

��

�
�
�
�
�
�

��
�

	
	
	
	
	

�����

�
�
�

��
��
��
��
��
�

��
�

�����

����

(3, A→A→B)

(6, A→B)

(7, (A→B)→A)

(8, A)
(5, B)

(1, A)
(4, A→B)

(2, A)

(9, B)

(0, A)

(6a, A→B)

(6b, A→B)

Fig. 1. Example of a deduction graph (left) and the same graph with an explicit sharing
construction (right)

In the figure, node 6 is the node of the box containing nodes 1, 2, 4, 5. The idea
is that a set of nodes B (a box) can form a node again, which is called the box
node of B. So 6 is the box node of {1, 2, 4, 5}. The nodes that are not inside a box
are on the top level and the top level nodes without incoming edges are called
free nodes. So 3 and 7 are the free nodes in the example. Their labels A→A→B
and (A→B)→A correspond to the assumptions of the deduction. We can view
this deduction graph as a deduction of B from A→A→B and (A→B)→A. The
nodes 1 and 2 have no incoming edges but are inside a box. These are the local
assumptions, which are discharged when forming the box. In deduction graphs it
is not allowed to have edges pointing into a box, because this would correspond to
the global use of a local assumption. Also overlapping boxes are not allowed (but
boxes may be contained in each other). This is taken care of by the requirement
that deduction graphs should be closed box directed graphs.

All definitions regarding deduction graphs are in [3], but because it is quite
important in this paper we repeat the notion of closed box directed graph here:

Definition 1. closed box directed graph is a triple 〈X, G, (Bi)i∈I〉 where G is
a directed graph where all nodes have a label in X and (Bi)i∈I is a collection of

42 H. Geuvers and I. Loeb

sets of nodes of G, the boxes. Each box Bi corresponds to a node, the box node
of Bi. Moreover, the boxes (Bi)i∈I satisfy the following properties.

1. (Non-overlap) Two boxes are disjoint or one is contained in the other: ∀i, j ∈
I(Bi ∩ Bj = ∅ ∨ Bi ⊂ Bj ∨ Bj ⊂ Bi),

2. (Box-node edge) There is only one outgoing edge from a box-node and that
points into the box itself (i.e. to a node in the box),

3. (No edges into a box) Apart from the edge from the box-node, there are no
edges pointing into a box.

We first redefine the notion of deduction graph (of [3]) a bit, where we make
the sharing explicit via a sharing construction (SG). If we have a conclusion node
(i.e. a top-level node without incoming edges) (n, A), then we can add two nodes
(m, A) and (k, A), which both have one outgoing edge to (n, A).

Definition 2. The collection of deduction graphs with explicit sharing (SG) is
the set of closed box directed graphs over IN×Form inductively defined as follows.

Axiom A single node (n, A) is an SG,
Join If G and G′ are disjoint SGs, then G′′ := G ∪G′ is an SG.
→-E If G is an SG containing two conclusion nodes (n, A→B) and (m, A),

then the graph G′ := G with
– a new node (p, B) at the top level
– an edge (p, B)−−� (n, A→B),
– an edge (p, B)−−� (m, A),
is an SG.

Repeat If G is an SG containing a conclusion node (n, A), the graph G′ := G
with
– a new node (m, A) at the top level,
– an edge (m, A) −−� (n, A)
is an SG.

Share If G is an SG containing a conclusion node (n, A), the graph G′ := G
with
– two new nodes (m, A), (k, A) at top level,
– an edge (m, A) −−� (n, A),
– an edge (k, A)−−� (n, A)
is an SG.

→-I If G is an SG containing a conclusion node (j, B) and a free node
(m, A) then the graph G′ := G with
– A box B with box-node (n, A→B), containing the node (j, B) as the

only conclusion node, and (m, A), and no other nodes that were free
in G,

– An edge from the box node (n, A→B) to (j, B)
is an SG under the proviso that it is a well-formed closed box directed
graph.

Loop If G is an SG containing the conclusions (m, A) and (n, B) (m 	= n),
then the graph G := G′ with an edge m−−� m is an SG.

From Deduction Graphs to Proof Nets 43

Furthermore, in the construction one should always take care that, if k −−� l
and k ∈ B and l /∈ B, then:

– if k has been constructed in a Repeat-step, then k is not in any boxes
contained in B.

– k has not been constructed in a Share-step.

So, apart from the four types of nodes A, I, E and R that we have already
distinguished for deduction graphs in [3], we now also have S. A node is of
a certain type, if it has been added in the corresponding construction rule of
Definition 2. For example, a node is of type E if it has been added in a →-E-step.

Definition 3. A top-level node (n, A) such that n−−�n is called a fake conclusion
node.

It is easy to turn a deduction graph into a sharing graph, simply by making the
implicit sharing in DGs explicit via S-nodes and by adding repeats if necessary.
This is indicated in Figure 1. That the changes in sharing, repeating, looping
and arrow introduction are not serious, is stated more precisely in the following
lemma.

Lemma 4. If G is an DG with free nodes Γ and conclusion nodes ∆, then there
exists an SG G′ with free nodes Γ and conclusion nodes ∆.

We now modify the process of cut-elimination, because the deduction graphs
with explicit sharing are not closed under the rules we defined for DGs. For
example, we started the process by eliminating all repeats that separated the
I-node of the cut from the E-node. Because the deduction graphs with explicit
sharing are required to have only R-nodes that cross the border of at most
one box, we now have to postpone the removal of some R-nodes. Therefore the
process will transform the SG levelwise. Further, we now also have to handle
the new S-nodes. The changes only affect the order in which we make the cut
explicit. The elimination of the safe cut itself remains the same. A safe cut is the
situation where we have an E-node where the edge to the →-formula points to an
I-node at the same level, so we have an →-introduction followed immediately by
an →-elimination. In that case, the cut can be removed by a simple reordering
of edges and the removal of some nodes. This is discussed in detail for DGs in [3];
the situation for SGs is slightly simpler.

Definition 5. A cut in an SG G is a subgraph of G consisting of:

– A box-node (n, A→B),
– A node (p, B),
– A node (m, A),
– A sequence of R and S nodes (s0, A→B), . . . , (si, A→B),
– Edges (p, B)−−� (si, A→B)−−� . . .−−� (s0, A→B)−−� (n, A→B),
– An edge (p, B)−−� (m, A).

The sequence (p, B)−−�(si, A→B)−−�. . .−−�(n, A→B) is called the cut-sequence.

44 H. Geuvers and I. Loeb

Definition 6 (Cut hidden by repeats). Let G be an SG and let c be a cut of G
and let S be that part of the cut-sequence that is at the same level as (n, A→B).
If sj is an R-node in S, for some 0 ≤ j ≤ i, then the repeat-elimination at sj is
obtained by:

– When an edge points to sj, redirect it to sj−1 (or to n, if j = 0);
– Remove sj.

Definition 7 (Cut hidden by sharing). Let G be an SG with a cut c that
contains a box B with box-node (n, A→C) and in-going edges from p1, p2. Then
the unsharing of G at nodes n, p1, p2 is obtained by:

– removing B,
– adding copies B′ and B′′ of B including copies of the nodes reachable within

one step,
– Connect the copies outside the boxes, to the original nodes. (thus if we had

q −−� m with q ∈ B, m /∈ B and m′ is the copy of m connected to B′, and
m′′ is the copy of m connected to B′′, then we add the edges m′ −−� m and
m′′ −−� m),

– replacing n′′ by p1 and replacing n′ by p2.

Figure 2 shows the unsharing of the SG in Figure 1.

(0’,A)

(1’,A) (2’,A)

(4’,A−>B)

(5’,B)

(3’,A−>A−>B) (3’’,A−>A−>B)

(0’’,A)

(2’’,A) (1’’,A)

(5’’,B)

(4’’,A−>B)

(3,A−>A−>B)

(6a,A−>B) (6b,A−>B)

(7,(A−>B)−>A)

(8,A)

(9,B)

Fig. 2. Unsharing of the SG in Figure 1

Definition 8 (Cut hidden by a depth conflict; incorporation). We have
a depth conflict in the SG G with cut c, if (n, A→B) has an incoming edge from
a node at another level. Let B the box of which (n, A→B) is the box-node. In
that case the incorporation of G at c is obtained by:

– making copies m′ of the R-nodes m that are reachable from B within one
step,

– Replacing edges q −−� m by q −−� m′ −−� m,
– putting both B and the nodes m′ at one level deeper.

Figure 3 shows an SG with a cut hidden by a depth conflict; Figure 4 shows its
incorporation at 7, 12.

From Deduction Graphs to Proof Nets 45

��
�

��
�

��
�

�������
�
�
�

�
�
�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
�
�
�

�
�
�

����
����

���
�
�
�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
�
�
�

�����������������

�
�
�
�

�����

�
�
�
�

����(0, A)

(1, A) (2, A)

(3, A→A→B)

(4, A→A→B)

(5, A→B)

(6, B)

(8, C→A) (9, C)

(10, A)

(11, A→B)

(12, B)

(13, C→B)(7, A→B)

Fig. 3. SG with cut hidden by a depth conflict

��
�

��
�

��
�

������
�
�
�

�
�
�
�
�

���
���

��� �
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
�
� �����

��

���

(0, A)

(1, A) (2, A)

(5, A→B)

(6, B)

(7, A→B)

(8, C→A)

(9, C)

(10, A)

(12, B)

(13, C→B)

(3′, A→A→B)

(4, A→A→B)

(3, A→A→B)

(11, A→B)

Fig. 4. Incorporation of the SG in Figure 3

Definition 9. Given an SG G with a cut c, the process of eliminating the cut c
is the following:

1. (Repeat-elimination) As often as possible, perform the repeat-elimination
step as described in Definition 6.

2. (Unsharing) As often as possible, perform the unsharing step as described in
Definition 7.

3. (Incorporation) If possible, perform the incorporation step as described in
Definition 8.

4. (Moving up one level) If c is not yet safe, repeat the procedure, starting at 1.
5. (Eliminating the safe cut) Eliminate the safe cut.

The proof of strong normalization of the process of cut-elimination on DGs in [3]
makes only use of the fact that it always ends in the elimination of a safe cut;
the order in which we apply the other steps –Repeat-elimination, unsharing and
incorporation– plays no role. As the process of cut-elimination on SGs still ends in
the elimination of a safe cut, the proof goes through without much adjustments.

3 Translation of Formulas

To translate SGs to proof nets, we first have to translate the formulas of minimal
propositional logic into linear logic formulas. This is done via the translation
(−)∗ defined as follows.

46 H. Geuvers and I. Loeb

A∗ := !A for A an atom
(A→B)∗ := !(A∗⊥�B∗)

Because we want to unify deduction graph boxes with proof net boxes, other
translations seem less suitable.

4 Direct Translation to Proof Nets

In the definition we will use the rank of a node: the conclusion nodes of an SG
we give rank 0, and – roughly speaking – a node is given rank i+1 if there is an
arrow to it from a node with rank i. We have to be careful in the case of sharing.

For B a box in an SG G the closure of B, B is the graph consisting of all nodes
inside B plus all nodes that can be reached from within B in one step. B is also
an SG. (This follows from results in [3].)

Definition 10. Given a deduction graph G, the rank of the nodes in G is defined
as follows.

– If n is a conclusion node, rank(n) := 0.
– If n is a fake conclusion node, rank(n) := 0.
– If n is not an S-node or an I-node and rank(n) = i and n −−� m, then

rank(m) := i+ 1.
– If n is a S-node and n −−� m, k −−� m, rank(n) = i and rank(k) = j, then

rank(m) := max(i, j) + 1.
– If n is a I-node with box B and rank(n) = i, then rank(j) := i + 1 for all

nodes j ∈ B.

The rank of an SG G, rank(G), is the maximum of the rank of its nodes.

Lemma 11. Let G be an SG with rank(G) = i+ 1 for some i.

– Suppose (n,B) of rank i is an E-node with edges to (m,A) and (l, A→B).
Then G \m, l is an SG.

– Suppose (n,A→B) of rank i is an I-node of box B. Then both B and G \ B
are SGs.

– Suppose (m,A) of rank i is an S-node with an edge to (n,A). Then G \ n is
an SG.

– Suppose (n,A) of rank i is an R-node with an edge to (m,A). Then G \m
is an SG.

Definition 12. Given an SG G we define a proof net (with labelled nodes) V (G),
which gives the proof net associated to G, by induction on the number of nodes
of G.
The invariant that we maintain is the following. If G has
− free nodes (n1, A1), . . . (nk, Ak),
− conclusion nodes (m1, B1), . . . , (ml, Bl),
then V (G) has
− terminal nodes B∗1⊗. . .⊗B∗l , and A∗⊥1 , . . . A∗⊥k , labelled n1, . . . , nk respectively.

From Deduction Graphs to Proof Nets 47

To relieve the notational burden, we just write A instead of A∗ in the proof
nets. The definition of V (G) is as follows. We make a case-distinction according
to rank(G).
Case rank(G) = 0.
We only have to consider the conclusions (n1, A1), . . . (nk, Ak) of G and the fake
conclusions (q1, D1), . . . , (qt, Dt). Now V (G) is the proof net containing axiom
links As −A⊥s (with A⊥s labelled by ns for 1 ≤ s ≤ k) and the A1, . . . , An nodes
made into a tensor product A1 ⊗ . . .⊗An by n− 1 tensor links. Furthermore it
contains weakening links on nodes D⊥s (labelled ns) for 1 ≤ s ≤ t.

� �
A1 ⊗ An2

. . .

A1 ⊗ . . . ⊗ Ak−1

A1 ⊗ . . . ⊗ Ak−1 ⊗ Ak

W

A1 A2

Ak

(A⊥
k , nk) (A⊥

2 , n2) (A⊥
1 , n1)

W
. . .

(D⊥
1 , q1) (D⊥

t , qt)

Case rank(G) = i+ 1 for some i.
Suppose that V (F) has already been defined for SGs F with less nodes than G.
We consider the non-A-nodes of rank i in some order (say the box-topological
ordering). We distinguish cases according to the type of the node.

– E. Suppose node (n,B) is of rank i with two edges to (m,A) and (l, A→B).
So the nodes m and l are of rank i+ 1. Then:

�
�

�
�

���	

V (G \m, l)

(B⊥, n)A

A⊗B⊥

(A⊥, m)

D

(?(A⊗B⊥), l)

– I. Suppose node (n,A→B) of rank i is a box node of box B with an edge to
(j, B) and let (m,A) be the discharged node. Let (�q, Γ) be the nodes that can
be reached from within B with one edge. Then:

�

�

�
�

V (B)

(A⊥, m) B (Γ⊥, �q)

(Γ⊥, �q)

V (G \ B)
A⊥

�B

!(A⊥
�B)(?(A⊗B⊥), n)

– S Suppose node (m,A) of rank i is an S-node with an edge to (n,A). Let
(l, A) be the other S-node with the same target. Then:

48 H. Geuvers and I. Loeb

�
�

�
�

���	���
���

(A⊥, m) (A⊥, l)

C

V (G \ n)

(A⊥, n)

– R Suppose (n,A) of rank i is an R-node with an edge to (m,A). Then:

�

�
V (G \m)

(A⊥, n) A (A⊥, m)

Example 13. Here we see an example of a simple SG G and the translation V (G),
written out completely.

�
�

�
�

!!
!

"
"
"
"
"
"

#
#
#
#
#
#

(0, A→B) (1, A) (2, A→C)

(3, A) (4, A)

(5, B) (6, C)

� � �
�����

?A⊥
3 ?A⊥

4

C

?A⊥
1

!A ?C⊥
6

D

!A⊗?C⊥

?(!A⊗?C⊥)2

!C !B !A ?B⊥
5

!A⊗?B⊥

D

?(!A⊗?B⊥)0

!C⊗!B

5 Translation Via Context Nets

5.1 Context Structures, Context Nets, and Deduction Nets

In [3] we have made a translation that gives the simply typed λ-term associ-
ated to a node in a deduction graph. This solved the discrepancy that deduction
graphs can have many conclusions, whereas simply typed λ-terms have just one
type. Another solution could have been to make a translation from deduction
graphs to typed λ-terms with conjunction types. So then we would associate
a λ-term of type B0 ∧ B1 ∧ . . . ∧ Bk to a deduction graph with conclusions
(n0, B0), (n1, B1), . . . , (nk, Bk). In [3] we have not investigated this, but instead
we have made a translation from deduction graphs to contexts , solving the prob-
lem of the many conclusions in a different way. Contexts do not have types
(they can only be “well-formed”), but they can obtain a type later, by filling in
a variable associated to a node of a deduction graph.

The direct translation of Section 4, can be seen as the proof net equivalent
of the translation from DGs to λ-terms with conjunction types. We can also
define a translation to proof nets from SGs in a specific conclusion, as shown in

From Deduction Graphs to Proof Nets 49

Example 14. This can be seen as the proof net equivalent of the translation to
simply typed terms.

Example 14. Here we see a translation of the SG in Example 13 in node 6. The
translation of (5, B) is weakened, and thus it plays the role of a fake conclusion.

� � �

�
�����

?A⊥
3 ?A⊥

4

C

?A⊥
1

!A ?C⊥
6

D

!A⊗?C⊥

?(!A⊗?C⊥)2

!C !A ?B⊥
5

!A⊗?B⊥

D

?(!A⊗?B⊥)0

W

We do not go into this or other translations to proof nets, but we explore a trans-
lation to the net equivalent of contexts: context nets. Not only are context nets
closer to deduction graphs as they have both “conclusions” and “assumptions”,
but this translation also generalises the translations to proof nets, because we
can recover them by “gluing” something to the context net; the net equivalent
of filling a hole (see Section 6).

We define context structures, an extension of Girard’s proof structures [4]. It
allows initial nodes, i.e. nodes that are not a conclusion. Similar extensions can
be found in Danos and Regnier [1] and Puite [5]. Intuitively, this restores the
duality found in two-sided sequents, as initial nodes of a context net can be seen
as the formula occurrences left (as long as they are not inside a box) of the turn-
style and the terminal nodes can be seen as the occurrences on the right of it.
Another way to look at it, is to consider a context structure as an “open proof
structure”: if we connect proof structures with corresponding terminal nodes
to the initial nodes of the context structure, we get a proof structure. In order
to obtain structures that are subgraphs of proof structures, and in contrast to
Puite, we do not expand the set of links. Another difference is that we consider
an extension of proof nets of MELL (instead of MLL).

Definition 15 (Context Structures). A context structure for MELL is a
proof structure for MELL, with the difference that nodes that are not a conclu-
sion, are allowed. These nodes are called initial nodes.

Just as the construction rules of proof nets determine the subset of proof struc-
tures that are correct, which means that they agree with a sequent calculus
proof, we would like to have construction rules for “context nets”, which some-
how should determine correct context structures. One could say that context
structures are correct, when they agree with a two-sided sequent calculus proof.
Another notion of correctness is to say that, if a context net happens to be a
proof structure, it is a proof net. It is this latter notion we adopt and we will
give the construction rules, which are essentially the rules put forward by David
and Kesner [2]. These rules are at the same time a bit rigid, as they consider
only the terminal nodes, leaving the initial nodes untouched throughout the con-

50 H. Geuvers and I. Loeb

struction, and extremely useful, as the class of context structures singled out by
these construction rules can easily be seen to be correct.

Definition 16 (Context Nets). Context nets are inductively defined as fol-
lows.

�

�
�

�
�

�

�
�

�
�

�
�

�
���

�
�
�

�
�

�
�
�
�

�
�

�
�

�
�
�
�

�
�

�
�

�
�

LINE

AX

A” A

DER

Γ A

D

?A

CONT

A0 A1 . . . An

Γ ?A ?A

C

?A

BOX

A0 . . .

?Γ A

?Γ !A

WEAK A0 A1 . . . An

Γ

W

?A

A0 A1 . . . An

Γ A B

A�B

PAR

A0 A1 . . . An . . .B0 B1 Bk

Γ A ∆

TIMES A0 A1 . . . An . . .B0 B1 Bk

Γ A B ∆

A ⊗ B

CUT

A⊥

A0 A1 . . . An

A0 A1 . . . An

An

Lemma 17 (Correctness of Context Nets). Every context net without ini-
tial nodes is a proof net.

Proof. Immediate from the definition of context nets.

We now narrow our attention to a subclass of context nets, the closed one-liners.
We could see a closed one-liner as a context net Θ such that, if we connect every
initial node of it to a corresponding terminal node of one proof net, say Σ, we
get again a proof net.

Definition 18 (Closed one-liners). A closed one-liner is a context net that
has no initial nodes inside boxes and that can be formed by using the LINE-rule
at most once.

From Deduction Graphs to Proof Nets 51

Definition 19 (Deduction Nets). Deduction nets are inductively defined as
follows :

�� ��

�
�� ��

�� ��

�� ��

�� ��

�� ��
�� ��
�� ��

�� ��

�� ��
�

�� ��

�� ��
�

?Γ A

?Γ !A

D

A

box

der

weak

rep

Γ

?A∆

Γ

∆

Γ1

Σ

∆0

Γ0∆1

comb

A A⊥ A

col

A

A

Γ

A⊥

Γ A A⊥

Γ A B

A�B

A⊗ B

Γ

A B
A⊥

∆

Γ

?A ?A

C

?A

point

ax

cut

par

times

cont

cl.one
liner

∆

Γ

∆

W

?A

According to the col-rule, every closed one-liner is a deduction net. In the weak-
rule, ∆ 	= ∅. For technical reasons, we only allow the comb-rule when ∆0 = ∅
implies ∆1 = ∅.

Lemma 20. Every deduction net is a closed one-liner.

Proof. By induction on the construction of deduction nets. We only treat the
interesting cases.

ax By induction, we have a closed one-liner, say C with just one initial node,
A. So it uses the LINE-rule with just this A. The new deduction net can
be obtained by replacing this LINE-rule in the construction of C by an
AX-rule.

cut By induction, we have a closed one-liner, say C, without any initial nodes.
So a construction of C does not make use of the LINE-rule. We get the

52 H. Geuvers and I. Loeb

new deduction net by applying LINE on A⊥ and doing a CUT with this
on C.

times By induction, we have a closed one-liner, say C, which contains the initial
nodes A⊥ and A ⊗ B. Let ∆ be the initial nodes of C without A⊥ and
A⊗B. The new deduction net can be obtained by replacing the LINE-rule
in the construction of C, by the LINE-rule on ∆,B, an AX-rule and an
TIMES-rule.

cont By induction, we have a closed one-liner, say C, with the initial nodes
∆, ?A. Replace the LINE-rule on these nodes by a LINE-rule on ∆, ?A, ?A,
followed by a CONT-rule.

der By induction, we have a closed one-liner, say C, with the initial nodes
∆, ?A. Replace the LINE-rule on these nodes by a LINE-rule on ∆,A,
followed by a DER-rule.

weak By induction we have a closed one-liner, say C, with initial nodes ∆, ?A,
and terminal nodes Γ . Replace the LINE rule on ∆, ?A, by a LINE-rule
on ∆, followed by a WEAK-rule on ?A.

rep By induction, we have a closed one-liner, say C, with initial nodes ∆,A.
Let the LINE-rule of the construction of C be followed by the CUT-rule
applied to an A and an A⊥, created by an AX-rule.

comb By induction, we have two closed one-liners, say C0, with initial nodes ∆0
and terminal nodes Γ0, Σ, and C1, with initial nodes ∆1, Σ and terminal
nodes Γ1. Then we can replace the LINE-rule of the construction of C0
with a LINE-rule on ∆0, ∆1. Then we get a closed one-liner with terminal
nodes Γ0, Σ,∆1. If we apply the construction of C1 to this, we obtain the
desired result.

Corollary 21. The class of deduction nets is the class of closed one-liners.

Theorem 22 (Correctness of Deduction Nets). Every deduction net with-
out initial nodes is a proof net.

Proof. Immediate from the lemmas 20 and 17.

5.2 From Deduction Graphs to Context Nets

Definition 23. Given a deduction graph G, we define a deduction net I(G)
associated to G by induction on the construction of G. The invariant we maintain
is: If G is a deduction graph with assumptions ∆ and conclusions Γ ,
then I(G) is a deduction net with terminal nodes ∆∗⊥ and initial nodes
Γ ∗⊥. We put a picture of G on the left and a picture of I(G) on the right. Again,
A stands for A∗ and B stands for B∗.

Axiom The last step is an Axiom step:
(n, A) (A⊥, n)

Join The last step is a Join step, then by the comb-rule with Σ = ∅:�
�

	
�

�
�

	
�

�
�

	
�

�
�

	
�I(G′) I(G′′)G′ G′′

From Deduction Graphs to Proof Nets 53

Repeat The last step is a Repeat step:�
�

�
� �

�
�
�

(n, A)

(m, A)

(A⊥, n) (A, k) (A⊥, m)

G \m

I(G \m)

Share The last step is a Share step:

�
�
�

�
�

�

�

��
�

##
#

��##
(k,A)

(m,A) (n,A)

C

(A⊥,m) (A⊥, n)

(A⊥, k)

I(G \m,n)

G \m,n

→-E The last step is a →-E step:

�

�
�

�
�

�
�

�
�

��
�

��
�

(p, A) (m, A→B)

(n, B)
D

(A⊥, p) (?(A⊗B⊥),m)

(A, k) (B⊥, n)

(A⊗B⊥, l)

G \ n

I(G \ n)

→-I The last step is a →-I step:

�

�
�

�
�
�

�� 	�

�
�

�
�

�
�
�
�
�
�
�
� �

�
�
�
�
�
�
�

(n, A→B)

B

G \ B, n

I(G \ B, n)

I(B)

(Γ⊥, i)

(B⊥, j)

(A⊥, m) (B, k)

(A⊥�B, p)

(!(A⊥
�B), l) (?(A ⊗ B⊥), n)

(m, A)

(j, B)

(Γ⊥, i)

Loop The last step is a Loop step:�
�

�
� �

�
�
�

���	

(n,A)
(A⊥, n)

G

I(G)

W

Example 24. We show the proof net that we obtain via I(−) from the example
in Figure 1.

�
�

�
��

�
$$$$$$$$$$

%
%
%
%
%
%
%
%
%
%

&&&&

'
'
'
'
'
'
'
'
'

!A ?B⊥
9

!A⊗?B⊥

?(!A⊗?B⊥)6b

?A⊥
8!(?A⊥

�!B)

!(?A⊥
�!B)⊗?A⊥

?(!A⊗?B⊥)6a

D

?(!A⊗?B⊥)6

?(!(?A⊥
�!B)⊗?A⊥)7

!A ?B⊥
5

!A⊗?B⊥

D

?(!A⊗?B⊥)4!A

!A⊗?(!A⊗?B⊥)

D

?(!A⊗?(!A⊗?B⊥))?A⊥
�!B

?A⊥
0 !B

?A⊥
1

?A⊥
2

C

?(!A⊗?(!A⊗?B⊥))3!(?A⊥
�!B)

D

C

54 H. Geuvers and I. Loeb

6 Connecting the Two Translations

The translations V (G) and I(G) are different in their construction. If G is a
deduction graph with assumptions∆ and conclusions Γ , then I(G) is a deduction
net with terminal nodes ∆∗⊥ and initial nodes Γ ∗⊥. By adding axiom links and
tensor nodes, we turn this into a proof net with terminal nodes ∆∗⊥,

⊗
Γ ∗,

where
⊗
Γ ∗ is the formula obtained by putting a tensor between all formulas in

Γ ∗. This is indicated in the following figure.

�
�

�
�

Γ∗⊥

I(G)

∆∗⊥

Γ∗

⊗Γ∗

We call this J(G). That this structure is a deduction net follows from the fact
that the the two dashed parts are deduction nets and hence the whole structure
is, using the comb rule. As it has no initial nodes, it is a proof net. We will see
that J and V give the same results.

Lemma 25 (Gluing). Let G be an SG with conclusions Σ,Γ and let F be an
SG with assumptions Σ,∆. Define H := G ∪ F . Then

1. I(H) =

�

�
I(F)

�

�

Σ∗⊥

I(G)

Γ∗⊥ ∆∗⊥

2. J(H) =

�

�
I(F)

�

�

Σ∗⊥

I(G)

Γ∗⊥ ∆∗⊥

Proof. By induction on the number of non A-nodes of F .

Theorem 26. Let G be an SG. Then V (G) = J(G).

Proof. The proof is by induction on the number of nodes of G. We make a case-
distinction to rank(G).
Case rank(G) = 0.
Then G has been constructed using Axiom, Join, and Loop. We easily verify
that V (G) = J(G).
Case rank(G) = i+ 1 for some i.
Suppose that V (F) has already been defined for SGs F with less nodes than G.
We consider the non-A-nodes in some order (say the box-topological ordering).
We distinguish cases according to the type of the node. We treat here the E-case
and the I-case.

From Deduction Graphs to Proof Nets 55

– E Suppose node (n,B) is of rank i with an edge to (m,A) and an edge to
(l, A→B). Let F be the graph consisting of the nodes n, m, and l and the
edges n−−� m and n−−� l. Then V (G) =�

�
�
�

���	

V (G \m, l)

(B⊥, n)A

A⊗B⊥

(A⊥, m)

D

(?(A⊗B⊥), l)

=IH

�
�

�
�

���	

J(G \m, l)

(B⊥, n)A

A⊗B⊥

(A⊥, m)

D

(?(A⊗B⊥), l)

Note that this is J(G \m, l) glued to I(F) and by Lemma 25 we are done.
– I Suppose node (n,A→B) of rank i is a box-node of box B with an edge to

(j, B) and let (m,A) be the discharged node. Let (�q, Γ) be the nodes that
can be reached from B with one edge.

�
�

�
�

V (B)

(A⊥, m) B (Γ⊥, �q)

(Γ⊥, �q)

V (G \ B)
A⊥

�B

!(A⊥
�B)(?(A⊗B⊥), n)

Let F be the graph consisting of box B with box-node n and all nodes that
are reachable from B within one step. By induction we conclude that V (G)
is J(G \ B) glued to I(F). By Lemma 25 we are done.

7 Preservation of Reduction

We will show that the transformations involved in the process of cut-elimination
of SGs can be mimicked by reductions on their context net translations. Of course
this implies that it can be mimicked by reductions on the result of the direct
translation of Section 4 too, and indeed on any translation that is an extension
of the translation via context nets.

The notion of reduction on proof structures can be extended to reduction
on context structures without any problem. We will use the following reduction
rules: Ax-cut, �-⊗, d-b, c-b and b-b. (See [4] and [3].)

Theorem 27. The class of deduction nets is closed under reduction.

Proof. Note that we can make a proof net from any given deduction net by the
comb-rule. Because all reduction rules preserve initial and terminal nodes, it now
follows that the class of deduction nets is closed under reduction.

Theorem 28. If G′ is obtained from G by either elimination of a safe cut, an
unsharing step, a repeat-elimination step, or an incorporation step, then I(G′)
can be obtained from I(G) by one or more reductions of context nets.

56 H. Geuvers and I. Loeb

Proof. – If G′ is obtained from G by eliminating a safe cut, then there exists
a deduction net F such that I(G)−−>d−bF −−>�−⊗I(G′′).

�
�

�
�

���	

B∗⊥

Γ∗⊥ A∗⊥ B∗

A∗⊥
�B∗

!(A∗⊥
�B∗)Γ∗⊥ ?(A∗ ⊗B∗

D

A∗ ⊗B∗⊥
A∗ B∗⊥A∗⊥

�
�

�
�

B∗⊥

Γ∗⊥ A∗⊥ B∗
A∗ B∗⊥A∗⊥

– If G′ is obtained from G by unsharing, then I(G) −−>c−bI(G′).

�
�

�
�

���	���

B∗⊥

Γ∗⊥ A∗⊥ B∗

A∗⊥
�B∗

!(A∗⊥
�B∗)Γ∗⊥ ?(A∗ ⊗B∗⊥)

C

?(A∗ ⊗B∗⊥) ?(A∗ ⊗B∗⊥)

�

�

�

�

���	

����������������

�
�
�
�
�
�
�

B∗⊥

Γ∗⊥ A∗⊥ B∗

A∗⊥�B∗

!(A∗⊥�B∗)Γ∗⊥ ?(A∗ ⊗B∗⊥)

B∗⊥

Γ∗⊥ A∗⊥ B∗

A∗⊥�B∗

!(A∗⊥�B∗)Γ∗⊥ ?(A∗ ⊗B∗⊥)

C

Γ∗⊥

– If G′ is obtained from G by a repeat elimination, then I(G)−−>Ax−cutI(G′).

�

�

∆∗⊥ A∗⊥

Γ∗⊥

A∗ A∗⊥

�

�

∆∗⊥ A∗⊥

Γ∗⊥

From Deduction Graphs to Proof Nets 57

– If G′ is obtained from G by incorporation, then I(G) −−>b−bI(G′).

�
�

�
�

�
�

�
�

Γ∗⊥ A∗⊥ B∗

A∗⊥
�B∗

!(A∗⊥
�B∗)Γ∗⊥ ?(A∗ ⊗B∗⊥)

?(A∗ ⊗B∗⊥) ∆∗⊥ C∗⊥

D∗

D∗

B∗⊥

∆∗⊥

C∗⊥
�D∗

!(C∗⊥
�D∗) ?(C∗ ⊗D∗⊥)

�

�

�
�

�
�

Γ∗⊥ A∗⊥ B∗

A∗⊥�B∗

!(A∗⊥�B∗)Γ∗⊥

?(A∗ ⊗B∗⊥) ∆∗⊥ C∗⊥

D∗

D∗

B∗⊥

C∗⊥�D∗

Γ∗⊥ ∆∗⊥ !(C∗⊥�D∗) ?(C∗ ⊗D∗⊥)

From this correspondence of reduction follows again strong normalisation for
the process of cut-elimination of SGs. However, the result is stronger than the
one mentioned in Section 2. There we assumed the total removal of a cut before
starting the process of cut-elimination for another cut. Moreover, the process of
cut-elimination prescribes an order of the various steps. Seeing these steps of the
process as separate reduction steps, one could say that the process describes a
reduction strategy and the normalisation result is rather weak normalisation.

But now we see that the steps may be done in any order, even mixing the
steps for various cuts. This gives us strong normalisation in a very general sense.

Acknowledgments

We thank Delia Kesner, Stéphane Lengrand, and Femke van Raamsdonk for
their valuable suggestions.

References

1. V.Danos and L.Regnier, The structure of the multiplicatives, Archive for Mathemat-
ical logic 28, 1989.

2. R.David and D.Kesner, An arithmetical strong-normalisation proof for reduction
modulo in proof-nets, draft.

3. H.Geuvers and I.Loeb, Natural Deduction via Graphs: Formal Definition and Com-
putation Rules, to appear in MSCS (http://www.cs.ru.nl/˜herman/PUBS/gd.pdf)

4. J.-Y. Girard, Linear Logic, Theoretical Computer Science, 50(1):1-101, 1987.
5. Q.Puite, Proof Nets with Explicit Negation for Multiplicative Linear Logic, Preprint

1079, Department of Mathematics, Utrecht University, 1998.

The Structure of Tractable Constraint

Satisfaction Problems

Martin Grohe

Institut für Informatik, Humboldt Universität
Unter den Linden 6, 10099 Berlin, Germany

Abstract. We give a survey of recent results on the complexity of con-
straint satisfaction problems. Our main emphasis is on tractable struc-
tural restrictions.

1 Introduction

The objective of a constraint satisfaction problem (CSP) is to assign values to
variables subject to constraints on the values. Obviously, this is a very general
type of problem, and it is not surprising that many algorithmic problems in
various areas of computer science can be described as CSPs. It is neither sur-
prising that, in general, CSPs are computationally hard. Considerable efforts
have been made to precisely understand the complexity of CSPs, with the goal
of identifying tractable restrictions (often referred to as “islands of tractability”
in this context) and, ultimately, determining the boundary between tractable
and intractable CSPs. There are two main types of restrictions that have been
studied: Constraint language restrictions, which are concerned with the types of
constraints that occur, and structural restrictions, which are concerned with the
structure induced by the constraints on the variables, for example, with the way
the constraints overlap.

1.1 CSP-Instances

An instance of a CSP is a triple (V,D,C) consisting of a set V of variables, a
domain D, and a set C of constraints. The objective is to find an assignment of
values from D to the variables such that all constraints in C are satisfied. The
constraints are expressions of the form Rx1 . . . xk, where R is a k-ary relation
on D and x1, . . . , xk are variables. A constraint Rx1 . . . xk is satisfied if the k-
tuple of values assigned to the variables x1, . . . , xk belongs to the relation R.
The constraint language of a CSP-instance (V,D,C) is the set of all relations
that occur in the constraints in C.

Example 1. We describe Sat, the satisfiability problem for Boolean formulas in
conjunctive normal form (CNF), as a CSP: A CNF-formula φ corresponds to
a CSP-instance whose variables are the variables of φ, whose domain is {0, 1},
and whose constraints are given by the clauses. For example, the clause (x ∨
¬y ∨ ¬z) corresponds to a constraint Rxyz, where R is the ternary relation
{(0, 0, 0), (0, 0, 1), (0, 1, 0), (1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1)} on {0, 1}.

R. Královič and P. Urzyczyn (Eds.): MFCS 2006, LNCS 4162, pp. 58–72, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

The Structure of Tractable Constraint Satisfaction Problems 59

Example 2. As a second example, we consider the 3-Colourability problem
for graphs. Its objective is to colour the vertices of a graph with 3 colours in such
a way that adjacent vertices get different colours. Each graph G, viewed as an
instance of 3-Colourability, corresponds to the following CSP-instance: Vari-
ables are the vertices of G, the domain is the set of colours, say, {red, blue, green},
and for each edge {v, w} of G there is a constraint Ivw, where I is the disequality
relation on the domain.

Example 3. As a third example, consider the Clique problem, whose objective
it is to decide whether a graph G has a clique of size k. An instance (G, k) of
Clique corresponds to the following CSP-instance: The variables are x1, . . . , xk,
the domain is the vertex set of G, and there are constraints Exixj for 1 ≤ i ≤ j,
where E is the edge relation of G.

1.2 Relational Structures and Homomorphisms

It is a well known observation (going back to Feder and Vardi [16]) that CSPs
can be described as homomorphism problems for relational structures (and vice
versa). A (relational) vocabulary is a finite set τ of relation symbols, each with a
prescribed arity. A structure A of vocabulary τ (for short: τ -structure) consists
of a finite set A, called the universe of A, and a k-ary relation rA for each
k-ary relation symbol r ∈ τ . A homomorphism from a τ -structure A to a τ -
structure B is a mapping h : A → B from the universe of A to the universe of
B that preserves all relations, that is, for all r ∈ τ , say, of arity k, and all tuples
(a1, . . . , ak) ∈ rA it holds that (h(a1), . . . , h(ak)) ∈ rB.

With every CSP-instance I = (V,D, C) we associate two structures A(I)
and B(I) as follows: The vocabulary τ(I) of both structures contains a k-ary
relation symbol r for every k-ary relation R in the constraint language of I.
The universe of B(I) is D, and the relations of B are those appearing in the
constraint language. More precisely, for every r ∈ τ(I) we let rB(I) = R. The
universe of A(I) is V , and for each k-ary relation symbol r ∈ τ(I) we let
rA(I) = {(x1, . . . , xk) | Rx1 . . . xk ∈ C}. Then a mapping h : V → D is a
satisfying assignment for the CSP-instance I if and only if it is a homomorphism
from A(I) to B(I). Thus I is satisfiable if and only if there is a homomorphism
from A(I) to B(I). Conversely, for all pairs of structures A, B of the same
vocabulary, we can easily construct a CSP-instance I such that A(I) = A and
B(I) = B.

1.3 Restricted CSPs

The structures A(I) and B(I) associated with a CSP-instance I precisely reflect
the two kinds of restrictions on CSPs studied in the literature on the complexity
of CSPs: B(I) is just a fancy representation of the constraint language. Hence
restrictions on B(I) are constraint language restrictions. A(I) is the “structure
induced by the constraints on the variables”, made precise. Hence restrictions
on A(I) are structural restrictions.

In general, for all classes C and D of structures, we have the following re-
stricted CSP:

60 M. Grohe

Csp(C,D)
Instance: CSP-instance I with A(I) ∈ C and B(I) ∈ D.
Problem: Decide if I is satisfiable.

We write Csp(−,D) instead of Csp(C,D) if C is the class of all structures and
Csp(C,−) if D is the class of all structures. For structures B, we write Csp(C,B)
and Csp(−,B) instead of Csp(C, {B}) and Csp(−, {B}). Restrictions of the form
Csp(C,B) are called nonuniform [27].
Example 2 revisited: The 3-Colourability problem corresponds to Csp(G,D),
where G denotes the class of all (undirected, loop-free) graphs and D is a tri-
angle. To see this, note that the disequality relation on a three element domain
corresponds to a triangle if viewed as a graph. Since only graphs can be mapped
homomorphically to a triangle, Csp(G,D) is essentially the same problem as
Csp(−,D). Thus 3-Colourability is a nonuniform CSP with a restricted con-
straint language.
Example 3 revisited: The Clique problem corresponds to Csp(K,G), where K
denotes the class of all complete graphs. This problem is essentially the same
problem as Csp(K,−). Thus Clique is a CSP with a restricted structure.
Example 1 revisited: The description of Sat as a problem Csp(C,D) is slightly
more complicated: The sign pattern of a clause γ = (λ1 ∨ λ2 ∨ . . . ∨ λn) is the
tuple σ(γ) = (s1, . . . , sn) of signs, where si = + if λi is a positive literal (that
is, a variable) and si = − if λi is a negative literal (that is, a negated variable).
For example, the sign pattern of the clause (x∨¬y∨¬z) is (+,−,−). With each
n-ary sign pattern σ we associate an n-ary relation Rσ over the Boolean domain
that consists of all satisfying assignments for clauses with sign pattern σ. For
example, R(+,−,−) = {0, 1}3 \ {(0, 1, 1)}.

Now let I be the CSP-instance associated with a CNF-formula φ. The vo-
cabulary τ(I) consists of an n-ary relation symbol rσ for every sign pattern σ
that occurs in φ. Furthermore, B(I) is the τ(I)-structure with universe {0, 1}
and relations rB(I)

σ = Rσ. Let S be the class of all structures B whose universe
is {0, 1} and whose vocabulary consists of finitely many relation symbols rσ for
sign patterns σ, such that rBσ = Rσ. Then Sat corresponds to Csp(−, S).1

The examples show that problems Csp(C,D) are NP-hard in general. Further-
more, both structural restrictions Csp(C,−), such as Clique, and constraint
language restrictions Csp(−,D), such as Sat, can be NP-hard. Even nonuniform
constraint language restrictions Csp(−,B), such as 3-Colourability, can be
NP-hard. However, observe that “nonuniform structural restrictions” of the form
Csp({A},−) are always in PTIME, because the set of variables is fixed.

The reader may wonder why we write “NP-hard” instead of “NP-complete”
— it seems obvious that all problems Csp(C,D) are in NP. However, this is not
entirely true, because the membership problem for the classes C and D may not
be in NP (it may even be undecidable), and in this case it is not even decidable
1 The astute reader may notice that the translation from Sat to Csp(−, S) involves

an exponential blow-up in size. We shall discuss this issue in Sec. 3.1.

The Structure of Tractable Constraint Satisfaction Problems 61

in NP if a given CSP-instance I is an instance of Csp(C,D). We could avoid this
problem by requiring the classes C and D to be polynomial time decidable, but
there are interesting examples where they are not. Instead, we view Csp(C,D)
as a promise problem: We say that Csp(C,D) is solvable in polynomial time if
there is a polynomial time algorithm that, given an instance I with A(I) ∈ C and
B(I) ∈ D, correctly decides if I is solvable. We do not care what the algorithm
does if the input is not of this form.

Definition 4. Let C,D be classes of structures. Then Csp(C,D) is tractable if
it is solvable in polynomial time (viewed as a promise problem) and intractable
otherwise. Csp(C,D) is hard if it is NP-hard.

2 Constraint Language Restrictions

Most and the mathematically deepest work on the complexity of CSPs is con-
cerned with constraint language restrictions (e.g., [7,8,6,4,13,16,22,26,29]). As a
matter of fact, most of this work is only concerned with nonuniform constraint
language restrictions of the form Csp(−,B). The driving force behind this work
is a conjecture that has first been stated by Feder and Vardi in 1993 (in the
conference version of [16]):

Conjecture 1 (Dichotomy Conjecture). For every structure B, the problem
Csp(−,B) is either tractable or hard.

In other words: Every problem of the form Csp(−,B) is either in PTIME or
NP-complete (as all such problems are contained in NP). A priori, there is no
reason why this should be true, in particular in view of Ladner’s theorem [28]
stating that if PTIME 	= NP, then there are problems in NP that are neither in
PTIME nor NP-complete. Nevertheless, the Dichotomy Conjecture still stands
unrefuted, and it has actually been proved in several significant special cases.

Two important special cases of the conjecture had already been proved when
Feder and Vardi stated it. In 1978, Schaefer [29] studied what he called “gener-
alised satisfiability problems”. In our terminology, these are just CSPs over the
Boolean domain {0, 1}. Let us call a structure B Boolean if its universe is {0, 1}.

Theorem 5 (Schaefer [29]). The dichotomy conjecture holds for all Boolean
structures. More precisely, for every Boolean structure B, the problem Csp(−,B)
is tractable if B satisfies one of the following conditions:

(1) Every relation of B contains a tuple in which all entries are 0.
(2) Every relation of B contains a tuple in which all entries are 1.
(3) Every relation of B is definable by a CNF-formula in which every clause

contains at most one negative literal.
(4) Every relation of B is definable by a CNF-formula in which every clause

contains at most one positive literal.
(5) Every relation of B is definable by a CNF-formula in which every clause

contains at most two literals.

62 M. Grohe

(6) Every relation of B is the set of solutions of a system of linear equations
over the two element field GF(2).

Otherwise, Csp(−,B) is hard.

Obviously, Schaefer’s theorem implies the Dichotomy conjecture for all two-
element structures B. It is not hard to see that Schaefer’s theorem also implies
a dichotomy for all classes of Boolean structures: For every class B of Boolean
structures, Csp(−,B) is tractable if every structure B ∈ B satisfies one of the
conditions (1)–(6) and hard otherwise.

Note that Csp(−,B) is tractable for all one-element structures B. Hence, for
the rest of this section we assume that all structures have at least two elements.

Hell and Nešetřil [22] studied the complexity of the graph homomorphism
problem for a fixed target graph H (the so called H-colouring problem) and
proved a dichotomy result. In our terminology, their result reads as follows:

Theorem 6 (Hell and Nešetřil [22]). The dichotomy conjecture holds for
graphs. More precisely, for every graph H, the problem Csp(−,H) is tractable if
H is bipartite; otherwise, it is hard.

Remember that we assume graphs to be undirected an loop-free. The dichotomy
can easily be extend to graphs with loops, because Csp(−,H) is tractable for
every H that has a loop. Hell and Nešetřil’s theorem also implies a dichotomy
for classes of graphs: For every class H of graphs, Csp(−,H) is tractable if every
H ∈ H is bipartite and hard otherwise. For directed graphs, the situation is much
more complicated: Feder and Vardi [16] proved that the dichotomy conjecture
for directed acyclic graphs is equivalent to the general dichotomy conjecture.
Even for oriented trees, the conjecture is still open (cf. [23,24]).

In recent years, Bulatov, Cohen, Dalmau, Jeavons, Krokhin and others very
successfully pursued an algebraic approach to the complexity of CSPs. While still
short of proving the dichotomy conjecture, they made some remarkable progress.
We cannot hope to explain the approach in any depth in this short survey. For
detailed presentations of the algebraic approach, we refer the reader to [8,11,26].
Our modest goal for the rest of this section is to state the main results obtained
by this approach and the currently conjectured dividing line between tractable
and hard constraint language restrictions.

The �th power of a τ -structure B is the τ -structure B� with universe B� and
relations

rB
�

=
{(

(b11, . . . , b1�), . . . , (bk1, . . . , bk�)
) ∣∣∣ (b1j , . . . , bkj) ∈ rB for 1 ≤ j ≤ �

}
for every k-ary r ∈ τ . An (�-ary) polymorphism of B is a homomorphism from
B� to B. Equivalently, an �-ary polymorphism of B can be described as an �-
ary operation h on B (that is, a mapping h : B� → B) such that for every k,
every k-ary r ∈ τ , and every matrix (bij)1≤i≤k

1≤j≤�
∈ Bk×� the following holds: If

all columns of the matrix are in rA, then the k-tuple obtained by applying h to
each row of the matrix is in rA.

The Structure of Tractable Constraint Satisfaction Problems 63

Example 7. Consider the Boolean structure B with one ternary relation

R =
{
(0, 1, 0), (0, 1, 0), (1, 0, 0), (1, 1, 1)

}
Observe that R is the set of solutions to the linear equation x1 + x2 + x3 = 1
over GF(2). Then the mapping f : {0, 1}2 → {0, 1} defined by f(x, y) = x+y+1
(addition in GF(2)) is a binary polymorphism of B. To see this, note that if the
two columns of the matrix b1 c1b2 c2

b3 c3

solve the equation x1 + x2 + x3 = 1, then so does the vectorf(b1, c1)

f(b2, c2)
f(b3, c3)

 =

b1 + c1 + 1
b2 + c2 + 1
b3 + c3 + 1

The set of all polymorphisms of a structure B, denoted by Pol(B), is called the
clone of B. The following lemma establishes a fundamental connection between
the complexity of Csp(−,B) and the clone of B that underlies the algebraic
approach:

Lemma 8 (Jeavons [25]). Let B,B′ be structures over the same universe. If
Pol(B) ⊆ Pol(B′) then Csp(−,B′) is polynomial time reducible to Csp(−,B).

In particular, if Pol(B) = Pol(B′) then Csp(−,B) and Csp(−,B′) are polyno-
mial time equivalent.

In other words: The larger the clone of a structure, the simpler the corresponding
CSP. Intuitively, this is plausible, because more complex relations will have fewer
polymorphisms. Note that the clone of every structure contains all projections
f(x1, . . . , x�) = xi. Thus if the clone of a structure B (with at least two elements)
contains only the projections, then Csp(−,B) is certainly hard. The converse of
this observation fails; it is easy to construct structures B such that Csp(−,B) is
hard and Pol(B) does not only contain projections.

An algebra is a pair (A,F) consisting of a set A and a set F of operations
on A. With every structure B we associate the algebra A(B) = (B,Pol(B)). It
follows immediately from Lemma 8 that for all structures B,B′, if A(B) = A(B′)
then Csp(−,B) and Csp(−,B′) are polynomial time equivalent.

The set of term operations of an algebra (A,F) is the closure of F and all
projections under composition. Since a clone contains all projections and is closed
under composition, the term operations of A(B) are precisely the operations in
Pol(B). An algebra is idempotent if all its term operations are idempotent, that
is, f(a, . . . , a) = a for all a.

Lemma 9 (Bulatov, Jeavons, and Krokhin [8]). For every structure B
there exists a structure B′ such that A(B′) is idempotent, and Csp(−,B) and
Csp(−,B′) are polynomial time equivalent.

64 M. Grohe

For the readers familiar with the terminology, let us remark that the structure
B′ of Lemma 9 is an expansion of the core of B by unary relations {b} for all
elements b. In particular, this implies that the cardinality of the universe of B′
is less than or equal to the cardinality of the universe of B.

A subalgebra of an algebra (A,F) is an algebra (A′, F ′), where A′ is a subset
of A that is closed under all operations in F and F ′ consists of the restrictions of
the operations in F to A′. A homomorphic image of (A,F) is an algebra (A′, F ′)
such that there exist surjective mappings h : A → A′ and ι : F → F ′ such that
for all �-ary operations f ∈ F , ι(f) is an �-ary operation on A′ with

h(f(a1, . . . , a�)) = ι(f)(h(a1), . . . , h(a�))

for all tuples (a1, . . . , a�) ∈ A�. A factor of an algebra (A,F) is a homomorphic
image of a subalgebra of (A,F). A factor is nontrivial if it has at least two
elements. Now we are ready to state the main conjecture by Bulatov, Jeavons,
and Krokhin [8]:

Conjecture 2 (BJK-Conjecture). For every structure B, if A(B) is idempo-
tent, then the problem Csp(−,B) is hard if A(B) has a nontrivial factor all of
whose operations are projections, and tractable otherwise.

By Lemma 9, the BJK-Conjecture implies the Dichotomy Conjecture. But in
addition, the BJK-Conjecture predicts where the dividing line between tractable
and hard instances is located. Bulatov, Jeavons, and Krokhin [8] proved one
direction of the BJK-Conjecture: If A(B) has a nontrivial factor all of whose
operations are projections, then Csp(−,B) is hard. It follows from Theorems 5
that the BJK-Conjecture holds for all two-element structures.

Theorem 10 (Bulatov [6]). The BJK-Conjecture (and hence the Dichotomy
Conjecture) holds for all three-element structures B.

Bulatov also proved the BJK-Conjecture for graphs [5] and so-called conservative
CSPs [4], in which the set of values for each variable can be restricted arbitrarily.
Conservative CSPs can be characterised as problems Csp(−,B) for structures B
such that every �-ary polymorphism f satisfies f(b1, . . . , b�) ∈ {b1, . . . , b�} for all
b1, . . . , b� ∈ B.

3 Structural Restrictions

We start with an example that illustrates a simple, but important algorithmic
idea:

Example 11. A labelled tree is a structure T = (T,E, P1, . . . , Pn), where E is
binary, n ≥ 0, and P1, . . . , Pn are unary, such that the restriction (T,E) is a
tree. Let T denote the class of all labelled trees. Then Csp(T,−) is tractable.

To see this, it will be most convenient to view Csp(T,−) as a homomorphism
problem (as described in Section 1.2). The input consists of a labelled tree T =

The Structure of Tractable Constraint Satisfaction Problems 65

(T,E, P1, . . . , Pn) and a structure B = (B,F,Q1, . . . , Qn), where without loss
of generality we assume that T and B have the same vocabulary. We fix an
arbitrary root r for T and direct the edges away from the root. For t ∈ T , let Tt

denote the induced subtree of T whose nodes are t and all its descendants in T .
For t ∈ T , b ∈ B, we write t � b if (t ∈ Pi =⇒ b ∈ Qi) for 1 ≤ i ≤ n. Note that
t � b is a necessary condition for the existence of a homomorphism from T to B
that maps t to b.

For every node t ∈ T , let H(t) ⊆ B be the set of all b ∈ B such there is a
homomorphism from Tt to B that maps t to b. The sets H(t) can computed in
the following way:

– If t is a leaf, then H(t) consists of all b ∈ B such that t � b.
– If t has children t1, . . . , tn, we first compute H(t1), . . . , H(tn) recursively.
H(t) consists of all b ∈ B such that t � b and there exist b1 ∈ H(t1), . . . , bn ∈
H(tn) such that (b, b1), . . . , (b, bn) ∈ F .

Then there is a homomorphism from T to B if and only if H(r) 	= ∅. Clearly,
this yields a polynomial time algorithm.

The simple algorithmic idea underlying the example can be generalised from trees
to structures that are, in some sense, “similar” to trees. It will be convenient to
phrase the following definitions in terms of hypergraphs: A hypergraph is a pair
H = (V,E) consisting of a finite set V of vertices and a set E ⊆ 2V of subsets of
V called (hyper)edges. With each τ -structure A we associate a hypergraph H(A)
as follows: The vertex set of H(A) is the universe of A, and for all k, all k-ary
r ∈ τ , and all tuples (a1, . . . , ak) ∈ rA, the set {a1, . . . , ak} is an edge of H(A).
For a CSP-instance I, we let H(I) = H(A(I)). Note that the vertices of H(I)
are the variables of I and the edges of H(I) are the scopes of the constraints of
I, where the scope of a constraint Rx1 . . . xk is {x1, . . . , xk}.

A tree decomposition of a hypergraph H = (V,E) is a pair (T , B), where T is
a tree and B = (Bt)t∈T a family of subsets of V such that for each e ∈ E there
is a node t ∈ T with e ⊆ Bt, and for each v ∈ V the set {t ∈ T | v ∈ Bt} is
connected in T . The sets Bt are called the bags of the decomposition. The width
of the decomposition (T,B) is max{|Bt| | t ∈ T } − 1, and the tree width of H,
denoted by tw(H), is the minimum of the widths of all tree decompositions of
H. Figure 1 gives an example.

1
2

3

4

5

6
7

8

9

10

11

12

13

1,13,7

1,12,13,7

12,13,7,8

11,12,8,9

9,10,11

1,2,13,7

2,13,7,6

2,3,5,6

3,4,5

Fig. 1. A hypergraph H and a tree decomposition of H of width 3

66 M. Grohe

The tree width tw(A) of a structure A is defined to be the tree width of its
hypergraph H(A). We say that a class C of structures has bounded tree width
if there is a k such that tw(A) ≤ k for all A ∈ C. (We shall use a similar
terminology for other invariants such as bounded hypertree width later without
explicitly defining it.)

It is NP-complete to decide whether a given hypergraph or structure has tree
width k if k is given as part of the input [2]. However, for every fixed k there
is a linear time algorithm that computes a tree decomposition of width k for a
given structure A if the tree width of A is k [3].

Tree width may be seen as a measure for the “tree-likeness” of hypergraphs
and structures. Freuder [18] generalised Example 11 and proved that for every
class C of structures of bounded tree width, the problem Csp(C,−) is tractable.
This can be further generalised: Two structures A and A′ are homomorphically
equivalent if there is a homomorphism from A to A′ and a homomorphism from
A′ to A. For example, all bipartite graphs with at least one edge are homo-
morphically equivalent. Observe that CSP-instances I and I′ for which A(I) is
homomorphically equivalent to A(I′) and B(I) is homomorphically equivalent
to B(I ′) are either both satisfiable or both unsatisfiable.

Example 12. Let C be a class of structures such that each structure A ∈ C is
homomorphically equivalent to a labelled tree. Then Csp(C,−) is tractable.

To prove this, again we view Csp(C,−) as a homomorphism problem. The
input consists of a structure A = (A,E, P1, . . . , Pn) that is homomorphically
equivalent to a labelled tree and a structure B = (B,F,Q1, . . . , Qn).

If we could efficiently compute a labelled tree T that is homomorphically
equivalent to A, then we could solve the problem by testing if there is a homo-
morphism from T to B as in Example 11. Unfortunately, there is no obvious way
to find such a tree T (cf. [14]).

Let us define a game on A,B. The game is played by two players called Spoiler
and Duplicator. Positions of the game are pairs (a, b) ∈ A × B such that a � b
(i.e., a ∈ Pi ⇒ b ∈ Qi for 1 ≤ i ≤ n). In the initial round of a play, Spoiler chooses
an a0 ∈ A and Duplicator answers by choosing a b0 ∈ B with b0 � a0. Then the
initial position is (a0, b0). In each subsequent round, with current position (a, b),
the next position (a′, b′) is determined as follows: Spoiler chooses a′ such that
(a, a′) ∈ E. Then duplicator chooses b′ such that b′ � a′ and (b, b′) ∈ F . If in
some round of the play Duplicator cannot answer, she loses. If she can continue
to play forever, she wins.

We claim that there is a homomorphism from A to B if and only if Dupli-
cator has a winning strategy for the game. The forward direction is easy: If
h : A → B is a homomorphism from A to B then Duplicator simply answers
every choice a of Spoiler by choosing h(a). For the backward direction, suppose
that Duplicator has a winning strategy for the game. We exploit the fact that
A is homomorphically equivalent to a labelled tree. Assume first that A is a
labelled tree. We define a mapping h : A → B as follows: Let a0 be arbitrary.
Suppose Spoiler chooses a0 in the initial round. For every a ∈ A there is precisely
one path a0a1 . . . am = a from a0 to a in the tree A. We define b0, . . . , bm to be

The Structure of Tractable Constraint Satisfaction Problems 67

the Duplicator’s answer if the Spoiler plays a0, . . . , am and let h(a) = bm. It is
easy to verify that h is indeed a homomorphism from A to B.

Now suppose that A is not a tree. Let T = (T,E′, P ′1, . . . , P ′n) be a labelled
tree that is homomorphically equivalent to A, and let g1 : A→ T , g2 : T → A be
homomorphisms from A to T and from T to A, respectively. Then Duplicator
has a winning strategy for the game on T , B: If Spoiler plays t ∈ T , she answers
as she would have answered in the game on A,B if Spoiler had played g2(t).
Hence there is a homomorphism h from T to B. Then h ◦ g1 is a homomorphism
from A to B.

As the number of positions of the game is quadratic in the size of the input,
it can be decided in polynomial time if Spoiler has a winning strategy for the
game. Duplicator has a winning strategy if and only if Spoiler does not.

Again, this example can be generalised from trees to structures of bounded
tree width. A class C of structures has bounded tree width modulo homomorphic
equivalence if there is a k such that each structure A ∈ C is homomorphically
equivalent to a structure A′ with tw(A′) ≤ k.

Theorem 13 (Dalmau, Kolaitis, and Vardi [14]). Let C be a class of struc-
tures of bounded tree width modulo homomorphic equivalence. Then Csp(C,−)
is tractable.

Surprisingly, this theorem has a (partial) converse; for classes of structures of
bounded arity, bounded tree width modulo homomorphic equivalence is also a
necessary condition for the tractability of Csp(C,−). The arity of a structure is
the maximum arity of its relations.

Theorem 14 (Grohe [20]). Assume that FPT 	= W[1]. Let C be a recursively
enumerable class of structures of bounded arity.

Then Csp(C,−) is tractable if and only if C has bounded tree width modulo
homomorphic equivalence.

Let us discuss the assumptions of this theorem: FPT 	= W[1] is a complexity
theoretic assumption from parameterized complexity theory (see [15,17]) that is
widely believed to be true. The assumption that C be recursively enumerable is
somewhat inessential. With a slightly stronger complexity theoretic assumption,
the statement of the theorem can also be proved for classes C that are not
recursively enumerable. The only serious restriction is that C be of bounded arity.
While many natural CSPs (e.g., Clique, 3-Colourability) have bounded
arity, some have not: Sat is one prominent example. The rest of the paper
is devoted to Csp(C,−) for classes C of unbounded arity.

3.1 Unbounded Arity

Let I be a CSP-instance. Observe that the arity of the structure A(I) is the
maximum edge size of the hypergraph H(I).

The following example shows that there are classes C of unbounded tree
width modulo homomorphic equivalence (and thus unbounded arity) such that
Csp(C,−) is tractable:

68 M. Grohe

Example 15. For n ≥ 1, let rn be an n-ary relation symbol, and let An be
the {rn}-structure with universe {x1, . . . , xn} and rAn =

{
(x1, . . . , xn)

}
. Let

C = {An | n ≥ 1}. It is easy to see that the structure An has tree width n − 1
and is not homomorphically equivalent to a structure of smaller tree width. Thus
C has unbounded tree width modulo homomorphic equivalence.

But Csp(C,−) is tractable. To see this, let I be an instance of Csp(C,−),
say, with A(I) = An. Then I has a single constraint Rnx1 . . . xn. Thus I is
satisfiable if and only if Rn is nonempty, and clearly this can be checked in
polynomial time.

At this point, it will be necessary to think about how CSP-instances are actually
specified. The crucial question is how to specify the relations in the constraint
language. In absence of any specific information about the instances, it seems
most reasonable to just list the tuples of the relations explictly. Then the size of
the representation of an instance I is roughly

||I|| = |V |+ |D|+
∑
R∈L

|R| · arity(R) +
∑
c∈C

|c|,

where L denotes the constraint language of I and the length |c| of a constraint
c = Rx1 . . . xk is defined to be k + 1. In the following, we call ||I|| the size
of I. Complexity will always be measured in terms of ||I||. Note that ||I|| ≥
|V | + |D| + |C|. In general, ||I|| can be much larger than |V | + |D| + |C|. The
best upper bound we get is ||I|| = O(|V |+�·|D|�+�·|C|), where � is the maximum
of the arities of the relations in the constraint language. For the bounded arity
case, this means that ||I|| is polynomial in |V |+ |D|+ |C|, and thus in this case
the choice of representation of the relations is not so significant.

Of course the explicit representation of the relations in the constraint language
is not the only representation one can think of. Indeed, if relations of large
arity occur in practice they are usually represented implicitly, for example, by
the clauses of a Sat instance. Note that a clause with n literals specifies a
relation with 2n − 1 elements. The complexity of CSPs where the relations in
the constraint language are represented implicitly (e.g. by clauses) is studied in
[10]. But for the rest of this paper, we only consider the explicit representation.

Let H = (V,E) be a hypergraph. An edge cover of H is a set C ⊆ E of edges
such that V =

⋃
C. Here

⋃
C =

⋃
e∈C e = {v ∈ V | ∃e ∈ C : v ∈ e}. The edge

cover number of H, denoted by ρ(H), is the minimum cardinality of an edge
cover of H. As usually, the edge cover number of a structure is defined to be the
edge cover number of its hypergraph. Note that the structure An of Example 15
has edge cover number 1 and tree width n− 1.

Example 16. Let C be a class of structures of bounded edge cover number. Then
Csp(C,−) is tractable. We leave it to the reader to verify this straightforward
claim.

The observation of the previous example can be combined with the ideas de-
veloped for trees and structures of bounded tree width. Let H = (V,E) be a

The Structure of Tractable Constraint Satisfaction Problems 69

hypergraph. A hypertree decomposition of H is a triple (T , B, C), where (T , B)
is a tree decomposition of H and C = (Ct)t∈T is a family of subsets of E such
that for every t ∈ V we have Bt ⊆

⋃
Ct. The sets Ct are called the guards of the

decomposition. Note that the guard Ct is an edge cover of the subhypergraph
induced by the bag Bt.

The width of the decomposition (T,B,C) is max{|Ct| | t ∈ T }. The hypertree
width of H, denoted by hw(H), is the minimum of the widths of the hypertree
decompositions of H .

a

b

c

d

e

fg
h

i

j

k

l 1
2

3

4

5

6
7

8

9

10

11

12

13

1,12,13,8
g,l

1,2,13,7,8
a,g

2,6,7,13
a,f

h,k
8,9,11,12

i,j
9,10,11

b,e
2,3,5,6

3,4,5
c,d

Fig. 2. A hypergraph H and a hypertree decomposition of H of width 2

Actually, what we call hypertree decomposition here is usually called “gen-
eralised hypertree decomposition” in the literature. The “standard” hypertree
decompositions incorporate an additional technical condition on how the guards
must be arranged in the tree. However, it has been proved in [1] that the width
measures derived from the two notions are the same up to a constant factor,
and for our purposes, this makes them interchangeable. Let us also remark that
hypertree width is called “cover width” in [9]. Another related decomposition
called “spread cut decomposition” has been introduced in [12].

As usually, we define the hypertree width of a structure to be the hyper-
tree width of its hypergraph. Gottlob, Leone, and Scarcello [19] proved that
Csp(C,−) is tractable for all classes C of bounded hypertree width. Let us
remark that Gottlob et al. stated their results for the problem of evaluating
Boolean conjunctive database queries. Constraint satisfaction, homomorphism,
Boolean conjunctive query evaluation, and also conjunctive query containment
are all equivalent (see [27]). Chen and Dalmau generalised Gottlob et al.’s re-
sult to classes of structures of bounded hypertree width modulo homomorphic
equivalence:

Theorem 17 (Chen and Dalmau [9]). Let C be a class of structures of
bounded hypertree width modulo homomorphic equivalence. Then Csp(C,−) is
tractable.

But this is still not the end of the story. The problem of finding a minimum edge
cover of a hypergraph H = (V,E) has the following integer linear programming
(ILP) formulation:

70 M. Grohe

minimise
∑
e∈E

xe subject to
∑
e∈E

with v∈e

xe ≥ 1 for all v ∈ V,

xe ∈ {0, 1} for all e ∈ E.

Let us consider the linear programming relaxation of this ILP, where the inte-
grality constraints xe ∈ {0, 1} are replaced by the inequalities xe ≥ 0. A feasible
solution for this linear program is called a fractional edge cover of H. The weight∑

e∈E xe of an optimal solution is called the fractional edge cover number of H;
it is denoted by ρ∗(H). An optimal fractional edge cover and hence the fractional
edge cover number can be computed in polynomial time by solving the linear
program. Computing the (integral) edge cover number is NP-complete.

It can be shown (see, e.g., [30], where edge covers are called “set covers”) that
for every hypergraph H with n vertices,

ρ∗(H) ≤ ρ(H) ≤ ρ∗(H) · lnn. (1)

The following example shows that the upper bound is fairly tight:

Example 18. Let � ≥ 1 and H be the following hypergraph: H has a vertex vS

for every subset S of {1, . . . , 2�} of cardinality �. Furthermore, H has an edge
ei = {vS | i ∈ S} for every i ∈ {1, . . . , 2�}.

Observe that the fractional edge cover number ρ∗(H) is at most 2, because
xe = 1/� for every edge e ofH yields a fractional edge cover of weight 2. Actually,
it is easy to see that ρ∗(H) = 2. It is also easy to see that ρ(H) = �+ 1.

Theorem 19 (Grohe and Marx [21]). Let C be a class of structures of
bounded fractional edge cover number. Then Csp(C,−) is tractable.

Observe that hw(H) ≤ ρ(H) for every hypergraph H. To see this, consider the
hypertree decomposition of H that consists of a one vertex tree, with a bag
that contains all vertices and a guard that is an edge cover. Thus by (1) we
have hw(H) ≤ ρ∗(H) · logn for every n-vertex hypergraph. It can be shown that
the hypertree width of the graph H of Example 18 is � + 1 = Θ(log n) [21].
Conversely, the hypergraph that is the disjoint union of n edges of cardinality 1
has hypertree width 1 and fractional edge cover number n. Thus fractional edge
cover number and hypertree width are incomparable. We can combine the two
invariants as follows:

A fractional hypertree decomposition of a hypergraph H = (V,E) is a triple
(T , B, g), where (T , B) is a tree decomposition of H and g = (gt)t∈T is a family
of functions from E to the nonnegative rationals such that for every t ∈ T it
holds that ∑

e with v∈e

gt(e) ≥ 1 for all v ∈ Bt

Hence the guard gt is a fractional edge cover of the subhypergraph induced by the
bag Bt. The width of the decomposition (T,B,C) is max

{∑
e∈E gt(e)

∣∣ t ∈ T}.
The fractional hypertree width ofH is the minimum of the widths of the fractional
hypertree decompositions of H .

The Structure of Tractable Constraint Satisfaction Problems 71

Conjecture 3. For every class C of structures, Csp(C,−) is tractable if and
only if C has bounded fractional hypertree width modulo homomorphic equiva-
lence.

Both directions of this conjecture are open. The forward direction is implied
by a technical conjecture stated in [21], which is concerned with the number of
maximal subsets of the vertex set of a hypergraph that have a certain fractional
edge cover number.

This is a good place to stop. All that remains to do is prove the conjectures.

Acknowledgements

The author is very grateful to Isolde Adler, Albert Atserias, Andrei Bulatov, Hu-
bie Chen, Stephan Kreutzer, Andrei Krokhin, Daniel Marx, Nicole Schweikardt,
and Marc Thurley for valuable comments and corrections on an earlier draft of
this paper.

References

1. I. Adler, G. Gottlob, and M. Grohe. Hypertree-width and related hypergraph
invariants. In S. Felsner, editor, Proceedings of the 3rd European Conference on
Combinatorics, Graph Theory, and Applications, volume AE of DMTCS Proceed-
ings Series, pages 5–10, 2005.

2. S. Arnborg, D. Corneil, and A. Proskurowski. Complexity of finding embeddings
in a k-tree. SIAM Journal on Algebraic Discrete Methods, 8:277–284, 1987.

3. H.L. Bodlaender. A linear-time algorithm for finding tree-decompositions of small
treewidth. SIAM Journal on Computing, 25:1305–1317, 1996.

4. A. Bulatov. Tractable conservative constraint satisfaction problems. In Proceedings
of the 18th IEEE Symposium on Logic in Computer Science, pages 321–330, 2003.

5. A. Bulatov. H-coloring dichotomy revisited. Theoretical Computer Science, 349:31–
39, 2005.

6. A. Bulatov. A dichotomy theorem for constraint satisfaction problems on a 3-
element set. Journal of the ACM, 53:66–120, 2006.

7. A. Bulatov, A. Krokhin, and P. Jeavons. The complexity of maximal constraint
languages. In Proceedings of the 33rd ACM Symposium on Theory of Computing,
pages 667–674, 2001.

8. A. Bulatov, A. Krokhin, and P. Jeavons. Classifying the complexity of constraints
using finite algebras. SIAM Journal on Computing, 34:720–742, 2005.

9. H. Chen and V. Dalmau. Beyond hypertree width: Decomposition methods with-
out decompositions. In P. van Beek, editor, Proceedings of the 11th International
Conference on Principles and Practice of Constraint Programming, volume 3709
of Lecture Notes in Computer Science, pages 167–181. Springer-Verlag, 2005.

10. H. Chen and M. Grohe. Constraint satisfaction with succinctly specified relations.
In preparation.

11. D. Cohen and P. Jeavons. The complexity of constraint languages. In F. Rossi,
P. van Beek, and T. Walsh, editors, Handbook of Constraint Programming, chap-
ter 6. Elsevier, 2006.

72 M. Grohe

12. D. Cohen, P. Jeavons, and M. Gyssens. A unified theory of structural tractability
for constraint satisfaction and spread cut decomposition. In Proceedings of the 19th
International Joint Conference on Artificial Intelligence, 2005. To appear.

13. V. Dalmau. Generalized majority-minority operations are tractable. In Proceedings
of the 20th IEEE Symposium on Logic in Computer Science, pages 438–447, 2005.

14. V. Dalmau, Ph. G. Kolaitis, and M. Y. Vardi. Constraint satisfaction, bounded
treewidth, and finite-variable logics. In P. Van Hentenryck, editor, Proceedings of
the 8th International Conference on Principles and Practice of Constraint Pro-
gramming, volume 2470 of Lecture Notes in Computer Science, pages 310–326.
Springer-Verlag, 2002.

15. R.G. Downey and M.R. Fellows. Parameterized Complexity. Springer-Verlag, 1999.
16. T. Feder and M.Y. Vardi. The computational structure of monotone monadic SNP

and constraint satisfaction: A study through datalog and group theory. SIAM
Journal on Computing, 28:57–104, 1998.

17. J. Flum and M. Grohe. Parameterized Complexity Theory. Springer-Verlag, 2006.
18. E.C. Freuder. Complexity of k-tree structured constraint satisfaction problems. In

Proceedings of the 8th National Conference on Artificial Intelligence, pages 4–9,
1990.

19. G. Gottlob, N. Leone, and F. Scarcello. Hypertree decompositions and tractable
queries. Journal of Computer and System Sciences, 64:579–627, 2002.

20. M. Grohe. The complexity of homomorphism and constraint satisfaction problems
seen from the other side. In Proceedings of the 43rd Annual IEEE Symposium on
Foundations of Computer Science, pages 552–561, 2003.

21. M. Grohe and D. Marx. Constraint solving via fractional edge covers. In Proceed-
ings of the of the 17th Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 289–298, 2006.

22. P. Hell and J. Nešetřil. On the complexity of H-coloring. Journal of Combinatorial
Theory, Series B, 48:92–110, 1990.

23. P. Hell, J. Nešetřil, and X. Zhu. Complexity of tree homomorphisms. Discrete
Applied Mathematics, 70:23–36, 1996.

24. P. Hell, J. Nešetřil, and X. Zhu. Duality and polynomial testing of tree homomor-
phisms. Transactions of the American Mathematical Society, 348(4):1281–1297,
1996.

25. P. Jeavons. On the algebraic structure of combinatorial problems. Theoretical
Computer Science, 200:185–204, 1998.

26. P. Jeavons, D. A. Cohen, and M. Gyssens. Closure properties of constraints. Jour-
nal of the ACM, 44(4):527–548, 1997.

27. Ph.G. Kolaitis and M.Y. Vardi. Conjunctive-query containment and constraint
satisfaction. In Proceedings of the 17th ACM Symposium on Principles of Database
Systems, pages 205–213, 1998.

28. R.E. Ladner. On the structure of polynomial time reducibility. Journal of the
ACM, 22:155–171, 1975.

29. T.J. Schaefer. The complexity of satisfiability problems. In Proceedings of the 10th
ACM Symposium on Theory of Computing, pages 216–226, 1978.

30. V.V. Vazirani. Approximation Algorithms. Springer-Verlag, 2004.

On the Representation of Kleene Algebras with Tests

Dexter Kozen

Department of Computer Science
Cornell University

Ithaca, New York 14853-7501, USA
kozen@cs.cornell.edu

Abstract. We investigate conditions under which a given Kleene algebra with
tests is isomorphic to an algebra of binary relations. Two simple separation prop-
erties are identified that, along with star-continuity, are sufficient for nonstandard
relational representation. An algebraic condition is identified that is necessary
and sufficient for the construction to produce a standard representation.

1 Introduction

Kleene algebra with tests (KAT) is an equational system for program verification that
combines Kleene algebra (KA), or the algebra of regular expressions, with Boolean
algebra. One can model basic programming language constructs such as condition-
als and while loops, verification conditions, and partial correctness assertions. KAT
has been applied successfully in verification tasks involving communication protocols,
source-to-source program transformation, concurrency control, compiler optimization,
and dataflow analysis [1,2,3,4,5,6]. The system subsumes Hoare logic and is deduc-
tively complete for partial correctness over relational models [7].

There are many interesting and useful models of KAT: language-theoretic, relational,
trace-based, matrix. In programming language semantics and verification, the relational
models are of primary importance, because correctness conditions are often expressed
as input/output conditions on the start and final state of the computation.

In relational models, actions and tests are represented as binary relations on some
universal set of states. The class of all relational KATs is denoted REL. Because of the
prominence of relational models in programming language semantics and verification,
it is of interest to characterize them axiomatically or otherwise. It is known that REL
satisfies no more equations than those satisfied by KATs in general, and the equational
theory is PSPACE-complete [8]. This result extends to the Hoare theory, universal Horn
formulas in which all premises are of the form p = 0 [8,9]. However, the full Horn
theories of REL and KAT diverge: the relationally valid Horn formula p ≤ 1 → p2 = p
is not true in all KATs or even in all star-continuous KATs. For example, it fails in the
min,+ algebra or tropical semiring used in shortest path algorithms.

In this paper we explore conditions under which a Kleene algebra with tests can be
represented isomorphically as a relational KAT. Not all algebras are so representable,
even star-continuous ones; as observed above, the min,+ algebra is not. We have iden-
tified two basic first-order properties, Properties 1 and 2 below, that are sufficient for
relational representation of idempotent semirings with tests, or Kleene algebras without

R. Královič and P. Urzyczyn (Eds.): MFCS 2006, LNCS 4162, pp. 73–83, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

74 D. Kozen

∗. In the presence of ∗, these properties plus the infinitary star-continuity condition are
sufficient for representation by a nonstandard relational model—one in which p∗ is the
least reflexive transitive relation containing p in the algebra, although not necessarily the
set-theoretic reflexive transitive closure. We also identify a property that is equivalent to
the assertion that the construction yields a standard model.

The two properties 1 and 2 can be viewed as separation properties. Essentially, they
assert the existence of enough tests to allow binary relations to be characterized by their
observable behavior, where the tests of the algebra are the observations. The two con-
ditions are relatively weak, although for trivial reasons neither is a necessary condition
for representation. We discuss the significance of Properties 1 and 2 further in Section
3 below.

The Stone representation theorem (see e.g. [10,11]) asserts that every Boolean alge-
bra is isomorphic to a Boolean algebra of sets. After McKinsey’s [12] and Tarski’s [13]
axiomatization of relation algebras, several authors [14,15,16] searched for a similar
representation result for relation algebras but with only partial success. This work cul-
minated in a counterexample of Lyndon [17]. In his conclusion, Lyndon discussed the
possibility of a positive representation result in weaker systems. He mentioned specif-
ically relational rings, which are essentially idempotent semirings or Kleene algebras
without ∗. Work on the relational representation of dynamic algebra [18,19,20,21,22,23]
built on this work and is analogous to the present results in the stronger setting in which
all weakest preconditions are assumed to exist. The main result of this paper strengthens
the representation results of [18,21] in that respect.

2 Preliminary Definitions

2.1 Kleene Algebra

Kleene algebra (KA) is the algebra of regular expressions [24,25]. The axiomatization
used here is from [26]. A Kleene algebra is an algebraic structure (K, +, ·, ∗, 0, 1)
that is an idempotent semiring under +, ·, 0, 1 such that p∗q is the ≤-least solution to
q + px ≤ x and qp∗ is the ≤-least solution to q + xp ≤ x. Here ≤ refers to the natural

partial order on K: p ≤ q def⇐⇒ p + q = q. This is a universal Horn axiomatization. A
Kleene algebra is star-continuous if it satisfies the stronger infinitary property

pq∗r = sup
n

pqnr. (1)

The family of star-continuous Kleene algebras is denoted KA∗. It is a proper subclass of
the Kleene algebras, but all naturally occurring Kleene algebras, including all relational
models, are star-continuous.

The axioms for ∗ say essentially that ∗ behaves like the Kleene asterate operator of
formal language theory or the reflexive transitive closure operator of relational algebra.

Standard models include the family of regular sets over a finite alphabet; the fam-
ily of binary relations on a set; and the family of n × n matrices over another Kleene
algebra. Other interpretations include the min,+ algebra or tropical semiring used in
shortest path algorithms and models consisting of convex polyhedra used in computa-
tional geometry.

On the Representation of Kleene Algebras with Tests 75

The completeness result of [26] says that all true identities between regular expres-
sions interpreted as regular sets of strings are derivable from the axioms. In other words,
the algebra of regular sets of strings over a finite alphabet P is the free Kleene algebra
on generators P. The axioms are also complete for the equational theory of relational
models.

2.2 Kleene Algebra with Tests

A Kleene algebra with tests (KAT) [5] is just a Kleene algebra with an embedded
Boolean subalgebra. That is, it is a two-sorted structure (K, B, +, ·, ∗, ¯, 0, 1) such
that

– (K, +, ·, ∗, 0, 1) is a Kleene algebra,
– (B, +, ·, ¯, 0, 1) is a Boolean algebra, and
– (B, +, ·, 0, 1) is a substructure of (K, +, ·, 0, 1).

Elements ofB are called tests. The Boolean complementation operator ¯ is defined only
on tests. We use the symbols b, c, d, . . . to denote tests and p, q, r, . . . to denote arbitrary
elements of K .

The while program constructs are encoded as in propositional Dynamic Logic [27]:

p ; q def= pq

if b then p else q def= bp + b̄q

while b do p def= (bp)∗b̄.

The Hoare partial correctness assertion {b} p {c} is expressed as the inequality bp ≤ pc
(equivalently, as the equation bpc̄ = 0 or the equation bp = bpc). All Hoare rules are
derivable in KAT; indeed, KAT is deductively complete for relationally valid proposi-
tional Hoare-style rules involving partial correctness assertions [7] (propositional Hoare
logic is not).

For A a set of tests, define Ā = {b̄ | b ∈ A} and ∼A = B − A. Note that Ā and
∼A are not the same in general; however, they coincide if A is an ultrafilter or maximal
ideal of B.

See [26,5,7,28] for a more detailed introduction to KA and KAT.

2.3 Relational Models

A relational model is a KAT whose elements are binary relations on some universal
set U . The sequential composition operator · is interpreted as relational composition,
the choice operator + is interpreted as set-theoretic union, the iteration operator ∗ is
interpreted as reflexive transitive closure, the multiplicative identity 1 is interpreted as
the identity relation on U , and the additive identity 0 is interpreted as the null relation.
Tests are subsets of the identity relation on U , but not all subsets of the identity relation
need be tests. The Boolean complementation operator on tests gives the set-theoretic
complement in the identity relation.

76 D. Kozen

A nonstandard relational model is the same, except that we do not require that p∗
be the set-theoretic reflexive transitive closure, but only the ≤-least reflexive transitive
relation containing p in the algebra.

The class of all relational KATs is denoted REL. If φ is a logical formula in the
language of KAT, we write REL � φ and say that φ is relationally valid if it is true
under all relational interpretations.

For a binary relation p on a set U , define the domain and range of p to be the sets

dom(p) def= {u | ∃v (u, v) ∈ p} ran(p) def= {v | ∃u (u, v) ∈ p},

respectively.

3 Representation

We will show that the following two natural properties, along with the star-continuity
condition (1), are sufficient to construct a nonstandard relational representation. These
properties are quite weak.

Property 1. pq = 0 ⇒ ∃b p = pb ∧ q = b̄q.

Property 2. p 	≤ q ⇒ ∃b∃c bpc 	= 0 ∧ bqc = 0.

In relational models, Property 1 asserts that if pq vanishes, then there is a test that
separates the range of p from the domain of q. This property is satisfied automatically in
any system that postulates the existence of pre- and/or postconditions, such as dynamic
algebra [19], Kleene algebra with domain and range operators [29], or Kleene modules
[30]. It is related to expressibility conditions in Hoare logic [31] but somewhat weaker.

Property 2 asserts that actions can be distinguished by their interaction with tests.
It is equivalent to the assertion that there exists no distinct inseparable pair, where the
relation ≡ of inseparability is defined by

p ≡ q def⇐⇒ ∀b∀c (bpc = 0 ⇔ bqc = 0).

The significance of this requirement is captured in the following proposition.

Proposition 1. Let p and q be terms in the language of KAT, and let b and c be test
variables not occurring in p or q. The following are equivalent:

(i) p ≤ q is valid,
(ii) bqc = 0 → bpc = 0 is valid,

(iii) bqc = 0 → bpc = 0 is relationally valid.

Proof. The implications (i) ⇒ (ii) and (ii) ⇒ (iii) are trivial. For (iii) ⇒ (i), if p ≤ q is
not valid, then it fails in some relational model, since the equational theories of KAT
and REL are the same. Let (s, t) ∈ p− q in this model, and reinterpret b as {s} and c
as {t}. Then bpc contains (s, t), but bqc = 0.

Let K,B be a KAT satisfying Properties 1 and 2. As with all Stone-like constructions,
our universal set of states will be the set of ultrafilters of B.

On the Representation of Kleene Algebras with Tests 77

Recall that a filter is a subset F of B such that

(i) bc ∈ F ⇔ b ∈ F and c ∈ F
(ii) 1 ∈ F

(iii) 0 	∈ F ,

and an ultrafilter is a maximal filter. Dually, an ideal is a subset I of B such that

(i) b + c ∈ I ⇔ b ∈ I and c ∈ I
(ii) 1 	∈ I

(iii) 0 ∈ I .

Ideals are the kernels of Boolean algebra homomorphisms. Note that F is a filter iff
F̄ is an ideal, and u is an ultrafilter iff ū is a maximal ideal. By Zorn’s lemma, every
filter is contained in an ultrafilter and every ideal is contained in a maximal ideal. Every
ultrafilter u satisfies the property that for all b, either b ∈ u or b̄ ∈ u, but not both;
therefore∼u = ū.

Let U denote the set of ultrafilters of B. The well-known Stone construction (see
e.g. [10,11]) produces a Boolean algebra isomorphic to B whose elements are subsets
of U and whose Boolean operations are the usual set-theoretic ones. The subset corre-

sponding to b is b′ def= {u | b ∈ u}. We denote this set-theoretic Boolean algebra by
B′.

A coideal of a Boolean algebra B is a complement of an ideal; that is, it is a subset
C of B satisfying

(i) b + c ∈ C ⇔ b ∈ C or c ∈ C
(ii) 1 ∈ C

(iii) 0 	∈ C.

Lemma 1. Every coideal contains an ultrafilter as a subset.

Proof. If C is a coideal, then ∼C is an ideal. By Zorn’s Lemma, ∼C extends to a
maximal ideal M . Then ∼M is an ultrafilter and is a subset of C.

Definition 1.

In(p, q) def= {d | pdq 	= 0}

Pre(p) def= {b | bp 	= 0} = In(1, p)

Post(p) def= {c | pc 	= 0} = In(p, 1).

Lemma 2. If pq 	= 0, then In(p, q) is a coideal. If p 	= 0, then Pre(p) and Post(p) are
coideals.

Proof. For In(p, q),

(i) p(c + d)q 	= 0 ⇔ pcq + pdq 	= 0 ⇔ pcq 	= 0 or pdq 	= 0,
(ii) pq 	= 0 ⇒ p1q 	= 0 ⇒ 1 ∈ In(p, q),

(iii) p0q = 0 ⇒ 0 	∈ In(p, q).

Pre(p) and Post(p) are special cases.

A collection {Cα} of coideals is downward-directed if for any pair Cα and Cβ , there is
a Cγ with Cγ ⊆ Cα ∩ Cβ .

78 D. Kozen

Lemma 3. The intersection of any downward-directed set of coideals is a coideal.

Proof. Equivalently, the union of any upward-directed set of ideals is an ideal. The
three conditions are easily checked.

Lemma 4.

(i) If p1 ≤ p2 and q1 ≤ q2, then In(p1, q1) ⊆ In(p2, q2).
(ii) If p1 ≤ p2, then Post(p1) ⊆ Post(p2).

(iii) If p1 ≤ p2, then Pre(p1) ⊆ Pre(p2).

Proof. Statement (i) follows easily from the definitions. Statements (ii) and (iii) are
special cases.

We now define our relational model R. For all p ∈ K , define

Definition 2.

pR def= {(u, v) | ∀b ∈ u ∀c ∈ v bpc 	= 0}.

Since bp = 0 iff p = b̄p (see e.g. [7, Section 3]), we have the following facts:

Pre(p) = {b | bp 	= 0} = {b | p 	= b̄p}
∼Pre(p) = {b | bp = 0} = {b | p = b̄p}

¯∼Pre(p) = {b̄ | bp = 0} = {b̄ | p = b̄p}.

If p 	= 0, then Pre(p) is a coideal, ∼Pre(p) is an ideal, and ¯∼Pre(p) is a filter.

Lemma 5. Let u be an ultrafilter. The following are equivalent:

(i) u ⊆ Pre(p)
(ii) ¯∼Pre(p) ⊆ u

(iii) u ∈ dom(pR).

Proof. (i) ⇔ (ii): ¯∼Pre(p) ⊆ u iff ∼Pre(p) ⊆ ū iff ∼ ū ⊆ Pre(p) iff u ⊆ Pre(p),
since u = ∼ ū.

(iii) ⇒ (i): If (u, v) ∈ pR, then for all b ∈ u and c ∈ v, bpc 	= 0. Since 1 ∈ v, we
have that for all b ∈ u, bp 	= 0. Then u ⊆ Pre(p) by definition of Pre(p).

(i) ⇒ (iii): If u ⊆ Pre(p), then bp 	= 0 for all b ∈ u. By Lemma 2, for all b ∈ u,
Post(bp) is a coideal. By Lemmas 3 and 4(ii),

⋂
b∈u Post(bp) is a coideal, therefore

contains an ultrafilter v by Lemma 1. Thus for all b ∈ u and c ∈ v, c ∈ Post(bp),
therefore bpc 	= 0 and (u, v) ∈ pR.

The following is the main theorem of this section.

Theorem 1. Let K,B be a star-continuous KAT satisfying Properties 1 and 2. The set
{pR | p ∈ K} is a nonstandard relational KAT with tests {bR | b ∈ B}, and the map
p �→ pR is a KAT isomorphism.

Proof. If p ≤ q then pR ⊆ qR, since p ≤ q ⇒ bpc ≤ bqc. Thus the map p �→ pR is
monotone.

On the Representation of Kleene Algebras with Tests 79

To show that p �→ pR is one-to-one, it suffices to show that if p 	≤ q, then pR 	⊆ qR.
Suppose that p 	≤ q. By Property 2, there exist b and c such that bpc 	= 0 and bqc = 0.
By Lemma 2, Pre(bpc) = {d | dbpc 	= 0} is a coideal, therefore contains an ultrafilter
u by Lemma 1. By definition of Pre(bpc), we have dbpc 	= 0 for all d ∈ u. It follows
that b ∈ u, since either b ∈ u or b̄ ∈ u, and the latter is impossible. Moreover, by
Lemma 2, for all d ∈ u, Post(dbpc) = {e | dbpce 	= 0} is a coideal. In addition, it
follows from Lemma 4(ii) that the set {Post(dbpc) | d ∈ u} is downward-directed,
since

Post(d1d2bpc) ⊆ Post(d1bpc) ∩ Post(d2bpc).

By Lemma 3,
⋂

d∈u Post(dbpc) is a coideal, therefore contains an ultrafilter v by
Lemma 1. As with u, c ∈ v. Then (u, v) ∈ pR, but (u, v) 	∈ qR since bqc = 0.

Next we show that p �→ pR is a homomorphism with respect to addition; that is,
(p + q)R = pR ∪ qR. The reverse inclusion follows from monotonicity. For the
forward inclusion, suppose (u, v) 	∈ pR ∪ qR. Then there exist b1, b2 ∈ u and
c1, c2 ∈ v such that b1pc1 = 0 and b2qc2 = 0. Since u and v are filters, b1b2 ∈ u
and c1c2 ∈ v, and b1b2pc1c2 = 0 and b1b2qc1c2 = 0. Then b1b2(p + q)c1c2 = 0, so
(u, v) 	∈ (p + q)R .

Next we show that p �→ pR is a homomorphism with respect to multiplication; that
is, (pq)R = pR ◦ qR. For the forward inclusion, suppose (u, v) ∈ (pq)R. Then for all
b ∈ u and c ∈ v, bpqc 	= 0. By Lemma 2, for all b ∈ u and c ∈ v, In(bp, qc) is a
coideal. Moreover, the set {In(bp, qc) | b ∈ u, c ∈ v} is downward-directed, since

In(b1b2p, qc1c2) ⊆ In(b1p, qc1) ∩ In(b2p, qc2).

By Lemma 3,
⋂
{In(bp, qc) | b ∈ u, c ∈ v} is a coideal, therefore contains an ultrafilter

w by Lemma 1. Then for all b ∈ u, c ∈ v, and d ∈ w, bpdqc 	= 0, therefore bpd 	= 0
and dqc 	= 0. It follows that (u,w) ∈ pR and (w, v) ∈ qR, therefore (u, v) ∈ pR ◦ qR.

For the reverse inclusion, we need Property 1. Suppose (u,w) ∈ pR and (w, v) ∈
qR. Then for all b ∈ u, c ∈ v, and d ∈ w, we have bpd 	= 0 and dqc 	= 0. If bpqc = 0
for some b ∈ u and c ∈ v, then by Property 1, there exists d such that bp = bpd and
qc = d̄qc. Either d ∈ w or d̄ ∈ w. If the former, then dqc = dd̄qc = 0. If the latter, then
bpd̄ = bpdd̄ = 0. In either case, we have a contradiction. Thus for all b ∈ u and c ∈ v,
bpqc 	= 0, therefore (u, v) ∈ (pq)R.

For tests, we must show that bR = {(u, u) | b ∈ u}, that 1R is the identity relation
on U , that 0R is the empty relation, and that the map b �→ bR is a homomorphism with
respect to negation. We have

bR = {(u, v) | ∀c ∈ u ∀d ∈ v cbd 	= 0}.

Thus (u, v) ∈ bR iff u = v and b ∈ u, therefore bR = {(u, u) | b ∈ u}. In particular,
1R = {(u, u) | 1 ∈ u}, the identity relation, and 0R = {(u, u) | 0 ∈ u} = ∅. Since
b ∈ u iff b̄ 	∈ u,

b̄R = {(u, u) | b̄ ∈ u} = {(u, u) | b 	∈ u} = 1R − bR.

Finally, for ∗, it follows from the star-continuity of K,B and the fact that the map
p �→ pR is an order isomorphism that q∗R = supn(qR)n .

80 D. Kozen

4 Star

In this section we identify an algebraic condition (Condition 2 below) under which the
construction of Section 3 yields a standard relational model. This occurs exactly when
qR∗ = q∗R for all q, where qR∗ denotes the set-theoretic reflexive transitive closure
of qR and q∗R is the representation of q∗ in R.

EndowU with the Stone topology generated byB′ andU×U with the product topol-
ogy. The basic open sets of these spaces are sets of the form b′ and b′ × c′, respectively.
Let cl(A) denote the closure of A in either topology.

Lemma 6. Every pR is closed in U × U .

Proof. If (u, v) 	∈ pR, then there exist b ∈ u and c ∈ v such that bpc = 0. Then
(u, v) ∈ b′ × c′ and

(b′ × c′) ∩ pR = (bpc)R = ∅.

Thus b′ × c′ is a basic open neighborhood of (u, v) disjoint from pR. Since (u, v) 	∈ pR

was arbitrary, (U × U)− pR is open, therefore pR is closed.

Lemma 7. The sets dom(pR) and ran(pR) are closed in U .

Proof. By Lemma 5, dom(pR) is the set of ultrafilters u extending the filter ¯∼Pre(p).
But the set of ultrafilters extending any filter F is closed, since it is the intersection of
basic closed sets:

{u | F ⊆ u} =
⋂
b∈F

{u | b ∈ u} =
⋂
b∈F

b′.

The argument for ran(p) is symmetric.

Lemma 8. Let {qα} be a collection of elements of K and p an element of K such
that for all b, c ∈ B, bpc = supα bqαc. Then pR = cl(

⋃
α qR

α). In particular, q∗R =
cl(qR∗).
Proof. The inclusion⊇ holds by Lemma 6. If (u, v) ∈ pR−cl(

⋃
α qR

α), then there exists
a basic open neighborhood b′ × c′ of (u, v) disjoint from

⋃
α qR

α . Then (bqαc)R =
(b′ × c′) ∩ qR

α = ∅ for all α, thus bqαc = 0 for all α, therefore supα bqαc = 0. But
(u, v) ∈ (b′ × c′) ∩ pR = (bpc)R, thus (bpc)R 	= ∅ and bpc 	= 0. This contradicts the
assumption.

A necessary and sufficient condition for the relational model constructed in Section 3
to be standard is the following uniform halting condition:

Condition 2.

∀n ∃b ∈ u ∃c ∈ v bqnc = 0 ⇒ ∃b ∈ u ∃c ∈ v ∀n bqnc = 0.

Condition 2 says that if for each n there are properties of (u, v) that cause it not to be
an input/output pair of the program qn, then there is a pair of such properties that work
uniformly over all n. Intuitively, the input/output relation of a loop depends on only
finitely many testable properties. Equivalently,

∀b ∈ u ∀c ∈ v ∃n bqnc 	= 0 ⇒ ∃n ∀b ∈ u ∀c ∈ v bqnc 	= 0.

On the Representation of Kleene Algebras with Tests 81

Theorem 3. Condition 2 is equivalent to the property q∗R = qR∗.

Proof. The left-hand side of Condition 2 says exactly that (u, v) 	∈ qRn
for all n, thus

(u, v) 	∈ qR∗. We also have⋃
n

(bqnc)R =
⋃
n

(b′ × c′) ∩ qnR = (b′ × c′) ∩
⋃
n

qnR = (b′ × c′) ∩ qR∗,

so that the right-hand side of Condition 2 can be rewritten

∃b ∈ u ∃c ∈ v ∀n bqnc = 0

⇔ ∃b ∃c (u, v) ∈ b′ × c′ and ∀n (bqnc)R = ∅
⇔ ∃b ∃c (u, v) ∈ b′ × c′ and

⋃
n

(bqnc)R = ∅

⇔ ∃b ∃c (u, v) ∈ b′ × c′ and (b′ × c′) ∩ qR∗ = ∅.

This says exactly that there is a basic open neighborhood of (u, v) disjoint from qR∗.
Thus the implication of Condition 2 says exactly that ∼qR∗ is open; that is, qR∗ is
closed. By Lemma 8, q∗R is the closure of qR∗, therefore they are equal if and only if
qR∗ is closed.

5 Open Problems

Theorem 3 does not say that a standard representation does not exist if Condition 2 fails.
In the case of countableK , some variant of the Tarski–Rasiowa–Sikorski lemma or the
Baire category theorem might be used to drop out nonstandard points from the model
constructed above, giving a standard relational model or perhaps a homomorphic image
of one; see [19,21]. The constructions of [19,21] do not seem to apply directly. On the
other hand, neither do we have a negative result. The counterexamples of [20,22] for
dynamic algebra do not immediately provide counterexamples for KAT, but the coun-
terexample of [20] may be adaptable. Such questions remain for future investigation.

Axiomatization of the universal Horn theory of relational models is another interest-
ing open question. This theory is an extension of the universal Horn theory of the star-
continuous Kleene algebras, and both theories are known to be Π1

1 -complete [32,33],
therefore not finitely axiomatizable. However, the star-continuous algebras have a suc-
cinct infinitary axiomatization containing a single infinitary rule (1). It is interesting to
ask whether the relational algebras have a finitary axiomatization relative to this. Pre-
sumably the Horn formula p ≤ 1 → p2 = p would be a candidate axiom. Considerable
progress in this direction has been made by Hardin [34].

Acknowledgements

Thanks to Samson Abramsky for valuable comments. It was he who suggested the term
“coideal”. This work was supported in part by NSF grant CCR-0105586 and by ONR
Grant N00014-01-1-0968. The views and conclusions contained herein are those of the
author and should not be interpreted as necessarily representing the official policies or
endorsements, either expressed or implied, of these organizations or the US Government.

82 D. Kozen

References

1. Angus, A., Kozen, D.: Kleene algebra with tests and program schematology. Technical
Report 2001-1844, Computer Science Department, Cornell University (2001)

2. Barth, A., Kozen, D.: Equational verification of cache blocking in LU decomposition using
Kleene algebra with tests. Technical Report 2002-1865, Computer Science Department,
Cornell University (2002)

3. Cohen, E.: Lazy caching in Kleene algebra (1994)
http://citeseer.nj.nec.com/22581.html.

4. Cohen, E.: Hypotheses in Kleene algebra. Technical Report TM-ARH-023814, Bellcore
(1993) http://citeseer.nj.nec.com/1688.html.

5. Kozen, D.: Kleene algebra with tests. Transactions on Programming Languages and Systems
19(3) (1997) 427–443

6. Kozen, D., Patron, M.C.: Certification of compiler optimizations using Kleene algebra with
tests. In Lloyd, J., Dahl, V., Furbach, U., Kerber, M., Lau, K.K., Palamidessi, C., Pereira,
L.M., Sagiv, Y., Stuckey, P.J., eds.: Proc. 1st Int. Conf. Computational Logic (CL2000). Vol-
ume 1861 of Lecture Notes in Artificial Intelligence., London, Springer-Verlag (2000) 568–
582

7. Kozen, D.: On Hoare logic and Kleene algebra with tests. Trans. Computational Logic 1(1)
(2000) 60–76

8. Cohen, E., Kozen, D., Smith, F.: The complexity of Kleene algebra with tests. Technical
Report 96-1598, Computer Science Department, Cornell University (1996)

9. Kozen, D., Smith, F.: Kleene algebra with tests: Completeness and decidability. In van
Dalen, D., Bezem, M., eds.: Proc. 10th Int. Workshop Computer Science Logic (CSL’96).
Volume 1258 of Lecture Notes in Computer Science., Utrecht, The Netherlands, Springer-
Verlag (1996) 244–259

10. Bell, J., Slomson, A.: Models and Ultraproducts. North Holland (1971)
11. Halmos, P.: Lectures on Boolean Algebras. Springer Verlag (1974)
12. McKinsey, J.: Postulates for the calculus of binary relations. J. Symb. Logic 5(3) (1940)

85–97
13. Tarski, A.: On the calculus of relations. J. Symb. Logic 6(3) (1941) 73–89
14. Everett, C., Ulam, S.: Projective algebra I. Amer. J. Math. 68(1) (1946) 77–88
15. Jonsson, B., Tarski, A.: Representation problems for relation algebras. Bull. Amer. Math.

Soc. 54 (1948) 80 abstract 89t.
16. McKinsey, J.: On the representation of projective algebras. Amer. J. Math. 70 (1948) 375–

384
17. Lyndon, R.: The representation of relation algebras. Ann. Math. 51(3) (1950) 707–729
18. Kozen, D.: On the representation of dynamic algebras. Technical Report RC7898, IBM

Thomas J. Watson Research Center (1979)
19. Kozen, D.: On the duality of dynamic algebras and Kripke models. In Engeler, E., ed.:

Proc. Workshop on Logic of Programs. Volume 125 of Lecture Notes in Computer Science.,
Springer-Verlag (1979) 1–11

20. Kozen, D.: On the representation of dynamic algebras II. Technical Report RC8290, IBM
Thomas J. Watson Research Center (1980)

21. Kozen, D.: A representation theorem for models of *-free PDL. In: Proc. 7th Colloq. Au-
tomata, Languages, and Programming, EATCS (1980) 351–362

22. Reiterman, J., Trnková, V.: Dynamic algebras which are not Kripke structures. In: Proc. 9th
Symp. Math. Found. of Computer Science (MFCS’80). (1980) 528–538

23. Németi, I.: Every free algebra in the variety generated by the representable dynamic algebras
is separable and representable. Hungarian Academy of Sciences, Budapest (1980)

On the Representation of Kleene Algebras with Tests 83

24. Kleene, S.C.: Representation of events in nerve nets and finite automata. In Shannon, C.E.,
McCarthy, J., eds.: Automata Studies. Princeton University Press, Princeton, N.J. (1956)
3–41

25. Conway, J.H.: Regular Algebra and Finite Machines. Chapman and Hall, London (1971)
26. Kozen, D.: A completeness theorem for Kleene algebras and the algebra of regular events.

Infor. and Comput. 110(2) (1994) 366–390
27. Fischer, M.J., Ladner, R.E.: Propositional dynamic logic of regular programs. J. Comput.

Syst. Sci. 18(2) (1979) 194–211
28. Kozen, D., Tiuryn, J.: Substructural logic and partial correctness. Trans. Computational

Logic 4(3) (2003) 355–378
29. Möller, B., Struth, G.: Greedy-like algorithms in Kleene algebra. In: Proc. 2nd Int. Workshop

on Applications of Kleene Algebra. (2003) 173–180
30. Ehm, T., Möller, B., Struth, G.: Kleene modules. In: Proc. 2nd Int. Workshop on Applications

of Kleene Algebra. (2003) 21–27
31. Kozen, D., Tiuryn, J.: On the completeness of propositional Hoare logic. Information Sci-

ences 139(3–4) (2001) 187–195
32. Kozen, D.: On the complexity of reasoning in Kleene algebra. Information and Computation

179 (2002) 152–162
33. Hardin, C., Kozen, D.: On the complexity of the Horn theory of REL. Technical Report

2003-1896, Computer Science Department, Cornell University (2003)
34. Hardin, C.: The Horn Theory of Relational Kleene Algebra. PhD thesis, Cornell University

(2005)

From Three Ideas in TCS to Three Applications

in Bioinformatics

Ming Li

School of Computer Science, University of Waterloo,
Waterloo, Ont. N2L 3G1, Canada

mli@uwaterloo.ca

http://www.cs.uwaterloo.ca/∼mli

We will talk about three ideas from theoretical computer science that have ac-
tually been successfully used in real world applications in bioinformatics. From
these ideas, we hope to inspire more theoretical research that are applicable to
real world bioinformatics problems.

Given a gene sequence, the traditional homology search method is either too
slow (dynamic programming) or not sensitive enough (BLAST). When it does
return something, the results are simply some fragments of alignments instead
of a complete gene match. We will explain the novel idea of optimal spaced seeds
[7] that has significantly improved the sensitivity and speed of homology search.
In fact, with optimized multiple spaced seeds [4], the search can be as fast as
BLAST but with full sensitivity. By further integrating HMM with homology
search, our homology search software returns complete gene match, with accurate
intron/exon boundaries, and with high success rates [3].

The phylogenetic studies in the past have depended on individual protein
sequences. However, different protein sequences often give different evolution-
ary histories. The genomics revolution has brought us complete genomes of
many species [8]. Can we use whole genomes to obtain more robust phyloge-
netic trees? It turns out that the answer rests in the seemingly unlikely concept
of Kolmogorov complexity [6]. We will show how to define a universal informa-
tion distance [1] and its normalized version [5], and apply it to the study of
evolutionary histories of species [5], chain letters [2], and many other things.

It is NP-hard to optimally align a protein sequence to a 3-D structure. This
is called threading. The problem may be properly formulated as a large scale
integer program. Relaxing the IP to LP, the solutions to real protein structures
usually give integral hence optimal solutions. RAPTOR [9] is implemented using
this idea and is a top performer in the recent CASP’s.

References

1. C.H. Bennett, P. Gacs, M. Li, P. Vitanyi, and W. Zurek, Information Distance,
IEEE Trans. Inform. Theory, 44:4(July 1998), 1407-1423. (STOC, 1993)

2. C.H. Bennett, M. Li and B. Ma, Chain letters and evolutionary histories, Scientific
American, 288:6(June 2003) (feature article), 76-81.

R. Královič and P. Urzyczyn (Eds.): MFCS 2006, LNCS 4162, pp. 84–85, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

From Three Ideas in TCS to Three Applications in Bioinformatics 85

3. X.F. Cui, M. Li, D. Shasha, and T. Vinar, work underway, 2006.
4. M. Li, B. Ma, D. Kisman and J. Tromp. PatternHunter II: highly sensitive and fast

homology search. J. Bioinformatics and Computational Biology, 2:3(2004), 417–440.
5. M. Li, J. Badger, X. Chen, S. Kwong, P. Kearney, H. Zhang, An information-based

sequence distance and its application to whole mitochondrial genome phylogeny,
Bioinformatics, 17:2(2001), 149-154.

6. M. Li and P. Vitanyi, An introduction to Kolmogorov complexity and its applications,
Springer-Verlag, 2nd Edition 1997 (xx+637 pp).

7. B. Ma, J. Tromp, M. Li, PatternHunter: Faster and more sensitive homology search.
Bioinformatics, 18:3(2002), 440-445.

8. J.C. Wooley, Trends in computational biology. J. Comput. Biol. 6(1999), 459-474.
9. J. Xu, M. Li, D. Kim and Y. Xu, RAPTOR: optimal protein threading by linear

programming. Journal of Bioinformatics and Computational Biology, 1:1(2003), 95-
118.

Decompositions, Partitions, and Coverings

with Convex Polygons and Pseudo-triangles

O. Aichholzer1,�, C. Huemer2, S. Kappes3, B. Speckmann4, and C.D. Tóth5

1 Institute for Software Technology, Graz University of Technology
oaich@ist.tugraz.at

2 Departament de Matemática Aplicada II, Universitat Politécnica de Catalunya
huemer.clemens@upc.edu

3 Department of Mathematics, TU Berlin
kappes@math.TU-Berlin.de

4 Department of Mathematics and Computer Science, TU Eindhoven
speckman@win.tue.nl

5 Department of Mathematics, Massachusetts Institute of Technology
toth@math.mit.edu

Abstract. We propose a novel subdivision of the plane that consists
of both convex polygons and pseudo-triangles. This pseudo-convex de-
composition is significantly sparser than either convex decompositions
or pseudo-triangulations for planar point sets and simple polygons. We
also introduce pseudo-convex partitions and coverings. We establish some
basic properties and give combinatorial bounds on their complexity. Our
upper bounds depend on new Ramsey-type results concerning disjoint
empty convex k-gons in point sets.

1 Introduction

Geometric algorithms and data structures frequently use subdivisions of the
input space into compact and easy to handle polygonal cells. Triangulations
are among the most widely used of these tessellations. Since the running time
of algorithms is often correlated with the size of the subdivision, many efficient
algorithms tile the plane with generalizations of triangles such as convex polygons
or pseudo-triangles which provide a sparser tessellation but retain many of the
desirable properties of a triangulation. Both convex subdivisions and pseudo-
triangulations have applications in areas like motion planning [7,26], collision
detection [1,19], ray shooting [6,14], or visibility [22,23]. A pseudo-triangle is
the “most reflex” polygon possible—it has exactly three convex vertices with
internal angles less than π. Whether a chain of points is considered convex or
reflex depends only on the point of view. So pseudo-triangles can be considered
as natural counterparts of convex polygons.

In this paper we propose a combination of convex and pseudo-triangular
subdivisions: Pseudo-convex decompositions. A pseudo-convex decomposition is
� Research was partially supported by the FWF Joint Research Project Industrial

Geometry S9205-N12.

R. Královič and P. Urzyczyn (Eds.): MFCS 2006, LNCS 4162, pp. 86–97, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Decompositions, Partitions, and Coverings 87

a tiling of the plane with convex polygons and pseudo-triangles. We also in-
troduce the related concepts of pseudo-convex partitions and coverings whose
convex counterparts have been extensively studied as well. We establish some
basic combinatorial properties and give quantitative bounds on the complexity
of pseudo-convex decompositions, partitions, and coverings for point sets and
simple polygons. Pseudo-convex decompositions are significantly sparser than
convex decompositions or pseudo-triangulations.

All our bounds are combinatorial, we do in fact not know what the complexity
of finding a minimum decomposition for a given input point set is. Our upper
bounds depend on optimal solutions for small point configurations. Any im-
provement on a finite point set would lead to better bounds. We achieve optimal
bounds for small configurations by proving two geometric Ramsey-type results
concerning disjoint empty convex k-gons in point sets. These results extend pre-
vious work by Erdős, Hosono, and Urabe, but to the best of our knowledge our
results are the first Ramsey-type answers for such questions. Small configura-
tions of points are notoriously hard to deal with. An asymptotic lower bound
for the number of order types of a set of n points in the plane is nΘ(n log n) [13].
We confirmed our conjectures regarding sets of 8 and 11 points with the help of
the order type data base developed at TU Graz [2,3]. We give analytical proofs
for some of our results, while others are purely based on the data base.

Organization. The next paragraphs give precise definitions for convex and
pseudo-convex decompositions, partitions, and coverings and Section 2 collects
some of their basic combinatorial properties. In the next subsection we state our
results and compare our bounds to previous work. Pseudo-convex decompositions
and partitions are significantly sparser than their convex counterparts while
pseudo-convex and convex coverings have asymptotically the same complexity.
We devote Section 3 to pseudo-convex decompositions and Section 4 to pseudo-
convex partitions of point sets but do not discuss pseudo-convex coverings any
further in this paper. Finally, Section 5 discusses pseudo-convex decompositions
for the interior of simple polygons. We conclude with some open problems.

Definitions. Let S be a set of n points in general position in the plane. A pseudo-
triangle is a planar polygon that has exactly three convex vertices with internal
angles less than π, all other vertices are concave. A pseudo-triangulation of S is
a subdivision of the convex hull of S into pseudo-triangles whose vertex set is
exactly S. A vertex is called pointed if it has an adjacent angle greater than π.
A planar straight line graph is pointed if every vertex is pointed.

The convex decomposition number of S, κd(S), is the minimum number of faces
in a subdivision of the convex hull of S into convex polygons whose vertex set is
exactly S. A pseudo-convex decomposition of S is a partition of the convex hull
of S into convex polygons and/or pseudo-triangles spanned by S. For instance
every triangulation or pseudo-triangulation of S is a pseudo-convex decompo-
sition. The pseudo-convex decomposition number of S, ψd(S), is the minimum
number of faces in a pseudo-convex decomposition of S. The pseudo-convex de-
composition number (and equivalently the convex decomposition number) for
all sets S of fixed size n is denoted by ψd(n) := maxSψd(S).

88 O. Aichholzer et al.

(a) (b) (c)

Fig. 1. A pseudo-convex decomposition (a), a pseudo-convex partition (b), and a
pseudo-convex covering (c)

The convex partition number of S, κp(S), is the minimum number of disjoint
convex polygons spanned by S and covering all vertices of S. Similarly, the
pseudo-convex partition number of S, ψp(S), is the minimum number of disjoint
convex polygons and/or pseudo-triangles spanned by S and covering all vertices
of S. The pseudo-convex partition number (and equivalently the convex partition
number) for all sets S of fixed size n is denoted by ψp(n) := maxSψp(S). Note
that disjoint here implies empty (of points): neither a convex nor a pseudo-convex
partition contains nested polygons.

The convex cover number of S, κc(S), is the minimum number of convex
polygons spanned by S and covering all points of S. Similarly, the pseudo-convex
cover number of S, ψc(S), is the minimum number of convex polygons and/or
pseudo-triangles spanned by S and covering all points of S. The pseudo-convex
cover number (and equivalently the convex cover number) for all sets S of fixed
size n is denoted by ψc(n) := maxSψc(S).

1.1 Previous Work and Results

Decomposition. The convex decomposition number κd(n) is bounded by

12
11
n− 2 < κd(n) ≤ 10n− 18

7
.

The lower bound was given very recently by Garćıa-López and Nicolás [11] and
the upper bound was established by Neumann-Lara et al. [21]. Fevens, Mei-
jer, and Rappaport [10] and Spillner [25] designed algorithms for computing a
minimum convex decomposition for input point sets. Every minimum pseudo-
triangulation of n points has exactly n− 2 pseudo-triangles [26]. We show that
the pseudo-convex decomposition number is bounded by

3
5
n ≤ ψd(n) ≤ 7

10
n .

Furthermore, we also prove that ψd(n) is monotonically increasing with n.

Partition. The convex partition number κp(n) is bounded by⌈
n− 1

4

⌉
≤ κp(n) ≤

⌈
5n
18

⌉
.

Decompositions, Partitions, and Coverings 89

The lower bound was given by Urabe [27] and the upper bound was established
by Hosono and Urabe [16]. Arkin et al. [4] study questions related to convex
partitions and coverings by examining the reflexivity of point sets. We show
that the pseudo-convex partition number ψp(n) is bounded by⌊

3n
16

⌋
≤ ψp(n) ≤ n

4
.

Covering. The study of convex cover numbers is rooted in the classical work of
Erdős and Szekeres [8,9] who showed that any set of n points contains a convex
subset of size Ω(log n). More recent results include the work by Urabe [27] who
proved that the convex cover number κc(n) is bounded by

n

log2 n+ 2
< κc(n) <

2n
log2 n− log2 e

.

There is an easy connection between the pseudo-convex cover number and the
convex cover number, namely ψc(n) ≤ κc(n) ≤ 3ψc(n) (all points which can be
covered by a pseudo-triangle can be covered by at most three convex sets). Thus
both numbers have the same asymptotic behavior, which implies

ψc(n) = Θ

(
n

logn

)
.

Geometric Ramsey-type Results. The upper bound construction for ψd(n)
relies on minimal pseudo-convex decomposition numbers for few points. These
are, in turn, related to a combinatorial geometry problem on empty convex
polygons that goes back to Erdős: For k ≥ 3 find the smallest integer E(k)
such that any set S of E(k) points contains the vertex set of a convex k-gon
whose interior does not contain any points of S (that is, S contains an empty
convex k-gon). Klein [8] showed that every set of 5 points contains an empty
convex quadrilateral, that is E(4) = 5. Harborth [15] proved that every set of
10 points contains an empty convex pentagon, that is E(5) = 10. In the last
decade, Urabe [27] proved that every set of 7 points can be partitioned into a
triangle and a disjoint convex quadrilateral. Hosono and Urabe [16] showed that
every set of 9 points contains two disjoint empty convex quadrilaterals. Very
recently Gerken showed that any set that contains a convex 9-gon also contains
an empty convex hexagon. Each of these results corresponds to a bound on the
pseudo-convex decomposition number ψd(n). The best upper bound we achieved
depends on new results for empty convex polygons.

A typical Ramsey type problem asks for the minimum size of a system that
contains at least one of two (or more) subconfigurations. We prove the following
two results:

Theorem 1. Every set of 8 points in general position contains either an empty
convex pentagon or two disjoint empty convex quadrilaterals.

Theorem 2. Every set of 11 points in general position contains either an empty
convex hexagon or an empty convex pentagon and a disjoint empty convex quadri-
lateral.

90 O. Aichholzer et al.

Both results were established with the help of the order type data base [2,3].
In the full paper we also provide a surprisingly intuitive geometric proof of
Theorem 1 that requires only a moderate number of case distinctions.

Simple Polygons. An initial step of many algorithms on simple polygons is
a decomposition into simpler components [17]. Keil and Snoeyink [18] devised
an algorithm for computing the minimum convex decomposition of the interior
of a given simple polygon. Chazelle and Dobkin [5] studied a variant of this
optimization problem allowing Steiner points, Lien and Amato [20] constructed
approximately convex decompositions. Motivated by early results which we ob-
tained during the investigations for this paper, Gerdijkov and Wolff [12] extended
the work by Keil and Snoeyink to compute the minimum pseudo-convex decom-
position of a simple polygon.

The minimum convex decomposition of a pseudo-triangle with n vertices may
require n − 2 triangles and the minimum pseudo-triangulation of any convex
n-gon is a triangulation with n − 2 faces. (In these extremal examples, Steiner
points do not lead to a smaller convex decomposition or pseudo-triangulation.)
We show that any n-gon has a pseudo-convex decomposition of size �n/2� − 1.

Note that any quadrangulation (a decomposition into quadrilaterals) of an
n-gon is a pseudo-convex decomposition, and it also has �n/2� − 1 faces. How-
ever, not every polygon has a quadrangulation. Allowing Steiner points on the
boundary of the polygon, Ramaswami, Ramos, and Toussaint [24] show that the
minimum quadrangulation of every n-gon has at most �2n/3� + O(1) faces in
the worst case.

2 Basic Combinatorial Properties

Our first (trivial) observation is that ψd(n) ≤ κd(n), ψp(n) ≤ κp(n), and ψc(n) ≤
κc(n). It is well known that κc(n) ≤ κp(n) ≤ κd(n). For pseudo-convex faces we
trivially have ψc(n) ≤ ψp(n). ψp(n) ≤ ψd(n) follows from the bounds given in
the previous section.

Fig. 2. Sets with non-monotone behav-
ior

Next we observe that ψd(n + 1) ≤
ψd(n) + 1, ψp(n + 1) ≤ ψp(n) + 1, and
ψc(n + 1) ≤ ψc(n) + 1. This follows by
induction when inserting the points in x-
sorted order. For covering and partition-
ing the last inserted vertex is a singleton,
for decomposing it forms a corner of a
pseudo-triangle similar to the last step in
a Henneberg construction.

The following lemma establishes an interesting connection between the convex
partition number and the pseudo-convex decomposition number.

Lemma 1. For any point set S we have ψd(S) ≤ 3κp(S)− 2 and thus ψd(n) ≤
3κp(n)− 2.

Decompositions, Partitions, and Coverings 91

Table 1. Bounds on the pseudo-convex cover number ψc(n), partition number ψp(n),
and decomposition number ψd(n) for small point sets

n 3 4 5 6 7 8 9 10 11 12 13 14 15

ψc(n) 1 1 2 2 2 2 2 3 3 3 3 3 3

ψp(n) 1 1 2 2 2 2 3 3 3 3 3..4 3..4 4

ψd(n) 1 2 2 3 4 4 5 6 6 7 8 8..9 8..9

The pseudo-convex decomposition, partition, and covering numbers for a partic-
ular point set S are not necessarily monotone. Consider the examples in Figure 2.
On the left, a set S with 9 points and ψd(S) = 3. Removing the bottom most
point of S results in a set S′ with 8 points and ψd(S′) = 4. On the right, a set S
with 6 points and ψc(S) = ψp(S) = 1. Removing the top-most point of S results
in a set S′ with 5 points and ψc(S′) = ψp(S′) = 2. Table 1 shows the exact
values of ψc(n), ψp(n), and ψd(n) for small sets of points.

3 Pseudo-convex Decompositions

We first give a formula for the number of faces in a pseudo-convex decomposition:

Lemma 2. Let S be a set of n points in general position. Let P be a pseudo-
convex decomposition of S, nk the number of convex k-gons in P , and p the
number of pointed vertices. Then the number of faces of P is

|P | = 2n− p− 2−
n∑

k=4

nk(k − 3)

Corollary 3. The number of faces in a pointed pseudo-convex decomposition is

|P | = n− 2−
n∑

k=4

nk(k − 3)

Although the pseudo-convex decomposition number for a particular point set S
might not be monotone (recall Figure 2), ψd(n) nevertheless increases monoton-
ically with n.

Theorem 4. The pseudo-convex decomposition number increases monotonically
with the number of points.

3.1 Small Point Sets

In this section we give tight upper and lower bounds on ψd(n) for sets of up
to 13 points. Recall that ψd(n + 1) ≤ ψd(n) + 1 and (by Theorem 4) ψd(n) ≤
ψd(n+ 1). Obviously ψd(3) = 1. If four points do not lie in convex position (see
Fig. 3(a)) then any decomposition needs at least two faces and hence ψd(4) = 2

92 O. Aichholzer et al.

(a) n = 4 (b) n = 6 (c) n = 7 (d) n = 10 (e) n = 12 (f) n = 14

Fig. 3. (a)-(e) Lower bound examples, (f) every minimum decomposition is non-pointed

and ψd(5) ≥ 2. Every set of 5 points contains an empty convex quadrilateral [8].
Pseudo-triangulating in a pointed way around this quadrilateral yields ψd(5) = 2
by Corollary 3.
ψd(5) = 2 implies ψd(6) ≤ 3. Figure 3(b) shows a configuration S of 6 points

such that every pseudo-convex decomposition of S has at least 3 faces. S does
not span any empty convex k-gon for k > 4. Any empty convex quadrilateral
spanned by S necessarily uses all three inner points, so any partition of S can
contain at most one convex quadrilateral which implies ψd(6) = 6−2−(4−3) = 3
for pointed pseudo-decompositions which are optimal in this case.
ψd(6) = 3 implies ψd(7) ≤ 4. Figure 3(c) shows a configuration S of 7 points

such that every pseudo-convex decomposition of S has at least 4 faces. The
argument is similar to the one for the example with 6 points. Again, S does not
span any empty convex k-gon for k > 4. Any pointed decomposition contains at
most one convex quadrilateral, because every convex quadrilateral contains the
point in the center. With every additional quadrilateral, we also add at least one
non-pointed vertex, so a non-pointed decomposition cannot contain less faces
than a pointed one. Therefore, ψd(7) = 7− 2− (4− 3) = 4.
ψd(7) = 4 implies ψd(8) ≥ 4. Theorem 1 together with Corollary 3 implies

ψd(8) ≤ 8− 2− 2 = 4. We construct this decomposition by pseudo-triangulating
in a pointed way around the convex polygon(s) guaranteed by Theorem 1.

Every set of 10 points contains an empty pentagon [15] and so Corollary 3
implies ψd(10) ≤ 10 − 2 − (5 − 3) = 6. Figure 3(d) (which is a close relative
of a construction in [16]) shows a configuration S of 10 points such that every
pseudo-convex decomposition of S has at least 6 faces. First note that S does
not span an empty convex pentagon and a disjoint empty convex quadrilateral.
Furthermore, every empty convex pentagon spanned by S necessarily contains
the three points in the upper center, so any partition of S can contain at most
one convex pentagon. If we start our decomposition with a pentagon, then we
can not add a quadrilateral without creating at least one non-pointed vertex.
Therefore, any non-pointed decomposition cannot save any faces compared to
the pointed one which implies ψd(10) = 10− 2− (5− 3) = 6.
ψd(10) = 6 implies that ψd(9) ≥ 5. Since every set of 9 points contains two

disjoint empty convex quadrilaterals [16], we have (with Corollary 3) ψd(9) ≤
9−2−2∗(4−3) = 5. ψd(10) = 6 also implies ψd(11) ≥ 6. Theorem 2 together with
Corollary 3 yields ψd(11) ≤ 11− 2− 3 = 6. We construct this decomposition by
pseudo-triangulating in a pointed way around the convex polygon(s) guaranteed
by Theorem 2.

Decompositions, Partitions, and Coverings 93

ψd(11) = 6 implies ψd(12) ≤ 7. Figure 3(e) shows a configuration S of 12
points such that every pseudo-convex decomposition of S has at least 7 faces.
The largest empty convex set in this configuration is a hexagon. Every empty
convex pentagon or hexagon contains at least three of the four inner points and
thus separates the other points, so that no disjoint convex quadrilateral can
be found. The coordinates of this point set are: (0, 0), (0, 20), (20, 20), (20, 0),
(1, 10), (10, 19), (19, 10), (10, 1), (5, 7), (7, 15), (15, 13), (13, 5).
ψd(12) = 7 implies ψd(13) ≤ 8. The point set with the following coordinates

requires 8 faces for every pseudo-convex decomposition: (65535, 65535), (0, 0),
(29293, 36890), (15166, 26472), (27461, 37283), (32929, 42217), (29439, 42711),
(27746, 42587), (27491, 42925), (32135, 45720), (29447, 45175), (31736, 48764),
(19257, 42830).

3.2 Upper Bound

p

Fig. 4. Petals of size 5

Our upper bound construction is based on ex-
act pseudo-convex decomposition numbers for small
point sets. Assume that we are given a set S with n
points and that we know the value of ψd(k) for some
k < n. We choose a point p on the convex hull of S.
Now we partition the plane by half-lines emanating
from p into �(n−1)/(k−1)� wedges such that every
wedge contains at most k − 1 points of S \ {p}. Let
a petal be the convex hull of points in a wedge together with p. We have a total
of �(n− 1)/(k− 1)� petals, each of which can be decomposed into at most ψd(k)
faces. Two adjacent petals can be combined with a pseudo-triangle into one
larger convex set. We combine inductively adjacent convex sets (all including p)
until we obtain the convex hull of S. We have proved an upper bound of

ψd(n) ≤
⌈
n− 1
k − 1

⌉
ψd(k) +

⌈
n− 1
k − 1

⌉
− 1 ≤ ψd(k) + 1

k − 1
n . (1)

The best currently known upper bound can be achieved by evaluating Inequality
(1) for k = 11 and ψd(11) = 6. We obtain

ψd(n) ≤ ψd(11) + 1
11− 1

n =
6 + 1
10

n =
7n
10

.

Furthermore, the left inequality of (1) implies ψd(15) ≤ 9 for k = 8.

3.3 Lower Bound

Fig. 5. Lower bound ex-
ample for k = 5

We present a lower bound construction of 5k points for
every odd k ≥ 3 such that any pseudo-convex decom-
position consists of at least 3k − 1 faces (see Fig. 5).
The details of the construction can be found in the
full paper. It implies

ψd(n) ≥ 3n
5
− 1.

94 O. Aichholzer et al.

4 Pseudo-convex Partitions

An upper bound of ψp(n) ≤ n/4 can be easily established: Any four points
form either a pseudo-triangle or a convex quadrilateral and grouping them in
x-sorted order guarantees disjointness. It is possible that optimal bounds on
small point sets improve the upper bound of n/4. For example, we do not know
the exact value of ψp(13), we know only that ψp(13) ∈ {3, 4} (c.f., Table 1).
ψp(13) = 3 would imply ψp(n) ≤ 3n/13 by partitioning x-sorted groups of 13
points independently.

4.1 Lower Bound

Lemma 3. ψp(n) ≥ � 3n
16 �.

Proof. We consider a set S of n = 4k points (see Fig. 6). S consists of k groups
of 4 points, ai, bi, ci, and di. First we show that if ci is a reflex vertex of a
pseudo-triangle P , then ai and bi must be the corners of P : this is the case since
ci lies in the convex hull of the corners of P , and there is a halfplane for ai (bi)
whose boundary line passes through ci and whose intersection with P is ai (bi).

a1

b1 c1
d1

a2

b2
c2

d3

d2

a3
b3

c3
d4

d5

Fig. 6. k = 7

Let W ⊂ S denote a subset of 3k points {ai, bi, ci :
i = 1, 2, . . . , k}. Consider a polygon P from a pseudo-
convex partition of S. We show next that P is in-
cident to at most 4 points of W . This implies im-
mediately that any pseudo-convex partition of these
n = 4k points consists of at least 3k/4 = 3n/16 poly-
gons. Suppose, by contradiction, that P is incident
to more than 4 points of W .

First suppose that P is convex, that is, P contains
a convex pentagon Q with all vertices in W . Since
each group contains only three points of W , Q must
have corners in at least two groups. Q can contain at
most two points from each group, because the triangle aibici cannot be completed
to a convex pentagon in S. Therefore, Q must have corners in at least three
groups, and it contains a triangle T with corners of W from three different
groups. We show that T (and also P) contains a point di in its interior, which is
a contradiction. If T has a corner in W in group j, then T contains the point dj

in its interior unless both other corners must be either in groups [j+1, j+�k/2�]
or groups [j + �k/2�, j + k − 1]. There are no three groups whose indices satisfy
these constraints for all three corners, and so T must contain a point di in its
interior.

If P is a pseudo-triangle with at least five vertices from W , then it must have
two reflex vertices from W . Since the convex hull vertices can only be corners
of P , two reflex vertices are ci and cj , i 	= j. We have seen that if P contains ci
and cj , then it also contains ai, bi and aj , bj, and so it must have four corners:
A contradiction. �

Decompositions, Partitions, and Coverings 95

5 Pseudo-convex Decompositions of the Interior of a
Simple Polygon

Theorem 5. Every simple polygon with n ≥ 3 vertices has a decomposition into at
most

⌈
n−2

2

⌉
convex or pseudo-triangular faces, and this is the best possible bound.

Proof. The lower bound is attained by the comb polygons (Fig. 7 (a)). We prove
the upper bound by induction on n ∈ N. The theorem is obvious for n = 3, 4.
Consider a simple polygon Pn with n ≥ 5 vertices. Triangulate Pn and let Tn

denote the dual graph of the triangulation. Every node of Tn corresponds to a
triangle, and every edge of Tn corresponds to a diagonal in the triangulation. Tn

is a tree with maximal degree three and with n− 2 nodes.
If n is odd then we delete a triangle t corresponding to a leaf node in Tn. By

induction, Pn − t can be decomposed into n−3
2 faces. Therefore Pn decomposes

into n−3
2 + 1 =

⌈
n−2

2

⌉
faces. Assume that n is even, and so

⌈
n−2

2

⌉
= n

2 − 1. The
triangulation consists of an even number of triangles. If a diagonal decomposes
Pn into two even polygons, then induction completes the proof. Hence we assume
that every diagonal decomposes Pn into two odd polygons.

Let the triangle abc correspond to a leaf in Tn such that ac is a diagonal of
Pn. We show that no diagonal of Pn is incident to b. Suppose, by contradiction,
that ad is a diagonal of Pn. Then abcd is a convex polygon, let d′ be the vertex
of Pn in acd \ {a, c} closest to the line ac. Note that bd′ is a diagonal of Pn, and
at least one of ad′ and cd′ is also a diagonal (since n ≥ 5). If bd′ decomposes Pn

into odd polygons, then either ad′ or cd′ decomposes it into two (non-empty)
even polygons. We conclude that b sees the interior of an edge ef of Pn.

Consider the pseudo-triangle pt(b, e, f) (three corners uniquely define a pseudo-
triangle in a simple polygon). If Pn = pt(b, e, f), then Pn is a pseudo-triangle, and
our proof is complete. Each of the components of Pn − pt(b, e, f) is an odd poly-
gon. Every such component is adjacent to a unique edge of the geodesic geo(a, e) or

(a) Comb poly-
gon for n odd
and for n
even.

a

b

c

d
d′

(b) If b is incident to a diago-
nal bd, then there is a ver-
tex d′ such that bd′ and at
least one of ad′ or cd′ are
also diagonals.

a

b

c

e f

g

(c) If b sees the edge ef then
we can form the pseudo-
triangle pt(b, e, f).

Fig. 7. Lower bound (a). An example 24-gon. (b)-(c).

96 O. Aichholzer et al.

geo(c, f). If pt(b, e, f) has k vertices, then it has k− 3 edges along these geodesics
(all edges except ab, bc, and ef). We show that there is one edge along the geodesics
geo(a, e) and geo(c, f) that is not adjacent to any component of Pn − pt(b, e, f):
Consider the dual graph of an arbitrary triangulation of pt(b, e, f). It is a tree where
one leaf node corresponds to abc and another leaf corresponds to efg for some ver-
tex g. Assume w.l.o.g. that eg is a side and fg is a diagonal in pt(b, e, f). If eg were
adjacent to an odd component of Pn −pt(b, e, f), then fg would partition Pn into
two even polygons. Therefore pt(b, e, f) with k vertices is adjacent to at most k−4
components of Pn − pt(b, e, f).

Let ni denote the number of vertices of the components of Pn − pt(b, e, f) for
i = 1, 2, . . . , k − 4. We have k +

∑k−4
i=1 (ni − 2) = n. By induction, every odd

component with ni vertices can be decomposed into (ni − 1)/2 faces. Together
with pt(b, e, f), the polygon Pn can be decomposed into

1 +
k−4∑
i=1

ni − 1
2

≤ 1 +
1
2

(
k−4∑
i=1

ni − 2

)
+
k − 4

2
=
n

2
− 1

faces, as required. �

6 Conclusions and Open Problems

We proposed pseudo-convex decompositions, partitions, and coverings. We es-
tablished some of their basic properties and gave combinatorial bounds on their
complexity. Our upper bounds depend on new Ramsey-type results concerning
disjoint empty convex k-gons in the plane. We (obviously) would like to know
what the exact bounds on ψd(n) and ψp(n) are and if the exact bound for ψd(n)
can be realized with a pointed decomposition. It would also be interesting to de-
termine the complexity of computing a minimum pseudo-convex decomposition
or covering for a given point set.

Acknowledgements. The first two authors want to thank Ferran Hurtado and
Hannes Krasser for valuable discussions on the presented subject.

References

1. P. K. Agarwal, J. Basch, L. J. Guibas, J. Hershberger, and L. Zhang. Deformable
free space tilings for kinetic collision detection. International Journal of Robotics
Research, 21:179–197, 2002.

2. O. Aichholzer, F. Aurenhammer, and H. Krasser. Enumerating order types for
small point sets with applications. Order, 19:265–281, 2002.

3. O. Aichholzer and H. Krasser. Abstract order type extensions and new results
on the rectilinear crossing number. In Proc. 21st Symposium on Computational
Geometry, pages 91–98, 2005.

4. E. M. Arkin, S. P. Fekete, F. Hurtado, J. S. B. Mitchell, M. Noy, V. Sacristán, and
S. Sethia. On the reflexivity of point sets. In Discrete and Comput. Geometry: The
Goodman-Pollack Festschrift, volume 25, pages 139–156. Springer-Verlag, 2003.

Decompositions, Partitions, and Coverings 97

5. B. Chazelle and D. Dobkin. Optimal convex decompositions. In Computational
Geometry (G. T. Toussaint, ed.), pages 63–133. North-Holland, 1985.

6. B. Chazelle, H. Edelsbrunner, M. Grigni, L. J. Guibas, J. Hershberger, M. Sharir,
and J. Snoeyink. Ray shooting in polygons using geodesic triangulations. Algo-
rithmica, 12:54–68, 1994.

7. M. de Berg, J. Matoušek, and O. Schwarzkopf. Piecewise linear paths among convex
obstacles. Discrete and Computational Geometry 14(1):9–29, 1995.

8. P. Erdős and G. Szekeres. A combinatorial problem in geometry. Compositio
Mathematica, 2:463–470, 1935.

9. P. Erdős and G. Szekeres. On some extremum problem in geometry. Annales Univ.
Sci. Budapest, 3-4:53–62, 1960.

10. T. Fevens, H, Meijer, and D. Rappaport. Minimum convex partition of a con-
strained point set. Discrete Applied Mathematics, 109:95–107, 2001.

11. J. Garćıa-López and M. Nicolás. Planar point sets with large minimum convex
partitions. In Abstr. 22nd European Workshop on Computational Geometry, pages
51–54, 2006.

12. S. Gerdjikov and A. Wolff. Pseudo-convex decomposition of simple polygons. In
Abstr. 22nd European Workshop on Computational Geometry, pages 13–16, 2006.

13. J. Goodman and R. Pollack. Allowable sequences and order types in discrete and
computational geometry. In New Trends in Discrete and Computational Geometry,
Springer-Verlag, New York, pages 103–134, 1993.

14. M. Goodrich and R. Tamassia. Dynamic ray shooting and shortest paths in planar
subdivision via balanced geodesic triangulations. J. of Algorithms, 23:51–73, 1997.

15. H. Harborth. Konvexe Fünfecke in ebenen Punktmengen. Elemente der Mathe-
matik, 33(5):116–118, 1978.

16. K. Hosono and M. Urabe. On the number of disjoint convex quadrilaterals for a
planar point set. Comput. Geom.: Theory and Applications, 20:97–104, 2001.

17. J. M. Keil. Decomposing a polygon into simpler components, SIAM Journal on
Computing, 14:799-817, 1985.

18. J. M. Keil and J. Snoeyink. On the time bound for convex decomposition of simple
polygons. Intern. J. Comput. Geom. Appl., 12:181–192, 2002.

19. D. Kirkpatrick and B. Speckmann. Kinetic maintenance of context-sensitive hier-
archical representations for disjoint simple polygons. In Proc. 18th Symposium on
Computational Geometry, pages 179–188, 2002.

20. J-M. Lien and N. M. Amato. Approximate convex decomposition. In Proc. 20th
Symposium on Computational Geometry, pages 17-26, 2004.

21. V. Neumann-Lara, E. Rivera-Campo, and J. Urrutia. A note on convex decomposi-
tions of a set of points in the plane. Graphs and Combinatorics, 20(2):223–231, 2004.

22. J. O’Rourke. Visibility. In Handbook of Discrete and Computational Geometry (2nd
ed.), CRC Press, Boca Raton, pages 643–664, 1997.

23. M. Pocchiola and G. Vegter. Topologically sweeping visibility complexes via
pseudo-triangulations. Discrete and Computational Geometry, 16:419–453, 1996.

24. S. Ramaswami, P. A. Ramos, and G. T. Toussaint. Converting triangulations to
quadrangulations. Comput. Geom.: Theory and Applications, 9:257–276, 1998.

25. A. Spillner. Optimal convex partitions of point sets with few inner points. In Proc.
17th Canadian Conference on Computational Geometry, pages 39–42, 2005.

26. I. Streinu. A combinatorial approach to planar non-colliding robot arm motion
planning. In Proc. 41st Symp. Found. Comp. Science, pages 443–453, 2000.

27. M. Urabe. On a partition into convex polygons. Discrete Applied Mathematics,
64:179–191, 1996.

Approximate Shortest Path Queries on

Weighted Polyhedral Surfaces�

Lyudmil Aleksandrov1, Hristo N. Djidjev2, Hua Guo3, Anil Maheshwari3,
Doron Nussbaum3, and Jörg-Rüdiger Sack3

1 Bulgarian Academy of Sciences, Sofia, Bulgaria
2 Los Alamos National Laboratory, Los Alamos, USA

3 School of Computer Science, Carleton University, Ottawa, Canada

Abstract. We consider the classical geometric problem of determining
shortest paths between pairs of points lying on a weighted polyhedral sur-
face P consisting of n triangular faces. We present query algorithms that
compute approximate distances and/or approximate (weighted) short-
est paths. Our algorithm takes as input an approximation parameter
ε ∈ (0, 1) and a query time parameter q and builds a data structure which
is then used for answering ε-approximate distance queries in O(q) time.
This algorithm is source point independent and improves significantly on
the best previous solution. For the case where one of the query points is
fixed we build a data structure that can answer ε-approximate distance
queries to any query point in P in O(log 1

ε
) time. This is an improve-

ment upon the previously known solution for the Euclidean fixed source
query problem. Our algorithm also generalizes the setting from previ-
ously studied unweighted polyhedral to weighted polyhedral surfaces of
arbitrary genus. Our solutions are based on a novel graph separator algo-
rithm introduced here which extends and generalizes previously known
separator algorithms.

1 Introduction

Problem Definition. Shortest path problems are among the fundamental prob-
lems studied in computational geometry, network optimization, graph algorithms,
geographical information systems, and calculus of variations. In this paper we
study paths that stay on the surface of a connected polyhedral surface1 P of genus
g in the 3-dimensional Euclidean space consisting of n positively weighted trian-
gular faces. The cost of a path lying inside a face is its Euclidean length multiplied
by the weight of the face. The cost of a path on P is the sum of the costs of the
sub-paths within each face traversed. For a pair of points on P the path of least
cost between them is called shortest path. The cost of the shortest path is called
distance between its end-points.
� Research supported by NSERC, SUN Microsystems, and a P.E.O. Scholar Award.

The first and the second author are Adjunct Professors at Carleton University.
1 Surface P can be any polyhedral 2-manifold without assumed additional geometrical/

topological properties like convexity, being a terrain, absence of holes, etc.

R. Královič and P. Urzyczyn (Eds.): MFCS 2006, LNCS 4162, pp. 98–109, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Approximate Shortest Path Queries on Weighted Polyhedral Surfaces 99

Throughout the paper ε is a user-specified accuracy parameter, i.e., a fixed
real number in (0, 1). A path whose cost divided by the cost of the shortest path
is in (1− ε, 1+ ε) is called ε-approximate (or simply approximate) shortest path.
The cost of an approximate path is called approximate distance. The approxi-
mate distance (and/or shortest path) query problem is: Preprocess the surface
P so that for a pair of query points a and b approximate distance and/or an
approximate shortest path between a and b can be answered efficiently. We con-
sider the following standard two variations of these problems: The Single Source
Query (SSQ) problem in which one of the query points is fixed and the other
one is any point on P and the All Pairs Query (APQ) problem in which the
query consists of two arbitrary points in P . To place our work in the context
of the literature we next state some relevant results. (We assume that the faces
containing the query points are already known.)

Previous Work. A lot of research work has been carried out to solve shortest
path problems in planar graphs. Here we are interested in the geometric setting,
where complexities tend to be much higher than for planar graphs in particular,
for geometric weighted shortest paths computations (see [6] for references). If P
is a convex surface, then a convex set Q of size O(1

ε3/2) exists, such that P ⊂ Q
and the Hausdorff distance between P and Q is ε ·diameter(P). This was used in
the algorithm of [2] to compute an ε-approximate shortest path in O(n log 1

ε + 1
ε3)

time. In [13], this algorithm was extended to answer APQs in O(log n/ε1.5+1/ε3)
time. Chazelle et al. [7] very recently presented a sublinear randomized algorithm
for solving APQs on convex polyhedral surfaces. A preliminary result on APQ
for weighted polyhedra has been announced in [5]. We summarize other results
relevant to this paper in Table 1.

New Results. The main of results of this paper are
1. New graph partitioning algorithms (Section 2) which partition embedded

graphs of genus g with weights and costs assigned to their vertices into compo-
nents of specified weight so that their boundaries have small cost. These results
extend and/or improve upon results in [3,4,10,11,12]. For the design of the APQ
algorithm we employed this new partitioning algorithm.

2. We present a novel algorithm (Section 5) for solving the approximate APQ
problem in weighted polyhedral surfaces P of arbitrary genus g. The algorithm
takes as input a query time parameter q within a certain range and builds a
data structure APQ(P, ε; q) to answer approximate distance and/or shortest
path queries between arbitrary points in P in O(q) time.

3. We derive an algorithm (Section 4) for solving the approximate SSQ prob-
lem in weighted polyhedral surfaces of arbitrary genus. See the corresponding
entry in Table 1. This result improves upon the previous result in [14] in three
ways. First, it works for weighted surfaces of arbitrary genus. Second, the pre-
processing time is reduced by a factor of n. Third, the size of the data structure
and the preprocessing time are reduced by at least a factor of

√
ε.

Our Approach. At the core of our approach is the discretization method (Sec-
tion 3) and the Single Source Shortest Path (SSSP) algorithm developed in [6].

100 L. Aleksandrov et al.

Table 1. We assume for our algorithms that the face containing the query point is
known. The time complexity of our preprocessing algorithms inherits the dependency
on geometric parameters from [6]. In [8] d is an adjustable parameter with 1 < d ≤ n.

Reference Preprocessing Query Space Source
Surface Type Time Time

[1] convex O(n6m1+δ) O
√

n

m1/4 log n O(n6m1+δ) APQ

unweighted

[9] nonconvex O(n11) O(log n) O(n12) APQ
unweighted

[8] nonconvex O(n2) O(dlogdn) O(nlogdn) SSQ
unweighted

[14] nonconvex O n2 log n O log n
ε

O n
ε

log 1
ε

SSQ

unweighted + n
ε

log 1
ε
log n

ε

Here nonconvex O n√
ε log 1

ε logn
ε O log 1

ε O n√
ε log 1

ε
SSQ

weighted

Here nonconvex O (g+1)n2

ε3/2q
logn

ε log4 1
ε O(q) O (g+1)n2

ε3/2q
log4 1

ε APQ

weighted

The discretization method constructs a graph Gε, called approximation graph,
by inserting a set of Steiner points inside the faces of P . The edges of Gε connect
nodes incident to neighbor faces and have cost equal to the cost of the shortest
“local” paths between their endpoints. Next, a highly efficient SSSP algorithm is
employed for finding approximate distances from a fixed vertex of Gε to all other
vertices Gε. Here we use a modification of the graph Gε, which has some addi-
tional edges and the edge cost is defined in slightly different way. Our algorithm
for solving the SSQ problem builds a data structure SSQ(P, ε; a) consisting of a
SSSP tree in Gε rooted at the point a plus O(n) local data structures related to
the faces of P . Our algorithm for solving the APQ problem builds a data struc-
ture APQ(P, ε; q) consisting of a collection of SSQ data structures. The choice
of the SSQ data structures inserted into APQ(P, ε; q) depends on a balanced
decomposition of the surface P in terms of the number of nodes of Gε incident
to different parts.

2 Partitioning Embedded Graphs with Weights and
Costs

In this section we present two new results on partitioning of embedded graphs
with weights and costs assigned to vertices. We consider connected graphs G =
(V,E) that are 2-cell embedded onto an orientable surface of genus g where
positive weights and costs are assigned to the vertices of G. For a subgraph G′

of G, we denote by w(G′) and c(G′) the sum of the weights and sum of the
costs of the vertices in G′, respectively. Let t be a real number in (0, 1). A set of

Approximate Shortest Path Queries on Weighted Polyhedral Surfaces 101

vertices S of G is called a t-separator if its removal from G leaves no component
of weight exceeding tw(G). We denote the sum of the squares of the costs of
the vertices of G by σ(G), i.e. σ(G) =

∑
v∈V (c(v))2. The lemma below follows

directly from the method presented in [3] and using this we show how “low-cost”
t-separators can be constructed.

Lemma 1. Let K be an embedded, triangulated graph of genus γ with non-
negative vertex weights. Let T be a spanning tree of K. There exists a t-separator
C of K that satisfies: (a) The separator C consists of at most 4(γ+1/t) funda-
mental cycles2. (b) Any component of K \C can be adjacent to at most 2(γ+1)
cycles in C. Such a separator C can be constructed in O(|K| log |K|) time.

Theorem 1. Let G be an embedded graph of genus g with weights and costs
assigned to its vertices. For any t ∈ (0, 1) there exists a t-separator S whose cost
is at most 4

√
2(g + 1/t)σ(G); S can be constructed in O(|G| log |G|) time.

Proof: (Sketch) The theorem is proved by constructing a t-separator S whose
cost is as required. S is constructed in two phases. In the first phase we “slice”
the graph into subgraphs with “short” (in terms of cost) spanning trees using
a single source shortest path (SSSP) tree T rooted at a vertex ρ. For any real
x ≥ 0 we define a set of vertices L(x) called level as follows. A vertex v is in
L(x) if its distance to ρ is at least x and the distance of its predecessor in T to ρ

is less than x. Let h = 1
2
√

2

√
σ(G)

(g+1/t) . We apply the method described in [4] and
compute a set of levels Lh, so that their removal partitions G into components
with SSSP trees of radius not exceeding 2h. The vertices in the levels Lh are
inserted into S; their total cost does not exceed σ(G)/h.

In the second phase, we use Lemma 1 to obtain a t-separator. Each “heavy”
component K, i.e. w(K) > tw(G), of the graph G \ Lh is further partitioned by
fundamental cycles as stated in Lemma 1 with a parameter tK = tw(G)/w(K).
The resulting separator S(K) is inserted in S. By the construction in Phase
I and by Lemma 1 the cost of the separator S(K) is bounded by c(S(K)) ≤
8(γ(K)+1/tK)h, where γ(K) is the genus of the subsurface containing K. From
this inequality the stated bounds follow. �

Next, we extend the approach applied in the above construction to obtain “low-
cost” t-separators, which partition the graph into components with “small-cost”
boundaries. Any t-separator S naturally defines a partitioning of the vertices
of G into sets inducing the connected components of G \ S and S itself. Let
V1, . . . , Vk, S be the partitioning defined by a t-separator S. Note that a vertex
in a set Vi for some 1 ≤ i ≤ k can be adjacent to vertices in Vi ∪ S only. The
subset of vertices in S that are adjacent to vertices in Vi is called boundary of
Vi (or of the component induced by Vi) and is denoted by ∂Vi. A partitioning
V1, . . . , Vk, S defined by S is called B-regular (or simply regular), where B is a
real number, if the costs c(∂Vi) for i = 1, . . . , k are bounded by B.

2 A fundamental cycle is a cycle consisting of a single non-tree edge (v1, v2) plus the
two paths in T from v1 and v2 to their lowest common ancestor.

102 L. Aleksandrov et al.

Theorem 2. Let G be an embedded graph of genus g with maximum degree
three and with weights and costs assigned to its vertices. For any t ∈ (0, 1)
there exists a t-separator S, that defines a 2B-regular partitioning of G with
B =

√
(g + 1)tσ(G), whose cost is O

(√
(g + 1)σ(G)/t

)
. Such a separator can

be constructed in O(|G| log |G|) time.

Proof: (Sketch) We set 6h = B/(g + 1) =
√
tσ(G)/(g + 1) and apply Phase I

as described in the proof of Theorem 1 above. Thus we compute a set of levels
Lh, whose removal partitions the graph into components, whose spanning trees
have radii (in terms of cost) are bounded by 2h and the cost of vertices in Lh is
c(Lh) ≤ σ(G)/h. Then we apply Phase II and obtain a set of fundamental cycles
C1, such that the set of vertices in S1 = Lh ∪ C1 is a t-separator for G and their
cost is c(C1) ≤ 8h(g + 1/t); but they may not induce a 2B-regular partitioning
since there might be components inG\S1 with boundaries whose cost exceeds 2B.

Let K be a component of G \ S1, such that c(∂K) > 2B. We consider the
subgraph of G induced by the set of vertices V (K) ∪ ∂K and denote it by K̃.
Let the genus of the subsurface containing K̃ be γ(K). We assign new weights
w1(v) and costs c1(v) to the vertices of K̃ as follows. We denote by ∂′K the set of
vertices in ∂K that belong to Lh, i.e. ∂′K = ∂K∩Lh. The new cost of the vertices
in ∂K is set to zero and the new cost of vertices in K equals to its original cost,
i.e. for v ∈ K we have c1(v) = c(v) and for v ∈ ∂K, c1(v) = 0. The new weight of
a vertex v in K is the sum of the costs of the vertices in ∂′K that are adjacent to
v. The weights of the vertices in ∂K and the vertices in K not adjacent to ∂′K
are set to zero. By this definition and since the maximum degree of G is three
we have w1(K̃) ≤ 3c(∂′K). Then we set tK = (2/3)B/w1(K̃) and compute a
tK-separator of K̃ using Lemma 1. We denote this separator by C(K). It can be
shown that the cost of this separator is c(C(K)) ≤ 8hγ(K)+6c(∂K∩Lh)/(g+1).
Now for any component K1 of K̃ \ C(K) we have c(∂K1) ≤ 2B.

Define separator S to be the union of S1 and the separators C(K) computed
for all components K with c(∂K) > 2B. Clearly, S is a t-separator that induces
a 2B-regular partitioning of G. The cost of S can be estimated as c(S) ≤ c(S1)+∑

c(∂K)>2B c(C(K)) ≤ σ(G)/h + 8h(g + 1/t) +
∑

c(∂K)>2B 8h(γ(K) + 9c(∂K ∩
Lh))/2B) ≤ σ(G)/h+ 8h(2g + 1)/t+ 6c(Lh)/(g + 1) < 45

√
(g + 1)σ(G)/t. �

3 Approximating Shortest Paths

First we adapt the discretization scheme presented in [6] and establish properties
which are beneficial for answering shortest path queries as we will show. Let P
be a polyhedral surface in the 3-dimensional Euclidean space consisting of n
triangular faces f1, . . . , fn. Each face fi has an associated positive weight wi,
representing the cost of traveling a unit Euclidean distance inside it. The weight
of an edge is the minimum of the weights of the triangles incident to that edge.
The cost of a path π in P is defined as ‖π‖ =

∑n
i=1 wi|πi|, where |πi| denotes

the Euclidean length of the portion of π in fi. Given two points a and b in P
a path of minimum cost joining a and b is called shortest path between a and b

Approximate Shortest Path Queries on Weighted Polyhedral Surfaces 103

and is denoted by a P� b. The cost of this path is referred to as distance between
a and b and is denoted by distP (a, b).

Let ε be a real number in (0, 1). Our algorithms construct an approximation
graph Gε = (Vε, Eε), which is a supergraph of the corresponding graph in [6],
whose nodes correspond to geometric objects, namely, Steiner points and vertex
vicinities of “small” radius in P . Around each vertex v of P we define a “small”
star-shaped polygon E(v) called vertex vicinity; it is contained within the union
of the triangles incident to v and its intersections with each of the triangles is a
“small” isosceles triangle with side length εr(v), where r(v) is a fraction of the
distance from v to the boundary of the union of the triangles incident to v. We set
r(v) to be (1/8)th of this distance (see, Definition 2.1 in [6]). The nodes of Gε are
of two types depending on the object in P they represent. Each vertex of P and its
vertex vicinity is represented in Gε as a node, called vertex vicinity node. Steiner
point nodes represent Steiner points inserted in P . Steiner points are placed along
the bisectors of the angles of the faces of P forming a geometric progressions with
ratios depending on ε and on the geometry of P . The approximation properties of
Steiner points are stated in the following lemma.

Lemma 2. [6] Let x and y be points lying on two different edges of a face f
of P and outside vertex vicinities. There is a Steiner point p in f such that
|xp|+ |py| ≤ (1 + ε/2)|xy|.

Lemma 3. [6] (a) The number of nodes in Gε incident to a triangle f of P is
bounded by C(f) 1√

ε
log 2

ε , where the constant C(f) depends on the geometry3 of
the triangle f . (b) The total number of nodes of Gε is less than C(P) n√

ε
log 2

ε ,
where the constant C(P) = 1

n

∑
f∈P C(f).

To define the edges of Gε we introduce the notion of a face neighborhood. The
face neighborhood of a vertex of P is the union of the triangles incident to that
vertex. The face neighborhood, N (a), of a point a in a face f of P consists of the
union of f and its neighboring faces. A node p of Gε is connected to all nodes,
whose representations are incident with its face neighborhood N (p). To define
costs of the edges of Gε we use the notion of local paths. A path in P is called
local if it intersects at most two faces. The cost c(p, q) of an edge (p, q) in Gε is
defined as the cost of the local shortest path restricted to lie in the intersection
of their face neighborhoods N (p) ∩N (q).

3.1 Approximation Properties of Gε

The paths in the approximation graph Gε are called discrete paths. The cost
c(πG(p, q)) of a discrete path πG(p, q) is the sum of the costs of its edges. For
a pair of nodes p and q of Gε, p

G� q denotes a shortest path in Gε between p

and q. As is shown below, in general, the cost c(p G� q) of a shortest discrete

3 Roughly it is about two times the sum of the reciprocals of the sinuses of the angles
of f . See [6] for precise estimates.

104 L. Aleksandrov et al.

path is an ε-approximation of the distance ‖p̃ P� q̃‖, where p̃ and q̃ are points
in P incident to the objects represented by p and q. A discrete path πG(p, q)
between nodes p and q can be naturally embedded in P as follows. First, each
node on that path is embedded into the object it represents, i.e. either a Steiner
point or a vertex vicinity. Then each edge of πG(p, q) is embedded into the local
shortest path between the objects representing its end-nodes. As a result we
obtain a sequence of vertex vicinities joined by polygonal paths in P . Finally,
we replace each vertex vicinity in πG(p, q) with a two segment path through the
corresponding vertex of P . We refer to this embedding of a discrete path πG(p, q)
into P as natural embedding and denote it by π̃G(p, q). By our definitions the
cost in P of the natural embedding π̃G(p, q) of a discrete path minus the cost of
its portions inside vertex vicinities equals to the cost of πG(p, q) in Gε.

Theorem 3. (follows from Theorem 4.5 in [6]) The SSSP problem in the ap-
proximation graph Gε can be solved in O(|Vε| log |Vε|) = O(n√

ε
log n

ε log 1
ε) time.

Next, we discuss how the approximation graph Gε can be used to approximate
distances and shortest paths in P . Let a and b be arbitrary points in P . If a and
b lie in neighboring triangles and the shortest path a P� b between them is a local
path (i.e. stays inside the quadrilateral formed by the union of their triangles)
than we can report the exact path in constant time. So, we concentrate on the
approximation of shortest paths that cross more than two faces.

Naturally, we consider paths of the form {a P� p
G� q

P� b} and then ap-
proximate distP (a, b) by the minimum of ‖a P� p‖ + c(p G� q) + ‖q P� b‖ taken
over all choices of nodes p and q in Gε. As it is shown below, we can obtain the
desired approximation by taking the minimum not over all pairs of nodes in Gε,
but only over pairs p and q such that p ∈ N (a) and q ∈ N (b). Moreover we
show that, it suffices to compute the local shortest paths between a and p and

between b and q. We denote these local shortest paths by a
N (a)� p and q

N (b)� b
and define approximate discrete paths between pairs of points in P as follows.

Definition 1. A path between a pair of points a and b in P is called approximate
discrete path if it is a shortest local path joining a and b or a path of the form

{a N (a)� p
G� q

N (b)� b}, (1)

where p ∈ N (a), q ∈ N (b). The cost of an approximate discrete path is ‖a N (a)�
p‖ + c(p G� q) + ‖q N (b)� b‖ or its cost in P if it is a local path. The cost of a
shortest approximate discrete path between a and b is called approximate distance
between a and b and is denoted by distG(a, b).

Note that by this definition the approximate distance distG(a, b) between points
a and b lying in neighbor triangles is the minimum of the cost of the shortest local
path between a and b and the cost of any path of the form (1). The next theorem
establishes the relation between approximate distances and the distances in P .

Approximate Shortest Path Queries on Weighted Polyhedral Surfaces 105

Theorem 4. For any pair of points a and b in P one of the following two
holds: either (a) (1 − 2ε)distP (a, b) ≤ distG(a, b) ≤ (1 + 2ε)distP (a, b), or (b)
distP (a, b)−2εr(v) ≤ distG(a, b) ≤ distP (a, b), where εr(v) is the radius of E(v).

If case (a) of the theorem applies then the approximate distance distG(a, b) is an
approximation of the distance distP (a, b) with relative error |distG(a,b)−distP (a,b)|

distP (a,b)
bounded by 2ε. Case (b) of the theorem can be viewed as an exception cov-
ering a special situation where points a and b are “close” to each other and
“near” a vertex v of P , meaning that any shortest path in P between them
has to intersect the vertex vicinity E(v) and must stay in the face neighborhood
N (v). Furthermore, in case (b) distG(a, b) is less than distP (a, b) and it is an
approximation with relative error not exceeding εr(v)/distG(a, b). Therefore, if
r(v) ≤ 2distG(a, b) the quality of the approximation is 2ε, same as in case (a).
If the ratio r(v)/distG(a, b) is larger than 1/ε then the relative error could be
as big as 1. For example, if points a and b are inside the vertex vicinity E(v)
then distG(a, b) is zero and the relative error is 1. Note, that the conditions for
the occurrence of case (b) and the presence of eventually large (compared to
ε) relative error are easily detected by the position of the points a and b, the
structure of the approximate discrete path and the ratio r(v)/distG(a, b). Thus
if the approximation is not satisfactory the exact shortest path restricted to lie
inside N (v) can be computed. This is summarized as follows.

Corollary 1. The distance distG(a, b) approximates distP (a, b) with relative er-
ror 2ε, except possibly when the case (b) of Theorem 4 applies and r(v) >
2distG(a, b). In the latter case distP (a, b) can be computed directly.

We conclude this section by a remark on the computation of approximate dis-
tances. The distance distG(a, b) between a pair of points a and b can be computed

as follows. We compute min(‖a N (a)� p‖+ c(p G� q)+ ‖q N (b)� b‖), over all pairs of
nodes p ∈ N (a) and q ∈ N (b). In the case where a and b do not lie in neighbor
faces this minimum is the approximate distance distG(a, b). In the case where
the points a and b lie in neighbor faces we also need to consider the shortest
local path between them.

4 Fixed Source Shortest Path Queries

In this section we describe an algorithm, that takes as input a point a in P ,
called source, and an approximation parameter ε ∈ (0, 1) and constructs a data
structure, called Single Source Queries (SSQ), such that for any query point
b ∈ P , called target, the approximate distance distG(a, b) (and/or an approx-
imate shortest path) from a to b is computed efficiently. The algorithm uses
the approximation graph Gε. For simplicity, we assume that the point a cor-
responds to a node in Gε; otherwise, we can easily augment Gε with extra
edges corresponding to local shortest paths from a to nodes in its face neigh-
borhood N (a). Approximate discrete path between the node a and a point b
is either a local shortest path (that can be computed in constant time) or a

106 L. Aleksandrov et al.

path of the form {a G� p
N (b)� b}, where p is a node of Gε incident to the

face neighborhood of b. Hence, the computation of distG(a, b) requires finding

minp∈N (b){distG(a, p) + ‖p N (b)� b‖}. We know the distances distG(a, p) from a
to all nodes p ∈ Gε (as part of preprocessing by computing SSSP tree rooted at
a in Gε) and thus our task is reduced to finding a node p(b) that minimizes the
above expression for a query point b. To accomplish this, for each face f of P we
construct a data structure, called Local Voronoi Diagram in f with respect to a,
and denote it by LVD(a, f). More precisely, let f be a face of P and let N (f)
be its face neighborhood. Let p1, . . . , pk be the Steiner points and the vertices
of P incident to N (f) and let δi = distG(a, pi) for i = 1, . . . , k.

Lemma 4. A data structure LVD(a, f) exists so that for a point b ∈ f ,
min1≤i≤k(δi +‖b

N (b)� pi‖) and the point for which it is achieved can be computed
in O(log k) time. The size of LVD(a, f) is O(k) and it can be constructed in
O(k log k) time.

We define SSQ(P, ε; a) data structure to consist of SSSP tree rooted at a plus
the collection of LVD(a, f) for all faces f ∈ P . The queries consist of a point
b on P and the face f(b) containing b and they are answered as follows. First,
we use LVD(a, f(b)) and find the point p(b) for which the minimum in Lemma
4 is achieved. Then, if a and b lie in neighbor faces, we compute the shortest
local path between a and b and output the approximate distance distG(a, b),
which is the smaller of the two values. If an approximation path is required
we output the natural embedding of the approximate discrete path whose cost
is distG(a, b). The quality of this approximation follows from Theorem 4 and
Corollary 1. Hence we have the following

Theorem 5. Given a triangulated, weighted surface P with n faces, a source
point a ∈ P and the set of nodes Vε of Gε. (For every query point b in P we
assume that the face containing b is known.) A data structure SSQ(P, ε; a) of
size O(|Vε|) = O(n√

ε
log 1

ε) exists, so that the approximate distance between a

and a query point b in P can be found in O(log 1
ε) time. The structure SSQ can

be constructed in O(|Vε| log |Vε|) = O(n√
ε
log n

ε log 1
ε) time.

5 Arbitrary Shortest Path Queries

Next, we describe and analyze an algorithm for constructing a data structure,
called All Pairs Queries (APQ), such that approximate distance (and/or ap-
proximate shortest path) queries between pairs of arbitrary points in P can be
answered efficiently. In addition to the weighted polyhedral surface P and the
approximation parameter ε, the algorithm takes as input a query time parame-
ter q and outputs a data structure APQ(P, ε; q), which can answer approximate
distance queries in O(q) time. We build upon the results of previous sections.

First we construct the dual graph P ∗ of P . The set of nodes of P ∗ corre-
sponds to the set of faces of P and two nodes in P ∗ are joined by an edge if

Approximate Shortest Path Queries on Weighted Polyhedral Surfaces 107

their corresponding faces are neighbors. To each node u of P ∗ we assign weight
w(u) equal to the number of nodes of Gε, that are incident to the face f(u)
corresponding to u in P . Furthermore, we assign cost c(u) equal to the number
of nodes of Gε, that are incident to the face neighborhood N (f(u)). The total
weight w(P ∗) of P ∗ and the value σ(P ∗), defined in Section 2, are estimated
using Lemma 3 by w(P ∗) ≤ C(P) n√

ε
log 2

ε and σ(P ∗) ≤ Γ (P)n
ε log2 2

ε , where
C(P) = 1

n

∑
f∈P C(f) and Γ (P) ≤ 4

n

∑
f∈P C

2(f). We observe that w(P ∗) and
σ(P ∗) are related by σ(P ∗) ≤ 4w2(P ∗) ≤ nσ(P ∗).

Next, we choose a value of t = q2

4(g+1)σ(P ∗) log2(1/ε) (depending on the input
query time q) and use Theorem 2 to construct a t-separator S, that induces
regular partitioning of P ∗. The separator S of P ∗ corresponds to a set of faces
in P , which we refer to as face separator (or simply separator) and denote again
by S. The face separator S partitions the surface P into regions, that are unions
of faces corresponding to the connected components of P ∗ \ S. The boundary
∂R of a region R is the set of triangles in S, that neighbor faces in R.

Next, for each p, that is a Steiner point or vertex of P incident to a face, which
is a neighbor of a face in S, compute and store SSQ(P, ε; p) data structure. For
each region R and for each Steiner point or vertex of P incident to a face in R
compute and store SSQ(R, ε; p) data structure restricted to the faces in R.

The collection of SSQ data structures and the region partitioning induced
by S constitutes the APQ(P, ε; q) data structure. We denote the genus of the
surface P by g. The query time parameter q will not exceed an upper bound
q̄ = (g+1)2/3n1/3

√
ε

log2 1
ε . The next lemma presents our estimate on the time for

the construction and the size of APQ(P, ε; q) data structure.

Lemma 5. For any q ≤ q̄ = (g+1)2/3n1/3
√

ε
log2 1

ε the construction of the data

structure APQ(P, ε; q) takes O((g+1)n2

ε3/2q
log n

ε log4 1
ε) time. The size of APQ

(P, ε; q) is O((g+1)n2

ε3/2q
log4 1

ε).

The APQ data structure built by the preprocessing algorithm can be used to
answer approximate distance queries as outlined in Algorithm APQ Query.
Note that set A plays a critical role in the query algorithm. A set of nodes
in Gε is called a separating set for points a and b in P if any approximate
discrete path of the form (1) between a and b contains a node from that set.
Our query algorithm specifies a separating set A for a and b, such that for
any p′ ∈ A the data structure SSQ(P, ε; p′) is present in APQ(P, ε; q) and then
computes minp′∈A(distG(a, p′) + distG(p′, b)). Clearly, this minimum is the cost
of the shortest approximate discrete path of the form (1). The time for this
computation is O(|A| log 1

ε).
If an approximate shortest path between a and b is required we output the

natural embedding of the approximate discrete path for which distG(a, b) is
achieved. This can be done by using the SSSP trees stored in the corresponding
SSQ data structure in time proportional to the size of this path. The next lemma
establishes the correctness and running time of the query algorithm.

108 L. Aleksandrov et al.

ALGORITHM: APQ Query

Input: Data structure APQ(P, ε; q); query points a and b lying in
faces f(a) and f(b), respectively.

Output: Approximate distance distG(a, b).

Set M0 = M1 = M2 = ∞.

Step 1. If f(a) and f(b) are neighbor faces, then compute the local shortest path

a
f(a)∪f(b)� b and assign its cost to M0.

Step 2. If either of the faces f(a) or f(b) is in the separator S,
then define A to be the set of nodes of Gε incident to the face
neighborhood N (a) or N (b), respectively.

Step 3. If neither of the faces f(a) and f(b) is in S,
then define A to be the set of nodes of Gε incident to the faces
in the boundary ∂R(a) of the region R(a) containing f(a).

Step 4. Use data structures SSQ(P, ε; p′) and compute
M1 = minp′∈A(distG(a, p′) + distG(p′, b)).

Step 5. If f(b) ∈ R(a) then define A1 to be the set of nodes of Gε

incident to the face neighborhood N (b). Use data structures SSQ(R, ε; p′)
and compute M2 = minp′∈A1(distG(a, p′) + distG(p′, b)).

Set distG(a, b) = min(M0, M1, M2) and output it.

Lemma 6. The algorithm APQ Query correctly computes the approximate dis-
tance distG(a, b). The running time of the algorithm is O(max(q, 1√

ε
log2 1

ε).

Proof: The correctness of the query algorithm follows easily. The running time
of the algorithm is dominated by the times for the execution of Steps 4 and 5.
As discussed above these times are bounded by O(|A| log 1

ε) and O(|A1| log 1
ε).

By Lemma 3, |A1| = O(1√
ε
log 1

ε) and by Theorem 2 and the choice of t in the

APQ Preprocessing algorithm we obtain |A| ≤ 2
√

(g + 1)tσ(P ∗) ≤ q
log(1/ε) . �

Theorem 6. Let P be a weighted polyhedral surface consisting of n triangular
faces of genus g. Let ε ∈ (0, 1) and q ∈ (1√

ε
log2 1

ε , q̄), where q̄ = (g+1)2/3n1/3
√

ε
log2

1
ε . There exists a data structure APQ(P, ε; q), such that approximate distance

queries in P can be answered in O(q) time. The size of APQ(P, ε; q) is O((g+1)n2

ε3/2q

log4 1
ε) and it is constructed in O((g+1)n2

ε3/2q
log n

ε log4 1
ε) time.

6 Extensions and Conclusions

In this paper we present novel solutions to fundamental shortest path query
problems. The algorithms improve and generalize previous solutions in terms of
1) setting: a) Euclidean to weighted and b) arbitrary genus g, 2) preprocessing
time, and/or 3) size of query data structure. We also develop a new graph parti-
tioning algorithm for graphs of genus g with weights and costs on vertices which

Approximate Shortest Path Queries on Weighted Polyhedral Surfaces 109

extends and/or generalizes previously known separator algorithms. Our tech-
niques also enable us to obtain improved results with space-query time tradeoffs
for the planar case, i.e. when the genus is 0 (see the full version of this paper).
By constructing a hierarchical APQ data structure, in which second level APQ
data structures are built and stored for each region of the partitioning we can
widen the range of query time parameter q, in Theorem 6, while keeping the
efficiency of the algorithm. Our analysis shows that the result of Theorem 6 ex-
tends to the case q ∈ (q̄, q̄1), where q̄1 = (g+1)5/9n2/3

ε2/3 log7/3 1
ε . Our technique can

be used to build an APQ data structure with query time parameter q = log 1
ε .

This is achieved by building a suitable ε-mesh consisting of O(1/ε2) additional
points in each triangle f of P . Note that our algorithms inherit the geometric
constants analyzed in [6]. It is an interesting open problem to determine whether
eliminating these constants is inherently impossible.

References

1. P. K. Agarwal, B. Aronov, J. O’Rourke, and C. A. Schevon. Star unfolding of a
polytope with applications. SIAM J. Comput., 26(6):1689–1713, 1997.

2. P. K. Agarwal, S. Har-Peled, M. Sharir, and K.R. Varadarajan. Approximate
shortest paths on a convex polytope in three dimensions. J.ACM, 44:567–584,
March 1997.

3. L. Aleksandrov and H. Djidjev. Linear algorithms for partitioning embedded graphs
of bounded genus. SIAM J. Disc. Math., 9(1):129–150, 1996.

4. L. Aleksandrov, H. Djidjev, H. Guo, and A. Maheshwari. Partitioning planar
graphs with costs and weights. In ALENEX ’02: Revised Papers from the 4th
International Workshop on Algorithm Engineering and Experiments, pages 98–110,
London, UK, 2002. Springer-Verlag.

5. L. Aleksandrov, M. Lanthier, A. Maheshwari, and J.-R. Sack. An ε-approximation
algorithm for weighted shortest path queries on polyhedral surfaces. In Proc. 14th
Euro CG Barcelona, pages 19–21, 1998.

6. L. Aleksandrov, A. Maheshwari, and J.-R. Sack. Determining approximate shortest
paths on weighted polyhedral surfaces. J. ACM, 52(1):25–53, 2005.

7. B. Chazelle, D. Liu, and A. Magen. Sublinear geometric algorithms. SIAM J.
Comput., 35:627–646, 2006.

8. J. Chen and Y. Han. Shortest paths on a polyhedron. In Proc. 6th ACM Symposium
on Computational Geometry, pages 360–369, 1990. also IJCGA 6: 127-144, 1996.

9. Y.-J. Chiang and J. S. B. Mitchell. Two-point euclidean shortest path queries in
the plane. In Proc. 10th ACM-SODA, pages 215–224, Philadelphia, USA, 1999.

10. H. N. Djidjev. Linear algorithms for graph separation problems. In SWAT’88,
LNCS, volume 318, pages 643–645. Springer-Verlag, Berlin, Heidelberg, 1988.

11. G. N. Frederickson. Fast algorithms for shortest paths in planar graphs. SIAM J.
Comput., 16:1004–1022, 1987.

12. J. R. Gilbert, J. P. Hutchinson, and R. E. Tarjan. A separator theorem for graphs
of bounded genus. J. Algorithms, 5:391–407, 1984.

13. S. Har-Peled. Approximate shortest paths and geodesic diameters on convex poly-
topes in three dimensions. DCG, 21:216–231, 1999.

14. S. Har-Peled. Constructing approximate shortest path maps in three dimensions.
SIAM J. Comput., 28(4):1182–1197, 1999.

A Unified Construction of the Glushkov, Follow,
and Antimirov Automata

Cyril Allauzen and Mehryar Mohri

Courant Institute of Mathematical Sciences
251 Mercer Street, New York, NY 10012, USA

{allauzen, mohri}@cs.nyu.edu
http://www.cs.nyu.edu/~{allauzen, mohri}

Abstract. A number of different techniques have been introduced in
the last few decades to create ε-free automata representing regular ex-
pressions such as the Glushkov automata, follow automata, or Antimirov
automata. This paper presents a simple and unified view of all these
construction methods both for unweighted and weighted regular expres-
sions. It describes simpler algorithms with time complexities at least as
favorable as that of the best previously known techniques, and provides
a concise proof of their correctness. Our algorithms are all based on two
standard automata operations: epsilon-removal and minimization. This
contrasts with the multitude of complicated and special-purpose tech-
niques previously described in the literature, and makes it straightfor-
ward to generalize these algorithms to the weighted case. In particular,
we extend the definition and construction of follow automata to the case
of weighted regular expressions over a closed semiring and present the
first algorithm to compute weighted Antimirov automata.

1 Introduction

The construction of finite automata representing regular expressions has been
widely studied due to their multiple applications to pattern-matching and many
other areas of text processing [1,21]. The most classical construction, Thomp-
son’s construction [13,24], creates a finite automaton with a number of states and
transitions linear in the length m of the regular expression. The time complex-
ity of the algorithm is also linear, O(m). But Thompson’s automaton contains
transitions labeled with the empty string ε which create a delay in pattern match-
ing. Many alternative techniques have been introduced in the last few decades to
create ε-free automata representing regular expressions, in particular, Glushkov
automata [11], follow automata [12], and Antimirov automata [2].

The Glushkov automaton, or position automaton, was independently intro-
duced by [11] and [16]. It has exactly n+ 1 states but may have up to n2 transi-
tions, where n is the number of occurrences of alphabet symbols appearing in the
expression. Thus, its size is quadratic in that of the Thompson automaton for
reasonable regular expressions for which m = O(n). However, when using bit-
parallelism for regular expression search, thanks to its smaller number of states,
the Glushkov automaton can be represented with half the number of machine
words required by the Thompson automaton [20,21].

R. Královič and P. Urzyczyn (Eds.): MFCS 2006, LNCS 4162, pp. 110–121, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

A Unified Construction of the Glushkov, Follow, and Antimirov Automata 111

Table 1. Simple algorithms for the construction of Glushkov, follow, and Antimirov
automata and their time complexity. T is the Thompson automaton. For an automaton
A, A denotes the automaton derived from A by marking alphabet symbols with their
position in the expression. When the symbols are marked, the same notation denotes
the operation that removes the marking. T is obtained by marking some ε-transitions
in T , making it deterministic (the ε-transitions marked are removed by the r̂meps
operation).

Automaton Algorithm Complexity
Glushkov rmeps(T) O(mn)

Follow min(rmeps(T)) O(mn)

Antimirov r̂meps(min(rmeps(T))) O(m log m + mn)

Several techniques have been suggested for constructing the Glushkov au-
tomaton. In [3], the construction is based on the recursive definition of the fol-
low function and its complexity is in O(n3). The algorithm described by [4] is
based on an optimization of the recursive definition of the follow function and
its complexity is in O(m + n2). It requires the expression to be first rewritten
in star-normal form, which can be done non-trivially in O(m). Several other
quadratic algorithms have been given: that of [9] which is based on an optimiza-
tion of the follow recursion, and that of [22], based on the ZPC structure, which
consists of two mutually linked copies of the syntactic tree of the expression.

The Antimirov or partial derivatives automaton was introduced by [2]. It is
in general smaller than the Glushkov automaton with up to n+ 1 states and up
to n2 transitions. It was in fact proven by [8] (see [12] for a simpler proof) to
be the quotient of the Glushkov automaton for some equivalence relation. The
complexity of the original construction algorithm of [2] is O(m5). [8] presented
an algorithm whose complexity is O(m2).

Finally, the follow automaton was introduced by [12]. It is the quotient of
the Glushkov automaton by the follow equivalence: two states are equivalent if
they have the same follow and the same finality. The author gave an O(m+n2)
algorithm where some ε-transitions are removed from the automaton at each step
of the Thompson construction as well as at the end. An O(m + n2) algorithm
using the ZPC structure was given in [7], which requires the regular expression
to be rewritten in star-normal form.

Some of these results have been extended to weighted regular expressions over
arbitrary semirings. The generalization of the Thompson construction trivially
follows from [23]. The Glushkov automaton can be naturally extended to the
weighted case [5], and an O(m2) construction algorithm based on the general-
ization of the ZPC construct was given by [6]. The Antimirov automaton was
generalized to the weighted case by [15], but no explicit construction algorithm
or complexity analysis was given by the authors.

This paper presents a simple and unified view of all these ε-free automata
(Glushkov, follow, and Antimirov) both in the case of unweighted and weighted
regular expressions. It describes simpler algorithms with time complexities at
least as favorable as that of the best previously known techniques, and pro-
vides concise proofs. Our algorithms are all based on two standard automata
operations: epsilon-removal and minimization, as summarized in Table 1.

112 C. Allauzen and M. Mohri

This contrasts with the multitude of complicated and special-purpose tech-
niques and proofs described by others to construct these automata: no need for
fine-tuning some recursions, no requirement that the regular expression be in
star-normal form, and no need to maintain multiple copies of the syntactic tree.
Our analysis provides a better understanding of ε-free automata representing
regular expressions: they are all the results of the application of some combina-
tions of epsilon-removal and minimization to the classical Thompson automata.
This makes it straightforward to generalize these algorithms to the weighted case
by using the generalization of ε-removal and minimization [17,18]. It also results
in much simpler algorithms than existing ones.

In particular, this leads to a straightforward algorithm for the construction
of the Glushkov automaton of a weighted regular expression, and, in the case of
closed semirings, helps us generalize follow automata to the weighted case. We
also give the first explicit construction algorithm of the Antimirov automaton of
a weighted expression. When the semiring is k-closed, or, in the Glushkov case,
only null-k-closed for the regular expression considered, the complexity of our
algorithms is the same as in the unweighted case.

The paper is organized as follows. Section 2 introduces the definitions and a
brief description of the elementary algorithms used in the following sections. Sec-
tion 3 presents and analyzes our algorithm for the construction of the Glushkov
automaton, Section 4 the same for the follow automaton, and Section 5 for the
Antimirov automaton.

2 Preliminaries

Semirings. A system (K,⊕,⊗, 0, 1) is a semiring when (K,⊕, 0) is a commutative
monoid with identity element 0; (K,⊗, 1) is a monoid with identity element 1;
⊗ distributes over ⊕; and 0 is an annihilator for ⊗: for all a ∈ K, a ⊗ 0 =
0 ⊗ a = 0. Thus, a semiring is a ring that may lack negation. Some familiar
semirings include the boolean semiring (B,∨,∧, 0, 1), the tropical semiring (R+∪
{∞},min,+,∞, 0), and the real semiring (R+,+,×, 0, 1).

A semiring K is said to be closed if for all a ∈ K, the infinite sum
⊕∞

n=0 a
n

is well-defined and in K, and if associativity, commutativity, and distributivity
apply to countable sums [19]. K is said to be k-closed if for all a ∈ K,

⊕k+1
n=0 a

n =⊕k
n=0 a

n. More generally, we will say that K is closed (k-closed) for an automaton
A, if the closedness (resp. k-closedness) axioms hold for all cycle weights of A.
In some semirings, e.g., the probability semiring (R+,+,×, 0, 1), the equality⊕k+1

n=0 a
n =

⊕k
n=0 a

n may hold for the cycle weights of A only approximately,
modulo ε > 0. A is then said to be ε-k-closed for that semiring.

Weighted automata. A weighted automaton A over a semiring K is a 7-tuple
(Σ,Q,E, I, λ, F, ρ) where: Σ is a finite alphabet; Q is a finite set of states; I ⊆ Q
the set of initial states; F ⊆ Q the set of final states; E ⊆ Q× (Σ ∪{ε})×K×Q
a finite set of transitions; λ : I → K the initial weight function; and ρ : F → K
the final weight function mapping F to K.

We denote by p[π] the origin and n[π] the destination state of a path π ∈ E∗ in
an automaton A. i[π] denotes the label of π, and w[π] its weight obtained by ⊗-
multiplying the weights of its constituent transitions. We also denote by P (p, q)

A Unified Construction of the Glushkov, Follow, and Antimirov Automata 113

the set of paths from p to q and by P (I, x, F) the set of paths from the initial
states I to the final states F labeled with x ∈ Σ∗. The weight associated by A
to an input string x ∈ Σ∗ is obtained by summing the weights of these paths
multiplied by their initial and final weights: [[A]](x) =

⊕
π∈P (I,x,F) λ(p[π]) ⊗

w[π]⊗ ρ(n[π]). [[A]](x) is defined to be 0 when P (I, x, F) = ∅.
Shortest distance. Let A be a weighted automaton over K. The shortest dis-

tance from p to q is defined as d[p, q] =
⊕

π∈P (p,q) w[π]. It can be computed using
the generic single-source shortest-distance algorithm of [19] if K is k-closed for
A, or using a generalization of Floyd-Warshall [14,19] if K is closed for A.

Epsilon-removal. The general ε-removal algorithm of [18] consists of first com-
puting the ε-closure of each state p in A,

closure(p) = {(q, w) : w = dε[p, q] =
⊕

π∈P (p,q),i[π]=ε

w[π] 	= 0}, (1)

and then, for each state p, of deleting all the outgoing ε-transitions of p, and
adding out of p all the non-ε transitions leaving each state q ∈ closure(p) with
their weight pre-⊗-multiplied by dε[p, q]. If K is k-closed for the ε-cycles of A,1
then the generic single-source shortest-distance algorithm [19] can be used to
compute the ε-closures.

Weight-pushing and weighted minimization. Weight-pushing [17] is a normal-
ization algorithm that redistributes the weights along the paths of A such that⊕

e∈E[q] w[e]+ρ(q) = 1 for every state q ∈ Q. We denote by push(A) the resulting
automaton. The algorithm requires that K be zero-sum free, weakly left-divisible
and closed or k-closed for A since it depends on the computation of d[q, F] for all
q ∈ Q. It was proved in [17] that, if A is deterministic, i.e., if no two transitions
leaving any state share the same label and if it has a unique initial state, then
the weight-pushing followed by unweighted minimization with each pair (label,
weight) viewed as an alphabet symbol, leads to a minimal deterministic weighted
automaton equivalent to A, denoted by min(A).

Regular expressions. A weighted regular expression over the semiring K is
defined recursively by: ∅, ε and a ∈ Σ are regular expressions, and if α and β are
regular expressions then kα, αk for k ∈ K, α + β, α · β and α∗ are also regular
expressions. We denote by null(α) the weight associated by α to the empty string
ε. A weighted regular expression α is well-defined iff for every subterm of the form
β∗, null(β)∗ is well-defined and in K. We will say that K is null-k-closed for α if
there exist k ≥ 0 such that for every subterm β∗ of α, null(β)∗ =

⊕k
i=0 null(β)i.

We denote by |α| the length of α, and by |α|Σ the width of α, i.e., the number
of occurrences of alphabet symbols in α. Let pos(α) = {1, 2, . . . , |α|Σ} be the
set of (alphabet symbol) positions in α. An unweighted regular expression can
be seen as a weighted expression over the boolean semiring (B,∨,∧, 0, 1).

Thompson automaton. We denote by AT (α) the Thompson automaton of α
and by IAT (α) and FAT (α) its unique initial and final states. For i ∈ pos(α),
we denote by pi and qi the states of AT (α) such that the transition from pi to
qi is labeled with the alphabet symbol at the i-th position in α. The states pi

(states qi) are the only states having a non-ε outgoing (resp. incoming) transition.
1 For A to be well-defined, K needs to be closed for the ε-cycles of A.

114 C. Allauzen and M. Mohri

0
1ε
2

ε
1a

2b
ε εε

ε
ε

ε

ε

ε
4ε

6ε
ε

3ε ε

4
b

3
a

ε

ε ε

ε

ε
5ε

ε 5
a

ε
ε ε

ε ε

6
b

ε
ε ε

(a)

0

1

a

2b

3
a

6
b

4

b

a
b b

a

b
b

a
b

b

a

b

b

5

a

a
b b a

0 1,2,
3,6

a
b

a
b

4,5
b
a
b

a
b

0 1,2a
b

6a
b

3,4,5
b

b
a

b
a
b

b

(b) (c) (d)

Fig. 1. (a) The Thompson automaton, (b) Glushkov automaton, (c) Follow automaton,
and (d) Antimirov automaton of the regular expression α = (a + b)(a∗ + ba∗ + b∗)∗,
the running example used in [12]. In (d), state {0} corresponds to the derived term α,
{1, 2} to τ = (a∗ + ba∗ + b∗)∗, {6} to a∗τ , and {3, 4, 5} to b∗τ .

Figure 1(a) shows the Thompson automaton in the special case of the regular
expression α = (a+ b)(a∗ + ba∗ + b∗)∗.

3 Glushkov Automaton

Let α be a weighted regular expression over the alphabet Σ and the semiring K.
The Glushkov automaton of α is an ε-free non-deterministic weighted automaton
representing α that has an initial state plus one state for each position in α, i.e.
each occurrence of an alphabet symbol in α. Figure 1(b) shows an example.

The formal definition of the Glushkov automaton is based on the functions
null, first, last, and follow. Table 2 gives the recursive definition of these func-
tions. null(α) ∈ K is the weight associated by α to the empty string ε and is thus
the final weight of the initial state of the automaton. last(α) ⊆ pos(α)×K is the
set of positions with the corresponding final weights where a non-empty string
accepted by α can end. first(α) ⊆ pos(α) × K is the set of positions with the
corresponding weights that can be reached by reading one alphabet symbol from
the initial state. Similarly, follow(α, i) ⊆ pos(α)×K is the set of positions with
the corresponding weights that can be reached by reading one alphabet symbol
from the position i.

In these definitions, the union of two weighted subsets X,Y ⊆ pos(α)× K is
defined by X ∪ Y = {(i, 〈X, i〉 ⊕ 〈Y, i〉) : 〈X, i〉 ⊕ 〈Y, i〉 	= 0}. For any weighted
subset X ⊆ pos(α)×K, weight k ∈ K, and position i, k⊗X denotes the weighted
subset and 〈X, i〉 the weight defined by:

k⊗X=
{
{(i, k ⊗ w)|(i, w)∈ X} if k 	= 0,
∅ otherwise, and 〈X, i〉 =

{
w if ∃w : (i, w)∈ X,
0 otherwise.

A Unified Construction of the Glushkov, Follow, and Antimirov Automata 115

Table 2. Definition of the functions null, first, last, and follow. For convenience, we
also define follow(α, 0) = first(α) and last0(α) as last(α)∪{(0, null(α))} if null(α)
= 0,
last(α) otherwise.

α null(α) first(α) last(α) follow(α, i)

∅ 0 ∅ ∅ ∅
ε 1 ∅ ∅ ∅
aj 0 {(j, 1)} {(j, 1)} ∅
kβ k ⊗ null(β) k ⊗ first(β) last(β) follow(β, i)
βk null(β)⊗ k first(β) last(β)⊗ k follow(β, i)

β + γ null(β)⊕ null(γ) first(β) ∪ first(γ) last(β) ∪ last(γ)
follow(β, i) if i ∈ pos(β)
follow(γ, i) if i ∈ pos(γ)

β · γ null(β)⊗ null(γ)
null(β)⊗ first(γ)
∪ first(β)

last(β)⊗ null(γ)
∪ last(γ)

follow(β, i)
∪ 〈last(β), i〉 ⊗ first(γ)

if i ∈ pos(β)
follow(γ, i) if i ∈ pos(γ)

β∗ null(β)∗ null(β)∗ ⊗ first(β) last(β)⊗ null(β)∗
follow(β, i)
∪ 〈last(β∗), i〉 ⊗ first(γ)

X⊗k is defined similarly. Let α denote the weighted regular expression obtained
by marking each symbol of α with its position. The Glushkov or position au-
tomaton AG(α) of α is defined by AG(α) = (Σ, pos0(α), E, 0, 1, F, ρ) where its
states set is pos0(α) = {0} ∪ pos(α) and its transition set

E = {(i, a, w, j) : (j, w) ∈ follow(α, i) and pos(α, j) = a}. (2)

A state i ∈ pos0(α) is final iff there exist w ∈ K such that (i, w) ∈ last0(α) and
when it is final ρ(i) = w. The following lemma shows that there exists a simple
relationship between the first, last, and follow functions and the ε-closures of
the states in the Thompson automaton that admit a non-ε incoming transition
(states qi).

Lemma 1. Let α be a weighted regular expression and let A = AT (α). Then

(i) (i, w) ∈ first(α) iff (pi, w) ∈ closure(IA);
(ii) (i, w) ∈ follow(α, j) iff (pi, w) ∈ closure(qj); and
(iii) (i, w) ∈ last(α) iff (FA, w) ∈ closure(qi).

Proof. Note that if α = a, α = ε or α = ∅, then the properties trivially hold.
The proof is by induction on the length of the regular expression and is given in
the case α = β · γ. Other cases can be treated similarly.

Assume that the properties hold for all expressions shorter than α. Let A =
AT (α),B = AT (β) andC = AT (γ). Ifα = β·γ, then closureA(IA) = closureB(IB)
∪ [[B]][ε] ⊗ closureC(IA), thus, since [[B]][ε] = null(β), (i) holds by induction. If
j ∈ pos(γ), then closureA(qj) = closureC(qj). Otherwise, if j ∈ pos(β), then

closureA(qj) = closureB(qj) ∪ 〈closureB(qj), FB〉 ⊗ closureC(IC). (3)

Thus, by induction, both (ii) and (iii) hold. �

116 C. Allauzen and M. Mohri

The following proposition follows directly from the lemma just presented.

Proposition 1. Let α be a weighted regular expression. Then

AG(α) = rmeps(AT (α)). (4)

Proof. The only states potentially accessible in rmeps(AT (α)) are the states qi,
i ≥ 0, since they are the only states with non-ε incoming transitions. A state
qi is final with weight w in rmeps(AT (α)) iff (FAT (α), w) ∈ closure(qi), that is,
by Lemma 1, iff (i, w) ∈ last0(α). (qj , ai, w, qi) is a transition in rmeps(AT (α))
iff (pi, w) ∈ closure(qj), that is, by Lemma 1, iff (i, w) ∈ follow(α, j). Thus,
AG(α) = rmeps(AT (α)). �

This proposition suggests a natural algorithm to compute the Glushkov automa-
ton. The following lemma helps determine its complexity.

Lemma 2. Let A be the Thompson automaton of a weighted regular expression
over a k-closed semiring and let s be a state of A. Then, the shortest-distance
algorithm of [19] can be used to compute the shortest distances from the source
state s to all states of A in linear time.

Proof. We give a sketch of the proof. The complexity of the single-source shortest-
distance algorithm of [19] depends on the queue discipline used, that is the order
in which states are extracted from the queue. One can use a queue discipline that
takes advantage of the specific structure of the Thompson automaton. Each sub-
term of the form β + γ or β∗ defines a sub-automaton with an entry state and
an exit state. The appropriate queue discipline enforces that each sub-automaton
be fully visited before being exited. The algorithm of [19] can also be modified
to store the shortest-distance through the sub-automaton of a β∗ subterm once
it has been computed and avoid a subsequent revisit. With that queue discipline,
the complexity of the algorithm is linear. �

Theorem 1. Let α be a weighted regular expression over a semiring K null-
k-closed for α and let m = |α| and n = |α|Σ. Then, the Glushkov automaton
of α can be constructed in time O(mn) by applying ε-removal to its Thompson
automaton.

Proof. If K is null-k-closed for α, then K is k-closed for all the paths considered
during the computation of the ε-closures and, by Lemma 2, each ε-closure can
be computed in linear time, that is in O(m). Since n + 1 closures need to be
computed, the total complexity is in O(mn + n2) = O(mn). �

In the unweighted case, the unpublished manuscript of [10] showed that the
Glushkov automaton could be obtained by removing the ε-transitions from the
Thompson automaton using a special-purpose ε-removal algorithm.

4 Follow Automaton

The follow automaton of an unweighted regular expression α, denoted by AF (α)
was introduced by [12]. Figure 1(c) shows an example. It is the quotient of AG(α)
by the equivalence relation ≡F defined over pos0(α) by:

A Unified Construction of the Glushkov, Follow, and Antimirov Automata 117

i ≡F j iff
{
{i, j} ⊆ last0(α) or {i, j} ∩ last0(α) = ∅, and
follow(α, i) = follow(α, j). (5)

Proposition 2. For any regular expression α, the following identities hold:

AF (α) = min(AG(α)) and AF (α) = min(AG(α)).

Note that it is mentioned in [12] that minimization could be used to construct
the follow automata but the authors claim that the complexity of minimization
would be in O(n2 logn) making this approach less efficient. The following lemma
shows that minimization has in fact a better complexity in this case. Observe
that AG(α) is deterministic.

Lemma 3. The time complexity of Hopcroft’s minimization algorithm applied
to AG(α) is linear in the size of AG(α): it is in O(n2) where n = |α|Σ .

Proof. We give a sketch of the proof. The log |Q| factor in Hopcroft’s algorithm
corresponds to the number of times the incoming transitions at a given state
q are used to split a subset (tentative equivalence class). In AG(α), transitions
sharing the same label have all the same destination state (the automaton is
1-local), thus each incoming transition of a state q can only be used to split a
subset once. The number of transitions in AG(α) is at most n2. �

The lemma holds in fact for all 1-local automata. This leads to a simple algorithm
for constructing the follow automaton of a regular expression α based on:

AF (α) = min(rmeps(AT (α))). (6)

The complexity of this algorithm is in O(mn) which is the same as that of the
more complicated and special-purpose algorithms of [12,7]. When the semiring K
is weakly divisible, zero-sum free, and closed, we can define the follow automaton
of a weighted regular expression α as: AF (α) = min(AG(α)).

Theorem 2. Let α be a weighted regular expression over K. If K is k-closed for
the Thompson automaton of α, then the follow automaton of α can be computed
in O(mn) by applying epsilon-removal followed by weighted minimization to the
Thompson automaton of α.

Proof. The shortest-distance computation required by weight-pushing can be
done in O(m) in the case of AT (α) and is preserved by ε-removal. The weighted
automaton push(AG(α)) is 1-local when considered as a finite automaton over
pairs (label, weight), thus Lemma 3 can be applied. �

5 Antimirov Automaton

The definition of the Antimirov automaton of a regular expression is based on
that of the partial derivatives of regular expressions, which are multisets of pairs
of the form (w,α) where w ∈ K is a weight and α a weighted regular expression

118 C. Allauzen and M. Mohri

over K. For any weight k ∈ K and any regular expression β, we define the
following operations:

k ⊗ (w,α) = (k ⊗ w,α) (w,α) ⊗ k = (w,αk) (w,α) · β = (w,α · β), (7)

which can be naturally extended to multisets of pairs (w,α). By multisets, we
mean that {(w,α)} ∪ {(w,α′)} = {(w,α), (w,α′)}. The partial derivative of α
with respect to a ∈ Σ is the multiset of pairs (w,α) defined recursively by:

∂a(ε) = ∂a(1) = ∅ ∂a(β + γ) = ∂a(β) ∪ ∂a(γ)
∂a(b) = ε if a = b, ∅ otherwise ∂a(β · γ) = ∂a(β) · γ ∪ null(β) ⊗ ∂a(γ)
∂a(kβ) = k ⊗ ∂a(β) ∂a(β∗) = null(β)∗ ⊗ ∂a(β) · β∗
∂a(βk) = ∂a(β)⊗ k.

The partial derivative of α with respect to the string s ∈ Σ∗ is denoted by
∂s(α) and recursively defined by ∂sa(α) = ∂a(∂s(α)). Let D(α) = {β : (w, β) ∈
∂s(α) with s ∈ Σ∗ and w ∈ K}. Note that for D(α) to be well-defined, we
need to define when two expressions are the same. Here, we will only allow the
following identities: ∅ · α = α · ∅ = ∅, ∅ + α = α + ∅ = ∅, 0α = α0 = ∅,
ε · α = α · ε = α, 1α = α1 = α, k(k′α) = (k ⊗ k′)α, (αk)k′ = α(k ⊗ k′) and
(α+ β) · γ = α · γ + β · γ.2

The Antimirov or partial derivatives automaton AA(α) of α is then the au-
tomaton defined by AA(α) = (Σ,D(α), E, α, 1, F, null) where E = {(β, a, w, γ) :
w =

⊕
(w′,γ)∈∂a(β) w

′} and F = {β ∈ D(α) : null(β) 	= 0}. Figure 1(d) shows the
Antimirov automaton for a specific regular expression.

Let Σ̂ = Σ∪{ε1+, ε2+, ε1∗, ε2∗}. We denote by ÂT (α) the weighted automaton over
Σ̂ obtained by recursively marking some of the ε-transitions of the Thompson
automaton AT (α) as follows: if α = β + γ, we label by ε1+ (ε2+) the ε-transition
from IAT (α) to IAT (β) (resp. IAT (γ)); if α = β∗, we label by ε1∗ (ε2∗) the two

ε-transitions to IAT (β) (resp. FAT (α)). Observe that ÂT (α) can be viewed as an
automaton recognizing the expression α̂ over Σ̂ recursively defined by ∅̂ = ∅,
ε̂ = ε, â = a, k̂β = kβ̂, β̂k = β̂k, β̂ + γ = ε1+β̂ + ε2+γ̂, β̂ · γ = β̂ · γ̂ and
β̂∗ = (ε1�β̂)∗ε2�.

For i ∈ pos0(α), we use the same notation qi (with q0 = I) for the correspond-
ing states in AT (α), ÂT (α) and rmeps(ÂT (α)). For a state q in rmeps(ÂT (α)),
we define by L(q) the language recognized from q considering rmeps(ÂT (α)) as
an unweighted automaton over pairs (symbol,weight). Lemma 4 follows from our
marking of the ε-transitions.

Lemma 4. For i ∈ pos0(α), L(qi) uniquely defines a regular expression over Σ,
denoted by δi (or δα

i in the presence of ambiguity).

Lemma 5. For all i ∈ pos0(α) and j ∈ pos(α), we have for pj, qi in AT (α) that:

(pj , w) ∈ closure(qi) iff (w, δj) ∈ ∂a(δi). (8)
2 These identities are the trivial identities considered in [15] except for the last two

which were added to simplify our presentation. Any larger set of identities can be
handled with our method by rewriting α in the corresponding normal form.

A Unified Construction of the Glushkov, Follow, and Antimirov Automata 119

Proof. The proof is by induction on the length of the regular expression. If α = a,
α = ε or α = ∅, then the properties trivially hold. We give the proof in the case
α = β · γ, other cases can be treated similarly.

Let A = AT (α), B = AT (β) and C = AT (γ). If qi is in C, then δα
i = δγ

i and
closureA(qi) = closureC(qi). Therefore, if (w, pj) ∈ closureA(qi), pj is in C and
then δα

j = δγ
j . Hence (8) recursively holds.

If qi is in B, then δα
i = δβ

i · γ and we have:

∂a(δα
i) = ∂a(δβ

i) · γ ∪ null(δβ
i)⊗ ∂a(γ) (9)

closureA(qi) = closureB(qi) ∪ null(δβ
i)⊗ closureC(IC). (10)

By induction, we have (pj , w) ∈ closureB(qi) iff (w, δβ
j) ∈ ∂a(δβ

i), and (pj , w) ∈
closureC(IC) iff (w, δγ

j) ∈ ∂a(δγ
0) = ∂a(γ). Hence (8) follows. �

Note that δ0 = α, thus Lemma 5 implies that the δi are the derived terms of
α, more precisely, i �→ δi is a surjection from pos0(α) onto D(α). This leads us
to the following result, where minB is unweighted minimization when each pair
(label, weight) is treated as regular symbol and r̂meps denotes the removal of
the marked ε’s.

Proposition 3. We have AA(α) = r̂meps(minB(rmeps(ÂT (α)))).

Proof. Note that rmeps(ÂT (α)) is deterministic. During minimization, two
states qi and qj are merged iff L(qi) = L(qj), that is, by Lemma 4, iff δi = δj .
Thus, there is a bijection between D(α) and the set of states of minB(rmeps
(ÂT (α))) having an incoming transition with label in Σ, and thus also between
D(α) and the set of states of A = r̂meps(minB(rmeps(ÂT (α)))). Lemma 5 en-
sures that the transitions of A are consistent with the definition of AA(α). �

Theorem 3. Let α be a weighted regular expression over K. If K is null-k-closed
for α, then the Antimirov automaton of α can be computed in O(m logm+mn)
using ε-removal and minimization.

Theorem 3 follows from the fact that rmeps(ÂT (α)) has O(m) states and tran-
sitions. In the unweighted case, this complexity matches that of the more com-
plicated and best known algorithm of [8].

In the weighted case, the use of minimization over (label,weight) pairs is sub-
optimal since states that would be equivalent modulo a ⊗-multiplicative factor
are not merged. When possible, using weighted minimization instead would lead
to a smaller automaton in general. For example, if K is closed, we can defined
the normalized Antimirov automaton of α as r̂meps(minK(rmeps(ÂT (α)))). This
automaton is always smaller than the Antimirov automaton and the automaton
of unitary derived terms of [15].3 When K is k-closed, it can be constructed in
O(m logm+mn).

3 This automaton can be viewed in our approach as the result of a simpler form of
reweighting than weight-pushing, the reweighting used by weighted minimization.

120 C. Allauzen and M. Mohri

Remark. When the condition about k-closedness (null-k-closedness for α) of K is
relaxed to the closedness of K (resp. that α is well-defined), all our construction al-
gorithms can still be used by replacing the generic single-source shortest-distance
algorithm with a generalization of the Floyd-Warshallalgorithm [14,19], leading
to a complexity of O(m3). It is not hard however to maintain the quadratic com-
plexity by modifying the generic single-source shortest-distance algorithm to take
advantage of the special topology of the Thompson automaton.

In the unweighted case, every regular expression can be straightforwardly
rewritten in ε-normal form such that m = O(n). In that case, our O(mn) and
O(m logm+mn) complexities become O(m+ n2) which coincides with what is
often reported in the literature.

6 Conclusion

We presented a simple and unified view of ε-free automata representing un-
weighted and weighted regular expressions. We showed that standard unweighted
and weighted epsilon-removal and minimization algorithms can be used to create
the Glushkov, follow, and Antimirov automata and that the time complexity of
our construction algorithms is at least as favorable as that of the best previously
known algorithm.

This provides a better understanding of the ε-free automata representing reg-
ular expressions. It also suggests using other combinations of epsilon-removal
and minimization for creating ε-free automata. For example, in some contexts,
it might be beneficial to use reverse-epsilon-removal rather than epsilon-removal
[18]. Note also that the Glushkov automaton can be constructed on-the-fly since
Thompson’s construction and epsilon-removal both admit an on-demand imple-
mentation.

Acknowledgments. This project was sponsored in part by the Department
of the Army Award Number W23RYX-3275-N605. The U.S. Army Medical Re-
search Acquisition Activity, 820 Chandler Street, Fort Detrick MD 21702-5014 is
the awarding and administering acquisition office. The content of this material
does not necessarily reflect the position or the policy of the Government and
no official endorsement should be inferred. This work was also partially funded
by the New York State Office of Science Technology and Academic Research
(NYSTAR).

References

1. A. V. Aho, R. Sethi, and J. D. Ullman. Compilers, Principles, Techniques and
Tools. Addison Wesley: Reading, MA, 1986.

2. V. M. Antimirov. Partial derivatives of regular expressions and finite automaton
constructions. Theoretical Computer Science, 155(2):291–319, 1996.

3. G. Berry and R. Sethi. From regular expressions to deterministic automata. The-
oretical Computer Science, 48(3):117–126, 1986.

4. A. Brüggemann-Klein. Regular expressions into finite automata. Theoretical Com-
puter Science, 120(2):197–213, 1993.

A Unified Construction of the Glushkov, Follow, and Antimirov Automata 121

5. P. Caron and M. Flouret. Glushkov construction for series: the non commutative
case. International Journal of Computer Mathematics, 80(4):457–472, 2003.

6. J.-M. Champarnaud, É. Laugerotte, F. Ouardi, and D. Ziadi. From regular
weighted expressions to finite automata. In Proceedings of CIAA 2003, volume
2759 of Lecture Notes in Computer Science, pages 49–60. Springer-Verlag, 2003.

7. J.-M. Champarnaud, F. Nicart, and D. Ziadi. Computing the follow automaton
of an expression. In Proceedings of CIAA 2004, volume 3317 of Lecture Notes in
Computer Science, pages 90–101. Springer-Verlag, 2005.

8. J.-M. Champarnaud and D. Ziadi. Computing the equation automaton of a regular
expression in O(s2) space and time. In Proceedings of CPM 2001, volume 2089 of
Lecture Notes in Computer Science, pages 157–168. Springer-Verlag, 2001.

9. C.-H. Chang and R. Page. From regular expressions to DFA’s using compressed
NFA’s. Theoretical Computer Science, 178(1-2):1–36, 1997.

10. D. Giammarresi, J.-L. Ponty, and D. Wood. Glushkov and Thompson construc-
tions: a synthesis. http://www.cs.ust.hk/tcsc/RR/1998-11.ps.gz, 1998.

11. V. M. Glushkov. The abstract theory of automata. Russian Mathematical Surveys,
16:1–53, 1961.

12. L. Ilie and S. Yu. Follow automata. Information and Computation, 186(1):146–162,
2003.

13. S. C. Kleene. Representations of events in nerve sets and finite automata. In C. E.
Shannon, J. McCarthy, and W. R. Ashby, editors, Automata Studies, pages 3–42.
Princeton University Press, 1956.

14. D. J. Lehmann. Algebraic structures for transitives closures. Theoretical Computer
Science, 4:59–76, 1977.

15. S. Lombardy and J. Sakarovitch. Derivatives of rational expressions with multi-
plicity. Theoretical Computer Science, 332(1-3):142–177, 2005.

16. R. McNaughton and H. Yamada. Regular expressions and state graphs for au-
tomata. IEEE Transactions on Electronic Computers, 9(1):39–47, 1960.

17. M. Mohri. Finite-State Transducers in Language and Speech Processing. Compu-
tational Linguistics, 23:2, 1997.

18. M. Mohri. Generic e-removal and input e-normalization algorithms for weighted
transducers. International Journal of Foundations of Computer Science, 13(1):129–
143, 2002.

19. M. Mohri. Semiring Frameworks and Algorithms for Shortest-Distance Problems.
Journal of Automata, Languages and Combinatorics, 7(3):321–350, 2002.

20. G. Navarro and M. Raffinot. Fast regular expression search. In Proceedings
of WAE’99, volume 1668 of Lecture Notes in Computer Science, pages 198–212.
Springer-Verlag, 1999.

21. G. Navarro and M. Raffinot. Flexible pattern matching. Cambridge University
Press, 2002.

22. J.-L. Ponty, D. Ziadi, and J.-M. Champarnaud. A new quadratic algorithm to
convert a regular expression into automata. In Proceedings of WIA’96, volume
1260 of Lecture Notes in Computer Science, pages 109–119. Springer-Verlag, 1997.

23. M.-P. Schützenberger. On the definition of a family of automata. Information and
Control, 4:245–270, 1961.

24. K. Thompson. Regular expression search algorithm. Communications of the ACM,
11(6):365–375, 1968.

Algebraic Characterizations of Unitary Linear

Quantum Cellular Automata

Pablo Arrighi

IMAG Laboratories & University of Grenoble,
46 Avenue Félix Viallet, 38031 Grenoble Cedex, France

pablo.arrighi@imag.fr

Abstract. We provide algebraic criteria for the unitarity of linear quan-
tum cellular automata, i.e. one dimensional quantum cellular automata.
We derive these both by direct combinatorial arguments, and by adding
constraints into the model which do not change the quantum cellular
automata’s computational power. The configurations we consider have
finite but unbounded size.

1 Motivations

One could say that the central question in theoretical computer science is ‘What
are the resources necessary for computation, or information processing?’. Ulti-
mately this question is dictated by the physical laws which surround us. Quan-
tum computation science has risen from this basic idea. It considers computers
as physical, and hence possibly quantum systems. At the theoretical level it was
demonstrated for instance that polynomial-time integer factorization is possible
with such systems, as well as the search for an element in a unordered list of size
n in time Θ(

√
n).

Cellular automata (CA) are arrays of cells, each of which may take one in a
finite number of possible state. These evolve in discrete time steps according to a
global evolution ∆ – which itself arises from the application of a local transition
function δ, synchronously and homogeneously across space. A popular example
is Conway’s ‘Game of Life’, a two dimensional CA which has been proven to be
universal for computation.

It is clear that CA are themselves physics-like models of computations, in the
sense that they describe a world of small systems interacting locally, according to
translation-invariant laws. Therefore it seems natural to study their quantum ex-
tensions. Moreover no classical control is required in such models, since computa-
tion arises as an emergent behaviour of the quantum cells’ interaction. This is a key
advantage to have as it reduces the need for environment interaction, and hence
may reduce decoherence, the principal obstacle to realizing a quantum computer.
For these two reasons Feynman [6], in his seminal paper about quantum compu-
tation, has argued that the study of quantum CA may prove an important path
to a realistic physical implementation of quantum computers. Another series of
legitimate aims is to endow quantum computation with spatio-temporal notions,

R. Královič and P. Urzyczyn (Eds.): MFCS 2006, LNCS 4162, pp. 122–133, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Algebraic Characterizations of Unitary Linear Quantum Cellular Automata 123

or even to provide a bridge through which computer science notions, such as uni-
versality, may contribute to modern theoretical physics. To put it differently such
works are a contribution to the understanding of dynamics in discrete, quantum
spacetime – but from an idealized, computer-science viewpoint.

Similarly to their classical counterparts linear quantum cellular automata
(LQCA) consist of a row of identical, finite dimensional, quantum systems. These
evolve in discrete time steps according to a global evolution∆ – which itself arises
from the application of a local transition function δ, homogeneously and syn-
chronously across space. But in order to grant LQCA the status of physically
acceptable model of computation, one must ensure that the global evolution ∆
is physically acceptable in a quantum theoretical setting, i.e. one must ensure
that ∆ is unitary. Unfortunately this global property is rather non-trivially re-
lated to the description of the local transition function δ – witness of this the
abundant literature on reversible cellular automata (RCA), tackling the classical
counterpart of this issue. It is actually a very surprising fact that so much has
been done to study RCA – when reversibility is not so much of a crucial feature
to have in classical computation. A frequently encountered argument states that
all consumption-less, zero-heat micro-mechanical device need be reversible. But
tracing back the origins of this argument, we find quantum physical considera-
tions once more [9].

One way to approach this issue is to find a decision procedure, which given δ
tells whether ∆ is unitary. This test should be performed efficiently, so as not to
carry any of the complexity of the computation, and be applied to any candidate
δ as a mean to exclude the non-physical ones. Such a strong contribution was
indeed achieved by Dürr et al. It does not put an ending point to the problem
however, because the number of local transition functions which do indeed induce
a unitary global evolution is likely to be rather scarce, as was the case for RCA [1].
Moreover this relatively complicated decision procedure takes an elegant detour
via finite automata, but one which does not guide us to understand which δ’s
will eventually yield a physical ∆.

Physicists are used to checking whether an evolution is physically acceptable,
but they like to do so algebraically (e.g. U †U = UU † = I for unitarity, when U is
a finite matrix). Much in the same way computer scientists are used to checking
whether a program is valid, but like these criteria to be syntactic. When this is not
the case, we tend to consider that the definition chosen to formalize the model of
computation is in fact too loose. Indeed once universality has been reached, adding
more expressiveness does not mean adding more computational power, but only
more ways of expressing the same computation. An undesirable excess arises when
the syntax proposed by the definition allows the description of non-valid programs,
thereby requiring that the user performs elaborate decision procedures to exclude
those instances. This is the current state of affairs with LQCA.

Therefore a different, non-complexity-theoretic approach is to tighten the de-
finition of linear quantum cellular automata, i.e. to seek for a more restric-
tive definition whose unitarity may be checked algebraically/syntactically, and
yet capable of expressing rigorously the same set of global evolutions as our

124 P. Arrighi

original definition. In this paper we provide some synthetic algebraic formulae
which characterize unitary linear quantum cellular automata. We are not in-
terested in the complexity of running the corresponding computations, and in
particular we do not deal with the difficulties associated to computing with com-
plex number up to arbitrary precision and/or the approximations which finite
precision arithmetic entails. Our criteria are derived both by direct combinato-
rial arguments, and by adding constraints into the model which do not change
the quantum cellular automata’s computational power.

The breakdown of this paper will be given after LQCA are presented formally,
in the following section. Our main theorem is stated in the conclusion section,
and discussed in comparison to some related approaches.

Notations. Throughout the paper we will denote by HS the Hilbert space whose
canonical orthonormal base vectors are identified with the elements of the count-
able setS. E.g.H{aa,ab,ba,bb} is the four dimensional spacewith canonical orthonor-
mal base {|aa〉, |ab〉, |ba〉, |bb〉}. This means that any vector α|aa〉+β|ab〉+γ|ba〉+
δ|bb〉with α, β, γ, δ ∈ C belongs toH{aa,ab,ba,bb}. Such a vector must be thought of
as a superposition of the words aa, ab, ba, bb. Moreover the symbol 0 is to denote
the null vector, not to be confused with O the matrix containing only ones.

2 The Model

We start with the definition proposed by [15] and [4], sometimes also referred
to as linear quantum cellular automata (LQCA). This definition will evolve
throughout the paper.

Working definition 1 (LQCA).
A linear quantum cellular automaton (LQCA) is a 4-tuple A = (Σ, q,N, δ),
where (with qΣ = {q} ∪Σ):

- Σ is a finite set of symbols (i.e. “the alphabet”, giving the possible basic states
each cell may take);
- q is a symbol such that q /∈ Σ (i.e. “the quiescent symbol”, which may be
thought as a special state for empty cells);
- N is a set of n successive signed integers (i.e. “the neighbourhood”, telling
which cell is next to whom);
- δ : H(qΣ)n → HqΣ is a function from superpositions of n symbols words to su-
perpositions of one symbol words (i.e. “the local transition function”, describing
the way a cell interacts with its neighbours).

Moreover δ must verify:

- the quiescent stability condition:
[
δ|qn〉) = |q〉

]
;

- the no-nullity condition: ∀w ∈ (qΣ)n,
[
δ|w〉 	= 0

]
.

By ‘successive’ we mean that the number follow each other in unit step, i.e. the
neighbourhood is an interval. In the literature these are sometimes referred to as
simple neighbourhoods, but it is trivial to simulate non-simple neighbourhoods

Algebraic Characterizations of Unitary Linear Quantum Cellular Automata 125

automata with simple neighbourhoods automata. At this point we need not have
a normalization condition such as ∀w ∈ (qΣ)n,

[
||δ|w〉|| = 1

]
. Configurations

hold the basic states of an entire row of cells. As we will now formalize ours are
finite but unbounded. Note that fixed-sized periodic configurations[14] as well
as infinite configurations[13] have also been studied, leading to very different
results and proof methods (see Sect. 6 for a discussion).

Definition 1 (Finite configurations, interval domains).
A (finite) configuration c of the quantum cellular automaton A = (Σ, q,N, δ) is
a function c : Z −→ qΣ, with i �−→ c(i) = ci, such that there exists a (possibly
empty) interval I verifying i ∈ I ⇒ ci ∈ qΣ and i /∈ I ⇒ ci = q. Finally the set
of all finite configurations is denoted Cf .

Definition 2 (Indexing conventions).
Given a configuration c of the quantum cellular automaton A = (Σ, q,N, δ),
we denote by ck...l the word ck · . . . · cl if k ≤ l, and the empty word ε oth-
erwise. Thus in either case ck...l ∈ (qΣ)∗. Moreover we denote by ci+N the
word ci+min(N)...i+max(N), and ci+Ñ the word ci+min(N)...i+max(N)−1. Therefore
we have ci+N ∈ (qΣ)n and ci+Ñ ∈ (qΣ)n−1, respectively.

Whilst configurations hold the basic states of an entire row of cells, and hence
denote the possible basic states of the entire LQCA, the global state of a LQCA
may well turn out to be a superposition of these. The following definition works
because Cf is a countably infinite set.

Definition 3 (Superpositions of finite configurations).
A superposition of configurations of the quantum cellular automaton A = (Σ, q,
N, δ) is a normalized element of HCf

, the Hilbert space of configurations.

Definition 4 (Global evolution).
The global evolution of the quantum cellular automaton A = (Σ, q,N, δ) is
the linear operation defined by linear extension of its action upon the canonical
orthonormal basis, as follows:

∆ : HCf
→ HCf

|c〉 �→ ∆|c〉

∆|c〉 =
⊗
i∈Z

δ|ci+N 〉

The postulates of quantum theory impose that the global evolution should be
unitary.

Definition 5 (Unitarity).
The global evolution ∆ of the quantum cellular automaton A = (Σ, q,N, δ) is
said to be (finite) unitary if and only if {∆|c〉 | c ∈ Cf} is an orthonormal basis
of HCf

.

The next lemma recalls some facts of the linear algebra which is commonly used
in quantum information theory [11].

126 P. Arrighi

Lemma 1 (Norm-preservedness, unitarity).
Let ∆ : HS → HS be a linear operator over a Hilbert space HS having canonical
orthonormal basis {|c〉}c∈S. Suppose the following two conditions are fulfilled si-
multaneously:

-(i) ∀c ∈ S, [||∆|c〉|| = 1];
-(ii) ∀c, c′ ∈ S, [〈c′|∆†∆|c〉 	= 0 ⇔ c = c′].
Then ∀r ∈ S, [0 ≤ ||∆†|r〉|| ≤ 1].
Moreover if
-(iii) ∀r ∈ S, [||∆†|r〉|| = 1].
Then ∆ is unitary.

Proof. Conditions (i) and (ii) express the fact that ∆ is norm-preserving. As a
consequence for all r ∈ S we have ||∆†|r〉|| = ||∆∆†|r〉||. Moreover we have by
definition ||∆†|r〉||2 = |〈r|∆∆†|r〉|. But the latter (〈r|∆∆†|r〉) is a projection of
the former (∆∆†|r〉) over a unit vector (|r〉), and hence |〈r|∆∆†|r〉| ≤ ||∆∆†|r〉||.
Therefore ||∆†|r〉||2 ≤ ||∆†|r〉|| and so ||∆†|r〉|| ≤ 1.

Condition (iii) expresses the fact that for all r ∈ S, ∆†|r〉 has unit norm.
As a consequence ∆∆†|r〉 has unit norm on the one hand, and 〈r|∆∆†|r〉 =
||∆†|r〉||2 = 1 on the other hand. Therefore α∆∆†|r〉 = |r〉, with α a root
of unity. Since ∆∆† is positive, this α is just 1. Let ∆†|r〉 =

∑
βc|c〉. Then

|r〉 =
∑
βc∆|c〉, in other words each of the canonical orthonormal basis vectors

|r〉may be expressed as a linear combination of columns {∆|c〉 | c ∈ S}. Therefore
the columns form themselves an orthonormal basis. �

Note for later use that if (i) and (ii) are fulfilled and T is a finite subset of
S, then [

∑
r∈T ||∆†|r〉||2 = |T |] implies ∀r ∈ T, [||∆†|r〉|| = 1]. Next we will

examine each of the following conditions in turn:

-(i) the columns of ∆ have unit norm (Sect. 3);
-(ii) the columns of ∆ are orthogonal (Sect. 4);
-(iii) the rows of ∆ have unit norm (Sect. 5).

3 Unit Columns

The next two lemmas are simple facts from [4].

Lemma 2 (Norm of a column).
Let ∆ denote the global evolution of the quantum cellular automaton A =
(Σ, q,N, δ). We have that

∀c ∈ Cf ,
[
||∆|c〉|| =

∏
i∈Z

||δ|ci+N 〉||
]

Proof. The norm of a tensor product of vectors is the product of the norms of
the vectors. �

Algebraic Characterizations of Unitary Linear Quantum Cellular Automata 127

Lemma 3 (Expressiveness of normalized δ).
Let ∆ denote the global evolution of the quantum cellular automaton A = (Σ, q,
N, δ). Let ∆′ denote the global evolution of the quantum cellular automaton A′ =
(Σ, q,N, δ′), with δ′ such that ∀w ∈ (qΣ)n,

[
δ′|w〉 = δ|w〉/||δ|w〉||

]
. Suppose that

the columns of ∆ have unit norm. Then we have ∆ = ∆′.

Proof. For all c in Cf we have

∆|c〉 =
⊗
i∈Z

δ|ci+N 〉 =
⊗
i∈Z

||δ|ci+N 〉||.δ′|ci+N 〉

=
∏
i∈Z

||δ|ci+N 〉||.
⊗
i∈Z

δ′|ci+N 〉 = ||∆|c〉||.
⊗
i∈Z

δ′|ci+N 〉 = ∆′|c〉 �

Our approach is to change the actual definition of LQCA as a consequence.

Working definition 2 (LQCA).
As in Working Def. 1 but remove the no-nullity condition and add the normal-
ization condition:

∀w ∈ (qΣ)n,
[
||δ|w〉|| = 1

]
.

This modified definition of LQCA choses to impose that ∀w ∈ (qΣ)n,
[
||δ|w〉|| =

1
]
, i.e. that the local transition function δ is normalized. Then the fact that the

columns of ∆ have unit norm follows straight from Lem. 2. Note that we can
omit the no-nullity condition as it is implied by the normalization condition.

Surely this is not the only way to tackle the problem, but this one has been
chosen due to the many advantage arising:

- The alternative is to have various non-normalized states compensating each
other non-locally, which from a physical point of view is somewhat disturbing;
- It saves us from having to employ more elaborate techniques to check that
columns have unit norms[4][7], such as applying least path algorithm to the
associated de Bruijn graphs of the quantum cellular automata etc. Although very
elegant these tend to render quantum cellular automata much more oblivious as
a model of computation;
- The modification made has absolutely no cost in terms expressiveness, as
demonstrated in Lemma 3;
- The normalization condition will later bring out more crucial simplifications.

4 Orthogonality of Columns

Having checked that the columns of the global evolution matrix ∆ have unit
norm, we now turn to the problem of deciding whether these columns are mu-
tually orthogonal. First we need a definition.

Definition 6 (A-matrix).
Consider a linear quantum cellular automaton A = (Σ, q,N, δ). We call A =[
Axy

]
with x, y ∈ (qΣ)n−1 the matrix (tensor) such that Axy =

∑
σ∈qΣ Aσ

xy|σ〉
equals δ|w〉 if we have both x = w1...n−1 and y = w2...n for some w ∈ (qΣ)n,
otherwise it is the null vector.

128 P. Arrighi

For instance consider the sample rule: δ|000〉 = |0〉, δ|001〉 = |1〉, δ|010〉 = |1〉,
δ|011〉 = |0〉, δ|100〉 = |0〉, δ|101〉 = |1〉, δ|110〉 = |1〉, δ|111〉 = |0〉.

Then the A-matrix of the sample rule is:

|0〉 0 |0〉 0
|1〉 0 |1〉 0
0 |1〉 0 |1〉
0 |0〉 0 |0〉

 . E.g. since 01 and

00 do not “follow each other” the entry 〈00|A|01〉 holds the null vector. On the
other hand 01 and 10 do overlap correctly to form the neighbourhood 010, for
which δ|010〉 = |1〉, hence 〈10|A|01〉 = |1〉.

How can we check that all columns of some global evolution are mutually
orthogonal, when there is infinitely many of them? Our next proposition is crucial
in that respect, as it shows why the problem which might seem to be of an infinite
(undecidable) nature is indeed of a finite (decidable) nature.

Proposition 1 (Finite columns checks).
This result refers to working definition 2.

Consider the global evolution∆ of a quantum cellular automatonA = (Σ, q,N, δ).
Let s be equal to |qΣ|2n−2−1 and I be the interval [0, s]. The columns {∆|c〉 | c ∈ Cf}
are orthogonal if and only if the columns {∆|c〉 | c ∈ CI

f} are orthogonal.

(See [2] for a detailed proof.)
We now give our algebraic condition upon δ ensuring that the columns of ∆ are
mutually orthogonal.

Proposition 2 (Column test).
This result refers to working definition 2.

Consider the global evolution∆ of a quantum cellular automatonA = (Σ, q,N, δ).
Let s = |qΣ|2n−2 − 1. The columns {∆|c〉 | c ∈ Cf} are orthogonal if and only if
∀x, x′ ∈ (qΣ)n−1:[

〈xx′|M s|qn−1qn−1〉〈qn−1qn−1|M s|xx′〉 	= 0 ⇔ (x = x′)
]

(1)

with M = [Mxx′,yy′],Mxx′,yy′ =
∣∣∑

σ A
σ∗
x′y′Aσ

xy

∣∣2, A the A-tensor of the LQCA.

(See [2] for a detailed proof.)
We believe that the obtention of algebraic conditions constituted a necessary
step in order to be able to take further the analysis of this model. The alge-
braic proofs of these conditions give them a physical meaning which shortcuts
the graph-theoretical detour, which is particularly useful since quantum theory
people tend to reason in terms of linear algebra rather than graph theory. They
also master the corresponding numerical tools better, Proposition 2 makes it
easy to check for column orthonormality through any software tool which does
matrix multiplication.

Still there remains some space for improvement, for instance because Propo-
sition 2 is phrased in terms of the somewhat bizarre A-tensor of A, rather than
just δ. Fortunately this first point can be fixed using the quantum equivalent of
a simplifying classical result[8][12][3]:

Algebraic Characterizations of Unitary Linear Quantum Cellular Automata 129

Lemma 4 (Expressivity of size two δ).
This result refers to working definition 2.

Consider a linear quantum cellular automaton A′ = (Σ, q,N, δ′) and its global
evolution ∆′. One can always construct a linear quantum cellular automaton
A = (Σn−1, qn−1, {0,1}, δ) such that its global evolution ∆ equals ∆′. Then the
A-tensor of A is just δ =

[
δσ
xy

]
, with x, y, σ ∈ Σn−1.

Proof. We let, for all x, y ∈ Σn−1

δ|x1 . . . xn−1y1 . . . yn−1〉 ≡
⊗

i∈[1,n−1]

δ′|xi . . . xn−1y1 . . . yi〉 .

The rest follows from the definitions. �
Note that the groups of n − 1 cells constructed in this lemma bear some re-
semblance with the reduced neighbourhoods Ñ constructed by Dürr et al. [4] –
except they do not overlap, which consequently saves us from using De Bruijn
graphs and the like. This suggests that in spite of its apparent simplicity this
trick is probably just the right way to enumerate/construct LQCA.

We change the definition of LQCA as a consequence.

Working definition 3 (LQCA).
A linear quantum cellular automaton (LQCA) is a 3-tuple A = (Σ, q, δ), where:

- Σ is a finite set of symbols (“the alphabet”);
- q is a symbol such that q /∈ Σ (“the quiescent symbol”);
- δ : H(qΣ)2 → HqΣ is a function from superpositions of 2 symbols words to
superpositions of one symbol words (“the local transition function”).

Moreover δ must verify the following two properties:

- the quiescent stability condition:
[
δ|qq〉) = |q〉

]
.

- the normalization condition:

∀w ∈ (qΣ)2,
[
||δ|w〉|| = 1

]
.

This modified definition of LQCA choses to impose neighbourhoods of size two on
top of the normalization condition. For these linear quantum cellular automata we
define∆ as usual withN = {0, 1}. Again we are strongly justified to place this easy
restriction straight into the definition of LQCA for it simplifies and makes more
intuitive the decision procedure induced by Prop. 2, (the corresponding simplifi-
cations are shown in Corollary 1). The modification made comes at absolutely no
cost in terms expressiveness, as demonstrated in Lemma 4.

These successive two modifications we have made to our model will be even
more asserted by the important simplification they bring to the problem of de-
termining whether a LQCA has unit rows.

5 Unit Rows

Having checked that the columns of the global evolution matrix ∆ are orthonor-
mal, we now turn to the problem of deciding whether its rows have unit norm.

130 P. Arrighi

Proposition 3 (Row norm as matrix product).
This result refers to working definition 3.

Consider a quantum cellular automaton A = (Σ, q, δ) whose global evolution ∆
has orthonormal columns. The squared norm of any row r is given by

||∆†|r〉||2 = lim
h→∞

〈q|N (q)h(∏
i∈k...l

N (ri)
)
N (q)h|q〉

where {N (σ)}σ∈qΣ is the set of matrices such that N (σ) = [N (σ)
x,y], N (σ)

x,y =
|〈σ|δ|xy〉|2.

(See [2] for a detailed proof.)
The following proposition takes advantage of the successive restrictions made in
definitions 2 and 3 to bring about a crucial simplification – which makes obsolete
a good half of the procedure described in [5].

Proposition 4 (Middle segment).
This result refers to working definition 3.

Consider a quantum cellular automaton A = (Σ, q, δ) whose global evolution ∆
has orthonormal columns. The rows {∆†|r〉 | r ∈ Cf} have unit norm if and only if

lim
h→∞

〈q|NhONh|q〉 = |qΣ|

with O = [1xy] the matrix with only ones, and N = [Nx,y], Nx,y = |〈q|δ|xy〉|2.

(See [2] for a detailed proof.)
Note that limh→∞〈q|NhONh|q〉 =

∑
r∈C[0,0]

f

||∆†|r〉||2. Hence we have the fol-

lowing insightful corollary, which comes as the direct analogue of our Prop. 1.
Curiously however it will not contribute to our final result.

Proposition 5 (Finite rows check).
This result refers to working definition 3.

Consider a quantum cellular automaton A = (Σ, q, δ) whose global evolution ∆
has orthonormal columns. The rows {∆†|r〉 | r ∈ Cf} have unit norm if and only
if the rows {∆†|r〉 | r ∈ C[0,0]

f } have unit norm.

Both results deepen our understanding of the algebraic structure of unitary linear
quantum cellular automata. Prop. 4 offers an important simplification along the
way to determining whether the global evolution ∆ has unit rows, reducing this
to the evaluation of

−→
l .O−→r .

The difficult problem we are left with is that of evaluating the so-called ‘bor-
der vectors’ [5] −→r = limh→∞Nh|q〉 and

−→
l = limh→∞N †h|q〉. The following

proposition will characterize them uniquely and algebraically. We let ≤ denotes
the following partial order upon m× n matrices:

M ≤ N ⇐⇒ ∀i, j Mij ≤ Nij .

Column vectors are seen as m× 1 matrices for that matter.

Algebraic Characterizations of Unitary Linear Quantum Cellular Automata 131

Proposition 6 (Border vectors).
This result refers to working definition 3.

Consider a quantum cellular automaton A = (Σ, q, δ) whose global evolution ∆
has orthonormal columns. The vectors

−→r = lim
h→∞

Nh|q〉 and
−→
l = lim

h→∞
N †

h|q〉

with N = [Nx,y], Nx,y = |〈q|δ|xy〉|2, have only finite entries. They verify
−→r = min

≤
{v | 0 ≤ v ∧ Nv = v ∧ vq = 1}

and
−→
l = min

≤
{v | 0 ≤ v ∧ vN = v ∧ vq = 1} .

Moreover the following extra conditions hold:

(i)
−→
l .−→r = 1;

(ii) (
∑

i

−→
l i)(

∑
i
−→r i) ≤ |qΣ|.

(iii) ∀x ∈ Σ, [
−→
l x = 0 ∨ −→r x = 0];

(iv) ∀x, y ∈ Σ, [Nxy 	= 0 ⇒ −→
l x = 0 ∨ −→

l y = 0];
Inequality (ii) is saturated if and only if ∆ has unit rows.

(See [2] for a detailed proof.)
This last proposition is highly informative, and in most cases will provide us
with an effective way to compute these border vectors, through a spectral de-
composition of N . When the eigenvalue 1 is degenerate, however, we leave it as
an open problem whether there exists a definite procedure to performing the
minimization.

6 Conclusion

The following theorem is a synthesis our results.

Theorem 1 (Summary).
This result refers to working definition 3.

Consider the global evolution ∆ of a quantum cellular automaton A = (Σ, q, δ).
Let s = |qΣ|2 − 1. ∆ is unitary if and only if ∀x, x′ ∈ (qΣ):

[〈xx′|M s|qq〉〈qq|M s|xx′〉 	= 0 ⇔ (x = x′)]

and (
∑

i

−→
l i)(

∑
i

−→r i) = |qΣ|

with −→r = min
≤
{v | 0 ≤ v ∧ Nv = v ∧ vq = 1};

−→
l = min

≤
{v | 0 ≤ v ∧ vN = v ∧ vq = 1};

M = [Mxx′,yy′], Mxx′,yy′ =
∣∣〈x′y′|δ†δ|xy〉∣∣2;

N = [Nx,y], Nx,y = |〈q|δ|xy〉|2.

132 P. Arrighi

Once again we stress that our approach is not a complexity-theoretic one. We have
not sought to compare ourselves to [4,5] on such a ground, and nor have we sought
to evaluate the hidden cost of computations with complex numbers of arbitrary
precision, or the approximations any alternative may entail. Our approach is an
algebraic one, and in this respect we have definitely gone a long way towards the
simplification and the algebraization of unitarity criteria for linear quantum cel-
lular automata as defined in [15], [4], [5]. Note that these last two papers do not
contain any such synthetic algebraic criteria. Instead they provide several pages
long decision procedures, which have many twists and bends.

Certainly we have not gone as far as to reduce LQCA to partitioned quan-
tum cellular automata (PQCA) or quantum cellular automata with Margolus
neighbourhood (MQCA) etc., i.e. our global evolution cannot, in general, be
decomposed into the application of one small unitary operator homogeneously
across space.

Other models of quantum cellular automata do admit such reductions; the
problem of deciding unitarity becomes incomparably easier, or even trivial by
construction [13]. Such crucial differences seem to arise when one considers dif-
ferent spaces of configurations, e.g. finite periodic [14], because these constrain
reversibility to be structural, i.e. an essentially local matter. With the space
of finite configurations Cf reversibility becomes a global matter, even though
the global evolution is defined locally. Analogues of this are well-known in the
classical realm already:

Remark 1. Consider Xor’ = ({q, 0, 1}, q, δ) with δ|00〉 = |0〉, δ|01〉 = |1〉, δ|10〉 =
|1〉, δ|11〉 = |0〉, δ|q0〉 = |q〉, δ|q1〉 = |q〉, δ|0q〉 = |0〉, δ|1q〉 = |1〉. Its correspond-
ing global evolution ∆ is bijective in the space of finite configurations (i.e. it
is unitary), but the global evolution cannot be reversed by a cellular automata.
Moreover∆ is not reversible in the space of infinite configurations (. . . 00 . . . may
have antecedents either . . . 00 . . . or . . . 11 . . .).

One may argue that PQCA models are enough, since they simulate the quantum
Turing machine. If we are interested in ’intrinsic universality’ however, and want
to consider the above example as ’physical’ then these are not enough. A local
transition δ which is unitary in the space of infinite configurations is also unitary
in the space if finite configurations, but the reciprocal statement is not true. In
this sense there may be a loss of expressiveness when restricting to PQCA models.

Note that this research constitutes a first step in the quest for the identifi-
cation of the one particular unitary LQCA known to simulate all other LQCA
efficiently. Obviously as we restrict the number of linear quantum cellular au-
tomata to be considered to a well-behaved subclass, the quest for such an ‘in-
trinsically universal’ one dimensional quantum cellular automata must become
easier. Moreover our approach may eventually open this (well-advertised in the
literature) open problem to an algebraic analysis.

Note also that it is undecidable whether local transition function δ induces
a unitary global evolution ∆ as soon as the quantum cellular automata is two
dimensional. But again this does not have to be the end of it: nothing prevents
that there should be a canonical definition of two dimensional quantum cellular

Algebraic Characterizations of Unitary Linear Quantum Cellular Automata 133

automata, easily checked for unitarity, and yet capable of expressing the exact
same set of global evolutions. For this purpose algebraic criteria ought to be
easier to generalize to higher dimensions.

Acknowledgments

P.J.A would like to thank Shu Yan Chan, Christoph Dürr, Simon Perdrix, and
Estrella Sicardi for a number of insightful conversations, and acknowledges the
direct help of Thierry Gallay in proving Prop. 6. Many thanks also to Gonzalo
Abal, Arturo Lezama, Alejandro Romanelli, Ricardo Siri and above all Philippe
Jorrand.

References

1. S. Amoroso, Y. N. Pratt, Decision procedures for surjectivity and injectivity of
parallel maps for tesselations structures, J. Comp. Syst. Sci., 6, 448–464, (1972).

2. P. Arrighi, Algebraic characterizations of unitary linear quantum cellular automata,
arXiv:quant-ph/0512040.

3. T. Boykett, Efficient exhaustive enumeration of reversible one dimensional cellular
automata, Theoretical Computer Science, (2004).

4. C. Dürr, H. LêThanh, M. Santha, A decision procedure for well formed quantum
cellular automata, Random Structures and Algorithms, 11, 381–394, (1997).

5. C. Dürr, M. Santha, A decision procedure for unitary quantum linear cellular au-
tomata, SIAM J. of Computing, 31(4), 1076–1089, (2002).

6. R. P. Feynman, Quantum mechanical computers, Found. Phys. 16, 507-531, (1986).
7. P. Hoyer, Note on linear quantum cellular automata, manuscript.
8. O. H. Ibarra, T.Jiang, On the computing power of one-way cellular arrays, ICALP,

550–562, (1987).
9. R. Landauer, Irreversibility and heat generation in the computing process, IBM J.

Res. Dev., 5(183), (1961).
10. D. A. Meyer, Unitarity in one dimensional nonlinear quantum cellular automata,

arXiv:quant-ph/9604011.
11. M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information,

Cambridge University Press, (2000).
12. J. Pedersen, Cellular automata as algebraic systems, Complex Systems, 6, 237–250,

(1992).
13. B. Schumacher, R. F. Werner, Reversible quantum cellular automata, arXiv:quant-

ph/0405174.
14. W. Van Dam, Quantum Cellular Automata, Master thesis, Department of Mathe-

matics and Computer Science, University of Nijmegen, The Netherlands, (1996).
15. J. Watrous, On one dimensional quantum cellular automata, Complex Systems

5(1), 19–30, (1991).

A Polynomial Time Nilpotence Test for Galois

Groups and Related Results

V. Arvind1 and Piyush P Kurur2,�

1 Institute of Mathematical Sciences
C.I.T Campus, Chennai 600 113, India

arvind@imsc.res.in
2 Department of Computer Science and Engineering,

Indian Institute of Technology, Kanpur,
Kanpur 208016, UP, India

ppk@cse.iitk.ac.in

Abstract. We give a deterministic polynomial-time algorithm to check
whether the Galois group Gal (f) of an input polynomial f(X) ∈ Q[X] is
nilpotent: the running time is polynomial in size (f). Also, we generalize
the Landau-Miller solvability test to an algorithm that tests if Gal (f)
is in Γd: this algorithm runs in time polynomial in size (f) and nd and,
moreover, if Gal (f) ∈ Γd it computes all the prime factors of #Gal (f).

1 Introduction

Computing the Galois group of a polynomial is a fundamental problem in al-
gorithmic number theory. Asymptotically, the best known algorithm is due to
Landau [3]: on input f(X), it takes time polynomial in size (f) and the order
of its Galois group Gal (f). If f(X) has degree n then Gal (f) can have n! el-
ements. Thus, Landau’s algorithm takes time exponential in input size. It is a
long standing open problem if there is an asymptotically faster algorithm for
computing Gal (f). Lenstra’s survey [6] discusses this and related problems.

A different kind of problem is to test for a given f(x) if Gal (f) satisfies a
specific property without explicitly computing it. Galois’s seminal work showing
f(X) is solvable by radicals if and only if Gal (f) is solvable is a classic example.
Landau and Miller [4] gave a remarkable polynomial-time algorithm for testing
solvability of the Galois group without computing the Galois group.

1.1 The Results of This Article

Our main result is a deterministic polynomial-time algorithm for testing if Gal (f)
is nilpotent. Although nilpotent groups are a proper subclass of solvable groups,
the Landau-Miller solvability test does not give a nilpotence test. Basically, the
Landau-Miller test is a method of testing that all composition factors of Gal (f)

� Work done when the author was a PhD student at the Institute of Mathematical
Sciences, Chennai.

R. Královič and P. Urzyczyn (Eds.): MFCS 2006, LNCS 4162, pp. 134–145, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

A Polynomial Time Nilpotence Test for Galois Groups and Related Results 135

are abelian, which tests solvability. Nilpotence however is a more “global” prop-
erty, in the sense that it cannot be inferred from properties of the composition
factors alone.

We note here that nilpotence testing of Galois groups has been addressed
by other researchers with the goal of developing good practical algorithms. For
example in [2] an algorithm for nilpotence testing is given which takes worst-case
time polynomial in size (f) and #Gal (f). However, ours is the first algorithm
that is provably polynomial time, i.e. runs in time polynomial in size (f), on all
inputs. On the other hand, we have not studied the practicality of our algorithm.

Next, we show that the Landau-Miller solvability test can be extended to a
polynomial-time algorithm for checking, given f ∈ Q[X], if Gal (f) is in Γd for
constant d. A group G is in Γd if there is a composition seriesG = G0�. . .�Gt =
{1} such that each nonabelian composition factor Gi/Gi+1 is isomorphic to a
subgroup of Sd. The class Γd often arises in permutation group algorithms (see
e.g. [7]). Moreover, if Gal (f) ∈ Γd, the prime factors of #Gal (f) can be found
in polynomial time.

1.2 Galois Theory Overview

We quickly recall some Galois theory (see, e.g. [5] for details). Let L and K be
fields. If L ⊃ K, we say that L is an extension of K and denote it by L/K. If
L/K then L is a vector space over K and by the degree of L/K, denoted by
[L : K], we mean its dimension. An extension L/K is finite if its degree [L : K]
is finite. If L/M and M/K are finite extensions then [L : K] = [L : M].[M : K].
The polynomial ring K[X] is a unique factorisation domain: every polynomial
can be uniquely (up to scalars) written as a product of irreducible polynomials.
Let L/K be an extension. An α ∈ L is algebraic over K if f(α) = 0 for some
f(X) ∈ K[X]. For α algebraic over K, the minimal polynomial of α over K is
the unique monic polynomial µα[K](X) of least degree in K[X] for which α is a
root. We write µα(X) for µα[K](X) when K is understood. Elements α, β ∈ L
are conjugates over K if they have the same minimal polynomial over K. The
smallest subfield of L containing K and α is denoted by K(α).

The splitting field Kf of f ∈ K[X] is the smallest extension ofK containing all
the roots of f . A finite extension L/K is normal if for all irreducible polynomials
f(X) ∈ K[X], either f(X) splits or has no root in L. Any normal extension
over K is the splitting field of some polynomial in K[X]. An extension L/K is
separable if for all irreducible polynomials f(X) ∈ K[X] there are no multiple
roots in L. A normal and separable finite extension L/K is a Galois extension.

The Galois group Gal (L/K) of L/K is the subgroup of automorphisms σ of
L that leaves K fixed, i.e. σ(α) = α for all α ∈ K. The Galois group Gal (f) of
f ∈ K[X] is Gal (Kf/K). For a subgroup G of automorphisms of L, the fixed
field LG is the largest subfield of L fixed by G. We now state the fundamental
theorem of Galois.

Theorem 1. [5, Theorem 1.1, Chapter VI] Let L/K be a Galois extension with
Galois group G. There is a one-to-one correspondence between subfields E of L

136 V. Arvind and P.P. Kurur

containing K and subgroups H of G, given by E � LH. The Galois group of
Gal (L/E) is H and E/K is a Galois extension if and only if H is a normal
subgroup of G. If H is a normal subgroup of G and E = LH then Gal (E/K) is
isomorphic to the quotient group G/H.

1.3 Presenting Algebraic Numbers, Number Fields and Galois
Groups

The algorithms we describe take objects like algebraic numbers, number fields
etc. as input. We define sizes of these objects. Integers are encoded in binary. A
rational r is given by coprime integers a, b such that r = a/b. Thus, size (r) is
size (a) + size (b). A polynomial T (X) = a0 + . . . + anX

n ∈ Q[X] is given by a
list of its coefficients. Thus, size (T) is defined as

∑
size (ai).

A number field is a finite extension of Q. Let K/Q be a number field of degree
n. By the primitive element theorem [5, Theorem 4.6, Chapter V], there is an
algebraic number η ∈ K such that K = Q(η). Such an element is a primitive
element ofK/Q and its minimal polynomial is a primitive polynomial. Let µη(X)
be the minimal polynomial of η over Q. Then the field K can be written as the
quotient K = Q[X]/µη(X). Thus K can be presented by giving a primitive
polynomial for K/Q. We can assume that η is an algebraic integer and hence its
minimal polynomial µη(X) has integer coefficients [5, Proposition 1.1, Chapter
VII]. When we say that an algorithm takes a number field K as input we mean
that it takes a primitive polynomial µη(X) for K as input. Thus the input size
for K, which we denote by size (K), is defined to be size (µη).

Suppose K = Q(η) is presented by µη(X). Notice that each α ∈ K can be
expressed as α = Aα(η) for a unique polynomial Aα(X) ∈ Q[X] of degree less
than n. By size (α) we mean size (Aα(X)). Note that the size of α ∈ K depends
on the primitive element η ∈ K. Now, for a polynomial f(X) = a0 + . . .+amX

m

in K[X] we define size (f) to be
∑

size (ai).
Let f(X) ∈ Q[X] of degree n. For an algorithm purporting to compute Gal (f),

one possibility is that it outputs the complete multiplication table for Gal (f).
However, this could be exponential in size (f) as Gal (f) can be as large as n!.
A succinct presentation of Gal (f) is as a permutation group acting on the roots
of f since elements of Gal (f) permute the roots of f and are completely de-
termined by their action on the roots of f . Thus, by numbering the roots of f ,
we can consider Gal (f) as a subgroup of the symmetric group Sn (note here
that Gal (f) is determined only up to conjugacy as the numbering of the roots
is arbitrary). Since any subgroup of Sn has a generator set of size n− 1 (see e.g.
[8]), we can present Gal (f) in size polynomial in n. Thus, by computing Gal (f)
we mean finding a small generator set for it as a subgroup of Sn. Determining
Gal (f) as a subgroup of Sn is a reasonable way of describing the output. Algo-
rithmically, we can answer several natural questions about a subgroup G of Sn

given by generator set in polynomial time. E.g. testing if G is solvable, finding
a composition series for G etc. [8].

Previous Complexity Results. As mentioned, the best known algorithm for com-
puting the Galois group of a polynomial is due to Landau [3].

A Polynomial Time Nilpotence Test for Galois Groups and Related Results 137

Theorem 2 (Landau). There is a deterministic algorithm that takes as input a
number field K, a polynomial f(X) ∈ K[X] and a positive integer b in unary, and
in time bounded by size (f), size (K) and b, decides if Gal (Kf/K) has at most
b elements, and if so computes Gal (Kf/K) by finding the entire multiplication
table of Gal (Kf/K) (and hence also by giving the generating set of Gal (Kf/K)
as a permutation group on the roots of f(X)).

The algorithm first computes a primitive element θ of Kf . Determining Gal (f)
amounts to finding the action of the automorphisms on θ. Subsequently, Landau
and Miller [4] gave their polynomial-time solvability test.

Theorem 3 (Landau-Miller). Given f(X) ∈ Q[X] there is a deterministic
polynomial-time algorithm for testing if Gal (f) is solvable.

2 Preliminaries

We recall some permutation group theory from Wielandt’s book [9]. Let Ω be
a finite set. The symmetric group Sym (Ω) is the group of all permutations on
Ω. By a permutation group on Ω we mean a subgroup of Sym (Ω). For α ∈ Ω
and g ∈ Sym (Ω), let αg denote the image of α under the permutation g. For
A ⊆ Sym (Ω), αA denotes the set {αg : g ∈ A}. In particular, for G ≤ Sym (Ω)
the G-orbit containing α is αG. The G-orbits form a partition of Ω. Given
G ≤ Sym (Ω) by a generating set A and α ∈ Ω, there is a polynomial-time
algorithm to compute αG [8].

For ∆ ⊆ Ω and g ∈ Sym (Ω), ∆g denotes {αg : α ∈ ∆}. The setwise stabilizer
of ∆, i.e. {g ∈ G : ∆g = ∆}, is denoted by G∆. If ∆ is the singleton set {α} we
write Gα instead of G{α}. For any ∆ by G|∆ we mean G∆ restricted to ∆. An
often used result is the orbit-stabilizer formula stated below [9, Theorem 3.2].

Theorem 4 (Orbit-stabilizer formula). Let G be a permutation group on
Sym (Ω) and let α be any element of Ω then the order of the group G is given
by #G = #Gα.#αG.

A permutation group G on Ω is transitive if there is a single G-orbit. Suppose
G ≤ Sym (Ω) is transitive. Then a non-empty subset ∆ of Ω is a G-block if for
all g ∈ G either ∆g = ∆ or ∆g ∩ ∆ = ∅. For every G, Ω is a block and each
singleton {α} is a block. These are the trivial blocks of G. A transitive group G
is primitive if it has only trivial blocks and it is imprimitive if it has nontrivial
blocks. A G-block ∆ is a maximal subblock of a G-block Σ if ∆ ⊂ Σ and there
is no G-block Υ such that ∆ ⊂ Υ ⊂ Ω. Let ∆ and Σ be two G-blocks. A chain
∆ = ∆0 ⊂ . . . ⊂ ∆t = Σ is a maximal chain of G-blocks between ∆ and Σ if
for all i, ∆i is a maximal subblock of ∆i+1.

For a G-block ∆ and g ∈ G, ∆g is also a G-block such that #∆ = #∆g. Let
∆ and Σ be two G-blocks such that ∆ ⊆ Σ. The ∆-block system of Σ, is the
collection

B (Σ/∆) = {∆g : g ∈ G and ∆g ⊆ Σ}.

138 V. Arvind and P.P. Kurur

The set B (Σ/∆) is a partition of Σ. It follows that #∆ divides #Σ and by
index of ∆ in Σ, which we denote by [Σ : ∆], we mean #B (Σ/∆) = #Σ

#∆ . We
will use B (∆) to denote B (Ω/∆). We state the connection between blocks and
subgroups [9, Theorem 7.5].

Theorem 5 (Galois correspondence of blocks). Let G ≤ Sym (Ω) be tran-
sitive and α ∈ Ω. For G ≥ H ≥ Gα the orbit ∆ = αH is a G-block and G∆ = H.
The correspondence αH = ∆ � G∆ = H is a one-to-one correspondence between
G-blocks ∆ containing α and subgroups H of G containing Gα. Furthermore for
G-blocks ∆ ⊆ Σ we have [GΣ : G∆] = [Σ : ∆].

Let G ≤ Sym (Ω) be transitive and ∆ and Σ be two G-blocks such that ∆ ⊆ Σ.
Let G(Σ/∆) denote the group {g ∈ G : Υ g = Υ for all Υ ∈ B (Σ/∆)}. We
write G∆ for the group G (Ω/∆). For any g ∈ GΣ , since g setwise stabilises
Σ, g permutes the elements of B (Σ/∆). Hence for any Υ ∈ B (Σ/∆) we have
Υ g−1G(Σ/∆)g = Υ . Thus, G (Σ/∆) is a normal subgroup of GΣ . In particular,
G∆ is a normal subgroup of G.

Remark. The following two lemmata are quite standard in permutation group
theory. For the reader’s convenience we have included short proofs. The following
lemma lists important properties of G∆.

Lemma 1.

1. For a G-block ∆ ⊆ Σ, G (Σ/∆) is the largest normal subgroup of GΣ con-
tained in G∆.

2. Let Σ be G-block then GΣ ↪→
∏

Υ∈B(Σ) G|Υ .

3. Let ∆ be a G-subblock of Σ then GΣ

G(Σ/∆) is a faithful permutation group on
B (Σ/∆) and is primitive when ∆ is a maximal subblock.

4. The quotient group GΣ/G∆ can be embedded as a subgroup of
(

GΣ

G(Σ/∆)

)l

for
some l.

Proof. Let N ⊆ G∆ be a normal subgroup of GΣ . Since ∆N = ∆, and since
GΣ acts transitively on B (Σ/∆), for any Υ ∈ B (Σ/∆) there is a g ∈ GΣ such
that Υ = ∆g. Therefore, ΥN = ∆gN = ∆Ng = Υ for each Υ ∈ B (Σ/∆). Thus
N ⊆ G (Σ/∆). Since G (Σ/∆) �GΣ we have proved part 1.

Part 2 directly follows from the definition of GΣ . Part 3 follows from the fact
that g, h ∈ GΣ have the same action on B (Σ/∆) precisely when gG (Σ/∆) =
hG (Σ/∆). The nontrivial GΣ

G(Σ/∆) -blocks of B (Σ/∆) are in 1-1 correspondence
with the G-blocks properly between ∆ and Σ. Thus, GΣ

G(Σ/∆) is primitive if and
only if ∆ is a maximal subblock of Σ.

For Part 4 notice that we have the group isomorphism

G|Υ
G (Υ/∆Υ)|Υ

∼=
GΥ

G (Υ/∆Υ)
,

A Polynomial Time Nilpotence Test for Galois Groups and Related Results 139

for each Υ ∈ B (Σ). As G∆ = GΣ ∩
∏

G (Υ/∆Υ)|Υ we have

GΣ/G∆ ↪→
∏

Υ∈B(Σ)

G|Υ
G (Υ/∆Υ)|Υ

=
∏

Υ∈B(Σ)

GΥ

G (Υ/∆Υ)
.

Let g ∈ G such that ∆g = ∆Υ . Then, GΥ = g−1GΣg and G (Υ/∆Υ) =
g−1G (Σ/∆)g. Thus, GΣ

G(Σ/∆) and GΥ

G(Υ/∆Υ) are isomorphic, which implies that

GΣ/G∆ is isomorphic to a subgroup of
(

GΣ

G(Σ/∆)

)l

for some l.

Lemma 2. Let G ≤ Sym(Ω) be transitive and N � G. Let α ∈ Ω. Then the
N -orbit αN is a G-block and the collection of N -orbits is an αN -block system of
Ω under G action. If N 	= {1} then ‖αN‖ > 1. Furthermore, if Gα ≤ N 	= G
then the αN -block system is nontrivial implying that G is not primitive.

Proof. Let α ∈ Ω and g ∈ G. Then (αN)g = αNg = αgN = (αg)N . Thus (αN)g

and αN are N -orbits, and hence are identical or disjoint. Thus, αN is a G-block
and the N -orbits form a block system. Clearly, if αN = {α} then N = {1}.
Finally, by the Orbit-Stabilizer formula #G = #Ω ·#Gα and #N = #αN ·#Gα.
Thus, if {1} 	= N 	= G then αN is a proper G-block.

3 Nilpotence Testing for Galois Groups

First we recall crucial properties of nilpotent transitive permutation groups.
These are standard group theoretic facts that we assemble together and, for the
sake of completeness, provide proof sketches where necessary. We start with a
characterisation of finite nilpotent groups. Let G be a finite group and p1, . . . , pk

be the prime factors of #G. For each i, let Gpi be a pi-Sylow subgroup ofG. Then
G is nilpotent if and only ifG is the (internal) direct productGp1×. . .×Gpk

. Con-
sequently, Gpi is the unique pi-Sylow subgroup of G for each i and hence Gpi �G.

Lemma 3. Let G ≤ Sym (Ω) be transitive and nilpotent, and p be any prime.
Then

(1) The prime p divides #G if and only if p divides #Ω.
(2) If p | #G and α ∈ Ω then there is a block Σα

p containing α such that #Σα
p

is the highest power of p that divides #Ω.
(3) Let ∆ be any G-block containing α such that #∆ = pl and suppose p divides

#G. Then ∆ ⊆ Σα
p . Also, for q 	= p, the q-Sylow subgroup of G∆ is given by

Gq ∩G∆ = Gq ∩Gα.

Proof. Part (1): As G is transitive, #Ω divides #G. Hence, each prime factor
of #Ω divides #G. Let p be a prime factor of #G. For α ∈ Ω, let Σα

p = αGp .
Since Gp is transitive on Σα

p , it follows from the Orbit-Stabilizer formula that
#Σα

p divides #Gp. Hence #Σα
p is pl for some l. Since Gp � G, by Lemma 2 it

follows that its orbit Σα
p is G-block which contains more than one element of Ω.

140 V. Arvind and P.P. Kurur

Hence #Σα
p = pl for some l > 0. Since p divides the cardinality of a G-block

Σα
p , p divides #Ω.
Part (2): From the Galois correspondence of G-blocks (Theorem 5) we have

[Ω : Σα
p] = [G : GΣα

p
]. Notice that p is not a factor of [G : Gp] as Gp is the

p-Sylow subgroup of G. Since Gp � GΣα
p

it follows that p is not a factor of
[G : GΣα

p
]. Hence p is not a factor of [Ω : Σα

p].
Part (3): notice that G∆ is a nilpotent group with the unique normal q-Sylow

subgroup Gq ∩G∆. Thus, G∆ =
∏

q(Gq ∩G∆). By Theorem 5 we have

#∆ = [G∆ : Gα] =
∏
q

[Gq ∩G∆ : Gq ∩Gα]. (1)

Since Gq ∩G∆ is a q-group, p divides [Gq ∩G∆ : Gq ∩Gα] if and only if q = p.
However, in Equation 1, #∆ is a power of p. This forces [Gq∩G∆ : Gq∩Gα] = 1
for all q 	= p. Thus Gq ∩G∆ = Gq ∩Gα for q 	= p. Therefore, G∆ is the product
group Gp ∩G∆ ×

∏
q �=p Gq ∩Gα. Since GΣα

p
contains both Gp and Gα we have

GΣα
p
≥ G∆. Thus, ∆ is a G-subblock of Σα

p .

We recall a result about permutation p-groups (see e.g. Luks [7, Lemma 1.1]).

Lemma 4. Let G ≤ Sym (Ω) be a transitive p-group and ∆ be a maximal G-
block. Then [Ω : ∆] = p and G∆ = G (Ω/∆) = G∆ is a normal group of index p
in G.

The next lemma is an easy consequence of Lemma 4 and it states a useful
property of permutation p-groups.

Lemma 5. Let H ≤ Sym (Ω) be a transitive p-group and α ∈ Ω. Let {α} =
∆0 ⊂ . . . ⊂ ∆t = Ω be any maximal chain of H-blocks. Then

1. [∆i+1 : ∆i] = p for all 0 ≤ i < t.
2. H(∆i+1/∆i) = H∆i . Hence, H∆i � H∆i+1 and the quotient H∆i+1/H∆i is

cyclic of order p.

We continue with the notation of Lemma 3. In the next lemma we show that
the block structure of transitive nilpotent permutation group G is similar to the
block structure of p-groups.

Lemma 6. Let G be a nilpotent transitive permutation group on Ω and let p be
a prime factor of #G. Let ∆ be any subset of Σα

p . Then ∆ is a G-block if and
only if ∆ is a Gp block (in its transitive action on Σα

p).

Proof. Let H denote the p-Sylow subgroup Gp. Let Ĥ denote the product∏
q �=p Gq of all other Sylow subgroups of G. Then G = H × Ĥ . Recall that

Σα
p is the H-orbit of α.
Firstly, anyG-block∆ ⊆ Σα

p is anH-block. To prove the converse consider any
H-blockΣ ⊆ Σα

p . Consider the groupG′ = HΣ×(Ĥ∩Gα). Notice that the group
G′ is a subgroup ofGΣα

p
. Also sinceGα is nilpotent, we haveGα = Hα×(Ĥ∩Gα).

A Polynomial Time Nilpotence Test for Galois Groups and Related Results 141

Furthermore since Σ is a H-block, we have HΣ ≥ Hα. Therefore G′ ≥ Gα and
by the Galois correspondence of blocks (Theorem 5), Σ = αG′

is a G-block and
GΣ = G′.

We give a characterisation of nilpotent transitive permutation groups using prop-
erties of maximal chains of G-blocks between {α} and Σα

p which is crucial for our
polynomial-time nilpotence test. This characterisation is probably well-known to
group theorists. However, as we haven’t seen it anywhere, we include a proof.

Theorem 6. Let G ≤ Sym (Ω) be a transitive permutation group satisfying
properties (1) and (2) of Lemma 3 (which are necessary conditions for nilpotence
of G). Fix an α ∈ Ω. The following statements are equivalent.

(1) G is nilpotent.
(2) For each prime factor p of #G, every maximal chain of G-blocks {α} =

∆0 ⊂ . . . ⊂ ∆m = Σα
p has the property that [∆i+1 : ∆i] = p, G∆i is a

normal subgroup of G∆i+1 , and p does not divide the order of G/G∆m .
(3) For each prime p dividing #G, there is a maximal chain of G-blocks {α} =

∆0 ⊂ . . . ⊂ ∆m = Σα
p with the property that [∆i+1 : ∆i] = p, G∆i is a

normal subgroup of G∆i+1 , and p does not divide the order of G/G∆m .

Proof. Clearly (2) implies (3). It suffices to show that (3) implies (1) and (1)
implies (2).

To see that (3) implies (1) it is enough to show that each Sylow subgroup of G
is normal. To this end, let p be a prime factor of #G and let {α} = ∆0 ⊂ . . . ⊂
∆m = Σα

p be a maximal chain ofG-blocks having the properties mentioned in (3).
Firstly, since G (∆i+1/∆i) is the largest normal subgroup of G∆i+1 that is

contained in G∆i (part 1 of Lemma 1), (3) implies that G∆i = G (∆i+1/∆i).
Furthermore it follows from Lemma 1 that there is a positive integer li for each
i such that the quotient group G∆i+1/G∆i is embeddable in an li-fold product
of copies of

G∆i+1
G(∆i+1/∆i)

= G∆i+1/G∆i . Since [G∆i+1 : G∆i] = p it follows that

G∆i+1/G∆i is a p-group for each i. As #G∆m =
∏m−1

i=0 [G∆i+1 : G∆i], G∆m is
also a p-group. Since G∆m �G and p does not divide [G : G∆m] it follows that
G∆m is a normal p-Sylow subgroup of G. The nilpotence of G follows as this
holds for all prime factors of #G.

Next, we show that (1) implies (2). Suppose G is nilpotent. Let p be a prime
factor of #G and α ∈ Ω. Let H be the p-Sylow subgroup Gp of G and let
Ĥ =

∏
q �=pGq be the product of all its other Sylow subgroups. Let {α} = ∆0 ⊂

∆1 ⊂ . . . ⊂ ∆m = Σα
p be any maximal chain of G-blocks between α and Σα

p . It
follows from Lemma 6 that the chain {∆}0≤i≤m is a maximal chain of Gp-blocks.
By Lemma 5 we have [∆i+1 : ∆i] = p, H∆i �H∆i+1 , and H∆i+1/H∆i is cyclic
of order p. The group G∆i = H∆i × Ĥ∆i and G∆i+1 = H∆i+1 × Ĥ∆i+1 . Also
since Ĥ∆i is the product of q-Sylow subgroups of H∆i where q varies over all
prime factors of #G different from p, it follows from Lemma 3 that Ĥ∆i = Ĥα.
Therefore G∆i � G∆i+1 and quotient group G∆i+1/G∆i

∼= H∆i+1/H∆i . The
group G/G∆m acts faithfully on B (Ω/∆m) and is transitive under this action.
Since p � [Ω : ∆m], p cannot divide the order of G/G∆m (Lemma 3).

142 V. Arvind and P.P. Kurur

The following lemma is important for the nilpotence testing algorithm. If G
is nilpotent then, for each prime factor p of #G, the lemma implies that no
matter how the maximal chain of blocks ∆i of Theorem 6 is constructed, it
must terminate in Σα

p .

Lemma 7. Let G be a transitive nilpotent permutation group on Ω. Let p be any
prime dividing #G. Let ∆ be any G-block such that #∆ = pl for some integer
l ≥ 0. Let m be the highest power of p that divides #Ω. If l < m then we have

1. There exists a G-block Σ such that ∆ is a maximal G-subblock of Σ and
[Σ : ∆] = p.

2. For all G-blocks Σ such that ∆ is a maximal G-subblock of Σ and [Σ : ∆] =
p, G∆ is a normal subgroup of GΣ.

Proof. Since #∆ is pl it follows that ∆ is a G-subblock of Σα
p (Lemma 3). It

follows from Lemma 6 that ∆ is a Gp-block on the transitive action of Gp on Σα
p .

Furthermore if l < m there is a Gp-block Σ (and hence by Lemma 6 a G-block)
such that Σα

p ⊇ Σ ⊃ ∆ and [Σ : ∆] = p. This proves part 1.
Let α ∈ ∆. It follows from Lemma 3 that for q 	= p the q-Sylow subgroup ofGΣ

and G∆ are both Gq ∩Gα. Let Ĝp be
∏

q �=p Gq. The groupsGΣ andG∆ are (Gp∩
GΣ)×(Ĝp∩Gα) and (Gp∩G∆)×(Ĝp∩Gα) respectively. Moreover,Gp∩GΣ and
Gp∩G∆ are p-groups with index [Gp∩GΣ : Gp∩G∆] = [GΣ : G∆] = [Σ : ∆] = p.
Therefore,Gp ∩G∆ is normal in Gp ∩GΣ . Thus, G∆ = (Gp ∩G∆)× (Ĝp ∩Gα) is
normal in GΣ = (Gp ∩GΣ)× (Ĝp ∩Gα) and GΣ

G∆
= Gp∩GΣ

Gp∩G∆
is isomorphic to Zp.

3.1 The Nilpotence Test

Given f(X) ∈ Q[X] our goal is to test if Gal (f) is nilpotent. We can assume
that f(X) is irreducible. For, otherwise we can compute the irreducible factors
of f(X) over Q using the LLL algorithm, and perform the nilpotence test on
each distinct irreducible factor. This suffices because nilpotent groups are closed
under products and subgroups. Let G be Gal (f). We consider G as a subgroup
of Sym (Ω), where Ω is the set of roots of f(X). Since f is irreducible, G is
transitive on Ω.

For any G-block ∆, let Q∆ be the fixed field of the splitting field Qf under
the automorphisms of G∆. Let ∆ be a G-block containing α. Since G∆ ≥ Gα,
Q∆ is a subfield of Q{α} = Q(α).

We describe the main idea. By Theorem 6, G is nilpotent if and only if for
all primes p that divide the order of G, there is a maximal chain of G-blocks
{α} = ∆0 ⊂ . . . ⊂ ∆m satisfying conditions of part (3) of Theorem 6. We
show these conditions can be verified in polynomial time once the tower of fields
Q(α) = Q∆0 ⊃ . . . ⊃ Q∆m are known. Thus, for testing nilpotence of G we
will first need a polynomial-time algorithm that computes Q∆i . The following
theorem is essentially due to Landau and Miller [4] restated in a form suitable
for our application.

A Polynomial Time Nilpotence Test for Galois Groups and Related Results 143

Theorem 7. Let f(X) ∈ Q[X] be irreducible, G = Gal (f) be its Galois group
and Ω be the set of roots of f . Let ∆ ⊆ Ω be any G-block and α ∈ ∆. There is
an algorithm that given a primitive polynomial µ∆(X) ∈ Q[X] of Q∆, runs in
time polynomial in size (f) and size (µ∆) and computes a primitive polynomial
µΣ(X) ∈ Q[X] of QΣ for all G-blocks Σ such that ∆ is a maximal block of
Σ. Moreover size (µΣ) is at most a polynomial in size (f) and is independent of
size (µ∆).

We now give a high level description of the nilpotence testing algorithm.

Input: A polynomial f(X) ∈ Q[X] of degree n

Output: “Accept” if Gal (f) is nilpotent;“Reject” otherwise

Using the Landau-Miller test verify that Gal (f) is solvable;
1 Compute the set P of all the prime factors of #Gal (f);

Let G ≤ Sym(Ω) denote the Galois group of f , where Ω is the set of roots of f .
2 for every p ∈ P do

if p does not divide n then
print Reject

end
Let m be the highest power of p dividing n.

3 Attempt to compute the tower Q∆m ⊂ . . . ⊂ Q∆0 for a maximal chain of G-
blocks {α} = ∆0 ⊂ . . . ⊂ ∆m such that [Q∆i+1 : Q∆i] = p.

4 if Step 3 fails or Q∆i+1 is not normal over Q∆i then
print Reject

end
Let µ∆m(X) be the primitive polynomial for Q∆m

5 if p divides #Gal (µ∆m) then
print Reject

end
end
print Accept

Algorithm 1. Nilpotence test

We prove that Algorithm 1 runs in polynomial time. For steps 1 and 5 note
that for polynomials f with solvable Galois groups, as a byproduct of the Landau-
Miller test [4], the prime factors of #Gal (f) can be found in polynomial time
(see also Theorem 11). We now explain how step 3 can be done in polynomial
time using Theorem 7. We construct Q∆i inductively starting with Q∆0 = Q(α).
Assume we have computed Q∆i . Using Theorem 7 we compute QΣ for each G-
block Σ containing ∆i as a maximal G-subblock. Among them choose a QΣ for
which [Σ : ∆i] = p and let Q∆i+1 be QΣ . The inductive construction of Q∆i+1

from Q∆i can be done in time bounded by a polynomial in size (f). Putting it
together we have the following proposition.

Proposition 1. Algorithm 1 runs in time polynomial in size (f).

We now argue its correctness. Part (1) of Theorem 6 implies that if G is nilpo-
tent then Algorithm 1 accepts. Conversely, suppose the algorithm accepts. Then

144 V. Arvind and P.P. Kurur

for each prime p dividing #G we have a maximal chain of G-blocks {α} =
∆0 ⊂ . . . ⊂ ∆m such that Q∆i/Q∆i+1 are normal extensions for each 0 ≤ i < m
(this we verify in step 4 of Algorithm 1). Recall that Q∆i is the fixed field of Qf

w.r.t. G∆i . Hence by checking Q∆i/Q∆i+1 is a normal extension we have verified
that G∆i �G∆i+1 . Also, the splitting field of the primitive polynomial µ∆m(X)
is the normal closure of Q∆m over Q. It follows from Lemma 1 and Theorem 1
that Gal (µ∆m) is G∆m . Hence, by checking p does not divide #Gal (µ∆) we
have verified that p does not divide #G/G∆m . Thus, we have verified that the
maximal chain of G-blocks {α} = ∆0 ⊂ . . . ⊂ ∆m satisfies the conditions of
Part(3) of Theorem 6 implying that G is nilpotent. Putting it all together we
have the following theorem.

Theorem 8. There is a polynomial-time algorithm that takes f ∈ Q[X] as input
and tests if Gal (f) is nilpotent.

4 Generalising the Landau-Miller Solvability Test

In this section we show that the Landau-Miller solvability test can be adapted
to test if the Galois group of f(X) ∈ Q[X] is in Γd for constant d. Note that for
d < 5, Γd is the class of solvable groups and hence our result is a generalisation
of the result of Landau-Miller [4]. We first recall a well-known bound on the size
of primitive permutation groups in Γd.

Theorem 9 ([1]). Let G ≤ Sn be a primitive permutation group in Γd for a
constant d. Then #G ≤ nO(d).

Theorem 10. For constant d > 0, there is an algorithm that takes as input
f(X) ∈ Q[X] and in time polynomial in size (f) and nO(d) decides whether
Gal (f) is in Γd.

Proof. We sketch the proof. Assume without loss of generality that f(X) is
irreducible. Let G = Gal (f) as a subgroup of Sym (Ω), where Ω is the set of
roots of f . Let {α} = ∆0 ⊂ . . . ⊂ ∆t = Ω be any maximal chain of G-blocks.
The series {1} = G∆0 � . . . �G∆t = G gives a normal series for G. By closure
properties of Γd, G ∈ Γd iff G∆i+1

G∆i
∈ Γd for each i. If G is in Γd so are G∆i+1

and G (∆i+1/∆i) and hence their quotient
G∆i+1

G(∆i+1/∆i)
. On the other hand since

G∆i+1

G∆i
is isomorphic to a subgroup of

(
G∆i+1

G(∆i+1/∆i)

)l

for some l (Lemma 1),
G∆i+1

G∆i
∈ Γd if

G∆i+1
G(∆i+1/∆i)

∈ Γd. Hence G ∈ Γd iff
G∆i+1

G(∆i+1/∆i)
is in Γd for each i .

We give a polynomial-time algorithm to verify the above fact for some maximal
chain of G-blocks {α} = ∆0 ⊂ . . . ⊂ ∆t = Ω.

First, by Theorem 7we compute Ki = Q∆i for a maximal chain of G-blocks
{α} = ∆0 ⊂ . . . ⊂ ∆t = Ω. Let Li be the fixed field of Qf with respect to
the automorphisms of G (∆i+1/∆i) then Li+1 is the normal closure of Ki over
Ki+1. This follows because G (∆i+1/∆i) is the largest proper normal subgroup of

A Polynomial Time Nilpotence Test for Galois Groups and Related Results 145

G∆i+1 = Gal
(
Qf/Q∆i+1

)
. Hence Gal (Li+1/Ki+1) is

G∆i+1
G(∆i+1/∆i)

, and it suffices
to check that each Gal (Li/Ki) is in Γd.

The group
G∆i+1

G(∆i+1/∆i)
acts faithfully and primitively on Ω′ = B (∆i+1/∆i),

by Lemma 1 and since ∆i is a maximal subblock of ∆i+1. If G ∈ Γd then
[Li+1 : Ki+1] = #Gal (Li+1/Ki+1) ≤ nO(d) and degrees [Li : Q] are all less
than nO(d). We can use Theorem 2 to compute Gal (Li/Ki) as a multiplication
table in time polynomial in size (f) and nd for each i. We then verify that
Gal (Li/Ki) ∈ Γd by computing a composition series for it and checking that
each composition factor is in Γd. At any stage in the computation of Gal (Li/Ki)
if the sizes of the fields becomes too large, i.e. larger than the bound of Theorem 9
we abort the computation and decide that Gal (f) is not in Γd. Clearly, these
steps can be done in polynomial time.

It follows from the proof of Theorem 10 that a prime p divides #Gal (f) if and
only if it divides [Li : Ki] for some 1 ≤ i ≤ t.

Theorem 11. Given f(X) ∈ Q[X] with Galois group in Γd there is an algorithm
running in time polynomial in size (f) and nd that computes all the prime factors
of #Gal (f).

References

1. L. Babai, P. J. Cameron, and P. P. Pálfy. On the order of primitive groups with
restricted nonabelian composition factors. Journal of Algebra, 79:161–168, 1982.

2. P. Fernandez-Ferreiros and M. A. Gomez-Molleda. Deciding the nilpotency of the
galois group by computing elements in the centre. Mathematics of Computation,
73(248), 2003.

3. S. Landau. Polynomial time algorithms for galois groups. In J. Fitch, editor,
EUROSAM 84 Proceedings of International Symposium on Symbolic and Algebraic
Computation, volume 174 of Lecture Notes in Computer Sciences, pages 225–236.
Springer, July 1984.

4. S. Landau and G. L. Miller. Solvability by radicals is in polynomial time. Journal
of Computer and System Sciences, 30:179–208, 1985.

5. S. Lang. Algebra. Addison-Wesley Publishing Company, Inc, third edition, 1999.
6. H. W. Lenstra Jr. Algorithms in algebraic number theory. Bulletin of the American

Mathematical Society, 26(2):211–244, April 1992.
7. E. M. Luks. Isomorphism of graphs of bounded valence can be tested in polynomial

time. Journal of Computer and System Sciences, 25(1):42–65, 1982.
8. E. M. Luks. Permutation groups and polynomial time computations. DIMACS Se-

ries in Discrete Mathematics and Theoretical Computer Science, 11:139–175, 1993.
9. H. Wielandt. Finite Permutation Groups. Academic Press, New York, 1964.

The Multiparty Communication Complexity of

Exact-T : Improved Bounds and New Problems

Richard Beigel1, William Gasarch2,�, and James Glenn3

1 Temple University, Dept. of Computer and Information Sciences,
1805 N Broad St Fl 3, Philadelphia, PA 19122

professorB@gmail.com
2 University of Maryland, Dept. of Computer Science and Institute for Advanced

Computer Studies, College Park, MD 20742
gasarch@cs.umd.edu

3 Dept. of Computer Science, Loyola College in Maryland,
4501 N. Charles St, Baltimore, MD 21210

jglenn@cs.loyola.edu

Abstract. Let x1, . . . , xk be n-bit numbers and T ∈ N. Assume that
P1, . . . , Pk are players such that Pi knows all of the numbers except xi.
They want to determine if k

j=1 xj = T by broadcasting as few bits as

possible. In [7] an upper bound of O(
√

n) bits was obtained for the k = 3
case, and a lower bound of ω(1) for k ≥ 3 when T = Θ(2n). We obtain
(1) for k ≥ 3 an upper bound of k + O((n + log k)1/(�lg(2k−2))), (2) for
k = 3, T = Θ(2n), a lower bound of Ω(log log n), (3) a generalization
of the protocol to abelian groups, (4) lower bounds on the multiparty
communication complexity of some regular languages, and (5) empirical
results for k = 3.

1 Introduction

Multiparty communication complexity was first defined in [7] and was used to
obtain lower bounds on branching programs (BPs). It has been used to get
additional lower bounds and tradeoffs for BPs [1, 5], lower bounds on data
structures [5], time-space tradeoffs for restricted TMs [1], and unconditional
pseudorandom generators for logspace [1].

Def 1.1 Let f : {{0, 1}n}k → {0, 1}. Assume, for 1 ≤ i ≤ k, Pi has all of
the inputs except xi. Let d(f) be the total number of bits broadcast in the
optimal deterministic protocol for f . This is called the multiparty communication
complexity of f . This scenario is called the forehead model.

The multiparty communication complexity of the following function was used [7]
to obtain superlinear lower bounds on constant width BPs (later improved by [2,
4, 14]).

� Partially supported by NSF grant CCR-01-05413.

R. Královič and P. Urzyczyn (Eds.): MFCS 2006, LNCS 4162, pp. 146–156, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

The Multiparty Communication Complexity of Exact-T 147

Def 1.2 Let k, n, T ∈ N. (T stands for Target.) Let fk,T : {{0, 1}n}k → {0, 1}
be defined as

fk,T (x1, . . . , xk) =
{

1 if
∑k

j=1 xj = T ;
0 otherwise.

We refer to fk,T as the Exact-T problem.

Determining d(fk,T) is equivalent to a problem in combinatorics. From this one
obtains:

1. d(f3,T) = O(
√
n).

2. For all k, for T = Θ(2n), d(fk,T) is not constant in n.

This paper contains the following.

1. New upper and lower bounds on d(fk,T):
(a) For k ≥ 4, d(fk,T) ≤ k +O((n + log k)1/(�lg(2k−2)�)).
(b) For k = 3, for T = Θ(2n), d(f3,T) ≥ Ω(log logn). The proof uses a

Ramsey-theoretic lemma (Lemma 5.1).
2. A group-theoretic version of the Exact-T problem that we denote fGk,T .

(a) Bounds on d(fG3) yield bounds on d(fk,T).
(b) For all finite abelian groups G of size g, d(fG3,T) ≥ Ω(log log log g).
(c) For almost all finite abelian groups G, a nontrivial protocol for fGk,T .

(d) d(fZm

k,T) ≤ k +O((logm+ log k)1/(�lg(2k−2)�)).

3. Application: We use the lower bound on d(fGk) to obtain lower bounds on
the multiparty communication complexity of several regular languages.

4. Empirical results: We have some empirical results about 3-free sets that
lead to concrete upper bounds on d(f3,T) for T = 2n.

Notation 1.3 If T ∈ N then [T] denotes the set {1, . . . , T}.

Def 1.4 f ≤O(1)
cc g if there exists a protocol for f that has the following prop-

erties. (1) The protocol may invoke a protocol for g once on an input of length
O(n), (2) before and after the invocation, the players may broadcast O(1) bits.
f ≡O(1)

cc g if f ≤O(1)
cc g and g ≤O(1)

cc f . Note that ≤O(1)
cc is transitive and that if

f ≤O(1)
cc g then d(f) ≤ d(g) +O(1).

2 Multiparty Communication Complexity and
Combinatorics

In this section we review the connections between the multiparty communication
complexity of f3,T and combinatorics that was first established in [7]. We also
review the upper and lower bounds that they obtained.

148 R. Beigel, W. Gasarch, and J. Glenn

Def 2.1 Let c, k, T ∈ N with k ≥ 3.

1. A proper c-coloring of [T]k−1 is a function C : [T]k−1 → [c] such that
there do not exist x1, . . . , xk−1 ∈ [T] and λ ∈ Z − {0} with (1) for all i,
xi+λ ∈ [T], and (2) C(x1, x2, x3, . . . , xk−1) = C(x1 +λ, x2, x3, . . . , xk−1) =
· · · = C(x1, x2, x3, . . . , xk−1 + λ)

2. Let χk(T) be the least c such that there is a proper c-coloring of [T]k−1.

Theorem 2.2 [7]

1. d(fk,T) ≤ k − 1 + �lg(χk(T) + 1)� = k + lg(χk(T)) +O(1).
2. If x1, . . . , xk ∈ {0, . . . , T} then d(fk,T) ≥ lg(χk(

⌊
T
k

⌋
)) +Ω(1).

Def 2.3

1. A k-AP is an arithmetic progression of length k.
2. A set A ⊆ [T] is k-free if there do not exist any k-AP’s in A.
3. Let rk(T) be the size of the largest k-free subset of [T].

The next theorem states combinatorial facts that are needed for the upper and
lower bounds, and then the bounds themselves.

Theorem 2.4 [7]

Chandra, Furst, and Lipton used the fact that there are 3-free sets of [T] of size
T 2−O(log T)1/2

(due to [6], but see [13] for a constructive version and [8] for an
exposition) to obtain the following.

Corollary 2.5 d(f3,T) ≤ O(
√

log T). When T = Θ(2n), d(f3,T) = O(
√

logT) =
O(
√
n).

3 New Upper Bounds

The following lemma yields large k-free sets. We will use these sets to obtain
new explicit upper bounds for χk(T) when k ≥ 4, which will in turn yield new
explicit upper bounds on d(fk,T). This lemma was first proven in [15] but see
also [12].

Lemma 3.1 rk(T) ≥ T 2−O((logT)1/(�lg(2k−2)�)).

Theorem 3.2

1. d(fk,T) ≤ k +O((log kT)1/(�lg(2k−2)�)).
2. If T = Θ(2n) then d(fk,T) = k +O((n+ log k)1/(�lg(2k−2)�)).

Proof: (1) Follows from Theorem 2.4 and Lemma 3.1. (2) Follows from part 1
of this theorem.

The Multiparty Communication Complexity of Exact-T 149

4 Group Theoretic Version

We define a group-theoretic version of the Exact-T problem.

Def 4.1 Let G = (G,() be a group.

1. Let fGk,T : Gk → {0, 1} be defined by

fGk (x1, . . . , xk) =
{

1 if
⊙k

j=1 xj = ID;
0 otherwise.

2. A G-proper c-coloring of Gk−1 is a function C : Gk−1 → [c] such that there
do not exist x1, . . . , xk−1 ∈ G and λ ∈ G− {ID} with C(x1, . . . , xk−1) =

C(x1 (λ, x2, x3, . . . , xk−1) = · · · = C(x1, x2, x3, . . . , xk−1 (λ).

3. χ∗k(G) be the least c such that there is a G-proper c-coloring of Gk−1.

The proof of the following theorem is a modification of a proof from [7], hence
we omit it.

Theorem 4.2 If G is a finite abelian group then lg(χ∗k(G)) + Ω(1) ≤ d(fGk) ≤
k + lg(χ∗k(G)) +O(1).

Note 4.3 In Theorem 4.2 d(fGk) ≥ lg(χ∗k(G))+Ω(1). Chandra, Furst, and Lipton
obtained d(fk,T) ≥ lg(χk(

⌊
T
k

⌋
)) +Ω(1). They have a factor of 1

k and we do not
because in the group case, for any x1, . . . , xk−1 ∈ G there is an x ∈ G such that
fGk (x1, . . . , xk−1, x) = 1; by contrast, there are x1, . . . , xk−1 ∈ [T] such that, for
all x ∈ [T], fk,T (x1, . . . , xk−1, x) = 0.

The next lemma shows a relation between d(fGk) and d(fk,T) that we will use to
obtain bounds on one from bounds on the other.

Def 4.4 ZT is the group with set {0, 1, . . . , T − 1} under modular addition.

Lemma 4.5 Let T ∈ N and k ≥ 3. Then the following hold.

1. d(fk,T) ≤ d(fZT

k) +O(1).
2. d(fZT

k) ≤ d(fk,T) +O(log k).

5 Lower Bounds

5.1 An Ω(log log log g) Lower Bound for d(fZT
3) and d(f3,T)

The following combinatorial lemma will allow us to prove a lower bound on
d(fG3) for a variety of G. This lemma is a reworking of a theorem of Graham and
Solymosi [10].

150 R. Beigel, W. Gasarch, and J. Glenn

Lemma 5.1 There exist absolute constants g0, d0 such that the following is true.
Let G = (G,() be any finite abelian group and let g = |G|. If g ≥ g0 and
c ≤ d0 log log g then there are no G-proper c-colorings of G×G. Hence χ∗3(G) ≥
Ω(log log g).

Proof: Assume that C is a G-proper c-coloring of G × G. We will find sets
X1, Y1 ⊆ G such that C restricted to X1 × Y1 uses c− 1 colors. We will iterate
this process to obtain Xc, Yc such that C restricted to Xc × Yc uses 0 colors.
Hence |Xc| = 0 which will yield c = Ω(log log g).

Let X0 = G, Y0 = G, h0 = |X0| = |Y0| = g, COL0 = [c]. At stage s the subset
will be Xs × Ys, the size of Xs will be hs = |Xs| = |Ys|, and COLs will be the
colors used by Xs × Ys.

Assume Xs, Ys, hs are defined and inductively COLs = [c − s] (we will be
renumbering to achieve this). Partition Xs × Ys into sets Pa indexed by a ∈ G
defined by Pa = {(x, y) ∈ Xs × Ys | x (y = a}. (Think of Pa as the ath
anti-diagonal.) There exists an a such that |Pa| ≥

⌈
h2

s/g
⌉
. There exists a color,

which we will take to be c − s by renumbering, such that at least
⌈⌈
h2

s/g
⌉
/c
⌉

of the elements of Pa are colored c− s. (We could use c− s in the denominator
but we do not need to.) Let m =

⌈⌈
h2

s/g
⌉
/c
⌉
. Let {(x1, y1), . . . , (xm, ym)} be m

elements of Pa such that, for 1 ≤ i ≤ m, C(xi, yi) = c− s.
Claim 1: For all i 	= j, xi 	= xj and yi 	= yj .
Proof: If xi = xj then xj (yj = a = xi(yi = xj (yi. Hence yj = yi. Therefore
(xi, yi) = (xj , yj). This contradicts Pa having m distinct points. The proof that
yi 	= yj is similar. End of Proof of Claim 1
Claim 2: For all i 	= j, C(xi, yj) 	= c− s.
Proof: If C(xi, yj) = c − s then C(xi, yj) = C(xi, yi) = C(xj , yj) = c − s. If
λ = (a−1(xj (yi) then C(xi, yj) = C(xi (λ, yj) = C(xi, yj (λ). This violates
C being a proper coloring. End of Proof of Claim 2

Let
hs+1 = m′ = �m/3�
Xs+1 = {x1, . . . , xm′}
Ys+1 = {ym+1−m′, . . . , ym}

COLs+1 = [c− (s+ 1)]

Note that, by Claim 2 above, {C(x, y) | x ∈ Xs+1, y ∈ Ys+1} ⊆ COLs+1. We
iterate the process c times to obtain Xc, Yc such that COL restricted to Xs×Ys

uses 0 colors.
We have h0 = g and

hs+1 =
⌈⌈⌈

h2
s

g

⌉
/c

⌉
/3
⌉
≥ h2

s

3cg
.

One can easily show that hs ≥ g
(3c)2s−1 .

Taking s = c we obtain hc ≥ g
(3c)2c−1 . Hence there is a set of h2

c points that are
0-colored. Therefore hc < 1. This yields c = Ω(log log g).

The Multiparty Communication Complexity of Exact-T 151

Theorem 5.2 If G is a finite abelian group then d(fG3) ≥ Ω(log log log |G|).

Proof: By Lemma 5.1 χ∗3(G) ≥ Ω(log log |G|). By Theorem 4.2, d(fG3) ≥
lg(χ∗3(G)) ≥ Ω(log log log |G|).

From Theorem 5.2 and Lemma 4.5 we obtain the following.

Theorem 5.3 Let T ∈ N. d(f3,T) ≥ Ω(log log logT)−O((log k)2n

T). If T = Θ(2n)
then d(f3,T) ≥ Ω(log logn)−O(log k).

5.2 An ω(1) Lower Bound for General G and k

From Lemma 4.5 and Theorem 2.4 we obtain the following.

Theorem 5.4 d(fZm

k) = ω(1).

For other groups we cannot use Lemma 4.5 and hence we develop other tech-
niques.

Def 5.5 Fix k. The phrase d(fGk) = ω(1) means that, for all constants d, there
exists g0, such that for all finite abelian groups G of size g ≥ g0, d(fGk) ≥ d.

Def 5.6 PARTn,k : {{0, 1}n}k → {0, 1} is the following function. Interpret
the input as k subsets of {1, . . . , n}. Output 1 if these sets form a partition
of {1, . . . , n}, and 0 otherwise.

Tesson [17, 18] proved the following. He used the Hales-Jewitt Theorem
(see [9]) which is why the bound is ω(1) instead of something more concrete.
We use this lemma to obtain d(fGk) = ω(1).

Lemma 5.7 For all k, d(PARTn,k) ≥ ω(1).

Lemma 5.8 Let k ≥ 3. Let h1, . . . , hm ≥ 2. Let G = Zh1 × · · · ×Zhm For all k,
d(PARTm,k) ≤ d(fGk) +O(1).

Proof sketch: One can show that PARTn,k ≤O(1)
cc fGk . (Recall Definition 1.4.)

Lemma 5.9 If G1 and G2 are groups and k ≥ 3 then d(fG1
k) ≤ d(fG1×G2

k).

Theorem 5.10 For all d, k there exists g0 such that for all finite abelian groups
G with |G| ≥ g0, d(fGk) ≥ d. In short, the bigger the group, the larger d(fGk),
without bound.

152 R. Beigel, W. Gasarch, and J. Glenn

6 Application to Multiparty Communication Complexity
of Regular Languages

In this section we use Theorems 5.2 and Theorem 5.10 to obtain lower bounds
on the multiparty communication complexity of many regular languages.

The 2-party communication complexity of regular languages has been defined
and solved completely [16, 20, 19]. The multiparty communication complexity
of regular languages (defined initially in [16]) still has many open problems. The
standard problem in this field is as follows.

Def 6.1 Let L be a regular language and k be the number of players. Rk,L is
the following problem.

1. Let x = a1a2 · · ·akn be a string such that (∀i)[ai ∈ Σ ∪ {ε}].
2. Player Pi gets all aj such that j 	≡ i (mod k).
3. The players want to determine if a1a2 · · · akn ∈ L.

Notation 6.2 The multiparty communication complexity of Rk,L is denoted
d(Rk,L).

Notation 6.3 Let σ ∈ Σ, m ∈ N, and r ∈ N such that 0 ≤ r ≤ m− 1.

1. #σ(w) is the number of σ in w.
2. Lσ,r,m = {w | #σ(w) ≡ r (mod m)}.

Lemma 6.4 Let k, r,m ∈ N be such that 0 ≤ r ≤ m − 1. Let |Σ| ≥ 2, σ ∈ Σ,
and L = Lσ,r,m. Then fZm

k ≤O(1)
cc Rk,L. (Recall Definition 1.4.)

Proof: We show fZm

k,r ≤O(1)
cc Rk,L. It is easy to show that fZm

k ≡O(1)
cc fGk,r,

hence we will have fZm

k ≤O(1)
cc Rk,L.

We map (q1, . . . , qk) to a string w of length km such that fZm

k,r (q1, . . . , qk) = 1
iff #σ(w) ≡ r (mod m).

For each i, 1 ≤ i ≤ k, there are m positions that are ≡ i (mod k). Map to a
string such that qi of those positions are σ and the rest are not σ.

If w is the resulting word then #σ(w) =
∑k

i=1 qi. Hence q1 + · · · + qk ≡ r
(mod m) iff w ∈ L.

Theorem 6.5 Let k, r,m ∈ N such that 0 ≤ r ≤ m− 1. Let |Σ| ≥ 2 and σ ∈ Σ.
Let L = Lσ,r,m.

1. d(R3,L) ≥ Ω(log log logm).
2. For all k ≥ 4, ω(1) ≤ d(Rk,L).

Proof: By Lemma 6.4 d(fGk) ≤ d(Rk,L).
1) By Theorem 5.2 d(fG3) = ω(log log logm). Hence d(R3,L) = ω(log log logm).
2) By Theorem 5.10 d(fG3) = ω(1). Hence d(Rk,L) = ω(1).

The Multiparty Communication Complexity of Exact-T 153

7 Upper Bounds

7.1 Upper Bounds for G = Zm

The proofs in this section are a reworking of those in [7].

Notation 7.1 If G = (G,() is a group and d ∈ G, k ∈ N, then dk means
d(· · · (d where there are k d’s.

Def 7.2 Let G = (G,() be a group. Let T = |G|.

1. A k-APG is a multiset of the form {a, a (d, a (d2, . . . , a (dk−1} where
a, d ∈ G.

2. A set A ⊆ G is k-free if there do not exist any k-APG ’s in A.
3. Let rk(G) be the size of the largest k-free subset of G.

Lemma 7.3 If G is a finite abelian group then χ∗k(G) ≤ O(|G| log(|G|)
rk(G)). χ∗k(M) ≤

O
(T log(T)

rk(M)

)
.

Lemma 7.4 Let T ∈ N. χ∗k(ZT) ≤ 2O((log T)1/(�lg(2k−2)�)).

Theorem 7.5 Let T ∈ N. d(fZT

k) ≤ k + O((log kT)1/(�lg(2k−2)�)).

7.2 Upper Bounds for General Groups

If G has low characteristic then it does not have large k-free sets, so the technique
of Lemma 7.3 does not improve upon a trivial upper bound. Hence we use other
techniques.

Lemma 7.6 Let G1 = (G1,(1) and G2 = (G2,(2) be any two finite groups.
Let n1, n2 be such that, for i = 1, 2, 2ni−1 < |Gi| ≤ 2ni . Assume n1 ≤ n2. We
represent elements of Gi by a subset of {0, 1}n2. Let G = G1 × G2.

1. χ∗3(G) ≤ 2n2 = Θ(|G2|).
2. d(fG3) ≤ 2 + n2 = Θ(log(|G2|)).

Proof:
1) Let ⊕ : {0, 1}n2 × {0, 1}n2 → {0, 1}n2 be the bitwise XOR function. For
i = 1, 2 Let IDi be the identify in Gi.

We show that χ∗3(G) ≤ 2n2 . Let (a1, a2), (b1, b2) ∈ G1 × G2. Let C((a1, a2),
(b1, b2)) = a1 ⊕ b2 ∈ {0, 1}n2. It is easy to show that C is a G1 × G2-proper
coloring.
2) Since χ∗3(G) ≤ 2n2 we have, from Theorem 4.2, d(fG3) ≤ 2+n2.

154 R. Beigel, W. Gasarch, and J. Glenn

Lemma 7.7 If G = G1 × · · · × Ga then χ∗k(G) ≤
∏a

i=1 χ
∗
k(Gi).

Proof: Let Ci be a proper χ∗k(Gi)-coloring of Gk−1
i . Let C be the coloring

C((z1
1 , . . . , z

1
a), . . . , (zk−1

1 , . . . , zk−1
a)) = C1(z1

1 , . . . , z
k−1
1) · · ·Ca(z1

a, . . . , z
k−1
a).

It is routine to check that this is a G-proper coloring.

Lemma 7.8 If G is a finite abelian group, k ≥ 3, then d(fGk) ≤ d(fGk−1).

Theorem 7.9 For all k ≥ 3 there exists α < 1 such that for all finite abelian
groups G, d(fGk) < k + α lg(|G|) +O(1). (There is a nontrivial protocol for fGk .)

Proof sketch: Fix k. Let G be a finite abelian group of size g. By the
classification of finite abelian groups, G = Zh1 × · · · × Zhb

for some factor-
ization g =

∏b
i=1 hi. We assume h1 ≤ · · · ≤ hb. By Lemma 7.4, for all i,

χ∗k(Zhi) ≤ 2O((lg hi)1/(k−1)).
There are two cases. They depend on a constant β to be picked later.

Case 1: b ≤ β lg g. By Lemma 7.7, χ∗k(G) = χ∗k(Zh1) · · ·χ∗k(Zhb
) ≤

∏b
i=1

2O((lg hi)1/(k−1)).
So lg(χ∗k(G)) ≤

∑b
i=1O((lg hi)1/(k−1)) ≤ O(

∑b
i=1((lg hi)1/(k−1)).

The quantity
∑b

i=1(lg hi)1/(k−1), where
∏b

i=1 hi = g, is maximized when h1 =
· · · = hb = g1/b. Hence

∑b
i=1(lg hi)1/(k−1) ≤ b(k−2)/(k−1)(lg g)1/(k−1). Pick β < 1

such that α = cβ(k−2)/(k−1) < 0.9.
Case 2: b ≥ β lg g. Since all hi ≥ 2 we have

∏b/2
i=1 hi > 2b/2 ≥ 2β lg g/2 = gβ/2. So∏b

i=b/2+1 hi < g1−(β/2). Let G1 = Zh1 × · · · ×Zhb/2 and G2 = Zhb/2+1 × · · · ×Zhb

Note that G = G1 × G2 and that |G2| ≥ |G1|. By Lemmas 7.8 and 7.6, d(fGk) ≤
d(fG3) lg(|G2|)+O(1) ≤ lg(g1−β/2)+O(1) ≤ (1−β/2) lg g+O(1). Since 0 < β < 1
we have (1− (β/2)) < 1. Take α = max{0.9, 1− (β/2)}.

8 Open Problems

1. If T = Θ(2n) then Ω(log logn) ≤ d(f3,T) ≤
√
n. Improve either side.

2. If T = Θ(2n) and k ≥ 4 then ω(1) ≤ d(fk,T) ≤ k+O((n+log k)1/(�lg(2k−2)�)).
Improve either side.

3. Theorem 4.2 shows lg(χ∗k(G)) +Ω(1) ≤ d(fGk) ≤ k + lg(χ∗k(G)) +Ω(1). For
a variety of abelian groups G estimate χ∗k(G).

4. What happens to d(fGk) if G is nonabelian? A Monoid? Infinite?
5. Empirical studies could be done to see if there are colorings that use sub-

stantially fewer than the number of colors induced by 3-free sets.

Acknowledgments

We would like to thank Jozsef Solymosi, Paul Pudlak for refs; and Adam Bender,
Walid Gomma, Dov Gordon, Jon Katz, Clyde Kruskal, Martin Ma, Matthew
Mah, Brian Postow, and Arkady Yerukhimovich for proofreading.

The Multiparty Communication Complexity of Exact-T 155

References

[1] Babai, Nisan, and Szegedy. Multiparty protocols, pseudorandom generators for
logspace, and time-space trade-offs. JCSS, 45, 1992.

[2] L. Babai, P. Pudlak, V. Rodl, and E. Szemeredi. Lower bounds to the complexity
of symmetric Boolean functions. TCS, 74:313–323, 1990.

[3] D. Barrington. Bounded-width polynomial-size branching programs recognize
exactly those languages in NC1. JCSS, 38, 1989.

[4] D. Barrington and H. Straubing. Superlinear lower bounds for bounded width
branching programs. JCSS, 50, 1995.

[5] P. Beame and E. Vee. Time-space tradeoffs, multiparty communication complexity
and nearest neighbor problems. In 34th STOC, 2002.

[6] F. Behrend. On set of integers which contain no three in arithmetic progression.
Proc. of the Nat. Acad. of Sci. (USA), 23:331–332, 1946.

[7] A. Chandra, M. Furst, and R. Lipton. Multiparty protocols. In 15th STOC, pages
94–99, 1983.

[8] W. Gasarch and J. Glenn. Finding large sets without arithmetic progressions of
length three: An empirical view, 2005.

[9] R. Graham, A. Rothchild, and J. Spencer. Ramsey Theory. Wiley, 1990.
[10] R. Graham and J. Solymosi. Monochromatic equilateral right triangles on the

integer grid, 2005. See Solymosi’s website
[11] E. Kushilevitz and N. Nisan. Comm. Comp. Camb Univ. Press, 1997.
[12] I. Laba and M. T. Lacey. On sets of integers not containing long arithmetic.

progressions, 2001. See arxiv.org
[13] L. Moser. On non-averaging sets of integers. Canadian Journal of Mathematics,

5:245–252, 1953.
[14] P. Pudlak. A lower bound on complexity of branching programs. In MFCS84,

pages 480–489, 1984.
[15] R. Rankin. Sets of integers containing not more than a given number of terms

in an arithmetic. progressions. Proc. of the Royal Soc. of Edinburgh Sect. A 65,
332–344, 1960–1961.

[16] J.-F. Raymond, P. Tesson, and D. Therien. An algebraic approach to communi-
cation complexity. In 25th ICALP, vol. 1443 of LNCS pages 29–40. 1998. Also at
Tesson Website.

[17] P. Tesson. Computational complexity questions related to finite monoids and semi-
groups. PhD thesis, McGill University, 2003.

[18] P. Tesson. An application of the Hales-Jewitt Theorem to multiparty communi-
cation complexity, 2004. See Gasarch’s Ramsey Website.

[19] P. Tesson and D. Therien. Monoids and computations. Int. J. of Algebra and
Computation, pages 115–163, 2004. www.cs.mcgill.ca/̃ptesso.

[20] P. Tesson and D. Therien. Complete classification of the communication com-
plexity of regular languages. TOCS, pages 135–159, 2005.

[21] I. Wegener. Branching Programs and Binary Decision Diagrams: Theory and
Application. SIAM, 2000.

Appendix: Empirical Results

Gasarch and Glenn [8] produced tables of sizes of 3-free sets. The table below
was produced using their software. The table gives n, a lower bound on r3(3N),

156 R. Beigel, W. Gasarch, and J. Glenn

n = lgN , and d(f3,T) = 3 +
⌈
lg
(6N ln(3N)

r3(3N) + 1
)⌉

(from Theorem 2.4.1). We also

give the ratio of d(f3,T) to
√
n since O(

√
n) is what the analysis gives. We only

show an excerpt of the table – the full table will be in the journal version.

1. The lowest value where we know that the main protocol beats the trivial
one is around 104. This is fairly small.

2. The ratio seems to be around 0.31. This is fairly small.

N r3(3N) df n
√

n ratio
10 10 7 4 2 0.286

100 48 9 7 3 0.333
1000 210 10 10 4 0.4

10000 1024 12 14 4 0.333
100000 4096 13 17 5 0.385

106 16384 15 20 5 0.333
107 65536 16 24 5 0.312
108 262144 18 27 6 0.333

...
...

...
...

...
...

1060 4.54 × 1049 47 200 15 0.319
1061 3.61 × 1050 47 203 15 0.319
1062 2.87 × 1051 47 206 15 0.319
1063 2.28 × 1052 48 210 15 0.312
1064 1.81 × 1053 48 213 15 0.312
1065 1.44 × 1054 48 216 15 0.312

Crochemore Factorization of Sturmian and

Other Infinite Words

Jean Berstel1 and Alessandra Savelli1,2

1 Institut Gaspard Monge (IGM)
Université de Marne-la-Vallée

2 Dipartimento di Elettronica e Informazione
Politecnico di Milano

{berstel, savelli}@univ-mlv.fr

Abstract. The Crochemore factorization was introduced by Croche-
more for the design of a linear time algorithm to detect squares in a word.
We give here the explicit description of the Crochemore factorization for
some classes of infinite words, namely characteristic Sturmian words,
(generalized) Thue-Morse words, and the period doubling sequence.

1 Introduction

In a seminal paper, Ziv and Lempel [7] defined several factorizations of finite
words related to information theory and text processing. Several years later,
Crochemore ([2,4,3]) introduced a similar factorization of words as a key tool in
the design of a linear algorithm checking words for square freeness.

We study here both Ziv-Lempel and Crochemore factorization of special
classes of infinite words, such as Sturmian words and some automatic words.
It appears that these factorizations can be expressed by a closed formula in
many significant examples. The proof of these formulas require some insight in
the combinatorial structure of the infinite words considered.

Some factorizations are quite surprising. As an example, the Ziv-Lempel fac-
torization of the Fibonacci word will be shown to be

f = a|b|aa|bab|aabaa| · · ·

This is precisely the so called singular factorization introduced by Wen and Wen
([8], see also [1]) in a completely different context.

Ziv-Lempel and Crochemore factorizations have similar properties. Both can
be computed in linear time by preprocessing the suffix tree of the word. Fur-
thermore, the number of factors in both factorizations are closely related: the
number of factors of the Crochemore factorization is at most twice the num-
ber of factors of the Ziv-Lempel factorization. However, there are examples of
factorizations which differ significantly infinitely many times.

In this paper we study the behavior of the Crochemore factorization in the
case of some of the most known classes of words, i.e., characteristic Sturmian
words, the Thue-Morse word, and the period doubling sequence.

R. Královič and P. Urzyczyn (Eds.): MFCS 2006, LNCS 4162, pp. 157–166, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

158 J. Berstel and A. Savelli

As we shall see, the Crochemore factorization (or c-factorization for short) of
special infinite words can be described explicitly, and it reflects the structure of
these words.

The c-factorization c(x) of a word x is defined as follows. Each factor of c(x)
is either a fresh letter, or it is a maximal factor of x already occurring in the
prefix of the word; more formally, the c-factorization c(x) of a word x is

c(x) = (x1, x2, . . . , xm, xm+1, . . .)

where xm is the longest prefix of xmxm+1 · · · occurring twice in x1x2 · · ·xm, or
xm is a letter a if a does not occur in x1 · · ·xm−1. For example, the c-factorization
of x = ababaab is (a, b, aba, ab), since aba occurs twice in ababa.

Note that the the c-factorization of a word differs slightly from the well known
Ziv-Lempel factorization [7] (or z-factorization), so that these two factorizations
are in general not comparable. The z-factorization z(x) of a word x is

z(x) = (y1, y2, . . . , ym, ym+1, . . .)

where ym is the shortest prefix of ymym+1 · · · which occurs only once in the word
y1y2 · · · ym.

For example, let x be the word x = aabaaccbaabaabaa. The c-factorization
and the z-factorization of x are:

c(x) = (a, a, b, aa, c, c, baa, baabaa)
z(x) = (a, ab, aac, cb, aabaab, aa).

We shall discuss the relation between these factorizations in more detail in
the final section.

The c-factorization has an interesting behavior in all of the well known infinite
words we have considered. For example, take the Fibonacci word

f = abaababaabaab · · ·

defined inductively by f−1 = b, f0 = a, and fn+2 = fn+1fn. The c-factorization
of f is

c(f) = (a, b, a, aba, baaba, . . .) = (a, b, a, f̃2, f̃3, . . .)

Observe that each of the factors (except the first three) is the reverse the finite
Fibonacci word fn. We will see that a similar result holds for characteristic
Sturmian words (Theorem 1 below).

The c-factorization is closely related to two other factorizations of the Fi-
bonacci word. The first is the factorization into factors which are exactly the
prefixes fn, that is

h(f) = (a, b, a, ab, aba, abaab, . . .) = (a, f−1, f0, f1, f2, . . .)

The other is the Wen and Wen factorization (also called the singular factoriza-
tion), in which the ith factor has the same length as fi−1, thus resulting

w(f) = (a, b, aa, bab, aabaa, . . .) = (a, w0, w1, w2, w3, . . .)

Crochemore Factorization of Sturmian and Other Infinite Words 159

Note that in the Wen and Wen factorization the ith factor is a palindrome, and
is the only factor of f of length |fi−1| that is not a conjugate of fi−1.

The three factorizations can be visualized through the following scheme:

h : a b a a b a b a a b a a b · · ·
w : a b a a b a b a a b a a · · ·
c : a b a a b a b a a b a · · ·

The relation between these factorizations is the following. Factors of h and w
satisfy

bf2i = w2ia and af2i+1 = w2i+1b,

while factors of w and c satisfy

aw2i = f̃2ib and bw2i+1 = f̃2i+1a.

The c-factorization on Fibonacci word is a particular case of a more general
result we obtained for the c-factorization on standard Sturmian words.

Theorem 1. Let s be the standard Sturmian word defined as the limit of

s−1 = b, s0 = a, and sn = sdn
n−1sn−2,

where di > 0 for each i. Then

c(s) = (a, ad1−1, b, ad1 s̃ d2−1
1 , s̃ d3

2 , s̃ d4
3 , . . . , s̃ dn+1

n , . . .)

Similar results hold for other familiar infinite words, such as the Thue-Morse and
the period doubling sequence. However we do not yet have a full characterization
of the c-factorization of automatic words.

The paper is organized as follows. Section 2 contains definitions and state-
ments of theorems. Section 3 sketches the proof for Sturmian words, Section
4 sketches the proof for a family of Thue-Morse sequences and for the period
doubling sequence, and Section 5 makes some comparison of Crochemore and
Ziv-Lempel factorizations.

2 Basic Definitions and Main Results

Let A be an alphabet and A∗ the the set of finite words on A. For any finite word
x = a1a2 · · ·an, |x| denotes the length n of x and x̃ denotes the reverse word
an · · ·a2a1 of x. If A is a two-letter alphabet A = {a, b}, then x is the image of
x of the morphism defined by a = b and b = a. If x = yα, with x, y ∈ A∗ and
α ∈ A, we denote by x′ the word x′ = yα.

A factorization of a finite word x is a sequence (x1, x2, . . . , xn) such that
x = x1x2 · · ·xn. Analogously, a factorization of an infinite word x is a sequence
(x1, x2, . . .) such that x = x1x2 · · ·. A recent introduction to factorizations of

160 J. Berstel and A. Savelli

words can be found in [6]. The c-factorization c(x) of a word x can be con-
structively defined by induction on the length of x as follows. If x is a let-
ter, his c-factorization is c(x) = (x). Otherwise, let x = yα with α ∈ A, and
c(y) = (u1, . . . , uk). The c-factorization c(x) of x is then

c(x) =
{

(u1, . . . , uk, a) if uka is not a factor of y
(u1, . . . , uka) otherwise .

The Ziv-Lempel factorization of a word x is

z(x) = (y1, y2, . . . , ym, ym+1, . . .)

where ym is the shortest prefix of ymym+1 · · · which occurs only once in the word
y1y2 · · · ym.

Let (d1, d2, . . .) be an infinite sequence of integers (called a directive sequence
such that d1 ≥ 0 and di > 0 for i > 1, and let {sn}n≥0 be the infinite sequence
of words defined by

s−1 = b, s0 = a, and sn = s dn
n−1sn−2.

It is easy to see that this sequence converges to the infinite word s that is called
a standard Sturmian word.

Note that the Sturmian word defined by a directive sequence (0, d2, d3, . . .) is
obtained from the Sturmian word defined by (d2, d3, . . .) by changing each letter
a with a letter b and viceversa, so that in the rest of this paper we will only refer
to directive sequences with d1 > 0.

With a result that is very similar to that obtained by de Luca in [5], we have
that any standard Sturmian word has a particular decomposition in reverse finite
words sn:

s = s̃0
d1 s̃1

d2 · · ·
The c-factorization of standard Sturmian words stated in Theorem 1

c(s) = (a, ad1−1, b, ad1 s̃ d2−1
1 , s̃ d3

2 , s̃ d4
3 , . . . , s̃ dn+1

n , . . .)

is then clearly closely related to that decomposition.
Let τ be the Thue-Morse morphism on a two-letter alphabet defined by

τ(a) = ab, τ(b) = ba,

and let {tn}n≥0 be the infinite sequence of words such that t0 = a and tn =
τ(tn−1). This sequence converges to the well known Thue-Morse infinite word

t = abbabaabbaababba · · ·

Each factor in the c-factorization of t can be obtained from the previous ones
by applying the morphism τ as stated in the following Theorem.

Theorem 2. The c-factorization c(t) = (c1, c2, . . .) of the Thue-Morse sequence
is (a, b, b, ab, a, abba, c7, c8, . . .) where cn+2 = τ(cn) for every n ≥ 7.

Crochemore Factorization of Sturmian and Other Infinite Words 161

The Thue-Morse word can be generalized in several different ways. We consider
here the infinite word t(m) on a m-letter alphabet A = {a1, a2, . . . , am} obtained
as the limit of the morphism τm defined by

τm(ai) = aiai+1 · · · ama1 · · ·ai−1 (i = 1, . . . ,m).

A result that is very similar and even better than that obtained for the Thue-
Morse word is the following.

Theorem 3. Let c(t(m)) = (c(m)
1 , c

(m)
2 , . . .) be the c-factorization of the gener-

alized Thue-Morse word t(m) with m ≥ 3. Then c
(m)
n+2(m−1) = τm(cn) for every

n > m.

It shows that the c-factorization of the infinite words t(m) for m > 2 are even
more regular than in the binary case.

Finally, let δ be the morphism on a two-letter alphabet defined by

δ(a) = ab, δ(b) = aa,

and let {qn}n≥0 be the infinite sequence of words such that

q0 = a and qn+1 = δ(qn).

The limit q of this sequence is the period doubling sequence.
We will denote the reverse of qi by qi

R and the reverse of q′i by qi
S (we recall

that q′n is qn with just the last letter changed to its opposite).
Similarly to the case of standard Sturmian words, the period doubling se-

quence is the composition of the reverse of the finite period doubling sequence
words qn:

q = q0
Rq1

Rq2
R · · · .

The c-factorization of q reflects indeed this property, as stated in the following
Theorem, observing that the equality qR

n+1 = qS
nq

R
n holds for each n.

Theorem 4. Let q be the doubling period sequence. The c-factorization of q is

c(q) = (qR
0 , q

S
0 , q

R
0 , q

S
1 , q

R
1 , q

S
2 , q

R
2 , . . .).

We end this section by mentioning the following well-known result (see [3])

Proposition 1. The Ziv-Lempel an the Crochemore factorizations of a finite
word x can be computed in linear time.

Indeed, one first computes the suffix tree of the word x, where each final state is
labelled with the position of its suffix in x (see Figure 1(a)). Then, one computes,
fore each vertex, the smallest of all positions of the factor corresponding to this
vertex. This is done in linear time by a bottom up tree traversal to compute the
minimum of all positions of its descendants (see Figure 1(b)).

To compute the Crochemore factorization c(x) = (x1, . . . , xn) of x, assume
it is computed up to xj . One enters the suffix y = xj · · ·xn into the suffix tree
as far as possible, provided the position red in the suffix tree remains strictly
smaller than |x1 · · ·xj−1|. The maximal prefix of y obtained is xj . This algorithm
is clearly linear.

162 J. Berstel and A. Savelli

10

9
a

b
5cba

0acbabcba
2cbabcba

b 6cba

8a
4bcba

1cbabcba
7

cba
3

bcba

(a) The suffix tree of abacbabcba

0

0
a

0b
5cba

0acbabcba
2cbabcba

1
b 6cba

1a
4bcba

1cbabcba
3

cba
3

bcba

(b) The augmented suffix tree

Fig. 1. The suffix tree and the extended suffix tree of the word abacbabcba

3 Crochemore Factorization of Standard Sturmian Words

We recall that a standard Sturmian word is the limit s of the sequence

s−1 = b, s0 = a, and sn = sdn
n−1sn−2,

with {dn}n>0 a sequence of positive integers. We want now to prove Theorem 1.
It is a well known fact that sn = pnεn for each n, where pn is the palindrome
word obtained by deleting the last two letters εn of sn, and

εn =
{
ab if n is odd
ba otherwise.

With an easy induction argument, one can obtain the following result.

Proposition 2. sn = sdn−1
n−1 s

dn−1
n−2 · · · sd1

0 εn for each n > 0.

Since sn = pnεn and pn is a palindrome word, one immediately has the following
decomposition of s in reverse words.

Proposition 3. s = s̃0
d1 s̃1

d2 s̃2
d3 · · ·.

Lemma 1. Let wn be the word sdn+1
n sdn

n−1s
dn−1
n−2 · · · sd1

0 . Then the only occurrences
of sn in wn are the first dn+1 + 1 consecutive ones.

Proof. Since sn is primitive for every n, sn is not a proper factor of s2n and
we only have to prove that the (dn+1 + 1)-th occurrence is the last one. We
prove it by induction on n. If n = 2, s2 = (ad1b)d2a and w2 = sd3

2 w1 =
((ad1b)d2a)d3(ad1b)d2ad1 . Since (ad1b)d2 occurs in w1 only as a prefix, we have
the assertion. If n = 3, s3 = ((ad1b)d2a)d3ad1b and w3 = sd4

3 w2. Since the last
occurrence of aad1b, which is a suffix of s3, in w3 is exactly the suffix of the
initial sd3

2 s1 in w2, we have the assertion. Let now suppose the assertion be true
for every 2 ≤ k < n. wn = sdn+1

n wn−1. By induction hypothesis, there are only
two occurrences of sdn

n−1 in wn−1 and only the first of them is followed by sn−2,
so that sn occurs in wn−1 only as a prefix. �

Crochemore Factorization of Sturmian and Other Infinite Words 163

It is now easy to prove Theorem 1.

Proof. (Theorem 1) Consider s as a composition of reverse words as obtained
in Proposition 3. The first 4 factors of the c-factorization can be easily obtained
by hand. Notice that the composition of these 4 factors in the c-factorization is
exactly s̃0

d1 s̃1
d2 :

c(s) = (a, ad1−1, b, s̃ d1
0 s̃ d2−1

1︸ ︷︷ ︸
s0

d1s1
d2

, s̃ d3
2 , s̃ d4

3 , . . .).

We obtain the result as the limit of the c-factorization on the palindrome prefixes
pn of s. Suppose the c-factorization of pn = s̃ d1

0 · · · s̃ dn−1
n−2 s̃ dn−1

n−1 to be

c(pn) = (. . . , s̃ dn−1
n−2 , s̃ dn−1

n−1).

By Lemma 1, the only occurrences of s̃n in w̃n are the last dn+1 + 1 consecutive
ones and since the first letter of s̃n−1 is different from the first letter of s̃n, we
obtain the c-factorization of pn+1 = w̃n−1s̃

dn
n−1s̃

dn+1−1
n

c(pn+1) = (. . . , s̃ dn−1
n−2 , s̃ dn

n−1, s̃
dn+1−1

n). �

4 Crochemore Factorization of Thue-Morse and Period
Doubling Sequences

Let t be the Thue-Morse word defined as the limit of the morphism τ such that
τ(a) = ab and τ(b) = ba.
We recall the following well known fact.

Lemma 2. Let w be a factor of t such that |w| ≥ 4. Then the occurrences of w
in t begin all in pair positions or all in odd positions.

Proof. (Theorem 2) Let c(t) = (c1, c2, . . .) be the c-factorization of t. We will
prove that each Crochemore factor cn+1 begins in a pair position, double than
that of cn−1, and that cn+1 = τ(cn−1) for every n ≥ 8. One can verify by hands
the first step, that is, c9 begins in the pair position double than that of c7.
Let now cn+1 begin in the double position than that of cn−1. Then τ(cn−1) ∈
Prefix(cn+1cn+2 · · ·). By definition of Crochemore factor and by Lemma 2, since
|cn−1| > 4 the factor cn−1 occurs earlier in a pair position, so that also τ(cn−1)
has an earlier occurrence. Thus, τ(cn−1) ∈ Prefix(cn+1).

By contradiction, suppose τ(cn−1)a ∈ Prefix(cn+1), where by definition of τ
a is forced to be the first letter of cn. Then there is an earlier occurrence of
τ(cn−1)a in a pair position, so that also cn−1 occurs followed by a letter a earlier
than as a Crochemore factor, that is absurd. �

Let now t(m) be the generalized Thue-Morse word on the m-alphabet A =
{a1, . . . , am} defined as the limit of the morphism

τm(ai) = aiai+1 · · · ama1 · · ·ai−1 (i = 1, . . . ,m).

164 J. Berstel and A. Savelli

Set wn,i = τn
m(ai) and let t(m)

n = τn
m(a1) = wn,1. The following result can be

easily obtained by induction.

Lemma 3. wn,i /∈ Fact(wn,hwn,k) for every i and h 	= k.

The relationship between the structure of the generalized Thue-Morse words and
the c-factorization is simpler than what we have obtained for the Thue-Morse
word on a 2-letter alphabet. For example, let m = 3. Then

c(t(3)3) = (a, b, c, bc, a, ca, b, bcacab, abc, cababc, bca).

Using Lemma 3 it is not difficult to prove the following result, which is even
stronger than what we stated in Theorem 3.

Theorem 5. The c-factorization of t(m)
n is (w1,1, . . . , w1,m, w1,2 · · ·w1,m, w1,1,

. . . , w1,m · · ·w1,1, w1,m−1, . . . , wn,2 · · ·wn,m, wn,1, . . . , wn,m · · ·wn,1, wn,m−1).

In the case m = 3 we have

t
(3)
3 =

t
(m)
2︷ ︸︸ ︷

abc︸︷︷︸
w2,1

bca︸︷︷︸
w2,2

cab︸︷︷︸
w2,3

bcacababc︸ ︷︷ ︸
w2,2w2,3w2,1

cababcbca︸ ︷︷ ︸
w2,3w2,1w2,2

,

in accordance with the c-factorization given above.
In the general case also, this factorization reflects exactly the decomposition

of each prefix t(m)
n in wh,i words:

(w1,1, . . . , w1,m︸ ︷︷ ︸
t
(m)
1 =w2,1

, w1,2 · · ·w1,m, w1,1︸ ︷︷ ︸
w2,2

, . . . , w1,m · · ·w1,1, w1,m−1︸ ︷︷ ︸
w2,m︸ ︷︷ ︸

t
(m)
2

, . . .)

Recall that the period doubling sequence is defined as the limit q of the
morphism δ such that δ(a) = ab and δ(b) = aa. In order to prove Theorem 4,
we begin by providing some easy to prove results on the structure of q.

Lemma 4. The following facts hold:

(i) qn+1 = qnq
′
n, where if qn = va, q′n = vā.

(ii) qn = pnun, where pn is a palindrome word such that p0 = ε, pn+1 =
pnunpn, and

un =
{
a n pair
b n odd

(iii) pn = qR
0 q

R
1 · · · qR

n−1.

Lemma 5. For every n ≥ 1, pn occurs only as a prefix and as a suffix in pn+1.

Crochemore Factorization of Sturmian and Other Infinite Words 165

Proof. True for n = 1, 2. Suppose the lemma true for n ≤ k.

pk+2 = pkukpkuk+1pkukpk

and pk+1 = pkukpk. Since pk+1 is different from the central factor of pk+2
pkuk+1pk and by the induction hypothesis on pk, we have the assert. �

Proof. (Theorem 4) We prove that

c(qn+2) = (qR
0 , q

S
0 , q

R
0 , q

S
1 , q

R
1 , . . . , q

S
n , q

R
n , u(n)).

The assertion holds for n = 2. Suppose it is true for qn+1.
By Lemma 4,

qn+2 = qn+1q
′
n+1 = pn+1un+1pnunpnun. (1)

Note that un+1pn = qS
n and unpn = qR

n .
By induction hypothesis, the last Crochemore factor of qn+1 is its last letter, so
that the un+1 of Equation (1) is the first letter of a Crochemore factor of qn+2.

With the further expansion of the expression of qn+2

qn+2 = pn−1un−1pn−1unpn−1un−1pn−1 un−1pn−1un−1pn−1︸ ︷︷ ︸
qS

n

unpn−1un−1pn−1︸ ︷︷ ︸
qR

n

un

we can verify that the factors un+1pn and unpn of Equation (1) (here under-
lined in the same occurrences) occurred already before in qn+2. Moreover, by
using Lemma 5 it can be shown that they are not contained into larger already
occurred factors, that is, un+1pnun and unpnun did not occur before, so that
qS
n , q

R
n , un are exactly the c-factors we need to add to those of qn+1 to complete

the c-factorization of qn+2. �

5 Crochemore Factorization Versus Ziv-Lempel
Factorization

Ziv and Lempel have considered several variations of factorizations of words (see
[7]; these are also discussed in [6]). We illustrate the relation between Crochemore
and Ziv-Lempel factorizations by stating some simple facts, and by giving some
examples.

Lemma 6. Let (c1, c2, . . .) and (z1, z2, . . .) be the Crochemore and the Ziv-Lem-
pel factorizations of a word w. The following hold.

– For each i, j such that |c1 · · · ci−1| ≥ |z1 · · · zj−1| and |c1 · · · ci| < |z1 · · · zj|,
then |z1 · · · zj | = |c1 · · · ci|+ 1.

– For each i, j such that |z1 · · · zj−1| < |c1 · · · ci| ≤ |z1 · · · zj | then |c1 · · · ci+1| ≤
|z1 · · · zj+1|.

Lemma 6 reflects the fact that by their definitions if a Ziv-Lempel factor includes
a Crochemore factor, then it ends at most a letter after, and that a Crochemore
factor cannot include a Ziv-Lempel factor. Accordingly, we have the following
result.

166 J. Berstel and A. Savelli

Proposition 4. The number of factors of the Crochemore factorization is at
most twice the number of factors of the Ziv-Lempel factorization.

Consider for example the period doubling sequence. It is simple to show that
each Ziv-Lempel factor of q properly includes a Crochemore factor by ending
just a letter before, as illustrated in this figure:

z : a b a a a b a b a b a a a b a a · · ·
c : a b a a a b a b a b a a a b a a · · ·

In this example each Ziv-Lempel can therefore be associated to a couple of
Crochemore factors. On the contrary, in the next example each Ziv-Lempel factor
is associated to a sole factor.

Consider the word v = aabbabbbbabbbbbba · · · in which for each i ≥ 0 the letter
in position i is defined as a if i is a perfect square and b otherwise. The Ziv-
Lempel factors of v are shifted one letter ahead with respect to the Crochemore
factors, as illustrated in the figure:

z : a a b b a b b b b a b b b b b b a · · ·
c : a a b b a b b b b a b b b b b b a · · ·

6 Conclusion

In the examples given here, the detailed knowledge of the structure of the infinite
words yields enough information in order to compute the Crochemore factoriza-
tion. Similar results hold for episturmian words. On the contrary, it is not yet
clear whether a satisfactory description can be obtained for automatic sequences
other than those which are uniform purely morphic sequences.

References

1. J.-P. Allouche and J. Shallit, Automatic Sequences, Cambridge University Press,
2003.

2. M. Crochemore, Recherche linéaire d’un carré dans un mot, Comptes Rendus Sci.
Paris Sér. I Math., 1983, 296, 781–784.

3. M. Crochemore, C. Hancart, and T. Lecroq, Algorithmique du texte, Vuibert, 2001.
4. M. Crochemore and W. Rytter, Text Algorithms, The Clarendon Press Oxford Uni-

versity Press, 1994.
5. A. de Luca, A division property of the Fibonacci word, Information Processing

Letters, 1995, 54, 307–312.
6. R. Kolpakov and G. Kucherov, Periodic structures on words, in Lothaire, Applied

Combinatorics on Words, Cambridge University Press, 2005.
7. A. Lempel and J. Ziv, On the complexity of finite sequences, IEEE Transactions in

Information Theory, 1976, IT-22, 75–81.
8. Z.-X. Wen and Z.-Y. Wen, Some properties of the singular words of the Fibonacci

word. European Journal of Combinatorics 1994, 15, 587–598.

Equations on Partial Words

F. Blanchet-Sadri�, D. Dakota Blair, and Rebeca V. Lewis

Department of Mathematical Sciences, University of North Carolina,
P.O. Box 26170, Greensboro, NC 27402–6170, USA

Abstract. It is well known that some of the most basic properties of
words, like the commutativity (xy = yx) and the conjugacy (xz = zy),
can be expressed as solutions of word equations. An important problem
is to decide whether or not a given equation on words has a solution. For
instance, the equation xmyn = zp has only periodic solutions in a free
monoid, that is, if xmyn = zp holds with integers m, n, p ≥ 2, then there
exists a word w such that x, y, z are powers of w. This result, which re-
ceived a lot of attention, was first proved by Lyndon and Schützenberger
for free groups. In this paper, we investigate equations on partial words.
Partial words are sequences over a finite alphabet that may contain a
number of “do not know” symbols. When we speak about equations on
partial words, we replace the notion of equality (=) with compatibility
(↑). Among other equations, we solve xy ↑ yx, xz ↑ zy, and special cases
of xmyn ↑ zp for integers m, n, p ≥ 2. . . .

1 Introduction

An important topic in algorithmic combinatorics on words is the satisfiability
problem for equations on words, that is, the problem to decide whether or not
a given equation on the free monoid has a solution. The problem was proposed
in 1954 by Markov [16] and remained open until 1977 when Makanin answered
it positively [15]. However, Makanin’s algorithm is one of the most complicated
algorithms ever presented and has at least exponential space complexity [13].
Rather recently, Plandowski showed, with a completely new algorithm, that the
problem is actually in polynomial space [17,18]. However, the structure of the
solutions cannot be found using Makanin’s algorithm. Even for rather short
instances of equations, for which the existence of solutions may be easily estab-
lished, the structure of the solutions may be very difficult to describe.

It is well known that some of the most basic properties of words, like the
commutativity and the conjugacy properties, can be expressed as solutions of
word equations. Two words x and y commute, namely xy = yx, if and only if x
� This material is based upon work supported by the National Science Foundation

under Grant No. DMS–0452020. We thank Margaret Moorefield for very valuable
help in the implementation of the programs and the creation of the World Wide
Web site at http://www.uncg.edu/mat/research/equations/ for this research. We
thank the referees of a preliminary version of this paper for their very valuable
comments and suggestions.

R. Královič and P. Urzyczyn (Eds.): MFCS 2006, LNCS 4162, pp. 167–178, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

168 F. Blanchet-Sadri, D.D. Blair, and R.V. Lewis

and y are powers of the same word, that is, there exists a word z such that x = zm

and y = zn for some integers m and n. Two words x and y are conjugate if there
exist words v and w such that x = vw and y = wv. The latter is equivalent to
the existence of a word z satisfying xz = zy in which case there exist words v, w
such that x = vw, y = wv, and z = (vw)nv for some nonnegative integer n. The
equation xmyn = zp has only periodic solutions in a free semigroup, that is, if
xmyn = zp holds with integers m,n, p ≥ 2, then there exists a word w such that
x, y, z are powers of w. This result, which received a lot of attention, was first
proved by Lyndon and Schützenberger for free groups [14]. Their proof implied
the case for free semigroups since every free semigroup can be embedded in a
free group. Direct proofs for free semigroups appear in [9,10,12].

In this paper, we investigate equations on partial words. When we speak about
them, we replace the notion of equality with the notion of compatibility. A fun-
damental difference between equality and compatibility is that the latter is not
transitive which makes this paper’s results on partial words nontrivial adapta-
tions of the corresponding results on words. Reference [11] presents some motiva-
tion from molecular biology for studying this type of equations on partial words.
The contents of our paper are summarized as follows: Section 2 is devoted to
reviewing basic concepts on words and partial words. There, we define in partic-
ular the containment relation (⊂) and the compatibility relation (↑) on partial
words. In Section 3, we give a result that expounds on the idea of the specialty
of partial words satisfying the equation xm ↑ yn. This result provides motivation
on the conditions for when x and y are contained in powers of a common word.
Section 4 reviews results on the equation xy ↑ yx on partial words that will be
needed in later sections of our paper. In Section 5, we investigate the conjugacy
equation xz ↑ zy on partial words. Our result is based on an algorithm that de-
composes a weakly |x|-periodic partial word z satisfying xz ↑ zy into a product
of subwords vi and wi pairs such that |vi| = |z| mod |x| and |wi| = |x| − |vi|. We
also study the system of equations z ↑ z′ and xz ↑ z′y. If z = z′, then this implies
xz ↑ zy. In Section 6, the equation x2 ↑ ymz on partial words is solved. This
result is a first step for studying the equation xmyn ↑ zp discussed in Section 7.

2 Preliminaries

Herein lies a brief description of terms and notations used for words and partial
words.

Let A be a nonempty finite set of symbols called an alphabet. Symbols in A are
called letters and any finite sequence over A is called a word over A. The empty
word, that is the word containing no letter, is denoted by ε. For any word u over
A, |u| denotes the number of letters occurring in u and is called the length of u. In
particular, |ε| = 0. The set of all words over A is denoted by A∗. If we define the
operation of two words u and v ofA∗ by juxtaposition (or concatenation), thenA∗

is a monoid with identity ε. We call A+ = A∗ \ {ε} the free semigroup generated
by A and A∗ the free monoid generated by A. The set A∗ can also be viewed as⋃

n≥0A
n where A0 = {ε} and An is the set of all words of length n over A.

Equations on Partial Words 169

A word of length n over A can be defined by a total function u : {0, . . . , n−
1} → A and is usually represented as u = a0a1 . . . an−1 with ai ∈ A. A period of
u is a positive integer p such that ai = ai+p for 0 ≤ i < n− p. For a word u, the
powers of u are defined inductively by u0 = ε and, for any i ≥ 1, ui = uui−1. The
reversal of u, denoted by rev(u), is defined as follows: If u = ε, then rev(ε) = ε,
and if u = a0a1 . . . an−1, then rev(u) = an−1 . . . a1a0. A word u is a factor of
the word v if there exist words x, y such that v = xuy. The factor u is called
proper if u 	= ε and u 	= v. The word u is a prefix (respectively, suffix) of v if
x = ε (respectively, y = ε). A nonempty word u is primitive if there exists no
word v such that u = vn with n ≥ 2. Note the fact that the empty word is not
primitive. If u is a nonempty word, then there exist a unique primitive word v
and a unique positive integer n such that u = vn.

Now, a partial word u of length n over A is a partial function u : {0, . . . , n−
1} → A. For 0 ≤ i < n, if u(i) is defined, then we say that i belongs to the
domain of u, denoted by i ∈ D(u), otherwise we say that i belongs to the set of
holes of u, denoted by i ∈ H(u). A word over A is a partial word over A with
an empty set of holes (we sometimes refer to words as full words).

If u is a partial word of length n over A, then the companion of u denoted by
u�, is the total function u� : {0, . . . , n − 1} → A ∪ {*} defined by u�(i) = u(i)
if i ∈ D(u), and * otherwise. The bijectivity of the map u �→ u� allows us
to define for partial words concepts such as concatenation, powers, reversals,
factors, prefixes, suffixes, etc... in a trivial way. For instance, the reversal of u
is defined by (rev(u))� = rev(u�). The character * 	∈ A is viewed as a “do not
know” character. The word u� = abb*bbcbb is the companion of the partial word
u of length 9 where D(u) = {0, 1, 2, 4, 5, 6, 7, 8} and H(u) = {3}. The length of
the companion of a partial word u, also called the length of u, is denoted by |u|,
and the set of distinct letters in A occurring in u� is denoted by α(u). The set of
all partial words over A with an arbitrary number of holes is denoted by W (A).
It is a monoid under the operation of concatenation with identity ε.

A period of a partial word u is a positive integer p such that u(i) = u(j)
whenever i, j ∈ D(u) and i ≡ j mod p. In this case, we call u p-periodic. The
smallest period of u is called the minimal period of u and is denoted by p(u).
A weak period of u is a positive integer p such that u(i) = u(i + p) whenever
i, i+p ∈ D(u). In this case, we call u weakly p-periodic. The smallest weak period
of u is called the minimal weak period of u and is denoted by p′(u). Note that
every weakly p-periodic full word is p-periodic but this is not necessarily true
for partial words. Also even if the length of a partial word u is a multiple of a
weak period of u, then u is not necessarily a power of a shorter partial word.

If u and v are partial words of equal length, then u is said to be contained
in v denoted by u ⊂ v, if all symbols in D(u) are in D(v) and u(i) = v(i) for
all i ∈ D(u). A partial word u is primitive if there exists no word v such that
u ⊂ vn with n ≥ 2. Note that if v is primitive and v ⊂ u, then u is primitive as
well. It was shown in [2] that if u is a nonempty partial word, then there exist a
primitive word v and a positive integer n such that u ⊂ vn. However uniqueness
does not hold as seen with the partial word u where u� = *a (here u ⊂ a2 and

170 F. Blanchet-Sadri, D.D. Blair, and R.V. Lewis

u ⊂ ba for distinct letters a, b). There, it was also shown that for partial words
u and v, if there exists a primitive word x such that uv ⊂ xn for some positive
integer n, then there exists a primitive word y such that vu ⊂ yn. Moreover,
if uv is primitive, then vu is primitive. These results extend similar results for
words [19]. Also, it is immediate that if u is a primitive partial word, then rev(u)
is also primitive.

The partial words u and v are called compatible, denoted by u ↑ v, if there
exists a partial word w such that u ⊂ w and v ⊂ w. We denote by u∨v the least
upper bound of u and v. In other words, u ⊂ u∨v and v ⊂ u∨v and D(u∨v) =
D(u)∪D(v). As an example, u� = aba**a and v� = a**b*a are the companions
of two partial words u and v that are compatible and (u ∨ v)� = abab*a. The
following rules are useful for computing with partial words [1]: Multiplication: If
u ↑ v and x ↑ y, then ux ↑ vy; Simplification: If ux ↑ vy and |u| = |v|, then u ↑ v
and x ↑ y; and Weakening: If u ↑ v and w ⊂ u, then w ↑ v. For convenience, we
will refer to a partial word over A as a word over the enlarged alphabet A∪{*},
where the additional symbol * plays a special role. This allows us to say for
example “the partial word ab*a*b” instead of “the partial word with companion
ab*a*b”.

3 The Equation xm ↑ yn on Partial Words

In this section, we investigate the equation xm ↑ yn on partial words. The
equation xm = yn on words is well known. Indeed, if x and y are words, then
xm = yn for some positive integers m,n if and only if there exists a word z
such that x = zk and y = zl for some integers k, l. When dealing with partial
words x and y, if there exists a partial word z such that x ⊂ zk and y ⊂ zl

for some integers k, l, then xm ↑ yn for some positive integers m,n. Indeed, by
the multiplication rule, xl ⊂ zkl and yk ⊂ zkl, showing that xl ↑ yk. For the
converse, it is beneficial to define the following manipulation of a partial word
x. For a positive integer p and an integer 0 ≤ i < p, define x

[
i
p

]
as

x(i)x(i + p)x(i+ 2p) . . . x(i+ jp)

where j is the largest nonnegative integer such that i + jp < |x|. We shall call
this the ith residual word of x modulo p.

Using the multiplication and the simplification rules, we can demonstrate that
if x, y are partial words and m,n and p are positive integers, then xm ↑ yn if
and only if xmp ↑ ynp. Consequently, if xm′ ↑ yn′

and gcd(m′, n′) 	= 1, then
xm ↑ yn where m = m′/ gcd(m′, n′) and n = n′/ gcd(m′, n′). And therefore the
assumption that gcd(m,n) = 1 may be made without losing generality.

Lemma 1. Let x, y be partial words and let m,n be positive integers such that
xm ↑ yn with gcd(m,n) = 1. Call |x|/n = |y|/m = p. If there exists an integer i
such that 0 ≤ i < p and x

[
i
p

]
is not 1-periodic, then D(y

[
i
p

]
) is empty.

Equations on Partial Words 171

Lemma 2. Let x be a partial word, let m, p be positive integers, and let i be an
integer such that 0 ≤ i < p. Then the relation

xm
[

i
p

]
= x

[
i
p

]
x
[
(i− |x|) mod p

p

]
x
[
(i− 2|x|) mod p

p

]
· · · x

[
(i− (m− 1)|x|) mod p

p

]
holds.

Theorem 1. Good pairs
Let x, y be partial words and let m,n be positive integers such that xm ↑ yn

with gcd(m,n) = 1. Assume that for all i ∈ H(x) the word yn
[

i
|x|
]

is 1-periodic

and that for all i ∈ H(y) the word xm
[

i
|y|
]

is 1-periodic (a pair of partial words
(x, y) which satisfies this property we will refer to as a “good pair”). Then there
exists a partial word z such that x ⊂ zk and y ⊂ zl for some integers k, l.

Proof. Since gcd(m,n) = 1, there exists an integer p such that |x|n = |y|
m = p. Now

assume there exists an integer i such that 0 ≤ i < p and x
[

i
p

]
is not 1-periodic.

Then by Lemma 1, i+ jp ∈ H(y) for 0 ≤ j < m which by the assumption that
(x, y) is a good pair implies that xm

[
i + jp
|y|

]
must be 1-periodic for any choice of

j. Note that |y| = mp and similarly |x| = np. Therefore by Lemma 2,

xm
[
i + jp

mp

]
= x

[
i + jp
mp

]
x
[
(i + jp − |x|) mod mp

mp

]
· · · x

[
(i + jp − (m− 1)|x|) mod mp

mp

]
Clearly i + jp − l|x| = i + (j − ln)p for all l. For 0 ≤ j < m, we claim that
{(j − ln) mod m | 0 ≤ l < m} = {0, 1, . . . ,m − 1}. Indeed, assuming there
exist 0 ≤ l1 < l2 < m such that (j − l1n) ≡ (j − l2n) mod m we get that m
divides (l1 − l2)n, and since gcd(m,n) = 1, that m divides (l1 − l2), whence
l1 = l2. So there exist j0, j1, . . . , jm−1 such that j0 = j and {j0, j1, . . . , jm−1} =
{0, 1, . . . ,m− 1} and

xm
[
i + jp
mp

]
= x

[
i + j0p

mp

]
x
[
i + j1p

mp

]
· · · x

[
i + jm−1p

mp

]
Since xm

[
i + jp
mp

]
is 1-periodic, there exists a letter a such that for all 0 ≤ k < m,

x
[
i + jkp

mp

]
⊂ amjk

for some integer mjk
. This contradicts our assumption that there is an i for

which x
[

i
p

]
is not 1-periodic (here x

[
i
p

]
= x(i)x(i + p) . . . x(i + (n − 1)p) ⊂ an).

Therefore x
[

i
p

]
is 1-periodic for all 0 ≤ i < p. By the equivalent condition for

periodicity, this implies that x is p-periodic. The same argument holds for y, and
since xm ↑ yn, the result that there exists a word z of length p such that x ⊂ zn

and y ⊂ zm is proven. �

The example x2 = (a*b)2 ↑ (acbadb)1 = y1 shows that the assumption of (x, y)
being a good pair is necessary in Theorem 1. Here y(1)y(4) = cd is not 1-periodic
and there exists no partial word z as desired.

172 F. Blanchet-Sadri, D.D. Blair, and R.V. Lewis

Corollary 1. Let x and y be primitive partial words such that (x, y) is a good
pair. If xm ↑ yn for some positive integers m and n, then x ↑ y.
Note that if both x and y are full words, then (x, y) is a good pair. Corollary 1
hence implies that if x, y are primitive full words satisfying xm = yn for some
positive integers m and n, then x = y. We conclude this section by further
investigating the equation x2 ↑ ym on partial words wherem is a positive integer.

Proposition 1. Let x, y be partial words. Then x2 ↑ ym for some positive in-
teger m if and only if there exist partial words u, v, u0, v0, . . . , um−1, vm−1 such
that y = uv,

x = (u0v0) . . . (un−1vn−1)un = vn(un+1vn+1) . . . (um−1vm−1)

where 0 ≤ n < m, u ↑ ui and v ↑ vi for all 0 ≤ i < m, and where one of the
following holds: (1) m = 2n and u = ε; or (2) m = 2n+ 1 and |u| = |v|.

4 The Equation xy ↑ yx Partial Words

It is well known that two nonempty words x and y commute if and only if there
exists a word z such that x = zm and y = zn for some integers m,n. When
dealing with two nonempty partial words x and y, the existence of a word z
satisfying x ⊂ zm and y ⊂ zn for some integers m,n certainly implies xy ↑ yx.
To extend the converse to partial words, we first consider xy to have at most
one hole.

Theorem 2. Commutativity one hole [1]
Let x and y be nonempty partial words such that xy has at most one hole.

If xy ↑ yx, then there exists a word z such that x ⊂ zm and y ⊂ zn for some
integers m, n.

As stated in [1], Theorem 2 is false if xy has two holes. Take for example x = *bb
and y = abb*. To extend this theorem to the case when xy has at least two holes,
we may assume |x| ≤ |y|. The extension is based on the concept of xy not being
(k, l)-special where k, l denote the lengths of x, y respectively. For 0 ≤ i < k+ l,
we define the sequence of i relative to k, l as seqk,l(i) = (i0, i1, i2, . . . , in, in+1)
where i0 = i = in+1; where for 1 ≤ j ≤ n, ij 	= i; and where for 1 ≤ j ≤ n+ 1, ij
is defined as ij = ij−1 + k if ij−1 < l, and ij−1 − l otherwise. For example, if
k = 6 and l = 8, then seq(6,8)(0) = (0, 6, 12, 4, 10, 2, 8, 0). Now, the concept of
(k, l)-special is defined as follows.

Definition 1. (k, l)-Special [3]
Let k, l be positive integers satisfying k ≤ l and let z be a partial word of

length k + l. We say that z is (k, l)-special if there exists 0 ≤ i < k such that
seqk,l(i) = (i0, i1, i2, . . . , in, in+1) contains (at least) two positions that are holes
of z while

z�(i0)z�(i1) . . . z�(in+1)

is not 1-periodic.

Equations on Partial Words 173

If k = 6 and l = 8, then z = acbca**cbc*cac is (6, 8)-special since seq6,8(0)
contains the positions 6 and 10 which are in H(z) = {5, 6, 10} while a*aa*bba is
not 1-periodic.

Theorem 3. Commutativity arbitrary number of holes [3]
Let x, y be nonempty partial words such that |x| ≤ |y|. If xy ↑ yx and xy is

not (|x|, |y|)-special, then there exists a word z such that x ⊂ zm and y ⊂ zn for
some integers m, n.

The concept of {k, l}-special and the following two lemmas will be useful in the
sequel.

Definition 2. {k, l}-Special [5]
Let k, l be positive integers satisfying k ≤ l and let z be a partial word of

length k + l. We say that z is {k, l}-special if there exists 0 ≤ i < k such that
seqk,l(i) satisfies the condition of Definition 1 or the condition of containing two
consecutive positions that are holes of z.

If k = 6 and l = 8, then z = *babab**ababab is {6, 8}-special (but is not (6, 8)-
special). Indeed, seq6,8(0) contains the consecutive positions 0, 6 that are holes
of z.

Lemma 3. [1]
Let x, y be nonempty words and let z be a partial word with at most one hole.

If z ⊂ xy and z ⊂ yx, then xy = yx.

Lemma 4. [5]
Let x, y be nonempty words and let z be a non {|x|, |y|}-special partial word.

If z ⊂ xy and z ⊂ yx, then xy = yx.

Note that in Lemma 4, the assumption of z being non {|x|, |y|}-special cannot be
replaced by the weaker assumption of z not being (|x|, |y|)-special. To see this,
consider the partial words x = ababab, y = cbababab, and z = *babab**ababab.
Here, z ⊂ xy and z ⊂ yx, but xy 	= yx.

The concept of (k, l)-special partial word, which relates to commutativity,
turned out to be foundational in the design of our linear time algorithm for
testing primitivity on partial words [3].

5 The Equation xz ↑ zy on Partial Words

In this section, we consider the conjugacy property of partial words. Two partial
words x and y are conjugate if there exist partial words v and w such that x ⊂ vw
and y ⊂ wv [5]. It turns out that if the partial words x and y are conjugate,
then there exists a partial word z satisfying the conjugacy equation xz ↑ zy.
The equation xz = zy on words is well known. Indeed, if z is a word and x, y
are nonempty words such that xz = zy, then there exist words v, w satisfying
x = vw, y = wv, and z = (vw)nv for some integer n ≥ 0. For partial words, the
next similar result follows via the assumption of xz ∨ zy being |x|-periodic.

174 F. Blanchet-Sadri, D.D. Blair, and R.V. Lewis

Theorem 4. [5]
Let x, y, z be partial words with x, y nonempty. If xz ↑ zy and xz ∨ zy is |x|-

periodic, then there exist words v, w such that x ⊂ vw, y ⊂ wv, and z ⊂ (vw)nv
for some integer n ≥ 0.

As noted in [5], if z is a full word, then the assumption xz ↑ zy implies the
one of xz ∨ zy being |x|-periodic and the following corollary holds. Note that
Corollary 2 does not necessarily hold if z is not full even if x, y are full. The
partial words x = a, y = b, and z = *bb provide a counterexample.

Corollary 2. [5]
Let x, y be nonempty partial words, and let z be a full word. If xz ↑ zy, then

there exist words v, w such that x ⊂ vw, y ⊂ wv, and z ⊂ (vw)nv for some
integer n ≥ 0.

First, we investigate the equation xz ↑ zy on partial words under the missing
assumption of xz ∨ zy being |x|-periodic. The following two results give equiva-
lences for conjugacy.

Theorem 5. Let x, y and z be partial words such that |x| = |y| > 0. Then
xz ↑ zy if and only if xzy is weakly |x|-periodic.

Theorem 6. Let x, y and z be partial words such that |x| = |y| > 0. Then the
following hold:

1. If xz ↑ zy, then xz and zy are weakly |x|-periodic.
2. If xz and zy are weakly |x|-periodic and � |z||x|� > 0, then xz ↑ zy.

In Theorem 6(2), the assumption � |z||x|� > 0 is necessary. To see this, consider
x = aa, y = ba and z = a. Here, xz and zy are weakly |x|-periodic, but xz 	↑ zy.

Second, we consider solving the system of equations z ↑ z′ and xz ↑ z′y. Note
that when z = z′, this system reduces to xz ↑ zy. Let m be defined as � |z||x|� and n
as |z| mod |x|. Then let x = v0w0, y = wm+1vm+2, z = v1w1v2w2 . . . vmwmvm+1,
and z′ = v′1w

′
1v
′
2w
′
2 . . . v

′
mw

′
mv

′
m+1 where each vi, v

′
i has length n and each wi, w

′
i

has length |x| − n. The |x|-pshuffle and |x|-sshuffle of xz and z′y are defined as

pshuffle|x|(xz, z′y) = v0w0v
′
1w
′
1v1w1v

′
2w
′
2 . . .

vm−1wm−1v
′
mw

′
mvmwmv

′
m+1wm+1vm+1

sshuffle|x|(xz, z′y) = vm+1vm+2

Theorem 7. Let x, y, z and z′ be partial words such that |x| = |y| > 0 and
|z| = |z′| > 0. Then z ↑ z′ and xz ↑ z′y if and only if pshuffle|x|(xz, z′y) is
weakly |x|-periodic and sshuffle|x|(xz, z′y) is (|z| mod |x|)-periodic.

The results in this section find some nice applications. In [6] for example, Blanchet-
Sadri and Wetzler consider one of the most fundamental results on periodicity of
words, namely the critical factorization theorem. Given a word w and nonempty

Equations on Partial Words 175

words u, v satisfying w = uv, the minimal local period associated to the factoriza-
tion (u, v) is the length of the shortest square at position |u| − 1. The critical fac-
torization theorem shows that for any word, there is always a factorization whose
minimal local period is equal to the minimal period of the word [7,8]. Blanchet-
Sadri and Wetzler give a version of the critical factorization theorem for partial
words (the one-hole case was considered earlier by Blanchet-Sadri and Duncan [4].
Their proof, which provides an efficient algorithm that computes a critical factor-
ization when one exists, is based on the conjugacy equation on partial words.

6 The Equation x2 ↑ ymz on Partial Words

In this section, we investigate the equation x2 ↑ ymz on partial words where it
is assumed that m is a positive integer and z is a prefix of y. This equation has
nontrivial solutions (a solution is trivial if x, y, z are contained in powers of a
common word). Indeed, consider the compatibility relation (a**a)2 ↑ (aab)2aa
where x = a**a, y = aab and z = aa. The equation x2 ↑ ymz will play a crucial
role in the study of the equation xmyn ↑ zp in the next section.

Theorem 8. Good triples
Let x, y, z be partial words such that z is a proper prefix of y. Then x2 ↑

ymz for some positive integer m if and only if there exist partial words u, v,
u0, v0, . . . , um−1, vm−1, zx such that u 	= ε, v 	= ε, y = uv,

x = (u0v0) . . . (un−1vn−1)un (1)
= vn(un+1vn+1) . . . (um−1vm−1)zx (2)

where 0 ≤ n < m, u ↑ ui and v ↑ vi for all 0 ≤ i < m, z ↑ zx, and where one of
the following holds:

– m = 2n, |u| < |v|, and there exist partial words u′, u′n such that zx = u′un,
z = uu′n, u ↑ u′ and un ↑ u′n.

– m = 2n + 1, |u| > |v|, and there exist partial words v′2n and z′x such that
un = v2nzx, u = v′2nz

′
x, v2n ↑ v′2n and zx ↑ z′x.

A triple of partial words (x, y, z) which satisfy these properties we will refer to
as a “good triple”.

Proof. Note that if the conditions hold, then trivially x2 ↑ ymz for some positive
integer m. If x2 ↑ ymz for some positive integer m, then there exist partial words
u, v and an integer n such that y = uv, x ↑ (uv)nu and x ↑ v(uv)m−n−1z. Thus
|x| = n(|u|+ |v|) + |u| = (m− n− 1)(|u|+ |v|) + |v|+ |z| which clearly shows

|z| = (2n−m+ 2)|u|+ (2n−m)|v| (3)

This determines a relationship between m and n. There are two cases to consider
which correspond to assumptions on |u| and |v|. Under the assumption |u| = |v|
we see that z must be either empty or equal to y which is a contradiction. If

176 F. Blanchet-Sadri, D.D. Blair, and R.V. Lewis

we assume |u| < |v|, then (3) shows |z| = 2|u|, and if we assume |u| > |v|, then
|z| = |u| − |v|. Now note that x2 may be factored in the following way:

x2 = (u0v0) . . . (un−1vn−1)(unvn)(un+1vn+1) . . . (um−1vm−1)zx

Here ui ↑ u and vi ↑ v and zx ↑ z. From this it is clear that (1) and (2) are
satisfied.

Note that u 	= ε (otherwise |u| < |v|, in which case |z| = 2|u| = 0), and also
v 	= ε (otherwise, |u| > |v|, in which case |z| = |u| − |v| = |y|). First assume
|u| < |v|, equivalently |z| = 2|u| and m = 2n. Note that the suffix of length |u|
of zx must be un and therefore is compatible with u. The prefix of length |u| of
z must be u itself since z is a prefix of y. Thus zx = u′un and z = uu′n where
u ↑ u′ and un ↑ u′n which is one of our assertions. Now assume |u| > |v|, that
is |z| = |u| − |v| and m = 2n + 1. Note by cancellation that un = v2nzx. Since
un ↑ u, we can rewrite u as v′2nz

′
x where v2n ↑ v′2n and zx ↑ z′x, which is our

other assertion. �

Corollary 3. Let x, y be partial words such that |x| ≥ |y| > 0 and let z be a
prefix of y. Assume that x2 ↑ ymz for some positive integer m. Referring to the
notation of Theorem 8 (when z 	= ε and z 	= y) or referring to the notation of
Proposition 1 (otherwise), both w ↑ uv and w ↑ vu hold where w denotes the
prefix of length |y| of x. Moreover, u and v are contained in powers of a common
word if (z = ε and m = 2n) or (z = y and m+ 1 = 2n). This is also true if any
of the following six conditions hold with u 	= ε and v 	= ε:

1. y is full and w has at most one hole.
2. y is full and w is not {|u|, |v|}-special.
3. w is full and y has at most one hole.
4. w is full, and either (|u| ≤ |v| and uv is not (|u|, |v|)-special) or (|v| ≤ |u|

and vu is not (|v|, |u|)-special).
5. uv ↑ vu and y has at most one hole.
6. uv ↑ vu, and either (|u| ≤ |v| and uv is not (|u|, |v|)-special) or (|v| ≤ |u|

and vu is not (|v|, |u|)-special).

Corollary 4. Let x, y, z be partial words such that z is a prefix of y. Assume
that x, y are primitive and that x2 ↑ ymz for some integer m ≥ 2. If x has at
most one hole and y is full, then x ↑ y.

Corollary 5. [9]
Let x, y, z be words such that z is a prefix of y. If x, y are primitive and

x2 = ymz for some integer m ≥ 2, then x = y.

Note that Corollaries 4 and 5 do not hold when m = 1. Indeed, the words
x = aba, y = abaab and z = a provide a counterexample. Also, Corollary 4 does
not hold when x is full and y has one hole as is seen by setting x = abaabb,
y = ab* and z = ε.

Equations on Partial Words 177

7 The Equation xmyn ↑ zp on Partial Words

For integersm ≥ 2, n ≥ 2 and p ≥ 2, Lyndon and Schützenberger showed that the
equation xmyn = zp possesses a solution in a free group only when x, y, and z are
each a power of a common element [14]. Since every free monoid can be embedded
in a free group, the result is true in a free monoid as well (a simpler proof in the case
of a free monoid appears in [9]). The equation xmyn ↑ zp in a free monoid W (A)
certainly has a solution when x, y, and z are contained in powers of a common word
(we call such solutions the trivial solutions). However, there may be nontrivial
solutions as is seen with the compatibility relation (a*b)2(b*a)2 ↑ (abba)3. In this
section, we characterize some of the solutions of the equation xmyn ↑ zp for the
case where p ≥ 4. The characterization is stated as Theorem 9 which we show
with a series of case proofs. We reduce the number of cases by using the following:
If x, y, z are partial words and m,n, p are positive integers satisfying xmyn ↑ zp,
then (rev(y))n(rev(x))m ↑ (rev(z))p. It will turn out that, in a free monoidW (A),
the equation xmyn ↑ zp, where m ≥ 2, n ≥ 2 and p ≥ 4, may have solutions of
the following types: There exists a partial word w such that x, y, z are contained
in powers of w. We call such solutions the trivial or Type 1 solutions; The partial
words x, y, z satisfy x ↑ z and y ↑ z. We call such solutions the Type 2 solutions.
If z is full, then Type 2 solutions are trivial solutions.

Theorem 9. p ≥ 4
Let x, y, z be primitive partial words such that (x, z) and (y, z) are good pairs.

Let m,n, p be integers such that m ≥ 2, n ≥ 2 and p ≥ 4. Then the equation
xmyn ↑ zp has only solutions of Type 1 or Type 2 unless x2 ↑ zkzp for some
integer k ≥ 2 and nonempty prefix zp of z, or z2 ↑ xlxp for some integer l ≥ 2
and nonempty prefix xp of x.

Proof. We need only examine the case when |xm| ≥ |yn|. Now assume xmyn ↑ zp

has some solution that is not of Type 1 or Type 2. Our assumption on the lengths of
xm and yn implies that |xm| ≥ |z2| and in any case, either |x2| ≥ |z2| or |x2| < |z2|.
Hence one of the following equations will be satisfied: x2 ↑ zkzp for some integer
k ≥ 2 and prefix zp of z, or z2 ↑ xlxp for some integer l ≥ 2 and prefix xp of x.

Consider the case where zp or xp is the empty word. In either case, Corollary 1
implies that x ↑ z. From xmyn ↑ zp and x ↑ z, we get yn ↑ zp−m. Using
Corollary 1 again, we have y ↑ z. Hence these cases form Type 2 solutions. �

Corollary 6. [9]
Let x, y, z be primitive words and let m,n, p be integers such that m ≥ 2, n ≥ 2

and p ≥ 4. Then the equation xmyn = zp has no nontrivial solutions.

References

1. Berstel, J., Boasson, L.: Partial Words and a Theorem of Fine and Wilf. Theoret.
Comput. Sci. 218 (1999) 135–141

2. Blanchet-Sadri, F.: Primitive Partial Words. Discrete Appl. Math. 148 (2005) 195–
213

178 F. Blanchet-Sadri, D.D. Blair, and R.V. Lewis

3. Blanchet-Sadri, F., Anavekar, Arundhati R.: Testing Primitivity on Partial Words.
http://www.uncg.edu/mat/primitive/

4. Blanchet-Sadri, F., Duncan, S.: Partial Words and the Critical Fac-
torization Theorem. J. Combin. Theory Ser. A 109 (2005) 221–245
http://www.uncg.edu/mat/cft/

5. Blanchet-Sadri, F., Luhmann, D.K.: Conjugacy on Partial Words. Theoret. Com-
put. Sci. 289 (2002) 297–312

6. Blanchet-Sadri, F., Wetzler, N.D.: Partial Words and the Critical Factorization
Theorem Revisited. http://www.uncg.edu/mat/research/cft2/

7. Césari, Y., Vincent, M.: Une Caractérisation des Mots Périodiques. C.R. Acad.
Sci. Paris 268 (1978) 1175–1177

8. Choffrut, C., Karhumäki, J.: Combinatorics of Words. In Rozenberg, G., Salomaa,
A. (eds.): Handbook of Formal Languages. Vol. 1. Springer-Verlag, Berlin (1997)
329–438

9. Chu, D.D., Town, H.S.: Another Proof on a Theorem of Lyndon and Schützenberger
in a Free Monoid. Soochow J. Math. 4 (1978) 143–146

10. Harju, T., Nowotka, D.: The Equation xi = yjzk in a Free Semigroup. Semigroup
Forum 68 (2004) 488–490

11. Leupold, P.: Partial Words Results and Perspectives. (GRLMC, Tarragona, 2003)
12. Lothaire, M.: Combinatorics on Words. Addison-Wesley, Reading, MA (1983);

Cambridge University Press, Cambridge (1997)
13. Lothaire, M.: Algebraic Combinatorics on Words. Cambridge University Press,

Cambridge (2002)
14. Lyndon, R.C., Schützenberger, M.P.: The Equation am = bncp in a Free Group.

Michigan Math. J. 9 (1962) 289–298
15. Makanin, G.S.: The Problem of Solvability of Equations in a Free Semigroup. Math.

USSR Sbornik 32 (1977) 129–198
16. Markov, A.A.: The Theory of Algorithms. Trudy Mat. Inst. Steklov 42 (1954)
17. Plandowski, W.: Satisfiability of Word Equations with Constants is in NEXPTIME.

Annual ACM Symposium on Theory of Computing (Atlanta, GA, 1999) 721–725
18. Plandowski, W.: Satisfiability of Word Equations with Constants is in PSPACE.

40th Annual Symposium on Foundations of Computer Science (New York, 1999)
495–500

19. Shyr, H.J., Thierrin, G.: Disjunctive Languages and Codes. Lecture Notes in Com-
puter Science, Vol. 56. Springer-Verlag, Berlin Heidelberg New York (1977) 171–176

Concrete Multiplicative Complexity
of Symmetric Functions

Joan Boyar1,� and René Peralta2,��

1 Dept. of Math. and Computer Science, University of Southern Denmark
joan@imada.sdu.dk

2 Security Division
Information Technology Laboratory, NIST

rene.peralta@nist.gov

Abstract. The multiplicative complexity of a Boolean function f is defined as
the minimum number of binary conjunction (AND) gates required to construct
a circuit representing f , when only exclusive-or, conjunction and negation gates
may be used. This article explores in detail the multiplicative complexity of sym-
metric Boolean functions. New techniques that allow such exploration are intro-
duced. They are powerful enough to give exact multiplicative complexities for
several classes of symmetric functions. In particular, the multiplicative complex-
ity of computing the Hamming weight of n bits is shown to be exactly n−HN(n),
where HN(n) is the Hamming weight of the binary representation of n. We also
show a close relationship between the complexity of symmetric functions and
fractals derived from the parity of binomial coefficients.

1 Introduction

Much research in circuit complexity is devoted to the following problem: Given a
Boolean function and a supply of gate types, construct a circuit which computes the
function and is optimal according to some criteria. It seems to be very difficult in gen-
eral to obtain exact bounds for specific functions. The multiplicative complexity c∧(f)
of a Boolean function f is the number of conjunctions necessary and sufficient to imple-
ment a circuit which computes f over the basis (∧,⊕, 1) (alternatively, the number of
multiplications necessary and sufficient to calculate a function overGF2 via a straight-
line program).

Our initial motivation for studying multiplicative complexity came from cryptogra-
phy. Many cryptographic protocols involve proving predicates about a string X that is
available in committed form only, i.e., the bits of X are individually encrypted using
a bit-commitment scheme. In [3] a construction is given for a non-interactive crypto-
graphic proof of an arbitrary predicate F on X . The predicate F is defined by a ver-
ification circuit C containing AND, NOT, and XOR gates only. The length of these

� Partially supported by the Future and Emerging Technologies programme of the EU under
contract number IST-1999-14186 (ALCOM-FT), and by the Danish Natural Science Research
Council (SNF).

�� Part of this work was done at the Computer Science Department, Yale University, prior to this
author joining NIST. While at Yale, this work was partially supported by NSF grant CCR-
0081823.

R. Královič and P. Urzyczyn (Eds.): MFCS 2006, LNCS 4162, pp. 179–189, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

180 J. Boyar and R. Peralta

discreet proofs is linear in the number of AND gates in C and is unaffected by the num-
ber of NOT or XOR gates. Another promising area of application of these results is in
the communication complexity of secure multi-party computation. In general, for these
protocols, multiplications require communication, but linear operations do not. This
holds for very different paradigms for building protocols, those based on secret sharing
were introduced in [2,7] and those based on threshold homomorphic encryption were
introduced in [6]. For more recent results, see [9].

We focus on symmetric functions, which are functions dependent only on the Ham-
ming weight

−→
H (x) of the input x ∈ GFn

2 . Obtaining tight bounds is important because
symmetric functions can be building blocks for arithmetic circuits, some of which in-
volve recursive use of simple symmetric functions. Sub-optimal implementations of
the latter, even by an additive constant factor, translate into multiplicative extra costs
when building arithmetic circuits. In cryptographic applications, whether or not a cir-
cuit is of practical use often depends on constant multiplicative factors in the number
of AND gates used.

The study of multiplicative complexity may prove useful in obtaining upper bounds
on the computational complexity of functions. If a function f has multiplicative com-
plexity O(log(n)), then, for all x in the domain of f , an element of the pre-image of
y = f(x) can be found in polynomial-time as follows: Guess the values of inputs to the
AND gates in a circuit for f . This reduces the circuit to a collection of linear circuits.
Now find an x such that y = f(x) using Gaussian elimination over GF2. This shows
that, one-way functions, if they exist, have super-logarithmic multiplicative complexity.
On the other hand, low multiplicative complexity circuits may lead to better algorithms
for inverting functions of importance in cryptology.

Previous work. Multiplicative complexity has been investigated previously by Alek-
sanyan [1], Schnorr [14], and Mirwald and Schnorr [11]. Their work was exclusively
concerned with quadratic forms. Multiplicative complexity has more often been used to
refer to more general algebraic computations. This subject has an extensive history (see,
for example, [5]), since multiplication is often the dominant operation in this context.

Very little is known about multiplicative complexity of specific functions. In this
paper we concentrate on the concrete (as opposed to asymptotic) multiplicative com-
plexity of symmetric functions. In an earlier paper [4], we showed the following results:

– A general upper bound of n + 3
√
n for any symmetric function f . This estab-

lishes a separation between Boolean and multiplicative complexity for symmetric
functions. Paul [12] and Stockmeyer [15] have shown lower bounds of the form
2.5n − O(1) for the Boolean complexity of infinite families of symmetric func-
tions;

– Let Σn
. be the set of symmetric predicates on n bits. We showed an upper bound of

2n− log2 n for the complexity c∧(Σn
.) of simultaneously computing all symmetric

functions on n bits (the asymptotic result c∧(Σn
.) = O(n) was obtained earlier by

Mihaı̆ljuk [10]).

Our results. Several new upper and lower bounds on the multiplicative complexity
of symmetric functions are obtained. In particular, it is shown that the multiplicative
complexity of computing the Hamming weight is exactly n−HN(n), where HN(n) is

Concrete Multiplicative Complexity of Symmetric Functions 181

the Hamming weight of the binary representation of n. This is a rather surprising result,
given the sparsity of exact computational complexity bounds known.

A new technique, using a normal form for (⊕, 1,∧) circuits and elementary linear
algebra, is used to show that any non-linear symmetric function on n variables has
multiplicative complexity at least �n

2 �. Properties of binomial coefficients are shown to
yield the following lower bounds for the counting (exactly-k) and threshold-k functions
on n variables:

c∧(En
k) ≥ max{k − 1, n− k − 1, 2�log2 n� − 2, ln,k − 1}

c∧(T n
k) ≥ max{k − 1, n− k, 2�log2 n� − 1, ln−1,k−1}

where ln,k is the bitwise OR of n − k and k. Tighter bounds for several families of
symmetric functions are obtained by considering the multiplicative complexity of such
functions when restricted to hyperplanes inGFn

2 . In particular, this technique yields the
exact complexities of the elementary symmetric functionsΣn

2 , Σ
n
3 , Σ

n
n−1, Σ

n
n−2, Σ

n
n−3.

Yet another application of hyperplane restrictions yields new general lower bounds for
infinite subclasses of symmetric functions. Intriguingly, these subclasses are defined by
fractals on the Cartesian plane.

More constructively, general techniques are developed for proving upper bounds for
elementary symmetric functions. These, plus properties of Pascal’s triangle modulo 2
(known in the fractals literature as Sierpinski’s gasket), are used to prove upper bounds
for the counting functions, En

k (x), and the threshold functions, T n
k (x). These general

techniques are shown to give many tight results. In addition, a general upper bound on
the threshold-k functions, T n

k , is found: c∧(T n
k) ≤ n−HN(n) + �log2(n+ 1)�− 1 for

all k ≥ 1.
In the following sections, and due to space constraints, most proofs will be omitted.

2 Some Simple Observations and a Normal Form

Each Boolean function f on n variables has a unique representation as a multilinear
(i.e. square-free) polynomial overGF2. Since xi = x overGF2, we assume throughout
the following that all polynomials are multilinear. By the “degree of f”, we will mean
the degree of its unique representing polynomial. It is known that a Boolean function
of degree d has multiplicative complexity at least d − 1. This we call the degree lower
bound.

We say that a circuit is optimal for f if it has c∧(f) AND gates. Since y ∧ (x⊕1) =
(y∧x)⊕y, optimal circuits need not have more than one negation. If present, we may as-
sume this negation is the last gate in the circuit. It is not hard to see that optimal circuits
for a Boolean function f(x) require a negation if and only if f(0) = 1, which holds if
and only if the polynomial of f has a constant term. Thus we may divide Boolean func-
tions into “positive” functions (those for which f(0) = 0) and “negative” functions.
There is a bijection σ(f) = f⊕1 between positive and negative functions. Since the
bijection preserves multiplicative complexity, we may restrict our study of multiplica-
tive complexity to functions over the basis (⊕,∧). For technical reasons, and without
affecting the multiplicative complexity of functions, we allow ⊕ gates to contain any

182 J. Boyar and R. Peralta

number of inputs (at least one). AND gates, though, are restricted to fan-in exactly 2.
We call a gate “internal” if its output is not the output to the circuit. We say a circuit is
in Layered Normal Form (LNF) if i) all inputs go only to ⊕ gates; and ii) outputs of all
internal⊕ gates are inputs only to ∧ gates. It is not hard to see that all positive functions
have optimal circuits in Layered Normal Form.

Logical expressions over the basis (∧,⊕) correspond to arithmetic expressions over
GF2. We will use the latter notation for the most part of this paper: a⊕b, a ∧ b, ā will
be written a⊕b, ab, a⊕1, respectively. The kth elementary symmetric function on n
variables x1, x2, . . . , xn is defined by

Σn
k (x1, x2, . . . , xn) =

⊕
S⊆{1,...,n},|S|=k

∏
i∈S

xi (1 ≤ k ≤ n).

For readability we will also use the alternative notations Σn
k (x) or simply Σn

k . It will
prove convenient as well to define Σn

0 = 1.
A classical result states that every symmetric function can be represented as a sum

of elementary symmetric functions (see [16]). Consider, for example, the MAJORITY
function on three variables (i.e. the threshold function T 3

2 = Σ3
2). Σ3

2(x1, x2, x3) =
x1x2⊕x1x3⊕x2x3 = (x1⊕x2)(x1⊕x3)⊕x1. The last equality establishes c∧(T 3

2) =
1, and also serves to show that the algebraic manipulations necessary to obtain optimal
circuits may not be obvious.

The following lemmas appear in [4]:

Lemma 1. Represent the positive integer k as a sum of powers of 2: k = 2i0 +2i1 + . . .
+ 2ij . Each i is a position of a non-zero bit in the binary representation of k. Then for
any n ≥ k, Σn

k = Σn
2i0Σ

n
2i1 . . . Σ

n
2ij
.

Lemma 2. Let y = ykyk−1 . . . y0 be the Hamming weight, in binary representation, of
the n-bit string x. Then yi = Σn

2i(x) for i = 0, . . . , k.1

These show, for example, that Σn
11 = Σn

8Σ
n
2Σ

n
1 for n ≥ 11, and the Hamming weight

of a 10-bit string x is a string of length 4 whose bits are Σ10
8 (x), Σ10

4 (x), Σ10
2 (x), and

Σ10
1 (x). Finally, we observe that if g : GF k

2 → GF2 is derived from f : GFn
2 → GF2

by fixing the values of n−k variables of f , then c∧(g) ≤ c∧(f). We call g a restriction
of f .

3 A Tight Lower Bound on the Multiplicative Complexity of
Symmetric Functions

Given a Boolean function f over GFn
2 and a subset S of {x1, . . . , xn}, we denote by

fS̄ the function obtained from f by complementing the inputs in S. If fS̄ = f , we say
S is complementable. We say S is “proper” if 0 < |S| < n.

Lemma 3. If a Boolean function f over GFn
2 has multiplicative complexity less than

�n−1
2 �, then it has a proper complementable set.

1 See also [13].

Concrete Multiplicative Complexity of Symmetric Functions 183

Proof. Consider an optimal LNF circuit for f . If the circuit has at most �n−1
2 � − 1

AND gates, the number of ⊕ gates is at most k = 2(�n−1
2 � − 1) + 1 ≤ n − 2 (recall

that a circuit in LNF form may have at most one ⊕ gate which is not the input to an ∧
gate). Label these gates γ1, . . . , γk. Define an n × k matrix A = (aij) over GF2 as
follows: aij = 1 iff xi is an input to γj . Rows of the matrix correspond to inputs of the
circuit. Columns correspond to ⊕ gates. Since rank(A) ≤ k ≤ n− 2, there is a subset
S (with 0 < |S| ≤ n−1) of the rows whose sum overGF k

2 is 0. Since in a LNF circuit
all inputs go only to ⊕ gates, and each ⊕ gate has an even number of inputs from S, S
is a complementable set of inputs. �

For a symmetric function f , if a proper set S of cardinality k is complementable,
then every set of cardinality k is complementable, including the sets {x1, . . . , xk}
and {x2, . . . , xk+1}. Hence, {x1, xk+1} is also complementable, so any two inputs are
complementable. Thus if the Hamming weights of x and y have the same parity, then
f(x) = f(y), so f is linear. We have shown

Lemma 4. If a symmetric Boolean function f has a proper complementable set S, then
f must be linear (i.e. c∧(f) = 0).

A lower bound of �n−1
2 � for non-linear symmetric functions immediately follows. In

the full paper, we prove the slightly stronger result:

Theorem 1. The multiplicative complexity of an n−variate non-linear symmetric func-
tion is at least �n

2 �.

4 Hyperplane Restrictions Yield Fractal Lower Bounds

We now describe a new technique which uses the degree lower bound, but often achieves
stronger lower bounds. A plane E in GFn

2 can be specified by an equation
⊕

i∈IE
xi =

0, where IE ⊆ {1, . . . , n}. For notational simplicity, if the index set is empty, we define⊕
i∈φxi = 0. Given a Boolean function f on n-bits, we denote the restriction of f to the

plane E by f↓E . Letting t = Max(IE), we view f↓E as a function on n− 1 variables
obtained by substituting

⊕
i∈IE−{t}xi for xt in the polynomial for f . There are many

ways to obtain a circuit for f↓E from a circuit for f . For C in Layered Normal Form,
C↓E will denote the circuit constructed by replacing xt by all of the other variables
in IE , removing pairs of identical inputs to XOR gates, and repeatedly removing XOR
gates with no inputs and unnecessary AND gates.C↓E will be in Layered Normal Form.
We now proceed to prove lower bounds by choosing planes which will decrease the
number of AND gates in a circuit without decreasing the degree of the function which
is computed. The degree lower bound is then applied to the function resulting from the
restriction.

Lemma 5. Suppose f is an n−variate function of degree k > 1. If c∧(f) = k− 1 + e,
where e ≥ 0, then there exist u ≤ e + 1 planes E1, E2, ..., Eu such that the degree of
(. . . ((f↓E1)↓E2) . . .)↓Eu is at most k − 1.

184 J. Boyar and R. Peralta

Corollary 1. Suppose f is an n−variate symmetric function of degree k > 1. If c∧(f)
= k − 1, then deg(f↓E) ≤ k − 1 for at least two distinct planes E1, E2 where E1 can
be specified by xn =

⊕t1
i=1xi (t1 < n), and E2 can be specified using an equation

with at most n− 2 terms in the sum.

The technique of hyperplane restrictions yields lower bounds on multiplicative com-
plexity which are better than the degree lower bound for many symmetric functions,
including all with degree less than n − 1. We next state some of these bounds. In sec-
tion 6, the bound given by the following theorem is shown to be tight for Σn

n−2 and
Σn

n−3.

Theorem 2. Let f be a n−variate symmetric function of degree m, with 1 < m <
n− 1. Then c∧(f) ≥ m.

The proof of Theorem 2 involves one hyperplane restriction. Lemma 5 can be used to
prove tighter bounds using successive hyperplane restrictions under certain combinato-
rial constraints.

Theorem 3. Let f be a n−variate symmetric function of degree m. Suppose 1 < m ≤
n − 2 and n > 4. Then, if

(
n−4
m−2

)
is even,

(
n−3
m−1

)
is even, and

(
n−2
m

)
is odd, then

c∧(f) ≥ m+ 1.

Theorem 4. Let f be a n−variate symmetric function of degree m. If
(

n−6
m−3

)
,
(

n−5
m−2

)
,

and
(

n−4
m−1

)
are even, while

(
n−3
m

)
is odd, then c∧(f) ≥ m+ 2.

Theorem 3 gives the nontrivial lower bound c∧(Σ8
4) ≥ 5. The set of points in the

plane that satisfy the conditions of either Theorem 3 or Theorem 4 form fractals. Figure
1 plots these points for Theorem 3. The hyperplane restriction technique is a general

0

100

200

300

400

500

0 100 200 300 400 500
··
·
······
····················
··
·····
·············
··
·····
··
·····
··
·····
··
··········
·····
··········
·········
·
··
·
····
·
··
·
··
·
··
·
··
···
····
···
······
·
··
·
··
·
··
·
··
···
····
···
····
·
··
·
··
···
····
···
····
···
····
···
····
·······
········
·······
············
·
··
·
··
·
··
·
···
····

···
······
·
··
·
···
···
·

···
···
·

···
···
·

···
···
·

······
·····
····

······
·····
····
··
·
··
·
···
···
·

···
···
·

···
···
·

···
···
·

·····
······
····

·····
······
····

···
···
·

···
···
·

·····
·····
·····

·····
·····
·····

·····
·····
·····

·····
·····
·····

··········
··········
··········
·

··········
··········
··········
·····

·

··

·

····

·

··

·

··

·

··

·

··

···

····

···

······

·

··

·

··

·

··

·

··

···

····

···

····

·

··

·

··

···

····

···

····

···

····

···

····

·······

········

·······

··········

·

··

·

··

·

··

·

··

···
····

···
····

·

··

·

··

···
···
·

···
···
·

···
···
·

···
···
·

······
·
······
··

······
·
······
··

·

··

·

··

···
···
·

···
···
·

···
···
·

···
···
·

·····
··
······
··

·····
··
······
··

···
···
·

···
···
·

·····
··
·····
···

·····
··
·····
···

·····
··
·····
···

·····
··
·····
···

··········
·····
··········
······

··········
·····
··········
······
··
·
·
·

·
·
·

·
·
·

·
·
·

·
··
··
··

·
··
··
··

·
·
·

·
·
·

·
··
··
··

·
··
··
··

·
··
··
··

·
··
··
··

···
····
····
····

···
····
····
····

·
·
·

·
·
·

·
··
··
··

·
··
··
··

·
··
··
··

·
··
··
··

···
····
····
····

···
····
····
····

·
··
··
··

·
··
··
··

···
····
····
····

···
····
····
····

···
····
····
····

···
····
····
····

·······
········
········
········

·······
········
········
········

·
·
·

·
·
·

··
··
··
·

··
··
··
·

··
··
··
·

··
··
··
·

···
····
····
····

···
····
····
····

··
··
··
·

··
··
··
·

···
···
···
···
···

···
···
···
···
···

···
···
···
···
···

···
···
···
···
···

······
·····
······
······
······
··

······
·····
······
······
······
··

··
··
··
·

··
··
··
·

···
···
···
···
···

···
···
···
···
···

···
···
···
···
···

···
···
···
···
···

·····
······
······
······
······
··

·····
······
······
······
······
··

···
···
···
···
···

···
···
···
···
···

·····
·····
·····
·····
·····
·····
·

·····
·····
·····
·····
·····
·····
·

·····
·····
·····
·····
·····
·····
·

·····
·····
·····
·····
·····
·····
·

··········
··········
··········
··········
··········
··········
···

··········
··········
··········
··········
··········
··········
·······

·

··

·

····

·

··

·

··

·

··

·

··

···

····

···

······

·

··

·

··

·

··

·

··

···

····

···

····

·

··

·

··

···

····

···

····

···

····

···

····

·······

········

·······

··········

·

··

·

··

·

··

·

··

···

····

···

····

·

··

·

··

···

···
·

···

···
·

···

···
·

···

···
·

······
·

······
··

······
·

······
··

·

··

·

··

···

···
·

···

···
·

···

···
·

···

···
·

·····
··

······
··

·····
··

······
··

···

···
·

···

···
·

·····
··

·····
···

·····
··

·····
···

·····
··

·····
···

·····
··

·····
···

··········
·····

··········
······

··········
·····

··········
······
··

·

·
·

·

·
·

·

·
·

·

·
·

·
··

··
··

·
··

··
··

·

·
·

·

·
·

·
··

··
··

·
··

··
··

·
··

··
··

·
··

··
··

···
····

····
····

···
····

····
····

·

·
·

·

·
·

·
··

··
··

·
··

··
··

·
··

··
··

·
··

··
··

···
····

····
····

···
····

····
····

·
··

··
··

·
··

··
··

···
····

····
····

···
····

····
····

···
····

····
····

···
····

····
····

·······
········

········
········

·······
········

········
········

·

·
·

·

·
·

··
·

··
··

··
·

··
··

··
·

··
··

··
·

··
··

···
····

····
····

···
····

····
····

··
·

··
··

··
·

··
··

···
···
·

···
···
··

···
···
·

···
···
··

···
···
·

···
···
··

···
···
·

···
···
··

······
·····
····

······
······
····

······
·····
····

······
······
····

··
·

··
··

··
·

··
··

···
···
·

···
···
··

···
···
·

···
···
··

···
···
·

···
···
··

···
···
·

···
···
··

·····
······
····

······
······
····

·····
······
····

······
······
····

···
···
·

···
···
··

···
···
·

···
···
··

·····
·····
·····

·····
·····
·····
·

·····
·····
·····

·····
·····
·····
·

·····
·····
·····

·····
·····
·····
·

·····
·····
·····

·····
·····
·····
·

··········
··········
··········
·

··········
··········
··········
··

··········
··········
··········
·

··········
··········
··········
··

··

·

·

·

·

·

·

·

·

·

·

·

·

·

··

··

··

·

··

··

··

·

·

·

·

·

·

·

··

··

··

·

··

··

··

·

··

··

··

·

··

··

··

···

····

····

····

···

····

····

····

·

·

·

·

·

·

·

··

··

··

·

··

··

··

·

··

··

··

·

··

··

··

···

····

····

····

···

····

····

····

·

··

··

··

·

··

··

··

···

····

····

····

···

····

····

····

···

····

····

····

···

····

····

····

·······

········

········

········

·······

········

········

········

·

·

·

·

·

·

·

··

··

··

·

··

··

··

·

··

··

··

·

··

··

··

···
····
····
····

···
····
····
····

·

··

··

··

·

··

··

··

···
···
·
···
·
···
·

···
···
·
···
·
···
·

···
···
·
···
·
···
·

···
···
·
···
·
···
·

······
·
······
··
······
··
······
··

······
·
······
··
······
··
······
··

·

··

··

··

·

··

··

··

···
···
·
···
·
···
·

···
···
·
···
·
···
·

···
···
·
···
·
···
·

···
···
·
···
·
···
·

·····
··
······
··
······
··
······
··

·····
··
······
··
······
··
······
··

···
···
·
···
·
···
·

···
···
·
···
·
···
·

·····
··
·····
···
·····
···
·····
···

·····
··
·····
···
·····
···
·····
···

·····
··
·····
···
·····
···
·····
···

·····
··
·····
···
·····
···
·····
···

··········
·····
··········
······
··········
······
··········
······

··········
·····
··········
······
··········
······
··········
······

·

·

·

·

·

·

·
·
·
·
·
·
·

·
·
·
·
·
·
·

·
·
·
·
·
·
·

·
·
·
·
·
·
·

·
··
··
··
··
··
··
··

·
··
··
··
··
··
··
··

·
·
·
·
·
·
·

·
·
·
·
·
·
·

·
··
··
··
··
··
··
··

·
··
··
··
··
··
··
··

·
··
··
··
··
··
··
··

·
··
··
··
··
··
··
··

···
····
····
····
····
····
····
····

···
····
····
····
····
····
····
····

·
·
·
·
·
·
·

·
·
·
·
·
·
·

·
··
··
··
··
··
··
··

·
··
··
··
··
··
··
··

·
··
··
··
··
··
··
··

·
··
··
··
··
··
··
··

···
····
····
····
····
····
····
····

···
····
····
····
····
····
····
····

·
··
··
··
··
··
··
··

·
··
··
··
··
··
··
··

···
····
····
····
····
····
····
····

···
····
····
····
····
····
····
····

···
····
····
····
····
····
····
····

···
····
····
····
····
····
····
····

·······
········
········
········
········
········
········
········

·······
········
········
········
········
········
········
········

·
·
·
·
·
·
·

·
·
·
·
·
·
·

··
··
··
··
··
··
··
·

··
··
··
··
··
··
··
·

··
··
··
··
··
··
··
·

··
··
··
··
··
··
··
·

···
····
····
····
····
····
····
····

···
····
····
····
····
····
····
····

··
··
··
··
··
··
··
·

··
··
··
··
··
··
··
·

···
···
···
···
···
···
···
···
···
···
·

···
···
···
···
···
···
···
···
···
···
·

···
···
···
···
···
···
···
···
···
···
·

···
···
···
···
···
···
···
···
···
···
·

······
·····
······
······
······
······
······
······
······
······
····

······
·····
······
······
······
······
······
······
······
······
····

··
··
··
··
··
··
··
·

··
··
··
··
··
··
··
·

···
···
···
···
···
···
···
···
···
···
·

···
···
···
···
···
···
···
···
···
···
·

···
···
···
···
···
···
···
···
···
···
·

···
···
···
···
···
···
···
···
···
···
·

·····
······
······
······
······
······
······
······
······
······
····

·····
······
······
······
······
······
······
······
······
······
····

···
···
···
···
···
···
···
···
···
···
·

···
···
···
···
···
···
···
···
···
···
·

·····
·····
·····
·····
·····
·····
·····
·····
·····
·····
·····
·····
···

·····
·····
·····
·····
·····
·····
·····
·····
·····
·····
·····
·····
···

·····
·····
·····
·····
·····
·····
·····
·····
·····
·····
·····
·····
···

·····
·····
·····
·····
·····
·····
·····
·····
·····
·····
·····
·····
···

·

Fig. 1. Points (n,m) for which c∧(Σn
m) ≥ m + 1, m < n < 512

tool for relating combinatorial constraints to multiplicative complexity. The combina-
torial constraints thus derived seem to always yield fractals. An interesting question is
whether this is solely a result of the bounding technique or the exact complexity of the
elementary symmetric functions is in fact fractal in nature.

Concrete Multiplicative Complexity of Symmetric Functions 185

5 The Exact Multiplicative Complexity of the Hamming Weight
Function

The result of computing a symmetric function on some inputs is determined completely
by the Hamming weight of those inputs. In this section, we investigate the multiplica-
tive complexity of computing the Hamming weight. Let

−→
H (x) denote the binary rep-

resentation of the Hamming weight of a bit string x ∈ GFn
2 .
−→
H (x) has fixed length

�log2(n+1)� and may contain leading zeros. The function
−→
H () will be denoted byHn

when the parameter n needs to be explicitly stated. Let HN(n) denote the Hamming
weight of the binary representation of the integer n. Theorem 8 in [4] can be seen to
give the result that c∧(Hn) ≤ n − HN(n). Here we prove a matching lower bound.
It will prove useful to define the Hamming weight of the empty string λ to be 0, i.e.−→
H (λ) = HN(0) = 0.

Theorem 5. c∧(Hn) = n−HN(n), for all n ≥ 1.

Proof. We begin supposing that x is a bit string of length 2k. By Lemma 2, the k + 1st
bit of

−→
H (x) is Σ2k

2k (x), which is a polynomial of degree 2k. Thus, by the degree lower

bound, c∧(H2k

) ≥ 2k−HN(2k) = 2k−1 for all k ≥ 0. This matches the upper bound,
and these known bounds will now be used to prove the lower bound for lengths which
are not powers of 2. For notational brevity, we will denote c∧(Hn) by hn. Our proof
is by induction on k with base k = 1. Let k > 1 and assume the theorem holds for all
n′ ≤ 2k−1. Let n = 2k − i for some integer 1 ≤ i < 2k−1. Then n+ (i− 1) = 2k − 1.
Note that if 0 ≤ a, b, k and n = 2k − 1 = a + b, then HN(n) = HN(a) + HN(b).
Thus, k − HN(i − 1) = HN(n). We design a circuit for the Hamming weight of a
string x of length 2k = n+ (i− 1) + 1 as follows. We split x into three strings u,v, c
of lengths n, i − 1, and 1, respectively. We use optimal circuits to compute

−→
H (u) and−→

H (v). Note that the longest of these two strings is
−→
H (u), which has length k. Then we

use the standard addition circuit with carry-in c to compute c+−→
H (u) +−→

H (v) (which
uses k multiplications since a full adder uses just one multiplication for T 3

2). The result
is
−→
H (x). By the inductive hypothesis, the circuit for

−→
H (v) contains hi−1 = (i− 1)−

HN(i−1) multiplications. Thus the circuit for
−→
H (x) contains hn+(i−1)−HN(i−1)+k

multiplications. Since c∧(H2k

) ≥ 2k − 1, this quantity must be at least 2k − 1, i.e.

hn + (i− 1)−HN(i− 1) + k ≥ 2k − 1.

Substituting HN(n) for k −HN(i− 1), n for 2k − i, and rearranging terms, we obtain
hn ≥ n − HN(n). This proves the theorem since the lower bound matches the upper
bound from [4]. �

Truncated Hamming weight. Let Hn
r be the function which computes the r low-order

bits of the Hamming weight of a vector of length n ≥ 2r−1. The complexity of this
function is 0 when r = 1 and n −HN(n) when n ≤ 2r − 1. A recursive construction
(see the full paper) yields the following results:

Lemma 6. For j ≥ r ≥ 1, we have c∧(H2j−1
r) ≤

(
2r−1−1
2r−1

)
2j − r + 1.

186 J. Boyar and R. Peralta

Lemma 7. Let r ≥ 1 and n ≥ 2r. Let γ = n mod 2r. Then, c∧(Hn
r) ≤

(
2r−1−1
2r−1

)
(n−

γ) + γ −HN(γ).

6 Building Blocks

We now discuss subclasses of symmetric functions. The idea is to bound, as tightly
as possible, the multiplicative complexity of classes of functions which can be used to
construct arbitrary symmetric functions. We focus on three classes of functions:

– The elementary symmetric functionsΣn
k (x).

– The “counting” function En
k (x), which is 1 if and only if the Hamming weight of

x is k.
– The “threshold” function T n

k (x), which is 1 if and only if the Hamming weight of
x is k or more.

First, we consider the elementary symmetric functions, Σn
k . Let c∧(f1, . . . , fk) denote

the multiplicative complexity of simultaneously computing f1, . . . , fk. An immediate
corollary of Lemma 7 is the following:

Corollary 2. Let r ≥ 1, n ≥ 2r−1, and γ = (n mod 2r). Then

c∧(Σn
20 , . . . , Σn

2r−1) ≤
(

2r−1 − 1
2r−1

)
(n− γ) + γ −HN(γ).

By Lemma 1, the value of Σn
k (x) is simply the GF2 product of at most HN(k) of the

low-order �log2(k+1)� bits of the Hamming weight of x. Therefore, Corollary 2 yields
a general upper bound for Σn

k and a less general result:

Theorem 6. Let n ≥ k ≥ 1, and r = �log2(k + 1)�. Let γ = (n mod 2r). c∧(Σn
k) ≤(

2r−1−1
2r−1

)
(n− γ) + γ −HN(γ) +HN(k)− 1.

Corollary 3. For n ≥ 4 and n′ = n mod 4,
c∧(Σn

4) ≤ c∧(Σn
2 , Σ

n
4) ≤ 3

4n
′ + �n mod 4

2 �.

For example, Corollary 3 yields the result c∧(Σ5
4) = 3, though this upper bound also

follows from Theorem 5, since Σ5
4(x) is the high-order bit of

−→
H (x). We now state

several results for the complexity of Σn
k for various specific values of k.

Theorem 7. c∧(Σn
2) = �n

2 � and c∧(Σn
3) = �n

2 �.

Lemma 8. If m is odd and 1 ≤ m ≤ n, then Σn
m = Σn−1

m−1Σ
n
1 and therefore c∧(Σn

m)
≤ c∧(Σn−1

m−1) + 1.

Lemma 9. c∧(Σn
n−1) = n− 2, c∧(Σn

n−2) = n− 2 for n > 3, and c∧(Σn
n−3) = n− 3

for n > 4.

We now turn to the counting and threshold functions,En
k (x) and T n

k (x). The degree of
En

k = a0Σ
n
0 ⊕ . . .⊕anΣ

n
n is the largest i such that ai is non-zero. It is clear that ai = 0

for i < k. It turns out there is a simple formula for the remaining ai.

Concrete Multiplicative Complexity of Symmetric Functions 187

Lemma 10. En
k =

⊕n
i=k aiΣ

n
i , where ai =

(
i
k

)
mod 2.

Thus, the expansions of the exactly-k functions can be “read off” rows of Sierpinsky’s
gasket. For example the expansion of E13

6 corresponds to the sixth column
(1 1 0 0 0 0 0 0) of the fractal: E13

6 = Σ13
6 ⊕ Σ13

7 . Now, Σ13
6 ⊕ Σ13

7 = Σ13
4 · Σ13

2 ·
(1 ⊕ Σ13

1). Thus c∧(E13
6) ≤ c∧(Σ13

4 , Σ13
2) + 2. By Corollary 3, c∧(Σ13

4 , Σ13
2) ≤ 9.

Therefore c∧(E13
6) ≤ 11. This is quite remarkable given the general upper bound of

13 + 3
√

13 > 23 from [4] (or if one considers that the associated polynomial has over
18 thousand multiplications).

A similar lemma holds for the threshold functions since T n
k can be expressed recur-

sively using T n
k = xnE

n−1
k−1 ⊕T

n−1
k , which says that at least k of x1, . . . , xn are ones if

and only if at least k out of x1, . . . , xn−1 are ones or (exclusive) xn is one and exactly
k − 1 out of x1, . . . , xn−1 are ones. This leads to the following characterization of the
expansion of T n

k based on Sierpinski’s gasket.

Lemma 11. T n
k =

⊕n
i=k biΣ

n
i where bi =

(
i−1
k−1

)
(mod 2).

Since En
k (x) = En

n−k(x̄), we have c∧(En
k) = c∧(En

n−k) for 0 ≤ k ≤ n. Then
the degree lower bound yields c∧(En

k) ≥ max{k − 1, n − k − 1}. Similarly, since
T n

k (x) = 1 ⊕ T n
n−k+1(x̄), we have c∧(T n

k) = c∧(T n
n−k+1) for 1 ≤ k ≤ n, and the

degree lower bound yields c∧(T n
k) ≥ max{k − 1, n − k}. Since T n

n = Σn
n , we have

c∧(T n
1) = c∧(T n

n) = c∧(Σn
n) = n− 1.

As mentioned above, the degree of En
k (or T n

k) will be the largest value j such that
the expansion of En

k (T n
k) contains the term Σn

j . In the case of En
k this will be the

largest k ≤ j ≤ n such that the binomial coefficient aj =
(

j
k

)
is odd, and in the case of

T n
k this will be the largest k ≤ j ≤ n such that bj =

(
j−1
k−1

)
is odd. Thus, the degree of

T n
k is one more than the degree of En−1

k−1 . Given this relation, we will only consider the
degree of En

k .
A theorem by Kummer [8] shows that the binomial coefficient

(
j
k

)
is odd if and only

if k � j, where the notation k � j means that if the binary representations of k and j
are ksks−1...k1 and jsjs−1...j1, respectively, then for each i such that ki = 1, it also
the case that ji = 1. This can be used to give the following degree lower bounds on the
multiplicative complexity of the exactly-k and threshold-k functions:

Theorem 8. c∧(En
k) ≥ max{k− 1, n− k − 1, 2�log2 n� − 2, ln,k − 1} and c∧(T n

k) ≥
max{k−1, n−k, 2�log2 n�−1, ln−1,k−1}, where ln,k is the bitwise OR of n−k and k.

We now turn to upper bounds. We develop new techniques for producing circuits with
few AND gates. We refer to a set of Boolean functions on n variables as a complete
basis if any symmetric function can be expressed as a linear combination of these func-
tions. Examples of complete bases are {Σn

i | 0 ≤ i ≤ n}, and {En
i | 0 ≤ i ≤ n}.

Define Aq
m =

⊕q
i=mΣn

i for m ≤ q ≤ n.2 Then Σn
n = An

n and Σn
m = An

m⊕An
m+1 for

m < n. Therefore, {An
i | 0 ≤ i ≤ n} is complete basis. We will prove upper bounds

on the multiplicative complexity of several classes of functions by constructing circuits
for functions in the class Aq

i with 0 ≤ i ≤ q ≤ n.

2 Note that, in the notation Aq
m, the parameter n is implicit.

188 J. Boyar and R. Peralta

Lemma 12. Let r ≥ 1 and 2r − 1 ≤ n. Assume the values of Σn
2i are known for

i = 0, . . . , r − 1. Then A2r−1
0 can be computed using r − 1 additional AND gates.

Corollary 4. Let r ≥ 1 and 2r − 1 ≤ n. Assume the values of Σn
2i are known for

i = 0, . . . , r − 1. Then the functions A2s−1
0 (0 ≤ s ≤ r) can be simultaneously

computed using at most r − 1 additional AND gates.

We view the set of functions {A2s−1
0 | 0 ≤ s ≤ r} ∪ {Σn

2i | i = 0, . . . , r} as a basis.
The number of AND gates sufficient to compute any linear combination of functions in
this basis is no more than c∧(Hn

r)+r−1.3 The following corollary allows us to expand
the basis.

Corollary 5. Let r ≥ 0 and 2r − 1 ≤ n. Assume the values of Σn
2i are known for

i = 0, . . . , r − 1. Then the basis {A2s−1
0 | 0 ≤ s ≤ r} ∪ {A2s−1

m | 0 ≤ s ≤ r,m =
2q, q < s} ∪ {A2s−1

m | 0 ≤ s ≤ r,m = 2q + 1, q < s} can be computed using r − 1
additional AND gates.

Examples of results obtained using this basis are:

Lemma 13. Any symmetric function on 7 inputs has multiplicative complexity at most 8.

Corollary 6. Let r ≥ 1, n = 2r − 1, and m = 2r−1. Then c∧(En
m) = n− 1.

The majority function, a special case of the threshold function, is of particular im-
portance in applications of this theory (e.g. electronic voting protocols). The first two
results below give bounds for the majority function and the third general result on
threshold functions is obtained using similar techniques.

Theorem 9. Let n = 2r and m = 2r−1 + 1. Then c∧(T n
m) = n− 1.

Theorem 10. c∧(T 2m−1
m) ≤ 2�log2 m� +m− �log2m� − 2 for all m ≥ 2.

Theorem 11. c∧(T n
m) ≤ n−HN(n) + �log2(n+ 1)� − 1 for all m ≥ 1.

References

1. A. A. Aleksanyan. On realization of quadratic Boolean functions by systems of linear equa-
tions. Cybernetics, 25(1):9–17, 1989.

2. M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness Theorems for Non-
Cryptographic Fault-Tolerant Distributed Computation. In Proceedings of the 20th ACM
Symposium on the Theory of Computing, pages 1–10, 1988.

3. J. Boyar, I. Damgård, and R. Peralta. Short non-interactive cryptographic proofs. Journal of
Cryptology, 13:449–472, 2000.

4. J. Boyar, R. Peralta, and D. Pochuev. On the multiplicative complexity of Boolean functions
over the basis (∧,⊕, 1). Theoretical Computer Science, 235:43–57, 2000.

5. P. Bürgisser, M. Clausen, and M. A. Shokrollahi. Algebraic Complexity Theory, volume 315
of Grundlehren der mathematischen Wissenschaften. Springer-Verlag, 1997.

3 Hn
r is defined in section 5.

Concrete Multiplicative Complexity of Symmetric Functions 189

6. R. Cramer, I. Damgård, and J. B. Nielsen. In EUROCRYPT 2001, volume 2045 of Lecture
Notes in Computer Science, pages 280–300. Springer-Verlag, 2001.

7. D. Chaum, C. Crépeau, and I. Damgård. Multi-party unconditionally secure protocols. In
Proceedings of the 20th ACM Symposium on the Theory of Computing, pages 11–19, 1988.

8. E. E. Kummer. Über die Ergänzungssätze zu den allgemeinen Reciprocitätsgesetzen. J.
Reine Angew. Math., 44:93–146, 1852.

9. J.B. Nielsen and M. Hirt. Upper bounds on the communication complexity of optimally re-
silient cryptographic multiparty computation. In ASIACRYPT 2005, volume 3788 of Lecture
Notes in Computer Science, pages 79–99. Springer-Verlag, 2005.

10. M. V. Mihaı̆ljuk. On the complexity of calculating the elementary symmetric functions over
finite fields. Sov. Math. Dokl., 20:170–174, 1979.

11. R. Mirwald and C. Schnorr. The multiplicative complexity of quadratic Boolean forms.
Theoretical Computer Science, 102(2):307–328, 1992.

12. W. J. Paul. A 2.5n lower bound on the combinational complexity of boolean functions. In
Proceedings of the 7th ACM Symposium on the Theory of Computing, pages 27–36, 1975.

13. R. Rueppel and J. Massey. The knapsack as a nonlinear function. In Abstracts of papers,
IEEE Int. Symp. on Information Theory, page 46, 1985.

14. C. P. Schnorr. The multiplicative complexity of Boolean functions. In Applied Algebra,
Algebraic Algorithms and Error-Correcting Codes, 6th International Conference, volume
357 of Lecture Notes in Computer Science, pages 45–58, 1989.

15. L. Stockmeyer. On the combinational complexity of certain symmetric Boolean functions.
Mathematical Systems Theory, 10:323–336, 1977.

16. B. L. van der Waerden. Algebra. Frederick Ungar Publishing.

On the Complexity of Limit Sets of Cellular

Automata Associated with Probability Measures

Laurent Boyer1, Victor Poupet1, and Guillaume Theyssier2

1 LIP (UMR 5668 — CNRS, ENS Lyon, UCB Lyon, INRIA), ENS Lyon, 46 allée
d’Italie, 69364 LYON cedex 07 France

laurent.boyer@ens-lyon.fr, victor.poupet@ens-lyon.fr
2 LAMA (UMR 5127 — CNRS, Université de Savoie), Université de Savoie, Campus

Scientifique, 73376 Le Bourget-du-lac cedex France
guillaume.theyssier@univ-savoie.fr

Abstract. We study the notion of limit sets of cellular automata associ-
ated with probability measures (µ-limit sets). This notion was introduced
by P. Kůrka and A. Maass in [1]. It is a refinement of the classical notion
of ω-limit sets dealing with the typical long term behavior of cellular au-
tomata. It focuses on the words whose probability of appearance does not
tend to 0 as time tends to infinity (the persistent words). In this paper,
we give a characterization of the persistent language for non sensitive
cellular automata associated with Bernoulli measures. We also study the
computational complexity of these languages. We show that the persis-
tent language can be non-recursive. But our main result is that the set
of quasi-nilpotent cellular automata (those with a single configuration
in their µ-limit set) is neither recursively enumerable nor co-recursively
enumerable.

1 Introduction

Cellular automata (CA for short) are discrete dynamical systems given by a very
simple syntactical definition. They consist of a large collection of identical cells
which evolve according to uniform local interactions. Despite the simplicity of
the model, they are capable of producing a wide range of different behaviors.
One of the main challenges in the field is to give pertinent classifications of these
dynamical systems.

There has been a huge amount of attempts in the literature (see [2,3,4]).
Among them, the notion of ω-limit set has received a great interest since the
results obtained by K. Čulik et al. in [5]. This notion (which comes from classical
dynamical systems theory) is an attempt to catch the long term behavior of
cellular automata. More precisely, the ω-limit set is the set of configurations that
may appear in the evolution after an arbitrarily long time. From a topological
point of view, it is also the largest attractor. As shown by J. Kari, ω-limit sets
can hold a great complexity since any non-trivial property concerning them is
undecidable [6]. Among such properties, the nilpotency is the simplest one: a CA
is nilpotent if its ω-limit set is reduced to a single configuration. This property is

R. Královič and P. Urzyczyn (Eds.): MFCS 2006, LNCS 4162, pp. 190–201, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

On the Complexity of Limit Sets of Cellular Automata 191

extremely strong since it implies that all initial configurations lead to the same
uniform configuration.

The major drawback of ω-limit sets is that they give the same importance
to all configurations. Thus, a negligible set of configurations can influence the
ω-limit set of a CA and hide properties of its “typical” behavior.

Recently, P.Kůrka and A. Maass introduced in [1] a notion of limit set associ-
ated with a probability measure (µ-limit set). Intuitively, this notion catches the
“typical” long term behavior of CA. More precisely, it is defined from the pat-
terns whose probability of appearance doesn’t go to 0 as time goes to infinity. So,
as opposed to classical limit sets, it does not deal with what may appear in the
long term behavior but focuses on what does typically appear. This difference
makes the µ-limit set more suitable to study some dynamics (see [1]). Moreover,
it is a better tool to give theoretical justifications to many phenomena observed
experimentally (since experimentations are not exhaustive, they must restrain
to “typical” orbits).

In this paper, we mainly study this set from a computational complexity
point of view. We first give a new characterization of µ-limit sets associated
with Bernoulli measures for any non sensitive CA. Our characterization shows
that the µ-limit set does not depend on the measure.

Then we focus on the quasi-nilpotency property: a CA is µ-quasi-nilpotent
if its µ-limit set is reduced to a single configuration. One can think that the
undecidability behind limit sets disappears as soon as we no longer consider all
configuration but only “typical” ones. We show that this is not the case, the
Turing degree of the quasi-nilpotency problem is even higher than that of the
nilpotency problem: the set of quasi-nilpotent CA is neither recursively enu-
merable nor co-recursively enumerable. The construction used to obtain this
result also allows us to show that some CA have a non recursive µ-limit
language.

2 Definitions

Formally, a one-dimensional CA A is a triple (QA, r, δA), where QA is a finite
set of states called the alphabet, r is the radius and δA : Q2r+1

A → QA is the local
rule. A configuration c describes the state of all cells at a given time: this is a
mapping from Z to QA. The set of all possible configurations is denoted QZ

A.
For c ∈ QZ

A, we will often denote by cz the value of c at z ∈ Z.
The local description of the CA induces a global evolution. At every step of

the computation, the configuration changes according to the global transition
rule GA : QZ

A → QZ
A induced by the locale rule as follows:

GA(c)i = δA(ci−r ...ci...ci+r).

In the following, when considering a CA A, we implicitly refer to the triple
(QA, r, δA), where the same symbol A denotes both the local and the global
mapping.

192 L. Boyer, V. Poupet, and G. Theyssier

We denote by Q∗A =
⋃

n∈N Q
n
A the set of all finite words over QA. The length

of u = u1u2...un is |u| = n, and, ∀a ∈ QA, |u|a is the number of occurences of a
in u. ∀0 < i ≤ j ≤ |u|, we also define u[i,j] = uiui+1...uj and c[i,j] for c ∈ QZ

A in
a similar way. A word u is a factor of a word v if there exist i and j such that
u = v[i,j].

For every c ∈ QZ
A, the language of c, denoted by L(c), is defined by

L(c) = {u ∈ Q∗A : ∃i ∈ Z, u = c[i,i+|u|−1]}.

The language of a subset of QZ
A is the union of the languages of its elements.

The limit set of a CA A is given by ΩA =
⋂

n∈NAn(QZ
A). Intuitively, a

configuration is in the limit set if and only if it may appear after an arbitrarily
long evolution. A CA is said to be nilpotent if its limit set is reduced to a single
configuration.

For every u ∈ QA and i ∈ Z we define the cylinder [u]i as the set of configu-
rations containing the word u in position i:

[u]i = {c ∈ QZ
A : c[i,i+|u|−1] = u}.

Let A be any CA and µ any Borel probability measure on QZ
A (a measure

on the Borel sets, i.e. the smallet σ-algebra containing open sets). For any
n ≥ 0, Anµ denotes the probability measure such that for any Borel set U ⊆ QZ

A
we have Anµ(U) = µ

(
A−n(U)

)
. If QA = {a1, . . . , an} is the working alphabet,

a Bernoulli measure µ over QZ
A is given by a probability vector (p1, . . . , pn)

(0 ≤ pi ≤ 1 and
∑
pi = 1) such that, for any word u ∈ Q∗A and any i ∈ Z,

µ([u]i) =
∏

a∈QA p
|u|a
a . A Bernouilli measure is complete (or with full support)

if pi 	= 0 for all i.

Definition 1 (Persistent set). Let A be any CA and µ be a Bernoulli measure
on QZ

A. A word u ∈ Q∗A is a vanishing word for A and µ if its probability to ap-
pear (in a certain position) after n iterations tends to 0 as n grows to infinity. We
define the set LΥ,µ(A) of persistent words for A and µ as the complement of the
set of vanishing words for A and µ: u 	∈ LΥ,µ(A) ⇐⇒ limn→∞Anµ([u]0) = 0.
Then the µ-persistent set or µ-limit set of A is the subshift Υµ(A) defined by
LΥ,µ(A), precisely Υµ(A) =

{
c ∈ QZ

A : L(c) ⊆ LΥ,µ(A)
}
.

When considering limit sets, the most studied property is certainly the nilpo-
tency. By analogy, we may define the notion of µ-quasi-nilpotency associated
with the µ-limit-set.

Definition 2 (Quasi-nilpotency). Let A be a CA and µ be any Bernoulli
measure over QZ

A. A is said to be µ-quasi-nilpotent if Υµ(A) is reduced to a
single configuration.

One can verify that a CA A is µ-quasi-nilpotent if and only if there is some state
q ∈ QA such that LΥ,µ(A) = q∗.

On the Complexity of Limit Sets of Cellular Automata 193

Definition 3 (Walls). Let A be any CA. For any u ∈ Q∗A, we denote by [u]mid

the following set of configurations of QZ
A:

[u]mid =

{
[u]− |u|

2
if |u| is even,

[u]− |u|+1
2

if |u| is odd.

A wall for A is a sequence W =
(
wn

)
n≥0 of non empty words of Q∗A such that:

1. ∀c ∈ [w0]mid, ∀n ≥ 1 : An(c) ∈ [wn]mid;
2. the sequence

(
|wn|

)
n≥0 is non-increasing.

Notice that a wall W =
(
wn

)
n≥0 is necessarily ultimately periodic since [w0]mid

contains spatially periodic configurations. The word w0 is said to be the foot of
W . A word is a foot of wall for A if it is the foot of some wall for A. Any word in
the period of the sequence W will be called a brick of W : formally, w is a brick
of W if there are p, n0 such that, for all n ∈ N, wpn+n0 = w. A word w ∈ Q∗A is
a brick of wall for A if it is a brick of some wall of A.

The following well-known property relates the existence of bricks of wall to
the property of sensitivity to initial conditions (see [3] for a proof).

Proposition 1. A CA A of radius r is sensitive to initial conditions if and only
if it has no brick of wall of size r.

The key property behind that proposition is expressed by the following easy-to-
prove lemma.

Lemma 1. Let A be any CA of radius r. If w is the foot of a wall of A having
some brick of size at least r, then for any word u ∈ Q∗A there exists a wall of A
whose foot is wuw and which has bricks of size at least |u|.

3 Properties of Persistent Sets

It is well-known that the limit set of any CA A is either reduced to a single
configuration or infinite. This fact does not hold with µ-limit sets as shown by
the following example. The same example shows a CA whose persistent set does
not contain any uniform configuration (the limit set always does).

Example 1. Let A be the 184 CA in Wolfram’s notation. That is, a two states
(QA = {0, 1}) one dimensionnal CA of radius 1. Its local rule is given by: ∀x ∈
{0, 1},A(1, 0, x) = A(x, 1, 1) = 1 and A(0, 0, x) = A(x, 1, 0) = 0. It can be seen
as a simple model of traffic jam (see [7]).

We first show that for the uniform Bernoulli measure µ0, the words 11 and
00 are both vanishing. It can be easily checked that u = u0u1...u2n+1 ∈ A−n(00)
implies that u1u2...u2n+1 is a left factor of a well-bracketed string (where 0
“opens” and 1 “closes”). As the proportion of such strings among all words of
length n tends to 0 as n grows to infinity, limn→∞Anµ0(00) = 0 and 00 is not
persistent. A similar argument shows that 11 is also vanishing.

194 L. Boyer, V. Poupet, and G. Theyssier

Because for all n there is at least one word of length n in LΥ,µ0(A), and
LΥ,µ0(A) is stable by factor, and 00 and 11 are not in LΥ,µ0(A), we have
LΥ,µ(184) = (0 + ε)(10)∗(1 + ε) and Υµ(184) = {ω(01)ω, ω(10)ω}. �

We will now give a characterization of the persistent language of non sensitive
cellular automata. Before stating the theorem, we need a lemma expressing that
for infinitely many steps the preimages of a persistent word must contain any
given word at some fixed position.

Lemma 2. Let A be any CA of radius r and µ be any complete Bernoulli mea-
sure over QZ

A. Then, for any w ∈ Q∗A and u ∈ LΥ,µ(A) there are positive integers
k1 and k2 and a strictly increasing sequence of positive integers

(
nj

)
j≥0 such that

∀j ≥ 0 : A−nj (u) ∩
(
Q

rnj−k1−|w|
A · {w} ·Qk1+k2+|u|

A · {w} ·Qrnj−k2−|w|
A

)
	= ∅.

Proof. Suppose by contradiction that u ∈ LΥ,µ(A) does not verify the lemma.
Then we have ∀k ≥ 0, ∃nk ≥ 0, ∀n ≥ nk:

A−n(u) ⊆ Q
n−k|w|
A (Q|w|A \ {w})kQ

|u|
A (Q|w|A \ {w})kQ

n−k|w|
A .

Then, for any k and any n ≥ nk, we have : Anµ([u]0) ≤
(
1− µ([w]0)

)2k. Thus,
Anµ(u) → 0 as n→∞ and u 	∈ LΥ,µ(A). �

Theorem 1. Let A be a CA which is not sensitive to initial conditions and µ
any complete Bernoulli measure. Then LΥ,µ(A) is exactly the set of bricks of
wall for A.

Proof. First, consider a brick of wall u for A. By definition, there exists a
word w ∈ Q∗A and positive integers n0 and p such that ∀c ∈ [w]mid and ∀n ≥ 0:
Anp+n0(c) ∈ [u]mid. Thus Anp+n0µ([u]0) ≥ µ([w]0) which proves u ∈ LΥ,µ(A).

Conversely, let u ∈ LΥ,µ(A). By proposition 1, if A is not sensitive to initial
conditions, it has a brick of wall of size at least r (where r is the radius of A) as-
sociated with some wall W =

(
wn

)
n≥0. Applying lemma 2 to w0, we know there

exist positive integers k1 and k2 and a strictly increasing sequence of positive
integers

(
nj

)
j≥0 such that

∀j ≥ 0 : A−nj (u) ∩
(
Q

rnj−k1−|w0|
A · {w0} ·Qk1+k2+|u|

A · {w0} ·Qrnj−k2−|w0|
A

)
	= ∅.

Since Q
k1+k2+|u|
A is finite, we can extract from

(
nj

)
j≥0 a sub-sequence(

njk

)
k≥0 such that for some v ∈ Qk1+k2+|u|

A we have:

∀k ≥ 0 : A−nj (u) ∩
(
Q

rnjk
−k1−|w0|

A · {w0} · v · {w0} ·Q
rnjk

−k2−|w0|
A

)
	= ∅.

By lemma 1, w0vw0 is the foot of a wall of A with a brick of size at least |v|.
By the above property, we conclude that u is a factor of such a brick of wall.
Therefore u is itself a brick of wall of A. �

On the Complexity of Limit Sets of Cellular Automata 195

Notice that theorem 1 implies that, for any CA A which is not sensitive to
initial conditions, the set Υµ(A) is the same for any complete Bernoulli measure.

However, there exists some sensitive CA whose µ-persistent set does depend
on the Bernoulli measure µ as pointed out by A. Maass and P. Kůrka in [1]: for
instance the “just gliders” CA A is sensitive to initial conditions and such that,
for any Bernouilli measure µ, Υµ(A) is reduced to a single configuration if and
only if µ gives the same probability to two peculiar letters of QA.

4 Undecidability Results

This section addresses different decision problems associated with the persistent
language of cellular automata. To simplify the statement of the studied prob-
lems, we will only consider the uniform measure. Thus, µ will always denote the
uniform measure in this section (the working alphabet will be determined by the
context). However, all the results extend to complete Bernouilli measures using
lemma 2 and theorem 1 from previous section.

Remark 1. In his proof of undecidability of nilpotency [8], J. Kari actually shows
that it is undecidable to determine whether a given CA A with a spreading state
(a state s such that δA(a1, . . . , an) = s whenever s ∈ {a1, . . . , an}) is nilpotent.
Moreover, it follows from theorem 1 that such a CA is µ-quasi-nilpotent for any
Bernoulli measure µ (since the only bricks of wall are the words sn, n ∈ N). Thus,
it is undecidable to determine whether a µ-quasi-nilpotent CA is nilpotent. �

Theorem 2. The set of µ-quasi-nilpotent CA is not recursively enumerable.

Proof. Given a Turing machineM of states QM and tape alphabet Σ = {0, 1, B}
working on a semi-infinite tape, we will construct a CA A of radius 1 that will
be quasi-nilpotent if and only if M doesn’t halt on the empty input.

The states of A will be {#} ∪ (Ssimul × Ssignals) where # is an inalterable
state, meaning that if a cell is in this state it will never change to any other
state, Ssimul = (QM ∪ {−}) × Σ is the set of states needed to simulate the
behavior of M (a state (−, α) represents a cell of the tape containing the letter
α without the head and a state (q, α) represents that the head is on this cell
in state q) and Ssignals = {−, L, F,R,D} is a set of signals whose meaning and
behavior will be explained later.

The transition rule of the automaton can be described by the following rules:

– As said earlier, # states are inalterable. Since the automaton is of radius 1,
they act as delimiters or walls, no information can go across them. A finite
set of contiguous non-# cells between two # states will be referred to as a
segment. The length of the segment will be the number of cells between the
two # states.

– At all times, all cells not in the # state will simulate the behavior of M on
their first component. We deal with conflicts (two heads that want to move
on a cell for example) in any given way, since we’ll see that these have no

196 L. Boyer, V. Poupet, and G. Theyssier

impact on what we’ll do later (ultimately, we’ll only be interested in regular
simulations starting on an empty input). If at some point in the computation
the head wants to move to a cell in state #, the head is deleted so that the
computation cannot end.

– The signal − means that there is in fact no particular signal on the cell.
– If at some point in the computation the final state qf ofM is reached, the cell

where this state appears generates a signal F (on its “signal” component).
– The F signal moves towards the left at maximum speed. When it reaches

the left border of the segment (#) it turns into an R signal.
– The R signal will move to the right and while doing so it will reset the

computation that is held on the first component of the cells it moves through,
meaning that it will put the head in its initial state q0 on the first cell of the
segment and put a blank symbol B on every cell of the tape. Since this signal
moves at maximum speed, the simulation of M can occur without problems
on a clean tape.

– When the R signal meets the right end of the segment it disappears.
– During all this time, the rightmost cell of a segment (any cell that is on the

left of a # cell) will generate L signals at every time.
– L signals move to the left at maximum speed. When one of these signals

reaches the left border of a segment, it generates a D signal.
– The D signals delete the whole segment by moving to the right while chang-

ing all the cells they go through into #. They obviously disappear when they
meet a # cell since they can’t go any further.

All the signals that we use move at maximum speed (one cell per step) in
one of the two available directions. Signals going in opposite directions are not
allowed to cross each other, thus, one of the two must disappear. The priority is
as follows:

L < F < R < D

For example, if an R signal is moving to the right (while cleaning the compu-
tation) and an L signal is moving to the left, when they meet the R signal keeps
moving to the right and the L signal disappears.

Let’s assume that M halts in t steps and let’s consider the segment of length
2t in which there are no signals on any cell, the first cell is in state (q0, B) and all
other cells are in state (−, B). On this segment, the simulation of M starts from
a well formed configuration so it will reach the qf state after t steps and generate
an F signal. Meanwhile L signals appear from the right border and move to the
left. Because the segment is of length 2t, the F signal appears on the left of all L
signals, so it reaches the origin before all L signals and creates an R signal. This
R signal will reset the computation while deleting all L signals. From there a new
computation starts that will have enough time to finish again and delete the L
signals again. Because the segment is “protected” from any outside interference
by the # cells, this cycle will continue forever and no # state will appear on the
segment. Because there are only a finite number of possible configurations on
the segment the automaton eventually enters a cycle on this non-empty segment.

On the Complexity of Limit Sets of Cellular Automata 197

According to theorem 1 this segment is part of the persistent language so A is
not µ-quasi-nilpotent.

Now we will assume that M doesn’t halt and show that any segment of length
n disappears after at most 5n steps. The proof is based on the observation that
we can’t delay the apparition of a D signal on the first cell of the segment for
more than 4n steps.

It’s possible that there was already a D signal somewhere on the segment in
the inital configuration. In this case, the D signal will cut the segment in two
by creating a # state where it was initially and then delete the right part of
the segment. This means that if there is a D signal on a segment in the initial
configuration we can focus on a shorter segment on which there is no D initially
and let the already present D take care of the rest of the segment.

Therefore we can assume that the segment we are studying doesn’t contain
any D initially. This means that after at most n steps all original R signals will
have disappeared. From there, L signals will start appearing on the right border
of the segment and try to proceed to the left (they would arrive at time 2n).
To stop them from reaching the left border and generating a D signal, the only
possibility is to generate an R signal on the left border of the segment before the
time 2n. From there, the R signal will reset the configuration of the simulation
so that what is computed on the left of this R signal is a normal computation of
M on the empty input. Since we have assumed that M doesn’t halt, this “well
formed” computation will not reach the qf state. When the R signal reaches the
right end of the segment (at time at most 3n), it disappears and the L signals
start moving to the left again. Since the simulation of M doesn’t reach the final
state no F signal is generated so there’s nothing to stop the L signals from
reaching the left border, generate a D signal and delete the whole segment. The
whole segment is therefore deleted after at most 5n steps.

To complete the proof, we need only show that in this case (if M doesn’t
halt) no other state than # can appear in a brick of wall. Let’s consider a
wall W = (wi)i∈N. Let’s consider the configuration cw0 containing # states
everywhere except on its center where it is the word w0. Obviously cw0 is in
[w0]mid and doesn’t contain any segment longer than |w0| so no segment will
survive more than 5|w0| steps, which means that for any n ≥ 5|w0|, An(cw0) is
the uniform # configuration, which implies that wn ∈ #∗. From theorem 1 we
conclude that A is µ-quasi-nilpotent. �
Corollary 1. Given a CA A and a word w, the property that w is not persistent
for A is not semi-decidable. In other words the set {(A, w)|w /∈ LΥ,µ(A)} is not
recursively enumerable.

Proof. We know that a CA is quasi-nilpotent if and only if only one of its states
is persistent. If we could semi-decide that a given state is not persistent, then we
could use this algorithm on all states in parallel and if the CA is quasi-nilpotent
the algorithm would eventually show that all but one states are not persistent,
thus showing that the CA is quasi-nilpotent. We would therefore have an algo-
rithm to semi-decide that a CA is quasi-nilpotent, which is in contradiction with
theorem 2. �

198 L. Boyer, V. Poupet, and G. Theyssier

Remark 2. The proof above shows that it is also undecidable to determine
whether the persistent set is finite or not. Indeed, it is not difficult to check
that the persitent set of the constructed CA is either reduced to a single config-
uration or infinite. �

Theorem 3. There exists a CA with a non-recursive persistent language.

Proof (sketch). It is possible to show this by slightly modifying the CA con-
structed in the proof of theorem 2. To do so we use another layer in the states so
that each regular cell of a segment also has a “memory” containing a tape sym-
bol. The memory of a cell can never be changed (except when the cell becomes
in which case the memory is lost). Instead of starting from an empty input
when the simulation of M is reset by an R signal it’s the memory of each cell
that’s written on the tape. This way we can simulate the behavior of M on any
input. It is then easy to prove that a segment survives if and only if the memory
of its cells corresponds to a word wBk where M(w) ends using less than |w|+ k
cells.

If the persistent language of A is recursive, then the language #wB such that
M(w) halts is also recursive: there is a segment in the persistent language whose
memory layer is wBk, so there is a word of memory #wB (stability by factor).
Therefore if the domain of M is not recursive neither is LΥ,µ0(A).

Theorem 4. The set of µ-quasi-nilpotent CA is not co-recursively enumerable.

Proof. As with the proof of theorem 2, we will consider a Turing machine M
and create a cellular automaton A of radius 1 that simulates M . A will be quasi-
nilpotent if and only ifM halts on the empty input. The idea is that we will again
simulate the behavior of M on each segment but now if the simulation doesn’t
halt the right # of the segment will be erased so that the available space for
the simulation is increased, and the simulation will start again. If at some point
the simulation ends then the segment is erased. This way non-empty segments
will remain on the configuration if the machine M doesn’t halt but almost every
segment will be deleted if the machine halts.

The construction will be very similar to the one of the proof of Theorem 2.
The states of A are now {#} ∪ (Ssimul × Ssignals × {0, 1}), the new set of signals
being Ssignals = {−, L,R,D,DL, DR, CL, CR}. The added bit doesn’t affect the
computation and never changes on a cell. We’ll call it neutral bit.

The evolution of the automaton is described as follows:

– The # state is now “almost” inalterable in the sense that only one particular
signal (D) can erase it. We will continue to use the notion of segment (finite
set of contiguous cells between two #).

– The simulation of M takes place on each segment as in the previous con-
struction.

– L signals will appear continuously on the right border of a segment and
proceed to the left.

– When an L signal meets the # cell at the left border of the segment it turns
into a D signal.

On the Complexity of Limit Sets of Cellular Automata 199

– D signals move to the right. They erase all L signals they meet. If a D signal
finds a final state qf in the simulation of M , it generates two signals DL and
DR that will erase the segment (turn all cells into #) by propagating to the
left and right respectively until they reach the end of the segment. If the
D signal doesn’t see any qf state and reaches the right # of the segment it
turns it into a regular cell whose neutral bit is the same as its left neighbor
and creates two signals CL and CR on the cells next to where the # cell was.

– The CL and CR signals move to the left and to the right respectively. Their
function is to clear the segment so that a fresh simulation of M can start
back from the beginning. Both signals will erase any signal they come across,
CL having the priority over CR. When the CL signal reaches the beginning
of the segment it turns into an R signal. When the CR signal reaches the
end of the segment it disappears.

– The R signal moves to the right and resets the simulation as it moves as in
the previous proof. It also erases all L signals.

Proving the theorem from this construction will now be similar to the proof
of theorem 2. The # states can only be deleted by a signal that comes from
their left so if two segments merge it’s because the merging signal came from the
leftmost of the two segments while the rightmost one can do nothing to prevent
it. We’ll say that the the left segment invades the right one.

Let’s see what happens if M doesn’t halt on empty input. In that case a
“normal” simulation of M will never reach the qf state so the DL and DR

signals should never appear. On any segment where there are initially no signals
and no simulation of M going on L signals will appear, reach the left border, and
generate an R signal that will start a new correct simulation. This simulation
will not end so the segment will eventually invade the one on its right and when
doing so CL and CR signals will appear to clean the segment and a new correct
simulation will again take place on the wider segment, etc. Since no matter
how wide the segment is the simulation will never end the segment will never
disappear. It is also possible that the segment we have considered is eventually
invaded but when the invasion occurs CL and CR signals appear that will clean
the wider segment and ensure that the new simulation that takes place on this
segment is also correct so again there’s no risk that the segment disappears.

In other words, if M doesn’t halt, any “inactive” segment on the initial con-
figuration will grow and survive forever (the cells that were initially on this
segment will never become #). Let s be such an “inactive” segment of length
2k + 1 including the border #, then for all n ∈ N and all w ∈ Qn

A,

wsw ∈
⋃

q∈QA\{#}
A−n−k(q)

This means that
∑

q∈QA\{#}A
nµ(q) ≥ µ([s]0) so at least one of the non-#

states is persistent. By symmetry, changing the neutral bit doesn’t change the
persistent nature of the state so we have at least two persistent states and A is
not quasi-nilpotent.

200 L. Boyer, V. Poupet, and G. Theyssier

Now we have to check that if the machine M halts in t steps then no other
state than # is persistent. Let’s consider a segment s of length l ≥ 2t on
which there is no simulation of M going on and the only signal present is an
R signal on the first cell. While this segment is not invaded, it will simply
do correct simulations of M , reach the final state in time so that the D sig-
nal sees it, the DL and DR signals will therefore appear and turn the whole
segment into #. This means that such a segment doesn’t invade its right neigh-
bor. Moreover, if it happens to be invaded by its left neighbor, the invasion
will make CL and CR segments appear, which will ensure that on this new
segment a new correct simulation starts. The segment will do correct simula-
tions and grow until it’s big enough so that a simulation ends. This will hap-
pen before all the # from s’s disappearance have been deleted because there
will be enough room to complete a simulation before that so this other seg-
ment will also turn to # before going past the initial boundaries of s. This
means that if M terminates there exists a segment such that no matter what
happens it will never invade its right neighbor. We’ll call such a segment non-
invasive.

Let’s see what happens to a segment such that there is a non-invasive segment
on its left at a distance dl (the distance is taken from the right border of the
non-invasive segment to the left border of the considered segment) and a # on
its right at a distance dr ≥ 2t (taken from the right border of the segment).

While the segment is not invaded it will after some time that we can bound
easily depending on its length start a correct simulation or be completely deleted
(because the L signals cannot be delayed forever). From there it will continuously
do simulations and invade its neighbors if the simulations do not halt. Since there
is a # at a distance dr ≥ 2t, the simulation will eventually end before this #
symbol is deleted since the segment will be wide enough, so the segment will
eventually disappear. The only thing that could delay the disappearance of the
segment would be a series of invasion of the segment. However, since there is a
non-invasive segment on the left of segment, we know that there is only a limited
number of possible invasions so we can bound the time until all possible invasions
have occurred. From there, the simulation will start correctly on a segment that
will not be invaded and will therefore disappear.

To sum up, we have shown that if M halts, there exists a function σ : N2 → N
such that any segment that has a non-invasive segment on its left at a distance
dl and a # cells on its right at a distance dr ≥ 2t, will disappear after at most
σ(dl, dr) steps. This means that for any n ≥ σ(dl, dr) and any q ∈ QA \{#}, any
word in A−n(q) has no non-invasive segment on the cells left of the position −dl

and no two # symbols on the cells between positions 2t and dr (the first one
is the end of the segment, that can possibly be deleted by an already-present
D signal). This restriction implies that none of these states is persistent (see
lemma 2). �

Corollary 2. Given a CA A and a word w, the property that w is persistent
for A is not semi-decidable. In other words the set {(A, w)|w ∈ LΥ,µ(A)} is not
recursively enumerable.

On the Complexity of Limit Sets of Cellular Automata 201

5 Conclusion and Perspectives

We proved that the µ-quasi-nilpotency property is neither recursively enumer-
able nor co-recursively enumerable. In our opinion, such a result has two in-
teresting aspects. First, it deals with a kind of problem rarely considered in the
literature: a property of “typical” or random configurations only. We believe that
such properties are closer to what experimental observations may capture and
therefore that our undecidability results have a stronger meaning to physicists
or other scientists concerned with modelling using cellular automata. Second,
it gives an example of a “natural” property of cellular automata with a high
Turing degree (few examples are known, see [9]).

A natural way to continue the study of the computational complexity of per-
sistent sets would be to try to prove a Rice theorem for µ-limit sets. Any property
concerning limit sets is either trivial or undecidable. Is it the same for µ-limit
sets?

Another interesting research direction would be to understand better how the
probability of appearance of some word can vary with time. More precisely, we
left open a very simple question: do we have LΥ,µ(A) = LΥ,µ(At) for any CA A
and any t ?

Finally, we can also consider extensions of our work to a broader class of
measures or by raising the dimension. In the latter case, the notion of wall
does not play the same role (a finite pattern does not cut a bi-dimensional
configuration into two disconnected components) and the case of non-sensitive
CA is to be reconsidered.

References

1. Kůrka, P., Maass, A.: Limit Sets of Cellular Automata Associated to Probability
Measures. Journal of Statistical Physics 100 (2000) 1031–1047

2. Wolfram, S.: Universality and complexity in cellular automata. Physica D 10 (1984)
1–35

3. Kůrka, P.: Languages, equicontinuity and attractors in cellular automata. Ergodic
Theory and Dynamical Systems 17 (1997) 417–433

4. Mazoyer, J., Rapaport, I.: Inducing an Order on Cellular Automata by a Grouping
Operation. In: Symposium on Theoretical Aspects of Computer Science, Lecture
Notes in Computer Science (1998)

5. Čulik, II, K., Pachl, J., Yu, S.: On the limit sets of cellular automata. SIAM Journal
on Computing 18 (1989) 831–842

6. Kari, J.: Rice’s theorem for the limit sets of cellular automata. Theoretical Computer
Science 127 (1994) 229–254

7. Nagel, K., Schreckenberg, M.: A cellular automaton model for freeway traffic. J.
Phys. 2 (1992) 2221–2229

8. Kari, J.: The Nilpotency Problem of One-dimensional Cellular Automata. SIAM
Journal on Computing 21 (1992) 571–586

9. Sutner, K.: Cellular automata and intermediate degrees. Theoretical Computer
Science 296 (2003)

Coloring Random 3-Colorable Graphs with

Non-uniform Edge Probabilities�

Ulrik Brandes and Jürgen Lerner��

Department of Computer & Information Science, University of Konstanz
lerner@inf.uni-konstanz.de

Abstract. Random 3-colorable graphs that are generated according to
a G(n, p)-like model can be colored optimally, if p ≥ c/n for some large
constant c. However, these methods fail in a model where the edge-
probabilities are non-uniform and not bounded away from zero. We
present a spectral algorithm that succeeds in such situations.

1 Introduction

Graph coloring [9] is one of the central problems in graph theory and combina-
torics. A (proper) graph coloring is the assignment of colors to vertices so that
adjacent vertices are always colored differently. The problem of coloring graphs
with the minimum number of colors is of large theoretical interest. Furthermore,
efficient coloring algorithms are important for applications, as many practical
problems can be formulated as graph coloring problems. However, even if it is
known that a graph G is k-colorable, it is NP-hard to properly color G with k
colors, for any fixed k ≥ 3 [6].

Much research has focused on k-coloring random k-colorable graphs with high
probability [11,4,15,1,5,12], see [10] for a survey on random graph coloring. (We
say that an algorithm succeeds with high probability (w. h. p.) if its failure prob-
ability tends to zero as the input size tends to infinity.) There are several models
for random k-colorable graphs, all of which have the property in common, that
every possible edge (i. e., every pair of differently colored vertices) is included in
a sampled graph with non-zero probability.

In this paper we propose a more general model for 3-colorable graphs, where
there is no lower bound on the edge probabilities. We show that the algorithms
from [1,12] can not color graphs from this model and present a more general
spectral algorithm that can cope with these distributions. The assumptions that
we need for our algorithm are simultaneously more restrictive and more general
than those for known algorithms. Thus, we provide an alternative description
for random graphs that are easy to color. We believe that our ideas have similar
implications for other spectral algorithms (e. g., [12]) that recover “hidden” com-
binatorial objects (like cliques, independent sets, or minimum cuts) in random
graphs.
� Research supported by DFG under grant Br 2158/2-3.

�� Corresponding author.

R. Královič and P. Urzyczyn (Eds.): MFCS 2006, LNCS 4162, pp. 202–213, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Coloring Random 3-Colorable Graphs with Non-uniform Edge Probabilities 203

Our paper is organized as follows. In Sect. 2, we review known models for
random 3-colorable graphs, propose a generalization of these models, and present
our algorithm and the assumptions under which it succeeds. Section 3 presents
general observations regarding planted partitions and spectral algorithms. The
ideas developed there are used in Sect. 4 to prove our main theorem. In Sect. 5,
we provide the proofs that traditional methods do not work on our generalized
model and Sect. 6 outlines implications for related problems.

Notation. If A is a matrix, then Auv denotes the uv’th entry of A. In this paper,
the rows and columns of matrices are often understood as being indexed by the
vertices of a graph. We frequently use the notation A(v) to denote the column
of A that is indexed by the vertex v. The transpose of a matrix A is denoted by
AT and is defined by AT

uv = Avu.
For vectors v ∈ Rn we use the Euclidean norm, defined by ‖v‖2 =

∑n
i=1 v

2
i .

The distance between two vectors u and v is ‖u− v‖. We recall the definition of
two matrix norms: the 2-norm

‖A‖2 = max
‖v‖=1

‖A(v)‖ ,

and the Frobenius norm ‖A‖2
F =

∑n
u,v=1 A

2
uv. More background on linear algebra

is in [13,8].

2 Background and Results

2.1 Previous Models and Known Results

We review first two random graph models for 3-colorable graphs. Let r be a
positive integer and p a real number, 0 ≤ p ≤ 1. The random graph model
G(r, p, 3) is a probability distribution for graphs on n = 3r vertices, partitioned
into three color classes of size r. The edges between vertices from different color
classes are included independently with probability p. The best result for this
model (i. e., the algorithm that works for the smallest non-trivial p) is from Alon
and Kahale [1], who gave a spectral algorithm that (w. h. p.) 3-colors graphs from
G(r, p, 3), if p ≥ c/n, for a sufficiently large constant c. McSherry [12] described
a different spectral algorithm for a more general problem that (w. h. p.) 3-colors
graphs from G(r, p, 3), if p ≥ c log3(n)/n.

It has been pointed out (compare [14]), that random graphs from G(r, p, 3)
have very special properties that graphs encountered in applications usually do
not have. It is more demanding to design algorithms for graph models that
mediate between the uniformly structured graphs from G(r, p, 3) and worst-case
instances. One possibility to generate such graphs are the so-called semi-random
graph models. In the semi-random model GS(r, p, 3), first a “true random” graph
is drawn from G(r, p, 3), then an adversary can decide to introduce additional
edges between vertices from different color classes. While, at a first glance, it
seems to help an algorithm if more bi-colored edges are introduced, this is not the

204 U. Brandes and J. Lerner

case. The fact that the random structure of the graph from G(r, p, 3) is spoiled
counts more than the benefit from the additional edges. Feige and Kilian [5]
showed that there is a polynomial time algorithm that optimally colors almost all
graphs from GS(r, p, 3) if p is as large as p ≥ (1+ε)3 logn/n, for every ε > 0. The
algorithm from [5] is not based on spectral methods. Instead it uses semidefinite
programming, followed by several sophisticated post-processing steps.

It should be noted that graphs from GS(r, p, 3) have a substantial subgraph
that is a random graph from G(r, p, 3). The adversary is only allowed to add
more edges and cannot force any pair of differently colored vertices to be non-
adjacent. In this paper, we consider a different probability distribution, where
there is no lower bound on the edge-probabilities.

2.2 A Generalization of G(r, p, 3)

To generalize the random graph model G(r, p, 3), consider the matrix A(p) in the
lefthand-side of (1). (The nine blocks of A(p) are understood as being constant
r × r blocks.) It is easy to see that the sampling process from G(r, p, 3) can be
described as follows: construct a graph on n = 3r vertices, where an edge {u, v}
is introduced with probability equal to A

(p)
uv . The matrix A(p) is the expected

adjacency matrix of the distribution G(r, p, 3).

A(p) =

0 · · · 0
...

...
0 · · · 0

p · · · p
...

...
p · · · p

p · · · p
...

...
p · · · p

p · · · p
...

...
p · · · p

0 · · · 0
...

...
0 · · · 0

p · · · p
...

...
p · · · p

p · · · p
...

...
p · · · p

p · · · p
...

...
p · · · p

0 · · · 0
...

...
0 · · · 0

A[XY Z] =

 [0] X Y
XT [0] Z
Y T ZT [0]

 (1)

The fact that the diagonal blocks of A(p) are zero ensures that graphs from
G(r, p, 3) are 3-colorable. The off-diagonal blocks of A(p) describe the expected
adjacency structure between two different color classes. In G(r, p, 3) this structure
is uniform. Every vertex has the same probability to connect to every other dif-
ferently colored vertex. We generalize the model G(r, p, 3) by allowing arbitrary
adjacency structure between different color classes.

Definition 1. Let r be an integer and n = 3r. Further, let X, Y , and Z, be
arbitrary real r × r matrices whose entries are between zero and one and let
A = A[XY Z] be defined as in the righthand-side of (1). A graph drawn from the
probability distribution G(A) is a graph on n vertices, where a set of two vertices
{u, v} is independently chosen to be an edge with probability Auv. The matrix A
is the expected adjacency matrix for the distribution G(A).

Coloring Random 3-Colorable Graphs with Non-uniform Edge Probabilities 205

As an example, the distribution G(r, p, 3) is equivalent to G(A(p)).
The restrictions on the form of A in Def. 1 ensure only that every graph

drawn from G(A) admits a proper 3-coloring whose color classes are all of size r.
In particular, the problem of 3-coloring graphs from G(A) includes the problem
of 3-coloring graphs that are 3-colorable with equally sized color classes. Since
this problem is NP-complete in general we cannot hope to develop an algorithm
that works for all A.

The distribution G(A) is obviously much more general than G(r, p, 3). It is
simultaneously more restrictive and more general than the semi-random model
GS(r, p, 3): In G(A) we do not allow for an adversary to add edges to a sam-
pled graph. On the other hand, in GS(r, p, 3), each possible (bi-colored) edge is
included with probability at least p (independent on the adversary’s decisions),
whereas in G(A), the structure of A can force large sets of possible edges to be not
included. Thus, the model G(A) is an alternative possibility to mediate between
the uniformly structured graphs from G(r, p, 3) and worst-case instances.

2.3 Main Results

Our main contribution is a spectral algorithm that 3-colors (w. h. p.) graphs from
G(A) if the matrices X , Y , and Z are regular with a common degree and if the
spectral properties of A “do not obfuscate” the planted 3-coloring. In particular,
our algorithm succeeds for many matrices X , Y , and Z for which the algorithms
from [1,12] do not work. The algorithm is presented below and gets the n × n
adjacency matrix Â of a sampled graph as input.

Spectral 3-Coloring Algorithm(Â)

1. Compute d =
∑n

i,j=1 Âij/(2n).
2. Compute (orthonormalized) eigenvectors {v1, v2, v3} of Â associated to

those eigenvalues that have the smallest distance to 2d, −d and −d.
3. Let P be the 3×n matrix whose rows are the vi and compute Ŝ = PTP .
4. Compute the pairwise distances of vertices according to the distance

between their columns in Ŝ.
5. Successively join vertices with the smallest distance until three color

classes are left.

See, e. g., [8] for the efficient computation of eigenvectors. Of course, the com-
puted 3-coloring is not necessarily proper for Â. In the following we clarify the
assumptions under which the above algorithm succeeds with high probability.

A matrix is called regular (of degree d) if the sum of every row and column is
equal to d. The first assumption we need for our algorithm is that X , Y , and Z
must be regular with a common degree.

We turn our attention to the spectral properties of A: If X , Y , and Z are
regular of degree d, then (see Theorem 6) A has the three eigenvalues

λi1 = 2d, and λi2 = λi3 = −d (i2 	= i3) . (2)

206 U. Brandes and J. Lerner

It is crucial for our algorithm that the other eigenvalues of A are separated from
those specific eigenvalues. The separation sep3(A) of the planted 3-coloring in
A is defined to be the minimal distance from λi1 , λi2 , and λi3 to any other
eigenvalue of A. We define the variance of the distribution G(A) to be σ2 =
maxu,v(Auv −A2

uv) (i. e., the maximal variance of individual entries). The vari-
ance is bounded by 1/4 and goes to zero if all entries of A go either to zero or to
one. For instance, for the distribution G(r, p, 3), if p = c/n (that is the smallest
p for which the algorithm from [1] is guaranteed to work), then the variance
decreases linearly in n, i. e., σ2 is in O(1/n). Our main result is the following.

Theorem 1. Let X, Y , and Z be regular matrices of degree d and A = A[XY Z].
Let σ2 be the variance of G(A) and assume that sep3(A) is in ω(nσ) and that
σ2 + (log6 n)/n. Then, the Spectral 3-Coloring Algorithm properly 3-colors
graphs from G(A), with high probability.

Theorem 1 is proved in Sect. 4.
As a corollary, we get an algorithm that 3-colors (with probability one) a given

graph with adjacency matrix A[XY Z] assumed that X , Y , and Z are regular of
common degree and that the separation of the planted 3-coloring is not zero.

Corollary 1. Let X, Y , and Z be regular {0, 1} matrices of degree d and assume
that sep3(A[XY Z]) 	= 0. Then, the Spectral 3-Coloring Algorithm properly
3-colors the graph G with adjacency matrix A[XY Z].

Interpretation of assumptions. To interpret the assumptions that we make in our
theorems, we note first that also the traditional model G(r, p, 3) implicitly makes
assumptions on both, the regularity of the block matrices and the separation
of certain eigenvalues. The specific form of the matrix A(p) in (1) ensures in
particular that the submatrices are regular of degree d = rp. In this paper the
property of being constant is relaxed to that of being regular. From the point of
view of the coloring this means that vertices are no longer required to have the
same probability to connect to all vertices of different color, but they are only
required to have the same expected number of neighbors of each different color.

Turning to the assumption on the separation, we remark that the specific form
of the expected adjacency matrix A(p) implies that A(p) has the three eigenvalues
2d, −d and −d, whereas all other eigenvalues are zero and thus well-separated
from the aforementioned. Both previous results [1,12] use this observation and
the fact that the random deviation from the expected adjacency matrix has
w. h. p. eigenvalues in O(

√
d). Thus, an assumption on the separation of eigen-

values is also made when assuming that graphs are drawn from the standard
model G(r, p, 3). We note however that the assumption on the separation that
we make in our paper in not competitive to that of [1,12] when applied to the
specific model G(r, p, 3). Currently it is unclear whether the post-processing steps
of [1] could be adapted to the more general model G(A). Similarly, [12] uses the
fact that vertices that are in the same color class have identical columns in A(p).
Since this is no longer true for our model, it is unclear whether the same bounds
could be derived.

Coloring Random 3-Colorable Graphs with Non-uniform Edge Probabilities 207

2.4 Insufficiency of Traditional Methods

We show here that our algorithm can solve many instances that can not be
handled by previous spectral algorithms, e. g., [1,12]. The proofs of the following
two Theorems are deferred to Sect. 5.

Theorem 2. For arbitrary large r, there are r × r matrices X, Y , and Z such
that graphs from G(A[XY Z]) are not colored properly by the algorithms in [1]
and [12], but the Spectral 3-Coloring Algorithm succeeds on these graphs.

The matricesA that appear in the proof of Theorem 2 also seem to yield instances
of G(A) for which the algorithm from [5], which is designed for the semi-random
graph model, does not work. Since this algorithm consists of many randomized
sub-procedures, it is more complicated to provide an example of G(A) for which
it fails surely (or with high probability). However, we can show that the proofs
in [5] do not generalize to G(A): A graph G (with a planted coloring) is said
to have the k-collision property, if for every set U of equally colored vertices
and every set T of vertices that are colored differently than those of U , such
that |T |, |U | ≥ k, there is an edge in G joining U and T . It is proved in [5] (by
translating Lemma 6 of [5] to the graph coloring problem, compare Section 3
of [5]), that semi-random graphs G have with high probability the k-collision
property for k = 2n log log n

c log n . This does not hold for G(A). In particular the proofs
in [5] do not generalize to G(A).

Theorem 3. For arbitrary large r, there are r× r matrices X, Y , and Z, such
that graphs from G(A[XY Z]) do not have the k-collision property for any k that
is in o(n), but are properly colored by the Spectral 3-Coloring Algorithm.

3 Methodology

The expected adjacency matrix A(p) for the distribution G(r, p, 3) (see (1)) is so
convenient for traditional spectral algorithms since vertices from the same color
class have identical columns (neighborhoods) in A(p). Therefore, projecting ver-
tices to the column space of A(p) (that space is spanned by those three eigenvec-
tors that have non-zero eigenvalues) trivially reveals the classes. Moreover, this
spectral projection is stable to random noise (given certain assumptions) and
the algorithm succeeds also on sampled graphs.

This approach fails for the more general model G(A). Consider the expected
adjacency matrix A = A[XY Z] that arises if the off-diagonal blocks are equal
to the matrix shown in (3) and the corresponding graph in Fig. 1(left).

X = Y = Z =

0 0 p p
0 0 p p
p p 0 0
p p 0 0

 (3)

Two vertices that are colored the same may have very different (even disjoint)
neighborhoods. In particular, projecting vertices to the column space of A does

208 U. Brandes and J. Lerner

not reveal the color classes. Equation (3) and Fig. 1 indicate how to construct
distributions G(A) for which traditional spectral methods [1,12] fail: introduce
large (i. e., of linear size) sub-blocks of X , Y , Z that are zero, i. e., prohibit
edges between large subsets of differently colored vertices. To cope with the
distribution G(A[XY Z]) we have to apply a different projection.

Fig. 1. Left: Small example of a non-uniform expected adjacency structure, defined by
the block-matrices shown in (3). Edges have weight p. Every white vertex has exactly
two black neighbors. Right: Quotient induced by the coloring. Edges have weight 2p.

We represent a vertex k-coloring by a real k× n matrix P , called the charac-
teristic matrix of the coloring, defined by

P�v =
{

1/
√
r if vertex v is colored � and r is the size of the color class �,

0 if vertex v is not colored �.

The characteristic matrix P of the planted 3-coloring projects vertices to 3-
dimensional space, such that vertices are mapped to the same point if and only
if they are equally colored. Thus, P could be used to determine the planted
coloring—we just need a method that identifies the correct P (or a good ap-
proximation of it), given only a sample of the distribution.

To derive such a method we observe that, if the block matrices are regular,
then the planted 3-coloring satisfies the property of the following definition:

Definition 2. A coloring is called structural (for a symmetric matrix A) if its
characteristic matrix P satisfies

∀u, v ∈ V : P (u) = P (v) =⇒ PA(u) = PA(v) .

That is, a coloring is structural if, whenever two vertices are colored the same,
then they have the same number of each color in their neighborhoods. In alge-
braic and spectral graph theory, structural colorings are known under the names
of equitable partitions, or divisors of graphs [7,3]. For example, the coloring of
the graph in Fig. 1(left) is structural.

The idea of structural colorings serves only as a guide to find a projection
that recovers the planted 3-coloring. The property of being a structural coloring
is not robust to random noise. However, it can be shown, that a relaxation of

Coloring Random 3-Colorable Graphs with Non-uniform Edge Probabilities 209

structural colorings is stable. It is noteworthy, that we do not relax the property
of being structural but that of being a discrete coloring.

In the remainder of this section we relax the notion of colorings to projections
and similarities, while keeping the property of being structural. In Sect. 4 we
show that (w. h. p.) our algorithm computes the appropriate structural similarity
for the sampled matrix and recovers the planted 3-coloring.

Structural similarities have been introduced in [2] as a relaxation for role as-
signments. (Role assignments identify structurally similar vertices in networks.)
Here we review some concepts from [2] in a slightly different notation.

Projections and similarities are introduced as relaxations of k-colorings and
their associated equivalence relations on the vertex set:

Definition 3. A real k × n matrix P with orthonormal rows is called a pro-
jection. If P is a projection, then the real n × n matrix S = PTP is called the
similarity associated with P . Let, in addition, be A the adjacency matrix of a
graph. Then the real k × k matrix B = PAPT is called the quotient induced by
A and P .

The characteristic matrix of a coloring is a special case of a projection. Projec-
tions are more general than colorings, since they allow vertices to be members of
several color classes: the v’th column of a projection P is a k-dimensional vector
that describes the real-valued membership of vertex v to the k color-classes. The
entry Suv of the associated similarity S is the dot-product of the u’th and v’th
column of P . Thus u and v have high similarity if they are similarly colored.
From an algebraic point of view, a similarity is the orthogonal projection to the
row-space of P (compare [2]). If P is the characteristic matrix of a coloring,
then the quotient B = PAPT is the adjacency matrix of the weighted graph
that has the k color-classes as vertices and two classes c1 and c2 are connected
by an edge whose weight is the sum over all edges between c1 and c2 divided by√
|c1| · |c2|. For an example, see Fig. 1. The following definition introduces the

attribute structural for similarities. It is then noted in Theorem 4 that structural
similarities are indeed relaxations of structural colorings.

Definition 4. Let P be a projection and let S be its associated similarity, then
P and S are called structural for a matrix A if SA = AS.

Theorem 4 ([2]). Let P be the characteristic matrix of a vertex coloring c :V →
{1, . . . , k}. Then, P is a structural projection if and only if c is a structural
coloring. �

The following Theorem provides the link between spectral techniques and struc-
tural similarities. Further it shows how similarities that yield a pre-specified
quotient can be efficiently computed.

Theorem 5 ([2]). Let A be a symmetric n × n matrix, B a symmetric k ×
k matrix, P a projection, and S its associated similarity. Then P and S are
structural for A if and only if the image of S is generated by eigenvectors of A.

210 U. Brandes and J. Lerner

Furthermore, P and S are structural for A and the induced quotient equals B if
and only if those eigenvectors are associated to the eigenvalues of B. �

If P and S are structural, we call the eigenvalues of B associated to P and S.
Traditional spectral methods typically chose projections associated to the

eigenvalues with the largest absolute values (compare [12]). Structural similar-
ities are not restricted to projecting to the largest eigenvalues but can chose
all subsets and thereby can recover partitions in more general situations (as
demonstrated in this paper). The second part of Theorem 5 is important for
determining which eigenvalues have to be chosen for a specific task.

4 Correctness of the Algorithm

Throughout this section, let A = A[XY Z] be a real n × n matrix as in the
righthand side of (1) and let G(A) be the associated distribution of 3-colorable
graphs (compare Def. 1). Let Â be the adjacency matrix of a sample drawn
from G(A). Further, let σ2 be the variance of the distribution and assume that
σ2 + (log6 n)/n.

The following theorem states that, for regular X , Y , and Z, there is a struc-
tural similarity for A, which reveals the planted 3-coloring. Theorem 6 does not
rely on any assumptions on sep3(A).

Theorem 6. Let X, Y , and Z be regular r × r matrices with degree d. Then,
there is a structural similarity S that has 2d, −d, and −d as associated eigen-
values and satisfies for all vertices u and v,

‖S(u)− S(v)‖ =
{

0 if u and v are colored the same, and√
2/r if u and v are colored differently.

(4)

Proof. Since the matrices X , Y , and Z are regular, the planted 3-coloring is
a structural coloring for A. Thus, by Theorem 4 its characteristic matrix P ,
is a structural projection. Furthermore, the induced quotient B = PAPT is
the adjacency matrix of a triangle whose three edges have weight d. Thus, the
associated eigenvalues of P are 2d, −d, and −d. Finally, the similarity S = PTP
satisfies (4). �

We show in Theorem 8 that there is a structural similarity Ŝ for the sampled
adjacency matrix Â that is close enough to S. First we have to recall a well-
known bound on the eigenvalues of random matrices.

Theorem 7. Let F be defined by F = A− Â. Then (w. h. p.) it is ‖F‖2 ≤ 4σ
√
n

[12]. In particular, the eigenvalues of Â differ (w. h. p.) from those of A by at
most 4σ

√
n [13].

Theorem 8. Let X, Y , and Z be regular r × r matrices with common degree d
and A = A[XY Z]. Further, let S be the similarity from Theorem 6 and assume
that sep3(A) is in ω(σ

√
n). Then, w. h .p. the similarity Ŝ that is associated to

those three eigenvalues of Â that have the smallest distance to 2d, −d, and −d
satisfies ‖Ŝ − S‖2 ∈ O(σ

√
n/sep3(A)).

Coloring Random 3-Colorable Graphs with Non-uniform Edge Probabilities 211

Proof. (The following assertions hold w. h. p. for sufficiently large n.) By the
assumption on sep3(A) and Theorem 7, there are three well-defined eigenvalues
λi1 , λi2 , and λi3 of Â that have the smallest distance to 2d, −d, and −d. Let vi1 ,
vi2 , and vi3 be three orthonormal eigenvectors of Â, associated to λi1 , λi2 , and
λi3 . Let C be the n× 3 matrix whose columns are the vij , j = 1, 2, 3. We show
that Ŝ = CCT satisfies the assertions of the theorem.

By Theorem 5, Ŝ is structural for Â and λi1 , λi2 , and λi3 are the eigenvalues
associated to Ŝ. To show the bound on ‖Ŝ − S‖, let M = CTÂC, B1 be an
n × 3 matrix whose columns span the image of the similarity S, and B2 be an
n × (n − 3) matrix, such that (B1B2) is an orthogonal n × n matrix. Let F
be defined by Â = A − F and set L = BT

2 AB2. By definition of M and the
fact that Ŝ commutes with Â (Ŝ is structural for Â), it is 0 = ÂC − CM . By
the definition of F it follows FC = AC − CM . Let δ be the minimal distance
between eigenvalues of M and those of L. By the assumptions on the separation
sep3(A) and Theorem 7, δ is in Ω(sep3(A)) and it follows with Theorems V.3.4
and I.5.5 of [13] that

‖S − Ŝ‖2 ≤
2‖FC‖F

δ
.

The 2-norm of F is bounded by 4σ
√
n (Theorem 7), the Frobenius norm of the

n× 3 matrix FC is at most
√

3-times the 2-norm of FC, and the 2-norm of the
matrix C (having orthonormal columns) is 1. Thus, the assertion follows with

‖FC‖F ≤
√

3‖FC‖2 ≤
√

3‖F‖2 ≤ 4σ
√

3n .

�

To determine Ŝ, the degree d of the block matrices has to be estimated:

Lemma 1. Let X, Y , and Z be regular r × r matrices with common degree d
and A = A[XY Z]. Let Â be the adjacency matrix of a graph drawn from G(A)
and set d̂ =

∑n
i,j=1 Âij/(2n). Then, with high probability, d̂− d is in O(log n).

Proof. Follows in a straightforward manner from the Hoeffding bound. �

Proof (of Theorem 1). By Lemma 1 and Theorem 7, the similarity Ŝ, as com-
puted by the algorithm, is the similarity from Theorem 8. (Note that Ŝ = PTP
is independent on orthogonal transformations on the rows of P like, e. g., per-
mutation or reflexion of eigenvectors.) Let v be any vertex and let S be the
similarity from Theorem 6. We have by Theorem 8 that w. h. p.

‖S(v)− Ŝ(v)‖ ∈ o(1/
√
n) .

Hence, for two vertices u and v it is (applying Theorem 6)

‖Ŝ(u)− Ŝ(v)‖ ∈
{
o(1/

√
n) if u and v are in the same color class,

Ω(1/
√
n) else .

Thus for sufficiently large n the clustering procedure in Step 5 yields exactly the
planted color classes. �

212 U. Brandes and J. Lerner

Proof (of Corollary 1). Follows from Theorem 1 by considering the zero-variance
distribution that assigns probability one to G (and probability zero to any other
graph). Following the proofs in Sect. 4, it can be seen that the restriction “with
high probability” from Theorem 1 can be dropped in this situation. �

5 Hard Instances for Traditional Methods

Proof (of Theorem 2). The instances for which the algorithm from [1] does not
work are essentially a blown-up version of the example in (3) and Fig. 1 with
a few added edges. For simplicity we take p = 1 in our example. This implies
that only one graph has non-zero probability in the distribution. It should be
obvious that similar examples with probabilities different from zero or one can
be constructed.

Let r = 2k for an integer k. Let H be the graph that is the complete bipartite
graphKk,k plus the edges of two cycles of length k, connecting the vertices in the
bipartition classes of Kk,k (thereby making H non-bipartite). Let X = Y = Z
denote the adjacency matrix of H and let A = A[XY Z]. Let G be the graph
with adjacency matrix A (the unique graph returned by G(A)).

The preprocessing step from [1] is void in this case since G is regular. The
last eigenvector vn has median zero. Further for t = vn, in the first phase of
the algorithm from [1] the vertices are colored with only two colors, according
to which “bipartition class” they belong to. In particular this coloring is a very
bad approximation to the unique proper 3-coloring and it is easy to see that the
second and third phase in the proposed algorithm do not overcome this.

Examples of distributions for which the algorithm in [12] does not recover the
planted 3-coloring, are quite similar to the one above.

Finally, the above distribution satisfies the assumptions of our theorems and,
hence, G can be colored by our algorithm: The matrices X , Y , and Z are d-
regular by construction, where d = k + 2. By computing the eigenvalues of
the complete bipartite subgraphs and applying facts about the eigenvalues of
the Kronecker product of matrices (compare [3]), we get that the eigenvalues
2d, −d, and −d have non-zero separation from the others and thus Corollary 1
applies. �

Proof (of Theorem 3). In the example above there are suitable sets U and T of
size linear in n such that there is no edge joining U and T . �

6 Concluding Remarks

The ideas of this paper are not restricted to graph coloring. Many heuristics for
NP-hard graph partitioning problems (like min-bisection, clique, or independent
set) are based on spectral techniques that typically chose projections associated
to the eigenvalues with the largest absolute values. McSherry [12] showed that
these specific spectral projections recover partitions if vertices in the same class
have identical columns (neighborhoods) in the expected adjacency matrix. It

Coloring Random 3-Colorable Graphs with Non-uniform Edge Probabilities 213

seems that the converse is also true: these specific spectral projections recover
partitions only if vertices in the same class have almost identical neighborhoods
in the expected adjacency matrix. We outlined in Sect. 3 that projections asso-
ciated to eigenvalues that are not necessarily the largest may succeed in more
general situations, where vertices from the same class have only same-colored
(instead of identical) neighborhoods. It seems to be promising to consider these
generalized spectral projections also for the solution of other problems.

References

1. N. Alon and N. Kahale. A spectral technique for coloring random 3-colorable
graphs. SIAM Journal on Computing, 26:1733–1748, 1997.

2. U. Brandes and J. Lerner. Structural similarity in graphs. In Proceedings of the
15th International Symposium on Algorithms and Computation (ISAAC’04), pages
184–195, 2004.

3. D. M. Cvetković, M. Doob, and H. Sachs. Spectra of Graphs. Johann Ambrosius
Barth, 1995.

4. M. E. Dyer and A. M. Frieze. Fast solution of some random NP-hard problems.
In Proceedings of the 27th Annual IEEE Symposium on Foundations of Computer
Science (FOCS’86), pages 331–336, 1986.

5. U. Feige and J. Kilian. Heuristics for semi-random graph problems. Journal of
Computer and System Sciences, 63(4):639–671, 2001.

6. M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-completeness. Freeman and Company, 1979.

7. C. Godsil and G. Royle. Algebraic Graph Theory. Springer, 2001.
8. G. H. Golub and C. F. van Loan. Matrix Computations. John Hopkins University

Press, 1996.
9. T. R. Jensen and B. Toft. Graph Coloring Problems. Wiley, 1995.

10. M. Krivelevich. Coloring random graphs – an algorithmic perspective. In Pro-
ceedings of the 2nd Colloquium on Mathematics and Computer Science (Math-
Info’2002), pages 175–195, 2002.

11. L. Kučera. Expected behavior of graph coloring algorithms. In Lecture Notes in
Computer Science 56, pages 447–451. Springer Verlag, 1977.

12. F. McSherry. Spectral partitioning of random graphs. In Proceedings of the 42nd
Annual IEEE Symposium on Foundations of Computer Science (FOCS’01), pages
529–537, 2001.

13. G. W. Stewart and J.-G. Sun. Matrix Perturbation Theory. Academic Press, 1990.
14. C. R. Subramanian, M. Fürer, and C. E. V. Madhavan. Algorithms for coloring

semi-random graphs. Random Structures and Algorithms, 13:125–158, 1998.
15. J. Turner. Almost all k-colorable graphs are easy to color. Journal of Algorithms,

9:63–82, 1988.

The Kleene Equality for Graphs

Arnaud Carayol and Didier Caucal

Irisa, Campus de Beaulieu, 35042 Rennes Cedex, France
{Arnaud.Carayol, Didier.Caucal}@irisa.fr

Abstract. In order to generalize the Kleene theorem from the free
monoid to richer algebraic structures, we consider the non determin-
istic acceptance by a finite automaton of subsets of vertices of a graph.
The subsets accepted in such a way are the equational subsets of vertices
of the graph in the sense of Mezei and Wright. We introduce the notion
of deterministic acceptance by finite automaton. A graph satisfies the
Kleene equality if the two acceptance modes are equivalent, and in this
case, the equational subsets form a Boolean algebra. We establish that
the infinite grid and the transition graphs of deterministic pushdown au-
tomata satisfy the Kleene equality and we present families of graphs in
which the free product of graphs preserves the Kleene equality.

1 Introduction

In the case of the free monoid, Kleene theorem states the equivalence between
acceptance by non-deterministic finite state automata and acceptance by deter-
ministic and complete automata. As a consequence the regular sets of words
are closed under complementation and form a Boolean algebra. For arbitrary
monoids, the regular subsets (which are the subsets of the monoid accepted by
finite automata labeled by elements of this monoid) are closed under union but
are not, in general, closed under complementation. However there are well-known
examples of monoids for which the regular subsets form a Boolean algebra: the
free commutative monoid [GS64], the trace monoid with transitive independence
relations [Sak87], the context-free groups [Sén96]. . . As these monoids are not
free, the acceptance by deterministic and complete automata no longer provides
the closure under complementation.

The goal of this article is to explain the closure under complementation of
the regular subsets of such monoids by a notion of deterministic acceptance by
finite state automaton. In order to do so, we consider the acceptance by finite
automata of subsets of vertices of a colored graph.

A finite automaton is simply a finite colored graph whose vertices are called
states, together with a set of final states. The run of the automaton A on a graph
G is a relation between the vertices of the graph G and the states of A. It is the
smallest relation ρ such that if a vertex x of G and a state q of A are colored by
a same color, then (x, q) also belongs to ρ and such that if (x, p) belongs to ρ
and there is a a-labeled edge from x to y in G and a a-labeled transition from p
to q in A, then (y, q) belongs to ρ. Intuitively, the colored vertices of the graph
act as starting points for the automaton and the colored states in the automaton

R. Královič and P. Urzyczyn (Eds.): MFCS 2006, LNCS 4162, pp. 214–225, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

The Kleene Equality for Graphs 215

play the role of initial states. The subset of vertices accepted by A is the set of
vertices coupled by ρ with at least one final state. We denote AFS(G) the set
of all subsets of vertices accepted by a finite automaton running on G. The set
AFS(G) is in fact the set of all equational subsets (in the sense of Mezei and
Wright [MW67]) of the subset algebra associated to G.

This framework encompasses the case of the monoids previously mentioned
when considering their Cayley graphs [Cay78]. Every monoid M finitely gener-
ated by a subset P ⊆ M can be represented by its Cayley graph C(M, P) whose
vertices are the elements of the monoid and where an edge labeled by p ∈ P rep-
resent the product on the right by p and where the neutral element is colored by
ι. For instance, the Cayley graphs of the free monoids over two letters {a, b} is the
full binary tree labeled by a and b with its root colored by ι. The subsets of the
Cayley graph of M accepted by a finite automaton are the regular subsets of M.

The notion of deterministic acceptance is fairly simple: the run of an automaton
is deterministic and complete if it associates one and only one state to each vertex
of the graph. The set of all subsets of vertices accepted by A with a deterministic
and complete run is denoted DAFS(G). A graph G is said to satisfy the Kleene
equality if AFS(G) = DAFS(G). In this case, AFS(G) is a Boolean algebra.

To substantiate the pertinence of the notion of deterministic acceptance,
we show that the Cayley graph of the free commutative monoid with two genera-
tors, the rooted graphs of deterministic pushdown automata [MS85] (which con-
tain the Cayley graphs of context-free groups) and the rooted deterministic prefix-
recognizable graphs [Cau96] all satisfy the Kleene equality. Finally we provide suf-
ficient conditions for the free product of graphs to preserve the Kleene equality.

2 Preliminaries

The inverse of a relation R ⊆ P × P is R−1 := { (q, p) | (p, q) ∈ R }. The image
of Q ⊆ P by R is R(Q) := { p ∈ P | ∃q ∈ Q, (q, p) ∈ R }. The product of two
relations R and S is R · S := { (p, r) | ∃q ∈ P, (p, q) ∈ R and (q, r) ∈ S }.
Colored graphs. A colored graph G labeled by a finite set Σ and colored by a
finite set C is a subset of (V ×Σ×V) ∪ (C×V) for some countable V . The set of
vertices of G is VG := { u ∈ V | ∃v ∈ V, a ∈ Σ, c ∈ C, (u, a, v) ∈ G or (v, a, u) ∈
G or (c, u) ∈ G }, its set ΣG of labels is { a ∈ Σ | ∃u, v ∈ VG, (u, a, v) ∈ G } and
its set CG of colors { c ∈ C | ∃u ∈ VG, (c, u) ∈ G }. If (u, a, v) belongs to G, we
will say that there is an a-labeled edge from u to v. If (c, u) belongs to G, we
say that u is colored by c.

A graph H is a subgraph of G if H ⊆ G and it is a covering subgraph if
VH = VG.

A path in G is a sequence u0a1u1 . . . anun ∈ VG(ΣGVG)∗ such that for all
i ∈ [1, n− 1], (ui, ai+1, ui+1) ∈ G. A graph G is accessible from its colors if for
all x ∈ VG, there exists a path from some colored vertex i ∈ VG to x.

A graph G is rooted if there exists a color c and a vertex r called the root
colored by c such that r is the only vertex colored by c and every vertex is
reachable from r.

216 A. Carayol and D. Caucal

A graph G is deterministic if for all (u, a, v) ∈ G, if (u, a, v′) ∈ G then v = v′

and for all (c, u) ∈ G, if (c, u′) ∈ G then u = u′. A graph G is (source) complete
if for all u ∈ VG and a ∈ Σ, there exists v ∈ VG such that (u, a, v) ∈ G.

A morphism ϕ from a graph G to a graph H is a mapping from VG to
VH such that (u, a, v) ∈ G implies (ϕ(u), a, ϕ(v)) ∈ H and (c, u) ∈ G implies
(c, ϕ(u)) ∈ H .

For every graph G with CG ∩ ΣG = ∅, we define the subset algebra of G
which is a unary algebra over the signature CG ∪ ΣG where the symbols in CG

are constants and the symbols in ΣG are unary functions. Its carrier is 2VG

and symbols in CG ∪ ΣG are interpreted in the following way: for all c ∈ CG,
c = { v ∈ VG | (c, v) ∈ G } and for all a ∈ Σ and M ⊆ VG, a(M) = { v | ∃u ∈
M, (u, a, v) ∈ G }.

Monoids and their Cayley graphs. A monoid M = (M, ·) is given by a
set M and an associative product · admitting a neutral element 1M ∈ M . The
product is extended to subsets of M by taking for all P,Q ⊆ M , P · Q :=
{ p · q | p ∈ P and q ∈ Q }. For all P ⊆ M , P ∗ =

⋃
i∈N P

i where P 0 = {1M}
and P i+1 = P i · P . The set of all regular subsets of M denoted by Reg(M) is
the smallest set containing the finite sets and closed under union, concatenation
and the star operation.

A monoid M = (M, ·) is finitely generated by a finite subset P of M if M =
P ∗. Its Cayley graph C(M,P) is labeled by P and colored by ι and defined by:

C(M,P) := { (m, p,m · p | m ∈M and p ∈ P } ∪ {(ι, 1M)}.

3 Non-deterministic and Deterministic Finite State
Acceptance

In Subsection 3.1, we present the equational subsets of vertices of a graph as the
subsets accepted by finite state automata running on the graph. In Subsection
3.2, we introduce the notion of subsets of vertices of a graph deterministically
accepted by finite automata and state the generalization of the Kleene equality.
Finally in Subsection 3.3, we compare this new notion with the well-known
notion of recognizable subsets [MW67].

3.1 Non-deterministic Finite State Acceptance

A finite automaton A is a finite colored graph whose vertices are called states
together with a finite set of final states F ⊆ VA.

The run of a finite automaton A on a graph G is the smallest relation ρ ⊆
VG × VA satisfying:

– for all c ∈ CG ∩CA, all x ∈ VG and p ∈ VA, if (c, x) ∈ G and (c, p) ∈ A then
(x, p) ∈ ρ,

– for all a ∈ ΣG ∩ΣA, x, y ∈ VG and p, q ∈ VA, if (x, p) ∈ ρ, (x, a, y) ∈ G and
(p, a, q) ∈ A then (y, q) ∈ ρ.

The Kleene Equality for Graphs 217

The subset of VG accepted by A is ρ−1(F). The subsets of G accepted by
some finite automaton will be called the subsets accepted by finite state (AFS
for short) and will be designated by AFS(G).

Intuitively, the colored vertices of the graph play the role of starting point
for the automaton. We say that the automaton goes through an a-labeled edge
(x, a, y) ∈ G if for some edge (p, a, q) ∈ A, we have (x, p) ∈ ρ and (y, q) ∈ ρ.

These subsets are the equational subsets (as originally defined in [MW67]) of
the subset algebra of G. In fact for all q ∈ VA, the sets ρ−1({q}) are the smallest
solution (for the inclusion) of the following finite set of equations on the subset
algebra associated to G:

Xq =
⋃

(c,q)∈A

c ∪
⋃

(p,a,q)∈A

a(Xp).

In [Cou89], a characterization of equational subsets by finite automata is pro-
vided. Our definition differs slightly in the definition of the run on the automaton.

For all finite automata A and B with VA ∩ VB = ∅, the run of A ∪ B on G
is the union of the run of A on G and of the run of B on G. Hence AFS(G) is
closed under union.

Proposition 1. For all G, AFS(G) is closed under union and contains ∅.

It is well-known that AFS(G) is not in general closed under complementation.
In fact, remark that VG does not, in general, belongs to AFS(G): if a vertex x
of G is not accessible from any colored vertex, then it does not belong to any
set in AFS(G). As we investigate cases for which AFS(G) is a Boolean algebra,
it is reasonable to assume that the graphs under consideration are accessible
from their colors. In the following, we will always assume that the graphs under
consideration are accessible from their colors.

Example 1. Consider the graph Stacks associated to pushdown stacks over the
alphabet Γ = {a, b}:

Stacks := { (u, x, ux) | x ∈ {a, b} and u ∈ Γ ∗ }
∪ { (ux, x̄, u) | x ∈ {a, b} and u ∈ Γ ∗ } ∪ {(ι, ε)}.

The vertices are the stacks over Γ (which are simply words in Γ ∗) and the edges
represent the basic operations on stacks: an edge labeled by a (resp. b) represents
the push of the letter a (resp. b) on top of the stack and an edge labeled by ā
(resp. b̄) the removal of the top most letter of the stack if it is an a (resp. b).
The empty stack is colored by ι.

Every set V ∈ AFS(Stacks) can be seen as the set of stack contents appearing
in a final reachable configurations of some pushdown automaton. In fact if we
omit the input alphabet, a pushdown automaton is simply a finite automaton
labeled by the operations {a, b, ā, b̄}. In [Büc64], Büchi showed that these sets
are regular. Hence AFS(Stacks) = Reg(Γ ∗) is a Boolean algebra.

Figure 1 presents the run ρ of a finite automaton A on Stacks. The set of states
of A associated by ρ to a vertex x of Stacks are written in boldface next to x. If
we take {r1, l1} as set of final states for A, A accepts the set {aa, bb}∗ · {a, b}.

218 A. Carayol and D. Caucal

ε

b

ba bb

baa bab bba bbb

{i, r2, l2}

(ι)
{r, r1}

{i, r2, l2}

{r, r1}{l, l1}

b

b̄

a

ā

b

b̄

a b a b

ε

a

abaa

abbabaaabaaa

{l, l1}

{i, l2, r2}

{l, l1} {r, r1}

a

ā

a

ā

b

b̄

a b a b

i (ι)

r
r1 r2

b
b b̄

b̄

b̄

l

l1 l2
a

a ā
ā

ā

Fig. 1. The run (on the left) on Stacks of a finite automaton A (on the right)

Other meaningful examples of graphs for which AFS(G) is a Boolean algebra
are provided by considering the Cayley graphs of finitely generated monoids.
The sets accepted by finite automata running on the Cayley graph of a finitely
generated monoid are the regular subsets of this monoid.

Proposition 2. For any monoid M finitely generated by P ,

AFS(C(M, P)) = Reg(M).

Example 2. A first simple example of Cayley graph is the Cayley graph ∆2 of
the free monoid {a, b}∗ presented in Figure 2. Consider now the free commuta-
tive monoid with two generators (N2,+) where + designates the componentwise
addition. Its Cayley graph Grid with respect to the generating set {(0, 1), (1, 0)}
is the infinite grid depicted in Figure 2. By Proposition 2, the subsets accepted
by finite automata on Grid are the regular subsets of (N2,+) which are also
known as the semi-linear sets of N2. From [GS64], we know that AFS(Grid) is a
Boolean algebra.

∆2 •

• •

• • • •

(ι)

a b

a ba b

(ι)
•

•

•

• •

• •

• •
Grid

a a

a a

a a

b

b

b

b

b

b

Fig. 2. The Cayley graph ∆2 of the free monoid {a, b}∗ and the Cayley graph Grid of
(N2, +) with a = (1, 0) and b = (0, 1)

By a standard powerset construction, a non deterministic automaton A can be
transformed into a deterministic and complete automaton accepting the same
subset.

The Kleene Equality for Graphs 219

Proposition 3 ([MW67]). For all graph G, every set in AFS(G) is accepted
by a deterministic and complete automaton.

As shown in Example 1, a deterministic automaton does not necessarily have a
deterministic behavior: its run can assign several states to the same vertex. We
will say that such a run is non deterministic.

3.2 Deterministic Finite State Acceptance

We lift the notion determinism and completeness from the automaton to the
behaviour of the automaton : its run.

Definition 1. The run ρ of a finite automaton A on a graph G is said to be
deterministic and complete if for every vertex x ∈ VG, there exists one and only
one state p ∈ VA such that (x, p) ∈ ρ.

In other terms, ρ is a mapping. In this case, we will adopt the functional notation
and write ρ(x) = p instead of (x, p) ∈ ρ.

The set of all subsets of G accepted by a finite automaton having a determin-
istic and complete run on G is written DAFS(G). In the following we will simply
say that these subsets of vertices are deterministically accepted. By definition,
for all graph G, DAFS(G) is included in AFS(G).

Note that every set V ∈ DAFS(G) is deterministically accepted by a determin-
istic automaton. However note that contrary to what we obtained for AFS(G),
we can no longer assume that this automaton is complete (see Subsection 3.3
for a discussion on this fact).

As the automaton is not necessarily complete, its run on a graph G induces
a subgraph of G obtained by only keeping the edges of G borrowed by the
automaton. For any graph G and any finite automaton A with a deterministic
run ρ on G, the graph of the run ρ is the graph Gρ defined by: Gρ := { (u, a, v) ∈
G | (ρ(u), a, ρ(v)) ∈ A }. As ρ is complete, Gρ is a covering subgraph of G.

Example 3. Consider the finite automaton A of Figure 3. Its run on Grid (cf.
Figure 2) is deterministic and complete. The graph of its run Gridρ is represented
in Figure 3. If we take {r, s} as set of final states for A, A accepts the diagonal
of the grid { (n, n) | n ∈ N }.

For any set V ∈ DAFS(G), there exists a finite automaton A with a set F ⊆ VA

of final states and a deterministic run ρ on G such that V = ρ−1(F). As ρ is a
mapping, VG \ V = ρ−1(VA \ VF) and it follows that DAFS(G) is closed under
complementation.

Proposition 4. For all graph G, DAFS(G) is closed under complementation.

However DAFS(G) is not in general closed under union and intersection. For
example consider the graph G and the two automata A and B presented in
Figure 4. These two automata have a deterministic run on G and by taking f as
unique final state, they accept {p} and {s} respectively. However {p, s} does not

220 A. Carayol and D. Caucal

Gridρ

r

p

p

p

p

p

p

p

p

p p

q

s q

s q

s q

s

q t t t

t t

t

A

(ι)
r q t

p s

a a

ab b a

b

b

Fig. 3. A finite automaton A with a deterministic run ρ on Grid and the graph of its
run Gridρ

(ι)

rp s

q
G

a

a′

b

b′

a b

(ι) i f

g B

b′
a

(ι) i f

g A

a′b

Fig. 4. Example of graph G for which DAFS(G) is not closed under union

belong to DAFS(G). In fact for all deterministic and complete run ρ, we have
either ρ(q) = ρ(p) or ρ(q) = ρ(s).

If non deterministic and deterministic acceptances are equivalent on G, we
say that G satisfies the Kleene equality.

Definition 2. A graph G satisfies the Kleene equality if AFS(G) = DAFS(G).

As by Proposition 1, AFS(G) is closed under union and contains the empty set
and by Proposition 4, DAFS(G) is closed under complementation, it follows that
AFS(G) is a Boolean algebra.

Proposition 5. For any G, if AFS(G) = DAFS(G) then AFS(G) is a Boolean
algebra.

The Kleene equality states the equivalence between non-deterministic and de-
terministic acceptance by finite automata. A stronger requirement is that every
non-deterministic run can be determinized.

Definition 3. For any graph G, G satisfies the strong Kleene equality if for
every finite automaton A with a run ρA on G, there exists a finite automaton
B with a deterministic and complete run ρB on G and a relation η ⊆ VB × VA

such that ρA = ρB · η.

Intuitively, this means that for any finite automatonA there exists an automaton
B with a deterministic run of G such that the set of states associated to a vertex

The Kleene Equality for Graphs 221

x of G is entirely characterized by the unique state ρB(x) associated by B to x:
ρA(x) = η(ρB(x)).

In particular, if FA is the set of final states of A, by taking FB = η−1(FA)
as set of final states for B, B accepts the same subset as A. Hence, if a graph
satisfies the strong Kleene equality, it satisfies the Kleene equality.

Example 4. Consider the graph Stacks and the finite automaton A presented
in Example 1. The automaton B presented in Figure 5 has a deterministic and
complete run ρB on Stacks and accepts the same language asA if we take {p, s} as
final states. Moreover taking η = {(r, i), (r, r2), (r, l2), (s, l), (s, l1), (p, r), (p, r1)},
we have ρA = ρB · η. In fact as Stacks is a rooted and deterministic pushdown
transition graph, we will prove in Subsection 4.2 that it satisfies the strong
Kleene equality.

(ι) r

p

s

u

b
b

a
a b

a

a, b

Fig. 5. An automaton B with a deterministic and complete run on Stacks (cf. Ex. 1)

3.3 Comparison with Recognizable Subsets

The notion of recognizable subsets of a monoid was introduced by Eilenberg.
Mezei and Wright extended this notion to algebras in [MW67]. For a graph G,
a subset of vertices V ⊆ VG is recognizable if there exists a deterministic and
complete automaton A with ΣA = ΣG and CA = CG and a morphism ϕ from
G to A such that V = ϕ−1(ϕ(V)). We write Rec(G) the set of all recognizable
subsets of vertices of G.

It is well-known that for any graph G, Rec(G) is a Boolean algebra. In our
setting, this notion can be captured by considering deterministic and complete
automaton having a deterministic run.

Proposition 6. For all graph G, a subset V of VG is recognizable if and only if
it is deterministically accepted by a deterministic and complete finite automaton
A with ΣA = ΣG and CA = CG.

A direct consequence of this characterization is that for all graph G, we have
Rec(G) ⊆ DAFS(G) ⊆ AFS(G). In the case of the free monoid {a, b}∗ (whose
Cayley graph is ∆2 presented in Figure 2), it is well-known that Rec(∆2) =
AFS(∆2). Hence ∆2 satisfies the Kleene equality. In general, Rec(G) is strictly
included in DAFS(G). Consider for example the graph Grid presented in Figure
2: we have seen in Example 3 that { (n, n) | n ∈ N } belongs to DAFS(Grid) but
does not belong to Rec(Grid). In fact, the recognizable subsets of Grid are finite
unions of products of subsets in Reg((N,+)).

The following proposition is well-known in the case of AFS(G).

Proposition 7. For all G, if P ∈ Rec(G) and Q ∈ DAFS(G) then P ∩ Q ∈
DAFS(G).

222 A. Carayol and D. Caucal

4 Motivating Examples

4.1 The Grid

In this section, we consider the Cayley graph Grid (presented in Example 2)
of the free commutative monoid with two generators. In [ES69], the authors
establish that the regular subsets of this monoid are unambiguous. A regular
subset R is unambiguous if it is accepted by a finite automaton A with a finite set
of initial states and such that for all r ∈ R, there exists exactly one computation
of A accepting r. Note that the run on the Cayley graph of the monoid of an
unambiguous automaton is, in general, neither deterministic (as several initial
states are allowed) nor complete (as the definition does not imply the existence of
a path reaching the elements that do not belong to R). In fact, the unambiguous
regular subsets are in general not closed under complementation.

The proof that Grid satisfies the strong Kleene equality is quite involved and
starts from the unambiguous characterization of [ES69].

Theorem 1. The Cayley graph Grid of the free commutative monoid with two
generators satisfies the strong Kleene equality.

We conjecture that this result extends to the Cayley graphs of freely generated
monoids with an arbitrary number of generators.

4.2 Graphs of Deterministic Pushdown Automata

In [Sén96], the author proves that the regular subsets of a context-free group form
a Boolean algebra. In [MS85], Muller and Schupp proved that Cayley graphs of
context-free groups are rooted deterministic pushdown transition graphs. We
establish that all rooted deterministic pushdown transition graphs satisfy the
strong Kleene equality. In particular, it follows that the Cayley graphs of the
context-free groups satisfy the strong Kleene equality.

Recall that a (real-time) pushdown automaton is a finite set R of rules of
the form (pA, a, qU) with p, q ∈ Q,A ∈ P,U ∈ P ∗, a ∈ Σ, where Q,P,Σ are
disjoint alphabets of respectively states, pushdown letters and labels. A config-
uration of the pushdown graph is a word qw where q ∈ Q and w ∈ P ∗. The
transition graph P (R) of any pushdown automaton R is the uncolored graph
P (R):={(uw, a, vw) | (u, a, v) ∈ R ∧ w ∈ P ∗}. The rooted transition graph
P (R, r) of R from any configuration r ∈ QP ∗ is the graph P (R, r) obtained
from P (R) by coloring the vertex r by a color ι and by restricting to the vertices
accessible from r. Figure 6 illustrates this notion.

Theorem 2. Every rooted deterministic pushdown transition graph G satisfies
the strong Kleene equality.

This result extends to the rooted deterministic prefix-recognizable graphs intro-
duced in [Cau96]. A prefix-recognizable relation on words over a finite alphabet
Γ is a finite union of relations of the form (U × V) · W where U ,V and W

The Kleene Equality for Graphs 223

(pA, a, PAA) Q = {p, q}
(pA, b, q) P = {A, B}
(qA, c, q)

•
pA

• • •
pAA pAAA pAAAA

• • • •
q qA qAA qAAAA

(ι) a a a

b b b b
c c c

Fig. 6. A pushdown transition graph rooted in pA

belong to Reg(Γ ∗). A prefix-recognizable graph labeled by Σ is an uncolored
graph defined by a family (Ra)a∈Σ of prefix-recognizable relations on words
over Γ ∗ and is equal to { (u, a, v) | u, v ∈ Γ ∗, a ∈ Σ and (u, v) ∈ Ra }. For
any prefix-recognizable graph G, the prefix-recognizable graph G/r rooted in
r ∈ VG is the graph obtained by restricting G to the set of vertices accessible
from r and adding the color ι on r. Figure 7 presents a rooted deterministic
prefix-recognizable graph which is not a rooted pushdown graph.

Σ = {a, b}
Γ = {c}
Ra = ({ε}, {c}) · c∗
Rb = (c+, {ε}) · c∗

• • • •
ε c cc ccc

(ι) a a a

b b b

b b

b

Fig. 7. A prefix-recognizable graph rooted in ε

Theorem 3. Every rooted deterministic prefix-recognizable graph satisfies the
strong Kleene equality.

4.3 Free Product of Rooted Graphs

In order to obtain more graphs satisfying the Kleene equality, we consider the
free product of rooted graphs. In [Sak87], the author established that for two
disjoint monoids M and N such that Reg(M) and Reg(N) are Boolean algebras
then the regular subsets of the free product of M and N form a Boolean algebra.
We naturally extend the free product of two monoids to rooted graphs and show
that on Cayley graphs, the free product preserves the strong Kleene equality.

Let G and H be two rooted graphs with respective roots rG colored by g
and rH colored by h such that VG ∩ VH = ΣG ∩ ΣH = ∅ and CG = {g} and
CH = {h}. We take V ′G = VG \ {rG} and V ′H = VH \ {rH}.

The set of vertices of the free product G ⊗H of G and H is SG ∪ SH where
SG = (V ′GV

′
H)∗V ′G∪(V ′HV

′
G)∗ and SH = (V ′HV

′
G)∗V ′H∪(V ′GV

′
H)∗. The graphG⊗H

is rooted at empty sequence ε and defined by:

G⊗H :=
⋃

u∈SG

u · [H] ∪
⋃

u∈SH

u · [G] ∪ {(ι, ε)}

224 A. Carayol and D. Caucal

where [G] (resp. [H]) designates the graph obtained by renaming the root rG
(resp. rH) by the empty sequence and for all graph u · [G] (resp.u · [H]) is the
graph { (uv, a, uw) | (v, a, w) ∈ G } (resp. { (uv, a, uw) | (v, a, w) ∈ H }).

In particular, the free product of the Cayley graphs of two disjoint monoids
is the Cayley graph of the free product of these two monoids.

(ι)
• • • •

•

•

•

• • •

a a a

b

b

b

a a a

Fig. 8. The free product of two semi-lines labeled by a and by b respectively

A first simple case in which the free product preserves the strong Kleene
equality is when one of the two graphs has no incoming edge to its root.

Proposition 8. If G has no incoming edge to its root and if G and H both
satisfy the Kleene equality then their free product G⊗H also satisfies the Kleene
equality.

In particular, it follows that the free-product of Grid and of any deterministic
rooted pushdown graph satisfy the strong Kleene equality.

Theorem 4. For any two disjoint monoids M and N finitely generated by P ⊂
M and Q ⊂ N , if the C(M, P) and C(N , Q) both satisfy the strong Kleene
equality then C(M, P)⊗ C(N , Q) also satisfies the strong Kleene equality.

The proof of Theorem 4 is an adaptation of Theorem 5.2 of [Sak87].

Example 5. Consider the free partially commutative monoid with four genera-
tors a, b, c, d satisfying the equations ab = ba and cd = dc. Its Cayley graph is the
free product of two grids respectively labeled by {a, b} and {c, d}. By Theorem 4
and Theorem 1, its Cayley graph satisfies the strong Kleene equality.

5 Conclusion

In this article, we introduced the natural notion of deterministic acceptance by
finite automata on colored graphs. We showed that it allows one to extend the
Kleene theorem on free monoid to richer algebraic structures such as the free
commutative monoid with two generators, the context-free groups and the trace
monoid with a transitive independence relations with at most two independent
generators (as their Cayley graphs are free products of grids and lines). We think

The Kleene Equality for Graphs 225

that this notion brings new insight on the closure by complementation of the
regular subsets of these monoids.

This work leaves several open questions. In particular, we conjecture that infi-
nite grids of arbitrary dimension satisfy the strong Kleene equality. It remains to
extend the notion of deterministic acceptance to capture the equational subsets
of richer structures such as for example the canonical graphs associated to stacks
of stacks [Car05]. Finally we can readily extend these notions to relational struc-
tures. However it remains to exhibit pertinent relational structures for which the
equational subsets form a Boolean algebra.

References

[Büc64] J. Büchi. Regular canonical systems. Arch. Math. Logik Grundlag., 6:91–111,
1964.

[Car05] A. Carayol. Regular sets of higher-order pushdown stacks. In Proc.
MFCS ’05, pages 168–179, 2005.

[Cau96] D. Caucal. On infinite transition graphs having a decidable monadic theory.
In Proc. ICALP 96, volume 1099 of LNCS, pages 194–205, 1996.

[Cay78] A. Cayley. On the theory of groups. Proc. London Math. Soc., 9:126–133,
1878.

[Cou89] B. Courcelle. On recognizable sets and tree automata. In Resolution of
Equations in Algebraic Structures. Academic Press, 1989.

[ES69] S. Eilenberg and M. Schützenberger. Rational sets in commutative monoids.
J. Algebra, 13:344–353, 1969.

[GS64] S. Ginsburg and E. Spanier. Bounded algol-like languages. Trans. Amer.
Math. Soc., 113:333–368, 1964.

[MS85] D. Muller and P. Schupp. The theory of ends, pushdown automata, and
second-order logic. TCS, 37:51–75, 1985.

[MW67] J. Mezei and J. Wright. Algebraic automata and context free sets. Informa-
tion and Control, 11:3–29, 1967.

[Sak87] J. Sakarovich. On regular trace languages. TCS, 52:59–75, 1987.
[Sén96] G. Sénizergues. On the rational subsets of the free group. Acta Informatica,

33:281–296, 1996.

On the Repetition Threshold for Large

Alphabets

Arturo Carpi

Dipartimento di Matematica e Informatica, Università di Perugia, Italy
carpi@dipmat.unipg.it

Abstract. The (maximal) exponent of a finite non-empty word is the
ratio among its length and its period. Dejean (1972) conjectured that for
any n ≥ 5 there exists an infinite word over n letters with no factor of
exponent larger than n/(n−1). We prove that this conjecture is true for
n ≥ 38.

1 Introduction

The existence of infinite words on a finite alphabet without adjacent repeats of
a same factor is one of the oldest results in Combinatorics on Words [1,14,15]
(see also [2]). A stronger request was considered by Dejean [6].

We recall that the (maximal) exponent of a non-empty finite word is the
ratio among its length and its period. The supremum of the exponents of the
factors of an infinite word is usually called the critical exponent. For instance,
the critical exponent of Thue-Morse word is 2 [14] and that of Fibonacci word is
(5+

√
5)/2 [9]. For any n ≥ 2, the minimal critical exponent of infinite words on

n letters is called the repetition threshold on n letters [3]. Thus, as any binary
word of length 4 has a factor of exponent 2, the repetition threshold on 2 letters
is 2.

Dejean [6] proved that the repetition threshold on 3 letters is 7/4. Dejean has
also showed that for n ≥ 5, the repetition threshold on n letters is not smaller
than n/(n − 1) while if n = 4, then it is not smaller than 7/5. She conjectured
that these are the actual values of the repetition threshold. This conjecture has
been proved to be true for n = 4 by Pansiot [12] and, with extensive use of
a computer, for 5 ≤ n ≤ 11 by Moulin-Ollagnier [11] and, more recently, for
12 ≤ n ≤ 14 by Mohammad-Noori and Currie [10].

The goal of this paper is the proof of Dejean’s conjecture for alphabet with
at least 38 letters.

We mention that a generalization of the repetition threshold, taking into ac-
count not only the exponent but also the length of the factors has been con-
sidered in [7]. Binary or ternary words avoiding certain fractional powers are
studied in [5,8,13].

Pansiot [12] showed that any infinite word on n letters of critical exponent
n/(n − 1) can be obtained as the result of a sequential transduction of a bi-
nary word. As noticed in [11] the sequential transducer can be identified with

R. Královič and P. Urzyczyn (Eds.): MFCS 2006, LNCS 4162, pp. 226–237, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

On the Repetition Threshold for Large Alphabets 227

a suitable morphism ϕn of the two-generated free monoid onto the symmetric
group on n objects. In Section 3 we give a condition on the factors of an infinite
binary word w ensuring that w is transduced into a word on n letters of critical
exponent n/(n− 1).

In our analysis a central role is played by binary words which are mapped
by ϕn into the stabilizer of k suitable points (k-stabilizing words of order n).
Indeed, it turns out that if an infinite binary word contains a factor which is a
‘too short’ k-stabilizing word, then Pansiot transducer maps it into a word on n
letters with critical exponent larger than n/(n− 1).

In Section 4 we introduce, for any integer n ≥ 8, a morphism f from a finite
alphabet into a binary alphabet with the property that ‘short’ k-stabilizing words
of order n do not occur as factors of the words in the image of f .

In Section 5 we give a condition on the factors of a word w ensuring that
the factors of f(w) satisfy the condition established in Section 3. Finally, in
Section 6 we produce infinite words satisfying such a condition, for any n ≥ 38.
This allows us to conclude that for alphabet with 38 or more letters, Dejean’s
conjecture is true.

2 Preliminaries

Let A be a finite non-empty set, or alphabet, and A∗ be the free monoid generated
by A. The elements of A are usually called letters and those of A∗ words. The
identity element of A∗ is called empty word and denoted by ε. We set A+ =
A∗ \ {ε}.

A word v ∈ A+ can be written uniquely as a sequence of letters as v =
a1a2 · · · a�, with ai ∈ A, 1 ≤ i ≤ �, � > 0. The integer � is called the length of v
and denoted |v|. The length of ε is 0. For any v ∈ A∗ and a ∈ A, |v|a denotes
the number of occurrences of the letter a in v.

Let v ∈ A∗. The word u is a factor of v if there exist words r, s such that
v = rus. A factor u of v is called proper if u 	= v. If v = us, for some word s
(resp., v = ru, for some word r), then u is called a prefix (resp., a suffix) of v.
For any v ∈ A∗, we denote by Fact(v), the set of its factors and respectively by
Pref(v) and Suff(v) the sets of its proper prefixes and suffixes. For any X ⊆ A∗,
we set

Fact(X) =
⋃

v∈X

Fact(v) .

An element of Fact(X) will be also called a factor of X .
Any non-empty word v can be uniquely factorized v = uku′ with k ≥ 1,

u′ ∈ Pref(u) and |u| minimal. The integer p = |u| and the ratio e = |v|/p are
called respectively the (minimal) period and the (maximal) exponent of v.

An infinite word w on the alphabet A is any unending sequence w = (ai)i≥1
of letters of A. The set of all the infinite words over A is denoted by Aω. A factor
of w is any word aiai+1 · · ·aj , with 1 ≤ i ≤ j, as well as the empty word. Also in
the case that w is an infinite word, the set of factors of w is denoted by Fact(w).

228 A. Carpi

The critical exponent of an infinite word is the supremum of the exponents
of its non-empty factors. It is possible to prove that if A is a n-letter alphabet,
with n ≥ 2, then the set of critical exponents of the words of Aω has a minimum.
According to [3], it is called the repetition threshold on n letters. As shown in [6],
the repetition threshold on n letters is not smaller than n/(n− 1).

We say that a finite or infinite word w on the alphabet A avoids a set X ⊆ A∗

if X∩Fact(w) = ∅. A set of words Y is said to avoid X if all words of Y avoidX .
Let n be a positive integer. We shall denote by Sn the symmetric group on

n objects. Thus, the elements of Sn are the permutations of the set An =
{1, 2, . . . , n}. For any α ∈ Sn and a ∈ An the image of a by α will be de-
noted by aα. A permutation α is a k-cycle if there exist k distinct elements
a1, . . . , ak ∈ An, such that aiα = ai+1, 1 ≤ i ≤ k − 1, ak = a1 and any other
element of An is fixed by α. Such an α will be denoted by α = (a1 a2 · · · ak).
As is well known, any permutation can be written as the product of pairwise
disjoint cycles and its order is equal to the least common multiple of the lengths
of the cycles.

3 Pansiot Transduction

Let n ≥ 2 be an integer and B = {0, 1}. We consider the morphism ϕn : B∗ → Sn

defined by

ϕn(0) = (1 2 · · · n− 1) , ϕn(1) = (1 2 · · · n) .

Since for 1 ≤ i ≤ n− 2 one has iϕn(0) = iϕn(1) = i+ 1, one easily derives that
if u ∈ B∗ and i ≤ n− |u| − 1, then

iϕn(u) = i+ |u| . (1)

Let w = (bi)i≥1 be an infinite word on the alphabet B. We shall denote by γn(w)
the infinite word (ai)i≥1 on the alphabet An = {1, 2, . . . , n} defined by

ai = 1(ϕn(b1b2 · · · bi))−1 , i ≥ 1 (2)

Thus, we have defined a map γn : Bω → Aω
n . The map γn was introduced in [12]

as the output of a sequential transducer. It was proved that any infinite word on
n letters whose critical exponent is smaller than (n− 1)/(n− 2) can be obtained
by renaming the letters of a word of γn(Bω) (cf. [12, Lemme 2.3]).

Let 1 ≤ k < n. We say that a word u ∈ B+ is a k-stabilizing word (of
order n) if ϕn(u) fixes the points 1, 2, . . . , k. We shall denote by Stabn(k) the
set of k-stabilizing words of order n. Next lemma establishes a correspondence
among the occurrences of k-stabilizing words in an infinite binary word w and
the ‘repetitions’ of a same factor of length k in γn(w).

Lemma 1. Let w = (bi)i≥1 be an infinite word on the alphabet B and set
γn(w) = (ai)i≥1. For 1 ≤ i < j, 1 ≤ k ≤ n− 1, one has

aiai+1 · · ·ai+k−1 = ajaj+1 · · ·aj+k−1

if and only if bi+kbi+k+1 · · · bj+k−1 is k-stabilizing.

On the Repetition Threshold for Large Alphabets 229

Proof. For 0 ≤ s ≤ k − 1, in view of (1) and (2) one has

aj+sϕn(b1 · · · bj+k−1) = 1(ϕn(b1 · · · bj+s))−1ϕn(b1 · · · bj+k−1)
= 1ϕn(bj+s+1 · · · bj+k−1) = k − s ,

ai+sϕn(b1 · · · bj+k−1) = 1(ϕn(b1 · · · bi+s))−1ϕn(b1 · · · bj+k−1)
= 1ϕn(bi+s+1 · · · bi+k−1)ϕn(bi+k · · · bj+k−1)
= (k − s)ϕn(bi+k · · · bj+k−1) .

Thus one has ai+s = aj+s if and only if k − s is fixed by the permutation
ϕn(bi+k · · · bj+k−1). The conclusion follows. �

A kernel repetition (of order n) is any word of the form uu′ with u ∈ kerϕn,
u′ ∈ Pref(u) and

|u| < (|u′|+ n− 1)(n− 1) .

In [11] it is noticed that if w avoids kernel repetitions then γn(w) avoids all
‘sufficiently long’ factors of exponent larger than n/(n − 1). We can use the
previous lemma to give a stronger condition ensuring that γn(w) has critical
exponent n/(n− 1).

Proposition 1. Let w be an infinite word on the alphabet B and n ≥ 5 be an
integer. If no factor of w is a kernel repetition and for all k < n no factor of
w of length smaller than k(n − 1) is k-stabilizing, then the critical exponent of
γn(w) is n/(n− 1).

Proof. Set w = (bi)i≥1 and γn(w) = (ai)i≥1. By contradiction, suppose that
γn(w) has a factor r of exponent e > n/(n − 1). We may assume with no loss
of generality that e ≤ 2. Thus r = vv′, with v ∈ A∗n, v′ a prefix of v and
|v′| = k > |v|/(n − 1). Since r = aiai+1 · · ·ai+|r|−1 for a suitable i ≥ 1, one
derives

v′ = aiai+1 · · ·ai+k−1 = ajaj+1 · · · aj+k−1 ,

where j = i + |v|, so that k(n − 1) > j − i. If k < n then by Lemma 1,
u = bi+kbi+k+1 · · · bj+k−1 is a k-stabilizing word of length |u| = j− i < k(n−1),
which is a contradiction. Thus we assume k ≥ n. Then one has

ai+tai+t+1 · · · ai+t+n−2 = aj+taj+t+1 · · · aj+t+n−2 , 0 ≤ t ≤ k − n+ 1 .

Since Stabn(n − 1) = kerϕn, by Lemma 1 one derives bi+t+n−1 · · · bj+t+n−2 ∈
kerϕn. Hence, for 0 ≤ t ≤ k − n one has

ϕn(bi+t+n−1 · · · bj+t+n−1) = ϕn(bi+t+n−1) = ϕn(bj+t+n−1) ,

and consequently bi+t+n−1 = bj+t+n−1. Set

u = bi+n−1 · · · bj+n−2 , u′ = bi+n−1 · · · bi+k−1 = bj+n−1 · · · bj+k−1 .

One easily verifies that uu′ is a kernel repetition and a factor of w. This is a
contradiction. �

230 A. Carpi

The previous proposition shows that in order to prove Dejean conjecture for a
n-letter alphabet, it is sufficient to find an infinite binary word w satisfying the
following conditions:

– for all k < n no factor of w of length smaller than k(n− 1) is a k-stabilizing
word of order n,

– no factor of w is a kernel repetition of order n.

4 A Binary Encoding

In the sequel we assume that n ≥ 8 is a fixed integer. For this reason, we shall
omit the index n in ϕn and Stabn(k), whenever no confusion arises. In this
section we introduce a uniform morphism from a finite alphabet into B∗. As
we shall see in the sequel, at least when n is sufficiently large, the image of
this morphism avoids, for all k < n, k-stabilizing words of length smaller than
k(n− 1).

We set p = �n/2�, m = �(p − 1)/3�. Moreover, we denote by ŷ the word
defined by

ŷ =
{

(01)p if n = 2p+ 1 ,
1(01)p−1 if n = 2p .

In both cases, ŷ = x̂ (01)3m for a suitable x̂ ∈ B∗. We introduce the morphism
f : A∗m → B∗ defined by

f(a) = ŷ p x̂ (101101)m−a 010101 (101101)a−1 , a ∈ Am .

We notice that for any a ∈ Am,

|f(a)| = (n− 1)(p+ 1) .

We set

τ = ϕ(010101) , ρ = ϕ(ŷ) , σ = ϕ(101) (ϕ(010))−1 .

It is not difficult to verify that ρ and σ are cycles and, more precisely,

ρ = (n 2p− 1 2p− 3 2p− 5 · · · 1) , (3)

σ = (n− 3 n− 2 n n− 1) .

For any a ∈ Am we set σa = τ−aστa. One easily verifies that σ1 = (4 3 5 6) and,
more generally,

σa = (6a− 2 6a− 3 6a− 1 6a) , a ∈ Am . (4)

Thus, the permutations σa are pairwise disjoint 4-cycles and therefore they com-
mute.

Let us consider the morphism ψ : A∗m → Sn defined by ψ(v) = ϕ(f(v)),
v ∈ A∗m. The morphism ψ is described by the following lemma.

On the Repetition Threshold for Large Alphabets 231

Lemma 2. For any a ∈ Am one has

ψ(a) =
∏

c∈Am\{a}
σc .

Proof. One can easily prove, by induction on k, that for any k ∈ Am, (στ)k =
τk

∏k
c=1 σc. Since, moreover, ϕ(101101) = ϕ(101)ϕ(010)−1ϕ(010101) = στ , one

derives

ϕ((101101)m−a) =

(
τm

m∏
c=1

σc

)(
τa

a∏
c=1

σc

)−1

= τm

(
m∏

c=a+1

σc

)
τ−a

and

ϕ((101101)a−1) = τa−1

(
a−1∏
c=1

σc

)
,

so that
ϕ((101101)m−a 010101 (101101)a−1) = τm

∏
c∈Am\{a}

σc

and, therefore, ψ(a) = ρpϕ(x̂)τm
∏

c∈Am\{a} σc. Since ρ = ϕ(ŷ) = ϕ(x̂)τm, and
by (3), the order of ρ is p+ 1, the conclusion follows. �

From previous lemma, one has that for all v ∈ A∗m,

ψ(v) =
∏

a∈Am

σ|v|−|v|aa . (5)

For our purposes the main property of the morphism f is given by the following

Proposition 2. Let n ≥ 28. For any k = 1, . . . , n − 1, f(A∗m−1) avoids k-
stabilizing words of length smaller than k(n− 1).

The proof of this proposition is rather complex. It makes use of the following
technical lemma concerning the action of ϕ on the factors of f(A∗m)

Lemma 3. Let w ∈ A∗m and u ∈ Fact(f(w)). Then there exist v1, v2 ∈ Fact(w),
x1, x2, x3, x4 ∈ B∗ and integers h1, h2, h3, h4 such that

ϕ(u) = (ϕ(x1))−1ρ−h1ψ(v1)ρh2ϕ(x2) = ϕ(x3)ρ−h3ψ(v2)ρh4(ϕ(x4))−1 (6)

|u| = (n− 1)((p+ 1)|v1|+ h2 − h1) + |x2| − |x1|

= (n− 1)((p+ 1)|v2|+ h4 − h3) + |x3| − |x4| ,
(7)

0 ≤ hi ≤ p , 0 ≤ |xi| ≤ n− 2 , i = 1, 2, 3, 4 , |x1x3|, |x2x4| ≤ n− 1 . (8)

Moreover, if h1 < p, then x3 ∈ Suff(ŷ), if h2 < p, then x4 ∈ Suff(ŷ), if h1 =
h2 = p, x1 	= ε and x2 	= ε then v1c = c′v2 for suitable c, c′ ∈ Am.

232 A. Carpi

For the sake of brevity, we limit ourselves to outline the main steps of the proof
of Proposition 2. The complete proof is in [4].

First, we remark that no 1-stabilizing word u of length |u| < n − 1 exists.
Indeed, if 0 < |u| < n − 1, then by (1) one has 1ϕ(u) = 1 + |u| 	= 1. A more
complex combinatorial analysis shows that a 2-stabilizing word u of length |u| <
2(n − 1) has necessarily the form u = u′00 or u = u′111 with |u′| = n − 3.
Since 00 and 111 are not factors of f(A∗m), we conclude that such an u cannot
occur in f(A∗m). It is also possible to prove that a 3-stabilizing word u of length
|u| < 3(n − 1) either contains one of the factors 00 or 111 or has the form
u = y′xyx with |x| = 4 and |y| = |y′| = n− 4. However, it turns out that f(A∗m)
has no factor of this form.

In the next step, one shows that if u is a 4-stabilizing factor of f(A∗m), then
|u| ≥ (n− 1)(p+ 1). The proof is based on Lemma 3. Finally, one verifies that if
n > 16 and u is a 16-stabilizing factor of f(A∗m−1), then |u| > 3(n− 1)(p+ 1).

Now suppose n ≥ 28 and let u ∈ Fact(f(A∗m−1))∩Stab(k). As we have seen, if
k ≤ 3, then |u| ≥ k(n−1) and if 4 ≤ k ≤ p+1, then |u| ≥ (n−1)(p+1) ≥ k(n−1).
Finally, if p + 2 ≤ k ≤ n − 1, then since p ≥ 14, one has k ≥ 16 so that
|u| > 3(n− 1)(p+ 1) > k(n− 1).

5 Kernel Repetitions

We call a ψ-kernel repetition (of order n) any word s ∈ A∗m of the form vv′ with

v ∈ kerψ , v′ ∈ Pref(v) , |v| < (|v′|+ 3)(n− 1) .

In this section we shall prove that if w ∈ A∗m−1 avoids ψ-kernel repetitions, then
f(w) avoids kernel repetitions.

Proposition 3. Let w ∈ A∗m−1 and u ∈ Fact(f(w)) ∩ kerϕ. Then there exists
v ∈ Fact(w) ∩ kerψ such that |u| = |f(v)|.
Proof. Let v1, v2 ∈ Fact(w), x1, x2, x3, x4 ∈ B∗, h1, h2, h3, h4 ≥ 0 satisfy the
statement of Lemma 3.

As u ∈ kerϕ, from (6) one has

ψ(v1) = ρh1ϕ(x1)(ϕ(x2))−1ρ−h2 , ψ(v2) = ρh3(ϕ(x3))−1ϕ(x4)ρ−h4 . (9)

First, we verify that |x1| = |x2|. Since by (3), (4) and (5), 2 is fixed by ρ
and ψ(v1), one derives from (9) that 2ϕ(x1) = 2ϕ(x2). If |x1|, |x2| ≤ n − 3,
then by (1) one obtains 2ϕ(xi) = 2 + |xi|, i = 1, 2 so that |x1| = |x2|. Thus
assume, for instance, |x1| = n− 2 > |x2| and write x1 = x′b, with b ∈ B. Again
by (1) one obtains 2ϕ(x′) = n − 1 so that 2ϕ(x1) = (n − 1)ϕ(b) ∈ {1, n} and
2ϕ(x2) = 2+ |x2| 	∈ {1, n} which is a contradiction. We conclude that |x1| = |x2|.
From (7) and (8) one derives also |x3| = |x4|.

We distinguish three cases, according to the values of h1 and h2.

Case 1: h1 = p.
In this case, nρh1 = 1. Since 1ϕ(x1) = 1ϕ(x2) = 1+ |x1| and n is fixed by ψ(v1),
by (9) one has n = 1ρ−h2 = nρ−(h2+1). This equation implies that h2 = p, so

On the Repetition Threshold for Large Alphabets 233

that by (7), |u| = |f(v1)|. If x1 = x2 = ε, one derives that ψ(v1) is the identity,
proving the statement. Thus we assume x1, x2 	= ε, so that, from Lemma 3,

v1c = c′v2 ,

for suitable c, c′ ∈ Am. Now we verify that for any a ∈ Am, either |v1|a ≡
|v1| or |v2|a ≡ |v2| (mod 4). Indeed, if 6a > |x3|, then (6a − |x4|)ϕ(x3) =
(6a−|x4|)ϕ(x4) = 6a, so that 6a is fixed by (ϕ(x3))−1ϕ(x4). Since 6a is fixed also
by ρ, from (9) one obtains that 6a is fixed by ψ(v2). However, from (5) one has
(6a)ψ(v2) = (6a)σ|v2|−|v2|a

a . Since σa is a 4-cycle moving 6a, one derives |v2| ≡
|v2|a (mod 4). If, on the contrary, 6a ≤ |x3|, then 6a + |x1| ≤ |x1x3| ≤ n − 1
and therefore (6a)ϕ(x1) = (6a)ϕ(x2) = 6a + |x1|. This implies that 6a is fixed
by ϕ(x1)(ϕ(x2))−1 and consequently by ψ(v1). Since (6a)ψ(v1) = (6a)σ|v1|−|v1|a

a ,
one derives |v1| ≡ |v1|a (mod 4). Thus, for any a ∈ Am, either

|v1|a ≡ |v1| or |v2|a ≡ |v2| (mod 4) .

Since w ∈ A∗m−1, one has |v1|m = |v2|m = 0 and therefore |v1| = |v2| ≡
0 (mod 4). Let i ∈ {1, 2} be such that |vi|c ≡ 0 (mod 4). For any a ∈
Am \ {c, c′} one has |v1|a = |v2|a, so that |vi|a ≡ 0 (mod 4). Moreover, |vi|c′ =
|vi| −

∑
a∈Am\{c′} |vi|a ≡ 0 (mod 4). By (5) one derives that vi ∈ kerψ. The

conclusion follows.

Case 2: h2 = p.
From (9) one has (ψ(v1))−1 = ρh2ϕ(x2)(ϕ(x1))−1ρ−h1 . If h2 = p, one has nρh2 =
1. Since n is fixed by ψ(v1) and 1 is fixed by ϕ(x2)(ϕ(x1))−1, one derives n =
1ρ−h1 = nρ−(h1+1). This equation implies that h1 = p so that we are reduced to
Case 1.

Case 3: h1, h2 < p.
In this case, by Lemma 3 one has x3, x4 ∈ Suff(ŷ). Since |x3| = |x4| one derives
x3 = x4 so that from (9), ψ(v2) = ρh3−h4 . Since ψ(v2) fixes 1, one derives
h3 − h4 = 0. Thus v2 ∈ kerψ and, in view of (7), |u| = |f(v2)|. �

Proposition 4. Let w ∈ A∗m−1. If a factor of f(w) is a kernel repetition, then
there is a ψ-kernel repetition occurring in w.

Proof. We denote K = (p+ 1)(n− 1). Let r be a kernel repetition occurring in
f(w) and write r = uu′, with u ∈ kerϕ, u′ ∈ Pref(u), |u| < (|u′|+ n− 1)(n− 1).

First, we consider the case that |u′| ≤ 2K. In such a case one easily obtains
|u| < 3K(n − 1). By Proposition 3 there exists v ∈ Fact(w) ∩ kerψ such that
|u| = |f(v)| = K|v|. Thus, |v| < 3(n − 1) so that taking v′ = ε, v = vv′ is a
ψ-kernel repetition.

Now suppose |u′| > 2K. By Proposition 3, one has |u| = K�, � ≥ 1. Since uu′

is a factor of f(w) one can factorize

uu′ = ξf(v0)η .

234 A. Carpi

with v0 ∈ Fact(w), ξ, η ∈ B∗, |ξ|, |η| < K. Moreover, (� + 2)K < |uu′| =
K|v0| + |ξη| < K|v0| + 2K so that |v0| > �. Thus we can write v0 = vv′, with
|v| = �. Thus,

ξf(v) = uξ′ , u′ = ξ′f(v′)η , |ξ| = |ξ′| .
Now, ξ′f(v′) is a prefix of u′, u′ is a proper prefix of u and u is a prefix of ξf(v).
Hence, ξ′f(v′) is a proper prefix of ξf(v). Since, moreover, |ξ| = |ξ′|, we derive
that ξ = ξ′ and v′ ∈ Pref(v). From the equality ξf(v) = uξ, one easily derives
that v ∈ kerψ. Since |u′| = |ξ′f(v′)η| < K(|v′|+ 2) one has

K|v| = |u| < (|u′|+ n− 1)(n− 1) < K(|v′|+ 3)(n− 1)

so that |v| < (|v′|+ 3)(n− 1) and therefore vv′ is a ψ-kernel repetition. �

6 Avoiding ψ-Kernel Repetitions

By the results of the previous sections, at least in the case n ≥ 28, to construct
an infinite word on n letters with critical exponent n/(n− 1), it is sufficient to
find an infinite word on the alphabet Am−1 avoiding ψ-kernel repetitions. In this
section we shall construct such a word for any n ≥ 38.

Lemma 4. One has

A∗m−1 ∩ kerψ = {v ∈ A∗m−1 | ∀a ∈ Am−1 , 4 divides |v|a} .

Proof. Suppose v ∈ A∗m−1 ∩ kerψ. By (5) one obtains that for all a ∈ Am, 4
divides |v|−|v|a. Since |v|m = 0, one derives that 4 divides |v| and, consequently,
4 divides |v|a for all a ∈ Am−1.

Conversely, if v ∈ A∗m−1 and 4 divides |v|a for all a ∈ Am−1, then 4 divides
also |v| =

∑m−1
i=1 |v|a and therefore |v|−|v|a, for all a ∈ Am. From (5) one derives

v ∈ kerψ. �
Lemma 5. Let w1 = (bi)i≥1 be the infinite word on the alphabet Am−1 \Am−3
defined as follows:

bi =

m− 1 if i ≡ 1 (mod 3) ,
m− 2 if i ≡ 2 (mod 3) ,
bi/3 if i ≡ 0 (mod 3) ,

i ≥ 1 .

If one has v ∈ A∗m, v′ ∈ Pref(v) ∪ {v}, vv′ ∈ Fact(w1), and |v′| ≥ 3k, k ≥ 0,
then 3k divides |v|.
Proof. Let vv′ = bibi+1 · · · bi+|vv′|−1, i ≥ 1. Then one has

bibi+1 · · · bi+3k−1 = bi+|v|bi+|v|+1 · · · bi+|v|+3k−1 . (10)

Set |v| = 3qt, where 3q is the maximal power of 3 dividing |v| and assume, by
contradiction, q < k. There exists j ≡ |v| (mod 3k) such that i ≤ j ≤ i+3k−1.
One has j = 3q(t+3k−qh) and j+ |v| = 3q(2t+3k−qh) for some integer h. Since
3 does not divide t, by the definition of w1 one derives bj = bt, bj+|v| = b2t and
bt 	= b2t. This yields a contradiction because by (10), bj = bj+|v|. �

On the Repetition Threshold for Large Alphabets 235

Lemma 6. Let w2 = (ci)i≥1 be the infinite word on the alphabet Am−3 defined
as follows:

ci = max{a ∈ Am−3 | 4a−1 divides i} , i ≥ 1 .

For any v ∈ Fact(w2) ∩ kerψ, 4m−3 divides |v|.

Proof. Set |v| = 4qt, where 4q is the maximal power of 4 dividing |v| and assume,
by contradiction, q < m− 3. One has v = cici+1 · · · ci+4qt−1 for some i ≥ 1. By
definition for any j ≥ 1, one has cj > q if and only if 4q divides j. Thus

m−3∑
a=q+1

|v|a = Card{j | i ≤ j ≤ i+ 4qt− 1 , 4q divides j} = t .

Since v ∈ kerψ, by Lemma 4 one derives that 4 divides t. This contradicts the
maximality of q. �

Proposition 5. Let w1 = (bi)i≥1 and w2 = (ci)i≥1 be the infinite words consid-
ered in Lemmas 5 and 6. If n ≥ 44, then the infinite word

w = b1c1b2c2 · · · bici · · ·

avoids ψ-kernel repetitions.

Proof. By contradiction suppose that a ψ-kernel repetition r occurs in w. One
has

r = vv′ , v ∈ kerψ , v′ ∈ Pref(v) , |v| ≤ (|v′|+ 3)(n− 1) .

Since v ∈ A∗m−1 ∩ kerψ, by Lemma 4 one has that for all a ∈ Am, 4 divides
|v|a. In particular, |v| is even. Thus, deleting in v all the occurrences of the
letters m − 2 and m − 1, one obtains a factor v2 of w2 such that v2 ∈ kerψ
and |v2| = |v|/2. By Lemma 6 one derives that 4m−3 divides |v2| and therefore
2 · 4m−3 divides |v|.

Suppose |v′| ≥ 2 and let k be the integer such that 2 · 3k ≤ |v′| < 2 · 3k+1.
Deleting in r all the occurrences of the letters of Am−3, one obtains a factor
of r1 of w1 of the form r1 = v1v

′
1 where v′1 is a prefix of v1, |v1| = |v|/2 and

3k ≤ |v′1| ≤ 3k+1. By Lemma 5 one derives that 3k divides |v1| and consequently
|v|. Thus,

|v| ≥ 2 · 4m−33k >
4m−3

3
|v′| .

We recall that m = �(n− 2)/6�, so that

n− 1 ≤ 6(m+ 1) .

Since n ≥ 44, one has m ≥ 7 and therefore, as one easily verifies, 4m−3 ≥
32(m + 1) ≥ 16(n − 1)/3. Thus, one derives |v| ≥ 16(n− 1)|v′|/9. Since |v| ≤
(|v′|+ 3)(n− 1) one obtains

|v′|+ 3 ≥ 16
9
|v′|

236 A. Carpi

which implies |v′| ≤ 3. Since 2 · 4m−3 divides |v|, one obtains

|v| ≥ 2 · 4m−3 ≥ 32
3

(n− 1) > (|v′|+ 3)(n− 1) ,

which is a contradiction. �

Proposition 6. Suppose 38 ≤ n ≤ 43. Let w1 = (bi)i≥1 and w2 = (ci)i≥1 be
the infinite words considered in Lemmas 5 and 6 and w = (di)i≥1 be the infinite
word defined by

d2i = bi , i ≥ 1 ,

d4i+1 = ci , i ≥ 0 ,

d4i+3 =
{

4 if (4i+ 3) mod (2 · 44) < 44 ,
5 else, i ≥ 0 .

Then w avoids ψ-kernel repetitions.

Proof. Since 38 ≤ n ≤ 43 one has m = 6. By contradiction suppose that a
ψ-kernel repetition r occurs in w. One has

r = vv′ , v ∈ kerψ , v′ ∈ Pref(v) , |v| ≤ (|v′|+ 3)(n− 1) .

Since v ∈ A∗m−1 ∩ kerψ, by Lemma 4 one has that for all a ∈ Am, 4 divides |v|a.
In particular, 4 divides |v|. Thus, deleting in v all the occurrences of the letters
4 = m − 2 and 5 = m − 1, one obtains a factor v2 of w2 such that |v| = 4|v2|
and v2 ∈ kerψ. By Lemma 6 one derives that 43 divides |v2|. Thus, |v| = 44h for
some positive integer h and (|v′|+ 3)(n − 1) ≥ 44h. As n ≤ 43, from the latter
inequality one derives |v′| > 3.

Since vv′ is a factor of w and v′ is a prefix of v, one has

v′ = didi+1 · · · di+k−1 = di+44hdi+44h+1 · · ·di+44h+k−1 ,

for some i ≥ 1 and k ≥ 4. There exists j ≡ 3 (mod 4) such that i ≤ j ≤ i+k−1.
By the previous equation, dj = dj+44h. By the definition of w, this implies that
h is even. Thus, for i′ = �i/2�, k′ = �k/2�, h′ = h/2 one has

bi′bi′+1 · · · bi′+k′−1 = d2i′d2(i′+1) · · ·d2i′+2k′−2 ,

bi′+44h′bi′+44h′+1 · · · bi′+44h′+k′−1 = d2i′+44hd2i′+44h+2 · · · d2i′+44h+2k′−2 ,

and therefore

bi′bi′+1 · · · bi′+k′−1 = bi′+44h′bi′+44h′+1 · · · bi′+44h′+k′−1 .

Let q be the integer such that 3q ≤ k′ < 3q+1. By Lemma 5 one derives that 3q

divides h′. Thus,

|v| = 2 · 44h′ ≥ 2 · 443q > 42(k + 3) ≥ (|v′|+ 3)(n− 1)

which is a contradiction. �

On the Repetition Threshold for Large Alphabets 237

By Propositions 5 and 6, for any n ≥ 38 there exists an infinite word w = (di)i≥1
on the alphabet Am−1 avoiding ψ-kernel repetitions of order n. By Propositions
2 and 4 the infinite binary word

f(w) = f(d1)f(d2) · · · f(di) · · ·

avoids kernel repetitions of order n and, for all k < n, k-stabilizing words of
order n and length smaller than k(n−1). By Proposition 1 we conclude that the
critical exponent of γn(f(w)) is n/(n− 1). Since as showed in [6] the repetition
threshold on n letters cannot be smaller than n/(n − 1), we have proved the
following

Theorem 1. For n ≥ 38 the repetition threshold on n letters is n/(n− 1).

References

1. J. Berstel, Axel Thue’s papers on repetition in words: a translation, Publications
du LaCIM, Université du Québec á Montréal 20 (1995).

2. J. Berstel, J. Karhumäki, Combinatorics on words: a tutorial, Bulletin of the
EATCS 79 (2003) 178–228

3. F.-J. Brandenburg, Uniformly growing k-th power-free homomorphisms, Theoret.
Comput. Sci. 23 (1983) 69–82

4. A. Carpi, On the repetition threshold for large alphabets, Dipartimento di Matem-
atica e Informatica dell’Università di Perugia, Tech. rep. no. 5-2006 (2006)

5. M. Crochemore, P. Goralcik, Mutually avoiding ternary words of small exponent,
Int. J. Alg. Comp. 1 (1991) 407–410

6. F. Dejean, Sur un théorème de Thue, J. Combin. Th. A, 13 (1972) 90–99
7. L. Ilie, P. Ochem, J. Shallit, A generalization of repetition threshold, in: J. Fiala et

al. (eds.) Proceedings MFCS 2004, Lecture Notes in Comput. Sci., 3153, Springer
(Berlin, 2004) 818–826

8. J. Karhumäki, J. Shallit, Polynomial versus exponential growth in repetition-free
binary words, J. Comb. Theory Ser. A, 105 (2004) 335–347

9. F. Mignosi, G. Pirillo, Repetitions in the Fibonacci infinite word, RAIRO Inf.
Theor. and Appl. 26 (1992) 199–204

10. M. Mohammad-Noori, J. D. Currie, Dejean’s conjecture and Sturmian words, Eu-
ropean J. Comb., to appear

11. J. Moulin-Ollagnier, Proof of Dejean’s conjecture for alphabets with 5, 6, 7, 8, 9,
10 and 11 letters, Theoret. Comput. Sci. 95 (1992) 187–205

12. J.-J. Pansiot, A propos d’une conjecture de F. Dejean sur les répétitions dans les
mots, Discr. Appl. Math. 7 (1984) 297–311

13. J. Shallit, Simultaneous avoidance of large squares and fractional powers in infinite
binary words, Int. J. Found. Comput. Sci. 15 (2004) 317–327.

14. A. Thue, Uber unendliche Zeichenreihen, Norske Vid. Selsk. Skr. I. Mat. Nat.
Kl., Christiania 7 (1906) 1–22 Reprinted in T. Nagell (ed.), Selected Mathematical
Papers of Axel Thue, Universitetsforlaget, Oslo, 1977, pp. 139-158.

15. A. Thue, Uber die gegenseitige Lage gleicher Teile gewisser Zeichenreihen. Norske
Vid. Selsk. Skr. Mat. Nat. Kl., Christiania 1 (1912), 1–67. Reprinted in T. Nagell
(ed.), Selected Mathematical Papers of Axel Thue, Universitetsforlaget, Oslo, 1977,
pp. 413-478.

Improved Parameterized Upper Bounds for

Vertex Cover

Jianer Chen1,�, Iyad A. Kanj2,��, and Ge Xia3

1 Department of Computer Science, Texas A&M University, College Station, TX
77843, USA

chen@cs.tamu.edu
2 School of Computer Science, Telecommunications and Information Systems, DePaul

University, 243 S. Wabash Avenue, Chicago, IL 60604-2301, USA
ikanj@cs.depaul.edu

3 Department of Computer Science, Lafayette College, Easton, PA 18042, USA
gexia@cs.lafayette.edu

Abstract. This paper presents an O(1.2738k + kn)-time polynomial-
space parameterized algorithm for Vertex Cover improving the previ-
ous O(1.286k + kn)-time polynomial-space upper bound by Chen, Kanj,
and Jia. The algorithm also improves the O(1.2745kk4 + kn)-time expo-
nential-space upper bound for the problem by Chandran and Grandoni.

1 Introduction

This paper considers the parameterized Vertex Cover problem, abbreviated
VC henceforth: given a graph G and a parameter k, decide if G has a vertex
cover of at most k vertices. This problem was amongst the first few problems
that were shown to be NP-hard [14]. In addition, the problem has been a central
problem in the study of parameterized algorithms [11], and has applications in
areas such as computational biochemistry and biology [6]. Since the develop-
ment of the first parameterized algorithm for the problem by Sam Buss which
runs in O(kn+ 2kk2k+2) time [3], there has been an impressive list of improved
algorithms for the problem [1,7,8,10,17,18,20]. The most recent algorithm for
the problem running in polynomial space was presented in 1999 and gives the
currently best time upper bound of O(kn+ 1.286k) [7]. Algorithms using expo-
nential space for the problem have also been proposed [5,7,18], amongst which
the best runs in time O(1.2745kk4 + kn) [5]. Most of the previous algorithms
rely on exhaustive case-by-case analysis, and work under a conservative worst-
case-scenario assumption. The analysis of these algorithms would consider the
worst-case branch over numerous combinatorial cases, and derive an upper bound
accordingly. In particular, the design phase of these algorithms (usually) did not
provide the appropriate ground that the analysis phase could take advantage of
� This author was supported in part by the NSF under grants CCF-0430683 and

CCR-0311590.
�� This author was supported in part by DePaul University Competitive Research

Grant.

R. Královič and P. Urzyczyn (Eds.): MFCS 2006, LNCS 4162, pp. 238–249, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Improved Parameterized Upper Bounds for Vertex Cover 239

to derive better upper bounds than the ones claimed. Consequently, to improve
the upper bounds, larger and larger sets of local structures had to be examined
and processed differently. Examining these numerous structures and process-
ing them differently on a case-by-case basis became very meticulous, rendering
the verification and implementation of these algorithms very complicated and
unpractical.

On the other hand, progress has been recently made on deriving computa-
tional lower bounds for the problem. It has been shown that unless all SNP
problems are solvable in sub-exponential time, there is a constant c0 > 1 such
that Vertex Cover cannot be solved in time ck0n

O(1) [4,15]. Therefore, from
both the algorithmic and the complexity points of view, it becomes important
to study how far we can push to lower the constant c > 1, such that the VC
problem can be solved in time cknO(1).

In this paper we adopt a different approach to improve the time upper bound
for the VC problem. Our goal was to design an algorithm that is simple and
uniform, and that provides the tools and the ground for an insightful analysis
of its running time. We came up with an algorithm that is very simple when
compared to the (recent) previous algorithms. The algorithm keeps a list of
prioritized “advantageous” structures at its disposal. At each stage it will pick
the structure of highest priority (most advantageous structure). Picking such a
structure can be easily done following few simple rules. When this structure is
picked, the algorithm processes this structure very uniformly, and obliviously, in
a way that is almost independent of what the structure is. As a matter of fact,
there are only two different ways for processing any structure–that is, only two
different branches–that the algorithm needs to distinguish. All the other oper-
ations performed by the algorithm are non-branching operations that process
certain simple structures in the graph such as degree-1 and degree-2 vertices,
and that set the stage for the subsequent branch performed by the algorithm to
be efficient. The interleaving and ordering of these operations in the algorithm
is very crucial, and is fully exploited by the analysis phase. The analysis phase
however is lengthy, showing that regardless of the structure picked, the oblivious
branching performed by the algorithm will yield the desired upper bound.

To be able to carry out all the above, a set of new techniques and gener-
alization of some well-known and classical techniques have been introduced. A
graph operation that is a generalizations of the folding operation [7], and a graph
operation that is a specialization of the struction operation [12], have been de-
veloped. These operations help the algorithm remove several simple structures
from the graph without the need to perform any branching. This makes analyzing
the two branching operations performed in the resulting graph more insightful.
The notion of a tuple, which was implicitly used by Robson [19], has been fully
developed and exploited to prune the search space. Finally we perform a “lo-
cal” amortized analysis to balance expensive branching operations by combining
them with more efficient operations. Being able to perform this local amortized
analysis is indebted to the careful interleaving and ordering of the operations in
the algorithm, and not to the different way of processing each structure.

240 J. Chen, I.A. Kanj, and G. Xia

The presented algorithm runs in polynomial space, and has its running time
bounded by O(1.2738k+kn). This is a significant improvement over the previous
polynomial-space algorithm for the problem which runs in O(1.286k + kn) time.
This also improves the exponential space O(1.2745kk4 + kn)-time algorithm by
Chandran and Grandoni [5]. Most of the proofs in this paper are omitted due
to lack of space.

2 Preliminaries and Structural Results

For a graph G we denote by |G| the number of vertices in G. For a vertex v in
G we denote by N(v) the set of neighbors of v, N [v] the set N(v) ∪ {v}, and
d(v) the degree of v in G. For a set of vertices S in G, let N(S) denote the set
of neighbors of the vertices in S, and N [S] the set N(S) ∪ S. Let τ(G) denote
the size of a minimum vertex cover of G. The following proposition from [7] is
based on a theorem by Nemhauser and Trotter [16], usually referred to as the
NT-theorem or the NT-decomposition.

Proposition 1 ([7]). There is an algorithm of running time O(kn + k3) that,
given an instance (G, k) of the VC problem where |G| = n, constructs another
instance (G1, k1) of VC with k1 ≤ k and |G1| ≤ 2k1, such that τ(G) ≤ k if and
only if τ(G1) ≤ k1.

We say that the instance (G1, k1) is the kernel of the instance (G, k). The NT-
decomposition of (G, k) into (G1, k1) is said to be non-trivial if |G1| < |G|.
Proposition 1 allows us to assume, without loss of generality, that in an instance
(G, k) of the VC problem the graph G contains at most 2k vertices.

For two vertices u and v we say that (u, v) is an anti-edge in G if (u, v) is
not an edge in G. Let v0 be a vertex in G with a set of neighbors {v1, · · · , vp}.
Construct a graph G′ as follows: (1) remove the vertices {v0, v1, · · · , vp} from
G and introduce a new node vij for every anti-edge (vi, vj) in G where 0 < i <
j ≤ p; (2) add an edge (vir, vjs) if i = j and (vr, vs) is an edge in G; (3) if i 	= j
add an edge (vir, vjs); and (4) for every u /∈ {v0, · · · , vp}, add the edge (vij , u) if
(vi, u) or (vj , u) is an edge in G. This completes the construction of G′. We say
that the graph G′ is obtained from G by applying the struction operation to the
vertex v0 in G [12] (see Figure 1 for an illustration).

Lemma 1. Let v0 be a vertex in G with a set of neighbors {v1, · · · , vp}. Suppose
that there are at most p− 1 anti-edges among the vertices {v1, · · · , vp}, and let
G′ be the graph obtained from G by applying the struction operation to the vertex
v0. Then τ(G′) ≤ τ(G) − 1.

Two possible scenarios in which the operation will be applied are illustrated in
Figure 1. We will assume that we have a subroutine called Struction() that
applies the struction operation to a vertex v in G whenever this vertex meets
the conditions in Lemma 1.

Let I be an independent set in a graph and let H = N(I). The structure
(I,H) is called a crown [13], if there exists a matching in G that matches H into

Improved Parameterized Upper Bounds for Vertex Cover 241

v0

v1

t w

v2

x

v3

y z

v0

v1

r

v2

s t

v3

w

v4

x y z

v13 v23 v14 v23 v24

t w x y z r s t w x y z

Fig. 1. The struction operation

I. Note that this implies that |H | ≤ |I|. The graph G is said to be crown-free
if G does not contain any non-trivial crown [9]. It was shown in [9] that G is
crown-free if and only if the NT-decomposition of G is trivial. Moreover, it is also
well-known [2] that the NT-decomposition yields a non-trivial crown structure
when the decomposition itself is non-trivial.

Next we present an operation that generalizes the folding operation introduced
in [7].

Lemma 2. Let I be an independent set in G and let N(I) be the set of neighbors
of I. Suppose that |N(I)| = |I|+ 1, and that for every subset ∅ 	= S ⊆ I we have
|N(S)| ≥ |S|+ 1.

1. If the graph induced by N(I) is not an independent set, then there exists a
minimum vertex cover in G that includes N(I) and excludes I.

2. If the graph induced by N(I) is an independent set, let G′ be the graph ob-
tained from G by removing I∪N(I) and adding a vertex uI , then connecting
uI to every vertex v ∈ G′ such that v was a neighbor of a vertex u ∈ N(I)
in G. Then τ(G′) = τ(G) − |I|.

Let us call a structure (I,H = N(I)) satisfying the conditions in Lemma 2 an
almost-crown structure.

Proposition 2. Let (G, k) be an instance of VC such that |G| ≤ 2k. Then in
O(k3

√
k) time we can reduce (G, k) to an instance (G′, k′) with |G′| ≤ |G| and

k′ ≤ k, such that G′ is crown-free, or equivalently G′ is kernelized (|G′| ≤ 2k′),
and such that an almost-crown structure in G′ has been determined in case such
a structure exists.

We will refer to the operation described in Lemma 2 by the general folding oper-
ation. Two scenarios in which this operation is applicable are given in Figure 2.

242 J. Chen, I.A. Kanj, and G. Xia

We will assume that we have a subroutine called General-Fold() that searches
for a structure in the graph to which the general folding operation applies, and
applies the operation to it in case it exists. We always reduce the graph to a
crown-free graph while searching for an almost-crown structure in G. Therefore,
if the subroutine General-Fold() is not applicable to the graph, i.e., if its ap-
plication does not change the structure of the graph, then we can assume that
the graph is both crown-free and almost-crown free (i.e., does not contain an
almost-crown).

u u v w

v

v1 v2

w

w1 w2

r

r1 r2 r3

s

s1

t

t1 t2

z

z1 z2

x x

v1 v2 w1 w2 r1 r2 r3 s1 t1 t2 z1 z2

Fig. 2. General folding

3 The Algorithm

The main algorithm is a branch-and-search process. Each stage of the algorithm
starts with an instance (G, k) of VC, and tries to reduce the parameter k by
identifying a set S of vertices that are entirely contained in a minimum vertex
cover of G, and including the vertex set S in the objective minimum vertex cover,
which will be called the partial cover (or simply the cover) for G, then recursively
works on the reduced instances. We will assume that we have the subroutine
General-Fold(G) described above, and the subroutine Struction(G) which
applies the struction operation to G.

If a vertex set S is identified such that either there is a minimum vertex cover
containing the entire S or there is a minimum vertex cover containing no vertex
in S, then we can branch on the set S. This means that the algorithm constructs
two instances of the VC problem, one by including the set S in the partial cover
and the other by excluding the set S from the partial cover, and in the latter case,
every vertex that is adjacent to a vertex in S should be included in the partial
cover. The algorithm then recursively works on the two reduced instances. If the
set S consists of a single vertex v, then we simply say we branch on v.

Definitions and Preliminaries
Proposition 3. Let v be a vertex in G. Then there exists a minimum vertex
cover for G containing N(v) or at most |N(v)| − 2 vertices from N(v).

Improved Parameterized Upper Bounds for Vertex Cover 243

Proposition 4. Let u and v be two adjacent vertices in G. Then there exists a
minimum vertex cover for G that includes v or that excludes v and excludes at
least another neighbor of u.

A vertex u is said to be dominated by a vertex v, or alternatively, a vertex v is
said to dominate a vertex u, if (u, v) is an edge in G and N(u) ⊆ N [v]. A vertex u
is said to be almost-dominated by a vertex v, or alternatively, a vertex v is said to
almost-dominate a vertex u, if u and v are non-adjacent and |N(u)−N(v)| ≤ 1.

Proposition 5. Let u and v be two vertices in G such that v dominates u. Then
there exists a minimum vertex cover of G containing v.

We define next a structure that allows for efficient branching. A good pair is
a pair of vertices {u, z} chosen as follows. For a vertex u in G with neighbors
{u1, · · · , ud}, define its tag, denoted tag(u), to be the vector η = 〈η1, · · · , ηd〉,
where η1 is the degree of the largest-degree neighbor of u, η2 is the degree of
the second largest-degree neighbor of u, ..., and ηd is the degree of the smallest-
degree neighbor of u. To choose the first vertex in a good pair, we pick a vertex u
of minimum degree in G such that the following conditions are satisfied in their
respective order.

(i) The vector tag(u) is maximum in lexicographic order over tag(w) for every
w in G with the same degree as u.

(ii) If G is regular, then the number of pairs of vertices {x, y} ⊆ N(u) such
that y is almost-dominated by x is maximized.

(iii) The number of edges in the subgraph induced by N(u) is maximized.

Having chosen the first vertex u in a good pair, to choose the second vertex,
we pick a neighbor z of u such that the following conditions are satisfied in their
respective order.

(a) If there exist two neighbors of u, say v and w, such that v is almost-
dominated by w, then z is almost-dominated by a neighbor of u.

(b) The degree of z is maximum among all neighbors of u satisfying part (a)
above. (Note that if no vertex in N(u) is almost-dominated by another
vertex in N(u), then (a) is vacuously satisfied by every vertex in N(u), and
z will be a neighbor of u of maximum degree.)

(c) The degree of z in the subgraph induced by N(u) is minimum among all
vertices satisfying (a) and (b) above. (That is, z is adjacent to the least
number of neighbors of u.)

(d) The number of shared neighbors between z and a neighbor of u is maximized
over all neighbors of u satisfying (a), (b), and (c) above.

Tuples
Tuples will play a very crucial role in the algorithm by helping to reduce the
search space. We define the notion of tuples next and describe how they will be
updated and processed by the algorithm.

244 J. Chen, I.A. Kanj, and G. Xia

Definition and intuition. A tuple is a pair (S, q) where S is a set of vertices
and q is an integer. The tuple will represent the information that in the instance
of the problem (G, k) we can look for a minimum vertex cover for G excluding
at least q vertices from S. This information will help the algorithm prune the
search tree. The algorithm will only consider tuples (S, q) with q ≤ 2, so we
will only focus on such tuples here. A tuple (S, q), where S = {u, v}, is called
a 2-tuple if it satisfies the following conditions: (1) q = 1, (2) d(u) ≥ d(v) ≥ 1,
and (3) u and v are non-adjacent. A 2-tuple ({u, v}, 1) is a strong-2-tuple if it
satisfies the additional condition: d(u) ≥ 4 and d(v) ≥ 4, or 2 ≤ d(u) ≤ 3 and
2 ≤ d(v) ≤ 3.

To see how tuples can be used to prune the search space, suppose that the
algorithm branches on a vertex z with a set of neighbors N(z). By Proposition 3,
there exists a minimum vertex cover in G that contains N(z), or that excludes
at least two vertices from N(z). Therefore, when the algorithm branches on
z, on the side of the branch where z is included, we can restrict our search
to a minimum vertex cover that excludes at least two neighbors of N(z), and
we know that this is safe because if such a minimum vertex cover does not
exist, then on the other side of the branch where N(z) has been included the
algorithm will still be able to find a minimum vertex cover. Consequently, on
the side of the branch where z is included, we can work under the assumption
that at least two vertices in N(z) must be excluded. This working assumption
will be stipulated by creating the tuple (N(z), q = 2). This information will be
used by the algorithm to render the branching more efficient. Similarly, if the
algorithm branches on a vertex z with a neighbor u, by Proposition 4, either there
exists a minimum vertex cover in G that includes z, or there exists a minimum
vertex cover in G that excludes z and excludes at least another neighbor of u.
Therefore, on the side of the branch where z is excluded, we can restrict our
search to a minimum vertex cover that excludes at least two vertices in N(u)
(z and another vertex in N(u)). This working assumption can be stipulated by
creating the tuple (N(u), q = 2). Note that after the removal of z ∈ N(u) from
the graph, the created tuple (N(u), q = 2) will be updated as discussed in the
next section.

Updating tuples. Let (S, q) be a tuple. If q = 0 then the tuple S will be
removed because the information represented by (S, q) is satisfied by any min-
imum vertex cover. If one of the vertices in S is removed and is excluded from
the cover, then the tuple is modified by removing the vertex from S and decre-
menting q by 1. The correctness of this step can be seen as follows. Suppose that
a vertex u ∈ S has been excluded from the cover. If there exists a minimum
vertex cover C that excludes at least q vertices from S, then C excludes at least
q−1 vertices from S−{u}. Therefore the above update to the tuple is valid. If a
vertex u ∈ S is removed from the graph by including it in the cover, the vertex
is removed from S and q is kept unchanged. The justification of this step follows
from the argument that if there exists a minimum vertex cover C that includes
u and excludes at least q vertices from S, then C must exclude q vertices from
S −{u} (note that the validity of the inclusion of u in the cover is taken care of

Improved Parameterized Upper Bounds for Vertex Cover 245

by the correctness of the steps performed by the algorithm when it includes u
in the cover).

Since a tuple imposes certain constraints on the minimum vertex cover sought,
one needs to be careful that the constraints imposed by the creation of a tuple
do not conflict with the conditions imposed by other operations of the algorithm.
The other operations that do impose constraints on the minimum vertex cover
sought are the creation of (other) tuples, the struction operation, and the general
folding operation. For example, the general folding operation assumes that when
we are looking for a minimum vertex cover, we can look for one that either con-
tains the set I or the setN(I) in the structure (I,N(I)). This is mainly the reason
why the set N(I) can be folded. If the general folding operation is applied, then
this constraint imposed by the operation on the minimum vertex cover might
conflict with the constraints imposed by a certain tuple. Therefore, to be on the
safe side, when we decide to apply the struction or the general folding operations,
we will invalidate all the constraints imposed by the tuples. That is, we will basi-
cally remove all the tuples. The decision on whether to apply the general folding
or the struction operations will be based on the reduction in the parameter re-
sulting from applying these operations. Therefore, we will have two subroutines
Conditional Struction and Conditional General Fold that will apply the
struction and general folding operations, respectively. These subroutines will be
applied when the gain (reduction in the parameter) resulting from the appli-
cation of either operation surpasses that resulting from branching on a certain
tuple (in case it exists), which will be invalidated after the execution of these
operations.

The tuples need to be updated as described above after each operation of the
algorithm. We will assume that this step is performed implicitly by the algorithm
after each operation.

Storing and branching on 2-tuples. When the algorithm creates tuples it
will use them to generate 2-tuples using very simple rules described in steps a.2
and a.3 of the subroutine Reducing in Figure 3. Steps a.2 and a.3 of Reducing
disintegrate a tuple into smaller tuples. During this process, some vertices might
be determined to be in a minimum vertex cover by step a.4 of Reducing. For
example, if (S = {u,w, z}, 1) is a tuple, then this tuple imposes the constraint
that we can look for a minimum vertex cover that excludes at least one vertex
from S. Now if a vertex v is a common neighbor of u, w, and z, then v can be
included in a minimum vertex cover satisfying the constraint imposed by the
tuple because one of the vertices in S has to be excluded from such a cover.
Therefore v will be included by step a.4. Since steps a.2 and a.3 derive more
tuples from the tuple S, we need to make sure that the constraints imposed by
the tuples generated in these two steps are consistent.

The algorithm, however, creates new tuples when branching. Therefore, if we
maintain existing tuples, then the constraints imposed by the newly generated
tuples may conflict with those imposed by existing ones. To overcome this hurdle,
and since the algorithm only processes 2-tuples, when the subroutine Reducing
finishes processing the tuples in step a, we will maintain only one 2-tuple and

246 J. Chen, I.A. Kanj, and G. Xia

invalidate the rest. Therefore, if 2-tuples exist after step a of Reducing, we
will pick any strong 2-tuple in case a strong 2-tuple exists and invalidate the
rest, or we will pick any 2-tuple and invalidate the rest, otherwise. Since when
the algorithm branches it considers 2-tuples first (if they exist), this ensures
that when the algorithm creates a new tuple in the next branch, it will have
destroyed the only existing tuple when it branched on it. Therefore, after step a
of Reducing, we will assume that at most one 2-tuple exists.

The algorithm only processes 2-tuples of the form (S, 1). A 2-tuple of the form
({u, z}, 1) stipulates that at least one vertex in {u, z}must be excluded from the
cover. This means that if u is included in the cover then z should be excluded,
and hence N(z) must be included; similarly, if z is included in the cover then u
should be excluded, and N(u) must be included. Let (S = {u, z}, 1) be a 2-tuple.
When the algorithm branches on a vertex in this two tuple, this vertex is picked
as follows. If there is a vertex w ∈ S = {u, z} such that w has a neighbor u′ where
u′ is almost-dominated by the vertex in S−{w}, then the algorithm will branch
on the vertex in S − {w} (that is, if there is a vertex in S with a neighbor that
is almost-dominated by the other vertex in S, then the algorithm will pick the
other vertex in S). Otherwise, it will pick a vertex in S arbitrarily and branch
on it. Without loss of generality, we will always assume that the vertex in the
2-tuple S = {u, z} that the algorithm branches on is z. The algorithm can be
made anonymous to this choice by ordering the vertices in a 2-tuple as described
above whenever the 2-tuple is created.

The Algorithm VC
A tuple, a good pair, or a vertex of degree at least seven, will be referred to by
the word structure. The algorithm will maintain a list of structures T , and then
it will pick a structure and processes it. The structures in T will be considered
in a certain (sorted) order according to their priorities. We will assume that the
algorithm implicitly updates the structures in T and their priorities after each
operation. We give below a comprehensive list of the structures Γ that can exist
at a certain point in T listed in a non-increasing order of their priorities.

1 Γ is a strong 2-tuple.
2 Γ is a 2-tuple.
3 Γ is a good pair (u, z) where d(u) = 3 and the neighbors of u are degree-5

vertices such that no two of them share any common neighbors besides u.
4 Γ is a good pair (u, z) where d(u) = 3 and d(z) ≥ 5.
5 Γ is a good pair (u, z) where d(u) = 3 and d(z) ≥ 4.
6 Γ is a good pair (u, z) where d(u) = 4, u has at least three degree-5 neighbors,

and the graph induced by N(u) contains at least one edge (i.e., there is at
least one edge among the neighbors of u).

7 Γ is a good pair (u, z) where d(u) = 4 and all the neighbors of u are degree-5
vertices such that no two of them share a neighbor other than u.

8 Γ is a vertex z with d(z) ≥ 8.
9 Γ is a good pair (u, z) where d(u) = 4 and d(z) ≥ 5.

10 Γ is a good pair (u, z) where d(u) = 5 and d(z) ≥ 6.

Improved Parameterized Upper Bounds for Vertex Cover 247

VC(G, T , k)
Input: a graph G, a set T of tuples, and a positive integer k.
Output: the size of a minimum vertex cover of G if the size is bounded by k;

report failure otherwise.

0. if |G| > 0 and k = 0 then reject;
1. apply Reducing;
2. pick a structure Γ of highest priority;
3. if (Γ is a 2-tuple ({u, z}, 1)) or (Γ is a good pair (u, z) where z is

almost-dominated by a vertex v ∈ N(u)) or (Γ is a vertex z with d(z) ≥ 7)
then return
min{1+VC(G− z,T ∪ (N(z), 2), k− 1), d(z)+ VC(G−N [z],T , k− d(z))};

else /* Γ is a good pair (u, z) where z is not almost-dominated by by any
vertex in N(u) */

return
min{1+VC(G− z, T , k−1), d(z)+ VC(G−N [z], T ∪ (N(u), 2), k−d(z))};

Reducing
a. for each tuple (S, q) ∈ T do

a.1. if |S| < q then reject;
a.2. for every vertex u ∈ S do T = T ∪ {(S − {u}, q − 1)};
a.3. if S is not an independent set then

T = T ∪ ((u,v)∈E,u,v∈S{(S − {u, v}, q − 1)});
a.4. if there exists v ∈ G such that |N(v) ∩ S| ≥ |S| − q + 1 then

return (1+VC(G− v, T , k − 1)); exit;
b. if Conditional General Fold(G) or Conditional Struction(G) in the

given order is applicable then apply it; exit;
c. if there are vertices u and v in G such that v dominates u then

return (1+ VC(G− v, T , k − 1)); exit;

Conditional General Fold
if there exists a strong 2-tuple ({u, z}, 1) in T then

if the repeated application of General Fold reduces the parameter by at
least 2 then apply it repeatedly;

else if the application of General-Fold reduces the parameter by 1 and
(d(u) < 4)

then apply it until it is no longer applicable;
else apply General-Fold until it is no longer applicable;

Conditional Struction
if there exists a strong 2-tuple {u, v} in T then

if there exists w ∈ {u, v} such that d(w) = 3 and the Struction is
applicable to w then apply it;

else if there exists a vertex u ∈ G where d(u) = 3 or d(u) = 4 and such that
the Struction is applicable to u then apply it;

Fig. 3. The algorithm VC

248 J. Chen, I.A. Kanj, and G. Xia

11 Γ is a vertex z such that d(z) ≥ 7.
12 Γ is any good pair other than the ones appearing in 1–11 above.

The above list gives the structures that could exist in T and their respective
priorities. Moreover, the above list is comprehensive in the sense that for any
non-empty graph G, G must contain one of the structures listed above, and the
algorithm will have a structure to process.

The algorithm will return the size of a minimum vertex cover in case this
size is bounded by k, or otherwise it will reject. The algorithm can be easily
modified to return the desired minimum vertex cover itself in case it has size
bounded by k. We present the algorithm and prove its correctness next, and we
analyze its running time in the next section. The algorithm is given in Figure 3.
Note that the algorithm performs only two branches regardless of the structure
picked, which are the ones given in step 3 of the algorithm.

Theorem 1. The algorithm VC is correct.

4 Analysis of the Algorithm

Since the algorithm is a branch-and-bound process, its execution can be depicted
by a search tree. The running time of the algorithm is proportional to the number
of leaves in the search tree, multiplied by the time spent along each such path.
Therefore, the main step in the analysis of the algorithm is deriving an upper
bound on the number of leaves in the search tree. We have the following theorem
whose proof is inductive and lengthy.

Theorem 2. The number of leaves in the search tree of the algorithm VC on
an instance (G, k) where G is a connected graph is upper bounded by 1.2738k.

Theorem 3. The VC problem can be solved in O(1.2738k + kn) time.

References

1. R. Balasubramanian, M. Fellows, and V. Raman. An improved fixed parameter
algorithm for Vertex Cover. Information Processing Letters, 65:163–168, 1998.

2. R. Bar-Yehuda and S. Even. A local-ratio theorem for approximating the Weighted
Vertex Cover problem. Annals of Discrete Mathematics, 25:27–46, 1985.

3. J. Buss and J. Goldsmith. Nondeterminism within P. SIAM Journal on Computing,
22:560–572, 1993.

4. L. Cai and D. Juedes. On the existence of subexponential parameterized algo-
rithms. Journal of Computer and System Sciences, 67(4):789–807, 2003.

5. L. Chandran and F. Grandoni. Refined memorisation for vertex cover. In Proceed-
ings of the 1st International Workshop on Parameterized and Exact Computation,
volume 3162 of Lecture Notes in Computer Science, pages 61–70, 2004.

6. J. Cheetham, F. Dehne, A. Rau-Chaplin, U. Stege, and P. Taillon. Solving large
FPT problems on coarse grained parallel machines. Journal of Computer and
System Sciences, 67(4):691–706, 2003.

Improved Parameterized Upper Bounds for Vertex Cover 249

7. J. Chen, I. Kanj, and W. Jia. Vertex cover: further observations and further
improvements. Journal of Algorithms, 41:280–301, 2001.

8. J. Chen, L. Liu, and W. Jia. Improvement on Vertex Cover for low degree graphs.
Networks, 35:253–259, 2000.

9. M. Chlebik and J. Chlebikova. Crown reductions for the minimum weighted vertex
cover problem. In Electronic Colloquium on Computational Complexity, Report No.
101, 2004.

10. R. Downey and M. Fellows. Fixed-parameter tractability and completeness. Con-
gressus Numerantium, 87:161–187, 1992.

11. R. Downey and M. Fellows. Parameterized Complexity. Springer, New York, 1999.
12. Ch. Ebengger, P. Hammer, and D. de Werra. Pseudo-boolean functions and sta-

bility of graphs. Annals of Discrete Mathematics, 19:83–98, 1984.
13. M. Fellows. Blow-ups, win/win’s and crown rules: some new directions in FPT. In

29th International Workshop on Graph-Theoretic Concepts in Computer Science,
volume 2880 of Lecture Notes in Computer Science, pages 1–12, 2003.

14. M. Garey and D. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman, New York, 1979.

15. R. Impagliazzo and R. Paturi. Which problems have strongly exponential com-
plexity? Journal of Computer and System Sciences, 63:512–530, 2001.

16. G. Nemhauser and L. Trotter. Vertex packing: structural properties and algo-
rithms. Mathematical Programming, 8:232–248, 1975.

17. R. Niedermeier and P. Rossmanith. Upper bounds for Vertex Cover further im-
proved. In Proceedings of the 16th Symposium on Theoretical Aspects of Computer
Science, volume 1563 of Lecture Notes in Computer Science, pages 561–570, 1999.

18. R. Niedermeier and P. Rossmanith. On efficient fixed-parameter algorithms for
weighted vertex cover. Journal of Algorithms, 47:63–77, 2003.

19. J. M. Robson. Algorithms for maximum independent set. Journal of Algorithms,
6:425–440, 1977.

20. U. Stege and M. Fellows. An improved fixed-parameter-tractable algorithm for Ver-
tex Cover. Technical Report 318, Department of Computer Science, ETH Zürich,
April 1999.

On Comparing Sums of Square Roots of Small

Integers�

Qi Cheng

School of Computer Science
The University of Oklahoma
Norman, OK 73019, USA

qcheng@cs.ou.edu

Abstract. Let k and n be positive integers, n > k. Define r(n, k) to be
the minimum positive value of

|√a1 + · · ·+√
ak −

√
b1 − · · · −

√
bk|

where a1, a2, · · · , ak, b1, b2, · · · , bk are positive integers no larger than
n. It is an important problem in computational geometry to determine
a good upper bound of − log r(n, k). In this paper we prove an up-
per bound of 2O(n/ log n), which is better than the best known result
O(22k log n) whenever n ≤ ck log k for some constant c. In particular,
our result implies an algorithm subexponential in k (i.e. with time com-
plexity 2o(k)(log n)O(1)) to compare two sums of square roots of integers
of value o(k log k).

1 Introduction

In computational geometry, one often needs to compare lengths of two polygonal
paths, whose nodes are on a integral lattice, and edges are measured according
to the L2 norm. The problem can be reduced to the problem of comparing two
sums of square roots of integers. Most work in computational geometry assumes
a model of real-number machines, where one memory cell can hold one real
number. It is assumed that an algebraic operation, taking a square root as well
as a comparison between real numbers can be done in one operation. There is a
straight-forward way to compare sums of square roots in real-number machines.
But this model is not realistic, as shown in [6,5].

If we consider the problem in the model of Turing machine, then we need
to design an algorithm to compare two sums of square roots of integers with
low bit complexity. One approach would be approximating the sums by decimal
numbers up to a certain precision, and then hopefully we can learn which one is
larger. Formally define r(n, k) to be the minimum positive value of

|√a1 + · · ·+√
ak −

√
b1 − · · · −

√
bk|

� This research is partially supported by NSF Career Award CCR-0237845.

R. Královič and P. Urzyczyn (Eds.): MFCS 2006, LNCS 4162, pp. 250–255, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

On Comparing Sums of Square Roots of Small Integers 251

where a1, a2, · · · , ak, b1, b2, · · · , bk are positive integers no larger than n. The
time complexity of the approximation approach depends directly on− log r(n, k),
since an approximation of a sum of square roots of integers can be computed
in time polynomial in the number of digits in the approximation. One would
like to know if − log r(n, k) is bounded from above by a polynomial function in
k and logn. If so, the approximation approach to compare two sums of square
root of integers runs in polynomial time. Note that even if the lower bound of
− log r(n, k) is exponential, it does not necessarily rule out a polynomial time
algorithm.

Although this problem was put forward during the 1980s [3], progress has
been scarce. In [1], it is proved that

− log r(n, k) = O(22k logn)

using the root separation method. This immediately gives us a polynomial time
algorithm of comparing sum of square roots if k is fixed. Qian and Wang [4]
gave a constructive upper bound of r(n, k) at O(n−2k+ 3

2), which corresponds to
a lower bound of

− log r(n, k) = Ω(k logn).

They conjecture that − log r(n, k) = Θ(n
1
2−2k−2

).
There is a wide gap between the known upper bound and lower bound of

− log r(n, k). Until the fundamental problem has been resolved, we can not even
put the presumably easy problem such as Euclidean Minimum Spanning Tree
problem in P, and the Euclidean Traveling Salesman problem in NP.

1.1 Our Contribution

From the known upper bound of − log r(n, k), we conclude that there is a poly-
nomial time algorithm to compare sum of square roots if k is fixed. In this note,
we consider the case in the other end of the spectrum when k grows (almost)
linear with n.

Definition 1. An integer n is called square free, if there does not exist a prime
p such that p2 divides n.

It is well known that there are about 6n
π2 + O(

√
n) many square free integers

less than n. If a1, a2, · · · , ak, b1, b2, · · · , bk are distinct square free integers, then
their square roots are linearly independent over the field of rational number Q.
So it is possible that k and n are linearly related. This case is also practically
interesting. We often need to compare paths whose nodes are on an l× l integral
grid. The distance between the lattice points are square roots of integers of size
O(l2). There are l2 many nodes in the grid, and if we select a dense subset out
of the grid points, we arrive in the situation where n is linear in k.

We obtain a lower bound of difference of two sums of square roots. Our lower
bound beats the root separation bound as long as n ≤ ck log k for some constant
c. The corresponding upper bound of

− log r(n, k) = 2O(n/ log n)

252 Q. Cheng

becomes subexponential in k when n = o(k log k), or more generally, if the square
free parts of the numbers grow at rate o(k log k). Our bound implies a subex-
pontial algorithm, i.e., an algorithm with time complexity 2o(k)(log n)O(1), to
compare two sums of square roots of small integers. The proof is also simple.

We begin the presentation of our result by defining the notion of multiplicative
generators.

Definition 2. Given two sets of positive integers A and B, we say that B multi-
plicatively generates A if any number in A can be written as a product of numbers
from B with repetition allowed.

It is easy to see that A multiplicatively generates itself, but for many sets, there
exist much smaller sets which multiplicatively generate them. For example, all
the square free number less than n are generated by the set of primes less than
n, whose cardinality is O(n/ logn).

Theorem 1. (Main) Let c1, c2, · · · , ck, d1, d2, · · · , dk be positive integers. Let

A = {a1, a2, · · · , ak, b1, b2, · · · , bk}

be the set of 2k positive square free integers. Assume that c2i ai ≤ n for all 1 ≤
i ≤ k and d2

i bi ≤ n for all 1 ≤ i ≤ k. Let B be a set which multiplicatively
generates A. Then

|c1
√
a1 + · · ·+ ck

√
ak − d1

√
b1 − · · · − dk

√
bk| > (2k

√
n)−2|B|+1.

Since A generates itself, so this result recovers the best known lower bound
on r(n, k). In many cases, this result improves that bound, since |B| can be
smaller than |A| = 2k. It is possible that the cardinality of B can be as small
as O(log k), in which case, there is a polynomial time algorithm comparing two
sums of square roots.

Our result shows that the multiplicative structure of A affects the minimum
possible value of |c1

√
a1 + c2

√
a2 + · · ·+ ck

√
ak − d1

√
b1− d2

√
b2− · · · − dk

√
bk|,

which appears to be unknown before. In particular, we show that the root separa-
tion lower bound 2O(k) logn of − log r(n, k) is not tight, at least, when n is linear
in k. It is still possible that when n is much larger than k, the root separation
bound becomes tight. Our result indicates that to achieve the root separation
bound, it is important to select the numbers a1, a2, · · · , ak, b1, b2, · · · , bk such
that they are pairwise relatively prime.

2 The Proof

Let F = Q(x1, x2, · · · , xm) be the function field over Q with indeterminate
x1, x2, · · · , xm. Consider a field extension K = F[y1, y2, · · · , ym]/(y2

1 − x1, · · · ,
y2

m − xm) of F . It is a linear space of dimension 2m over Q(x1, x2, · · · , xm), one
of whose bases is

{BS =
∏
i∈S

yi|S ⊆ {1, 2, · · · ,m}}.

On Comparing Sums of Square Roots of Small Integers 253

The Galois group G of K over F has order 2m. For any subset S of {1, 2, · · · ,m},
define σS ∈ G recursively as follows:

1. If S = ∅, σS is the identity element.
2. If |S| = 1, then

σ{i}(yj) =
{
−yj if i = j
yj if i 	= j

3. If |S| > 1, σS =
∏

i∈S σ{i}.

We have σS′(BS) = (−1)|S
′∩S|BS and G = {σS |S ⊆ {1, · · ·m}}

Lemma 1. Let {αS |S ⊆ {1, 2, 3, · · · ,m}} be a set of 2m integers. The norm of∑
S⊆{1,2,··· ,m} αSBS, denoted by

NK/F (
∑

S⊆{1,2,··· ,m}
αSBS)

is a polynomial in Z[x1, x2, · · · , xm].

Proof. By definition,

NK/F (
∑

S⊆{1,2,··· ,m}
αSBS) =

∏
σ∈G

σ(
∑

S⊆{1,2,··· ,m}
αSBS) (1)

=
∏

S′⊆{1,2,··· ,m}
(

∑
S⊆{1,2,··· ,m}

αSσS′(BS)) (2)

=
∏

S′⊆{1,2,··· ,m}
(

∑
S⊆{1,2,··· ,m}

(−1)|S∩S′|αSBS). (3)

The norm must be an element in F = Q(x1, x2, · · · , xm). On the other hand, if
we expand the product in the right hand side, it reduces to

∑
S⊆{1,2,··· ,m} βSBS ,

where βS ∈ Z[x1, x2, · · · , xm] for any S ⊆ {1, 2, · · · ,m}. Hence we must have
βS = 0 for |S| ≥ 1. Thus

NK/F (
∑

S⊆{1,2,··· ,m}
αSBS) = β∅,

which is a polynomial in Z[x1, x2, · · · , xm].

Define the polynomial

fα∅,α{1},α{2},··· ,α{1,2,··· ,m}(x1, x2, · · · , xm)

= NK/F (
∑

S⊆{1,2,··· ,m}
αSBS) ∈ Z[x1, x2, · · · , xm].

Now we are ready to prove the main theorem.

254 Q. Cheng

Proof. (of the main theorem) Denote |B| by m. Assume that B = {h1, h2, · · · ,
hm}. There is a natural ring homomorphism

ψ : Q[x1, x2, · · · , xm, y1, y2, · · · , ym] → Q(
√
h1,

√
h2, · · · ,

√
hm)

by letting ψ(yi) =
√
hi and ψ(xi) = hi for 1 ≤ i ≤ m.

Fix an order among all the subsets of {1, 2, · · · ,m}. Define B′S =
∏

i∈S hi,
and define αS as

αS =

cj if S is the first set such that aj = B′S
−dj if S is the first set such that bj = B′S
0 Otherwise

We have

c1
√
a1 + · · ·+ ck

√
ak − d1

√
b1 − · · · − dk

√
bk =

∑
S⊆{1,2,··· ,m}

αSB
′
S

and

fα∅,··· ,α{1,2,··· ,m}(h1, h2, · · · , hm) =
∏

S′⊆{1,2,··· ,m}
(

∑
S′⊆{1,2,··· ,m}

(−1)|S
′∩S|αSB

′
S)

because of the ring homomorphism. The integer

fα∅,··· ,α{1,2,··· ,m}(h1, h2, · · · , hm) 	= 0

since
√
a1,

√
a2, · · · ,

√
ak,

√
b1,
√
b2, · · · ,

√
bk are linear independent over Q. So

|
∏

S′⊆{1,2,··· ,m}
(

∑
S⊆{1,2,··· ,m}

(−1)|S
′∩S|αSB

′
S)| ≥ 1

Thus

|c1
√
a1 + · · ·+ ck

√
ak − d1

√
b1 − · · · − dk

√
bk| (4)

≥ 1∏
|S′|�=∅(

∑
S⊆{1,2,··· ,m}(−1)|S′∩S|αSB′S)

(5)

≥ 1
(2k

√
n)2|B|−1

. (6)

The proof relies on the fact that the norm is a nonzero integer, thus has
absolute value greater than 1. Every factor in the definition of the norm is not
too large (less than 2k

√
n in our case), so the smallest factor should not be

too small. The technique has been used in several papers, for example, see [2].
The estimation depends primarily on the number of factors in the definition of
the norm.

On Comparing Sums of Square Roots of Small Integers 255

3 A Corollary from the Main Theorem

Theorem 2. Let c1, c2, · · · , ck, d1, d2, · · · , dk be positive integers. Let a1, a2, · · · ,
ak, b1, b2, · · · , bk be distinct square free positive integers less than m. Assume that
c2i ai ≤ n for all 1 ≤ i ≤ k and d2

i bi ≤ n for all 1 ≤ i ≤ k. Then

|c1
√
a1 + · · ·+ ck

√
ak − d1

√
b1 − · · · − dk

√
bk| > (2k

√
n)−2O(m/ log m)

.

Proof. It is well known that the number of primes less than m is O(m/ logm).
The set of primes less than m generates all the positive integers less than m.
The theorem follows from the main theorem.

Corollary 1. − log r(n, k) = 2O(n/ log n)

4 Conclusion Remarks

In this paper, we prove an upper bound of 2O(n/ log n) for − log r(n, k), by explor-
ing the fact that the algebraic degree of sum of 2k square free positive integers
can be much less than 22k. We suspect that 2O(k/ log k) logn type of upper bound
holds for much larger n, and leave it as an open problem.

References

1. C. Burnikel, R. Fleischer, K. Mehlhorn, and S. Schirra. A strong and easily com-
putable separation bound for arithmetic expressions involving radicals. Algorith-
mica, 27(1):87–99, 2000.

2. Zhi-Zhong Chen and Ming-Yang Kao. Reducing randomness via irrational numbers.
SIAM J. Comput., 29(4):1247–1256, 2000.

3. Erik D. Demaine, Joseph S. B. Mitchell, and Joseph O’Rourke. The open problems
project: Problem 33. http://maven.smith.edu/˜orourke/TOPP/.

4. Jianbo Qian and Cao An Wang. How much precision is needed to compare two
sums of square roots of integers? Manuscript, 2005.

5. Arnold Schönhage. On the power of random access machines. In Proc. 6th Internat.
Colloq. Automata Lang. Program., volume 71 of Lecture Notes in Computer Science,
pages 520–529. Springer-Verlag, 1979.

6. A. Shamir. Factoring numbers in O(log n) arithmetic steps. Information Processing
Letters, 1:28–31, 1979.

A Combinatorial Approach to Collapsing Words

A. Cherubini1, P. Gawrychowski2, A. Kisielewicz2, and B. Piochi3

1 Politecnico di Milano, Department of Mathematics, Milano, Italy
aleche@mate.polimi.it

2 University of Wroc�law, Institute of Computer Science, Wroc�law, Poland
kisiel@math.uni.wroc.pl

3 Università di Firenze, Department of Mathematics, Firenze, Italy
piochi@math.unifi.it

Abstract. Given a word w over a finite alphabet Σ and a finite deter-
ministic automaton A = 〈Q,Σ, δ〉, the inequality |δ(Q, w)| ≤ |Q| − n
means that under the natural action of the word w the image of the
state set Q is reduced by at least n states. The word w is n-collapsing if
this inequality holds for any deterministic finite automaton that satisfies
such an inequality for at least one word. In this paper we present a new
approach to the topic of collapsing words, and announce a few results we
have obtained using this new approach. In particular, we present a direct
proof of the fact that the language of n-collapsing words is recursive.

1 Introduction

In this paper by an automaton A = 〈Q,Σ, δ〉 we mean a finite deterministic au-
tomaton with the state set Q, the input alphabet Σ, and the transition function
δ : Q × Σ → Q. The action of Σ on Q given by δ will be denoted simply by
concatenation: qa = δ(q, a). This action extends naturally on the action of the
words of Σ∗ on Q. Given a word w ∈ Σ∗, we will be interested in the difference
of the cardinalities |Q| − |Qw|, called the deficiency of the word w with respect
to A and denoted dfA(w).

Let n ≥ 1, a word w ∈ Σ∗ is called n-compressing for A, if dfA(w) ≥ n.
An automaton A is n-compressible, if there exists an n-compressing word for
A. A word w ∈ Σ∗ is n-collapsing (over Σ), if it is n-compressing for every
n-compressible automaton with the input alphabet Σ.

It has been proved in [11] that n-collapsing words always exist, for any Σ and
any n ≥ 1. In [7] it is shown that, over a fixed alphabet Σ, each n-collapsing
word is n-full, i.e., it contains any word of length n among its subwords. An
n-compressible automaton A is called proper ([1]) if no word of length n is n-
compressing for it. Thus to check whether a word w ∈ Σ is n-collapsing it is
enough to consider only proper n-compressible automata. For other results and
connections with the Černý conjecture see [1,3,4,9].

In [1] certain characterizations of 2-compressing words were given by asso-
ciating to every word a family of finitely generated subgroups in some finitely
generated free groups; it was proved that the property of being 2-collapsing is

R. Královič and P. Urzyczyn (Eds.): MFCS 2006, LNCS 4162, pp. 256–266, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

A Combinatorial Approach to Collapsing Words 257

connected with the subgroup indices in this context. A more geometric version
of this idea has been developed in [2]. Unfortunately, these characterizations did
not allow either to settle the natural complexity problem concerning collaps-
ing words or to generalize to n-collapsing words (cf. remarks in [4]). In [1] the
authors ask a few questions in hope to simplify the characterization.

In this paper we answer all these questions in negative. This is done by using
another more combinatorial characterization. Our characterization made also
possible to solve important complexity problems, and to tackle more general
problems. It forms the base for a series of papers in the area (see e.g. [5,6]).

We view an automaton A = 〈Q,Σ, δ〉 as a set of transformations labelled by
letters of Σ rather than as a standard triple. By the transformations of A we
mean those transformations of Q that are induced via δ by letters of Σ. Note
that to define an automaton it is enough to assign just to any letter of Σ a
transformation of Q.

It is not difficult to see that any proper 2-compressible automaton A has
to have both permutation and non-permutation transformations, and the later
correspond to letters a with dfA(a) = 1. Thus, for each such non-permutation
transformation a there is a uniquely determined state z ∈ Q which does not
belong to the image Qa and two different states x, y ∈ Q satisfying xa = ya; such
a transformation will be referred to as a transformation of type {x, y}\z (read:
x, y identified, z missing). Using this notions we classify proper 2 -compressible
automata as follows

Proposition 1. An automaton A is proper 2-compressible if and only if A sat-
isfies one of the following conditions:

(i) there are x, y such that all non-permutation transformations are of the same
type {x, y}\x, and the group of permutations fixes neither the element x nor
the set {x, y};

(ii) there is x such that each non-permutation transformation is of type {x, z}\x
for some z, at least two different types occur, and the group of permutations
does not fix x;

(iii) there are x, y such that each non-permutation transformations is of type
{x, y}\x or {x, y}\y, both the types occur, and the group of permutations
does not fix the set {x, y}.

This classification corresponds closely to the one in [1], where the automata in
cases (i) and (ii) are called mono, and those satisfying (iii) are called stereo. We
shall call mono1 and mono2 the automata in the cases (i) and (ii), respectively.

We note that the use of a different language here is connected with a different
view and leads to a different characterization theorem; one that allows a natural
generalization. In particular, in general case we speak about transformations a
of type {S1, . . . , Sk}\M , where Si are the sets of states having the same image
under a, and M is the the set of non-images under a. Our idea is that this
information is generally enough to approach problems on collapsing words.

258 A. Cherubini et al.

2 New Characterization of 2-Collapsing Words

We wish to show that for a word w ∈ Σ∗ being 2-collapsing over an alphabet
Σ is equivalent to the nonexistence of nontrivial solutions to certain systems of
conditions on permutations. Consider partitions of Σ into blocks, where blocks
are intended to represent types of transformations and closely correspond to the
role assignments introduced in [1]. A nontrivial partition of Σ with a distin-
guished block P , ∅ ⊆ P ⊆ Σ, will be called a DB-partition and will be denote
by (P, Υ), where Υ = {B2, . . . , Bh} is the induced partition of Σ \ P (h ≥ 2).
Let w be a 2-full word over Σ. To each subword of w of the form αvβ, where
v is a nonempty word whose all letters belong to P (i.e. v ∈ P+), while α /∈ P
and β ∈ Bj , we assign a permutation condition of the form

1v ∈ {1, j},

where the letters of P are treated as permutation variables. Thus, the condition
means that the image of 1 under the product v of permutations belongs to the
set {1, j}. The resulting set of permutation conditions (containing all conditions
corresponding to subwords of w with the properties described above) will be
denoted Γw(P, Υ) and referred to as the system of permutation conditions de-
termined by a word w and a DB-partition (P, Υ). Note that different orderings
of blocks in {B2, . . . , Bh} lead to systems which are ”equivalent” in the sense
that both of them have or have not non-trivial solutions; so we don’t care the
orderings of blocks.

We say that this system has a solution if there exists an assignment of per-
mutations on a finite set {1, 2, . . . , N} to letters in P such that all the conditions
in Γw(P, Υ) are satisfied. A trivial solution is one with all permutations fixing
1. Also, in the special case when Υ consists of a unique block B2 (and in conse-
quence, all j’s on the right hand side of the conditions are equal 2), a solution
with all permutations fixing the set {1, 2} is considered trivial. The remaining
solutions are nontrivial.

A DB-partition (P, {B1, B2}) of Σ (into exactly 3 blocks, with a distinguished
block P) will be called a 3DB-partition. For such a partition, we define an ad-
ditional system of permutation conditions as follows. To each subword of w of
the form αvβ, with α ∈ Bi, β ∈ Bj , i, j ∈ {1, 2}, and v ∈ P+, we assign a
permutation condition of the form

iv ∈ {1, 2}

(the image of i under v belongs to {1, 2}). The resulting set of permutation
conditions will be denoted by Γ ′w(P, {B1, B2}). For such a system, a solution in
permutations is nontrivial if the image of the set {1, 2} does not remain fixed
under all the permutations.

Theorem 1. A word w ∈ Σ∗ is 2-collapsing if and only if it is 2-full and the
following conditions holds:

(i) Γw(P, Υ) has no nontrivial solution for any DB-partition
(P, Υ) of Σ;

A Combinatorial Approach to Collapsing Words 259

(ii) Γ ′w(P, {B1, B2}) has no nontrivial solution for any 3DB-partition
(P, {B1, B2}) of Σ.

The reader may observe an explicit similarity with the characterization in [1,
Theorem 3.3]. Yet while, indeed, there is a correspondence in the general struc-
ture, our approach is almost converse: rather then looking into an algebraic
structure behind, we reduce the problem to the simplest conditions on permu-
tations.

Proof. Our general idea is to compute the deficiency of a word w proceeding
letter by letter and observing if and how the deficiency increase. To give an idea
of how this technique works, we sketch the proof of (i).

To prove the ,,only if” part, recall that if w is 2-collapsing, then it is 2-full. By
way of contradiction assume that the system Γw(P, Υ) has a nontrivial solution
for some DB-partition (P, Υ), and that this solution consists of permutations on
a set Q = {1, 2, . . . , n}. Let A be an automaton over Σ with the set Q of states,
where the letters in P act as the permutations in the solution and the letters
in each of blocks Bi ∈ Υ act as (arbitrary) transformations of type {1, i}\1.
Since the solution is nontrivial, the group of permutations does not fix 1, and if
Υ = {B2} then the group of permutations does not fix the set {1, 2}. Thus, by
Proposition 1, in each case A is a proper 2-compressible mono automaton.

Now, if w has no subword of the form αvβ, with v ∈ P+, α ∈ Bi and β ∈ Bj ,
then w = vαi1 . . . αimu with v, u ∈ P ∗ and αij ∈ Υ , hence Qw = Q − {1} and
dfA(w) = 1, a contradiction.

Now, let αvβ be a subword of w with v ∈ P+, α ∈ Bi and β ∈ Bj , and
assume that it is the first subword of this type in w. It follows that w = sαvβt,
where s, t ∈ Σ∗, with dfA(sα) = 1, and 1 is missing in the image Qsα. Since v is
nonempty, the permutation condition 1v ∈ {1, j} is in Γw(P, Υ). It means that 1
is moved into 1 or j, and consequently 1 or j is missing in the image Qsαv. Since
β identifies 1 and j, dfA(sαvβ) = 1, and again 1 is missing in the image Qsαvβ.
Proceed letter by letter to get that also in this case dfA(w) = 1: contradiction.

To prove the ,,if” part, assume that w is 2-full but not 2-collapsing, i.e. there
exists a proper 2-compressible automaton A over Σ, with the set of states
Q = {1, 2, . . . , n}, for which w is not 2-compressing. If A is of type mono,
then consider the DB-partition of Σ, where P represent permutations of A,
and B2, . . . , Bh represent transformations of types {1, 2}\1, . . . , {1, h}\1, re-
spectively (we assume without loss of generality that x = 1 is the distinguished
state). The fact that w is not 2-compressing for A means that, computing de-
ficiency letter by letter, after encountering in w the first letter of any Bi, the
deficiency decrease by one, but it does not decrease on further letters. The only
segments where the deficiency may decrease are those of the form αvβ, with
α ∈ Bi, β ∈ Bj and v ∈ P+ when 1v /∈ {1, j}. Since the deficiency does not
decrease on these segments then the permutations satisfy the corresponding
conditions 1v ∈ {1, j}, as required. The solution they form is nontrivial because
of respective conditions (i) or (ii) in Proposition 1.

260 A. Cherubini et al.

From our approach, one can easily see that classifying automata as mono and
stereo has no natural generalization, and is only a very special feature of proper
2-compressible automata. Yet, to demonstrate that the problems in [1] have
negative answers we need the following corollary, which can be obtained by
more detailed proof as above.

Corollary 1. For a fixed finite alphabet Σ:

(i) A word w is 2-compressing for each 2-compressible mono1 automaton if
and only if the system Γw(P, Υ) has no nontrivial solution for any DB-
partition (P, Υ) with |Υ | = 1.

(ii) A word w is 2-compressing for each 2-compressible mono2 automaton if
and only if the system Γw(P, Υ) has no nontrivial solution for any DB-
partition (P, Υ) with |Υ | > 1.

(iii) A word w is 2-compressing for each 2-compressible stereo automaton if
and only if the system Γw(P, Υ) has no nontrivial solution for any 3DB-
partition (P, Υ).

3 Complexity of Recognizing 2-Collapsing Words

If Σ = {α, β}, then we have only two DB-partitions, i.e. only two corresponding
system of permutation conditions, each in only one variable. Let

Eα(w) = {k ≥ 1 : βαkβ is a subword of w};
Eβ(w) = {k ≥ 1 : αβkα is a subword of w}.

Using Theorem 1 one almost immediately gets the following result, which closely
resembles Proposition 3 of [10]:

Lemma 1. A word w ∈ {α, β}∗ is 2-collapsing if and only if it is 2-full and for
all integers n ≥ 3, 0 < r < n non of the sets Eα(w) and Eβ(w) modulo n is
included in {0, r}.

In order to find an algorithm to check whether a word w is 2-collapsing, we
obviously may assume that n ≤ N , where N is the minimum of the second
smallest elements in Eα(w) and in Eβ(w). SinceN < |w|, this yields the following
corollary (suggested in [4]):

Corollary 2. For a 2-element alphabet Σ, checking whether a word w ∈ Σ∗ is
2-collapsing may be done in polynomial time with respect to |w|.

Moreover, having such a simple insight into the problem, a further question arises
naturally: can the problem be solved still in polynomial time when the words are
given in the compressed form αk1βk2 . . . βkn (where Σ = {α, β}, k1 and kn are
allowed to be 0, and the numbers are given in the decimal or binary encodings)?
Our new approach makes possible to obtain the following

A Combinatorial Approach to Collapsing Words 261

Theorem 2. For a 2-element alphabet Σ, checking whether a word w ∈ Σ∗ is
2-collapsing may be done in polynomial time with respect to the size of w in the
compressed form.

The proof is a little bit tricky. The idea is that although the number N of cases
to be checked may be too large with respect to the size of w in the compressed
form, one observes that it is enough to check only the prime divisors of n < N
and n = 4. The number of such divisors is polynomial with respect to the size
of w in the compressed form, but the problem still remains how to overcome
the fact that factorization into primes is not known to be in P. Here one applies
a certain factorization of the product k1 · . . . · kn into larger divisors, which is
enough for our purposes.

At this point we would like also to mention two further results which have
been obtained in smaller teams, and which use Theorem 1, as a starting point.

Theorem 3 ([5]). The problem of recognizing 2-collapsing words over a fixed
alphabet Σ with more than 2 letters is co-NP-complete.

It seems that the same methods may be used for n-collapsing words, but the
number of independent systems of permutation conditions is much larger.

A word w is n-synchronizing if it is n-collapsing for every n-compressible
automaton with n+ 1 states (i.e. brings all the states to a single state; c.f. [1]).
Since there are only finitely many n-state automata over a fixed alphabet Σ,
one can observe that the problem of recognizing n-synchronizing words can be
solved in polynomial time. Yet, we have:

Theorem 4 ([6]). The general problem of recognizing 2-synchronizing words,
where the input consists of an alphabet and a word, is co-NP-complete.

4 Decidability

For some time it was not even clear that the problem of recognizing of n-
collapsing words is decidable. In fact, it is the main result announced in [4],
where a large sketch of the proof of this fact is given. The full proof in [8] con-
sists of several lemmas and occupies more than 10 pages. We prove this fact in
this section.

Theorem 5. Let w be a word over a fixed alphabet Σ. If w is not n-collapsing,
then there exists an n-compressible automaton A with number of states |Q| <
3(n− 1)|w| such that dfA(w) < n.

Proof. Suppose that w is not n-collapsing, and let A′ = 〈Q′, Σ, δ′〉 be an n-
compressible automaton such that dfA′(w) < n. By n-compressibility it follows
that there is also a word w′ such that dfA′ (w′) ≥ n, and we may assume that
w′ = wu extends w. Our aim is to construct an automaton A = 〈Q,Σ, δ〉 having
the same properties, with Q ⊆ Q′, small enough.

262 A. Cherubini et al.

Let Σ consist of letters αi and βi, chosen so that αi’s represent non-
permutation transformations of A′, while βi represent permutations. We may
assume that

w = αi0Γ1αi1 . . . Γdαid
,

where each Γj = βt1 . . . βti is a product of βi’s, possibly empty (permutations
at the beginning and at the end may be ignored). We assume that αi is of
type {Si,1, . . . , Si,mi}/Mi, that is, Mi is the set of non-images under αi, and
Si,1, . . . , Si,mi are the sets having the same image under αi. Note that we may
assume that the total number of elements in Si,1, . . . , Si,mi is less than 2(n− 1),
and |Mi| ≤ n−1 (otherwise dfA′ (αi) ≥ n on the letter αi alone). Alsomi ≤ n−1,
so the number of images Si,jαi is less than n. Consequently, by rough estimation,
the total number of elements in all the subsets Mi and Si,j and in all the images
of Si,j does not exceed 4(n− 1)s, where s = |Σ|.

Now consider the information we need to determine the exact value of the
deficiency dfA′(w). Consider the partial deficiency sets Xj = Q′ \ Q′αi0 . . . αij

for all initial segments of w terminating with some αi; note that X0 = Mi0 , and
Xd = Q′ \Q′w. In general

Mij ⊆ Xj ⊆Mij ∪Xj−1Γjαij .

For x ∈ Xj−1, it may happen that xΓjαij /∈ Xj if and only if there is a suitable
y ∈ Q′ with yαij = xαij and this is determined by the information on the types
of αi’s.

Thus, we need only one more partial information in order to compute all Xj ’s,
namely the following one. For each j ≥ 0, if Γj = βt1 . . . βtj , we need to know the
values of βt1 on the states x ∈ Xj−1, the values of βt2 on the states x ∈ Xj−1βt1 ,
and so on; and finally the values of αij on the states x ∈ Xj−1Γj . Since |Xj | < n
for all j, this yields totally no more than (n − 1)(|w| − 1) new states involved
(recall that X0 = Mi0). As a result, a partial information on δ′ involving less
than (n− 1)(4s+ |w| − 1) states determines the required properties of the word
w. Indeed, it should be clear that we obtain an automaton A with no more
than 5(n− 1)|w| satisfying dfA(w) < n, while closing in a natural way cycles in
permutations and closing the cycles in non-permutations in such way that they
preserve the sets Mi’s.

To complete the proof of decidability it is enough to observe that essentially
the same argument can be applied to the word wu and to recall the fact that
the length of u may be bounded from above by a function of n. The latter
follows, for example, from the proof of the basic result [11] concerning the very
existence of n-collapsing words (c.f. [4, Section 1]). It follows that there exists
an n-compressible automaton A = 〈Q,Σ, δ〉, with |Q| bounded by a function of
n and |w|, witnessing that w is not n-collapsing.

To obtain our bound for |Q|, first note that we may not need the whole
information on the sets Si,1, . . . , Si,mi . It is enough to know, for each αij , single
pairs x, y from some of these sets satisfying suitable equalities yαij = xαij ; and
we do not even need to know the exact value of the image. Thus, considering
αij , we need to know Mij together with one of the following: either the image

A Combinatorial Approach to Collapsing Words 263

xαij for x ∈ Xj−1Γj or an element y with yαij = xαij . Then, one can see that
a partial definition of δ involving a subset S ⊆ Q′ with |S| ≤ (n− 1)(s+ |w|− 1)
is enough to guarantee that dfA(w) < n for any A = 〈Q,Σ, δ〉 having such a
subset of states and with δ extending the partial definition.

Now, from the fact that dfA′(wu) ≥ n, we infer that there are x, y ∈ Q′w such
that xu = yu. For u = γ1 . . . γt, denote x0 = x, and xi = xi−1γi, and similarly,
y0 = y, and yi = yi−1γi, for all 1 ≤ i ≤ t. Note that xt = xu = yu = yt.

If all xi, yi ∈ S, then we may choose Q = S, and to finish the proof as
before (this part requires some more detailed analysis that it is possible to
complete definitions of non-transformations without adding new states while
keeping all the necessary properties). The resulting automaton A = 〈Q,Σ, δ〉
satisfies dfA(w) = k < n, and dfA(w) = k + 1. If k < n − 1, we simply add
new states q′1, . . . , q

′
n−1−k, all of them transformed into q′1 by all the transfor-

mations: we obtain so an automaton with the required properties and with less
than |S|+ (n− 1) = (n− 1)(s+ |w|) states.

If all xi’s are in S, while some of yi’s are not, assume u be the shortest possible
with the desired property, to argue that there are at most (n − 1)|w| states yi

not in S. Indeed let a be the smallest index for which yaγa /∈ S, and b the largest
one with ybγ

−1
b /∈ S. Consider all the pairs xiγi = xi+1 with a ≤ i < b. We may

assume that there is no i, j such that xi = xj and γi = γj ; otherwise we could
build u′, shorter than u, with the same properties. But in the first part there are
no more than (n− 1)|w| such pairs with determined images, whence the claim.
Adjoin all xi’s and yi’s to S to obtain, as before, the automaon we are looking
for, whose set Q of states fulfills |Q| < (n− 1)(s+ 2|w|).

At last, if both some xi and some yi are not in S, we may argue that, again,
the total number of such states not in S does not exceed (n − 1)|w|; otherwise
we can modify u reducing ourselves to the former case (this part is left to the
reader).

Theorem 5 obviously shows that, for each n > 1, the language of n-collapsing
words over Σ is recursive (it is always enough to check a finite number of au-
tomata). The bound in our theorem is even slightly better than 3(n−1)|w|+n+1
in [8, Theorem 1] (and [4, Theorem 1]). Remark that considering separately some
extremal cases (like all the transformations are the same) there is a room to still
improve the bound in the theorem.

5 Collapsing Words on mono and stereo Automata

To complete the paper we provide the ideas of solutions to the open problems
from [1] which we mentioned above.

For a 3-element alphabet Σ it is not difficult to find a word, which is 2-
compressing for each 2-compressible stereo automaton, but fails to be 2-
collapsing; the same question for mono was stated as an open problem (Ques-
tion 5.1 in [1]), intending to consider possible simplifications of the characteri-
zation given there. We give a negative answer to this and other two questions,
producing suitable counterexamples.

264 A. Cherubini et al.

Proposition 2. LetΣ = {α, β, γ}There is awordw ∈ Σ+ which is 2-compressing
for any mono automaton, with input alphabet Σ, and which fails to be 2-collapsing.

In the proof below we use notation α = (i1i2...)... to denote a permutation α
which has a cycle sending i1 into i2 in its decomposition into a product of disjoint
cycles.

Proof. Let A be a finite automaton with the set of states Q = {1, 2, 3} and
input alphabet Σ. Let α be of type {1, 2}\1, β of type {1, 2}\2, and γ = (123)
a permutation. By Proposition 1 A is a proper 2-compressible stereo au-
tomata and it is easy to verify that all the words in X ∪ {α, β}+, with X =
{αγx, αγ3x, βγ2x, βγ3x| x ∈ {α, β}}, are not 2-compressing for A.

Now consider the 2-full word

w = βαγβ2γ2βαγαβαγβαβ2γ2αβγ3βα2γβγ2α.

All of its subwords of the form xγ+y with x, y ∈ {α, β} are in X (whence it
does not compress A and is not 2-collapsing), but it is 2-compressing for each
mono automaton with input alphabet {α, β, γ} by Corollary 1. In fact we shall
prove that for any DB-partition (P, Υ) of {α, β, γ} the system Γw(P, Υ) has no
nontrivial solution.

Assume |P | = 1 and denote by π the element of P . If Υ = B2, then the
solutions of the system Γw(P, Υ) are all trivial. In fact for all choice of π, the
conditions 1π ∈ {1, 2}, 1π2 ∈ {1, 2} occur in Γw(P, Υ): the solutions of the
former condition either fix 1 or have the form (12...)..., and π = (12...)... is a
solution of the latter only if the cycle (12...) reduces to (12). If Υ = {B2, B3},
then the solutions of the system Γw(P, Υ) are still trivial, since for each choice
of π the conditions 1π ∈ {1, 2}, 1π ∈ {1, 3} occur in the system Γw(P, Υ), hence
all the solutions must fix 1.

So assume that |P | = 2. Let Υ = {α}. The system Γw(P, Υ) is
(1) 1γβ2γ2β ∈ {1, 2}, (2) 1γ ∈ {1, 2}, (3) 1β ∈ {1, 2},
(4) 1γβ ∈ {1, 2}, (5) 1β2γ2 ∈ {1, 2}, (6) 1βγ3β ∈ {1, 2},
(7) 1γβγ2 ∈ {1, 2},

The solutions of the condition (3) either fix 1 or are of the form β = (12...)...;
similarly the solutions of the condition (ii) either fix 1 or are of the form γ =
(12...)... . Suppose that it is not the case that both of them fix 1. Assume 1γ = 1
and let β = (12x...)... : hence by condition (5) xγ2 = 1β2γ2 ∈ {1, 2}. This yields
β = (12)...; in fact if xγ2 = 1 then x = 1, else by the first condition we get
xγ2β = 2β ∈ {1, 2}. Whence by conditions (6) and (7) 2γ2 = 2 = 2γ3, thus γ
fixes 2 too and the solutions are trivial. So let γ = (12...)... Condition (4) yields
2β ∈ {1, 2}, whence either β fixes 1 and 2 or it is of the form β = (12)... In both
cases by condition (5) it follows that γ = (12)... and the solutions are always
trivial.

The cases when Υ = {β} or Υ = {γ} are similar and still there exist only
trivial solutions.

Proposition 2 answers (in negative) to Question 5.1 in [1]. The following Propo-
sition gives a negative answer to Question 5.2.(i) in [1]:

A Combinatorial Approach to Collapsing Words 265

Proposition 3. Let Σ = {α, β, γ}. There is a word w ∈ Σ+ which is 2-
compressing for any mono automaton with one non-permutation transformation,
but not for each mono automaton with two non-permutation transformations.

Proof. Let A be a finite automaton with set of states Q = {1, 2, 3} and input
alphabet Σ. Let α be of type {1, 2}\1, β of type {1, 3}\1, and γ = (123) a permu-
tation. A is a proper 2-compressible mono automaton with 2 non permutation
transformations. Consider the set X = {xγ2β, xγ3β, xγα, xγ3α | x ∈ {α, β}},
it is easy to verify that all words in X ∪ {α, β}∗ have deficiency 1 with respect
to A.

Consider the 2-full word

w = γαβ2αγ2βγα2βγ3βαγαβα2γ2βαβγ2β2αγ.

All of its subwords of the form xγ+y with x, y ∈ {α, β} are in X (whence it does
not compress A and is not 2-collapsing), but is 2-compressible with respect to
each mono automaton with input alphabet {α, β, γ} by Corollary 1. In fact for
any DB-partition (P, Υ) of Σ the system Γw(P, Υ) has no nontrivial solution;
the proof is analogous to that of Proposition 2.

It is easy to deduce the following plus .1em

Corollary 3. Let Σ = {α, β, γ}. There is a word w ∈ Σ+ which is 2-compressing
for each mono1 automaton, and which fails to be 2-compressing for any mono2
automaton with input alphabet Σ.

Also Question 5.2.(ii) in [1], regarding stereo automata, has a negative answer.
The proof of the following proposition is similar to the former ones:

Proposition 4. Let Σ = {α, β, γ δ}. There is a word w ∈ Σ+ which is 2-
compressing for each stereo automaton with input alphabet Σ and with two
non-permutation transformations, but fails to be 2-compressing for some stereo
automaton with input alphabet Σ with three non-permutation transformations.

References

1. D. S. Ananichev, A. Cherubini, and M. V. Volkov, Image reducing words and
subgroups of free groups, Theor. Comput. Sci. 307, no.1 (2003), 7792.

2. D. S. Ananichev, A. Cherubini, and M. V. Volkov, An inverse automata algorithm
for recognizing 2-collapsing words, in: M. Ito, M. Toyama (eds.), Developments in
Language Theory, Lect. Notes Comp. Sci. 2450, Springer, Berlin 2003, 270282.

3. D. S. Ananichev and I. V. Petrov, Quest for short synchronizing words and short
collapsing words, WORDS. Proc. 4th Int. Conf., Univ. of Turku, Turku, 2003,
411418.

4. D. S. Ananichev, I. V. Petrov, and M. V. Volkov, Collapsing words: A Progress
Report, in: C. De Felice and A. Restivo (eds.), Developments in Language Theory,
Lect. Notes Comp. Sci. 3572, Springer, Berlin 2005, 11-21.

5. A. Cherubini and A. Kisielewicz, Recognizing collapsing words is co-NP-complete,
Proceedings of DCFS 2006, to appear.

266 A. Cherubini et al.

6. P. Gawrychowski and A. Kisielewicz, Recognizing 2-synchronizing words, preprint
2006.

7. S. W. Margolis, J.-E. Pin, and M. V. Volkov, Words guaranteeing minimum image,
Internat. J. Foundations Comp. Sci. 15 (2004) 259276.

8. I. V. Petrov, An algorithm for recognizing n-collapsing words, preprint 2005.
9. J.-E. Pin, On two combinatorial problems arising from automata theory, Ann. Dis-

crete Math. 17 (1983) 535548.
10. E. V. Pribavkina, On some properties of the language of 2-collapsing words, A, in:

C. De Felice and A. Restivo (eds.), Developments in Language Theory, Lect. Notes
Comp. Sci. 3572, Springer, Berlin 2005, 374-384.

11. N. Sauer and M. G. Stone, Composing functions to reduce image size, Ars Combi-
natoria 1 (1991) 171176.

Optimal Linear Arrangement of Interval Graphs

Johanne Cohen1, Fedor Fomin2, Pinar Heggernes2,
Dieter Kratsch3, and Gregory Kucherov4

1 LORIA, 54506 Vandoeuvre-lès-Nancy Cedex, France
Johanne.Cohen@loria.fr

2 Department of Informatics, University of Bergen, 5020 Bergen, Norway
{Fedor.Fomin, Pinar.Heggernes}@ii.uib.no
3 LITA, Université de Metz, 57045 Metz Cedex 01, France

kratsch@sciences.univ-metz.fr
4 LIFL/CNRS, 59655 Villeneuve d’Ascq, France

Gregory.Kucherov@lifl.fr

Abstract. We study the optimal linear arrangement (OLA) problem on inter-
val graphs. Several linear layout problems that are NP-hard on general graphs
are solvable in polynomial time on interval graphs. We prove that, quite surpris-
ingly, optimal linear arrangement of interval graphs is NP-hard. The same result
holds for permutation graphs. We present a lower bound and a simple and fast
2-approximation algorithm based on any interval model of the input graph.

1 Introduction

A linear layout (or simply layout) of a given graph G = (V,E) is a linear ordering
of its vertices. Assuming that the vertices of G are numbered from 1 to n, a layout is
a permutation L(1), L(2), . . . , L(n). The weight of a layout L on G is W(G,L) =∑

(u,v)∈E |L(u)− L(v)|. An optimal linear arrangement (OLA) of G is a layout with
the minimum weight, i.e., argminLW(G,L). We denote W(G) = minLW(G,L) and
call it the minimum weight on G.

Computing the optimal linear arrangement (the OLA problem) is NP-hard [11], and
it remains NP-hard for bipartite graphs [6]. The problem is solvable in polynomial time
for trees [7,3,19], and for some other restricted graph classes such as grids or hyper-
cubes [4]. There is an approximation algorithm for general graphs with performance
ratio O(log n) [18].

A well-known vertex ordering problem related to OLA is the Bandwidth Minimiza-
tion problem. The bandwidth of a layout L on G is b(G,L) = max(u,v)∈E |L(u) −
L(v)|. The bandwidth ofG is the minimum bandwidth of any layout ofG, i.e., bw(G) =
minL b(G,L). The bandwidth minimization problem is also NP-hard on general graphs
[10]. It remains NP-hard even on the restricted class of trees [17]. Furthermore, for gen-
eral graphs, bandwidth cannot be approximated by a polynomial time algorithm within
a constant factor [21], but it can be approximated in polynomial time with a factor of
O(log9/2 n) [9].

It is well known that many NP hard-problems are solvable in polynomial time on in-
terval graphs. In 1985, Johnson wrote in his NP-completeness column: “Indeed, I know

R. Královič and P. Urzyczyn (Eds.): MFCS 2006, LNCS 4162, pp. 267–279, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

268 J. Cohen et al.

of no NP-completeness results for interval graphs, although there are still some possi-
bilities in Table 1, in addition to such naturals as BANDWIDTH and SUBGRAPH ISO-
MORPHISM” [13]. Interestingly, a bit later, it appeared that the bandwidth minimization
problem is solvable in polynomial time for interval graphs. For an interval graph with n
vertices given by an interval model, Kleitman and Vohra’s algorithm solves the decision
problem “Is bw(G) ≤ k?” in O(nk) time, and it can be used to produce a layout with
the minimum bandwidth in O(n2 logn) time [14]. Furthermore, Sprague has shown
how to implement Kleitman and Vohra’s algorithm to answer the decision problem in
O(n log n) time, and thus produce a minimum bandwidth layout in O(n log2 n) time
[20]. We refer the reader to [4] for a survey of known results on the OLA, bandwidth
and other related layout problems.

To our knowledge, optimal linear arrangement of interval graphs has not been stud-
ied so far. In this paper, we show that, in contrast to bandwidth minimization, the OLA
problem is NP-hard on interval graphs. We also show that the problem can be approxi-
mated within a constant factor of 2 by a simple algorithm.

Besides its theoretical interest, the class of interval graphs is widely acknowledged
as an important graph class, due to a number of applications. Interval graphs are exten-
sively used in bioinformatics, typically to model the genome physical mapping prob-
lem, which is the problem of reconstructing the relative positions of DNA fragments,
called clones, out of information of their pairwise overlaps (see e.g. [22]). However, in-
terval graphs appear also in other situations in bioinformatics, such as for gene structure
prediction for example [1]. In [8], interval graphs are used to model temporal relations
in protein-protein interactions. In that paper, an optimal linear arrangement of an in-
terval graph models an “optimal” molecular pathway, and the problem of efficiently
computing this arrangement is explicitly raised. This provides a direct motivation for
the present study.

This paper is organized as follows. In Section 2, graph notations are introduced. We
obtain a lower bound for the minimum weight of a linear arrangement for general graphs
in terms of the degrees of the vertices. In Section 3, we prove that the OLA problem
is NP-complete for interval graphs. In Section 4, using the lower bound we show that
both the left endpoint ordering and the right endpoint ordering of an interval graph
are 2-approximations for the Optimal Linear Arrangement problem. In Section 5, we
first show that the NP-completeness result holds also for permutation graphs, and then
discuss approximation algorithms for OLA of the more general class of cocomparability
graphs.

2 Preliminaries

We consider only finite, undirected and simple graphs. For G = (V,E), we will denote
|V | as n and |E| as m. We sometimes refer to the vertex set of G as V (G) and the
edge set as E(G). We let N(v) denote the set of vertices adjacent to v. The degree of a
vertex v in graphG, dG(v), is the number of vertices adjacent to v in G. ∆(G) denotes
the maximum degree of a vertex in graph G. The subgraph of G = (V,E) induced by
V ′ ⊆ V will be referred to as G[V ′]. The complement of a graph G is denoted by G
and has the same vertex set as G, and (x, y) ∈ E(G) if and only if (x, y) /∈ E(G).

Optimal Linear Arrangement of Interval Graphs 269

A layout L of a graph G = (V,E) can be seen as an ordering (v1, v2, . . . , vn) of V ,
meaning that L(vj) = j, for 1 ≤ j ≤ n. We extend this notation to subsets of vertices.
Let V1, . . . , Vi be a partition of V . If a layout L of G has the form (V1, . . . Vi), then it
implies that

– ∀j, ∀�, 1 ≤ j < � ≤ i, ∀u ∈ Vj , ∀w ∈ V�, L(u) < L(w)
– ∀�, 1 ≤ � ≤ i, the order of L inside V� is an arbitrary order of V�.

A graph G = (V,E) is an interval graph if there is a one-to-one correspondence
between V and a set of intervals of the real line such that, for all u, v ∈ V , (u, v) ∈ E if
and only if the intervals corresponding to u and v have a nonempty intersection. Such a
set of intervals I is called an interval model for G. We assume that an interval model is
given by a left endpoint and a right endpoint for each interval, namely, l(v) and r(v) for
all v ∈ V . Furthermore, we assume that we are also given a sorted list of the endpoints,
and that the endpoints are distinct.

First, we study OLA of simple topologies, like stars and complete graphs. A star, de-
noted by Sα, is a tree such that one vertex, called the center, is adjacent to α leaves. A
complete graph, denoted by Kn, is a graph on n vertices such that all vertices are pair-
wise adjacent. The following lemmas give the weight of the optimal linear arrangement
for these particular topologies.

Lemma 1. Let Kn be the complete graph on n vertices. ThenW(Kn) = (n−1)n(n+1)
6 .

Proof. Straightforward, as all layouts yield the same weight. �

Lemma 2. Let Sα be the star with a center vertex c and α leaves. Then every layout L
of Sα satisfies the following:

– α
2 (α

2 + 1) ≤ W(Sα, L) ≤ α
2 (α+ 1) and W(Sα) = α

2 (α
2 + 1), if α is even,

– (�α
2 �+ 1)2 ≤ W(Sα, L) ≤ (�α

2 �+ 1)α and W(Sα) = (�α
2 �+ 1)2, if α is odd,

and a permutation L is an optimal linear arrangement if and only if L places c at the
middle position.

Proof. Assume that L(c) = k. Then W(Sα, L) =
∑k−1

i=1 i+
∑α+1−k

i=1 i = (k − 1)2 +
α
2 (α + 3 − 2k). For the case where α is even, W(Sα, L) reaches its minimum for
k = α

2 + 1 or for k = α
2 . In this case, W(Sα) = α

2 (α
2 + 1). Moreover W(Sα, L)

reaches its maximum for k = 1 or for k = α + 1. The same arguments can be applied
for the case where α is odd. �

These results will be needed to prove the NP-completeness of the OLA problem on
interval graphs and to give a 2-approximation algorithm for it. The following lower
bound for optimal linear arrangement of any graph is obvious, and it will be useful
when analyzing the performance ratio of some algorithms.

Lemma 3. Let G = (V,E) be a graph, E = E1 ∪ E2 and E1 ∩ E2 = ∅. Then
W(G) ≥ W(G1) +W(G2), where G1 = (V,E1) and G2 = (V,E2).

270 J. Cohen et al.

Corollary 1. Let G = (V,E), V = V1 ∪ · · · ∪ Vn, and E = E1 ∪ · · · ∪ En, where
E1, · · · , En are pairwise disjoint. Then W(G) ≥ W(G1) + . . . + W(Gn), where
Gi = (Vi, Ei), 1 ≤ i ≤ n.

All these results will be useful to compute the lower and upper bounds of the weight
W(G,L) of a layoutL ofG. For example, consider a graphG composed of two disjoint
complete graphs Kα and Kb and an additional vertex c adjacent to all other vertices
of the graph. The set of edges of this graph can be easily partitioned into three sets.
From Corollary 1, by construction we have W(G) ≥ W(Kb) +W(Kα) +W(Sα+b).
Moreover, the following layout L of G is considered: V (Kα), c, V (Kb). Layout L has
weight W(Kb) + W(Kα) + W(Sα+b). The previous inequality implies that L is an
optimal linear arrangement.

3 The Complexity of the OLA Problem on Interval Graphs

The goal of this section is to prove the following theorem.

Theorem 1. The problem of deciding, for an interval graphG = (E, V) and a constant
K , whether W(G) ≤ K is NP-complete.

The proof will be by reduction from the 3-PARTITION problem [11]:

3-PARTITION

Instance: A finite set A of 3m integers {a1, . . . , a3m}, a bound B ∈ Z+ such that∑3m
i=1 ai = mB.

Question: Can A be partitioned into m disjoint sets A1, A2, . . . , Am such that, for all
1 ≤ i ≤ m,

∑
a∈Ai

a = B?

3-PARTITION is known to be NP-complete in the strong sense [11] (Even if B is
polynomially bounded by the size of instance, the problem is still NP-complete). Note
that we do not require here that each Ai is composed of exactly three elements.

The structure of our proof will be as follows. We first construct a graph H(B,m)
depending on two natural numbersB andm, and we describe the structure of its optimal
linear arrangement. In the second part, we describe a polynomial-time reduction from
3-PARTITION, i.e., we encode numbers {a1, . . . , a3m} by adding some additional edges
to graphH(B,m), and show that an optimal linear arrangement of this extended graph
corresponds precisely to a 3-partition of {a1, . . . , a3m}.

For simplicity of notation in our proofs, in this section we will let K(n) = W(Kn)
and S(α) = W(Sα), where Kn is the complete graph on n vertices, and Sα is the star
with α leaves.

3.1 Construction of H(B, m) and Its Optimal Linear Arrangement

Letm andB be two integers. We assume thatm is even. The set of vertices ofH(B,m)
will be the union of several disjoint sets

V (H(B,m)) = R1 ∪X ∪ V ∪ Y ∪ Z ∪R2.

The number of vertices in each set is defined as follows.

Optimal Linear Arrangement of Interval Graphs 271

– Each of R1 and R2 has 3m3(B + 1) vertices,
– X is the union of disjoint setsX1, . . . , Xm/2, where eachXi has 2(B+1) vertices;

similarly, Z is the union of disjoint sets Z1, . . . , Zm/2, where each Zi has 2(B+1)
vertices,

– V has (m+ 1) vertices,
– Y has mB vertices.

The set of edges of H(B,m) is defined as follows.

– Vertices of R1 ∪X form a clique, i.e., they are all pairwise adjacent; vertices in R1
have no other neighbors,

– vertices of R2 ∪ Z form a clique; vertices in R2 have no other neighbors,
– vertices V = {v1, . . . , vm+1} form a clique,
– for each 1 ≤ i ≤ m/2, vi is adjacent to all vertices of Xi ∪ . . . ∪Xm/2,
– for each 1 ≤ i ≤ m/2, vm+2−i is adjacent to all vertices of Zi ∪ . . . ∪ Zm/2,
– each vertex of Y is adjacent to all vertices of V ,
– H(B,m) has no edges other than those defined above.

Y

1

v2

X2

__m
2

X

X1

m/2+1v

vm+1

R2{
Z2

__m
2

{
{
{Z

Z1

{
{
{

R1{

v

Fig. 1. Interval representation of graph H(B, m)

272 J. Cohen et al.

An interval representation of graph H(B,m) is given in Figure 1. From this fig-
ure, it is clear that H(B,m) is an interval graph. From Lemma 1, a lower bound on
W(H(B,m)) can be now established as follows.

Lemma 4. W(H(B,m)) ≥ 2K(3m3(B + 1) +m(B + 1)) + 2
∑m/2

i=1 S(2(m − i +
1)(B + 1)−m) + S(mB) +K(m+ 1).

Proof. Using Corollary 1, we can estimate the lower bound as follows:W(H(B,m)) ≥
K(|R1|+ |X |)+

∑m/2
i=1 S(|Xi|+ . . .+ |Xm/2|+ |Y |)+

∑m/2
i=1 S(|Zi|+ . . .+ |Zm/2|+

|Y |)+K(|V |)+S(|Y |)+K(|Z| + |R2|). Here termsK(|R1|+ |X |) andK(|Z|+ |R2|)
correspond to complete graphs formed respectively by vertex sets R1 ∪X and Z ∪R2.
Each term S(|Xi| + . . . + |Xm/2| + |Y |), 1 ≤ i ≤ m/2, corresponds to the star with
center vi and leavesXi∪· · ·∪Xm/2∪Y . Similarly, term S(|Zi|+ . . .+ |Zm/2|+ |Y |),
1 ≤ i ≤ m/2, corresponds to the star with center vm+2−i and leaves Zi∪ · · ·∪Zm/2∪
Y . Finally term S(|Y |) corresponds to the star with center vm/2+1 and leaves Y , and
K(|V |) corresponds to the clique V . By substituting the cardinalities of the sets, we
obtain the bound of Lemma 4. �

We now show the following upper bound on W(H(B,m)).

Lemma 5. W(H(B,m)) ≤ 2K(3m3(B + 1) +m(B + 1)) + 2
∑m/2

i=1 S(2(m − i +
1)(B + 1)) + S(m(B + 1))− (B + 1)K(m+ 1).

Proof. Consider the following layout of H(B,m):

R1, X1, · · · , Xm/2, v1, Y1, v2, Y2, . . . , Ym, vm+1, Zm/2, · · · , Z1, R2, (1)

where Y1 ∪ · · · ∪ Ym = Y , and for each 1 ≤ i ≤ m, |Yi| = B. Observe that the order
of vertices inside R1, Xi, Yi, Zi, 1 ≤ i ≤ m

2 , and R2 is irrelevant.
Since vertices inR1∪X andZ∪R2 are consecutive in the layout, the contribution of

cliquesR1∪X and Z∪R2 is respectivelyK(|R1|+ |X |) = K(3m3(B + 1)+m(B+
1)) and K(|Z|+ |R2|) = K(3m3(B + 1) +m(B + 1)).

Now consider vertices v1, . . . , vm/2. Each vertex vi, 1 ≤ i ≤ m/2, has 2(m − i+
1)(B + 1) neighbors in graph H(B,m): 2(m/2− i+ 1)(B + 1) neighbors belonging
to Xi, . . . , Xm/2, m neighbors v1, . . . , vi−1, vi+1, . . . , vm+1, and mB neighbors in Y .
Observe now that these 2(m−i+1)(B+1) neighbors of vi appear in (1) at consecutive
positions before and after vi and moreover, vi appears exactly in the middle of those
vertices. This implies that the contribution of each star centered at vi 1 ≤ i ≤ m/2 is
S(2(m− i+1)(B+1)) and the overall contribution is

∑m/2
i=1 S(2(m− i+1)(B+1)).

Symmetrically, the contribution of the stars centered at vm/2+1, . . . , vm+1 is also∑m/2
i=1 S(2(m− i+ 1)(B + 1)). By the same argument, the star with center vm/2 + 1

and leaves {v1, . . . , vm/2, vm/2+2, . . . , vm+1} contributes with S(m(B + 1)).
Observe that each edge with both endpoints in {v1, . . . , vm+1} has been counted

twice. We therefore have to subtract (B + 1)K(m+ 1) to take this into account.
By summing up all the terms, we obtain the lemma. �

To proceed, we need to estimate from above the difference between the upper (Lemma 5)
and lower (Lemma 4) bounds. By straightforward arithmetics, one can establish that for

Optimal Linear Arrangement of Interval Graphs 273

any x and y ≤ x, we have S(x) − S(x − y) ≤ xy. Using this, the difference between
the upper and lower bounds is

2
m/2

i=1

[S(2(m− i+ 1)(B + 1))− S(2(m− i+ 1)(B + 1)−m)] + [S(m(B + 1))− S(mB)]−

(B + 2)K(m+ 1) ≤ 2
m/2

i=1

2(m− i+ 1)(B + 1)m+m2(B + 1)− (B + 2)K(m+ 1) ≤

4m(B + 1)
m/2

i=1

(m− i+ 1) +m2(B + 1)− (B + 2)m(m+ 1)(m+ 2)/6< 3m3(B + 1)
(2)

The next step is to prove that layout (1) of Lemma 5 is actually an optimal linear
arrangement. Let L∗ by an optimal linear arrangement of H(B,m). We first show that
L∗ maps vertices of R1 ∪X to consecutive positions.

Lemma 6. LetL∗ be an optimal linear arrangement ofH(B,m). Then the set {L∗(w)|
w ∈ R1 ∪X} contains |R1|+ |X | consecutive integers.

Proof. Assume for contradiction that some vertex from V ∪Y ∪R2 appears at a position
pwhich is between the smallest and the largest positions of {L∗(w)|w ∈ R1∪X}. Then
the contribution of each edge of {(w1, w2)|w1, w2 ∈ R1 ∪X,L∗(w1) < p,L∗(w2) >
p} is increased by at least one. The total increase is then at least min1≤L≤|R1|+|X|−1(L·
(|R1| + |X | − L)) = |R1| + |X | − 1 = 3m3(B + 1) +m(B + 1)− 1. Observe now
that this quantity is larger than the maximal possible difference (2) between the upper
and the lower bound on W(H(B,m)), which gives the desired contradiction. �

Lemma 7. LetL∗ be an optimal linear arrangement ofH(B,m). Then the set {L∗(w)|
w ∈ Z ∪R2} contains |Z|+ |R2| consecutive integers.

Proof. By symmetry, the proof is similar to that of Lemma 6. �

Thus, Lemmas 6 and 7 imply that any optimal linear arrangement maps vertices of
R1 ∪X and Z ∪ R2 into sets of consecutive positions. By an argument similar to that
of Lemma 6, we further deduce that vertices of R1 ∪X appear in the beginning of an
optimal layout, and vertices of Z ∪R2 appear in the end of this layout, while the other
vertices (V ∪ Y) appear between them. Indeed, if it is not the case, edges “crossing”
R1 ∪X (or Z ∪R2) would give an increase in the weight that would be larger than the
maximal possible difference (2) between the upper and the lower bound.

To further specify an optimal linear arrangement of H(B,m), we have to clarify the
layout of V ∪ Y . The following lemma completes this part of the proof.

Lemma 8. Any optimal linear arrangement of H(B,m) has the form

R1 ∪X, v1, Y1, v2, Y2, . . . , Ym, vm+1, Z ∪R2, (3)

where Y1 ∪ · · · ∪ Ym = Y and for each 1 ≤ i ≤ m, |Yi| = B.

Proof. It is easy to see that v1 appears immediately afterR1∪X , as otherwise it can be
moved down to that position which only decreases the resulting weight. By symmetry,

274 J. Cohen et al.

vm+1 appears immediately before Z ∪R2. From similar considerations, we can deduce
that the ordering of vertices in V is the “natural” ordering v1, v2, . . . , vm+1 (otherwise
by permuting the vertices we would decrease the total weight).

It remains only to show that between each vi and vi+1 there are exactly B vertices
of Y . If this is the case, then observe (see the proof of Lemma 5) that each star centered
at vi has exactly the same number of neighbors to the left of L∗(vi) as to the right of
L∗(vi), and all these neighbors appear at consecutive positions. Thus, each star centered
at vi is optimally arranged and reaches the absolute lower bound of the contributed
weight. Any other arrangement of v1, . . . , vm+1 would break the parity at least for one
of these stars, and therefore, by the remark after Lemma 2, would necessarily increase
the weight contributed by this star. This completes the proof. �

3.2 NP-Completeness Proof

Using the construction of graph H(B,m) from the previous section, we now prove
Theorem 1 by reduction from the 3-PARTITION.

Consider an instance of 3-PARTITION, ({a1, . . . , a3m}, B), where
∑3m

i=1 ai = mB.
We transform it into the graph H(B,m) extended by additional edges over vertices in
Y . Consider a partition Y = Y1∪· · ·∪Y3m, where Yi∩Yj = ∅ for i 	= j, and |Yi| = ai

for all i, 1 ≤ i ≤ 3m. We turn each Yi into a clique by adding a set of edges Ei over
all pairs of vertices of Yi. Consider an extended graph G = H(B,m)

⋃
∪3m

i=1(Yi, Ei).
Again, from Figure 1, it is clear that G is an interval graph. Let K = W(H(B,m)) +∑3m

i=1K(ai). Since the time running of this transformation depends on B, the whole
transformation can be carried out in polynomial time.

Theorem 2. There exists a 3-partition of {a1, . . . , a3m} if and only if W(G) = K .

Proof. Only if part: Assume that A = {a1, . . . , a3m} can be partitioned into m dis-
joint subsets A1, · · · , Am, each summing up to B. Let Ai = {ai

1, . . . , a
i
|Ai|} ⊆ A. We

construct a layout L∗ defined by

R1 ∪X, v1, Y 1
1 , . . . , Y

1
|Ai|, v2, . . . , Y

m
1 , . . . , Ym

|Am|, vm+1, Z ∪R2, (4)

where Y i
j ∈ {Y1, . . . , Y3m} is the subset corresponding to ai

j (|Y i
j | = ai

j). Observe that
in (4), there are exactly B vertices of Y between every vi and vi+1 and that all edges
between vertices of Y are edges of cliques with vertices mapped by L∗ to consecutive
positions. Therefore, using Lemma 8, the weight ofL∗ isW(G,L∗) = W(H(B,m))+∑3m

i=1K(ai) = K . By Corollary 1, this is the smallest possible weight, i.e.,W(G) = K .
If part: Let W(G) = K , i.e., there exists a layout L∗ such that W(G,L∗) = K .

Decompose G as the edge-disjoint union of graph H(B,m) and cliques (Y1, E1), . . . ,
(Y3m, E3m). For any layoutL ofG,W(H(B,m), L) ≥ W(H(B,m)) andW((Yi, Ei),
L) ≥ K(ai) for all i, 1 ≤ i ≤ 3m. On the other hand, by Corollary 1, W(G) ≥
W(H(B,m)) +

∑3m
i=1K(ai). Therefore, if a layout L∗ verifies W(G,L∗) = K , this

implies that (i) W(H(B,m), L∗) = W(H(B,m)) and (ii) W((Yi, Ei), L∗) = K(ai),
for all i, 1 ≤ i ≤ 3m.

Condition (i) implies that layout L∗ verifies Lemma 8, and, in particular, splits ver-
tices of Y by vertices v1, . . . , vm+1 into m groups, each of cardinality B. Condition

Optimal Linear Arrangement of Interval Graphs 275

(ii) ensures that each subset Yi is mapped by L∗ into consecutive positions and there-
fore falls inside one such group. This means that numbers {a1, . . . , a3m} (cardinalities
of {Y1, . . . , Y3m}) are split into m disjoint subsets each of which sums up to B. This
completes the proof of Theorem 2. �

Since the optimal linear arrangement problem for interval graphs is NP-complete, the
next section describes a 2-approximation algorithm for interval graphs.

4 A 2-Approximation Algorithm for OLA of Interval Graphs

Before describing an approximation algorithm, we study two layouts of an interval
graph G, defined by any fixed interval model. Let I be an interval model of G. The
layout of G consisting of vertices ordered by the left endpoints of their corresponding
intervals is called the left endpoint ordering (leo) ofGwith respect to the interval model
I. Similarly, the layout ofG consisting of vertices ordered by the right endpoints of their
corresponding intervals is called the right endpoint ordering (reo) of G with respect to
I.

It has been shown in [15] that leo and reo are good approximations for the bandwidth
of interval graphs: b(G, leo) ≤ 2 · bw(G) and b(G, reo) ≤ 2 · bw(G). This is based on
the fact that:

– in a left endpoint ordering, leo, for every pair of adjacent vertices leo(u) < leo(w),
each vertex between u and w is adjacent to u, and

– in a right endpoint ordering reo, for every pair of adjacent vertices reo(u) <
reo(w) each vertex between u and w is adjacent to w.

This can be used to show that left endpoint and right endpoint orderings are 2-
approximations for the OLA problem on interval graphs.

Theorem 3. Let G = (V,E) be an interval graph, and let I be an interval model ofG.
Then, W(G, leo) ≤ 2W(G), and W(G, reo) ≤ 2W(G).

Proof. We focus on the ordering reo. For any integer i, 1 ≤ i ≤ V (G), we define graph
Gi such that

– V (Gi) = {u | u ∈ V (G) ∧ reo(u) ≤ i}, and
– E(Gi) = {e = (u, v) ∈ E(G) | u ∈ V (Gi) ∧ v ∈ V (Gi)}.

We prove this theorem by induction on the number of vertices. The induction hy-
pothesis is that W(Gi, reo) ≤ 2W(Gi) for any integer i , 1 ≤ i ≤ V (G).

The basis of the induction is the situation whereG1 contains only one vertex (i = 1).
The induction hypothesis holds here because W(G1, reo) = 0 and W(G1) = 0. Then
W(G1, reo) ≤ 2W(G1).

For the induction step, we assume that the induction hypothesis for i holds. Now, we
will prove that the induction hypothesis holds for i + 1. Let u be the vertex such that
reo(u) = i+ 1.

First we give a lower bound for W(Gi+1). We can notice that sets E(Gi) and {e =
(v, u) | v ∈ V (Gi) ∧ e ∈ E(Gi+1)} form a partition of set E(Gi+1). By Lemma 3,
W(Gi+1) ≥ W(Gi) +W(SdGi+1(u)),

276 J. Cohen et al.

Secondly, we give an upper bound for W(Gi+1, reo) by considering the partition
E(Gi) and {e = (v, u) | v ∈ V (Gi) ∧ e ∈ E(Gi+1)} of set E(Gi+1).

For the edge set E(Gi), we have
∑

e=(u,v)∈E(Gi) |reo(u)− reo(v)| = W(Gi, reo).
For the edge set {e = (v, u) | v ∈ V (Gi) ∧ e ∈ E(Gi+1)}, since vertex u and

its neighborhood in Gi+1 are consecutive in the layout reo, the linear arrangement
reo gives dGi+1(u) + 1 consecutive numbers. We can compute an upper bound of∑

v∈NGi+1(u) |reo(u) − reo(v)| because according to the linear arrangement reo, we

are in the situation of the worst case for the star. So, we have∑
v∈NGi+1(u)

|reo(u)− reo(v)| ≤ 2W(SdGi+1(u))

This yields an upper bound for W(Gi+1, reo). We get W(Gi+1, reo) ≤ W(Gi,
reo) + 2W(SdGi+1(u)).

Since we have W(Gi, reo) ≤ 2W(Gi) by induction hypothesis, we have

W(Gi+1, reo) ≤ 2W(Gi) + 2W(SdGi+1(u)) ≤ 2W(Gi+1)

So, the Theorem holds. �
Theorem 3 shows that left endpoint and right endpoint orderings are 2-approximation
algorithms for this problem. This is the best possible bound for these orderings. In fact,
a star Sα with an even number α of leaves has an interval representation such that
W(Sα, reo) = α(α+1)

2 and W(Sα) = α
2 (α

2 + 1). So the ratio W(Sα,reo)
W(Sα) equals to

2− 1
α+2 .

In the next section, we focus on close relatives of interval graphs – permutation
graphs – and on their generalization – cocomparability graphs.

5 OLA of Permutation and Cocomparability Graphs

Cocomparability, interval, and permutation graphs are well-known classes of perfect
graphs. All of them have geometric intersection models. Many references, including
[2,12], contain comprehensive overviews of the many known structural and algorithmic
properties of (co)comparability, interval, and permutation graphs.

Permutation graphs are intersection graphs of straight line segments between two
parallel lines. Vertices of the graph are associated to segments and two vertices are
adjacent iff corresponding segments intersect.

Our first remark here is that graphH(B,m) considered in Section 3 is a permutation
graph. Figure 2 shows a permutation representation for H(B,m).

This immediately implies

Lemma 9. The problem of deciding, for a permutation graph G = (E, V) and a con-
stant K , whether W(G) ≤ K is NP-complete.

Let us now turn to cocomparability graphs that are generalizations of both interval and
permutation graphs. A graphG is cocomparability if its complementG is a comparabil-
ity graph, i.e., the comparability graph of a poset P = (V,≺) is the graph with vertex
set V for which vertices x and y are adjacent if and only if either x ≺ y or y ≺ x in P .

Optimal Linear Arrangement of Interval Graphs 277

Y
R1__m

2
XX2X1

v1

R2

m/2+1vv2 vm+1

Z1
Z2 __m

2
Z

Fig. 2. Permutation representation of graph H(B, m)

The following property of cocomparability graphs is well known (see e.g. [2]), and
it is crucial for our arguments.

Proposition 1. A graph G = (V,E) is a cocomparability graph if and only if it has
a cocomparability ordering, i.e., an ordering (v1, v2, . . . , vn) of its vertices such that
(vi, vk) ∈ E and i < j < k imply either (vi, vj) ∈ E or (vj , vk) ∈ E.

Since every interval graph is a cocomparability graph, the OLA problem remains NP-
complete on cocomparability graphs. Now, we focus on the approximation problem.
First, the following lower bound for the weight of an optimal linear arrangement of
any graph will be useful when analyzing the performance ratio of some algorithms and
orderings respectively.

Lemma 10. For every graph G = (V,E),

W(G) ≥ m

2
+

1
8

∑
v∈V

d2(v).

Proof. Let v be a vertex of G. Then to minimize the sum over all edges incident to v in
a layout, half of the neighbors of v must be placed immediately to the left of v and half
of the neighbors of v must be placed immediately to the right of v. Thus the sum over
all edges incident to v is at least 1 + 1 + 2 + 2 + · · ·+ d(v)

2 + d(v)
2 if d(v) is even, and

1 + 1 + 2 + 2 + · · ·+ d(v)−1
2 + d(v)−1

2 + d(v)+1
2 if d(v) is odd.

Thus we obtain

W(G) ≥ 1
2

∑
v∈V

((d(v)
2

+ 1
)(d(v)

2
))

≥
∑
v∈V

(d2(v)
8

+
d(v)
4

)
≥ 1

8

∑
v∈V

d2(v) +
m

2
. �

We use the lower bound of the previous section to show that every cocomparability
ordering of a cocomparability graph has weight at most 8 · W(G).

278 J. Cohen et al.

Theorem 4. Let G = (V,E) be a cocomparability graph and let L be a cocompara-
bility ordering of G. Then, W(G,L) ≤ 8 · W(G).

Proof. By the definition of L, if u and w are adjacent in G then all vertices between u
and w in L are either adjacent to u or adjacent to w. Therefore

|L(u)− L(w)| ≤ |N(u) ∪N(w)| ≤ d(u) + d(v),

and by Lemma 10,

W(G,L) =
∑

e=(u,v)

|L(u)− L(v)|

≤
∑

e=(u,v)

(d(u) + d(v))

≤
∑
v∈V

d2(v)

≤ 8 · W(G).

�

Since a cocomparability ordering can be found in polynomial timeO(n2.376) [16], The-
orem 4 immediately implies an 8-approximation polynomial-time algorithm for OLA
on cocomparability graphs.

6 Conclusion and Open Problems

In this paper, we resolved the complexity of the OLA problem for interval, permuta-
tion and consequently for cocomparability, graphs. We have given simple approxima-
tion algorithms for those classes. There are several other linear layout problems, like
CUTWIDTH, whose complexity is not resolved for the class of interval graphs [4].

References

1. T. Biedl, B. Brejova, E. Demaine, A. Hamel, A. Lopez-Ortiz, T. Vinar, Finding Hidden In-
dependent Sets in Interval Graphs, Theoretical Computer Science 310 (1-3), Jan 2004, 287–
307.

2. A. Brandstädt, V.B. Le, J. Spinrad Graph Classes: A Survey, SIAM Monographs on Discrete
Math. Appl., Vol. 3, SIAM, Philadelphia (1999)

3. F.R.K. Chung, Labelings of graphs, Selected Topics in graph theory, 151-168, Academic
Press, San Diego, 1988.

4. J. Dı́az, J. Petit, M.J. Serna, A survey of graph layout problems, ACM Computing Surveys,
vol.34, No.3, Sept 2002, 313-356.

5. G. Even, S. Naor, B.Schieber, S. Rao. G. Even, Divide-and-conquer approximation algo-
rithms via spreading metrics, Journal of the ACM, 47(4):585–616, 2000.

6. S. Even, Y. Shiloach, NP-Completeness of Several Arrangement Problems, Technical Report
#43, Computer Science Dept., The Technion, Haifa, Israel, 1975.

Optimal Linear Arrangement of Interval Graphs 279

7. M.A. Goldberg, I.A. Klipker, Minimal placing of trees on a line, Technical report, Physico-
Technical Institute of Low Temperatures, Academy of Sciences of Ukranian SSR, USSR, 1976.

8. M. Farach-Colton, Y. Huang, J.L.L. Woolford, Discovering temporal relations in molecular
pathways using protein-protein interactions, Proceedings of the 8th Annual International
Conference on Computational Molecular Biology (RECOMB), 2004, San Diego, California,
USA, March 27-31, 2004, ACM Press, 150–156.

9. U. Feige, Approximating the bandwidth via volume respecting embeddings, J. Comput. Sys-
tem Sci. 60 (2000) 510-539.

10. M. R. Garey, R. L. Graham, D. S. Johnson, and D. E. Knuth, Complexity results for band-
width minimization, SIAM J. Appl. Math., 34 (1978), 477–495.

11. M.R. Garey, D.S. Johnson, Computers and Intractability - A Guide to the Theory and Practice
of NP-Completeness, W.H. Freeman, San Francisco, 1979

12. M.C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Academic Press, New York
(1980)

13. D. Johnson, The NP-completeness column: an ongoing guide, J. Algorithms 6 (1985), 434–
451.

14. D.J. Kleitman, R.V. Vohra, Computing the bandwidth of interval graphs, SIAM J. Discrete
Math. 3 (1990) 373-375.

15. D. Kratsch, L.K. Stewart, Approximating bandwidth by mixing layouts of interval graphs,
SIAM Journal on Discrete Mathematics 15 (2002) 435-449.

16. R. McConnell, J. Spinrad, Modular decomposition and transitive orientation, Discrete Math.
201 (1999), 189–241.

17. B. Monien, The bandwidth minimization problem for caterpillars with hair length 3 is NP-
complete. SIAM J. Algebraic Discrete Methods 7 (1986), 505–512.

18. S. Rao, A. Richa, New approximation techniques for some ordering problems, Proceedings
of the Ninth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’98) 211–218,
ACM, New York, 1998.

19. Y. Shiloach, A minimum linear arrangement algorithm for undirected trees, SIAM Journal
on Computing 8 (1979) 15-32.

20. A.P. Sprague, An O(n log n) algorithm for bandwidth of interval graphs, SIAM J. Discrete
Math. 7 (1994) 213-220

21. W. Unger, The complexity of the approximation of the bandwidth problem, Proceedings of
the Thirty-ninth Annual IEEE Symposium on Foundations of Computer Science (Palo Alto,
CA, 1998).

22. M. Waterman, Introduction to computational biology: Maps, sequences and genomes, Chap-
man & Hall, 1995.

The Lempel-Ziv Complexity of Fixed Points of

Morphisms

Sorin Constantinescu and Lucian Ilie�,��

Department of Computer Science, University of Western Ontario
London, Ontario, N6A 5B7, Canada
{sorinco, ilie}@csd.uwo.ca

Abstract. The Lempel–Ziv complexity is a fundamental measure of
complexity for words, closely connected with the famous LZ77, LZ78
compression algorithms. We investigate this complexity measure for one
of the most important families of infinite words in combinatorics, namely
the fixed points of morphisms. We give a complete characterisation of the
complexity classes which are Θ(1), Θ(log n), and Θ(n1/k), k ∈ N, k ≥ 2,
depending on the periodicity of the word and the growth function of
the morphism. The relation with the well-known classification of Ehren-
feucht, Lee, Rozenberg, and Pansiot for factor complexity classes is also
investigated. The two measures complete each other, giving an improved
picture for the complexity of these infinite words.

1 Introduction

Before publishing their famous papers introducing the well-known compression
schemes LZ77 and LZ78 in [31] and [32], resp., Lempel and Ziv introduced a
complexity measure for words in [18] which attempted to detect “sufficiently
random looking” sequences. In contrast with the fundamental measures of Kol-
mogorov [16] and Chaitin [3], Lempel and Ziv’s measure is computable. The
definition is purely combinatorial; its basic idea, splitting the word into minimal
never seen before factors, proved to be at the core of the well-known compression
algorithms, as well as subsequent variations. Another, closely related, variant is
to decompose the word into maximal already seen factors.

Lempel–Ziv-type complexity and factorisations have important applications
in many areas, such as, data compression [31,32], string algorithms [6,22,17,27],
molecular biology [14,13,4], and neural computing [29,1,30].

Lempel and Ziv [18] investigate various properties which are expected from a
complexity measure which intends to approach randomness. They prove it to be
subadditive and also that most sequences are complex but still not too many;
see [18] for details. Also, they test it against the de Bruijn words, [2], an well-
established case of complex words – de Bruijn words contain as factors all words
of a given length, within the minimum possible space. Therefore, they establish
the first connection with the factor complexity, which is also one of our topics.
� Corresponding author.

�� Research partially supported by NSERC.

R. Královič and P. Urzyczyn (Eds.): MFCS 2006, LNCS 4162, pp. 280–291, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

The Lempel-Ziv Complexity of Fixed Points of Morphisms 281

In this paper, we investigate the Lempel–Ziv complexity for one of the most
important classes of infinite words in combinatorics, namely the fixed points
of morphisms. Many famous infinite words, such as Fibonacci or Thue-Morse,
belong to this family; see, e.g., [20].

It is due to the fundamental nature of this complexity measure that it gives a
complete characterisation of the possible classes of complexity that may appear.
The lowest complexity, constant, or Θ(1), is encountered for the simplest words,
that is, ultimately periodic. For non-periodic words, the complexity depends on
the growth function of the underlying morphism for the letter on which the
morphism is iterated. Thus, for polynomial growth we obtain Θ(n1/k), k ∈ N,
k ≥ 2, whereas for the exponential growth the complexity is Θ(log n). We give
examples for which each of the above complexities is reached.

Our results are similar with the well-known ones of Ehrenfeucht, Lee, and
Rozenberg [7], Ehrenfeuct and Rozenberg [8,9,10,11,12,25] and Pansiot [23,24]
who provided the same characterisation for the factor complexity. Comparing the
two characterisations, we find out that they complete each other in an interest-
ing way. While theirs distinguishes four complexities classes for the exponential
case, ours gives an infinite hierarchy (given by the parameter k above) in the
polynomial case, corresponding to Pansiot’s quadratic complexity.

The paper is structured as follows. After some basic definitions in the next
section, we introduce the Lempel–Ziv complexity and related concepts in Sec-
tion 3. Section 4 contains an important intermediate result which characterises
the complexity of powers of a morphism. Using it, our complete characterisation
is proved in Section 5 where examples which reach each complexity involved
are shown. The comparison with Pansiot characterisation of factor complexity
is included in Section 6. Some proofs had to be omitted due to limited space.

2 Basic Notions

We introduce here the basic definitions and concepts we need. For further details
we refer the reader to [19,20,21,5].

Let Σ be an alphabet (finite non-empty set) and denote by Σ∗ the free monoid
generated by Σ, that is, the set of all finite words over Σ. The elements of Σ
are called letters and the empty word is denoted ε. The length of a word w is
denoted |w| and represents the number of letters in w; e.g., |abaab| = 5 and
|ε| = 0.

Given the words w, x, y, z ∈ Σ∗ such that w = xyz, x is called a prefix, y is a
factor and z a suffix of w; we use the notation x ≤ w. If moreover x 	= w, then
x is a proper prefix of w, denoted x < w. The prefix of length n of w is denoted
prefn(w).

An infinite word is a function w : N− {0} → Σ. A finite word can be viewed
as a function w : {1, 2, . . . , |w|} → Σ. In either case, the factor of w starting at
position i and ending at position j, will be denoted by w(i, j) = wiwi+1 . . . wj .
The set of all factors of w is F (w). The set of letters of Σ that actually occur in
w is denoted Σ(w). The set of infinite words over Σ is denoted Σω. An infinite

282 S. Constantinescu and L. Ilie

word w is ultimately periodic if w = uvvv . . ., for some u, v ∈ Σ∗, v 	= ε. When
we say w is non-periodic, we mean it is not ultimately periodic.

A morphism is a function h : Σ∗ → ∆∗ such that h(ε) = ε and h(uv) =
h(u)h(v), for all u, v ∈ Σ∗. Clearly, a morphism is completely defined by the
images of the letters in the domain. For all our morphisms, Σ = ∆.

A morphism h : Σ∗ → Σ∗ is called non-erasing if h(a) 	= ε, for all a ∈ Σ,
uniform if |h(a)| = |h(b)|, for all a, b ∈ Σ, and prolongeable on a ∈ Σ if a < h(a).

If h is non-erasing and prolongeable on a, then hn(a) is a proper prefix of
hn+1(a), for all n ∈ N. We say that the morphism h has a fixed point w ∈ Σω

given by
w = lim

n→∞ hn(a) = h∞(a).

3 Word Histories and Lempel–Ziv Complexity

Let w be a (possibly infinite) word. We define the operator π that removes the
final letter of a finite word w: π(w) = w(1, |w| − 1).

We now introduce a fundamental notion of the Lempel–Ziv complexity: a
history H = (u1, u2, . . . , un) of w 	= ε is a factorisation of w, w = u1u2 . . . un,
having the property that u1 ∈ Σ and

π(ui) ∈ F (π2(u1u2...ui)), for all 2 ≤ i ≤ n .

This definition requires that any new factor ui, excepting its last letter, appears
before in the word. However, it is still possible that the whole ui does occur before
in w, or ui ∈ F (π(u1u2...ui)). In this case ui is called reproductive. Otherwise ui

is innovative.

Example 1. Consider the word w = aaabaabbaba. A possible history of w is
(a, aab, aab, bab, a). The second and fourth components are innovative whereas
the third and fifth are reproductive.

By definition, n is called the length of the history H and is denoted by |H |.
Two kinds of history are important to us. The first, directly connected to the

definition of Lempel–Ziv complexity is the exhaustive history. A history H is
exhaustive if all ui, 2 ≤ i ≤ |H | − 1, are innovative. In other words, the whole
new factor ui does not occur before in the word even if all its proper prefixes do.
Clearly, the exhaustive history of a word is unique.

By contrast with the exhaustive history, a reproductive history requires that
all its factors have occurred before (they are reproductive), with the necessary
exceptions of never seen before letters: a history H = (u1, u2, . . . , un) is repro-
ductive if either

(i) ui ∈ F (π(u1u2...ui)) or
(ii) ui /∈ F (π(u1u2...ui)) but then ui ∈ Σ.

The innovative factors in a reproductive history are single letters. A repro-
ductive history need not be unique.

The Lempel-Ziv Complexity of Fixed Points of Morphisms 283

Example 2. For the word in Example 1, (a, aab, aabb, aba) is the exhaustive his-
tory, whereas (a, aa, b, aa, b, ba, ba) and (a, aa, b, aab, ba, ba) are two reproductive
histories.

The following result, due to [18], relates the exhaustive history with all other
histories of a word.

Lemma 1. The exhaustive history of a word is the shortest history of that word.

By definition, the Lempel–Ziv complexity of a finite word w, denoted lz(w), is the
length of the exhaustive history of w. Therefore, by Lemma 1, for any history H ,
lz(w) ≤ |H |. This extends naturally to infinite words as follows: the Lempel–Ziv
complexity of an infinite word w is the function lzw : N → N, defined by

lzw(n) = lz(prefn(w)), for all n ≥ 0 ,

as the complexity of finite prefixes of w.

4 The Complexity of Powers

The main result of this section is that the complexity of the powers of h applied
to the generator of its fixed point, a, is either linear or bounded, that is, either
lz(hn(a)) = Θ(n) or lz(hn(a)) = Θ(1).

Given the morphism h, we can assume, without loss of generality, that each
letter of Σ occurs in h∞(a), the fixed point of h. If that is not the case, h can
be restricted to the set of those letters that do occur in w and the fixed point of
the restriction will still be the same.

We show first that the complexity of powers is at most linear. To this end, we
introduce the maximal reproductive history of a finite word w, denoted RH(w).
For w = w1w2 . . . w|w|, wi ∈ Σ, we define

RH(w) = (u1, u2, . . . , un)

as follows:

– u1 = w1, the first letter of w,

– ui+1 =

w|u1u2...ui|+1, if w|u1u2...ui|+1 /∈ Σ(u1u2 . . . ui)

longest w with w ∈ F (π(u1u2 . . . uiw)),
if w|u1u2...ui|+1 ∈ Σ(u1u2 . . . ui)

for all i ≥ 2.

With the exception of new single letters, RH(w) is created by taking at each
step the maximal factor that has occurred before. For the word in Example 1,
the maximal reproductive history is (a, aa, b, aab, ba, ba).

From the definition it is clear that RH(w) is a reproductive history. It follows
from Lemma 1 that |RH(w)| ≥ lz(w).

284 S. Constantinescu and L. Ilie

Remark 1. The maximal reproductive history seems more natural than the ex-
haustive history. Indeed, all applications we mentioned above use the former
factorisation. On the other hand, they are very closely related. For historical
reasons, we defined the Lempel–Ziv complexity as the number of factors in the
exhaustive history (as in [18]) but our results hold as well for the maximal re-
productive history. This can be seen directly, by looking at the proofs, or from
the following lemma which connects the lengths of the two histories.

Lemma 2. For any w ∈ Σ∗, we have

lz(w) ≤ |RH(w)| ≤ 2 lz(w) − 1.

The next step is to iterate reproductive histories through a morphism h. We
will show a way to create a reproductive history of h(w), given a reproductive
history of w.

Let w be a word and H = (v0, v1, . . . , vn) a reproductive history of w. Let
1 = i1 < i2 < . . . < i|Σ(w)| be the indexes corresponding to the single letter
factors of H that have not occurred before. We define a factorisation of h(w),
denoted h(H), by replacing all factors of w that have occurred before by their
image through h and the single letters vij , by the history RH(h

(
vij

)
). We claim

that this is a reproductive history of h(w).

Example 3. Let us consider the Thue–Morse morphism

t(a) = ab, t(b) = ba,

and the word from Example 1, w = aaabaabbaba. A reproductive history H (in
fact, RH(w)) and its image through t, t(H), are:

H = (a , aa , b , aab , ba , ba) ,
h(H) = (a, b, abab, b, a, ababba, baab, baab) .

Lemma 3. If H is a reproductive history of w, then h(H) is a reproductive
history of h(w).

With respect to the length of h(H), we note that each letter in Σ(w), originally
a stand alone factor of H , is transformed into the factorisation RH(h

(
vij

)
) and,

consequently, each letter x of w prompts a |RH(x)| − 1 increase in the length of
h(H):

|h(H)| ≤ |H |+
∑

x∈Σ(w)

(|RH(x)| − 1) .

If we assume that all letters of Σ occur in w, then the increase in length is
constant, which leads us to the following result.

Proposition 1. If h : Σ∗ → Σ∗ is non-erasing and a < h(a), a ∈ Σ, then
lz(hn(a)) = O(n).

The Lempel-Ziv Complexity of Fixed Points of Morphisms 285

The next result gives the inferior asymptotic limit for lz(hn(a)). It is obvious
that lz(hn(a)), as a function of n, is increasing since hn(a) < hn+1(a). The
remaining part of this section is dedicated to showing that the growth of the
Lempel–Ziv complexity of powers is at least linear unless the fixed point word
is ultimately periodic.

Throughout the rest of this section, h is assumed to be a non-erasing morphism
whose fixed point w = h∞(a) is of the form

a u h(u) . . . hn(u)hn+1(u) . . .

where h(a) = au, u ∈ Σ∗, u 	= ε.
The following technical result is very important for the proof of the main

result of this section.

Lemma 4. If hq(u)hq+1(u)hq+2(u) occurs before its last occurrence in

hq+3(a) = a u h(u) . . . hq(u)hq+1(u)hq+2(u)

and |hq(u)| < |hq+1(u)|, then h∞(a) is ultimately periodic.

In order to be able to use Lemma 4, we need to find values of q for which
|hq(u)| < |hq+1(u)|. It is clear that |hq(u)| ≤ |hq+1(u)| and, if there exists a
letter z in hq(u) satisfying |h(z)| ≥ 2, the inequality is strict. The following
lemma says that such powers must exist or else the fixed point is ultimately
periodic.

Lemma 5. If h(a) = au, u ∈ Σ∗, u 	= ε, then there exist m, p ∈ N such that
|hm+jp| < |hm+jp+1|, for all j ≥ 0, or else h∞(a) is ultimately periodic.

Using Lemmata 4 and 5, we obtain, for all j ≥ 0, that either

hm+jp(u)hm+jp+1(u)hm+jp+2(u) (1)

has never occurred before or w is ultimately periodic.
If we assume w = h∞(a) to be non-periodic, then all factors of the form (1)

can never occur before their last occurrence. This shows that there must exist a
factor in the exhaustive history of w that ends within each distinct factor of the
above mentioned form. It follows that

lz(hn(a)) ≥ 1
k

(n− n0) + lz(hn0+1(a))

or lz(hn(a)) = Ω(n). We proved

Proposition 2. Exactly one of the following is true:
1. w = h∞(a) is ultimately periodic,
2. lz(hn(a)) = Ω(n).

We can now enounce the main theorem of this section.

Theorem 1. For a non-erasing morphism h that admits the fixed point h∞(a),
lz(hn(a)) is either Θ(1) if h∞(a) is ultimately periodic or Θ(n) otherwise.

Proof. The fact that ultimate periodicity is equivalent to a bounded Lempel–Ziv
complexity has been mentioned in [15]. The other case is a direct consequence
of the above results. �

286 S. Constantinescu and L. Ilie

5 Growth Functions and Infinite Word Complexity

Let w be an infinite word generated by a non-erasing morphism h, w = h∞(a).
The prefix of a given length m of w will fall between two consecutive powers of
h:

hn(m)(a) ≤ prefm(w) < hn(m)+1(a) (2)

for a n(m) ∈ N. If lz(hn(a)) is bounded then lzw(n) is bounded. This establishes
our first case for the complexity of lzw(·), Θ(1).

For the case when lz(hn(a)) is not bounded, we need more definitions and
results. The growth function of the letter x ∈ Σ in h is the function hx : N → N,
defined by

hx(n) = |hn(x)|, for all n ≥ 0 .

The following result from [28,26] is very useful.

Lemma 6. There exist an integer ea ≥ 0 and an algebraic real number ρa ≥ 1
such that

ha(n) = Θ(neaρn
a).

The pair (ea, ρa) is called the growth index of a in h. We say that ha (and a as
well) is called:

- bounded if a’s growth index w.r.t. h is (0, 1),
- polynomial, if a’s growth index w.r.t. h is (ea, 1), ea > 0, and
- exponential if a’s growth index w.r.t. h is (ea, ρa), ea ≥ 0, ρa > 1.

Going back to our reasoning, since lz(hn(a)) is not bounded, it has to be
linear, by Theorem 1. Then a is not bounded and hence, by Lemma 6, we dis-
tinguish two cases:

1. ρa = 1 (ha is polynomial). Then |hn(a)| = Θ(nea) or n(m) = Θ(m1/ea).
Since, by (2),

lz(hn(m)(a)) ≤ lz(prefm(w)) ≤ lz(hn(m)+1(a))

and lz(hn(a)) = Θ(n), it follows that

lzw(m) = Θ(m1/ea).

2. ρa > 1 (ha is exponential). There exist ρ1 and ρ2 positive numbers such
that ρn

1 ≤ |hn(a)| ≤ ρn
2 which means that n(m) = Θ(logm). By the same

argument,
lzw(m) = Θ(logm).

Notice however that ha growing does not imply lzw(·) unbounded. For in-
stance, if h(a) = ab, h(b) = b, then ha is polynomial but

w = h∞(a) = abbb . . .

The Lempel-Ziv Complexity of Fixed Points of Morphisms 287

has bounded lzw(·). For the exponential case we can take h(a) = aa whose fixed
point has bounded Lempel–Ziv complexity as well.

Also, in the fist case above, we cannot have ea = 1 as this implies bounded
Lempel–Ziv complexity, contradicting the assumption on lz(hn(a)). Indeed,
ea = 1 implies |hn(a)| = Θ(n) and so |hn+1(a)| − |hn(a)| is bounded. Assum-
ing h(a) = au, u 	= ε, we have hn(a) = auh(u)h2(u) · · ·hn−1(u). Consequently
|hn(u)| is bounded hence we can find hn(u) = hn+p(u) which implies w = h∞(a)
is ultimately periodic.

We have just proved the main result of the paper:

Theorem 2. For a infinite fixed point w = hω(a) of a non-erasing morphism
h, we have:

1. The Lempel–Ziv complexity of w is Θ(1) if and only if w is ultimately peri-
odic.

2. If w is not ultimately periodic, then the Lempel–Ziv complexity of w is either
Θ(log n) or Θ(n1/k), k ∈ N, k ≥ 2, depending on whether ha is exponential
or polynomial, resp.

We give next examples showing that all the above complexities are indeed
possible.

Example 4. The highest Lempel–Ziv complexity is realized for k = 2, that
means, O(

√
n), for the three letter morphism h3 given by

h3(a) = ab, h3(b) = bc, h3(c) = c,

for which
hn

3 (a) = abc0bc1 . . . bcn−1.

Clearly, the growth function of a, (h3)a, is quadratic whereas the complexity of
powers is exactly linear which gives a final Lempel–Ziv complexity of

√
n; this

can be checked directly by constructing the exhaustive history of h∞3 (a):

(a, b, bc, bc2, . . .).

This example is extended to k letters by considering the morphism:

hk : {a1, a2, . . . , ak}∗ → {a1, a2, . . . , ak}∗,
hk(ai) = aiai+1, for all 1 ≤ i ≤ k − 1,
hk(ak) = ak.

We can use the theory of D0L growth functions to obtain that (hk)a1 is a poly-
nomial of degree k − 1 (see [26, Theorem 3.5]), or see that directly, as follows.
Note that hk restricted to {a2, a3, . . . , ak}∗ is actually hk−1 modulo the renaming
a2 = a1, a3 = a2, . . . , ak = ak−1. Since

|(hk)a1(n)| = |a1a2h(a2) . . . hn−1
k (a2)| = 1 +

n−1∑
i=0

|(hk−1)a1(n)| ,

288 S. Constantinescu and L. Ilie

we conclude, by induction on k ≥ 3, that (hk−1)a1(n) = Θ(nk−2) implies
(hk)a1(n) = Θ(nk−1). The base case follows from the previous example for k = 3.

Consequently, the Lempel–Ziv complexity of the infinite fixed point h∞k (a1)
is Θ(k−1

√
n). These examples illustrate the polynomial case.

Example 5. With respect to the exponential case, any uniform morphism with
images of length k has a growth function of exactly kn. Since the complexity of
powers is linear for non-periodic words, the Lempel–Ziv complexity of the fixed
point will be Θ(log n).

Such an example is the famous Thue–Morse morphism, see Example 3, which
fits the requirements for k = 2. Both of its infinite fixed points t∞(a) and t∞(b)
are non-periodic and the growth functions associated with both letters are ex-
actly 2n. Their Lempel–Ziv complexity is Θ(log n).

Example 6. Another famous example is given by the Fibonacci morphism

f(a) = ab, f(b) = a,

for which we can precisely compute the value of lz(fn(a)) = n+ 1. The powers

of the Fibonacci morphism grow exponentially, at the rate 1√
5

(
1+
√

5
2

)n+1
−

1√
5

(
1−√5

2

)n+1
, and therefore the Lempel–Ziv complexity of the infinite word is

again Θ(log n).

6 Comparison with Factor Complexity

We dedicate the final section to a comparison between the Lempel–Ziv complex-
ity and the factor complexity for infinite words generated by morphisms. The
factor complexity is a natural function defined as the number of factors of a
certain length occurring in an infinite word. For a word w ∈ Σω, this is

fw(n) = card({u ∈ Σ∗ | u ∈ F (w), |u| = n}) .

The investigation of factor complexity for the fixed points of morphisms has been
initiated by Ehrenfeucht, Lee, and Rozenberg in [7] (they actually considered the
closely related D0L-systems) and continued by Ehrenfeucht and Rozenberg in a
series of papers, see [8,9,10,11,12,25]. The classification was completed by Pansiot
[23,24] who found also the missing complexity class Θ(n log logn).

The following definitions appear, with different names, in [5]. The morphism
h is called1

- non-growing if there exists a bounded letter in Σ,
- u-exponential if ρa = ρb > 1, ea = eb = 1, for all a, b ∈ Σ,

1 What we call u-, p-, and e-exponential are quasi-uniform, polynomially diverging,
and exponentially diverging, resp., in [23,24,5]. We changed the terminology so that
it does not conflict with the corresponding notions for ha.

The Lempel-Ziv Complexity of Fixed Points of Morphisms 289

- p-exponential if ρa = ρb > 1, for all a, b and ea > 1, for some a, and
- e-exponential if ρa > 1, for all a and ρa > ρb, for some a, b.

Here is Pansiot’s characterisation:

Theorem 3. Let w = hω(a) be an infinite non-periodic word of factor complex-
ity fw(·).

1. If h is growing, then fw(n) is Θ(n), Θ(n log logn) or Θ(n logn), depending
on whether h is u-, p- or e-exponential, resp.

2. If h is not-growing, then either
(a) w has arbitrarily large factors over the set of bounded letters and then

fw(n) = Θ(n2) or
(b) w has finitely many factors over the set of bounded letters and then fw(n)

can be any of Θ(n), Θ(n log logn) or Θ(n log n).

In order to establish a correspondence with our hierarchy, we note that, in the
first case of Theorem 3, the function ha is exponential, which implies a loga-
rithmic Lempel–Ziv complexity. However, a logarithmic Lempel–Ziv complexity
does not necessarily imply one of the n, n log logn or n logn cases for the factor
complexity as it is illustrated by the following example.

Example 7. Consider the morphism h given by

h(a) = abc, h(b) = bac, h(c) = c.

Since ha grows exponentially, lz(h∞(a)) is, by Theorem 2, logarithmic. However,
there exist arbitrarily large factors of h∞(a) of the form cn (c is bounded) which
implies a Θ(n2) factor complexity.

On the other hand, a radical-type Lempel–Ziv complexity does imply a quadratic
factor complexity, as shown in the following lemma.

Lemma 7. Assume h : Σ∗ → Σ∗ is a non-erasing morphism prolongeable on
a ∈ Σ. If ha is polynomial, then there exist arbitrarily large factors over ΣB in
h∞(a).

Therefore, Theorems 2 and 3, Example 7 and Lemma 7 imply the following
result which gives the precise correspondence between the two complexities.

Theorem 4. The correspondence between Lempel–Ziv and factor complexities
for fixed points of morphisms is shown in Table 1, where all intersections are
indeed possible.

We see that both measures of complexity recognise ultimately periodic words as
having bounded complexity, the lowest class of complexity.

In the nontrivial case of non-periodic fixed points, the Lempel–Ziv complexity
groups together all words h∞(a) with ha exponential, whereas the factor com-
plexity distinguishes four different complexities. On the other hand, the factor
complexity does not make any distinction among words with ha polynomial,
whereas Lempel–Ziv gives an infinite hierarchy.

290 S. Constantinescu and L. Ilie

Table 1. Lempel–Ziv vs. factor complexity

Lempel–Ziv complexity Factor complexity

h∞(a) is ultimately
periodic

Θ(1) Θ(1)

h∞(a) is not
ultimately periodic

and ha is polynomial

Θ(n
1
2)

Θ(n
1
3)

...

Θ(n
1
k)

...

Θ(n2)

h∞(a) is not
ultimately periodic

and ha is
exponential

Θ(log n)

Θ(n2)

Θ(n log n)

Θ(n log log n)

Θ(n)

References

1. J. M. Amigo, J. Szczepanski, E. Wajnryb, and M. V. Sanchez-Vives, Estimating
the entropy rate of spike trains via Lempel-Ziv complexity, Neural Computation
16(4) (2004) 717 – 736.

2. N.G. de Bruijn, A combinatorial problem, Nederl. Akad. Wetensch. Proc. 49 (1946)
758 – 764.

3. G. Chaitin, On the length of programs for computing finite binary sequences, J.
Assoc. Comput. Mach. 13 (1966) 547 – 569.

4. X. Chen, S. Kwong and M. Li, A compression algorithm for DNA sequences, IEEE
Engineering in Medicine and Biology Magazine 20(4) (2001) 61 – 66.

5. C. Choffrut and J. Karhumäki, Combinatorics on words, in: G. Rozenberg, A. Sa-
lomaa, eds., Handbook of Formal Languages, Vol. I, Springer-Verlag, Berlin, Hei-
delberg, 1997, 329 – 438.

6. M. Crochemore, Linear searching for a square in a word, in: A. Apostolico, Z. Galil,
eds., NATO Advanced Research Workshop on Combinatorial Algorithms on Words,
1984, Springer-Verlag, Berlin, New York, 1985, 66 – 72.

7. A. Ehrenfeucht, K.P. Lee and G. Rozenberg, Subword complexities of various
classes of deterministic developmental languages without interaction, Theoret.
Comput. Sci. 1 (1975) 59 – 75.

8. A. Ehrenfeucht and G. Rozenberg, On the subword complexities of square-free
D0L-languages, Theoret. Comput. Sci. 16 (1981) 25 – 32.

9. A. Ehrenfeucht and G. Rozenberg, On the subword complexities of D0L-languages
with a constant distribution, Theoret. Comput. Sci. 13 (1981) 108 – 113.

10. A. Ehrenfeucht and G. Rozenberg, On the subword complexities of homomorphic
images of languages, RAIRO Informatique Théorique 16 (1982) 303 – 316.

11. A. Ehrenfeucht and G. Rozenberg, On the subword complexities of locally catena-
tive D0L-languages, Information Processing Letters 16 (1982) 7 – 9.

The Lempel-Ziv Complexity of Fixed Points of Morphisms 291

12. A. Ehrenfeucht and G. Rozenberg, On the subword complexities of m-free D0L-
languages, Information Processing Letters 17 (1983) 121 – 124..

13. M. Farach, M.O. Noordewier, S.A. Savari, L.A. Shepp, A.D. Wyner, J. Ziv, On
the entropy of DNA: algorithms and measurements based on memory and rapid
convergence, Proc. of SODA’95, 1995, 48 – 57.

14. V.D. Gusev, V.A. Kulichkov, O.M. Chupakhina, The Lempel-Ziv complexity and
local structure analysis of genomes, Biosystems 30(1-3) (1993) 183 – 200.

15. L. Ilie, S. Yu and K. Zhang, Word complexity and repetitions in words, Internat.
J. Found. Comput. Sci. 15(1) (2004) 41 – 55.

16. A.N. Kolmogorov, Three approaches to the quantitative definition of information,
Probl. Inform. Transmission 1 (1965) 1 – 7.

17. R. Kolpakov and G. Kucherov, Finding maximal repetitions in a word in linear
time, Proc. of the 40th Annual Symposium on Foundations of Computer Science,
IEEE Computer Soc., Los Alamitos, CA, 1999, 596 – 604.

18. A. Lempel and J. Ziv, On the Complexity of Finite Sequences , IEEE Trans.
Inform. Theory 92(1) (1976) 75 – 81.

19. M. Lothaire, Combinatorics on Words, Addison-Wesley, Reading, MA, 1983,
(reprinted with corrections, Cambridge Univ. Press, Cambridge, 1997).

20. M. Lothaire, Algebraic Combinatorics on Words, Cambridge Univ. Press, 2002.
21. M. Lothaire, Applied Combinatorics on Words, Cambridge Univ. Press, 2005.
22. M.G. Main, Detecting leftmost maximal periodicities, Discrete Appl. Math. 25(1-2)

(1989) 145 – 153.
23. J.-J. Pansiot, Bornes inférieures sur la complexité des facteurs des mots infinis

engendrés par morphismes itérés, Proc. of STACS’84, Lecture Notes in Comput.
Sci. 166, Springer, Berlin, 1984, 230 – 240.

24. J.-J. Pansiot, Complexité des facteurs des mots infinis engendrés par morphismes
itérés, Proc. of ICALP’84, Lecture Notes in Comput. Sci. 172, Springer, Berlin,
1984, 380 – 389.

25. G. Rozenberg, On subwords of formal languages, Proc. of Fundamentals of com-
putation theory, Lecture Notes in Comput. Sci. 117, Springer, Berlin-New York,
1981, 328 – 333.

26. G. Rozenberg and A. Salomaa, The Mathematical Theory of L Systems, Academic
Press, 1980.

27. W. Rytter, Application of Lempel-Ziv factorization to the approximation of
grammar-based compression, Theoret. Comput. Sci. 302(1-3) (2003) 211 – 222.

28. A. Salomaa and M. Soittola, Automata-theoretic aspects of formal power series,
Springer, New York, 1978.

29. J. Szczepanski, M. Amigo, E. Wajnryb, and M.V. Sanchez-Vives, Application of
Lempel-Ziv complexity to the analysis of neural discharges, Network: Computation
in Neural Systems 14(2) (2003) 335 – 350.

30. J. Szczepanski, J. M. Amigo, E. Wajnryb, and M. V. Sanchez-Vives, Characterizing
spike trains with Lempel-Ziv complexity, Neurocomputing 58-60 (2004) 79 – 84.

31. J. Ziv and A. Lempel, A universal algorithm for sequential data compression, IEEE
Trans. Inform. Theory 23(3) (1977) 337 – 343.

32. J. Ziv and A. Lempel, Compression of individual sequences via variable-rate coding,
IEEE Trans. Inform. Theory 24(5) (1978) 530 – 536.

Partially Commutative Inverse Monoids

Volker Diekert, Markus Lohrey, and Alexander Miller

Universität Stuttgart, FMI, Germany
{diekert, lohrey, miller}@informatik.uni-stuttgart.de

Abstract. Free partially commutative inverse monoids are investigated. Anal-
ogously to free partially commutative monoids (trace monoids), free partially
commutative inverse monoid are the quotients of free inverse monoids modulo
a partially defined commutation relation on the generators. An O(n log(n)) al-
gorithm on a RAM for the word problem is presented, and NP-completeness of
the generalized word problem and the membership problem for rational sets is
shown. Moreover, free partially commutative inverse monoids modulo a finite
idempotent presentation are studied. For these monoids, the word problem is de-
cidable if and only if the complement of the commutation relation is transitive.

1 Introduction

A labelled transition system is deterministic, if in every state there is for each label at
most one outgoing edge with this label. Of particular interest are systems where we
can perform an undo-operation. This means that the system is codeterministic: For each
state and label there is at most one incoming edge with this label. In this setting each
label defines a partially defined injective mapping from states to states. The resulting
transformations form an inverse monoid; and it is well-known that each inverse monoid
arises this way. Because of its close connection to automata theory inverse monoids re-
ceived quite an attention in theoretical computer science and there is a well-established
literature on this subject, see e.g. [11,15].

In this paper we are interested in the situation where the labels describe actions of
a (deterministic and codeterministic) transition system and some of the actions can be
performed independently. This leads to a partial commutation and therefore to partially
commutative inverse monoids. Free partially commutative inverse monoids were first
studied in the thesis of da Costa [17], where, among others, the word problem has been
shown to be decidable. Da Costa did not prove any complexity bounds. Our first contri-
bution is a new approach to define free partially commutative inverse monoids which is
closer to a standard construction of Margolis and Meakin [10]. We use a natural closure
operation for subsets of free partially commutative groups (also known as graph groups
[5]). Using our construction we are able to show in Section 3 that the word problem
of a free partially commutative inverse monoid is solvable in time O(n log(n)) on a
RAM. In Section 4, we study the generalized word problem for free partially commu-
tative inverse monoids. The generalized word problem asks whether a given monoid
element belongs to a given finitely generated submonoid. In fact, we consider the more
general membership problem for rational subsets of a free partially commutative in-
verse monoid, and we show its NP-completeness. NP-hardness appears already for the

R. Královič and P. Urzyczyn (Eds.): MFCS 2006, LNCS 4162, pp. 292–304, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Partially Commutative Inverse Monoids 293

special case of the generalized word problem for a 2-generator free inverse monoid. It
is quite remarkable that the generalized word problem remains decidable in our setting,
because it is known to be undecidable for direct products of free groups [13]. So there
is an undecidable problem for a direct product of free groups where the same problem
is decidable for a direct product of free inverse monoids.

In the second part of the paper we consider free partially commutative inverse
monoids modulo a finite idempotent presentations, which is a finite set of identities
between idempotent elements. We show that the resulting quotient monoids have de-
cidable word problems if and only if the underlying dependence structure is transitive.
In the transitive case, the uniform word problem (where the idempotent presentation is
part of the input) turns out to be EXPTIME-complete, whereas for a fixed idempotent
presentation the word problem is solvable both in linear time on a RAM and logarith-
mic space on a Turing machine. These results generalize corresponding results for free
inverse monoids modulo an idempotent presentation from [8,10]. Our decidability re-
sult for the case of a transitive dependence structure is unexpected in light of a result of
Meakin and Sapir [12], where it was shown that there exist E-unitary inverse monoids
over a finitely generated Abelian group, where the word problem is undecidable. The
proof of this result in [12] is quite involved and relies on a sophisticated encoding of
computations of Minski machines. In fact, a slight variation of our undecidability proof
for non-transitive dependence structures can be used to give a simpler proof for the
result of Meakin and Sapir; it will appear in the full version of this paper.

2 Preliminaries

In the following let Σ be a finite alphabet andΣ−1 = {a−1 | a ∈ Σ} be a disjoint copy
of Σ. We let Γ = Σ ∪ Σ−1. Then Γ becomes a set with an involution −1 : Γ → Γ
by setting (a−1)−1 = a for all a ∈ Σ. We extend this involution to an involution
−1 : Γ ∗ → Γ ∗ by setting (a1 · · · an)−1 = a−1

n · · · a−1
1 for ai ∈ Γ, 1 ≤ i ≤ n, n ≥ 0.

The free group generated by Σ is denoted by F (Σ); it can be defined as the quotient
monoid Γ ∗/{aa−1 = 1 | a ∈ Γ}.

Let M be a finitely generated monoid and let Γ be a finite generating set for M,
i.e., there exists a surjective homomorphism h : Γ ∗ → M. The word problem for
M is the computational problem that asks for two given words u, v ∈ Γ ∗, whether
h(u) = h(v). The generalized word problem for M asks whether for given words
u, v1, . . . , vn the element h(u) belongs to the submonoid {h(v1), . . . , h(vn)}∗ ⊆ M
generated by h(v1), . . . , h(vn). It is easy to see that the decidability/complexity of the
(generalized) word problem does not depend on the underlying set of generators. Now
let G be a finitely generated group and let Γ be a finite generating set for G. The Cayley
graph of G w.r.t. Γ is the undirected graph C(G, Γ) = (G, {{u, v} | u−1v ∈ Γ}). Note
that the undirected edge {u, v} can be viewed as a pair of directed edges (u, v), labelled
with u−1v ∈ Γ , and (v, u), labelled with v−1u ∈ Γ .

2.1 Free Partially Commutative Inverse Monoids

A monoidM is called inverse if for every x ∈ M there is a unique x−1 ∈M such that

xx−1x = x and x−1xx−1 = x−1. (1)

294 V. Diekert, M. Lohrey, and A. Miller

It is well-known that uniqueness of the inverse x−1 follows, if we require additionally
to (1) that for all x, y ∈ M:

xx−1yy−1 = yy−1xx−1 (2)

Elements xx−1 are exactly the idempotents in M. It is clear that every mapping ϕ :
Σ → M to an inverse monoid M lifts uniquely to a homomorphism ϕ : Γ ∗ → M
such that ϕ(u−1) = ϕ(u)−1 for all u ∈ Γ ∗. By an independence relation we mean
here an irreflexive and symmetric relation IΓ ⊆ Γ × Γ such that (a, b) ∈ IΓ implies
(a−1, b) ∈ IΓ for all a, b ∈ Γ . Note that I is specified by IΣ = IΓ ∩ Σ × Σ, and we
may view (Σ, IΣ) as an undirected graph. For words u, v ∈ Γ ∗ we write (u, v) ∈ IΓ if
u = a1 · · · am, v = b1 · · · bn, and (ai, bj) ∈ IΓ for all i ≤ m, j ≤ n.

Every inverse monoid M can be viewed as a monoid of partially defined injections
over a set Q. Thus, if a ∈M, then a is an injection a : dom(a) ↪→ Q where dom(a) ⊆
Q. Now partially defined injections a and b can be called independent, if the following
three conditions are satisfied for all q ∈ Q:

(i) if q ∈ dom(a), then: a(q) ∈ dom(b) ⇐⇒ q ∈ dom(b),
(ii) if q ∈ dom(b), then: b(q) ∈ dom(a) ⇐⇒ q ∈ dom(a),

(iii) if q ∈ dom(a) ∩ dom(b), then: ab(q) = ba(q).

These conditions look technical, but a brief reflection shows that they are indeed natural
translations of an intuitive meaning of independence. Note that (i)–(iii) is a stronger
requirement than to say that a and b commute. Consider the following situations:

I II
a

b

a

b a

b

In situation I the transitions a and b are not independent although they commute: The
result of ab is the same as ba; it is the undefined mapping, which corresponds to a zero
in the monoid. It is also clear that a and b should not be called independent in this
situation because a can disable b (and vice versa). The situation II is different: The set
Q has four states; it corresponds to the set of global states of the asynchronous product
of two independent components. The first (second, resp.) component can only perform
the action a (b, resp.). A simple calculation shows that if we define independence in
M as above by (i)–(iii), then the independence of a and b implies the independence
of a−1 and b, too. This motivates the following definition: An inverse monoid over
(Σ, IΣ) is an inverse monoid M together with a mapping ϕ : Σ → M such that
ϕ(a)ϕ(b) = ϕ(b)ϕ(a) and ϕ(a)−1

ϕ(b) = ϕ(b)ϕ(a)−1 for all (a, b) ∈ IΣ . Thus, we
can define the free inverse monoid over (Σ, IΣ) by

FIM(Σ, I) = FIM(Σ)/{ab = ba, a−1b = ba−1 | (a, b) ∈ IΣ}.

Here, FIM(Σ) denotes the free inverse monoid overΣ, which is defined as the quotient
monoid of Γ ∗ = (Σ ∪ Σ−1)∗ modulo the equations in (1) and (2) for all x, y ∈
Γ ∗. In the following, we will briefly write I for both IΣ and IΓ . It will be always
clear, on which set I is defined. The monoid FIM(Σ, I) is also called a free partially
commutative inverse monoid.

Partially Commutative Inverse Monoids 295

Da Costa has studied FIM(Σ, I) in his thesis from a more general viewpoint of graph
products [17]. As a consequence he showed that FIM(Σ, I) has a decidable word prob-
lem. In his construction he used the general approach via Schützenberger graphs and
Stephen’s iterative procedure [16]. The decidability of the word problem follows be-
cause da Costa can show that Stephen’s procedure terminates. However, no complexity
bounds are given in [17].

Another starting point for defining free partially commutative inverse monoids is a
construction of Margolis and Meakin [9]. One would start with the free partially com-
mutative groupG(Σ, I) (defined below) and consider as elements of an inverse monoid
the pairs (A, g), where A is a finite and connected subgraph of the Cayley graph of
G(Σ, I) with 1, g ∈ A. Although this construction yields for I = ∅ indeed FIM(Σ) by
a result of Munn [14], it fails for I 	= ∅, simply because independent generators do not
commute. Thus, we have to do something else. Fortunately it is enough to modify the
construction of Margolis and Meakin slightly in order to achieve a simple and conve-
nient description of the elements in FIM(Σ, I). Our approach is based on the notion of
coherently prefix-closed subsets which we make precise in the next section.

2.2 Trace Monoids and Graph Groups

Recall that Γ = Σ ∪Σ−1 and I ⊆ Γ × Γ is an irreflexive and symmetric relation such
that (a, b) ∈ I implies (a−1, b) ∈ I . Let M(Γ, I) = Γ ∗/{ab = ba | (a, b) ∈ I} be the
free partially commutative monoid (or trace monoid) over (Γ, I). Due to (a, b) ∈ I ⇒
(a−1, b) ∈ I , the involution −1 : Γ ∗ → Γ ∗ is well-defined on M(Γ, I). The relation
D = (Γ × Γ) \ I is called the dependence relation.

There is a rich theory on trace monoids [4]. Here we need some basic results, only.
The perhaps most important fact ist that traces (i.e., elements ofM(Γ, I)) have a unique
description as dependence graphs, which are node-labelled acyclic graphs. Let u =
a1 · · · an ∈ Γ ∗ be a word. The vertex set of the dependence graph of u is {1, . . . , n}
and vertex i is labelled with ai ∈ Γ . There is an edge from vertex i to j if and only if
i < j and (ai, aj) ∈ D. Now, two words define the same trace in M(Γ, I) if and only
if their dependence graphs are isomorphic.

A clique covering of the dependence relation D is a tuple (Γi)1≤i≤k such that Γ =⋃k
i=1 Γi and D =

⋃k
i=1 Γi × Γi. W.l.o.g. we may assume that a ∈ Γi if and only

if a−1 ∈ Γi. Let πi : M(Γ, I) → Γ ∗i the projection homomorphism which deletes
all letters from Γ \ Γi. The morphism π : M(Γ, I) →

∏k
i=1 Γ

∗
i defined by π(u) =

(π1(u), . . . , πk(u)) is injective [2,3]. For u, v ∈M(Γ, I) we write u ≤ v if u is a prefix
of v, i.e., v = uw in M(Γ, I) for some trace w. A trace f is a factor of u, if we can
write u = pfq in M(Γ, I). Let max(u) = {a ∈ Γ | u = ta for some trace t}; it is the
set of labels of the maximal nodes in the dependence graph of u.

An important fact about traces is the following: Assume we have u ≤ w and v ≤ w
for some u, v, w ∈M(Γ, I). Then the supremum u v ∈M(Γ, I) w.r.t. the prefix order
≤ exists. We can define u v by restricting the dependence graph of w to the domain
of u and v, where u and v are viewed as downward-closed subsets of the dependence
graph of w. If (Γi)1≤i≤k is a clique covering of the dependence relation, then for every
i, either πi(u) ≤ πi(v) and πi(u v) = πi(v) or πi(v) ≤ πi(u) and πi(u v) = πi(u).
A trace p is a prime if |max(p)| = 1.

296 V. Diekert, M. Lohrey, and A. Miller

For t ∈ M(Γ, I) let P(t) = {p ≤ t | p is a prime}. Note that t = P(t) (the
supremum of the traces in P(t)). Let A ⊆ M(Γ, I). We define P(A) =

⋃
t∈A P(t).

The set A is called prefix-closed, if u ≤ v ∈ A implies u ∈ A. It is called coherently-
closed if for every C ⊆ A such that C exists, C ∈ A. One can show that A is
coherently-closed if for all u, v ∈ A such that u v exists, u v ∈ A. In the following
we say that A is closed, if it is both prefix-closed and coherently-closed. Clearly, for
every A ⊆ M(Γ, I) there is a smallest closed set A with A ⊆ A. One has A =
{ C | C is a set of prefixes of A, C exists} and A = A. The notions of a prime and
coherence are standard in domain theory and the connection to trace theory is exposed
in [4, Sec. 11.3].

Lemma 1. For A,B ⊆M(Γ, I) we have A = B if and only if P(A) = P(B).

A trace rewriting system R over M(Γ, I) is just a finite subset of M(Γ, I) ×M(Γ, I)
[3]. We can define the one-step rewrite relation→R ⊆M(Γ, I)×M(Γ, I) by: x→R y
if and only if there are u, v ∈M(Γ, I) and (�, r) ∈ R such that x = u�v and y = urv.
The notion of a confluent and terminating trace rewriting system is defined as for other
types of rewriting systems. A trace u is an irreducible normal form of t if t

∗→R u and
there does not exist a trace v with u→R v.

The free partially commutative group (or graph group [5]) over (Σ, I),
briefly G(Σ, I), is the quotient of the free group F (Σ) modulo the defining relations
ab = ba for all (a, b) ∈ I . Clearly, G(Σ, I) = M(Γ, I)/{aa−1 = 1 | a ∈ Γ}. We can
define a confluent and terminating trace rewriting system R = {aa−1 → 1 | a ∈ Γ},
where 1 ∈ M(Γ, I) denotes the empty trace. Given u ∈ Γ ∗ we can view u ∈ M(Γ, I)
and compute its irreducible normal form û ∈M(Γ, I) w.r.t. R in linear time [3]. Thus,
û is a trace without any factor of the form aa−1 for a ∈ Γ . We also say that the trace
û is reduced. We have u = v in G(Σ, I) if and only if û = v̂. This allows to solve the
word problem in G(Σ, I) in linear time [3,19]. In the following, whenever u ∈ Γ ∗ (or
u ∈ M(Γ, I) or u ∈ G(Σ, I)), then û ∈ M(Γ, I) denotes this unique reduced trace
such that u = û inG(Σ, I). The set M̂(Γ, I) = {û | u ∈M(Γ, I)} is in canonical one-
to-one correspondence with G(Σ, I), hence we may identify û with the group element
it represents.

A subset A ⊆ G(Σ, I) is called closed, if the set of reduced traces Â = {ĝ ∈
M̂(Γ, I) | g ∈ A} is closed. Clearly, for every A ⊆ G(Σ, I), there is a smallest

closed subset A ⊆ G(Σ, I) such that A ⊆ A. We have A = A and we can identify

A with Â ⊆ M̂(Γ, I). Note that M̂(Γ, I) is closed. Recall that I is irreflexive, hence
{1, a, a−1} is closed since (a, a−1) ∈ D. We now give a geometric interpretation of
closed sets. Let g, h ∈ G(Σ, I). A geodesic between g and h is a shortest path in the
Cayley graph of G(Σ, I). The labelling of such a path is unique as a reduced trace
û ∈ M̂(Γ, I) such that gû = h in G(Σ, I). We say that f ∈ G(Σ, I) is on a geodesic
from g to h if f̂ ≤ û.

Proposition 1. A subsetA ⊆ G(Σ, I) is closed if and only if both 1 ∈ A and whenever
f is on a geodesic from g to h with g, h ∈ A, then gf ∈ A, too.

Partially Commutative Inverse Monoids 297

Corollary 1. Let A ⊆ G(Σ, I) be closed and g ∈ A. Then g−1A is closed, too.

Proof. Since g ∈ A, we have 1 ∈ g−1A. The property “f is on a geodesic from h1 to
h2 with h1, h2 ∈ A implies h1f ∈ A” is invariant by translation. Thus A satisfies this
property if and only if g−1A satisfies this property. �

2.3 A Realization of Free Partially Commutative Inverse Monoids

We are now ready to give a concrete realization of the free inverse monoid over (Σ, I).
The realization is very much in the spirit of Margolis and Meakin [9], but differs in the
subtle point that we allow closed subsets of G(Σ, I), only. Consider the set of pairs
(A, g) whereA ⊆ G(Σ, I) is a finite and closed subset of the graph groupG(Σ, I) and
g ∈ A. This set becomes a monoid by

(A, g) · (B, h) = (A ∪ gB, gh).

An immediate calculation shows that the operation is associative and that ({1}, 1) is
a neutral element. Moreover, the idempotents are the elements of the form (A, 1) and
idempotents commute. By Corollary 1, if g ∈ A ⊆ G(Σ, I) andA is closed, then g−1A

is closed, too. Hence we can define (A, g)−1 = (g−1A, g−1). A simple calculation
shows that (1) and (2) are satisfied. Thus our monoid is an inverse monoid. We view
Γ as a subset of this monoid by identifying a ∈ Γ with the pair ({1, a}, a), and this
yields a canonical homomorphism γ defined by γ(u) = ({v̂ | v ≤ u}, û) for u ∈ Γ ∗.
We obtain γ(ab) = ({1, a}, a) · ({1, b}, b) = ({1, a, ab}, ab). Now, if (a, b) ∈ I ,
then {1, a, ab} = {1, a, b, ab} = {1, b, ba}, i.e., γ(ab) = γ(ba). Hence, we obtain an
inverse monoid over (Σ, I) since (a, b) ∈ I implies (a−1, b) ∈ I . As a consequence,
the homomorphism γ can be viewed as a canonical homomorphism

γ : FIM(Σ, I) → { (A, g) | g ∈ A ⊆ G(Σ, I), A finite and closed }. (3)

Theorem 1. The morphism γ in (3) is an isomorphism.

Proof. Consider a pair (A, g) with A ⊆ G(Σ, I) finite and closed and g ∈ A. Recall
that Â = {û ∈ M̂(Γ, I) | u ∈ A}. Let w ∈ Γ ∗ be an arbitrary word representing the
trace (

∏
u∈A û û

−1)ĝ where the product is taken in any order. Then a simple reflection
shows γ(w) = (A, g). Hence γ is surjective. It remains to show that γ is injective. To
see this let w ∈ Γ ∗ and γ(w) = (A, g). Note that ŵ = ĝ. It suffices to show

w = (
∏
u∈A

uu−1)ŵ in FIM(Σ, I). (4)

This is enough because it implies γ(w) = γ(w′) =⇒ w = w′ in FIM(Σ, I) for all
w,w′ ∈ Γ ∗. If w = ε then (A, g) = ({1}, 1) and (4) is true. Hence let w = va with
a ∈ Γ . By induction v = (

∏
u∈B uu

−1)v̂ in FIM(Σ, I), where γ(v) = (B, h). We

obtain Â = B̂ ∪ {ŵ} and w = (
∏

u∈B uu
−1)v̂a in FIM(Σ, I).

We distinguish whether v̂a is reduced or not. If v̂a is not reduced, then v̂ = ŵa−1 ∈
B̂, i.e., ŵ ∈ B̂ since B̂ is prefix-closed. It follows B̂ = Â. We obtain in FIM(Σ, I):

w = (
∏
u∈B

uu−1)v̂a = (
∏
u∈A

uu−1)ŵa−1a = (
∏
u∈A

uu−1)ŵ ŵ−1ŵ a−1a

298 V. Diekert, M. Lohrey, and A. Miller

= (
∏
u∈A

uu−1)ŵa−1aŵ−1ŵ = (
∏
u∈A

uu−1)v̂ v̂−1ŵ = (
∏
u∈A

uu−1)ŵ.

It remains the case where v̂a = v̂a = ŵ. We obtain in FIM(Σ, I):

w = (
∏
u∈B

uu−1)ŵ = (
∏
u∈B

uu−1)ŵŵ−1ŵ.

Clearly, ŵ ∈ Â. Hence w = (
∏

u∈A′ uu−1)ŵ in FIM(Σ, I) for some subset A′ ⊆ Â

such that A′ = Â (set A′ = B̂ ∪ {ŵ}). Therefore it is enough to show
∏

u∈A′ uu−1 =∏
u∈A uu

−1 in FIM(Σ, I). This is the assertion of the following claim.

Claim: Let A ⊆M(Γ, I). Then
∏

u∈A uu
−1 =

∏
u∈A uu

−1 in FIM(Σ, I).
To prove this claim, let v ≤ u ∈ A. Then u = vw = vv−1vw = vv−1u in

FIM(Σ, I). Hence we may assume that A is prefix closed. Now, let u, v ∈ A such that
w = u v exists. Then, by Levi’s lemma (see e.g. [4, p. 10]), u = pr, v = ps, and w =
psr with (r, s) ∈ I . We obtain in FIM(Σ, I): uu−1vv−1 = prr−1p−1pss−1p−1 =
prr−1ss−1p−1 = prss−1r−1p−1 = ww−1. This means that we may assume that A
is coherently-closed, too. But if A is both prefix-closed and coherently-closed, then
A = A by definition of A. Hence the claim and the theorem follow. �

For I = ∅, Theorem 1 yields Munn’s theorem [14] as a special case. Note that for
I = ∅, the closureA of a prefix-closed subsetA of the free group F (Σ) equalsA itself.
It follows that γ(u) = ({v̂ | v ≤ u}, û), where v̂ ∈ Γ ∗ is the unique irreducible word
corresponding to v ∈ Γ ∗. The set {v̂ | u ≤ v} is also called the Munn tree of u.

Since we are interested in computational problems, we are concerned with the input
size of elements in FIM(Σ, I). The standard representation is just a word u over the
alphabet Γ . If γ(u) = (A, g), then |A| ≤ |u|k, where k is the number of cliques in
a clique covering for the dependence relation, because t ∈ Â implies that πi(t) is a
prefix of πi(u) for all 1 ≤ i ≤ k. Hence, for a fixed (Σ, I), the size of A is bounded
polynomially in the length of u, and moreover A can be calculated in polynomial time
from u. Thus, for computational problems in or above polynomial time, we can repre-
sent (A, g) ∈ FIM(Σ, I) by listing all the elements of A followed by g. In fact, instead
of writing down the closed set A, it suffices to list the primes in P(A) by Lemma 1.
The set P(A) has size at most |u| whatever (Σ, I) is. But in general, the more concise
representation is still the standard representation.

3 The Word Problem in FIM(Σ, I)

Using Munn’s theorem [14], it is easy to solve the word problem for a free inverse
monoid in linear time on a RAM. For free partially commutative inverse monoids the
solution of the word problem is more involved. We are able to present an O(n log(n))-
algorithm on a RAM by using a sophisticated combination of simple data structures:

Theorem 2. For a fixed free partially commutative inverse monoid FIM(Σ, I), the
word problem can be solved in time O(n log(n)) on a RAM.

Partially Commutative Inverse Monoids 299

Proof. Let u, v ∈ Γ ∗. By [3,19], we can test in linear time whether u = v in G(Σ, I).
It remains to check equality of the closures. Let (Γi)1≤i≤k be a clique covering of the
dependence relation D = (Γ × Γ) \ I . With w ∈ Γ ∗ we associate the following data:

– the prefix-closed set of words Ti(w) = {πi(ŝ) | s ≤ w},
– the word pi(w) = πi(ŵ) ∈ Ti for every 1 ≤ i ≤ k,
– the set of primes P (w) = P({ŝ | s ≤ w})
– the linearly ordered (w.r.t. the prefix order) set Pi(w) = P(ŵ)∩{p | max(p) ∈ Γi}.

By Lemma 1, we have to check whether P (u) = P (v). Before we present an effi-
cient implementation of the data structures above, let us first show how to compute
(Ti(wa), pi(wa), Pi(wa))1≤i≤k , P (wa) from (Ti(w), pi(w), Pi(w))1≤i≤k , P (w) for
a ∈ Γ . For this, we have to distinguish the two cases a−1 	∈ max(ŵ) and a−1 ∈
max(ŵ). We use the following notation: For a ∈ Γ such that a occurs in t define the
prime δa(t) as the maximal prefix of t such that max(δa(t)) = {a}. In case that a does
not occur in t let δa(t) = 1. We obtain δa(ta) = ({δb(t) | (a, b) ∈ D}) a.

Case 1. a−1 	∈ max(ŵ), i.e., ŵa = ŵa. We have:

Ti(wa) =

{
Ti(w) ∪ {pi(w)a} if a ∈ Γi

Ti(w) otherwise
pi(wa) =

{
pi(w)a if a ∈ Γi

pi(w) otherwise

Pi(wa) =

{
Pi(w) ∪ {δa(ŵa)} if a ∈ Γi

Pi(w) otherwise
P (wa) = P (w) ∪ {δa(ŵa)}

Note that

δa(ŵa) = ({δb(ŵ) | (a, b) ∈ D}) a = ({maxPi(w) | 1 ≤ i ≤ k, a ∈ Γi}) a.

Case 2. a−1 ∈ max(ŵ), i.e., ŵ = sa−1 and ŵa = s for an irreducible trace s ∈
M̂(Γ, I). We have maxPi(w) = δa−1(ŵ) for all i with a−1 ∈ Γi (i.e., a ∈ Γi) and:

Ti(wa) = Ti(w) pi(wa) =

{
v if a−1 ∈ Γi, pi(w) = va−1

pi(w) otherwise

P (wa) = P (w) ∪ P(s) = P (w) Pi(wa) =

{
Pi(w) \maxPi(w) if a−1 ∈ Γi

Pi(w) otherwise

For the equality P (w) ∪ P(s) = P (w) note that P(s) ⊆ P (w) since the trace s is
a prefix of the trace ŵ. Let us now discuss an efficient implementation of our data
structures such that the updates above can be done in timeO(log(n)). The prefix-closed
set Ti(w) can be stored as a trie with at most |πi(w)| many nodes, i.e., a rooted tree,
where every node has for every a ∈ Γi at most one a-labelled outgoing edge and Ti(w)
equals the set of all path-labels from the root to tree nodes. We assign with every node
of Ti(w) a key from N. The root gets the key 1, and with every new node of Ti(w)
the key is increased by one. This allows to calculate maxU for a subset U ⊆ Ti(w),
which is linearly ordered by the prefix relation, in time O(|U |) by comparing the keys
for the nodes in U . The word pi(w) = πi(ŵ) is just a distinguished node of the trie

300 V. Diekert, M. Lohrey, and A. Miller

Ti(w). Clearly, a−1 ∈ max(ŵ) if and only if pi(w) ends with a−1 for all 1 ≤ i ≤ k
with a−1 ∈ Γi. This means that whenever a−1 ∈ Γi, then pi(w) is the a−1-successor
of its parent node. This allows to distinguish between case 1 and case 2 above in time
O(k) = O(1). In case 1, we have to add an a-successor to the node pi(w) in case a ∈ Γi

and pi(w) does not have an a-successor yet. This new node becomes pi(wa). If a ∈ Γi

but pi(w) already has an a-successor v, then v becomes pi(wa). In case 2, the tries do
not change, but if a ∈ Γi, then pi(wa) is the father node of pi(w).

The set of primes P (w) is stored as the set of tuples {(πi(t))1≤i≤k | t ∈ P (w)},
where every projection πi(t) is represented by the corresponding node in the trie Ti(w).
For the set P (w) we use a data structure, which allowsO(log(n)) time implementations
for the operations insert and find. The linearly ordered set Pi(w) is stored as a list of
tuples (πi(t))1≤i≤k for t ∈ Pi(w). Using this representation, the necessary updates for
case 2 are clearly possible in constant time. For case 1, we have to calculate the tuple
corresponding to δa(ŵa) = ({maxPi(w) | 1 ≤ i ≤ k, a ∈ Γi}) a. Note that

πj(δa(ŵa)) = {πj(maxPi(w)) | 1 ≤ i ≤ k, a ∈ Γi} πj(a) (5)

for 1 ≤ j ≤ k. The in (5) refers to the prefix order on words. Note that since
maxPi(w) is a prefix of the trace ŵ for every i, the set {πj(maxPi(w)) | 1 ≤ i ≤
k, a ∈ Γi} is linearly ordered by the prefix relation on Γ ∗j , i.e., the supremum exists.
Moreover, this supremum can be computed in time O(k), where k is the number of
cliques (which is a constant) by using the keys associated with the nodes from Tj(w).
This concludes the description of our data structures. Now for our input words u, v ∈
Γ ∗ we first compute (Ti(u), pi(u), Pi(u))1≤i≤k, P (u) and (Ti(v), pi(v), Pi(v))1≤i≤k ,
P (v) in time O(n log(n)). When building up the tries Ti(u) and Ti(v) we have to use
the same node name for a certain string over Γi. Then we can check P (u) = P (v) in
time O(n log(n)) using the set data structures for P (u) and P (v). �

For the uniform word problem, where the independence relation I is part of the input,
the above algorithm still yields a polynomial time algorithm. More precisely, the run-
ning time is O((k2 + log(n))n), where k is the number of cliques in a clique covering
for the dependence relation and n is the length of the input words.

4 The Generalized Word Problem in FIM(Σ, I)

In this section, we show that the generalized word problem for a free partially com-
mutative inverse monoid is NP-complete in general. An NP upper bound can be even
shown for the membership problem in rational sets of FIM(Σ, I). A rational subset of
FIM(Σ, I) is represented concisely by a finite automaton over the alphabet Γ .

Theorem 3. For every fixed free partially commutative inverse monoid FIM(Σ, I), the
membership problem for rational subsets of FIM(Σ, I) belongs to NP.

Proof. For given (B, g) ∈ FIM(Σ, I) and a finite automaton A over the alphabet Γ
we have to determine whether (B, g) ∈ γ(L(A)), where γ : Γ ∗ → FIM(Σ, I) is the
canonical morphism. In the following, we view B as a subgraph of the Cayley graph of
G(Σ, I). In a first step we guess a connected subset C ⊆ B with 1, g ∈ C such that its

Partially Commutative Inverse Monoids 301

closure C equalsB. It remains to check in NP whether there is a path from 1 to g in C,
which visits all nodes of C and such that this path is labelled with a word from L(A).

Let n be the number of states of the automaton A. Assume that p = (v1, . . . , vm)
is a path in C such that v1 = 1, vm = g, C = {v1, . . . , vm} and let q1 . . . , qm be
a corresponding path in the automaton A, where q1 is the initial state and qm is a
final state. Let i1 < · · · < i� be exactly those positions j ∈ {2, . . . ,m} such that
vj 	∈ {v1, . . . , vj−1}. Clearly, � < |C|. Set i0 = 1 and i�+1 = m + 1. Assume that
|ik+1 − ik| > |C| · n for some k ∈ {0, . . . , �}. Then there are positions ik ≤ α < β <
ik+1 such that vα = vβ and qα = qβ . It follows that v1, . . . , vα, vβ+1, . . . , vm is a again
a path in C from 1 to g, which visits all nodes of C, and q1, . . . , qα, qβ+1, . . . , qm is a
corresponding path in the automatonA.

From the above consideration it follows that if there exists a path from 1 to g in C,
which visits all nodes of C and such that this path is labelled with a word from L(A),
then there exists such a path of length at most |C|2 · n. Such a path can be guessed in
polynomial time. This finishes the proof. �

NP-hardness can be already shown for the generalized word problem of FIM({a, b}):

Theorem 4. The generalized word problem for FIM({a, b}) is NP-hard.

Proof. We prove the theorem by a reduction from SAT. Let Ψ = {C1, . . . , Cm} be a set
of clauses over variables x1, . . . , xn. Let k = m+ n. For 1 ≤ i ≤ n let Pi = {j | xi ∈
Cj} and Ni = {j | ¬xi ∈ Cj}. Let u = (A, an) ∈ FIM({a, b}), where (the subgraph
of the Cayley graph of F ({a, b}) induced by) A looks as follows:

1 a a2 am−1 am am+1 ak−1 ak

ab a2b am−1b amb

a a a a a
b b b b

.

The idea is that the node ajb represents the clause Cj . For every 1 ≤ i ≤ n define
ui,t = (Ai,t, a) ∈ FIM({a, b}) and ui,f = (Ai,f , a) ∈ FIM({a, b}), where:

Ai,t = a−i+1({1, a, . . . , ak} ∪ {ajb | j ∈ Pi}) ⊆ F ({a, b})
Ai,f = a−i+1({1, a, . . . , ak} ∪ {ajb | j ∈ Ni}) ⊆ F ({a, b})

We claim that u ∈ {u1,t, u1,f , . . . , un,t, un,f}∗ if and only if Ψ is satisfiable. First
assume that Ψ is satisfied and let σ : {x1, . . . , xn} → {true, false} be a satisfying as-
signment. Let ui = ui,t if σ(xi) = true, otherwise set ui = ui,f . Then we have u =
u1 · · ·un, which shows u ∈ {u1,t, u1,f , . . . , un,t, un,f}∗. For the other direction as-
sume that u = u1 · · ·um, where m ≥ 0 and u1, . . . , um ∈ {u1,t, u1,f , . . . , un,t, un,f}.
Since u = (A, an) and every ui is of the form (B, a) for some B, we have m = n.
Moreover, since u1 · · ·ui−1 is of the form (C, ai−1) for 1 ≤ i ≤ n, we must have
ui ∈ {ui,f , ui,t}, because otherwise we would obtain a−1 ∈ A (if ui ∈ {uj,f , uj,t}
for j > i) or ak+1 ∈ A (if ui ∈ {uj,f , uj,t} for j < i). Now we can define a truth
assignment σ : {x1, . . . , xn} → {true, false} as follows: σ(xi) = true if ui = ui,t and
σ(xi) = false if ui = ui,f . Since ajb ∈ A for every 1 ≤ j ≤ m, it follows that for
every 1 ≤ j ≤ m there is an 1 ≤ i ≤ n such that either j ∈ Pi and ui = ui,t (i.e.,
σ(xi) = true) or j ∈ Ni and ui = ui,f (i.e., σ(xi) = false). Thus, σ satisfies Ψ . �

302 V. Diekert, M. Lohrey, and A. Miller

The NP upper bound in Theorem 3 generalizes to the uniform case, where the indepen-
dence relation I is part of the input but the number of cliques in a clique covering for
D = I \ (Σ × Σ) is fixed by a constant. If we give up this restriction, the complexity
goes up to PSPACE-completeness:

Theorem 5. The following problem is PSPACE-complete:
INPUT: An independence relation I ⊆ Σ ×Σ and words u, u1, . . . , un ∈ Γ ∗
QUESTION: u ∈ {u1, . . . , un}∗ in FIM(Σ, I)?

5 FIM(Σ, I) Modulo an Idempotent Presentation

Let I ⊆ Σ×Σ be an independence relation. An idempotent presentation over (Σ, I) is
a finite set of identities P = {(ei, fi) | 1 ≤ i ≤ n}, where every ei and fi is an idem-
potent element in FIM(Σ, I). Based on a reduction to Rabin’s tree theorem, Margolis
and Meakin have shown that for I = ∅, the uniform word problem for quotient monoids
of the form FIM(Σ)/P (with P idempotent) is decidable [10]. Here, “uniform” means
that the idempotent presentationP is part of the input. Recently, in [8] it was shown that
the uniform word problem is EXPTIME-complete and that for every fixed idempotent
presentation P the word problem for FIM(Σ)/P can be solved in logspace.

In this section we prove that the uniform word problem for monoids of the form
FIM(Σ, I)/P (with P an idempotent presentation over (Σ, I)) is decidable if and only
if the dependence relation D = (Σ × Σ) \ I is transitive, and for the transitive case
we prove EXPTIME-completeness. Clearly, EXPTIME-hardness follows directly from
[8]. For the upper bound, we use analogously to [10] a closure operation on subsets of
G(Σ, I). Assume that P is an idempotent presentation. Consider a pair (e, f) ∈ P .
Then we have e = (E, 1) and f = (F, 1), where E and F are finite and closed subsets
of the graph group G(Σ, I) and 1 ∈ E ∩ F . In the following, we identify the pair
(E, 1) with the finite closed set E. Since e and f are idempotents of FIM(Σ, I), we
can replace the relation e = f by the two relations e = ef and f = ef without changing
the quotient monoid [10]. Hence, for every pair (E,F) ∈ P , we can assume E ⊆ F .

Now assume that A,B ⊆ G(Σ, I) are finite and closed. We write A ⇒P B if and
only if there exists (E,F) ∈ P (hence E ⊆ F) and f ∈ G(Σ, I) such that fE ⊆ A
and B = A ∪ fF . It is easy to see that the relation ⇒P is strongly confluent, i.e., if
A ⇒P B and A ⇒P C, then there exists D such that B ⇒P D and C ⇒P D.
Hence, A

∗⇔P B if and only if there exists C such that A
∗⇒P C and B

∗⇒P C. Define
clP (A) =

⋃
{B ⊆ G(Σ, I) | A ∗⇒P B} ⊆ G(Σ,P).

Lemma 2. Let (A, g), (B, h) ∈ FIM(Σ, I). Then (A, g) = (B, h) in FIM(Σ, I)/P if
and only if g = h in G(Σ, I) and clP (A) = clP (B).

Using Lemma 2, we can generalize the EXPTIME upper bound from [8] for the case
I = ∅: If I ⊆ Σ×Σ is an independence relation with D = (Σ×Σ)\ I transitive, then
Σ is a disjoint union of D-cliquesΣ1, . . . , Σn. Hence, FIM(Σ, I) is the direct product∏n

i=1 FIM(Σi) of free inverse monoids. Moreover, a closed setA ⊆ G(Σ, I) is a direct
productA =

∏n
i=1 Ai with Ai ⊆ F (Σi) closed. By embedding each of the free groups

F (Σi) into a free group F (Θ) for a sufficiently large alphabet Θ, we can represent

Partially Commutative Inverse Monoids 303

A by an n-tuple (A1, . . . , An) of closed subsets Ai ⊆ F (Θ). Computing the closure
clP (A) corresponds to computing the simultaneous fixpoint of a monotonic mapping on
F (Θ)n. Analogously to [8], we can formalize this fixpoint computation in the modal
µ-calculus, interpreted over the Cayley graph of F (Θ). But for this, we need in contrast
to [8] the modal µ-calculus with simultaneous fixpoints. On the other hand, the latter
logic can be translated into the “ordinary” modal µ-calculus [1] without increasing the
complexity of the model-checking problem. Since the model-checking problem of the
modalµ-calculus over context-free graphs (which include Cayley graphs of free groups)
belongs to EXPTIME [7,18], we finally get:

Theorem 6. The following problem is EXPTIME-complete:
INPUT: An independence relation I ⊆ Σ × Σ with (Σ × Σ) \ I transitive, an

idempotent presentation P over (Σ, I) and words u, v ∈ Γ ∗.
QUESTION: u = v in FIM(Σ, I)/P?

For a fixed idempotent presentation, we can again generalize a corresponding result
from [8]:

Theorem 7. If I ⊆ Σ×Σ is an independence relation with (Σ×Σ)\ I transitive and
P is an idempotent presentation over (Σ, I), then the word problem for FIM(Σ, I)/P
can be solved in (i) linear time on a RAM and (ii) logspace on a Turing machine.

Theorem 6 and 7 are an interesting contrast to a result from [12] stating that the variety
of E-unitary inverse monoids over an Abelian cover has an undecidable word problem.
The difference is that in our setting pairs we only consider pairs (A, g), where A has to
be closed, whereas in [12] this restriction is not imposed.

For a non-transitive dependence relation D we can encode the acceptance problem
for a Turing-machine T in the word problem for FIM(Σ, I)/P . Let Σ = {a, b, c} and
assume that (a, c), (b, c) ∈ D but (a, b) ∈ I . Then a and b generate in the Cayley graph
of G({a, b, c}, I) a two dimensional grid. Using the letter c, which is dependent from
both a and b, we can encode a labelling of the grid-points with tape symbols and states
of T . With the rewrite relation⇒P we generate a labelling consistent with the transition
function of T and the input of T . Hence, we have:

Theorem 8. Let I ⊆ Σ × Σ be an independence relation with D = (Σ × Σ) \ I
not transitive. Then there exists an idempotent presentation P over (Σ, I) such that the
word problem for FIM(Σ, I)/P is undecidable.

For the generalized word problem of FIM(Σ, I)/P , we can prove undecidability even
for a transitive dependence relation: LetΣ = {a, b, c, d}, I = {a, b}×{c, d}∪{c, d}×
{a, b}, and let the idempotent presentationP contain all identitiesαα−1 = 1 forα ∈ Γ .
Then FIM(Σ, I)/P is a direct product of two free groups of rank 2. By [13], this group
has an undecidable generalized word problem. The only remaining case is a dependence
relation, which consists of one clique of arbitrary size together with isolated nodes. The
corresponding free partially commutative group is of the form F × Zk, where F is a
free group of arbitrary rank. It remains open, whether for such a dependence relation,
the generalized word problem for FIM(Σ, I)/P is decidable for every idempotent pre-
sentation P . For the group F × Zk the generalized word problem is decidable [6].

304 V. Diekert, M. Lohrey, and A. Miller

References

1. H. Bekic. Definable operation in general algebras, and the theory of automata and flowcharts.
In Programming Languages and Their Definition, LNCS 177, pages 30–55. Springer, 1984.

2. R. Cori and D. Perrin. Automates et commutations partielles. RAIRO — Inform. Théor.
Appl., 19:21–32, 1985.

3. V. Diekert. Combinatorics on Traces. LNCS 454. Springer, 1990.
4. V. Diekert and G. Rozenberg, editors. The Book of Traces. World Scientific, 1995.
5. C. Droms. Graph groups, coherence and three-manifolds. J. Algebra, 106(2):484–489, 1985.
6. I. Kapovich, R. Weidmann, and A. Myasnikov. Foldings, graphs of groups and the member-

ship problem. Internat. J. Algebra Comput., 15(1):95–128, 2005.
7. O. Kupferman and M. Y. Vardi. An automata-theoretic approach to reasoning about infinite-

state systems. In Proc. CAV 2000, LNCS 1855, pages 36–52. Springer, 2000.
8. M. Lohrey and N. Ondrusch. Inverse monoids: decidability and complexity of algebraic

questions. submitted, short version appeared in Proc. MFCS 2005, LNCS 3618, pages 664–
675. Springer, 2005.

9. S. Margolis and J. Meakin. E-unitary inverse monoids and the Cayley graph of a group
presentation. J. Pure Appl. Algebra, 58(1):45–76, 1989.

10. S. Margolis and J. Meakin. Inverse monoids, trees, and context-free languages. Trans. Amer.
Math. Soc., 335(1):259–276, 1993.

11. S. Margolis, J. Meakin, and M. Sapir. Algorithmic problems in groups, semigroups and
inverse semigroups. In Semigroups, Formal Languages and Groups, pages 147–214. Kluwer,
1995.

12. J. Meakin and M. Sapir. The word problem in the variety of inverse semigroups with Abelian
covers. J. London Math. Soc. (2), 53(1):79–98, 1996.

13. K. A. Mihailova. The occurrence problem for direct products of groups. Math. USSR
Sbornik, 70:241–251, 1966. English translation.

14. W. Munn. Free inverse semigroups. Proc. London Math. Soc., 30:385–404, 1974.
15. M. Petrich. Inverse semigroups. Wiley, 1984.
16. J. Stephen. Presentations of inverse monoids. J. Pure Appl. Algebra, 63:81–112, 1990.
17. A. Veloso da Costa. Γ -Produtos de Monóides e Semigrupos. PhD thesis, Universidade do

Porto, 2003.
18. I. Walukiewicz. Pushdown processes: games and model-checking. Inform. and Comput.,

164(2):234–263, 2001.
19. C. Wrathall. The word problem for free partially commutative groups. J. Symbolic Comput.,

6(1):99–104, 1988.

Learning Bayesian Networks Does Not Have to

Be NP-Hard

Norbert Dojer

Institute of Informatics, Warsaw University, Banacha 2, 02-097 Warszawa, Poland
dojer@mimuw.edu.pl

Abstract. We propose an algorithm for learning an optimal Bayesian
network from data. Our method is addressed to biological applications,
where usually datasets are small but sets of random variables are large.
Moreover we assume that there is no need to examine the acyclicity of
the graph.

We provide polynomial bounds (with respect to the number of ran-
dom variables) for time complexity of our algorithm for two generally
used scoring criteria: Minimal Description Length and Bayesian-Dirichlet
equivalence.

1 Introduction

The framework of Bayesian networks is widely used in computational molecu-
lar biology. In particular, it appears attractive in the field of inferring a gene
regulatory network structure from microarray expression data.

Researchers dealing with Bayesian networks have generally accepted that
without restrictive assumptions, learning Bayesian networks from data is NP-
hard with respect to the number of network vertices. This belief originates from
a number of discouraging complexity results, which emerged over the last few
years. Chickering [1] shows that learning an optimal network structure is NP-
hard for the BDe scoring criterion with an arbitrary prior distribution, even
when each node has at most two parents and the dataset is trivial. In this ap-
proach a reduction of a known NP-complete problem is based on constructing a
complicated prior distribution for the BDe score. Chickering et al. [2] show that
learning an optimal network structure is NP-hard for large datasets, even when
each node has at most three parents and a scoring criterion favors the simplest
model able to represent the distribution underlying the dataset exactly (as most
of scores used in practice do). By a large dataset the authors mean the one
which reflects the underlying distribution exactly. Moreover, this distribution
is assumed to be directly accessible, so the complexity of scanning the dataset
does not influence the result. In other papers [3,4], NP-hardness of the problem
of learning Bayesian networks from data with some constraints on the structure
of a network is shown.

On the other hand, the known algorithms allow to learn the structure of
optimal networks having up to 20-40 vertices [5]. Consequently, a large amount

R. Královič and P. Urzyczyn (Eds.): MFCS 2006, LNCS 4162, pp. 305–314, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

306 N. Dojer

of work has been dedicated to heuristic search techniques of identifying good
models [6,7].

In the present paper we propose a new algorithm for learning an optimal net-
work structure. Our method is addressed to the case when a dataset is small
and there is no need to examine the acyclicity of the graph. The first condi-
tion does not bother in biological applications, because expenses of microarray
experiments restrict the amount of expression data. The second assumption is
satisfied in many cases, e.g. when working with dynamic Bayesian networks or
when the sets of regulators and regulatees are disjoint.

We investigate the worst-case time complexity of our algorithm for generally
used scoring criteria. We show that the algorithm works in polynomial time for
both MDL and BDe scores. Experiments with real biological data show that, even
for large floral genomes, the algorithm for the MDL score works in a reasonable
time.

2 Algorithm

A Bayesian network (BN) N is a representation of a joint distribution of a set
of discrete random variables X = {X1, . . . , Xn}. The representation consists of
two components:

– a directed acyclic graph G = (X,E) encoding conditional (in-)dependencies
– a family θ of conditional distributions P (Xi|Pai), where

Pai = {Y ∈ X|(Y,Xi) ∈ E}

The joint distribution of X is given by

P (X) =
n∏

i=1

P (Xi|Pai) (1)

The problem of learning a BN is understood as follows: given a multiset of
X-instances D = {x1, . . . ,xN} find a network graph G that best matches D. The
notion of a good match is formalized by means of a scoring function S(G : D)
having positive values and minimized for the best matching network. Thus the
point is to find a directed acyclic graph G with the set of vertices X minimizing
S(G : D).

In the present paper we consider the case when there is no need to examine
the acyclicity of the graph, for example:

– When edges must be directed according to a given partial order, in particular
when the sets of potential regulators and regulatees are disjoint.

– When dealing with dynamic Bayesian networks. A dynamic BN describes
stochastic evolution of a set of random variables over discretized time. There-
fore conditional distributions refer to random variables in neighboring time
points. The acyclicity constraint is relaxed, because the ”unrolled” graph

Learning Bayesian Networks Does Not Have to Be NP-Hard 307

(with a copy of each variable in each time point) is always acyclic (see [7,8]
for more details). The following considerations apply to dynamic BNs as
well.

In the sequel we consider some assumptions on the form of a scoring function.
The first one states that S(G : D) decomposes into a sum over the set of random
variables of local scores, depending on the values of a variable and its parents in
the graph only.

Assumption 1 (additivity). S(G : D) =
∑n

i=1 s(Xi,Pai : D|{Xi}∪Pai
), where

D|Y denotes the restriction of D to the values of the members of Y ⊆ X.

When there is no need to examine the acyclicity of the graph, this assumption
allows to compute the parents set of each variable independently. Thus the point
is to find Pai minimizing s(Xi,Pai : D|{Xi}∪Pai

) for each i.
Let us fix a dataset D and a random variable X . We denote by X′ the set of

potential parents of X (possibly smaller than X due to given constraints on the
structure of the network). To simplify the notation we continue to write s(Pa)
for s(X,Pa : D|{X}∪Pa).

The following assumption expresses the fact that scoring functions decompose
into 2 components: g penalizing the complexity of a network and d evaluating
the possibility of explaining data by a network.

Assumption 2 (splitting). s(Pa) = g(Pa) + d(Pa) for some functions g, d :
P(X) → R+ satisfying Pa ⊆ Pa′ =⇒ g(Pa) ≤ g(Pa′).

This assumption is used in the following algorithm to avoid considering networks
with inadequately large component g.

Algorithm 1.

1. Pa := ∅
2. for each P ⊆ X′ chosen according to g(P)

(a) if s(P) < s(Pa) then Pa := P
(b) if g(P) ≥ s(Pa) then return Pa; stop

In the above algorithm choosing according to g(P) means choosing increas-
ingly with respect to the value of the component g of the local score.

Theorem 1. Suppose that the scoring function satisfies Assumptions 1-2. Then
Algorithm 1 applied to each random variable finds an optimal network.

Proof. The theorem follows from the fact that all the potential parents sets
P omitted by the algorithm satisfy s(P) ≥ g(P) ≥ s(Pa), where Pa is the
returned set.

308 N. Dojer

A disadvantage of the above algorithm is that finding a proper subset P ⊆ X′

involves computing g(P′) for all ⊆-successors P′ of previously chosen subsets. It
may be avoided when a further assumption is imposed.

Assumption 3 (uniformity). |Pa| = |Pa′| =⇒ g(Pa) = g(Pa′).

The above assumption suggests the notation ĝ(|Pa|) = g(Pa). The following
algorithm uses the uniformity of g to reduce the number of computations of the
component g.

Algorithm 2.

1. Pa := ∅
2. for p = 1 to n

(a) if ĝ(p) ≥ s(Pa) then return Pa; stop
(b) P = argmin{Y⊆X′:|Y|=p}s(Y)
(c) if s(P) < s(Pa) then Pa := P

Theorem 2. Suppose that the scoring function satisfies Assumptions 1-3. Then
Algorithm 2 applied to each random variable finds an optimal network.

Proof. The theorem follows from the fact that all the potential parents sets
P omitted by the algorithm satisfy s(P) ≥ ĝ(|P|) ≥ s(Pa), where Pa is the
returned set.

The following sections are devoted to two generally used scoring criteria: Minimal
Description Length and Bayesian-Dirichlet equivalence. We consider possible
decompositions of the local scores and analyze the computational cost of the
above algorithms.

3 Minimal Description Length

The Minimal Description Length (MDL) scoring criterion originates from infor-
mation theory [9]. A network N is viewed here as a model of compression of a
dataset D. The optimal model minimizes the total length of the description, i.e.
the sum of the description length of the model and of the compressed data.

Let us fix a dataset D = {x1, . . . ,xN} and a random variable X . Recall the
decomposition s(Pa) = g(Pa) + d(Pa) of the local score for X . In the MDL
score g(Pa) stands for the length of the description of the local part of the
network (i.e. the edges ingoing to X and the conditional distribution P (X |Pa))
and d(Pa) is the length of the compressed version of X-values in D.

Let kY denote the cardinality of the set VY of possible values of the random
variable Y ∈ X. Thus we have

g(Pa) = |Pa| logn+
logN

2
(kX − 1)

∏
Y ∈Pa

kY

Learning Bayesian Networks Does Not Have to Be NP-Hard 309

where log N
2 is the number of bits we use for each numeric parameter of the

conditional distribution. This formula satisfies Assumption 2 but fails to satisfy
Assumption 3. Therefore Algorithm 1 can be used to learn an optimal network,
but Algorithm 2 cannot.

However, for many applications we may assume that all the random variables
attain values from the same set V of cardinality k. In this case we obtain the
formula

g(Pa) = |Pa| logn+
logN

2
(k − 1)k|Pa|

which satisfies Assumption 3. For simplicity, we continue to work under this
assumption. The general case may be handled in much the same way.

Compression with respect to the network model is understood as follows: when
encoding the X-values, the values of Pa-instances are assumed to be known.
Thus the optimal encoding length is given by

d(Pa) = N ·H(X |Pa)

whereH(X |Pa) = −
∑

v∈V
∑

v∈VPa P (v,v) logP (v|v) is the conditional entropy
of X given Pa (the distributions are estimated from D).

Since all the assumptions from the previous section are satisfied, Algorithm 2
may be applied to learn the optimal network. Let us turn to the analysis of its
complexity.

Theorem 3. The worst-case time complexity of Algorithm 2 for the MDL score
is O(nlogk NN logk N).

Proof. The proof consists in finding a number p satisfying ĝ(p) ≥ s(∅).
Given v ∈ V , we denote by Nv the number of samples in D with X = v. By

Jensen’s Theorem we have

d(∅) = N ·H(X |∅) = N
∑
v∈V

Nv

N
log

N

Nv
≤ N log

∑
v∈V

1 = N log k

Hence s(∅) ≤ N log k + (k − 1) log N
2 and it suffices to find p satisfying

p logn+ kp(k − 1)
logN

2
≥ N log k + (k − 1)

logN
2

It is easily seen that the above assertion holds for p ≥ logk N whenever N > 5.
Therefore we do not have to consider subsets with more than logk N parent

variables. Since there areO(np) subsets with at most p parents and a subset with
p elements may be examined in pN steps, the total complexity of the algorithm
is O(nlogk NN logk N). �

4 Bayesian-Dirichlet Equivalence

The Bayesian-Dirichlet equivalence (BDe) scoring criterion originates from
Bayesian statistics [10]. Given a dataset D the optimal network structure G
maximizes the posterior conditional probability P (G|D). We have

310 N. Dojer

P (G|D) ∝ P (G)P (D|G) = P (G)
∫
P (D|G, θ)P (θ|G)dθ

where P (G) and P (θ|G) are prior probability distributions on graph structures
and conditional distributions’ parameters, respectively, and P (D|G, θ) is evalu-
ated due to (1).

Heckerman et al. [6], following Cooper and Herskovits [10], identified a set
of independence assumptions making possible decomposition of the integral in
the above formula into a product over X. Under this condition, together with a
similar one regarding decomposition of P (G), the scoring criterion

S(G : D) = − logP (G)− logP (D|G)

obtained by taking − log of the above term satisfies Assumption 1. Moreover, the
decomposition s(Pa) = g(Pa) + d(Pa) of the local scores appears as well, with
the components g and d derived from − logP (G) and − logP (D|G), respectively.

The distribution P ((X,E)) ∝ α|E| with a penalty parameter 0 < α < 1 in
general is used as a prior over the network structures. This choice results in the
function

g(|Pa|) = |Pa| logα−1

satisfying Assumptions 2 and 3.
However, it should be noticed that there are also used priors which satisfy

neither Assumption 2 nor 3, e.g. P (G) ∝ α∆(G,G0), where ∆(G,G0) is the cardi-
nality of the symmetric difference between the sets of edges in G and in the prior
network G0.

The Dirichlet distribution is generally used as a prior over the conditional
distributions’ parameters. It yields

d(Pa) = log

 ∏
v∈V|Pa|

Γ (
∑

v∈V(Hv,v +Nv,v))
Γ (
∑

v∈V Hv,v)

∏
v∈V

Γ (Hv,v)
Γ (Hv,v +Nv,v)

where Γ is the Gamma function, Nv,v denotes the number of samples in D
with X = v and Pa = v, and Hv,v is the corresponding hyperparameter of the
Dirichlet distribution.

Setting all the hyperparameters to 1 yields

d(Pa) = log

 ∏
v∈V|Pa|

(k − 1 +
∑

v∈V Nv,v)!
(k − 1)!

∏
v∈V

1
Nv,v!

 =

=
∑

v∈V|Pa|

(
log(k − 1 +

∑
v∈V

Nv,v)!− log(k − 1)!−
∑
v∈V

logNv,v!

)

where k = |V|. For simplicity, we continue to work under this assumption. The
general case may be handled in a similar way.

The following result allows to refine the decomposition of the local score into
the sum of the components g and d.

Learning Bayesian Networks Does Not Have to Be NP-Hard 311

Proposition 1. Define dmin =
∑

v∈V (log(k − 1 +Nv)!− log(k − 1)!−logNv!),
where Nv denotes the number of samples in D with X = v. Then d(Pa) ≥ dmin

for each Pa ∈ X.

Proof. Fix Pa ⊆ X. Given v ∈ V |Pa|, we denote by Nv the number of samples
in D with Pa = v. We have

d(Pa) =
∑

v∈V|Pa|

(
log(k − 1 +Nv)!− log(k − 1)!−

∑
v∈V

logNv,v!

)
=

=
∑

v∈V|Pa|

k−1+Nv∑
i=k

log i−
∑
v∈V

Nv,v∑
i=1

log i

 ≥

≥
∑

v∈V|Pa|

∑
v∈V

k−1+Nv,v∑
i=k

log i−
Nv,v∑
i=1

log i

 =
∑

v∈V|Pa|

∑
v∈V

Nv,v∑
i=1

log
k − 1 + i

i
=

=
∑
v∈V

∑
v∈V|Pa|

Nv,v∑
i=1

log(
k − 1
i

+ 1) ≥
∑
v∈V

Nv∑
i=1

log(
k − 1
i

+ 1) =

=
∑
v∈V

Nv∑
i=1

log
k − 1 + i

i
=
∑
v∈V

(
k−1+Nv∑

i=k

log i−
Nv∑
i=1

log i

)
=

=
∑
v∈V

(log(k − 1 +Nv)!− log(k − 1)!− logNv!) = dmin

The first inequality follows from the fact that given Nv the sum

∑
v∈V

k−1+Nv,v∑
i=k

log i

maximizes when Nv = Nv,v for some v ∈ V . Similarly, the second inequality
holds, because given Nv the sum

∑
v∈V|Pa|

Nv,v∑
i=1

log(
k − 1
i

+ 1)

minimizes when Nv = Nv,v for some v ∈ V |Pa|. �

By the above proposition, the decomposition of the local score given by s(Pa) =
g′(Pa) + d′(Pa) with the components g′(Pa) = g(Pa) + dmin and d′(Pa) =
d(Pa)− dmin satisfies all the assumptions required by Algorithm 2. Let us turn
to the analysis of its complexity.

Theorem 4. The worst-case time complexity of Algorithm 2 for the BDe score
with the decomposition of the local score given by s(Pa) = g′(Pa) + d′(Pa) is
O(nN logα−1 kN2 logα−1 k).

312 N. Dojer

Proof. The proof consists in finding a number p satisfying ĝ′(p) ≥ s(∅).
We have

d′(∅) = d(∅)− dmin =

=
(

log
(k − 1 +N)!

(k − 1)!
−
∑
v∈V

logNv!
)
−
∑
v∈V

(
log

(k − 1 +Nv)!
(k − 1)!

− logNv!
)

=

= (log(k − 1 +N)!− log(k − 1)!)−
∑
v∈V

(log(k − 1 +Nv)!− log(k − 1)!) =

=
k−1+N∑

i=k

log i−
∑
v∈V

k−1+Nv∑
i=k

log i ≤

≤
k−1+N∑

i=k

log i−

k k−1+�N
k �∑

i=k

log i+ (N − k�N
k
�) log(k + �N

k
�)

 =

= log e

k−1+N∑
i=k

ln i− k

k−1+�N
k �∑

i=k

ln i+ (
N

k
− �N

k
�) ln(k + �N

k
�)

 ≤

≤ log e

(∫ k+N

k

lnxdx − k

(∫ k−1+�N
k �

k−1
lnxdx+

∫ k−1+ N
k

k−1+�N
k �

lnxdx

))
=

= log e

(
(k +N)(ln(k +N)− 1)− k(ln k − 1)−

− k

(
(k − 1 +

N

k
)(ln(k − 1 +

N

k
)− 1)− (k − 1)(ln(k − 1)− 1)

))
=

= N log k +N log
k +N

k2 − k +N
+ log

(1 + N
k)k

(1 + N
k2−k)k2−k

≤ N log k

The first inequality follows from the fact that the sum
∑

v∈V logNv! minimizes
when the values of Nv are uniformly distributed over v. The last inequality is
due to the fact that k ≥ 2, and consequently k2 − k ≥ k.

Thus s(∅) ≤ N log k + dmin, so we need p satisfying p logα−1 ≥ N log k, i.e.
p ≥ N logα−1 k.

Therefore we do not have to consider subsets with more than N logα−1 k
parent variables. Since there are O(np) subsets with at most p parents and a
subset with p elements may be examined in pN steps, the total complexity of
the algorithm is O(nN logα−1 kN2 logα−1 k). �

5 Application to Biological Data

Microarray experiments measure simultaneously expression levels of thousands
of genes. Learning Bayesian networks from microarray data aims at discovering
gene regulatory dependencies.

Learning Bayesian Networks Does Not Have to Be NP-Hard 313

We tested the time complexity of learning an optimal dynamic BN on mi-
croarray experiments data of Arabidopsis thaliana (∼23 000 genes). There were
20 samples of time series data discretized into 3 expression levels. We ran our
program on a single Pentium 4 CPU 2.8 GHz.

The computation time was 48 hours for the MDL score and 170 hours for the
BDe score with a parameter logα−1 = 5. The program failed to terminate in a
reasonable time for the BDe score with a parameter logα−1 = 3, i.e α ≈ 0.05.

6 Conclusion

The aim of this work was to provide an effective algorithm for learning optimal
Bayesian network from data, applicable to microarray expression measurements.
We have proposed a method addressed to the case when a dataset is small
and there is no need to examine the acyclicity of the graph. We have provided
polynomial bounds (with respect to the number of random variables) for time
complexity of our algorithm for two generally used scoring criteria: Minimal
Description Length and Bayesian-Dirichlet equivalence.

An application to real biological data shows that our algorithm works with
large floral genomes in a reasonable time for the MDL score but fails to terminate
for the BDe score with a sensible value of the penalty parameter.

Acknowledgements

The author is grateful to Jerzy Tiuryn for comments on previous versions of this
work and useful discussions related to the topic. I also thank Bartek Wilczyński
for implementing and running our learning algorithm.

This research was founded by Polish State Committee for Scientific Research
under grant no. 3T11F02128.

References

1. Chickering, D.M.: Learning Bayesian networks is NP-complete. In Fisher, D., Lenz,
H.J., eds.: Learning from Data: Artificial Inteligence and Statistics V. Springer-
Verlag (1996)

2. Chickering, D.M., Heckerman, D., Meek, C.: Large-sample learning of Bayesian
networks is NP-hard. Journal of Machine Learning Research 5 (2004) 1287–1330

3. Dasgupta, S.: Learning polytrees. In: Proceedings of the 15th Annual Confer-
ence on Uncertainty in Artificial Intelligence (UAI-99), San Francisco, CA, Morgan
Kaufmann Publishers (1999) 134–141

4. Meek, C.: Finding a path is harder than finding a tree. J. Artificial Intelligence
Res. 15 (2001) 383–389 (electronic)

5. Ott, S., Imoto, S., Miyano, S.: Finding optimal models for small gene networks.
Pac. Symp. Biocomput. (2004) 557–567

6. Heckerman, D., Geiger, D., Chickering, D.M.: Learning Bayesian networks: The
combination of knowledge and statistical data. Machine Learning 20(3) (1995)
197–243

314 N. Dojer

7. Neapolitan, R.E.: Learning Bayesian Networks. Prentice Hall (2003)
8. Friedman, N., Murphy, K., Russell, S.: Learning the structure of dynamic proba-

bilistic networks. In Cooper, G.F., Moral, S., eds.: Proceedings of the Fourteenth
Conference on Uncertainty in Artificial Inteligence. (1998) 139–147

9. Lam, W., Bacchus, F.: Learning Bayesian belief networks: An approach based on
the MDL principle. Computational Intelligence 10(3) (1994) 269–293

10. Cooper, G.F., Herskovits, E.: A Bayesian method for the induction of probabilistic
networks from data. Machine Learning 9 (1992) 309–347

Lower Bounds for the Transition Complexity

of NFAs�

(Extended Abstract)

Michael Domaratzki1 and Kai Salomaa2

1 Jodrey School of Computer Science, Acadia University, Wolfville,
Nova Scotia B4P 2R6, Canada
mike.domaratzki@acadiau.ca

2 School of Computing, Queen’s University, Kingston, Ontario K7L 3N6, Canada
ksalomaa@cs.queensu.ca

Abstract. We construct regular languages Ln, n ≥ 1, such that any
NFA recognizing Ln needs Ω(nsc(Ln) · nsc(Ln)) transitions where
nsc(Ln) is the nondeterministic state complexity of Ln. Also, we study
trade-offs between the number of states and the number of transitions of
an NFA. We show that adding one additional state can result in signifi-
cant reductions in the number of transitions and that there exist regular
languages Ln, n ≥ 2, where the transition minimal NFA for Ln has more
than c · nsc(Ln) states, for some constant c > 1.

1 Introduction

Recently there has been much work on descriptional complexity, or state com-
plexity, of deterministic finite automata (DFAs, see Section 2 for definitions).
The results are surveyed and more references can be found in [5,13,21,22]. The
state complexity of nondeterministic finite automaton (NFA) operations has
been investigated by Holzer and Kutrib [10,11]. The minimal DFA equivalent
to an arbitrary DFA can be found efficiently, whereas Jiang and Ravikumar [16]
have shown that minimization of NFAs is PSPACE-complete and Malcher [20]
has shown that minimization remains NP-complete for classes of NFAs that are
nearly deterministic. A technique for proving lower bounds for the state com-
plexity of NFAs has been given using fooling sets, see Hromkovič [12] or Glaister
and Shallit [4]. Gruber and Holzer [8] show that it is computationally hard to
decide whether lower bounds given by the fooling set technique can be reached.

The number of transitions gives, in some sense, a more realistic measure for
the size of an NFA than the number of states. In a worst-case comparison of
nondeterministic state complexity and transition complexity it has been recently
established by Gruber and Holzer [9] and by Kari [18] that there exist finite
languages Ln, n ≥ 1, such that any NFA for Ln needs Ω(nsc(Ln)2

log(nsc(Ln))) transitions.

� Research supported, in part, by the Natural Sciences and Engineering Research
Council of Canada.

R. Královič and P. Urzyczyn (Eds.): MFCS 2006, LNCS 4162, pp. 315–326, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

316 M. Domaratzki and K. Salomaa

Here nsc(L) is the nondeterministic state complexity of L. The above shows that
the nondeterministic transition complexity of regular languages, as a function of
the nondeterministic state complexity, can approach the quadratic upper bound.
The lower bounds of [9,18] are proved using counting arguments and the results
do not yield efficiently constructible languages having a corresponding lower
bound for their transition complexity. A non-trivial transition complexity lower
bound, albeit a weaker lower bound, for a concrete family of regular languages
can be obtained from the work of Hromkovič and Schnitger [14].

Here we give an explicit construction of a family of regular languages Ln,
n ≥ 1, such that the nondeterministic state complexity of Ln is O(n) and any
NFA for the language Ln needs Ω(n ·

√
n) transitions. The lower bound relies on

nontrivial combinatorial properties, namely on the existence of projective planes
of arbitrarily large degree [2,17]. When considering the number of transitions as a
function of the nondeterministic state complexity, our lower bound is better than
the one obtained in [14] for concrete regular languages over a fixed alphabet. It
should be noted that the family of languages in [14] was designed for the purpose
of maximizing the increase of transition complexity when converting an ε-NFA to
an NFA without ε-transitions, as opposed to maximizing transition complexity
as a function of nondeterministic state complexity.

Our lower bound applies to a specific family of regular languages. A topic for
further research would be to extend the result as a more general purpose tech-
nique for establishing lower bounds for transition complexity, in the spirit of the
methods for proving lower bounds for nondeterministic state complexity [4,12].
The proof of our lower bound result introduces techniques that may turn out to
be useful for work in this direction.

We also study the trade-offs between nondeterministic state complexity and
the number of transitions needed by an NFA. By the strict transition complexity
of a language L we mean the number of transitions needed by any NFA for
L with nsc(L) states. It turns out that already allowing one additional state
can cause a drastic reduction in the number of transitions, that is, there are
languages Ln such that the strict transition complexity of Ln is Ω(n2) but if
an NFA for Ln can use nsc(Ln) + 1 states it needs only O(n) transitions. We
show that for each k ≥ 1 there are languages that exhibit an analogous gap in
transition complexity when comparing NFAs that allow, respectively, k − 1 and
k additional states compared to the size of the state-minimal NFA.

To conclude, we mention other work on transition complexity. Upper and
lower bounds for the number of transitions of an NFA equivalent to a given reg-
ular expression are obtained in [15,19]. There the lower bounds use variable size
alphabets. Inapproximability results for minimizing the number of NFA transi-
tions for a given regular language are established by Gramlich and Schnitger [6].

2 Preliminaries

For n ≥ 1 denote [n] = {1, . . . , n}. The set of prefixes (respectively, suffixes) of a
word w ∈ Σ∗ is denoted pref(w) (respectively, suf(w)). The length of w ∈ Σ∗ is

Lower Bounds for the Transition Complexity of NFAs 317

|w|. An NFA is denoted as A = (Σ,Q, q0, QF , δ) where Σ is the input alphabet,
Q is the set of states, q0 ∈ Q is the start state, QF ⊆ Q is the set of accepting
states and δ ⊆ Q × Σ × Q gives the set of transitions. A state q ∈ Q is useful
if q is reachable from the start state and some accepting state is reachable from
q. It is well known that the set of useful states can be efficiently found [21] and,
without loss of generality, we assume that the NFAs under consideration have
only useful states. A DFA is an NFA with |{(q, a, q′) ∈ δ : q′ ∈ Q}| ≤ 1 for all
(q, a) ∈ Q×Σ.

The nondeterministic state complexity of a regular language L is the smallest
number of states of any NFA recognizing L. It is denoted as nsc(L). Generally,
we consider the transition complexity of a language L as a function of nsc(L).

Definition 2.1. Let L be a regular language. The (nondeterministic) transition
complexity of L, tc(L), is the smallest number of transitions of any NFA that
recognizes L.

For k ≥ 0, the k-strict transition complexity of L, stck(L), is the smallest
number of transitions of any NFA A for L such that A has at most nsc(L) + k
states.

The 0-strict transition complexity of L is simply called the strict transition
complexity of L. For a regular language L, the strict transition complexity of L
is the smallest number of transitions needed by any NFA for L that has nsc(L)
states. For any regular language L and k ≥ 0,

nsc(L) + 1 ≤ tc(L) ≤ stck+1(L) ≤ stck(L). (1)

3 Non-linear Lower Bound for Transition Complexity

We construct a family of languages Ln, n ≥ 1, such that any NFA for Ln

requires provably Ω(nsc(Ln) ·
√

nsc(Ln)) transitions. The intuitive idea of the
construction is that we define languages where the corresponding NFAs consist
of two “parts” that require a large number of “connections”, and the language
is designed in a way that prevents “funneling” large numbers of connections
through a single state.

3.1 Definition of a Language Associated with a Binary Relation

We begin by defining a class of finite languages with particular properties. Each
language is associated with a binary relation on [n], n ≥ 1.

For w = a1 · · · as, s ≥ 1, ai ∈ Σ, i = 1, . . . , s, and 1 ≤ i, j ≤ s the following
notations are used for the prefix of w of length i, w[→ i] = a1a2 · · · ai, and the
suffix of w beginning from the jth position of w, w[j ←] = ajaj+1 · · · as. Also
for 1 ≤ i, j ≤ s denote

w[i, j] =
{
aiai+1 · · · ai+j if i+ j ≤ s,
aiai+1 · · · as, otherwise.

318 M. Domaratzki and K. Salomaa

Above w[i, j] is the subword of length j + 1 starting at the ith symbol of w, if
this subword is “inside” of w and otherwise w[i, j] is the suffix of w starting at
the ith position.

Let w0, w1, w2, . . . be the enumeration of all non-empty words over alphabet
{0, 1} in length-lexicographic order. We define the following infinite word over
the alphabet {0, 1,#}:

α = w0#w1#w2# . . . = 0#1#00#01#10#11#000# . . .

Let αr, r ≥ 1, be the prefix of α of length r.
Consider a fixed n ≥ 1 such that our binary relations will be defined as subsets

of [n]× [n]. We denote m = n+ �logn�.1 The value of m depends on n. It is easy
to verify that the following property holds for all 1 ≤ i ≤ n:

the subword αm[i, �logm� − 1] occurs in only one position in αm. (2)

For 1 ≤ i ≤ n, we define

f(i) = αm[i, �logm� − 1]. (3)

Here f(i) is the subword of αm of length �logm� beginning at position i. By (2),
f(i) occurs only once in the word αm.

In the following of this section let Σ = {0, 1,#, $}. Let ωn ⊆ [n] × [n] be an
arbitrary binary relation. Now we define the language L(ωn) ⊆ Σ∗ as follows:

L(ωn) = { αm[→ i+ �logm� − 1] $ αm[j ←] | (i, j) ∈ ωn, 1 ≤ i, j ≤ n }.

Intuitively, the language L(ωn) consists of, for each (i, j) ∈ ωn, all words begin-
ning with the prefix of αm that ends with the unique occurrence of the subword
f(i), followed by the middle marker $ and the suffix of αm beginning with the
unique occurrence of the subword f(j).

Since m ≤ 2n, the following lemma is immediate.

Lemma 3.1. Let ωn be any binary relation on [n]. Then nsc(L(ωn)) ∈ O(n).
�

Next we define some terminology associated with an arbitrary NFA recognizing
some of the languages defined above. We use graph theoretic arguments and
below we refer to transitions and states of the NFA interchangeably as edges
and nodes, respectively, of the corresponding state graph.

Let A = (Σ,Q, q0, QF , δ) be an NFA recognizing L(ωn) and k ≥ 1. We say
that a state q2 is k-reachable from a state q1 (via word w) if, for w ∈ Σk,
q2 ∈ δ(q1, w). Note that k-reachability refers to reachability using a word of
length exactly k.

By a funnel edge (or transition) we mean any edge e of the underlying graph
of A labeled by $. A funnel of A consists of a funnel edge e together with
1 By using endmarkers, it would be possible to use words of length exactly n. The

additive term �log n� will not change bounds that ignore constant factors, and it
will make parts of the notation more uniform. All our logarithms are to the base 2.

Lower Bounds for the Transition Complexity of NFAs 319

– all states q ∈ Q such that the in-node of e is �logm�-reachable from q, these
are called the in-states of the funnel associated with e; and,

– all states q ∈ Q such that q is �logm�-reachable from the out-node of e,
these are called the out-states of the funnel associated with e.

Below we establish some properties of A. Without loss of generality we can
assume that A has a single accepting state, QF = {qf}. This follows from the
observation that any word of L(ωn) ends with a unique suffix of length �logm�.

For 1 ≤ i ≤ n we define the following subsets of Q:

B(i) = δ(q0, αm[→ (i− 1)]),
C(i) = {q ∈ Q | qf ∈ δ(q, αm[(i+ �logm�) ←])}.

The set B(i) consists of states that are reachable from the start state using a
prefix of length i − 1 of some word in L(ωn) that does not contain the middle
marker $ (the words of L(ωn) have only one possible prefix without the marker
$ having length i−1, but it is not the prefix of all words in L(ωn)). The set C(i)
consists of states that can accept a suffix of αm starting from the (i+ �logm�)th
position of αm.

The sets B(i) and B(j) (respectively, C(i) and C(j)), i 	= j, may in general
contain common elements. However, the crucial property that will be used in
our lower bound estimate is that if a state q belongs to some funnel then q can
belong to at most one of the sets B(i), 1 ≤ i ≤ n, (respectively, at most one of
the sets C(i), 1 ≤ i ≤ n). This property will be stated in (4) and (5) below.

The below properties (F1)–(F3) follow from (2) and from the definition of the
words f(i), 1 ≤ i ≤ n.

(F1) If a state q ∈ B(i), 1 ≤ i ≤ n, is in the funnel corresponding to edge e,
then the in-node of e is reachable from q via the word f(i) (as in (3)), and
f(i) is the only word of length �logm� with this property.

(F2) If a state q ∈ C(i), 1 ≤ i ≤ n, is in the funnel corresponding to edge e,
then q is reachable from the out-node of e via word f(i) (as in (3)), and q is
not reachable from the out-node of e using any other word of length �logm�.

(F3) There exist states p ∈ B(i) and q ∈ C(j) belonging to the same funnel if
and only if (i, j) ∈ ωn, 1 ≤ i, j ≤ n.

Since f(i) 	= f(j) when i 	= j, from (F1) we get the following property for any
state q ∈ Q:

If q belongs to a funnel, then q cannot be in sets B(i) and B(j), i 	= j. (4)

Recall that states belonging to a funnel associated with edge e can reach e using a
path of length �logm� (or can be reached from e using a path of length �logm�).
Analogously (F2) implies the following for any q ∈ Q:

If q belongs to a funnel, then q cannot be in sets C(i) and C(j), i 	= j. (5)

By the count of a set of funnels F we mean the cardinality of the set

pairs(F) = {(i, j) | (∃p ∈ B(i))(∃q ∈ C(j))(∃F ∈ F) :
p is an in-node of F and q is an out-node of F }.

320 M. Domaratzki and K. Salomaa

Now conditions (4) and (5) together with (F3) give us the following property
concerning the set of all funnels of A.

Claim 3.1. If F consists of all funnels of the NFA A, then the count of F equals
to the cardinality of ωn (as a subset of [n]× [n]).

Now the crucial question is how does the count of a set of funnels relate to the
number of transitions that the NFA needs to “realize” the funnels. Note that
relations like less thann = {(i, j) | 1 ≤ i < j ≤ n} or in equaln = {(i, j) | i 	=
j, 1 ≤ i, j ≤ n} require Ω(n2) connections through the funnels and, in light
of the seemingly strong properties (F1), (F2), (F3), such languages might look
potentially promising for establishing non-linear lower bounds.

It is easy to see that the languages L(less thann) and L(in equaln) can be
recognized by NFAs having O(n · logn) transitions. However, it turns out to be
difficult to prove lower bounds, and depending on the distribution of letters in
the words f(i), the languages could conceivably be recognized using much fewer
transitions. In the next subsection we consider binary relations that actually give
a much better lower bound than Ω(n · logn).

3.2 One-Overlapping Families

Here we define a family of binary relations ωn, n ≥ 1, such that tc(L(ωn)), n ≥ 1,
is provably not linear in nsc(L(ωn)). First we need some more definitions.

For n > k ≥ 1, a one-overlap (n, k)-family is a collection of n subsets of [n],

∆(n, k) = {D(n)
1 , . . . , D(n)

n }, D
(n)
i ⊆ [n], i = 1, . . . , n, (6)

such that |D(n)
i | = k, i = 1, . . . , n, and |D(n)

i ∩D(n)
j | ≤ 1 for all i 	= j, 1 ≤ i, j ≤ n.

We define φ : IN −→ IN by setting φ(n) = kn, where kn is the greatest integer
such that a one-overlap (n, kn)-family exists. It is easy to verify an Ω(log n)
lower bound for the function φ(n), however, we can get a better lower bound by
relying on results from combinatorics.

We recall that a finite projective plane of order q consists of a set of q2 + q+1
elements called “points” and a set of q2 + q + 1 “lines” each consisting of q + 1
points such that any two lines meet at a unique point, see, e.g., Cameron [2] or
Jukna [17].

It is known that when q is a power of a prime number, a projective plane of
order q exists [2,17]. Furthermore, when q is a prime power there is an elegant
construction for a projective plane of order q. The construction depends on the
existence of a finite field GF(q) containing precisely q elements. For details see,
e.g., Anderson [1]. Thus, when q is a prime power,2

φ(q2 + q + 1) ≥ q + 1. (7)

2 When q is a prime power, the relation (7) has, in fact, equality by the De Bruijn–
Erdös theorem [2].

Lower Bounds for the Transition Complexity of NFAs 321

Corollary 3.1. φ(n) ∈ Ω(
√
n).

In the following consider the case where n is of the form

n = q2 + q + 1, with q a prime power. (8)

Let ∆(n, φ(n)) = {D(n)
1 , . . . , D

(n)
n } be a fixed one-overlap (n, φ(n))-family as

in (6). Define
ωn = {(i, j) | j ∈ D(n)

i }. (9)

Let A = (Σ,Q, q0, QF , δ) be an arbitrary NFA recognizing the language
L(ωn), where ωn is as in (9). Using the set of funnels of A, as defined in the
previous subsection, we provide a lower bound for the number of transitions
of A.

Since ωn is defined using the one-overlapping family ∆(n, φ(n)), the condition
(F3) implies that for any funnel F of A one of the following conditions holds:

– there exists i ∈ [n] such that all in-states of F are in B(i), or
– there exists j ∈ [n] such that all out-states of F are in C(j).

By the graph representation of a set of funnels F we mean the smallest sub-
graph G of the state graph of the NFA A such that, for all F ∈ F , G contains
all paths from any in-node of F to any out-node of F .

Claim 3.2. For any set of funnels F , the number of edges in the graph repre-
sentation of F is greater or equal to the count of F .

Proof. We prove the claim using induction on the number of funnels in F . By
properties (4) and (5), the claim clearly holds for any single funnel (actually, an
individual funnel needs many more edges, see Remark 3.1 below).

Inductively, assume that the count of a collection of funnels F = {F1, . . . , Fk}
is not greater than the number of edges in the graph representation of F , and
consider a collection of funnels F ′ = {F1, . . . , Fk, Fk+1}.

Without loss of generality we assume that Fk+1 has in-states in only one set
B(x), x ∈ {1, . . . , n}, and out-states in sets

C(j1), . . . , C(jr), (10)

where j1, . . . , jr, are pairwise distinct, r ≥ 1. The other possibility is completely
symmetric.

We consider the two situations where Fk+1 can share some out-states with a
funnel Fi ∈ F , 1 ≤ i ≤ k.

(i) Consider the case where Fi, 1 ≤ i ≤ k, has an in-state in B(x). Now, if Fi

has out-states in some set C(js) as in (10), 1 ≤ s ≤ r, the out-states of Fk+1
in the set C(js) do not increase the count of the set of funnels F ′ since the
pair (x, js) is already included in the count of F . Thus in this case, it does
not matter if corresponding to js we do not need to include an additional
edge for the graph representation of F ′.

322 M. Domaratzki and K. Salomaa

(ii) Next we consider the case where Fk+1 shares out-states with some funnel
Fi, 1 ≤ i ≤ k, that is not as above in (i), i.e.,

Fi does not have in-states in B(x). (11)

In this case Fk+1 can share with Fi out-states in only one of the sets C(js)
as in (10), 1 ≤ s ≤ r. This means that, in order to connect the state(s) of
C(js) with the state(s) of B(x), the graph representation of F ′ needs for
each shared set C(js) at least one edge that does not appear in the graph
representation of F .
Above, note that if the graph representation of F ′ would try to “peel off”,
using a single edge, from the graph representation of F some state(s) belong-
ing to C(js1) and some state(s) belonging to C(js2), js1 	= js2 , then these
states need to be connected in the graph representation of F . Thus the states
would need to be out-states of one funnel Fi ∈ F , where Fi is as in (11) (since
the other possibility was considered in (i) before). Let y ∈ [n], y 	= x, be such
that the in-states of Fi are in B(y). Then js1 , js2 ∈ D

(n)
x ∩ D(n)

y , which is
a contradiction since {D(n)

1 , . . . , D
(n)
n } is a one-overlap (n, φ(n))-family. The

situation in this case is summarized in Figure 1.

Fig. 1. Case (ii) of the proof of Claim 3.2

Above in (i) and (ii) we have seen that for each pair (x, js) that is not already
included in the count of F , the graph representation of F ′ needs at least one
edge that does not occur in the graph representation of F . It follows that the
count of F ′ is not greater than the number of edges in the graph representation
of F ′. �
Remark 3.1. In the proof of Claim 3.2, note that an individual funnel F naturally
needs essentially more edges than the count of {F}. In particular, if F has a
single in-state (or a single out-state) this state has to be connected to the funnel
edge by a path of length �logm�. However, when considering a set of funnels we
cannot guarantee that the different paths of length �logm� would not overlap,
and therefore they are not included in the estimate.

Lower Bounds for the Transition Complexity of NFAs 323

Theorem 3.1. Let ωn be as in (9), where n is as in (8). Then

tc(L(ωn)) ∈ Ω(nsc(L(ωn)) ·
√

nsc(L(ωn))). (12)

Proof. Let An be any NFA for L(ωn) and let F be the set of all funnels of
An. By Claim 3.2, tc(L(ωn)) is at least the count of F .

Claim 3.1 gives that the count of F equals the cardinality of ωn which is
n · φ(n). By Corollary 3.1, tc(L(ωn)) ∈ Ω(n · √n). The relation (12) holds since
by Lemma 3.1 we know that nsc(L(ωn)) ∈ O(n). �
Except when q is a prime power, very little is known about the existence of
projective planes of order q. They do not exist for values 6 or 10. It is probably
difficult to find good estimates for φ(n) except by relying on the existence of
projective planes.

By modifying the definition of ωn when n is not of a form q2 + q + 1 for a
prime power q, in Theorem 3.1 we can easily define ωn for all values of n such
that tc(L(ωn)) will have a monotonic lower bound with respect to n. Instead
of (9) we can define ωn using any collection of n subsets of [n] where the in-
tersection of any two sets has cardinality at most one. Note that the proof of
Theorem 3.1 does not use the property that the subsets have uniform size. In
this way we can construct relations ωn with monotonically increasing cardinality
that is guaranteed to reach n ·

√
n infinitely often.

The languages L(ωn) are defined over a four-letter alphabet. It is easy to see
that encoding the symbols over a binary alphabet does not cause any problems
with the above argument that establishes the lower bound. It is sufficient to
take in place of α an infinite binary sequence in which any prefix of length n
has only one occurrence of any subword of length c · �logn�, for some constant c,
and encode the separation markers $ by a binary sequence that does not occur
anywhere else in the words of the language.

Corollary 3.2. We can construct languages Ln, n ≥ 1, over a binary alphabet
such that nsc(Ln) ∈ O(n) and tc(Ln) ∈ Ω(n ·

√
n).

To conclude this section, we compare the lower bound with the earlier result due
to Hromkovič and Schnitger [14]. By a ε-NFA we mean an NFA that can have
ε-transitions. The following constructive lower bound is established in [14].

Proposition 3.1. [14] There exist regular languages Ln, n ≥ 1 (with an explicit
definition provided), over a binary alphabet recognized by ε-NFAs having O(n ·
logn) transitions such that any NFA without ε-transitions needs at least n ·
2c·√log n transitions for every c < 1/2.

When viewing transition complexity as a function of nondeterministic state com-
plexity, the lower bound from Corollary 3.2 is better. The result of Proposi-
tion 3.1 was developed for a different purpose, namely to measure the overhead
involved in eliminating ε-transitions from NFAs.

324 M. Domaratzki and K. Salomaa

4 Strict Transition Complexity

Here we study trade-offs between the number of states and the number of tran-
sitions, i.e., the situations where stck(L), k ≥ 0, may be much larger than tc(L).

We show that, for any fixed k ≥ 1, there exist languages Ln, n ≥ 2, having
(k − 1)-strict transition complexity in Ω(n2) but by allowing the use of one
more state, i.e., a total of k “additional” states compared to the size of the state
minimal NFA, the number of transitions can be reduced to O(n).

Earlier Gruber and Holzer [7] have given examples of languages L′n where
nsc(L′n) = 3n and the state minimal NFA for L′n needs Ω(n2) transitions,
whereas L′n has a DFA with 4n+ 1 states and 6n+ 1 transitions.

Let n ≥ 2. Denote L1,n = (an−1b)∗pref(an−1b) − (an−1b)∗ and L2,n =
suf(cn−1d)(cn−1d)∗pref(cn−1d) ∩ {c, d}+. Let h : {c, d}∗ → {a, b}∗ be the mor-
phism defined by h(c) = a, h(d) = b. Note that h(L2,n) 	= L1,n since in h(L2,n)
the first occurrence of b may be preceded by fewer than n − 1 symbols a. Now
we define for k ≥ 1,

Ln[k] =
{
L1,n(L2,n · h(L2,n))(k−1)/2L2,n when k is odd,
L1,n(L2,n · h(L2,n))k/2 when k is even.

(13)

Intuitively, Ln[k] is obtained by catenating to the language L1,n · L2,n, k − 1
marked copies of L2,n where consecutive copies are alternately over alphabets
{a, b} and {c, d}.
Lemma 4.1. Let k ≥ 1 be fixed. For languages Ln[k], n ≥ 2, as in (13) we have

(i) nsc(Ln[k]) = (k + 1)n,
(ii) stck(Ln[k]) ∈ O(n),
(iii) stck−1(Ln[k]) ∈ Ω(n2).

Due to length restrictions the technical proof of Lemma 4.1 is omitted (we refer
the reader to [3] for the proof). By Lemma 4.1 we have the following result.

Theorem 4.1. Let k ≥ 1 be fixed. There exist regular languages Ln[k], n ≥ 2,
such that

(i) stck(Ln[k]) ∈ O(nsc(Ln[k])),
(ii) stck−1(Ln[k]) ∈ Ω((nsc(Ln[k])2).

The languages Ln[k] in (13) are defined over a four letter alphabet. Using any
reasonable encoding, the result of Theorem 4.1 holds also for languages over a
binary alphabet.

Note that Theorem 4.1 (i) and (1) imply that also tc(Ln[k]) ∈ O(nsc(Ln[k])).
In particular, by Lemma 4.1, for any fixed integer k there exist languages Ln,
n ≥ 2, with tc(Ln) ∈ O(n), such that any NFAs for Ln with at most nsc(Ln)+k
states need Ω(n2) transitions.

Finally, we show that there exist families of regular languages where the num-
ber of “additional” states in transition-minimal NFAs is not bounded by any
constant. We show that the number of states required by transition minimal
NFAs for a family of regular languages may be c times the size of the state
minimal NFAs for the same languages, for some c > 1.

Lower Bounds for the Transition Complexity of NFAs 325

Theorem 4.2. There exist regular languages Ln, n ≥ 2, such that nsc(Ln) =
5n− 3 and any transition minimal NFA for Ln has at least 6n− 4 states.

Proof. Let Γ = {a, b, c, d, e}, Σ = Γ ∪ {$} and define

Ln = {xi$yj | x ∈ {a, b, c}, y ∈ {d, e}, i+ j = n} ∪ {xn | x ∈ Γ}.
Consider the set of pairs of words Pn = {(ε, an), (an, ε)}∪{(xi, xj) | x ∈ Γ, i+j =
n, 1 ≤ i, j ≤ n− 1}. The set Pn satisfies the conditions of the fooling set lower
bound technique of, e.g., Hromkovič [12] or Glaister and Shallit [4, Thm. 1]. It
follows that any NFA for Ln needs at least |Pn| = 5n − 3 states. On the other
hand, it is easy to construct an NFA for Ln (n ≥ 2) with 5n − 3 states and
therefore nsc(Ln) = 5n− 3.

Let A = (Σ,Q, q0, QF , δ) be any NFA for Ln. We say that a state q ∈ Q
has depth r, r ≥ 0, if q is reachable from q0 on input w where w has exactly r
symbols of Γ (that is, the symbol $ is ignored when considering depth). By the
depth of a transition (q1, x, q2) ∈ δ, q1, q2 ∈ Q, x ∈ Σ, we mean the depth of
q1. Since all words of Ln have exactly n symbols of Γ (and all states of Q are
useful), it follows that any state of Q and any transition of δ has a unique depth.

In the following we outline the argument used in the proof (for details the
reader is referred to the full version available in [3]). It can be verified that, for
each 1 ≤ i ≤ n − 1, A has at least 5 states of depth i. If A has only 5 states
of depth i, A needs 11 transitions of depth i but by introducing one additional
state of depth i the number of depth i transitions can be reduced to 10.

Since we have observed that each state has a unique depth, the changes made
for depth i states and transitions are localized to depth i. Thus, an NFA that
uses a minimal number of transitions has to have at least 6 states of each depth
1 ≤ i ≤ n− 1. �

5 Conclusion

We have given an explicit construction of regular languages Ln, n ≥ 1, having
nondeterministic state complexity in O(n), such that the transition complexity
of Ln is Ω(n

3
2). This does still not reach the lower bound Ω(n2

log n) obtained using
probabilistic combinatorial methods [9,18]. Naturally the main open question is
whether it is possible to prove that for all families of regular languages Ln, n ≥ 1,
with nsc(Ln) ∈ O(n), the transition complexity satisfies tc(Ln) ∈ o(n2).

We would like to have more general purpose tools for proving transition com-
plexity lower bounds, in the spirit of the techniques considered in [4,12] for
nondeterministic state complexity lower bounds. It remains to be seen whether
the notions associated with funnels and one-overlapping families that were in-
troduced for the result of Theorem 3.1 can be extended in this way.

Theorem 4.2 gives a family of regular languages Ln where any transition
minimal NFA for Ln has at least c · nsc(Ln) states where c ≈ 6/5. By increasing
the size of the alphabet, the constant c can be somewhat increased. However, we
do not know how to construct a language L, where the transition minimal NFA
would need, for example, 2 · nsc(L) states.

326 M. Domaratzki and K. Salomaa

References

1. Anderson, I.: Combinatorial Designs, Construction Methods. John Wiley (1990)
2. Cameron, P.J.: Combinatorics: Topics, Techniques, Algorithms. Cambridge Uni-

versity Press (1996)
3. Domaratzki, M., Salomaa, K.: Lower bounds for the transition complexity of

NFAs. Queen’s School of Computing Technical Report No. 2006-515. Available
at www.cs.queensu.ca/TechReports

4. Glaister, I., Shallit, J.: A lower bound technique for the size of nondeterministic
finite automata. Inform. Proc. Lett. 59 (1996) 75–77

5. Goldstine, J., Kappes, M., Kintala, C.M.R, Leung, H., Malcher, A., Wotschke, D.:
Descriptional complexity of machines with limited resources. J. Universal Comput.
Sci. 8 (2002) 193–234

6. Gramlich, G., Schnitger, G.: Minimizing NFA’s and regular expressions. In: Proc.
STACS 2005. Lect. Notes Comput. Sci., Vol. 3404. Springer–Verlag (2005) 399–411

7. Gruber, H., Holzer, M.: A note on the number of transitions of nondeterministic
finite automata. In: Fernau, H.: (ed.): 15. Theorietag der GI-Fachgruppe 0.1.5
“Automaten und Formale Sprachen” (2005) 24–25

8. Gruber, H., Holzer, M.: Finding lower bounds for nondeterministic state complexity
is hard. In: Ibarra, O.H., Dang, Z. (eds.): Proceedings DLT 2006. Lect. Notes
Comput. Sci., Vol. 4036. Springer–Verlag (2006)

9. Gruber, H., Holzer, M.: Results on the average state complexity of finite automata
accepting finite languages. In: Proc. of Descriptional Complexity of Formal Sys-
tems, DCFS 2006, to appear

10. Holzer, M., Kutrib, M.: Unary language operations and their nondeterministic state
complexity. In: Proc. DLT 2002. Lect. Notes Comput. Sci., Vol. 2450. Springer–
Verlag (2003) 162–172

11. Holzer, M., Kutrib, M.: Nondeterministic descriptional complexity of regular lan-
guages. Internat. J. Foundations of Computer Science 14 (2003) 1087–1102

12. Hromkovič, J.: Communication Complexity and Parallel Computing. Springer–
Verlag (1997)

13. Hromkovič, J.: Descriptional complexity of finite automata: Concepts and open
problems. J. Automata, Languages and Combinatorics 7 (2002) 519–531

14. Hromkovič, J., Schnitger, G.: NFAs with and without ε-transitions. Proc. ICALP
2005. Lect. Notes Comput. Sci., Vol. 3580. Springer–Verlag (2005) 385–396

15. Hromkovič, J., Seibert, S., Wilke, T.: Translating regular expressions in small ε-free
nondeterministic finite automata. J. Comput. System Sci. 62 (2001) 565–588

16. Jiang, T., Ravikumar, B.: Minimal NFA problems are hard. SIAM J. Comput. 22
(1993) 1117–1141

17. Jukna, S.: Extremal Combinatorics with Applications in Computer Science.
EATCS Texts in Theoretical Computer Science, Springer–Verlag (2001)

18. Kari, J.: Personal communication, April 2006
19. Lifshits, Yu.: A lower bound on the size of ε-free NFA corresponding to a regular

expression. Inform. Proc. Lett. 85 (2003) 293–299
20. Malcher, A.: Minimizing finite automata is computationally hard. Theoret. Com-

put. Sci. 327 (2004) 375–390
21. Yu, S.: Regular languages. In: Rozenberg, G., Salomaa, A. (eds): Handbook of

Formal Languages, Vol. I. Springer–Verlag (1997) 41–110
22. Yu, S.: State complexity of finite and infinite regular languages. Bulletin of the

EATCS 76 (2002) 142–152

Smart Robot Teams Exploring Sparse Trees�

M. Dynia1, J. Kuty�lowski2, F. Meyer auf der Heide3, and C. Schindelhauer4

1 DFG Graduate College “Automatic Configuration in Open Systems”,
Heinz Nixdorf Institute, University of Paderborn, Germany

mdynia@uni-paderborn.de
2 International Graduate School of Dynamic Intelligent Systems,

Heinz Nixdorf Institute, University of Paderborn, Germany
jarekk@uni-paderborn.de

3 Heinz Nixdorf Institute, University of Paderborn, Germany
fmadh@uni-paderborn.de

4 Computer Networks and Telematics, University of Freiburg, Germany
schindel@informatik.uni-freiburg.de

Abstract. We consider a tree which has to be completely explored by a
group of k robots, initially placed at the root. The robots are mobile and
can communicate using radio devices, but the communication range is
bounded. They decide based on local, partial knowledge, and exchange
information gathered during the exploration. There is no central author-
ity which knows the graph and could control the movements of the robots
– they have to organize themselves and jointly explore the tree.

The problem is that at every point of time the remaining unknown
part of the tree may appear to be the worst case setting for the current
deployment of robots. We present a deterministic distributed algorithm
to explore T and we use a parameter of a tree called density. We com-
pare the performance of our algorithm with the optimal algorithm hav-
ing a-priori knowledge of the same tree. We show that the above ratio is
influenced only by the density and the height of the tree. Since the com-
petitive ratio does not depend on the number of robots, our algorithm
truly emphasizes the phenomena of self-organization. The more robots
are provided, the faster the exploration of the terrain is completed.

1 Introduction

We study the problem of exploration of trees by a group of k mobile robots
equipped with radio communication devices. The robots can move and can also
communicate using radio devices, but the communication range is bounded. This
allows a robot only a local view of the situation. Hence it has to make all of its
decisions basing only on partial knowledge. One robot cannot explore the graph
fast, so the group exchanges information gathered during the exploration. There
� This research is partially supported by the DFG-Sonderforschungsbereich SPP

1183: ”Organic Computing. Smart Teams: Local, Distributed Strategies for Self-
Organizing Robotic Exploration Teams” and by the EU within the 6th Framework
Programme under contract 001907 (DELIS).

R. Královič and P. Urzyczyn (Eds.): MFCS 2006, LNCS 4162, pp. 327–338, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

328 M. Dynia et al.

is no central authority which knows the graph and could control the robots,
so the team has to organize itself and jointly explore the tree, i.e. visit all its
nodes. The problem is that at every point of time the remaining unknown part
of the tree may appear to be the worst case setting for the current deployment
of robots.

We use competitive analysis [1] to measure the performance of the algorithm.
Let CA(T) denote the running time of the online distributed algorithm A ex-
ploring a tree T not known in advance. Only outgoing edges are visible to a
robot placed in some node, and it has to traverse an edge in order to recognize
new parts of the graph. Since at each point of time the graph is known only
partially, the adversary may construct the worst possible remaining part of the
graph in an online fashion. In this model, traversing an edge takes one time step
and costs of all other operations are neglected.

Let Copt(T) be the running time of the optimal algorithm which knows the
exact structure of T and explores it optimally. The algorithm A is σ-competitive
if for all T

CA(T) ≤ σ · Copt(T) + α (1)

for some constant α.
Since robots use wireless devices with a bounded communication radius A is

allowed to use only local communication, i.e. robot can communicate (once per
time step) only with those robots which are at distance one or less in the tree.

We can observe that the optimal offline algorithm does not have to use com-
munication at all, since the graph is given in advance.

1.1 Related Work

The problem of exploring an unknown environment has been widely studied
(see [2] for a survey) and usually the environment is modeled as a graph. Fa-
mous Traveling Salesman Problem and Chinese Postman Problem expose main
problems of graph exploration.

The k-Traveling Salesman Problem (k-TSP) and k-Chinese Postman Problem
(k-CPP) [3] are interesting extensions of these well known NP-hard problems1.
All nodes (and edges) of a graph have to be visited (at least once) by one of
the k robots initially placed at some node of the graph, subject to minimize the
maximum length route of a robot. The contribution [5] captures the hardness of
the k-TSP and shows how to construct (in polynomial time in size of a graph but
exponential in k) optimal routes for an arbitrary k. In the location-allocation
version of this problem initial positions of robots have to be found as well.

There are several approximation algorithms of minmax k-TSP on a tree pre-
sented in [6,4,3,7,8,5], but we should mention here that finding k-approximation
is easy, and yields by taking a trivial optimal solution of 1-TSP (DFS traversal of
a tree). Frederickson, Hecht and Kim [3] gave first worst-case analysis of k-TSP
and developed 2− 1/k approximation algorithm.

1 Also often called p-TSP and p-CPP, e.g. in [4].

Smart Robot Teams Exploring Sparse Trees 329

In this work we consider an online version of k-TSP where a labeled graph is
not known in advance, and the goal is to minimize overall time of an exploration.
Authors of [9] and [10] study even harder problem and assume an unlabeled
graph. If this setting one robot cannot explore the graph alone. Hence, in [10]
the robot puts pebbles on the nodes of the graph in order to recognize visited
ones, and in [9] it cooperates with other robot by exploration.

There are many publications considering an online exploration by a single ro-
bot (e.g. [11,12,13,14]), but the problem which exposes a real flavor is considering
an exploring group of k robots [15,16,5].

Profits from a collective online exploration of trees are investigated in [15].
The authors prove competitive ratio of O(k/ log k) for the time of exploration
compared to the time of an optimal algorithm which knows the tree. They also
prove a lower bound of 2− 1/k for this ratio. Moreover they study the influence
of communication on the complexity of collective exploration. They prove that
when no communication allowed, the competitive ratio is at least Ω(k). This
shows that there is no cooperation at all, if no communication granted – the
team explores in the same time that one robot would need to do it trivially.

Authors of [5] develop from their 2-approximation algorithm (similar to this
in [3]) an online algorithm, subject to minimize energy used by a robot, rather
than time of an exploration. They prove it uses at most 8 times the energy per
robot the optimal strategy for k robots does. They prove a lower bound of 1.5 for
this energy model, which differs from the time model investigated in our work
and in [15].

1.2 Our Results

We investigate a model with the cost to be an overall time of the collective tree
exploration. Our results are two distributed, local algorithms, which explore an
arbitrary tree using a group of k robots, and both exhibit a competitive ratio
independent of k. It will solely depend on the tree, especially on its height and
so called density.

Let us first define the density p(T) ∈ IN for some tree T . It is the minimal
natural number with the following property

∀T ′=(V ′,E′)⊂T |V ′| ≤ 4 · [h(T ′)]p(T) (2)

where h(T) is the height of T . For many classes of trees an upper bound for p(T)
is known. For example trees embedded into a planar grid, fulfill p(T) ≤ 2, and
for binary trees p(T) ≤ h(T)/ logh(T). The density influences the running time
of our algorithm. For simplicity of notation we will use D to denote the height
h(T) and p to denote p(T).

The first distributed algorithm is presented in Sect. 2.2. It consists of two
sub-algorithms, described and analyzed in the same section. It assumes only
local communication and is fully online, i.e. no previous knowledge of the tree is
required. It achieves a competitive ratio of

O
(
D1−1/p ·min

{
p, log p ·D1/2p

})

330 M. Dynia et al.

where p is the density of the tree and D is its height.
The second algorithm described in Sect. 2.3 is also distributed and local. It

has an improved competitive ratio of

O
(
D1−1/p

)
,

but unfortunately it requires knowledge of the density value (or at least its
constant approximation) before the exploration. It may be considered to be a
drawback, but in fact, the value of density is known for many classes of trees.

For an arbitrary tree T we have p(T) ≤ logn and thus our first algorithm
is O (D log logn)-competitive and the second algorithm is O (D)-competitive.
When we consider a class of trees which can be embedded in the s-dimensional
grid it is easy to observe an upper bound p(T) ≤ 2s. However, according to the
definition (2) we have p(T) ≤ 2 for a 2-dimensional grid and thus our algorithm
is
√
D competitive for this class of trees.

Unlike in [15], we present an algorithm with a competitive ratio which does
not grow for large number of robots. It results in improved overall time of explo-
ration for a team with increased number of robots. The coordination problem
does not appear and thus our algorithm truly emphasizes the phenomena of ro-
bots cooperation. Additionally, our algorithms have an advantage over the one
in [15], namely they are fully distributed and use only local communication.
We prove that the exploration can also be efficient even under very bounded
communication scheme.

2 The Online Algorithm

Only edges outgoing from the root are visible to a robot initially placed in the
root of T , and it has to traverse an edge in order to recognize new parts of
the graph. In our model, traversing an edge takes one time step and we neglect
costs of all other operations. Robots communicate only if they meet in the same
node – in this case in the root.

First, we present in Sect. 2.2 the KarlsruheExpress-Clever algorithm (KE-
Clever) and then in Sect. 2.3 the KE-Oblivious algorithm. Both algorithms took
their name from the place where the first steps of their design were made.

All presented algorithms are based on the same idea. Robots start in the root
and explore the tree in so called chunks. They leave the root, enter the tree and
after a current chunk is explored, they return to the root in order to exchange
a valuable information and agree upon the strategy of exploration of the next
chunk. Consecutive chunk lays further from the root than its predecessor – and
in this way the progress of the exploration is realized. At some point of time the
furthest leaf is reached by a robot and thus the tree is completely explored.

The team needs the information on the density of the tree in order to accu-
rately estimate the amount of work a group can handle, i.e. the size of the chunk.
The higher the density of the graph, the more job to do for robots, and thus
the size of a chunk has to be reduced. On the other hand, small chunks weaken

Smart Robot Teams Exploring Sparse Trees 331

the progress of the exploration. The only aspect which distinguishes one algo-
rithm from the other is the way they look for a good estimation of the destiny
value. A proper balance between the size of the chunk and the efficiency of the
exploration has to be found.

2.1 Definitions

The description of the algorithms as well as their performance analysis uses some
notion which we define in this section (the circumference function φ, the MyDFS
routine and finally the function rnew).

Given a rooted tree T = (V,E) we denote by h(T) the height of the tree, i.e.
the number of nodes on a longest path from the root to a leaf. The level r of
the tree is a set of nodes in distance r from the root. We describe nodes on each
level, such that vr(i) denote the i-th node on level r ∈ IN of T and φ(r) the
number of nodes on that level. Let Tv(h) be the subtree of T rooted at v and
h in height, and let it be the subtree with maximal number of edges. Then, for
some node v ∈ V we define by MyDFS(v, r, p) the sequence of nodes created by
the concatenation of the following sequences of nodes (Fig. 1) as

- the path from the root of T to the node v,
- the classical DFS algorithm for the tree Tv(r1/p), broken after 8r steps (at

node v′),
- the path from v′ to v, and
- the path from v to the root of T .

We use MyDFS(v, r, p) only when the route from the root to the node v of length
l is already known. In this case the execution takes O(r + l) time steps.

Moreover, we use the function rnew which dictates the progress of the pre-
sented algorithm. It is defined for a tree T and any number r ≥ 1 and p ≥ 1

rnew(r, p) = argmin
{
φ(j) : j ∈

[
r +

1
2
· r1/p, r + r1/p

]}
. (3)

r

r + 0.5 · r1/p

r + r1/p

rnew(r, p)
φ

root

v

root

a) b)

r1/p

v′

Fig. 1. Definition of a) MyDFS routine and b) the function rnew

332 M. Dynia et al.

Intuitively, the value of rnew points out the most narrow place in the tree within
some specified interval (Fig. 1).

2.2 The KE-Clever Algorithm

First we present and analyze in detail the KE-2 algorithm and then the KE-1
algorithm which is a simple modification of the former. Both algorithms are the
basic components of KE-Clever which we define and analyze at the end of this
section.

The KE-2 algorithm works in so called epochs. During one epoch all nodes in
distance between some two well defined levels (a chunk) are being explored. A
detailed description of the KE-2 provides Algorithm 1. and Figure 2.

Algorithm 1. The KE-2 algorithm
Require: k robots placed in ROOT
1: r ← 1
2: p′ ← 1
3: repeat
4: φ ← φ(r)
5: for (j ← 0 to �φ/k�) do
6: v ← vr(ID + k · j mod φ)
7: repeat
8: if (some RISE flag is set) then
9: p′ ← 2 · p′

10: end if
11: move and explore following MyDFS(v, r, p′) sequence

12: if (Tv(r1/p′
) is not completely explored) then

13: set RISE flag
14: end if
15: until (no flag RISE is set)
16: end for
17: r ← rnew(r, p′)
18: until (T is completely explored)

The algorithm maintains a variable r (the radius) which value means that
all levels of the tree up to the level r are already explored. It grows during the
exploration, and the algorithm terminates when the tree is completely known.
We call the lines 4–17 of the code an epoch of the algorithm. Epoch Ei starts
with radius ri and during the epoch all nodes on levels between ri and ri+1 (a
chunk Ci) are being explored.

The following lemma demonstrates an idea of the algorithm and shows that
the exploration does progress and additionally shows that the number of epochs
is small.

Lemma 1. The KE-2 terminates after executing O(D1−1/2p) epochs, where p =
p(T) is the density of T .

Smart Robot Teams Exploring Sparse Trees 333

level ri

ri
1/p′

level ri+1

vri
(1) vri

(3)

vri+1(1)

vri
(φ)

vri+1(φ(ri+1))

Fig. 2. One epoch of the KE-2 algorithm

Proof. We start by showing a property of some sequence ai which suitably de-
scribes the behavior of our algorithm. Then using this property we show the
upper bound on the number of epochs. We show that for a0 = 0, a1 = 1 and
ai+1 = ai + 1

2 · ai
1/2p we have

ai ≥
(
i

6

)2p/(2p−1)

. (4)

Indeed, by induction we have the lower bound for ai+1 = ai + 1
2 · a

1/2p
i of

(i/6)2p/(2p−1) +
1
2
· i

1/(2p−1)

61/(2p−1) ≥ (i/6)2p/(2p−1) +
3 · i1/(2p−1)

62p/(2p−1) ≥ (i+ 3)i1/(2p−1)

62p/(2p−1) ≥

≥ (i+ 1)(i+ 1)1/(2p−1)

62p/(2p−1) ≥
(
i+ 1

6

)2p/(2p−1)

.

The main point of the above reasoning is that for 0 < α ≤ 1, i ≥ 0

i+ 3
i+ 1

≥
(
i+ 1
i

)α

.

Now let us observe that ri ≥ ai. Therefore, by finding j s.t. aj ≥ D we
can argue that j epochs suffice to explore the whole tree. This is the case for
j = (D ·6)1−1/2p (we use (4) to show that) and thus at most O(D1−1/2p) epochs
are executed. �

The value of the local variable p′ at the beginning of the epoch Ei is the same
for all robots and defines the value of pi. By the sequence pi our distributed
algorithm estimates the upper bound for the density of the tree it explores. The
lines 6–15 are a turn of the algorithm. Each epoch Ei consists of many turns
during which subtrees in the chunk Ci are being explored.

334 M. Dynia et al.

All lines of the code (except one: the traversing according to MyDFS) are exe-
cuted by all robots placed in the root of the tree. Then the local communication
needed to compute e.g. φ and a new value of p′ is granted. This emphasizes the
locality and distributed property of our algorithm.

We now show that an execution of an epoch takes a small number of parallel
steps for the KE-2 algorithm.

Lemma 2. The epoch Ei (i ≥ 1) of KE-2 terminates after

O
(
φ(ri)
k

· ri · [1 + log(pi+1/pi)]
)

time steps, after completely exploring the chunk Ci.

Proof. The epoch starts based on level ri of the tree T , where exactly φ(ri)
subtrees T1(h), . . . , Tφ(ri)(h) are rooted, where

Tj(h) = Tvri
(j)(h) .

Within one epoch, turn by turn, these subtrees are explored by our algorithm.
During this execution the value of h changes. Initially h = r

1/pi

i and it decreases
until it reaches r1/pi+1

i at the end of the epoch.
The group of k robots starts the exploration from subtrees rooted at nodes

with the smallest IDs. Since pi is doubled during the exploration, the repeat-until
loop, inside of the turn, terminates after 1 + log(pi+1/pi) passes. Indeed, since
pi+1 ≤ p the algorithm will reach some value, i.e. pi+1, which is sufficient to
explore all Tv(r1/pi+1) by MyDFS and then no RISE flag is set.
For each j and pi ≤ p′ ≤ pi+1 the MyDFS(vri(j), ri, p′) algorithm takes at most
11ri steps. This implies that one turn takes O(ri) time steps. Moreover, there
are exactly �φ(ri)/k� turns during an epoch.

This proves that during the epoch Ei the algorithm explores the chunk Ci

in time O
(

φ(ri)
k · ri · [1 + log(pi+1/pi)]

)
and eventually places all robots in the

root. �

The following lemma describes the running time of the KE-2 algorithm.

Lemma 3. The KE-2 explores the tree T in time

O

 log p
k

∑
i≥0

φ(ri)ri

 .

Proof. By Lemma 2, the epoch Ei needs at most φ(ri)/k · ri · [1 + log(pi+1/pi)]
time steps. Using pi+1

pi
≤ 2p and summing up over all epochs we have∑

i≥0

1
k
φ(ri) · ri · [1 + log(pi+1/pi)] ≤

1
k

∑
i≥0

φ(ri) · ri · 2 log p .

�

Smart Robot Teams Exploring Sparse Trees 335

Now we compare the time of our online algorithm to the time the optimal offline
algorithm would need for the same tree T . To show this we need to know the
running time of the optimal algorithm.

In Lemma 4 we show a lower bound for running time of all algorithms explor-
ing T . We describe this bound by using the sequence ri and pi, both defined by
an execution of KE-2.

Lemma 4. The optimal algorithm needs

Ω

1
k

∑
i≥0

φ(ri)ri1/pi

time steps.

Proof. Given the sequence ri of levels of tree and the sequence pi defined by the
KE-2, define the set Ii of levels of T as follows

Ii =
[
ri +

1
2
· ri1/pi+1 , ri + ri

1/pi+1

]
and let I =

⋃
i Ii be the sum of these sets of levels. The levels Ii do not overlap

since

ri+1 +
1
2
r
1/pi+2
i+1 > ri + r

1/pi+1
i

and thus the overall number of nodes at levels described by I is a lower bound
on number of nodes in the tree T .

Let us count how many nodes ni there are on levels contained in Ii. We know
that ri+1 ∈ Ii and that ∀j∈Ii(φ(ri+1) ≤ φ(j)). Then we have ni ≥ 1/2 · φ(ri+1) ·
ri

1/pi+1 and given ri ≥ ri+1/2 we get

ni = Ω
(
φ(ri+1) · ri+1

1/pi+1

)
so there are at least Ω

(∑
i φ(ri)ri1/pi

)
nodes in the tree.

A group of k robots needs at least s/k time steps to explore a tree with s
nodes, which proves that even the optimal algorithm needs the time claimed in
the lemma. �

We can prove now the competitive ratio of KE-2 in the following lemma.

Lemma 5. The KE-2 achieves competitive ratio of O(log p ·D1/2p ·D1−1/p)

Proof. First, we show that for any non-decreasing sequence {yi} and any se-
quence {xi} and for any 0 < α < 1 we have∑m

i=1 xiyi∑m
j=1 xiyi

α
≤ ym

1−α . (5)

336 M. Dynia et al.

To prove that, we notice

1
y1−α

m

·
∑m

i=1 xiyi∑m
i=1 xi · yα

i

≤ 1 .

Indeed, for all 0 ≤ i ≤ m we have y1−α
i ≤ y1−α

m and we can upper-bound this
term by ∑m

i=1 xiyi∑m
i=1 xi · yα

i y
1−α
m

≤
∑m

i=1 xiyi∑m
i=1 xiyα

i y
1−α
i

≤ 1 .

In the remaining part of the proof we lay α = 1/2p, yi = ri and xi = φ(ri) in (5).
We notice that ri1/pi ≤ D1/2p and combine the results of Lemma 3 and 4 to

provide the bound for competitive ratio σ

σ ≤ O
(

log(4p) ·
∑

i φ(ri)ri∑
i φ(ri)ri1/pi

)
≤ O

(
log p ·D1−1/2p

)
. �

Now we present an algorithm which is a small modification of KE-2. Unlike
the former, it will search for the value of density more accurately (not binary)
and thus it will be a bit slower. The KE-1 algorithm arises by replacing in
Algorithm 1. the 9-th line of code p′ ← 2 · p′ by the new line p′ ← p′ + 1.

The proof of the performance of KE-1 is quite the same as the proof of KE-2
and thus we omit the detailed proof here. The KE-1 is a distributed and online
algorithm and achieves the following competitive ratio

Corollary 1. The KE-1 is O(p ·D1−1/p)-competitive.

Proof. For the KE-1 the local variable p′ is increased only by one and thus epoch
Ei takes

O
(
φ(ri)
k

· ri · [1 + pi+1 − pi]
)

time steps. Summing up over all epochs we have O (p/k ·
∑

i φ(ri)ri) time steps
until tree is completely explored by KE-1. Since pi approximates the value of p(T)
more accurately, we can use the lower bound for the time of optimal algorithm
by Lemma 4, to obtain the competitive ratio of O

(
p ·D1−1/p

)
. �

We have now two algorithms KE-1 and KE-2 which performance depends on
the ratio between p and D. The first one is better for trees with a small density
(comparing to D), and the second is better for a small – comparing to the
density – height of the tree.

To take advantages of these algorithms and avoid drawbacks, we define the
KE-Clever in the following way. The robot with the ID 1 (a referee) does not
move but only waits in the root and serves as a relay station for the communi-
cation. It maintains the status of an exploration. Let now the first half of the
remaining group of robots (the subgroup A) executes the KE-1 and the other
half (the subgroup B) the KE-2 algorithm.

The KE-Clever terminates, after one of the group reports a completion of
the exploration. The group A needs at most O

(
p ·D1−1/p

)
· Copt time and

Smart Robot Teams Exploring Sparse Trees 337

the group B needs O
(
log p ·D1/2p ·D1−1/p

)
· Copt time, which leads to the

following theorem:

Theorem 1. The KE-Clever achieves the competitive ratio of

O
(
D1−1/p ·min

{
p, log p ·D1/2p

})
for an arbitrary tree T , where D is the height of T and p the density.

2.3 The KE-Oblivious Algorithm

The algorithms KE-1 and KE-2 estimate the density value in a different way,
but unfortunately, in the both cases the time needed for searching the proper
value reflects unfavorably in their performance. Let us assume that the density
p(T) of the tree is known beforehand. Then, replacing in Algorithm 1. the 2-nd
line of code p′ ← 1 by the new line p′ ← p(T) we define a new algorithm called
KE-Oblivious.

Theorem 2. If the density parameter p for the tree is arbitrary but known before
the exploration, then the KE-Oblivious has competitive ratio of

O
(
D1−1/p

)
for an arbitrary tree T , D in height.

Proof. Since the density is known in advance, there is no need for approximation.
In fact, the local variable p′ never changes during the execution of the algorithm.
This results in only O

(
φ(ri)

k · ri
)

time steps needed for an epoch Ei. Following
the same approach as in Lemma 3 and 4 we obtain an improved competitive
ratio of O

(
D1−1/p

)
. �

3 Conclusions

We have presented two distributed online algorithms which explore the un-
known tree starting from the root. Assuming global communication (or allow-
ing landmarks in nodes) one can combine by a simple trick the KE-Clever or
KE-Oblivious with the algorithm described in [15], obtaining the competitive
ratio equal to the minimum of ratios of each combined algorithm. It is enough
to execute them both in parallel – each algorithm executed by the half of the
group.

In the face of the best known lower bound of 2-1/k, the problem concerning
an optimal online competitive ratio for trees is still open. And finally, does the
bounded communication have an impact on that ratio at all?

338 M. Dynia et al.

References

1. Borodin, A., El-Yaniv, R.: Online computation and competitive analysis. Cam-
bridge University Press, New York, NY, USA (1998)

2. Rao, N., Kareti, S., Shi, W., Iyenagar, S.: Robot navigation in unknown terrains:
Introductory survey of non-heuristic algorithms. Technical Report ORNL/TM-
12410 (1993)

3. Frederickson, G., Hecht, M., Kim, C.: Approximation algorithms for some routing
problems. SIAM Journal on Computing 7 (1978) 178 – 193

4. Averbakh, I., Berman, O.: Minmax p-traveling salesmen location problems on a
tree. Annals of Operations Research 110 (2002) 55 – 68

5. Dynia, M., Korzeniowski, M., Schindelhauer, C.: Power-aware collective tree ex-
ploration. In Grass, W., ed.: Proceedings of ARCS’06. LNCS 3894, Springer Verlag
(2006) 341 – 351

6. Even, G., Garg, N., Könemann, J., Ravi, R., Sinha, A.: Min-max tree covers of
graphs. Operations Research Letters 32 (2004) 309 – 315

7. Averbakh, I., Berman, O.: (p - 1)/(p + 1)-approximate algorithms for p-traveling
salesmen problems on a tree with minmax objective. Discrete Applied Mathematics
75 (1997) 201 – 216

8. Averbakh, I., Berman, O.: A heuristic with worst-case analysis for minimax routing
of two traveling salesmen on a tree. Discrete Applied Mathematics 68 (1996) 17 –
32

9. Bender, M., Slonim, D.: The power of team exploration: two robots can learn
unlabeled directed graphs. In: Proc. FOCS 1994. (1994) 75 – 85

10. Bender, M., Fernández, A., Ron, D., Sahai, A., Vadhan, S.: The power of a pebble:
exploring and mapping directed graphs. In: Proc. 30th Symp. Theory of Comput-
ing, ACM (1998) 269 – 278

11. Panaite, P., Pelc, A.: Exploring unknown undirected graphs. In: SODA ’98:
Proceedings of the ninth annual ACM-SIAM symposium on Discrete algorithms,
Philadelphia, PA, USA, Society for Industrial and Applied Mathematics (1998)
316 – 322

12. Awerbuch, B., Betke, M., Rivest, R., Singh, M.: Piecemeal graph exploration by a
mobile robot. Information and Computation 152 (1999) 155 – 172

13. Dessmark, A., Pelc, A.: Optimal graph exploration without good maps. In: Al-
gorithms - ESA 2002: 10th Annual European Symposium. Volume 2461., Springer
(2002) 374 – 386

14. Fleischer, R., Trippen, G.: Exploring an unknown graph efficiently. In: 13th Annual
European Symposium. Volume 3669., Springer (2005) 11 – 22

15. Fraigniaud, P., Gasieniec, L., Kowalski, D., Pelc, A.: Collective tree exploration.
In: Proc. LATIN 2004. Volume 2976. (2004) 141–151

16. Fraigniaud, P., Ilcinkas, D., Rajsbaum, S., Tixeuil, S.: Space lower bounds for graph
exploration via reduced automata. In: Structural Information and Communication
Complexity: 12 International Colloquium. Volume 3499. (2005) 140 – 154

k-Sets of Convex Inclusion Chains

of Planar Point Sets

Wael El Oraiby and Dominique Schmitt

Laboratoire MIA, Université de Haute-Alsace
4, rue des Frères Lumière, 68093 Mulhouse Cedex, France

{Wael.El-Oraiby, Dominique.Schmitt}@uha.fr

Abstract. Given a set V of n points in the plane, we introduce a new
number of k-sets that is an invariant of V : the number of k-sets of a
convex inclusion chain of V . A convex inclusion chain of V is an order-
ing (v1, v2, ..., vn) of the points of V such that no point of the ordering
belongs to the convex hull of its predecessors. The k-sets of such a chain
are then the distinct k-sets of all the subsets {v1, ..., vi}, for all i in
{k + 1, ..., n}. We show that the number of these k-sets depends only on
V and not on the chosen convex inclusion chain. Moreover, this number
is surprisingly equal to the number of regions of the order-k Voronoi di-
agram of V . As an application, we give an efficient on-line algorithm to
compute the k-sets of the vertices of a simple polygonal line, no vertex
of which belonging to the convex hull of its predecessors on the line.

1 Introduction

Given a finite set V of n points in the Euclidean plane (no three of them being
colinear) and an integer k (0 < k < n), the k-sets of V are the subsets of
k points of V that can be strictly separated from the rest by a straight line.
Due to the various applications of k-sets, the problems of constructing and of
counting them have been extensively studied in computational and combinatorial
geometry. Dey [5] has shown that the number γk(V) of k-sets of a set V of n
points in the plane is at most O(nk

1
3) and Tóth [12] has shown how to construct

point sets with n2Ω(
√

log k) k-sets. Narrowing the gap between these two bounds
remains an important open problem. More precise results have been obtained
by adding up the number of k-sets for different values of k. Peck [11] has shown
that the number of (≤ k)-sets of V , i.e. the sum of the numbers γi(V) over all
i in {1, ..., k}, is bounded by kn and that this bound is tight. In this paper we
propose a different approach which consists in fixing k and summing the number
of k-sets over different subsets of V . To this aim, we define the notion of convex
inclusion chain of the point set V which is an ordering V = (v1, v2, ..., vn) of the
points of V such that, for every i ∈ {2, ..., n}, vi does not belong to the convex
hull conv(Si−1) (with Si = {v1, ..., vi}, for all i ∈ {1, ..., n}). The set of k-sets of
the convex inclusion chain V is then the set of distinct k-sets of Sk+1, Sk+2, ..., Sn.

The main result of this paper is that the number of k-sets of a convex inclusion
chain of V is an invariant of the set V , that is, it does not depend on the choice

R. Královič and P. Urzyczyn (Eds.): MFCS 2006, LNCS 4162, pp. 339–350, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

340 W. El Oraiby and D. Schmitt

of the convex inclusion chain. To prove this result, we use the notion of k-set
polygon introduced by Edelsbrunner, Valtr, and Welzl [6]: the k-set polygon
gk(V) of V is the convex hull of the centroids of all the subsets of k elements of
V . Andrzejak and Fukuda [1] have shown that the vertices of this k-set polygon
are the centroids of the k-sets of V . Thus, counting the number of k-sets comes
to count the number of vertices or edges of the k-set polygon. In particular, we
show that, given a point v not belonging to conv(V), the edges of gk(V) that
are not edges of gk(V ∪ {v}) form a connected polygonal line on the boundary
δ(gk(V)) of gk(V). This generalizes a result which is well known in the case of
convex hulls, that is, for k = 1. Using this result we show that:

Theorem 1. Any convex inclusion chain of a planar set V of n points admits
2kn− n− k2 + 1−

∑k−1
j=1 γ

j(V) k-sets (with
∑0

1 = 0).

Surprisingly, this number is independent of the choice of V and is also equal to
the number of regions of the order-k Voronoi diagram of V (see Lee [7]).

The best worst-case algorithm to construct the k-sets of a set V of n points
in the plane has been given by Cole, Sharir, and Yap and runs in O(n log n +
γk(V) log2 k) time [4] (for bigger values of k this can be improved to O(n log n+
γk(V) log1+ε n) [3]).

In the second part of this paper we give an algorithmic method to update
the set of k-sets of V when a point v that does not belong to conv(V) is added.
We apply this result to the on-line construction of the k-set polygon of a simple
polygonal line V in the particular case where no vertex of V belongs to the
convex hull of its predecessors on V . This algorithm generalizes Melkman’s on-
line algorithm which constructs the convex hull of a simple polygonal line in
linear time [8]. We show that:

Theorem 3. The k-set polygon of the polygonal line V can be constructed on-
line in O(k(n− k) log2 k) time.

The cost per created k-set is O(log2 k), the same as in the algorithm of Cole,
Sharir, and Yap [4].

2 Counting k-Sets of Convex Inclusion Chains

Throughout this paper we will consider V to be a finite set of |V | = n points in
the Euclidean plane such that n ≥ 2 and no 3 points of V are colinear. k will be
an integer of {1, ..., n−1}. The aim of this section is to count the number of k-sets
of a convex inclusion chain of V . To this end we will use the boundary δ(gk(V))
of the k-set polygon of V . This boundary is considered to be oriented in counter
clockwise direction. Moreover, given two points s and t of V , we denote by st
the closed oriented segment with endpoints s and t, by (st) the oriented straight
line generated by st, and by (st)+ (resp. (st)−) the open half plane on the left
(resp. right) of (st). (st)+ and (st)− denote the closure of (st)+ and (st)−.

Let us first recall two important properties of the vertices and edges of k-set
polygons given by Andrzejak and Fukuda [1], and by Andrzejak and Welzl [2]
(see Fig. 1 for an illustration).

k-Sets of Convex Inclusion Chains of Planar Point Sets 341

Proposition 1. The centroid g(T) of a subset T of k points of V is a vertex of
gk(V) if and only if T is a k-set of V . Moreover, the centroids of distinct k-sets
are distinct vertices.

Proposition 2. T and T ′ are two k-sets of V such that g(T)g(T ′) is an oriented
edge of gk(V) if and only if there exist two points s and t of V and a subset P
of k − 1 points of V such that T = P ∪ {s}, T ′ = P ∪ {t}, and V ∩ (st)− = P .

12

11
10

9

8

7

6

5

4

3
2

1

12

11

10

97

6

5

4

3

2

1

8

e6,10,12(8,9)

e8,10,12(11,6)

g(6,8,10,12)

Fig. 1. A set of 12 points and its 4-set polygon

From now on, any oriented edge g(P ∪{s})g(P ∪{t}) of gk(V) will be denoted
by eP (s, t).

Notice that, in the particular case where k = 1, gk(V) is the convex hull of V
and its edges are of the form e∅(s, t). When V is reduced to two points s and t,
g1(V) admits exactly two oriented edges e∅(s, t) = st and e∅(t, s) = ts.

We now characterize the edges of the k-set polygon that have to be created
and those that have to be removed, when a new point is added (see Fig. 2). The
following lemmas can easily be deduced from Proposition 2:

Lemma 1. If k < n− 1 then, for any subset S of V such that k < |S| < n and
for any point v of V \S, an edge eP (s, t) of gk(S) is also an edge of gk(S ∪{v})
if and only if v ∈ (st)+.

Lemma 2. For any subset S of V such that k ≤ |S| < n and for any point v of
V \ S,

(i) an edge eP (s, t) of gk(S ∪ {v}) is not an edge of gk(S) if and only if
v ∈ P ∪ {s, t},

(ii) if v /∈ conv(S), gk(S ∪ {v}) admits one and only one edge of the form
eP (s, t) with s = v (resp. t = v).

342 W. El Oraiby and D. Schmitt

11

10

9

8

7

6

5

4

3

2

1

12

Fig. 2. The 4-set polygon of S = {1, ..., 11} and the 4-set polygon of S ∪ {12}. The
edges of gk(S) that are not edges of gk(S ∪ {12}) are in dashed lines and the edges of
gk(S ∪ {12}) that are not edges of gk(S) are in bold lines.

Note that, in Lemma 2, the definition of the k-set polygon has implicitly be
extended to the case k = |S|. In this case, gk(S) is a unique point of the plane
(the centroid of S) and, therefore, it admits no edge. This extended definition
will help to simplify the proof of Proposition 4.

Proposition 3. If k < n− 1 then, for any subset S of V such that k < |S| < n
and for any point v of V \ conv(S),

(i) the edges of gk(S∪{v}) that are not edges of gk(S) form an open connected
polygonal line with at least two edges, whose first (resp. last) edge in counter
clockwise direction is the unique edge of gk(S ∪ {v}) of the form eP (s, t) with
t = v (resp. s = v).

(ii) the edges of gk(S) that are not edges of gk(S∪{v}) form an open connected
and non empty polygonal line.

Proof. (i) From Lemma 2, the set C of edges of gk(S ∪ {v}) that are not edges
of gk(S) admits at least two edges. It can also be shown that at least one edge
of gk(S) is an edge of gk(S ∪ {v}) too. Thus, C admits at least one edge eP (s, t)
whose first endpoint is a vertex of gk(S), i.e. v /∈ P ∪ {s}. Hence, from Lemma
2, t = v and eP (s, t) is the only edge of gk(S ∪ {v}) of the form eP (s, v). In
the same way, there is a unique edge of C whose second endpoint is a vertex of
gk(S) and this edge is of the form eP (v, t). It follows that C is an open connected
polygonal line whose first (resp. last) edge in counter clockwise direction is of
the form eP (s, v) (resp. eP (v, t)).

(ii) Straightforward from (i). �

This proposition generalizes a result which is well known in the case k = 1: The
edges of a convex hull that are visible from a point outside of the hull form an
open connected and non empty polygonal line. Moreover, if we want to update
the convex hull after the insertion of such a point, two new edges have to be
created. This means that the incremental construction of the convex hull of n
points, in such a way that every newly inserted point does not belong to the

k-Sets of Convex Inclusion Chains of Planar Point Sets 343

current convex hull, constructs always 2(n − 1) edges (two per inserted point
except for the first one). We now generalize this last result for k 	= 1.

Let (v1, v2, ..., vn) be a convex inclusion chain of V , that is, an ordering of
the points of V such that, for every i ∈ {1, ..., n − 1}, vi+1 /∈ conv(Si) (with
Si = {v1, ..., vi}, for every i ∈ {1, ..., n}).

For every k ∈ {1, ..., n− 1} and for every i ∈ {k + 1, ..., n}, let cki denote the
number of edges of gk(Si) that are not edges of gk(Si−1), i.e. the number of edges
to create while constructing the k-set polygon of Si = Si−1 ∪ vi from the k-set
polygon of Si−1. Since the number of edges of gk(Sk) is zero, ck =

∑n
i=k+1 c

k
i

is the total number of edges to be created by an algorithm that incrementally
constructs gk(V) by successively determining gk(Sk), gk(Sk+1), ..., gk(Sn).

From Proposition 1, for every j ∈ {1, ..., n− 1}, the number of edges (i.e. the
number of vertices) of the j-set-polygon of V is equal to the number γj(V) of
j-sets of V .

Proposition 4. c1 = 2(n−1) and ck = k(2n−k−1)−
∑k−1

j=1 γ
j(V) if 1 < k < n.

Proof. From Lemma 2, for every i ∈ {k + 1, ..., n}, gk(Si−1 ∪ {vi}) admits at
least two edges that are not edges of gk(Si−1). These two edges are of the form
eQ(vi, t) and eP (s, vi). All other edges of gk(Si−1 ∪ {vi}) that are not edges of
gk(Si−1) are of the form eP ′(s′, t′) with vi ∈ P ′. If k = 1, no such other edge
exists since P = ∅. Thus c1i = 2, for every i ∈ {2, ..., n}, and

c1 =
n∑

i=2

2 = 2(n− 1) .

If k ∈ {2, ..., n− 1}, from Lemma 1, eP ′(s′, t′) is an edge of gk(Si−1 ∪ {vi}) with
vi ∈ P ′ if and only if eP ′\{vi}(s

′, t′) is an edge of gk−1(Si−1) and is not an edge
of gk−1(Si−1 ∪{vi}). Thus, denoting by dk−1

i the number of edges of gk−1(Si−1)
that are not edges of gk−1(Si), we have cki = 2 + dk−1

i . It follows that

ck =
n∑

i=k+1

cki = 2(n− k) +
n∑

i=k+1

dk−1
i .

Now, since the number of edges of gk−1(Sk−1) is zero, we have dk−1
k = 0

and
∑n

i=k+1 d
k−1
i is the total number of edges to be deleted by an algorithm

that incrementally constructs gk−1(V) by successively determining gk−1(Sk−1),
gk−1(Sk), ..., gk−1(Sn). Thus

n∑
i=k+1

dk−1
i = ck−1 − γk−1(V)

and
ck = 2(n− k) + ck−1 − γk−1(V) .

344 W. El Oraiby and D. Schmitt

Solving this induction relation we get

ck = (k − 1)(2n− k − 2) + c1 −
k−1∑
j=1

γj(V) = k(2n− k − 1)−
k−1∑
j=1

γj(V) .

�
The result of this proposition is somewhat surprising since it shows that the
number of edges that have to be created for the incremental construction of a
k-set polygon does not depend on the order in which the points are treated,
provided that every new inserted point does not belong to the convex hull of
the previously inserted ones. In addition, since

∑k−1
j=1 γ

j(V) is the number of
(≤ (k− 1))-sets of V and since this number is known to be bounded by (k− 1)n
(see [11]), it follows that:

Corollary 1. Any algorithm that incrementally constructs the k-set polygon of
n points, so that no point belongs to the convex hull of the points inserted before
him, has to create Θ(k(n− k)) edges.

Now, it is easy to find the number of k-sets of a convex inclusion chain of V :

Theorem 1. Any convex inclusion chain of a planar set V of n points admits
2kn− n− k2 + 1−

∑k−1
j=1 γ

j(V) k-sets (with
∑0

1 = 0).

Proof. Taking the previous notations, if V = (v1, v2, ..., vn) is a convex inclusion
chain of V , the number of k-sets of V is equal to the number of distinct k-set poly-
gon vertices created by an incremental algorithm that successively constructs
gk(Sk+1), ..., gk(Sn). The number of vertices of gk(Sk+1) is equal to the num-
ber ckk+1 of its edges. Moreover, from Proposition 3, for every i ∈ {k + 2, ..., n},
the edges of gk(Si) that are not edges of gk(Si−1) form an open connected and
non empty polygonal line. Thus, the number of vertices of this line that are not
vertices of gk(Si−1) is cki − 1, where cki is the number of edges of the line. It
follows that the number of k-sets of V is ckk+1 +

∑n
i=k+2 (cki − 1), that is, from

Proposition 4, 2kn− n− k2 + 1−
∑k−1

j=1 γ
j(V). �

According to this theorem, the number of k-sets of a convex inclusion chain
of V only depends on the set V and not on the chosen chain. An even more
intriguing consequence of the theorem arises from its connection with order-k
Voronoi diagrams. The order-k Voronoi diagram of V is a partition of the plane
in regions which are the set of points in the plane having the same k nearest
neigbours in V . Lee [7] has shown that, if no four points of V are cocircular, the
order-k Voronoi diagram of V admits 2kn− n − k2 + 1 −

∑k−1
j=1 γ

j(V) regions;
the same number as the one found in Theorem 1. Since a subset of k points of
V generates an order-k Voronoi region if and only if it can be separated from
the remaining points by a circle, it follows that:

Corollary 2. Given a set V of points in the plane, no three of them being co-
linear and no four of them being cocircular, the number of k-sets of a convex
inclusion chain of V is equal to the number of subsets of k points of V that can
be separated from the remaining by a circle.

k-Sets of Convex Inclusion Chains of Planar Point Sets 345

3 Constructing k-Sets of Convex Inclusion Chains

In this section we will consider the construction of the k-sets of a convex inclusion
chain of V . In particular, we will show how to update the set of k-sets of a subset
S of V when a new point, that does not belong to conv(S), is added. As in the
previous section, we will use the k-set polygon of V as a powerful tool.

For k ∈ {1, . . . , |V | − 2}, for S a subset of V such that k < |S| < n, and for v
a point of V \ conv(S), we set the following notations:

(i) Let CS,v (resp. DS,v) denote the counter clockwise oriented polygonal line of
edges of gk(S∪{v}) (resp. gk(S)) that are not edges of gk(S) (resp. gk(S∪{v})).

(ii) Let T1, T2, ..., Tm denote the k-sets of S such that (g(T1), g(T2), ..., g(Tm))
is the ordered sequence of vertices of DS,v (including its two endpoints).

(iii) For every i ∈ {1, ...,m}, let ePi(si, ti) denote the oriented edge of gk(S)
whose second endpoint is g(Ti) and let ePm+1(sm+1, tm+1) denote the oriented
edge whose first endpoint is g(Tm).

(iv) Set α1 = ωm = v and, for every i ∈ {2, ...,m}, set αi = ti and ωi−1 = si

(see Fig. 3 for an illustration).
(v) For every i ∈ {1, ...,m}, if αi 	= ωi, ϕ(Ti) denotes the oriented polygonal

line that connects αi to ωi in counter clockwise direction on δ(conv(Ti ∪ {v}))
and, if αi = ωi, set ϕ(Ti) = αi.

(vi) For every i ∈ {1, ...,m}, let Hi denote the homothety of center g(Ti∪{v})
and ratio − 1

k , that is, for any point x in the plane, Hi(x) = g((Ti ∪ {v}) \ {x}).

Notation (v) makes sense since, for every i ∈ {1, ...,m}, αi and ωi are vertices
of conv(Ti ∪ {v}). Indeed, α1 = ωm = v can be separated from S by a straight
line and is thus a vertex of conv(T1∪{v}) and of conv(Tm∪{v}). Moreover, from
Proposition 2, for every i ∈ {2, ...,m}, Ti \ ti = Pi ⊂ (siti)− and, from Lemma 1,
v ∈ (siti)−. Thus, αi = ti is a vertex of conv(Ti ∪ {v}), for all i ∈ {2, ...,m}. In
the same way, ωi = si+1 is a vertex of conv(Ti ∪ {v}), for all i ∈ {1, ...,m− 1}.

We now show that every vertex g(Ti) of DS,v can be associated to a subset of
CS,v.

v

rq

ti = αi

e(Ti∪{v})\{q,r}(r,q) = i(qr)

ti+1

si+1= ωi

si

δ(conv(Ti∪{v}))

Fig. 3. siti and si+1ti+1 are such that ePi(si, ti) and ePi+1(si+1, ti+1) are the two
consecutive edges of DS,v sharing the vertex g(Ti)

346 W. El Oraiby and D. Schmitt

Lemma 3. For every i ∈ {1, ...,m} such that ϕ(Ti) is not reduced to a single
point and for every oriented edge qr of ϕ(Ti), Hi(qr) is the edge eTi∪{v}\{q,r}(r, q)
of CS,v.

Proof. (i) We first show that, if i ∈ {2, ...,m − 1}, then S \ Ti ⊂ (qr)−. Since
g(Ti) is the vertex shared by the edges ePi(si, ti) and ePi+1(si+1, ti+1), we have
g(Ti) = g(Pi∪{ti}) = g(Pi+1∪{si+1}) and, from Proposition 1, Ti = Pi∪{ti} =
Pi+1 ∪{si+1}. From Proposition 2, it follows that Ti ⊂ (siti)−∩ (si+1ti+1)− and
that S \ Ti ⊂ (siti)+ ∩ (si+1ti+1)+. Thus, (siti) and (si+1ti+1) are the common
tangents of conv(Ti) and of conv(S \ Ti) such that conv(Ti) and conv(S \ Ti)
are on both sides of these tangents (see Fig. 3). Moreover, since {ti, si+1} ⊂ Ti

and {si, ti+1} ⊂ S \ Ti, the intersection point of the segments siti and si+1ti+1
is either the point ti = si+1 or a point of (si+1ti)+. Since ϕ(Ti) is not reduced
to a single point, ti 	= si+1 and, since v /∈ conv(S), it follows from Lemma 1
that v ∈ (siti)− ∩ (si+1ti+1)− ∩ (si+1ti)−. Thus, (siti) and (si+1ti+1) are also
common tangents of conv(Ti ∪ {v}) and of conv(S \ Ti). The edges of ϕ(Ti) are
then the edges of conv(Ti) included in (si+1ti)+ and the slopes of the oriented
straight lines generated by such edges are comprised between the slopes of (tisi)
and (ti+1si+1). Thus, the edges of ϕ(Ti) are the edges of conv(Ti ∪ {v}) visible
from every point of (siti)+∩(si+1ti+1)+ and, since S \Ti ⊂ (siti)+∩(si+1ti+1)+,
it follows that any edge qr of ϕ(Ti) is such that S \ Ti ⊂ (qr)−.

In a similar way, we can show that S \ T1 ⊂ (qr)− and S \ Tm ⊂ (qr)−.
(ii) Since every edge qr of ϕ(Ti) is an edge of conv(Ti ∪ {v}), for every i ∈

{1, ...,m}, we have (Ti∪{v})\{q, r} ⊂ (qr)+. Moreover, since |(Ti∪{v})\{q, r}| =
k−1, it follows from (i) and from Proposition 2 that e(Ti∪{v})\{q,r}(r, q) is an edge
of gk(S ∪{v}) and, from Lemma 2, that this edge belongs to CS,v. Moreover, the
endpoints g((Ti∪{v})\{q}) and g((Ti∪{v})\{r}) of this edge are the respective
images of q and r by the homothety Hi of center g(Ti∪{v}) and ratio − 1

k . Thus
e(Ti∪{v})\{q,r}(r, q) = Hi(qr). �

And thus, the complete characterization of the line CS,v:

Theorem 2. CS,v is the sequence of polygonal lines (H1(ϕ(T1)), ...,Hm(ϕ(Tm))).

Proof. (i) From Lemma 3, for every i ∈ {1, ...,m}, if ϕ(Ti) admits at least
one edge, Hi(ϕ(Ti)) is a connected polygonal line included in CS,v. Moreover, for
every j ∈ {1, ...,m} such that j 	= i, we have Ti 	= Tj and thus, for every edge qiri
of ϕ(Ti) and for every edge qjrj of ϕ(Tj), Hi(qiri) = e(Ti∪{v})\{qi,ri}(ri, qi) and
Hj(qjrj) = e(Tj∪{v})\{qj ,rj}(rj , qj) are distinct edges of CS,v. Hence, Hi(ϕ(Ti))
and Hj(ϕ(Tj)) share no edge.

(ii) Let us now show that all the polygonal lines Hi(ϕ(Ti)), i ∈ {1, ...,m}, fill
CS,v. By definition, the first edge of ϕ(T1) connects v to a point r of T1. This edge
always exists since the two endpoints α1 = v and ω1 = s2 of ϕ(T1) are distinct.
From Lemma 3 and Proposition 3, H1(vr) = eT1\{r}(r, v) is then the first edge of
CS,v andH1(ϕ(T1)) is an initial subsequence of CS,v. In the same way,Hm(ϕ(Tm))
is a final subsequence of CS,v. Moreover, for all i ∈ {1, ...,m− 1}, ωi = si+1 and
αi+1 = ti+1, that is Hi(ωi) = g((Ti ∪ {v}) \ {si+1}) and Hi+1(αi+1) = g((Ti+1 ∪

k-Sets of Convex Inclusion Chains of Planar Point Sets 347

{v}) \ {ti+1}). From Proposition 2, Ti \ {si+1} = Ti+1 \ {ti+1} and it follows that
Hi(ωi) = Hi+1(αi+1). Finally, CS,v = (H1(ϕ(T1)), ...,Hm(ϕ(Tm))). �

The result of this theorem can now be used to develop an algorithm that updates
the k-set polygon of S when v is added. Let us first describe the data structure
to implement. The boundary of the k-set polygon of S can be stored in a circular
list L whose elements represent the edges of gk(S). To any element e of L which
represents an edge eP (s, t) of gk(S) are associated the two elements of L that
represent the predecessor and the successor of eP (s, t) on δ(gk(S)), as well as
the two points s and t of S. Note that, from Proposition 2, the k-sets defining
two consecutive vertices of gk(S) differ from each other by one site and thus it
suffices to know one k-set T of S and one edge with endpoint g(T) to be able to
generate the whole k-sets of S while traversing L. It follows that a k-set polygon
with c edges can be stored in a data structure of size O(c+ k) and thus provides
a compact way to encode the k-sets of a given point set.

In our algorithm we also use a data structure CH that allows dynamic convex
hull maintenance. Using results given by Overmars and van Leeuwen [10] (see
also Overmars [9]), this structure needs O(h) size to store the convex hull of
h points of the plane, allows to get the predeccessor and the successor of any
edge in constant time, and can be updated in O(log2 h) time after inserting or
deleting a point.

For any polygonal line P , let now |P| denote the number of vertices of P .

Proposition 5. The edges of DS,v can be removed from L and the edges of
CS,v inserted in L in O(|DS,v| log2 k+ |CS,v|) time provided that one edge e of L
belonging to DS,v is given, and that the convex hull of one k-set T of S whose
centroid is an endpoint of e is stored in CH.

Proof. From Theorem 2, determining CS,v comes, for every i ∈ {1, ...,m}, to
determineHi(ϕ(Ti)) where ϕ(Ti) is a connected subset of conv(Ti∪{v}). Suppose
that an edge e of L belonging to DS,v is given, and that the convex hull of a
k-set T of S whose centroid is an endpoint of e is stored in CH . We first show
that conv(T1 ∪ {v}) can be determined from conv(T) in O(|DS,v| log2 k) time.
From Lemma 1 and Proposition 3, DS,v is the polygonal line formed by the edges
eP (s, t) of gk(S) such that v is on the right of (st). Since the points s and t are
associated to the edge eP (s, t) in L, since constant time is needed to test on
which side of (st) v lies, and since the neighbours of any edge in L can also be
obtained in constant time, it follows that eP1(s1, t1) can be found, starting from
e, in O(|DS,v|) time. Moreover, from Proposition 2, Ti−1 = (Ti \ {ti}) ∪ {si},
for every i ∈ {2, ...,m}. Hence conv(Ti−1) can be computed from conv(Ti) in
O(log2 k) time. Thus, while searching eP1(s1, t1), conv(T) can be replaced by
conv(T1) in CH in O(|DS,v| log2 k) time and conv(T1∪{v}) can then be deduced
in O(log2 k) time. Now, the polygonal line ϕ(T1) which connects α1 = v and
ω1 = s2 on δ(conv(T1 ∪ {v})) can be reported in O(|ϕ(T1)|) time. From Lemma
3, for every edge qr of ϕ(T1), the edge H1(qr) = e(T1∪{v})\{q,r}(r, q) is an edge
of CS,v. This comes to insert a new edge in L to which are associated its two
neigbours in L as well as the points r and q. Since the edges of H1(ϕ(T1))

348 W. El Oraiby and D. Schmitt

appear in L in the same order as their corresponding edges on ϕ(T1), it follows
that H1(ϕ(T1)) can be inserted in L in O(|ϕ(T1)|) time. In the same way, for
every i ∈ {2, ...,m}, Ti = (Ti−1 \ {si}) ∪ {ti} and thus conv(Ti ∪ {v}) can
be computed from conv(Ti−1 ∪ {v})) in O(log2 k) time. ϕ(Ti), which connects
αi = ti and ωi, can then be reported in O(|ϕ(Ti)|) time and Hi(ϕ(Ti)) can
also be inserted in L in O(|ϕ(Ti)|) time (note that, from Theorem 2, Hi(ϕ(Ti))
follows Hi−1(ϕ(Ti−1)) in L). Finally, L can be updated after the insertion of v
in total O(|DS,v| log2 k+

∑m
i=1 |ϕ(Ti)|), that is, O(|DS,v| log2 k+ |CS,v|) time. �

Remark 1. Notice that at the end of the algorithm described by Proposition 5,
the data structure CH contains the convex hull of Tm, with g(Tm) a common
endpoint of DS,v and CS,v. Moreover, the edge of CS,v with endpoint g(Tm) is
the last edge inserted in L and therefore it can be easily maintained.

We will now show how Proposition 5 can be applied to the on-line construction
of the k-set polygon of a planar simple polygonal line V = (v1, v2, ..., vn) of
n vertices which is such that, for every i ∈ {2, ..., n}, vi /∈ conv(Si−1) (with
Si = {v1, ..., vi} for every i ∈ {1, ..., n}).

Theorem 3. The k-set polygon of the polygonal line V can be constructed on-
line in O(k(n− k) log2 k) time.

Proof. (i) We first show that the k-set polygon of Sk+1 = {v1, ..., vk+1} can be
computed in O(k) time. From Proposition 2, every edge of gk(Sk+1) is of the
form eSk+1\{s,t}(s, t) where ts is an edge of conv(Sk+1). Conversely, if ts is an
edge of conv(Sk+1), then eSk+1\{s,t}(s, t) is an edge of gk(Sk+1). In addition, if
eSk+1\{s′,t′}(s′, t′) is the successor of eSk+1\{s,t}(s, t) on δ(gk(Sk+1)), then (Sk+1\
{s, t}) ∪ {t} = (Sk+1 \ {s′, t′}) ∪ {s′}, that is, s = t′. ts and t′s′ are therefore
two consecutive edges of conv(Sk+1) and it follows that constructing gk(Sk+1)
comes to construct conv(Sk+1). The convex hull of a simple polygonal line of k+1
vertices can be constructed on-line in O(k) time using Melkman’s algorithm [8].

Moreover, let e = eSk+1\{s,t}(s, t) be an edge of gk(Sk+1). Setting T = Sk+1 \
{s}, g(T) is an endpoint of e and conv(T) can be stored in the data structure
CH in O(k log2 k) time.

(ii) We now show that, for every i ∈ {k + 2, ..., n}, gk(Si) can be computed
from gk(Si−1) in O((|DSi−1,vi |+|CSi−2,vi−1 |) log2 k+|CSi−1,vi |) time (here CSk,vk+1

denotes the boundary of gk(Sk+1)).
(ii.1) We first prove that at least one edge of DSi−1,vi is also an edge of

CSi−2,vi−1 . From the definition of V , vi−1 is a vertex of conv(Si−1) visible from
vi. Thus, there exists an oriented straight line ∆ passing through vi−1, that is
not parallel to any straight line passing through any two points of Si−1, and
such that conv(Si−1) ⊂ ∆+ and vi ∈ ∆−. Let ∆′ be a straight line parallel to
∆, oriented in the same direction as ∆ and such that |∆′− ∩ Si−1| = k. Let
U = ∆′− ∩ Si−1. Let (st) and (s′t′) be the oriented straight lines tangent to
both conv(U) and conv(Si−1 \ U) such that {s′, t} ⊆ U , conv(U) ⊂ (st)−, and
conv(Si−1 \U) ⊂ (st)+ (resp. conv(U) ⊂ (s′t′)−, and conv(Si−1 \U) ⊂ (s′t′)+).
Thus, from Proposition 2 and Lemma 2, eU\{t}(s, t) and eU\{s′}(s′, t′) are edges

k-Sets of Convex Inclusion Chains of Planar Point Sets 349

of gk(Si−1) that belong to CSi−2,vi−1 , since vi−1 ∈ U . Now, vi cannot belong
to both (st)+ and (s′t′)+ and, from Lemma 1, at least one of eU\{t}(s, t) and
eU\{s′}(s′, t′) belongs to DSi−1,vi . Hence, at least one edge of DSi−1,vi is also an
edge of CSi−2,vi−1 .

(ii.2) Now, from (i) and from Remark 1, after the construction of gk(Si−1),
an edge e of CSi−2,vi−1 is given and the convex hull of a k-set T whose centroid
is a vertex of e is known. From (ii.1), an edge e′ of DSi−1,vi can then be found,
starting from e, in O(|CSi−2,vi−1 |) time, as in the proof of Proposition 5. The
same, the convex hull of a k-set T ′ whose centroid is a vertex of e′ can be
constructed, starting from conv(T), in O(|CSi−2,vi−1 | log2 k) time. Thus, from
Proposition 5, for every i ∈ {k+2, ..., n}, gk(Si) can be constructed from gk(Si−1)
in O((|DSi−1,vi |+ |CSi−2,vi−1 |) log2 k + |CSi−1,vi |) time.

(iii) It follows from (i) and (ii) that the k-set polygon of V can be constructed
on-line in O(k log2 k+

∑n
i=k+2((|DSi−1,vi |+ |CSi−2,vi−1 |) log2 k+ |CSi−1,vi |)) time.

By setting, as in section 1, ck =
∑n

i=k+1 |CSi−1,vi |, we have
∑n

i=k+2((|DSi−1,vi |+
|CSi−2,vi−1 |) log2 k + |CSi−1,vi |) ≤ 2ck log2 k + ck. From Proposition 4, ck is in
O(k(n− k)) and the time complexity of the algorithm is O(k(n− k) log2 k). �
From Corollary 1, any algorithm that incrementally constructs the k-set polygon
of the polygonal line V , has to generate Ω(k(n − k)) edges. It follows that the
time complexity of the above algorithm, per edge that has to be created, is
O(log2 k). This complexity can be compared to the one in the algorithm given
by Cole, Sharir, and Yap [4] which constructs the set of k-sets of n points in the
plane in O(n logn + c log2 k) time, where c is the total number of k-sets of the
n points.

4 Conclusion

In this paper we have shown that all the convex inclusion chains of a given set
V of points in the plane admit the same number of k-sets. This number is also
equal to the number of regions of the order-k Voronoi diagram of V . Up to now
we do not know any direct proof of this last result. Such a proof would provide a
completely different way to count the number of regions of the order-k Voronoi
diagrams in the plane. Studying these relations in higher dimensions would then
be of great interest since the size of the order-k Voronoi diagrams is not known
in dimension greater than two.

By using the properties of the k-set polygons, we have also given an algorithm
to update the set of k-sets of V when a new point that does not belong to conv(V)
is added. This algorithm has then be applied to the on-line construction of the
k-sets of certain simple polygonal lines. The time complexity of both algorithms
is O(log2 k) per created edge. This factor comes from the use of the dynamic
convex hull data structure of Overmars and van Leeuwen [10]. Chan [3] has given
a data structure that allows dynamic maintenance of the convex hull of n points
in O(lg1+εn) amortized time. Using this data structure, the overall complexity
of our second algorithm becomes O(k(n − k) lg1+ε n), which is interesting for
bigger values of k.

350 W. El Oraiby and D. Schmitt

References

1. A. Andrzejak and K. Fukuda. Optimization over k-set polytopes and efficient k-
set enumeration. In Proc. 6th Workshop Algorithms Data Struct., volume 1663 of
Lecture Notes Comput. Sci., pages 1–12. Springer-Verlag, 1999.

2. A. Andrzejak and E. Welzl. In between k-sets, j-facets, and i-faces: (i, j)-partitions.
Discrete Comput. Geom., 29:105–131, 2003.

3. T. M. Chan. Dynamic planar convex hull operations in near-logarithmic amortized
time. J. ACM, 48:1–12, 2001.

4. R. Cole, Micha Sharir, and C. K. Yap. On k-hulls and related problems. SIAM J.
Comput., 16:61–77, 1987.

5. T. K. Dey. Improved bounds on planar k-sets and related problems. Discrete
Comput. Geom., 19:373–382, 1998.

6. H. Edelsbrunner, P. Valtr, and Emo Welzl. Cutting dense point sets in half. Discrete
Comput. Geom., 17:243–255, 1997.

7. D. T. Lee. On k-nearest neighbor Voronoi diagrams in the plane. IEEE Trans.
Comput., C-31:478–487, 1982.

8. A. Melkman. On-line construction of the convex hull of a simple polyline. Inform.
Process. Lett., 25:11–12, 1987.

9. M. H. Overmars. The Design of Dynamic Data Structures, volume 156 of Lecture
Notes Comput. Sci. Springer-Verlag, Heidelberg, West Germany, 1983.

10. M. H. Overmars and J. van Leeuwen. Maintenance of configurations in the plane.
J. Comput. Syst. Sci., 23:166–204, 1981.

11. G. W. Peck. On k-sets in the plane. Discrete Math., 56:73–74, 1985.
12. G. Tóth. Point sets with many k-sets. Discrete Comput. Geom., 26(2):187–194,

2001.

Toward the Eigenvalue Power Law�

Robert Elsässer

University of Paderborn
Institute for Computer Science

33102 Paderborn, Germany
elsa@upb.de

Abstract. Many graphs arising in various real world networks exhibit
the so called “power law” behavior, i.e., the number of vertices of degree
i is proportional to i−β , where β > 2 is a constant (for most real world
networks β ≤ 3). Recently, Faloutsos et al. [18] conjectured a power law
distribution for the eigenvalues of power law graphs. In this paper, we
show that the eigenvalues of the Laplacian of certain random power law
graphs are close to a power law distribution.

First we consider the generalized random graph model G(d) = (V, E),
where d = (d1, . . . , dn) is a given sequence of expected degrees, and
two nodes vi, vj ∈ V share an edge in G(d) with probability pi,j =
didj/

n
k=1 dk, independently [9]. We show that if the degree sequence d

follows a power law distribution, then some largest Θ(n1/β) eigenvalues
of L(d) are distributed according to the same power law, where L(d)
represents the Laplacian of G(d). Furthermore, we determine for the
case β ∈ (2, 3) the number of Laplacian eigenvalues being larger than
i, for any i = ω(1), and compute how many of them are in some range
(i, (1 + ε)i), where i = ω(1) and ε > 0 is a constant. Please note that the
previously described results are guaranteed with probability 1− o(1/n).

We also analyze the eigenvalues of the Laplacian of certain dynam-
ically constructed power law graphs defined in [2,3], and discuss the
applicability of our methods in these graphs.

1 Introduction

Eigenvalues of graphs have a various range of graph theoretic applications in-
cluding the estimation of expansion properties, bisection width, or distances in
graphs (see e.g. [8]), and are useful for determining the behavior of certain algo-
rithms in the field of low ranked matrix approximation [1], information retrieval
[25], load balancing [14,15], and computer vision [19]. Of particular interest is
the study of eigenvalues of graphs modeling large scale real world networks. In
[2,3,18,24] it has been observed that in many real-world networks, including the
Web, the Internet, telephone call graphs, and various social and biological net-
works, the degrees of the nodes have a so called power law distribution, i.e.,

� The research was performed while the author visited the Department of Mathematics
at University of California, San Diego. Partly supported by the German Research
Foundation under contract EL-399/1-1.

R. Královič and P. Urzyczyn (Eds.): MFCS 2006, LNCS 4162, pp. 351–362, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

352 R. Elsässer

the fraction of vertices with degree d is proportional to d−β, where β > 2 is
a fixed constant (for most of the previously mentioned networks it holds that
β ∈ (2, 3)). Barabási and Albert suggested to model complex real world networks
by the following dynamic random graph process: We start with a complete graph
consisting of n0 vertices, and then new nodes are added to the graph one at a
time and joined to a fixed number m < n0 of existing vertices, selected with
probabilities proportional to their degrees [3]. In [5] it has been shown that the
degree distribution of the graphs constructed by a similar method are close to a
power law with β = 3, i.e., the fraction of vertices with degree d is proportional
to d−3 for any d ∈ {m, . . . , n1/15}.

Several other dynamic random graph models have been proposed and analyzed
(e.g. [2,6,26]). Another approach is to model power law networks by a static
random graph process. Clearly, the classical random graph model of [16,20],
in which two nodes are connected with some predefined probability p, is not
well suited to model such networks. Therefore, Chung and Lu proposed a more
general random graph model with arbitrary degree distributions: For a sequence
d = (d1, . . . , dn) let G(d) be the graph in which edges are independently assigned
to each pair of vertices (vi, vj) with probability didj/

∑n
k=1 dk [9]. If now the

degree distribution d obeys a power law, then the resulting graph is well suited
for modeling power law graphs.

Recently, several properties of these graphs have been analyzed. In [9], Chung
and Lu determined the size and the volume of the connected components. In
[10] they analyzed the distances between two nodes in such graphs. Mihail and
Papadimitriou [27] considered the spectrum of the adjacency matrix of these
graphs and showed that its eigenvalues are distributed according to a power law,
if β > 3. In [11] Chung et al. concentrated on the case β ∈ (2, 3], and showed
that if β > 2.5, then the k largest eigenvalues of the adjacency matrix of G(d)
follow a power law with exponent 2β−1, where it is assumed that the kth largest
degree is significantly larger than d̃ =

∑n
i=1 d

2
i /
∑n

i+1 di. If β < 2.5, then the
largest eigenvalue is d̃(1 + o(1)).

Chung et al. also analyzed the eigenvalues of the normalized Laplacian of these
graphs. In [12] they proved a very nice result which states that the distribution
of the afore mentioned eigenvalues satisfy the semi-circle law under the condition
that the minimum expected degree is much larger than the square root of the
expected average degree.

We should mention here that the real world networks described before also
possess other properties (e.g. exhibit high levels of clustering, cf. [28]) which
are unspecific for the random graphs considered here. Although we do not deal
with graphs which have the other properties, we hope the techniques and results
stated in this paper might provide insights at a more general level, too.

Our main goal is to investigate the influence of the power law structure on
the spectrum of graphs. Previous results stated strong relationships between the
random power law structure and the eigenvalues of the normalized Laplacian or
adjacency matrix. In this paper, we study the eigenvalues of the combinatorial
Laplacian of random power law graphs.

Toward the Eigenvalue Power Law 353

First, we determine the largest
∑dmax

j=τ
n
jβ · (1 + o(1)) Laplacian eigenvalues

of the G(d), where τ =
⌈
dmax

(
1−

∑∞
k=dmin

k−βe−k

∞
k=dmin

k−β

)⌉
, d obeys a power

law distribution with exponent β, and dmin and dmax denote the smallest and
largest degree in G(d), respectively. Then, we focus on the distribution of all
eigenvalues larger than ω(1), and show that it is close to a power law with the
same exponent β. We also consider some dynamically constructed power law
graphs, and discuss the applicability of our methods in these graphs.

The rest of the paper is organized in three sections. In Section 2 we state
some auxiliary results needed in our proofs. In Section 3 we consider the Lapla-
cian spectrum of the graphs described above, and prove the eigenvalue power
law properties. In Section 4 we summarize the results and point to some open
problems.

2 Preliminaries

The primary model for random graphs is the Erdős-Rényi model Gp, in which
two vertices are connected by an edge with probability p, independently, for
some given p > 0 [17]. In such random graphs the degrees of vertices all have
the same expected value.

In this paper we consider the generalized random graph model G(d) de-
fined in [9]. For a sequence d = (d1, . . . , dn) the graph G(d) = (V,E) is con-
structed by letting two vertices vi, vj ∈ V be connected with probability pi,j =
didj/

∑n
k=1 dk. Furthermore, we assume that the degrees of the vertices follow

a power law distribution, i.e., the number of vertices with expected degree i is
proportional to i−β for some constant β > 2. We also assume that dmin = O(1)
and dmax = Θ(n1/β).

For a subset S of vertices, the volume V ol(S) is defined as the sum of the ex-
pected degrees in S, i.e., V ol(S) =

∑
v∈S dv. In particular, we have V ol(G(d)) =∑n

k=1 dk, and denote α = 1/V ol(G). Note that the classical random graph
Gp can be viewed as a special case of G(d) by taking d = (pn, . . . , pn) with
V ol(Gp) = pn2.

For a graph G(d), let A(d) ∈ {0, 1}n×n denote its adjacency matrix. Since
G(d) is undirected, A(d) is symmetric. Column/row i of A(d) contains 1’s at the
positions of all neighbors of vi. In this paper, we mainly consider the Laplacian
L(d) ∈ IRn×n of G(d) defined as L(d) = D −A(d) with D containing the node
degrees as diagonal entries and 0 elsewhere.

It is known that the eigenvalues λ1 ≤ · · · ≤ λn of the Laplacian L(d) are
all nonnegative and 0 is a single eigenvalue iff the corresponding graph G(d) is
connected (e.g. [13]). In our proofs, we will often use the following lemma.

Lemma 1. Let A be an n × n symmetric matrix. For any positive constants
c1, . . . , cn the largest eigenvalue λn(A) satisfies the inequality

λn(A) ≤ max
1≤i≤n

∑n
j=1 cj |aij |
ci

.

354 R. Elsässer

Proof. Let C be the diagonal matrix with ci as the ith diagonal entry. Both,
A and C−1AC have the same eigenvalues, since for any x ∈ IRn and λ ∈ IR
such that C−1ACx = λx we have ACx = λCx, and vice-versa. Then, using the
Rayleigh principal we obtain

λn(A) = max
x∈IRn

xTC−1ACx

xTx
≤ max

x∈IRn

xT
+C

−1A+Cx+

xTx

≤ max
x∈IRn

xTC−1A+Cx

xTx
= λn(C−1A+C),

where xT represents the transpose of x, x+ describes the vector (|x1|, . . . , |xn|),
and (A+)i,j = |(A)i,j | for any i, j. Due to the Perron-Frobenius Theorem,
λn(C−1A+C) is bounded from above by the maximum row sum of C−1A+C
(e.g. [30]), and the lemma follows. �

In order to show our main results, we also use the following Interlacing theorems
(e.g. [22]).

Theorem 1. Let A be a real symmetric n×n matrix and let Ai be the submatrix
obtained from A by deleting its ith row and column. Then, for any j ∈ {1, . . . , n−
1} we have

λj(A) ≤ λj(Ai) ≤ λj+1(A),

where λj(A) denotes the jth smallest eigenvalue of A.

Theorem 2. Let G be an undirected graph and let G′ be the subgraph obtained
from G by deleting one of its edges. Then, for any j ∈ {2, . . . , n} we have

λj−1 ≤ λ′j ≤ λj ,

where λj and λ′j denote the jth smallest Laplacian eigenvalue of G and G′,
respectively.

In the following lemma we state an eigenvalue interlacing result for graphs con-
taining an induced star as a subgraph.

Lemma 2. Let G = (V,E) be an undirected unweighted graph and let G′ =
(V ′, E′) be the graph defined by the set of nodes V ′ = V ∪ {u1, . . . , uk} and set
of edges E′ = E ∪ {{v, u1}, {v, u2}, . . . , {v, uk}}, where v is some vertex of V .
Let λi and λ′i denote the Laplacian eigenvalues of G and G′, respectively. Then,

λ′n′−i−1 ≤ λn−i ≤ λ′n′−i

for any i ≥ 0 with λn−i > 1, where n and n′ represent the size of the graphs G
and G′, respectively.

Due to space limitations, we omit the proof of this lemma here.

Toward the Eigenvalue Power Law 355

3 Main Results

In this section, we first focus on the random power law graph model of [9]
as described at the beginning of the previous section. Then, we consider the
dynamical power law graph models of [2,3], and discuss the applicability of our
methods in these graphs. In the next lemma we state lower bounds on the largest
Θ(n1/β) Laplacian eigenvalues of G(d).

Lemma 3. Let G(d) be the graph defined at the beginning of Section 2, and let
L(d) be its Laplacian with eigenvalues λ1 ≤ · · · ≤ λn. Then, λn−j ≥ dn−j(1 −
o(1)) for any j = O(n1/β), with high probability1.

Proof. In order to show the lemma, we only consider the vertices with expected
degree larger than δn1/β for some constant δ < 1, their neighbors with expected
degree less than logn, and the edges between these two sets of nodes. Let the
set of nodes with expected degree larger than δn1/β be denoted by U , and the
set of their neighbors in G′(d) be U ′. Furthermore, let E′ = E ∩ {(v, v′) | v ∈
U, v′ ∈ U ′}, and let G′(d) = (U ∪ U ′, E′).

Now we are going to show that a node with expected degree d for some
d > δn1/β has d(1− o(1)) neighbors in G′(d), with probability 1− o(1/n2). Let
v be a node with expected degree d. Due to the definition of G(d), it holds that

V ol(V \ U ′) ≤
∞∑

i=�log n�
Θ
(n
iβ
i
)

= O
(n

iβ−2

)
.

Since v is connected to some node vj ∈ V \ U ′ in G(d) with probability ddjα,
independently, and α = Θ(1/n), we can model the occurrence of an edge between
v and vj by the independent random variable Xj , which is 1 with probability
ddjα and 0 with probability 1 − ddjα, independently of any other Xj′ . If X =∑

vj∈V \U ′ Xj , then applying the Chernoff bounds [7,23], we obtain

Pr
[
X ≥

(
1 +Θ

(
1
4
√
d

))
E [X]

]
≤ e−

Θ(E[X]/
√

d)
3 = o

(
1
n2

)
,

for any d > δn1/β , since E [X] = Θ(d/ logβ−2 n). Therefore, v has d(1 − o(1))
neighbors in G′(d), with probability 1− o(1/n2).

Next, we show that d(1−o(1)) neighbors of v in G′(d) have no other neighbors
in U , with probability 1− o(1/n2). Let vj be now a neighbor of v in U ′. Then,
vj is connected to a node vj′′ ∈ U with probability djdj′′α, independently of
any other edge, and vj has no other neighbor in U with probability 1 − dj ·
V ol(U) · α(1 ± o(1))), independently of other edges between U and U ′ \ {vj}.
Thus, we model the occurrence of additional edges between vj and U by the
random variable Xj , which is 1 with probability dj · V ol(U) · α(1 ± o(1)) and 0

1 When we write “with high probability” or “w.h.p.”, then we mean with probability
at least 1− o(1/n).

356 R. Elsässer

with probability 1 − dj · V ol(U) · α(1 ± o(1)), independently of any other Xj′ .
Then the Chernoff bounds [7,23] lead us to

Pr [X ≥ (1 +Θ (logn)) E [X]] ≤ e−Θ(E[X] log n) ≤ o

(
1
n2

)
,

where X =
∑

vj∈U ′ Xj and E [X] ≤ O(log n).
Let now G′′(d) be the graph obtained from G′(d) by deleting all the edges

which connect the nodes of U with the nodes having more than one neighbor
in U . Due to the arguments described above, every node with expected degree
d > δn1/β has d(1 − o(1)) neighbors in G′′(d), w.h.p.

Due to the previous arguments, G′′(d) is the disjoint union of |U | many stars,
and for any d > δn1/β there is a star of size d(1 − o(1)) in G′′(d), w.h.p. Since
the largest laplacian eigenvalue of a star equals its size [13], for any d > δn1/β

there exists an eigenvalue λ′′ = d(1 − o(1)) of the Laplacian L′′(d) of G′′(d),
w.h.p. Now, Theorem 2 implies that the eigenvalues of L′′(d) are smaller than
the eigenvalues of L(d), and the lemma follows. �

In the following theorem we derive upper bounds on the largest eigenvalues of
L(d), and show that these eigenvalues follow a power law distribution.

Theorem 3. Let τ = �dmax(1 −
∑∞

k=dmin
k−βe−k/

∑∞
k=dmin

k−β)�. Then, the
largest

∑dmax
j=τ n/jβ ·(1+o(1)) eigenvalues of L(d) follow a power law distribution

with exponent β, w.h.p.

Proof. We use Lemma 1 to derive an upper bound on the largest eigenvalue of
L(d). Let the vertices of G(d) be ordered according to their expected degree as
in d. To apply Lemma 1, we consider the vector c with ci = di if di >

√
n1/β ,

and ci =
√
n1/β otherwise.

In order to show that
n
j=1 cj |lij |

ci
≤ dmax(1+o(1)) for any i, where li,j denotes

the (i, j) entry of L(d), we consider two cases. First, we assume that di >
√
n1/β .

As in the proof of Lemma 3, we can use the Chernoff bounds [7,23] to show that
vi has o(di) neighbors among the nodes with expected degree at least

√
n1/β ,

with probability 1−o(1/n2). Therefore, if we denote by U the set of these nodes
(without vi), then ∑

vj∈U cj |lij |
ci

≤ n1/β

di
o(di) = o(n1/β)

for any i, w.h.p. On the other hand, if we denote by U ′ the set of the nodes with
expected degree at most

√
n1/β , then we obtain∑

vj∈U ′ cj |lij |
ci

≤
√
n1/β

di
di(1 + o(1)) =

√
n1/β(1 + o(1)),

with probability 1− o(1/n2). Thus,∑
vj∈V cj |lij |

ci
≤ o(n1/β) + di.

Toward the Eigenvalue Power Law 357

If di ≤
√
n1/β , then we can, again, use the Chernoff bounds [7,23] as in the

proof of Lemma 3 to conclude that vi has o(di + log2 n) neighbors in the set U ,
with probability 1− o(1/n2). Therefore,∑

vj∈U cj |lij |
ci

≤ n1/β

√
n1/β

o(di + log2 n) = o(n1/β).

On the other hand, ∑
vj∈U ′ cj |lij |

ci
≤
√
n1/β

√
n1/β

di = di

(here we also assume that vj 	∈ U ′). Hence,∑
vj∈V cj |lij |

ci
≤ o(n1/β) + 2di,

with probability 1− o(1/n2), and the claim follows.

In order to derive an upper bound on the largest
∑n1/β

j=τ n/jβ · (1 + o(1))
eigenvalues, we first show that a node v with degree d = Θ(n1/β) has at least

d
∞
k=1 k−βe−k

∞
k=1 k−β (1− o(1)) neighbors of degree 12, with probability 1− o(1/n2).

To show this, let Ud′ be the set of nodes of expected degree d′ for some
d′ = O(log n). Applying the same arguments as in the proof of Lemma 3, v is
connected with d ·V ol(Ud′) ·α(1±o(1)) vertices of Ud′ . Let v′j be a neighbor of v
in Ud′ . Let us define Q(v) = V \ (N(v)∪ {v}). Then, v′j has no neighbor outside
N(v), other than v, with probability

Πvk∈Q(v)(1− d′dkα) = (1 − α)d′
vk∈Q(v) dk(1−O(

√
α)) =

1
ed′ (1− o(1)).

Since v′j has no neighbors outside N(v) (other than v), with probability 1/ed′ ·
(1 − o(1)) and independently of all other vertices of N(v), we can use again
the Chernoff bounds as in Lemma 3 to show that, with probability 1− o(1/n2),
|N(v)∩Ud′ |/ed′ · (1− o(1)) of the nodes of N(v)∩Ud′ do not have any neighbors
outside N(v), other than v.

Now we consider the edges between the nodes of N(v). Using similar argu-
ments as before, it can be shown that |N(v)∩Ud′ |(1−o(1)) nodes with expected
degree d′ = O(log n) have no neighbor of degree ω(logn) in N(v). Since two
nodes vq, vr ∈ N(v) of smaller expected degree than O(log n) are connected
with probability dqdrα, and |N(v)| = Θ(n1/β), the nodes which have expected
degree O(log n) in N(v) form a graph with less edges than a classical random
graph GO(log2 n/n) of size Θ(n1/β). Applying the results of [4], we conclude that
|N(v)∩Ud′ |/ed′ · (1− o(1)) of the nodes of expected degree d′ in N(v)∩Ud′ have

no other neighbors than v. This implies that v has d
∞
k=dmin

k−βe−k

∞
k=dmin

k−β (1 − o(1))

neighbors of actual degree 1 (in G(d)), with probability 1− o(1/n2).
2 Degree 1 means here the actual degree of these nodes and not their expected degree

as listed in the vector d.

358 R. Elsässer

Now, vn (i.e., the node with largest degree in G(d)) forms with its neighbors
of degree 1 a star in G(d), and we can therefore apply Lemma 2 together with
the arguments of the previous paragraphs to show that λn−1 ≤ dn−1(1 − o(1)),
with probability 1−o(1/n2). Iterating this technique as long as dn−j > dmax(1−∑∞

k=dmin
k−βe−k/

∑∞
k=dmin

k−β)(1 + o(1)), we obtain the desired upper bounds.
Combining Lemma 3 with the results above, we obtain the theorem. �

In Theorem 3 we considered the largest Laplacian eigenvalues of G(d). Now we
focus on the distribution of all eigenvalues and determine how many Laplacian
eigenvalues lie in the interval (i,∞) for some i = ω(1). First, we compute lower
bounds on the number of eigenvalues larger than i.

Lemma 4. Let G(d) be the random power law graph with β ∈ (2, 3) as de-
fined at the beginning of Section 2, and let L(d) denote its Laplacian. If ρ(i) =∑∞

k=i nk = n
(β−1) ∞

k=dmin
k−β i

1−β(1 ± o(1)), where nk denotes the number of

nodes with actual degree k, then for any constant ε > 0 the Laplacian L(d) has
at least ρ(i)(1 − o(1)) eigenvalues larger than i(1− ε), w.h.p.

Proof. For simplicity we assume that i = Ω(log2 n). Let da
j denote the actual

degree of node vj , and let G′ = (V ′, E′) be the graph obtained from G(d) by
deleting da

j−i incident edges for any node vj with da
j > i. Then, the largest degree

in G′ is i, and there are ρ(i)(1±o(1)) vertices of degree i in G′. Furthermore, we
construct the graph G′′ = (V ′′, E′′) from G′ by deleting da

j − log i incident edges
for any node vj with da

j ∈ (log i, i), and by deleting all edges which connect two
lower degree nodes or two nodes of degree i(1−o(1)). Due to the arguments from
the proof of Lemma 2, we still have ρ(i)(1−o(1)) vertices of degree i(1−o(1)) in
G′′, w.h.p. In the following paragraphs, however, we assume for simplicity that
there are exactly ρ(i) vertices of degree i(1 − o(1)). We are now going to show
for any constant ε > 0 that the Laplacian L′′ of G′′ has ρ(i)(1−o(1)) eigenvalues
which are larger than i(1− ε), w.h.p.

Let λ′′1 , . . . , λ′′n be the eigenvalues of L′′. As in the proof of Theorem 3, we can
show that with high probability λ′′n ≤ i(1+o(1)). Now, we know that

∑n
k=1 λ

′′
k =

Trace(L′′), and since (λ′′k)q is an eigenvalue of (L′′)q for any k, q ∈ IR, it holds
that

∑n
k=1(λ

′′
k)q = Trace((L′′)q) for any q. Now we show that Trace((L′′)q) ≥

iqρ(i)(1− o(1)) for any constant q > β − 1.
Denote the entries of (L′′)q by l′′i,j(q), and let the vertices be ordered such that

the first ρ(i) vertices have degree i. To show the claim, we prove by induction
on q that for any q = O(1) it holds that l′′i,i(q) = iq(1 ± o(1)) if i ≤ ρ(i), and
|l′′i,i(q)| ≤ log2 i · (2i)q−2(1+ o(1)) if i > ρ(i). Within this induction we also show
that in each row/column of (L′′)q the absolute values of the non-diagonal entries
l′′i,j(q) are upper bounded by (2i)q−1(1± o(1)).

Obviously, the assumption holds for q = 1. It also holds for q = 2, since G′′ is
bipartite, and therefore l′′i,i(2) = i2(1±o(1)) for i ≤ ρ(i), l′′i,i(2) = log2 i(1±o(1))
for i > ρ(i), and |l′′i,j(2)| ≤ i(1 + o(1)) for i 	= j. For q > 2 we get

l′′i,i(q) =
n∑

k=1

l′′i,k · l′′k,i(q − 1) = iq(1 − o(1))±O(i · (2i)q−2),

Toward the Eigenvalue Power Law 359

if i ≤ ρ(i), and

|l′′i,i(q)| ≤ log i · (2i)q−2(1 + o(1)) + log i · (2i)q−3(1 + o(1)),

if i > ρ(i). Moreover,

|l′′i,j(q)| ≤
n∑

k=1

|l′′i,k| · |l′′k,j(q − 1)| ≤ i · (2i)q−2(1 + o(1)) + i · (2i)q−2(1 + o(1)),

for any i 	= j, and the claim follows.
Since we assumed that q is bounded by some large constant, it holds that

l′′i,i(q) = iq(1 ± o(1)) for i ≤ ρ(i), and |l′′i,i(q)| = O(log2 i · iq−2) otherwise. Since
β < 3, for any q > β − 1 it holds that Trace((L′′)q) ≥ iqρ(i)(1 − o(1)).

Now the proof can be completed by the method of Wigner [29]. We finish our
proof, however, by only using some simple arguments. Let us assume that there
exist the constants ε < 1 and δ < 1 such that n − ρ(i)(1 − ε) eigenvalues are
smaller than δ · i, and let e ≤ 1 be a constant such that

∑n−ρ(i)(1−ε)
k=1 (λ′′k)q =

e · iqρ(i)(1 + o(1)). Then,

n−ρ(i)(1−ε)∑
k=1

(λ′′k)q+s(1 + o(1)) ≤ δse · iq+sρ(i)(1 + o(1)).

Since there exists an s such that δse < ε, we get

n∑
k=1

(λ′′k)q+s ≤ δse · iq+sρ(i)(1+o(1))+(1− ε)iq+sρ(i)(1+o(1)) ≤ (1− ε′)iq+sρ(i),

where ε′ > 0 is a constant, and the lemma follows. �

In this proof, we assumed that i = Ω(log2 n). However, using a more sophisti-
cated analysis, the same result can also be shown for any i = ω(1). We omit the
details due to space limitations.

In the next theorem we determine upper bounds on the number of Laplacian
eigenvalues in the range (i,∞) for some i = ω(1).

Lemma 5. Let G(d) be the random power law graph as defined at the begin-
ning of Section 2, and let L(d) denote its Laplacian. If ρ(i) =

∑∞
k=i nk =

n
(β−1) ∞

k=dmin
k−β i

1−β(1± o(1)), where nk denotes the number of nodes with ac-

tual degree k, then for any constant ε > 0 the Laplacian L(d) has less than ρ(i)
eigenvalues which are larger than i(1 + ε), w.h.p.

Proof. As in the proof of Lemma 4, we modify the graphG(d) in order to develop
the desired upper bounds. However, now we add edges to the graph instead of
deleting some. Again, we assume for simplicity that i = Ω(log2 n). Let the set
U consist of the nodes vj of degree dj > i, and let U ′ = V \ U . As in the
proof before, we can argue that any node vj ∈ U ′ with dj ≤ i(1− o(1)) has o(i)
neighbors in U , w.h.p.

360 R. Elsässer

Let vq ∈ U ′ be the vertex with maximum number of neighbors in U , and
let d′q represent the number of edges between vq and U . Now we construct the
graph G′ = (V ′, E′) by connecting each vertex j of U ′ with d′q − d

a,U
j additional

vertices from U , where da,U
j denotes the number of edges between j and U in

G(d). Let L′ be the Laplacian of G′. Then, due to Theorem 2 the eigenvalues of
L′ are larger than the eigenvalues of L.

Now let L′ρ(i) be the matrix obtained from L′ by deleting all rows and columns
corresponding to the ρ(i) vertices (with degree larger than i) of U . Then, The-
orem 1 implies that µ′n−ρ(i) ≥ λ′n−ρ(i), where µ′n−ρ(i) is the largest eigenvalue of
L′ρ(i). In order to complete our proof, we need to show that µ′ρ(i) ≤ i(1 + o(1)),
w.h.p. This would lead to i(1 + o(1)) ≥ λ′n−ρ(i) ≥ λn−ρ(i), which implies that
there are less than ρ(i) eigenvalues which are larger than (1+ε)i for any constant
ε > 0, w.h.p.

In order to show that µ′ρ(i) ≤ i(1+o(1)), we consider the graphG′′ constructed
from G′ by deleting all vertices of U together with all their incident edges. Since
every node of U ′ is connected to exactly d′q nodes of U in G′, the Laplacian
L′′ of G′′ has the form L′′ = L′ρ(i) − d′qI, where I is the identity matrix of
the corresponding size. Using the techniques of Theorem 3 we conclude that the
largest eigenvalue λ′′n−ρ(i) of L′′ is smaller than i(1+o(1)), w.h.p. Since d′q = o(i)
(w.h.p.), the lemma follows. �

Combining Lemma 4 and 5, we obtain the following theorem.

Theorem 4. Let G(d) be the random power law graph with exponent β ∈ (2, 3)
as defined at the beginning of Section 2, and let L(d) denote its Laplacian. If
ρ(i) =

∑∞
k=i nk = n

(β−1) ∞
k=dmin

k−β i
1−β(1± o(1)), where nk denotes the number

of nodes with actual degree k, then L(d) has ρ(i)(1 ± o(1)) eigenvalues larger
than i, w.h.p., for any i = ω(1).

Theorem 4 implies that if n(i) denotes the number of eigenvalues larger than i,
for i = ω(1), then n(i) ∼ i1−β, w.h.p. Moreover, it follows from Theorem 4 that
if i = ω(1), then there are (ρ(i)− ρ((1 + ε)i))(1± o(1)) laplacian eigenvalues in
any interval (i, (1 + ε)i), w.h.p., where ε can be any constant. This implies that
the distribution of the large eigenvalues is close to power law with exponent β.

The results of Theorem 3 and 4 can be generalized in different ways. Let us
now consider the dynamical power law graph model of [3], or the more general
growth-deletion model of [2]. In both cases, the graph Gt is built dynamically in
the following way: We start with some graph G0, and then in every step t > 0 we
attach with some probability p > 0 a new vertex to the current graph Gt−1, and
connect this vertex to m other vertices selected with probabilities proportional to
their degrees, where m is some constant. In [3] p = 1, in [2] p can vary, whereby
with probability 1− p some other actions are taken, like connecting two existing
vertices, or deleting edges or vertices from the graph. In all these models, if
m = 1, then we can use the fact that, with high probability, most high degree
vertices are adjacent with many vertices of degree 1. Therefore, similar results
to Theorem 3 can be proven for these graphs, too. However, there can be a large

Toward the Eigenvalue Power Law 361

discrepancy between the node with the largest degree and the node with second
largest degree, which makes it difficult to guarantee the results of Theorem 3 for
Θ(n1/β) nodes. The results of Theorem 4, however, can be guaranteed with the
same probability for the model of [2], whenever β < 3.

4 Conclusion

In this paper, we investigated the influence of the power law structure on the
Laplacian spectrum of graphs. First, we computed the largest

∑dmax
j=τ

n
jβ ·(1+o(1))

eigenvalues of the Laplacian of the random power law graph G(d), where τ =

dmax

(
1−

∑∞
k=dmin

k−βe−k

∞
k=dmin

k−β

)
, β is the exponent in the power law distribu-

tion of the degrees, and dmin and dmax denote the smallest and largest degree
in G(d), respectively. Then, we considered the distribution of all eigenvalues
larger than ω(1), and showed that it is close to a power law with the same ex-
ponent β. We also considered some dynamically constructed power law graphs,
and discussed the applicability of our methods in these graphs.

As we mentioned in the introduction, most real world network possess, apart
from the power law degree distribution, some other properties (e.g. they have
a large clustering coefficient), which are not present in the graphs studied here.
Therefore, it would be interesting to analyze the behavior of the eigenvalues in
such graphs. Nevertheless, we hope that our results might provide insights at a
more general level, too.

References

1. D. Achlioptas and F. McSherry. Fast computation of low-ranked matrix approxi-
mation. In Proc. of STOC’01, pages 611–618, 2001.

2. W. Aiello, F.R.K. Chung, and L. Lu. Random evolution in massive graphs. In
Proc. of FOCS, pages 510–519, 2001.

3. A. Barabási and R. Albert. Emergence of scaling in random networks. Science,
286, 1999.

4. B. Bollobás. Random Graphs. Academic Press, 1985.
5. B. Bollobás, O. Riordan, J. Spencer, and G. Tusnády. The degree sequence of a

scale-free random graph process. Random Structures and Algorithms, 18:279–290,
2001.

6. D. Callaway, J. Hopcroft, J. Kleinberg, M. Newman, and S. Strogatz. Are randomly
grown graphs really random? Physical Review E, 64, 051902, 2001.

7. H. Chernoff. A measure of asymptotic efficiency for tests of a hypothesis based on
the sum of observations. Ann. Math. Stat., 23:493–507, 1952.

8. F.R.K. Chung. Spectral Graph Theory, volume 92 of CBMS Regional conference
series in mathematics. American Mathematical Society, 1997.

9. F.R.K. Chung and L. Lu. Connected components in random graphs with given
expected degre sequences. Annals of Combinatorics, 6:125–145, 2002.

10. F.R.K. Chung and L. Lu. The average distances in random graphs with given
expected degrees. Internet Mathematics, 1:91–114, 2003.

362 R. Elsässer

11. F.R.K. Chung, L. Lu, and V. Vu. Eigenvalues of random power law graphs. Annals
of Combinatorics, 7:21–33, 2003.

12. F.R.K. Chung, L. Lu, and V. Vu. The spectra of random graphs with given ex-
pected degrees. Proceedings of National Academy of Sciences, 100:6313–6318, 2003.

13. D.M. Cvetkovic, M. Doob, and H. Sachs. Spectra of Graphs. Johann Ambrosius
Barth, 3rd edition, 1995.

14. R. Diekmann, A. Frommer, and B. Monien. Efficient schemes for nearest neighbor
load balancing. Parallel Computing, 25(7):789–812, 1999.

15. R. Elsässer, B. Monien, and R. Preis. Diffusion schemes for load balancing on
heterogeneous networks. Theory of Computing Systems, 35:305–320, 2002.

16. P. Erdős and A. Rényi. On random graphs I. Publ. Math. Debrecen 6, pages
290–297, 1959.

17. P. Erdős and A. Rényi. On the evolution of random graphs. Publ. Math. Inst.
Hungar. Acad. Sci. 5, pages 17–61, 1960.

18. M. Faloutsos, P. Faloutsos, and C. Faloutsos. On power-law relationships of the
internet topology. Comput. Commun. Rev., 29:251–263, 1999.

19. C. Fowlkes, S. Belongie, F. Chung, and J. Malik. Spectral partitioning with indef-
inite kernels using the nyström extension. In European Conference on Computer
Vision, 2002.

20. E.N. Gilbert. Random graphs. Ann. Math. Statist. 30, pages 1141–1144, 1959.
21. C. Godsil and G. Royle. Algebraic Grapg Theory. Springer Verlag, 2001.
22. W. Haemers. Interlacing eigenvalues and graphs. Linear Algebra Appl.,

227/228:593–616, 1995.
23. T. Hagerup and C. Rüb. A guided tour of Chernoff bounds. Information Processing

Letters, 36(6):305–308, 1990.
24. H. Jeong, B. Tomber, R. Albert, Z. Oltvai, and A.L. Barabási. The large-scale

organization of metabolic networks. Nature, 407:378–382, 2000.
25. J. Kleinberg. Authoritive sources in a hyperlinked environment. In Proc. of

SODA’99, 1999.
26. J. Kleinberg, R. Kumar, P. Raghavan, S. Rajagoplan, and A. Tomkins. The Web

as a graph: Measurements, models, and methods. In Proc. of COCOON’99, pages
1–17, 1999.

27. M. Mihail and C. Papadimitriou. On the eigenvalue power law. In Proc. of RAN-
DOM’02, pages 254–262, 2002.

28. M. Newman. The structure and function of complex networks. SIAM Review,
45:167–256, 2003.

29. E.P. Wigner. On the distribution of the roots of certain symmetric matrices. The
Annals of Mathematics, 67:325–327, 1958.

30. J. H. Wilkinson. The Algebraic Eigenvalue Problem. Oxford University Press,
1965.

Multicast Transmissions in

Non-cooperative Networks
with a Limited Number of Selfish Moves

Angelo Fanelli, Michele Flammini, Giovanna Melideo, and Luca Moscardelli

Dipartimento di Informatica
Università di L’Aquila

Via Vetoio, Coppito 67100 L’Aquila
{angelo.fanelli, flammini, melideo, moscardelli}@di.univaq.it

Abstract. We study a multicast game in communication networks in
which a source sends the same message or service to a set of destinations
and the cost of the used links is divided among the receivers according
to given cost sharing methods. Assuming a selfish and rational behavior,
each receiving user is willing to select a strategy yielding the minimum
shared cost. A Nash equilibrium is a solution in which no user can
decrease its payment by adopting a different strategy, and the price of
anarchy is defined as the worst case ratio between the overall commu-
nication cost yielded by an equilibrium and the minimum possible one.
Nash equilibria requiring an excessive number of steps to be reached
or being hard to compute or not existing at all, we are interested in
the determination of the price of anarchy reached in a limited number
of rounds, each of which containing at least one move per receiving
user. We consider different reasonable cost sharing methods, including
the well-known Shapley and egalitarian ones, and investigate their
performances versus two possible global criteria: the overall cost of the
used links and the maximum shared cost of users. We show that, even
in case of two receivers making the best possible move at each step, the
number of steps needed to reach a Nash equilibrium can be arbitrarily
large. Moreover, we determine the cost sharing methods for which a
single round is already sufficient to get a price of anarchy comparable
to the one at equilibria, and the ones not satisfying such a property.
Finally, we show that finding the sequence of moves leading to the best
possible global performance after one-round is already an intractable
problem, i.e., NP-hard.

Keywords: Multicast, Nash equilibria, price of anarchy, limited
number of best responses.

1 Introduction

Multicast protocols like the IP over the Internet are bandwidth-conserving tech-
nologies that reduce traffic over a network by simultaneously delivering the same
message or service of a given source station s to a set R of receivers. Applications

R. Královič and P. Urzyczyn (Eds.): MFCS 2006, LNCS 4162, pp. 363–374, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

364 A. Fanelli et al.

that take advantage of multicast include videoconferencing, corporate commu-
nications, distance learning, distribution of software, stock quotes, and news [8].
Unlike unicast transmissions, where in order to send the same message to mul-
tiple receivers a source has to send a copy of this message to each receiver, in
multicast transmissions the source sends a single message to all the receivers and
when the message reaches a branch point the router duplicates it and then sends
a copy over each down-stream link. As the bandwidth used by a transmission is
not attributable to a single receiver, a natural arising issue is that of finding a
way to distribute the cost among all the receivers in some fashion.

In large-scale scenarios, such as the Internet, there is no authority possible to
enforce a centralized traffic management. In such situations, game theory and
especially the concepts of Nash equilibria [24] are a suitable framework. If we
allow as strategies for each receiver t ∈ R the set Pt of the paths from s to t
(briefly, (s, t)-paths), a solution is obtained as the outcome of a |R|-player game
in which receivers t (players) can sequentially modify their strategy by selfishly
choosing a different (s, t)-path with the aim of minimizing their shared cost,
expressed in terms of a publicly known cost sharing method, which specifies how
to share the overall cost of the transmission among the receivers belonging to
R. Namely, a solution is a path system P containing an (s, t)-paths for every
receiver t ∈ R, and the global cost cost(P) to be shared among all the receivers
according to a cost sharing method is obtained by summing up the cost of all
the links belonging to P . A path system P is a Nash equilibrium if no player
has an incentive to secede in favor of a different solution.

The main algorithmic issues coming from this model include: proving the ex-
istence of a Nash equilibrium1, proving the convergence to a Nash equilibrium
from any initial configuration of the players’ strategies, estimating the conver-
gence time (i.e. the number of moves necessary to reach an equilibrium starting
from an arbitrary configuration), finding Nash equilibria having particular prop-
erties (for instance, the one minimizing the global cost or minimize the maxi-
mum shared cost), and measuring the price of anarchy [20], that is the worst
case ratio between the optimal social solution and a Nash equilibrium. Often
Nash equilibria may not exist or it may be hard to compute them or the time
for convergence to Nash equilibria may be extremely long, even if the players
always choose a best response move, i.e. a move providing them the smallest
possible shared cost. Thus, recent research effort [23] concentrated in the eval-
uation of the speed of convergence (or non-convergence) to an equilibrium in
terms of covering walks, where a covering walk consists of a sequence of best
response moves of the receivers, with each receiver appearing at least once in
each walk. As a special case, a one-round walk is defined as a covering walk
such that each receiver plays exactly one best response move. Moreover, another
important issue is evaluating the loss of social performance in selfish evolutions
with a (polynomially) bounded number of moves, not necessary terminating in
a Nash equilibrium.

1 Indeed, Nash proved that a randomized equilibrium always exists, while we are
interested in pure Nash equilibria.

Multicast Transmissions in Non-cooperative Networks 365

Related Work. Several games [11,12,15,22,28,31] have been shown to possess
pure Nash equilibria or to converge to a pure Nash equilibrium independently
from their starting state. An interesting work estimating the convergence time
to Nash equilibria is [10] and in [7] finding Nash equilibria having particular
properties has been shown to be NP-complete. Considerable research effort has
been also devoted to analyze the price of anarchy in different settings, such as
in wireless and all-optical networks [3,5,19,21,29].

The multicast cost sharing problem has been largely investigated both in
standard networks [1,13,14,18,25,27] and in wireless networks [4,26], where the
cost shared among the receivers is the overall power consumption, also in the
mechanism design framework.

Mirrokni and Vetta [23] addressed the convergence to approximate solutions
in basic-utility and valid-utility games. They proved that starting from any state,
one-round of selfish behavior of players converges to a 1/3-approximate solution
in basic-utility games. Goemans, Mirrokni and Vetta [17] studied a new equi-
librium concept (i.e. sink equilibria) inspired from convergence on best-response
walks and proved a fast convergence to approximate solutions on best response
walks in (weighted) congestion games. Other related papers studied the conver-
gence for different classes of games such as load balancing games [10], market
sharing games [16], and potential and cut games [6].

Our Contribution. In this paper we consider the multicast games induced by
four natural cost sharing methods which distribute the cost as follows: (i) in
an egalitarian way, that is by equally distributing the overall cost among all
the receivers; (ii) in a path-proportional way, that is by distributing the cost of
each link among its down-streaming receivers proportionally to the overall cost
their chosen path requires; (iii) in an egalitarian-path-proportional way, that is by
distributing the overall transmission cost among all the receivers proportionally
to the cost of their chosen path; (iv) by applying the definition of the Shapley
Value [30], that is by equally distributing the cost of each link among all the
down-stream receivers.

We first prove that, while the game yielded by the path-proportional cost shar-
ing method in general does not admit a Nash equilibrium, the other three methods
yield games that always converge to a Nash equilibrium starting from any initial
configuration. We then show that the price of anarchy for the game yielded by the
egalitarian method is unbounded and provide matching upper and lower bounds
for the price of anarchy of the other two convergent games with respect to two dif-
ferent social cost functions, that is the overall transmission cost (function cost),
which coincides with the sum of all the shared costs, and the maximum shared
cost paid by the receivers (function max). Unfortunately, for both such metrics
the price of anarchy is the worst possible one, that is equal to the number of re-
ceivers. Moreover, for the methods inducing convergent games, we prove that even
with only two receivers, the number of best responses needed to reach a Nash equi-
librium starting from an arbitrary configuration can be arbitrarily large.

Motivated by the previous results, we evaluate the price of the anarchy after
a limited number of best responses, for all the proposed methods including the

366 A. Fanelli et al.

path-proportional one, which may do not admit a Nash equilibrium. We prove
that for the egalitarian and path-proportional methods the price of the anarchy
is unbounded for any sequence of best response moves and one-round walks,
respectively. For the more interesting egalitarian-path-proportional and Shapley
value methods we provide tight or almost tight bounds for one-round and cov-
ering walks. Such results have been determined for both the two different global
cost functions cost and max.

Finally, we show that finding the best permutation of receivers moves leading
to the lowest possible social cost after a one-round walk is already an intractable
problem, i.e., NP-hard.

The paper is organized as follows. In the next section we present some basic
definitions and notation. In Section 3 we present some preliminaries results con-
cerning the Nash equilibria for the multicast routing problem, and we show that
the number of moves necessary to reach a Nash equilibrium can be arbitrarily
high. In Section 4 we provide upper and lower bounds on the price of anarchy
after a one-round walk or a covering walk, for the social function cost. In Sec-
tion 5 we prove the intractability result and in Section 6 we briefly extend the
proofs to the social function max. Finally, in Section 7 we give some conclusive
remarks and discuss some open questions.

Due to space limitation, many proofs are only sketched or omitted. More
details will appear in the full version of the paper.

2 Definitions and Notation

A communication network is usually modelled as a graph G(V,E, c) in which
V = {1, . . . , n} is a set of intercommunicating nodes, E ⊆ V × V is a set of
m links between the nodes and c : E �→ IR+ is a cost function associating to
each link (t, t′) a transmission cost, that is the cost for exchanging messages
between nodes t and t′. Given a distinguished source node s ∈ V , we identify
with R ⊆ V −{s} the set of all the nodes interested in receiving the transmission
from the source s. Let us denote by c(pt) =

∑
e∈pt

c(e) the overall transmission
cost of a path pt.

Given a path system P , the global cost to be shared among all the receivers is
obtained by summing up the cost of all the links belonging to P , i.e., cost(P) =∑

e∈E′ c(e), where E′ =
⋃

p∈P
⋃

e∈p {e}.
A cost sharing method is a function M which, given a set of receivers R with

an associated path system P , distributes among all the receivers the total cost
cost(P) associated with P in such a way that

∑
t∈RM(P , t) = cost(P), where

M(P , t) is the cost attributed to the receiver t.
We consider the following four natural cost sharing methods:

– M1 (egalitarian [9]) distributes the cost by equally sharing the global cost
among all the receivers, i.e., M1(P , t) = cost(P)

|R| .

Multicast Transmissions in Non-cooperative Networks 367

– M2 (path-proportional) distributes the cost of each link e ∈ E′ among all the
down-streaming receivers t′ using e proportionally to the overall cost their
chosen (s, t′)-path requires, i.e., M2(P , t) =

∑
e∈pt

c(e) c(pt)
t′:e∈p

t′ c(pt′) .

– M3 (egalitarian-path-proportional) distributes the overall cost among all the
receivers proportionally to the cost of their chosen path, i.e., M3(P , t) =
cost(P) c(pt)

t′∈R c(pt′)

– M4 (Shapley [30]) equally distributes the cost of each link among all the
receivers using it, i.e., M4(P , t) =

∑
e∈pt

c(e)
l(P,e) where l(P , e) = |{t ∈ R | e ∈

pt, pt ∈ P}| is the number of receivers using link e for their transmission.

A Nash equilibrium for G is a path system P such that ∀t ∈ R and path p′t ∈ Pt

inducing a new path system P ′ = P \ {pt} ∪ {p′t}, it holds M(P , t) ≤M(P ′, t).
Denoting with N the set of all the possible Nash equilibria for the game G,
the price of anarchy is defined as the worst case ratio among the Nash versus
optimal performance, that is ρ(G) = maxP∈N

cost(P)
cost(P∗) where P∗ is a path system

of minimum cost for the multicast routing.
In order to model the selfish behavior of the receivers, let us introduce the

notion of state graph.

Definition 1. A state graph is a directed graph having a node for any possible
path system P and an arc (P ,P ′) with label t if P and P ′ can differ only for the
choice of t and both these conditions are met: (i) M(P ′, t) ≤M(P−{pt}∪{p′t}, t)
for any p′t ∈ Pt; (ii) if P 	= P ′, M(P ′, t) <M(P , t).

Notice that the graph may contain loops, and there is an arc (P ,P ′) labelled t
if and only if t, starting from P , can play a best response move such that the
resulting path system is P ′. Given a best response walk starting from an arbitrary
state, we are interested in the social value of the last state of the walk. With a
little abuse of notation, we will call price of anarchy of a walk the worst case ratio
between such social value and the social optimum. Notice that if we do not allow
every player to make a best response on a walk P, then we cannot bound such
a price since the actions of a single player may be very important for producing
solutions of high social value. Motivated by this simple observation, Mirrokni
and Vetta [23] introduced the following models that capture the intuitive notion
of a fair sequence of moves:

One-round walk. Consider an arbitrary ordering of all receivers i1, . . . , i|R|. A
walk of length |R| in the state graph is a one-round walk if its arcs are
labelled i1, . . . , i|R| in this order.

Covering walk. A walk in the state graph is a covering walk if for each player
i, it has at least one arc with label i.

k-Covering walk. A walk in the state graph is a k-covering walk if it can be
split in k disjoint covering walks.

Note that unless otherwise stated, all walks are assumed to start from an arbi-
trary initial state.

368 A. Fanelli et al.

3 Existence and Convergence to Nash Equilibria

As an extension of our work on Nash equilibria in multicast transmissions in
wireless networks [2], it is not difficult to prove the following results on the
existence of Nash equilibria and to provide matching upper and lower bounds
for the price of anarchy.

Theorem 1. The games G = (G,R,Mi), i ∈ {1, 3, 4}, always converge to a
Nash equilibrium, for any network G and receivers’ set R.

On the other hand, the game G = (G,R,M2) may not have a Nash equilibrium.
Anyway, in the following we will evaluate the price of anarchy for the subset of
instances admitting equilibria.

Theorem 2. The price of anarchy of the multicast transmission game G =
(G,R,Mi) is unbounded for i = 1, is equal to |R| for i ∈ {2, 4} and is between
|R|+1

2 and |R| for i = 3.

For the cost sharing methods inducing games which always admit a Nash equi-
librium, the number of best response moves necessary to reach an equilibrium
starting from an arbitrary configuration is unbounded even for a game with two
receivers. In fact, the following theorem holds.

s

ε

ε

ε

ε

y2

y3

y1

1 − hε

yh−1

yh

1 − (h − 1)ε

t1 t2

c)

b) s

ε
y1

1 − ε

1

t2t1

a) s

ε

ε

ε

ε

1 − 3ε

y2

y3

y1

1 − hε

yh−1

yh

1 − ε

1 − (h − 1)ε

1

1 − 2ε

t1 t2

Fig. 1. a) The communication network. b) The initial configuration. c) The Nash equi-
librium.

Multicast Transmissions in Non-cooperative Networks 369

Theorem 3. Given any integer h > 0, there exist a network G and an initial
state starting from which the number of best response moves necessary to reach
a Nash equilibrium for the game G = (G,R,Mi), i ∈ {1, 3, 4}, is greater than h
even if |R| = 2.

Proof. Consider the communication network depicted in Figure 1a, where R =
{t1, t2} and ε > 0 is such that hε < 1

2 . Consider the evolution of the game
induced by the cost sharing method Mi for i ∈ {1, 3, 4}, starting from the state
corresponding to the path system depicted in Figure 1b. Moreover assume that
t1 and t2 move alternately, starting from t1, and each receiver always chooses
the path with the smallest number of links among those with the smallest cost.

Since 1 − hε > 1
2 , no receiver can choose as its best move a path containing

more than one edge of cost 1 − iε, i = 0, 1, . . . , h. It’s easy to see that the
number of moves executed in order to reach the equilibrium is h. More precisely,
considering the ordered list of moves j = 1, 2, . . . , h, the odd moves are executed
by t1 and the even ones by t2; each receiver chooses the path containing the edge
of cost 1− jε and j edges of cost ε. �

4 One-Round and Covering Walks

In this section, we analyze the price of anarchy after a limited number of best
response moves, with respect to the overall transmission cost social function.
More precisely, we provide lower bounds for one-round walks and upper bounds
for covering walks; since a one-round walk is a special case of a covering one, the
lower and upper bounds also hold for covering and one-round walks, respectively.

For the cost sharing methods M1 and M2, it is possible to show that the
price of anarchy after one-round walks is unbounded.

Theorem 4. Given any integer h, there exists an instance of the game G =
(G,R,M1) for which the price of anarchy after a one-round walk is at least h.

Notice that this result holds for any sequence of best response moves, including
k-covering paths for any k ≥ 1.

Concerning the cost sharing method M2, as shown in Theorem 1, it may not
admit a Nash equilibrium. However, again it is interesting to estimate the price
of anarchy after a limited number of best response moves. Unfortunately, also in
this case the price of anarchy after a one-round walk is unbounded.

Theorem 5. Given any integer h, there exists an instance of the game G =
(G,R,M2) for which the price of anarchy after a one-round walk is at least h.

The remaining cost sharing methods M4 and M3 are more interesting since it
is possible to bound the price of anarchy after a one-round or a covering walk in
a tight or almost tight way, respectively.

4.1 Egalitarian Path Proportional Cost Sharing Method M3

For the cost sharing method M3 we provide matching upper and lower bounds
for |R| = 2, and almost matching lower and upper bounds for |R| > 2.

370 A. Fanelli et al.

Theorem 6. Given any ε > 0, there exists an instance of the game G =
(G,R,M3) where |R| = 2 for which the price of anarchy after a one-round
walk is at least 3− ε.

Theorem 7. The price of anarchy after a covering walk for the game G =
(G,R,M3) where |R| = 2 is at most 3.

Starting from Theorem 2, it is not difficult to prove the following theorem.

Theorem 8. There exists an instance of the game G = (G,R,M3) for which
the price of anarchy after a one-round walk is at least |R|.

In order to derive a suitable upper bound, in the following lemma we first show
an interesting property correlating the cost of the path chosen by a receiver t
doing a best response move with the one of the shortest (s− t) path.

Lemma 1. Let pt be the path chosen by player t via a best response move, and
mt be the minimum cost path connecting s to t. Then, c(pt) ≤ (1 + φ)c(mt),
where φ ≈ 1, 618 is the golden number.

Proof. Let A =
∑

t′∈R−{t} c(pt′) be the sum of the cost of the path used by the
other receivers and B be the overall cost of the path system discarding t, just
before the best response move of t. Moreover, let x = c(pt) and m = c(mt).
Clearly, x ≥ m. Since t plays a best response move, the following base inequality
holds:

x

A+ x
(B + δx) ≤ m

A+m
(B + δm),

where δx and δm are the costs of the edges in x andm, respectively, not contained
in the paths used by the other receivers.
We distinguish two different cases.

– δx ≥ x
1+φ . Since by the base inequality it must hold that B + δx ≤ B + δm,

we obtain B + x
1+φ ≤ B + δx ≤ B + δm ≤ B +m. Thus, x ≤ (1 + φ)m.

– δx <
x

1+φ . We have that B ≥ x− x
1+φ , which implies x ≤ φB.

The proof is again divided into two disjoint subcases.
• If A · B ≤ m2, since A ≥ B, it follows that B ≤ m. Thus, x ≤ 1+φ

φ m <

(1 + φ)m.
• If A · B > m2, by the base inequality we obtain that x ≤ AB+Am

AB−m2 m =
B+m

B−m2
A

m ≤ B2+Bm
B2−m2 m.

Moreover, since x ≤ φB, we have that x
m ≤ min {φB

m , B2+Bm
B2−m2 }.

Since, fixed B, φB
m is a decreasing function in m and B2+Bm

B2−m2 is increasing
in m, the minimum is maximized in the intersection of the two functions,
which is obtained for m = B

φ , where both of them assume value 1+φ. �
We are now ready to prove the following theorem, that provides an almost

matching upper bound for the price of anarchy after a covering walk.

Theorem 9. The price of anarchy after a covering walk for the game G =
(G,R,M3) is at most (1 + φ)(|R| − 1) + 1, where φ ≈ 1, 618 is the golden
number.

Multicast Transmissions in Non-cooperative Networks 371

4.2 Shapley Cost Sharing Method M4

For the cost sharing method M4 we provide matching upper and lower bounds.
Unfortunately, the price of anarchy after a covering walk is very high, i.e. its
order is quadratic in the number of receivers.

Theorem 10. Given any ε > 0, there exists an instance of the game G =
(G,R,M4) for which the price of anarchy after a one-round walk is at least
|R|(|R|+1)

2 − ε.

Theorem 11. The price of anarchy after a covering walk for the game G =
(G,R,M4) is at most |R|(|R|+1)

2 .

Proof. We refer to the last move of a receiver as its last move in the covering
walk. Let t1, . . . , t|R| be the sequence of the receivers such that i < j if and only
if the last move of ti precedes the last move of tj in the covering walk. Moreover,
for i ∈ {1, . . . , |R|}, let mi, xi and pi be a shortest path connecting s to ti, the
cost payed by player ti just after its last move and the s-ti path chosen by ti at
its last move, respectively.

Consider the last move of receiver ti. Clearly, xi ≤ c(mi), otherwise mi would
be a better path for ti. For each edge e of pi, let xi,e and yi,e be the payment
of ti for edge e just after its last move and at the end of the covering walk,
respectively, and let hi,e = h′i,e + h′′i,e be the number of receivers sharing edge
e with ti just after its last move, where h′i,e is the number of receivers tj with
j < i, i.e. not moving after the last move of ti.

The payment of ti at the end of the covering walk is∑
e∈pi

yi,e ≤
∑
e∈pi

xi,e

1 + h′i,e + h′′i,e
1 + h′i,e

≤
∑
e∈pi

xi,e(1 + h′′i,e) ≤

≤ (|R| − i+ 1)
∑
e∈pi

xi,e ≤ (|R| − i+ 1)c(mi).

Since an optimal routing has cost at least equal to max{c(m1), . . . , c(m|R|)},
the price of anarchy after a covering walk is at most

|R|c(m1) + (|R| − 1)c(m2) + . . . + c(m|R|)
max{c(m1), . . . , c(m|R|)}

≤ |R|+ (|R| − 1) + . . . + 1 =
|R|(|R|+ 1)

2
.

�

5 Computing the Best One-Round Evolution is NP-Hard

A network provider could be interested in determining a proper permutation of
the receivers such that, letting the receivers move in the specified order, the final
configuration after a one-round walk is ensured to have the lowest possible social
cost. Under this scenario, we now prove that determining such a permutation
for the games G = (G,R,Mi) for i ∈ {1, 2, 3, 4} is computationally hard.

372 A. Fanelli et al.

Theorem 12. Consider the cost sharing methods Mi, i ∈ {1, 2, 3, 4}. Com-
puting the permutation of receivers such that, letting the receivers move in the
specified order, the final configuration after the one-round walk is ensured to have
the lowest possible social cost is an NP-hard problem.

Finally, by using the same reduction, since the best response moves are always
unique, also the problem of determining the best one-round, i.e. the permutation
and the best response move for each agent, leading to the best social value, is
NP-Hard.

6 The Maximum Shared Cost Social Function

In this section we show how to extend our results to the case in which the
considered social function max is given by the maximum shared cost of the
receivers, that is max(P ,Mi) = maxt∈RMi(P , t), for i ∈ {1, 2, 3, 4}.

Due to space limitation, we just restrict in outlining the basic differences with
respect to the previous analyzed social function given by the overall cost of the
used path system. More details will appear in the full version of the paper.

Concerning the price of anarchy of Nash equilibria, it remains unbounded
for the cost sharing method M1, and is again equal to |R| for the cost sharing
methods M3 and M4.

For the cost sharing methods M1 and M2, the price of anarchy remains
unbounded for k-covering walks, with any k, and one-round walks, respectively.

For the cost sharing method M3, in networks with 2 receivers we can derive
a lower bound equal to 4 for a one-round walk, and an exactly matching upper
bound for a covering walk. Moreover, for more than 2 receivers we have a lower
bound equal to |R|+1

2 for a one-round walk, and an upper bound of (1 + φ)|R|
for a covering walk, where φ ≈ 1, 618 is the golden number.

For the cost sharing method M4, we can derive matching lower and upper
bounds equal to |R|2 for a one-round walk and a covering walk, respectively.

Finally, the problem of determining a proper permutation of the receivers such
that, letting the receivers move in the specified order, the final configuration after
a one-round walk is ensured to have the lowest possible social cost, remains NP-
hard in the case of the social function max, for all the four considered cost
sharing methods.

7 Conclusions

We have investigated the price of anarchy of the selfish game arising by multicas-
ting in non-cooperative networks with respect to four basic cost sharing methods
and two different social functions. Many question are left open.

First of all, for the Shapley cost sharing method M4, it would be nice to
determine the minimum number of rounds sufficient to guarantee a price of
anarchy proportional to the one at equilibrium. In fact, while M3 satisfies this
property and for M1 the price of anarchy can be unbounded after any number of

Multicast Transmissions in Non-cooperative Networks 373

rounds, M4 is the only cost sharing method that after one-round has a price of
anarchy quadratic with respect to the one at equilibrium. Even if we do not have
a formal proof yet, for M4 we conjecture that two rounds are already enough.

On this respect, an exception holds for M2, for which we have proven that
the price of anarchy is unbounded after one-round, but there may not exist an
equilibrium.

It would also be nice to refine our results by determining when possible the
number of rounds needed to exactly reach the price of anarchy at equilibrium.

Following the framework of [6], a possible extension is that of considering
the game performances starting from an initial empty configuration in which no
agent has selected any strategy.

Finally, a worth investigating issue is that of considering also the price of
stability, that is the best possible performance achievable at equilibrium or after
a fixed number of moves.

References

1. A. Archer, J. Feigenbaum, A. Krishnamurthy, R. Sami, and S. Shenker. Approx-
imation and collusion in multicast cost sharing. Games and Economic Behavior,
47(1):36–71, 2004.

2. V. Bilò, M. Flammini, G. Melideo, and L. Moscardelli. On nash equilibria for
multicast transmissions in ad-hoc wireless networks. In ISAAC, volume 3341 of
Lecture Notes in Computer Science, pages 172–183. Springer, 2004.

3. V. Bilò, M. Flammini, and L. Moscardelli. On nash equilibria in non-cooperative
all-optical networks. In STACS, volume 3404 of Lecture Notes in Computer Science,
pages 448–459. Springer, 2005.

4. V. Bilò, C. Di Francescomarino, M. Flammini, and G. Melideo. Sharing the cost
of multicast transmissions in wireless networks. In SPAA, pages 180–187. ACM,
2004.

5. V. Bilò and L. Moscardelli. The price of anarchy in all-optical networks. In
SIROCCO, volume 3104 of Lecture Notes in Computer Science, pages 13–22.
Springer, 2004.

6. G. Christodoulou, V. S. Mirrokni, and A. Sidiropoulos. Convergence and approxi-
mation in potential games. In STACS, volume 3884 of Lecture Notes in Computer
Science, pages 349–360. Springer, 2006.

7. V. Conitzer and T. Sandholm. Complexity results about nash equilibria. In IJCAI,
pages 765–771. Morgan Kaufmann, 2003.

8. S. Deering and D. CHeriton. Multicast routing in datagram internetworks and
extended lans. ACM Transactions on Computer Systems, 8:85–110, 1990.

9. B. Dutta and D. Ray. A concept of egalitarianism under participation constraints.
Econometrica, 57:615–635, 1989.

10. E. Even-Dar, A. Kesselman, and Y. Mansour. Convergence time to nash equilibria.
In ICALP, volume 2719 of Lecture Notes in Computer Science, pages 502–513.
Springer, 2003.

11. A. Fabrikant, A. Luthra, E. Maneva, C. H. Papadimitriou, and S. Shenker. On a
network creation game. In PODC, pages 347–351, 2003.

12. A. Fabrikant, C. H. Papadimitriou, and K. Talwar. The complexity of pure nash
equilibria. In STOC, pages 604–612. ACM, 2004.

374 A. Fanelli et al.

13. J. Feigenbaum, A. Krishnamurthy, R. Sami, and S. Shenker. Hardness results for
multicast cost sharing. Journal of Public Economics, 304(1-3):215–236, 2003.

14. J. Feigenbaum, C. Papadimitriou, and S. Shenker. Sharing the cost of multicast
transmissions. In Proceedings of 32nd ACM Symposium on Theory of Computing
(STOC), pages 218–227. ACM, 2000.

15. D. Fotakis, S. C. Kontogiannis, E. Koutsoupias, M. Mavronicolas, and P. G. Spi-
rakis. The structure and complexity of nash equilibria for a selfish routing game.
In ICALP, volume 2380 of Lecture Notes in Computer Science, pages 123–134.
Springer, 2002.

16. M. X. Goemans, E. L. Li, V. S. Mirrokni, and M. Thottan. Market sharing games
applied to content distribution in ad-hoc networks. In MobiHoc, pages 55–66. ACM,
2004.

17. M. X. Goemans, V. S. Mirrokni, and A. Vetta. Sink equilibria and convergence.
In FOCS, pages 142–154. IEEE Computer Society, 2005.

18. K. Jain and V. V. Vazirani. Applications of approximation algorithms to cooper-
ative games. In STOC, pages 364–372, 2001.

19. A. Kesselman, D. Kowalski, and M. Segal. Energy efficient communication in ad
hoc networks from user’s and designer’s perspective. SIGMOBILE Mob. Comput.
Commun. Rev., 9(1):15–26, 2005.

20. E. Koutsoupias and C. H. Papadimitriou. Worst-case equilibria. In STACS, volume
1563 of Lecture Notes in Computer Science, pages 404–413. Springer, 1999.

21. M. Mavronicolas and P. G. Spirakis. The price of selfish routing. In STOC, pages
510–519, 2001.

22. I. Milchtaich. Congestion games with player-specific payoff functions. Games and
Economic Behavior, 13:111–124, 1996.

23. V. S. Mirrokni and A. Vetta. Convergence issues in competitive games. In
APPROX-RANDOM, volume 3122 of Lecture Notes in Computer Science, pages
183–194. Springer, 2004.

24. J. F. Nash. Equilibrium points in n-person games. In Proceedings of the National
Academy of Sciences, volume 36, pages 48–49, 1950.

25. P. Penna and C. Ventre. More powerful and simpler cost-sharing methods.
In WAOA, volume 3351 of Lecture Notes in Computer Science, pages 97–110.
Springer, 2004.

26. P. Penna and C. Ventre. Sharing the cost of multicast transmissions in wireless
networks. In SIROCCO, volume 3104 of Lecture Notes in Computer Science, pages
255–266. Springer, 2004.

27. P. Penna and C. Ventre. Free-riders in steiner tree cost-sharing games. In
SIROCCO, volume 3499 of Lecture Notes in Computer Science, pages 231–245.
Springer, 2005.

28. R. W. Rosenthal. A class of games possessing pure-strategy nash equilibria. Inter-
national Journal of Game Theory, 2:65–67, 1973.

29. T. Roughgarden and E. Tardos. How bad is selfish routing? Journal of ACM,
49(2):236–259, 2002.

30. L.S. Shapley. The value of n-person games. Contributions to the theory of games,
pages 31–40, Princeton University Press, 1953.

31. A. Vetta. Nash equilibria in competitive societies, with applications to facility
location, traffic routing and auctions. In FOCS, pages 416–425. IEEE Computer
Society, 2002.

Very Sparse Leaf Languages

Lance Fortnow1 and Mitsunori Ogihara2,�

1 University of Chicago
fortnow@cs.uchicago.edu
2 University of Rochester

ogihara@cs.rochester.edu

Abstract. Unger studied the balanced leaf languages defined via poly-
logarithmically sparse leaf pattern sets. Unger shows that NP-complete
sets are not polynomial-time many-one reducible to such balanced leaf
language unless the polynomial hierarchy collapses to Θp

2 and that Σp
2 -

complete sets are not polynomial-time bounded-truth-table reducible
(respectively, polynomial-time Turing reducible) to any such balanced
leaf language unless the polynomial hierarchy collapses to ∆p

2 (respec-
tively, Σp

4).
This paper studies the complexity of the class of such balanced leaf

languages, which will be denoted by VSLL. In particular, the following
tight upper and lower bounds of VSLL are shown:

1. coNP ⊆ VSLL ⊆ coNP/poly (the former inclusion is already shown
by Unger).

2. coNP/1
⊆ VSLL unless PH = Θp
2 .

3. For all constant c > 0, VSLL
⊆ coNP/nc.
4. P/(log log(n) + O(1)) ⊆ VSLL.
5. For all h(n) = log log(n) + ω(1), P/h
⊆ VSLL.

1 Introduction

Bovet, Crescenzi, and Silvestri [2] introduced the concept of leaf languages —
the languages defined in terms of the pattern appearing at the leaf-level a
polynomial-time nondeterministic Turing machine that outputs a symbol along
each computation path. The concept of using outputs of nondeterministic Tur-
ing machines for defining complexity classes appears earlier, in a paper by Gold-
schlager and Parberry [8], but it is in this work of Bovet, Crescenzi, and Silvestri
that the concept was formulated and fully explored. Given a polynomial-time
nondeterministic Turing machine M that accepts all inputs on all computations
and that outputs a symbol from an alphabet Γ , leafstringM is the function that
maps each input of M to the word produced by reading the output symbols in
the computation tree of M on input x according to the dictionary order over
the computation paths of M on x. Given a language K over the alphabet Γ ,
the leaf language with respect to M and K, is the set of all inputs x such that
leafstringM (x) ∈ K.
� This work is support in part by XEROX/NYSTAR Grant C040130 and NSF-EIA

Grant 0205061.

R. Královič and P. Urzyczyn (Eds.): MFCS 2006, LNCS 4162, pp. 375–386, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

376 L. Fortnow and M. Ogihara

Bovet, Crescenzi, and Silvestri showed that many well-known complexity
classes can be characterized this way using some simple leaf languages, including
NP, coNP, and PP. The leaf languages offer a rich theory of complexity classes
and are very strongly connected with branching programs [1] and bottleneck
Turing machines [5].

Recently, Unger [15] studied the leaf languages defined with respect to poly-
logarithmically sparse leaf pattern sets. We call this complexity class VSLL (Very
Sparse Leaf Languages) as Unger did not give a name to this class. Unger showed
that if SAT is polynomial-time many-one reducible to a language in VSLL then
PH = Θp

2 and that if a Σp
2 -complete set is polynomial-time bounded-truth-table

reducible to a language in VSLL then PH = ∆p
2.

The leaf languages defined with respect to such very sparse leaf pattern sets
are related to polynomially sparse sets. Although he did not make it an explicit
claim, Unger’s proof of the former result essentially uses the fact that VSLL
is included coNP/poly. Here coNP/poly is the “nonuniform-coNP” [11], in the
sense that each language in the class is decidable in coNP with the aid of an
“advice” string that is polynomially long and that is dependent solely on the
input length. As we will show explicitly in this paper, for each language L ∈
VSLL, the advice function that puts L in coNP/poly maps each input length
to a polynomial number of members of L and the set of the words appearing in
advice strings is a sparse subset of L.

We thus naturally question the connection between VSLL and sparse sets.
Indeed, the proof of the former of the two results of Unger is reminiscent of
the technique that uses the census function in NP exploited in the result of
Kadin [10] that showed the existence of sparse Turing-complete sets for NP
collapses the polynomial hierarchy to Θp

2 ; and the proof of the latter directly
uses the left-set technique of Ogihara and Watanabe [13]. However, it is unclear
whether the assumption NP ⊆ VSLL for the first result implies the existence
of sparse Turing-complete sets for NP. This observation motivates us to explore
the complexity of VSLL.

It is easy to see that coNP ⊆ VSLL, via the poly-logarithmically sparse leaf
pattern language {02n | n ≥ 0} (see [15]). We show that this is in fact a tight
lower bound of VSLL. The class coNP/1, i.e., coNP with a single-bit of advice, is
not included in VSLL unless NP is already included in VSLL, which, according
to the result of Unger, collapses the polynomial hierarchy to Θp

2 . In fact, we show
that for any recursive complexity class C, if C/1 ⊆ VSLL then C ⊆ P/poly. We
also show a “provably” tight lower bound for VSLL with respect to polynomial-
time decision with advice. While P/ log log ⊆ VSLL, P/(log log(n) + ω(1)) 	⊆
VSLL.

Along with the above lower bound results, we show two tight upper bounds.
First, if VSLL ⊆ P/poly then PH collapses to Σp

2 , more precisely, to class
Sp

2 [6,14]. Second, for an arbitrary constant c > 0, VSLL 	⊆ coNP/nc holds
with no assumption.

Very Sparse Leaf Languages 377

2 Preliminaries

Let Σ be the alphabet {0, 1}. As usual, Σ∗ denotes the set of all words over Σ
and N denotes the set of all natural numbers. For each n ∈ N , Σn denotes the
set of all words over Σ having length n. For each n ∈ N and for each language L,
L=n denotes {x | x ∈ L ∧ |x| = n} and L≤n denotes {x | x ∈ L ∧ |x| ≤ n}. For
a language A and for a natural number n, censusA(n) = ‖ L≤n ‖. The function
censusA is called the census function of A.

We assume the reader’s familiarity in basic complexity classes and reducibility
notions, including classes P, NP, coNP, PH, {Σp

k, Π
p
k , ∆

p
k, Θ

p
k}k≥0, L, and NL

and reducibility notions ≤p
m, ≤p

T , and ≤p
btt.

Let M be a polynomial time-bounded nondeterministic Turing machine trans-
ducer such that M accepts on all inputs and along all computation paths and
such that on each computation path M outputs a symbol from an alphabet Γ .
We call such a machine M an NP character transducer. For each input x and
for each computation path π on M on x, let Mπ(x) be the output of M on x
along path π. For each input x, define

leafstringM (x) = Mπ1(x) · · ·Mπr(x),

where π1, . . . , πr is the enumeration in the dictionary order of all computation
paths of M on input x. By abuse of notation, for a set of inputs S, we define

leafstringM (S) = {leafstringM (x) | x ∈ S}.

For A ⊆ Γ ∗, let LeafPM (A) be the language consisting of all inputs x such that
leafstringM (x) ∈ A.

Definition 1. For a language A ⊆ Γ ∗, the language class LeafP(A) is the set
of all languages LeafPM (A), where M is an NP character transducer.

For a language class C, the language class LeafP(C) is {LeafP(A) | A ∈ C}.

We pay a special attention to the leaf language defined via a Turing machine
whose computation tree is balanced in the following sense: there exists a poly-
nomial p such that for all inputs x, the computation tree of the Turing machine
on input x is the full complete binary tree of height p(|x|). We call such a ma-
chine a balanced-tree NP character transducer. We will use BalancedLeafP(A)
and BalancedLeafP(C), respectively, to denote LeafP(A) and LeafP(C) in which
the NP character transducers are restricted to be balanced-tree character trans-
ducers.

2.1 Sparse Sets

A language S is sparse if there exists a polynomial p such that for all n it holds
that censusS(n) ≤ p(n). By SPARSE we denote the set of all sparse sets.

A language S is poly-logarithmically sparse (or polylog sparse, for short) if
there exist positive constants c and d such that for all n censusS(n) ≤ c(logn)d.
By PLOGSPARSE we denote the set of all poly-logarithmically sparse sets.

378 L. Fortnow and M. Ogihara

2.2 Advice Classes

Let f be a function from N to itself and let C be a complexity class. Then C/f
is the set of all languages L for which there exist A ∈ C and a function h such
that

– for all x, |h(x)| ≤ f(|x|), and
– for all x, x ∈ L if and only if 〈x, h(0|x|)〉 ∈ A.

Complexity classes defined this way are called “advice” classes and the function
h is called an “advice” function. By poly we denote the set of all polynomials.
It is a well-known fact that P/poly = PSPARSE [11].

2.3 Very Sparse Leaf Languages

We define VSLL (Very Sparse Leaf Languages) to be the set of all leaf
languages whose leaf pattern sets are poly-logarithmically sparse.

Definition 2. VSLL = BalancedLeafP(PLOGSPARSE).

Unger [15] showed the following:

Theorem 1 (Unger).

1. If NP ≤p
m VSLL then PH = Θp

2 .
2. If Σp

2 ≤
p
btt VSLL then PH = ∆p

2.
3. If Σp

2 ≤
p
T VSLL then PH = Σp

4 .

3 Fundamental Properties of VSLL

We show below a number of properties of the class VSLL. The proofs in this
section are omited due to page limit, but can be found in the full version of the
paper [7].

First, the class VSLL is closed under ≤p
m-reductions; that is, if A ≤p

m B and
B ∈ VSLL then A ∈ VSLL.

Proposition 1. VSLL is closed under ≤p
m-reductions.

Next, we present a property that is explicitly shown by Unger [15].

Proposition 2 (Unger). L ∈ VSLL if and only if there exist a sparse set S
and a balanced-tree NP character transducer M such that for all x,

x ∈ L ⇐⇒ (∃y ∈ S=|x|)[leafstringM (x) = leafstringM (y)].

A language A is ≤NP
ctt -reducible to a language B if there exists a polynomial

time-bounded nondeterministic Turing machine transducer N with the property
that, on each input x,

– along each computation path of N on x, N produces a nonempty collection
of words, (y1, . . . , yk); and

Very Sparse Leaf Languages 379

– x ∈ A if and only if there exists a computation path π of N on x such that
every word in the collection produced along π is a member of B.

Theorem 2. If L ∈ VSLL then L ∈ coNP/poly with an “advice” function that
is computable in polynomial time using an oracle that is ≤NP

ctt -reducible to L.

The corollary follows immediately from the above theorem.

Corollary 1. If NP ⊆ VSLL then NP ⊆ coNP/poly with an “advice” function
computable in ∆p

2.

4 Lower Bounds of VSLL

Next we explore lower bounds of VSLL.

Proposition 3. SPARSE ⊆ VSLL.

Proof. Let S be an arbitrary sparse set. Define M to be a nondeterministic
Turing machine that on input x behaves as follows: M nondeterministically
selects π ∈ Σ|x|, and then outputs 1 if π = x and 0 otherwise. For each x, let rx
denote the lexicographic order of x in Σ|x|. Then, for every x, leafstringM (x) =
0rx−1102|x|−rx . Define K = {0rx−1102|x|−rx | x ∈ S}. Then K ∈ PLOGSPARSE.
Thus, (M,K) witnesses that S ∈ VSLL.

Proposition 4. coNP ⊆ VSLL ⊆ coNP/poly.

Proof. The inclusion VSLL ⊆ coNP/poly follows from Theorem 2. The inclu-
sion coNP ⊆ VSLL is shownby by Unger [15].

It immediately follows from the above proposition that: if A is Turing-reducible
to a language in VSLL then A ∈ ∆p

2/poly. In the case where A is Σp
2 -complete,

the set A being Turing-reducible to a language in VSLL implies that Σp
2 ⊆

∆p
2/poly, Then, by invoking Yap’s Theorem [16] as presented in [4], we have the

collapse PH = (Sp
2)

NP, where Sp
2 is the symmetric-Σp

2 class [6,14] and is known
to reside between NP ∪ coNP and ZPPNP [3].

Proposition 5. If Σp
2 ⊆ PVSLL then PH = (Sp

2)
NP.

The above result improves part 3 of Theorem 1.

Theorem 3. Suppose coNP/1 ⊆ VSLL. Then NP ⊆ VSLL and NP ⊆ P/poly.

Proof. Suppose that coNP/1 ⊆ VSLL. For each infinite bit sequence a =
(a0, a1, a2, · · ·), define a language Q[a] as follows: For each x,

x ∈ Q[a] ⇐⇒ (a|x| = 1 ∨ x 	∈ SAT).

Then, for every a, Q[a] ∈ coNP/1, and thus, Q[a] ∈ VSLL by our supposition.

380 L. Fortnow and M. Ogihara

Take a to be the characteristic function of a bi-immune set. Then, no recursive
function can compute infinitely many bits of a. This bi-immune requirement
is met by choosing a be Kolmogorov random infinite sequence [12]. Suppose
Q[a] ∈ VSLL is witnessed by a balanced-tree NP character transducer M and
K ∈ PLOGSPARSE. Let p be a polynomial such that p(n) is the height of the
computation tree of M . Let c, d > 0 be constants such that K is c(logn)d sparse.
Define q(n) to be the polynomial c(log(2p(n)))d = c(p(n))d.

For each n, let

W1(n) = { leafstringM (x) | |x| = n ∧ x ∈ SAT } and
W0(n) = { leafstringM (x) | |x| = n ∧ x 	∈ SAT }.

Note that, for all n,

1. if an = 0 then W1(n) ∩W0(n) = ∅ and ‖W0(n) ‖≤ q(n), and
2. if an = 1 then ‖W0(n) ∪W1(n) ‖≤ q(n).

Assume that there are infinitely many n for which

either W1(n) ∩W0(n) 	= ∅ or ‖W0(n) ∪W1(n) ‖> q(n).

Let D be a deterministic Turing machine that, on input n,

– deterministically simulates M on all inputs of length n to check whether one
of the above two conditions holds, and then

– outputs 1 if the former condition holds (since, by (1) in the above, it must
be the case that an = 1), 0 if the latter condition holds (since, by (2) in the
above, it must be the case that an = 0), and “?” otherwise.

This machine D correctly computes an for infinitely many n. This contradicts
the assumption that a is Kolmogorov random. So, for all but finitely many n,

– W1(n) ∩W0(n) = ∅ and
– ‖W0(n) ∪W1(n) ‖≤ q(n).

By making changes for a finite number of input lengths, M can be made to
satisfy these conditions for all n. Define K ′ = ∪n≥0W1(n). Then, K ′ is polylog
sparse and (M,K ′) witnesses that SAT ∈ VSLL.

To prove that the same assumption implies that NP is in P/poly, note that,
for each n and for each pair (u, v) of distinct words in W0(n) ∪ W1(n), there
is a bit position j at which u and v disagree. Such a position corresponds to a
computation path of M on inputs of length n. Select such a position for each
distinct pair from W0(n) ∪W1(n). For each u ∈ W0(n) ∪W1(n), by examining
the output of M(u) for the selected paths, leafstringM (u) can be uniquely distin-
guished. The number of such pairs is bounded by (q(n))2/2. Since each position
corresponds to a computation path of M , the list of all these positions and how
the words W0(n) ∪W1(n) can be distinguished using the list can be described
using a polynomially long string. This implies that SAT ∈ P/poly.

Very Sparse Leaf Languages 381

The following corollary follows from the above theorem by applying Theorem 1.

Corollary 2. If coNP/1 ⊆ VSLL then PH = Θp
2 .

Note that, in the proof of the part that shows NP ⊆ P/poly in the above theorem,
the fact that the decision for Q given a is in coNP is never used. So, we can
generalize the proof and show the following:

Theorem 4. For every reasonable class C of recursive sets, C/1 ⊆ VSLL implies
C ⊆ P/poly.

Corollary 3. If (NP ∩ coNP)/1 ⊆ VSLL then NP ∩ coNP ⊆ P/poly.

Corollary 4. If UP/1 ⊆ VSLL then UP ⊆ P/poly.

In the following, define log log(0) = log log(1) = 0.

Proposition 6. P/(log log +O(1)) ⊆ VSLL.

Proof. Let L ∈ P/(log log +O(1)) via A ∈ P and a function f(n). We can
assume that there exists an integer k such that, for all n, |f(0n)| ≤ �log log(n)+
k�. Define µ(n) =

∑�log log(n)+k�
i=0 2i. Then, for each n µ(n) is the number of

possibilities for the “advice” string at length n and µ(n) ≤ 2log log(n)+k+2. Let p
be an arbitrary polynomial such that 2p(n) ≥ µ(n). Let M be a nondeterministic
Turing machine that on input x behaves as follows:

1. M nondeterministically guesses y ∈ Σp(|x|) and computes its lexicographic
order j of y in Σp(|x|).

2. M outputs 0 if j > µ(n).
3. M computes the word w that has the lexicographic order j in Σ∗.
4. M outputs 1 if 〈x,w〉 ∈ A and 0 otherwise.

Clearly, M can be made to run in polynomial time. For each x, leafstringM (x)
has length 2p(|x|) and satisfies the following:

– for every j, 1 ≤ j ≤ µ(|x|), the j-th bit of leafstringM (x) is 1 if (x is in L in
the case where the j-th word is the “advice” string) and 0 otherwise, and

– for every j, µ(|x|) + 1 ≤ j ≤ 2p(|x|), the j-th bit of leafstringM (x) is 0.

For each n, let jn be the lexicographic order of the “advice” string for length n.
Let Kn be the set of all words w having length 2p(n) such that the jn-th bit of
w is 1 and such that for every j, µ(n) + 1 ≤ j ≤ 2p(n), the j-th bit of w is 0.
Define K = ∪n≥0Kn.

We claim that the membership of L in VSLL is witnessed by M and
K. For all x, x ∈ L if and only if leafstringM (x) ∈ K|x|. To show that
K ∈ PLOGSPARSE, note that, for each n, µ(n) ≤ 2log log(n)+k+2, ‖ Kn ‖≤
2µ(n), and each word in Kn has length 2p(n). Let N = 2p(n). Then, we have
n ≤ p(n) = log(N), so µ(n) ≤ 2log log log(N)+k+2 = 2k+2(log log(N)), and thus,
2µ(n) ≤ 22k+2(log log(N)) = (logN)2

k+2
, which implies that K ∈ PLOGSPARSE.

This proves the proposition.

382 L. Fortnow and M. Ogihara

Theorem 5. For all functions h(n) = log log(n) + ω(1), P/h 	⊆ VSLL.

Proof. Let h(n) be a polynomial-time computable function such that h(n) =
log log(n) + ω(1). Without loss of generality, we may assume that h(n) is
monotonically nondecreasing and h(n) ≤ log(n) for all n.

For each infinite bit sequence a = (a0, a1, a2, · · ·), define Q[a] as follows.
Divide a into blocks of consecutive bits having length h(0), h(1), h(2), More
precisely, the first h(0) bits of a (that is, a0, . . . , ah(0)−1) become the first block,
the next h(1) bits (that is, ah(1), . . . , ah(0)+h(1)−1) become the second block,
the next h(2) bits (that is, ah(1)+h(2), . . . , ah(0)+h(1)+h(2)−1) become the third
block, and so on. For each n, let Bn be the n-th block. For each n, we define
Q[a]=n, the length-n portion of Q[a], as follows: Let Bn = (d1, . . . , dh(n)) and
let D = 1 +

∑h(n)
i=1 di2i−1. Then, Q[a]=n is the set of all x ∈ Σn whose D-th bit

is a 1. For every a, Q[a] ∈ P/h.
Assume, by way of contradiction, that P/h ⊆ VSLL. Take a to be a sequence

with the following property:

(*) For every exponential-time deterministic Turing machine transducer M , if
for all but finitely many n M on input 0n outputs a word of length h(n),
then for infinitely many n, Bn is equal to the output of M on input 0n.

A sequence a with this property can be constructed by simple diagonalization,
but it suffices to take a to be a Kolmogorov random sequence relative to h.

Suppose that Q[a] ∈ VSLL is witnessed by a balanced-tree NP character
transducer M and a polylog sparse K. We then construct a deterministic algo-
rithm that for all but finitely many n computes an h(n)-bit pattern ρn such that
Bn 	= ρn.

By our assumption, Q[a] ∈ VSLL, so there exists a polynomial p such that
for all n it holds that

‖ leafstringM (Q[a]=n) ‖≤ p(n).

Let n be sufficiently large. Let Bn = (d1, . . . , dh(n)) and let D = 1+
∑h(n)

i=1 di2i−1.
The range of the integer D is 1 to ∆ = 2h(n). For each i, 1 ≤ i ≤ ∆, and for
each b ∈ {0, 1}, let

Wb(i) = {leafstringM (x) | x ∈ Σn ∧ the i-th bit of x is b}.

Suppose that there exists an i, 1 ≤ i ≤ ∆, such that W0(i) ∩W1(i) 	= ∅. Let i
be such one. There exist y, z ∈ Σn such that the i-th bit of y is 0, the i-th bit
of z is 1, and leafstringM (y) = leafstringM (z). This means that either both y
and z are members of Q[a]=n or both y and z are nonmembers of Q[a]=n. If D
were i, then only z would be a member of Q[a]=n. So, it must be the case that
D 	= i. Thus, if there exists an i, 1 ≤ i ≤ ∆, such that W0(i) ∩W1(i) 	= ∅, then
it holds that Bn 	= βi, where βi is the word in Σh(n) whose rank is i; that is,
‖ {w ∈ Σh(n) | w ≤ βi} ‖= i. So, we take the smallest such i and set ρn to βi.

We claim that there is always such an i. Assume, by way of contradiction,
that for all i, 1 ≤ i ≤ ∆, W0(i) ∩W1(i) = ∅. Divide Σn according the first ∆

Very Sparse Leaf Languages 383

bits. For each u ∈ Σ∆, let w(u) = leafstringM (u0n−∆). By our assumption, for
all u, u′ in Σ∆ u 	= u′ ⇒ w(u) 	= w(u′). So, regardless of what the value of D is,
for exactly half of u ∈ Σ∆, u0n−∆ ∈ Q[a]=n. This implies that

‖ leafstringM (Q[a]=n) ‖≥ 2∆−1.

Then, by our supposition about h(n), we have

‖ leafstringM (Q[a]=n) ‖ ≥ 2∆−1

= 22h(n)−1

= 22log log(n)+ω(1)−1

= 2log(n)ω(1)−1.

The last quantity is super-polynomial, that is, a function that grows faster than
any polynomial, in particular, faster than p(n). This contradicts our supposition
that ‖ leafstringM (Q[a]=n)x) ‖≤ p(n). Thus, the claim holds.

Define T to be a machine that, on input 0n, executes the above algorithm and
outputs ρn. It is not hard to see that M runs in time 2cn for some constant c.
For all but finitely many n, M on input 0n outputs a word having length h(n)
not equal to Bn. This contradicts the property (*) of a. Hence, Q[a] 	∈ VSLL.
This proves the theorem.

5 Upper Bounds of VSLL

Next we prove upper bounds of VSLL.
Since coNP ⊆ VSLL and P/poly is closed under complementation, by the

Karp–Lipton Theorem [11] (see [3,4]), we have the following:

Proposition 7. VSLL ⊆ P/poly then PH = Sp
2.

Also, we show that the upper bound coNP/poly ⊇ VSLL is a tight one.

Theorem 6. For any constant c, VSLL 	⊆ REC/nc, where REC is the class of
all recursive sets.

Proof. Let c > 0 be a fixed integer. Assume, by way of contradiction, that
VSLL ⊆ REC/nc. By Proposition 3, SPARSE ⊆ VSLL. We show that there is
a sparse set not in REC/nc.

Let d = c + 2. Let a = (a0, a1, a2, . . .) be a Kolmogorov random string. We
construct a S from a as follows.

Fix an integer ν such that 2ννd ≤ 22ν . As in the proof of Theorem 5, we divide
a into blocks. This time the first block has length µd+1, the second block has
length (µ+ 1)d+1, the third block has length (µ+ 2)d+1, and so. In other words,
for each i ≥ 1, the i-th block consist of the (µ + i − 1)d+1 bits of a positioned
between

∑i−1
j=1(µ+ j)d+1 and (

∑i
j=1(µ+ j)d+1)− 1. Then, for each i ≥ 1, divide

the i-th block, which has length (µ+ i− 1)d+1, into (µ+ i− 1) words of length
(µ+ i− 1)d.

384 L. Fortnow and M. Ogihara

Let m be an arbitrary integer greater than or equal to ν. The (m− ν + 1)-st
block of a, which consists of md words of length m, defines S ∩Σ2m as follows.
Let w1, . . . , wmd be the md words. Let b1, . . . , bmd be the rank of these words in
Σm; that is, for each i, 1 ≤ i ≤ md, bi =‖ {y ∈ Σm | y ≤ wi} ‖. Then, for each
i, 1 ≤ i ≤ md, define zi to be the word in Σ2m whose rank is b1 + · · ·+ bi. For
all i, 1 ≤ i ≤ md, 1 ≤ bi ≤ 2m. Since 2mmd ≤ 22m, z1, . . . , zmd are well defined
and z1 < · · · < zmd . Also, the (m − ν + 1)-st block of a can be recovered from
z1, · · · , zmd .

For all n, censusS(n) =
∑

i:1≤i≤n(i/2)d ≤ nd+1/2d, so S is sparse, and thus,
S ∈ VSLL.

Since VSLL ⊆ REC/nc by our assumption, we have a halting Turing machine
M and an advice function h such that

– for all n, |h(0n)| ≤ nc, and
– for all x, x ∈ S if and only if M on input 〈x, h(0|x|)〉 accepts.

For each even n, let Hn = h(1)#h(2)# · · ·#h(n). Let N be a machine that, on
input w of the form u1#u2# · · ·#uk such that k ≥ 2ν, k is even and u1, . . . , uk

contain no #, simulate M on all inputs of the form 〈x, u|x|〉 such that |x| is even
and is greater than or equal to 2ν, and then recover the blocks of a corresponding
to those x’s accepted by M . Then, for all even n ≥ 2ν, N on input Hn produces
the prefix of a having length

∑n/2
i=ν i

d > nd/2d. Since d = c+2, for all but finitely
many n, the length of the prefix thus produced is greater than or equal to nc+1.5.

On the other hand, the combination of machine N and the advice Hn can be
encoded as an input word to a universal Turing machine having length |Hn|+α,
where α is a constant not depending on n. For all but finitely many n, |Hn| ≤∑

i:1≤i≤n n
c < nc+1.

This implies that for all but finitely many n, the prefix of a having length
at least nc+1.5 has Kolmogorov complexity at most nc+1, which contradicts the
assumption that a is Kolmogorov random. Thus, S 	∈ REC/nc. Hence, VSLL 	⊆
REC/nc.

6 Logarithmic Space-Bounded Character Transducers

We extend the concept of very sparse leaf languages by considering logarith-
mic space-bounded nondeterministic computation in place of polynomial time-
bounded nondeterministic computation. Logarithmic space-bounded nondeter-
ministic machines have polynomially many IDs. We often shrink their compu-
tation trees by identifying nodes corresponding to the same ID to one, but for
defining leafstring, we will view the computation trees as binary trees without
collapsing nodes. Let Leaf log and BalancedLeaflog respectively denote the LeafP

and BalancedLeafP thus defined. Let VSLLlog be the VSLL defined in terms of
BalancedLeaflog.

For a logarithmic space-bounded balanced-tree nondeterministic Turing ma-
chine character transducer M , whether two inputs x and y produce the same

Very Sparse Leaf Languages 385

leafstringM can be tested as follows: Simulating M concurrently on the two in-
puts x and y choosing the same branch for both of them at each nondeterministic
step. If such simulation arrives at an accepting state with two distinct output
symbols for x and y, then leafstringM (x) 	= leafstringM (y). If every simulation
arrives at an accepting state with an identical output character for x and y, then
leafstringM (x) 	= leafstringM (y). So, the equality can be tested in coNL. Since
NL is closed under complement, this implies that the test can be done in NL.

Theorem 7.

1. NL ⊆ VSLLlog ⊆ NL/poly.
2. If NL/1 ⊆ VSLLlog then NL ⊆ L/poly.
3. For all constants c > 0, VSLLlog 	⊆ REC/nc.
4. VSLLlog ⊇ L/(log log(n) +O(1)).
5. VSLLlog 	⊇ L/(log log(n) + ω(1)).

7 Conclusion

We would like to find a natural problem in VSLL. Graph Isomorphism is an
obvious candidate because Graph Isomorphism is in coAM ⊆ coNP/poly [9] but
not known to lie in coNP. However a similar proof to Theorem 1 will show that
NP∩VSLL is low for Θp

2 . Since Graph Isomorphism is in NP, Graph Isomorphism
in VSLL implies Graph Isomorphism is low for Θp

2 , which is not known to hold.

Acknowledgments

The authors would like to thank Lane Hemaspaandra and Falk Unger for useful
discussions.

References

1. D. Barrington. Bounded-width polynomial-size branching programs recognize ex-
actly those languages in NC1. Journal of Computer and System Sciences, 38:150–
164, 1989.

2. D. Bovet, P. Crescenzi, and R. Silvestri. A uniform approach to define complexity
classes. Theoretical Computer Science, 104(2):263–283, 1992.

3. J. Cai. Sp
2 ⊆ ZPPNP. In Proceedings of the 42nd IEEE Symposium on Foundations

of Computer Science, pages 620–629. IEEE Computer Society Press, Los Alamitos,
CA, 2001.

4. J. Cai, V. Chakaravarthy, L. Hemaspaandra, and M. Ogihara. Competing provers
yield improved Karp–Lipton collapse results. In Proceedings of the 20th Annual
Symposium on Theoretical Aspects of Computer Science, pages 535–546, Springer-
Verlag Lecture Notes in Computer Science 2607, 2003.

5. J. Cai and M. Furst. PSPACE survives constant-width bottlenecks. International
Journal on Foundations of Computer Science, 2(1):67–76, 1991.

386 L. Fortnow and M. Ogihara

6. R. Canetti. More on BPP and the polynomial-time hierarchy. Information Process-
ing Letters 57(5):237–241, 1996.

7. L. Fortnow and M. Ogihara. Very sparse leaf languages. Technical Report 899.
Department of Computer Science, University of Rochester, Rochester, NY, June,
2006.

8. L. Goldschlager and I. Parberry. On the construction of parallel computers from
various bases of boolean functions. Theoretical Computer Science, 43:43–58, 1986.

9. O. Goldreich, S. Micali and A. Wigderson. Proofs that yield nothing but their
validity or all languages in NP have zero-knowledge proof systems. Journal of the
ACM, 38(3):690–728, 1991.

10. J. Kadin. PNP[log n] and sparse Turing-complete sets for NP. SIAM Journal on
Computing. 17(6):1263–1282, 1988. Erratum, 20(2):404, 1991.

11. R. Karp and R. Lipton. Some connections between nonuniform and uniform com-
plexity classes. In Proceedings of the 12th Symposium on Theory of Computing,
pages 302–309, ACM Press, New York, NY, 1980.

12. M. Li and P. Vitányi. An introduction to Kolmogorov complexity and its application.
Springer-Verlag, New York, NY, 1993.

13. M. Ogiwara and O. Watanabe. On polynomial time bounded truth-table reducibil-
ity of NP sets to sparse sets. SIAM Journal of Computing. 20(3):471–483, 1991.

14. A. Russell and R. Sundaram. Symmetric alternation captures BPP. Computational
Complexity 7(2):152–162, 1998.

15. F. Unger. On small hard leaf languages. In Proceedings of the 30th International
Symposium on Mathematical Foundations of Computer Science, pages 781-792,
Lecture Notes in Computer Science 3618, Springer-Verlag, 2005.

16. C.-K. Yap. Consequences of non-uniform conditions on uniform classes. Theoretical
Computer Science 26:287–300, 1983.

On the Correlation Between Parity and Modular

Polynomials

Anna Gál� and Vladimir Trifonov

Dept. of Computer Science, University of Texas at Austin,
Austin, TX 78712-1188, USA

{panni, vladot}@cs.utexas.edu

Abstract. We consider the problem of bounding the correlation be-
tween parity and modular polynomials over Zq , for arbitrary odd integer
q ≥ 3. We prove exponentially small upper bounds for classes of polyno-
mials with certain linear algebraic properties. As a corollary, we obtain
exponential lower bounds on the size necessary to compute parity by
depth-3 circuits of certain form. Our technique is based on a new repre-
sentation of the correlation using exponential sums.

Our results include Goldmann’s result [Go] on the correlation between
parity and degree one polynomials as a special case. Our general expres-
sion for representing correlation can be used to derive the bounds of Cai,
Green, and Thierauf [CGT] for symmetric polynomials, using ideas of
the [CGT] proof. The classes of polynomials for which we obtain expo-
nentially small upper bounds include polynomials of large degree and
with a large number of terms, that previous techniques did not apply to.

1 Introduction

In this paper, we study the correlation between the MOD2 function and Boolean
functions computed by depth-2 circuits with aMODq gate at the top (for odd q),
and AND gates at the input level (called MODq ◦AND circuits). The Boolean
function MODm : {0, 1}n → {0, 1} is defined to be 0 when the sum of the input
bits is divisible by m, and 1 otherwise. For everyMODm◦AND circuit there is a
multilinear polynomial P over Zm such that on inputs x ∈ {0, 1}n, the output of
the circuit is 0 if and only if P (x) is 0 modulo m. There is a straightforward way
to associate such a polynomial with each circuit, using the inputs associated with
the AND gates to form the monomials. This polynomial is called the defining
polynomial of the circuit, and its degree is the largest fan-in of the AND gates in
the circuit. Thus, depth-2 circuits of the above form correspond to polynomials
over the ring Zm.

The correlation C(f1, f2) between two Boolean functions f1, f2 : {0, 1}n →
{0, 1} is defined as C(f1, f2) = 1

2n

∑
x∈{0,1}n(−1)f1(x)(−1)f2(x) . Our interest in

this question is motivated by its relevance to circuit complexity lower bounds.
In addition, we believe that the question is also interesting on its own right.
� Supported in part by NSF Grant CCF-0430695 and an Alfred P. Sloan Research

Fellowship.

R. Královič and P. Urzyczyn (Eds.): MFCS 2006, LNCS 4162, pp. 387–398, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

388 A. Gál and V. Trifonov

1.1 Bounded Depth Circuits

Proving lower bounds on the size of Boolean circuits for specific functions is
one of the central problems in complexity theory. It is also considered to be
notoriously difficult, since for example, superpolynomial lower bounds on the
size of Boolean circuits computing a function from the complexity class NP
would imply that P 	= NP. However, even much weaker (e.g. superlinear) lower
bounds seem to remain out of reach of the current techniques. Imposing various
restrictions on the circuits and developing lower bound methods for restricted
circuit models has received a lot of attention in the last few decades. The hope is
to extend such techniques, and develop new methods that are applicable towards
stronger and stronger models.

One of the circuit models that has been extensively studied is bounded depth
circuits. The results of [Aj, FSS, Ha, Yao85] show that the parity function can-
not be computed by AC0 circuits (constant depth polynomial size circuits with
AND, OR, NOT gates). Barrington [Ba] defined the class ACC0 = ∪qACC0(q),
where ACC0(q) denotes the class of constant depth, polynomial size circuits
with AND,OR, NOT and MODq gates. Smolensky [Sm] proved that MODr 	∈
ACC0(pk) when p and r are distinct primes. The power of ACC0(q) circuits when
q is not a prime power is much less understood. For example, it is not known if
all of NP can be computed by depth-3 ACC0(6) circuits.

Depth-3 circuits can be surprisingly powerful. Allender [Al] proved that AC0

is contained in the class of depth-3 circuits of quasipolynomial (2(log n)O(1)
) size

with a MAJORITY gate at the top, MOD2 gates in the middle, and AND
gates of (logn)O(1) fan-in at the input level. (Such circuits are referred to as
MAJ ◦MOD2 ◦AND(log n)O(1) circuits.) Yao [Yao90] proved that ACC0 is con-

tained in the class of depth-3 threshold circuits of quasipolynomial (2(log n)O(1)
)

size with AND gates of (logn)O(1) fan-in at the input level. But it remains
open if ACC0 is contained in the class of quasipolynomial (2(log n)O(1)

) size
MAJ ◦MODq ◦AND(log n)O(1) circuits, for some fixed q. In other words, it is not
known whether Allender’s result [Al] can be extended to ACC0. (Essentially this
question was asked by Green in [Gr02].) A recent result of Bourgain [Bo05] im-
plies that parity requires exponential sizeMAJ ◦MODq◦ANDε log n circuits, for
any odd q and ε depending on q. It is not clear how to extend Bourgain’s result to
larger fan-in AND gates. The results of H̊astad and Goldmann [HG] imply that
a function in ACC0 (the generalized inner product function) requires exponential
sizeMAJ◦MOD2◦ANDO(log n) circuits. The results of Razborov and Wigderson
[RW] imply that some function in ACC0 requires nΩ(log n) size MAJ ◦MOD2 ◦
AND circuits. This result was recently extended to circuits with arbitrary AC0

circuits in place of the AND gates by Hansen and Miltersen [HM]. [RW] and
[HM] build on the results of [HG]. However, the method in [HG] applies for arbi-
trary symmetric gates in the middle layer. Thus, in view of Yao’s result [Yao90],
these results cannot be directly extended to obtain exponential lower bounds for
computing an ACC0-function by MAJ ◦MODq ◦AND(log n)O(1) circuits.

Other combinations of threshold, MOD and AND gates in depth-3 circuits
and other definitions of MOD gates have been also considered, and in some of

On the Correlation Between Parity and Modular Polynomials 389

these models exponential lower bounds have been proved for functions in ACC0

(see e.g. [BM, Gro, GT, KP]). The power of MAJ ◦ MOD ◦ AND(log n)O(1)

circuits remains less understood.

1.2 Correlation and Circuit Lower Bounds

Obtaining exponential lower bounds for MAJ ◦MODq ◦ AND circuits under
various restrictions has received considerable attention in the last few years (e.g.
[AB, CGT, Gr99, Gr02, Go]. The starting point of all these papers, including
[HG] which considers the more general MAJ ◦ SYM ◦ AND circuits, is the
following special case of a lemma of [HMPST].

Lemma 1. (Lemma 3.3, [HMPST]) Let f : {0, 1}n → {0, 1} be a Boolean func-
tion computed by a Boolean circuit with a fan-in m (unweighted) threshold gate
on top, taking the results of the subcircuits C1, . . . , Cm as inputs to the threshold
gate. Let gi : {0, 1}n → {0, 1} be the Boolean function computed by the subcircuit
Ci (i = 1, . . . ,m). Let f be a balanced function, i.e. |f−1(0)| = |f−1(1)|. Then
for at least one of the subcircuits (for some 1 ≤ i ≤ m), the absolute value of
the correlation |C(f, gi)| is at least 1/m.

Thus, upper bounds on the absolute value of the correlation of a balanced func-
tion f with arbitrary functions that can be computed by circuits of a given class
C, imply lower bounds on the fan-in of the MAJORITY gate in MAJ ◦ C type
circuits for computing f .

In particular, proving that the absolute value of the correlation of parity
with modular polynomials over Zq of certain type is exponentially small, implies
exponential lower bounds on the size of the corresponding MAJ ◦ MODq ◦
AND circuits. Smolensky’s results [Sm] imply that for p and r distinct primes,
the absolute value of the correlation of the MODr function and low degree
polynomials over Zpk is at most 1

n1/2−o(1) . Note that the technique of [Sm] does
not yield smaller bounds on the absolute value of the correlation even for degree
2 and very sparse polynomials, and it cannot be applied over Zq, if q is not a
prime power. It is also curious to note that on the other hand, by Ajtai’s [Aj]
result we know that the absolute value of the correlation of parity with functions
in AC0 is exponentially small, and it remains exponentially small even allowing
superpolynomial number of gates [Ha]. Cai, Green and Thierauf [CGT] proved
that the absolute value of the correlation of parity with symmetric polynomials
of degree (logn)O(1) over Zq for q odd, is exponentially small (at most 2−nΩ(1)

).
This was generalized by Green [Gr99] to proving similar exponentially small
upper bounds on the absolute value of the correlation of the MODp function
with symmetric polynomials of degree (logn)O(1) over Zq when p is a prime that
does not divide q.

Extending these bounds to allowing non-symmetric polynomials posed a sig-
nificant challenge. The degree 1 case was solved by Goldmann [Go], who proved
that the absolute value of the correlation of MODp and MODq when p has a
prime factor that does not divide q, is at most 2−Ω(n). Alon and Beigel [AB]
showed that the absolute value of the correlation of parity with degree 2 poly-
nomials over Zq for odd q, is at most 2−(log n)ε

for some constant ε < 1, and

390 A. Gál and V. Trifonov

for degree O(1) polynomials the absolute value of the correlation is o(1). Note
that the bounds of [AB] are weaker than the 1

n1/2−o(1) upper bounds implied by
Smolensky’s results [Sm], but [Sm] is applicable only when q is a prime power.
The first improvement over the bounds of [Sm] and [AB] for non-symmetric poly-
nomials of degree greater than 1 was achieved by Green [Gr02]. Green [Gr02]
proved that the absolute value of the correlation of parity with degree 2 poly-
nomials over Z3 is at most 2−Ω(n). The method used in [Gr02] very specifically
relies on the degree being at most 2 and q = 3, and appears to be not applicable
to other degrees or other values of q. A breakthrough was achieved by Bourgain
[Bo05], proving that for q odd, and p, q relatively prime, the absolute value of
the correlation between MODp and degree d polynomials over Zq is exponen-
tially small for d < ε logn, where ε depends on p and q. Bourgain’s result was
generalized by Green, Roy and Straubing [GRS] to arbitrary (not necessarily
odd) q and p, q relatively prime.

While Bourgain’s result resolves the question about the correlation between
parity and modular polynomials of degree up to ε logn, it leaves open the ques-
tion described in the previous section about whether Allender’s result [Al] can be
extended to ACC0. To obtain sufficiently strong lower bounds for depth 3 circuits
of the desired type by bounding correlation, we would need to be able to provide
estimates on the correlation for up to polylogarithmic degree polynomials.

1.3 Our Approach

We suggest a new approach to estimate the correlation of parity with modular
polynomials over Zq that is applicable to arbitrary odd q, and provides improve-
ments over the previous bounds for several classes of polynomials.

The starting point of our approach is a representation of the correlation using
exponential sums. Exponential sums have been used to estimate correlation in
several previous papers starting with the results of Cai, Green and Thierauf
[CGT] for symmetric polynomials and also in [Gr99, Gr02, Bo05, GRS]. We
give a representation of the correlation of parity with polynomials over Zq using
exponential sums in a very general setting. The novelty of our representation
is that it allows to use certain linear algebraic properties of the terms of the
corresponding polynomials. We also present a general expression for representing
correlation, that can be used to yield our results as well as to derive the bounds
of Cai, Green, and Thierauf [CGT] for symmetric polynomials, using ideas of
the [CGT] proof. The two approaches can be viewed in a unifying framework as
working with different components of our expression.

We are able to evaluate the exponential sums involved in this representation
under various conditions, and we obtain exponentially small upper bounds on
the absolute value of the correlation between parity and modular polynomials of
certain type. Interestingly, the classes of polynomials for which we prove expo-
nentially small bounds include polynomials of very large degree and polynomials
with very large number of terms as well (as long as they satisfy some other, lin-
ear algebraic conditions). All previous methods assumed small degree to obtain
exponentially small upper bounds on correlation with parity, thus could not be

On the Correlation Between Parity and Modular Polynomials 391

used to obtain our results. Moreover, some of our results yield exponentially
small upper bounds on the absolute value of the correlation with parity over
every nonempty subset of the variables.

Due to space limitations, all proofs are omitted from this extended abstract.

2 Exact Representations of the Correlation

2.1 Notation

For r ∈ Z+ and z ∈ Z define δr(z) to be 1, if r|z, and −1, otherwise. We
will use x ≡r y to denote r|(x − y). ≡r is extended to vectors by applying the
congruence on every coordinate. That is, we use the notation x ≡r y to indicate
that xi ≡r yi for every coordinate. The exponent function is extended to vectors
in a component-wise manner, that is, cx denotes (cx1 , . . . , cxn).

We will denote with 0 the all 0’s vector, where the dimension of the vector
will be understood by the context. Similarly 1 is the all 1’s vector. We use 1n

to denote the all 1’s vector of length n, we omit indicating the length when it
is clear from the context. Vectors will be assumed to be in a column form and
xT is the row vector corresponding to a column vector x. Similarly MT is the
transpose of a matrixM . For two vectors x and y, xT y is the usual inner product
of the two vectors, that is, xT y =

∑
i xiyi. For a matrix M and a vector x, Mx

is the product of M and x. Unless indicated otherwise, all sums and products
are over the integers Z.

The following notation for sets will be used: [r] = {1, . . . , r}, [0, r] = {0, . . . , r},
and [0, 1) = {a ∈ R : 0 ≤ a < 1}.

Let h : Zn → Z be an arbitrary integer valued function and let g ∈ {0, 1}n.
We use the following notation.

C(g, h) := 2−n
∑

x∈{0,1}n

δ2(gT x)δq(h(x))

We wish to estimate how well MODq ◦ AND circuits approximate parity.
Let f : {0, 1}n → {0, 1} be the function computed by a MODq ◦ AND circuit,
and let Pf be the defining polynomial of the circuit. Then (−1)f(x) = δq(Pf (x))
for x ∈ {0, 1}n, and with our notation, the correlation between parity and f is
equal to C(1, Pf). In general, our methods apply to estimating the correlation
for the parity over arbitrary subsets of the input bits. Thus, we are interested
in estimating C(g, P) for a multilinear polynomial P (x1, . . . , xn) with integer
coefficients and a vector g ∈ {0, 1}n.

Notice that we do not identify {0, 1} with Z2, i.e. arithmetic with numbers
from {0, 1} is done in Z, unless indicated otherwise. For M ∈ {0, 1}m×n, rk2(M)
denotes the rank of M over Z2.

2.2 Exponential Sums

Following [CGT, Gr99, Gr02], we use exponential sums to represent the cor-
relation. We give a representation of the correlation of parity with modular

392 A. Gál and V. Trifonov

polynomials by exponential sums for arbitrary degree and arbitrary odd q ≥ 3.
Moreover, our representation applies to parity taken over arbitrary subsets of
the input variables.

Let ωq = e2πi/q = cos 2π/q + i sin 2π/q, the principal q-th root of unity, and
ω̄ = ω−1, the complex conjugate of ω. We omit q from the subscript of ω when it
is clear from the context. We have the following lemma, which gives an alterna-
tive expression for the correlation C(g, h) between integer valued functions and
parity.

Lemma 2. Let h : Zn → Z, g ∈ {0, 1}n, and let q ≥ 3 be an odd integer. Then

C(g, h) = −ν +
2−(n−1)

q

q−1∑
t=0

∑
x∈{0,1}n

(−1)g
T xωth(x),

where ν is 0 if g 	= 0, and 1 otherwise.

Definition 1. For t ∈ [0, q − 1], h : Zn → Z, and g ∈ {0, 1}n define

Ct(g, h) = 2−n
∑

x∈{0,1}n

(−1)g
T xωth(x).

Notice that, if g 	= 0, by the triangle inequality applied to the expression in
Lemma 2, there exists t ∈ [0, q − 1] such that |C(g, h)| ≤ 2|Ct(g, h)|. Hence, if
g 	= 0 and we can obtain an exponentially small bound on |Ct(g, h)| for every
t ∈ [0, q−1], then we will have an exponentially small bound on |C(g, h)|. We can
show that the converse is also true in some sense: if |C(g, h+ c)| is exponentially
small for every c ∈ [0, q − 1], then |Ct(g, h)| is exponentially small as well for
every t ∈ [0, q − 1].

2.3 Matrix Notation

Let P (x) be a multilinear polynomial with integer coefficients. First we will
construct a multilinear polynomial Q(y) with integer coefficients and with the
same degree as P (x) such that, for x ∈ {0, 1}n, P (x) ≡q Q((−1)x). Recall that
(−1)x denotes ((−1)x1 , . . . , (−1)xn).

For q ≥ 3 odd, there exists a unique integer ρ ∈ [q− 1] such that 2ρ ≡q 1. For
z ∈ Z, let l(z) = ρ(1 − z) and extend l to vectors in a component-wise manner,
that is, l(y) = (ρ(1− y1), . . . , ρ(1− yn)). Notice that for x ∈ {0, 1}n

x ≡q l((−1)x). (1)

Define Q(y) = P (l(y)). Since l (considered as a univariate polynomial) is
linear with integer coefficients, Q is a multilinear polynomial with integer co-
efficients of the same degree as P . Also, by (1), for every x ∈ {0, 1}n we have
P (x) ≡q Q((−1)x). Thus

C(g, P) = 2−n
∑

x∈{0,1}n

δ2(gT x)δq(Q((−1)x)). (2)

On the Correlation Between Parity and Modular Polynomials 393

Our next goal will be to expressQ((−1)x) using a linear transformation. Since
Q is multilinear with integer coefficients, we can write it as Q(y) =

∑
I⊆[n] cIyI ,

where cI ∈ Z and yI =
∏

i∈I yi. Let M ∈ {0, 1}m×n be the matrix whose rows
are the incidence vectors of the subsets I ⊆ [n], each repeated (cI mod q) times.
(The incidence vector of the empty set is the all zero row, and y∅ = 1 for any
y.) Notice that the degree of Q (and therefore the degree of P) is at most d if
and only if M has at most d 1’s per row. For x ∈ {0, 1}n we have

Q((−1)x) ≡q 1T (−1)Mx. (3)

We use the following notation:

C(g,M) := 2−n
∑

x∈{0,1}n

δ2(gT x)δq(1T (−1)Mx).

Then, using (2) and (3), we obtain the following.

Lemma 3. Let P and Q be multilinear polynomials with integer coefficients such
that P (x) ≡q Q((−1)x) for x ∈ {0, 1}n. Let M correspond to Q according to the
above mapping, and let g ∈ {0, 1}n. Then C(g, P) = C(g,M)

Before we proceed, consider the following example. Let Q(y) =
∏n

i=1 yi − 1.
Then M consists of a single row of all 1’s, and q − 1 copies of the all zero
row. The corresponding correlation is C(1,M) = 1, since δq(1T (−1)Mx) =
δq(

∏n
i=1(−1)xi + q − 1) = δ2(1T x) for every x ∈ {0, 1}n (and every q ≥ 3).

Definition 2. For t ∈ [0, q − 1], M ∈ {0, 1}m×n, and g ∈ {0, 1}n define

Ct(g,M) = 2−n
∑

x∈{0,1}n

(−1)g
T xωt1T (−1)Mx

.

With this notation, using Lemma 2

C(g,M) = −ν +
2
q

q−1∑
t=0

Ct(g,M), (4)

where ν is 0 if g 	= 0, and 1 otherwise.

Remark 1. Our methods directly apply to estimating the correlation between
parity and MODq ◦MOD2 circuits. In this case, given a MODq ◦MOD2 circuit,
there is a multilinear polynomial Q with integer coefficients such that on inputs
x ∈ {0, 1}n the output of the circuit is 0 if and only if Q((−1)x) is 0 modulo
q. Let M be the matrix corresponding to the polynomial Q as above. Then the
correlation between the output of the circuit and the parity of the subset of
variables corresponding to the vector g is equal to C(g,M).

2.4 Main Lemma

It is immediate from (4) by the triangle inequality that for g 	= 0, |C(g,M)| is
exponentially small if |Ct(g,M)| is exponentially small for every t ∈ [0, q − 1].

394 A. Gál and V. Trifonov

Thus, we will be concerned with giving bounds on |Ct(g,M)|, and use them to
bound |C(g,M)| using (4).

Definition 3. For M ∈ {0, 1}m×n and g ∈ {0, 1}n, define

I(M) =
{
z ∈ {0, 1}n : ∃y ∈ {0, 1}m s.t. MT y ≡2 z

}
,

K(M,g) =
{
y ∈ {0, 1}m : MT y ≡2 g

}
.

The following lemma is our main technical tool for obtaining bounds on the
correlation based on linear algebraic properties of the polynomials.

Lemma 4. Let t ∈ [0, q − 1], M ∈ {0, 1}m×n, and g ∈ {0, 1}n. Then

Ct(g,M) = 2−m
∑

y∈K(M,g)

(ωt − ω̄t)|y|(ωt + ω̄t)m−|y|,

where |y| is the number of 1’s in y.

2.5 A More General Framework

Definition 4. For g ∈ {0, 1}n, A ∈ Nm×n, and b ∈ Nm, define

κ(g, A,b) =
∑

x∈{0,1}n:Ax=b

(−1)g
T x.

For z = (z1, . . . , zm) define the following polynomial over z1, . . . , zm.

T (g, A, z) =
∑
b∈IA

κ(g, A,b)zb1
1 · . . . · zbm

m ,

where IA = {b ∈ Nm : 0 ≤ bi ≤
∑n

j=1 aij , for i ∈ [m]}.
First note that this definition includes as a special case the definition of
Krawtchouk polynomials [Sz]. To see this take m = 1 and A to be an all 1’s row
of length n. Then κ(g,1T

n , k) = K
(n)
k (|g|), where K(n)

k (l) is the k-th Krawtchouk
polynomial, i.e. K(n)

k (l) =
∑k

i=0(−1)i
(

l
i

)(
n−l
k−i

)
which is the coefficient of yk of

the polynomial (1− y)l(1 + y)n−l.
In our definition κ(g, A,b) is not necessarily a polynomial except in special

cases, but it gives the coefficient of the monomial zb1
1 · . . . · zbm

m of the polynomial
T (g, A, z), which can be written in the following form.

T (g, A, z) =
∏

j∈[n]:gj=1

1−
∏

i∈[m]

z
aij

i

 ∏
j∈[n]:gj=0

1 +
∏

i∈[m]

z
aij

i

 . (5)

(This expression can be verified by expanding the right side of (5) and then
grouping the terms in z1, . . . , zm of the same form together.) Thus, in some
sense the functions κ(g, A,b) are analogues of the Krawtchouk polynomials in
a more general setting.

As we have seen before, for g 	= 0, and arbitrary h : Zn → Z, the correlation
|C(g, h)| is exponentially small if |Ct(g, h)| is exponentially small for every t ∈
[0, q − 1]. We give the following general expression for Ct(g, h).

On the Correlation Between Parity and Modular Polynomials 395

Lemma 5. Let q, r ∈ N+ and t ∈ [0, q − 1]. Let h : Zn → Z be such that there
exists A ∈ Nm×n and G : Nm → Z such that for every x ∈ {0, 1}n and z ∈ Nm,
if z ≡r Ax, then h(x) ≡q G(z). Then

Ct(g, h) = 2−n
∑

y∈[0,r−1]m
T (g, A, ωy

r)φr,q,t(y, G) , (6)

where φr,q,t(y, G) = r−m
∑

z∈[0,r−1]m ω̄yT z
r ω

tG(z)
q .

This lemma can be used to derive our main lemma (Lemma 4) that we use to
exploit the linear algebraic properties of the polynomials when estimating cor-
relation, as well as the bounds of Cai, Green and Thierauf [CGT] for symmetric
polynomials. Interestingly, the statement yields these two arguments by working
with different parts of the expression. To obtain our results in this paper we
carefully estimate φr,q,t, but we set things up so that for T we only have one
possible nonzero value, and we just have to argue about when is T nonzero.
To obtain the bounds of [CGT], we carefully estimate T , and use only a trivial
bound on φr,q,t, namely that |φr,q,t| ≤ 1. The key to derive the bounds of [CGT]
from Lemma 5 is to show that for symmetric polynomials the matrix A = 1T

n

with only one row and certain small odd r have the desired properties.
Note that all our expressions so far have been precise and we obtained exact

representations of the correlation between parity and modular polynomials. Next
we consider cases where we can obtain exponentially small upper bounds on the
absolute value of our expressions.

3 Bounds Based on the Linear Algebraic Structure of the
Polynomials

Lemma 4 allows us to obtain estimates on the correlation of the polynomial P (x)
with parity, based on the linear algebraic properties of the matrixM ∈ {0, 1}m×n

considered as a matrix over Z2. Recall that to obtain M , first P is transformed
to another polynomial Q, and the rows of M are defined by the terms of Q as
described in Section 2.3. Also note that our methods can be used to estimate
the correlation of modular polynomials and parity over arbitrary subsets of the
variables. Parity is taken over the coordinates that are 1 in the vector g, taking
parity of all the variables corresponds to using g = 1.

An immediate consequence of Lemma 4 is that Ct(g,M) = 0, if K(M,g) = ∅.
Hence if 0 	= g 	∈ I(M), then C(g,M) = 0. Thus we get the following interesting
statement.

Theorem 1. Let P and Q be multilinear polynomials with integer coefficients
such that P (x) ≡q Q((−1)x) for x ∈ {0, 1}n. Let M be the matrix corresponding
to Q, and let g ∈ {0, 1}n. If the rows of the matrix M do not span the vector g
over Z2, that is when g 	∈ I(M), then the correlation C(g, P) = 0.

This theorem extends the well known fact that if a polynomial P does not depend
on all the variables over which we take parity, then the correlation between parity
and P is zero.

396 A. Gál and V. Trifonov

Estimating Ct(g,M) when g ∈ I(M) is a challenging task in general. We
prove that |Ct(g,M)| is exponentially small for certain classes of matrices M .
Then, (4) can be used to obtain upper bounds on |C(g,M)|. Note that while our
estimates of |Ct(g,M)| apply to arbitrary g ∈ {0, 1}n, and give good bounds
even for g = 0, the bounds on |C(g,M)| are interesting only for g 	= 0, since in
(4) ν = 1 for g = 0. Notice that if g 	= 0, then C0(g,M) = 0, so it is enough to
estimate |Ct(g,M)| for t ∈ [q − 1].

First we consider the class of non-singular matrices over Z2.

Theorem 2. Let M ∈ {0, 1}n×n be a non-singular matrix over Z2, and g ∈
{0, 1}n. Let q ≥ 3 be an odd integer, and let t ∈ [q − 1]. There exists γ = γ(q) ∈
[0, 1) (depending only on q) such that |Ct(g,M)| ≤ γn.

It is interesting to note that Theorem 2 gives exponentially small upper bounds
on the absolute value of the correlation with parity for polynomials possibly
with arbitrarily large degree that previous techniques did not apply to. It is also
interesting that we get exponentially small correlation with respect to parity
over arbitrary nonempty subsets of the variables. On the other hand, Theorem
2 does not apply for example to all degree one polynomials, since repeating rows
(according to the coefficients of Q) means that the matrix is singular. We are
able to extend our results to a much larger class of matrices, that also includes
all degree one polynomials. First we consider an extension of the non-singularity
condition, next we state our results with respect to arbitrary matrices that have
a partition into submatrices with not too much overlap between the subspaces
spanned by their rows.

Definition 5. A matrix M ∈ {0, 1}m×n is block non-singular over Z2 if M can
be partitioned into submatrices M1, . . . ,Mk with Mi ∈ {0, 1}mi×n for i ∈ [k],
such that

∑k
i rk2(Mi) = rk2(M) = n.

Note that the above definition implies that the linear subspaces over Z2 spanned
by the rows of the different blocks are disjoint, except containing the 0 vector. In
other words, the row-space of the matrix M is the direct sum of the row-spaces
of the submatrices in the partition.

Theorem 3. Let M ∈ {0, 1}m×n be a block non-singular matrix over Z2. Let
q ≥ 3 be an odd integer, and let t ∈ [q − 1]. Given g ∈ {0, 1}n, let �(g) be
the smallest number of blocks in the partition that contribute a nonzero vector
to obtaining g as a linear combination over Z2 of the rows of M . There exists
γ = γ(q) ∈ [0, 1) (depending only on q) such that |Ct(g,M)| ≤ γ�(g).

Note that if M corresponds to an arbitrary degree one polynomial, then M is
block non-singular, and �(g) = |g| for any g ∈ {0, 1}n. Thus, the above theorem
contains Goldmann’s result [Go] on the correlation between parity and degree
one polynomials as a special case.

Given a matrix M , the bounds on the correlation obtained by Theorem 3
depend via �(g) on over which subset of variables the parity is taken. On the

On the Correlation Between Parity and Modular Polynomials 397

other hand, Theorem 3 can be extended to yield exponentially small bounds
on the correlation as long as the subspaces over Z2 spanned by the blocks do
not overlap too much and many blocks are needed to span g, that is, when∑k

i=1 rk2(Mi)− rk2(M) is relatively small and �(g) is relatively large.
If we further restrict the class of polynomials and allow only coefficients rel-

atively prime to q or 0 modulo q, we obtain a statement that gives the same
(potentially exponentially small) upper bound on the absolute value of the cor-
relation with the parity of every nonempty subset of the variables.

We say that a matrix M ∈ {0, 1}m×n is nontrivial if the polynomial Q it
represents is not identically 0 modulo q over {−1, 1}n. Typically we are only
interested in estimating Ct(g,M) for nontrivial M . Moreover, we can assume
without loss of generality that every submatrix formed by a subset of the rows
of M is nontrivial: deleting the rows of a trivial submatrix cannot change the
value of Ct(g,M).

Theorem 4. Let M ∈ {0, 1}m×n, and g ∈ {0, 1}n. Assume that every submatrix
formed by a subset of the rows of M is nontrivial. Let M1, . . . ,Mk be an arbitrary
partition of the nonzero rows of M into blocks, and let r = maxi∈[k]rk2(Mi). Let
q ≥ 3 be an odd integer, and let t ∈ [q − 1]. Assume that M corresponds to a
polynomial such that all coefficients are either relatively prime to q or 0 modulo
q. Then there exists γ = γ(q, r) ∈ [1/2, 1) (depending only on q and r) such that
|Ct(g,M)| ≤ 2

k
i=1 rk2(Mi)−rk2(M)γk.

If q is prime, the extra condition we consider does not impose any restrictions,
but for composite q it is essential: we have an example of a (mod 15) polynomial
that otherwise satisfies the conditions of the theorem, but has coefficients not
relatively prime to 15 and has constant correlation with parity.

Having rk2(Mi) ≤ r for each block is not essential, it just makes the theorem
simpler to state. It is enough for getting exponentially small upper bounds that
a large number of blocks has small rank. Note that this holds for example if M is
block non-singular with sufficiently many blocks, and in this case the correlation
with parity over every nonempty subset of variables is exponentially small.

References

[Aj] M. Ajtai. Σ1
1 -formulae on finite structures. Ann. Pure Appl. Logic 24, 1983,

1-48.

[Al] E. Allender. A note on the power of threshold circuits. Proceedings of the
30th Annual IEEE Symposium on Foundations of Computer Science, 1989,
580–584.

[AB] N. Alon, R. Beigel. Lower bounds for approximations by low degree poly-
nomials over Zm, Proceedings of the 16th Annual IEEE Conference on
Computational Complexity, 2001, 184–187

[Ba] D. Barrington. Bounded-width polynomial size branching programs recog-
nize exactly those languages in NC1. Journal of Computer and System
Sciences 38 (1989), 150-164.

398 A. Gál and V. Trifonov

[BM] R. Beigel, A. Maciel. Upper and lower bounds for some depth-3 circuit
classes, in Proceedings of the 30th Symposium on Foundations of Computer
Science, 1989, 580–584.

[Bo05] J. Bourgain. Estimation of certain exponential sums arising in complexity
theory, C.R. Acad. Sci. Paris Ser. I 340 (2005) pp. 627-631.

[CGT] J.-Y. Cai, F. Green, and T. Thierauf. On the correlation of symmetric
functions. Mathematical Systems Theory 29 (1996), 245–258.

[FSS] M. Furst, J. Saxe, and M. Sipser. Parity, circuits, and the polynomial
hierarchy. Mathematical Systems Theory 17, 1984, 13–27.

[Gr99] F. Green. Exponential sums and circuits with single threshold gate and
mod-gates , Theory Computing Systems 32 (1999), 453-466.

[Gr02] F. Green. The Correlation between parity and quadratic polynomials mod
3, Proceedings of the 17th Annual IEEE Conference on Computational
Complexity, 2002, 65–72.

[GRS] F. Green, A. Roy, H. Straubing. Bounds on an exponential sum arising in
boolean circuit complexity, C.R. Acad. Sci. Paris Ser. I 340 (2005).

[Go] M. Goldmann. A note on the power of majority gates and modular gates,
Information Processing Letters 53 (1995), 321–327

[Gro] V. Grolmusz. A weight-size tradeoff for circuits with mod m gates, in Pro-
ceedings of the 26th ACM Symposium on the Theory of Computing, 1994,
68–74.

[GT] V. Grolmusz, G. Tardos. Lower bounds for MODp – MODm circuits, SIAM
J. Comput., 29, No. 4, 2000, 1209–1222.

[HMPST] A. Hajnal, W. Maass, P. Pudlák, M. Szegedy, and G. Turán. Threshold Cir-
cuits of bounded depth, Proceedings of the 28th Annual IEEE Symposium
on Foundations of Computer Science, 1987, 99-110

[HM] K. Hansen and P. Miltersen. Some meet-in-the-middle circuit lower bounds.
in Proceedings of MFCS, 2004, 334–345.

[Ha] J. H̊astad. Computational Limitations of Small-Depth Circuits. MIT Press,
1986.

[HG] J. H̊astad and M. Goldmann. On the power of small depth threshold cir-
cuits. Computational Complexity 1(2), 1991, 113–129.

[KP] M. Krause, P. Pudlák. On the computational power of depth 2 circuits with
threshold and modulo gates, in Proceedings of the 26th ACM Symposium
on the Theory of Computing, 1994, 48–57.

[LN] R. Lidl and H. Niederreiter. Introduction to Finite Fields and Their Appli-
cations, Cambridge University Press.

[RW] A. Razborov and A. Wigderson. nΩ(log n) Lower bounds on the size of
depth-3 threshold circuits with AND gates at the bottom. Information
Processing Letters 45, 1993, 303–307.

[Sm] R. Smolensky. Algebraic methods in the theory of lower bounds for boolean
circuit complexity, Proceedings of the 19th Annual ACM Symposium on
Theory of Computi ng, 1987, 77–82

[Sz] G. Szegö. Orthogonal Polynomials. American Mathematical Society, 1939.
[Yao85] A. Yao. Separating the polynomial hierarchy by oracles. Proceedings of the

26th Annual IEEE Symposium on Foundations of Computer Science, 1985,
1–10.

[Yao90] A. Yao. On ACC and threshold circuits. Proceedings of the 31th Annual
IEEE Symposium on Foundations of Computer Science, 1990, 619–627.

[Zb] S. Zabek. Sur la périodicité modulo m des suites de nombres n
k

. Ann.
Univ. Mariae Curie Sklodowska, A10 (1956), pp. 37–47.

Optimally Fast Data Gathering in Sensor

Networks

Luisa Gargano and Adele A. Rescigno

Dip. di Informatica ed Applicazioni, Universitá di Salerno, 84081 Baronissi, Italy

Abstract. Efficient data gathering in sensor network is an important
challenge. In this paper we address the problem of gathering sensed data
to the sink of a sensor network minimizing the time to complete the
process. We present optimal time data gathering algorithms for any type
of topology of a sensor network. Our results improve on existing approx-
imation algorithms. We approach the gathering problem by obtaining
optimal solutions to the collision-free paths coloring problem.

1 Introduction

In this paper we study the following path coloring problem.

Collision–free paths from s in G: Given a graph G = (V,E), a source
node s, and a set of colors {1, 2, · · · , |E||V |}, we want to establish in G for
each node u a path connecting s to u and to color the edges of such paths
so that: The colors of the edges of each fixed path are strictly increasing
when moving along the path away from s; the coloring is collision–free,
that is, no two edges sharing a common node are assigned the same color,
even on paths leading to two different nodes. The goal is to minimize
the value of the largest used color.

An example of an instance of the above problem is given in Fig. 1.

b

3

s

cbs

1 2

as

2
s b

ca
a) b)

Fig. 1. a) A graph G; b) Collision-free paths from s in G using 3 colors

Our interest in the above problem arose from a gathering problem in sensor
networks. The gathering problem and its relation to collision free path coloring
are described in the next section.

Gathering in sensor networks. Sensor networks constitute an important class
of emerging networked systems for applications in industries, transportation,
manufacturing, environmental oversight, safety and security. They are multi-hop

R. Královič and P. Urzyczyn (Eds.): MFCS 2006, LNCS 4162, pp. 399–411, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

400 L. Gargano and A.A. Rescigno

wireless networks formed by a large number of low-cost sensor nodes with limited
battery power and processing capacity. Because of the nonmobile nature of the
sensor nodes, as well as their finite energy resources (and therefore lifetime),
there is a bootstrap phase in which the nodes self-organize to form the network.
Information processing is allowed in a sensor network by merging sensing, signal
processing, and communication functions.

One of the most important communication primitives that has to be provided
by a sensor network is data gathering, i.e., information collected at sensors has
to be sent to a sink node, which is responsible for further processing for end-user
queries. Data gathering in sensor networks received much attention in the last
few years, c.f.r. the surveys [1,3]. Most of the researches in the area focused on
the problem of gathering reducing the energy consumption [5,7,12]. However, an
other important factor to consider in data gathering applications is the delay
of the gathering process. Indeed, the data collected by a node can frequently
change thus making essential that they are received by the sink as soon as it is
possible without being delayed by collisions [14].

Here we are concerned with efficiency limits of data gathering with respect
to the time. Performances will be valued considering the network model already
adopted in [6]. The sensor network is formally defined as a finite collection of
identical nodes; a special node s will represent the sink.

Following [6], we assume that each sensor is equipped with an half–duplex
interface, hence it cannot receive and transmit at the same time. Moreover, each
node is equipped with directional antennas allowing the transmission over a dis-
tance R. This implies that for any given node in the network, we can individuate
its neighbors as those sensors within distance R from it, that is, within its trans-
mission/interference range. The use of directional antennas allows to select the
neighbor to which the transmission is actually directed [6].

In this model, a collision happens at a node x if two or more of its neighbors
try to transmit to x at the same time. However, simultaneous transmissions
among pair of nodes may occur whenever the interference model is respected.
The time is slotted so that one–hop transmission of one data item consumes one
time slot, the network is assumed to be synchronous. Moreover, it is assumed
that the only traffic in the network is due to sensor data, thus data transmissions
can be completely scheduled.

Summarizing, the network can be represented by means of a graph where
nodes represent the sensors and an edge exists between two nodes if the two
sensors are in the range of each other; the collision–free data gathering problem
can be then stated as follows [14].

Data Gathering. Given a graph G = (V,E) and a sink s, for each
v ∈ V −{s}, schedule the multi-hop transmission of the data item sensed
at v to s so that the whole process is collision–free and the time when
the last data is received by s is minimized.

It follows that, under the above model, solving the collision–free path coloring
problem is equivalent to solve the above scheduling problem for gathering in
sensor networks. Indeed, let C denote the largest color used by an algorithm

Optimally Fast Data Gathering in Sensor Networks 401

for the collision–free path coloring problem, a gathering schedule with delay
C consists in scheduling a transmission from sensor y to x during slot t, with
1 ≤ t ≤ C, iff the algorithm generates a path (s, . . . , x, y, . . .) in which the edge
(x, y) is assigned color C − t+ 1.

Our results. In this paper we give optimal solutions for the collision–free path
problem for any connected graph G. Namely, we will prove the following main
result.

Theorem 1. For any connected graph G = (V,E) and s ∈ V , there exists
an efficient algorithm to obtain an optimal solution to the collision-free paths
problem from s in G.

By the considerations made in the above section and Theorem 1 we have

Corollary 1. Let G = (V,E) be a graph representing any sensor network and
let s ∈ V be the sink. There exists an efficient algorithm to obtain an optimal
solution to the data gathering problem to s in G.

Related work. Data gathering is a fundamental issue in the context of sensor
networks and several efficient data gathering algorithms have been proposed
[1,3]. Most of them deal with the problem of maximize the lifetime of the sensor
network through topology aware placement [5], efficient data flow [7], or data
aggregation (when allowed by the typology of sensed data) [8].

The problem of minimizing the time, needed to complete data gathering, has
also been recently recognized and studied. The work which is most related to
the problem we consider in this paper is [6]. The authors of [6] use the same
model for the sensor network adopted in this paper. The main difference with
our work is that they deal with the case in which a node can have any number of
data packet to be delivered to the sink. Under this assumption, [6] gives optimal
collision–free strategies for trees and presents an approximation algorithm with
performance ratio 2 for general networks. In the model of [6] we obtain optimal
algorithms for any type of networks in the gathering hypothesis that each node
has one packet of sensed data to deliver.

Another closely related work is [14]. It studies collision-free data gathering,
delivering one data packet from each node to the sink. The difference with the
model in [6] is the assumption of the possibility to have multiple channels be-
tween adjacent nodes. By adopting this model an approximation algorithm with
performance ratio 2 is obtained.

In [2] gathering of data packets to the sink is considered under the condition
that when a node transmits one data packet, all the nodes within a fixed distance
dT can receive while nodes within distance dI (dI ≥ dT) cannot listen to other
transmissions due to interference (in our paper dI = dT and a transmitting
node can choose the neighbor to which transmit). Under the described model,
lower bounds on the time to gather are given and NP-hardness is proved. An
approximation algorithm with approximation factor 4 is also presented.

Papers [10,13] consider the time needed to gather in conjunction with the
energy spent to complete the process. They present schemes that attempt to
optimize the energy ×delay cost function.

402 L. Gargano and A.A. Rescigno

Finally, we notice that several papers deal with broadcasting in wireless net-
works [11], however this problem is not the reverse of data gathering whereby
different data packets are gathered to the sink.

Paper Overview. The rest of the paper is organized as follows: In Section 2 we
formally describe the collision-free path coloring problem. Results for trees are
reported in Section 3. Sections 4 and 5 present the proposed optimal solutions
in case of biconnected graphs and general connected graphs, respectively.

2 Collision–Free Path Coloring: Problem Statement

Let G = (V,E) be a weighted connected graph. The node s ∈ V is a special
node that will be called the source. Each node u ∈ V − {s} is associated with
an integer weight ru that will be called the request of u. The set r = {ru | u ∈
V − {s}} will represent the set of requests of the nodes in V .

Let P be any set of paths in G from s to (not necessarily all distinct) nodes
in V . A coloring of P is an assignment of colors to the edges of the paths in P .
Colors will be chosen in the set of integers {1, 2, . . . |E||V |}. Namely, a coloring
of a path p ∈ P is an assignment of a color L(e,p) to each edge e of p. Notice
that any edge e ∈ E(G) can belong to zero, one or more paths in P .

Definition 1. A collision–free (CF) coloring L of a set of paths P satisfies

1) for any path p = (e1, e2, . . . , eh) ∈ P, the coloring of the edges in p is strictly
increasing, that is L(e1,p) < L(e2,p) < · · · < L(eh,p),

2) for any v ∈ V , edges in Ev = {(u, v) ∈ E | (u, v) is an edge of a path in P},
get pairwise different colors, that is, for any p,p′ ∈ P and (u, v), (u′, v) ∈ Ev

(possibly, u = u′ or p = p′) it holds L((u, v),p) 	= L((u′, v),p′).

Definition 2. An instance of CF coloring is a triple (G, r, s) where G is the
graph, s is the source, and r is the set of requests.

A solution for (G, r, s) is a pair (P , L) where: P is a set of ru paths (not
necessarily distinct) from s to u in G, for any u ∈ V − {s}; L is a CF–coloring
of P. An optimal solution is a solution that minimizes the largest color (i.e.
integer) assigned to any edge.

We denote by T ∗(G, r, s) the value attained by the optimal solution (P∗, L∗) for
(G, r, s)1.

Example. Let G be a ring with nodes {0, 1, 2, 3}, let s = 0, and r1 = 4, r3 =
1, r2 = 0. An optimal solution for (G, r, 0) is the pair (P∗, L∗) where:
P∗ = {p3 = (0, 3),p0

1 = (0, 3, 2, 1),pi
1 = (0, 1), for i = 1, 2, 3} and L∗ is such

that L∗((0, 3),p3) = 4, L∗((0, 3),p0
1) = 2, L∗((3, 2),p0

1) = 3, L∗((2, 1),p0
1) = 4,

L∗((0, 1),pi
1) = 2i− 1, for i = 1, 2, 3.

1 Notice that minimizing the largest color is equivalent to minimize the number of
used colors. Indeed, we can limit ourselves to consider solutions where all colors in
{1, · · · , T ∗} are used.

Optimally Fast Data Gathering in Sensor Networks 403

The following lower bounds on the optimal number of colors are given in [6].

Theorem 2. [6] Given any instance (G, r, s),
i) T ∗(G, r, s) ≥

∑
u∈V−{s} ru;

ii) T ∗(G, r, s) ≥ maxv∈V−{s} d(s, v) + rv − 1 + 2
∑

u∈Vv
ru,

where d(s, v) is the length of a shortest path between s and v in G and Vv

is the set of all nodes different from v that result disconnected from s if v is
removed from G together with all its incident edges.

3 Trees

In this section we present an algorithm to solve the coloring problem for an
instance (T, r, s) on a tree T , where the requests of the nodes are arbitrary
positive integers, that is, ru ≥ 1 for each u ∈ V (T)−{s}. Such an algorithm was
proposed in [6] (including the case ru = 0) and obtains an optimal solution. We
restate it here in the case of positive requests since it will be used to derive our
optimal coloring algorithm for general graphs.

3.1 Notation

Definition 3. Let T be any tree. We shall denote by |T | the size of T in terms
of the number of requests of the nodes in T , that is |T | =

∑
u∈V (T) ru.

Obviously, if ru = 1 for each u ∈ V (T) then |T | is the number of nodes in T .

Definition 4. Let T be a tree rooted at node s, and let T1, T2, · · · , Tm, m ≥ 2,
be the subtrees of T rooted at the children of s in T . W.l.o.g. we assume that
|T1| ≥ |Ti| for i 	= 1. The tree T is called balanced , if |T1| ≤ |T2|+ · · ·+ |Tm|+1.

In the following we shall use the following terminology.

– s serves a node u ∈ V − {s}: if a path from s to u is established together
with its coloring;

– A node u ∈ V − {s} has been satisfied: if ru paths from s to u have been
established together with their colorings;

– s serves subtree Ti: s serves a node u in Ti which is the furthest among all
nodes in Ti which are not jet satisfied.

– a subtree Ti has been satisfied: if each node in Ti has been satisfied.

Definition 5. Let pu = (e1, · · · , eh) be the path in a tree T from s to a node u.
For any integer k ≥ 1, the k-increasing coloring of pu is the coloring L̂ of the
edges of pu such that L̂(ej ,pu) = k + j − 1 for j = 1, . . . , h.

An increasing coloring of pu is a k-increasing coloring of pu for some k ≥ 1.

404 L. Gargano and A.A. Rescigno

3.2 The CF-Coloring Algorithm on Trees

Unless otherwise stated we assume in the following that T1, T2, · · · , Tm are the
subtrees of T rooted at the children of s.

The CF coloring algorithm is given in Fig. 2. The feasibility and the optimality
of the solution given by the algorithm TREE-coloring were proved in [6] for
general sets of requests. However a closed form of the optimal value was not
given in [6]. We derive some (novel) properties of increasing colorings of trees
and the exact value of the solution in the cases of our interest. Such results will
be used to prove the optimality of the algorithm for general graphs.

Lemma 1. Let u be any node with u 	= s. The largest color assigned to the edge
(f, u), from the father of u in T to u is larger than any of the colors assigned to
the edges in the subtree of T rooted at u.

Corollary 2. The largest color required by the algorithm TREE-coloring is al-
ways attained by one of the colors assigned to an edge from the root s to one of
its neighbors.

Theorem 3. Let ru ≥ 1 for each u ∈ V − {s}. The optimal solution returned
by the algorithm TREE-coloring on T has maximum color value equal to

T ∗(T, r, s) =
{∑m

i=1 |Ti| if T is balanced
2|T1| − 1 otherwise

(1)

TREE-coloring (T, r, s)
• Set P = ∅, k = 1, and g = 0 [s served Tg at the previous step, 0 means none]

Set R = {1, 2, · · · , m} [R is the set of indices of subtrees not yet satisfied]
• while R
= ∅

Execute the following Step k
if there exists Ti, with j
= g, that is not satisfied then

- Let Ti, i
= g, be the one with the largest number of remaining requests.
- s serves Ti; let u be the node which is served.

- Color, using the k-increasing coloring L̂, the path pu from s to u in T ,
- Put P = P ∪ {pu}.
- If Ti is satisfied then put R = R− {i} .
- Set g = i

else [s remains idle] Set g = 0.
Put k = k + 1.

• return (P , L̂)

Fig. 2. The tree coloring algorithm

4 Biconnected Graphs

Consider a biconnected graph G = (V,E). We shall first prove that it is always
possible to find a spanning tree T rooted at the source s which is balanced (see

Optimally Fast Data Gathering in Sensor Networks 405

Definition 4), whenever r = {ru = 1 | u ∈ V − {s}}. It will then be sufficient to
run the algorithm TREE-coloring, given in Section 3, on the balanced spanning
tree T to get a solution for (G, r, s).

We recall that G is biconnected if it does not contain an articulation point,
that is, a node whose removal along with its incident edges disconnects the
graph [4].

Lemma 2. Let G be a biconnected graph. If ru = 1 for each u ∈ V − {s}, then
there exists a balanced spanning tree of G rooted in v, for any v ∈ V .

Proof. Let T be a spanning tree of G rooted in v. If T is not balanced, let
T1, · · · , Tm be the subtrees of v in T and w.l.o.g. suppose that |T1| is the largest.
By Definition 4 we have |T1| >

∑m
i=2 |Ti|+ 1.

We modify T in order to get a balanced spanning tree of G. To this aim, we
move one by one vertices of T1 toward other subtrees. This is done by the moving
step given in Fig. 3. Such a procedure, that decreases by 1 the size of the largest
subtree, is iterated until the resulting spanning tree is balanced. �
Applying the TREE-coloring algorithm to the balanced spanning tree of G of
Lemma 2, we get a CF–coloring for the instance (T, r, s). By Theorems 3 and 2,
we have the following result.

Theorem 4. Let G = (V,E) be a biconnected graph, let s ∈ V be the source,
and r = {ru = 1 | u ∈ V − {s}} be the set of requests. There exists a coloring
algorithm that returns an optimal solution for the instance (G, r, s). The largest
assigned color is T ∗(G, r, s) = |V | − 1.

Moving step:[Move one node from T1 to some Ti, with i
= 1]
Let x be a node of maximum level in T1 chosen among those such that there
exists (x, y) ∈ E with y ∈ V (Ti) for some i
= 1.
1. while x is an internal node:

Let x′ be a descendant of x in T1 having a neighbor z outside
the subtree rooted in x
[Since x is not an articulation point, such a node must exist]
Update T1 by moving x′ as child of z;
[This move strictly decreases the size of the subtree rooted in x]

2. [Here x is a leaf]
Update T by moving x from T1 to Ti as child of y.

Fig. 3. The Moving Step

5 Connected Graphs

Let G = (V,E) be a connected graph. Fix a node s and assume ru = 1 for each
u ∈ V − {s}. We show how to obtain an optimal solution for G thus completing
the proof of Theorem 1.

Our algorithm will be based on the individuation of the articulation points and
the biconnected components (e.g maximal biconnected subgraphs) and bridges

406 L. Gargano and A.A. Rescigno

(or cut–edges) of the graph. It is well known that this can be achieved by a
depth-first-search of the graph [4]. Denote by A the set of articulation points
belonging to any biconnected component or bridge of G that also contains s.
For each a ∈ A, let Va denote the set of nodes u ∈ V such that the removal of
a together with its incident edges disconnects u and s. We can construct now a
new graph G′ obtained from G by compressing each set Va, with a ∈ A, into the
node a.

Definition 6. The compressed graph G′ of G is the weighted connected graph
obtained from G by deleting, for each a ∈ A, all the nodes in Va; the node a will
be called a supernode of G′ and is assigned weight r′a = |Va ∪ {a}|. Each other
node u ∈ V (G′)−A is assigned weight r′u = 1.

s

 c

d

b

a s

d
a

b

 c

b)a)

Fig. 4. a) A graph G with A = {a, b, c, d}. b) The compressed graph G′ of G; a, b, c, d
are supernode; ra = rb = 4, rc = 2, rd = 5, ru = 1 for u
∈ A.

In case we are able to construct a spanning tree of G′ which is balanced with
respect to the weights r′v, then we can obtain an optimal solution for (G, r, s).

Lemma 3. If G′ admits a spanning tree rooted at s which is balanced with re-
spect to the weights r′v then one can obtain an optimal solution for (G, r, s).

Unfortunately, a balanced spanning tree of G′ does not always exists as shown
in Fig. 5 b). On the positive side, we can efficiently obtain an optimal solution
also in the absence of a balanced spanning tree. Indeed, we will give an optimal
algorithm in case we do not have a balanced spanning tree of G′. To this aim we
construct an ”almost” balanced spanning tree of G′.

1. Start with a shortest path tree S of G′ rooted at s.
2. Let the subtrees of s in S be S1, . . . , Sm with |S1| ≥ |Si|, for i = 2, . . . ,m,

and let v1 be the root of S1.
3. if (s, v1) is a bridge then Output S.
4. else [S1 is in the same biconnected component of G′ as some Si, i 	= 1]

- while |S1| >
∑m

j=2 |Sj |+ 1,
update S according to the moving procedure described in the
proof of Lemma 2.
[Notice that a node is only moved inside one component of G′]

-[Now |S1| ≤
∑m

j=2 |Sj |+ 1] Output S.

Optimally Fast Data Gathering in Sensor Networks 407

If the tree S resulting from the above construction is balanced, then we can
apply Lemma 3 and stop. Otherwise, we distinguish two cases according to
whether edge (s, v1) is a bridge or not.

Case 1: The edge (s, v1) is a bridge
By construction of G′, node v1 is a supernode in G′. We substitute in S each
supernode a ∈ A ⊆ V (G′) (having request equal to |Va ∪ {a}| – see Definition
6) with a tree rooted at a and spanning all the nodes in Va ∪ {a} (such nodes
have now request 1 each). Applying TREE-coloring algorithm of Section 3 to
the resulting spanning tree of G, by Theorem 3 we get a solution using 2|S1|− 1
colors. On the other hand, since (s, v1) is a bridge (also in G), by ii) of Theorem
2 we get that 2|S1| − 1 colors are also necessary. Hence, the solution is optimal.

Case 2: The edge (s, v1) is not a bridge
In this case the returned tree S is not balanced and it has |S1| ≤

∑m
j=2 |Sj |+ 1.

Hence, for some i 	= 1
|Si| >

∑
j �=i

|Sj |+ 1.

Notice that (all nodes of) Si must belong to the same biconnected component,
say B, of G′ as S1. Indeed, any S� not belonging to B can not violate the
balancing since |S�| ≤

∑
j �=� |Sj | + 1 before the construction and, during the

construction, only nodes from S1 are moved within B, and therefore not to S�.
Hence both |S�| and

∑
j �=� |Sj |+1 remain identical at the end of the construction.

Let w be the last moved node (from S1 to Si) and suppose we have moved w
from having father v ∈ V (S1) to become a child of node u in Si. Let us augment
the tree T with the edge (v, w). We call the resulting graph a spanning tree
of S augmented at w and denote it by SA. For sake of simplicity we will keep
addressing S1, · · ·Sm as subtrees of SA even if S1 is now augmented with w
(which belongs now to both S1 and Si). The following facts are immediate.

Fact 1. If the result of the above construction is a spanning tree augmented at
w, then w is a supernode (i.e. has rw > 1).

Fact 2. If SA is a spanning tree augmented at w, then the path to w that uses
only nodes in S1 is the shortest path in G′ from s to w.

b)a)

w
s

w

c)

s

w

s

Fig. 5. a) Graph G; b) The compressed graph G′ of G; c) A spanning tree SA of G′

augmented at w

408 L. Gargano and A.A. Rescigno

Essentially in the augmented spanning tree, one makes node w be reachable
using two node-disjoint paths in SA; both paths will be used to serve the r′w
requests of w. We need now to decide how many of the requests of w will be
routed through S1 and how many should be routed through Si. To this aim, we
split the r′w requests of w between S1 and Si as follows. Put

ri
w = �

∑
u∈V (T1),u�=w r

′
u + r′w −

∑
u∈V (Ti),u�=w r

′
u

2
� and r1w = r′w − ri

w.

We assign request r1w to w in S1 and ri
w requests to w in Si (here we mean

that we want r1w paths reach w passing through nodes in S1); all the request of
the other nodes remain unchanged.

Recalling that |Sj | is the size (in terms of requests) of subtree Sj in SA,

|Sj | =
{∑

u∈V (Sj),u�=w r
′
u + rj

w if j = 1 or j = i,∑
u∈V (Sj) r

′
u otherwise.

It can be easily verified that SA is balanced according to Definition 4.
A balanced augmented spanning tree TA of G rooted at s can be easily derived

from SA by rooting in each supernode a ∈ A ⊆ V (G′) (see Definition 6) a
spanning tree T (a) of the subgraph of G induced by the vertices in Va ∪ {a}.
In particular, by Fact 1, w is the root of tree T (w) in the balanced augmented
spanning tree TA of G.

The Coloring Algorithm
We give now a coloring algorithm on the balanced augmented spanning tree TA

of G to obtain an optimal solution for (G, r, s).
For sake of simplicity we shall refer to T1, T2, · · · , Tm as subtrees of TA even

if two of them share the node w and subtree T (w) rooted in it; w.l.o.g. in the
following we assume them to be T1 and T2. As before, vi denotes the root of Ti,
for i = 1, . . . ,m. By the definition of TA there are two paths from s to each node
in T (w), one going through T1 and the other going through v2 and nodes in T2.
Furthermore, denote by �jw the length of the path from vj to w in Tj , j = 1, 2;
by Fact 2, we have �1w ≤ �2w.

Definition 7. Define

T 1(w) =
{
{the r1w nodes of higher level in T (w)} if �2w − �1w is odd,
{the r1w − 1 nodes of higher level in T (w)} ∪ {w} otherwise,

T 2(w) = T (w)− T 1(w).

For the description of the algorithm, we introduce the following terminology.

• s serves T i(w), i = 1, 2: s serves the tree T i(w) using the path from s going
through Ti.

• Ti is the largest subtree: Ti is the subtree of TA with the largest number of
remaining requests.

• s is active at step k: s serves some subtree Ti during step k.

Optimally Fast Data Gathering in Sensor Networks 409

Since all the paths from the source s to the nodes in T (w) have to go through
node w, the order in which source s serves T 1(w) and T 2(w) is important to
color these paths in a collision–free way. In the algorithm AUGMENTED-TREE-
coloring we present below, the source s first serves all the nodes in T 1(w) and
then serves the nodes in T 2(w). Hence we need to compute

t = the step at which the source s can start to serve T 2(w) after that it has
served all the r1w nodes in T 1(w).

To this aim, we assume to use the increasing coloring defined in Definition 5,
to get a CF–coloring of the edges incident on w. Since s will serve alternatively
T 1(w) and same other Ti, 2r1w − 1 steps are necessary to s to serve the r1w nodes
in T 1(w). By Definition 7, if �2w − �1w is even then the last of the r1w paths to
T 1(w) stops at w; hence, the largest color assigned by the increasing coloring to
the edges incident on w is 2r1w−1+ �1w. Otherwise, if �2w− �1w is odd then the last
of the r1w paths to nodes in T 1(w) stops to a child of w; hence, the largest color
assigned by the increasing coloring to the edges incident on w is 2r1w−1+�1w +1.
If we define d as

d =
{

2r1w + 1 + �1w − �2w if �2w − �1w is odd,
2r1w + �1w − �2w otherwise, (2)

we have that if d ≥ 2 then t = d; if d ≤ 0 then the first useful step to start to
serve nodes in T 2(w) is 2. Hence, t = max{2, d} and by (2) t is even and t ≤ 2r1w.

Finally, we denote by p2 the path in T2 from v2 to the last served node x in
T 2(w) and by �2 be the length of p2; notice that by Definition 7 node x is either
w or a child of w depending on whether w ∈ T 2(w) or not.

Definition 8. Define critical nodes of T2 the first � �2
2 � nodes on the path p2.

Subtree T2 is called locked during the execution of the algorithm, if critical nodes
of T2 and nodes in T 2(w) are the only remaining nodes to be satisfied in T2.

We can now formally describe the algorithm; it consists of a sequence of three
phases, PHASE-1, PHASE-2, and PHASE-3, and is given in Fig. 6.

The following Lemmas allow to prove feasibility and optimality of the solution
obtained by the AUGMENTED-TREE-coloring algorithm. This, together with
the lower bound in Theorem 2, proves Theorem 1.

Lemma 4. Let (P , L̂) be the solution for (G, r, s) returned by AUGMENTED-
TREE-coloring algorithm. The increasing coloring L̂ is a CF–coloring of P.

Lemma 5. The largest color assigned at the end of algorithm AUGMENTED-
TREE-coloring is equal to max{|V | − 1, d(s, w) + 2|T (w)| − 1}, where d(s, w) is
the length of a shortest path connecting s and w in G.

410 L. Gargano and A.A. Rescigno

AUGMENTED-TREE-coloring (T A, r, s)
• Compute t and set P = ∅.
• [PHASE-1]

for k = 1 to t− 1 do
Step k

if k is odd then s serves T 1(w).
else

if there exists a Ti that is not satisfied, with i
= 1 and i
= 2 if T2 is locked
then s serves the largest Ti, with i
= 1 and with i
= 2 if T2 is locked;
else s remains idle

if s is not idle then
Let u be the served node, where u is not a critical node of T2 if T2 is served.

Color, using the k-increasing coloring L̂, the obtained path pu,
Put P = P ∪ {pu}.

• [PHASE-2]
for k = t to 2r1

w do
Step k

if k is odd then s serves T 1(w).
else s serves the largest Ti, with i
= 1.
Let u be the node which is served.

Color, using the k-increasing coloring L̂, the obtained path pu.
Put P = P ∪ {pu}.

• [PHASE-3]
Set g = 0.
while k > 2r1

w and s has to serve do
Step k

if there exists a Ti, with i
= g that is not satisfied then
- s serves the largest subtree Ti, with i
= g.
- Let u be the node which is served.

- Color, using the k-increasing coloring L̂, the obtained path pu.
- Put P = P ∪ {pu} and g = i.

else s remains idle; set g = 0.
k=k+1.

• return (P , L̂)

Fig. 6. The augmented tree coloring algorithm

6 Conclusions

In this paper, we have given an optimal solution to the collision-free path coloring
problem in any graph. This translates into optimal time gathering algorithms
for any type of topology of a sensor network. Our results improve on existing
approximation algorithms. In particular, we have shown that if the topology of
the network is biconnected then it is always possible to construct a particular
rooted spanning tree, called balanced, that allows to obtain paths whose edges
can be optimally colored. Our results refer to the gathering of one data packet
from each node; as future work, an interesting problem is to obtain optimal

Optimally Fast Data Gathering in Sensor Networks 411

solutions to the gathering problem when each node can hold more than one
packet to be delivered to the sink.

The complexity of the gathering problem in the most general case in which
some nodes can also have no packets to deliver is an open issue. We believe gath-
ering in this general setting is an NP-complete problem; it would be interesting
to prove it and, eventually, give a PTAS for the problem.

References

1. Akyildiz I.F., Su W., Sankarasubramaniam Y., Cayirci E. : Wireless sensor net-
works:a survey. Computer Networks, 38 (2002) 393–422.

2. Bermond J.-C., Galtier J., Klasing R., Morales N., Perennes S.: Hardness and
approximation of gathering in static radio networks. Proceedings FAWN06 (2006).

3. Chong C-Y, Kumar S.P.: Sensor networks:Evolution, opportunities, and challenges.
Proceedings of the IEEE ,91 (8) (2003) 1247-1256.

4. Cormen T.H., Leiserson C.E., Rivest R.L.: Introduction to algorithms. Mc Graw
Hill 1990.

5. Dasgupta K., Kukreja M., Kalpakis K.: Topology-aware placement and role as-
signment for energy-efficient information gathering in sensor networks. Proceedings
IEEE ISCC’03 (2003) 341-348.

6. Florens C., Franceschetti M.,McEliece R.J. Lower Bounds on Data Collection Time
in Sensory Networks. IEEE Journal on Selected Areas in Communications, 22 (6)
(2004) 1110–1120.

7. Ho B., Prasanna V.K.: Constrained flow optimization with application to data
gathering in sensor networks. Proceedings Proceedings of ALGOSENSORS 2004,
LNCS 3121 (2004) 187-200.

8. Krishnamachari B., Estrin D., Wicker S.: Modeling data-centric routing in wireless
sensor networks. Proceedings of IEEE INFOCOM 2002, (2002).

9. Kahn J.M.,Katz R.H., Pister K.S.J.: Mobile Networking for Smart Dust. Proceed-
ings of ACM MobiCom 99, (1999).

10. Lindsey S., Raghavendra C., Sivalingam K.M.: Data gathering algorithms in sensor
networks using energy metrics. IEEE Transactions on Parallel and Distributed
Systems 13 (9) (2002) 924-935.

11. Pelc A.: Broadcasting in radio networks . Handbook of Wireless Networks and
Mobile Computing, I. Stojmenovic, Ed. John Wiley and Sons, Inc.,(2002) 509-528.

12. Shen C.,Srisathapornphat C., Jaikaeo C.: Sensor information networking architec-
ture and applications. IEEE Personal Communications, (2001) 52-59.

13. Yu Y., Krishnamachari B., Prasanna V.: Energy-latency tradeoffs for data gather-
ing in wireless sensor networks. Proceedings of IEEE INFOCOM 2004, (2004).

14. Zhu X., Tang B., Gupta H.: Delay efficient data gathering in sensor networks.
Proceedings of MSN 2005, LNCS 3794 (2005) 380-389.

Magic Numbers in the State Hierarchy

of Finite Automata�

Viliam Geffert

Department of Computer Science – P. J. Šafárik University
Jesenná 5 – 04001 Košice – Slovakia

geffert@upjs.sk

Abstract. A number d is magic for n, if there is no regular language
for which an optimal nondeterministic finite state automaton (nfa) uses
exactly n states, but for which the optimal deterministic finite state
automaton (dfa) uses exactly d states. We show that, in the case of
unary regular languages, the state hierarchy of dfa’s, for the family of
languages accepted by n-state nfa’s, is not contiguous. There are some
“holes” in the hierarchy, i.e., magic numbers in between values that are
not magic. This solves, for automata with a single letter input alphabet,
an open problem of existence of magic numbers [7].

As an additional bonus, we get a universal lower bound for the con-
version of unary d-state dfa’s into equivalent nfa’s: nondeterminism does
not reduce the number of states below log2 d, not even in the best case.

Keywords: Descriptional complexity, finite-state automata.

1 Introduction and Preliminaries

Automata theory is one of the oldest topics in theoretical computer science,
and also a popular first step to study this field. In spite of that, some impor-
tant problems are still open. The most famous problem is whether a two-way
nondeterministic finite state automaton with n states can be converted into an
equivalent two-way deterministic automaton using only a polynomial number of
states [14]. (See also [4].)

At first glance, the situation is clear for one-way automata. By the classical
subset construction [13], we know that a nondeterministic finite state automaton
(nfa) with n states can be replaced by an equivalent deterministic finite state
automaton (dfa) with d states, such that n ≤ d ≤ 2n. In the worst case, d = 2n.
(See [10,12].) On the other hand, we also know languages for which nondeter-
minism does not help at all, that is, d = n. Thus, a natural question, raised for
the first time by Iwama et al. [7], is the following:

Is it possible, for a given number n, to find a number d satisfying n ≤
d ≤ 2n, such that no optimal dfa using exactly d states can be simulated
by any optimal nfa using exactly n states?

� This work was supported by the Science and Technology Assistance Agency under
contract APVT-20-004104, and by the Slovak Grant Agency for Science (VEGA)
under contract “Combinatorial Structures and Complexity of Algorithms.”

R. Královič and P. Urzyczyn (Eds.): MFCS 2006, LNCS 4162, pp. 412–423, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Magic Numbers in the State Hierarchy of Finite Automata 413

In [8], such numbers were named magic numbers, as numbers for which non-
determinism is especially weak. Adopting this terminology, we say that d is a
muggle number for n, if it is not magic for n, i.e., if at least one optimal dfa
using exactly d states can be simulated by an optimal nfa using exactly n states.
A negative answer to the above question would show that all numbers between
n and 2n are muggle numbers, without leaving any “holes” in the hierarchy.

The above problem is easier to solve, if the size of the input alphabet grows
in n [9]: For each n and d, such that n ≤ d ≤ 2n, there exists an optimal n-
state nfa for which the optimal dfa uses exactly d states. However, the size of
the input alphabet for these automata is very large, namely, 2n−1 +1. In the
second part of [9], the input alphabet is reduced to 2n. However, this is shown
by a “non-constructive” argument, proving the mere existence without giving
an explicit exhibition of witness languages. Finally, in [3], the complete state
hierarchy is shown by a simpler “constructive” proof, displaying explicitly the
witness automata and, at the same time, reducing the alphabet size to n+2.

In chronological order, the first work concerning this problem [7] was devoted
to binary regular languages. It was shown, for each n, that values d = 2n−2k and
d = 2n−2k−1, where 0 ≤ k ≤ n/2−2, are not magic. Later, in [8], this has been
extended for d = 2n−k, where 5 ≤ k ≤ 2n−2. In [9], new muggle numbers have
been found at the opposite end, namely, for n ≤ d ≤ 1+n·(n+1)/2. Finally, in [3],
a superpolynomial number of muggle numbers has been presented, namely, each
d satisfying n ≤ d ≤ eΘ(n1/3·ln2/3 n) is muggle. However, the completeness of the
state hierarchy for the binary regular languages is an open problem.

In this paper, we shall focus our attention on the state hierarchy of unary
regular languages, i.e., on automata with a single letter input alphabet. Unary
(tally) languages play an important role in theoretical computer science, as lan-
guages with a very low information content. (See, e.g., [1,2,4,11].)

For unary regular languages, we present an almost exact approximation of
Gmax(n) and Gmin(n), the largest and the smallest muggle numbers for n, re-
spectively. Then we prove the existence of magic numbers between Gmin(n)
and Gmax(n). Thus, in the unary case, the state hierarchy of dfa’s, for the fam-
ily of languages accepted by n-state nfa’s, is not contiguous. We shall actually
show that most of the numbers between Gmin(n) and Gmax(n) is magic. (A typical
structure of the state hierarchy is shown in Fig. 2.)

In order to prove the existence of magic numbers for unary automata, we
need to revise some of their properties first. In 1986, Chrobak [2] introduced a
new normal form for unary nfa’s, and used this normal form to show that the
cost of eliminating nondeterminism in the unary case is at most F (n)+O(n2) ≤
e(1+o(1))·√n·ln n states, where F (n) denotes the Landau’s function. (For exact
definition, see (1) below.) This is better than the standard subset construction.

We need to introduce a more refined version of the Chrobak normal form.
This will reduce the cost of eliminating nondeterminism to F (n−1) + (n2−2)
states. Such improvement seems to be marginal at first glance. However, in
Sect. 4, we shall present an optimal nfa using exactly n states, such that its
optimal deterministic counterpart uses exactly F (n−1) + kn states, for some

414 V. Geffert

kn ∈ {0, . . . , n2−2}. Thus, the new upper bound is almost equal to the actually
existing optimum. A potential difference of at most n2−2 states is negligible,
compared with the growth rate of F (n), which is e(1+o(1))·√n·lnn, by (2) below.

Then we shall derive some properties of unary automata that are determinis-
tic. Among others, an optimal dfa consisting of an initial segment of length s and
a loop of length � cannot be simulated by a dfa using a shorter initial segment
or a loop of length �′ that factorizes into a “simpler” product of prime powers
than does �, even if the new machine uses far more states in total.

After that, using the conflict between the optimal dfa’s and the revised Chrobak
normal form for nfa’s, we can prove the existence of magic numbers. As a sim-
ple consequence, we shall also get a new universal lower bound for the conversion
of unary d-state dfa’s into equivalent nfa’s: nondeterminism does not reduce the
number of states below ln2 d, not even in the best case.

We first briefly recall some basic definitions and notation on finite state au-
tomata. For more details, we refer the reader to [6].

Two automata are equivalent, if they accept the same language. An nfa (dfa)
M is optimal, if no nfa (dfa, respectively) with a fewer number of states is
equivalent to M.

For simplicity, a single-step transition from a state q to q′ is presented as an
edge q→ q′. A path reading a string 1

u from the input (thus, consisting of u
consecutive edges) can be displayed in a more compact form q 1u−−→ q′. Finally,
q�� q′ indicates reachability by a path of any length (including zero, for q = q′).

The factorization of integers will also be important in the subsequent consid-
erations. For a more detailed exposition, the reader is referred to [5].

Let X be a finite multiset of positive integers, with possible repetition of
elements. Then lcmX denotes the least common multiple of all elements in X
and gcdX the greatest common divisor of these elements.

The Fundamental Theorem of Arithmetic states that each � > 1 can be
uniquely factorized in the form � = pα1

i1
·pα2

i2
· . . . ·pαe

ie
, where pα1

i1
, pα2

i2
, . . . , pαe

ie
are

some prime powers. The set of prime powers used in the factorization of � will
be denoted by ϕ(�) = {pα1

i1
, pα2

i2
, . . . , pαe

ie
}. Clearly, � =

∏
pα∈ϕ(�) p

α. We shall also
need a cost of factorization, defined by

Φ(�) =
∑

pα∈ϕ(�) p
α .

By definition, ϕ(1) = Ø, which gives Φ(1) = 0.

Lemma 1. For each � ≥ 1, Φ(�) ≤ �. If, moreover, � divides some �′, then
Φ(�) ≤ Φ(�′). For each �1, �2, . . . , �m, Φ(lcm{�1, �2, . . . , �m}) ≤

∑m
i=1 Φ(�i).

The following function will play a crucial role in our considerations. Let

F (n) = max{lcm{�1, �2, . . . , �m} : �1+�2+· · ·+�m = n} . (1)

This function, giving the largest least common multiple among all partitions of n,
is known as Landau’s function. The best known approximation of F (n) is due

Magic Numbers in the State Hierarchy of Finite Automata 415

 q̃2

 (

)

 *

 +
��,

��-

 (((((

��.��/

 (
 q̃1()

)

qS

 ((
00 1

�
�
�2

�
�
�
��3

��,
 *

(

0
!

!

" "

Q1Q0

Q2 Q∞

 qS = q̃1

 (

)

 *

 +
��,

��-

 (((

��.��/

0
! "

Q1 Q∞

�̃1

�̃1
(

�̃2

"

"

 qS

 (

)

 *

 +
��,

��- Q1

�̃1

(" �
��

��4
11

q̃1

Case (a):

Case (b):

Cases (c1), (c2): qS

 (

)

 *

 +
��,

��-

("
!

Fig. 1. Fixing cardinal loops and cardinal states. Partitioning of the state set into
Q0 ∪Q1 ∪ . . .∪Qm ∪Q∞ is represented by dotted territorial boundaries, cardinal loops
are marked by wavy lines twining around the edges, and cardinal states by filled bullets.
(For details, see Def. 2.)

to Szalay [15]: F (n) = e
√

n·(ln n+ln ln n−1+(ln ln n−2+o(1))/ ln n). For our purposes,
this approximation can be simplified as follows:

F (n) = e(1+o(1))·√n·ln n . (2)

2 Unary Nondeterministic Automata

Definition 2 (Cardinal loops and states). Let M be a unary nfa using n
states. Fix some loops in M, together with some states along these loops, as
cardinal, in the following way. (There are several cases, illustrated by Fig. 1.)
Case (a). There is no loop qS 1α−−→ qS beginning and ending in the initial state qS,
for no α > 0. That is, qS does not belong to any strongly connected component.
Partition the state set into Q = Q0 ∪Q1 ∪ . . . ∪Qm ∪Q∞ as follows:
Q0 contains all states that are reachable from qS, but not reachable by compu-

tations passing through some loops. This implies that states in Q0 do not
belong to any strongly connected component, and that qS ∈ Q0.

Qi, for i = 1, . . . ,m, contains all states forming the ith strongly connected
component in Q, reachable directly from Q0. That is, if q ∈ Qi, then (i) all
states q′ with paths q�� q′�� q are included in Qi, and (ii) there must
exist a path qS �� q consisting only of states in Q0 ∪Qi.

416 V. Geffert

Q∞ contains all remaining states, i.e., states either not reachable at all, or
reachable only by computations passing through some states in

⋃m
i=1Qi.

Now, for i = 1, . . . ,m, let �̃i denote the length of the shortest loop in Qi. For
each Qi, fix one such loop (there may potentially be more than one), and also
a state q̃i ∈ Qi along this loop. The fixed loops of lengths �̃1, �̃2, . . . , �̃m will be
cardinal loops, the states q̃1, q̃2, . . . , q̃m will be cardinal states. (If Q does not
contain any reachable strongly connected component, m = 0.) Since these loops
are in pairwise disjoint components and there is no loop passing through qS,

�̃1+ �̃2+· · ·+ �̃m ≤ n−1 . (3)

Case (b). There exists a loop qS 1α−−→ qS beginning and ending in the initial
state qS, for some 1 ≤ α ≤ n−1. Here we get a partition in the form Q = Q1∪Q∞,
that is, Q0 = Ø, qS ∈ Q1, and m = 1. Therefore, we fix some shortest loop
beginning and ending in qS as cardinal, of length �̃1, and take q̃1 = qS as the only
cardinal state. It is easy to see that (3) is satisfied again.
Case (c). There exists a loop beginning and ending in qS, but the length of any
such loop is at least n. Since the shortest loop does not repeat the same state
twice, we have a path qS 1n−−→ qS, visiting all states in Q. By enumerating all
states in order in which they appear in the loop qS 1n−−→ qS, we get

qS = q0→ q1→ q2 . . . qn−2→ qn−1→ q0 . (4)

Case (c1). Besides the transitions displayed in (4), there exists at least one
more edge in M. Such edge must be of the form qe← qf , with 1 ≤ e ≤ f ≤ n−1.
(Otherwise, we get either an edge already displayed in (4), or a loop qS �� qS
shorter than n. Both cases lead to contradictions.)

Now, let ē be the smallest e ≥ 1 such that there exists a “backward” edge
qē← qf , for some f ≥ ē. Then let f̄ be the smallest f ≥ ē with a backward edge
qē← qf̄ . Finally, fix the loop qē→ qē+1 . . . qf̄−1→ qf̄ → qē as cardinal, and fix
q̃1 = qē as the only cardinal state. Clearly, the condition (3) is satisfied again.
Case (c2). The automaton M does not have any transitions except for those
displayed in (4). In this case, M is already deterministic. We shall call such
automaton a trivial loop of length n, and handle this special case separately.

The following technical theorem serves as a tool for converting nondeterministic
automata into a normal form.

Theorem 3. Let M be a unary nfa with at most n > 1 states, different from the
trivial loop of length n, with cardinal loops of lengths �̃1, �̃2, . . . , �̃m and cardinal
states q̃1, q̃2, . . . , q̃m, as introduced by Def. 2. Then, for each u ≥ n2−2, the string
1
u is accepted by M if and only if
(i) there exists an i ∈ {1, . . . ,m} (that is, also a strongly connected compo-

nent Qi with a cardinal loop �̃i and a cardinal state q̃i),
(ii) there exists an r ∈ {0, . . . , �̃i−1} (a number modulo �̃i),
(iii) there exists a q′ ∈ F (a final state of M),

Magic Numbers in the State Hierarchy of Finite Automata 417

(iv) there exists an α ≤ n−1, with a computation path qS 1α−−→ q̃i,
(v) there exists a β ≤ n2−n−1, with a computation path q̃i 1β−−→ q′,
(vi) such that (α+β) mod �̃i = r,
(vii) and u mod �̃i = r.

Now we can fix some “significant” parts of a nondeterministic computation.

Definition 4. Let M be a unary nfa with at most n states, different from the
trivial loop of length n, with cardinal loops �̃1, �̃2, . . . , �̃m and cardinal states
q̃1, q̃2, . . . , q̃m. For each i ∈ {1, . . . ,m} and each r ∈ {0, . . . , �̃i−1}, define
• a boolean predicate Pi,r = true/false, depending on whether

(iii) there exists a q′ ∈ F,
(iv) there exists an α ≤ n−1, with a path qS 1α−−→ q̃i,
(v) there exists a β ≤ n2−n−1, with a path q̃i 1β−−→ q′,
(vi) such that (α+β) mod �̃i = r,

• a set of indices Ri = {r : 0 ≤ r ≤ �̃i−1 and Pi,r = true},
• a language Li,r = {1

u : u ≥ n2−2 and u mod �̃i = r},
• a language L0 = {1

u : u < n2−2 and u ∈ L(M)}.

Clearly, the truth of the predicates Pi,r can be “precomputed” without know-
ing u, the length of the input. The same holds for the sets Ri as well. (This
only requires to know the transition table of M, together with the allocation of
cardinal loops and states.)

Theorem 5 (Chrobak normal form revised). Let M be a unary nfa with
at most n > 1 states, different from the trivial loop of length n. Then M can be
replaced by an equivalent nfa M ′ consisting of an initial deterministic path of
length s̃ ≤ n2−2, and some m disjoint deterministic loops of lengths �̃1, . . . , �̃m,
with the total number of states in loops bounded by �̃1+· · ·+�̃m ≤ n−1. M ′ makes
a single nondeterministic decision (if any), after passing through the initial path,
when it chooses one of the m loops (if m > 1).

Proof. By Thm. 3, the string 1
u of length u ≥ n2−2 is in L(M) if and only if it

satisfies the statement of the items (i) – (vii). Using Def. 4, this holds if and only
if there exists an i ∈ {1, . . . ,m} and an r ∈ Ri, such that 1

u ∈ Li,r. But then
L(M) = L0 ∪

⋃m
i=1

⋃
r∈Ri

Li,r.
It is easy to construct an M ′ for L0 ∪

⋃m
i=1

⋃
r∈Ri

Li,r. It consists of
• an initial segment, made up of some states p1, p2, . . . , pn2−2, connected by

edges pk → pk+1, for k = 1, . . . , n2−3, with p1 as the initial state,
• a separate loop of length �̃i, for each i ∈ {1, . . . ,m}, made up of states
qi,0, qi,1, . . . , qi,�̃i−1, connected by qi,k → qi,(k+1) mod �̃i

, for k = 0, . . . , �̃i−1,
• edges pn2−2→ qi,0, for i ∈ {1, . . . ,m}, connecting the initial segment to

each of the loops. This is the only nondeterministic decision, ever made.
• Finally, mark as accepting each state qi,k in the loop of length �̃i such that,

for some r ∈ Ri, (n2−2+k) mod �̃i = r, and mark as accepting each pk in
the initial segment such that 1

k−1 ∈ L(M). �

418 V. Geffert

Theorem 6. Let M be a unary nfa with at most n > 1 states, different from
the trivial loop of length n. Then M can be replaced by an equivalent dfa M ′′

consisting of an initial segment of length s̃ ≤ n2−2, and a loop of length �̃
satisfying Φ(�̃) ≤ n−1.

Proof. The deterministic automaton M ′′ is obtained by the standard subset
construction [13], from the nfa M ′ constructed in Thm. 5. If we reduce the
state set of M ′′ to the subset that is actually reachable from the initial state,
M ′′ uses an initial segment of length n2− 2, together with a loop of length
�̃ = lcm{�̃1, �̃2, . . . , �̃m}. Moreover, by Lem. 1, the length �̃ has a very low fac-
torization cost, bounded by Φ(�̃) ≤

∑m
i=1 Φ(�̃i) ≤

∑m
i=1 �̃i ≤ n−1. �

Theorem 7. Let M be a unary nfa with at most n > 1 states. Then M can be
replaced by an equivalent dfa M ′′ using d ≤ F (n−1) + (n2−2) ≤ e(1+o(1))·√n·lnn

states.

Proof. First, if M is different from the trivial loop of length n, M ′′ is obtained by
the use of Thm. 6. This automaton uses d = �̃+(n2−2) states, with Φ(�̃) ≤ n−1.
This allows us to express �̃ in the form �̃ = lcm{1, . . . , 1, pα1

i1
, . . . , pαe

ie
}, where

“1” is repeated (n−1)−Φ(�̃) times and {pα1
i1
, . . . , pαe

ie
} is the set of prime powers

forming the factorization of �̃. The sum of these numbers is exactly 1+· · ·+1 +
pα1

i1
+· · ·+pαe

ie
= (n−1)−Φ(�̃)+Φ(�̃) = n−1. But then �̃ ≤ max{lcm{�1, . . . , �f} :

�1+· · ·+�f = n−1} = F (n−1). Thus, using (2), the number of states in M ′′ can
be bounded by d = �̃+ (n2−2) ≤ F (n−1) + (n2−2) ≤ e(1+o(1))·√n·ln n.

If M turns out to be the trivial loop of length n, then M is already determin-
istic, so we take M ′′ = M, with d = n. �

3 Unary Deterministic Automata

It is obvious that the transition function of an optimal unary dfa is determined by
two quantities, the length of the initial segment and the length of the subsequent
loop. However, two dfa’s may also differ in the distribution of their final states.

Theorem 8. Let M1,M2 be two unary dfa’s accepting the same language L,
consisting of initial segments of lengths s1,s2 and loops of lengths �1,�2, respec-
tively. Then L can also be accepted by a dfa M consisting of an initial segment
of length s = min{s1, s2} and a loop of length � = gcd{�1, �2}.

We do not claim that M in the above theorem is optimal. Nevertheless, the
theorem yields some consequences for automata that are optimal.

Theorem 9. Let M be an optimal unary dfa consisting of an initial segment of
length s and a loop of length �. Then each dfa M ′, equivalent to M, must use an
initial segment of length s′ ≥ s and a loop of length �′ satisfying Φ(�′) ≥ Φ(�).

Proof. Let M and M ′ be two machines satisfying the assumptions of the theo-
rem. By Thm. 8, we can replace M and M ′ by an equivalent dfa M ′′ with an
initial segment of length s′′ = min{s, s′} and a loop of length �′′ = gcd{�, �′}.

Magic Numbers in the State Hierarchy of Finite Automata 419

Suppose, for contradiction, that �′′ < �. Then the total number of states in M ′′

can be bounded by s′′+�′′ < s′′+� = min{s, s′}+� ≤ s+�. Thus, M ′′ uses fewer
states than does M. But this is a contradiction, since M is optimal. Therefore,
�′′ ≥ �. On the other hand, we have that �′′ = gcd{�, �′} divides �, and hence
�′′ ≤ �. Summing up, �′′ = �.

Second, �′′ = gcd{�, �′} divides also �′ and hence, by Lem. 1, we get that
Φ(�′′) ≤ Φ(�′). Therefore, Φ(�′) ≥ Φ(�′′) = Φ(�).

Finally, if s′ < s, then s′′+�′′ = min{s, s′}+�′′ < s+�′′ = s+�, which again
contradicts the fact that M is optimal. Therefore, s′ ≥ s. �

Theorem 10. Let M be an optimal unary dfa consisting of an initial segment of
length s and a loop of length �, such that s+� > n, for some n > 1. If, moreover,
either s ≥ n2−1 or Φ(�) ≥ n, then each nfa M ′, equivalent to M, must use more
than n states.

Proof. Suppose, for contradiction, that M can be replaced by an equivalent nfa
M ′ with at most n states. If M ′ is different from the trivial loop of length n, we
can use Thm. 6 to obtain an equivalent dfa M ′′, consisting of an initial segment
of length s′′ ≤ n2−2, and a loop of length �′′ satisfying Φ(�′′) ≤ n−1.

But, by Thm. 9, the dfa M ′′, equivalent to M, must use the initial segment of
length s′′ ≥ s and the loop of length �′′ satisfying Φ(�′′) ≥ Φ(�).

Summing up, we get s ≤ s′′ ≤ n2−2, and also Φ(�) ≤ Φ(�′′) ≤ n−1. But this
contradicts the assumption that either s ≥ n2−1 or Φ(�) ≥ n.

Finally, if M ′ is a trivial loop of length n, then M ′ is already deterministic,
with n < s+� states, which contradicts the assumption that M is optimal. �

4 Magic Numbers in the State Hierarchy

Theorem 11. Let Gmax(n) and Gmin(n) denote, respectively, the largest and the
smallest muggle numbers for n > 1. Then Gmax(n) = F (n−1) + kn, for some
kn ∈ {0, . . . , n2−2}, which can be approximated by Gmax(n) = e(1±o(1))·√n·ln n,
and Gmin(n) = n.

Proof. For each n, consider the sequence of languages L0, L1, . . . , Ln2−1, where

Lk = {1
k+u : u mod F (n−1) 	= 0} , for k = 0, . . . , n2−1.

The construction of a dfa Mk for Lk is straightforward. It consists of
• an initial segment p1→ p2→ p3 . . . pk → q0, skipping the first k symbols,

where p1 is the initial state, and q0 the first state of the subsequent loop,
• a loop q0→ q1→ q2 . . . qF (n−1)−1→ q0, counting modulo F (n−1).
• Finally, all states in the loop, except for q0, are marked as accepting.

It is easy to see that Mk is optimal, and uses exactly F (n−1) + k states.
Now, let fk denote the exact number of states used in an optimal nfa for Lk.
First, we shall show that f0 ≤ n. Let F (n− 1) factorize into F (n− 1) =

pα1
i1
· pα2

i2
· . . . · pαe

ie
. Then 1

v ∈ L0 if and only if there exists some j ∈ {1, . . . , e}

420 V. Geffert

such that v is not divisible by pαj

ij
. Therefore, L0 can be accepted by an nfa M

that nondeterministically chooses some j and then verifies if v mod pαj

ij
	= 0.

Clearly, such automaton M uses 1+
∑e

j=1 p
αj

ij
= 1+Φ(F (n−1)) states. Using (1),

F (n−1) = lcm{�1, . . . , �m}, for some �1, . . . , �m satisfying �1+ · · ·+�m = n−1.
But then, by Lem. 1, 1+Φ(F (n−1)) ≤ 1+

∑m
i=1 Φ(�i) ≤ 1+

∑m
i=1 �i = n. We do

not claim that M is optimal. For our purposes, it is sufficient to conclude that
an optimal nfa for L0 cannot use more states than does M, and hence f0 ≤ n.

Second, fn2−1 > n. This follows from the fact that the optimal dfa Mn2−1
for Ln2−1, described above, contains the initial segment of length k = n2−1. But
then, by Thm. 10, each nfa accepting Ln2−1 must use more than n states.

Third, fk+1 ≤ fk + 1, for each k = 0, . . . , n2−2. Let M ′
k be an optimal nfa

for Lk, with fk states. To obtain an nfa M ′′ (not necessarily optimal) for Lk+1,
we need only a new initial state q′′S , connected by a new edge q′′S → q′S to the
original initial state of M ′

k. The rest is a direct simulation of M ′
k. Clearly, for

each v, M ′′ accepts 1
1+v if and only if M ′

k accepts 1
v. But an optimal nfa M ′

k+1
accepting Lk+1 cannot use more states than does M ′′, and hence fk+1 ≤ fk + 1.

Summing up, we have an integer sequence f0, f1, . . . , fn2−1, such that f0 ≤ n,
fn2−1 > n, and fk+1 ≤ fk + 1. Such sequence must contain an element equal
to n, that is, fk′ = n, for some k′ ∈ {0, . . . , n2−2}. But then Lk′ is a language for
which the optimal nfa M ′

k′ uses exactly fk′ = n states and the optimal dfa Mk′

exactly F (n−1) + k′ states.
Therefore, F (n−1)+k′ is a muggle number for n. But then the largest muggle

number is at least Gmax(n) ≥ F (n−1). On the other hand, by Thm. 7, each unary
nfa with n states can be replaced by an equivalent dfa, not necessarily optimal,
using at most F (n−1) + (n2−2) states. This gives Gmax(n) ≤ F (n−1) + (n2−2).
Using (2), we then get Gmax(n) = e(1±o(1))·√n·ln n.

For completeness, Gmin(n) = n. The language L = {1
u : u mod n = 0} requires

exactly n states, both in deterministic and nondeterministic case. �

We are now going to prove the existence of nontrivial magic numbers, between
Gmin(n) and Gmax(n), i.e., “holes” in the state hierarchy.

Definition 12 (Darkly magic numbers). A number d is darkly magic for n,
if, for each positive integer � ∈ {d−n2+2, . . . , d−1, d}, Φ(�) ≥ n.

Theorem 13. Let d be a darkly magic number for n > 1. Then, for each optimal
unary dfa M using exactly d states, an optimal nfa M ′, equivalent to M, must
use more than n states.

Proof. Using Lem. 1, we get Φ(d) ≤ d ≤ n−1, for each d ≤ n−1. If d = n, then
Φ(d−1) ≤ n−1. Thus, using an �′ ∈ {d−1, d}, we get Φ(�′) ≤ n−1, if d ≤ n. But
this contradicts the assumption that d is darkly magic for n. Therefore, d > n.

Now, let M be an optimal unary dfa, using d states. M consists of an initial
segment of length s ≥ 0 and a loop of length � ≥ 1, such that s+� = d > n.
Further, if the initial segment is of length s ≤ n2−2, the loop length is at least
� = d−s ≥ d− n2 + 2. But then Φ(�) ≥ n, since d is darkly magic for n.

Magic Numbers in the State Hierarchy of Finite Automata 421

Summing up, s+ � > n, and either s ≥ n2−1 or Φ(�) ≥ n. But then, by
Thm. 10, each nfa M ′, equivalent to M, must use more than n states. �

Thus, to show the existence of nontrivial magic numbers, it is sufficient to prove
the existence of nontrivial darkly magic numbers.

Lemma 14. Let F#(n) denote the number of different values d satisfying Φ(d) ≤
n. Then F#(n) ≤ e(1+o(1))·2√ln 2·√n.

Lemma 15. There are at most F#(n−1)·(n2−1) ≤ e(1+o(1))·2√ln 2·√n different
numbers that are not darkly magic for n>1. Consequently, each set containing
more than F#(n−1)·(n2−1) positive integers contains at least one number that
is darkly magic for n.

Proof. If d is not darkly magic for n, it can be expressed in the form d = s+�,
for some � satisfying Φ(�) ≤ n−1, and some s ∈ {0, . . . , n2−2}. But, by Lem. 14,
there are only F#(n−1) different numbers � with factorization cost Φ(�) ≤ n−1,
and n2−1 different values of s. �

Theorem 16. Let Mmin(n),Mmax(n) denote the smallest and the largest nontriv-
ial magic numbers, and Dmin(n),Dmax(n) the smallest and the largest nontrivial
darkly magic numbers for n, respectively. Except for some finitely many n’s,
such numbers do exist, and Gmin(n)<Mmin(n)≤Dmin(n)<Dmax(n)≤Mmax(n)<
Gmax(n). Moreover, Dmin(n)≤e(1+o(1))·2√ln 2·√n, and Dmax(n)=e(1±o(1))·√n·lnn.

Proof. Consider the set X = {1, . . . , F#(n−1) ·(n2−1) + 1}. By Lem. 15, this
set contains at least one number that is darkly magic for n. Let Dmin(n) be the
smallest darkly magic number in X . First, Dmin(n) > n, since a darkly magic
number must be larger than n, as shown in the proof of Thm. 13. Second,
a darkly magic number larger than n is, by Thm. 13, also a magic number
larger than n. Therefore, there must exist Mmin(n) ≤ Dmin(n), the smallest magic
number larger than n. Using Gmin(n) = n, shown by Thm. 11, we thus get
Gmin(n) < Mmin(n) ≤ Dmin(n) ≤ F#(n−1)·(n2−1) + 1.

By the same reasoning for Y = {Gmax(n)−F#(n−1)·(n2−1), . . . , Gmax(n)}, we
obtain Gmax(n)− F#(n−1)·(n2−1) ≤ Dmax(n) ≤Mmax(n) < Gmax(n).

Finally, using the growth rates that were presented in Lem. 15 and Thm. 11,
we obtain that F#(n−1)·(n2−1) + 1 < Gmax(n)− F#(n−1)·(n2−1). �

Actually, most of the numbers between Gmin(n) and Gmax(n) is magic. The struc-
ture of the state hierarchy is shown in Fig. 2.

Corollary 17. Let G#(n) denote the number of muggle numbers, and M#(n)
the number of nontrivial magic numbers for n. Then G#(n) ≤ e(1+o(1))·2√ln 2·√n,
and M#(n) = e(1±o(1))·√n·ln n. Consequently, limn→∞G#(n)/M#(n) = 0.

Corollary 18. (a) For each d > 1, no optimal unary dfa using d states can be
simulated by an nfa using fewer than (1−o(1))/2 · ln2 d/ ln ln d ≥ Ω(ln2 d/ ln ln d)
states. (b) For infinitely many d’s, no optimal unary dfa using d states can be
simulated by an nfa using fewer than (1−o(1))/(4 ln 2) · ln2 d 	< o(ln2 d) states.

422 V. Geffert

Mmax(n)
Gmin(n) Mmin(n) Dmin(n) Dmax(n) Gmax(n)

↓ ↓ ↓ ↓↓↓
•••• • •• • • •• •• • •• •• • • • • 2n

| | | | | | |
↑ ↑ ↑ ↑ ↑↑
1 n

F#(n−1)·(n2−1)+1

eO(
√

n)

F (n−1)−F#(n−1)·(n2−1)

e(1±o(1))·√n·ln n

F (n−1) F (n−1)+(n2−2)

e(1±o(1))·√n·ln n

Fig. 2. An example of a typical distribution of muggle and magic numbers for n. Here
the “x-axis” grows in d, the number of states in dfa’s. The filled bullets along this axis
represent muggle numbers, while the “white space” surrounding the bullets represents
magic numbers.

Proof. (a) By Thm. 7, no optimal dfa with d states can be simulated by an
n-state nfa, if e(1+o(1))·√n·ln n < d. Thus, n ≥ (1−o(1))/2 · ln2 d/ ln ln d.

(b) Consider the sequence Dmin(n0), Dmin(n0+1), Dmin(n0+2), . . ., starting from
a sufficiently large n0. SinceDmin(n) > n, by Thms. 16 and 11, this sequence must
contain infinitely many different integers. By Thm. 16, we also have, for each
n ≥ n0, that Dmin(n)≤e(1+o(1))·2√ln 2·√n. This gives that n ≥ (1−o(1))/(4 ln2) ·
ln2(Dmin(n)). Moreover, Dmin(n) is darkly magic for n and hence, by Thm. 13,
no optimal dfa using Dmin(n) states can be simulated by an nfa using fewer than
n+1 states. �

5 Concluding Remarks

We have shown that, in the unary case, the state hierarchy of deterministic
automata, for the family of languages accepted by nondeterministic automata
using n states, is not contiguous. There are some “holes” in the hierarchy, i.e.,
magic numbers between the smallest muggle number Gmin(n) = n and the largest
muggle number Gmax(n) = e(1±o(1))·√n·ln n. In addition, if G#(n) is the total
number of different muggle numbers for n, and M#(n) the number of nontrivial
magic numbers, then limn→∞G#(n)/M#(n) = 0. It is easy to see that there must
exist two muggle numbers d1, d2, with d2−d1 ≥ eΩ(

√
n·lnn), such that all values

between d1 and d2 are magic. This illustrates that some holes in the hierarchy,
consisting of consecutive magic numbers, are quite spacious.

As a by-product of the conversion presented in Sect. 2, a superpolynomial gap
between the size of unary nfa’s and dfa’s can be obtained only by machines not
having the initial state in any strongly connected component.

We also have a new universal lower bound for the conversion of unary dfa’s
into equivalent nfa’s. Clearly, using L = {1

u : u mod d = 0}, we get a dfa with
d states that cannot be simulated by an nfa with a smaller number of states.
This gives an “existential” lower bound Ω(d), showing that nondeterminism
does not help in the worst case at all. On the other hand, Cor. 18 shows that,
for unary languages, nondeterminism never reduces the number of states below
Ω(ln2 d/ ln ln d), for no d, and no optimal unary dfa M using d states, not even

Magic Numbers in the State Hierarchy of Finite Automata 423

in the best case. Moreover, there are infinitely many “critical” values of d, for
which nondeterminism does not reduce the number of states to o(ln2 d).

We do not have a sufficient upper bound for Mmin(n), the smallest nontrivial
magic number for n, except for Mmin(n) ≤ eO(

√
n), given by Thm. 16. A better

upper bound for the growth rate of Mmin(n) would result in a better universal
lower bound in Cor. 18. But the most important problem in this field is the
completeness of the state hierarchy for the regular languages over the binary
alphabet, or any other fixed input alphabet.

References

1. Bertoni, A., Mereghetti, C., Pighizzini, G.: An optimal lower bound for nonregular
languages. Inform. Process. Lett. 50 (1994) 289–92. (Corrigendum: ibid. 52 (1994)
p. 339)

2. Chrobak, M.: Finite automata and unary languages. Theoret. Comput. Sci. 47
(1986) 149–58. (Corrigendum: ibid. 302 (2003) 497–98)

3. Geffert, V.: (Non)determinism and the size of one-way finite automata. In Proc.
Descr. Compl. Formal Syst. (2005) 23–37. (IFIP & Univ. Milano)

4. Geffert, V., Mereghetti, C., Pighizzini, G.: Converting two-way nondeterministic
unary automata into simpler automata. Theoret. Comput. Sci. 295 (2003) 189–203

5. Hardy, G., Wright, E.: An Introduction to the Theory of Numbers. Oxford Univer-
sity Press, 5th edit., 1979

6. Hopcroft, J., Motwani, R., Ullman, J.: Introduction to Automata Theory, Lan-
guages, and Computation. Addison-Wesley, 2001

7. Iwama, K., Kambayashi, Y., Takaki, K.: Tight bounds on the number of states
of DFA’s that are equivalent to n-state NFA’s. Theoret. Comput. Sci. 237 (2000)
485–94

8. Iwama, K., Matsuura, A., Paterson, M.: A family of NFA’s which need 2n − α
deterministic states. Theoret. Comput. Sci. 301 (2003) 451–62

9. Jirásková, G.: Note on minimal finite automata. In Proc. Math. Found. Comput.
Sci., Lect. Notes Comput. Sci. 2136 (2001) 421–31

10. Lupanov, O.B.: Uber den Vergleich zweier Typen endlicher Quellen. Probleme der
Kybernetik 6 (1966) 329–35. (Akademie-Verlag, Berlin, in German)

11. Mereghetti, C., Pighizzini, G.: Optimal simulations between unary automata.
SIAM J. Comput. 30 (2001) 1976–92

12. Moore, F.: On the bounds for state-set size in the proofs of equivalence between de-
terministic, nondeterministic, and two-way finite automata. IEEE Trans. Comput.
C-20 (1971) 1211–14

13. Rabin, M., Scott, D.: Finite automata and their decision problems. IBM J. Res.
Develop. 3 (1959) 114–25

14. Sakoda, W., Sipser, M.: Nondeterminism and the size of two-way finite automata.
In Proc. ACM Symp. Theory of Comput. (1978) 275–86

15. Szalay, M.: On the maximal order in Sn and S∗
n. Acta Arith. 37 (1980) 321–31

Online Single Machine Batch Scheduling�

Beat Gfeller1, Leon Peeters1, Birgitta Weber2,��, and Peter Widmayer1

1 Institute of Theoretical Computer Science, ETH Zurich, Switzerland
{gfeller, peetersl, widmayer}@inf.ethz.ch

2 Department of Computer Science, University of Liverpool, UK
weberb@csc.liv.ac.uk

Abstract. We are concerned with the problem of safely storing a history
of actions that happen rapidly in real time, such as in “buy” and “sell”
orders in stock exchange trading. This leads to a single-family schedul-
ing problem with batching on a single machine, with a setup time and
job release times, under batch availability. We investigate the objective
of minimizing the total flow time in an online setting. On the positive
side, we propose a 2-competitive algorithm for the case of identical job
processing times, and we prove a lower bound that comes close. With
general processing times, our lower bound shows that online algorithms
are inevitably bad in the worst case.

Keywords: Scheduling, batching, online analysis, competitive ratio.

1 Introduction

The study in this paper is motivated by the real world problem of saving a log
of actions in a high throughput environment. Many actions are to be carried out
in rapid succession, and in case of a system failure the log can identify which
actions have been carried out before the failure and which have not. Keeping
such a log can be existential for a business, for example when logging the trading
data in a stock brokerage company.

Logging takes place on disk and is carried out by a storage system that accepts
write requests. When a process wants its data to be logged, it sends a log request
with the log data to the storage system and waits for the acknowledgement that
the writing of the log data has been completed. For the log requests that arrive
over time at the storage system, there is only one decision the system is free
to make: What subset of the requested, but not yet written log data should
be written to disk in a single large write operation to make the whole system
as efficient as possible? After the chosen large write operation is complete, the
system instantaneously sends acknowledgements to all processes whose requests
have been satisfied.
� We gratefully acknowledge the support of the Swiss SBF under contract no. C05.0047

within COST-295 (DYNAMO) of the European Union.
�� This research was carried out while the author was affiliated with the Institute of

Theoretical Computer Science, ETH Zurich, Switzerland.

R. Královič and P. Urzyczyn (Eds.): MFCS 2006, LNCS 4162, pp. 424–435, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Online Single Machine Batch Scheduling 425

The difficulty in the above question stems from the following. First, log data
come in all sizes, as the number of bits or blocks to be stored varies. Second,
writing several log data in a single shot is faster than writing each of them
individually, due to the disk hardware constraints. Third, a process requesting
a write has to wait for the acknowledgement of the completion of the large
write operation before it can continue. Based on an experimental evaluation of
writing data to disk, we assume the writing time for a number of data blocks to
be linear in that number, plus an additive constant for the disk write setup time.
Our objective is to minimize the sum over all requests of the times between the
request’s arrival and its acknowledgement.

We ignore the details of a failure and its recovery here, assuming that failures
are rare and recovery is quick, and not worrying about (the potential loss of)
unsatisfied write requests.

1.1 Single Machine Scheduling with Batching

Viewing the storage system as a machine, the log requests as jobs, and the
write operations as batches, this problem falls into the realm of scheduling with
batching [for an overview, see Potts and Kovalyov, 2000]. More precisely, in the
usual batch scheduling taxonomy we deal with a family scheduling problem with
batching on a single machine (with one family). The machine processes the
jobs consecutively, since the log data are stored consecutively in time on the
disk (as opposed to simultaneously), and each batch of jobs requires a constant
(disk write) setup time. As all log requests in a single write are simultaneously
acknowledged at the write completion time, the machine operates with batch
availability, meaning that each job in the batch completes only when the full
batch is completed.

In more formal terms, we model the storage system as a single machine, and the
log requests as a set of jobs J = {1, . . . , n}. The arrival times of the log requests
at the storage system then correspond to job release times rj , j ∈ {1, . . . , n}. Fur-
ther, each job j ∈ J has a processing time pj on the machine, representing the
block size of the log request. The grouping of the log requests into write opera-
tions is modeled by the batching of the jobs into a partition σ = {σ1, . . . , σk} of
the jobs {1, . . . , n}, where σu represents the jobs in the u-th batch, k is the total
number of batches, and we refer to |σu| as the size of batch u. Unless stated oth-
erwise, we assume that the batch size is not limited. We denote the starting time
of batch σu by Tu, with rj ≤ Tu for all j ∈ σu. Starting at Tu, the batch requires
the constant disk setup time s, and further a total processing time

∑
j∈σu

pj , for
writing the logs on the disk. Thus, each batch σu requires a total batch process-
ing time Pu = s+

∑
j∈σu

pj . The consecutive execution of batches on the single
machine translates into Tu + Pu ≤ Tu+1 for u = 1, . . . , k − 1. Because of batch
availability, each job j ∈ σu completes at time Cj = Tu + Pu, and takes a flow
time Fj = Cj − rj to be processed. This job flow time basically consists of two
components: first a waiting time Tu − rj ≥ 0 that the job waits before batch σu

starts, followed by the batch processing time Pu. Finally, as mentioned above, our
objective is to minimize the total job flow time F =

∑n
j=1 Fj .

426 B. Gfeller et al.

We refer to this scheduling problem as the BatchFlow problem. In the
standard scheduling classification scheme, the BatchFlow problem is writ-
ten as 1|rj , sf = s, F = 1|

∑
Fj , where the part sf = s, F = 1 refers to the

fact that the jobs belong to a single family with a fixed batch setup time [see
Potts and Kovalyov, 2000]. As a special case, we also consider the problem vari-
ant with identical processing times pj = p.

1.2 Online Algorithms for a Single Machine with Batching

In this paper, we consider the online version of the single machine scheduling
problem with batching. The jobs arrive over time, and any algorithm can base its
batching decisions at a given time instant only on the jobs that have arrived so
far. We study the online problem in the non-preemptive clairvoyant setting: No
information about a job is known until it arrives, but once a job j has arrived,
both its release time rj (that is, arrival time) and processing time pj are known.
A batch that has started processing cannot be stopped before completion.

We consider deterministic online algorithms, and assume without loss of gen-
erality that the algorithms have a particular structure, as described in the fol-
lowing.

Since preemption is not allowed, no new batch can be started as long as the
machine is busy. Further, it only makes sense for an online algorithm to revise
a decision when new information becomes available, that is, when a new job
arrives. Therefore, we consider online algorithms that only take a decision at the
completion time of a batch σu, or when a new job j arrives and the machine
is idle. We refer to these two events as triggering events. In either case, the
algorithm bases its decision on the jobs {1, . . . , j} that have arrived so far, and
on the batches σ1, . . . , σu created so far. Note that the set P of currently pending
jobs can be deduced from this information.

In case of a triggering event, an online algorithm A takes the following two
decisions. First, it tentatively chooses the next batch σA to be executed on
the machine. However, it does not execute the batch σA immediately. Rather,
the algorithm’s second decision defines a delay time ∆A by which it delays the
execution of σA, and waits for a triggering event to occur in the meantime. If
∆A time has elapsed, and no triggering event has happened, then the algorithm
starts the batch σA on the machine (by definition, the machine is idle in this
case). If, however, a triggering event occurs during the delay time, then the
algorithm newly chooses σA and ∆A. Thus, an online algorithm A is completely
specified by how it chooses σA and ∆A.

For a given problem instance I, let FOpt(I) be the total flow time of an optimal
solution, and FA(I) the total flow time of the solution obtained from some online
algorithm A for the same problem. We are interested in the competitive ratio
FA
FOpt

of an algorithm A. Recall that an online algorithm A is c-competitive if
there is a constant α such that for all finite instances I, FA(I) ≤ c ·FOpt(I)+α.
When this condition holds also for α = 0, we say that A is strictly c-competitive.

Online Single Machine Batch Scheduling 427

1.3 Related Work

Scheduling with batching has been extensively studied in the offline setting
[see Potts and Kovalyov, 2000]. The offline version of our BatchFlow prob-
lem is NP-complete in general, as we prove in the full version of this paper
[Gfeller et al., 2006]. There, we also show that the problem becomes efficiently
solvable if the jobs have to be processed in release order, or when all jobs have
identical processing times. Note that the offline BatchFlow problem is equiv-
alent to the problem 1|rj , sf = s, F = 1|

∑
Cj , since

∑
j∈J rj is a constant that

we cannot influence.
Most previous work on online scheduling with batching focuses on the so-

called burn-in model [see Lee et al., 1992], where the processing time of a batch
is equal to the maximum processing time among all jobs in the batch. An ex-
ception is Divakaran and Saks [2001], who consider the problem 1|rj , sf |maxFj

with sequence-independent setup times and several job families under job avail-
ability, where the processing of a job completes as soon as its processing time has
elapsed. They present an O(1)-competitive online algorithm for that problem.
One typically distinguishes the bounded model, where the size of a batch can
be at most B1, from the unbounded model. For the burn-in model, Chen et al.
[2004] consider the problem 1|rj |

∑
wjCj , and present a 10/3-competitive on-

line algorithm for unbounded batch size, as well as a 4 + ε-competitive online
algorithm for bounded batch size.

The online problem 1|rj |Cmax of minimizing the makespan in the burn-in
model has been considered in several studies. Independently, Deng et al. [2003]
and Zhang et al. [2001] gave a (

√
5+1)/2 lower bound for the competitive ratio,

and both gave the same online algorithm for the unbounded batch size model
which matches the lower bound. Poon and Yu [2005a] present a different online
algorithm with the same competitiveness, and describe a parameterized online
algorithm which contains their own and the previous solution as special cases.
The same authors give a class of 2-competitive online algorithms for bounded
batch size, and a 7/4-competitive algorithm for bounded batch size B = 2 in
Poon and Yu [2005b].

In addition to the objective of minimizing the total flow time, some applica-
tions may require a guaranteed limit for the maximum flow time of any job in the
BatchFlow problem, as this ensures that no job has to wait for an unbounded
time. In Gfeller et al. [2006], however, we show that online algorithms have severe
difficulties in dealing with such a constraint on the maximum flow time.

1.4 Contribution of the Paper

To our knowledge, we are the first to consider the online batch scheduling prob-
lem with the objective of minimizing the total flow time

∑
Fj under batch

availability.
We propose the online algorithm Greedy as a solution to the online Batch-

Flow problem. For the special case of identical processing times p, we show that
1 This bound is also called capacity by some authors.

428 B. Gfeller et al.

Greedy is strictly 2-competitive, using the fact that its makespan is optimal up
to an additive constant. Moreover, we present two lower bounds, 1 + 1

1+max(p,s)
min(p,s)

and 1 + 1
1+2 p

s
for this problem variant, and hence show that Greedy is not far

from optimal for this variant.
For the general online BatchFlow problem, we then give an n

2 − ε lower
bound for the competitive ratio, and show that any online algorithm which
avoids unnecessary idle time, including Greedy, is strictly n-competitive, which
matches the order of the lower bound.

The remainder of the paper is organized as follows. We first analyze the online
BatchFlow problem for jobs with identical processing times pi = p. For this
case, we present the 2-competitive Greedy algorithm in Section 2, and derive
two lower bounds in terms of p and s for any online algorithm in Section 3.
Next, Section 4 discusses bounds for any online algorithm for the case of general
processing times, and Section 5 concludes the paper.

2 The Greedy Batching Algorithm for Identical
Processing Times

In this section, we consider the restricted case where all jobs have identical
processing times pi = p. This case is relevant in applications such as ours, where
records of fixed length are to be logged.

We now define the Greedy algorithm, which always starts a batch consisting
of all currently pending jobs as soon as the machine becomes idle. Formally,
Greedy chooses ∆A = 0, and sets σA equal to the set of currently pending jobs
P . First, we focus on the makespan of Greedy. The following theorem shows
that, if Greedy needs time t to finish a set of batches {σ1, . . . , σu}, then no
other algorithm can complete the same jobs before time t− s. Thus, Greedy is
1-competitive for minimizing the makespan, with an additive constant α = s.

Theorem 1. For a given problem instance of the online BatchFlow prob-
lem with identical processing times, let σ = σ1, . . . , σk with batch starting times
T1, . . . , Tk be the Greedy solution, and let σ′ = σ′1, . . . , σ

′
m with T ′1, . . . , T

′
m be

some other solution Any for the same instance. For any batch σu ∈ σ completing
at time t, it holds that any batch σ′v ∈ σ′ satisfying the condition

v∑
i=1

|σ′i| ≥
u∑

i=1

|σi| (1)

completes at time t′ ≥ t− s.

Proof. For a given batch σu ∈ σ, consider the first batch σ′v ∈ σ′ for which (1)
holds. Such a batch exists because

∑m
i=1 |σ′i| = n and of course

∑u
i=1 |σi| ≤ n. We

assume that the Greedy batches σ1, . . . , σu are executed without any idle time
in between. Indeed, if such an idle time occurs, Greedy must have processed
all jobs which have arrived so far, and the idle time ends exactly at the release

Online Single Machine Batch Scheduling 429

J∗

σ′d

Greedy

Any

· · ·

· · ·

· · ·

· · ·σ′∗

σa
σ∗∗

σ′c

σb

J∗

σ∗

Fig. 1. Illustration of Lemma 1

time of the next job. Of course, Any cannot start processing this job earlier
than Greedy does. Hence, ignoring all jobs before such an idle time can only
affect the comparison in favor of Any.

First, we consider the case u ≥ v + 1, where Greedy uses at least one batch
more than Any. We require the following lemma, which is illustrated in Figure 1
and proven in the full version of this paper [Gfeller et al., 2006].

Lemma 1. Consider a sequence σa, . . . , σb of u Greedy batches, and a se-
quence σ′c, . . . , σ

′
d of v Any batches, such that the Any sequence contains all

the jobs in the Greedy sequence, and possibly additional jobs. If u ≥ v + 1,
then there exists a batch σ′∗ among Any’s batches that contains both at least one
entire Greedy batch, and at least one following job J∗ from the next Greedy
batch.

Apply Lemma 1 to σ1, . . . , σu and σ′1, . . . , σ
′
v, and let σ′∗ be the last Any batch

containing a full Greedy batch followed by at least one job. Choose σ∗ such
that it is the last full Greedy batch in σ′∗ that is followed by some job J∗ in σ′∗.
When J∗ arrives, Greedy is already processing batch σ∗ (or has just finished),
because otherwise J∗ would be part of σ∗. On the other hand, Any cannot start
processing batch σ′∗ before J∗ arrives. So, it must hold that Tσ∗ ≤ Tσ′∗ . Let σ∗∗
be the Greedy batch following σ∗. Note that Lemma 1 (in contraposition) can
be applied also to the sequences σ∗∗, . . . , σu and σ′∗, . . . , σ′v. Since in these two
sequences no Any batch contains an entire Greedy batch followed by another
job, we have |{σ∗∗, . . . , σu}| ≤ |{σ′∗, . . . , σ′v}|. Defining z as the number of batches
in {σ∗, . . . , σu}, and z′ as the number of batches in {σ′∗, . . . , σ′v}, it holds z ≤
z′ + 1. Putting all of the above together, we obtain:

t− t′ ≤ Tσ∗ + p · (|σ∗|+ . . .+ |σu|) + zs− Tσ′∗ − p · (|σ′∗|+ . . .+ |σ′v|)− z′s ≤ s

Finally, we consider the remaining case u ≤ v. Since Greedy has no idle
time, it completes σu exactly at time t = p ·

∑u
i=1 |σi|+ us. Any finishes σ′v at

time t′ ≥ p ·
∑v

i=1 |σ′i|+vs or later. So, using (1), we obtain that t′− t ≥ (v−u)s,
proving the theorem for any u ≤ v + 1, and for u ≤ v in particular. �

From this theorem, we obtain the following lemma.

Lemma 2. In the online BatchFlow problem with identical processing times,
consider any batch σu of the Greedy solution, with starting time Tu. Let σ′ be
the first batch of the optimal solution Opt that contains some job in σu. The
earliest time that Opt can finish processing the m jobs in σu ∩ σ′ is Tu +mp.

430 B. Gfeller et al.

TuTu − s pl + s
s

Tu + pm

pm+ s

pm

Fig. 2. Important time instants in Greedy’s competitiveness proof

Proof. Observe that, if we deleted all jobs in σu\σ′ from the problem instance,
then Greedy would start processing exactly the m jobs in σu ∩ σ′ in one batch
at time Tu, and finish at Tu +mp+ s. Now, if Opt were to finish these m jobs
before Tu +mp, then there would exist a solution with makespan more than s
smaller than Greedy’s makespan. This is a contradiction to Theorem 1. �

Note that the proofs of Theorem 1 and Lemma 2 can easily be adapted to incor-
porate non-identical processing times. We proved them for identical processing
times here, since they serve as ingredients for the main theorem below, which
only applies to identical processing times.

Now follows an observation concerning the optimal offline solution for a special
case, which we need afterwards to compare online algorithms against the best
possible solution.

Observation 1. The total job flow time for optimally processing n jobs with
identical processing times pj = p and with identical release times is at least

Fn ≥
1
2
pn2 + sn.

Proof. Assume w.l.o.g. that all rj = 0. The first job will have completion time
at least s + p. The second job will finish no earlier than s + 2p, which can be
achieved if the first two jobs are batched together. Generally, the ith job can
finish no earlier than s+ ip, which would be achieved by batching the first i jobs
together. This shows that Fn ≥

∑n
i=1(s+ip) = 1

2pn(n+1)+sn ≥ 1
2pn

2+sn. �

Theorem 2. The Greedy algorithm is strictly 2-competitive for the online
BatchFlow problem with identical processing times.

Proof. Figure 2 shows all the relevant time instants for the proof. As in Lemma 2,
consider any batch σu of the Greedy solution, with starting time Tu, and let
σ′ be the first batch of the optimal solution Opt that contains some jobs in σu.
Below, we compare the total accumulated flow time before and after time Tu for
the jobs in σu, for both Greedy and Opt.

Lemma 2 implies that no job in σu can complete before Tu in Opt. Thus, up
until time Tu, the jobs in σu have accumulated a total flow time of F≤Tu(σu) :=∑

j∈σu
(Tu − rj) in both Greedy and Opt.

Let F≥Tu

Greedy(σu) denote the total flow time for the jobs in σu after time Tu

in the Greedy solution, and F≥Tu

Opt (σu) the same quantity for the Opt solu-
tion. Further, we let FOpt(σu) = F≥Tu

Opt (σu) + F≤Tu(σu) and FGreedy(σu) =

Online Single Machine Batch Scheduling 431

F≥Tu

Greedy(σu) + F≤Tu(σu) be the total flow time for the jobs in σu in Opt and
Greedy, respectively.

Now, if σ′ starts at Tu− s or earlier, then all jobs in σ′ must arrive at Tu− s or
earlier. Therefore, up until time Tu, the m jobs in σu ∩ σ′ already yield an accu-
mulated total flow time F≤Tu(σu) ≥ ms in this case. After time Tu, the Greedy
solution further accumulates a total flow time F≥Tu

Greedy(σu) = Pu = l(lp + s) for
the l jobs in σu. As σ′ finishes at or after Tu, and all jobs in σu must have arrived
by Tu, the total flow time of Opt for the jobs in σu after time Tu is

F≥Tu

Opt (σu) ≥
Lemma 2︷ ︸︸ ︷
m(pm) +

wait for σ′ to complete︷ ︸︸ ︷
(l −m)(pm) +

Observation 1︷ ︸︸ ︷
1
2
p(l −m)2 + (l −m)s . (2)

Therefore, we have

2 · FOpt(σu) ≥ pl2 + pm2 + 2s(l −m) + 2F≤Tu(σu)

≥ pl2 + sl + F≤Tu(σu) = FGreedy(σu). (3)

Next, we consider the case in which σ′ starts after Tu−s, say at starting time
Tu − s+ τ , for τ > 0. We still have F≥Tu

Greedy(σu) = l(lp+ s) for Greedy. In this
case, however, we obtain F≤Tu(σu) ≥ m(s− τ), and further an additive term lτ

in the bound (2) for F≥Tu

Opt (σu). The additive term lτ for F≥Tu

Opt (σu) cancels out
against the extra term −mτ for F≤Tu(σu) in the inequalities (3), so the bound
(3) also applies in this case.

Since FGreedy(σu)
FOpt(σu) ≤ 2 holds for any batch σu of the Greedy solution, the

theorem follows. �

3 Lower Bounds for Identical Processing Times

Below, we derive two lower bounds for any algorithm for the online BatchFlow
problem, again with identical processing times. These bounds show that no online
algorithm can be much better than Greedy for this setting.

Theorem 3. No online algorithm for the online BatchFlow problem with
identical processing times can have a competitive ratio lower than

1 +
1

1 + max(p,s)
min(p,s)

.

Proof. LetA be any online algorithm with finite delay time ∆A for P = {1}. The
adversary chooses release times r1 = 0, r2 = ∆A, and rj = ∆A+p(j−1)+s(j−2)
for j ∈ {3, . . . , n}, as depicted in Figure 3. Observe that an offline solution can
avoid any waiting time for n− 2 jobs: If job 1 and job 2 are processed together,
the first batch has finished just when job 3 arrives, so if job 3 is processed

432 B. Gfeller et al.

r1
∆A 2p+ s p+ s p+ s · · ·

r2 r3 r4 r5

Fig. 3. The lower bound construction

immediately, it will be finished just when job 4 arrives, and so on until job n.
Thus,

FOpt ≤
job 1 waits︷︸︸︷
∆A +2(2p+ s) + (n− 2) · (p+ s) = n(p+ s) +∆A + 2p.

For bounding the flow time of A’s solution, we examine for each job j the
earliest possible completion time that A can achieve.

By construction of the example,A cannot batch job 2 together with job 1, and
starts processing job 1 at time ∆A, which completes at C1 = ∆A+p+ s. Hence,
job 2 cannot start processing before C1, and thus C2 ≥ ∆A+2p+2s. In the full
version of this paper [Gfeller et al., 2006], we show that for each j ∈ {3, . . . , n},
it holds Cj ≥ ∆A + pj + s(j − 1) + min(p, s). Adding

∑n
j=1 Fj =

∑n
j=1 Cj − rj ,

we get

FA ≥
job 1︷ ︸︸ ︷

∆A + p+ s+

job 2︷ ︸︸ ︷
2p+ 2s+

n∑
j=3

(p+ s+ min(p, s))

= ∆A + np+ p+ ns+ s+ (n− 2)min(p, s)

The competitive ratio can now be bounded as

FA
FOpt

≥ ∆A + np+ p+ ns+ s+ (n− 2)min(p, s)
n(p+ s) +∆A + 2p

→ p+ s+ min(p, s)
p+ s

= 1 +
1

1 + max(p,s)
min(p,s)

for n→∞.�

Using a similar construction, one can show the following lower bound. For a
proof, we refer to the full version of this paper [Gfeller et al., 2006].

Theorem 4. No online algorithm for the online BatchFlow problem with
identical processing times can have a competitive ratio lower than

1 +
1

1 + 2 p
s

.

4 Bounds on the Competitive Ratio for General
Processing Times

We now consider the online BatchFlow problem with general processing times,
where different jobs can have different processing times. Note that in this setting,

Online Single Machine Batch Scheduling 433

it may be beneficial not to process jobs in the order they arrive, that is, to reorder
jobs.

The following theorem shows that no online algorithm can have a good worst
case performance for the online BatchFlow problem with general processing
times, if reordering of jobs is allowed.

Theorem 5. For the online BatchFlow problem, any online algorithm has
competitive ratio at least n

2 − ε for any ε > 0.

Proof. Let A be any online algorithm. Consider an instance of n jobs, where the
first job 1 has processing time p, and all other jobs 2, . . . , n have processing time
1, and arrive immediately after A starts processing job 1 (after having delayed
for ∆A time units). As each of the jobs 2, . . . , n has to wait for job 1 to finish,
the total flow time for A is FA ≥ ∆A+n(p+s)+1/2(n−1)2+(n−1)s, using the
lower bound from Observation 1 for optimally processing (n − 1) jobs of equal
processing time arriving at the same time.

For Opt, consider the solution that first processes jobs 2, . . . , n in one batch,
and after that processes job 1: FOpt ≤ ∆A + n((n− 1) + s) + p+ s.

If ∆A > p + s, then our bound for FA increases, but we can decrease the
bound for FOpt because Opt can complete job 1 even before the other jobs
arrive, and then process all other jobs in one batch. Therefore, we assume in the
following that ∆A ≤ p+ s. We thus have

FA ≥ np+
1
2
n2 + 2ns− n− s+

1
2

and FOpt ≤ 2p+ 2s+ n2 − n+ ns.

It is easily verified that(n
2
− ε

)
· FOpt ≤ FA if we choose p ≥ 1

4ε
(
n3 + n2s+ 2n+ 2s+ 2εn

)
.

�

Theorem 5 shows that for the general setting, there is no online algorithm with
a sub-linear competitive ratio. However, we will see in the following that all so-
called non-waiting algorithms, a class to which the Greedy algorithm belongs,
are strictly n-competitive, i.e., are at most a factor 2 away from the lower bound.
We call an online algorithm non-waiting if it never produces a solution in which
there is idle time while some jobs are pending.

Theorem 6. Any non-waiting online algorithm for the online BatchFlow
problem is strictly n-competitive.

Proof. Let A be any non-waiting online algorithm. Consider any job i, and let
σu be the batch which contains job i. Furthermore, let J ′ be the set of all jobs
not contained in σu. The flow time of job i is Fi = Ci − ri = Tu + Pu − ri. The
longest possible interval during which σu needs to wait (i.e., the machine is busy)
in a non-waiting algorithm’s solution is s|J ′| +

∑
j∈J′ pj . So, for a non-waiting

algorithm, Tu − ri ≤ s(n− 1) +
∑

j∈J′
pj . Hence,

434 B. Gfeller et al.

Fi ≤ Pu + s(n− 1) +
∑
j∈J′

pj ≤ sn+
n∑

j=1

pj .

Thus, the total flow time for A’s solution is

FA =
n∑

i=1

Fi ≤ n2s+ n ·
n∑

j=1

pj .

We now turn to the optimal solution Opt. Clearly, each job i has flow time
F ′i ≥ pi + s, as the batch processing time is inevitable. Thus, the flow time of
Opt is at least

FOpt =
n∑

i=1

F ′i ≥ ns+
n∑

j=1

pj .

Comparing the total flow times FA and FOpt completes the proof. �

Observe that this upper bound proof does not make use of the fact that the
reordering of jobs is allowed. Thus, requiring jobs to be processed in arrival
order does not affect the validity of Theorem 6. Note that this is not true for
Theorem 5.

We remark that the online non-preemptive scheduling problem with release
times is a special case of the online BatchFlow problem. Thus, the Θ(n) upper
bound for the former problem, mentioned by Epstein and van Stee [2003], is
implied by our Theorem 6.

5 Conclusion and Open Problems

We considered the online BatchFlow problem, which is written as the fam-
ily scheduling with batching problem 1|rj , sf = s, F = 1|

∑
Fj in the standard

scheduling classification scheme. For the online BatchFlow problem with iden-
tical processing times, we presented a 2-competitive greedy algorithm, as well as
two lower bounds for any online algorithm. We also derived bounds for the gen-
eral online BatchFlow problem. As summarized in Table 1, upper and lower
bound are of the same order in the case of the general online BatchFlow prob-
lem (with arbitrary pj). In the case of identical processing times (pj = p for all
j), bounds are only matching if s+ p, as then 1+ 1

1+2 p
s

is close to 2. Further, we
showed that no online algorithm can guarantee to compute a feasible solution
for the online BatchFlow problem with a maximum processing time constraint
whenever there is a feasible offline solution.

Table 1. Results for the online BatchFlow problem

online BatchFlow problem lower bound upper bound

general pj
n
2 − ε n

identical pj = p 1 + 1
1+2 p

s
, 1 + 1

1+ max(p,s)
min(p,s)

2

Online Single Machine Batch Scheduling 435

Even though our greedy algorithm is nearly worst-case optimal for identical
processing times, and not too far from optimal for the general online Batch-
Flow problem, one might expect that online algorithms which wait at least some
short time may be superior. An average case analysis for the online BatchFlow
problem, assuming random release times, might lead to further insights in this
question. Along with an average case analysis, one could consider randomized
online algorithms.

Further, it could be interesting to consider special problem cases, for example,
when the ratio between the maximum processing time and the setup time is
bounded, or when the ratio between maximum and minimum processing time is
bounded.

References

B. Chen, X. Deng, and W. Zang. On-line scheduling a batch processing system to min-
imize total weighted job completion time. Journal of Combinatorial Optimization,
8:85–95, 2004.

X. Deng, C.K. Poon, and Y. Zhang. Approximation algorithms in batch processing.
Journal of Combinatorial Optimization, 7:247–257, 2003.

S. Divakaran and M. Saks. Online scheduling with release times and set-ups. Technical
Report 2001-50, DIMACS, 2001.

L. Epstein and R. van Stee. Lower bounds for on-line single-machine scheduling. The-
oretical Computer Science, 299(1-3):439–450, 2003.

B. Gfeller, L. Peeters, B. Weber, and P. Widmayer. Single machine batch
scheduling with release times. Technical Report 514, ETH Zurich, 2006.
Available at http://www.inf.ethz.ch/research/disstechreps/techreports.

C.Y. Lee, R. Uzsoy, and L.A. Martin-Vega. Efficient algorithms for scheduling semi-
conductor burn-in operations. Operations Research, 40(4):764–775, 1992.

C.K. Poon and W. Yu. A flexible on-line scheduling algorithm for batch machine with
infinite capacity. Annals of Operations Research, 133:175–181, 2005a.

C.K. Poon and W. Yu. On-line scheduling algorithms for a batch machine with finite
capacity. Journal of Combinatorial Optimization, 9:167–186, 2005b.

C. Potts and M. Kovalyov. Scheduling with batching: A review. European Journal of
Operational Research, 120:228–249, 2000.

G. Zhang, X. Cai, and C.K. Wong. On-line algorithms for minimizing makespan on

batch processing machines. Naval Research Logistics, 48:241–258, 2001.

Machines that Can Output Empty Words

Christian Glaßer and Stephen Travers�

Theoretische Informatik
Julius-Maximilians Universität Würzburg, Germany
{glasser, travers}@informatik.uni-wuerzburg.de

Abstract. We propose the e-model for leaf languages which generalizes
the known balanced and unbalanced concepts. Inspired by the neutral
behavior of rejecting paths of NP machines, we allow transducers to
output empty words. The paper explains several advantages of the new
model. A central aspect is that it allows us to prove strong gap theorems:
For any class C that is definable in the e-model, either coUP ⊆ C or
C ⊆ NP. For the existing models, gap theorems, where they exist at all,
only identify gaps for the definability by regular languages. We prove
gaps for the general case, i.e., for the definability by arbitrary languages.
We obtain such general gaps for NP, coNP, 1NP, and co1NP. For the
regular case we prove further gap theorems for ΣP

2 , ΠP
2 , and ∆P

2 . These
are the first gap theorems for ∆P

2 .

1 Introduction

Bovet, Crescenzi, and Silvestri [5] and Vereshchagin [20] independently intro-
duced leaf languages. This concept allows a uniform definition of many interest-
ing complexity classes like NP and PSPACE. The advantage of such an approach
is that it allows to prove general theorems in a concise way. For example, Glaßer
et al. [10] recently showed that if C is a class that is balanced-leaf-language de-
finable by a regular language, then all many-one complete problems of C are
polynomial-time many-one autoreducible. This general theorem answered sev-
eral open questions, since classes like NP, PSPACE, and the levels of the PH are
definable in this way.

Moreover, leaf languages allow concise oracle constructions. The back-
ground is the BCSV-theorem [5,20] that connects polylog-time reducibility (plt-
reducibility) with the robust inclusion of two complexity classes (i.e., the inclu-
sion with respect to all oracles). This connection reduces oracle constructions
to their combinatorial core. In particular, neither do we have to care about the
detailed stagewise construction of the oracle, nor do we have to describe the
particular coding of the single stages.

In this paper we offer a useful generalization of the known leaf-language con-
cepts. Despite of its broader definition, the new concept is convenient and has
the nice features we appreciate with traditional leaf languages. It even combines

� Supported by the Konrad-Adenauer-Stiftung.

R. Královič and P. Urzyczyn (Eds.): MFCS 2006, LNCS 4162, pp. 436–446, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Machines that Can Output Empty Words 437

certain advantages of single known concepts. We summarize the benefit of the
new notion:

1. works with balanced computation trees
2. admits a BCSV-theorem [5,20]
3. establishes a tight connection between the polynomial-time hierachy and the

Straubing-Thérien hierarchy (the quantifier-alternation hierarchy of the logic
FO[<] on words)

The new e-model of leaf languages is inspired by the observation that rejecting
paths of nondeterministic computations act as neutral elements. In this sense we
allow nondeterministic transducers not only to output single letters, but also to
output the empty word ε which is the neutral element of Σ∗. More precisely, we
consider nondeterministic polynomial-time-bounded Turing machines M such
that on every input, every computation path stops and outputs an element from
Σ∪{ε}. Let M(x) denote the computation tree on input x, and define βM (x) as
the concatenation of all outputs of M(x). For any language B, let Leafpe (B) (the
e-class of B) be the class of languages L such that there exists a nondeterministic
polynomial-time-bounded Turing machine M as above such that for all x,

x ∈ L ⇐⇒ βM (x) ∈ B.

If we demand that M never outputs ε, then this defines Leafpu(B) (the u-class
of B). If we demand that M is balanced and never outputs ε, then this defines
Leafpb(B) (the b-class of B). (M is balanced if there exists a polynomial-time
computable function that on input (x, n) computes the n-th path of M(x).) The
notions e-class, u-class, and b-class are extended from a single language B to a
class of languages C in the standard way: Leafpe (C) (the e-class of C) is the union
of all Leafpe (B) where B ∈ C. For a survey on the leaf-language approach we
refer to Wagner [21].

It is immediately clear that the u-model and the b-model are restrictions of
the e-model.

Leafpb(B) ⊆ Leafpu(B) ⊆ Leafpe (B)

Moreover, it is intuitively clear that the presence of the neutral element ε gives
the class Leafpe (B) some inherent nondeterministic power which makes Leafpe (B)
seemingly bigger than P. We will discuss this issue and we will identify UP ∩
coUP as a lower bound (we obtain stronger bounds if we restrict to regular
languages B). The advantage of the e-model over the u-model is its simplicity:
In the e-model we can assume balanced computation trees which in turn leads
to easy plt-reductions. The advantage over the b-model is the established tight
connection between the polynomial-time hierarchy and the Straubing-Thérien
hierarchy, a well-studied hierarchy of regular languages. Glaßer [9] shows that
such a connection does not hold for the b-model. This connection within the
e-model makes it possible to exactly characterize leaf-language classes in the
environment of NP.

In order to describe our results we have to define the levels of the Straubing-
Thérien hierarchy (STH). In the scope of this paper it suffices to summarize

438 C. Glaßer and S. Travers

that the STH is a hierarchy of levels that contain regular languages. We use a
notation that already suggests a connection to the polynomial-time hierarchy
(PH). A language belongs to level ΣFO

k if it can be defined by a sentence of the
logic FO[<] on words such that the sentence starts with an existential quantifier
and has at most k − 1 quantifier alternations. ΠFO

k denotes the level of the
complements of elements in ΣFO

k . ∆FO
k denotes the intersection of ΣFO

k and ΠFO
k .

The formal definition can be found in the preliminaries.

Results: We start with observations that let us easily transfer the known BCSV-
theorem to the new notion. Along these lines we show that the polynomial-
time hierarchy (PH) is connected with the Straubing-Thérien hierarchy in the
following sense: The e-class of level ΣFO

k of the STH equals level ΣP
k of the

PH. Note that this leaves room for the possibility that languages outside ΣFO
k

form e-classes that are still contained in ΣP
k . So even the e-class of a superset

of ΣFO
k might be equal to ΣP

k . For the lower levels, however, we are able to rule
out this possibility. This proves a substantially tighter connection between both
hierarchies. For instance, under the reasonable assumption coUP 	⊆ NP, we show
that the languages in ΣFO

1 are the only languages whose e-classes are contained
in NP. Hence, under this assumption, a language belongs to ΣFO

1 if and only
if its e-class is contained in NP. This connects ΣFO

1 and NP in the strongest
possible way. We obtain several other strong relationships of this type, they are
summarized in Table 1. In particular, we prove the first gap theorem for ∆P

2
(Corollary 6). This is possible by the e-model’s tight connection to the STH,
by the forbidden-pattern characterization of ΣFO

2 which was proved by Pin and
Weil [14], and by the equality Leafpu(∆FO

2) = ∆P
2 which was shown by Borchert,

Schmitz, and Stephan [4] and Borchert et al. [3].
Some comments about the results in Table 1 are appropriate. First, they can be

interpreted as gap theorems for leaf-language definability. For instance, the row
about ΣFO

1 tells us that any e-class either is contained in NP or contains at least
coUP. Hence, once an e-class becomes bigger than NP, its complexity jumps to at
least NP∪coUP. Second, there exist several evidences that classes in the columns
3–5 are not contained in the corresponding class of column 2. In any case there
exist oracles relative to which this non-containment holds. Third, all classes in the
first column are decidable, i.e., on input of a finite automaton A we can decide
whether the language accepted by A belongs to the class. This allows a decidable
and precise classification of e-classes under the assumption that the classes in the
4th column are not contained in the respective class in the 2nd column. On input
of a regular language B (via its finite automaton) we can determine whether or
not B’s e-class is contained in the classes of the 2nd column.

With U we identify the class of all languages whose e-class is (robustly) con-
tained in 1NP. A language belongs to U if and only if membership of a word
can be expressed in terms of a unique occurrence of a substring and in terms
of forbidden substrings. This shows that U is a class of regular languages. We
prove a decidable characterization of U, a so-called forbidden-pattern character-
ization. It exactly reveals the structure in a finite automaton that is responsible
for shifting a language outside U.

Machines that Can Output Empty Words 439

Table 1. Summary of the gap theorems, B is a language different from ∅ and Σ∗1

C Leafpe (C) = if B /∈ C then
Leafpe (B) contains

if B ∈ REG− C then
Leafpe (B) contains

if B ∈ SF− C then
Leafpe (B) contains

∅ ∅ UP or coUP NP, coNP, or
MODpP for a prime p

NP or coNP

ΣFO
1 NP coUP coNP, co1NP, or

MODpP for a prime p
coNP or co1NP

ΠFO
1 coNP UP NP, 1NP, or MODpP for

a prime p
NP or 1NP

U 1NP UP ∨UP or
UP∨· coUP

UP ∨UP or
UP∨· coUP

UP ∨UP or
UP∨· coUP

coU co1NP coUP ∧ coUP or
UP∧· coUP

coUP ∧ coUP or
UP∧· coUP

coUP ∧ coUP or
UP∧· coUP

∆FO
2 ∆P

2 – AUΣP
2 or AUΠP

2 AUΣP
2 or AUΠP

2

ΣFO
2 ΣP

2 – AUΠP
2 AUΠP

2

ΠFO
2 ΠP

2 – AUΣP
2 AUΣP

2

Gap theorems for leaf-language definability are rather rare. With the following
theorem we summarize the known results.

Theorem 1. Let B be a nontrivial regular language.

1. [1] The u-class of B either is contained in P, or contains at least one of the
following classes: NP, coNP, MODpP for some prime p.

2. [2] The u-class of B either is contained in NP, or contains at least one of
the following classes: coNP, co1NP, MODpP for some prime p.

3. [15] The u-class of B either is contained in ΣP
2 , or contains AUΠP

2 .
4. [9] The b-class of B either is contained in P, or contains at least one of the

following classes: NP, coNP, MODpP for some prime p.
5. [9] The b-class of B either is contained in NP, or contains at least one of

the following classes: coNP, co1NP, MODpP for some prime p.

2 Preliminaries

2.1 Basic Notions

We denote with NL, P, NP, coNP and PSPACE the standard complexity classes
whose definitions can be found in any textbook on computational complexity.
The class UP is the class of decision problems solvable by an NP machine such

1 Some remarks about notations: C ∨ D (resp., C ∨· D) is the class of unions (resp.,
disjoint unions) of some L1 ∈ C and some L2 ∈ D. From this, the operators ∧ and ∧·
are derived via DeMorgan’s law. AUΣP

2 and AUΠP
2 denote levels of the unambiguous

polynomial-time hierarchy.

440 C. Glaßer and S. Travers

that if the input belongs to the language, exactly one computation path accepts
and if the input does not belong to the language, all computation paths reject.
Contrary, the class 1NP (also called US) is the class of decision problems solvable
by an NP machine such that the input belongs to the language if and only if
exactly one computation path accepts. For any k > 1, MODkP is the class of
decision problems solvable by an NP machine such that the number of accepting
paths is divisible by k if and only if the input does not belong to the language.
The characteristic function of a set A is χA. We assume that our alphabet
Σ contains at least 2 letters. For a class of languages C, coC is the class of
complements of languages in C.

Let 0 denote the usual subword relation, i.e., v0w if v = v1 . . . vn for letters
v1, . . . , vn and w ∈ Σ∗v1Σ∗v2 . . . Σ∗vnΣ

∗. We write v≺w if v0w and v 	= w.
For k ≥ 0 we write v0k w if v is a nonempty word that appears precisely k-times
as a subword of w. In addition we define ε01w for every word w. For k ≥ 0 we
write v0≥k w if there exists l ≥ k such that v0lw. For k ≥ 0 and a finite set B
of words v1, . . . , v|B| we write B0k w if k can be written as k = k1 + · · ·+ k|B|
such that v10k1 w, v20k2 w, . . . , v|B|0k|B| w. So v0w if and only if there
exists k ≥ 1 such that v0k w. Also, v 	0w if and only if v00w. For example, it
holds that 1003 1110 and {0, 1, 10}07 1110.

We call a language B nontrivial if B 	= ∅ and B 	= Σ∗.
Whenever we talk about a pair (L,K) ⊆ Σ∗ of languages, we assume that

L ⊆ Σ∗ and K ⊆ Σ∗ are disjoint.

Definition 1. Let K,M be complexity classes. We define

K ∨M =def {A ∪B
∣∣A ∈ K, B ∈M}, K ∧M =def co(coK ∨ coM),

K∨· M =def {A ∪B
∣∣A ∈ K, B ∈M, A ∩B = ∅}, K∧· M =def co(coK∨· coM).

The Unambiguous Alternation Hierarchy. Niedermeier and Rossmanith
[12] introduced the unambiguous alternation hierarchy. For any complexity class
C, define ∃u·C as the class of languages L such that there exist a polynomial
p and L′ ∈ C such that for all x the following holds: If x is in L, there exists
exactly one y ∈ Σ=p(|x|) such that (x, y) ∈ L′. If x is not in L, there exists no
y ∈ Σ=p(|x|) such that (x, y) ∈ L′. Similarly, ∀u·C =def co∃u·coC.

Definition 2 (attributed to unpublished work of Hemaspaandra [12]).
AUΣP

0 = AUΠP
0 =def P, AUΣP

k+1 =def ∃u·AUΠP
k for k ≥ 0, AUΠP

k+1 =def

∀u·AUΣP
k for k ≥ 0.

Spakowski and Tripathi [16] construct an oracle relative to which for every n ≥ 1,
level n of the unambiguous alternation hierarchy is not contained in ΠP

n .

The Straubing-Thérien hierarchy. Starfree languages are regular languages
that can be build from single letters by using Boolean operations and concate-
nation. Let SF denote the class of starfree languages. Brzozowski and Cohen
[8,6] introduced the dot-depth hierarchy which measures the complexity of star-
free languages in terms of necessary alternations between Boolean operations

Machines that Can Output Empty Words 441

and concatenation. Straubing and Thérien [17,19,18] introduced a modification
that is more appropriate for the algebraic theory of languages, but still cov-
ers the important aspects of the dot-depth hierarchy. This hierarchy is called
Straubing-Thérien hierarchy (STH).

Perrin and Pin [13] proved a logical characterization of the STH. We use this
characterization as definition, since it uses an easy logic on words and it shows
nice parallels to the definition of the polynomial-time hierarchy. Formulas of
the first-order logic FO[<] consist of first-order quantifiers, Boolean operators,
the binary relation symbol <, and unary relation symbols πa for each letter a.
A sentence φ is satisfied by a word w if φ evaluates to true where variables
are interpreted as positions in w and πax is interpreted as “letter a appears at
position x in w”. A language B is FO[<] definable if there exists a sentence φ
such that for all words w, w ∈ L if and only if φ is satisfied by w. A ΣFO

k -sentence
(resp., ΠFO

k -sentence) is a sentence of FO[<] that is in prenex normal form, that
starts with an existential (resp., universal) quantifier, and that has at most k−1
quantifier alternations. A language belongs to the class ΣFO

k (resp., ΠFO
k) of the

STH if it can be defined by a ΣFO
k -sentence (resp., ΠFO

k -sentence). ∆FO
k denotes

the intersection of ΣFO
k and ΠFO

k .

3 Machines with Computation Trees Having ε-Leaves

We introduce the e-model of leaf languages which is inspired by the observation
that rejecting paths of nondeterministic computations act as neutral elements.
We allow nondeterministic transducers not only to output single letters, but
also to output the empty word ε. After the formal definition we introduce pte-
reducibility which allows us to formulate and prove an analogue of the BCSV-
theorem. Furthermore, we show that the e-model connects the polynomial-time
hierarchy with the Straubing-Thérien hierarchy.

For a finite alphabet Σ and a 	∈ Σ, we define a homomorphism hΣ,a : (Σ ∪
{a})∗ → Σ∗ by hΣ,a(b) =def b for b ∈ Σ and hΣ,a(a) =def ε.

Definition 3. Let (L,K) ⊆ Σ∗. The class Leafpe (L,K) consists of all languages
A for which there exists a nondeterministic polynomial time transducer M pro-
ducing on every computation path a symbol from Σ or the empty word ε such
that the following holds:

x ∈ A⇒ βM (x) ∈ L, x 	∈ A⇒ βM (x) ∈ K.

For (L,K) ⊆ Σ∗, if K = Σ∗ − L, we will often use Leafpe (L) as abbreviation
for Leafpe (L,K). In these cases, we will make clear what alphabet we use for
L. Notice the it makes no difference whether we use balanced or unbalanced
computation trees. So for convenience we may assume that paths not only can
output single letters, but arbitrary words.

Example 1. 1. Leafpe (11∗, ε) = Leafpe (0∗1(0 ∨ 1)∗, 0∗) = NP.
2. Let L =def {1} ⊆ {0, 1}∗. Then Leafpe (L) = 1NP.
3. Leafpe (1, ε) = UP.

442 C. Glaßer and S. Travers

A function g is computable in polylogarithmic time if there exists k ≥ 1 such that
g(x) can be computed in time O(logk|x|) by a Turing-machine which accesses
the input as an oracle.

Definition 4. Let (L,K) ⊆ Σ∗1 , (L′,K ′) ⊆ Σ∗2 and a 	∈ Σ∗1 ∪ Σ∗2 . Then
(L,K)≤pte

m (L′,K ′) if and only if there exists a function f : (Σ1 ∪ {a})∗ →
(Σ2 ∪ {a})∗ such that

– there exist functions g :
(
(Σ1 ∪{a})∗×N

)
→ Σ2 ∪{a}, h : (Σ1 ∪{a})∗ → N

computable in polylogarithmic time such that for all x ∈ (Σ1 ∪{a})∗, f(x) =
g(x, 1)g(x, 2) . . . g(x, h(x)),

– for all x ∈ (Σ1 ∪ {a})∗,
(
hΣ1,a(x) ∈ L⇒ hΣ2,a(f(x)) ∈ L′

)
,

– for all x ∈ (Σ1 ∪ {a})∗,
(
hΣ1,a(x) ∈ K ⇒ hΣ2,a(f(x)) ∈ K ′

)
.

If (L,K)≤pte
m (L′,K ′) and K = Σ∗1 − L and K ′ = Σ∗2 − L′, we write L≤pte

m L′ as
abbreviation.

We obtain the following BCSV-theorem for the e-model.

Theorem 2. Let (L,K) ⊆ Σ∗1 and (L′,K ′) ⊆ Σ∗2 . Then the following state-
ments are equivalent:

1. (L,K)≤pte
m (L′,K ′).

2. For all oracles O it holds that Leafpe (L,K)O ⊆ Leafpe (L′,K ′)O.

The next theorem shows a connection between the STH and the PH via the
e-model. A similar connection for the existing b- and u-models was proved by
Hertrampf et al. [11], Burtschick and Vollmer [7], and Borchert et al. [3].

Theorem 3. For k ≥ 1, it holds that Leafpe (ΣFO
k) = ΣP

k , Leafpe (ΠFO
k) = ΠP

k ,
Leafpe (∆FO

k) = ∆P
k .

4 Gap Theorems for NP, ∆P
2 , and ΣP

2

In this section we use existing forbidden-pattern characterizations to obtain lower
bounds for certain e-classes. From this we derive gap theorems for NP, ∆P

2 , and
ΣP

2 . A summary of these results can be found in Table 1. Pin and Weil [14] proved
the following forbidden-pattern characterization of level ΣFO

1 of the STH.

Proposition 1 ([14]). The following holds for any language A:

A ∈ ΣFO
1 ⇔ ∀v, w ∈ Σ∗

(
v0w ⇒ χA(v) ≤ χA(w)

)
⇔ ∀v, w ∈ Σ∗

(
∀a ∈ Σ

(
χA(vw) ≤ χA(vaw)

))
This characterization enables us to prove lower bounds for the e-class of lan-
guages outside ΣFO

1 . In combination with Theorem 3 we obtain a gap theorem
for NP (Corollary 1).

Machines that Can Output Empty Words 443

Theorem 4. Let A be an arbitrary language.

1. If A /∈ ΣFO
1 , then coUP ⊆ Leafpe (A).

2. If A ∈ REG − ΣFO
1 , then Leafpe (A) contains at least one of the following

classes: coNP, co1NP, MODpP for a prime p.
3. If A ∈ SF−ΣFO

1 , then Leafpe (A) contains at least one of the following classes:
coNP, co1NP.

Corollary 1. Let B be a nontrivial language.

1. The e-class of B either is contained in NP, or contains coUP.
2. If B ∈ REG, then the e-class of B either is contained in NP, or contains at

least one of the following classes: coNP, co1NP, MODpP for a prime p.
3. If B ∈ SF, then the e-class of B either is contained in NP, or contains at

least one of the following classes: coNP, co1NP.

Now we can prove general lower bounds for e-classes. In particular, no complexity
class below UP is definable with this concept.

Corollary 2. Let A be a nontrivial language.

1. Leafpe (A) contains at least one of the following classes: UP, coUP.
2. If A ∈ REG, then Leafpe (A) contains at least one of the following classes:

NP, coNP, MODpP for a prime p.
3. If A ∈ SF, then Leafpe (A) contains at least one of the following classes: NP,

coNP.

Under reasonable assumptions there is no regular A such that A’s e-class lies
strictly between coNP and 1NP. By symmetry, the same holds for NP and co1NP.

Corollary 3. Let A ∈ REG be a nontrivial language. Assume NP 	⊆ 1NP and
MODpP 	⊆ 1NP for all primes p. Then the following implication holds.

Leafpe (A) � 1NP ⇒ Leafpe (A) ⊆ coNP.

Starting with a forbidden-pattern characterization for ΣFO
2 [14] we develop a

lower bound for the e-class of ΣFO
2 . Again, this yields a gap theorem, this time

for ΣP
2 (Corollary 4).

Theorem 5. If A ∈ REG− ΣFO
2 , then AUΠP

2 ⊆ Leafpe (A).

Corollary 4. Let B be a nontrivial, regular language. The e-class of B either
is contained in ΣP

2 , or contains AUΠP
2 .

In addition, Theorem 5 gives us a lower bound for the e-class of ∆FO
2 :

Corollary 5. If A ∈ REG− (ΣFO
2 ∩ΠFO

2), then Leafpe (A) contains at least one
of the following classes: AUΠP

2 , AUΣP
2 .

The following is the first gap theorem for ∆P
2 . It holds for both the u- and the

e-model.

444 C. Glaßer and S. Travers

Corollary 6. Let B be a nontrivial, regular language.

1. The e-class of B either is contained in ∆P
2 , or contains at least one of the

following classes: AUΣP
2 , AUΠP

2 .
2. The u-class of B either is contained in ∆P

2 , or contains at least one of the
following classes: AUΣP

2 , AUΠP
2 .

5 A Gap Theorem for 1NP

In view of the gap theorems for NP and coNP (Corollary 1) it becomes evident
that the classes 1NP and MODpP play an important role since they appear
as lower bounds. In this section we analyze 1NP in detail and prove a gap
theorem for this class. This case is more challenging since we cannot utilize
an existing forbidden-pattern characterization. With Theorem 6 we give such a
characterization for the class of languages corresponding to 1NP. Additionally,
this theorem shows that with this class we have in fact identified all languages
whose e-class is robustly contained in 1NP. This lets us derive a gap theorem
for 1NP. For a given language L, we define the following conditions:

P1: There exist words u ∈ L, v /∈ L, and w ∈ L such that u0 v0w.

P2: There exist k ≥ 2 and nonempty words u, v, w ∈ L such that {u, v}0kw
and ∀x

(
((x≺ u ∨ x≺ v) ⇒ x /∈ L

)
.

We interpret the patterns P1 and P2 as forbidden patterns and define a class of
languages U of languages which neither fulfill P1 nor P2:

U =def {L
∣∣P1 and P2 fail for L}

We will later on see that U is in fact a class of regular languages, and precisely
characterizes the class 1NP in the e-model of leaf-languages. The next lemma
shows that the e-class of a language which fulfills P1 or P2 is quite powerful.

Lemma 1. Let L ⊆ Σ∗ be a language.
1. If L satisfies P1, then Leafpe (L) ⊇ UP∨· coUP.
2. If L satisfies P2, then Leafpe (L) ⊇ UP ∨UP.

The next lemma gives simple languages that define the classes 1NP, UP∨· coUP,
and UP ∨UP in terms of leaf-languages.

Lemma 2. 1. Leafpe (1, (ε ∨ 111∗)) = 1NP, 2. Leafpe ((ε ∨ 12), 2) = UP∨· coUP,
3. Leafpe ((1 ∨ 2 ∨ 12), ε) = UP ∨UP.

In order to show that for any language L, fulfillment of P1 suffices for the class
Leafpe (L) to be not robustly contained in 1NP, we first prove that languages char-
acterizing UP∨· coUP cannot be pte-reduced to languages characterizing 1NP.

Machines that Can Output Empty Words 445

Lemma 3. ((ε ∨ 12), 2)	≤pte
m (1, (ε ∨ 111∗)).

Theorem 2 enables us to translate this statement into an oracle separation:

Lemma 4. There exists an oracle O such that UP∨· coUP 	⊆ 1NPO.

We now prove that languages characterizing UP ∨ UP cannot be pte-reduced
to languages characterizing 1NP. This is a step towards showing that for any
language L, fulfillment of P2 suffices for the class Leafpe (L) not to be robustly
contained in 1NP. Again, we achieve this by applying Theorem 2 to Lemma 5.

Lemma 5. ((1 ∨ 2 ∨ 12), ε)	≤pte
m (1, (ε ∨ 111∗)).

Lemma 6. There exists an oracle O such that UP ∨UP 	⊆ 1NPO.

So e-classes of languages outside U are not in 1NP. The next theorem gives the
characterization of U, the class that precisely corresponds to 1NP in the e-model.

Theorem 6. The following statements are equivalent for any language L ⊆ Σ∗.

1. L ∈ Rpte(1), the pte-closure of {1}.
2. For all oracles O it holds that Leafpe (L)O ⊆ 1NPO.
3. L ∈ U, that means both conditions, P1 and P2, fail for L.
4. There exist finite sets A,B ⊆ Σ∗ such that

L = {w
∣∣A01w and (∀v ∈ B)[v 	0w]}.

Observe that due to the characterization of U given by Theorem 6.4, we imme-
diately obtain that U only contains regular languages. We can now formulate
the new gap theorem.

Theorem 7. Let L be a nontrivial language. If L ∈ U, then the e-class of L
is contained in 1NP. If L 	∈ U, then the e-class of L contains UP∨· coUP or
UP ∨UP.

Acknowledgments

We thank Bernd Borchert, Victor Selivanov, and Klaus W. Wagner for very
interesting discussions and many helpful suggestions.

References

1. B. Borchert. On the acceptance power of regular languages. Theoretical Computer
Science, 148:207–225, 1995.

2. B. Borchert, D. Kuske, and F. Stephan. On existentially first-order definable lan-
guages and their relation to NP. Theoretical Informatics and Applications, 33:259–
269, 1999.

3. B. Borchert, K. Lange, F. Stephan, P. Tesson, and D. Thérien. The dot-depth and
the polynomial hierarchies correspond on the delta levels. International Journal of
Foundations of Computer Science, 16(4):625–644, 2005.

446 C. Glaßer and S. Travers

4. B. Borchert, H. Schmitz, and F. Stephan. Unpublished manuscript, 1999.
5. D. P. Bovet, P. Crescenzi, and R. Silvestri. A uniform approach to define complexity

classes. Theoretical Computer Science, 104:263–283, 1992.
6. J. A. Brzozowski. Hierarchies of aperiodic languages. RAIRO Inform. Theor.,

10:33–49, 1976.
7. H.-J. Burtschick and H. Vollmer. Lindström quantifiers and leaf language de-

finability. International Journal of Foundations of Computer Science, 9:277–294,
1998.

8. R. S. Cohen and J. A. Brzozowski. Dot-depth of star-free events. Journal of
Computer and System Sciences, 5:1–16, 1971.

9. C. Glaßer. Polylog-time reductions decrease dot-depth. In Proceedings 22nd Sym-
posium on Theoretical Aspects of Computer Science, volume 3404 of Lecture Notes
in Computer Science. Springer Verlag, 2005.

10. C. Glaßer, M. Ogihara, A. Pavan, A. L. Selman, and L. Zhang. Autoreducibil-
ity, mitoticity, and immunity. In Proceedings 30th International Symposium on
Mathematical Foundations of Computer Science, volume 3618 of Lecture Notes in
Computer Science, pages 387–398. Springer-Verlag, 2005.

11. U. Hertrampf, C. Lautemann, T. Schwentick, H. Vollmer, and K. W. Wagner.
On the power of polynomial time bit-reductions. In Proceedings 8th Structure in
Complexity Theory, pages 200–207, 1993.

12. R. Niedermeier and P. Rossmanith. Unambiguous computations and locally defin-
able acceptance types. Theoretical Computer Science, 194(1-2):137–161, 1998.

13. D. Perrin and J. E. Pin. First-order logic and star-free sets. Journal of Computer
and System Sciences, 32:393–406, 1986.

14. J. E. Pin and P. Weil. Polynomial closure and unambiguous product. Theory of
computing systems, 30:383–422, 1997.

15. H. Schmitz. The Forbidden-Pattern Approach to Concatenation Hierarchies. PhD
thesis, Fakultät für Mathematik und Informatik, Universität Würzburg, 2001.

16. H. Spakowski and R. Tripathi. On the power of unambiguity in alternating ma-
chines. In Proceedings 15th International Conference on Fundamentals of Compu-
tation Theory, Lecture Notes in Computer Science 3623, pages 125–136, 2005.

17. H. Straubing. A generalization of the Schützenberger product of finite monoids.
Theoretical Computer Science, 13:137–150, 1981.

18. H. Straubing. Finite semigroups varieties of the form V * D. J. Pure Appl. Algebra,
36:53–94, 1985.

19. D. Thérien. Classification of finite monoids: the language approach. Theoretical
Computer Science, 14:195–208, 1981.

20. N. K. Vereshchagin. Relativizable and non-relativizable theorems in the polyno-
mial theory of algorithms. Izvestija Rossijskoj Akademii Nauk, 57:51–90, 1993. In
Russian.

21. K. W. Wagner. Leaf language classes. In Proceedings International Conference
on Machines, Computations, and Universality, volume 3354 of Lecture Notes in
Computer Science. Springer Verlag, 2004.

Completeness of Global Evaluation Logic

Sergey Goncharov1, Lutz Schröder1,2, and Till Mossakowski1,2

1 Department of Computer Science, University of Bremen, Germany
2 DFKI Lab Bremen, Germany

Abstract. Monads serve the abstract encapsulation of side effects in
semantics and functional programming. Various monad-based specifica-
tion languages have been introduced in order to express requirements
on generic side-effecting programs. A basic role is played here by global
evaluation logic, concerned with formulae which may be thought of as
being universally quantified over the state space; this formalism is the
fundament of more advanced logics such as monad-based Hoare logic or
dynamic logic. We prove completeness of global evaluation logic for mod-
els in cartesian categories with a distinguished Heyting algebra object.

Introduction

Monads form the basis of the abstract treatment of side effects in modern func-
tional programming languages and in associated specification languages. The
computational significance of monads was first noticed by Moggi [7]. They were
subsequently incorporated in the design of the functional programming language
Haskell [11] as the principal means of dealing with impure features such as In-
put/Output, but also as a convenient mode of expression for state threading,
e.g. in parsing [3]. Monads are by now also well-established as a tool in seman-
tics (cf. [15] for a recent example, and [4] for an application to the semantics
of Java). The advantage of the abstraction of notions of side effect as mon-
ads is twofold: firstly, one obtains a generic framework that can be instantiated
with many particular monads, thus promoting the reuse of concepts and indeed
programs. Secondly, side effects are cleanly encapsulated and equipped with a
clearly delineated scope [9, 2].

The use of monads in programming has led to the design of various specifica-
tion logics for monadic programs, including Pitts’ evaluation logic [12], Moggi’s
globalized version of evaluation logic [8], a monad-based Hoare logic [13], and a
monad-based dynamic logic related to evaluation logic [14]. The basic tool in the
semantics of the latter two logics is global evaluation logic, concerned with state-
ments of the nature ‘after execution of a given program from any initial state, it
is the case that . . . ’ (referred to as global dynamic judgements in [14]). This logic
is closely related to Moggi’s global semantics of evaluation logic (which is in fact
markedly dissimilar from the originally intended local semantics of evaluation
logic [12]).

Unlike some of the more complex logics, global evaluation logic can be in-
terpreted over arbitrary monads, under only quite rudimentary requirements on

R. Královič and P. Urzyczyn (Eds.): MFCS 2006, LNCS 4162, pp. 447–458, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

448 S. Goncharov, L. Schröder, and T. Mossakowski

the base category. In this work, we make this semantics explicit, thus detach-
ing the calculus from the more complex framework of the specification language
HasCasl (i.e. higher order logic of partial functions) in which it was originally
presented [13, 14]. We then prove completeness of global evaluation logic for the
said class of models, viz. over cartesian categories with a distinguished Heyting
algebra object.

This work forms part of an ongoing effort to establish completeness results
for monad-based computational logics. A further result in this direction is the
completeness of monad-based dynamic logic [10]. While no completeness result
for the local semantics of evaluation logic is given in [12], Moggi does prove
completeness for his global version of evaluation logic [8]. The crucial difference
between the latter result and the one presented here is that the logic considered
in [8] includes the entire equational theory of monads, i.e. the meta-language
introduced in [7]. This fact plays a central role in Moggi’s completeness proof,
which relies on constructing a term model using the equations of the meta-
language. In contrast to this, our global evaluation logic talks purely about the
observable behaviour of programs, and excludes statements about actual equal-
ity of programs (we do admit an underlying equational theory, which however
shows up only in rules expressing Leibniz equalities). It may be argued that this
amounts to a better encapsulation of program behaviour, and is closer in spirit
to program logics such as Hoare logic, which also talk only about properties of
the state space affected by program execution rather than about equality of pro-
grams. In consequence, the term model construction in our completeness proof
is more involved: we cannot rely on treating equality by means of an equational
calculus, but need to introduce a Leibniz equality on terms. An important tool
in the model construction is a normalization result for program sequences, which
may be of independent interest.

The material is organized as follows. We recall the basics of monad-based
programming in Sect. 1. In Sect. 2, we define the syntax and semantics of global
evaluation logic, indicate how global evaluation logic is used in more advanced
program logics, and discuss the relation of our work to [8] in more detail. The
proof calculus of the logic is presented in Sect. 3. Section 4 is devoted to the
completeness proof of this calculus.

1 Monads for Computations

Intuitively, a monad associates to each type A a type TA of computations of type
A; a function with side effects that takes inputs of type A and returns values
of type B is, then, just a function of type A → TB. This approach abstracts
away from particular notions of computation such as store, non-determinism,
non-termination etc.; a surprisingly large amount of reasoning can be carried
out without commitment to a particular type of side effect.

A monad on a category C can be defined as a Kleisli triple T = (T, η, ∗),
where T : ObC → ObC is a function, the unit η is a family of morphisms
ηA : A → TA, and ∗ assigns to each morphism f : A → TB a morphism
f∗ : TA→ TB such that

Completeness of Global Evaluation Logic 449

η∗A = idTA, f∗ηA = f, and g∗f∗ = (g∗f)∗.

This description is equivalent to the more familiar one via an endofunctor with
unit and multiplication [6].

In order to support a language with finitary operations and multi-variable
contexts (see below), one needs a further ingredient: a monad is called strong if
it is equipped with a natural transformation

tA,B : A× TB → T (A×B)

called strength, subject to certain coherence conditions [7].

Example 1. [7] Computationally relevant monads on Set include

– Stateful computations with possible non-termination: TA = (S →? (A×S)),
where S is a fixed set of states and →? denotes the partial function type.

– Non-determinism: TA = P(A), where P denotes the covariant power set
functor (which takes a map f : A → B to the map P(f) : P(A) → P(B),
C �→ f [C]).

– Exceptions: TA = A+ E, where E is a fixed set of exceptions.
– Interactive input: TA is the smallest fixed point µγ.A+ (U → γ), where U

is a set of input values.
– Non-deterministic stateful computations: TA = P(S → (A × S)), where,

again, S is a fixed set of states.
– Continuations: TA = (A→ R) → R, where R is a type of results.

Reasoning about a category equipped with a strong monad is greatly facili-
tated by the fact that proofs can be conducted in a computational meta-language
with the following features, introduced in [7]:

– A type constructor T ; TA is the type of A-valued programs or computations ;
– a polymorphic operator ret : A→ TA corresponding to the unit;
– a binding construct, which we denote in Haskell’s do style: terms of the form

do x← p; q

are interpreted by means of the tensorial strength and Kleisli composition
(cf. [7] for details). Intuitively, do x← p; q first computes p, whose result is
assigned to the bound variable x, and then computes q (which may depend
on x). Binding is associative, i.e. one has

do y ← (do x← p; q); r = do x← p; do y ← q; r

if r does not contain x. We denote nested do expressions do x← p; do y ←
q; . . . by do x← p; y ← q; Repeated nestings do x1 ← p1, . . . , xn ←
pn; q are denoted in the form do x̄ ← p̄; q. Term fragments of the form
x̄ ← p̄ are called program sequences. Variables xi that do not appear later
on may be omitted from the notation. Terms that differ only in the names of
bound variables are equal (α-equivalence). The scope of a binding extends
as far as possible.

450 S. Goncharov, L. Schröder, and T. Mossakowski

– besides the associative law mentioned above, unit laws stating that

(do x← y; retx) = y and
(do x← ret a; p) = p[a/x].

Terms are generally formed in a context of variables with assigned types; how-
ever, we will omit contexts from the notation.

A program p is called stateless if it factors through ret, i.e. if it is just a value
inserted into the monad. In [14], we also introduce a notion of deterministically
side-effect free (dsef) monadic value. All stateless programs are dsef, but not
vice versa. For example, in the state monad, a program that reads the state but
does not modify it is dsef but not stateless.

2 Global Evaluation Logic

Global evaluation logic is a simple specification language for monadic programs.
It is related to (monad-based) dynamic logic in that it features a modality that
encapsulates the effect of executing a program; however, unlike in dynamic logic
this modality is global, i.e. implicitly quantified over all states. Thus, the formulae
of global evaluation logic are of the form

[[x← p]]φ,

where p : TA is a monadic program and φ is a stateless formula possibly con-
taining the free variable x, to be read informally as for all states s, execution of
p in state s yields a result x satisfying φ.

Global evaluation logic is used chiefly as a means of encoding or defining
more advanced logics. In the monad-based Hoare calculus [13], Hoare triples are
defined by

{ϕ} x← p {ψ} :≡ [[a← ϕ;x← p; b← ψ]] (a→ b).

Here ψ may contain x, and ϕ and ψ are dynamic formulae, i.e. computations of
truth values which are dsef, in particular may access but not modify the state.
The Hoare triple {ϕ} x← p {ψ} has, in typical examples, the expected meaning
if program p is executed in a state satisfying ϕ, terminating in some state s, then
s and the result x of p satisfy ψ. Further examples of encodings of program logics
in a logic related to global evaluation logic are given in [8]. Moreover, monad-
based dynamic logic [14], which like Pitts’ local evaluation logic [12] is concerned
with nestable modal operators equipped with a state-dependent semantics, is
axiomatised in terms of global evaluation logic. Completeness of monad-based
dynamic logic is shown in [10] without recourse to more basic completeness
results. The pending completeness proof for the monad-based Hoare calculus,
however, is expected to make use of completeness of global evaluation logic.

To begin, we separate the definition of the syntax and semantics of global
evaluation logic from the HasCasl framework originally used in its formula-
tion [14]. The presentation of the logic is slightly more general than in [14] in
that we admit an underlying equational theory.

Completeness of Global Evaluation Logic 451

Given a set S of basic types, the set of types A is generated by the grammar

A ::= 1 | Ω | TA | A×A | S.

A type of the form TA is called a computational type. A type is called T -free if
it does not contain occurrences of T . A signature Σ = (S, F) consists of a set
S of basic types and a set F of operation symbols f : A → B, where A and
B are types over S, with A T -free. The latter condition means that we exclude
user-defined control structures; the design of a complete logic that includes such
control structures is the subject of future research. The type Ω serves as a type
of truth values; we assume that Σ contains operations on Ω representing the
logical connectives.

A signature gives rise to a notion of term (in a context Γ = (x1 : A1, . . . , xn :
An) of type assignments for variables, which we mostly omit from the notation)
in the usual way, with term formation rules including variable introduction,
application of basic operators, formation of pairs 〈s, t〉 : A×B, projection terms
fst(t), snd(t), the distinguished term ∗ inhabiting the unit type 1, and the return
and binding operations of the computational metalanguage. We denote the set of
free variables occurring in a term t (or, later, a formula) by FV (t). An equation
is a pair of terms of the same type (in a common context).

An equational theory E is a pair (Σ,E), where Σ is a signature and E
is a set of equations over Σ. We assume that E contains the Heyting alge-
bra axioms for Ω (if classical reasoning is required, one may extend these to
the axioms for a Boolean algebra). We write E 1 s = t if s = t can be
derived from E using standard equational reasoning (this includes equations
for product types involving terms of the computational metalanguage such as
snd〈(do x ← p; q), ret a〉 = ret a, but excludes the equations of the computa-
tional metalanguage, i.e. associativity and the two unit laws).

A model of a signature consists of a cartesian category C (i.e. a category with
finite products) equipped with a distinguished object Ω and a strong monad T ,
together with interpretations of the basic types as objects in C and interpreta-
tions of the basic operations as morphisms in C, referred to slightly inaccurately
just as T . This extends to an interpretation [[A]]T ∈ Ob (C) for every type A
by interpreting product types and unit types by the cartesian structure of C,
Ω as the distinguished object Ω, and computational types TA by applying the
monad T . Then, a context Γ = (x1 : A1, . . . , xn : An) is interpreted as the
product [[Γ]]T =

∏n
i=1 [[Ai]]T . The interpretation of a basic operation f : A→ B

is required to be a morphism [[A]]T → [[B]]T .
We then obtain, for every term t : A in context Γ , an interpretation as a

morphism [[t]]T : [[Γ]]T → [[A]]T , where variables are interpreted as projections,
pairing, projections, and ∗ are interpreted using the cartesian structure, applica-
tion of basic operations is composition, and return and binding are interpreted
as prescribed by T . A model of an equational theory E = (Σ,E) is a model of
Σ that satisfies every equation s = t in E in the sense that [[s]]T = [[t]]T . The
equations in E imply that in every model of E , the object Ω is a Heyting algebra
object, i.e. its hom-functor hom(, Ω) factors through Heyting algebras.

452 S. Goncharov, L. Schröder, and T. Mossakowski

As indicated above, a formula of global evaluation logic is an expression of
the form [[x̄← p̄]]φ, where pi : TAi and φ : Ω are terms. We say that a model T
satisfies [[x̄← p̄]]φ, and write T |= [[x̄← p̄]]φ, if

[[do x̄← p̄; ret〈x̄, φ〉]]T = [[do x̄← p̄; ret〈x̄,2〉]]T .

Moreover, T satisfies a set Φ of formulae, written T |= Φ, if T |= P for every
P ∈ Φ.

Definition 2. We say that the monad (or model) T is simple if satisfaction of
[[x̄← p̄]]φ is equivalent to

[[do x̄← p̄; retφ]]T = [[do x̄← p̄; ret2]]T .

The calculus of Section 3, for which we prove completeness, is sound only for
simple models.

Example 3. In the monads of Example 1, satisfaction of [[x ← p]]φ, where
p : TA, amounts to the following (we freely omit semantic brackets from the
notation):

– stateful computation: terminating execution of p from any initial state yields
a result x satisfying φ;

– non-determinism: all values x in p ∈ P(A) satisfy φ;
– exceptions : if p terminates normally, then its result x satisfies φ;
– interactive input : the value x eventually produced by p after some combina-

tion of inputs always satisfies φ;
– non-deterministic stateful computation: all possible results x obtained by

execution of p from any initial state satisfy φ;
– continuations : for k : A→ R, p k depends only on the restriction of k to the

set of values x : A satisfying φ.

All these monads except the continuation monad are simple [14].

Remark 4. A particularly troublesome case w.r.t. monad-based specification
logics is the continuation monad (Example 1), the main problem being that the
continuation monad has too few deterministically side-effect free computations
— e.g. over Set, all its dsef computations are already stateless. Consequently, the
continuation monad does not admit dynamic logic [14], and Hoare logic over the
continuation monad, while sound, does not express any interesting properties, as
pre- and postconditions are required to be dsef. Global evaluation logic, however,
has a rather sensible interpretation over the continuation monad (Example 3).
Thus, it appears feasible to take global evaluation logic as the starting point for
the design of a program logic for the continuation monad. As the continuation
monad fails to be simple, this means that there is some interest in the pending
issue of finding a complete proof system for our global evaluation logic without
the simplicity assumption. Note that using the equation in Def. 2 as an alterna-
tive semantics for [[x̄← p̄]]φ is not a solution: this would invalidate the important
proof rule (app) (Sect. 3), and in the case of the continuation monad would lead
to an interpretation of [[x ← p]] (φ x) which constrains p : TA = (A → R) → R
only on those continuations A→ R that factor through φ : A→ Ω.

Completeness of Global Evaluation Logic 453

Related Work
Global evaluation logic in the above sense is strongly related to Moggi’s global
semantics of evaluation logic [8] (although Moggi uses the term evaluation logic,
the formulae denoted [x ⇐ p]φ in loc. cit. correspond essentially to [[x ← p]]φ
above, rather than to the modal formulae [x ← p]φ of evaluation logic in the
original sense [12] or monad-based dynamic logic). In [8], it is assumed that T
preserves monos, so that a predicate on A, represented as an admissible subobject
Q ↪→ A, lifts to a predicate TQ on TA, in order to define [[x← p]]φ as the formula

(do x← p; ret〈y, x〉) ∈ Tφ

(expressed for the sake of readability in the computational metalanguage). Here,
y : B is the context, so that φ is a predicate on B × A. Roughly speaking, one
can show that this semantics agrees with ours in case the base category has
equality, i.e. diagonals are admissible subobjects, and T preserves admissible
monos and their inverse images (so that T is simple [8]). In cases where these
conditions fail, we have the impression that the semantics used here is slightly
easier to handle (as well as more general as it does not require preservation of
monos — preservation of monos may fail e.g. for the continuation monad over
base categories other than Set [8]).

These remarks aside, the main difference between global evaluation logic and
the logic considered in [8] is that the latter includes the full equational logic
of the computational metalanguage of [7], that is, equality of programs is part
of the logic. This fact plays a crucial technical role in the completeness proof
presented in [8], where term models for a theory T are equipped with an equality
determined by the equations derivable from T . Contrastingly, global evaluation
logic is restricted to formulae of the form [[x← p]]φ, which talk only about results
of programs rather than equalities between programs; thus, global evaluation
logic provides a black-box view of programs, while the logic of [8] provides a
glass-box view.

3 A Proof Calculus for Global Evaluation Logic

We now present a proof system for global evaluation logic over simple monads
(finding a sound and complete calculus for the general case remains an open
problem). The calculus is shown in Fig. 1, where Φ denotes the set of premises.
Double lines indicate that a rule may be applied in both directions. The calculus
is slightly modified w.r.t the one presented in [14]: the structural rules have been
gathered in a slightly stronger rule (derivability of the original rules will be shown
below), rules have been added to support the underlying equational theory, and a
rule concerning equality under the global modality (which is not supported in the
present framework, but could be added in later extensions) has been removed.
Importantly, we allow rule (ctr) to be applied backwards, which is sound only
for simple monads. We write Φ 1 [[x̄ ← p̄]]φ if [[x̄ ← p̄]]φ is derivable from a
set Φ of formulae by means of the calculus. Instead of ∅ 1 [[x̄ ← p̄]]φ, we write
1 [[x̄← p̄]]φ. Moreover, if Φ, [[x̄← p̄]]φ 1 [[ȳ ← q̄]]ψ and Φ, [[ȳ ← q̄]]ψ 1 [[x̄← p̄]]φ,

454 S. Goncharov, L. Schröder, and T. Mossakowski

then we say that [[x̄← p̄]]φ and [[ȳ ← q̄]]ψ are provably equivalent relative to Φ,
and write [[x̄← p̄]]φ Φ13 [[ȳ ← q̄]]ψ, again omitting the mention of Φ if Φ is empty.

(!)
E � ξ = !
[[x̄ ← p̄]] ξ

(cong)

[[x̄ ← p̄]] (ξ ↔ χ)
[[x̄ ← p̄; z̄ ← r̄[ξ/y]]] η[ξ/y]

[[x̄ ← p̄; z̄ ← r̄[χ/y]]] η[χ/y]

(pre)
[[ȳ ← q̄]]φ

[[x ← p; ȳ ← q̄]]φ
x /∈ FV (Φ) (E)

E � t = t′

[[. . . ; x ← ret t; . . .]] η

[[. . . ; x ← ret t′; . . .]] η

(η)
[[x̄ ← p̄; y ← ret r; z̄ ← q̄]] η

[[x̄ ← p̄; z̄ ← q̄[r/y]]] η[r/y]
(ctr)

[[. . . ; x ← p; y ← q; z̄ ← r̄]] η

[[. . . ; y ← (do x ← p; q); z̄ ← r̄]] η
x /∈ FV (η, r̄)

Fig. 1. Proof calculus for global evaluation logic (over premises Φ)

Lemma 5. The rules

(∧I)

[[x̄← p̄]]φ
[[x̄← p̄]]ψ

[[x̄← p̄]] (φ ∧ ψ)
(wk)

x̄ /∈ FV (Φ)
φ→ ψ

[[x̄← p̄]]φ

[[x̄← p̄]]ψ
(app)

[[x̄← p̄]]φ
y /∈ FV (φ)

[[x̄← p̄; y ← q]]φ

are derivable (where Φ is again the set of premises).

Moreover, note that rules (E) and (η) allow exchanging t for t′ at any place in a
formula whenever E 1 t = t′.

Remark 6. Under the additional restriction on signatures that an operation
f ∈ Σ has an argument of type Ω only if its result is of type Ω as well, rule
(cong) can in fact be equivalently replaced by rules (∧I), (wk), and (app).

Lemma 7 (Substitution rule). If σ is a substitution and Φ 1 [[x̄← p̄]]φ, then
Φσ 1 ([[x̄← p̄]]φ)σ, where application of σ is by capture-avoiding substitution of
free variables. �

Theorem 8 (Soundness for simple models). Let T be a simple model such
that T |= Φ for a set Φ of formulae. Then Φ 1 [[x̄← p̄]]φ implies T |= [[x̄← p̄]]φ.

4 Completeness

We will now prove strong completeness of global evaluation logic over simple
monads. We explicitly fix the relevant notion of semantic consequence:

Completeness of Global Evaluation Logic 455

Definition 9. We write Φ |= [[x̄ ← p̄]]φ for a formula [[x̄ ← p̄]]φ and a set Φ of
formulae if for every simple model T , T |= Φ implies T |= [[x̄← p̄]]φ.

Theorem 10 (Strong completeness for simple models). Let Φ be a set of
formulae. Then Φ |= [[x̄← p̄]]φ implies Φ 1 [[x̄← p̄]]φ.

The proof requires a number of lemmas, the most important of which is a nor-
malization result for global evaluation formulae (Lemma 15).

Definition 11. A term is called product β-normal if it does not contain sub-
terms of the form fst(u, v) or snd(u, v).

Lemma 12. Every term t has a product β-normal form, i.e. a product β-normal
term t′ such that E 1 t = t′.

Lemma 13. Product β-normal terms of T -free type do not contain subterms of
computational type.

Proof. (Sketch) Induction over terms, using the restriction on argument types
of operation symbols. �

Lemma 14. Let t be product β-normal. Then there exists a decomposition t =
s[t1/x1, . . . tn/xn] such that

– s does not contain signature symbols and
– the ti do not contain return or binding operators.

Proof. (Sketch) Induction over the height of t, using Lemma 13 for the case that
t is an application f(q) of an operation symbol f . �

Lemma 15. Given a formula [[x̄ ← p̄]]φ and a variable y : TA ∈ FV (p̄) there
exists a formula [[z̄ ← q̄]]ψ provably equivalent to [[x̄ ← p̄]]φ, with y /∈ FV (ψ),
and y ∈ FV (qj) only in case qj = y.

Proof. By successive reduction of [[x̄← p̄]]φ to the required form. At the begin-
ning of every step, reduce φ and the pi to product β-normal form (Lemma 12),
so that in particular y /∈ FV (φ) by Lemma 13. Stop the process if none of the pi

contains return or binding. Otherwise, let pi be the rightmost item containing
return or binding. By Lemma 14, pi is either a binding or an application of ret.
Accordingly, perform at pi a reduction step (thus following a rightmost strategy)
to a provably equivalent formula using rule (ctr) in the ‘up’ direction or rule (η)
in the ‘down’ direction, respectively, and continue.

At the end of this process, we have reached the required form [[z̄ ← q̄]]ψ: This is
clear if qj is a variable. If qj is of the form e1(. . . ek(t) . . .), where ek ∈ {fst , snd},
k ≥ 1, with t not an application of a projection, then t is either a variable or
an application f(u) of an operation symbol f . In the former case, t 	≡ y, since
t is of product type, so that y /∈ FV (qj). In the latter case, u is of T -free type
by the restriction on signatures; by Lemma 14, y /∈ FV (qj). The same applies if
qj is an application of an operation symbol. By product β-normality, no other
cases occur.

456 S. Goncharov, L. Schröder, and T. Mossakowski

It remains to prove termination. We introduce a well-founded strict ordering
4 on term sequences and prove that the reductions are decreasing under 4. Let
Rets(t) be the maximal depth of nested occurrences of the return operator in a
term t. For a term sequence p̄, let µ(p̄) be the multiset formed by the Rets(pi),
and let h(p̄) be the multiset of heights of the pi, where we count sequential do-
bindings do x̄← p̄; q as one application (rather than n applications) of do. We
define the strict well-founded ordering + on multisets of naturals as the multiset
extension [1, 5] of the standard ordering > of the naturals, generated by closure
under multiset union and transitivity from the clauses

{a} + {b1, . . . , br} if a > bi for all i.

Then we put p̄ 4 p̄′ iff 〈µ(p̄), h(p̄)〉 is lexicographically greater than 〈µ(p̄′), h(p̄′)〉.
Upwards reduction by (ctr) at pi is decreasing: the first component stays un-
changed and the second decreases, as pi is replaced by two terms of lesser
height. For reduction by (η), recall that pj does not contain ret for j > i, so
that Rets(pj [q/xi]) < Rets(ret q). Hence µ(p̄) + µ(p̄′), and thus p̄ 4 p̄′. Finally,
the intermediate reductions to product β-normal form are height-decreasing, and
thus decreasing w.r.t. 4. �

Note that the previous proof essentially establishes a form of weak normalization
for program sequences, for a rightmost reduction strategy.

As indicated above, a form of Leibniz equality will be imposed on the term
model to be constructed below:

Definition 16. Let t, s : TA, and let Φ be a set of formulae. We say that t and s
are Leibniz equal (under Φ), and write t ∼Φ s, if

[[x̄← p̄[t/y]]]φ Φ13 [[x̄← p̄[s/y]]]φ

for all φ : Ω and all program sequences p̄.

As a direct consequence of Lemma 15, we have

Lemma 17. Let t, s : TA, and let Φ be a set of formulae. Then t ∼Φ s iff t and
s are weakly Leibniz equal (under Φ), i.e.

[[v̄ ← ū;x← t; z̄ ← r̄]]φ Φ13 [[v̄ ← ū;x← s; z̄ ← r̄]]φ

for all φ : Ω and all program sequences v̄ ← ū, z̄ ← r̄.

This now allows us to prove the non-trivial direction (‘only if’) of what will turn
out to be the truth lemma for our term model:

Lemma 18 (Truth lemma). For every set Φ of formulae, Φ 1 [[ȳ ← q̄]]ψ iff
do ȳ ← q̄; ret〈ȳ, ψ〉 ∼Φ do ȳ ← q̄; ret〈ȳ,2〉.

The proof of the completeness theorem is now by a term model construction
which proceeds similarly as in [10]. Given an equational theory E = (Σ,E) and
a set Φ of Σ-formulae, we construct a model of E as follows. Let CE,Φ be the

Completeness of Global Evaluation Logic 457

category with objects being all types over Σ, and morphisms A→ B being terms
in context

(x : A� t : B)

modulo Leibniz equality under Φ (we omit explicit notation for equivalence
classes). It is easy to check that Leibniz equality is a congruence for the computa-
tional metalanguage. Identities in CE,Φ are given by variables x : A� x : A, and
composition is given by substitution. The category CE,Φ comes with a canonical
cartesian structure, which on objects is just given by A × B and 1, with pro-
jections, pairing, and unique morphisms into 1 given in the obvious way. Axiom
(E) ensures that this does define a cartesian category satisfying E .

Now we turn the type constructor T into a simple strong monad on CE,Φ,
with the unit η given by ret, the Kleisli star defined by

(x : A� q : TB)∗ := (p : TA� do x← p; q : TB),

and the strength given by

tA,B := (p : A× TB � do x← snd(p); ret〈fst(p), x〉 : T (A×B)).

In the verification of the monadic laws and simplicity, crucial use is made of the
fact that by Lemma 17, it suffices to prove weak Leibniz equality.

The completeness proof is finished by noting that the Truth Lemma states
that T |= [[ȳ ← q̄]]ψ iff Φ 1 [[ȳ ← q̄]]ψ.

5 Conclusion

We have defined the syntax, semantics, and proof calculus of global evaluation
logic over a simple monad on a cartesian base category with a distinguished
Heyting algebra object. We have proved completeness of the logic using a term
model in which, due to the absence of program equality from the logic, equality
of terms is defined as Leibniz equality. The crucial point in the model construc-
tion is the reduction of Leibniz equality to a simplified form, which requires a
normalization procedure on program sequences that uses a multiset termina-
tion measure. Two improvements of this result are left for future investigation:
the extension of the calculus to sum types, with models over distributive cate-
gories, and support for user-defined control structures, i.e. basic operations with
arguments of computational type.

The completeness of global evaluation logic forms the basis for investigations
into the completeness of more advanced program logics defined in terms of it,
in particular monad-based Hoare logic [13]. Moreover, global evaluation logic is
expected to play a role in the design of a specification logic for the continuation
monad: the latter has been shown not to admit an interpretation of dynamic
logic [14], and Hoare logic over it lacks expressivity, while the much simpler
global evaluation logic does make good sense over the continuation monad. As
the continuation monad fails to be simple, this puts on the agenda the design of
a complete calculus for the general case, without the simplicity assumption.

458 S. Goncharov, L. Schröder, and T. Mossakowski

Acknowledgements. This work forms part of the DFG-funded project Has-
CASL (KR 1191/7-1 and KR 1191/7-2) and the project HOL-MDL funded by
the FNK of the University of Bremen.

References

[1] N. Dershowitz and Z. Manna. Proving termination with multiset orderings.
Comm. ACM, 22:465–476, 1979.

[2] M. Fluet and G. Morrisett. Monadic regions. In International Conference on
Functional Programming, pages 103–114. ACM, 2004.

[3] G. Hutton and E. Meijer. Monadic Parsing in Haskell. J. Functional Programming,
8:437–444, 1998.

[4] B. Jacobs and E. Poll. Coalgebras and Monads in the Semantics of Java. Theoret.
Comput. Sci., 291:329–349, 2003.

[5] J. Klop. Term rewriting systems. In S. Abramsky, D. Gabbay, and T. Maibaum,
editors, Handbook of Logic in Computer Science, volume 2, pages 1–117. Oxford,
1992.

[6] S. Mac Lane. Categories for the Working Mathematician. Springer, 1997.
[7] E. Moggi. Notions of computation and monads. Inform. and Comput., 93:55–92,

1991.
[8] E. Moggi. A semantics for evaluation logic. Fund. Inform., 22:117–152, 1995.
[9] E. Moggi and A. Sabry. Monadic encapsulation of effects: A revised approach

(extended version). J. Funct. Programming, 11:591–627, 2001.
[10] T. Mossakowski, L. Schröder, and S. Goncharov. Completeness of monad-based

dynamic logic. Technical report, University of Bremen, 2006.
[11] S. Peyton-Jones, editor. Haskell 98 Language and Libraries — The Revised Report.

Cambridge, 2003. Also: J. Funct. Programming 13 (2003).
[12] A. Pitts. Evaluation logic. In Higher Order Workshop, Workshops in Computing,

pages 162–189. Springer, 1991.
[13] L. Schröder and T. Mossakowski. Monad-independent Hoare logic in HasCasl.

In Fundamental Aspects of Software Engineering, volume 2621 of LNCS, pages
261–277, 2003.

[14] L. Schröder and T. Mossakowski. Monad-independent dynamic logic in HasCasl.
J. Logic Comput., 14:571–619, 2004.

[15] M. R. Shinwell and A. M. Pitts. On a monadic semantics for freshness. Theoret.
Comput. Sci., 342:28–55, 2005.

NOF-Multiparty Information Complexity

Bounds for Pointer Jumping

Andre Gronemeier�

FB Informatik, LS2, Univ. Dortmund, 44221 Dortmund, Germany
andre.gronemeier@cs.uni-dortmund.de

Abstract. We prove a lower bound on the communication complexity
of pointer jumping for multiparty one-way protocols in the number on
the forehead model that satisfy a certain information theoretical restric-
tion: We consider protocols for which the ith player may only reveal
information about the first i+1 inputs. To this end we extend the infor-
mation complexity approach of Chakrabarti, Shi, Wirth, and Yao (2001)
and Bar-Yossef, Jayram, Kumar, and Sivakumar (2004) to our restricted
version of the multiparty number on the forehead model. The best cur-
rently known multiparty protocol for pointer jumping by Damm, Jukna,
and Sgall (1998) works in this model.

1 Introduction

1.1 Multiparty Communication Complexity

In the multiparty communication game by Chandra, Furst, and Lipton [8] k play-
ers jointly compute a function f(x1, . . . , xk) on k variables such that in the end
each of the players knows the result. The players have unlimited computational
power, but the ith player does not know the input variable xi. Thus the players
need to communicate to fulfill their task. This is usually called number on the
forehead model (briefly NOF-model), since we can imagine the input xi being
written on the ith player’s forehead. The players exchange messages according
to a fixed protocol by writing to a shared blackboard seen by all players. In-
scriptions on the blackboard are never deleted, each player appends his message
to the previously written messages on the board. The current inscription on the
blackboard determines unambiguously whose turn it is to write the next message
and when to stop the protocol. The only important computational resource in
this model is communication: The cost of the protocol is the worst case length of
the inscription on the blackboard. The communication complexity of a function
is the minimum cost of a protocol for the function.

Communication complexity for two players has been investigated indepen-
dently [18] and is well understood [13,12]. Less is known about general multiparty
protocols with more than two players. At the time of writing, only a single gen-
eral proof method for proving lower bounds on the multiparty communication
complexity of functions for more than two players is known: The discrepancy
� Supported by DFG grant SA 1053/1-1.

R. Královič and P. Urzyczyn (Eds.): MFCS 2006, LNCS 4162, pp. 459–470, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

460 A. Gronemeier

method by Babai, Nisan, and Szegedy [3] (see also [9,17]). Consequently, re-
stricted versions of the multiparty model received some attention, most notably
the simultaneous message model and the one-way model (see [1,13]).

In the simultaneous message model the players do not interact. Each player
sends a single message, depending only on the inputs seen by the player, to a ref-
eree, who does not see the input. The referee has to announce the function value.
Babai, Gál, Kimmel, and Lokam [1] introduced a proof method for proving lower
bounds in the simultaneous message model which has found many applications
by now, for example [16,6,4].

In the one-way model the interaction of the players is restricted such that
the first player sends the first message message, then the second player sends
a message depending on the inputs seen by him and the first message, and so
on. The last player has to announce the function value. Although this model is
still severely restricted compared to the general model in which the players can
exchange messages in an arbitrary order, for more than three players currently
no proof methods are known which make use of this restriction alone. The only
known lower bound for a variable number of players in the one-way model by
Damm, Jukna, and Sgall [11] uses an additional restriction that is described in
Sect. 1.4.

1.2 Information Complexity

Information theory (see [10] for an introduction) has been used before to obtain
results on communication complexity, but it has been used mainly as a tool in
small parts of the proofs. Some references to these results are contained in [4].
Recently several publications emerged in which information theory is the main
ingredient of the proof [7,4,5]. Bar-Yossef, Jayram, Kumar, and Sivakumar [4]
reduced communication complexity problems to information theory problems
and solved these problems in the information theory domain. Chakrabarti, Shi,
Wirth, and Yao [7] introduced the concept of information complexity for the
two party model. The information complexity of a function is the amount of
information about the input that the messages of any protocol for the function
must reveal. In the language of information theory, the information complexity
of a function is the minimum mutual information between the messages of any
protocol for the function and the inputs (see Sect. 2.2 and 2.3). In [5] this concept
was further refined by Bar-Yossef, Jayram, Kumar, and Sivakumar.

1.3 Our Result

We consider the NOF-multiparty one-way model with an additional information
theoretical restriction. In this model we prove a lower bound on the information
complexity of the pointer jumping function.

Definition 1. Let f1, . . . , fk be functions with domain and range {1, . . . , n}.
Then the k-player pointer jumping function Jumpk

n is defined as follows:

Jumpk
n(f1, . . . , fk) := (fk ◦ fk−1 ◦ · · · ◦ f1)(1) .

NOF-Multiparty Information Complexity Bounds for Pointer Jumping 461

Note that for the first input f1 only f1(1) influences the result. The inputs
f1(2), . . . , f1(n) are redundant.

Our lower bound on the communication complexity of Jumpk
n holds for all one-

way protocols for which the messages M1, . . . ,Mi−2 of the players 1, . . . , i−2 do
not reveal any information about the input fi, in information theoretical terms,
one-way protocols for which the mutual information between the input fi and the
messagesM1, . . . ,Mi−2 is 0. We call protocols which obey this restriction myopic
(see Sect. 2.3). The currently best one-way multiparty protocol for Jumpk

n by
Damm, Jukna, and Sgall [11] is myopic.

We will prove the following lower bound on the multiparty communication
complexity of Jumpk

n in the number on the forehead model.

Theorem 1. Every myopic ε-error k-party one-way protocol in the number on
the forehead model for Jumpk

n has cost Ω(n(1−ε)/k logn).

This result is based on an information complexity bound and the proof relies
solely on information theoretical arguments. Our result is not stronger than
bounds which can be proved in the simultaneous message model and we need
our additional information theoretical restriction, but the result extends the
information complexity approach beyond the number in the hand model. To the
best of our knowledge, this is the first extension of the information complexity
results of Chakrabarti, Shi, Wirth, and Yao [7] and Bar-Yossef, Jayram, Kumar,
and Sivakumar [5] to the one-way multiparty model.

1.4 Related Work

The communication complexity of pointer jumping has been investigated mainly
for a two-player version that differs slightly from Def. 1. In this model upper
and lower bounds have been proved by Nisan and Wigderson [14] and Ponzio,
Radhakrishnan, and Venkatesh [15].

Much less is known about the communication complexity of pointer jump-
ing, as defined in Def. 1, in the multiparty NOF-model. Wigderson proved an
Ω(n1/2) bound for the complexity of pointer jumping for three players in the
fully general one-way model (The result is contained in the appendix of [2]).
The proof method of Babai et al. [1] yields an Ω(n1/k) lower bound on the com-
munication complexity of Jumpk

n in the simultaneous message model [16]. The
currently best one-way protocol for Jumpn by Damm, Jukna, and Sgall [11] has
cost O(n) for k ≥ log∗ n players and cost n log(k−1) n+O(n) for k < log∗ n play-
ers. In addition, Damm, Jukna, and Sgall proved an Ω(n/k2) lower bound for up
to O(n1/3−ε) players in a restricted one-way model which they call conservative
one-way multiparty complexity. In this model the ith player knows the inputs
fi+1, . . . , fk, but unlike the usual number on the forehead model, instead of the
inputs f1, . . . , fi−1, he does only know the partial result (fi−1 ◦fi−2 ◦ · · ·◦f1)(1).
Since this result can take only n different values whereas the inputs f1, . . . , fi−1
can take n(i−1)n different values, this is a potentially severe restriction.

Note that the above result is complementary to our result in the following
sense: In a myopic protocol for Jumpk

n the ith player must not reveal information

462 A. Gronemeier

about fi+2, . . . , fk. This is obviously the case if his message does not depend
functionally on these inputs. Thus myopic protocols include protocols in which
the ith player may only access the inputs fj with j < i and, in addition, the
input fi+1. For conservative protocols, the ith player has unrestricted access to
the inputs fj with j > i, while the access to the inputs fj with j < i is severely
restricted. Note that a protocol can be conservative and myopic at the same time.
Although this is a very severe restriction, the currently best one-way protocol
for Jumpk

n of Damm, Jukna, and Sgall [11] is both conservative and myopic.

2 Preliminaries

2.1 Notation

We use [n] as an abbreviation for the set {1, . . . , n}. Let P be a k-party one-
way protocol for Jumpk

n. If the inputs of P are drawn randomly with respect to
some probability distribution, then these inputs and the messages are random
variables F1, . . . , Fk and M1, . . . ,Mk−1, respectively. In this case let F denote
the set of the random variables {F1, . . . , Fk} and let Mi denote the set of the
random variables {M1, . . . ,Mi}. Furthermore let F̃i := Fi ◦Fi−1 ◦ · · · ◦F1, hence
Jumpk

n(F1, . . . , Fk) = F̃k(1).

2.2 Tools from Information Theory

In this section some basic facts from information theory are summarized. Results
that are needed for an arbitrary number of random variables are only stated for
two variables. In most cases the extension to an arbitrary number of variables
follows immediately by induction. Most information theoretical facts that we
use are elementary. Nevertheless, we see this section merely as an agreement
on the notation of information theoretical results. For a proper introduction to
information theory we refer the reader to the book by Cover and Thomas [10].

Let X , Y , Z, and W be random variables with a finite range R. Then H(X) :=∑
x∈R Prob(X = x) log(1/Prob(X = x)) is called the entropy of X , H(X,Y) is

the entropy of the joint distribution of X and Y , and H(X | Y) := H(X,Y) −
H(Y) is called the conditional entropy of X given Y . The mutual information
between X and Y is defined as I(X ;Y) := H(X)−H(X | Y) and the conditional
mutual information between X and Y given Z is I(X ;Y | Z) := H(X | Z) −
H(X | Y, Z).

Let E denote an event, for example W = w. Then H(X | E) denotes the
entropy of X with respect to the conditional distribution of X given the event
E occurred. Conditioning on an event for conditional entropy, mutual informa-
tion and conditional mutual information is defined analogously. For example,
I(X ;Y | Z,W=w) is the mutual information between X and Y given Z with
respect to the conditional distribution given the event W=w occurred.

Proofs of the following elementary properties of entropy and mutual informa-
tion can be found in most textbooks about information theory, for example [10].

NOF-Multiparty Information Complexity Bounds for Pointer Jumping 463

Theorem 2. Let X, Y , Z, and W be random variables with finite range R.
Then

1. 0 ≤ H(X) ≤ log |R| with H(X) = log |R| iff X is uniformly distributed.
2. H(X | Y) =

∑
y∈R Prob(Y=y) H(X | Y=y).

3. I(X ;Y | Z) =
∑

z∈R Prob(Z=z) I(X ;Y | Z=z).
4. I(X ;Y | Z,W) =

∑
w∈R Prob(W=w) I(X ;Y | Z,W=w).

5. H(X,Y) ≤ H(X) + H(Y) with equality iff X and Y are independent.
6. If X and Y are jointly independent of Z then H(X | Y, Z) = H(X |Y).
7. If X and Y are jointly independent of Z then I(X ;Y | Z) = I(X ;Y).
8. If f is a function with domain R then H(X, f(X)) = H(X).

The following useful inequality can be proved easily using Jensen’s inequality.

Lemma 1. Let a1, . . . , an ∈ IR and µ : [n] −→ [0, 1] be a probability distribution
on [n]. Then

n∑
i=1

µ(i) log ai ≤ log

(
n∑

i=1

µ(i)ai

)
.

Fano’s inequality uses information theory to give bounds on the error of a pre-
dictor.

Theorem 3 (Fano’s inequality). Let X and Y be random variables with range
RX and RY , let P : RY −→RX be a function that predicts the value of X from
an observed value of Y , and let ε = Prob(P (Y) 	= X) be the prediction error.
Then

H2(ε) + ε log(|RX | − 1) ≥ H(X | Y)

where H2(ε) = ε log(1/ε) + (1 − ε) log(1/(1 − ε)) denotes the binary entropy
function.

Note that Fano’s inequality implies 1 + ε log(|RX | − 1) ≥ H(X | Y) since the
binary entropy function is bounded from above by 1.

2.3 Communication Complexity and Information Complexity

The multiparty communication game by Chandra, Furst, and Lipton [8] and mul-
tiparty one-way protocols [1,13] have been described already in the introduction.
The following definition summarizes the introductory discussion.

Definition 2. In a k-party one-way protocol P with input variables x1, . . . , xk

the ith player sees all input variables except xi. Each player i ∈ {1, . . . , k − 1}
sends a single message mi which may depend on the inputs seen by player i and
the messages m1, . . . ,mi−1 of the previous players. The kth player announces
the output P (x1, . . . , xk) of the protocol depending on the inputs seen by the kth
player and the messages m1, . . . ,mk−1.

Let f(x1, . . . , xk) be a function on k variables and let µ be a distribution on
the domain of f . The protocol P is called an ε-error protocol for f with respect
to µ, if Probµ(P (x1, . . . , xk) 	= f(x1, . . . , xk)) ≤ ε.

464 A. Gronemeier

The cost c(P) of the one-way k-party protocol P for f is the length of the
longest message sent by any of the players. The ε-error one-way multiparty com-
munication complexity C1

µ,ε(f) of the function f with respect to distribution µ is
the minimum cost of an ε-error one-way k-party protocol for f . We omit µ, if µ
is the uniform distribution.

Note that our definition of the cost of a one-way protocol differs from the usual
definition from [8]. We define the cost of a protocol as the length of the longest
message sent by any of the players, while usually the worst case length of the
whole transcript of the communication is used. For k players these two cost
measures can differ at most by a factor of k.

We will impose an additional information theoretical restriction on one-way
protocols. In a myopic protocol with random inputs X1, . . . , Xk the messages of
the players 1, . . . , i− 2 must not reveal any information about Xi.

Definition 3. Let X1, . . . , Xk be the inputs and M1, . . . ,Mk−1 be the messages
of a k-party one-way protocol P for f . Let Xi = {X1, . . . , Xi−1, Xi+1, . . . , Xk}.
Then P is called myopic, if

I(Xi;M1, . . . ,Mi−2 | Xi) = 0 for all 1 ≤ i ≤ k .

Let Cm
µ,ε(f) denote the minimum cost of a myopic ε-error one-way k-party pro-

tocol for f w.r.t. µ. We omit µ, if µ is the uniform distribution.

Note that for myopic protocols with independent inputs X1, . . . , Xk the input
Xi is independent of the messages M1, . . . ,Mi−2, since

I(Xi;M1, . . . ,Mi−2 | Xi) = H(Xi | Xi)−H(Xi |M1, . . . ,Mi−2,Xi) = 0

and therefore

H(Xi) = H(Xi | Xi) = H(Xi |M1, . . . ,Mi−2,Xi) .

The following lemma generalizes the information complexity approach of [7]
and [5] to multiparty protocols. There are several sensible definitions of infor-
mation complexity in the multiparty model. Therefore, instead of defining in-
formation complexity explicitly, we only state a lower bound on communication
complexity in terms of mutual information that is meaningful for our application
to myopic protocols.

Lemma 2. Let f be a function on k random variables X1, . . . , Xk that are
jointly distributed with respect to the distribution µ and let M1, . . . ,Mk−1 be
the messages of a k-party one-way protocol P that computes f with error ε with
respect to distribution µ. Then the cost of P is bounded from below by

max
i∈[k−1]

I(Mi;Xi+1 | Xi+1,Mi−1) .

Proof. Let |Mi| denote the number of different values that the random variable
Mi can take. Clearly, the cost c(P) of P is bounded by maxi∈[k−1] log |Mi| and,

NOF-Multiparty Information Complexity Bounds for Pointer Jumping 465

since conditioning reduces entropy, the definition of conditional mutual informa-
tion implies

c(P) ≥ max
i∈[k−1]

log |Mi| ≥ max
i∈[k−1]

H(Mi) ≥ max
i∈[k−1]

I(Mi;Xi+1 | Xi+1,Mi−1) . �

3 Main Result

3.1 Outline of the Proof

Consider the situation of the ith player in a myopic k-party protocol P for Jumpk
n

with uniformly distributed inputs: The ith player knows the inputs F \ {Fi},
and when it is his turn to send a message, he additionally knows the messages
Mi−1 = {M1, . . . ,Mi−1} of the previous players. Since P is myopic, Fi+1 is
independent of the messages Mi−1 and, in particular, Fi+1(1), . . . , Fi+1(n) are
independent with respect to the conditional distribution given the first i − 1
messages Mi−1.

We will show in Lemma 4 that under these circumstances the message Mi can
not reveal much information about F̃i+1(1), if the conditional entropy of F̃i(1)
given F\{Fi} and M1, . . . ,Mi−1 is large and the conditional mutual information
between Mi and Fi+1 given F \ {Fi+1} and M1, . . . ,Mi−1 is small. This claim
can be used inductively to prove a lower bound on the conditional entropy of
F̃k(1) given F \ {Fk} and M1, . . . ,Mk−1, if the conditional mutual information
between Mi and Fi+1 is bounded appropriately from above for all i ∈ [k − 1].

Intuitively, the last claim holds because the ith player needs to allocate the
information about Fi+1 to Fi+1(1), . . . , Fi+1(n), since these variables are inde-
pendent, whereas only one of the variables, namely Fi+1(F̃i(1)), contains infor-
mation about F̃i+1(1). It is difficult for the ith player to predict the value of
F̃i(1), if the conditional entropy of F̃i(1) given F \ {Fi} and M1, . . . ,Mi−1 is
large. Therefore he has to send a lot of useless information, if he wants to reveal
some information about Fi+1(F̃i(1)). The details of this argument are contained
in Lemma 3.

Finally, in Theorem 4 we will use Fano’s inequality and Lemma 4 to prove a
lower bound the cost of myopic protocols for Jumpk

n.

3.2 Proof of the Main Result

First we will show that a random variable M must contain much information
about the n independent random variables X = (X1, . . . , Xn), if it contains
much information about a randomly chosen variable from this collection which
is chosen independently of X and M with respect to a distribution with large
entropy.

Lemma 3. Let X = (X1, . . . , Xn) be n independent random variables with
H(Xp) ≤ logn for all p, let Y and M be random variables such that X and
M are jointly independent of Y and let P be a function that maps Y to [n]. If
A := �I(X1, . . . , Xn;M | Y)/ logn� < n/2 then

466 A. Gronemeier

I(XP (Y);M | Y) ≤ log(n−A) + 1−H(P (Y))
log(n−A)− logA

logn .

Proof. Clearly I(X ;M | Y) = I(X ;M) since X and M are jointly indepen-
dent of Y . Since the variables X1, . . . , Xn are independent, H(X1, . . . , Xn) =∑n

p=1 H(Xp), and obviously H(X1, . . . , Xn |M) ≤
∑n

p=1 H(Xp |M). Therefore,
by using the definition of mutual information, it follows that

I(X1, . . . , Xn;M | Y) = I(X1, . . . , Xn;M) ≥
n∑

p=1

I(Xp;M) .

Furthermore I(XP (Y);M | Y) = I(XP (Y);M | Y, P (Y)) since P (Y) is a function
of Y and I(XP (Y);M | Y, P (Y) = p) = I(Xp;M) since X and M are jointly
independent of Y . Therefore

I(XP (Y);M | Y) = I(XP (Y);M | Y, P (Y))

=
n∑

p=1

Prob(P (Y) = p) · I(XP (Y);M | Y, P (Y) = p)

=
n∑

p=1

Prob(P (Y) = p) · I(Xp;M) .

Assume w.l.o.g. that Prob(P (Y)=1) ≥ Prob(P (Y)=2) ≥ · · · ≥ Prob(P (Y)=n).
Then the last sum is maximized, if I(Xp;M) is large for small values of p. Since
I(Xp;M) ≤ H(Xp) ≤ logn and

∑n
p=1 I(Xp;M) ≤ I(X1, . . . , Xn;M) ≤ A · logn,

we get an upper bound for the sum, if we assume that I(Xp,M) = logn for
p ≤ A and I(Xp,M) = 0 for p > A. Let Z be a random variable such that Z = 1
if P (Y) ≤ A and Z = 0 if P (Y) > A. Then, using the upper bound described
above, we get

I(XP (Y);M | Y) ≤ Prob(Z = 1) · logn .

The value of Z is a function of P (Y). Hence H(P (Y)) = H(P (Y), Z) = H(Z) +
H(P (Y) | Z) and

H(P (Y) | Z) = H(P (Y))−H(Z) ≥ H(P (Y))− 1 .

On the other hand

H(P (Y) | Z) = Prob(Z = 1) · H(P (Y) | Z = 1)
+ (1 − Prob(Z = 1)) · H(P (Y) | Z = 0)

≤ Prob(Z = 1) · logA+ (1 − Prob(Z = 1)) · log(n−A)

where the last inequality is due to the fact, that under the condition Z = 1 the
values of P (Y) are from {1, . . . , A} while under the condition Z = 0 the values
of P (Y) are from {A+ 1, . . . , n}. By combining the two inequalities we get

Prob(Z = 1)[log(n−A)− logA] ≤ log(n−A) + 1−H(P (Y))

NOF-Multiparty Information Complexity Bounds for Pointer Jumping 467

and the using the premise A < n/2 ⇔ log(n−A)− logA > 0 we get

Prob(Z = 1) ≤ log(n−A) + 1−H(P (Y))
log(n−A)− logA

.

Finally, by substituting this bound into our estimate of I(XP (Y);M | Y), we get
the claimed result

I(XP (Y);M | Y) ≤ Prob(Z = 1) · logn

≤ log(n−A) + 1−H(P (Y))
log(n−A)− logA

logn . �

Now we will apply the last lemma to myopic one-way protocols for pointer
jumping.

Lemma 4. Let M1, . . . ,Mk−1 be the messages of a myopic k-player one-way
protocol P for Jumpk

n with uniformly distributed inputs F1, . . . , Fk such that the
cost of P satisfies �c(P)/ logn� < n/2 and the messages of P satisfy

I(Fi+1;Mi | F \ {Fi+1},Mi−1)/ logn ≤ C

for all i < k. Then

H(F̃i(1) | F \ {Fi},Mi−1) ≥ logn− i− i log(C + 1)

for all i ≤ k.

Proof. Clearly, by the definition of mutual information,

I(F̃i+1(1);Mi | F \ {Fi+1},Mi−1) =

H(F̃i+1(1) | F \ {Fi+1},Mi−1)−H(F̃i+1(1) | F \ {Fi+1},Mi) .

Since P is myopic, the first term on the right side of the last equation is equal
to logn. Let Bi := H(F̃i(1) | F \ {Fi},Mi−1). Then we get

Bi+1 = logn− I(F̃i+1(1);Mi | F \ {Fi+1},Mi−1) .

The message Mi does only depend on F \ {Fi} and Mi−1. For fixed values of n
and k one can easily show that there is only a finite number of different messages.
Thus we can assume that Mi ∈ {0, 1}m for some fixed m and use the messages of
the protocol as an index of summation without worrying about convergence. For
fixed f andm let Ei(f,m) denote the event that (F1, . . . , Fi−1, Fi+2, . . . , Fk) = f
and (M1, . . . ,Mi−1) = m (note that both Fi and Fi+1 are not fixed). Then, by
using F̃i+1(1) = Fi+1(F̃i(1)) and expanding the conditional mutual information,
we get

Bi+1 =
∑
f,m

Prob(Ei(f,m)) ·
[
logn− I(Fi+1(F̃i(1));Mi | Fi, Ei(f,m))

]
.

468 A. Gronemeier

Under the condition Ei(f,m) the messages M1, . . . ,Mi−1 and all inputs except
Fi and Fi+1 are fixed to constants. In this case F̃i(1) is a function of Fi, since
F̃i(1) = Fi(F̃i−1(1)) and F̃i−1(1) is constant under the condition Ei(f,m). Simi-
larly Mi is a function of Fi+1, the only variable seen by player i that is not fixed
by the conditioning event. Furthermore, since P is myopic, Fi+1 is independent of
M1, . . . ,Mi−1 and F\{Fi+1}. Thus H(Fi+1 | Fi, Ei(f,m)) = H(Fi+1 | Ei(f,m))
implying that Fi+1 is independent of Fi under the condition Ei(f,m). Hence
under the condition Ei(f,m) the random variables Fi+1 and Mi are jointly
independent of Fi and the random variables Fi+1(p) for p = 1, . . . , n are in-
dependent and satisfy H(Fi+1(p) | Ei(f,m)) ≤ logn. Clearly even under the
condition Ei(f,m) the entropy of Mi is bounded from above by the cost of P ,
thus �I(Fi+1;Mi | Fi, Ei(f,m))/ logn� ≤ �c(P)/ logn� < n/2. Therefore we can
estimate Si(f,m) := logn − I(Fi+1(F̃i(1));Mi | Fi, Ei(f,m)) using Lemma 3
with Xp = Fi+1(p), Y = Fi, P (Fi) = Fi(F̃i−1(1)) = F̃i(1), M = Mi, and
Ai+1(f,m) := �I(Fi+1;Mi | Fi, Ei(f,m))/ logn� to get

Si(f,m) = logn− I(Fi+1(F̃i(1));Mi | Fi, Ei(f,m))

≥ logn− log(n−Ai+1(f,m)) + 1−H(F̃i(1) | Ei(f,m))
log(n−Ai+1(f,m))− logAi+1(f,m)

· logn

=
H(F̃i(1) | Ei(f,m))− logAi+1(f,m)− 1

log(n−Ai+1(f,m))− logAi+1(f,m)
· log n

≥ H(F̃i(1) | Ei(f,m))− logAi+1(f,m)− 1 .

For the last inequality we use that log(n−Ai+1(f,m))− logAi+1(f,m) ≤ logn.
From this estimate of Si(f,m) we get

Bi+1 =
∑
f,m

Prob(Ei(f,m)) · Si(f,m)

≥
∑
f,m

Prob(Ei(f,m)) ·H(F̃i(1) | Ei(f,m))

−
∑
f,m

Prob(Ei(f,m)) · logAi+1(f,m)− 1 .

Let T1 and T2 denote the first and second term of the right hand side in the last
inequality, respectively. Then

T1 = H(F̃i(1) | F \ {Fi, Fi+1},Mi−1) ≥ Bi

where the last inequality holds, because conditioning reduces entropy. We apply
Lemma 1 to the second term and get

NOF-Multiparty Information Complexity Bounds for Pointer Jumping 469

T2 =
∑
f,m

Prob(Ei(f,m)) · logAi+1(f,m)

≤ log

∑
f,m

Prob(Ei(f,m)) ·Ai+1(f,m)

= log

∑
f,m

Prob(Ei(f,m)) · �I(Fi+1;Mi | Fi, Ei(f,m))/ logn�

≤ log

∑
f,m

Prob(Ei(f,m)) · (I(Fi+1;Mi | Fi, Ei(f,m))/ logn+ 1)

= log (I(Fi+1;Mi | F \ {Fi+1},Mi−1)/ logn+ 1)
≤ log(C + 1) .

Thus Bi+1 ≥ T1 − T2 − 1 ≥ Bi − log(C + 1)− 1 and the claim of the Theorem
is implied by this recurrence relation and the base case B1 = logn. �

The main result follows from the last lemma by a simple application of Fano’s
inequality.

Theorem 4. Cm
ε (Jumpk

n) ≥ (2−(1+1/k)n(1−ε)/k − 2) logn.

Proof. Let P be a myopic ε-error protocol for Jumpk
n, let F1, . . . , Fk be the

random inputs of Jumpk
n, and let M1, . . . ,Mk−1 be the messages of P for this

input. The kth player uses F1, . . . , Fk−1 and M1, . . . ,Mk−1 to predict the value
of Jumpk

n(F1, . . . , Fk) = F̃k(1) with error ε, thus, by Fano’s inequality,

1 + ε logn ≥ H(F̃k(1) | F \ {Fk},Mk−1) .

Recall that c(P) denotes the cost of P and let C := �c(P)/ logn�. If C ≥ n/2
then the claim of the Theorem holds for k ≥ 2 and sufficiently large n. If C < n/2
then, by Lemma 2, �I(Fi+1;Mi | F \{Fi+1},Mi−1)/ logn� ≤ C for all i ∈ [k−1],
and consequently, by Lemma 4,

H(F̃k(1) | F \ {Fk},Mk−1) ≥ logn− k − k log(C + 1) .

Combining these inequalities yields 1 + ε logn ≥ logn− k − k log(C + 1) which
implies C ≥ n(1−ε)/k/21+1/k − 1. The claim of the theorem follows immediately
from the last inequality. �

Acknowledgment

Thanks to Martin Sauerhoff for proofreading and advice.

470 A. Gronemeier

References

1. Babai, L., Gál, A., Kimmel, P.G., Lokam, S.V.: Communication complexity of
simultaneous messages. SIAM J. Comput. 33 (2004) 137–166

2. Babai, L., Hayes, T.P., Kimmel, P.G.: The cost of the missing bit: Communication
complexity with help. Combinatorica 21 (2001) 455–488

3. Babai, L., Nisan, N., Szegedy, M.: Multiparty protocols, pseudorandom generators
for logspace, and time-space trade-offs. J. Comput. Syst. Sci. 45 (1992) 204–232

4. Bar-Yossef, Z., Jayram, T.S., Kumar, R., Sivakumar, D.: Information theory meth-
ods in communication complexity. In: Proc. of 17th CCC. (2002) 93–102

5. Bar-Yossef, Z., Jayram, T.S., Kumar, R., Sivakumar, D.: An information statistics
approach to data stream and communication complexity. J. Comput. Syst. Sci. 68
(2004) 702–732

6. Beame, P., Pitassi, T., Segerlind, N., Wigderson, A.: A direct sum theorem for
corruption and the multiparty NOF communication complexity of set disjointness.
In: Proc. of 20th CCC. (2005) 52–66

7. Chakrabarti, A., Shi, Y., Wirth, A., Yao, A.C.: Informational complexity and the
direct sum problem for simultaneous message complexity. In: Proc. of 42nd FOCS.
(2001) 270–278

8. Chandra, A.K., Furst, M.L., Lipton, R.J.: Multi-party protocols. In: Proc. of 15th
STOC. (1983) 94–99

9. Chung, F.R.K., Tetali, P.: Communication complexity and quasi randomness.
SIAM J. Discret. Math. 6 (1993) 110–125

10. Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley-Interscience
(1991)

11. Damm, C., Jukna, S., Sgall, J.: Some bounds on multiparty communication com-
plexity of pointer jumping. Comput. Complex. 7 (1998) 109–127

12. Hromkovič, J.: Communication Complexity and Parallel Computing. Springer
(2002)

13. Kushilevitz, E., Nisan, N.: Communication Complexity. Cambridge University
Press (1997)

14. Nisan, N., Wigderson, A.: Rounds in communication complexity revisited. SIAM
J. Comput. 22 (1993) 211–219

15. Ponzio, S., Radhakrishnan, J., Venkatesh, S.: The communication complexity of
pointer chasing. J. Comput. Syst. Sci. 62 (2001) 323–355

16. Pudlák, P., Rödl, V., Sgall, J.: Boolean circuits, tensor ranks, and communication
complexity. SIAM J. Comput. 26 (1997) 605–633

17. Raz, R.: The BNS-Chung criterion for multi-party communication complexity.
Comput. Complex. 9 (2000) 113–122

18. Yao, A.C.: Some complexity questions related to distributive computing (prelimi-
nary report). In: Proc. of 11th STOC. (1979) 209–213

Dimension Characterizations of Complexity

Classes

Xiaoyang Gu� and Jack H. Lutz��

Department of Computer Science, Iowa State University, Ames, IA 50011 USA
{xiaoyang, lutz}@cs.iastate.edu

Abstract. We use derandomization to show that sequences of positive
pspace-dimension – in fact, even positive ∆p

k-dimension for suitable k –
have, for many purposes, the full power of random oracles. For example,
we show that, if S is any binary sequence whose ∆p

3-dimension is positive,
then BPP ⊆ PS and, moreover, every BPP promise problem is PS-
separable. We prove analogous results at higher levels of the polynomial-
time hierarchy.

The dimension-almost-class of a complexity class C, denoted by
dimalmost- C, is the class consisting of all problems A such that A ∈
CS for all but a Hausdorff dimension 0 set of oracles S. Our results
yield several characterizations of complexity classes, such as BPP =
dimalmost-P and AM = dimalmost-NP, that refine previously known re-
sults on almost-classes. They also yield results, such as Promise-BPP =
almost-P-Sep = dimalmost-P-Sep, in which even the almost-class ap-
pears to be a new characterization.

1 Introduction

Assessing the computational power of randomness is one of the most funda-
mental challenges facing computational complexity theory. Concrete questions
involving the best algorithms for primality testing, factoring, etc., are instances
of this challenge, as are structural questions concerning BPP, AM, and other
randomized complexity classes.

One approach to studying the power of a randomized complexity class C is
to address the following question: If C0 is the nonrandomized version of C, then
how weak an assumption can we place on an oracle S and still be assured that
C ⊆ CS

0 ? For example, how weak an assumption can we place on an oracle S and
still be assured that BPP ⊆ PS? For this particular question, it was a result of
folklore that BPP ⊆ PS holds for every oracle S that is algorithmically random
in the sense of Martin-Löf [21]; it was shown by Lutz [18] that BPP ⊆ PS holds
for every oracle S that is pspace-random; and it was shown by Allender and
Strauss [3] that BPP ⊆ PS holds for every oracle S that is p-random, or even
random relative to a particular sublinear-time complexity class.

� Research supported in part by National Science Foundation Grant 0344187.
�� Part of the second author’s work was carried out during a sabbatical at the Univer-

sity of Wisconsin.

R. Královič and P. Urzyczyn (Eds.): MFCS 2006, LNCS 4162, pp. 471–479, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

472 X. Gu and J.H. Lutz

In this paper, we extend this line of inquiry by considering oracles S that
have positive dimension (a complexity-theoretic analog of classical Hausdorff
dimension [11,8]) with respect to various resource bounds. Specifically, we prove
that every oracle S that has positive ∆p

3-dimension (hence every oracle S that
has positive pspace-dimension) satisfies BPP ⊆ PS .

Our main theorem is a generalization of this fact that applies to randomized
promise classes at various levels of the polynomial-time hierarchy. (Promise prob-
lems were introduced by Grollman and Selman [10]. The randomized promise
class Promise-BPP was introduced by Buhrman and Fortnow [6] and shown
by Fortnow [9] to characterize a “strength level” of derandomization hypothe-
ses. The randomized promise class Promise-AM was introduced by Moser [24].)
For every integer k ≥ 0, our main theorem says that, for every oracle S with
positive ∆p

k+3-dimension, every BP ·ΣP
k promise problem is ΣP,S

k -separable. In
particular, if S has positive ∆p

3-dimension, then every BPP promise problem
is PS-separable, and, if S has positive ∆p

4-dimension, then every AM promise
problem is NPS-separable.

We use our results to investigate classes of the form

dimalmost-C =
{
A
∣∣ dimH(

{
B

∣∣ A /∈ CB
}
) = 0

}
for various complexity classes C. It is clear that dimalmost-C is contained in the
extensively investigated class

almost-C =
{
A
∣∣ Pr[A /∈ CB] = 0

}
,

where the probability is computed according to the uniform distribution (Leb-
esgue measure) on the set of all oracles B. We show that

dimalmost-ΣP
k -Sep = almost-ΣP

k -Sep = Promise-BP ·ΣP
k

holds for every integer k ≥ 0, where ΣP
k -Sep is the set of all ΣP

k -separable pairs
of languages. This implies that

dimalmost-P = BPP,

refining the proof by Bennett and Gill [5] that almost-P = BPP. Also, for all
k ≥ 1,

dimalmost-ΣP
k = BP ·ΣP

k ,

refining the proof by Nisan and Wigderson [25] that almost-ΣP
k = BP ·ΣP

k .
The 1997 derandomization method of Impagliazzo and Wigderson [16] is cen-

tral to our arguments.

2 Resource-Bounded Dimension and Relativized Circuit
Complexity

This section reviews and develops those aspects of resource-bounded dimen-
sion and its relationship to relativized circuit-size complexity that are needed in
this paper. It is convenient to use entropy rates as an intermediate step in this
development.

Dimension Characterizations of Complexity Classes 473

2.1 Resource-Bounded Dimension

Resource-bounded dimension is an extension of classical Hausdorff dimension
that imposes dimension structure on various complexity classes. There are now
several equivalent ways to formulate resource-bounded dimension. Here we sketch
the elements of the original formulation that are useful in this paper.

We work in the Cantor-space C of all infinite binary sequences.

Definition. ([19]) Let s ∈ [0,∞).

1. An s-gale is a function d : {0, 1}∗ → [0,∞) satisfying

d(w) = 2−s[d(w0) + d(w1)]

for all w ∈ {0, 1}∗.
2. An s-gale succeeds on a sequence S ∈ C if lim sup

n→∞
d(S[0..n− 1]) = ∞, where

S[0..n− 1] denotes the n-bit prefix of S.
3. The success set of an s-gale d is S∞[d] = {S ∈ C | d succeeds on S }.

The following gale characterization of Hausdorff dimension is the key to resource-
bounded dimension. In this paper we will use this characterization in place of the
original definition of Hausdorff dimension [11,8], which we refrain from repeating
here.

Theorem 2.1 (Lutz [19]). The Hausdorff dimension of a set X ⊆ C is

dimH(X) = inf {s | there is an s-gale d such that X ⊆ S∞[d]} .

To extend Hausdorff dimension to complexity classes, we define a resource bound
to be one of the following classes of functions.

all = {f | f : {0, 1}∗ → {0, 1}∗}
p =

{
f ∈ all

∣∣ f is computable in nO(1) time
}

∆p
k = pΣP

k−1 for k ≥ 2
pspace =

{
f ∈ all

∣∣ f is computable in nO(1) space
}

Each of these resource bounds ∆ is associated with a result class R(∆) defined
as follows.
R(all) = C
R(p) = E = TIME(2linear)
R(∆p

k) = ∆E
k = EΣP

k−1

R(pspace) = ESPACE = SPACE(2linear)
A real-valued function f : {0, 1}∗ → [0,∞) is ∆-computable if there is a

function f̂ : {0, 1}∗ × N → Q such that f̂ ∈ ∆ (where the input (w, r) ∈
{0, 1}∗ × N is suitably encoded with r in unary) and, for all w ∈ {0, 1}∗ and
r ∈ N, |f̂(w, r) − f(w)| ≤ 2−r.

We now define resource-bounded dimension by imposing resource bounds on
the gale characterization in Theorem 2.1.

474 X. Gu and J.H. Lutz

Definition. ([19]) Let ∆ be a resource bound, and let X ⊆ C. (We identify
each S ∈ X with the language whose characteristic sequence is S.)

1. The ∆-dimension of X is

dim∆(X)=inf {s | there is a ∆-computable s-gale d such that X ⊆ S∞[d]} .

2. The dimension of X in R(∆) is dim(X |R(∆)) = dim∆(X ∩R(∆)).

As shown in [19], these definitions endow the above-mentioned complexity
classes R(∆) with dimension structure. In general,

0 ≤ dim(X |R(∆)) ≤ dim∆(X) ≤ 1,

and dim(R(∆)|R(∆)) = 1. Also,

∆ ⊆ ∆′ =⇒ dim∆′(X) ≤ dim∆(X),

e.g., dimpspace(X) ≤ dim∆p
3
(X). It is clear that dimall(X) = dim(X |C) =

dimH(X).
Our main results involve ∆-dimensions of individual sequences S, by which

we mean
dim∆(S) = dim∆({S}).

We use the easily verified fact that, if ∆ is any of the countable resource bounds
above, then

dimH({S | dim∆(S) = 0}) = 0. (2.1)

For more discussion, motivation, examples, and results, see [19,14,20,12,22].

2.2 Entropy Rates

We use a recent result of Hitchcock and Vinodchandran [15] relating entropy
rates to dimension. Entropy rates were studied by Chomsky and Miller [7], Kuich
[17], Staiger [26,27], Hitchcock [12], and others.

Definition. The entropy rate of a language A ⊆ {0, 1}∗ is

HA = lim sup
n→∞

log |A=n|
n

,

where A=n = A ∩ {0, 1}n.

Definition. Let C be a class of languages, and let X ⊆ C. The C-entropy rate
of X is

HC(X) = inf
{
HA

∣∣ A ∈ C and X ⊆ Ai.o.
}
,

where
Ai.o. = {S ∈ C | (∃∞n)S[0..n− 1] ∈ A} .

The following result is a routine relativization of Theorem 5.5 of [15].

Theorem 2.2 (Hitchcock and Vinodchandran [15]). For all X ⊆ C and k ∈ Z+,

dim∆p
k+2

(X) ≤ HΣP
k
(X).

Dimension Characterizations of Complexity Classes 475

2.3 Relativized Circuit-Size Complexity

Definition. 1. ([28]). For f : {0, 1}n → {0, 1} and A ⊆ {0, 1}∗, sizeA(f) is the
minimum size of (i.e., number of wires in) an n-input oracle circuit γ such
that γA computes f .

2. For all x ∈ {0, 1}∗ and A ⊆ {0, 1}∗, sizeA(x) = sizeA(fx), where fx :
{0, 1}�log |x|� → {0, 1} is defined by

fx(wi) =

{
x[i] if 0 ≤ i < |x|
0 if i ≥ |x|,

w0, . . . , w2�log |x|�−1 lexicographically enumerate {0, 1}�log |x|�, and x[i] is the
ith bit of x.

Lemma 2.3 For all A,S ∈ C,

HNPA({S}) ≤ lim inf
n→∞

sizeA(S[0..n− 1]) logn
n

.

Notation. For k ∈ N and x ∈ {0, 1}∗, we write

sizeΣP
k (x) = sizeKk

(x),

where Kk is the canonical ΣP
k -complete language [4].

By Theorem 2.2 and Lemma 2.3, we have the following.

Theorem 2.4 For all S ∈ C and k ∈ N,

dim∆p
k+3

(S) ≤ lim inf
n→∞

sizeΣP
k (S[0..n− 1]) logn

n

3 Positive-Dimension Derandomization

In order to state our main theorem, we review the notion of separability and
give a formulation of Promise-BP-classes that is suitable for our purposes.

Definition. Given a class C of languages, an ordered pair A = (A+, A−) of
(disjoint) languages is C-separable if there exists a language C ∈ C such that
A+ ⊆ C and A− ∩ C = ∅. We write

C-Sep =
{
(A+, A−)

∣∣ (A+, A−) is C-separable
}
.

Definition. Fix a standard paring function 〈, 〉 : {0, 1}∗ × {0, 1}∗ → {0, 1}∗.

1. A witness configuration is an ordered pair B = (B, g) where B ⊆ {0, 1}∗ and
g : N → N.

476 X. Gu and J.H. Lutz

2. Given a witness configuration B = (B, g), the B-critical event for a string
x ∈ {0, 1}∗ is the set

Bx =
{
w ∈ {0, 1}g(|x|) | 〈x,w〉 ∈ B

}
,

interpreted as an event in the sample space {0, 1}g(|x|) with the uniform prob-
ability measure. (That is, the probability of Bx is Pr(Bx) = 2−g(|x|)|Bx|.)

3. Given a class C of languages, we define the class Promise-BP · C to be the set
of all ordered pairs A = (A+, A−) of languages for which there is a witness
configuration B = (B, q) with the following four properties.

(i) B ∈ C.
(ii) q is a polynomial.
(iii) For all x ∈ A+, Pr(Bx) ≥ 2

3 .
(iv) For all x ∈ A−, Pr(Bx) ≤ 1

3 .

Note that Promise-BP is an operator that maps a class C of languages to a class
Promise-BP · C of disjoint pairs of languages. In particular,

Promise-BP · P = Promise-BPP

is the class of BPP promise problems investigated by Buhrman and Fortnow [6]
and Moser [23], and

Promise-BP · NP = Promise-AM

is the class of Arthur-Merlin promise problems investigated by Moser [24].
The following result is the main theorem of this paper.

Theorem 3.1 For every S ∈ C and k ∈ N,

dim∆p
k+3

(S) > 0 =⇒ Promise-BP ·ΣP
k ⊆ ΣP,S

k -Sep.

Theorem 3.1 has many consequences. First, the cases k = 0 and k = 1 are of
particular interest:

Corollary 3.2 For every S ∈ C,

dim∆p
3
(S) > 0 =⇒ Promise-BPP ⊆ PS-Sep

and
dim∆p

4
(S) > 0 =⇒ Promise-AM ⊆ NPS-Sep.

We next note that our results for promise problems imply the corresponding
results for decision problems. (Note, however, that the results of Fortnow [9]
suggest that the results on promise problems are in some sense stronger.)

Corollary 3.3 For every S ∈ C and k ∈ N,

dim∆p
k+3

(S) > 0 =⇒ BP ·ΣP
k ⊆ ΣP,S

k .

Dimension Characterizations of Complexity Classes 477

In particular,
dim∆p

3
(S) > 0 =⇒ BPP ⊆ PS (3.1)

and
dim∆p

4
(S) > 0 =⇒ AM ⊆ NPS . (3.2)

Intuitively, (3.1) says that even an oracle S with ∆p
3-dimension 0.001 – which

need not be random relative to any reasonable distribution – “contains enough
randomness” to carry out a deterministic simulation of BPP. To put the matter
differently, to prove that P = BPP, we need “only” show how to dispense with
such an oracle S.

As in section 1, for each relativizable complexity class C (of languages or pairs
of languages), define the dimension-almost-class

dimalmost-C =
{
A
∣∣ dimH(

{
S
∣∣ A /∈ CS

}
) = 0

}
,

noting that this is contained in the previously studied almost-class

almost-C =
{
A
∣∣ Pr[A ∈ CS] = 1

}
,

where the probability is computed according to the uniform distribution (Leb-
esgue measure) on the set of all oracles S.

Theorem 3.4 For every k ∈ N,

dimalmost-ΣP
k -Sep = almost-ΣP

k -Sep = Promise-BP ·ΣP
k .

Corollary 3.5 For every k ∈ N,

dimalmost-ΣP
k = BP ·ΣP

k .

In particular,
dimalmost-P = BPP (3.3)

and
dimalmost-NP = AM. (3.4)

It should be noted that derandomization plays a significantly larger role in the
proof of Corollary 3.5 than in the proofs of the analogous results for almost-
classes. For example, the proof by Bennett and Gill [5] that almost-P = BPP
uses the easily proven fact that the set X =

{
S
∣∣ PS 	= BPPS

}
has Lebesgue

measure 0. Hitchcock [13] has recently proven that this set has Hausdorff dimen-
sion 1, so the Bennett-Gill argument does not extend to a proof of (3.3). Instead,
our proof of (3.3) relies, via (3.1), on Impagliazzo and Wigderson’s pseudoran-
dom generator to prove that the set Y =

{
S
∣∣ BPP � PS

}
has Hausdorff dimen-

sion 0. Similarly, the proof by Nisan and Wigderson [25] that almost-NP ⊆ AM
uses derandomization, but their proof that AM ⊆ almost-NP is elementary. In
contrast, both directions of the proof of (3.4) use derandomization: The inclu-
sion dimalmost-NP ⊆ AM relies on the fact that almost-NP ⊆ AM (hence on
derandomization), and our proof that AM ⊆ dimalmost-NP relies, via (3.2), on
Impagliazzo and Wigderson’s pseudorandom generator.

478 X. Gu and J.H. Lutz

4 Conclusion

We conclude with a brief remark on relativization. Impagliazzo and Wigder-
son’s pseudorandom generator exists relative to arbitrary oracles, as to all our
arguments here. For example, implication (3.1),

dim∆p
3
(S) > 0 =⇒ BPP ⊆ PS ,

holds relative to every oracle. Note, however, that, if we consider this implica-
tion relative to an oracle S of positive ∆p

3-dimension, then the relativized ∆p
3-

dimension of this S will be 0, so we cannot use the relativized implication to con-
clude that PS = BPPS . Indeed, by Hitchcock’s just-mentioned result and (2.1),
there must exist languages S of positive ∆p

3-dimension for which PS 	= BPPS .

Acknowledgments. We are grateful to Eric Allender, whose discussions of the
ideas in [1,2] were a significant motivation of our work. We thank an anonymous
referee for pointing out a flaw in our earlier proof. We thank John Hitchcock
for useful discussions and suggestions. We also thank Manindra Agrawal for a
useful discussion.

References

1. E. Allender. When worlds collide: Derandomization, lower bounds, and kolmogorov
complexity. In Proceedings of the 21st annual Conference on Foundations of Soft-
ware Technology and Theoretical Computer Science, volume 2245 of Lecture Notes
in Computer Science, pages 1–15. Springer-Verlag, 2001.

2. E. Allender, H. Buhrman, M. Koucký, D. van Melkebeek, and D. Ronneburger.
Power from random strings. In Proceedings of the 43rd Annual IEEE Symposium
on Foundations of Computer Science, pages 669–678, 2002. SIAM Journal on
Computing. To appear.

3. E. Allender and M. Strauss. Measure on small complexity classes with applications
for BPP. In Proceedings of the 35th Symposium on Foundations of Computer
Science, pages 807–818, 1994.

4. J. L. Balcázar, J. Dı́az, and J. Gabarró. Structural Complexity I. Springer-Verlag,
Berlin, second edition, 1995.

5. C. H. Bennett and J. Gill. Relative to a random oracle A, PA
= NPA
= co-NPA

with probability 1. SIAM Journal on Computing, 10:96–113, 1981.
6. H. Buhrman and L. Fortnow. One-sided versus two-sided randomness. In Pro-

ceedings of the sixteenth Symposium on Theoretical Aspects of Computer Science,
pages 100–109, 1999.

7. N. Chomsky and G. A. Miller. Finite state languages. Information and Control,
1(2):91–112, 1958.

8. K. Falconer. Fractal Geometry: Mathematical Foundations and Applications. Wiley,
second edition, 2003.

9. L. Fortnow. Comparing notions of full derandomization. In Proceedings of the 16th
IEEE Conference on Computational Complexity, pages 28–34, 2001.

10. J. Grollman and A. Selman. Complexity measures for public-key cryptosystems.
SIAM J. Comput., 11:309–335, 1988.

Dimension Characterizations of Complexity Classes 479

11. F. Hausdorff. Dimension und äusseres Mass. Mathematische Annalen, 79:157–179,
1919.

12. J. M. Hitchcock. Effective fractal dimension: foundations and applications. PhD
thesis, Iowa State University, 2003.

13. J. M. Hitchcock. Hausdorff dimension and oracle constructions. Theoretical Com-
puter Science, 355(3):382–388, 2006.

14. J. M. Hitchcock, J. H. Lutz, and E. Mayordomo. The fractal geometry of complexity
classes. SIGACT News, 36(3):24–38, 2005.

15. J. M. Hitchcock and N. V. Vinodchandran. Dimension, entropy rates, and com-
pression. Journal of Computer and System Sciences, 72(4):760–782, 2006.

16. R. Impagliazzo and A. Wigderson. P = BPP if E requires exponential circuits:
Derandomizing the XOR lemma. In Proceedings of the 29th Symposium on Theory
of Computing, pages 220–229, 1997.

17. W. Kuich. On the entropy of context-free languages. Information and Control,
16(2):173–200, 1970.

18. J. H. Lutz. A pseudorandom oracle characterization of BPP. SIAM Journal on
Computing, 22(5):1075–1086, 1993.

19. J. H. Lutz. Dimension in complexity classes. SIAM Journal on Computing,
32:1236–1259, 2003.

20. J. H. Lutz. Effective fractal dimensions. Mathematical Logic Quarterly, 51:62–72,
2005.

21. P. Martin-Löf. The definition of random sequences. Information and Control,
9:602–619, 1966.

22. E. Mayordomo. Effective Hausdorff dimension. In Proceedings of Foundations of
the Formal Sciences III, pages 171–186. Kluwer Academic Press, 2004.

23. P. Moser. Relative to P promise-BPP equals APP. Technical Report TR01-68,
Electronic Colloquium on Computational Complexity, 2001.

24. P. Moser. Random nondeterministic real functions and Arthur Merlin games. Tech-
nical Report TR02-006, ECCC, 2002.

25. N. Nisan and A. Wigderson. Hardness vs randomness. Journal of Computer and
System Sciences, 49:149–167, 1994.

26. L. Staiger. Kolmogorov complexity and Hausdorff dimension. Information and
Computation, 103:159–94, 1993.

27. L. Staiger. A tight upper bound on Kolmogorov complexity and uniformly optimal
prediction. Theory of Computing Systems, 31:215–29, 1998.

28. C. B. Wilson. Relativized circuit complexity. Journal of Computer and System
Sciences, 31:169–181, 1985.

Approximation Algorithms and Hardness Results
for Labeled Connectivity Problems

Refael Hassin1, Jérôme Monnot2, and Danny Segev1

1 School of Mathematical Sciences, Tel-Aviv University, Israel
{hassin, segevd}@post.tau.ac.il

2 CNRS LAMSADE, Université Paris-Dauphine, France
monnot@lamsade.dauphine.fr

Abstract. Let G = (V, E) be a connected multigraph, whose edges are associated
with labels specified by an integer-valued function L : E → N. In addition, each
label � ∈ N to which at least one edge is mapped has a non-negative cost c(�).
The minimum label spanning tree problem (MinLST) asks to find a spanning tree
in G that minimizes the overall cost of the labels used by its edges. Equivalently,
we aim at finding a minimum cost subset of labels I ⊆ N such that the edge set
{e ∈ E : L(e) ∈ I} forms a connected subgraph spanning all vertices. Similarly,
in the minimum label s-t path problem (MinLP) the goal is to identify an s-t path
minimizing the combined cost of its labels, where s and t are provided as part of
the input.

The main contributions of this paper are improved approximation algorithms
and hardness results for MinLST and MinLP. As a secondary objective, we make
a concentrated effort to relate the algorithmic methods utilized in approximating
these problems to a number of well-known techniques, originally studied in the
context of integer covering.

1 Introduction

The majority of graph connectivity problems have traditionally been studied under the
assumption that each edge is associated with a numerical attribute, to which we re-
fer as length, weight or cost, depending on the related real-life context. In this long-
established model, the computational task is to identify a subgraph satisfying given
connectivity requirements, with the objective of minimizing some function defined over
the lengths of picked edges. While these settings capture a wide range of practical sce-
narios, they nevertheless fail to incorporate grouping constraints stating that the set of
available edges is partitioned into classes, each of which can be purchased in its entirety
or not at all. A rather convenient way of integrating grouping constraints is to couple
each edge with a label that specifies its class. Having this extra notation at hand, we
say that a subset of labels forms a feasible solution when the edges whose labels belong
to this subset induce a subgraph satisfying the given connectivity requirements. Since
costs are now assigned to labels rather than to single edges, the objective is to find a
solution that minimizes some function defined over the costs of picked labels.

We address two of the most fundamental labeled connectivity problems, those of
constructing spanning trees and s-t paths by picking labels of minimum total cost. For-
mally, let G = (V, E) be a connected multigraph on n vertices, whose edges are as-
sociated with labels specified by an integer-valued function L : E → N. In addition,

R. Královič and P. Urzyczyn (Eds.): MFCS 2006, LNCS 4162, pp. 480–491, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Approximation Algorithms and Hardness Results for Labeled Connectivity Problems 481

each label � ∈ N to which at least one edge is mapped has a non-negative cost c(�).
The minimum label spanning tree problem (MinLST) asks to find a spanning tree in G
that minimizes the overall cost of the labels used by its edges. Equivalently, we aim at
finding a minimum cost subset of labels I ⊆ N such that the edge set {e ∈ E : L(e) ∈ I}
forms a connected subgraph spanning all vertices. Similarly, in the minimum label s-t
path problem (MinLP) the goal is to identify an s-t path minimizing the combined cost
of its labels, where s and t are provided as part of the input. We refer to the special cases
of these problems in which at most r edges are assigned to any given label as MinLSTr

and MinLPr, respectively.

1.1 Related Results

Prior to describing the line of work preceding the current paper, we remark that, to
the best of our knowledge, the weighted version of both MinLST and MinLP has not
been previously studied. Therefore, the reader should bear in mind that the undermen-
tioned upper and lower bounds on the approximability of these problems are stated with
respect to the unweighted case, in which each label has a unit cost.

Chang and Leu [9] seem to have been the first to consider MinLST. They proved
that the corresponding decision problem is NP-complete, and experimentally studied
the performance of several heuristics, one of which is the maximum vertex covering
algorithm. Krumke and Wirth [16] demonstrated that a variant of this algorithm (hence-
forth, modified MVC) guarantees an approximation factor of at most 2 ln n + 1, and
accompanied this result by a hardness proof showing that MinLST is at least as hard
to approximate as set cover. Wan, Chen and Xu [21] suggested a refined analysis of
the modified MVC algorithm to obtain a factor of at most Hn−1. Very recently, Xiong,
Golden and Wasil [23] established that this algorithm provides a tight approximation
guarantee of Hr for MinLSTr, improving the bound of Wan et al.1, which is indepen-
dent of r. Brüggemann, Monnot and Woeginger [7] considered a local-search heuristic,
and showed that it constructs a solution for MinLSTr whose cost is within factor r+1

2 of
optimum. In addition, they proved that MinLST2 is polynomial-time solvable, whereas
MinLSTr is APX-complete for r ≥ 3.

Carr, Doddi, Konjevod and Marathe [8] proved that MinLP contains as a special
case the red-blue set cover problem, which was shown in the same paper to be inap-
proximable within a factor of O(2log1−ε n) for any ε > 0, unless NP ⊆ TIME(npolylog(n)).
However, this hardness result does not readily extend to MinLP, since the reduction de-
scribed by Carr et al. is not approximation preserving. Relying on a more restrictive sub-
problem of red-blue set cover, Wirth [22, Thm. 2.16] established the above-mentioned
lower bound for MinLP. On the positive side, Broersma, Li, Woeginger and Zhang
[6] devised two exact exponential-time algorithms, with respective running times of
O(n ·min{Ld , 2L}) and O(n2L!), where L is the number of labels and d is the s-t distance
in G. They also considered a Dijkstra-like algorithm for approximating MinLP, and
demonstrated that it does not provide any constant factor. In fact, simple examples show
that the resulting solution may have a cost of Ω(n) times the optimum, and moreover,
to our knowledge a non-trivial approximation for MinLP has not been presented yet.

1 Note that we may assume that r ≤ n − 1, since in the opposite case MinLSTr can be reduced
to MinLSTn−1 by eliminating an edge from each uniform labeled cycle.

482 R. Hassin, J. Monnot, and D. Segev

1.2 Our Results

In this paper, we present improved approximation algorithms and hardness results for
MinLST and MinLP. As a secondary objective, we make a concentrated effort to re-
late the algorithmic methods utilized in approximating these problems to a number of
well-known techniques, originally studied in the context of integer covering. Our main
findings can be briefly summarized as follows:

1. We extend the modified MVC algorithm to handle label costs in MinLST. Con-
sequently, we derive the first algorithm for the weighted case, and prove that its
approximation guarantee isHn−1. This result appears in Section 2.

2. We provide an additional O(log n) approximation for MinLST, which is based on
assembling partial solutions obtained by repeatedly calling a constant-factor maxi-
mum coverage subroutine [1,15,20]. This approach encapsulates the principal idea
we employ to approximate MinLP, and its specifics are described in Section 2.

3. By prematurely terminating the modified MVC heuristic and switching to an exact
algorithm for MinLST2 (due to Brüggemann et al. [7]), we achieve an approxi-
mation factor of Hr − 1

6 for unweighted MinLSTr. Our algorithm was inspired
by a similar improvement for the set cover problem, proposed by Goldschmidt,
Hochbaum and Yu [11]. In addition to showing that the factorHr can be decreased
by lower order terms, the underlying analysis we present is considerably simpler
than that of Xiong et al. [23]. This algorithm is given in the full version of this
paper [13].

4. We devise the first non-trivial algorithm for MinLP, with an approximation factor
of O(

√
n). A crucial ingredient of this algorithm is a preprocessing step, in which

we “guess” certain attributes of an arbitrary optimal solution and modify the given
instance accordingly. Once again, we make use of repeated calls to a maximum cov-
erage subroutine, eventually allowing us to easily identify a near-optimal solution.
This result is described in Section 3.

5. Since MinLPr admits a constant-factor approximation when r = O(1), one may
ask whether MinLPr can be approximated in this case to any required degree. A
negative answer to this question is provided in Section 4. Specifically, we show
that MinLPr is at least as hard to approximate as Min-r-SAT, a special case of
the minimum satisfiability problem (MinSAT) in which each clause consists of at
most r literals. The inapproximability of the former problem was studied by Avidor
and Zwick [4], whereas that of MinSAT was studied even earlier by Marathe and
Ravi [18].

6. By utilizing a self-improvability property of MinLP, which is based on the notion
of label squaring, we show that MinLP cannot be approximated to within any poly-
logarithmic factor unless P = NP. This result is incomparable with the previously
mentioned lower bound of Wirth, stating that an approximation factor of O(2log1−ε n)
for some ε > 0 implies NP ⊆ TIME(npolylog(n)). Our technique was motivated by an
analogous construction due to Karger, Motwani and Ramkumar [14] for the longest
path problem. This proof is given in Section 4.

Due to space limitations, several proofs are omitted from this extended abstract. We
refer the reader to the full version of this paper [13], in which all missing proofs are
provided.

Approximation Algorithms and Hardness Results for Labeled Connectivity Problems 483

1.3 Notation

We conclude this section by introducing some notation and terminology. Given a set
of edges F ⊆ E, we use L(F) = {L(e) : e ∈ F} to denote the image of F under L.
Furthermore, when H is a subgraph of G, the notation L(H) is used as a shorthand for
L(E(H)). For a subset I ⊆ N, we denote by L−1(I) = {e ∈ E : L(e) ∈ I} the inverse
image of I, excluding the case where the specified subset is actually a singleton, which
is abbreviated by writing L−1(�) instead of L−1({�}). The contraction of an edge (u, v)
is the multigraph obtained by identifying the vertices u and v, followed by eliminating
any degenerate edge joining the newly created vertex to itself. It is easy to verify that,
regardless of the order according to which the edges in a subset F ⊆ E are contracted,
we always attain the same multigraph. Therefore, it is sensible to define the contraction
of an edge set.

2 Approximating the Weighted MinLST Problem

In what follows, we present two approximation algorithms for the MinLST problem in
its utmost generality, where each label has a non-negative cost. Guided by considerably
different techniques, both algorithms iteratively construct a feasible subset of labels
whose cost is within a factor of O(log n) of optimum. We remind the reader that MinLST
is at least as hard to approximate as set cover, implying that the factor we derive is best
possible up to a constant multiplicative factor, assuming P � NP [3,19].

2.1 The Greedy Algorithm

We extend the modified MVC algorithm, originally suggested by Krumke and Wirth
[16], to handle label costs. In each step, our algorithm picks the most cost-effective
label, namely, one that minimizes the ratio between its cost and the decrement in the
number of vertices resulting from the contraction of its corresponding edges. A for-
mal description of the algorithm is provided in Figure 1, followed by a tight analysis
showing that its approximation guarantee is exactlyHn−1.

Theorem 1. The cost of the constructed solution is within a factor ofHn−1 of optimum.

Proof. Let {�1, . . . , �k} be the set of labels returned by the algorithm, indexed by the
order in which they were picked. In addition, for 1 ≤ j ≤ k, let H j be the processed
multigraph at the beginning of the jth iteration (in which the label � j was picked).
In what follows, we denote by OPT the cost of an optimal solution to the original
instance, and by OPT(H j) the cost of an optimal solution to the instance we obtain at
the beginning of the jth iteration. Clearly, OPT = OPT(H1) ≥ · · · ≥ OPT(Hk).

We first show that c(� j) ≤ dHj (� j)
OPT(Hj)
|V(Hj)|−1 for all 1 ≤ j ≤ k. Let {�∗1, . . . , �∗p} ⊆

L(H j) be an optimal solution to the instance corresponding to OPT(H j). Note that the
algorithm had the option of picking each �∗i when � j was picked. By observing that

a minimum-ratio label is picked in each iteration, we have c(� j)
dH j (� j)

≤ c(�∗i)
dH j (�

∗
i) for every

1 ≤ i ≤ p, and the stated upper bound on c(� j) follows as

OPT(H j) =
p∑

i=1

c(�∗i) ≥ c(� j)

dHj (� j)

p∑

i=1

dHj (�
∗
i) ≥ c(� j)

dHj (� j)

(
|V(H j)| − 1

)
.

484 R. Hassin, J. Monnot, and D. Segev

1. I ← ∅, H ← G.
2. While H contains at least two vertices

(a) For every label � ∈ L(H), let dH(�) be the decrement in the number of vertices in H
when the edge set L−1(�) is contracted.

(b) Pick a label �∗ that minimizes the ratio c(�)
dH (�) over all labels in L(H).

(c) I ← I ∪ {�∗}, H ← the contraction of L−1(�∗) in H.
3. Return I.

Fig. 1. The greedy algorithm

The second inequality holds since the set of edges L−1({�∗1, . . . , �∗p}) forms a connected
subgraph spanning V(H j), implying that

∑p
i=1 dHj (�

∗
i) ≥ |V(H j)| − 1.

Using the upper bounds proved above, we conclude that

k∑

j=1

c(� j) ≤
k∑

j=1

dHj (� j)
OPT(H j)

|V(H j)| − 1
≤ OPT

k∑

j=1

dH j (� j)∑

i=1

1
|V(H j)| − i

= Hn−1 · OPT ,

where the last equality holds since dHj (� j) = |V(H j)| − |V(H j+1)|. ��
Lemma 2. There are MinLST instances for which the algorithm produces a solution
whose cost isHn−1 times the optimum.

2.2 The Budgeted Covering Algorithm

Unlike the shortsighted approach employed by the greedy algorithm, that picks a single
label in each step, the new strategy we suggest consists of repeatedly contracting an
inexpensive collection of labels in an attempt to decrease the number of vertices by a
constant fraction. Such a collection is identified by approximating a related instance of
the budgeted maximum coverage problem, in which we are given a ground set U, a
family S of subsets of U with non-negative costs, and a budget B. The objective is to
find a subcollection S′ ⊆ S such that the total cost of the subsets in S′ is at most B,
and such that the number of elements covered by S′ is maximized. Several algorithms
achieve an approximation guarantee of 1 − 1

e for the latter problem [1,15,20].
To simplify the description and analysis of the budgeted covering algorithm, given in

Figure 2, it would be convenient to make two preliminary assumptions. First, we assume
that cmin = min�∈L(G) c(�) > 0, as all zero cost labels can be picked and contracted in
advance. Second, given an accuracy requirement ε > 0, we assume that a parameter
∆ ∈ [OPT, (1 + ε)OPT] is known. This follows from observing that cmin ≤ OPT ≤
|L(G)|cmax, where cmax = max�∈L(G) c(�), so all O(log1+ε

|L(G)|cmax

cmin
) candidate values of

the form (1 + ε)kcmin can be tested as the correct guess for ∆.

Theorem 3. The cost of the solution constructed by the budgeted covering algorithm
is within a factor of (1 + ε) log10/7 n of optimum.

Proof. Starting with an empty set of labels, in each iteration we augment I with labels
whose total cost is at most ∆ ≤ (1 + ε)OPT. Therefore, it is sufficient to show that the

Approximation Algorithms and Hardness Results for Labeled Connectivity Problems 485

1. I ← ∅, H ← G.
2. While H contains at least two vertices

(a) Create a budgeted maximum coverage instance by: The ground set is V(H); for each
label � ∈ L(H) there is a corresponding subset V� ⊆ V(H), consisting of all endpoints
of edges in L−1(�); the cost of V� is c(�); and the budget is ∆.

(b) Approximate the instance defined above, to obtain a subset I′ ⊆ L(H).
(c) I ← I ∪ I′, H ← the contraction of L−1(I′) in H.

3. Return I.

Fig. 2. The budgeted covering algorithm

algorithm terminates within log10/7 n iterations. To this end, we argue that contracting
each of the label sets we obtain in step 2b decreases the number of vertices in the
processed multigraph by a factor of at least 0.3.

Let I∗ ⊆ L(G) be an optimal solution, with
∑
�∈I∗ c(�) = OPT ≤ ∆. Now consider a

single iteration. Since L−1(I∗) forms a connected subgraph of G spanning all vertices,
it follows that {V� : � ∈ I∗ ∩ L(H)} is a feasible solution to the budgeted maximum
coverage instance defined in step 2a that fully covers V(H). Consequently, for the current
approximate solution I′ we must have |⋃�∈I′ V�| ≥ (1 − 1

e)|V(H)|, implying that the
contraction of L−1(I′) decreases the number of vertices by at least 1

2 (1 − 1
e)|V(H)| >

0.3|V(H)|. ��

3 An O(
√

n) Approximation for MinLP

In what follows, we present the first non-trivial algorithm for the MinLP problem,
achieving an approximation factor of O(

√
n). Throughout this section, we assume that

the reader is familiar with the basics of budgeted maximum coverage given in Subsec-
tion 2.2.

The principal idea that guides our algorithm can be informally described as follows.
When s and t are distant enough, an optimal solution must traverse many vertices, a fact
that establishes the existence of an inexpensive set of labels whose contraction signifi-
cantly decreases the number of vertices. As demonstrated in the context of the budgeted
covering algorithm, we can identify a label set possessing this property by employing a
maximum coverage subroutine. In the opposite case, a shortest path connecting s and t
constitutes a near-optimal solution, provided that its edges are not endowed with overly
priced labels. These observations suggest a two-step approach: First, perform repeated
contractions as long as s and t are distant, and then complete the solution by picking a
shortest s-t path.

For this tactic to have a low order strongly-polynomial running time, we apply a
technique that was originally proposed by Hassin [12] and enhanced by Lorenz and
Raz [17]. In adherence to standard terminology, we define an α-test to be a procedure
that, given a parameter ∆ ≥ 0, either constructs a feasible solution whose cost is at most
α∆ or determines that OPT > ∆. The specifics of a 13

3

√
n-test are provided in Figure 3,

followed by a correctness proof.

486 R. Hassin, J. Monnot, and D. Segev

1. I ← ∅, H ← G.
2. Eliminate from H all edges e with c(L(e)) > ∆.
3. While distH(s, t) ≥ √n

(a) Create a budgeted maximum coverage instance by: The ground set is V(H); for each
label � ∈ L(H) there is a corresponding subset V� ⊆ V(H), consisting of all endpoints
of edges in L−1(�); the cost of V� is c(�); and the budget is ∆.

(b) Approximate the instance defined above, to obtain a subset I′ ⊆ L(H).
(c) I ← I ∪ I′, H ← the contraction of L−1(I′) in H.

4. If the number of iterations in step 3 was greater than 10
3

√
n, return “OPT > ∆”.

5. Let P be a shortest s-t path in H. Return I ∪ L(P).

Fig. 3. The MinLP test

Lemma 4. The above procedure is a 13
3

√
n-test.

Now let cst be the minimum label cost for which the subgraph (V, {e : c(L(e)) ≤ cst})
contains an s-t path. Clearly, cst ≤ OPT ≤ |L(G)|cst. Given an accuracy requirement
ε > 0, we conduct a binary search over {(1 + ε)kcst : 0 ≤ k ≤ �log1+ε |L(G)|�}, involv-
ing O(log log1+ε |L(G)|) calls to the 13

3

√
n-test described above. As a consequence, we

identify a value ∆ for which the test reports OPT > ∆, whereas for (1 + ε)∆ it success-
fully constructs a feasible solution. It follows that the cost of this solution is at most
(1 + ε) 13

3

√
n · OPT.

Theorem 5. For any fixed ε > 0, MinLP can be approximated to within a factor of
(1 + ε) 13

3

√
n.

4 The Hardness of Approximating MinLP

The main result of this section is a hardness proof showing that MinLP cannot be ap-
proximated to within any polylogarithmic factor unless P = NP. Prior to presenting this
proof, we relate the approximability of MinLPr to that of the Min-r-SAT problem. It is
worth noting that all forthcoming results are proved for the unweighted version of the
corresponding problem.

4.1 MinLPr and Min-r-SAT

The input to the minimum satisfiability problem (MinSAT) is a Boolean formula in
conjugative normal form, consisting of a collection C = {C1, . . . ,Cm} of clauses made
up of complemented and uncomplemented occurrences of variables from the set X =
{x1, . . . , xn}. The objective is to find a truth assignment to the variables that minimizes
the number of satisfied clauses. We refer to the special case of this problem, in which
each clause has at most r literals, as Min-r-SAT.

Marathe and Ravi [18] showed that MinSAT and vertex cover are equivalent with
respect to approximability. Therefore, it is NP-hard to approximate the general MinSAT
problem to within any factor smaller than 1.3606 [10]. Having observed that this bound
does not apply to Min-r-SAT for small values of r, Avidor and Zwick [4] provided a

Approximation Algorithms and Hardness Results for Labeled Connectivity Problems 487

lower bound of 15
14 for r = 2, and a bound of 7

6 for all r ≥ 3. The next theorem extends
these results to MinLPr.

Theorem 6. For every r ≥ 2, MinLPr is at least as hard to approximate as Min-r-SAT.

Proof. Given an instance (C, X) of Min-r-SAT, we show how to formulate it as a MinLPr

instance. For 1 ≤ j ≤ n, let d j and d̄ j be the number of clauses in which the literals x j

and x̄ j appear, respectively. Without loss of generality, d j ≥ 1 and d̄ j ≥ 1, or otherwise
the value of x j can be determined in advance. We define a MinLPr instance (G,L, s, t)
as follows:

1. The vertices of G are v1, . . . , vn+1. In addition, for every 1 ≤ j ≤ n, we create two
interior-disjoint paths, P j and P̄ j, connecting v j and v j+1. The length of P j is d j,
while that of P̄ j is d̄ j.

2. We now spread the labels {�1, . . . , �m} on the edges of G. Specifically, let C(x j) and
C(x̄ j) be the sets of clauses in C containing the literals x j and x̄ j, respectively. Then,
each edge of P j is given a distinct label from {�i : Ci ∈ C(x j)}, and similarly, the
edges of P̄ j are given distinct labels from {�i : Ci ∈ C(x̄ j)}. Since each clause has at
most r literals, the number of occurrences of each label is at most r.

3. Finally, we set s = v1 and t = vn+1.

We note that there is a one-to-one correspondence between truth assignments and s-t
paths in G. First, suppose that f is a truth assignment that satisfies k clauses. Then the
concatenation P of the paths {P j : f (x j) = true} and {P̄ j : f (x j) = false} forms an s-t
path with |L(P)| = k. Conversely, suppose that P is an s-t path with |L(P)| = k. Then, as
a result of setting each variable x j to true if and only if P j is a subpath of P, we obtain
an assignment satisfying k clauses. ��

4.2 Inapproximability Within Any Polylogarithmic Factor

In what follows, we prove that it is NP-hard to approximate MinLP within a factor of
O(logk n), for any fixed k ≥ 1. To simplify the presentation, our proof is decomposed
into three stages. First, we provide a logarithmic lower bound on the approximability of
MinLP by relating it to a subproblem of set cover. Then, we define a new graph opera-
tion, called label squaring, and use it to derive a self-improvability property. Finally, we
establish the main result by exploiting this property and additional structure common
to instances obtained from the reduction described in the first stage.

Lemma 7. There exists a constant c > 0, such that a polynomial time algorithm ap-
proximating MinLP within a factor of c ln n implies P = NP.

Proof. By plugging the proof system of Raz and Safra [19] (or alternatively, Arora and
Sudan [3]) into the reduction of Bellare, Goldwasser, Lund and Russell [5], the former
authors showed that set cover is NP-hard to approximate within a factor of O(log n). In
other words, there is a constant c′ > 0 such that approximating set cover in polynomial
time within a factor of c′ ln n implies P = NP. This result also applies to instances (U,S)
with |U | > |S|1/q, for some constant q ≥ 1, since the above-mentioned construction
guarantees that |U | and |S| are polynomially related [2]. We refer to this special case as
MinSC′.

488 R. Hassin, J. Monnot, and D. Segev

Given a MinSC′ instance, consisting of a ground set U = {e1, . . . , en} and a family of
subsets S = {S 1, . . . , S m} ⊆ 2U , we define an instance (G,L, s, t) of MinLP as follows:

1. The vertices of G are v0, . . . , vn. In addition, for each element e j ∈ U we create a
gadget G(e j) by connecting v j−1 and v j to the upper rung of a ladder graph. More
precisely, if e j belongs to p subsets in S, we put together a ladder whose rungs are
(a1

j , b
1
j), . . . , (a

p
j , b

p
j), adding the edges (v j−1, a1

j) and (v j, b1
j). This configuration is

illustrated in Figure 4.

���� ��

���

���

���

��
�

���

���

���

��
�

Fig. 4. The gadget G(ej)

2. We now spread the labels {�0, �1, . . . , �m} on the edges of G. Using the notation of
item 1, each of the p rungs is given a distinct label from {�i : e j ∈ S i}, whereas all
other edges of G(e j) are given the label �0.

3. We set s = v0 and t = vn.

At this point, it is imperative to remark that since n > m1/q, the above construction
ensures that the overall number of vertices satisfies

|V(G)| ≤ n + 1 + 2nm ≤ n + 1 + 2nq+1 ≤ 4nq+1 .

Now let c = c′
4(q+1) , and suppose that MinLP can be approximated in polynomial time

within a factor of c ln |V(G)|. We show that this assumption leads to an approximation
factor of at most c′ ln n for MinSC′, implying P = NP. To this end, let S∗ ⊆ S be an
optimal solution to the instance (U,S). As all elements of U are covered by S∗, the label
of at least one rung in each of the n ladders belongs to {�i : S i ∈ S∗}, and by augmenting
this label set with �0 we obtain a subgraph of G that contains an s-t path. Therefore, the
number of labels in an optimal solution to the new MinLP instance is at most |S∗| + 1.
It follows that we can find in polynomial time an s-t path P satisfying

|L(P)| ≤ c′

4(q + 1)
ln |V(G)| · (|S∗| + 1) ≤ c′

4(q + 1)
ln
(
4nq+1

)
· 2|S∗|

≤ c′

2
ln (4n) · |S∗| ≤ c′ ln n · |S∗| .

The second inequality holds since |V(G)| ≤ 4nq+1, and the last inequality follows from
observing that we can assume without loss of generality that n ≥ 4, so ln(4n) ≤ 2 ln n. It
is not difficult to verify that, as the path P necessarily traverses �0-labeled edges, {S i ∈
S : �i ∈ L(P)} is a cover of U with cardinality at most |L(P)| − 1 ≤ c′ ln n · |S∗|. ��

Approximation Algorithms and Hardness Results for Labeled Connectivity Problems 489

Given a MinLP instance I = (G,L, s, t), its label squaring I2 = (G2,L2, s2, t2) is a new
instance defined as follows. To assemble the graph G2, we first construct a distinct copy
Ge of G for each original edge e ∈ E(G). Letting se and te denote the vertices of Ge that
correspond to s and t, we arbitrarily assign se and te to different endpoints of e. Then,
for each v ∈ V(G), the vertices assigned to v are unified, over all copies, to a single
vertex v2. Using this notation, the source and destination are s2 and t2, respectively.
Finally, the new set of labels is L(G) × L(G), where the edge of Ge corresponding to
f ∈ E(G) is given the label (L(e),L(f)).

��

� ��

� �

�

�� ��

��

�� ���� �

��

��

�
� �

�
�

�
� � �

� ��
�

�

�� ���� �

�
� �

�
�

�
�

� �
� ��

�
�

� �
� ��

�
��

� �
�

�
�

�

�� ���� �

Fig. 5. A label squaring example

Lemma 8. OPT(I2) ≤ OPT2(I).

Lemma 9. There is a polynomial-time algorithm that, given an s2-t2 path P2 in G2,
finds an s-t path P in G satisfying |L(P)| ≤ |L2(P2)|1/2.

Theorem 10. For any fixed k ≥ 1, MinLP cannot be approximated in polynomial time
within a factor of O(logk n) unless P = NP.

Proof. The reduction described in Lemma 7 produces MinLP instances in which the
underlying graph is planar. Therefore, the result stated in this lemma also applies to
instances I = (G,L, s, t) in which G is an n-vertex planar graph. Now suppose that there
exists a polynomial-time algorithm A whose approximation factor for such instances
is α(n) ≤ ck lnk n, for some ck > 0. We show that this algorithm can utilize the label
squaring operation to obtain a self-improvability property, as a result of which we derive
an approximation factor smaller than c ln n for planar MinLP, where c is the constant
mentioned in Lemma 7.

We assume that n is sufficiently large so that ln1/2(3n) ≤ c
4 ln n, and let q = q(k, ck)

be the smallest integer satisfying c2−q

k ≤ 2, 22−qqk ≤ 2 and 2−qk ≤ 1
2 . Such a constant

indeed exists, since c2−q

k → 1, 22−qqk → 1, and 2−qk → 0 as q tends to infinity. Starting
with a planar instance I, we repeatedly apply the label squaring operation q times, to
obtain I2q

= (G2q
,L2q
, s2q
, t2q

). We then employ the algorithmA to find an approximate

490 R. Hassin, J. Monnot, and D. Segev

s2q
-t2q

path in G2q
, and make use of Lemmas 8 and 9 to obtain an s-t path P in G such

that
|L(P)| ≤

(
α
(
|V(G2q

)|
)
· OPT

(
I2q))2−q

≤ α2−q (|V(G2q
)|
)
· OPT(I) .

To bound the approximation guarantee α2−q
(|V(G2q

)|) in terms of n and c, we first
claim that the number of vertices in G2q

is at most (3n)2q
. For this purpose, it can be

easily verified that the label squaring operation preserves planarity, implying that the
instances I2 j

we obtain throughout the sequence are planar, and in particular |E(G2 j
)| ≤

3|V(G2 j
)|−6. By combining this property with the observation that |V(G2 j+1

)| ≤ |V(G2 j
)|·

|E(G2 j
)|, we can inductively prove that |E(G2 j

)| ≤ (3n)2 j
and |V(G2 j

)| ≤ 32 j−1n2 j
, with

room to spare. It follows that the approximation factor we derive is at most

α2−q (|V(G2q
)|
)
≤ c2−q

k ln2−qk
(
(3n)2q)

= c2−q

k 22−qqk ln2−qk(3n) ≤ 4 ln1/2(3n) ≤ c ln n . ��

References

1. A. A. Ageev and M. Sviridenko. Pipage rounding: A new method of constructing algorithms
with proven performance guarantee. Journal of Combinatorial Optimization, 8(3):307–328,
2004.

2. S. Arora. Personal communication, November 2005.
3. S. Arora and M. Sudan. Improved low-degree testing and its applications. Combinatorica,

23(3):365–426, 2003.
4. A. Avidor and U. Zwick. Approximating MIN 2-SAT and MIN 3-SAT. Theory of Computing

Systems, 38(3):329–345, 2005.
5. M. Bellare, S. Goldwasser, C. Lund, and A. Russell. Efficient probabilistically checkable

proofs and applications to approximations. In Proceedings of the 25th Annual ACM Sympo-
sium on Theory of Computing, pages 294–304, 1993.

6. H. Broersma, X. Li, G. Woeginger, and S. Zhang. Paths and cycles in colored graphs. Aus-
tralasian Journal on Combinatorics, 31:299–311, 2005.

7. T. Brüggemann, J. Monnot, and G. J. Woeginger. Local search for the minimum label span-
ning tree problem with bounded color classes. Operations Research Letters, 31(3):195–201,
2003.

8. R. D. Carr, S. Doddi, G. Konjevod, and M. V. Marathe. On the red-blue set cover problem.
In Proceedings of the 11th Annual ACM-SIAM Symposium on Discrete Algorithms, pages
345–353, 2000.

9. R.-S. Chang and S.-J. Leu. The minimum labeling spanning trees. Information Processing
Letters, 63(5):277–282, 1997.

10. I. Dinur and S. Safra. On the hardness of approximating minimum vertex cover. Annals of
Mathematics, 162(1):439–486, 2005.

11. O. Goldschmidt, D. S. Hochbaum, and G. Yu. A modified greedy heuristic for the set cov-
ering problem with improved worst case bound. Information Processing Letters, 48(6):305–
310, 1993.

12. R. Hassin. Approximation schemes for the restricted shortest path problem. Mathematics of
Operations Research, 17(1):36–42, 1992.

13. R. Hassin, J. Monnot, and D. Segev. Approximation algorithms and hardness results for
labeled connectivity problems, 2006. Available at
http://www.math.tau.ac.il/∼segevd.

14. D. R. Karger, R. Motwani, and G. D. S. Ramkumar. On approximating the longest path in a
graph. Algorithmica, 18(1):82–98, 1997.

Approximation Algorithms and Hardness Results for Labeled Connectivity Problems 491

15. S. Khuller, A. Moss, and J. Naor. The budgeted maximum coverage problem. Information
Processing Letters, 70(1):39–45, 1999.

16. S. O. Krumke and H.-C. Wirth. On the minimum label spanning tree problem. Information
Processing Letters, 66(2):81–85, 1998.

17. D. H. Lorenz and D. Raz. A simple efficient approximation scheme for the restricted shortest
path problem. Operations Research Letters, 28(5):213–219, 2001.

18. M. V. Marathe and S. S. Ravi. On approximation algorithms for the minimum satisfiability
problem. Information Processing Letters, 58(1):23–29, 1996.

19. R. Raz and S. Safra. A sub-constant error-probability low-degree test, and a sub-constant
error-probability PCP characterization of NP. In Proceedings of the 29th Annual ACM Sym-
posium on Theory of Computing, pages 475–484, 1997.

20. A. Srinivasan. Distributions on level-sets with applications to approximation algorithms.
In Proceedings of the 42nd Annual Symposium on Foundations of Computer Science, pages
588–597, 2001.

21. Y. Wan, G. Chen, and Y. Xu. A note on the minimum label spanning tree. Information
Processing Letters, 84(2):99–101, 2002.

22. H.-C. Wirth. Multicriteria Approximation of Network Design and Network Upgrade Prob-
lems. PhD thesis, Department of Computer Science, Würzburg University, 2001.

23. Y. Xiong, B. Golden, and E. Wasil. Worst-case behavior of the MVCA heuristic for the
minimum labeling spanning tree problem. Operations Research Letters, 33(1):77–80, 2005.

An Expressive Temporal Logic for Real Time

Yoram Hirshfeld and Alexander Rabinovich

School of Computer Science
Sackler Faculty of Exact Sciences

Tel Aviv University, Tel Aviv, Israel 69978
{joram, rabinoa}@post.tau.ac.il

Abstract. We add to the standard temporal logic with the modalities
”Until” and ”Since”, a sequence of “counting modalities”: For each n the
modality Cn(X), which says that X will be true at least at n points in
the next unit of time, and its past counterpart

←−
C n, which says that X

has happened at least n times in the last unit of time. We prove that this
temporal logic is as expressive as can be hoped for; all the modalities that
can be expressed in a strong natural decidable predicate logic framework,
are expressible in this temporal logic.

1 Introduction

Temporal Logic based on the two modalities “Since” and “Until” (TL) is a pop-
ular among computer scientists as the framework for reasoning about a system
evolving in time. By Kamp’s theorem [18] this logic has the same expressive
power as the first order monadic logic of order.

The two logics are (expressive) equivalentwhether the system evolves in discrete
steps or in continuous time, but for continuous time both logics can not express
properties like: “X will happen within 1 unit of time”. A natural metric modality
say “X will happen exactly after one unit of time.” Unfortunately, the extension
of TL by this modality is undecidable. Over the years different decidable exten-
sions of TL were suggested. The logic which was most extensively discussed was
MITL [2,1,10]. Other logics are described in [4,19,24]. We find the language QTL
(quantitative temporal logic) which is presented in [13,14,15] more natural and
convenient, and we will use it in the discussion. QTL has the two modalities “Un-
til” and “Since”, and two more modalities: ♦1X -X will be true sometime within
the next unit of time, and ←−♦1X - X was true sometime in the last unit of time.

We call these metric extensions of the pure temporal logic the simple metric
temporal logics. They all have the same expressive power, which indicates that
they capture a natural fragment of what can be said about the systems. This
does not mean that they express all that needs to be said, and it was left to be
determined whether these language are as expressive as can be hoped for, and if
not, what needs to be added. Two important questions were not answered:

1. Is this logic expressive enough to express all the important properties about
evolving systems?

2. If not, which modalities should we add?

R. Královič and P. Urzyczyn (Eds.): MFCS 2006, LNCS 4162, pp. 492–504, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

An Expressive Temporal Logic for Real Time 493

Apparently A. Pnueli was the first to ask these questions, when he conjectured
that the simple metric logics cannot express the requirement that X and then
Y will both happen in the coming unit of time [2,24].

In [16] we proved Pnueli’s conjecture, and we showed a sequence of modalities
of the type that Pnueli suggested, such that no finite set of modalities can express
all of them. Specifically: For every natural n we defined the “Pnueli modality”
Pnun(X1, . . . , Xn), which states that there is an increasing sequence t1, . . . , tn
of points in the unit interval ahead such that ti satisfies Xi. We also defined the
weaker “Counting modalities” Cn(X) which states that X will be true at least
at n points in the unit interval ahead. We proved in [16] that:

– QTL (or MITL) with the added modalities Pnu1, . . . ,Pnun can not express
the modality Cn+1

– No temporal logic with finitely many modalities can express all the modali-
ties Cn(X) for all natural numbers n.

This answers the first of the two questions above as negatively as can be imag-
ined. It seemed to bring an end to the hope to extend Kamp’s result, to define
a simple temporal logic that extends plain temporal logic and is equivalent to a
strong metric predicate logic.

In [12,14] we tried to identify the metric predicate logic that is best suited to
deal with systems that evolve in time. A logic that is as expressive as possible,
and yet simple to have a decidable validity and satisfiability problem. This logic
can then serve to define modalities that will produce temporal logics that are
decidable.

We started with the predicate logic that has also the +1 function alongside the
order relation and the unary predicate variables. This language is too strong, as
the +1 function allows for the encoding of Turing computations, and is clearly
undecidable. We first identified the fragment of the predicate logic that cor-
responds to the temporal logic QTL (and to MITL). This is the “Quantified
Monadic Logic of Order”, QMLO that has atomic formulas t = s, t < s and
X(t), is closed under Boolean connectors and first order quantifications, and
under the ‘‘metric quantifiers”: If ϕ(t) is a formula in QMLO with t its only
free variable then (∃t)<t0+1

>t0 ϕ(t) is a formula of QMLO (in the free variable t0).
“Metric quantifiers” are just notations: (∃t)<t0+1

>t0 ϕ is shorthand for (∃t)[(t0 <
t < t0 + 1) ∧ ϕ]. This is a restricted form to use +1 function.

To extend the expressive power we then modified QMLO into Q2MLO;
Q2MLO has the same atomic formulas as QMLO and is closed under the
Boolean connectives, and first-order quantifiers, however the rule for metric
quantifiers is changed to:

If ϕ(t0, t) is a formula in Q2MLO with t and t0 its only free variable then
(∃t)<t0+1

>t0 ϕ(t0, t) and (∃t)<t0
>t0−1ϕ(t0, t) are formulas of Q2MLO.

At first glance the difference between QMLO and Q2MLO may look small,
but it is actually very big. In particular for every (non metric) first order property
ϕ we can state: “ϕ holds on some short interval (of length less than 1) that starts
here”.

494 Y. Hirshfeld and A. Rabinovich

In [12] we proved that Q2MLO has a decidable validity and satisfaction prob-
lem. Simple attempts to further modify Q2MLO like non trivial properties of
the whole interval ahead, or permitting an additional third first-order variable
to be free inside metric quantifier would make the logic as expressive as FOMLO
with the function +1 (hence undecidable).

We demonstrated that Q2MLO is expressive decidable predicate logic in which
modalities can be defined with the assurance that the resulting temporal logic
is decidable. Therefore the second question above becomes:

Can we add a nice (necessarily infinite) family of modalities to the pure
temporal logic TL(Until, Since) and obtain a temporal logic that is com-
plete for Q2MLO?

Here we give the surprising answer:
Theorem: The pure temporal logic TL(Until, Since) together with all the
counting modalities Cn and ←−C n is expressively equivalent to Q2MLO.
The paper is divided as follows: In section 2 we recall the definitions and the
previous results concerning the continuous time logics. Section 3 recalls the com-
positional method, which is a main tool in the proof of the theorem. In section
4 we prove the main theorem. Section 5 states further results.

2 Monadic Logic and Quantitative Temporal Logic

2.1 MLO - Monadic Logic of Order

We start with the standard definitions.
The monadic predicate logic of order - MLO has in its vocabulary in-

dividual (first order) variables t0, t1, . . . ,, monadic predicate names X0, X1, . . . ,,
and one binary relation < (the order).

The first order predicate language over this vocabulary is called the (first
order) Monadic Logic of Order (FOMLO). Note that since we are interested
only in the first order language, X0, X1, . . . , is a chosen sequence of constant
predicate names, and not of set variables.

In this work a structure for FOMLO is a tuple M = 〈R, <, P1, . . . , Pn〉,
where R is real line, with and P1, · · · , Pn, are one-place predicates (sets) that
correspond to the predicate names in the logic.

As is common we will use the assigned formal names to refer to objects in the
meta discussion. Thus we will write: M |= ϕ[τ1, . . . , τk;P1, . . . , Pm] where M is
a structure, ϕ a formula, τ1, · · · , τk elements of M and X1, . . . , Xm predicates in
M , instead of the correct but tedious form:

M, τ1, . . . , τk;P1, . . . , Pm |=
MLO

ϕ(t1, . . . , tk;X1, . . . , Xm),

where τ1, . . . , τk and P1, · · · , Pm are names in the metalanguage for elements and
predicates in M .

Everything in this paper remains true if we consider the class of structures
whose domain is the non negative part of the real line, with 0 as first element.

An Expressive Temporal Logic for Real Time 495

In surveying the background, we will mention two more classes of structures:
The class of Rational time, whose structures have the rational numbers as their
domain, and the Finite Variability class, which is the of structures over the real
line, such that every unary predicate changes its value only finitely often in any
bounded interval of time.

2.2 Temporal Logics

Temporal logics use logical constructs called “modalities” to create a language
that is free from variables and quantifiers:

The syntax of the Temporal Logic TL(O(k1)
1 , . . . , O

(kn)
n , . . .) has in its vo-

cabulary monadic predicate names P1, P2, . . . and a sequence of modality names
with prescribed arity, O(k1)

1 , . . . , O
(kn)
n , . . . (the arity notation is usually omitted).

The formulas of this temporal logic are given by the grammar:

ϕ ::= True| P | ¬ϕ | ϕ ∧ ϕ | O(k)(ϕ1, · · · , ϕk)

A temporal logic with a finite set of modalities is called a finite (base) temporal
logic.

A structure for Temporal Logic, in this work, is the real line with monadic
predicates M = 〈R, <, P1, P2, . . . , Pn〉, where the predicate Pi are those which
are mentioned in the formulas of the logic. Every modality O(k) is interpreted in
the structure M as an operator O(k)

M : [P(A)]k → P(A) which assigns “the set of
points where O(k)[S1, . . . , Sk] holds” to the k-tuple 〈S1, . . . , Sk〉 ∈ P(R)k. (Here
P(R) denotes the set of all subsets of R). Once every modality corresponds to
an operator the semantics is defined by structural induction:

– for atomic formulas: 〈M, t〉 |=
T L

P iff t ∈ P .
– for Boolean combinations the definition is the usual one.
– for O(k)(ϕ1, · · · , ϕk)

〈M, t〉 |=
T L

O(k)(ϕ1, · · · , ϕk) iff t ∈ O(k)
M (Aϕ1 , · · · , Aϕk

)

where Aϕ = { τ : 〈M, τ〉 |=
T L

ϕ } (we suppressed predicate parameters
that may occur in the formulas).

For the modality to be of interest the operator O(k) should reflect some intended
connection between the sets Aϕi of points satisfying ϕi and the set of points
O[Aϕ1 , . . . , Aϕk

]. The intended meaning is usually given by a formula in an
appropriate predicate logic:

Truth Tables: A formula O(t0, X1, . . .Xk) in the predicate logic L is a Truth
Table for the modality O(k) if for every structure M

OM (A1, . . . , Ak) = {τ : M |=
MLO

O[τ, A1, . . . , Ak]} .

The modalities until and since are most commonly used in temporal logic for
computer science. They are defined through the following truth tables:

496 Y. Hirshfeld and A. Rabinovich

– The modality X U Y - “X until Y ”, is defined by

ψ(t0, X, Y) ≡ ∃t1(t0 < t1 ∧ Y (t1) ∧ ∀t(t0 < t < t1 → X(t))).

– The modality X S Y - “X since Y ”, is defined by

ψ(t0, X, Y) ≡ ∃t1(t0 > t1 ∧ Y (t1) ∧ ∀t(t1 < t < t0 → X(t))).

A central issue in this work is whether some temporal logic is equivalent to a
fragment of predicate logic. We will define exactly what is meant by it:

Definition 1 (Expressive Equivalence). Let L be a a fragment of predicate
logic, and let TL be some temporal logic. Let M be a class of structures such
that interprets both logics.

1. If for every formula ϕ(t) of L with a single free variable there is a formula
φ of TL, such that for every structure M in M and for every t ∈M

〈M, t〉 |=
T L

φ iff M |= ϕ[t]

then we say that TL is at least as expressive as L in the class M.
2. A similar condition says when L is at least as expressive as TL over M.
3. If both conditions hold we say that TL and L are expressively equivalent over
M, or that they have the same expressive power.

If the modalities of a temporal logic have truth tables in a predicate logic then
the temporal logic is equivalent to a fragment of the predicate logic. Formally:

Proposition 1. If every modality in the temporal logic TL has a truth table in
the logic FOMLO then to every formula ϕ(X1, . . . , Xn) of TL there corresponds
effectively (and naturally) a formula ϕ(t0, X1, . . .Xn) of FOMLO such that for
every M , τ ∈M and predicates P1, . . . , Pn

〈M, τ, P1, . . . , Pn〉 |=
T L

ϕ iff 〈M, τ, P1, . . . , Pn〉 |=
MLO

ϕ .

In particular the temporal logic TL(U , S) with the modalities “until” and
“since” corresponds to a fragment of first-order MLO .

The two modalities U and S are also enough to express all the formulas
of first-order FOMLO with one free variable:

Theorem 2. ([18,9]) The temporal logic TL(U , S) is expressively complete
for FOMLO over the two canonical structures: For every formula of FOMLO
with at most one free variable, there is a formula of TL(U , S), such that the
two formulas are equivalent to each other, over the positive integers (discrete
time) and over the real line (continuous time).

2.3 The Simple Metric Logics: Quantitative Temporal Logic, and
Quantitative Monadic Logic of Order

The logics MLO and TL(U , S) are not suitable to deal with statements like
“X will occur within one unit of time”. It might be tempting to include in

An Expressive Temporal Logic for Real Time 497

the monadic logic of order also a unary function symbol to denote the function
t+ 1. This however makes the language undecidable. Moreover, seemingly weak
fragments of this logic are undecidable. The corresponding modification of the
temporal logic would add to the logic the modality S(X) that holds at a point
t if t + 1 ∈ X . This also results in an undecidable logic. For the last 20 years
languages that can express such properties and are decidable were proposed
and investigated ([4,19,8,24,10,13,15]), and most notorious, logic MITL [2,1,10].
We will use as a framework the Quantitative Temporal Logic, QTL which was
introduced in [12,13,14]. All these logics are expressively equivalent [13]. QTL is
defined as follows:

Definition 3 (Quantitative Temporal Logic). QTL, quantitative temporal
logic is the logic TL(U , S) enhanced by the two modalities: ♦1X and ←−♦1X.
These modalities are defined by the tables with free variable t0:

(3) ♦1X : ∃t((t0 < t < t0 + 1) ∧X(t))

(4) ←−♦1X : ∃t((t− 1 < t < t0) ∧X(t)) .

The temporal logic QTL is complete for a natural fragment of the monadic logic
of order, enriched with the +1 function:

Definition 4 (Quantitative Monadic Logic of Order). QMLO , quantita-
tive monadic logic of order is the predicate logic that has atomic formulas t = s,
t < s and X(t), where X ranges over unary predicate names; it is closed under
Boolean connectors and first order quantifications, and has the following rule
for the “metric quantifiers”:

If ϕ(t) is a formula in QMLO with t its only free variable and m < n
are integers then (∃t)<t0+n

>t0+mϕ(t) is a formulas of QMLO .

Recall that the metric quantifier (∃t)<t0+n
>t0+mϕ is shorthand for ∃t(t0 + m < t <

t0 + n ∧ ϕ).

Theorem 5. ([13,15]) The temporal logic QTL is expressively equivalent to
QMLO over the full, or positive half, real line.

2.4 The Limited Expressive Power of the Simple Metric Logics

There was no reason to believe that the simple metric logics like QTL have com-
prehensive expressive power. A. Pnueli raised this question, and he conjectured
that the modality Pnu2(X,Y) is not expressible in MITL, where Pnu2(X,Y)
says that X and then Y will be true at points in the next unit of time [2,24].

In [16] we proved Pnueli’s conjecture, and we strengthened it significantly. To
do this we defined for every natural n the “Pnueli modality” Pnun(X1, . . . , Xn),
which states that there is an increasing sequence t1, . . . , tn of points in the unit
interval ahead such that ti satisfies Xi. We also defined the weaker “Counting
modalities” Cn(X) which states that X is true at least at n points in the unit
interval ahead. I.e, Cn(X) = Pnun(X, . . . ,X). With these modalities we proved:

498 Y. Hirshfeld and A. Rabinovich

Theorem 6. 1. QTL (or MITL) with the added modalities Pnu1, . . . ,Pnun

can not express the modality Cn+1.
2. No temporal logic with finitely many modalities can express all the modalities

Cn(X) for all natural numbers n. Hence no finite temporal logic will suffice
to express everything of interest.

2.5 The Predicate Metric Logic Q2MLO

In classical monadic logic there is a natural logic suitable to deal with evolving
systems, the logic Q2MLO , which was introduced in [12] .

Definition 7. Q2MLO is the predicate logic that has atomic formulas t = s,
t < s and X(t), where X ranges over unary predicate names; it is closed under
Boolean connectors and first order quantifications, and has the following rule
for the “metric quantifiers”:

If ϕ(t0, t) is a formula in Q2MLO with free first-order variables in {t0, t}
and m < n are integers then (∃t)<t0+n

>t0+mϕ(t0, t) is a formulas of Q2MLO.

In [12] it was shown that:

Theorem 8. The validity and satisfiability problem is decidable for Q2MLO,
over continuous time, whether we are interested in the class of models with finite
variability, or in the class of all models.

QMLO and Q2MLO are both decidable, and they look similar. But there are
some major differences:

1. It is very easy to express in Q2MLO properties that are not expressible in
QMLO . Thus for example Pnueli’s modality Pnun(X1, . . . , Xn) has Q2MLO
truth table (∃t)<t0+1

>t0 (∃t1, · · · , tn)[(t0 < t1 < · · · < tn < t) ∧ (X1(t1) ∧ · · · ∧
Xn(tn))]

2. Q2MLO seems strong enough to express all the decidable modalities that
we found in the literature, and we have yet to see a natural formula in some
decidable logic that cannot be expressed in Q2MLO.

3. QMLO is expressively equivalent to QTL that has four modalities only.
Q2MLO is not equivalent to any temporal logic with a finite number of
modalities.

3 Elements of Composition Method

Here we recall some elements of the compositional method. This method will
play an important role in the proofs of Section 4.

The “compositional method” applies to the case where a structure is com-
posed from simpler structures, and the theory of the composite structure can be
reduced to the theory of its components. Ehrenfeucht used it in [6] and our proofs
follow his work. The method was developed and used by Fefeman-Vaught [7],

An Expressive Temporal Logic for Real Time 499

Shelah [22] and others (see e.g., surveys [11,23,20]). Here is an introduction to
what we need:

The structures of the form M = (A,<, P1, . . . , Pm), where < is a linear order
on a set A and Pi ⊆ A are called m-labelled chains.

Two m-labelled chains M,M ′ are called k-equivalent (written: M ≡k M
′) if

M |= ϕ ⇔ M ′ |= ϕ for every sentence ϕ of quantifier depth k. This is an
equivalence relation between labelled chains; its equivalence classes are called
k-types for the given signature with < and m unary predicate symbols. Let us
list some fundamental and well-known properties of k-types.

Proposition 9. 1. For every m and k there are only finitely many k-types of
m-labelled chains.

2. For each k-type τ there is a sentence (called ”characteristic sentence”) which
defines τ (i.e., is satisfied by a labelled m-chain iff it belongs to τ). For given
k and m a finite list of characteristic sentences for all the possible k-types
can be computed. (We take the characteristic sentences as the canonical rep-
resentations of k-types. Thus, for example, transforming a type into another
type means to transform sentences.)

3. Each sentence ϕ is equivalent to a (finite) disjunction of characteristic sen-
tences; moreover, this disjunction can be computed from ϕ.

Given m-labelled chains M0,M1 we write M0 +M1 for their concatenation (or-
dered sum); the domain of M0 + M1 is the union of the domains of M0 and
M1 (we assume that these domains are disjoint), the interpretation of a unary
predicates P is the union of its interpretation in M0 and in M1, all elements of
M0 are less than all elements of M1 and if two elements are in Mi, then their
order in M0 +M1 is the same as in Mi.

We need the following composition theorem for ordered sums:

Theorem 10 (Composition Theorem). The k-types of m-labelled chains
M0,M1 determine the k-type of the ordered sum M0 +M1:

This theorem justifies the notation τ1 + τ2 for the k-type of an m-chain which is
the sum of two m-chains of k-types τ1 and τ2.

Corollary 11. For every formula ϕ(s, t) with free first-order variables s and t
there is a finite list of pairs of formulas τ1(s, t), σ1(s, t), . . . , τk(s, t), σk(s, t), such
that for any labelled chain M and three points p < q < r:

M |= ϕ(p, r) iff for some i ≤ k, M |= τi(p, q) and M |= σi(q, r).

Moreover, the list τi(s, t), σi(s, t) is computable from ϕ.

4 Completeness of the Counting Modalities

Let TLC be the temporal logic TL(U , S) together with all the counting
modalities Cn(X) and ←−

C n(X). We start to prove that TLC is equivalent to

500 Y. Hirshfeld and A. Rabinovich

Q2MLO. First we state two lemmas, that improve our understanding of the
logic Q2MLO. The first lemma allows us to replace Q2MLO by a large temporal
logic, whose modalities are all the modalities that can be defined by Q2MLO
formulas with some restriction.

Lemma 12. Let Γ be the set of all modalities with truth table of the form
(∃t)<t0+n

>t0+mφ(t0, t,X1, . . . , Xk) and (∃t)<t0−m
>t0−n φ(t0, t,X1, . . . , Xk), with 0 ≤ m <

n, and where φ is a formula of FOMLO with the free first-order variables in
{t0, t}. Then, TL(Γ,Until, Since) is expressively equivalent to Q2MLO.

We omit the proof of Lemma 12 for lack of space; it proceeds by the induction
of nesting of metric quantifiers. The second lemma shows that Q2MLO can be
defined using only simple intervals of length 1 in the definition. It will be the
first of three applications of the composition method.

Lemma 13. For every Q2MLO formula ψ there exists an equivalent Q2MLO
formula φ which uses only metric quantifiers of the form (∃t)<t0+1

>t0 and (∃t)<t0
>t0−1.

Proof. (Sketch) We exemplify the method proving the following two statement.
Let ϕ(t, s) be a pure FOMLO formula.

1. if n > 1 then (∃s)<t0+n
>t0 ϕ(t0, s) is equivalent to a formula which uses metric

quantifiers (∃s)t+m
t where m < n.

2. if n > 0 then (∃s)<t0+n+1
>t0+n ϕ(t0, s) is equivalent to a formula which uses metric

quantifiers (∃s)t+n
t+n−1 and (∃s)t+1

t .

All other cases can be treated similarly, or proven from these cases by induction
on the numbers that appears in the metric quantifiers together with the technique
used in the proof of Lemma 12.

(1) By Corollary 11 there are formulas τ1, σ1, . . . , τk, σk, such that for any
three points p < q < r, ϕ(p, r) is true iff for some i ≤ k, τi(p, q) and σi(q, r)
hold. It follows that

(∃s)<t0+n+1
>t0 ϕ(t0, s) ≡

k∨
i=1

(∃q)<t0+n
>t0 (τi(t0, q) ∧ (∃s)<q+1

>q σi(q, s))

Indeed if the right side of the equivalence is true then for the q and s that
satisfy it there is some i such that τi(t0, q) and σi(q, s) and therefore ϕ(t0, s).
The distance from t0 to q is less than n and the further distance to s is less than
1. Hence s testifies the left side of the equivalence. If on the other hand s testifies
the property on the left, then if t0 + n < s we choose any q between s − 1 and
t0 + n. If s ≤ t0 + n then we may choose any q smaller than s which is larger
than s− 1 (and t0). This will satisfy the right side.

(2) We deal similarly with (∃s)<t0+n+1
>t0+n ϕ(t0, s): By the corollary to the compo-

sitional theorem there are pairs of formulas: σ1, τ1, . . . σk, τk, such that for every
three points t < p < s we have ϕ(t, s) iff for some i ≤ k , τi(t, p) and σi(p, s). Fur-
thermore for every i < k there are mi pairs of formulas πi,1, ηi,1, . . . πi,mi , ηi,mi

An Expressive Temporal Logic for Real Time 501

such that for every point q between p and s, σi(p, s) holds iff for some j ≤ mi

both πi,j(p, q) and ηi,j(q, s) hold. We will show that

(∃s)<t0+n+1
>t0+n ϕ(t0, s) ≡

k

i=1

(∃p)<t0+n

>t0+n−1[τi(t0, p) ∧ (∀q)<p+1
>p

mi

j=1

(πi,j(p, q) ∧ (∃s)<q+1
>q ηi,j(q, s))]

The expression on the right is already of the right form. Assume that there
is some s that makes the left side true. Then we choose p = s − 1 and we
will show that this p satisfies the right formula. Indeed for every q such that
p < q < p + 1 = s < q + 1 the point s is the unit interval to the right of
q, and since ϕ(t0, s) is true there is some i < k for which τi(t0, p) and σi(p, s)
hold. And since q lies between p and s, there is some j < mi for which πi,j(p, q)
and ηi,j(q, s) hold. Therefore the right statement is true. In the other direction,
assume that the i-th disjunct of the right statement is true. Hence, there is some
p in the interval (t0 +n− 1, t0 +n) such that τi(t0, p) is true and q = t0 +n is in
the interval (p, p+ 1) and therefore there is s in the interval (t0 + n, t0 + n+ 1)
and there is an index j < mi for which πi,j(p, q) and ηi,j(q, s) is true. It follows
from the main property of the formulas τ, π and η that ϕ(t0, s) is true. Since s
is the interval (t0 + n, t0 + n+ 1), the left statement is true. �

Theorem 14 (Main theorem). The temporal logic TLC and the monadic
logic Q2MLO are expressively equivalent.

Proof. (Sketch) In one direction, every formula of TLC is equivalent to a formula
of Q2MLO as all its modalities have truth tables in Q2MLO.

For the other direction, by the last lemma, it suffices to prove that every
Q2MLO formula φ with metric quantifiers of the form (∃s)<t+1

>t and (∃s)<t
>t−1,

can be expressed in TLC. To simplify the discussion, we avoid the careful yet
cumbersome distinction between the free variables of a formula ϕ(t, s) and their
intended interpretation in the model. We will speak freely of “the interval (t, s)”,
and say that “the interval satisfies the formula ϕ”, instead of “the interpretation
satisfies ϕ(t, s)”. We must show that (∃s)<t+1

>t ϕ(t, s) can be expressed by a TLC
formula, that holds at t. Following a technical inductive argument we may assume
that ϕ is of pure monadic logic. We divide the proof into steps.

1. It maybe that (∃s)<t+1
>t ϕ(t, s) holds because there is a sequence of points s to

the right of t that converge to t, and such that ϕ(t, s) holds. We call such t a
ϕ-limit. This property can be written in pure “Until, Since” temporal logic.
We may therefore look for a TLC formula that expresses (∃s)<t+1

>t ϕ(t, s)
under the assumption that t is not a ϕ-limit. We can then add the temporal
formula that says that t is a ϕ-limit, as a disjunct.

2. An interval [x, y] will be called a ϕ-interval if
(a) either ϕ(x, y) holds, or y is a limit of points z to the right, for which

ϕ(x, z) holds.
(b) [x, y] is minimal, in that no x < z < y satisfies ϕ(x, z).
If [x, y] is a ϕ-interval, then x will be called a left ϕ point and y is a right ϕ
point. x is the left ϕ-partner of y, and y is the right ϕ-partner of x.

502 Y. Hirshfeld and A. Rabinovich

Every left ϕ point has a unique ϕ-interval and a unique right partner. (the
dual does not hold for a right ϕ point).
Claim: Assume that ϕ(x, y) holds, and x is not a ϕ-limit. Then:
(a) x is a left ϕ point, of some ϕ-interval.
(b) If x < y < x+ 1 then x < y′ < x+ 1, where y′ is the right ϕ partner for

x .
(Just choose y′ to be the greatest lower bound of the points y that satisfy
ϕ(x, y)). Therefore from now on we replace ϕ(t, s) in (∃s)<t+1

>t ϕ(t, s) by ([t, s]
is a ϕ-interval). From now on when we say ϕ we mean this formula. It is
not difficult to see that the properties : “x is a left ϕ point”, “x is a right
ϕ point” and “x, y is a ϕ pair”, can be expressed in pure monadic logic of
order.

3. The crucial property is that there is a simple computable bound on the length
of a proper decreasing sequence of ϕ-intervals. We say that the interval [x, y]
is greater than [x′, y′] if x < x′ < y′ < y. Let τ1, σ1, . . . , τk, σk as in the
composition theorem 10, be the formulas such that for x < z < y, ϕ(x, y)
holds, iff one of the pairs σi(x, z) and τi(z, y) hold. Then:
Claim: Every proper decreasing sequence of ϕ-intervals has depth at most
k.
Proof: if x1 < · · · < xk+1 < yk+1 < · · · < y1 is such that [xi, yi] is a ϕ
interval and if z is in all these intervals then for every i there is some formula
τj such that [z, yi] satisfies τj . By the pigeonhole principle there are some
yi < yi′ such that both [z, yi] and [z, yi′] satisfy the same τj . Therefore both
[xi′ , yi] and [xi′ , yi′] satisfy ϕ, which is impossible, as [xi′ , yi′] is a minimal
such interval.

4. For every ϕ-interval [t, s] we define its rank to be the length of the longest
proper decreasing sequence of ϕ-intervals that starts with [t, s]. We denote
by ϕi(t, s) the claim that [t, s] is a ϕ-interval of rank i, and by ri(s) the claim
that s is the right endpoint of such an interval. Clearly:
(a) Every ϕ-interval has rank between 1 and k.
(b) The formulas ϕi(x, y) and ri(s) are expressible in pure monadic logic of

order.
5. We come to a third application of the composition theorem:

Claim: Let t be a point, and let i be some rank. Let τ1, σ1, . . . , τp, σp as
in the composition theorem 10, be the formulas such that for x < z < y,
ϕi(x, y) holds, iff one of the pairs σj(x, z) and τj(z, y) hold. Then only the
first p+ 1 points to the right of t that satisfy ri(s) can be right endpoints of
a ϕ-interval [u, s] of rank i, such that u ≤ t.
Proof: Assume that s1 < s2 < · · · < sl is a sequence of points satisfying
ri(s), and t1, · · · , tl are the corresponding left hand partners. Then t1 <
· · · < tl, or else one interval would contain another, and their rank would
not be the same. It follows that all the right hand points of intervals of rank
i that correspond to partners up to t come before those that correspond to
partners greater than t. Moreover, there are at most p + 1 of them, or else
there would be j 	= j′ such that [t, sj] and [t, sj′] that satisfy the same τv,
and [tj , t] and [tj′ , t] satisfy σv, therefore [tj , sj] and [tj , sj′] are ϕ-intervals
of rank i with the same left endpoint which is impossible.

An Expressive Temporal Logic for Real Time 503

6. We may now collect the pieces: (∃s)<t+1
>t ϕi(t, s) holds iff one of the following

disjuncts for j = 1, . . . , p+ 1 holds:
There are at least j points between t and t+1 that satisfy ri(s) and t together
with the jth point among the points larger than t that satisfies ri(s), satisfy
also ϕi(t, s).
Note that everything is pure monadic logic (and hence pure temporal), ex-
cept the claim of the existence of j points with a pure monadic property,
between t and t+ 1. Therefore this can be expressed by an TLC formula. It
remains now to take the disjunction of these formulas,over the ranks (and
add one disjunct for the case that t is a ϕ-limit, as in item 1).

5 Conclusion and Further Results

We added to the temporal logic TL(Until, Since) all the modalities Cn(X) - “X
will be true at least at n points in the next unit of time”, and ←−C n(X) -“X was
true at least at n points in the last unit of time”. The resulting temporal logic
is complete for a strong, yet decidable monadic logic of order,Q2MLO.

The expressive completeness result can be extended to the rational time line.
However, TL(Until, Since) is not expressively complete for the FOMLO over
the rational line. Stavi found two modalities UntilSt, SinceSt which have the
same expressive power over the class of all linear orders as the FOMLO [8]. We
can prove that the Stavi modalities together with Cn(X) and ←−C n(X) have the
same expressive power over the rationals as Q2MLO.

As with the pure temporal logic TL(Until, Since) there is a gap between
the complexity (and succinctness) of the temporal logic and that of the corre-
sponding predicate logic. In [17] we proved that the satisfiability problem for the
temporal logic TL(Until, Since, {Cn,

←−
C n}∞n=1) is PSPACE complete.

References

1. R. Alur, T. Feder, T.A. Henzinger. The Benefits of Relaxing Punctuality. Journal
of the ACM 43 (1996) 116-146.

2. R. Alur, T.A. Henzinger. Logics and Models of Real Time: a survey. In Real Time:
Theory and Practice. Editors de Bakker et al. LNCS 600 (1992) 74-106.

3. J. A. Brzozowski, R. Knast. The dot depth hierarchy of star free languages is
infinite. J. of Computing Systems Science 16 (1978) 37-55.

4. Baringer H. Barringer, R. Kuiper, A. Pnueli. A really abstract concurrent model
and its temporal logic. Proceedings of the 13th annual symposium on principles of
programing languages (1986), 173-183.

5. H.D. Ebbinghaus, J. Flum, Finite Model Theory. Perspectives in mathematical
logic, Springer (1991).

6. A. Ehrenfeucht. An application of games to the completeness problem for formal-
ized theories. Fundamenta Mathematicae 49 (1961), pp. 129-141.

7. S. Feferman and R.L. Vaught. The first-order properties of products of algebraic
systems. Fundamenta Mathematicae 47:57–103, 1959.

504 Y. Hirshfeld and A. Rabinovich

8. D.M. Gabbay, I. Hodkinson, M. Reynolds. Temporal Logics volume 1. Clarendon
Press, Oxford (1994).

9. D.M. Gabbay, A. Pnueli, S. Shelah, J. Stavi. On the Temporal Analysis of Fairness.
7th ACM Symposium on Principles of Programming Languages. Las Vegas (1980)
163-173.

10. T.A. Henzinger It’s about time: real-time logics reviewed. in Concur 98, Lecture
Notes in Computer Science 1466, 1998.

11. Y. Gurevich (1985). Monadic second-order theories. In Model-Theoretic Logics,
(J. Barwise and S. Feferman, eds.), 479-506, Springer-Verlag.

12. Y. Hirshfeld and A. Rabinovich, A Framework for Decidable Metrical Logics. In
Proc. 26th ICALP Colloquium, LNCS vol.1644, pp. 422-432, Springer Verlag, 1999.

13. Y. Hirshfeld and A. Rabinovich. Quantitative Temporal Logic. In Computer Sci-
ence Logic 1999, LNCS vol. 1683, pp 172-187, Springer Verlag 1999.

14. Y. Hirshfeld and A. Rabinovich, Logics for Real Time: Decidability and Complex-
ity. Fundam. Inform. 62(1): 1-28 (2004).

15. Y. Hirshfeld and A. Rabinovich, Timer formulas and decidable metric temporal
logic. Information and Computation Vol 198(2), pp. 148-178, 2005.

16. Y. Hirshfeld and A. Rabinovich, Expressiveness of Metric Modalities for Continu-
ous Time. In Proccedings of International Computer Science Symposium in Russia,
LNCS vol. 3967, pp. 211-220, Springer Verlag, 2006.

17. Y. Hirshfeld and A. Rabinovich, On The complexity of the temporal logic with
counting modalities. Manuscript, 2006.

18. H. Kamp. Tense Logic and the Theory of Linear Order. Ph.D. thesis, University
of California L.A. (1968).

19. Z. Manna, A. Pnueli. Models for reactivity. Acta informatica 30 (1993) 609-678.
20. Makowsky, J. A. 2004. Algorithmic aspects of the Feferman-Vaught theorem.

Annals of Pure and Applied Logic 126(1-3), 159–213.
21. A. Rabinovich. Expressive Power of Temporal Logics In Proc. 13th Int. Conf. on

Concurrency Theory, vol. 2421 of Lecture Notes in Computer Science, pages 57–75.
Springer, 2002.

22. S. Shelah. The monadic theory of order. Ann. of Math., 102, pp 349-419, 1975.
23. W. Thomas (1997). Ehrenfeucht games, the composition method, and the monadic

theory of ordinal words. In Structures in Logic and Computer Science: A Se-
lection of Essays in Honor of A. Ehrenfeucht, Lecture Notes in Computer Sci-
ence 1261:118-143, Springer-Verlag.

24. T. Wilke. Specifying Time State Sequences in Powerful Decidable Logics and Time
Automata. In Formal Techniques in Real Time and Fault Tolerance Systems. LNCS
863 (1994), 694-715.

On Matroid Representability

and Minor Problems

Petr Hliněný1,2

1 Faculty of Informatics,
Masaryk University in Brno,

Botanická 68a, 602 00 Brno, Czech Republic
2 Department of Computer Science,
VŠB – Technical University Ostrava,

17. listopadu 15, 708 33 Ostrava, Czech Republic
hlineny@fi.muni.cz

Abstract. In this paper we look at complexity aspects of the following
problem (matroid representability) which seems to play an important
role in structural matroid theory: Given a rational matrix representing
the matroid M , the question is whether M can be represented also over
another specific finite field. We prove this problem is hard, and so is the
related problem of minor testing in rational matroids. The results hold
even if we restrict to matroids of branch-width three.

Keywords: Matroid representability, minor, finite field, spike, swirl. 2000
Math subject classification: 05B35, 68Q17, 68R05.

1 Introduction

We postpone necessary formal definitions until later sections. Matroids present
a wide combinatorial generalization of graphs. A useful geometric essence of a
matroid is shown in its vector representation over a field ; the elements–vectors
of the representation can be viewed as points in the projective geometry over .
Not all matroids, however, have vector representations. That is why the question
of -representability of a matroid is important to solve.

Another motivation for our research lies in a current hot trend in structural
matroid theory; work of Geelen, Gerards and Whittle, e.g. [4,5] extending signifi-
cant portion of the Robertson–Seymour’s Graph Minors project [15] to matroids.
It turns out that matroids represented over finite fields play a crucial role in
that research, analogous to the role played by graphs embedded on surfaces in
Graph Minors. Such a role is further justified by related works concerning logic
and complexity aspects of matroids, e.g. our [8,10], and by a somehow surprising
connection of binary matroids with graph rank-width [1] of Courcelle and Oum.

In this paper we prove that it is hard to decide whether a matroid given by a
vector representation over the rational numbers, has a vector representation over
a specific finite field (Theorems 3.1 and 4.1). In particular this result implies
that also the problem of minor testing in rational matroids is generally hard. We

R. Královič and P. Urzyczyn (Eds.): MFCS 2006, LNCS 4162, pp. 505–516, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

506 P. Hliněný

moreover prove that the minor testing problem is hard even for a certain small
planar minor (Theorem 5.6).

2 Matroids and Vector Representations

We refer to Oxley’s book [12]. Since matroid theory seems not widely known
among computer scientists, we should briefly review some basic terms here:

A matroid is a pair M = (E,B) where E = E(M) is the finite ground set
of M (elements of M), and B ⊆ 2E is a nonempty collection of bases of M , no
two of which are in an inclusion. Moreover, matroid bases satisfy the “exchange
axiom”: if B1, B2 ∈ B and x ∈ B1 \ B2, then there is y ∈ B2 \ B1 such that
(B1 \ {x}) ∪ {y} ∈ B. Subsets of bases are called independent sets, and the
remaining sets are dependent. Minimal dependent sets are called circuits. All
bases have the same cardinality called the rank r(M) of the matroid. The rank
function rM (X) in M assigns the maximal cardinality of an independent subset
of a set X ⊆ E(M). A set X is spanning if rM (X) = r(M), and maximal
non-spanning sets are called hyperplanes.

The reader may notice that a matroid, according to the presented defini-
tion, carries some information about all subsets of E which is exponential in
the number of elements |E|. (See also [11].) Studying computational complexity
on matroids one has to find a workaround for that: A common way to handle
a matroid input is to consider a particular polynomially sized representation,
instead.

IfG is a (multi)graph, then its cycle matroid on the ground set E(G) is denoted
by M(G): The independent sets of M(G) are the acyclic subsets (forests) in G,
and the circuits of M(G) are the cycles in G. Another example of a matroid is
a finite set of vectors with usual linear independence: If A is a matrix, then the

K4:

a b

c

d

ef
→

a bc

d

e

f

1
0
0

0
1
0

1
1
0

1
1
1

0
0
1

1
0
1

M(K4): A =
1 0 0 1 1 1
0 1 0 1 0 1
0 0 1 0 1 1

Fig. 1. An example of a vector representation (on the right) A of the cycle matroid
M(K4) of the complete graph K4 (on the left). The matroid elements are depicted by
dots, and their (linear) dependency is shown using lines.

On Matroid Representability and Minor Problems 507

matroid formed by the column vectors of A is called the vector matroid of A, and
denoted by M(A). (Fig. 1.) The matrix A is a vector representation of a matroid
M 6 M(A), and such M(A) is -represented when A is over a field . We say
that a matroid M is -representable if M has a vector representation over .

Questions of representability over finite fields seem to play very impor-
tant role in structural matroid theory. (We refer also to Section 5 for a closer
discussion.) We now look at the problem from a complexity point of view.

Definition. The -representability problem for ′-represented matroids is:
Input. A matrix A over a field ′.
Question. Is the vector matroid M(A) representable over ?

Summary. If the input (matrix A) is represented over ′ = (the rational
numbers), the known answers to the -representability problem follow.
(2.1) For = GF (2), the -representability problem for the matroid M(A) is

solvable in polynomial time by a deep result of Seymour [16].
(2.2) For = GF (3), the answer is still open.
(2.3) For = GF (q) a finite field on q ≥ 4 elements, the -representability

problem is co-NP -complete by our Theorems 3.1 and 4.1 and by [6].

Discussing (2.1), we explain that if a GF (2)-representable (binary) matroid
M had also a vector representation over any field of characteristic not 2, then
M could be represented by a totally-unimodular matrix. Hence M would be a
so called regular matroid (representable over all fields), and then one can use
Seymour’s decomposition theorem [16] for regular matroids to recognize such

-represented M in polynomial time.
About (2.3) in the summary, one should understand why an apparently

straightforward argument “guess an -representation and verify it” does not
readily prove membership of the -representability problem in NP : The prob-
lem is that verifying whether two matrices represent isomorphic matroids may
require evaluating too many subdeterminants. Indeed, Seymour [16] has proved
that verifying a matrix over GF (2) represents a matroid M (given by an or-
acle) requires testing independence on an exponential number of subsets. On
the other hand, the following interesting result, showing membership of the -
representability problem in co-NP , is proved in [6, Theorem 1.3]:

Theorem 2.4 (Geelen, Gerards and Whittle).
Let = GF (q) be a finite field. Proving non- -representability of a matroid M
needs only O

(
|E(M)|2

)
rank evaluations in M .

Lastly we add two remarks concerning possible extensions of our results in (2.3).
First, the proofs of Theorems 3.1 and 4.1 show that the hardness result holds
even for matroids of branch-width 3. On contrary to that, the -representability
problem, as well as all other minor-closed properties, can be tested in polynomial
time [7] if the input matroid is represented over a finite field GF (q) and has
bounded branch-width. Second, Theorems 3.1 and 4.1 could be extended to
other infinite fields using the method of [9, Section 5]. We skip such extensions
here to avoid the boring technical details.

508 P. Hliněný

3 Spikes: The Case of Non-prime Fields

The purpose of this section is to prove one case of the hardness result:

Theorem 3.1. Let = GF (q), where q = pa, a > 1, be a finite non-prime field.
Suppose A is a matrix given over , and let M = M(A) be its vector matroid.
Then it is NP -hard to recognize that M has no vector representation over .
The same conclusion remains true even if M is restricted to have branch-width 3.

For the proof we need a definition of an interesting class of matroids, called
“spikes”. Let n ≥ 3 and S0 be a matroid circuit on the ground set e0, e1, . . . , en.
Denote by S1 an arbitrary simple matroid obtained from S0 by adding n new
elements fi for i ∈ [1, n] such that {e0, ei, fi} is a triangle. Then the matroid
S = S1 \ e0 obtained by deleting the central element e0 is called a rank-n spike.
The pairs {ei, fi}, i ∈ [1, n] are called the legs of the spike. (Fig. 2.) Let main
circuits / bases be those circuits / bases of S which intersect each leg of S in
exactly one element. For instance, {e1, . . . , en} is a main basis of S. We say that
a spike S is a free spike if S has no main circuit. There is just one free spike of
each rank up to isomorphism, see also Proposition 3.2(b),(e).

e0

e1 e2

f1
f2 fn

en

. . .

Fig. 2. An illustration of the definition of a rank-n spike

Spikes are known for giving “difficult counterexamples” in structural matroid
theory. Some well known simple properties of spikes are summarized next; these
implicitly originate perhaps in [13], and we refer to e.g. [9] for explicit proofs.
Let D1(x1, . . . , xn) = [di,j]ni=1 denote an n × n matrix such that di,j = 1 if
i 	= j ∈ [1, n], and di,i = xi.

Proposition 3.2. Let S be a rank-n spike where n ≥ 3. Then

a) the union of any two legs forms a 4-element circuit in S,
b) every other circuit intersects all legs of S,
c) S is 3-connected and the branch-width of S is 3,
d) S has a vector representation, if and only if it has a representation of the

form [In | D1(x1, . . . , xn)] where x1, . . . , xn 	= 1 and In displays a chosen
main basis of S, see e.g.

On Matroid Representability and Minor Problems 509

e1

e2
...

en−1

en

e1 e2 . . . en−1 en f1 f2 . . . fn−1 fn

1 0 · · · 0 0 x1 1 · · · 1 1
0 1 0 0 0 1 x2 1 1 1
... 0

. . . 0
...

... 1
. . . 1

...
0 0 0 1 0 1 1 1 xn−1 1
0 0 · · · 0 1 1 1 · · · 1 xn

,

e) if S has a representation, as in (d), and X ⊆ E(S) is such that X intersects
each leg of S in exactly one element, then X is a circuit of S if and only if∑

j∈[1,n]; fj∈X

1
xj − 1

= −1 ,

f) the free spike is -representable if is a non-prime finite field.

Remark. Notice that a vector representation of a matroid in the “standard”
form A = [I |A′] has a property that the matroid bases are in a one-to-one
correspondence with the nonzero subdeterminants in A′ (via matrix pivoting).

Following [9], we have chosen to prove Theorem 3.1 via a polynomial reduction
from the NP -complete PARTITION problem [2] over the integers. (Briefly say-
ing, the PARTITION problem asks whether a given multiset of integers can be
partitioned into two parts such that their sums equal.)

Let = GF (q), where q = pa, be a finite non-prime field.

Lemma 3.3. If S is an -representable spike that is not the free spike, and
B ⊂ E(S) is any main basis of S, then there is a main circuit C ⊂ E(S) such
that |C \B| < q (independently of S).

Proof. We refer to Proposition 3.2. According to (d), we select an -
representation [In |D1(x1, . . . , xn)] of S where In shows the basis B = {e1, e2,
. . . , en}. We choose the circuit C such that |C \ B| is the smallest possible. Let
J = {j ∈ [1, n]; fj ∈ C}. For a contradiction, we assume |J | = |C \B| ≥ q. Then
among the partial sums S(J ′) =

∑
j∈J′

1
xj−1 ∈ for J ′ ⊆ J , there exist two

such equal, S(J1) = S(J2) where J1 ⊂ J2 ⊆ J , by the pigeon-hole principle. We
set J0 = J2 \ J1, and by (e) we may write

−1 =
∑

j∈J

1
xj − 1

= S(J) = S(J)− S(J2) + S(J1) =
∑

j∈J\J0

1
xj − 1

.

Hence there is another main circuit C′ = B∆ {ej, fj : j ∈ J \ J0} in S such that
|C′ \B| = |J \ J0| < |J | = |C \B|, a contradiction to our choice of C.

Proof of Theorem 3.1. Let T = {t1, t2, . . . , tn} be a multiset of positive
integers – an input to the PARTITION problem, and t = t1 + t2 + . . . + tn. We
denote by zi = −2ti

t and set xi = 1
zi

+ 1, for i ∈ [1, n]. We consider the matrix
A = [In |D1(x1, . . . , xn)] over as the input in the theorem. The vector matroid
S = M(A) is actually a spike by Proposition 3.2(d). Let B = {e1, . . . , en} be
the main basis of S displayed by In in A.

510 P. Hliněný

Assume J ⊂ [1, n] is such that the multiset partition
(
{ti : i ∈ J}, {ti : i ∈

[1, n] \ J}
)

is a solution to PARTITION. That is equivalent to
∑

i∈J zi = −1, i.e.∑
i∈J

1
xi−1 = −1. Hence by Proposition 3.2(e) the set X = B∆ {ei, fi : i ∈ J} is

a main circuit. We conclude:

Claim 3.4. Solutions to the PARTITION problem on T are in a one-to-one corre-
spondence with main circuits in the associated spike S.

Our polynomial reduction from PARTITION to -representability follows:
1. In the first stage we check by brute force all parts of T smaller than q. If we

succeed, we answer YES to PARTITION.
2. In the second stage we ask about -representability of the matroid S =
M(A) defined above. If the outcome is negative, we again answer YES to
PARTITION. Otherwise, our answer is NO.

It remains to prove that our reduction is correct. Assume the PARTITION problem
on T has no solution (S is the free spike). Then in the first stage we find nothing,
and in the second stage we answer NO by Proposition 3.2(f). Conversely, assume
the PARTITION problem on T has a solution (T1, T2). If min(|T1|, |T2|) < q, then
we answer YES in stage 1. Otherwise, there is a main circuit C in S, but no such
C with |C \B| < q by Claim 3.4. Hence S is not -representable by Lemma 3.3,
and we answer YES in stage 2.

4 Swirls: The Case of Prime Fields

Analogously to Theorem 3.1 we now finish the remaining, slightly more involved
case of (2.3).

Theorem 4.1. Let = GF (p) be a finite prime field, p ≥ 5. Suppose A is
a matrix given over , and let M = M(A) be its vector matroid. Then it is
NP -hard to recognize that M has no vector representation over . The same
conclusion remains true even if M is restricted to have branch-width 3.

For proving the statement we define another very interesting class of matroids
called “swirls”, which have been implicitly introduced in [13]. Let rank-r whirlWr

be the unique matroid obtained from the cycle matroid of the wheel graph Wr

with spokes e1, . . . , er and rim edges f1, . . . , fr, by relaxing (i.e. declaring inde-
pendent) the rim circuit {f1, . . . , fr}. A simple 3n-element matroid R is a rank-n
swirl if R is obtained from the whirl Wn by adding a new element (denoted by
gi) on each dependent line (triangle {ei, fi, ei+1}) of Wr. (Fig. 3.)

The pairs {fi, gi}, i ∈ [1, n] are called here feet of the swirl R. Let main
circuits / bases be those circuits / bases of R which intersect each foot of R in
exactly one element. For instance, {f1, . . . , fn} is a main basis of S. The basis
{e1, . . . , en} ofR, formed by the spokes, is called the central basis. Notice that the
central basis of a swirl is uniquely determined (unlike main bases). Swirls seem
to be less known that spikes, and their structure is more complex. Fortunately,
all the swirl properties we need in our proof have been implicitly proved in [13,
Section 5], and we summarize them in the next proposition.

On Matroid Representability and Minor Problems 511

#
#

#
#

##
##

e1

e2

e3

er−1

er
f1

f2

fr−1

fr

g1
g2

gr−1
gr

Fig. 3. An illustration of the definition of a rank-n swirl

Let D2(x1, . . . , xn) = [di,j]ni=1 denote an n × n matrix such that di,j = 0,
i, j ∈ [1, n] if i 	= j, j + 1, di,i = xi, and di+1,i = 1 (indices are take modulo n).
Let the free swirl be a swirl having no main circuits. There is just one free swirl
of each rank up to isomorphism, see also Proposition 4.2(a).

Proposition 4.2. Let R be a rank-n swirl where n ≥ 4. Then
a) the only non-spanning circuits that possibly depend on a choice of elements

gi in the definition of a swirl are main circuits of R,
b) R is 3-connected and the branch-width of R is 3,
c) R has a vector representation, if and only if it has a representation of

the form [In |D2(x1, . . . , xn) |D2(y1, . . . , yn)] where x1, . . . , xn, y1, . . . , yn 	=
0, xi 	= yi and x1x2 · · ·xn 	= (−1)n, In displays the central basis and
{f1, . . . , fn} displays any main basis of R, see e.g.

e1 e2 . . . en−1 en f1 g1 f2 g2 . . . gn−1 fn gn

1 0 · · · 0 0 x1 y1 0 0 · · · 0 1 1
0 1 0 0 0 1 1 x2 y2 0 0 0 0

...
. . .

0 0 0 0 1 1 0 0 0

0
...

... 0
... 0

. . .
0

... 0
0 0 0 1 0 0 0 0 0 0 yn−1 0 0
0 0 · · · 0 1 0 0 0 0 · · · 1 xn yn

,

d) if R has a representation, as in (c), and X ⊆ E(R) is such that X intersects
each foot of R in exactly one element, then X is a circuit of R if and only if∏

j∈[1,n]; gj �∈X
xj ·

∏
j∈[1,n]; gj∈X

yj = (−1)n ,

e) the free swirl is -representable if {1,−1} is a proper 2-element subgroup of
the multiplicative group ∗ (in particular if = GF (p) where p ≥ 5).

Remark. Notice that, if two matroids agree on all non-spanning circuits, then
they are isomorphic.

Looking at Proposition 4.2(d), one might get an easy idea: How about solving this
case in direct analogy with Section 3, relating the main circuits of a swirl with
solutions to a kind of a “product-partition” problem? This idea is generally good,
but an immediate approach—to “lift” the PARTITION problem to exponents, fails
since such a reduction produces exponentially large instances. We use the following
intermediate step (reduced from the 3-dim matching problem):

512 P. Hliněný

Definition. The PRODSELECT problem over the integers is:

Input. A multiset of k positive integers T , and an integer c.
Question. Is there a subset P ⊆ T such that

∏
t∈P t = c?

Lemma 4.3. PRODSELECT is an NP -complete problem.

Due to space restrictions, we skip some supplementary proofs. Let = GF (p)
be a prime field. Analogously to Lemma 3.3 one may prove:

Lemma 4.4. If R is an -representable swirl that is not the free swirl, and
B ⊂ E(R) is any main basis of R, then there is a main circuit C ⊂ E(R) such
that |C \B| < p (independently of R).

Proof of Theorem 4.1. Let T = {t1, t2, . . . , tn−1} and c, positive integers,
form an input to PRODSELECT (NP -complete by Lemma 4.3). We may clearly
assume min(T) > 1, c > 1 and c 	∈ T . Let a matrix A =

[
In |D2

(
1, . . . , 1, (−1)n

c−1
)
|D2

(
t1, . . . , tn−1, (−1)n−1

)]
over be the input in the theorem. The vector

matroid R = M(A) is actually a swirl by Proposition 4.2(c). Denote by B =
{f1, . . . , fn} the main basis of R formed by the columns of D2(1, . . . , 1, (−1)n

c−1), cf. 4.2(d).
Assume J ⊆ [1, n− 1] is such that the multiset P = {ti : i ∈ J} is a solution

to PRODSELECT. That is equivalent to (−1)nc−1 ·
∏

i∈J ti = (−1)n. So by Propo-
sition 4.2(d) the set X = B∆ {fi, gi : i ∈ J} is a main circuit. Notice also that
our assumption min(T), c > 1 implies that all main circuits X – solutions to the
equation of 4.2(d), must involve term c−1, in other words gn 	∈ X . Hence:

Claim 4.5. Solutions to the PRODSELECT problem on T , c are in a one-to-one
correspondence with main circuits in the associated swirl R.

Our polynomial reduction from PRODSELECT to -representability follows:

1. In the first stage we check by brute force all subsets of T smaller than p. If
we succeed, we answer YES to PRODSELECT.

2. In the second stage we ask about -representability of the matroid R =
M(A) defined above. If the outcome is negative, we again answer YES to
PRODSELECT. Otherwise, our answer is NO.

It remains to prove that our reduction is correct. Assume the PRODSELECT prob-
lem on T has no solution (R is the free swirl). Then we answer NO by Proposi-
tion 4.2(e). Conversely, assume the PRODSELECT problem on T has a solution P .
If |P | < p, then we answer YES in stage 1. Otherwise, there is a main circuit C in
R, but no such C with |C \B| < p by Claim 4.5. Hence R is not -representable
by Lemma 4.4, and we answer YES in stage 2.

The proof of (2.3) is now complete by Theorems 2.4, 3.1 and 4.1.

5 Matroid Minors

The Graph Minor project [14,15] of Robertson and Seymour is commonly
considered a milestone in structural graph theory. Moreover, the project has

On Matroid Representability and Minor Problems 513

had a great impact into theoretical computer science: We mention in particular
an O(n3)-time algorithm for testing whether an input graph contains a minor
isomorphic to a fixed graph, implying efficient algorithmic solutions to all minor-
closed graph properties.

In the more general setting of structural matroid theory, direct extensions of
the great Graph Minors results are often false, but a stream of new theoretical
results of Geelen, Gerards and Whittle, e.g. [4,5] in past several years extended
significant portion of the Graph Minors theory to matroids representable over
finite fields. Questions of matroid representability, and the notion of branch-
width, turned out to be the key ingredients in that research. On the algorithmic
side, that effort has been contributed by a sequence of results of the author deal-
ing with FPT computation of matroid branch-width and recognition of MSO-
definable matroid properties, e.g. [7,8,10].

Formally, a minor N of a matroid M is obtained by a sequence of deletions
and contractions of elements, the order of which does not matter. The meaning of
deletion is standard, and contraction is the dual operation to deletion, analogous
to contraction of a graph edge. In geometric terms, a contraction M/e means a
linear projection from the point representing e. We write N = M \D/C where
D are the deleted and C the contracted elements.

Definition. The N -minor problem for represented matroids is such:

Input. A matrix A over a field ′.
Question. Does the vector matroid M(A) contain a minor isomorphic to a fixed

matroid N?

Note that N may be arbitrary in the problem, but fixed; N is not considered a
part of the input to the problem. The problem easily belongs to NP :

Lemma 5.1. Let a matroid N be fixed. One needs only bounded number of rank
evaluations to prove that a matroid M has a minor isomorphic to N .

Proof. Let M ′ = M \ D/C be a minor of M . The formula rM ′(X) =
rM (X ∪ C) − rM (C) determines the rank function of M ′ relatively to M (for
example, [12, Chapter 3]). The minor M ′ is isomorphic to N if and only if
|E(M ′)| = |E(N)| and the rank functions equal for some bijection between
E(M ′) and E(N). That can be verified, after guessing C and D, using only
bounded number of rank evaluations in M .

Obviously, for some very simple N such as the circuits Uk,k+1 the matroid N -
minor problem is polynomial. We remark that Ur,n denotes the matroid made
of n points (vectors) in general position in rank r. It is a kind of a miracle
that for -represented matroids the U2,4-minor problem is also polynomial. See
(2.1) and Seymour [16]; the claim follows from the fact that U2,4 is the only
forbidden minor for binary matroids. On the other hand, since we know the
seven forbidden minors [3] for matroid representability over the field GF (4), it
follows from Theorem 3.1 that the matroid N -minor problem is hard for at least

514 P. Hliněný

some N . Such an argument, however, does not apply to minors N that are cycle
matroids of graphs (graphic N), and hence representable over all fields.

It is proved in [7,8] that for every finite field ′ one can solve the N -minor
problem for ′-represented matroids in polynomial time when restricted to in-
puts of bounded branch-width. Moreover using the matroid version of the “ex-
cluded grid” theorem [5], one can solve the N -minor problem for ′-represented
matroids in polynomial time, when N is a planar graphic matroid, regardless
of branch-width. Therefore it is particularly interesting how difficult is the N -
minor problem for -represented matroids when N is a planar graphic matroid.
We provide the answer in the rest of this section.

Summary. If the input (matrix A) is represented over ′, complexity cases of
the N -minor problem follow:

(5.2) If ′ is a finite field and the branch-width of M(A) is bounded, then the
problem is solvable in cubic time [7].

(5.3) If ′ is a finite field and N is the cycle matroid of a planar graph, then
the problem is solvable in cubic time [5,7], too.

(5.4) If ′ is a finite field and N is arbitrary, then complexity of the N -minor
problem is a very interesting open question in structural matroid theory.

(5.5) For ′ = , the N -minor problem is NP -complete, even when the
branch-width of M(A) is three and N is the cycle matroid of a planar graph.

Fig. 4. The planar graph G6, and its cycle matroid M(G6) on the right

Let G6 denote the planar graph on 6 vertices formed by a 3-cycle and a 4-cycle
sharing an edge, see Fig. 4. Our main result reads:

Theorem 5.6. Let the planar graph G6 be as in Fig. 4. Suppose A is a given
matrix over , and let M = M(A) be its vector matroid. Then it is NP -complete
to decide whether M has a minor isomorphic to the matroid M(G6). The same
conclusion remains true even if M is restricted to have branch-width 3.

We build on the following result of [9], which follows also from Claim 3.4.

Proposition 5.7. Let S be the vector matroid of [In | D1(x1, . . . , xn)] over
where n ≥ 5. It is NP -hard to recognize that S is not the rank-n free spike.

In order to use this statement in making a reduction for the matroid minor
problem, we have to find a forbidden minor characterization of the free spikes.
This is, after all, not so difficult.

On Matroid Representability and Minor Problems 515

Lemma 5.8. Let S be the rank-n free spike. Then S has no M(G6)-minor.

Proof. Let G6 = C3 ∪C4, where the two cycles C3, C4 share one edge. We use
the same notation C3, C4 for the corresponding two circuits in the cycle matroid
M6 = M(G6) of G6. Assume that M6 = S \D/C is a minor of the free spike S,
where C is the independent set of contracted elements of S. Let us call leg circuits
in S the 4-element circuits formed by pairs of legs. Recall that main circuits are
those circuits of S which intersect each leg in exactly one element. So S is the
free spike, i.e. having no main circuits, if and only if all non-leg circuits in S are
spanning (Proposition 3.2(b)). By the definition of a minor, a set X is a circuit
in M6 if and only if there is a circuit Y in S such that X ⊆ Y and Y \X ⊆ C.

Firstly, we claim that not both of the circuits C3, C4 of the minor M6 result
by contracting leg circuits in S. If that was not true, then there would be two leg
circuits L1 ⊇ C3 and L2 ⊇ C4 in S. Since, actually, |L2| = 4 = |C4|, no element
of L2 was contracted or deleted when making M6, and so C3 ∩ C4 = L1 ∩ L2.
However, |L1 ∩ L2| ∈ {0, 2} for any two distinct leg circuits, but |C3 ∩ C4| = 1,
a contradiction.

Secondly, we consider that C4 ⊂ K, where K is a spanning circuit in S,
and K \ C4 ⊆ C (C are the contracted elements of S). So it is |C| ≥ |K| −
|C4| = n + 1 − 4 = n − 3, and the rank r(M) = r(S) − |C| ≤ n − (n − 3) =
3. However, r(M(G6)) = 4 > 3. The same contradiction turns out when the
remaining possibility C3 ⊂ K is considered. Hence S cannot be the free spike,
and the statement follows by means of contradiction.

Lemma 5.9. Let S be a rank-n spike for n ≥ 5 that is not the free spike. Then
S has an M(G6)-minor.

Proof. If S is not the free spike, then there is a main circuit D ⊂ E(S), cf.
Proposition 3.2(b). Let us use the notation from the definition of a spike. We
form a minor N of S by contracting the elements of {ei, fi : i = 5, 6, . . . , n} ∩D
and deleting the elements of {ei, fi : i = 2, 3, . . . , n − 1} \ D. Without loss
of generality we assume e1, en ∈ D. Then {e1, f1, fn} is a triangle in N and
{ei, fi : i = 1, 2, 3, 4} ∩ D is a 4-element circuit in N , which intersect each
other in e1. Since there are no other non-spanning circuits in N , the minor N is
isomorphic to M(G6).

Proof of Theorem 5.6. If we could decide an M(G6)-minor in the matroid
M = M(A) efficiently, then for a specific matrix A = [In | D1(x1, . . . , xn)], we
would be able to decide whether M(A), a spike by Proposition 3.2, is the free
spike by Lemmas 5.8 and 5.9. Hence the statement and (5.5) are concluded by
Proposition 5.7.

Acknowledgments

The research has been supported by Czech research grant GAČR 201/05/0050,
and partly by the program “Information Society” of the Czech Academy of
Sciences, project No. 1ET101940420. The author would in particular like to

516 P. Hliněný

express his thanks to an anonymous referee of the paper [9], who suggested to
extend our complexity results (on spikes and swirls) in the direction towards the

-representability problem.

References

1. B. Courcelle, S. Oum, Vertex-Minors, Monadic Second-Order Logic, and a Conjec-
ture by Seese, J. Combin. Theory Ser. B, to appear (accepted 2006).

2. M.R. Garey, D.S. Johnson, Computers and Intractability, W.H. Freeman and Com-
pany, New York 1979.

3. J.F. Geelen, A.H.M. Gerards, A. Kapoor, The excluded minors for GF (4)-
representable matroids, J. Combin. Theory Ser. B 79 (2000), 247–299.

4. J.F. Geelen, A.H.M. Gerards, G.P. Whittle, Branch-Width and Well-Quasi-
Ordering in Matroids and Graphs, J. Combin. Theory Ser. B 84 (2002), 270–290.

5. J.F. Geelen, A.H.M. Gerards, G.P. Whittle, Excluding a Planar Graph from a
GF (q)-Representable Matroid, manuscript, 2003.

6. J.F. Geelen, A.H.M. Gerards, G.P. Whittle, Inequivalent Representations of Ma-
troids I: An Overview, in preparation, 2005.

7. P. Hliněný, On Matroid Properties Definable in the MSO Logic, In: Math Founda-
tions of Computer Science MFCS 2003, Lecture Notes in Computer Science 2747,
Springer Verlag Berlin (2003), 470–479.

8. P. Hliněný, Branch-Width, Parse Trees, and Monadic Second-Order Logic for Ma-
troids, J. Combin. Theory Ser. B 96 (2006), 325–351.

9. P. Hliněný, On Some Hard Problems on Matroid Spikes, Theory of Computing
Systems, to appear (accepted 2005).

10. P. Hliněný, D. Seese, Trees, Grids, and MSO Decidability: from Graphs to Matroids,
Theoretical Computer Sci. 351 (2006), 372–393.

11. D. Mayhew, Matroid Complexity and Large Inputs, manuscript, 2005.
12. J.G. Oxley, Matroid Theory, Oxford University Press, 1992.
13. J.G. Oxley, D. Vertigan, G. Whittle, On Inequivalent Representations of Matroids

over Finite Fields, J. Combin. Theory Ser. B 67 (1996), 325–343.
14. N. Robertson, P.D. Seymour, Graph Minors – A Survey, Surveys in Combinatorics,

Cambridge Univ. Press 1985, 153–171.
15. N. Robertson, P.D. Seymour, Graph Minors XX: Wagner’s Conjecture, J. Combin.

Theory Ser. B 92 (2004), 325–357.
16. P.D. Seymour, Decomposition of Regular Matroids, J. Combin. Theory Ser. B 28

(1980), 305–359.

Non-cooperative Tree Creation
(Extended Abstract)

Martin Hoefer �

Department of Computer & Information Science,
Konstanz University, Box D 67, 78457 Konstanz, Germany

hoefer@inf.uni-konstanz.de

Abstract. In this paper we consider the connection game, a simple network de-
sign game with independent selfish agents that was introduced by Anshelevich
et al [4]. In addition we present a generalization called backbone game to model
hierarchical network and backbone link creation between existing network struc-
tures. In contrast to the connection game each player considers a number of
groups of terminals and wants to connect at least one terminal from each group
into a network. In both games we focus on an important subclass of tree games,
in which every feasible network is guaranteed to be connected.

For tree connection games, in which every player holds 2 terminals, we show
that there is a Nash equilibrium as cheap as the optimum network. We give a
polynomial time algorithm to find a cheap (2+ε)-approximate Nash equilibrium,
which can be generalized to a cheap (3.1 + ε)-approximate Nash equilibrium
for the case of any number of terminals per player. This improves the guarantee
of the only previous algorithm for the problem [4], which returns a (4.65 + ε)-
approximate Nash equilibrium. Tightness results for the analysis of all algorithms
are derived.

For single source backbone games, in which each player wants to connect one
group to a common source, there is a Nash equilibrium as cheap as the optimum
network and a polynomial time algorithm to find a cheap (1 + ε)-approximate
Nash equilibrium.

1 Introduction

Analyzing networks like the Internet, which is created and maintained by independent
selfish agents with relatively limited goals, has become a research area in game theory
and computer science attracting a lot of interest. In the considered models it is important
to explore the boundary between stable and socially efficient solutions. Hence, it is of
interest to characterize the price of stability [3], which is the ratio of the cost of the best
Nash equilibrium over the cost of a socially optimum solution. This captures how good
stability can get, and has been studied in routing and network creation games [3, 4, 10,
16]. The more prominent measure is the price of anarchy [12] describing the cost of
the worst instead of the best Nash equilibrium. It has received attention in networking
problems, for instance routing [15], facility location [17] and load balancing [6, 12]. In

� Supported by DFG Research Training Group 1042 “Explorative Analysis and Visualization of
Large Information Spaces”.

R. Královič and P. Urzyczyn (Eds.): MFCS 2006, LNCS 4162, pp. 517–527, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

518 M. Hoefer

this paper we consider these measures for the connection game, a game-theoretic model
for network topology creation introduced by Anshelevich et al [4]. In a connection game
each of the k selfish agents has a connectivity requirement, i.e. she holds a number
of terminals at some nodes in a given graph and wants to connect these nodes into a
component. Possible edges have costs, and agents offer money to purchase them. Once
the sum of all agents offers for an edge exceeds its cost, it is considered bought. Bought
edges can be used by all agents to establish their connection, no matter whether they
contribute to the cost. Each agent tries to fulfill her connection requirement at the least
possible cost.

In the connection game it might be optimal for the agents to create disconnected lo-
cal subnetworks. The Internet, however, receives its power as a platform for information
sharing and electronic trade from the fact that it is globally connected. Hence, it is rea-
sonable to assume that agents to some extent have an interest in being connected to
the network of other agents. We incorporate this idea by focusing on tree connection
games - connection games, in which every feasible solution is connected. Furthermore
we study the interest in globally connected networks in hierarchical networks with an
extended model, which we call backbone game. We assume a scenario with existing,
globally unconnected subnetworks of small capacity. Each agent wants to connect a set
of subnetworks with a connected network of high performance backbone links. Back-
bone links can start and end at any terminal in the subnetworks, so we can consider sub-
networks as groups of terminals in the graph and adjust the connectivity requirements
to be present between certain groups. Each player must connect at least one terminal
of each of her groups into a connected network at the least cost. Purchasing and using
edges works similar to the connection game.

Related Work. The connection game was introduced and studied in [4], where a va-
riety of results were presented. Both prices of anarchy and stability are Θ(k). It is
NP-complete to determine, whether a given game has a Nash equilibrium at all. There
is a polynomial time algorithm that finds a (4.65 + ε)-approximate Nash equilibrium
on a 2-approximate network. For the single-source case, in which each player needs
to connect a single terminal to a common source, a polynomial time algorithm finds
a (1 + ε)-approximate Nash equilibrium on a 1.55-approximate solution. We denote
these algorithms by ADTW-SS for the single source and ADTW for the general case.
In [3] adjusted connection games were used to study the performance of the Shapley
value cost sharing protocol. Each edge is bought in equal shares by each player using
it to connect its terminals. The price of stability in this game is O(log k). Furthermore
extended results were presented, e.g. on delays, weighted games and best-response dy-
namics. Recently, connection games have been studied in a geometric setting. In [10]
bounds were shown on the price of anarchy and the minimum incentives to deviate
from an assignment purchasing the socially optimum network. The case of 2 players
and 2 terminals per player was characterized in terms of prices of anarchy and stability,
approximate equilibria and best-response dynamics.

A network creation game of different type was considered in [7,5,2]. Here each agent
corresponds to a node and can only create edges that are incident to her node. Similar
settings are recently receiving increased attention in the area of social network analysis.
See [11] for a recent overview over developments in the area of social network design

Non-cooperative Tree Creation 519

games. In the context of large-scale computational networks, however, a lot of these
models lack properties like arbitrary cost sharing of edges and complex connectivity
requirements.

Our Results. In this paper we will consider tree connection games (TCG) and single
source backbone games (SBG). The games exhibit connection requirements such that
every feasible solution network is connected. We analyze them with respect to strict
and approximate pure-strategy Nash equilibria. We are especially interested in deter-
ministic polynomial time algorithms for a two-parameter optimization problem: Try to
assign payments to the players such that the purchased feasible network is cheap and the
incentives to deviate are low. In Section 2 we show that for any tree connection game
with two terminals per player the price of stability is 1. We outline an algorithm that
allocates edge costs of a centralized optimum solution to players such that no player
has an incentive to deviate. As this algorithm is not efficient, we show in Section 3 how
to find a 2-approximate Nash equilibrium purchasing the optimum network for TCGs
with any number of terminals per player. It can be translated into a polynomial time
algorithm for (3.1 + ε)-approximate Nash equilibria purchasing a network of cost at
most 1.55 times the optimum network cost. This improves over ADTW that provides
(4.65 + ε)-approximate Nash equilibria. In addition we derive a tightness argument for
the design technique of our algorithm and ADTW. Both algorithms consider only the
optimum network and use a bounding argument for deriving approximate Nash equilib-
ria. We show that both are optimal with respect to the class of deterministic algorithms
working only on the optimum network. Thus, methods with better performance guaran-
tees can be found, however, they must explicitly employ cost and structure of possible
deviations. This significantly complicates their design and analysis.

In Section 4 we introduce the backbone game. Some results from the connection
game translate directly: (1) both prices of anarchy and stability are in Θ(k), (2) it is
NP-complete to determine, whether a given game has a Nash equilibrium and (3) there
is a lower bound of

(3
2 − ε

)
on approximate Nash equilibria purchasing the optimum

network. Here we show that for SBGs the price of stability is 1. A (1 + ε)-approximate
Nash equilibrium can be found in polynomial time. The procedure delivers the same
results for three different generalizations: (1) games with a single source group, (2)
games with a directed graph, in which players need a direct connection to the single
source and (3) games, in which each player i has a threshold max(i) and would like to
stay unconnected if the assigned cost exceeds max(i).

All proofs sketched or missing in this extended abstract will be given completely in
the full version of this paper.

2 The Price of Stability

Connection Games. The connection game for k players is defined as follows. For each
game there is an undirected graph G = (V,E), and a nonnegative cost c(e) associated
with each edge e ∈ E. Each player owns a set of terminals located at nodes of the graph
that she wants to connect. A strategy for a player i is a function pi, which specifies for
each edge the amount pi(e) that i offers for the purchase of e. If the sum of the offers
of all players to an edge e exceeds c(e), the edge is bought. Bought edges can be used

520 M. Hoefer

by all players to connect their terminals, no matter whether they contribute to the edge
costs or not. An (a-approximate) Nash equilibrium is a payment scheme such that no
player can reduce

∑
e∈E pi(e) (by more than a factor of a) by unilaterally choosing a

different strategy. Note that each player insists on connecting her terminals, and hence
considers only such strategies as alternatives.

The problem of finding an optimum centralized network for all players and an opti-
mum strategy for a single player are the classic network design problems of the Steiner
forest [1, 9] and the Steiner tree [14], respectively. For the rest of this paper we will
denote an optimum centralized network by T ∗. The subtree of T ∗ that player i uses to
connect her terminals is denoted by T i.

Tree Connection Games. We will deal with an interesting class of connection games,
the tree connection games (TCG), which are games with tree connection requirements.

Definition 1. In a connection game there are tree connection requirements if for any
two nodes v1 and vl+1 carrying terminals, there is a sequence of players i1, . . . , il and
nodes v2, . . . vl such that player ij has terminals at nodes vj and vj+1 for j = 1, . . . , l.

A TCG can be thought of as a splitting of a single global player into k players, which
preserves the overall connection requirements. For the subclass of TCG with 2 terminals
per player we will use the term path tree connection game (PTCG). A first observation
is that the price of anarchy of the PTCG is k. This is straightforward with an instance
consisting of two nodes and two parallel edges, where each node holds a terminal of
each player. One edge e1 has cost k, the other edge e2 a cost of 1. If each player is
assigned to purchase a share of 1 of e1, the solution forms a Nash equilibrium.

Our algorithmic framework for deriving exact and approximate Nash equilibria is as
follows. Until there is no player left, in each iteration it picks a player, assigns payments,
removes the player and reduces the edge costs by the amount she paid. As candidates
for this it considers leaf players.

Definition 2. A player owns a lonely terminal t, if t is located at a node, where no
terminal of another player is located. A player i in a TCG is a leaf player, if she owns
a lonely terminal, and there is at most one node with a non-lonely terminal of i.

Algorithmic Framework

1. c1(e) = c(e) for all e ∈ E.
2. For iter← 1 to k
3. i is a leaf player if possible; otherwise an arbitrary player
4. Determine pi using citer

5. Set citer+1(e) ← citer(e)− pi(e) for all e ∈ E
6. Remove i, contract edges of cost 0

Theorem 1. The price of stability in the PTCG is 1.

Proof. To prove our theorem we need the following technical lemma. Consider a game
in which T ∗ contains all nodes from the graph G. There are two players h and i and
a single source terminal at a node s shared by both players. Player i holds exactly one
additional terminal.

Non-cooperative Tree Creation 521

Lemma 1. In the described game there is a Nash equilibrium as cheap as T ∗.

Proof. (sketch) Algorithm 1 is used to construct a Nash equilibrium purchasing T ∗ for
a game as described in the lemma. It considers edges in reverse BFS order from s with
adjusted edge costs. Let Te denote the part of T ∗ below an edge e and Tu the part below
a node u, where e 	∈ Te but u ∈ Tu. When assigning the cost of e we use a cost function
c′ with c′(e′) = 0 for e′ ∈ T ∗\Te and c′(e′) = c(e′) otherwise. Ai and Ah are the
cheapest feasible deviation trees excluding e for players i and h, resp. We first focus on
the question, whether ph allows a cheaper deviation for h. In opposite to player i it is
not trivial for player h to assume that all edges outside of Te have cost 0. Consider a
node u where multiple subtrees join. We know for each edge e1, e2, e3, . . . below u that
the tree Tej + ej is the optimum forest to connect the terminals of Tej to T ∗\Tej . But
player h owns terminals in possibly all subtrees Tej . Is there a cheaper forest for h to
connect her terminals in Tu to T ∗\Tu than her calculated contribution?

Algorithm 1

1. For each edge e in reverse BFS order
2. Find cheapest deviationsAh and Ai for players h and i under c′ and

given ph and pi on Te.
3. Assign pi(e) = min(c(e), c′(Ai)− pi(Te)).
4. Assign ph(e) = min(c(e)− pi(e), c′(Ah)− ph(Te)).

Lemma 2. The payment function ph constructed by Algorithm 1 allows no
cheaper deviation for player h.

Proof. Let the edges e1, . . . , el be the edges directly below a node u in Tu. Assume the
algorithm was able to assign payments that cover the costs of each Tej + ej , and that u
is the first node, at which ph(Tu) is not optimal for h.

We create a new cost function c′h with c′h(e′) = 0 for e′ ∈ T ∗\Tu and c′h(e′) =
c(e′)−pi(e′) otherwise. We will see that T ∗ is the optimum network under c′h. Suppose
the cheapest deviation tree Ah is cheaper than T ∗ under c′h (i.e. the contribution of h to
T ∗). W.l.o.g.Ah includes all edges of cost 0, especially all edges purchased completely
by i and all edges of T ∗ outside Tu. Let Tej be a tree that is not completely part of Ah.
Consider for each terminal t of h located in Tej the path from t to u in Ah. We denote
this set of paths by Pej . Let P ′ej

be the set of subpaths from Pej containing for every
P ∈ Pej the first part between the terminal of h and the first node w 	∈ Tej . This node
always exists because u 	∈ Tej , and it is in T ∗, because T ∗ covers all nodes in G. The
network Aej =

⋃
P∈P ′

ej

P was considered as a feasible deviation when constructing

the payments for Tej + ej , as it connects every terminal in Tej to a node of T ∗\Tej .
Furthermore, the payments of i were the same, hence the cost of Aej was the same.
Using the assumption that u is the first node, for which Tu is not optimal, we know
that c(Aej) ≥ c(Tej + ej). So after substituting Aej by Tej and ej in Ah, the new
network is at least as cheap as Tej + ej . To show that this new network is also feasible,
suppose we iteratively remove a path P ∈ P ′ej

. Now there might other terminals, whose
connections to u use parts of P . The last node w of P is the first node of P outside of
Tej , and it stays connected to u as P is the first part of a path to u. All other nodes of
P are in Tej and will be connected by Tej and ej . Hence, all terminals affected by the

522 M. Hoefer

t

e1 e2

1 t2 Te2

(a) (b)

Ai

e

Td

Ti
e

d

ti

w1 Te1

u
Pe1

2w

1

2

3
4

(c)

v1

3,4IV

T

(d)

II

III

VI

1
wT

Fig. 1. (a), (b) Alternate trees and paths in PTCGs; (c) Distribution of hierarchical players for a
parent player i, (d) distribution of personal players in the component T needed only by i

removal of P will finally be reconnected to u. In this way Ah can be transformed into
T ∗ without cost increase. This proves that T ∗ is optimal under c′h, so Algorithm 1 finds
Nash equilibria. �
Figure 1a depicts the argument. Paths from the set Pe1 are indicated by dashed lines.
The subgraph Ae1 of Ah is drawn bold. A node w can be either completely outside Tu

(likew1 for t1) or in another Tej (like w2 for t2). ReplacingAe1 by Te1 yields a feasible
network that is not more expensive.

Finally, it is also possible to show that the payments calculated by Algorithm 1 pur-
chase T ∗. This proves Lemma 1. �
Now we outline how to use Lemma 1 to prove Theorem 1. Suppose we are given a
PTCG with k players. At first we simplify the graph by constructing an equivalent
metric-closure game with the same players, terminals and a complete graph G′ on the
nodes of T ∗. Edge costs are equal to the cost of the shortest path in G. Then we use
the framework with an induction on the number of players. Assume that the theorem
holds for any PTCG with k− 1 players. Now consider step 4 for a game with k players.
If there is no leaf player, we can feasibly pick any player i and let pi = 0. Otherwise,
if i is a leaf player, we assign her to pay as much as possible on T i such that she has
no incentive to deviate. If the reduced network after the framework iteration is optimal
under the reduced cost for the remaining k − 1 players, the theorem follows with the
induction hypothesis. Here we use Lemma 1 and Algorithm 1 to make the argument.
Introduce a global player h, who accumulates all players except i. Players h and i share

Non-cooperative Tree Creation 523

a single source at a node s, and an equilibrium assignment for h represents an optimal
solution for the remaining players after removal of i. Hence, our inductive step is proven
by Lemma 1. �

3 Approximation of Nash Equilibria

In this section we present an algorithm to calculate cheap approximate Nash equilibria
in polynomial time. The algorithm sketched in the proof of Theorem 1 is not efficient.
Either we must provide the socially optimum network as input or we must construct
the optimum deviation for the collective player h to improve the solution network. In
any case this requires to solve an instance of the Steiner tree problem. Instead, in this
section we use connection sets to construct polynomial time approximation algorithms.

Definition 3. [4] A connection set S of player i is a subset of edges of T i, such that
for each connected component C in T ∗ \ S either (1) there is a terminal of i in C, or
(2) any player that has a terminal in C has all of its terminals in C.

For any node without a terminal and degree 2 in T ∗ the incident edges belong to the
same connection sets, so for convenience we assume that T ∗ has no such nodes. If every
player purchases at most α connection sets, the payments will form an α-approximate
Nash equilibrium. Note that a subset of a connection set also is a connection set.

An algorithm for PTCGs. In connection games with 2 terminals per player the edges
of T ∗ can be partitioned into equivalence classes SJ , where e and f belong to the same
class iff J = {j : e ∈ T j} = {j : f ∈ T j}. Each SJ forms a connection set for
all players j ∈ J , which is maximal under the subset relation. We will say that con-
nection set SJ is needed by J . In the following PTCGs we will only consider maximal
connection sets and not explicitly mention a player. This information is given by the
subtrees, in which the set is located. Furthermore, when tree connection requirements
are present, connection sets are contiguous.

Our algorithm uses the framework. In step 4 it assigns a leaf player i to purchase 2
connection sets. If i is no leaf player, pi = 0. If a leaf player i is removed in step 5,
distinct connection sets might join and subsequently be wrongly regarded as a single
connection set. This happens when they are needed by player sets differing only by i.
We will use the notion of endangered sets to refer to these problematic sets.

Definition 4. A connection set is called endangered set for player i if it is needed by the
set of players J ∪ {i}, and there is another connection set (called forcing set) needed
by the set J , with i 	∈ J .

Lemma 3. For any leaf player in a PTCG there are at most 2 endangered sets.

We will denote the endangered set with empty forcing set as the personal set, the endan-
gered set with nonempty forcing set as the community set. In step 4 we simply assign
a leaf player to purchase these sets. It requires an easy inductive argument to show that
the algorithm then works correctly. This yields the following theorem.

Theorem 2. For any optimum centralized solution T ∗ in a PTCG, there exists a 2-
approximate Nash equilibrium such that the purchased edges are exactly T ∗.

524 M. Hoefer

For PTCGs we can use a 1.55-approximation algorithm for the Steiner tree problem
[14] to get an initial approximation T . Furthermore, we use shortest-path algorithms to
find deviations and connection sets of optimum cost. Similar to [4] we can iteratively
improve T by exchanging connection sets with better paths. Polynomial running time
is ensured by substantial cost reduction in each exchange step, which can be achieved
by an appropriate adjustment of the edge costs. Thus, for PTCGs there is an algorithm
constructing (2+ε)-approximate Nash equilibria on 1.55-approximate networks in time
polynomial in n and ε−1, for any ε > 0.

An algorithm for TCGs. Next we adjust our algorithm to deliver 2-approximate Nash
equilibria puchasing T ∗ for TCGs with any number of terminals per player. While this
adjustment is possible using connection sets, it remains an open problem, whether The-
orem 1 also holds for TCGs with more terminals per player.

Each player (denoted as parent player) is divided into a set of child players with 2
terminals per player. Terminals of the child players are located at the same nodes as
the ones of the parent player. In addition terminals of child players are distributed such
that they create a PTCG. Hence, the set of all child players can purchase T ∗ with 2
connection sets per player.

The algorithm again uses the framework, and in step 4 a special procedure to assign
the cost of T ∗ to the parent player i. First player i is divided into child players. Then
child players of i are iteratively assigned to purchase endangered sets and removed. In
the end i has to purchase all edges assigned to her child players. To identify personal and
community sets for the child players of i, one might first create a PTCG by splitting all
other parent players. However, the next lemma ensures that the assignment of personal
and community sets for a leaf parent player i does not depend on the splitting of the
other parent players. In step 4 we thus assign edges without explicitly splitting other
players than i.

Lemma 4. The endangered sets of child players of a leaf parent player i are indepen-
dent of the division of other parent players.

In the remainder of the section we show how to divide a player i into hierarchical, per-
sonal and superfluous child players such that the union of connection sets purchased
by her child players forms 2 connection sets. At first we disregard all non-lonely termi-
nals but one. Denote the node carrying the last remaining non-lonely terminal t by v1.
If the player has only lonely terminals, we pick t arbitrarily. Then consider T ∗ rooted
at v1. Once we arrive at an edge e needed only by i, the tree connection requirements
guarantee that the whole subtree below e is also needed only by i. Here we insert child
players in a hierarchical fashion. We contract all edges that are needed only by i. Let
this adjusted tree be denoted T ′ and consider it in BFS-order rooted at v1. For each
node v carrying a terminal of i, we introduce a new child player. She has a terminal at v
and the nearest ancestor of v in the tree carrying a terminal of i (see Figure 1c). These
child players will be termed hierarchical players.

Second, we consider the portions of the tree that were contracted to form T ′. For
each maximal connected subtree T ⊂ T i that is needed only by i, let wT be the root
node that T shares with T ′. Let player j be the first hierarchical child player, whose
terminal tj was placed at wT . This player connects upwards in T ′. Now we consider

Non-cooperative Tree Creation 525

T in DFS-order and locate tj at the first node carrying a terminal of i. For each new
node wz carrying a terminal encountered in the DFS order, we introduce a new child
player and locate her terminals at the nodes wz−1 and wz . At any time there is only
one lonely terminal in T . Finally, when the last node wl carrying a terminal of i is
reached, we move all remaining terminals at wT to wl. They belong to the hierarchical
players connecting downwards in T ′. Child players introduced in the DFS-scan of the
components T are called personal players, because they divide parts needed only by i
(see Figure 1d).

Third, for every non-lonely terminal of i disregarded in the beginning, we introduce
a superfluous child player connecting the terminal to v1, which will not be assigned any
payments.

Theorem 3. For any optimum centralized solution T ∗ in a TCG, there exists a 2-
approximate Nash equilibrium such that the purchased edges are exactly T ∗.

In the proof a special elimination order of child players is used. In any iteration a leaf
player is picked, first the superfluous players and then in a bottom-up fashion to v1 the
personal and hierarchical players. One connection set for the parent player is formed
by the union of all personal sets for the child players. The other connection set is the
union of the community sets. In the full version we will show how to use polynomial
time approximation algorithms to derive a (3.1 + ε)-approximate Nash equilibrium on
a 1.55-approximate network.

A tightness argument. For every connection game ADTW finds 3-approximate Nash
equilibria purchasing T ∗ given only the optimum network T ∗ as input. Like our al-
gorithm it uses connection sets and does not employ cost sharing of edges. The next
theorem shows that no deterministic algorithm using only T ∗ as input can improve the
guarantees even if it uses cost sharing. In this way ADTW for general connection games
and our algorithm for TCGs represent optimal algorithms, but our algorithm provides a
better guarantee on TCGs.

Theorem 4. For any ε > 0 there is a connection game [TCG] such that any determin-
istic algorithm using only T ∗ as input constructs a payment function, which is at least
a (3− ε) [(2− ε)] approximate Nash equilibrium.

Theorem 5. For any ε > 0 there is a TCG such that ADTW constructs a (3 − ε)-
approximate Nash equilibrium.

4 Backbone Games

In this section we present the backbone game, an extension of the connection game to
groups of terminals. Each of the k players has a set of groups of terminals. Each terminal
may be located at a different node. The player strives to connect at least one terminal
from each of her groups into a connected network. Different terminals may be located at
the same nodes. Some important results from [4] translate directly to the backbone game
by restriction to the connection game. The price of anarchy is k, and the price of stability
k − 2. It is NP-complete to decide, whether a given game has a Nash equilibrium,
and there is a lower bound of

(3
2 − ε

)
on approximate Nash equilibria purchasing T ∗.

526 M. Hoefer

Finding the optimum network for a single player is the network design problem of
the Group Steiner Tree (GSTP) [13]. The problem of finding a centralized optimum
solution network T ∗ generalizes the GSTP in terms of forest connection requirements,
so we term this the Group Steiner Forest Problem (GSFP). There are polylogarithmic
approximation algorithms for the GSTP [8], but we are not aware of any such results for
the GSFP. Hence, we will concentrate on algorithms for games, in which the solution is
guaranteed to be connected. The general case represents an interesting field for future
work.

Single Source Backbones. In a SBG each player i has a group Gi of gi terminals and
must connect at least one terminal to a given source node s. Note that the price of anar-
chy is still k as the example establishing the bound is a single source game. However,
the price of stability is 1, and cheap approximate equilibria can be found in polynomial
time.

Theorem 6. The price of stability in the SBG is 1. There is a polynomial time algo-
rithm to find a (1 + ε)-approximate Nash equilibrium purchasing a network T with
c(T)/c(T ∗) ∈ O(log n log k log(maxi gi)).

References

1. A. Agrawal, P. Klein, and R. Ravi. When trees collide: An approximation algorithm for the
generalized Steiner problem on networks. SIAM J Comp, 24(3):445–456, 1995.

2. S. Albers, S. Eilts, E. Even-Dar, Y. Mansour, and L. Roditty. On nash equilibria for a network
creation game. In Proc 17th Ann ACM-SIAM Symp Discrete Algorithms (SODA), pages 89–
98, 2006.

3. E. Anshelevich, A. Dasgupta, J. Kleinberg, É. Tardos, T. Wexler, and T. Roughgarden. The
price of stability for network design with fair cost allocation. In Proc 45th Ann IEEE Symp
Foundations Comp Sci (FOCS), pages 295–304, 2004.

4. E. Anshelevich, A. Dasgupta, É. Tardos, and T. Wexler. Near-optimal network design with
selfish agents. In Proc 35th Ann ACM Symp Theo Comp (STOC), pages 511–520, 2003.

5. J. Corbo and D. Parkes. The price of selfish behavior in bilateral network formation. In Proc
24th Ann ACM Symp Principles of Distributed Comp (PODC), 2005.

6. A. Czumaj, P. Krysta, and B. Vöcking. Selfish traffic allocation for server farms. In Proc
34th Ann ACM Symp Theory Comp (STOC), pages 287–296, 2002.

7. A. Fabrikant, A. Luthera, E. Maneva, C. Papadimitriou, and S. Shenker. On a network cre-
ation game. In Proc 22nd Ann ACM Symp Principles of Distributed Comp (PODC), pages
347–351, 2003.

8. N. Garg, G. Konjevod, and R. Ravi. A polylogarithmic approximation algorithm for the
Group Steiner tree problem. J Algorithms, 37:66–84, 2000.

9. M. Goemams and D. Williamson. A general approximation technique for constrained forest
problems. SIAM J Comp, 24(2):296–317, 1995.

10. M. Hoefer and P. Krysta. Geometric network design with selfish agents. In Proc 11th Conf
on Comp and Comb (COCOON), LNCS 3595, pages 167–178, 2005.

11. M. Jackson. A survey of models of network formation: Stability and efficiency. In G. De-
mange and M. Wooders, editors, Group Formation in Economics; Networks, Clubs and
Coalitions, chapter 1. Cambridge University Press, Cambridge, 2004.

12. E. Koutsoupias and C. Papadimitriou. Worst-case equilibria. In Proc 16th Ann Symp Theo-
retical Aspects Comp Sci (STACS), pages 404–413, 1999.

Non-cooperative Tree Creation 527

13. G. Reich and P. Widmayer. Beyond Steiner’s problem: A VLSI oriented generalization. In
Proc 15th Intl Workshop on Graph-Theoretic Concepts Comp Sci (WG), LNCS 411, pages
196–210, 1989.

14. G. Robins and A. Zelikovsky. Improved Steiner tree approximation in graphs. In Proc 10th
Ann ACM-SIAM Symp Discrete Algorithms (SODA), pages 770–779, 2000.

15. T. Roughgarden and É.Tardos. How bad is selfish routing? J ACM, 49(2):236–259, 2002.
16. A. Schulz and N. Stier Moses. Selfish routing in capacitated networks. Math Oper Res,

29(4):961–976, 2004.
17. A. Vetta. Nash equilibria in competitive societies with application to facility location, traffic

routing and auctions. In Proc 43rd Ann IEEE Symp Foundations Comp Sci (FOCS), page
416, 2002.

Guarantees for the Success Frequency of an Algorithm
for Finding Dodgson-Election Winners

Christopher M. Homan1 and Lane A. Hemaspaandra2,%

1 Rochester Institute of Technology, Rochester, NY 14623, USA
2 University of Rochester, Rochester, NY 14627, USA

Abstract. Dodgson’s election system elegantly satisfies the Condorcet criterion.
However, determining the winner of a Dodgson election is known to be Θp

2-
complete ([1], see also [2]), which implies that unless P = NP no polynomial-time
solution to this problem exists, and unless the polynomial hierarchy collapses to
NP the problem is not even in NP. Nonetheless, we prove that when the number
of voters is much greater than the number of candidates (although the number of
voters may still be polynomial in the number of candidates), a simple greedy al-
gorithm very frequently finds the Dodgson winners in such a way that it “knows”
that it has found them, and furthermore the algorithm never incorrectly declares
a nonwinner to be a winner.

1 Introduction

The Condorcet paradox [3], otherwise known as the paradox of voting or the Condorcet
effect, says that rational (i.e., well-ordered) individual preferences can lead to irrational
(i.e., cyclical) majority preferences. It is a well-known and widely studied problem
in the field of social choice theory [4]. A voting system is said to obey the Condorcet
criterion [3] if whenever there is a Condorcet winner—a candidate who in each pairwise
subcontest gets a strict majority of the votes—that candidate is selected by the voting
system as the overall winner.

The mathematician Charles Dodgson (who wrote fiction under the now more famous
name of Lewis Carroll) devised a voting system [5] that has many lovely properties and
meets the Condorcet criterion. In Dodgson’s system, each voter strictly ranks (i.e., no
ties allowed) all candidates in the election. If a Condorcet winner exists, he or she wins
the Dodgson election. If no Condorcet winner exists, Dodgson’s approach is to take
as winners all candidates that are “closest” to being Condorcet winners, with closest
being in terms of the fewest changes to the votes needed to make the candidate a Con-
dorcet winner. We will in Section 2 describe what exactly Dodgson means by “fewest
changes,” but intuitively speaking, it is the smallest number of sequential switches be-
tween adjacent entries in the rankings the voters provide. It can thus be seen as a sort of
“edit distance.”

Dodgson wrote about his voting system only in an unpublished pamphlet on the
conduct of elections [5] and may never have intended for it to be published. It was
eventually discovered and disseminated by Black [6] and is now regarded as a classic of

% Supported in part by grant NSF-CCF-0426761 and the AvH TransCoop program.

R. Královič and P. Urzyczyn (Eds.): MFCS 2006, LNCS 4162, pp. 528–539, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Guarantees for the Success Frequency of an Algorithm 529

social choice theory [4]. Dodgson’s system was one of the first to satisfy the Condorcet
criterion.1

Although Dodgson’s system has many nice properties, it also poses a serious compu-
tational worry: The problem of checking whether a certain number of changes suffices
to make a given candidate the Condorcet winner is NP-complete [2], and the problem
of computing an overall winner, as well as the related problem of checking whether
a given candidate is at least as close as another given candidate to being a Dodgson
winner, is complete for Θp

2 [1], the class of problems solvable with polynomial-time
parallel access to an NP oracle [9]. (More recent work has shown that some other
important election systems are complete for Θp

2: Hemaspaandra, Spakowski, and Vo-
gel [10] have shown Θp

2-completeness for the winner problem in Kemeny elections,
and Rothe, Spakowski, and Vogel [11] have shown Θp

2-completeness for the winner
problem in Young elections.) The above complexity-theoretic results about Dodgson
elections show, quite dramatically, that unless the polynomial hierarchy collapses there
is no efficient (i.e., polynomial-time) algorithm that is guaranteed to always determine
the winners of a Dodgson election. Does this then mean that Dodgson’s widely studied
and highly regarded voting system is all but unusable?

It turns out that if a small degree of uncertainty is tolerated, then there is a simple,
polynomial-time algorithm, GreedyWinner (the name’s appropriateness will later
become clear), that takes as input a Dodgson election and a candidate from the election
and outputs an element in {“yes”,“no”}×{“definitely”,“maybe”}. The first component
of the output is the algorithm’s guess as to whether the input candidate was a winner of
the input election. The second output component indicates the algorithm’s confidence
in its guess. Regarding the accuracy of GreedyWinnerwe have the following results.

Theorem 1. 1. For each (election, candidate) pair it holds that if GreedyWinner
outputs “definitely” as its second output component, then its first output component
correctly answers the question, “Is the input candidate a Dodgson winner of the
input election?”

2. For each m,n∈N+, the probability that a Dodgson election E selected uniformly at
random from all Dodgson elections having m candidates and n votes (i.e., all (m!)n

Dodgson elections having m candidates and n votes have the same likelihood of
being selected 2) has the property that there exists at least one candidate c such that
GreedyWinner on input (E,c) outputs “maybe” as its second output component

is less than 2(m2−m)e
−n

8m2 .

1 The Condorcet criterion may at first glance seem easy to satisfy, but Nanson showed [7] that
many well-known voting systems—such as the rank-order system [8] widely attributed to
Borda (which Condorcet himself studied [3] in the same paper in which he introduced the
Condorcet criterion), in which voters assign values to each candidate and the one receiving the
largest (or smallest) aggregate value wins—fail to satisfy the Condorcet criterion.

2 Since Dodgson voting is not sensitive to the names of candidates, we will throughout this paper
always tacitly assume that all m-candidate elections have the fixed candidate set 1,2, . . . ,m
(though in some examples we for clarity will use other names, such as a, b, c, and d). So,
though we to be consistent with earlier papers on Dodgson elections allow the candidate set
“C” to be part of the input, in fact we view this as being instantly coerced into the candidate
set 1,2, . . . ,m. And we similarly view voter names as uninteresting.

530 C.M. Homan and L.A. Hemaspaandra

Thus, forelectionswhere thenumberofvotersgreatlyexceedsthenumberofcandidates
(though the former could still be within a (superquadratic) polynomial of the latter,
consistently with the success probability for a family of election draws thus-related
in voter-candidate cardinality going asymptotically to 1), if one randomly chooses an
election E = (C,V), then with high likelihood it will hold that for each c∈C the efficient
algorithm GreedyWinner when run on input (C,V,c) correctly determines whether
c is a Dodgson winner of E , and moreover will “know” that it got those answers right.
We call GreedyWinner a frequently self-knowingly correct heuristic. (Though the
GreedyWinner algorithm on its surface is about recognizing Dodgson winners, as
discussed in Section 3 our algorithm can be easily modified into one that is about, given
an E = (C,V), finding the complete set of Dodgson Winners and that does so in a way
that is, in essentially the same high frequency as for GreedyWinner, self-knowingly
correct.) Later in this paper, we will introduce another frequently self-knowingly correct
heuristic, calledGreedyScore, for calculating the Dodgson score of a given candidate.

The study of greedy algorithms has an extensive history (see the textbook [12] and
the references therein). Much is known in terms of settings where a greedy algorithm
provides a polynomial-time approximation, for example [13], and of guarantees that
a greedy algorithm will frequently solve a problem—for example Kaporis, Kirousis,
and Lalas study how frequently a greedy algorithm finds a satisfying assignment to a
boolean formula [14] (and many additional excellent examples exist, e.g., [15,16,17,
18]). However, each of these differs from our work in either not being about self-knowing
correctness or, if about self-knowing correctness, in being about an NP-certificate type
of problem. In contrast, as discussed in more detail immediately after Definition 1, the
problem studied in this paper involves objects that are computationally more demanding
than mere certificates for NP set membership. (Additionally, our paper of course differs
from previous papers in the problem itself, namely, we study Dodgson elections.)

Among earlier algorithms having a self-knowingly correct flavor, a particularly inter-
esting one (though, admittedly, it is about finding certificates for NP set membership) is
due to Goldberg and Marchetti-Spaccamela [19]. Goldberg and Marchetti-Spaccamela
construct for every ε > 0 a modified greedy algorithm that is deterministic, runs in poly-
nomial time (where the polynomial depends on ε), and with probability at least 1− ε
self-knowingly finds an optimal solution of a randomly chosen (from a particular, but
natural, distribution) instance of the knapsack problem (they call their algorithm “self
checking” rather than “self-knowingly correct”). Besides being about an NP-type prob-
lem rather than a “Θp

2”-type problem such as Dodgson elections, a second way in which
this differs from our work is that the running time of our algorithms does not depend on
the desired likeliness of correctness.

The concept of a heuristic that is effective on a significant portion of the problem
instances of some very hard (i.e., strictly harder that NP-complete, unless NP = coNP)
problem and furthermore has the additional property that it can very frequently guaran-
tee that its answers are correct is related to other theoretical frameworks. Parameterized
complexity [20] studies hard problems that have efficient solutions when instances of
the problem are restricted by fixing one or more of the parameters that describe the
instances. The two most natural parameters of Dodgson elections are the number of
candidates and the number of voters. It is known that with either of these parameters

Guarantees for the Success Frequency of an Algorithm 531

bounded by a constant, Dodgson elections have polynomial-time algorithms [2]. How-
ever, we are interested in cases when no such dramatic bounding of a parameter by a
constant occurs.

Like average-case [21] and smoothed [22] analyses, our analysis of DodgsonWinner
is probabilistic. But while those methods are concerned with the expected value over
segments of the problem domain of some resource of interest, typically time, we focus
on a quite different property: correctness.

Like approximation algorithms, our algorithms are time efficient, even in the worst
case. But approximation algorithms typically have worst-case guarantees on how far
the answers they provide deviate from the optimal answers. We by contrast are only in-
terested in how frequently the algorithms are correct. Even when we study optimization
problems, as with GreedyScore, we make no guarantees on how close actual Dodgson
scores are to the corresponding answers that GreedyScore provides in cases when the
confidence is “maybe.”

Additionally, the key feature that separates our work from each of the above-
mentioned related frameworks is the “self-knowing” aspect of our work. The closest
related concepts to this aspect of our analysis are probably those involving proofs to be
verified, such as NP certificates and the proofs in interactive proof systems. Although
our algorithms do not provide actual certificates, one could reasonably require a tran-
script of the execution of either of our algorithms. With such a transcript, it would be
easy to verify in deterministic polynomial time that the algorithm (in cases where the
confidence is “definitely”) presented a valid proof. By contrast, in interactive proof sys-
tems the methods for verifying the proofs involve a probabilistic, interactive process.
We do not consider interactive processes in this paper. In Section 3 we discuss in more
detail the differences between heuristics that find NP certificates and self-knowingly
correct algorithms, but the most obvious difference is that, unless coNP = NP, the prob-
lem of verifying whether a given candidate is a Dodgson winner for a given election is
not even in NP.

Due to space limitations, all proofs are omitted, as are the conclusions, open prob-
lems, and some discussions and references. All of these can be found online in the TR
version (at xxx.arXiv.org as revised report cs.DS/0509061).

2 Dodgson Elections

As mentioned in the introduction, in Dodgson’s voting system each voter strictly ranks
the candidates in order of preference. Formally speaking, for m,n ∈ N+ (throughout
this paper we by definition do not admit as valid elections with zero candidates or zero
voters), a Dodgson election is an ordered pair (C,V) where C is a set {c1, . . . ,cm} of
candidates (as noted earlier, we without loss of generality view them as being named
by 1, 2, . . . , m) and V is a tuple (v1, . . . ,vn) of votes and a Dodgson triple, denoted
(C,V,c), is a Dodgson election (C,V) together with a candidate c ∈ C. Each vote is
one of the m! total orderings over the candidates, i.e., it is a complete, transitive, and
antireflexive relation over the set of candidates. We will sometimes denote a vote by
listing the candidates in increasing order, e.g., (x,y,z) is a vote over the candidate set
{x,y,z} in which y is preferred to x and z is preferred to (x and) y. (Note: A candidate is

532 C.M. Homan and L.A. Hemaspaandra

never preferred to him- or herself.) For vote v and candidates c,d ∈C, “c <v d” means
“in vote v, d is preferred to c” and “c ≺v d” means “c <v d and there is no e such that
c<v e<v d.” Each Dodgson election gives rise to

(m
2

)
pairwise races, each of which is

created by choosing two distinct candidates c,d ∈C and restricting each vote v to the
two chosen candidates, that is, to either (c,d) or (d,c). The winner of the pairwise race
is the one that a strict majority of voters prefer. Due to ties, a winner may not always
exist in pairwise races.

A Condorcet winner is any candidate c that, against each remaining candidate, is
preferred by a strict majority of voters. For a given election (i.e., for a given sequence
of votes), it is possible that no Condorcet winner exists. However, when one does exist,
it is unique.

For any vote v and any c,d ∈C, if c≺v d, let Swapc,d(v) denote the vote v′, where v′

is the same total ordering of C as v except that d <v′ c (note that this implies d ≺v′ c).
If c 	≺v d then Swapc,d(v) is undefined. In effect, a swap causes c and d to “switch
places,” but only if c and d are adjacent. The Dodgson score of a Dodgson triple (C,V,c)
is the minimum number of swaps that, applied sequentially to the votes in V , make
V a sequence of votes in which c is the Condorcet winner. A Dodgson winner is a
candidate that has the smallest Dodgson score. This is the election system developed in
the year 1876 by Dodgson (Lewis Carroll) [5], and as noted earlier it gives victory to the
candidate(s) who are “closest” to being Condorcet winners. Note that if no candidate
is a Condorcet winner, then two or more candidates may tie, in which case all tying
candidates are Dodgson winners.

Several examples show how Dodgson elections work, and hint at why they are hard,
in general, to solve: Consider an election having four candidates {a,b,c,d} and one
hundred votes in which sixty are (a,b,c,d) and forty are (c,d,a,b). Since d is already
(i.e., before any exchanges take place) a Condorcet winner, d’s Dodgson score is 0.
Thus d is the Dodgson winner.

Now suppose in another election having the same candidates and the same number
of voters as in the previous example that twenty voters each vote (a,b,c,d), (b,c,d,a),
(c,d,a,b), (b,a,d,c), and (d,a,b,c), respectively. In this case, there is no Condorcet
winner, so we calculate the Dodgson score of each candidate. Consider a: Candidate a
beats d by twenty votes (of course, changes in the votes of as few as eleven voters can
reverse such a shortfall), loses to c by twenty votes, and loses to b by twenty votes. What
is the fewest number of swaps needed to make a a Condorcet winner? It might tempting
to make, for each of eleven votes of the form (a,b,c,d), the following transformation:
(a,b,c,d) → (d,b,c,a). But this transformation is not an allowed swap because only
elements that are adjacent in the ordering imposed by the vote may be swapped. We
can, however, make eleven of the following series of two swaps each: (a,b,c,d) →
(b,a,c,d) → (b,c,a,d). This can clearly be seen to be an optimal number of swaps
in light of a’s initial vote shortfalls (and note that every swap improves a’s standing
against either b or c in a way that directly reduces a still-existing shortfall), so the
Dodgson score of (C,V,a) is twenty-two.

What makes it hard to calculate Dodgson scores is what makes many combinatorial
optimization problems hard: There is no apparent, simple way to locally determine
whether a swap will lead to an optimally short sequence that makes the candidate of

Guarantees for the Success Frequency of an Algorithm 533

interest the Condorcet winner. For instance, if in calculating the Dodgson score of a we
had come across votes of the form (b,a,d,c) first, we might have made the following
series of swaps, (b,a,d,c)→ (b,d,a,c)→ (b,d,c,a), which contain a swap between a
and d. But this series of swaps is not optimal because a already beats d, and because,
as we saw, there is already a series of twenty-two swaps available, where each swap
helps a against some adversary that a has not yet beaten, that makes a a Condorcet
winner. (However, there are instances of Dodgson elections in which the only way for
a candidate to become a Condorcet winner is for it to swap with adversaries that the
candidate is already beating, so one cannot simply ignore this possibility.) Assuming
that we did not at first see the votes that constitute this optimal sequence and instead
hastily made swaps that did not affect a’s current standing against b or c, we could
have, as soon as we had come across votes of the form (a,b,c,d), backtracked from the
hastily made swaps that led toward a nonoptimal solution and, eventually, have correctly
calculated the Dodgson score. But as the number of candidates and votes in an election
increases, the amount of backtracking that a naive strategy might need to make in order
to correct for any nonoptimal swaps explodes.

Of course, computational complexity theory can give evidence of hardness that is
probably more satisfying than are mere examples, such as those just given. However,
before turning to the computational complexity of Dodgson-election-related problems,
a couple of preliminary definitions are in order. The class NP is precisely the set of
all languages solvable in nondeterministic polynomial time. Θp

2 can be equivalently de-
fined either as the class of languages solvable in deterministic polynomial time with
O(logn) queries to an NP language or as the class of languages solvable in determin-
istic polynomial time via parallel access to NP. Θp

2 was first studied by Papadimitriou
and Zachos in the 1980s, received its current name from Wagner, and has proven im-
portant in many contexts. In particular, it seems central in understanding the complexity
of election systems [1,23,24,25,26,11]. All NP languages are in Θp

2. It remains open
whether Θp

2 contains languages that are not in NP; it does exactly if NP 	= coNP.
Bartholdi, Tovey, and Trick [2] define the following decision problems, i.e., map-

pings from Σ∗ to {“yes”,“no”}, associated with Dodgson elections. We here mostly
copy the problem wordings from [1].

Decision Problem: DodgsonScore
Instance: A Dodgson triple (C,V,c); a positive integer k.
Question Is Score(C,V,c), the Dodgson score of candidate c in the election specified
by (C,V), less than or equal to k?

Decision Problem: DodgsonWinner
Input: A Dodgson triple (C,V,c).
Question: Is c a winner of the election? That is, does c tie-or-defeat all other candidates
in the election?

Bartholdi, Tovey, and Trick show that the problem of checking whether a certain
number of changes suffices to make a given candidate the Condorcet winner is NP-
complete and that the problem of determining whether a given candidate is a Dodgson
winner is NP-hard [2]. Hemaspaandra, Hemaspaandra, and Rothe show [1] that this
latter problem, as well as the related problem of checking whether a given candidate is at

534 C.M. Homan and L.A. Hemaspaandra

least as close as another given candidate to being a Dodgson winner, is complete for Θp
2.

Hemaspaandra, Hemaspaandra, and Rothe’s results show that determining a Dodgson
winner is not even in NP unless the polynomial hierarchy collapses. This line of work
has significance because the hundred-year-old problem of deciding if a given candidate
is a Dodgson winner was much more naturally conceived than the problems—arguably
artificial—that were previously known to be complete for Θp

2 (see [27]).

3 The GreedyScore and GreedyWinner Algorithms

In this section, we study the greedy algorithms GreedyScore and GreedyWinner,
stated as, respectively, Algorithm 3.1 and Algorithm 3.2, and we note that their running
time is polynomial. We show that both algorithms are self-knowingly correct in the
sense of the following definition.

Definition 1. For sets S and T and function f : S → T , an algorithm A : S → T ×
{“definitely”,“maybe”} is self-knowingly correct for f if, for all s ∈ S and t ∈ T , when-
ever A on input s outputs (t,“definitely”) it holds that f (s) = t.

The reader may wonder whether “self-knowing correctness” is so easily added to
heuristic schemes as to be uninteresting to study. After all, if one has a heuristic for
finding certificates for an NP problem with respect to some fixed certificate scheme (in
the standard sense of NP certificate schemes)—e.g., for trying to find a satisfying as-
signment to an input (unquantified) propositional boolean formula—then one can use
the P-time checker associated with the problem to “filter” the answers one finds, and can
put the label “definitely” on only those outputs that are indeed certificates. However, the
problem studied in this paper does not seem amenable to such after-the-fact addition of
self-knowingness, as in this paper we are dealing with heuristics that are seeking objects
that are computationally much more complex than mere certificates related to NP prob-
lems. In particular, a polynomial-time function-computing machine seeking to compute
an input’s Dodgson score seems to require about logarithmically many adaptive calls to
SAT.3

We call GreedyScore “greedy” because, as it sweeps through the votes, each swap
it (virtually) does immediately improves the standing of the input candidate against
some adversary that the input candidate is at that point losing to. The algorithm nonethe-
less is very simple. It limits itself to at most one swap per vote. Yet, its simplicity
notwithstanding, we will eventually show that this (self-knowingly correct) algorithm
is very frequently correct.

3 We say “seems to,” but we note that one can make a more rigorous claim here. As mentioned
in Section 2, among the problems that Hemaspaandra, Hemaspaandra, and Rothe [1] prove
complete for the language class Θp

2 is DodgsonWinner. If one could, for example, compute
Dodgson scores via a polynomial-time function-computing machine that made a (globally)
constant-bounded number of queries to SAT, then this would prove that DodgsonWinner is
in the boolean hierarchy [28], and thus that Θp

2 equals the boolean hierarchy, which in turn
would imply the collapse of the polynomial hierarchy [29]. That is, this function problem is
so closely connected to a Θp

2-complete language problem that if one can save queries in the
former, then one immediately has consequences for the complexity of the latter.

Guarantees for the Success Frequency of an Algorithm 535

We now state the main result for this section, and a bit later we will briefly describe
the algorithms in English.

Theorem 2. 1. GreedyScore (Algorithm 3.1) is self-knowingly correct for Score
(recall that Score is defined in Section 2 in the statement of the DodgsonScore
problem).

2. GreedyWinner (Algorithm 3.2) is self-knowingly correct for DodgsonWinner.
3. GreedyScore and GreedyWinner both run in polynomial time.4

Note that Theorem 1.1 follows directly from Theorem 2.2. We will turn to Theorem 1.2
in Section 4.

Theorem 2, since it just states polynomial time, is not heavily dependent on the en-
coding scheme used. However, we will for specificity give a specific scheme that can be
used. Note that the scheme we use will encode the inputs as binary strings by a scheme
that is easy to compute and invert and encodes each vote as an O(‖C‖ log‖C‖)-bit sub-
string and each Dodgson triple as an O(‖V‖ ·‖C‖ · log‖C‖)-bit string, where (C,V,c) is
the input to the encoding scheme. For a Dodgson triple (C,V,c), our encoding scheme
is as follows: First comes ‖C‖, encoded as a binary string of length �log(‖C‖+ 1)�,5
preceded by the substring 1�log(‖C‖+1)�0. Next comes the chosen candidate c, encoded
as a binary string of length �log(‖C‖+ 1)�. Finally each vote is encoded as a binary
substring of length ‖C‖ · �log(‖C‖+ 1)�.

Regarding the notation used in Algorithm 3.1: A vote is represented as an array v[]
of length m, where m = ‖C‖. For each vote v[], v[1] is the least preferred candidate,
v[2] is the second least preferred candidate, and so on, and v[m] is the most preferred
candidate. Swapi(v) means that the ith and (i+ 1)st values in v[] are swapped.

We now describe in English what our algorithms actually do (and their detailed
pseudocode—which is what is referred to by all references above and below to specific
variables such as v[], Swap[], and Deficit[]—is also included). Briefly put,
GreedyScore, for each candidate d, c 	= d ∈C, computes (in Deficit[d]) the number of
votes (if any) that c needs to gain in order to have strictly more votes than d (in a pair-
wise contest between them), and computes (in Swaps[d]) the number of votes v in which
d is immediately adjacent to and preferred to c (c≺v d). If the former number is strictly
greater than zero and the latter number is at least as large as the former number, then it

4 The number of times lines of Algorithm 3.1 (respectively, Algorithm 3.2) are executed is
clearly O(‖V‖ · ‖C‖) (respectively, O(‖V‖ · ‖C‖2)), and so these are indeed polynomial-time
algorithms.

For completeness, we mention that when one takes into account the size of the objects being
manipulated (in particular, under the assumption—which in light of the encoding scheme we
will use below is not unreasonable—that it takes O(log‖C‖) time to look up a key in either
Deficit or Votes and O(log‖V‖) time to update the associated value, and each Swap operation
takes O(log‖C‖) time) the running time of the algorithm might be more fairly viewed as
O(‖V‖·‖C‖· (log‖C‖+ log‖V‖)) (respectively, O(‖V‖·‖C‖2 · (log‖C‖+ log‖V‖))), though
in any case it certainly is a polynomial-time algorithm.

5 All logarithms in this paper are base 2. We use �log(‖C‖+1)�-bit strings rather than
�log(‖C‖)�-bit strings as we wish to have the size of the coding scale at least linearly with
the number of voters even in the pathological ‖C‖ = 1 case (in which each vote carries no
information other than about the number of voters).

536 C.M. Homan and L.A. Hemaspaandra

Algorithm 3.1 GreedyScore(C,V,c) [n = number of voters; m = number of candi-
dates]
1: for all d ∈C−{c} do Deficit[d]← 1−�n/2�; Swaps[d]← 0 end for
2: for all votes v[] in V do
3: state← “nocount”
4: for all i ∈ (1, . . . ,m) do
5: if (state = “incrdef”)∨ (state = “swap”) then
6: Deficit[v[i]]← Deficit[v[i]]+1
7: if state = “swap” then Swaps[v[i]]← Swaps[v[i]]+1; state← “incrdef” end if
8: else if c = v[i] then
9: state← “swap”

10: end if
11: end for
12: end for
13: confidence ← “definitely”; score ← 0
14: for all d ∈C−{c} do
15: if Deficit[d]> 0 then
16: score ← score+Deficit[d]
17: if Deficit[d]> Swaps[d] thenconfidence ← “maybe”; score← score+1 end if
18: end if
19: end for
20: return (score,confidence)

Algorithm 3.2 GreedyWinner(C,V,c)
1: (cscore,confidence) = GreedyScore(C,V,c); winner ← “yes”
2: for all candidates d ∈C−{c} do
3: (dscore,dcon) ← GreedyScore(C,V,d)
4: if dscore < cscore then winner ← “no” end if
5: if dcon = “maybe” then confidence ← “maybe” end if
6: end for
7: return (winner,confidence)

is the case that by adjacent swaps in exactly the former number of votes—when done in
that number of votes chosen from among those votes v satisfying c≺v d—c can be with
perfect efficiency (every swap pays off by reducing a positive shortfall) be changed to
beating d. If the number values just stated are not the case, the GreedyScore algo-
rithm declares that it is stumped by the current input. If it is stumped for no candidate
d, c 	= d ∈C, then it simply adds up the costs of defeating each other candidate, and is
secure in the knowledge that this is optimal (see also the proof in the full version). Turn-
ing to the GreedyWinner algorithm, it does the above for all candidates, and if while
doing so GreedyScore is never stumped, then GreedyWinner uses in the obvi-
ous way the information it has obtained, and (correctly) states whether c is a Dodgson
winner of the input election.

Note that GreedyWinner could easily be modified into a new polynomial-time al-
gorithm that, rather than checking whether a given candidate is the winner of the given

Guarantees for the Success Frequency of an Algorithm 537

Dodgson election, finds all Dodgson winners by taking as input a Dodgson election
alone (rather than a Dodgson triple) and outputting a list of all the Dodgson winners
in the election. This modified algorithm on any Dodgson election (C,V) would make
exactly the same calls to GreedyScore that the current GreedyWinner (on in-
put (C,V,c), where c ∈C) algorithm makes, and the new algorithm would be accurate
whenever every call it makes to GreedyScore returns “definitely” as its second argu-
ment. Thus, whenever the current GreedyWinnerwould return a “definitely” answer
so would the new Dodgson-winner-finding algorithm (when their inputs are related in
the same manner as described above). These comments explain why in the title (and
abstract), we were correct in speaking of “finding Dodgson-Election Winners” (rather
than merely recognizing them).

4 Analysis of the Correctness Frequency of the Two Heuristic
Algorithms

In this section, we show that, as long as the number of votes is much greater than the
number of candidates, GreedyWinner is a frequently self-knowingly correct algo-
rithm.

Theorem 3. For each m,n ∈N+, the following hold. Let C = {1, . . . ,m}.

1. Let V satisfy ‖V‖ = n. For each c ∈ C, if for all d ∈ C−{c} it holds that ‖{i ∈
{1, . . . ,n} | c <vi d}‖ ≤ 2mn+n

4m and ‖{i ∈ {1, . . . ,n} | c ≺vi d}‖ ≥ 3n
4m then

GreedyScore(C,V,c) = (Score(C,V,c),“definitely”).
2. For each c,d ∈C such that c 	= d, Pr((‖{i∈ {1, . . . ,n} | c<vi d}‖> 2mn+n

4m)∨(‖{i∈
{1, . . . ,n} | c≺vi d}‖< 3n

4m))< 2e
−n

8m2 , where the probability is taken over drawing
uniformly at random an m-candidate, n-voter Dodgson election V = (v1, . . . ,vn)
(i.e., all (m!)n Dodgson elections having m candidates and n voters have the same
likelihood of being chosen).

3. For each c∈C, Pr(GreedyScore(C,V,c) 	= (Score(C,V,c),“definitely”))< 2(m−
1)e

−n
8m2 , where the probability is taken over drawing uniformly at random an m-

candidate, n-voter Dodgson election V = (v1, . . . ,vn).
4. Pr((∃c ∈ C)[GreedyWinner(C,V,c) 	= (DodgsonWinner(C,V,c),“definitely”)])

< 2(m2−m)e
−n

8m2 , where the probability is taken over drawing uniformly at ran-
dom an m-candidate, n-voter Dodgson election V = (v1, . . . ,vn).

Note that Theorem 1.2 follows from Theorem 3.4.
The main intuition behind Theorem 3 is that, in any election having m candidates and

n voters, and for any two candidates c and d, it holds that, in exactly half of the ways v
a voter can vote, c <v d, but for exactly 1/m of the ways, c ≺v d. Thus, assuming that
the votes are chosen independently of each other, when the number of voters is large
compared to the number of candidates, with high likelihood the number of votes v for
which c <v d will hover around n/2 and the number of votes for which c ≺v d will
hover around n/m. This means that there will (most likely) be enough votes available
for our greedy algorithms to succeed.

538 C.M. Homan and L.A. Hemaspaandra

Throughout this section, we regard V = (v1, . . . ,vn) as a sequence of n independent
observations of a random variable γ whose distribution is uniform over the set of all
votes over a set C = {1,2, . . . ,m} of m candidates, where γ can take, with equal like-
lihood, any of the m! distinct total orderings over C. (This distribution should be con-
trasted with such work as that of, e.g., [30], which in a quite different context creates
dependencies between voters’ preferences.)

We now turn to Lemma 1, which is needed to support (the proof of) Theorem 3.
Lemma 1 follows from the following variant of Chernoff’s Theorem [31].

Theorem 4 ([32]). Let X1, . . . ,Xn be a seq. of mutually indep. random variables. If there
is a p ∈ [0,1] ⊆ R such that, for each i ∈ {1, . . . ,n}, Pr(Xi = 1− p) = p and Pr(Xi =
−p) = 1− p, then for all a ∈ R where a> 0 it holds that Pr(Σn

i=1Xi > a)< e−2a2/n.

Lemma 1. 1. Pr(‖{i ∈ {1, . . . ,n} | c<vi d}‖> 2mn+n
4m)< e

−n
8m2 .

2. Pr(‖{i ∈ {1, . . . ,n} | c≺vi d}‖< 3n
4m)< e

−n
8m2 .

We now have established (see also the here-omitted proofs, available in the TR ver-
sion) Theorem 1: As mentioned in Section 3, Theorem 1.1 follows from Theorem 2.2.
Theorem 1.2 follows from Theorem 3.4. We refer the reader to the full (TR) version of
this paper for a discussion of various open directions, and a suggested broader frame-
work for the study of frequently self-knowingly correct algorithms.

References

1. Hemaspaandra, E., Hemaspaandra, L., Rothe, J.: Exact analysis of Dodgson elections: Lewis
Carroll’s 1876 voting system is complete for parallel access to NP. Journal of the ACM 44(6)
(1997) 806–825

2. Bartholdi III, J., Tovey, C., Trick, M.: Voting schemes for which it can be difficult to tell who
won the election. Social Choice and Welfare 6 (1989) 157–165

3. Condorcet, M.: Essai sur l’Application de L’Analyse à la Probabilité des Décisions Rendues
à la Pluralité des Voix. (1785) Facsimile reprint of original published in Paris, 1972, by the
Imprimerie Royale.

4. McLean, I., Urken, A.: Classics of Social Choice. University of Michigan Press, Ann Arbor,
Michigan (1995)

5. Dodgson, C.: A method of taking votes on more than two issues, Clarendon Press, Oxford,
pamphet (1876)

6. Black, D.: The Theory of Committees and Elections. Cambridge University Press (1958)
7. Nanson, E.: Methods of election. Transactions and Proceedings of the Royal Society of

Victoria 19 (1882) 197–240
8. Borda, J.C.d.: Mémoire sur les élections au scrutin. Histoire de L’Académie Royale des

Sciences Année 1781 (1784)
9. Papadimitriou, C., Zachos, S.: Two remarks on the power of counting. In: Proceedings of

the 6th GI Conference on Theoretical Computer Science, Springer-Verlag Lecture Notes in
Computer Science #145 (1983) 269–276

10. Hemaspaandra, E., Spakowski, H., Vogel, J.: The complexity of Kemeny elections.
Theoretical Computer Science 349(3) (2005) 382–391

11. Rothe, J., Spakowski, H., Vogel, J.: Exact complexity of the winner problem for Young
elections. Theory of Computing Systems 36(4) (2003) 375–386

Guarantees for the Success Frequency of an Algorithm 539

12. Cormen, T., Leiserson, C., Rivest, R., Stein, C.: Introduction to Algorithms. second edn.
MIT Press/McGraw Hill (2001)

13. Ausiello, G., Crescenzi, P., Protasi, M.: Approximate solution of NP optimization problems.
Theoretical Computer Science 150(1) (1995) 1–55

14. Kaporis, A., Kirousis, L., Lalas, E.: The probabilistic analysis of a greedy satisfiability algo-
rithm. In: Proceedings of the 10th Annual European Symposium on Algorithms, Springer-
Verlag Lecture Notes in Computer Science #2461 (2002) 574–585

15. Chang, L., Korsh, J.: Canonical coin changing and greedy solutions. Journal of the ACM
23(3) (1976) 418–422

16. Protasi, M., Talamo, M.: A new probabilistic model for the study of algorithmic properties
of random graph problems. In: Proceedings of the 4th Conference on Fundamentals of Com-
putation Theory, Springer-Verlag Lecture Notes in Computer Science #158 (1983) 360–367

17. Slavik, P.: A tight analysis of the greedy algorithm for set cover. Journal of Algorithms 25(2)
(1997) 237–254

18. Brown, D.: A probabilistic analysis of a greedy algorithm arising from computational biol-
ogy. In: Proceedings of the 12th Annual ACM-SIAM Symposium on Discrete Algorithms,
ACM Press (2001) 206–207

19. Goldberg, A.V., Marchetti-Spaccamela, A.: On finding the exact solution of a zero-one knap-
sack problem. In: Proceedings of the 16th ACM Symposium on Theory of Computing.
(1984) 359–368

20. Downey, R., Fellows, M.: Parameterized complexity. Springer-Verlag (1999)
21. Levin, L.: Average case complete problems. SIAM Journal on Computing (1986)
22. Spielman, D., Teng, S.: Smoothed analysis: Why the simplex algorithm usually takes poly-

nomial time. Journal of the ACM 51(3) (2004) 385–463
23. Hemaspaandra, E., Hemaspaandra, L.: Computational politics: Electoral systems. In: Pro-

ceedings of the 25th International Symposium on Mathematical Foundations of Computer
Science, Springer-Verlag Lecture Notes in Computer Science #1893 (2000) 64–83

24. Spakowski, H., Vogel, J.: Θp
2 -completeness: A classical approach for new results. In: Pro-

ceedings of the 20th Conference on Foundations of Software Technology and Theoretical
Computer Science, Springer-Verlag Lecture Notes in Computer Science #1974 (2000) 348–
360

25. Spakowski, H., Vogel, J.: The complexity of Kemeny’s voting system. In: Proceedings of
the Workshop Argentino de Informática Teórica, Volume 30 of Anales Jornadas Argentinas
de Informática e Investigación Operativa, SADIO (2001) 157–168

26. Hemaspaandra, E., Spakowski, H., Vogel, J.: The complexity of Kemeny elections. Technical
Report Math/Inf/14/03, Institut für Informatik, Friedrich-Schiller-Universität, Jena, Germany
(2003)

27. Wagner, K.: More complicated questions about maxima and minima, and some closures of
NP. Theoretical Computer Science 51(1–2) (1987) 53–80

28. Cai, J., Gundermann, T., Hartmanis, J., Hemachandra, L., Sewelson, V., Wagner, K., Wech-
sung, G.: The boolean hierarchy I: Structural properties. SIAM Journal on Computing 17(6)
(1988) 1232–1252

29. Kadin, J.: The polynomial time hierarchy collapses if the boolean hierarchy collapses.
SIAM Journal on Computing 17(6) (1988) 1263–1282 Erratum appears in the same jour-
nal, 20(2):404.

30. Raffaelli, G., Marsili, M.: Statistical mechanics model for the emergence of consensus.
Physical Review E 72(1) (2005) 016114

31. Chernoff, H.: A measure of the asymptotic efficiency for tests of a hypothesis based on the
sum of observations. Annals of Mathematical Statistics 23 (1952) 493–509

32. Alon, N., Spencer, J.: The Probabilistic Method. second edn. Wiley–Interscience (2000)

Reductions for Monotone Boolean Circuits

Kazuo Iwama∗ and Hiroki Morizumi

Graduate School of Informatics, Kyoto University, Kyoto 606-8501, Japan
{iwama, morizumi}@kuis.kyoto-u.ac.jp

Abstract. The large class, say NLOG, of Boolean functions, including
0-1 Sort and 0-1 Merge, have an upper bound of O(n log n) for their
monotone circuit size, i.e., have circuits with O(n log n) AND/OR gates
of fan-in two. Suppose that we can use, besides such normal AND/OR
gates, any number of more powerful “F -gates” which realize a monotone
Boolean function F with r(≥ 2) inputs and r′(≥ 1) outputs. Note that
the cost of each AND/OR gate is one and we assume that the cost of
each F -gate is r. Now we define: A Boolean function f in NLOG is said
to be F -Easy if f can be constructed by a circuit with AND/OR/F gates
whose total cost is o(n log n). In this paper we show that 0-1 Merge is
not F -Easy for an arbitrary monotone function F such that r′ ≤ r/ log r.

1 Introduction

Suppose that we wish to construct a Boolean monotone circuit for 0-1 Merge by
using ordinary AND and OR gates of fan-in two and (any number of) Majority
gates of any number of inputs at any places. It is well known that, if we are
allowed to use only AND/OR gates, then the circuit size must be Θ(n log n).
Here a size means the number of gates and each AND/OR gate has a unit cost.
When we use a Majority gate of r inputs, we assume that such a gate has a
cost of r (the reason is given later). It should be noted that a Majority gate of
r inputs is realized by using O(r log r) AND/OR gates, and therefore, if its cost
is r log r, then Majority gates are obviously useless. Our setting of cost r is thus
subtle, and our primary question in this paper is whether such Majority gates
are substantially useful, or whether we can prove a circuit size of o(n logn) for
0-1 Merge by adding Majority gates. The motivation is as follows:

Our knowledge about the traditional (bounded-fan-in AND, OR and Negation
gates are allowed) circuit complexity is summarized as follows: (i) If we cannot
use Negation, i.e., for monotone circuits, there are exponential lower bounds
(e.g., [16], [1], [7]). (ii) If we can use few Negations, i.e., at most (1/6) log logn
Negations, then there are also a superpolynomial lower bounds [3]. (iii)If we can
use �log(n+1)� Negations, then all n inputs can be negated by using O(n log n)
gates [5]. In other words, if we can obtain an ω(n logn) lower bound for circuits
with �log(n+ 1)� Negations, the same lower bound applies for general circuits.

� Supported in part by Scientific Research Grant, Ministry of Japan, 1609211 and
16300003.

R. Královič and P. Urzyczyn (Eds.): MFCS 2006, LNCS 4162, pp. 540–548, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Reductions for Monotone Boolean Circuits 541

The best lower bound for this type of circuits, however, is (5 + 1/3)n+ log(n+
1)/3−c for a two-output function (we can apply the lower bound on a circuit with
�log(n+1)�− 1 Negations for Parity in [18] to the lower bound on a circuit with
�log(n+1)� Negations for (Parity, ¬Parity).) and (7+1/3)n+log(n+1)/3−c for
an n-output function [18]. (iv) For general circuits (i.e., without any restriction
for the number of Negations), the best lower bound is still 5n− o(n) [12] [8] in
spite of the long history of research.

Looking at this series of facts, the challenging and somewhat realistic goal is
to attain nonlinear lower bounds for circuits of type (iii), for example, for the
circuit that negates all n inputs as mentioned above (which we call Inverter).
Towards this goal, this paper proposes an approach based on reduction which is
quite popular in many different contexts of complexity theory.

Our Contribution. In [5], Beals, Nishino and Tanaka studied Inverter. Reading
this paper carefully it turns out that if we can use only �log(n+ 1)� Negations,
then the way of using them is very restricted (this is the case not only for
Inverter but also for many others including (Parity, ¬Parity)), i.e., such circuit
includes monotone subcircuits which compute �log(n + 1)� different threshold
values with respect to the number of input one’s, in particular, one of them
must be a majority of n. This means, if we can prove some (e.g., nonlinear)
lower bound for monotone Majority, then that bound also applies for Inverter.
Thus proving lower bounds for Inverter can be reduced to proving (similar) lower
bounds for monotone circuits, which appears to be much easier.

We further extend this reduction approach. Let NLOG be the class of (pos-
sibly multi-output) Boolean functions which have a monotone upper bound of
O(n log n). Then f in NLOG is said to be Maj-Easy if f has a circuit C of size
o(n logn) with AND/OR gates of fan-in two and Majority gates of any fan-in.
(Recall that the cost of each AND/OR gate is one and the cost of each Major-
ity gate of fan-in r is r.) Now one can easily see that a conventional (without
Majority gates) nonlinear lower bound for monotone Majority (and therefore
the same lower bound for Inverter, too) is attained if we can find a monotone
Boolean function f such that f is Maj-Easy and f has a conventional monotone
lower bound of Ω(n log n).

Note that we already know that several Boolean functions do have a conven-
tional monotone lower bound of Ω(n logn), including Merge. So, we are done
if we could prove that Merge is Maj-Easy, which is exactly the question raised
at the beginning of this paper. Unfortunately, we can show that Merge is not
Maj-Easy. In fact we can prove a stronger result, Merge is not F -Easy for any
monotone Boolean function F of r inputs and up to r/ log r outputs (under the
similar definitions, see Sec. 2 for details). In other words, even if such an F -gate
is arbitrarily powerful, it does not help to reduce the complexity of Merge if its
cost is r and its output size is at most r/ log r.

Thus we have to seek other candidates. (Sort has also an Ω(n log n) lower
bound but it obviously does not help since Sort is more powerful than Merge.)
One candidate we show in this paper is what we call an approximated Sort that
is Maj-Easy (but is not known if it has an Ω(n logn) lower bound).

542 K. Iwama and H. Morizumi

Previous Work. Proving a superpolynomial lower bound for AND/OR/
Negation circuits that compute a particular NP language implies P	=NP. How-
ever, research towards this ultimate goal has not been very successful. Schnorr
first gave a nontrivial lower bounds of 2n using base B2 [17]. After a number of
improvements, Zwick gave a 4n lower bound for base U2 [23]. Some ten years
later, Lachish and Raz succeeded in improving this bound to 4.5n by using the
new Strongly-Two-Dependent function [12]. Iwama and Morizumi [8] raised this
to 5n by deeper analysis of [12], which is currently best. All those results are
based on the so-called gate-elimination method, which many people believe has
a clear limit of power for further improvement.

For monotone circuits, Razborov first proved a superpolynomial lower bound
for a circuit computing Clique [16], which was later improved to an exponen-
tial lower bound by Andreev [1]. By combining their proof technique and other
techniques, Amano and Maruoka obtained a superpolynomial lower bound for
circuits which can use at most (1/6) log logn Negation gates [3].

As mentioned before, Beals, Nishino and Tanaka studied the least amount of
Negations to compute all Boolean functions. Especially they showed, for Inverter,
a lower bound of 5n+ 3 log(n+ 1)− c and an upper bound of O(n log n) which
is conjectured optimal by them [5]. Their lower bound was improved to (7 +
1/3)n+ log(n+ 1)/3− c in [18]. [9] shows that for �log(n+ 1)�-Negation circuits
a 6n− log(n+ 1)− c lower bound can be proved by using the (Parity, ¬Parity)
function and an 8n− log(n+1)−c lower bound can be proved by using Inverter.
Interestingly, if the number of available Negations is less than �log(n+1)�, even
by one, the lower bound jumps. Shun and Tanaka proved an exponential lower
bound for (�log(n+ 1)� − 1)-Negation circuits. [19]

0-1 Sort, 0-1 Merge and Majority are all practically important and have a large
literature for their circuit realization. Majority can be constructed byO(n) AND/
OR/Negation gates (see e.g., Chap. 3.4 in [22]) and byO(n log n) AND/OR gates
by using the famous sorting network [2]. (Valiant gave a completely different con-
struction based on probabilistic method [21].) For its monotone lower bound, how-
ever, we have only linear ones. In 84, Dunne proved a 3.5n lower bound [6], and in
86, Long proved a 4n lower bound [11], but we did not have any further progress in
the last two decades. By contrast, we have tight lower bounds for Sort and Merge.
Lamagna and Savage [13] proved an Ω(n logn) lower bound for Sort. Pippenger
and Valiant [15] and Lamagna [10] proved independently Ω(n logn) lower bound
for Merge. Amano, Maruoka and Tarui [4] proved Θ(2an) for Merge in negation-
limited circuits with log logn− a Negations.

2 F -Easiness and Nonlinear Lower Bounds

In this paper, we mainly deal with the class, denoted by NLOG, of monotone
Boolean functions which have circuits of O(n log n) AND/OR gates of fan-in two.
One of such functions is MERGE(n,m) that is a collection of functions that merges
two presorted binary sequence x1 ≤ x2 ≤ · · · ≤ xn and xn+1 ≤ xn+2 ≤ · · · ≤ xm

into a sequence y1 ≤ y2 ≤ · · · ≤ ym. In this paper we discuss only MERGE(n, 2n).

Reductions for Monotone Boolean Circuits 543

Without otherwise stated, all circuits in this paper are also monotone. A
(monotone) circuit C is a directed acyclic diagram consisting of gates and links
as shown in Fig. 1. Each gate has input and output terminals. Each link connects
an output terminal to an input terminal, where no two links cannot go to a single
input terminal. Gates are associated with different types: An AND (similarly for
OR) gate has two input and one output terminals, an F -gate has r input and
r′ output terminals and computes the Boolean function F : {0, 1}r → {0, 1}r′

.
Different F -gates in the circuit may have different r/r′ values (i.e., different gate
sizes), but must compute the Boolean function of the same type. An input gate
has one output and no input terminals and is labeled by a variable in {x1, . . . , xn}
or a constant 0 or 1, and an output gate has one input and no output terminals
and is labeled by a variable in {y1, . . . , ym}.

Each gate has a cost. The cost of AND and OR gate is one, and that of an
F -gate is always r regardless of the function F . An input and output gate has
cost zero. The size of a circuit C is the sum of the costs of all gates in C. The
size measure is also used for a Boolean function f : sizeF (f) is the minimum
size of a circuit with AND/OR/F gates computing f . size(f) is the minimum
size of a circuit computing f in which only AND and OR gates can be used
(without F -gates). Thus NLOG can be written as a family of Boolean functions
f such that size(f) = O(n log n). Now we are ready to define F -Easy Boolean
functions; intuitively F -Easy functions are those functions for which F -gates are
substantially useful:

Definition 1. Let f be in NLOG and F be a monotone function. f is said to be
F -Easy if sizeF (f) is o(n log n). In particular, if F is Majority then f is called
Maj-Easy.

Now the next Theorem is immediate:

Theorem 1. Suppose that a function f is Maj-Easy and size(f) is Ω(n logn).
Then size(Majority) is ω(n).

Inverter is a Boolean function from {0, 1}n into {0, 1}n such that yi = ¬xi for
1 ≤ i ≤ n. A (not monotone) circuit C is said to be FewNOT if C uses at
most �log(n + 1)� Negation gates. sizeFewNOT (f) is the minimum number of
AND/OR/Negation gates that are needed to realize f by a FewNOT circuit.

Theorem 2. (Implicit in [5]).

size(Majority) ≤ sizeFewNOT (Inverter)

Thus in order to prove a nonlinear lower bound for the FewNOT size of Inverter,
it is enough to find a function f in NLOG such that f is Maj-Easy and size(f) =
Ω(n logn). Although details are omitted, Theorem 2 still holds if Majority is
replaced by LogThreshold which is a threshold function having logn output
gates T n

n/2, T
n
n/4(or T n

3n/4, controlled by extra input gates), T n
n/8(or T n

3n/8, T
n
5n/8,

T n
7n/8) and so on, and therefore Maj-Easy in the above sentence can also be

replaced by LogThreshold-Easy.

544 K. Iwama and H. Morizumi

3 Merge is Not F-Easy

Recall that Ω(n logn) lower bounds for size(f) are already known for some
functions f in NLOG including Sort and Merge. Hence, by Theorem 1, our goal
would be achieved if we could prove, for example, Merge is Maj-Easy. Unfor-
tunately this is not the case (and neither for Sort since Sort operates exactly
as Merge for the presorted inputs). In fact we can prove the following stronger
result:

x2 x3

y1 y2

o1

i2

o2

i3

o4

i5

o5

i6

o6

i7

F-gate

AND

input-gate

output-gate

x1

OR

Fig. 1. circuit

Theorem 3. For any monotone function F : {0, 1}r → {0, 1}r′
such that r′ ≤

r/ log r, MERGE(n, 2n) is not F -Easy.

To prove this theorem, we need several new definitions: We define vertex-disjoint
paths for both circuits and graphs. For an directed acyclic graph G = (V,E),
a path is a sequence v1v2 · · · vk of vertices such that (vi, vi+1) ∈ E for 1 ≤
i ≤ k − 1. Two paths v1v2 · · · vk and u1u2 · · ·ul are said to be vertex-disjoint
if {v1, v2, . . . , vk} ∩ {u1, u2, . . . , ul} = ∅. For a circuit C, a path is a sequence
of terminals u1v2u2v3 · · ·ukvk+1 such that u1, u2, . . . , uk are output terminals,
v2, v3, . . . , vk+1 are input terminals, vi and ui (2 ≤ i ≤ k) belong to the same
gate, and there is an link from ui to vi+1 (1 ≤ i ≤ k). Two paths are terminal-
disjoint if their terminals are disjoint. For example, o1i2o2i3 and o4i5o5i6o6i7 are
terminal-disjoint in Fig. 1.

For finite sets X and Y (|Y | ≥ |X |), let δ be a one-to-one mapping from X
into Y . We say that a graph G = (V,E) implements a mapping δ : X → Y if
the following is met: (i) X ⊆ V and Y ⊆ V . (ii) X ∩ Y = ∅, and (iii) there are
|X | vertex-disjoint paths from each x ∈ X to δ(x). For fixed X and Y , let M
be a set of one-to-one mappings from X into Y . Then G implements M if G
implements every mapping in M . Let X = {u1, . . . , un} and Y = {w1, . . . , w2n}.
Then mapping tj(0 ≤ j ≤ n) is defined as tj(ui) = wi+j . Let Tn = {t0, t1, . . . , tn}
(see Fig. 2). Then the following fact is known (see Corollary 2.2.2 in [15]).

Lemma 1. Suppose that a graph G = (V,E) implements Tn. Then |E| =
Ω(n logn).

Reductions for Monotone Boolean Circuits 545

u1 u2 un

w1 w2 wn w2n

t0

. . .

. . .

. . .

. . .

. . .

w1 wn+1 wn+2

tn

. . .

. . .

. . .

. . .

. . .

w1 wj+1 wj+n w2n

tj

. . .

. . .

. . .

..

wj+2 w2n

u1 u2 un u1 u2 un

Fig. 2. Tn

Now we consider an arbitrary circuit, denoted by Cn,2n, with AND/OR/F gates
which computes Merge(n, 2n). Recall that an F -gate has r input and r′ output
terminals and different F -gates may have different r/r′ values. Note that Cn,2n

has 2n input gates x1, . . . , x2n and 2n output gates y1, . . . , y2n, and let mapping
tj ; {x1, . . . , xn} → {y1, . . . , y2n} be defined exactly as before, i.e., tj(xi) = yi+j .

Lemma 2. For any 0 ≤ j ≤ n, Cn,2n has a set of n terminal-disjoint paths
from xi to tj(xi).

Proof. The following argument is similar to [15]. Suppose that j = 0. Then we
set x1 = · · · = xn = 0 and xn+1 = · · · = x2n = 1, which forces y1 = · · · = yn = 0
and yn+1 = · · · = y2n = 1. Now we change the value of xn from 0 to 1. Then
since Cn,2n is monotone, there must be at least one path P0 from xn to yn where
the value of all the (input and output) terminals on P0 changes from 0 to 1
according to this input change. Note that these values of the terminals on P0
will never change if we keep xn = xn+1 = · · · = x2n = 1.

(a) (b) (c)

Straight Cross

x2

y1 y2

x1

Fig. 3. switching gate

Fig. 4. replacement of switching gates

546 K. Iwama and H. Morizumi

We next change the value of xn−1 from 0 to 1, by which the value of yn−1
changes from 0 to 1. Then there must be at least one new path P1 from xn−1
to yn−1 such that all the terminal values on P1 change from 0 to 1 and P0 and
P1 are terminal-disjoint. (Otherwise, i.e., if all the new paths intersect with P0,
then the value of yn−1 should have been changed to 1 when xn was changed from
0 to 1 in the previous step.) Similarly, by changing the value of xn−2 from 0 to
1, we can create another new path P2 which does not intersect P0 or P1, and so
on. Thus there are terminal-disjoint paths P0, . . . , Pn from xn to yn (= t0(xn)),
. . ., x1 to y1 (= t0(x1)), respectively.

For j = 1, we can repeat the same argument by initially setting x1 = · · · =
xn+1 = 0 and xn+2 = · · · = x2n = 1. Similarly for j = 2, 3, . . . , n. �

Lemma 3. Suppose that every F -gate of r input and r′ output terminals in
Cn,2n satisfies that r′ ≤ r/ log r and that the size of Cn,2n is s. Then there exists
a graph Gn,2n = (V,E) such that Gn,2n implements Tn and |E| = c · s for some
constant c.

Proof. We consider a so-called permutation network, denoted by Πr,r′ , from r
inputs to r′ outputs in which we can use only switching gates. (In this paper
we assume r′ ≤ r.) As shown in Fig. 3 (a), a switching gate has two input
terminals x1 and x2, two output terminals y1 and y2 and two states called
Straight and Cross. As shown in Fig. 3 (b) ((c),resp.) if the state is Straight
(Cross, resp.) (y1, y2) is connected to (x1, x2) ((x2, x1), resp.). Πr,r′ must realize
every permutation between any size-r′ subset of the inputs and the set of outputs
by setting the state of each switching gate appropriately. By the method of [14],
we can construct Πr,r′ by using O(r + r′ log r′) switching gates.

Now we construct the graph Gn,2n from the circuit Cn,2n as follows. Each
AND/OR gate of Cn,2n is replaced by a vertex of in-degree two. Each F -gate is
replaced by Πr,r′ and then each switching gate in Πr,r′ is replaced by the graph
with four vertices as shown in Fig. 4, which creates O(r) edges since r′ ≤ r/ log r.
Therefore the number of edges in the whole resulting graph Gn,2n is at most c ·s
for some constant c since the size of the original Cn,2n is s. By Lemma 2, the
original Cn,2n has n terminal-disjoint paths from xi to tj(xi), which define a
one-to-one mapping for each F -gate, from some subset of its input terminals
to its output terminals. This mapping is realized by some permutation of the
replaced Πr,r′ and it is not hard to see that the permutation defines a set of
vertex-disjoint paths in the graph obtained by the replacement of Fig. 4. Thus
the original terminal-disjoint paths are transformed into n vertex-disjoint paths
in Gn,2n, namely, it implements Tn. �

Proof of Theorem 3. Suppose for contradiction that MERGE(n, 2n) is F -Easy.
By definition, there is a circuit Cn,2n which satisfies the condition of Lemma 3
and whose size is o(n logn). Then Lemma 3 implies that there is a graph G =
(V,E) which implements Tn and |E| = o(n log n), contradicting to Lemma 1. �

Reductions for Monotone Boolean Circuits 547

4 Concluding Remarks

Thus we need to seek another function towards our goal. One such candidate is
what we call d-Approximated Sort defined as follows:

Definition 2. Let (y1, . . . , yn) = f(x1, . . . , xn) be a Boolean function and let
m be the number of input one’s and m′ be output one’s. Then f is called d-
Approximated Sort if y1 ≤ y2 ≤ . . . ≤ yn and |m−m′| ≤ n/d.

o(logn)-Approximated Sort is Maj-Easy for the following reason: (i) We can
compute the n-input threshold function of any specific threshold value by using
2n-input Majority by setting {0, 1}’s to the extra n inputs appropriately. (ii) Let
d = o(logn). Then d-Approximated Sort can be constructed by using d n-input
threshold functions whose d threshold values distribute evenly between 0 and n.
At this moment, we do not have any nontrivial lower bounds for its size.

Acknowledgments. The first author would like to thank Mike Paterson for
valuable comments.

References

1. A. E. Andreev. On a Method for Obtaining Lower Bounds for the Complexity of
Individual Monotone Functions. Sov. Math. Doklady 31(3), pp. 530–534, 1985.

2. M. Ajtai, J. Komlós and E. Szemerédi. An O(n log n) Sorting Network. Proc. 15th
STOC, pp. 1–9, 1983.

3. K. Amano and A. Maruoka. A Superpolynomial Lower Bound for a Circuit Com-
puting the Clique Function with at most (1/6) log log n Negation Gates. SIAM J.
Comput. 35(1), pp. 201–216, 2005.

4. K. Amano, A. Maruoka and J. Tarui. On the Negation-Limited Circuit Complexity
of Merging. Discrete Applied Mathematics 126(1), pp. 3–8, 2003.

5. R. Beals, T. Nishino and K. Tanaka. On the Complexity of Negation-Limited
Boolean Networks. SIAM J. Comput. 27(5), pp. 1334–1347, 1998.

6. P. E. Dunne. Lower Bound on the Monotone Network Complexity of Threshold
Functions. Proc. 22nd Ann. Allerton Conf. on Communication, Control and Com-
puting, pp. 911–920, 1984.

7. D. Harnik and R. Raz. Higher Lower Bounds on Monotone Size. Proc. 32th STOC,
pp. 378–387, 2000.

8. K. Iwama and H. Morizumi. An Explicit Lower Bound of 5n − o(n) for Boolean
Circuits. Proc. 27th MFCS, pp. 353–364, 2002.

9. K. Iwama, H. Morizumi and J. Tarui. Lower Bounds on the Negation-Limited
Circuit Complexity. manuscript, 2006.

10. E. A. Lamagna. The Complexity of Monotone Networks for Certain Bilinear Forms,
Routing Problems, Sorting, and Merging. IEEE Trans. Computers 28(10), pp. 773–
782, 1979.

11. D. Long. The Monotone Circuit Complexity of Threshold Functions. Unpublished
manuscript, University of Oxford, 1986.

12. O. Lachish and R. Raz. Explicit Lower Bound of 4.5n− o(n) for Boolean Circuits.
Proc. 33th STOC, pp. 399–408, 2001.

548 K. Iwama and H. Morizumi

13. E. A. Lamagna and J. E. Savage. Combinational Complexity of Some Monotone
Functions. Proc. 15th Ann. IEEE Symp. on Switching and Automata Theory,
pp. 140–144, 1974.

14. A. Y. Oruç. A Study of Permutation Networks: New Designs and Some General-
izations. J. Parallel Distrib. Comput. 22(2), pp. 359–366, 1994.

15. N. Pippenger and L. G. Valiant. Shifting Graphs and Their Applications. J. ACM
23(3), pp. 423–432, 1976.

16. A. A. Razborov. Lower Bounds on the Monotone Complexity of Some Boolean
Functions. Sov. Math. Doklady 31, pp. 354–357, 1985.

17. C. Schnorr. Zwei lineare untere Schranken f
··
ur die Komplexit

··
at Boolescher Funk-

tionen. Computing 13, pp. 155–171, 1974.
18. S. C. Sung and K. Tanaka. Lower Bounds on Negation-Limited Inverters. Proc.

2nd DMTCS, pp. 360–368, 1999.
19. S. C. Sung and K. Tanaka. An Exponential Gap with the Removal of One Negation

Gate. Inf. Process. Lett. 82(3), pp. 155–157, 2002.
20. K. Tanaka, T. Nishino and R. Beals. Negation-Limited Circuit Complexity of Sym-

metric Functions. Inf. Process. Lett. 59(5), pp. 273–279, 1996.
21. L. G. Valiant. Short Monotone Formulae for the Majority Function. J. Algorithms

5(3), pp. 363–366, 1984.
22. I. Wegener. The Complexity of Boolean Functions. Wiley-Teubner Series in Com-

puter Science, 1987.
23. U. Zwick. A 4n Lower Bound on the Combinatorial Complexity of Certain Sym-

metric Boolean Functions over the Basis of Unate Dyadic Boolean Functions. SIAM
J. Comput. 20, pp. 499–505, 1991.

Generalised Integer Programming Based on Logically
Defined Relations

Peter Jonsson� and Gustav Nordh��

Department of Computer and Information Science,
Linköpings Universitet S-581 83 Linköping, Sweden

{petej, gusno}@ida.liu.se

Abstract. Many combinatorial optimisation problems can be modelled as inte-
ger linear programs. We consider a class of generalised integer programs where
the constraints are allowed to be taken from a broader set of relations (instead
of just being linear inequalities). The set of allowed relations is defined using
a many-valued logic and the resulting class of relations have provably strong
modelling properties. We give sufficient conditions for when such problems are
polynomial-time solvable and we prove that they are APX-hard otherwise.

1 Introduction

Combinatorial optimisation problems can often be formulated as integer programs. In
its most general form, the aim in such a program is to assign integers to a set of variables
such that a set of linear inequalities are satisfied and a linear goal function is maximised.
That is, one wants to solve the optimisation problem

max cTx
Ax ≥ b
x ∈ Nn

whereA is anm×n rational matrix, b is a rationalm-vector, and c is a rational n-vector.
It is widely acknowledged that many real-world problems can be conveniently captured
by integer programs. In its general form, integer programming is NP-complete to solve
exactly [4].

Many restricted variants of the integer programming problem are still fairly expres-
sive and have gained much attention in the literature. One such restriction is to restrict
x such that x ∈ {0, 1}n. This problem, commonly called MAXIMUM 0-1 PROGRAM-
MING, is still very hard, in fact it is NPO-complete [9]. Another common restriction
is to only allow c to contain non-negative values. Under these restrictions, the com-
plexity and approximability of MAXIMUM 0-1 PROGRAMMING is very well-studied,
cf. [3,10]. In fact, much is known even if the constraints imposed by the inequality
Ax ≥ b are replaced by other types of constraints. For instance, MAX ONES is MAX-
IMUM 0-1 PROGRAMMING with non-negative weights and arbitrary constraints over

� Partially supported by the Center for Industrial Information Technology (CENIIT) under grant
04.01, and by the Swedish Research Council (VR) under grant 621-2003-3421.

�� Supported by the National Graduate School in Computer Science (CUGS), Sweden.

R. Královič and P. Urzyczyn (Eds.): MFCS 2006, LNCS 4162, pp. 549–560, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

550 P. Jonsson and G. Nordh

{0, 1}. The approximability of MAX ONES has been completely classified for every set
Γ of allowed constraints over {0, 1} [10].

In this paper, we consider a class of generalised integer programming problems
where the variable domains are finite (but not restricted to be 2-valued); and the con-
straints are allowed to be taken from a set of logically defined relations. The set of
relations that we consider is based on regular signed logic [6], where the underlying
finite domain is a totally-ordered set of integers {0, . . . , d}. This logic provides us
with convenient concepts for defining a class of relations with strong modelling ca-
pabilities. Jeavons and Cooper [8] have proved that any constraint can be expressed
as the conjunction of expressions over this class of relations. A disadvantage with
their approach is that the resulting set of constraints may by exponentially large (in
the number of tuples in the constraint to be expressed). An improved algorithm solv-
ing the same problem has been given by Gil et al. [5]. It takes a constraint/relation
represented by the set of all assignments/tuples that satisfies it and outputs in poly-
nomial time (in the number of tuples) an expression that is equivalent to the original
constraint.

The complexity of reasoning within this class of logically defined relations has been
considered before in, for example, [2,8]. However, optimisation within this framework
has not been considered earlier. To make the presentation simpler, let MAX SOL denote
the maximisation problem restricted to positively weighted objective functions, MIN

SOL denote the minimisation version of MAX SOL, and let MAX AW SOL denote the
problem without restrictions on the weights (here, AW stands for arbitrary weights).
The reader is referred to Section 2 for exact definitions.

LetR denote the class of relations that can be defined by the regular signed logic. Our
aim is to, given a subset Γ of R, classify the complexity of the optimisation problem
when the constraints are restricted to relations in Γ . Thus, we parameterise our prob-
lems according to the allowed relations and we denote the restricted problems MAX

SOL(Γ), MIN SOL(Γ), and MAX AW SOL(Γ).
Our main results are: For these three problems, we give sufficient conditions for

when they are polynomial-time solvable and we prove that they are APX-hard other-
wise. We also show that the tractable fragments can be efficiently recognised. When a
problem is APX-hard, then there is a constant c such that the problems cannot be ap-
proximated in polynomial time within c− ε for any ε > 0 unless P=NP. A direct con-
sequence is that these problems do not admit polynomial-time approximation schemes.
This kind of dichotomy results are important in computational complexity since they
can be seen as exceptions to Ladner’s [11] result; he proved that there exists an infinite
hierarchy of increasingly difficult problems between P and the NP-complete problems.
Thus, the existence of a complexity dichotomy for a class of problems cannot be taken
for granted.

There has been much research on combining integer (linear) programming and logic/
constraint programming in order to benefit from strengths of the respective areas
(cf. [7,14]). One approach is to increase the modeling power of integer (linear) pro-
gramming by allowing models to contain logic formulas. Our work can be seen as a
crude estimation for the price, in terms of computational complexity, that comes with
the additional expressive power of such an approach. Our results can also be seen as a

Generalised Integer Programming Based on Logically Defined Relations 551

first step towards extending the approximability classification for MAX ONES in [10]
to non-Boolean domains. One of the observations of [10] was that none of the (infi-
nite number) of combinatorial optimisation problems captured by MAX ONES have a
polynomial time approximation scheme (unless P=NP). Our results strongly indicates
that the situation remains the same for MAX ONES generalised to arbitrary finite do-
mains. Our work also complement the recent dichotomy result due to Creignou et al. [2]
for the decision version (decide whether there is a solution at all) of exactly the same
framework that we study in this paper.

Our results are to a certain extent based on recent algebraic methods for studying
constraint satisfaction problems. The use of algebraic techniques for studying such
problems has made it possible to clarify the borderline between polynomial-time solv-
able and intractable cases. Both our tractability and hardness results exploit algebraic
techniques – typically, we prove a restricted base case and then extend the result to
its full generality via algebraic techniques. To this end, we introduce the concept of
max-cores (which is a variant of the algebraic and graph-theoretic concept core).

The paper is structured as follows: Section 2 contains some basic definitions of con-
straint satisfaction and logical methods for constructing constraint languages. Section 3
presents the methods used for proving the results and the main results for the three
problems are presented in Sections 4 and 5. Finally, some concluding remarks are given
in Section 6. Due to space limitations, many proofs have been omitted1.

2 Integer Programming and Logic

We begin by presenting the constraint satisfaction problem and how it is connected with
integer programming. We continue by showing how logics can be used for defining
relations suited for integer programming.

We define constraint satisfaction as follows: Let the domain D = {0, 1, . . . , d} be
equipped with the total order 0 < 1 < . . . < d. The set of all n-tuples of elements
from D is denoted by Dn. Any subset of Dn is called an n-ary relation on D. The set
of all finitary relations over D is denoted by RD. A constraint language over D is a
finite set Γ ⊆ RD. Given a relation R, we let ar(R) denote the arity of R. Constraint
languages are the way in which we specify restrictions on our problems. The constraint
satisfaction problem over the constraint language Γ , denoted CSP(Γ), is defined to be
the decision problem with instance (V,D,C), where V is a set of variables, D is a
domain, and C is a set of constraints {C1, . . . , Cq}, in which each constraint Ci is a
pair (&i, si) with si a list of variables of length mi, called the constraint scope, and &i

an mi-ary relation over the set D, belonging to Γ , called the constraint relation.
The question is whether there exists a solution to (V,D,C) or not, that is, a function

from V to D such that, for each constraint in C, the image of the constraint scope is
a member of the constraint relation. The optimisation problem we are going to study,
MAX SOL, can then be defined as follows:

Definition 1. Weighted Maximum Solution over the constraint language Γ , denoted
MAX SOL(Γ), is defined to be the optimisation problem with

1 A full version of the paper can be found at: www.ida.liu.se/∼gusno/MFCS06L.pdf

552 P. Jonsson and G. Nordh

Instance: Tuple (V,D,C,w), where (V,D,C) is a CSP instance over Γ , andw : V →
N is a weight function.

Solution: An assignment f : V → D to the variables such that all constraints are
satisfied.

Measure:
∑

v∈V

w(v) · f(v)

We will also consider the analogous minimisation problem MIN SOL and the problem
MAX AW SOL where the weights are arbitrary, i.e., not assumed to be non-negative.
By choosing Γ appropriately, many integer programming problems can be modelled
by using these problems. For instance, the well-known problem INDEPENDENT SET

(where the objective is to find an independent set of maximum weight in an undirected
graph) can be viewed as the MAX SOL({(0, 0), (0, 1), (1, 0)} problem. Sometimes we
will consider problems restricted to instances where each variable may occur at most
k times, denoted MAX SOL(Γ)-k. Next, we consider a framework based on regular
signed logic for expressing constraint languages using logic which was introduced by
Creignou et al. in [2].

Let V be a set of variables. For x ∈ V and a ∈ D, the inequalities x ≥ a and
x ≤ a are called positive and negative literals, respectively. A clause is a disjunction of
literals. A clausal pattern is a multiset of the form P = (+a1, . . . ,+ap,−b1, . . . ,−bq)
where p, q ∈ N and ai, bi ∈ D for all i. The pattern P is said to be negative if p = 0
and positive if q = 0. The sum p+ q, also denoted |P |, is the length of the pattern.

A clausal language L is a set of clausal patterns. Given a clausal language L, an
L-clause is a pair (P,x), where P ∈ L is a pattern and x is a vector of not nec-
essarily distinct variables from V such that |P | = |x|. A pair (P,x) with a pattern
P = (+a1, . . . ,+ap,−b1, . . . ,−bq) and variables x = (x1, . . . , xp+q) represents the
clause (x1 ≥ a1 ∨ . . . ∨ xp ≥ ap ∨ xp+1 ≤ b1 ∨ . . . ∨ xp+q ≤ bq), where ∨ is the dis-
junction operator. An L-formula ϕ is a conjunction of a finite number of L-clauses. An
assignment is a mapping I : V → D assigning a domain element I(x) to each variable
x ∈ V and I satisfies ϕ if and only if (I(x1) ≥ a1 ∨ . . . ∨ I(xp) ≥ ap ∨ I(xp+1) ≤
b1 ∨ . . . ∨ I(xp+q) ≤ bq) holds for every clause in ϕ. It can be easily seen that the
literals +0 and −d are superfluous since the inequalities x ≥ 0 and x ≤ d vacuously
hold. Without loss of generality, it is sufficient to only consider patterns and clausal
languages without such literals. We see that clausal patterns are nothing more than a
convenient way of specifying certain relations – consequently, we can also use them
for defining constraint languages. Thus, we make the following definitions: Given a
clausal language L and a clausal pattern P = (+a1, . . . ,+ap,−b1, . . . ,−bq), we let
Rel(P) denote the corresponding relation, i.e., Rel(P) = {x ∈ Dp+q | (P,x) hold}
and ΓL = {Rel(P) | P ∈ L}.

It is easy to see that several well studied optimisation problems are captured by this
framework.

Example 2. Let the domain D be {0, 1}, then MAX SOL((−0,−0)) is exactly MAX-
IMUM INDEPENDENT SET, and MIN SOL((+1,+1)) is exactly MINIMUM VERTEX

COVER.

Generalised Integer Programming Based on Logically Defined Relations 553

3 Methods

3.1 Approximability and Reductions

A combinatorial optimisation problem is defined over a set I of instances (admissible
input data); each instance I ∈ I has a finite set sol(I) of feasible solutions associated
with it. The objective is, given an instance I , to find a feasible solution of optimum value
with respect to some measure function m : I × sol(I) → N. The optimal value is the
largest one for maximisation problems and the smallest one for minimisation problems.
A combinatorial optimisation problem is in NPO if its instances and solutions can be
recognised in polynomial time, the solutions are polynomially-bounded in the input
size, and the measure function can be computed in polynomial time (see, e.g., [1]).

We say that a solution s ∈ sol(I) to an instance I of an NPO problem Π is r-

approximate if it is satisfying max
{

m(I,s)
OPT(I) ,

OPT(I)
m(I,s)

}
≤ r, where OPT(I) is the optimal

value for a solution to I . An approximation algorithm for an NPO problem Π has
performance ratio R(n) if, given any instance I of Π with |I| = n, it outputs an
R(n)-approximate solution.

Let PO denote the class of NPO problems that can be solved (to optimality) in poly-
nomial time. An NPO problem Π is in the class APX if there is a polynomial-time
approximation algorithm for Π whose performance ratio is bounded by a constant.
Completeness in APX is defined using a reduction called AP -reduction [3,10]. An
NPO problem Π is APX-hard if every problem in APX is AP -reducible to it. If, in
addition, Π is in APX, then Π is called APX-complete. It is well-known (and not dif-
ficult to prove) that every APX-hard problem is NP-hard. In our proofs it will be more
convenient for us to use another type of approximation-preserving reduction called L-
reduction [1].

Definition 3. An NPO problem Π1 is said to be L-reducible to an NPO problem Π2
if two polynomial-time computable functions F and G and positive constants β and γ
exist such that

(a) given any instance I of Π1, algorithm F produces an instance I ′ = F (I) of Π2,
such that the measure of an optimal solution for I ′, OPT(I ′), is at most β · OPT(I);

(b) given I ′ = F (I), and any solution s′ to I ′, algorithm G produces a solution s to
I such that |m1(I, s) − OPT(I)| ≤ γ · |m2(I ′, s′) − OPT(I ′)|, where m1 is the
measure function for Π1 and m2 is the measure function for Π2.

A well-known fact (see, e.g., Lemma 8.2 in [1]) is that if Π1 is L-reducible to Π2
and Π1 ∈ APX then there is an AP -reduction from Π1 to Π2. Hence, when proving
APX-hardness results we can use L-reductions instead of AP -reductions as long as the
problem we are reducing from is in APX. It is well-known (cf. [1, Corr. 3.13]) that if
P 	= NP, then no APX-complete problem can have a PTAS.

3.2 Algebraic Framework

An operation on D is an arbitrary function f : Dk → D. Any operation on D can be
extended in a standard way to an operation on tuples over D, as follows: Let f be a k-
ary operation onD and letR be an n-ary relation overD. For any collection of k tuples,

554 P. Jonsson and G. Nordh

t1, t2, . . . , tk ∈ R, the n-tuple f(t1, t2, . . . , tk) is defined as follows: f(t1, . . . , tk) =
(f(t1[1], . . . , tk[1]), . . . , f(t1[n], . . . , tk[n])) where tj [i] is the i-th component in tuple
tj . If f is an operation such that for all t1, t2, . . . , tk ∈ R f(t1, t2, . . . , tk) ∈ R, then
R is said to be invariant under f . If all constraint relations in Γ are invariant under f
then Γ is invariant under f . An operation f such that Γ is invariant under f is called a
polymorphism of Γ . The set of all polymorphisms of Γ is denoted Pol(Γ). Given a set
of operations F , the set of all relations that is invariant under all the operations in F is
denoted Inv(F). Sets of operations of the form Pol(Γ) are known as clones, and they
are well-studied objects in algebra (cf. [12]).

A first-order formula ϕ over a constraint language Γ is said to be primitive positive
(or pp-formula for short) if it is of the form ∃x : (R1(x1) ∧ . . . ∧ Rk(xk)) where
R1, . . . , Rk ∈ Γ and x1, . . . ,xk are vectors of variables such that ar(Ri) = |xi| for all
i. Note that a pp-formula ϕ with m free variables defines an m-ary relation R ⊆ Dm,
denotedR ≡pp ϕ; the relation R is the set of all m-tuples satisfying the formula ϕ.

We define a closure operation 〈·〉 such that R ∈ 〈Γ 〉 if and only if the relation R can
be obtained from Γ by pp-formulas. The following lemma states that MAX SOL over
finite subsets of 〈Γ 〉 is no harder than MAX SOL over Γ itself. The lemma provides
a strong approximation preserving reduction (sometimes called S-reduction) which is
simultaneously an AP - and L-reduction and preserves membership in approximations
classes such as PO and APX.

Lemma 4. Let Γ and Γ ′ be finite constraint languages such that Γ ′ ⊆ 〈Γ 〉. If MAX

SOL(Γ) is in PO, then MAX SOL(Γ ′) is in PO and if MAX SOL(Γ ′) is APX-hard then
MAX SOL(Γ) is APX-hard.

Proof. We give an approximation preserving reduction from MAX SOL(Γ ′) to MAX

SOL(Γ). Consider an instance I = (V,D,C,w) of MAX SOL(Γ ′). We transform I
into an instance F (I) = (V ′, D,C′, w′) of MAX SOL(Γ). For every constraint C =
(R, (v1, . . . , vm)) in I , R can be represented as

∃vm+1 , . . . ,∃vn : R1(v11, . . . , v1n1) ∧ · · · ∧Rk(vk1, . . . , vknk
)

where R1, . . . , Rk ∈ Γ ∪ {=D}, vm+1, . . . , vn are fresh variables, and v11, . . . , v1n1 ,
v21, . . . , vknk

∈ {v1, . . . , vn}. Replace the constraint C with the constraints (R1, (v11,
. . . , v1n1)), . . . , (Rk, (vk1, . . . , vknk

)), add vm+1, . . . , vn to V , and extend w so that
vm+1, . . . vn are given weight 0. If we repeat the same reduction for every constraint in
C it results in an equivalent instance of MAX SOL(Γ ∪ {=D}).

Each equality constraint can be removed by identifying variables that are forced to
be equal, replacing them with a single variable, and updating the weight function w
accordingly. The resulting instance F (I) = (V ′, D,C′, w′) of MAX SOL(Γ) has the
same optimum as I (i.e., OPT(I) = OPT(F (I))) and can be obtained in polynomial
time. Now, given a feasible solution s′ for F (I), let G(I, s′) be the feasible solution
for I where: The variables in I assigned by s′ inherit their value from s′; the variables
in I which are still unassigned all occur in equality constraints and their values can
be found by simply propagating the values of the variables which have already been
assigned. It should be clear thatm(I,G(I, s′)) = m(F (I), s′) for any feasible solution
s′ for F (I). Hence, the functions F and G, as described above, is an approximation
preserving reduction from MAX SOL(Γ ′) to MAX SOL(Γ). �

Generalised Integer Programming Based on Logically Defined Relations 555

The lemma above obviously holds also for MIN SOL and MAX AW SOL. Also note
the following consequence: if Γ and Γ ′ are finite constraint languages such that 〈Γ ′〉 =
〈Γ 〉, then MAX SOL(Γ) is APX-hard (in PO) if and only if MAX SOL(Γ ′) is APX-hard
(in PO).

The next lemma simplifies some of the forthcoming proofs and its proof is easy.

Lemma 5. Let P = (+a1,+a2, . . . ,+ap,−b1, . . . ,−bq) and P1 = (+a1,+ min{a2,
. . . , ap},−b1, . . . ,−bq). Then, APX-hardness of MAX SOL(ΓP1) implies the APX-
hardness of MAX SOL(ΓP). Similarly, if P2 = (+a1, . . . ,+ap,−b1,−max{b2, . . . ,
bq}), then APX-hardness of MAX SOL(ΓP2) implies APX-hardness of MAX SOL(ΓP).
The same results also holds for MIN SOL and MAX AW SOL.

For a relation R = {(d11, . . . , d1m), . . . , (dt1, . . . , dtm)} and a unary operation f ,
let f(R) denote the relation {(f(d11), . . . , f(d1m)), . . . , (f(dt1), . . . , f(dtm))}. Simi-
larly, let f(Γ) denote the constraint language {f(R) | R ∈ Γ}.

Lemma 6. Let Γ be a finite constraint language over D and f a unary operation in
Pol(Γ) such that f(d) ≥ d for all d ∈ D. If MAX SOL(f(Γ)) is APX-complete, then
MAX SOL(Γ) is APX-hard, and if MAX SOL(f(Γ)) is in PO, then so is MAX SOL(Γ).

Proof. We prove that MAX SOL(f(Γ)) is L-reducible to MAX SOL(Γ). Given an in-
stance I = (V,D,C,w) of MAX SOL(f(Γ)) we let F (I) = (V,D′, C′, w) be the
instance of MAX SOL(Γ) where every constraint relation f(Ri) occurring in a con-
straint Ci ∈ C has been replaced by Ri. Given a solution s′ of F (I), let G(I, s′) be
the solution s of I where s(x) = f(s′(x)) for each variable x. Since f ∈ Pol(Γ) and
f(d) ≥ d for all d ∈ D, we have that OPT(I) = OPT(F (I)) and OPT(I)−m(G(I, s′) ≤
OPT(F (I)) −m(s′). As for the other direction, we can give a reduction similar to the
one above from MAX SOL(Γ) to MAX SOL(f(Γ)) mapping optimal solutions back to
optimal solutions. Hence, if MAX SOL(f(Γ)) is in PO, then so is MAX SOL(Γ). �
The concept of a core of a constraint language Γ has previously shown its value when
classifying the complexity of CSP(Γ). We define a related concept for MAX SOL(Γ)
and call it max-core.

Definition 7. A constraint language Γ is a max-core if and only if there is no non-
injective unary operation f in Pol(Γ) such that f(d) ≥ d for all d ∈ D. A constraint
language Γ ′ is a max-core of Γ if and only if Γ ′ is a max-core and Γ ′ = f(Γ) for some
unary operation f ∈ Pol(Γ) such that f(d) ≥ d for all d ∈ D.

The next lemma follows directly from Lemma 6.

Lemma 8. If Γ ′ is a max-core of Γ and if MAX SOL(Γ ′) is APX-complete, then MAX

SOL(Γ) is APX-hard and if MAX SOL(Γ ′) is in PO then so is MAX SOL(Γ).

4 Approximability of MAX SOL

In this section present sufficient conditions for when MAX SOL is tractable and prove
that it is APX-hard otherwise. To do so, we need a family of operations maxu : D2 →
D, u ∈ D, defined such that

maxu(a, b) =
{
u if max(a, b) ≤ u
max(a, b) otherwise

556 P. Jonsson and G. Nordh

Theorem 9. MAX SOL(ΓL) is tractable if ΓL is invariant under maxu for some u ∈
D. Otherwise, MAX SOL(ΓL) is APX-hard.

We divide the proof into three parts which can be found in Sections 4.1-4.3.

4.1 Tractability Result

Before we can prove the tractability of MAX SOL(Inv(maxu)), we need to introduce
some terminology: Let x = (x1, . . . , xr) be a list of r variables and let (R,x) be a
constraint on x. For any sublist x′ = (xi1 , . . . xik

) of x, define the projection of (R,x)
onto x′, denoted πx′(R,x), as follows: πx′(R,x) = {assignments to (xi1 , . . . , xik

) |
(R, (x1, . . . , xr)) has a solution)}. A CSP instance is said to be pair-wise consistent
if for any pair of constraints (R,x), (R′,y), πx∩y((R,x)) = πx∩y((R′,y)).

Lemma 10. If ΓL is invariant under maxu for some u ∈ D, then MAX SOL(ΓL) is in
PO.

Proof. We begin by observing that if ΓL is invariant under maxu, then ΓL is also invari-
ant under the unary operation u(x) = maxu(x, x) (satisfying the condition u(x) ≥ x).
Hence, by Lemma 6, MAX SOL(ΓL) is in PO if MAX SOL(Γ ′L) is in PO where
u(ΓL) = Γ ′L. Now, Γ ′L contains no tuple with an element a < u and hence Γ ′L is
invariant under max (since it is invariant under maxu and maxu acts as max on ele-
ments ≥ u). Hence, it is sufficient to give a polynomial-time algorithm solving MAX

SOL(Γ ′L) for max-closed constraint languages Γ ′L. This algorithm is a straightforward
modification of the polynomial-time algorithm for CSP(Inv(maxD)) presented in [8].

Let I = (V,D,C,w) be an instance of MAX SOL(Γ ′L). Assume I to be pair-wise
consistent. If I contains the empty constraint, then I has no solution. Otherwise, define
f : V → D such that f(xi) = max{π(xi)((R,x)) | (R,x) ∈ C}, i.e., f assigns to each
variable the maximum value it is allowed by any constraint. We claim that this f is a so-
lution to I . Consider any constraint (R,x) where, say for simplicity, x = (x1, . . . , xr).
For each variable xj , we must have some tuple ti ∈ R such that ti[j] = f(xj) by
pair-wise consistency and the choice of f . Since R is closed under max, the maximum
of all these tuples belong to R. This maximum tuple equals (f(x1), . . . , f(xr)) and f
satisfies the constraint.

Assume now that there exists a function f ′ : V → D such that f ′ satisfies all
constraints in C and

∑n
i=1 w(xi) · f ′(xi) >

∑n
i=1 w(xi) · f(xi). Since w(xi) ≥ 0 for

every xi ∈ V , this implies that there exists at least one variable xi such that f ′(xi) >
f(xi). However, this is impossible by the choice of f .

To conclude the proof, f can be constructed in O(|C|2a2) time (where a is the max-
imum arity of the constraints in C) by Corollary 4.3 in [8]. �

4.2 APX-Hardness Results

We will show that whenever P is a negative pattern containing at least two literals, then
MAX SOL(Rel(P)) is APX-hard. We begin by presenting an APX-hardness result for
the pattern (−0,−1) over the domainD = {0, 1, 2}. The reduction is based on the well
known APX-complete maximisation problem MAX-E3SAT-5:

Generalised Integer Programming Based on Logically Defined Relations 557

Instance: Set U of variables, collection C of disjunctive clauses containing exactly 3
literals each, and where each variable occurs at most 5 times.

Solution: A truth assignment for U .
Measure: Number of clauses satisfied by the truth assignment.

Lemma 11. Let D = {0, 1, 2} and r = {(x, y) ∈ D2 | x ≤ 0 ∨ y ≤ 1}, Then, MAX

SOL(r)-11 is APX-complete.

Proof. Membership in APX follows from the fact that the all-1 assignment is a 2-
approximation. We prove APX-hardness by giving a L-reduction (with β = 14 and
γ = 1) from MAX-E3SAT-5 to MAX SOL(r). The reduction relies on the following
‘gadget’: Let V = {A,B,C, a, b, c} be a set of variables and impose the following
constraints:

r(A,B), r(B,C), r(C,A), r(A, a), r(B, b), r(C, c).

One can see that max{
∑

v∈V M(v) | M is a satisfying assignment} = 7 and the opti-
mum appears if and only if exactly one of A,B,C is assigned the value 2.

Let I be an arbitrary MAX-E3SAT-5 instance with m clauses C1, . . . , Cm. Construct a
MAX SOL(r) instance F (I) = (X,D,C,w) as follows:

X = {X1
1 , X

1
2 , X

1
3 , x

1
1, x

1
2, x

1
3, . . . , X

m
1 , X

m
2 , X

m
3 , x

m
1 , x

m
2 , x

m
3 },

w(x) = 1 for all x ∈ X , and introduce a gadget on X i
1, X

i
2, X

i
3, x

i
1, x

i
2, x

i
3 (as defined

above) for each clause Ci = {li1, li2, li3}. Finally, the clauses are connected by adding
the constraints r(X i

j , X
i′
j′) and r(X i′

j′ , X i
j) whenever lij = ¬li′

j′ .
By well-known arguments, at least half of the clauses in an instance of MAX-E3SAT-

5 can be satisfied so m ≤ 2OPT(I). We also know that OPT(F (I)) ≤ 7m since each
gadget corresponding to a clause contributes at most 7 to the measure of any solution
to F (I). It follows that OPT(F (I)) ≤ 14 · OPT(I) and we can choose β = 14.

Now, given F (I) and a solution s to F (I), let s′ = G(F (I), s) be the solution to I
(the instance of MAX-3SAT) defined as follows: s′(x) = true if there exists a literal
lij = x and s(X i

j) = 2, s′(x) = false if there exists a literal lij = ¬x and s(X i
j) = 2,

and s′(x) = false for all other variables x. First we note that s′(x) is well-defined; any
two contradictory literals are prevented from being assigned the same truth value by the
constraints introduced in the last step in the construction of F (I).

We will show that OPT(I)−m(I, s′) ≤ OPT(F (I))−m(F (I), s) and γ = 1 is a valid
parameter in the L-reduction. We begin by showing that OPT(F (I)) − OPT(I) ≥ 6m.
If OPT(I) = k, i.e., k clauses (but no more) can be satisfied, then each of the k satisfied
clauses contains a true literal lij . In each of the satisfied clauses Ci we choose one
true literal (say lij) and assign 2 to the corresponding variable X i

j in the corresponding
gadget Gi (on variables {X i

1, X
i
2, X

i
3, x

i
1, x

i
2, x

i
3}) in F (I). Assign 1 to xi

j , 2 to the
other two xi variables, and 0 to the two unassigned X i variables. In each gadget Gj

corresponding to an unsatisfied clause Cj (in OPT(I)), assign 0 to all the Xj variables
and 2 to all the xj variables. The resulting solution to F (I) shows that

OPT(F (I)) ≥ 7k + 6(m− k) = k + 6m

558 P. Jonsson and G. Nordh

and OPT(F (I)) − OPT(I) ≥ 6m since k = OPT(I). Assume now that

OPT(I)−m(I, s) > OPT(F (I))−m(F (I), s′),

or, equivalently, m(F (I), s′) −m(I, s) > 6m. It is easy to reach a contradiction from
this so OPT(I)−m(I, s) ≤ OPT(F (I)) −m(F (I), s′) and γ = 1 is a valid parameter
in the L-reduction. Also note that no variable occurs more than 11 times in the resulting
instance F (I) of MAX SOL(r). �

By combining the notion of max-cores and Lemma 11, we can prove APX-hardness for
all negative patterns of length at least two:

Lemma 12. If (−c1, . . . ,−ck) ∈ L, k ≥ 2, then MAX SOL(ΓL) is APX-hard.

4.3 Proof of Theorem 9

Proof. Arbitrarily choose a clausal language L. If a pattern (−c1,−c2, . . . ,−ck), k ≥
2, exists in L, then MAX SOL(ΓL) is APX-hard by Lemma 12. Hence, we can assume
that for each P ∈ L such that |P | ≥ 2, it holds that P contains at least one positive
literal. If all patterns in L are of length 1, then MAX SOL(ΓL) is tractable since ΓL is
invariant under the operation max. Thus, we assume that L contains at least one pattern
of length strictly greater than one. Let

u = min{maxU | U ⊆ D is definable by a pp-formula over ΓL}

Let ψ be a pp-formula defining the set U , i.e., U(x) ≡ ∃x : ψ(x;x) and maxU = u. If
there exists a pattern (+a1, . . . ,+ap,−b1, . . . ,−bq), q ≥ 2, and ai > u for all i, then
there is a pp-formula that implements the relation Rel((−b1, . . . ,−bq)):

(y1 ≤ b1 ∨ . . . ∨ yq ≤ bq) ≡pp

∃z : (z ≥ a1 ∨ . . . ∨ z ≥ ap ∨ y1 ≤ b1 ∨ . . . ∨ yq ≤ bq) ∧ U(z)

so MAX SOL(ΓL) is APX-hard by Lemmata 4 and 12. If this is not the case, then
we show that ΓL is invariant under maxu and, by Lemma 10, that MAX SOL(ΓL) is
tractable. Arbitrarily choose a pattern P ∈ L. If |P | ≥ 2, then we have two cases:
Assume first that P = (+a1, . . .) for some a1 ≤ u. Since maxu(a, b) ≥ u for all
choices of a, b,Rel(P) is invariant under maxu. Otherwise, P = (+a1, . . . ,+ap,−b1)
and ai > u for all i. We see that b1 ≥ u by the definition of u since Rel((−b1)) can be
implemented by a pp-formula:

(y1 ≤ b1) ≡pp ∃z : (z ≥ a1 ∨ . . . ∨ z ≥ ap ∨ y1 ≤ b1) ∧ U(z)

Arbitrarily choose two tuples (t1, . . . , tp+1), (t′1, . . . , t′p+1) fromRel(P). If there exists
a ti, 1 ≤ i ≤ p, such that ti ≥ ai, then (maxu(t1, t′1), . . . ,maxu(tp+1, t

′
p+1)) is in

Rel(P). The situation is analogous if there exists a t′i, 1 ≤ i ≤ p, such that t′i ≥ ai.
Assume now that for all 1 ≤ i ≤ p, ti < ai and t′i < ai. This implies that tp+1 ≤ b1
and t′p+1 ≤ b1. If max(tp+1, t

′
p+1) ≤ u, then maxu(tp+1, t

′
p+1) = u and Rel(P) is

invariant under maxu since b1 ≥ u. If max(tp+1, t
′
p+1) > u, then maxu(tp+1, t

′
p+1) =

max(tp+1, t
′
p+1) and Rel(P) is invariant under maxu also in this case.

Generalised Integer Programming Based on Logically Defined Relations 559

We are left with the unary patterns in L. Assume that P = (+r) for some r; in this
case, Rel(P) is trivially invariant under maxu. If P = (−r), then r must satisfy r ≥ u
by the definition of u. Arbitrarily choose two elements a, b ∈ (−r). If max(a, b) ≤ u,
then maxu(a, b) = u and Rel(P) is invariant under maxu since r ≥ u. If max(a, b) >
u, then maxu(a, b) = max(a, b) and Rel(P) is invariant under maxu. �
By inspecting the previous proof, we see that a constraint language ΓL is closed under
maxu, u ∈ D, if and only if each patternP ∈ L satisfy at least one of the following con-
ditions: (1) P = (+a1, ...) and a1 ≤ u; (2) P = (+a1, . . . ,+ap,−b1), a1, . . . , ap > u,
and b1 ≥ u; (3) P = (+a); or (4) P = (−a) and a ≥ u. This makes it easy to check
whether MAX SOL(ΓL) is tractable or not: test if the condition above holds for some
u ∈ D. If so, MAX SOL(ΓL) is tractable and, otherwise, MAX SOL(ΓL) is APX-hard
by Theorem 9. Obviously, this test can be performed in polynomial time in the size of
L and D. A simple algorithm that is polynomial in the size of ΓL

2 also exists, but note
that ΓL can be exponentially larger than L and D.

5 Approximability of MIN SOL and MAX AW SOL

We now turn our attention to the two problems MIN SOL (i.e., the minimization ver-
sion of MAX SOL) and MAX AW SOL (i.e., MAX SOL without the restriction of non-
negative weights). We see, for instance, that MIN SOL((+1,+1)) (over the domain
D = {0, 1}) is the same problem as the minimum vertex cover problem.

Obviously, the tractability results for MAX SOL can be transferred to the MIN SOL

setting with only minor modifications: If ΓL is invariant under minu for some u ∈ D,
then MIN SOL(ΓL) is in PO. The operations minu and maxu are symmetrically defined.
By combining this with certain hardness results, one can prove the following:

Theorem 13. MIN SOL(ΓL) is in PO if ΓL is invariant under minu for some u ∈ D.
Otherwise, MIN SOL(ΓL) is APX-hard.

Note that it easy to check whether MIN SOL(ΓL) is tractable or not: the algorithm is
similar to the algorithm for checking tractability of MAX SOL(ΓL).

We continue by presenting sufficient and necessary conditions for tractability of
MAX AW SOL.

Theorem 14. MAX AW SOL(ΓL) is in PO if ΓL is invariant under both max and min.
Otherwise, MAX SOL(ΓL) is APX-hard.

The tractability part is based on supermodular optimisation [13] while the inapproxima-
bility results are proved by appropriate reductions from MAX SOL and MIN SOL.

6 Conclusions and Open Questions

We have presented dichotomy results for the approximability of MAX SOL, MIN SOL,
and MAX AW SOL when they are restricted to constraint languages expressed by regu-
lar signed logic. The results were partly obtained by exploiting certain algebraic meth-
ods that have previously not been widely used for studying optimisation problems.

2 The size of a constraint language Γ over domain D is roughly R∈Γ |R| · log |D| · ar(R).

560 P. Jonsson and G. Nordh

One way to extend this work is to provide a more fine-grained approximability
analysis of these problems. In the case of boolean domains, such an analysis has been
performed by Khanna et al. [10]; they prove that for any choice of allowed relations,
the problem is either (1) polynomial-time solvable, (2) APX-complete, (3) poly-APX-
complete, (4) finding a solution of measure > 0 is NP-hard; or (5) finding any solution is
NP-hard. Another venue for future research would be investigate the approximability of
MAX (AW) SOL(Γ) for arbitrary finite domain constraint languages Γ , i.e., constraint
languages not necessarily expressed by regular signed logic.

References

1. G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela, and M. Protasi.
Complexity and Approximation. Springer, 1999.

2. N. Creignou, M. Hermann, A. Krokhin, and G. Salzer. Complexity of clausal constraints over
chains. 2006. To appear in: Theory of Computing Systems. Preliminary version available
from: www.cis.syr.edu/∼royer/lcc/LCC05.

3. N. Creignou, S. Khanna, and M. Sudan. Complexity Classifications of Boolean Constraint
Satisfaction Problems, volume 7 of SIAM Monographs on Discrete Mathematics and Appli-
cations. SIAM, 2001.

4. M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. Freeman, San Francisco, 1979.

5. À.J. Gil, M. Hermann, G. Salzer, and B. Zanuttini. Efficient algorithms for constraint descrip-
tion problems over finite totally ordered domains. In Proceedings of Automated Reasoning,
Second International Joint Conference (IJCAR-04), pages 244–258, 2004.

6. R. Hähnle. Complexity of many-valued logics. In Proceedings of the 31st IEEE International
Symposium on Multiple-valued Logic (ISMVL-01), pages 137–148, 2001.

7. J.N. Hooker and M. Osorio. Mixed logical-linear programming. Discrete Applied Mathe-
matics, 96-97:395–442, 1999.

8. P. G. Jeavons and M. C. Cooper. Tractable constraints on ordered domains. Artificial Intelli-
gence, 79:327–339, 1996.

9. P. Jonsson. Boolean constraint satisfaction: complexity results for optimization problems
with arbitrary weights. Theoretical Computer Science, 244(1-2):189–203, 2000.

10. S. Khanna, M. Sudan, L. Trevisan, and D.P. Williamson. The approximability of constraint
satisfaction problems. SIAM J. Comput., 30(6):1863–1920, 2000.

11. R. E. Ladner. On the structure of polynomial time reducibility. Journal of the ACM,
22(1):155–171, 1975.

12. R. Pöschel and L. Kalužnin. Funktionen- und Relationenalgebren. DVW, Berlin, 1979.
13. A. Schrijver. A combinatorial algorithm minimizing submodular functions in polynomial

time. Journal of Combinatorial Theory, ser. B, 80:346–355, 2000.
14. S.A. Wolfman and D.S. Weld. The LPSAT engine & its application to resource planning. In

Proceedings of the Sixteenth International Joint Conference on Artificial Intelligence (IJCAI-
99), pages 310–317, 1999.

Probabilistic Length-Reducing Automata

Tomasz Jurdziński

Institute of Computer Science, Wroc�law University,
Przesmyckiego 20, PL-51-151 Wroc�law, Poland

tju@ii.uni.wroc.pl

Abstract. Hardness of a separation of nondeterminism, randomization
and determinism for polynomial time computations motivates the analy-
sis of restricted models of computation. Following this line of research, we
consider randomized length-reducing two-pushdown automata (lrTPDA),
a natural extension of pushdown automata (PDA). We separate ran-
domized lrTPDAs from deterministic and nondeterministic ones, and we
compare different modes of randomization. Moreover, we prove that am-
plification is impossible for Las Vegas automata.

1 Introduction

A comparative study of the computational power of deterministic, randomized
and nondeterministic computations is one of the central topics in complexity
and algorithm theory. Hardness of this problem for polynomial time computa-
tions motivated considerations of restricted models. This line of research started
with the study of randomization for finite automata and continues by investi-
gating more and more complex models (multicounter machines, communication
protocols, OBDDs, PRAMs, distributed computing, etc.).

In last years interesting separation results were obtained for pushdown
automata (PDA) [2,8,6]. As (deterministic) PDAs characterize (deterministic)
context free languages ((D)CFL), we start the study of a machine model charac-
terizing natural generalizations of CFL. Namely, we consider a machine model for
growing context-sensitive languages (GCS), the class defined by grammars with
growing rules, recognizable in polynomial time [3]. GCS is equal to the set of lan-
guages accepted by so-called length-reducing two-pushdown automata (lrTPDA)
[1,11]. Such automaton consists of two pushdowns, an input word is given as
the contents of one of them. One step of the computation takes k topmost sym-
bols from both pushdowns and stores some shorter word instead. Intuitively,
this model expands the power of PDAs into possibility of ,,moving” through the
input many times. This ability is restricted by the fact that each step shortens
the configuration. Deterministic variant of these automata characterize Church-
Rosser Languages (CRL), the class that possesses natural characterization by
string rewriting systems [9,11] (we denote CRL as DGCS here). The classes GCS
and DGCS naturally complement the Chomsky hierarchy as they fill the gap
between (D)CFL and (D)CSL.

R. Královič and P. Urzyczyn (Eds.): MFCS 2006, LNCS 4162, pp. 561–572, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

562 T. Jurdziński

The paper is organized as follows. In Section 2 we introduce some basic de-
finitions. Section 3 describes formal tools used in our proofs. In Section 4 we
compare Las Vegas automata with deterministic automata and we show that
amplification is impossible for Las Vegas automata. Section 5 describes the re-
sults concerning the comparison of different modes of randomized lrTPDAs. Due
to limited space, many details of the proofs are omitted.

2 Preliminaries

For a word x, let |x|, x[i] and x[i, j] denote the length of x, the ith symbol of x
and the subword x[i] . . . x[j] resp. Furthermore, let [i, j] = {l | i ≤ l ≤ j}, let xR

denote the reverse of the word x.
Let x = x1y1x2y2 . . . xnynxn+1, n > 0, where xi, yi ∈ Σ∗ for the alphabet

Σ, i ∈ [1, n + 1], and yi denotes the leftmost occurrence of yi as a subword of
x in the above factorization of x. Then, x − (y1, . . . , yn) = x1x2 . . . xn+1, and
x− (y1, . . . , yn) + (z1, . . . , zn) = x1z1x2z2 . . . xnznxn+1.

We use the notion of Kolmogorov complexity K(x) of a word x ∈ {0, 1}∗, and
conditional Kolmogorov complexity K(x|y) [7].

Fact 1. [7] 1. Let X be a set of words such that |X | ≥ m. Then, for each word
w, there exists x ∈ X such that K(x|w) ≥ �logm� − 1.
2. If K(x1x2x3|y) ≥ n − p, then K(x2|yx1x3) ≥ |x2| − p − O(log n), where
n = |x1x2x3|.
3. K(x)−K(x|y) = K(y)−K(y|x)±O(log max(|x|, |y|)) for each x, y ∈ {0, 1}∗.

A two-pushdown automaton M = (Q,Σ, Γ, q0,⊥, F, δ) with a window of length
k = 2j is a nondeterministic automaton with two pushdown stores, defined
by the set of states Q, the input alphabet Σ, the tape alphabet Γ (Σ ⊆ Γ),
the initial state q0 ∈ Q, the bottom marker of the pushdown stores ⊥∈ Γ\Σ,
the set of accepting states F ⊆ Q and the transition relation δ : Q × Γ⊥,j ×
Γj,⊥ → P(Q × Γ ∗ × Γ ∗), where Γ⊥,j = Γ j ∪ {⊥ v : |v| ≤ j − 1, v ∈ Γ ∗},
Γj,⊥ = Γ j ∪ {v ⊥: |v| ≤ j − 1, v ∈ Γ ∗}, P(Q× Γ ∗ × Γ ∗) denotes the set of finite
subsets of Q × Γ ∗ × Γ ∗. The automaton M is deterministic if δ is a (partial)
function from Q × Γ⊥,j × Γj,⊥ into Q × Γ ∗ × Γ ∗. M is called length-reducing
(lr(D)TPDA) if (p, u′, v′) ∈ δ(q, u, v) implies |u′v′| < |uv|.

A configuration of M is described by a word uqiv
R, where qi is the cur-

rent state, u, v ∈ Γ ∗ are the contents of the pushdown stores. The transition
δ(q, y, z) = (q′, y′, z′) will be described as yqzR → y′q′(z′)R. For an input word
x ∈ Σ∗, the corresponding initial configuration is ⊥ q0x ⊥, i.e., x is given as the
contents of the second pushdown store. The automaton M finishes its computa-
tion by empty pushdown stores. So, L(M) = {x ∈ Σ∗ : ∃q∈F ⊥ q0x ⊥ 1∗M q}.
We also require that the special symbol ⊥ occurs only on bottoms of the push-
downs and no other symbol can occur on the bottom. The language classes
defined by non-deterministic and deterministic lrTPDAs are denoted as GCS and
DGCS, respectively.

Probabilistic Length-Reducing Automata 563

A randomized or probabilistic lrTPDA is a (nondeterministic) lrTPDA with a
probability distribution assigned to every nondeterministic branching (cf. [2]).
The probability of the computation C is equal to the product of probabilities of
the transitions executed in C. The set of states is divided into accepting, rejecting
and neutral states. Various modes of randomized automata considered in the
literature differ in conditions concerning the required probability of finishing in
the accepting, rejecting or the neutral state. We present these conditions in the
following table, where ε denotes the probability of error.

w ∈ L w
∈ L
accept reject neutral accept reject neutral

Las Vegas (LV) ≥ 1− ε 0 ≤ ε 0 ≥ 1− ε ≤ ε

Monte Carlo (MC) ≥ 1− ε ≤ ε 0 0 1 0

bounded-error (B) ≥ 1− ε ≤ ε 0 ≤ ε ≥ 1− ε 0

Abbreviations LVGCSε, MCGCSε and BGCSε denote the sets of languages recog-
nized by Las Vegas, Monte Carlo and bounded-error lrTPDAs with error proba-
bility ε. Furthermore, X =

⋃
0<ε<1Xε for X ∈ {LVGCS,MCGCS} and BGCS =⋃

0<ε<1/2 BGCSε. It follows directly from the definitions that DGCS ⊆ LVGCS ⊆
MCGCS ⊆ GCS and MCGCS ⊆ BGCS.

Our Results. We separate classes defined by various modes of probabilistic
lrTPDAs from each other as well as from DGCS and GCS.

Theorem 1. DGCS � LVGCS � MCGCS � BGCS, moreover MCGCS � GCS.

Theorem 2. For each ε > 0, there exists a language L such that L ∈ BGCSε \
GCS and L ∈ MCGCSε \ LVGCS.

Finally it turns out that, despite many other models, amplification for Las Vegas
lrTPDAs is not possible:

Theorem 3. LVCF1/2 \
⋃

α<1/2 MCGCSα 	= ∅.

3 Lower Bounds Tools

Let M = (Q,Σ, Γ, q0,⊥, F, δ) be an lrTPDA with a window of length k. Each
computation of M corresponds to a planar directed acyclic computation graph
with the labeling ω, where ω is the function from the set of vertices to Γ ∪Q∪ δ
(see examples in the full version of [4]). Vertices labeled with symbols, states,
and transitions are called symbol vertices, state vert., and transition vert., resp.
The computation graph G(j) = (Vj , Ej) corresponding to the computation C0 1
. . . 1 Cj (where C0 denotes an initial configuration) is defined inductively:
Case 1: j = 0. Let C0 =⊥ q0x1x2 . . . xn ⊥. Then G(0) = (V0, E0), where
E0 = ∅, V0 = {ρi}n+2

i=−2 such that ω(ρi) = xi for 1 ≤ i ≤ n, ω(ρi) =⊥ for
i ∈ {−2,−1, n+ 1, n+ 2} and ω(ρ0) = q0.
Case 2 : j > 0. Assume that the computation C0 1M . . . 1M Cj−1 corresponds
to the graph G(j−1), and the transition z → z′ is executed in Cj−1 1 Cj , where
|z| = p and |z′| = p′. The graph G(j) is constructed from G(j−1) by adding:

564 T. Jurdziński

– vertices π′1, . . . , π
′
p′ which correspond to the word z′, ω(π′i) = z′[i] for i ∈ [1, p′];

– a vertex Dj which corresponds to the transition z → z′;
– edges (π1, Dj), . . . , (πp, Dj), where the vertices {πi}p

i=1 correspond to z;
– edges (Dj , π

′
1), . . . , (Dj , π

′
p′).

There is a natural left to right ordering among the sources of the computation
graph, induced by the left to right ordering into the initial configuration. There
is also a left to right ordering among the in-neighbors and out-neighbors of each
transition vertex. These orderings induce a left to right ordering among the sinks.

Note that sources (sinks, resp.) of G(j) correspond to the initial configuration
C0 (the last configuration Cj), the sequence of their labels will be denoted as
src(G(j)) (snk(G(j)), resp.). The single step transition relation 1M on configu-
rations can be extended to computation graphs, i.e., G(j−1) 1M G(j) for G(j),
G(j−1) defined above.

The term path is applied exclusively to paths that start in a source vertex
and finish in a sink. The ordering among vertices of the graph induces a left-to-
right partial ordering of paths. A path σ1 is to the left of a path σ2 iff none of
the vertices of σ1 is to the right of any vertex of σ2. A path σ is the leftmost
(rightmost) in a set of paths S if it is to the left (right) of each other path σ′ ∈ S.

Let σ be a path in G with a sink π. We say that σ is short if there is no path
with the sink π that is shorter than σ. Let us note here that a sink of a graph
may be the endpoint of short paths which start in different sources. On the other
hand, it is possible that no short path starts in a particular source vertex.

Lemma 1. [4] Let G be a computation graph.

1. Let Vsr and Vsn be subsets of the set of sources of G and the set of sinks of
G, resp. Then, the set P of short paths with sources in Vsr and sinks in Vsn

contains a path which is to the right/left of all other paths in P (or P = ∅).
2. The length of each short path in G is at most c logn, where n is the length of

the input word and the constant c depends only on the automaton M .

Now, we introduce definitions needed to formulate cut and paste technique.
A description of a path σ = π1, π2 . . . , π2l+1, denoted desc(σ), consists of the
sequence (ω(π1), p1), . . . (ω(π2l+1), p2l+1) such that πi is the pi-th in-neighbor
of πi+1 (according to the left-to-right ordering) for odd i < 2l, and πi+1 is the
pi+1-st out-neighbour of πi for even i, p2l+1 = 0. A full description of a path
σ in a computation graph G, descf(σ), is equal to (desc(σ), p), where p is the
position of the source vertex of σ in the initial configuration.

We say that descriptions γ1, . . . , γl−1 (for l > 1) decompose a computa-
tion graph G into subgraphs G1, . . . , Gl if G contains paths {σi}l−1

i=1 such that:
desc(σi) = γi for i ∈ [1, l], σi is located to the left of σi+1 for i ∈ [1, l − 2],
Gi is equal to the subgraph of G which contains all vertices and edges located
between σi−1 and σi (where σ0 and σl are the “artificial” empty paths located to
the left/right of all other vertices of G). If descriptions γ1, . . . , γl−1 decompose
G into G1, . . . , Gl, we denote it as G = G1 . . .Gl.

Probabilistic Length-Reducing Automata 565

Lemma 2 (Cut and Paste Lemma). [4] Assume that the descriptions γ1, γ2
decompose graphs G, H into G1, G2, G3 and H1, H2, H3, resp. Then, J = G1
H2G3 is a computation graph.

Let G = G1 . . . Gl (l > 1). Then, border(Gi, Gi+1) is equal to the path between
Gi and Gi+1, and the surface of Gi, srf(Gi), is defined as (desc(σ1), desc(σ2),
ω(snk(Gi))), where σ1 = border(Gi−1, Gi) and σ2 = border(Gi, Gi+1).

Now, we describe the notion of image, which allows to determine how much
information about a subword of the input word is stored in a configuration. Let
G be a computation graph corresponding to the computation on x = x1x2x3,
let σ1, and σ2 be the rightmost short path with the source in x1x2[1] and the
leftmost short path with the source in x2[|x2|]x3, resp. (such σ1, σ2 always exist
by Lemma 1.1 and thanks to the vertices ρ−2 and ρn+2). Then, if σ1 is not to
the left of σ2 or there is no symbol sink vertex between the sinks of σ1 and σ2,
the image of x2 in G is undefined. Otherwise, let G = G1G2G3, where σ1, σ2
are the paths on the borders of G2. Then, the image of x2, img(x2), is equal
to srf(G2), the length of the image is equal to the number of sinks of G2(i.e.,
|snk(G2)|) and we say that G2 defines the image of x2. We will often identify
the image with the sinks and the paths on the borders of the subgraph which
defines it. In Section 4 we implicitly use the following properties of images.

Proposition 1. [4] Let G,G′ be computation graphs corresponding to the com-
putation on the input word xyzvu, G 1 G′. Assume that img(y) is defined in G
and it is equal to (σ1, σ2, τ). Then,
(a) For every 1 < i < |τ |, τ [i] is the sink of a short path which starts in y.
(b) If |τ | > 2k then img(y) is defined in G′, and its length is in [|τ | − k, |τ |+ k].
(c) If img(v) is defined in G and it is equal to (σ′1, σ

′
2, τ

′), then |τ ∩ τ ′| ≤ 2.
(d) If img(y) is undefined in G, it is undefined in G′ as well.

Moreover, we will make use of the following fact. If the image of x in a graph G
is included in a subgraph G1 and the paths on the borders of G1 are short, then
the image of x remains unchanged if we cut G1 and paste it into another graph,
provided that the paths on the borders of G1 remain short.

Below, we present some technical notions and results, partly introduced in [5].
Let v = x1 x2 x3 x4 x5 be an input word, let C be a computation on v. We say
that the image of xi is short if its length is ≤ log |xi| and it is long otherwise.
Furthermore, we say that the pair (x2, x4) is checked during the computation C,
if img(x2) and img(x4) are long, as long as the image of y2 is defined and longer
than 2k (where k is equal to the size of the window).

Proposition 2. Let C be a computation of an lrTPDA M on the input word x =
x1x2x3x4x5x6, which finishes with empty pushdown stores. If the pair (x2, x4) is
checked in C, the pair (x3, x5) is not checked in C.

Assume that the pair (x2, x4) is not checked in the computation C on x1x2x3x4x5.
Then, the critical graph with respect to (x2, x4) in C is equal to the first graph
in C (according to the relation 1) in which img(x2) or img(x4) is short. Using

566 T. Jurdziński

properties of images, one can show that the graphs defining the images of x2
and x4 are disjoint in the critical graph with respect to (x2, x4).

We associate “probabilities” to paths and subgraphs of computation graphs
which describe computations of probabilistic lrTPDAs. The probability P (σ)
(P (G), resp.) of a path σ (a subgraph G, resp.) is equal to the product of the
probabilities of random choices associated to the transition vertices in σ (the
transition vertices in G except the vertices on the borders of G, resp.).

4 Determinism, Las Vegas and Amplification Issues

Let L(1) = L1,1 ∪ L1,2, where

L1,1 = {x1#x2#x3#y2#y3#y1 | (x1 = yR
1 ∧ x2 = yR

2), xi, yi ∈ {0, 1}∗ for i ∈ [1, 3]}
L1,2 = {x1#x2#x3#y2#y3#y1 | (x1
= yR

1 ∧ x3 = yR
3), xi, yi ∈ {0, 1}∗ for i ∈ [1, 3]}

We show that L(1) ∈ LVGCS1/2 and L(1) cannot be accepted by any Las Vegas
nor Monte Carlo lrTPDA with the probability of error 1/2−α for each constant
0 < α ≤ 1/2. Thus, L(1) certifies that DGCS � LVGCS and amplification is
impossible for Las Vegas and Monte Carlo lrTPDAs.

First, observe that L(1) can be recognized by a Las Vegas lrTPDA with error
pbb 1/2. The automaton M chooses (a) or (b) with pbb 1/2:
(a) compare x2 with y2: if x2 = yR

2 and x1 = yR
1 : accept; if x2 	= yR

2 and x1 = yR
1 :

reject; if x1 	= yR
1 : neutral state; (b) compare x3 with y3: we leave details to the

reader.
The remaining part of this section is devoted to the proof thatL(1) 	∈LVGCS1/2−α

∪MCGCS1/2−α for each 0 < α ≤ 1/2.

4.1 Sketch of the Proof

In order to shorten notations, we will denote the input word z1#z2# . . .#z6
as z1z2 . . . z6 (i.e., the factorization z1 . . . z6 denotes the positions in which the
symbol # appears). First, we need the following proposition, which can be proved
by fooling the automaton M using cut and paste technique, combined with
incompressibility method (cf. [7]).

Proposition 3. Let M be a nondeterministic (or LV, MC) lrTPDA that recog-
nizes L(1). Let w = x1x2x3y2y3y1 ∈ L(1), where K(xi|w − (xi, yi)) > m/2,
K(yi|w − (xi, yi)) > m/2, |xi| = |yi| = m for i ∈ [1, 3], and m is large enough.
Then, for each accepting computation of M on w, we have:
1. If w ∈ L1,1 then M checks the pair (x2, y2).
2. If w ∈ L1,2 then M checks the pair (x3, y3).

For the sake of contradiction, assume a LV (or MC) lrTPDA M recognizes L(1)
with error probability 1/2 − α for 0 < α ≤ 1/2. Let w = x1x2x3y2y3y1 ∈ L(1),
where xi = yR

i , |xi| = m for i ∈ [1, 3], K(x1x2x3) > 3m − 1 and m is large
enough. We define the set X of words such that M behaves “similarly” on w and
on w′ = w − x1 + x for each x ∈ X . That is, the pbb that M checks (x3, y3) on

Probabilistic Length-Reducing Automata 567

w′ and the pbb thatM checks (x3, y3) on w differ by o(1). As w ∈ L1,1, M checks
(x2, y2) in each accepting computation on w (Proposition 3). So, it does not check
(x3, y3) in each accepting computation on w (Proposition 2) what implies thatM
does not check (x3, y3) on w with pbb ≥ 1/2+α, and it does not check (x3, y3) on
w′ with pbb 1/2 + α± o(1). On the other hand, the word w′ = w− x1 + x ∈ L1,2
satisfies the assumptions of Prop. 3. So, M cannot accept w′ when (x3, y3) is not
checked. Thus, M does not accept w′ ∈ L(1) with pbb 1/2 + α ± o(1) > 1/2:
contradiction. Below, we describe the construction of X more precisely.

We say that x ∈ {0, 1}m is similar to x1 iff the suffixes of length 2
√

log m

of x and x1 are equal. In the following, a critical graph stands for the critical
graph with respect to (x3, y3), in a computation of M on w or on w−x1 +x for
x ∈ {0, 1}m which is similar to x1. Let G be the critical graph which describes
the computation on w. The key technical result in the proof states that the graph
G has to contain a short path of length ≤

√
logm which starts in the suffix of

x1 of length 2
√

log m (Proposition 4). So, let Y be the set of all possible full
descriptions of paths of length ≤

√
logm, with the source vertex on the position

in [m − 2
√

log m,m]. Note that the size of Y is o(m/ logm). Using this fact we
define a compact description of computations of M on w′ which do not check
the pair (x3, y3), where w′ = w − x1 + x and x is similar to x1. To this aim,

(a) We divide the set of critical graphs ofM on w′ into groups. Let G be a critical
graph, let σ be the rightmost short path in G which starts in x and is not
longer than

√
logm. A group of the graph G is determined by γ ∈ Y , the

full description σ. The path σ is called the critical path, the decomposition
of G defined by σ is called the critical decomposition.

(b) For each full description γ ∈ Y , we define the set of left subgraphs (Lf(γ, w′))
and right subgraphs (Rg(γ, w′)) determined by the critical decompositions
of critical graphs on w′.

(c) For each γ as above, let P (Lf(γ, w′)) be the sum of the probabilities of all
subgraphs in Lf(γ, w′). The approximations of the numbers P (Lf(γ, w′)) by
O(logm) most significant bits for each γ ∈ Y form the description Dw′ .

Let D = Dw be the description of the behavior of M on w. We say that x ∈
{0, 1}m agrees with D iff the description Dw′ for w′ = w − x1 + x is equal to D
and x is similar to x1. Observe that one can encode D using o(m) bits.

Cut and Paste Lemma implies that one can combine any G1 ∈ Lf(γ, w) with
any G2 ∈ Rg(γ, w) in order to obtain the computation graph G = G1G2. It
turns out that the graph G obtained in this way is critical (Proposition 5).
Moreover, each critical graph G on w has exactly one factorization G1, G2 such
that G1 ∈ Lf(γ, w) and G2 ∈ Rg(γ, w) for γ ∈ Y . More importantly, the graph
G1G2 is critical on w′ for each G1 ∈ Lf(γ, w), G2 ∈ Rg(γ, w′) and w′ = w −
x1 +x, where x is similar to x1. Moreover, each critical graph on w′ has at most
one factorization of this type (Proposition 6). Assume that x agrees with the
description D. Thanks to the above properties, the probabilities that M does
not check the pair (x3, y3) on w and on w′ = w− x1 + x are very close. It might
be the case that the probability of checking (x3, y3) is smaller on w′ than on
w, what follows from the fact that the numbers associated with the descriptions

568 T. Jurdziński

of the paths from Y do not represent the appropriate sums precisely (see (c)).
However, we assure the precision which guarantees that the difference between
these two probabilities is o(1).

Let X be the set of words which agree with D. It turns out that one can de-
termine X on the basis of D and w−(x1, y1) only. Thus, knowing x2, x3, one can
encode x1 by D and the position of x1 (in the lexicographic order) in X . Us-
ing properties of Kolmogorov complexity and the assumption that K(x1x2x2) >
3m− 1, we conclude that the size of X is large. (Otherwise, we could compress
x1x2x3 too much.) But this fact implies (by the application of Fact 1.3) that X
contains a word x 	= x1 such that w−x1+x satisfies assumptions of Proposition 3.
So, the fraction of computations on w−x1 +x which check (x3, y3) is too small.

4.2 Some Technical Details of the Proof

Proposition 4. Let G be the critical graph with respect to (x3, y3), in an ac-
cepting computation C on w. Then, there exists a short path σ in G such that
its length is ≤

√
logm and its source is in x[m− 2

√
log m,m].

Let the terms critical graph, critical path, and critical decomposition be defined
as in the previous section. Moreover, as before, let Y be the set of all possible full
descriptions of paths of length ≤

√
logm, with the source vertex on the position

in [m−2
√

log m,m]. To be precise, we define Lf(γ, w′) (Rg(γ, w′)) for each γ ∈ Y
and w′ = w − x1 + x in the following way: G1 (G2, resp.) belongs to Lf(γ, w′)
(Rg(γ, w′), resp.) iff there exists a critical graph G = G1G2 on w′ such that
the decomposition G1, G2 is critical and the full description of border(G1, G2) is
equal to γ. Then,

Proposition 5. 1. Let G 	= H be critical graphs on w, with respect to (x3, y3).
Then, it is not the case that G 1∗ H.

2. Let G1 ∈ Lf(γ, w), G2 ∈ Rg(γ, w) for the full description γ ∈ Y . Then,
G1G2 is the critical graph with respect to (x3, y3), and G1, G2 is its critical
decomposition.

Let P (Lf(γ, w′)) =
∑

G1∈Lf(γ,w′) P (G1) and P (Rg(γ, w′)) =
∑

G2∈Rg(γ,w′)
P (G2). Using the above proposition, we make the following calculations

1
2 + α ≤ P (M accepts w)

≤
∑

G1G2 critical on w w.r.t. (x3,y3) P (G1G2)
=
∑

G1G2 critical on w w.r.t. (x3,y3) P (G1)P (border(G1, G2))P (G2)
=
∑

γ∈Y P (γ)P (Lf(γ, w)) · P (Rg(γ, w)),

(1)

where the second inequality follows from Propositions 3.1 and 2, the last equality
follows from Propositions 5.1 and 5.2.

Observe that the size of Y is ≤ 2c
√

log m for the constant c. Let D be a
description of the behavior of M on w which consists of x1[m − 2

√
log m,m]

and, for each γ ∈ Y , the 2c
√

logm-bit approximation of P (Lf(γ, w)) together
with the bit indicating whether Lf(γ, w) is empty. (The l-bit approximation of
the number a =

∑∞
i=1 ai2−i is defined as

∑l
i=1 ai2−i, where ai ∈ {0, 1} for each

Probabilistic Length-Reducing Automata 569

i.) The description D can be stored in O(2c
√

log m) + O(2c
√

log m · 2c
√

logm) =
o(m) bits. We say that a word x ∈ {0, 1}m agrees with the description D if:
(i) x[m−2

√
log m,m] = x1[m−2

√
log m,m], and (ii) the 2cp-bits approximations

of P (Lf(γ, w − x1 + x)), and P (Lf(γ, w)) are equal for each γ ∈ Y such that
Lf(γ, w) 	= ∅. Let X be the set of words from {0, 1}m which agree with D.

Proposition 6. Let x ∈ X, w′ = w − x1 + x. Then, for each γ ∈ Y , G2 ∈
Rg(γ, w), and G1 ∈ Lf(γ, w′), G1G2 is the critical graph with respect to the pair
(x3, y3); and G1, G2 is the critical decomposition of this graph.

The key point for the application of the description D is that one can determine
the set Lf(γ, w − x1 + x) on the basis of x and D, independent of x1, x2, x3.

Proposition 7. For each γ ∈ Y such that Lf(γ, w) 	= ∅, and each x ∈ {0, 1}m

such that x[m − 2
√

log m,m] = x1[m − 2
√

log m,m] one can determine Lf(γ, w −
x1 + x) on the basis of x only.

Proposition 7 implies that one can determine the set X on the basis of D only.
As the size of D is o(m), x1 ∈ X and K(x1x2x3) > 3m−1, it should be the case
that |X | ≥ Ω(23m/4). Indeed, otherwise we could compress x1 by its position
in X . Using the fact that X is large, one can show that the assumptions of
Proposition 3.2 are satisfied for some w′ = w − x1 + x, where x ∈ X (we apply
Fact 1.3 here). So, M should check (x3, y3) on w′ with pbb ≥ 1/2+α. However,
we show that the behavior of M on w′ is very close to its behavior on w (while
M checks (x3, y3) on w with pbb ≤ 1/2− α). So,

P (¬(M acc. w′)) ≥ P (M does not check (x3, y3) on w′)
≥
∑

γ∈Y

∑
G1∈Lf(γ,w′)

∑
G2∈Rg(γ,w) P (γ)P (G1)P (G2)

=
∑

γ∈Y P (γ) · P (Lf(γ, w′) · P (Rg(γ, w))
≥ 1

2 + α− 2−2c
√

log m · (
∑

γ∈Y P (γ) · P (Rg(γ, w))

where the first three (in)equalities follow from Propositions 3, 2, 6. The last
inequality follows from the fact that P (Lf(γ, w′)) ≥ P (Lf(γ, w)) − 2−2c

√
log m

for each γ ∈ Y such that Lf(γ, w)) 	= ∅ (because these two sums agree on first
2c
√

logm bits), and∑
γ∈Y P (γ) · P (Lf(γ, w)) · P (Rg(γ, w)) ≥ 1

2 + α
by Equation (1). Using Proposition 5, one can show that P (Rg(γ, w)) ≤ 1.
Finally the probability thatM does not accept w′ ∈ L1,2 is≥ 1/2+α−2−2c

√
log m·∑

γ∈Y P (γ) · 1 ≥ 1/2 for m large enough because
∑

γ∈Y P (γ) ≤ |Y | ≤ 2c
√

log m.
This contradicts the assumption that M accepts L(1) with probability ≥ 1/2+α.

5 Symmetric vs Asymmetric Modes of Acceptance

In this section we prove Theorem 2 which implies also some of the relationships
of Theorem 1.

Lemma 3. Let L(3)(n) = {(w#wR#)n |w ∈ {0, 1}∗}. Then, for each ε > 0,
there exists n such that L(3)(n) ∈ MCGCSε \LVGCS and L(3)(n) ∈ BGCSε \GCS.

570 T. Jurdziński

Proof. The language L(3)(n) is not in GCS for each n > 1 what is the simple
consequence of Lemma 2.2.6 in [10]. The relationship L(3)(n) 	∈ LVGCS follows
from the fact that LVGCS ⊆ GCS and LVGCS is closed under complement.

Below, we describe the algorithm which can be implemented as lrTPDA. It
tries to detect a pair of blocks wi, wj of the input word w1# . . .#w2n such that
wi 	= wR

j and |i− j| is odd. Let k = logn. The algorithm works as follows:

1. The set of natural numbers p1, p2, . . . , pk−1 from [1, n] is chosen randomly
(with uniform distribution). Further, the numbers p1, . . . , pk−1 are sorted.
So, let p1 ≤ . . . ≤ pk−1.

2. Next, w is divided into k segments, the ith segment contains ri = 2(pi−pi−1)
blocks (i.e., w2pi−1+1 . . . w2pi), where p0 = 0 and pk = 2n.

3. For each i ∈ [1, k], we check whether w2pi−1+ri/2−j+1 = wR
2pi−1+ri/2+j for

j = 1, . . . , ri/2. If we find (in any segment) a pair of blocks which does not
satisfy this condition, the algorithm rejects. Otherwise, it accepts.

The values 2p1, . . . , 2pk−1 are called transition points.
Observe that the above algorithm accepts each w ∈ L(3)(n). We show that

the probability that this algorithm accepts w 	∈ L(3)(n) goes to zero when n goes
to infinity. It will directly imply the second relationship of Lemma 3. The first
relationship is obtained if one replaces the accepting/rejecting states.

We say that the word w = w1#wR
2 #w3# . . . w2n−1#wR

2n 	∈ L(3)(n) is a basic
input iff there exist x0 	= x1 such that wi ∈ {x0, x1} for each i ∈ [1, 2n].

Claim 1. If the probability of error of the above algorithm is ≤ ε for all basic
inputs, then the probability of error is bounded by ε for all inputs.

Now, we analyze computations on the fixed basic input w = w1#wR
2 #w3 #wR

4 . . .
#w2n−1#wR

2n. Let x0, x1 be its “basic blocks”, i.e., wi ∈ {x0, x1} for each i ∈
[1, 2n]. Letα ∈ {0, 1}2n be a characteristic vector ofw such thatαj = 0 iffwi = x0.
It induces the following interpretation of our algorithm. We split α ∈ {0, 1}2n

into logn consecutive subwords of even length. And, the question is what is the
probability that each of the subwords is a palindrome for α 	∈ 02n + 12n if each
partition of α is equally probable.

We split a characteristic vector α into sectors. The ith sector is equal to the
longest prefix of the remaining part of α which belongs to 0∗ + 1∗. However,
if this prefix is shorter than 6, we join it with the consecutive sequences from
0∗+1∗ into one sector until its length is equal or greater than 6 (see Example 1).
Similarly, if the length of the rightmost sector is ≤ 6, it is joined with the last
but one sector. (Observe that sectors are determined by the input word, while
segments are determined by the random choice of the algorithm.)

For a fixed characteristic vector α which consists of l sectors, we split the
probabilistic choices of the algorithm into groups. A group is defined by a binary
vector M ∈ {0, 1}l called a map such that Mi = 1 iff at least one transition
point belongs to the ith sector. (We assume that the transition point between
the ith sector and the (i+1)st sector belongs to the ith sector.) We say that the
sector i belongs to the map M iff Mi = 1 (see Example 1).

Probabilistic Length-Reducing Automata 571

Example 1. For the input word x0x
R
1 x0x

R
2 x3x

R
3 x1x

R
2 x0x

R
2 , we have

input word x0 x
R
1 x0 x

R
2 x3 x

R
3 x1 x

R
2 x0 x

R
2

basic input x0 x
R
1 x0 x

R
1 x1 x

R
1 x1 x

R
1 x0 x

R
1

characteristic vector 0 1 0 1 1 1 1 1 0 1

The characteristic vector α = 111111 0000000 11100000 110011111 is divided
into the sectors 111111, 0000000, 11100000, and 110011111. As α consists of 4
sectors, the map of each partition of α into segments is the 4-bit vector. For
example, the map M = 0110 describes probabilistic choices which contain at
least one transition point in the second sector, at least one transition point in
the third sector and no transition points in the sectors 1 and 4. �
We show that the probability of error (i.e., the probability that w 	∈ L(3) is
accepted) is o(1) for almost each map. We ignore some “inconvenient” parti-
tions (i.e., maps) chosen by the algorithm, but these partitions occur with the
probability going to zero when n→∞.

We say that a sector of the characteristic vector is short if its length is≤ log3 n.
Otherwise, the sector is long. We are going to avoid analysis of partitions in which
more than one transition point occurs in any short sector. This is achieved by
the following claim.

Claim 2. The probability that there exists a short sector which contains more
than one transition point goes to 0 when n→∞.

Assuming that there exists at most one transition point in each short sector, we
consider two cases:
Case 1. The map M contains at least 1

2 logn short sectors (i.e., Mi = 1 for at
least 1

2 logn i’s such that the ith sector is short).

Note that the mapM determines uniquely the number of transition points in short
sectors. So, we can assume that the transition points in long sectors are chosen
independently of the transition points in the short sectors. For each fixed choice
of transition points in long sectors, we show that the probability of error is o(1).
Let s1, . . . , s(log n)/2 be the short sectors of M, ordered from left to right. Let us
consider any choice of the transition points in the sectors Sodd = {s1, s3, s5, . . .}.
We show that at least 1/3 of choices of transition points in each sector of Seven =
{s2, s4, s6, . . .} allows to find non-fitting elements, independently of choices in
other sectors from Seven. It is based on the following claim.

Claim 3. Let x ∈ {0, 1}m, where m is even, x 	= 0m and x 	= 1m. Then, for
each r < m/2 at least one of the following two conditions is not satisfied:

(a) x[1, 2r] and x[2r + 1,m] are palindromes,
(b) x[1, 2r + 2] and x[2r + 3,m] are palindromes.

For the fixed transition points in the sectors of Sodd, the choice of the transition
point in any sector of Seven is equivalent to the choice of a partition of a word
z 	∈ {0∗, 1∗} into two subwords (segments) z1, z2. Next, we check whether z1
and z2 are palindromes. Indeed, the two nearest transition points to s2i are

572 T. Jurdziński

fixed (as they belong to long blocks or to blocks from Sodd). So, let z be the
word between these two nearest transition points. Then, z 	∈ 0∗ + 1∗. As each
block is not shorter than 6, it contains at least 3 possible partition points, and
if it contains l such positions, at least �l/2� ≥ l/3 of them allow to “find” non-
fitting elements (i.e., wi 	= wR

j for odd |i− j|) by Claim 3, independently of the
positions of transition points in other sectors of Seven. As the choices in different
sectors are independent, the probability that none of the choices gives non-fitting
elements is smaller than (2/3)

1
4 log n → 0 for n→∞.

Case 2. The map M contains less than 1
2 logn short sectors.

As there are at most n/ log3 n long sectors, one can easily show that no transition
point appears exactly at the left border or the right border of any long sector
with pbb 1−o(1). Assuming that no transition point is on the borders of the long
sector, we choose a long sector i that belongs to the map. Assume that transition
points in the remaining sectors are fixed. Thus, the rightmost or the leftmost
transition point in the sector i is the candidate to find non-fitting elements (the
remaining transition points in the sector i give segments over 0∗ or 1∗). The
result holds by the following claim and simple calculations which make use of
the fact that the length of the block is ≥ log3 n.

Claim 4. Let x ∈ {0, 1}m, where m is even, m > 0 and x 	∈ j∗ for some
j ∈ {0, 1}. Then, (at most) one element of the form xj2k and (at most) one
element of the form j2kx is a palindrome, where k ≥ 0.

References

1. G. Buntrock, F. Otto, Growing Context-Sensitive Languages and Church-Rosser
Languages, Information and Computation 141(1), 1998, 1–36.

2. J. Hromkovic, G. Schnitger, Pushdown Automata and Multicounter Machines, a
Comparison of Computation Modes, ICALP 2003, LNCS 2719, 66-80.

3. E. Dahlhaus, M.K. Warmuth, Membership for growing context-sensitive grammars
is polynomial, Journal of Computer Systems Sciences, 33(3), 1986, 456–472.

4. T. Jurdzinski, K. Lorys, Church-Rosser Languages vs. UCFL, in Proc. of Inter-
national Colloquium on Automata, Languages and Programming (ICALP), 2002,
LNCS 2380, 147–158. (full version: www.ii.uni.wroc.pl/~tju/FullCRL.pdf).

5. T. Jurdzinski, The Boolean Closure of Growing Context-Sensitive Languages, DLT
2006, LNCS, to appear.

6. J. Kaneps, D. Geidmanis, R. Freivalds, Tally Languages Accepted by Monte Carlo
Pushdown Automata, RANDOM 1997, LNCS 1269, 187–195.

7. M. Li, P. Vitanyi, An Introduction to Kolmogorov Complexity and its Applications,
Springer-Verlag 1993.

8. I.I. Macarie, M. Ogihara, Properties of Probabilistic Pushdown Automata, Theor.
Comput. Sci. 207(1), 1998, 117-130.

9. R. McNaughton, P. Narendran, F. Otto, Church-Rosser Thue systems and formal
languages, Journal of the Association Computing Machinery, 35 (1988), 324–344.

10. G. Niemann, Church-Rosser Languages and Related Classes, PhD Thesis,
Univ. Kassel, 2002.

11. G. Niemann, F. Otto, The Church-Rosser languages are the deterministic variants
of the growing context-sensitive languages, Inf. Comp., 197(1-2), 2005, 1-21.

Sorting Long Sequences in a Single Hop Radio Network�

Marcin Kik

Institute of Mathematics and Computer Science,
Wrocław University of Technology

ul. Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
kik@im.pwr.wroc.pl

Abstract. We propose an algorithm for merging two sorted sequences of length
k · m stored in two sequences of m stations of single-hop single-channel radio
network, where each station stores a block of of k consecutive elements. The time
and energetic cost of this algorithm are 6m · k + 8m− 4 and 8k + 4�log2(m +
1)� + 6, respectively. This algorithm can be applied for sorting a sequence of
length N = k · n in a network consisting of n stations with memory limited by
Θ(k) words. For k = Ω(lg n), the energetic cost of such sorting is O(k · lg n)
and the time is O(N lg n). Moreover, the constants hidden by the big “Oh” are
reasonably small, to make the algorithm attractive for practical applications.

1 Introduction

We consider the following problem: A sequence of length N = n · k is distributed
among n stations of a single-hop radio network. Each station stores k elements of the
sequence. The length of the sequence significantly exceeds the number of stations (i.e.
k = Ω(lg n)). We want to sort this sequence. The stations are synchronized. Time is
divided into slots. Within a single time slot a single message can be broadcast. We
consider single-hop network: Message broadcast by any station can be received by any
other station. A single message containsO(max{B, lgN}) bits, whereB is the number
of bits of a single key (i.e. element of the input sequence). (Typically B = Θ(lg(N)).)
For any station, sending or listening in a single time slot requires a unit of energy. The
main goal is to minimize energetic cost of the algorithm, i.e. the maximal energy dissi-
pated by any single station. This prolongs the lifetime of the battery powered stations of
the network. We also assume that each station can storeΘ(k) words of max{B, �lgN�}
bits each.

The sorting algorithms proposed in [9] and [4] assume that each station stores only
one key and it is not not evident how to adopt them to the case when each station stores
k keys. The sorting algorithm in [9] is based on energetically balanced selection [8] and
obtains energetic cost O(lg n). On the other hand, [4] contains description of simple
merge-sort with energetic cost O(lg2 n) that due to its low constants and simplicity is
attractive for practical applications.

There exists an algorithm [6] that sorts n elements in time O(n) with energetic cost
of broadcasting O(1): Each station si listens the keys broadcast by remaining stations

� Supported by the European Union within the 6th Framework Programme under contract
001907 (DELIS).

R. Královič and P. Urzyczyn (Eds.): MFCS 2006, LNCS 4162, pp. 573–583, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

574 M. Kik

and computes the rank r of its own key. In the rth slot of the next stage si broadcasts
its key to sr. This algorithm can be immediately adopted for sorting k · n keys in time
O(kn) with energetic cost of broadcastingO(k). However the energetic cost of listening
in this algorithm would be Θ(k · n).

A comparator network sorting sequences of length n can be directly simulated on a
single-hop network of n stations: each comparator is simulated in two consecutive time
slots, when two endpoints of the comparator exchange their values. The time of such
an algorithm (in single channel network) is two times the number of comparators, and
the energetic cost is not greater than two times the depth of the network. (Actually, it is
twice the maximal number of comparisons performed by a single station.)

We can transform such algorithm into an algorithm for sorting sequences of size
n · k using the following standard method for comparator networks (see [5], chapter
5.3.4, exercise 38): Each of the n elements of the sequence is replaced by a sorted
block of k elements and each of the comparisons of two elements is replaced by sorting
(actually merging) of the corresponding two groups. The energetic cost and time of such
operation for each involved station is 2k: It has to broadcast all its keys and receive all
keys of the other station.

For example, the AKS sorting network [1] can be transformed into (impractical)
algorithm sorting sequences of length k ·n in time O(k ·n lgn) and with energetic cost
O(k lg n) and the Batcher networks [2] can be transformed into algorithms with time
O(k · n lg2 n) and energetic cost O(k · lg2 n).

In this paper we present a practical algorithm (based on the simple merging algorithm
from [4]) that merges two sequences of length k ·n stored in two sequences of n stations
in time O(k · n) and with energetic cost O(max{k, lgn}). For the case k > lgn, the
energetic cost isO(k). This algorithm can be used for merge-sorting in timeO(k·n lg n)
and energetic costO(k lg n). This is asymptotically equivalent to the algorithm obtained
from AKS network, but the constants involved are much lower.

2 Preliminaries

The network consists of n stations. Initially we have a sequence of n · k keys evenly
distributed among the stations: Each station si stores a (sorted) sequence of k keys in
the table key[si][1 . . . k]. (This table is extended in both directions by key[si][0] and
key[si][k + 1].) By interval of si we mean the interval [key[si][1], key[si][k]]. After
sorting, all the elements in key[si][1 . . . k] are less than all the elements in key[si+1]
[1 . . . k], for 1 ≤ i < n.

For simplicity of description we assume that all the keys are pairwise distinct. We
ignore the cost of internal operations inside single stations and for the sake of readability
we do not optimize them.

3 Merging

We start with an algorithm for merging two sorted sequences of length k ·m (called a-
sequence and b-sequence) stored in two sequences of stations 〈a1, . . . , am〉 (i.e.

Sorting Long Sequences in a Single Hop Radio Network 575

a-stations) and 〈b1, . . . , bm〉 (i.e. b-stations), respectively. The result will be a sorted
sequence of length 2k ·m stored in the sequence of stations 〈a1, . . . , am, b1, . . . , bm〉.

3.1 An Overview of the Algorithm

In the procedure Try-Ranking(〈a1, . . . , am〉, 〈b1, . . . , bm〉) (defined in the following
section) each station ai computes the ranks of all its keys in the b-sequence unless its
interval is split by the interval of some bj , and each station bj computes the ranks of
all its keys in the a-sequence if its interval contains at least one endpoint of the interval
of some aj . (I.e. Its interval neither splits the interval of any aj nor is disjoint with all
intervals aj .) All the uncomputed ranks are computed by the symmetrical procedure
Try-Ranking(〈b1, . . . , bm〉, 〈a1, . . . , am〉). As soon as the ranks are known, the final
position of each key in the merged sequence is also known. We finish by performing
simple permutation routing, where the destination of each key is its final position in the
merged sequence.

3.2 Technical Details

We repeat some technical definitions from [4]. Let Tm denote a balanced binary tree
consisting of the nodes 1, . . . ,m: If m = 2k − 1, for some integer k > 0, then Tm is a
complete binary tree. If m = 2k − 1 − l, for some positive integer l < 2k−1, then the
l rightmost nodes on the last level are missing. Thus the shape of Tm is identical to the

1 4 3 5 5 6

6 32 2

4 1

Fig. 1. Tree T6. Right to the nodes are their heap-order indexes.

shape of binary heap containingm elements (see [3]). However, the nodes are placed in
Tm in the in-order order (i.e. for each node x the nodes in its left subtree are less than x
and the nodes in its right subtree are greater than x). By l(m,x) (respectively r(m,x)),
for 1 ≤ x ≤ m, we denote the left (respectively right) child of node x in Tm. (A non-
existing child is represented byNIL.) By p(m,x) we denote the index of node x in Tm

in heap-order ordering, which corresponds to the index of x in an array representation
of Tm treated as a heap. (I.e. the heap-order index of the root is 1, then the nodes on the
second level are indexed from left to right, then on the third level, and so on.) We also
assume that p(m,NIL) = NIL. An example of Tm for m = 6 is given in Figure 1.
Note that the height (number of levels) of Tm is min{k : 2k − 1 ≥ m} = �lg(m+ 1)�
(where “lg” denotes “log2”). The algorithm uses several procedures defined below.

576 M. Kik

procedure Init(〈a1, . . . , am〉)
begin

a1 does: key[a1][0] ← −∞;
am does: key[am][k + 1] ← +∞;
for time slot i ← 1 to m− 1 do

station ai broadcasts 〈x〉, where x = key[ai][k];
station ai+1 listens and does: key[ai+1][0] ← x;

for time slot i ← 1 to m− 1 do
station ai+1 broadcasts 〈x〉, where x = key[ai+1][1];
station ai listens and does: key[ai][k + 1] ← x;

end
Algorithm 1. Procedure Init

In procedure Init (Algorithm 1) each station is informed about the maximal key
stored by its predecessor and the minimal key stored by its successor.

Each stationai contains additional variables lPartner[ai], rPartner[ai], lRank[ai],
and rRank[ai]. lPartner[ai] and rPartner[ai] can store eitherNIL or a triple 〈x, f, l〉,
wherex is an index of some b-station bx and f , l are the endpoints of the interval of bx. For
each ai, in procedure Find-Partners (Algorithm 3.2), for k1 = key[ai][1], we compute
in lPartner[ai] the index and the endpoints of the station bx such that k1 is in the interval
of bx. If k1 is ranked between any two intervals of bx and bx+1, then lPartner[ai] =
NIL and its final rank in the other sequence (equal k·x) is computed in lRank[ai]. (Note
that if x = 0 then bx does not exist, and if x = m then bx+1 does not exist.) We make
analogous computations for key[ai][k] and variables rPartner[ai] and rRank[ai]. The
computations for each endpoint of ai are independent. ai receives only those messages
that can influence one of its endpoints. Each time the endpoints of the interval of some
b-station are received, the local procedure Update (Algorithm 3.2) is invoked for the
endpoint of ai that can be influenced. Update uses its two initial parameters to update
the variables referenced by the remaining parameters. Finally, each station ai uses the
values lPartner[ai], rPartner[ai], lRank[ai] and rRank[ai], to compute split[aj].
The variable split[aj] becomes true if and only if the interval of some bj is properly
contained in the interval of ai.

Each station s contains a table rank[s][1 . . . k]. Initially, rank[ai][r] = rank[bi]
[r] = NIL, for all 1 ≤ i ≤ m and 1 ≤ r ≤ k. We want to compute in each rank[ai][r]
the rank of key[ai][r] in b-sequence, and vice versa (i.e. in each rank[bi][r] the rank of
key[bi][r] in a-sequence). By the rank of x we mean the number of keys less than x in
the other sequence. Procedure Try-Ranking (Algorithm 3.2) computes the ranks in the
b-stations that have partners among the a-stations and in each aj that has split[aj] =
false. Procedure Rank (Algorithm 3.3) computes ranks in all the stations, and Merge
(Algorithm 3.3) uses the ranks for computing final positions of the keys in the sorted
sequence and routes them to their destinations.

3.3 Correctness of Merge

Lemma 1. For each endpoint e of the interval of each ai, Find-Partners(〈a1, . . . , am〉,
〈b1, . . . , bm〉) either computes its partner 〈x, f, l〉 such that f = key[bx][0] < e <

Sorting Long Sequences in a Single Hop Radio Network 577

procedure Find-Partners(〈a1, . . . , am〉, 〈b1, . . . , bm〉)
begin

Each station ai does: begin
lT imer[ai] ← rT imer[ai] ← 1;
lRank[ai] ← rRank[ai] ← 0;
lParnter[ai] ← rPartner[ai] ← NIL;
split[ai] ← false;

end
for time slot d ← 1 to m do

let x be such that p(m,x) = d; (* d is heap-order index of x *)
station bx broadcasts 〈f, l〉, where f = key[bx][1] and l = key[bx][k];
each station ai with d = lT imer[ai] or d = rT imer[ai] listens and does: begin

if d = lT imer[ai] then
Update(〈x, f, l〉, key[ai][0], lT imer[ai], lRank[ai], lPartner[ai]);

if d = rT imer[ai] then
Update(〈x, f, l〉, key[ai][k], rT imer[ai], rRank[ai], rPartner[ai]);

end

Each station ai does: begin
Let lP = lParnter[ai], rP = rPartner[ai], lR = lRank[ai], and
rR = rRank[ai].
if (lP = rP = NIL ∧ lR < rR) or
(lP = 〈x, . . .〉 ∧ rP = 〈x′, . . .〉 ∧ x + 1 < x′) or
(lP = 〈x, . . .〉 ∧ rP = NIL ∧ x · k < rR) or
(lP = NIL ∧ rP = 〈x′, . . .〉 ∧ lR < (x′ − 1) · k) then

(* ai is split by some bj *)
split[ai] ← true

end
end

Algorithm 2. Procedure Find-Partners

procedure Update(〈x, f, l〉, key, T imer, Rank, Partner)
(* T imer, Rank, and Partner are references to variables *)
begin

if f < key < l then
Partner ← 〈x, f, l〉;
T imer ← NIL;

else if key < f then
T imer ← p(m, l(m,x)); (* heap-order index of left child of x *)

else if l < key then
T imer ← p(m, r(m,x)); (* heap-order index of right child of x *)
Rank ← x · k; (* key is preceded by at least x · k keys in the other sequence

*)

end

Algorithm 3. Procedure Update

578 M. Kik

procedure Try-Ranking(〈a1, . . . , am〉, 〈b1, . . . , bm〉)
begin

Init(〈a1, . . . , am〉);
Find-Partners(〈a1, . . . , am〉, 〈b1, . . . , bm〉);
for i ← 1 to m do

for r ← 1 to k do
In time slot 2((i− 1) · k + r)− 1:
bi broadcasts 〈v〉, where v = key[bi][r];
each aj with lPartner[aj] = 〈i, f, l〉 or rPartner[aj] = 〈i, f, l〉 listens and
does:
if split[aj] = false then

forall 1 ≤ s ≤ k do
if v < key[aj][s] then

rank[aj][s] ← (i− 1) · k + r; (* index of v in the b-sequence *)

In time slot 2((i− 1) · k + r):
Let (j, s) be the (at most one) pair, such that lPartner[aj] = 〈i, f, l〉 or
rPartner[aj] = 〈i, f, l〉 and:

– (1 ≤ s ≤ k ∧ key[aj][s − 1] < v < key[aj][s]), or
– (s = k + 1 ∧ key[aj][s− 1] < v ≤ l < key[aj][s]).

(* I.e. key[aj][s] is the successor of v in the a-sequence and, for s = k + 1, bi

is not a partner of aj+1. *)
If such (j, s) exists, then aj broadcasts 〈y〉, where y = (j − 1) · k + s− 1.
bi listens and does: begin

if there was a message 〈y〉 then
rank[bi][r] ← y; (* index of key[aj][s− 1] in the a-sequence *)

end

Each ai does internally: Rank-Unsplit(ai);
end

Algorithm 4. Procedure Try-Ranking

procedure Rank-Unsplit(aj)
begin

if split[aj] = false then
if lPartner[aj] = rPartner[aj] = NIL then

for r ← 1 to k do
rank[aj][r] ← lRank[aj];

else if lPartner[aj] = NIL then
last ← max{i|key[aj][i] < f}, where rPartner[aj] = 〈x, f, l〉;
for r ← 1 to last do

rank[aj][r] ← lRank[aj];

end
Algorithm 5. Procedure Rank-Unsplit

Sorting Long Sequences in a Single Hop Radio Network 579

procedure Rank(〈a1, . . . , am〉, 〈b1, . . . , bm〉)
begin

Each s ∈ {a1, . . . , am, b1, . . . , bm} does internally: begin
for r ← 1 to k do rank[s][r] ← NIL;

end
Try-Ranking(〈a1, . . . , am〉, 〈b1, . . . , bm〉);
Try-Ranking(〈b1, . . . , bm〉, 〈a1, . . . , am〉);

end

Algorithm 6. Procedure Rank

procedure Merge(〈a1, . . . , am〉, 〈b1, . . . , bm〉)
begin

Rank(〈a1, . . . , am〉,〈b1, . . . , bm〉);
Each station ai does internally:
for r ← 1 to k do idx[ai][r] ← (i− 1) · k + r + rank[ai][r] ;
Each station bi does internally:
for r ← 1 to k do idx[bi][r] ← (i− 1) · k + r + rank[bi][r] ;
(* for 1 ≤ i ≤ m let ci = ai and cm+i = bi *)
for time slot t ← 1 to 2m · k do

station ci with idx[ci][r] = t broadcasts 〈k〉, where k = key[ci][r];
(* Let t′ = �(t− 1)/k�+ 1 and r = t− (t′ − 1) · k *)
station ct′ listens and does: new[ct′][r] ← k;

Each station ci does, for 1 ≤ r ≤ k: key[ci][r] ← new[ci][r];
end

Algorithm 7. Procedure Merge

key[bx][k] = l or (if such bx does not exist) its rank in b-sequence. Variable split[ai]
becomes true if and only if the interval of some b-station is inside the interval of ai.

Consider arbitrary ai. Let e = key[ai][1] (i.e. the left endpoint of ai). Let t1, . . . , tr be
the initial consecutive values (different form NIL) of lT imer[ai] during the computa-
tion. Let x1, . . . , xr, be such that tj = p(m,xj). Let 〈fj , lj〉 =

〈
key[bxj][1], key[bxj]

[k]〉. Note that, for each j < r, either e < fj or lj < e and xj+1 is the child of xj

in Tm on the same side that e is to the interval of bxj . The ordering of intervals of
b-stations is the same as the ordering of their indexes. Hence x1, . . . , xr is the path in
Tm that should be followed by the ordinary bisection algorithm searching for position
of e among the intervals of b-stations. Thus, every time lRank[ai] and lT imer[ai] are
properly updated by Update. If (after Find-Partners) lPartner[ai] 	= NIL then its
correctness follows from the code of Update. The reasoning for the right endpoint of
ai is the same.

After the variables lPartner, lRank, rPartner and rRank have been correctly
computed in ai, the correctness of the computation of split[ai] follows from the obser-
vation that some b-station is inside the interval of ai if and only if ai has no partners
and the ranks of its endpoints are different, or ai has two partners with indexes more
distant than one, or ai has one partner and the other endpoint of the interval of ai is not
ranked immediately before or immediately after the keys of this partner. �

580 M. Kik

We have to show that all values in all tables rank are properly computed by Rank.
We show that each of these tables is computed by at least one of the two procedures
Try-Ranking in Rank. We say that station ai is split in Try-Ranking(〈a1, . . . , am〉,
〈b1, . . . , bm〉) if it ends up with split[ai] = true. We say that station bi is split-
ting in Try-Ranking(〈a1, . . . , am〉, 〈b1, . . . , bm〉) if exists aj such that key[aj][1] <
key[bi][1] and key[bi][k] < key[aj][k] (i.e. bi splits aj). We say that bi is avoided in
Try-Ranking(〈a1, . . . , am〉, 〈b1, . . . , bm〉) if the interval of bi does not intersect interval
of any aj .

Lemma 2. Procedure Try-Ranking(〈a1, . . . , am〉, 〈b1, . . . , bm〉) correctly computes
all ranks in unsplit a-stations and in unsplitting b-stations that are not avoided. In the
remaining stations the tables rank are not modified.

Let aj be unsplit. After Find-Partners(〈a1, . . . , am〉, 〈b1, . . . , bm〉) there are four pos-
sible cases:

Case1: lPartner[aj] = rPartner[aj] = NIL. In this case interval of aj is disjoint
with all intervals of b-stations and the value r = lRank[aj] = rRank[aj] is the rank
of each key of aj in the b-sequence. Procedure Rank-Unsplit(aj) fills rank[aj][1 . . . k]
with r.

Case 2: lPartner[aj] = 〈x, f, l〉, for some x and f < l, and rPartner[aj] = NIL.
In the fragment following Find-Partners in Try-Ranking, aj listens to all keys broad-
cast in increasing order by bx during the x-th iteration of the external “for” loop and
adjusts all the ranks of its own greater keys. Thus, after the last key of bx is broadcast,
all the ranks in aj are correct.

Case 3: lParner[aj] = NIL and rPartner[aj] = 〈x, f, l〉, for some x and f < l.
In this case lRank[aj] is the proper rank of all keys of ai less than f . This part of
rank[aj][1 . . . k] is adjusted in Rank-Unsplit. The remaining ranks are adjusted during
the x-th iteration of the external “for” loop after Find-Partners.

Case 4: lPartner[aj] = 〈x, f, l〉 and rPartner[aj] = 〈x+ 1, f ′, l′〉, for some x
and f < l < f ′ < l′. The ranks of the keys of aj that are less than f ′ are computed
during the x-th iteration of the external “for” loop after Find-Partners. Remaining ranks
in aj are computed during the (x+ 1)-st iteration of this loop.

Let bi be unsplitting and not avoided. Then the the interval of bi contains the end-
points of all the intervals of a-stations that intersect the interval of bj . Hence, after
Find-Partners, bi is a partner of all those a-stations and, for each key v of bi there
exists some (unique) aj with lPartner[aj] = 〈i, . . .〉 or rPartner[aj] = 〈i, . . .〉 that
contains successor of v or the last element of a-sequence in the interval of bi. This sta-
tion is responsible for answering to the message 〈v〉 broadcast by bi. (Note that aj may
be split.)

Let aj be split. The instructions “if split[aj] = false” in Try-Ranking and Rank-
Unsplit prevent modifications of rank[aj][1 . . . k].

Let bi be splitting or avoided. Then bi is not partner of any aj and no one answers to
its messages broadcast in the ith iteration of the external “for” loop after Find-Partners.
Only those answers could have caused modifications of rank[bi]. �

Lemma 3. If ai is split in Try-Ranking(〈a1, . . . , am〉 , 〈b1, . . . , bm〉), then it is unsplit-
ting and not avoided in Try-Ranking(〈b1, . . . , bm〉 , 〈a1, . . . , am〉).

Sorting Long Sequences in a Single Hop Radio Network 581

There is some bj with its interval properly contained in the interval of ai. The intervals
of b1, . . . bm are disjoint. Thus the interval of ai can not be contained in any one of them
(i.e. ai is unsplitting) and intersects the interval of bj (i.e. ai is not avoided). �

Lemma 4. If bi is splitting in Try-Ranking(〈a1, . . . , am〉 , 〈b1, . . . , bm〉), then it is un-
split in Try-Ranking(〈b1, . . . , bm〉 , 〈a1, . . . , am〉).

The interval of bi is properly contained in the interval of some aj . Thus the
procedure Find-Partners(〈b1, . . . , bm〉, 〈a1, . . . , am〉) ends up with lPartner[bi] =
rPartner[bi] = 〈j, key[aj][1], key[aj][k]〉 and with split = false. �

Lemma 5. If bi is avoided in Try-Ranking(〈a1, . . . , am〉 , 〈b1, . . . , bm〉), then it is un-
split in Try-Ranking(〈b1, . . . , bm〉 , 〈a1, . . . , am〉).

The interval of bi is disjoint with each aj . Thus none interval of aj can be properly
contained in the interval of bi. �

Lemma 6. Procedure Rank correctly computes all ranks in all stations.

By Lemmas 2, 3, 4, and 5 all the ranks in all the stations are correctly computed in at
least one of Try-Ranking(〈a1, . . . , am〉, 〈b1, . . . , bm〉) or Try-Ranking(〈b1, . . . , bm〉,
〈a1, . . . , am〉). (The second Try-Ranking does compute all the ranks missing after the
first Try-Ranking and doesn’t overwrite any computed ranks with wrong values.) �

Lemma 7. Merge correctly merges a-sequence with b-sequence.

Rank computes the rank of each key in the other sequence. Thus the final position
of each key in the merged sequence is the sum of its position in its own sequence
and its rank in the other sequence. These are exactly the values computed in tables
idx. Since all the keys are pairwise distinct, there is exactly one value t in all tables
idx, for each 1 ≤ t ≤ 2k ·m, and in each iteration of the “for” loop exactly one mes-
sage is broadcast. (We do not need the reservation phase mentioned in simple routing
protocol in [7], since the destinations are positions in the sequence – not indexes of the
stations.) �

3.4 Estimations of Time and Energetic Costs

To make the comparison with other algorithms more fair, we assume that a single mes-
sage may contain either a single key or a single index of �lg(N)� bits, where N is
total number of keys. Therefore we replace each message 〈f, l〉 broadcast in Find-
Partners by two messages 〈f〉 and 〈l〉 broadcast in two consecutive time slots. Let
TM denote the time of Merge. TM = TR + 2m · k, where TR is the time of Rank.
TR = 2TTR, where TTR is the time of Try-Ranking. TTR = TI + TFP + 2m · k,
where TI is time of Init and TFP is time of Find-Partners. TI = 2m − 2. In Find-
Partners, each bi broadcasts once both endpoints of its interval. Hence, TFP = 2m.
Thus TTR = (2m−2)+(2m)+2m ·k = 2m ·k+4m−2, and TR = 4m ·k+8m−4,
and TM = 6m · k + 8m− 4.

We estimate separately the energetic cost of listening LM and of sending SM of
Merge. This is more informative in the case when sending requires more energy than

582 M. Kik

listening. However, we assume that the total energetic cost of Merge is EM = SM +
LM . Thus SM = SR + k and LM = LR + k (where SR and LR are the respective
costs of Rank), since in the “for” loop each ci listens k times and broadcasts each of
its keys exactly once. SR = STR,a + STR,b and LR = LTR,a + LTR,b, where STR,a

and LTR,a (respectively, STR,b and LTR,b) are the costs for a-stations (respectively,
b-stations) in Try-Ranking. STR,a = SI + 2k (where SI is cost of sending in Init),
since some ai may be obliged to respond to all keys 〈v〉 broadcast by its both partners.
LTR,a = LI + LFP,a + 2k (where LI and LFP,a are the listening costs for a-stations
in Init and Find-Partners), since each ai has to listen to all keys 〈v〉 broadcast by its
at most two partners. STR,b = SFP,b + k (where SFP,b is cost of sending in Find-
Partners), since each bi broadcasts each its key as 〈v〉. LTR,b = k+LFP,b, since each
bi listens to each its message 〈v〉. SFP,b = 2, since each bi broadcasts its 〈f, l〉 only
once. LFP,a = 4�lg(m+ 1)�, since each timer, after each updating, becomes the heap-
order index of a node on the next level of Tm or NIL. Hence each ai listens to 〈f, l〉
at most twice on each level of Tm. SFP,a = 0 and LFP,b = 0, since a-stations do not
broadcast and b-stations do not listen in Find-Partners. It is obvious that SI = LI = 2.
ThusSTR,a = 2k+2,LTR,a = 2k+4�lg(m+1)�+2,STR,b = k+2,LTR,b = k, SR =
3k+4, LR = 3k+4�lg(m+1)�+2, SM = 4k+4, and LM = 4k+4�lg(m+1)�+2.
Thus the total energy of Merge is EM = 8k + 4�lg(m+ 1)�+ 6.

Further Improvements. Since, each message 〈f, l〉 broadcast in Find-Partners contains
the keys that are memorized by all interested a-stations, b-stations do not need repeat
sending them in the following “for” loops in Try-Ranking. This reduces the time of Try-
Ranking by 2m and the sending energy of each b-station and listening energy of each
a-station by 2. Thus the energetic cost of Merge is reduced by 4 and its time is reduced
by 4m. We have proven the following theorem:

Theorem 1. There exists algorithm merging two sorted sequences of length k ·m, di-
vided into consecutive blocks of size k stored in two sequences of m stations, in time
6m · k + 4m− 4 with energetic cost 8k + 4�lg(m+ 1)�+ 2.

For comparison consider the Batcher comparator network for merging two sequences of
lengthm (either bitonic or odd-even merge [2]). It contains≈ m lg m

2 comparators. Thus
the time of merging a-sequence with b-sequence with the adaptation of this network, as
described in Section 1, requires≈ m lgm · k time slots.

The energetic cost of the algorithm obtained from the Batcher network is ≈ 2k lgm,
since the depth of the Batcher merging network is ≈ lgm.

For example, for m = 210 = 1024, the time and energetic cost of our algorithm are
6144 · k + 4092 and 8k + 46, respectively. For the adaptation of Batcher networks the
time and energetic cost are ≈ 10240 · k and ≈ 20 · k.

4 Sorting

For simplicity, let n be power of two. We can treat any sequence of length N = n · k
as n sorted sequences of length k. We merge each pair of consecutive sorted sequences
into single sorted sequence. We repeat this operation lg n times to obtain a single sorted
sequence of length n. Let TM (m) andEM (m) be the time and energetic cost of merging

Sorting Long Sequences in a Single Hop Radio Network 583

two sequences of length m · k, placed in m stations each. Then the time and energetic
cost of our sorting procedure are TS(n, k) =

∑lg n−1
i=0 n · TM (2i)/2i and ES(n, k) =∑lg n−1

i=0 EM (2i). If we apply our merging algorithm, then TS(n, k) ≤ (3k + 2)n lgn
and ES(n, k) ≤ (8k + 2) lgn+

∑lg n
i=1 4i = (8k + 2) lg n+ 2(lgn+ 1)(lgn).

On the other hand the energetic cost and time for adaptations of Batcher algorithms
are ≈ k lg2 n and ≈ 1

2kn lg2 n.
In merge-sort we can mix our merging algorithm with other merging or sorting al-

gorithms (such as Batcher algorithms) that are more efficient for shorter subsequences.
The proper choice depends on both parameters n and k.

Remark. A simulation implemented in Java of the merging procedure described in this
paper can be found at [10].

References

1. M. Ajtai, J. Komlós and E. Szemerédi. Sorting in c log n parallel steps. Combinatorica, Vol.
3, pages 1–19, 1983.

2. K. E. Batcher. Sorting networks and their applications. Proceedings of 32nd AFIPS, pages
307–314, 1968.

3. Th. H. Cormen, Ch. E. Leiserson, R. L. Rivest. Introduction to Algorithms. 1994.
4. M. Kik. Merging and Merge-sort in a Single Hop Radio Network. SOFSEM 2006, LNCS

3831, pp. 341-349, 2006.
5. D. E. Knuth. The Art of Computer Programming, Vol. 3: Sorting and Searching. Addison-

Wesley, Reading, Mass. 1973.
6. K. Nakano, S. Olariu. Broadcast-efficient protocols for mobile radio networks with few chan-

nels. IEEE Transactions on Parallel and Distributed Systems, 10:1276-1289, 1999.
7. K. Nakano, S. Olariu, A. Y. Zomaya. Energy-Efficient Permutation Routing in Radio Net-

works. IEEE Transactions on Parallel and Distributed Systems, 12:544-557, 2001.
8. M. Singh and V. K. Prasanna. Optimal Energy Balanced Algorithm for Selection in Single

Hop Sensor Network. SNPA ICC, May 2003.
9. M. Singh and V. K. Prasanna. Energy-Optimal and Energy-Balanced Sorting in a Single-Hop

Sensor Network. PERCOM, March 2003.
10. Compendium of Large-Scale Optimization Problems. (DELIS, Subproject 3). http://

ru1.cti.gr/delis-sp3/

Systems of Equations over Finite Semigroups and
the #CSP Dichotomy Conjecture

Ondřej Klíma1,�, Benoît Larose2,��, and Pascal Tesson3,� � �

1 Department of Mathematics, Masaryk University
klima@math.muni.cz

2 Department of Mathematics and Statistics, Concordia University
larose@mathstat.concordia.ca

3 Département d’Informatique et de Génie Logiciel, Université Laval
pascal.tesson@ift.ulaval.ca

Abstract. We study the complexity of counting the number of solutions
to a system of equations over a fixed finite semigroup. We show that
this problem is always either in FP or #P-complete and describe the
borderline precisely. We use these results to convey some intuition about
the conjectured dichotomy for the complexity of counting the number of
solutions in constraint satisfaction problems.

1 Introduction

Constraint satisfaction problems (or CSPs) are a natural way to formalize a
number of computational problems arising from combinatorial optimization, ar-
tificial intelligence and database theory. Informally, an instance of CSP consists
of a domain, a list of variables and a set of constraints relating the values of
the different variables. One then has to decide if the constraints can be simul-
taneously satisfied. Considerable attention has been given to the case where the
constraints are constructed using a finite set of relations Γ and it has been conjec-
tured that for any such Γ the problem CSP(Γ) is either in P or NP-complete [10].
Over the boolean domain Schaefer’s classical result [19] states that CSP(Γ) is
indeed always in P or NP-complete. More recently, deep results of Bulatov have
established a similar dichotomy over the three-element domain [1].

It is similarly believed that the corresponding counting problem #CSP(Γ) is
always either tractable (in FP) or #P-complete [3]. This dichotomy is known to
hold over the boolean domain [8]. The dichotomy conjectures for CSP and #CSP
have been the subject of intense research over the last fifteen years and the alge-
braic approach uncovered in [13, 12] and extended to the counting problem in [3]
has underlied the considerable progress made towards these classification results.
It was shown that the tractability of both CSP(Γ) and #CSP(Γ) depends on

� Research supported by the Ministry of Education of the Czech Republic.
�� Research supported in part by NSERC and CRM.

� � � Research supported in part by NSERC and the Alexander von Humboldt Fellow-
ship programme (while the author was at the University of Tübingen).

R. Královič and P. Urzyczyn (Eds.): MFCS 2006, LNCS 4162, pp. 584–595, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Systems of Equations over Finite Semigroups 585

the algebraic properties of the set of operations which preserve the relations of
Γ . There are now very broad classes of Γ for which the tractability or NP/#P-
completeness of CSP(Γ) or #CSP(Γ) can be guaranteed through this algebraic
approach. Most notably, Dalmau’s recent result on the tractability of CSP(Γ)
for any Γ closed under a generalized majority-minority operation provides one
of the largest classes of tractable CSPs and, on the hardness side, any Γ which
is a core but is not closed under a Taylor term is such that CSP(Γ) is NP-
complete [7]. This approach also underlies the dichotomy results of Bulatov for
CSP over the three-element domain and for the list-homomorphism problem [2].

Despite this remarkable progress, a proof of the dichotomy conjecture for CSP
still seems a few years away. For #CSP there are good reasons to be more opti-
mistic: the deep results of [3, 6] provide an algebraic criterion for the tractability
of #CSP(Γ) which is known to be necessary and is close to being shown as
sufficient (personal communication with A. Bulatov). In their seminal paper [3],
Bulatov and Dalmau proved that #CSP(Γ) is #P-complete if Γ is not preserved
by any Mal’tsev operation and conjectured that #CSP(Γ) is tractable otherwise.
That hypothesis was later refuted by Bulatov and Grohe when they classified
the complexity of #CSP(Γ) when Γ consists of two equivalence relations [6].

In order to illuminate the current status of this conjecture, we build on the
work of Nordh and Jonsson [18] and study the problem #EQN∗S of counting the
number of solutions to a system of equations over a fixed finite semigroup S.
Formally, an equation over S is given as s1 . . . sk = t1 . . . t� where each si and ti
is either a constant in S or a variable. An instance of #EQN∗S is a list of such
equations and we are interested in counting the number of ways in which values
in S can be assigned to variables such that all equations are satisfied.

We show that for any S, the problem #EQN∗S is either in FP or #P-complete
and precisely describe the class of semigroups involved in the classification (The-
orem 15). Such a result is to be expected if one believes that a #CSP di-
chotomy holds and our classification precisely matches the conjectured criterion
for tractability of #CSP. Our results also provide simple examples illustrating
the delicate nature of the dividing line between hard and easy cases of #CSP.

Systems of equations over semigroups have already served as interesting case
studies for the complexity of CSPs. In [14] it is shown that for any set of relations
Γ , there exists a finite semigroup SΓ such that CSP(Γ) is polynomial time
equivalent to the problem EQN∗SΓ

of testing if a system over SΓ has a solution
and so proving a dichotomy for this class of problems is equivalent to proving the
CSP dichotomy conjecture. If we consider only the problem of solving systems
over finite monoids, then the problem is either in P or NP-complete and this
result led to the identification of a new class of tractable CSPs [9]. Nordh also
considered the problem of testing if two systems are equivalent or isomorphic [17].

We review in Section 2 the basics of the algebraic approach to CSPs and
discuss the current conjectures about the #CSP dichotomy. In Section 3, we
give the relevant semigroup theoretic notions and rely on deep results of [6, 3]
to derive a number of hardness results for #EQN∗S . Finally, we prove our main
classification result in Section 4. Due to space restrictions, most proofs have been

586 O. Klíma, B. Larose, and P. Tesson

omitted. An extended version of this paper incorporating the results of [18] is in
preparation and its preliminary version is available from the authors’ web pages.

2 Universal Algebra and CSPs

Let D be a finite domain and Γ be a finite set of relations over D. The con-
straint satisfaction problem over Γ , denoted CSP(Γ) is the following decision
problem. The input consists of a list of variables x1, . . . , xn and constraints that
are pairs (Si, Ri) where Ri is a ki-ary relation in Γ and Si, the scope of the
constraint, is an ordered list of ki variables. We ask whether there exists an as-
signment of values in D to the variables such that every constraint is satisfied.
The related counting problem #CSP(Γ) consists of counting the number of such
assignments. Throughout the paper, Γ denotes a constraint language, i.e. a finite
set of relations over some domain D.

The algebraic approach mentioned in our introduction considers the closure
properties of Γ . An operation f on D is simply a function f : Dt → D. We
naturally extend f so that it takes as inputs t k-tuples a1, . . . , at of values in D
by defining f(a1, . . . , at) = (f(a11, . . . , at1), . . . , f(a1k, . . . , atk)). We say that a
k-ary relation R over D is closed under f , or that f is a polymorphism of R if for
any t k-tuples of R, say a1, . . . , at, we also have f(a1, . . . , at) ∈ R. Pictorially,

(a11, . . . , a1k) ∈ R

(
...,

...
...) ∈ R

(at1, . . . , atk) ∈ R
=⇒ (f(a11, . . . , at1), . . . , f(a1k, . . . , atk)) ∈ R

In other words, if each of the t rows represents a tuple in R then we can apply
f on each of the k columns and again obtain a tuple in R.

By extension we say that Γ is closed under f or that f is a polymorphism of
Γ if every relation of Γ is closed under f , and denote as Pol(Γ) the set of all such
finitary operations f . The fundamental link to counting CSPs is the following
theorem whose counterpart for the decision problem was proved in [12].

Theorem 1 ([3]). If Γ1, Γ2 are sets of relations over D such that Pol(Γ1) ⊆
Pol(Γ2) then #CSP(Γ2) is polynomial-time Turing reducible to #CSP(Γ1).

A ternary operation m over D is a Mal’tsev term if it satisfies the identities
m(x, y, y) = m(y, y, x) = x. Bulatov and Dalmau showed that if Pol(Γ) contains
a Mal’tsev term then CSP(Γ) is tractable [4]. A very broad criterion for #P-
completeness of #CSP(Γ) can also be given in terms of these operations.

Theorem 2 ([3]). If Γ is a constraint language such that Pol(Γ) contains no
Mal’tsev term, then #CSP(Γ) is #P-complete.

It was first conjectured [3] that the presence of a Mal’tsev term in Pol(Γ) was in
fact sufficient for the tractability of #CSP(Γ) but later work of Bulatov, Dalmau

Systems of Equations over Finite Semigroups 587

and Grohe [6, 4] revealed a more complex picture: the algorithm that guarantees
the tractability of CSP(Γ) when Pol(Γ) contains a Mal’tsev term cannot quite
be adapted to solve #CSP(Γ) efficiently. It can be salvaged in one important
special case discussed below.

An algebra D over a domain D is a pair 〈D;F 〉 where F is a set of operations
over D, called the fundamental operations of D. For an algebra D, we denote as
Inv(D) the set of relations over D which are preserved by all its fundamental
operations. Let 〈Γ 〉 denote the set of relations1 Inv(Pol(Γ)). We say that the
constraint language Γ is #-tractable (resp. #P-complete) if #CSP(Γ) is in FP
(resp. #P-complete). By extension we say that the algebra D is #-tractable if
every finite Λ ⊆ Inv(D) is #-tractable and say that D is #P-complete if there
exists a finite subset Λ ⊆ Inv(D) such that Λ is #P-complete. It follows from
Theorem 1 that Γ is #-tractable (resp. #P-complete) iff its associated algebra
〈D; Pol(Γ)〉 is #-tractable (resp. #P-complete).

It will also be convenient to consider standard algebraic constructions: given
an algebra D, we fix some indexing of its fundamental operations, and can then
consider subalgebras, homomorphic images and products of algebras (see [16] or
[4]). Bulatov and Dalmau have shown that if an algebra is #-tractable then so
is every finite algebra obtained from it by these constructions; and conversely, if
a power or subalgebra or homomorphic image of an algebra D is #P-complete
then so is D. A congruence of an algebra is an equivalence relation on its universe
which is invariant under the fundamental operations.
Γ is said to be uniform if the following holds: for every binary relation θ ∈ 〈Γ 〉

such that there exists a subset E ofD such that θ is an equivalence relation on E,
the blocks of θ all have the same size. Equivalently, Γ is uniform if its associated
algebra D is uniform, i.e. if θ is a congruence of a subalgebra of D then its blocks
all have the same size.

Theorem 3 ([3]). A uniform algebra admitting a Mal’tsev term is #-tractable.

This sufficient condition for tractability is not necessary. An algebra is #P-
complete if it contains no Mal’tsev term and #-tractable if it is uniform and
contains a Mal’tsev term but the dividing line between easy and hard cases of
#CSP lies in the small gap between these two criteria. We illustrate this in the
next section by giving examples of uniform and non-uniform constraint languages
related to systems of equations over Abelian groups.

Bulatov and Grohe considered the complexity of the #CSP (Γ) problem for
the special case in which Γ consists of two equivalence relations α, β. For any
such α, β, we can construct an integer matrix Mα,β with rows labeled by the
α-classes, columns labeled by β-classes and integer entries given by the size of
the intersection of the corresponding α and β classes. Although their result is
more general, we cite a weaker theorem that is sufficient for our purposes and
really represents the core of their arguments.

1 Alternatively, 〈Γ 〉 is the set of relations expressible through primitive positive for-
mulas over Γ and the equality relation (see e.g. [4]).

588 O. Klíma, B. Larose, and P. Tesson

Theorem 4 ([3]). If Mαβ is positive and has rank strictly larger than 1, then
#CSP (α, β) is #P complete.

If Γ is a set of relations and α, β are equivalence relations in 〈Γ 〉 with Mα,β

positive of rank strictly larger than 1, then #CSP(Γ) is #P-complete.

It is conjectured that this theorem provides the frontier between the tractable
and #P-complete cases of #CSP. More precisely, #CSP(Γ) should be tractable
if Pol(Γ) contains a Mal’tsev term and if for every homomorphic image B of a
subalgebra of a finite power of the algebra associated to Γ , and every pair of
congruences α and β of B, the matrix Mα,β has rank 1 if it is positive. Note that
the condition is known to be necessary.

3 Systems of Equations and Dual Algebras

To study the complexity of #EQN∗S , we reuse some of the simple but useful
observations of [18, 15, 14]. The first concerns the complexity of solving systems
over the direct product of two semigroups. One can easily show:

Lemma 5. Let S and T be finite semigroups such that #EQN∗T is in FP. Then
#EQN∗S×T , #EQN∗S×S and #EQN∗S are polynomial time Turing equivalent.

Given a system over S, we can introduce for each s ∈ S a new variable xs and
the equation xs = s without affecting the number of solutions to the system. An
equation y1y2y3 = z1z2 can also be replaced by the set of equations y1y2 = y′,
y′y3 = z′ and z1z2 = z′ where y′ and z′ are new dummy variables, again without
affecting the number of solutions. We thus assume that our systems consist of
equations of the form xy = z, x = y or x = c where x, y, z are variables and c ∈ S
is a constant. Therefore, #EQN∗S can be viewed as a #CSP with domain S and
constraint language ΓS consisting of |S| + 2 relations: the |S| singleton unary
relations, the equality relation and the ternary relation ·S = {(x, y, z) : xy = z}.
As we explained in Section 2, the complexity of #EQN∗S is completely determined
by Pol(ΓS) and we wish to analyze the structure of that set.

An operation f : Sk → S commutes with the operation ·S of S if for any
s1, . . . , sk, t1, . . . , tk ∈ S we have f(s1t1, . . . , sktk) = f(s1, . . . , sk)f(t1, . . . , tk).
We further say that f is idempotent if f(x, . . . , x) = x. For a semigroup S,
we denote as D(S) the dual algebra of S, i.e. the algebra over S containing all
operations that commute with ·S .

Lemma 6 ([15, 18]). Let ΓS be the constraint language defined by equations
over the semigroup S, then an operation f : Sk → S is a polymorphism of ΓS iff
f is idempotent and commutes with ·S.

Combining this lemma with Theorems 2 and 3 we get:

Lemma 7.
If D(S) does not contain a Malt’sev term then #EQN∗S is #P-complete.
If D(S) is uniform and contains a Malt’sev term then #EQN∗S is tractable.

Systems of Equations over Finite Semigroups 589

We shall see that some semigroups fit neither of these criteria but, as a first step,
we want to identify the classes of semigroups corresponding to these two cases
and this requires some notions of semigroup theory. Recall that an element e of
a semigroup S is an idempotent element (or simply an idempotent) if e2 = e: in a
finite semigroup, there exists an integer ω (which has this meaning throughout
the paper) such that xω is an idempotent for all x ∈ S.

We say that S is a band if all its elements are idempotents and say that S is
a left-zero (resp. right-zero) band if S satisfies ab = a (resp. ab = b). We further
say that S is a rectangular band if it is the direct product of a right-zero and a
left-zero band or, equivalently, if it satisfies xyz = xz and x2 = x.

For a semigroup S, let S1 denote the monoid obtained from S by adjoining
an identity element if no such element exists in S. A semigroup is called ideal-
simple if for any two elements a, b ∈ S, we have S1aS1 = S1bS1. An equivalent
requirement is that for any a, b there exist x, y ∈ S1 such that xay = b. In
particular, groups and rectangular bands are ideal-simple semigroups.

A semigroup is said to be orthodox if the product of two idempotents of S is
itself an idempotent and an ideal-simple semigroup is orthodox iff it is the direct
product of a group and a rectangular band [11].

We say that S is an inflated ideal-simple semigroup if it consists of an ideal-
simple subsemigroup c(S) (the core of S) and elements g1, . . . , gn such that for
all gi there exist not necessarily distinct elements t1, . . . , tn ∈ c(S) satisfying
tis = gis and sti = sgi for all s ∈ S. We say that gi is a ghost of ti. The
terminology of course stresses the fact that the actions defined by left and right
multiplication of ti and gi are indistinguishable. For an element t ∈ c(S), we
denote as g(t) the set of ghosts of t (including t itself) and call w(t) = |g(t)| the
weight of t in S. We say that S is a uniform inflation of c(S) if each t ∈ c(S)
has the same weight. It can be shown that s is a ghost of t iff sω+1 = t and, in
particular, that two elements of c(S) cannot be ghosts of each other.

Lemma 8. A finite semigroup S is an inflated ideal-simple orthodox semigroup
with only Abelian subgroups iff it satisfies wxyz = wyxz and xyωz = xz.

In the sequel, we denote as V the class of semigroups which, as in the statement
of the lemma. Note that for any S ∈ V, the core c(S) is always the direct product
A×L×R of an Abelian group, a left-zero band and a right-zero band. The class
V is tightly connected with dual Malt’sev terms.

Theorem 9. Let S be a finite semigroup.
(a) The dual algebra D(S) contains a Malt’sev term iff S is in V.
(b) If S ∈ V then D(S) is uniform iff S is a uniform inflation of c(S).

We omit the proof. By Lemma 7, we get as an immediate corollary:

Lemma 10. Let S be the uniform inflation of the direct product of an Abelian
group and a rectangular band. Then #EQN∗S is in FP.

We show in the next section that this lemma does not capture all tractable cases
of #EQN∗S . First, we establish a general hardness result for solving systems over
inflations of Abelian groups.

590 O. Klíma, B. Larose, and P. Tesson

Theorem 11. Let S be an inflation of an abelian group A and let D = D(S)
denote its dual algebra. If S is not a uniform inflation of A then there exist
congruences α and β of the algebra D3 such that the matrix Mαβ is positive of
rank strictly greater than 1.

This theorem and Theorem 4 yield:

Corollary 12. If S is a non-uniform inflation of an Abelian group then #EQN∗S
is #P-complete.

4 A Classification Result for the Complexity of #EQN∗
S

Lemma 10 states that #EQN∗S is tractable when S is a uniform inflation of the
direct product of an Abelian group and a rectangular band. However, we have
not explicitly described polynomial time algorithms for these problems since we
invoked the difficult and very general result of [3] on the tractability of uniform
Mal’tsev algebras. This is not actually a necessity. First, the fact that the number
of solutions to a system of equations over an Abelian group can be computed in
polynomial time can be obtained by elementary linear algebra. There is also a
very simple polynomial time algorithm to count solutions of a system over any
rectangular band L×R and the proof of Lemma 13 below describes an algorithm
for a slightly more general task. These algorithms can be combined to obtain a
polynomial time algorithm solving #EQN∗S when S is the direct product of an
Abelian group and a rectangular band.

Suppose that we now want to count the number of solutions to a system over
an inflation of such a direct product. As noted earlier, we can assume that every
equation is of the form x = y, xy = z or z = c where c is a constant. We can
remove all equations of the form z = c by replacing every occurrence of z by
the constant c. In the resulting system, if any solution exists, there exists one
in which every variable is set to a value in c(S) because any variable x set to
a ghost value s can just as well be set to sω+1. It is tempting to think that in
fact x can be set to any ghost of s but this is not quite the case: if x occurs in
an equation of the form yz = x then x can only take values in c(S). We will
say that such variables are regular. Any solution to the system in which every
variable is set to a value in c(S) thus corresponds to a whole set of solutions in
which every non-regular variable can be set to any corresponding ghost value.
We can formalize these ideas as follows. We say that a solution a = (a1, . . . , an)
is regular if all ai lie in c(S) and define the weight of a as

w(a) =
∏

xi non regular
w(ai).

It is easy to see that the number of solutions to the system is the sum of all
w(a) where a is a regular solution.

These notions lead to a natural polynomial time algorithm for #EQN∗S when S
is a uniform inflation of a direct product of an Abelian group and a rectangular

Systems of Equations over Finite Semigroups 591

band: since c(S) is uniformly inflated, every regular solution a has the same
weight kt where k is the number of ghosts of any element and t is the number
of non-regular variables in the system. Hence #EQN∗S is as hard as computing
the number of distinct regular solutions in a system. Finally, it is easy to reduce
this task to the problem #EQN∗c(S) which is tractable since c(S) is the direct
product of an Abelian group and a rectangular band.

The next lemma proves that not all tractable cases of #EQN∗S are captured
by Lemma 10.

Lemma 13. Let S be an inflation of a right-zero band or of a left-zero band.
Then #EQN∗S is in FP.

Proof. We are only interested in summing up the weights of regular solutions.
We first identify regular variables and replace any constant by its representative
in c(S) (note that we can do this without harm once the equations of the form
x = c have been removed). The resulting system can be viewed as a system over
the right-zero band c(S) and we want to understand the structure of the set of
solutions. Every equation of the form xy = z is in fact equivalent to y = z. So if
the system has a solution, it is just defining an equivalence relation on the set
of variables and constants. Formally, the system partitions the set of variables
and constants into classes Yc1 , . . . , Yc|c(S)| , X1, . . . , Xm where the constant ci lies
in Yci . We have a a solution, iff all variables in Yci are set to ci and all variables
in Xi have the same value ai. We will abuse notation and denote as |Xi| the
number of non-regular variables in the set Xi. Now the weight of a is simply

w(a) =
∏

|g(ci)||Yi||g(ai)||Xi|.

The sum of all these weights is thus(∏
|g(ci)||Yi|

) m∏
i=1

∑
s∈c(S)

|g(s)||Xi|

 . �

Note that if S is a non-uniform inflation of a right-zero band then, by Theorem 9,
the dual algebra D(S) is non-uniform. Thus, the above lemma provides examples
of constraint languages Γ such that Pol(Γ) is non-uniform but #CSP(Γ) is
nonetheless tractable.

As we mentioned in Section 2, equivalence relations in 〈Γ 〉 play a crucial
role in the complexity of #CSP(Γ). For a semigroup S ∈ V, there are a num-
ber of very natural equivalence relations defined through equations over S. We
know that the ideal-simple subsemigroup c(S) can be decomposed as the di-
rect product of an Abelian group A, a right-zero band R and a left-zero band
L. Correspondingly, we write an element of this subsemigroup as (a, r, l). Note
that since R and L are right and left-zero bands, the multiplication in c(S) is
given by (a1, r1, l1)(a2, r2, l2) = (a1a2, r2, l1). Let e denote the element (1A, r0, l0)
where 1A denotes the identity element of the group A and r0, l0 are arbitrarily
chosen elements of respectively R and L. Note that e is an idempotent. Con-
sider the binary relations αA, αL and αR defined as αA = {(x, y) : exe = eye};
αR = {(x, y) : exω = eyω} and αL = {(x, y) : xωe = yωe}.

592 O. Klíma, B. Larose, and P. Tesson

Clearly, all three are equivalence relations and it is not hard to show that they
lie in 〈Γ 〉. Furthermore ghosts of a same element are equivalent under all three
relations. Thus, in each case, an equivalence class is completely determined by
its elements in the subsemigroup c(S) = A× L×R. For an element x = (a, r, l)
of c(S), we have xωe = (1A, r, l)(1A, r0, l0) = (1A, r0, l) and so x, y ∈ c(S) are
αL-equivalent iff their L coordinate is the same. Similarly, x, y are αR-equivalent
iff their R coordinate is the same and are αA equivalent iff they agree on their
group coordinate. The intersection of these three equivalence relations is the
equivalence relation {(x, y) : xω+1 = yω+1} which equates two elements which
are ghosts of the same element of c(S).

Consider the two equivalence relations α = αR and β = αA ∩ αL and the
corresponding matrix Mαβ (as described before Theorem 4). The entries of this
matrix correspond to the cardinality of the intersection of an α and a β class.
Each such intersection contains precisely a unique element of c(S) and all its
ghosts. If the matrix thus formed has rank greater than 1, we know that #EQN∗S
is #P-complete by Theorem 4. Otherwise, a folklore fact about positive integer
matrices of rank 1 guarantees that Mα,β is the product of a row vector ρ and a
column vector κ which are both positive integer. This allows us to show:

Lemma 14. Let S be an inflation of A×L×R. If Mαβ = ρκ has rank 1, then
S is isomorphic to the product of an inflation of R and an inflation of A× L.

Proof. Let T = A× L. Note that two semigroups S1, S2 ∈ V are isomorphic iff
there is an isomorphism φ between the ideal-simple semigroups c(S1) and c(S2)
such that for all x, the ghost classes of x and φ(x) have the same size.

The matrix Mα,β has dimension |R| × |T | and we view rows and columns as
being labeled with elements r of R and elements t of T respectively. In S, the
number of ghosts of the regular element (r, t) is given by the (r, t) entry of the
matrix which is ρ[r]κ[t].

Consider the inflation R′ of R in which the element r has ρ[r] ghosts and
similarly let T ′ be the inflation of T specified by the column vector κ. It is easy
to verify that R′×T ′ is indeed isomorphic to S since the number of ghosts of the
regular element (r, t) in R′ × T ′ is the product ρ[r]κ[t] of the number of ghosts
of r in R′ and the number of ghosts of t in T ′. �

We can now assemble the pieces of the puzzle to obtain our classification theorem
for the complexity of #EQN∗S .

Theorem 15. If S is the direct product of a uniformly inflated Abelian group, an
inflated left-zero band and an inflated right-zero band then #EQN∗S is tractable.
Otherwise, #EQN∗S is #P-complete.

Proof. The upper bound for semigroups which are the direct product of a uni-
formly inflated Abelian group, an inflated left-zero band and an inflated right-
zero band follows from Lemmas 10 and 13 as well as Lemma 5 on solving systems
over a direct product of semigroups.

For the hardness result, we know by Theorem 9 that any semigroup S outside
of V is such that its dual algebra D(S) contains no Malt’sev term and Lemma 7

Systems of Equations over Finite Semigroups 593

guarantees that #EQN∗S is #P-complete in that case. If S lies in V then it is
an inflation of a direct product A×L×R of an Abelian group, a left-zero band
and a right-zero band.

Consider the matrix Mα,β as in Lemma 14: if Mα,β has rank 2 or more, then
#EQN∗S is #P-complete by Theorem 4. If it has rank 1, Lemma 14 allows us
to “peel off” an inflated right-zero band out of S. Since the problem #EQN∗R′ is
tractable for any inflation of a right-zero band (Lemma 13), we get by Lemma 5
that the complexity of #EQN∗S is exactly that of #EQN∗T ′ where T ′ is the
inflation of the product of L × A given by Lemma 14. We can of course repeat
the same argument and consider over T ′ the two equivalence relations α = αL

and β = αA and build the matrix Mα,β. This matrix is positive and if its rank
is not 1 then #EQN∗T ′ is again #P-complete by Theorem 4. Otherwise T ′ is the
direct product of an inflation L′ of L and an inflation A′ of A. Since #EQN∗L′ is
tractable, the problem #EQN∗S is equivalent to the problem #EQN∗A′ . Since we
assume that S is not the direct product of a uniformly inflated Abelian group,
an inflated left-zero band and an inflated right-zero band it must be that A′ is
a non-uniform inflation of the Abelian group A. By Corollary 12, #EQN∗A′ and
thus #EQN∗S are #P -complete. �

We argued that #EQN∗A′ is #P-complete if it is not a uniform inflation of A
by using the sophisticated machinery of [4, 6]. An alternative route can also
be pursued which we illustrate with the following simple example. Let C′2 be
the three-element semigroup consisting of the two-element group C2 (with the
operation written additively) to which we add a ghost for the element 1. In other
words, C′2 has elements {0, 1, 1′} and the operation is specified by 0+1 = 1+0 =
0 + 1′ = 1′ + 0 = 1 and 1 + 1′ = 1′ + 1 = 1 + 1 = 1′ + 1′ = 0 + 0 = 0.

Since C′2 is a non-uniform inflation of C2, the #P-completeness of #EQN∗C′
2

is guaranteed by Corollary 12 but we provide an explicit proof of its hardness by
reducing from the #P-complete problem Permanent. Recall that for an n×nma-
trix A, the permanent of A is Perm(A) =

∑
σ∈Sn

∏
i aiσ(i). Valiant proved that

the problem of computing the permanent of a 0/1 matrix is #P-complete [20].

Theorem 16. #EQNC′
2

is #P-complete under Turing reductions.

Proof. We first prove that the computation of the permanent reduces to the
following problem. Given a system E of equations over the group C2 with m
variables and an integer 0 ≤ i ≤ m, determine the number of solutions to E that
contain i 1’s and m− i 0’s. We call this problem NC2 .

Let A = (aij)1≤i,j≤n be the 0/1 matrix whose permanent we wish to compute.
We construct a system E of equations over C2 with n2 variables yij for 1 ≤ i, j ≤
n. There are 2n equations in E corresponding to the n rows and n columns of A.

Specifically, we have for each i an equation
∑n

j=1 aijyij = 1 and for each j

an equation
∑n

i=1 aijyij = 1. We claim that Perm(A) is exactly the number of
solutions of E that contain n 1’s. Indeed, for each permutation σ ∈ Sn such that∏

i aiσ(i) = 1, the assignment to the yij ’s that sets yij = 1 if j = σ(i) and yij = 0
otherwise is an assignment with n 1’s. Moreover it is a solution of the system
because aijyij = 1 iff j = σ(i) and in particular the sum of these products over

594 O. Klíma, B. Larose, and P. Tesson

one row or one column is exactly one. Conversely, every solution to E with n of
the yij set to 1 must be such that there exists a permutation σ with the property
that yij = 1 iff j = σ(i) for otherwise at least one row or one column has all
its yij ’s set to 0 and an equation is left unsatisfied. Furthermore it must be that
aiσ(i) = 1 for otherwise, again, one of the sums

∑n
j=1 aijyij or

∑n
i=1 aijyij is 0.

Hence there is a one-to-one correspondence between solutions of E with n 1’s
and permutations σ ∈ Sn such that

∏
i aiσ(i) = 1 and so Perm reduces to NC2 .

To complete the proof we show a reduction from the problem NC2 to the
problem #EQNC′

2
. Let E be a system of equations over C2 and suppose for

convenience that the n variables in E are x11, . . . , xn1. We construct a system
E ′ of equations over the super-semigroup C′2 from the system E as follows. For
each 2 ≤ i ≤ n we introduce n− 1 new variables xij for 1 ≤ j ≤ n and add the
equations xi1 = xi2 = . . . = xin. Furthermore we replace any occurrence of a
variable y by y + 0.

Any solution to E containing i 1’s and (n− i) 0’s gives rise to 2ni solutions in
E ′. Indeed if xi1 = 1 in the solution to E , then, in E ′, xi1 can be either 1 or its
ghost 1′ and this is true for each copy xij . So if Ni is the number of solutions of
weight i in E then the number of solutions in E ′ is

∑
2niNi. Since Ni ≤

(
n
i

)
< 2n

we know that the ith block of n bits in the sum
∑

2niNi is precisely Ni. �

This example shows the subtlety of the dividing line between tractable and in-
tractable cases of #CSP. Here, the constraint language ΓC′

2
is closed under a

Mal’tsev operation but ΓC′
2

is not uniform. Indeed, one can easily verify that the
function m(x, y, z) which is x if y = z, z if x = y and x + y + z otherwise is a
Mal’tsev polymorphism but the equivalence relation 0+x = 0+y has two equiv-
alence classes {0} and {1, 1′} of different sizes. Thus, Mal’tsev polymorphisms
do not characterize tractable cases of #CSP, even over domains of size three2.

It is possible to generalize the argument of Theorem 16 to show that any
non-uniform inflation of an Abelian group of prime-power order leads to a #P-
complete problem. The proof is a tedious case analysis and involves tricks rem-
iniscent of the thickening of [6]. With this result in hand, one can now get the
#P-completeness result for #EQN∗A′ when A′ is the non-uniform inflation of an
Abelian group. We re-apply the reasoning of Theorem 15 to successively peel off
from A′ uniform inflations of Abelian groups of a given prime power order and
thus progressively factor out the tractable components of the #EQN∗A′ problem.
One of three things must happen: in the first case, this process decomposes A′
as the direct product of uniform inflation of Abelian groups in which case the
counting problem is tractable. In the second case, we hit a positive matrix Mα,β

of rank at least 2, in which case the problem is #P-complete by Theorem 4.
In the last case we isolate in A′ a non-uniform inflation of an Abelian group of
prime power order and the problem is #P-complete.

Acknowledgements. We are grateful to Victor Dalmau and Andrei Bulatov
for useful discussions and to the MFCS referees for their many comments.

2 This contradicts a theorem of [3], retracted in the extended version [5].

Systems of Equations over Finite Semigroups 595

References

1. A. Bulatov. A dichotomy theorem for constraints on a three-element set. In Proc.
of 43rd Foundations of Comp. Sci. (FOCS’02), pages 649–658, 2002.

2. A. Bulatov. Tractable conservative constraint satisfaction problems. In 18th IEEE
Symp. on Logic in Comp. Sci. (LICS 2003), pages 321–331, 2003.

3. A. Bulatov and V. Dalmau. Towards a dichotomy theorem for the count-
ing constraint satisfaction problem. In 44th IEEE Symp. on Foundations of
Comp. Sci. (FOCS’03), pages 562–571, 2003.

4. A. Bulatov and V. Dalmau. A simple algorithm for mal’tsev constraints. SIAM J.
Comput., 36(1):16–27, 2006.

5. A. Bulatov and V. Dalmau. Towards a dichotomy theorem for the counting con-
straint satisfaction problem. 2006. To appear.

6. A. Bulatov and M. Grohe. The complexity of partition functions. In Proc. 31st
Int. Coll. on Automata Languages and Programming, pages 294–306, 2004.

7. A. Bulatov, A. Krokhin, and P. Jeavons. Constraint satisfaction problems and finite
algebras. In Proc. 27th Int. Coll. on Automata, Languages and Programming—
ICALP’00, pages 272–282, 2000.

8. N. Creignou and M. Hermann. Complexity of generalized satisfiability counting
problems. Inf. Comput., 125(1):1–12, 1996.

9. V. Dalmau, R. Gavaldà, P. Tesson, and D. Thérien. Tractable clones of polynomials
over semigroups. In Principles and Practice of Constraint Programming—CP’05,
pages 196–210, 2005.

10. T. Feder and M. Y. Vardi. The computational structure of monotone monadic SNP
and constraint satisfaction: A study through datalog and group theory. SIAM J.
on Computing, 28(1):57–104, 1999.

11. J. Howie. Fundamentals of Semigroup Theory. Claredon Press, Oxford, 1995.
12. P. Jeavons. On the algebraic structure of combinatorial problems. Theor. Comput.

Sci., 200(1-2):185–204, 1998.
13. P. Jeavons, D. Cohen, and M. Gyssens. Closure properties of constraints. J. ACM,

44(4):527–548, 1997.
14. O. Klíma, P. Tesson, and D. Thérien. Dichotomies in the complexity of solving

systems of equations over finite semigroups. Theory of Computing Systems, 2006.
15. B. Larose and L. Zádori. Taylor terms, constraint satisfaction and the complexity

of polynomial equations over finite algebras. Internat. J. Algebra and Computation,
2006. To appear, 17 pages.

16. R. McKenzie, G. McNulty, and W. Taylor. Algebras, Lattices and Varieties.
Wadsworth and Brooks/Cole, 1987.

17. G. Nordh. The complexity of equivalence and isomorphism of systems of equations
over finite groups. In Math. Found. Comp. Sci. (MFCS’04), pages 380–391, 2004.

18. G. Nordh and P. Jonsson. The complexity of counting solutions to systems of equa-
tions over finite semigroups. In Proc. 10th Conf. Computing and Combinatorics
(COCOON’04), pages 370–379, 2004.

19. T. J. Schaefer. The complexity of satisfiability problems. In Proc. 10th ACM
STOC, pages 216–226, 1978.

20. L. G. Valiant. The complexity of computing the permanent. Theor. Comput. Sci.,
8:189–201, 1979.

Valiant’s Model: From Exponential Sums

to Exponential Products

Pascal Koiran and Sylvain Perifel

LIP, École Normale Supérieure de Lyon
{Pascal.Koiran, Sylvain.Perifel}@ens-lyon.fr

Abstract. We study the power of big products for computing multivari-
ate polynomials in a Valiant-like framework. More precisely, we define
a new class VΠP0 as the set of families of polynomials that are expo-
nential products of easily computable polynomials. We investigate the
consequences of the hypothesis that these big products are themselves
easily computable. For instance, this hypothesis would imply that the
nonuniform versions of P and NP coincide. Our main result relates this
hypothesis to Blum, Shub and Smale’s algebraic version of P versus NP.
Let K be a field of characteristic 0. Roughly speaking, we show that in
order to separate PK from NPK using a problem from a fairly large class
of “simple” problems, one should first be able to show that exponential
products are not easily computable. The class of “simple” problems under
consideration is the class of NP problems in the structure (K, +,−, =),
in which multiplication is not allowed.

1 Introduction

Valiant’s model. In the framework of Valiant’s theory, which goes back to [17],
the objects of interest are families of multivariate polynomials. The complexity
of such families can be measured by the size of arithmetic circuits which com-
pute them. Two main complexity classes were introduced: VP, whose elements
are families of polynomials computed by arithmetic circuits of polynomial size
and polynomially bounded degree, and VNP. A VNP family is obtained from
a VP family by a summation of (possibly) exponential size, and a central open
question is whether VP and VNP coincide. For a long time, these two classes
were almost the only classes studied in Valiant’s theory. One exception is the
class VQP of polynomials computed by arithmetic circuits of quasi-polynomial
size of polynomially bounded degree. More recently, new classes were defined and
studied by Malod [12]. Of particular interest for us is his class VP0

nb. In contrast
to VP, arbitrary constants are not allowed, and the degrees of polynomials are
not bounded.

In this paper we define a new class, called VΠP0, which is obtained from
VP0

nb by computing products of (possibly) exponential size. By definition VP0
nb

is included in VΠP0, and we conjecture that this inclusion is strict. Some support
for this conjecture is provided by the following observation: if VP0

nb = VΠP0 the
polynomial family

R. Královič and P. Urzyczyn (Eds.): MFCS 2006, LNCS 4162, pp. 596–607, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Valiant’s Model: From Exponential Sums to Exponential Products 597

Pd =
d−1∏
i=0

(X − i) (1)

is easy to compute, i.e., can be computed by a family of arithmetic circuits of
size polynomial in log d. However, there is in algebraic complexity theory a fairly
old conjecture that this family is hard to compute [7,11]. Even more compelling
support for our conjecture is provided by Theorem 1, which shows that the non-
uniform versions of P and NP coincide if VP0

nb= VΠP0, that is, if big products
are computable by polynomial size circuits.

The goal of this paper is not merely to define yet another complexity class.
Indeed, as explained below the study of VΠP0 leads to meaningful results about
the complexity of decision problems. This paper is therefore in the same spirit
as [9], where it is shown that certain sequences of integers become easy to com-
pute if certain classes of polynomial families coincide.

Blum-Shub-Smale model. One crucial difference between this second model
of algebraic computation and Valiant’s model is the focus on decision (rather
than evaluation) problems. Precise definitions will be given in section 2. In this
introduction we will just recall that there is for each field a version of the classical
P versus NP problem. In particular, for the field of complex numbers there is a
very natural “PC = NPC?” problem, which has remained open since [3]. In order
to separate PC from NPC, it is of course sufficient to exhibit a “well chosen”
problem A which belongs to NPC but not to PC. One natural choice would
be to try A = FEASC, where FEASC, the feasibility problem for systems of
polynomial equations, is the canonical NPC-complete problem. One insight from
Shub and Smale [16] was that there are much more elementary-looking NPC

problems that do not seem to belong to PC. Shub and Smale’s candidate is the
problem Twenty Questions, which can be defined as follows: given a complex
number x and an integer d written in binary, decide whether x is an integer in
the set {0, 1, . . . , d − 1}. It is not difficult to see that this problem is in NPC

(hint: guess the binary decomposition of x). Shub and Smale gave compelling
evidence that this problem does not belong to PC, but no conclusive proof could
be obtained. In hindsight, this lack of definitive results is not surprising. Indeed,
to decide whether an input to Twenty Questions should be accepted it suffices
to evaluate the polynomial Pd at X = x, and to compare the result to 0. In order
to show that Twenty Questions is not in PC, one must therefore show that the
family Pd is hard to compute. As explained above, this is a fairly longstanding
open problem1 which actually predates [16].

In this paper we investigate the following question: are there other examples
of “simple” problems which might be used to separate NPC from PC? The class
of “simple” problems that we have in mind is NP(C,+,−,=). This is the class of NP
problems over the set of complex numbers endowed with addition, subtraction,
and equality tests (there is therefore no multiplication in this structure). It con-

1 The computation model of [7] and [11] is non-uniform, but Shub and Smale’s is
uniform. It doesn’t seem, however, that adding a uniformity requirement would be
of much help in showing that the family Pd is hard to compute.

598 P. Koiran and S. Perifel

tains Twenty Questions and many other natural problems (for instance, Subset
Sum). Our main result, Theorem 2, is established in section 5: we show that if
VP0

nb = VΠP0 then NP(C,+,−,=) is contained in P(C,+,−,×,=), the non-uniform
version of PC. Here, the non-uniformity is only due to the fact that (in keeping
with the tradition set by Valiant) the classes VP0

nb and VΠP0 are non-uniform.
One could equally well work with uniform versions of VP0

nband VΠP0, and arrive
instead at the inclusion NP(C,+,−,=) ⊆ PC.

We hope that this paper will help put the focus back from decision problems
to evaluation problems. Indeed, we have shown that in order to prove good lower
bounds for problems in a fairly large class of decision problems, one must first be
able to prove good lower bounds for a related class of evaluation problems. It is
a natural question whether the study of evaluation problems can shed light not
only on the problem “NP(C,+,−,=) ⊆ PC?”, but also on the full “PC = NPC?”
problem, or on the “PR = NPR?” problem. This question will be investigated in
a forthcoming paper.

2 Notations

Our polynomials will be multivariate, and for notational simplicity a tuple of
indeterminates will be denoted x̄ instead of (x1, . . . , xu(n)). We will use the
Greek letter ε̄ to emphasize that we are using a tuple of boolean variables, i.e.
ε̄ ∈ {0, 1}u(n). However, depending on the context x̄ will also denote a boolean
word when we are dealing with boolean problems.

2.1 Boolean Complexity Classes

We will not offend the reader by defining the boolean classes P and NP. Let
us only recall the definitions of their nonuniform versions P/poly and NP/poly.
P/poly is defined equivalently in terms of circuits or machines: this is the set of
boolean langugages recognized by a family of boolean circuits of polynomial size.
Alternatively, this is also the set of languages recognized by a Turing machine
working in polynomial time with the help of a polynomial size advice function
(hence the name P/poly, see [8]).

NP/poly, the nonuniform version of NP, is the set of languages recognized by
polynomial time nondeterministic Turing machine with the help of a polynomial
size advice function. Equivalently, it is easily seen to be the nondeterministic
counterpart of P/poly, that is to say: L ∈ NP/poly if and only if there exist
A ∈ P/poly and a polynomial p(n) such that

x̄ ∈ L ⇐⇒ ∃ȳ ∈ {0, 1}p(|x̄|).(x̄, ȳ) ∈ A.

If A is a language and k a nonnegative integer, A=k denotes the set of words of
A of size k.

Another class used in this paper is coRP. It is the set of languages recognized
in polynomial time by randomized Turing machines with one-sided error. For
more details on boolean complexity, we refer the reader to [13] for instance.

Valiant’s Model: From Exponential Sums to Exponential Products 599

2.2 Algebraic Circuits

In this section we recall the definitions of the non-uniform classes P(K,+,−,×,=)
and NP(K,+,−,×,=), where K is an arbitrary field. These two classes are the
non-uniform versions of the classes PK and NPK defined by Blum, Shub and
Smale [3,2]. Following [14], we will use families of algebraic circuits to recognize
languages over K, that is, subsets of K∞ =

⋃
n≥0K

n.
An algebraic circuit (understood over (K,+,−,×,=)) is a directed acyclic

graph whose vertices, called gates, have indegree 0, 1 or 2. An input gate is a
vertex of indegree 0. An output gate is a gate of outdegree 0. We assume that
there is only one such gate in the circuit. Gates of indegree 2 are labelled by a
symbol from the set {+,−,×}. Gates of indegree 1, called test gates, are labelled
“= 0?”. The size of a circuit C, in symbols |C|, is the number of vertices of the
graph.

A circuit with n input gates computes a function from Kn to K. On input
ū ∈ Kn the value returned by the circuit is by definition equal to the value of its
output gate. The value of a gate is defined in the usual way. Namely, the value
of input gate number i is equal to the i-th input ui. The value of other gates is
then defined recursively: it is the sum of the values of its entries for a +-gate,
their difference for a −-gate, their product for a ×-gate. The value taken by a
test gate is 0 if the value of its entry is 	= 0, and 1 otherwise. We assume without
loss of generality that the output is a test gate. The value returned by the circuit
is therefore 0 or 1.

Finally, the class P(K,+,−,×,=) is the set of languages L ⊆ K∞ such that
there exists a tuple ā ∈ Kp and a polynomial-size circuit family (Cn) satisfying
the following condition: Cn has exactly n + p inputs, and for any x̄ ∈ Kn,
x̄ ∈ L ⇔ Cn(x̄, ā) = 1. Note that ā plays the role of the machine constants
of [2,3]. The uniform class PK of [2,3] can be obtained from P(K,+,−,×,=) by
adding a uniformity requirement on the family (Cn). In this paper we will stick
to non-uniform classes.

Furthermore, NP(K,+,−,×,=) is the class of languages L such that there exists
a language A ∈ P(K,+,−,×,=) and a polynomial p(n) satisfying

x̄ ∈ L ⇐⇒ ∃ȳ ∈ Kp(|x̄|).(x̄, ȳ) ∈ A.

We also define a version DNP(K,+,−,×,=) (‘D’ stands for “digital”), where non-
determinism is allowed only on boolean tuples:

x̄ ∈ L ⇐⇒ ∃ȳ ∈ {0, 1}p(|x̄|).(x̄, ȳ) ∈ A.

We will also need to compute over the structure (K,+,−,=), where multipli-
cation is not allowed. An algebraic circuit over (K,+,−,=) is defined as above,
except that there are no ×-gate and that there is a new type of gates, called
selection gates. A selection gates is of indegree 3. Its value on input (x, y, z) is
x if z = 0, and y otherwise. The role of these gates is to simulate “if then else”
statements. These gates are not needed for the structure (K,+,−,×,=) since
“if then else” statements can be simulated using multiplication (for instance, by

600 P. Koiran and S. Perifel

the subcircuit [z = 0?] × x + (1 − [z = 0?]) × y). The classes P(K,+,−,=) and
NP(K,+,−,=) are defined in the same way as P(K,+,−,×,=) and NP(K,+,−,×,=). We
could define DNP(K,+,−,=) as well, but the first author has shown in [10] that
DNP(K,+,−,=) = NP(K,+,−,=), i.e., only digital nondeterminism is enough over
the structure (K,+,−,=).

2.3 Arithmetic Circuits

In Valiant’s model, we compute polynomials instead of recognizing languages.
A book-length treatment of this topic can be found in [4]. In our framework,
which, as explained in the introduction, is not the original one, we require the
underlying structure to be a field of characteristic 0, and do not allow arbitrary
constants (apart from the constant 1) in our circuits. Hence we compute poly-
nomials fn ∈ Z[x1, . . . , xu(n)]. Furthermore, we have no restriction on the degree
of the polynomials. This formalism was introduced and studied in [12].

An arithmetic circuit is the same as an algebraic circuit over (K,+,−,×,=),
but test gates are not allowed. That is to say we have indeterminates x1, . . . , xu(n)
as input, +, − and ×-gates, and we therefore compute polynomials with integer
coefficients.

The polynomial computed by an arithmetic circuit is defined in the usual way.
Thus a family (Cn) of arithmetic circuits computes a family (fn) of polynomials,
fn ∈ Z[x1, . . . , xu(n)]. The class VP0

nb is the set of families (fn) of polynomials
computed by a family (Cn) of polynomial size arithmetic circuits, i.e., Cn com-
putes fn and there exists a polynomial p(n) such that |Cn| ≤ p(n) for all n.
We will assume without loss of generality that the number u(n) of variables is
bounded by a polynomial function of n.

Arithmetic circuits are at least as powerful as boolean circuits in the sense that
one can simulate the latter by the former. Indeed, we can for instance replace
¬u by 1 − u, u ∧ v by uv, and u ∨ v by u + v − uv. This proves the following
classical lemma.

Lemma 1. Any boolean circuit C can be simulated by an arithmetic one of size
at most 3|C|, in the sense that on boolean inputs, both circuits output the same
value.

3 Big Products

We introduce here the new class VΠP0, where exponential products are allowed.
This is very much inspired by the class VNP, but sums are replaced by products
(and, as explained before, constants different from 1 are not allowed, and there
is no restriction on the degree).

Definition 1. The class VΠP0 is the set of families of polynomials (gn(x̄)) such
that there exists a family (fn(x̄, ȳ)) ∈ VP0

nb satisfying the relation:

gn(x̄) =
∏

ε̄∈{0,1}|ȳ|

fn(x̄, ε̄).

Valiant’s Model: From Exponential Sums to Exponential Products 601

Example 1. The family (gn(X)) defined by gn(X) =
2n−1∏
i=0

(X− i) is in VΠP0. To

see this, let (fn(X, ε̄)) be the family

fn(X, ε̄) = X −
n∑

j=1

εj2j−1.

Then (fn) ∈ VP0
nb and gn(X) =

∏
ε̄∈{0,1}n

fn(X, ε̄).

Note that gn = P2n , where P2n is defined by (1). This polynomial can therefore
be computed by a circuit of size polynomial in n if VP0

nb = VΠP0. In fact a
more general property holds true: if VP0

nb = VΠP0 the family (Pd) is easy to
compute. Indeed, once we know how to evaluate efficiently Pd when d is a power
of 2, we can also evaluate efficiently for an arbitrary d thanks to the relation
Pd+2n(X) = Pd(X)P2n(X − d). This observation gives some plausibility to the
conjecture VP0

nb 	= VΠP0. Additional support is provided by Theorem 1 from
section 4.

Remark 1. The underlying field is implicit in the notations VP0
nb and VΠP0,

and should usually be clear from the context. Note that for the question VP0
nb =

VΠP0, there is no ambiguity at all. Indeed, the equality VP0
nb = VΠP0 holds

true in a field of characteristic 0 if and only if it holds true in all fields of
characteristic 0.

Remark 2. In the spirit of the polynomial hierarchy in boolean complexity the-
ory, one could define a whole hierarchy of new complexity classes by alternating
sums and products. The classes VP0

nb, VNP0
nb (also studied by Malod [12]) and

VΠP0 would be the first three classes of this hierarchy.

Next we present a criterion which enables to make products over a set more
complicated than {0, 1}n.

Lemma 2. Let (fn(x̄, ȳ)) be a VP0
nb family, and s(n) a function which bounds

from above the length of ȳ, and is itself polynomially bounded (i.e., s(n) ≤ p(n)
for some polynomial p). Let A be a language in P/poly. There exists a family
(gn(l̄, x̄)) in VΠP0, where |l̄| = s(n)− |ȳ|, such that for any tuple x̄ of elements
of K and any boolean tuple l̄ we have:

gn(l̄, x̄) =
∏

ε̄; (l̄,ε̄)∈A=s(n)

fn(x̄, ε̄).

Proof. Since A ∈ P/poly, there exists a family of polynomial size boolean circuits
(Cn) deciding A. By Lemma 1, we can simulate this family of boolean circuits
by a family of arithmetic circuits. We obtain a family of polynomials (cn(ȳ, z̄))
in VP0

nb such that for any boolean input (l̄, ε̄) of size n:

cn(l̄, ε̄) =
{

1 if (l̄, ε̄) ∈ A
0 otherwise.

602 P. Koiran and S. Perifel

The family (hn(x̄, ȳ, z̄)) defined by

hn(x̄, ȳ, z̄) = cs(n)(ȳ, z̄)fn(x̄, z̄) + 1− cs(n)(ȳ, z̄)

is therefore in VP0
nb and satisfies∏
ε̄∈{0,1}s(n)

hn(x̄, l̄, ε̄) =
∏

ε̄; (l̄,ε̄)∈A=s(n)

fn(x̄, ε̄).

�

Note that this lemma is already meaningful when s(n) = |ȳ|, i.e., when |l̄| = 0.
The more general statement given here will be useful for the proof of our main
theorem.

4 Boolean Complexity

In this section we explore the consequences for boolean complexity theory of
the assumption that big products are computable by polynomial size circuits.
Namely, we prove the following result.

Theorem 1. If VΠP0 = VP0
nb then P/poly = NP/poly.

Proof. Let A ∈ NP/poly. Then there exist a language B ∈ P/poly and a poly-
nomial p(n) such that

x̄ ∈ A ⇐⇒ ∃ȳ ∈ {0, 1}p(|x̄|).(x̄, ȳ) ∈ B.

Since B ∈ P/poly, it is decided by a family of polynomial size boolean circuits.
These circuits can be simulated by arithmetic ones as in Lemma 1. We obtain
a family of polynomials (fn(x̄, ȳ)), whose value on a boolean input (x̄, ȳ) is 0
if (x̄, ȳ) ∈ B and 1 otherwise. This family is in VP0

nb because the family of
arithmetic circuits has polynomial size.

Now, the products
gn(x̄) =

∏
ȳ∈{0,1}p(|x̄|)

fn(x̄, ȳ)

form a VΠP0 family. On any boolean input x̄ we have gn(x̄) ∈ {0, 1}, and
gn(x̄) = 0 iff ∃ȳ ∈ {0, 1}p(|x̄|).(fn(x̄, ȳ) = 0). In other words,

gn(x̄) = 0 ⇔ x̄ ∈ A. (2)

Under the hypothesis VΠP0 = VP0
nb, the family (gn) is in VP0

nb. It is therefore
computed by polynomial size arithmetic circuits. Deciding whether x̄ ∈ A in
nonuniform polynomial time thus amounts to testing in nonuniform polynomial
time whether the value of a circuit is zero. It is well known that this can be done
in randomized polynomial time coRP by computing modulo random primes (see
for instance [15]). The inclusion coRP ⊂ P/poly [1] concludes the proof. �

It follows from (2) that we can decide any problem in NP by testing an appro-
priate VΠP0 family for zero. This fact will be used in section 5.3.

Valiant’s Model: From Exponential Sums to Exponential Products 603

5 A Transfer Theorem

We now turn our attention to links with the Blum-Shub-Smale model. The main
result of this section, and of the present paper, is the following theorem.

Theorem 2. If VΠP0 = VP0
nb then NP(K,+,−,=) ⊆ P(K,+,−,×,=).

As in Theorem 1, this connection between VΠP0 and nondeterminism will be
obtained by replacing quantifiers by products. However, in VΠP0 the products
concern only arithmetic circuits, whereas in NP(K,+,−,=) the quantifiers concern
algebraic circuits (where test gates occur). Therefore, we would like to simulate
the computation of an algebraic circuit by an arithmetic one, i.e., to eliminate the
test gates. For this purpose, we use boolean circuits as an intermediate step. The
latter can indeed be easily simulated by arithmetic circuits by Lemma 1. Doing
so requires to deal only with boolean inputs. One part of this problem has already
been solved in [10]: boolean nondeterminism already captures NP(K,+,−,=). It re-
mains to replace the algebraic input x̄ ∈ Kn by a boolean one. This is achieved
in the sequel by using mostly techniques which deal with arrangements of hy-
perplanes. The idea is to replace the algebraic input x̄ ∈ Kn by a point q̄ ∈ Kn

of “small” rational coefficients, “close enough” to x̄ so that their behaviours will
be the same. Now, this rational point can be encoded by boolean tuples, and the
whole computation simulated by boolean circuits. “Close enough” means in fact
that x̄ and q̄ belong to the same cell of a suitable arrangement of hyperplanes,
i.e., lie on exactly the same hyperplanes of the arrangement. Similar ideas were
used in the proofs of the transfer theorems of [5] and [6], which dealt with the
structure (R,+,−, <). Note however that the cells of an arrangement as defined
below are not the same as in these two papers. Indeed, since we work in an
unordered structure, it doesn’t make sense to ask whether a point is “above” or
“below” a given hyperplane. The only thing that matters is whether the point
lies or not on the hyperplane.

Point location in arrangements of hyperplanes is the main ingredient for find-
ing the rational point q̄ on input x̄. For a given family of hyperplanes, the goal
is to build a circuit which outputs the cell of x̄. These notions are explained
in section 5.1. In section 5.2 we explain how to find the cell of x̄ using VΠP0

tests. Finally, these tools are put together in section 5.3 to recognize NP(K,+,−,=)
problems with the help of VΠP0 tests.

5.1 Arrangement of Hyperplanes

By hyperplane (or affine hyperplane) of Kn, we mean a surface (of dimension
n−1) defined by an affine equation

∑
i λixi = µ. We say that k linear hyperplanes

of Kn are independent if their intersection has dimension exactly n−k. In other
words, the k hyperplanes are in general position.

An arrangement of hyperplanes is merely a finite family of affine hyperplanes
A = {Hi; i ∈ I}. This enables us to define an equivalence relation:

x̄ ∼ ȳ iff ∀i.(x̄ ∈ Hi ⇐⇒ ȳ ∈ Hi).

604 P. Koiran and S. Perifel

The equivalence classes are called cells of the arrangement. In other words, two
points are in the same cell if they belong to exactly the same hyperplanes. A cell
is therefore of the form

(
⋂
i∈J

Hi) \ (
⋃

j∈J′
Hj)

for some subsets J and J ′ of I. One can assume without loss of generality that the
hyperplanes (Hi)i∈J are independent. Notice that the cell of x̄ ∈ Kn is charac-
terized by a maximal set (with respect to inclusion) of independent hyperplanes
that contain x̄. We will use this characterization later for describing the cells of
our arrangement. As outlined at the beginning of section 5, on input x̄ ∈ Kn

we want to determine its cell, i.e., to return the indices of these independent
hyperplanes.

Let p(n) be a fixed polynomial, and Ap,n the set of all hyperplanes in Kn

with integer coefficients of absolute value at most 2p(n). We call Hp the family
of all the arrangements Ap,n (where n ranges over N \ {0}). Section 5.2 explains
how to build a family of polynomial-size circuits with VΠP0 tests which, on
input x̄ ∈ Kn, output the cell of x̄ in the arrangement Ap,n (this is called “point
location” in the arrangement).

5.2 Point Location

The goal of this section is to build an algebraic circuit with VΠP0 tests, which
on input x̄ ∈ Kn returns its cell. We first define formally circuits with VΠP0

tests. Then we prove that the point location problem can be solved efficiently
using VΠP0 tests.

Definition 2. A family of algebraic circuits with VΠP0 tests is a family
(fn(x̄)) ∈ VΠP0 together with a family (Cn) of algebraic circuits, where Cn

is endowed with gates labeled by “fn(ȳ) = 0?” (the subscript n has to be the
same for fn and Cn). These gates are of indegree |ȳ| and output 0 if the test
fails (i.e. fn evaluated on the inputs of the gate is nonzero), 1 otherwise.

The class P(K,+,−,×,=)(VΠP0) is the set of languages recognized by a family
of polynomial size algebraic circuits with VΠP0 tests.

By adding some “selection variables”, it is not hard to see that in fact any
constant number of VΠP0 families can be tested (instead of only one) and still
we stay in P(K,+,−,×,=)(VΠP0). For instance, two VΠP0 families will be used in
section 5.3: one family to perform a point location task, and the other family to
decide a (classical) NP problem. We now explain how to solve the point location
problem using VΠP0 tests.

Proposition 1. Let (Hp) be the family of arrangements of hyperplanes whose
coefficients are integers bounded by 2p(n) in absolute value (this family was de-
fined at the end of section 5.1). There exists a family (Cn) of polynomial size
algebraic circuits with VΠP0 tests that, on input x̄ ∈ Kn, output the indices of
m independent hyperplanes that characterize the cell of x̄.

Valiant’s Model: From Exponential Sums to Exponential Products 605

Proof. The idea of the algorithm is simple: we maintain a “search space” E which
locates x̄ as accurately as possible. At the beginning we have no information, and
we let E = Kn. At each subsequent step, we find (if it exists) the first hyperplane
H of our arrangement that refines E, i.e., x̄ ∈ H and dim(E ∩H) < dimE. At
most n steps are therefore enough, and as the description of the cell of x̄ we
return the indices of the successive hyperplanes met during this process. We will
explain below how to find the first hyperplane refining E with the help of VΠP0

tests. Let us first sum up the algorithm:

– E ← Kn;
– L← ∅;
– R← {H ∈ A : x̄ ∈ H};
– while R 	= ∅ do

. let H0 be the first hyperplane of R

. L← L ∪ {H0}

. E ← E ∩H0

. R← {H ∈ A : x̄ ∈ H and E ∩H 	= E}
– return L.

Note that E =
⋂

H∈L H , thus keeping track of L (a list of hyperplanes, or
actually of their indices) is enough to determine E.

Finding the first hyperplane refining E is done by binary search, thanks to
VΠP0 tests. The list L describing E contains at most n indices, all of size poly-
nomial in n. We store this list in a polynomial number of variables l1, . . . , lq(n),
representing the boolean encoding of these indices.

At each step, let A be the set of indices of hyperplanes that do not contain
E. If fi is the equation of Hi, the polynomial

g(l̄, x̄) =
∏

i<j and i∈A

fi(x̄)

vanishes if and only if the first hyperplane refining E has its index smaller than j.
By making j vary, we can thus find this hyperplane via binary search in a number
of steps which is logarithmic in the number of hyperplanes, i.e., polynomial in n.

We now explain why this product is in VΠP0. With boolean inputs l1, . . . , lq(n)
and i, we can compute the equation of Hi and test by a simple rank calculation
whether Hi has nontrivial trace over E. This is done by a boolean circuit of
polynomial size, for instance by Gaussian elimination. Now, Lemma 2 ensures
that this product is in VΠP0.

In a polynomial number of VΠP0 tests, we therefore find the first hyperplane
refining E. We then proceed with the next step: after at most n steps we have
completely characterized the cell of x̄. We output the list L of the successive
hyperplanes found. This concludes the proof of Proposition 1. �

5.3 Deciding NP(K,+,−,=)Problems

We are now ready for the main theorem of this section: NP(K,+,−,=) problems
are decided by polynomial size algebraic circuits with VΠP0 tests.

606 P. Koiran and S. Perifel

Theorem 3. Let K be a field of characteristic zero. Then

NP(K,+,−,=) ⊆ P(K,+,−,×,=)(VΠP0).

If big products are computable by arithmetic circuits of polynomial size, one
can efficiently simulate VΠP0 tests with algebraic circuits. Theorem 2 therefore
follows immediately from Theorem 3.

Proof (of Theorem 3). The outline of the proof is as follows. First we determine
the cell of x̄. Then we construct in polynomial time a small rational point q̄ in
the cell. Deciding whether q̄ is a positive input is a (classical) NP problem. We
have seen in the proof of Theorem 1 that NP problems can be decided by testing
a single VΠP0 family for zero. Let us now fill in the details.
Digital nondeterminism. Let L ∈ NP(K,+,−,=). By [10, Theorem 2], digital non-
determinism suffices: there exists a language A ∈ P(K,+,−,=) and a polynomial
p(n) such that

x̄ ∈ L ⇐⇒ ∃ȳ ∈ {0, 1}p(|x̄|).(x̄, ȳ) ∈ A.

Let (Cn) be a family of algebraic circuits of polynomial size r(n) over the struc-
ture (K,+,−,=) (i.e. without multiplication gates) that decides A. Notice that
our definitions in Valiant’s model are constant-free, whereas our algebraic deci-
sion circuits (and in particular Cn) may use arbitrary constants. This is not a
serious problem: it is enough to consider the constants as new variables (i.e. we
pretend that they are part of the input x̄), and the circuit is now constant-free.
Then our construction leads to a new circuit with the same input variables (and
VΠP0 tests). It just remains to plug the original constants in place of the freshly
created variables to recognize the original language L. In the remainder of the
proof, we therefore assume that the circuits Cn are constant free.
Definition of the arrangement of hyperplanes. Since only addition and subtrac-
tion are allowed, on input (x̄, ȳ) every test in Cn is of the form

∑n
i=1 λixi =∑p(|x̄|)

i=1 µiyi + γ, where λi, µi and γ are integers, and are bounded in absolute
value by 2r(n). Since yi ∈ {0, 1}, the right-hand side of the test is bounded
in absolute value by 2r(n)(1 + p(|x̄|)). Let q(n) be a polynomial satisfying
2q(n) ≥ 2r(n)(1 + p(n)). Consider the family of arrangements Hq defined in
section 5.1: two points x̄ and x̄′ in the same cell satisfy

∀ȳ ∈ {0, 1}p(|x̄|) [(x̄, ȳ) ∈ A ⇐⇒ (x̄′, ȳ) ∈ A].

Hence these two points both belong to L, or both belong to its complement.
Finding the cell of x̄. We can apply Proposition 1: there is a family of polynomial
size algebraic circuits with VΠP0 tests that output the indices of m independent
hyperplanes characterizing the cell of x̄.

Finding a small rational point in the cell. A point q̄ in the cell of x̄, of rational
coordinates of polynomial size, can be constructed in polynomial time (we omit
the description and proof of a boolean algorithm performing this task due to
lack of space). As pointed out above, x̄ is in L if and only if q̄ is in L.

Valiant’s Model: From Exponential Sums to Exponential Products 607

Deciding whether a given rational point belongs to L is a problem in NP. It
follows from the proof of Theorem 1 that we can decide whether q̄ ∈ L with one
additional VΠP0 test. �
Finally, we thank the anonymous referees for the following remarks.

Remark 3. The P(K,+,−,×,=) algorithm of Theorem 3 in fact does not use arith-
metic operations (apart from VΠP0 tests of course). Hence the stronger result
NP(K,+,−,=) ⊆ P(K,=)(VΠP0) holds. This does not improve Theorem 2, however.

Remark 4. Since VΠP0 can simulate NP (Theorem 1), the inclusion NPRovs ⊆
PRovs(NP) of [6] for Rovs = (R,+,−,≤) implies NPRovs ⊆ PRovs(VΠP0) .

References

1. L. M. Adleman. Two theorems on random polynomial time. In Proceedings of the
19th IEEE symposium on foundations of computer science, pages 75–83, October
1978.

2. L. Blum, F. Cucker, M. Shub, and S. Smale. Complexity and Real Computation.
Springer-Verlag, 1998.

3. L. Blum, M. Shub, and S. Smale. On a theory of computation and complexity over
the real numbers: NP-completeness, recursive functions and universal machines.
Bulletin of the American Mathematical Society, 21(1):1–46, 1989.

4. P. Bürgisser. Completeness and Reduction in Algebraic Complexity Theory. Num-
ber 7 in Algorithms and Computation in Mathematics. Springer, 2000.

5. H. Fournier and P. Koiran. Are lower bounds easier over the reals? In Proc. 30th
ACM Symposium on Theory of Computing, pages 507–513, 1998.

6. H. Fournier and P. Koiran. Lower bounds are not easier over the reals: Inside PH.
In Proc. ICALP 2000, LNCS 1853, 2000.

7. J. Heintz and J. Morgenstern. On the intrinsic complexity of elimination theory.
Journal of Complexity, 9:471–498, 1993.

8. R. M. Karp and R. J. Lipton. Turing machines that take advice. L’enseignement
mathématique, 28:191–209, 1982.

9. P. Koiran. Valiant’s model and the cost of computing integers. Computational
Complexity, 13:131–146, 2004.

10. P. Koiran. Computing over the reals with addition and order. Theoretical Computer
Science, 133(1):35–48, 1994.

11. R. J. Lipton. Straight-line complexity and integer factorization. In Proc. First
International Symposium on Algorithmic Number Theory, volume 877 of Lecture
Notes in Computer Science, pages 71–79. Springer, 1994.

12. G. Malod. Polynmes et coefficients. PhD thesis, Universit Claude Bernard Lyon
1, July 2003.

13. C. H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.
14. B. Poizat. Les petits cailloux. Aléas, 1995.
15. J. T. Schwartz. Fast probabilistic algorithms for verification of polynomial identi-

ties. Journal of the ACM, 27(4):701–717, October 1980.
16. M. Shub and S. Smale. On the intractability of Hilbert’s Nullstellensatz and an

algebraic version of “NP
= P?”. Duke Math. Journal, 81(1):47–54, 1995.
17. L. G. Valiant. Completeness classes in algebra. In Proc. 11th ACM Symposium on

Theory of Computing, pages 249–261, 1979.

R. Královi and P. Urzyczyn (Eds.): MFCS 2006, LNCS 4162, pp. 608 – 621, 2006.
© Springer-Verlag Berlin Heidelberg 2006

A Reachability Algorithm for General Petri Nets
Based on Transition Invariants

Alexander E. Kostin

Department of Computer Engineering, Eastern Mediterranean University
Magusa, KKTC, Mersin 10, Turkey

Alexander.kostin@emu.edu.tr

Abstract. A new reachability algorithm for general Petri nets is proposed.
Given a Petri net with an initial and a target markings, a so called
complemented Petri net is created first that consists of the given Petri net and an
additional, complementary transition. Thereby, the reachability task is reduced
to calculation and investigation of transition invariants (T-invariants) of the
complemented Petri net. The algorithm finds all minimal-support T-invariants
of the complemented Petri net and then calculates a finite set of linear
combinations of minimal-support T-invariants, in which the complementary
transition fires only once. Finally, for each T-invariant with a single firing of
the complementary transition, the algorithm tries to create a reachability path
from initial to target marking or determines that there is no such path.

Keywords: Petri nets, reachability, transition invariants.

1 Introduction

Petri nets are an important formal paradigm for modeling and analysis of discrete
event systems. In such systems, a researcher is often interested to know whether the
system can transit from one state into another state. In terms of Petri nets, the answer
to this question is obtained as a solution of a reachability problem.

The reachability problem in Petri nets is formulated as follows: for any Petri net
PN, with an initial marking M 0, and for some other marking M, determine whether
the relation M ∈ R(PN, M 0) is true, where R(PN, M 0) is the reachability set of PN
for its initial marking M 0 [1]. The decidability of the reachability problem has been
proved for a number of restricted classes of Petri nets, and there are efficient
algorithms for such classes as acyclic Petri nets, marked graphs, and others [2], [3],
[4], [5].

It has been shown that the reachability problem is decidable for general Petri nets
as well [6]. In practice, two different techniques are used most often to determine the
reachability of a marking in generalized Petri nets. The first technique is based on the
creation and investigation of a complete or reduced reachability graph. The main
drawback of this approach is a state explosion problem. A closely related technique is
the use of stubborn sets [8]. Unfortunately, generation of minimal or reduced
reachability graphs, as is required by this technique, is known to be an NP-hard

 A Reachability Algorithm for General Petri Nets Based on Transition Invariants 609

problem [10]. If Petri net has no specific properties like a symmetry or reversibility,
the corresponding reduced reachability graph will have almost the same size as that of
the full reachability graph [9].

The second technique is based on methods of linear algebra. Given a pure Petri net
(i.e. a Petri net without self-loops), with sets of transitions T and places P, its
structure is represented unambiguously by the incidence matrix

 D = [d(ti, pj)] = [dij], i = 1, 2, ... , m = |T|, j = 1, 2, ... , n = |P|, (1)

where d(ti, pj) = Post(pj, ti) - Pre(pj, ti), Pre and Post are the input and output
functions of the Petri net, with Pre(p, t) = v if there is a directed arc from p to t with
the weight v, and Post(p, t) = v if there is an arc from t to p with the weight v.

It is known that a necessary condition for reachability of marking M from some
other marking M0 is the existence of a nonnegative integer solution of the matrix
equation

 M = M0 + FD (2)

relative to F, where F = [f1, f2, ..., fm] is a firing count vector [12].
Unfortunately, the existence of a nonnegative integer solution of equation (2) is

not a sufficient condition for reachability of marking M from M0 [1]. The second
drawback of this method is that the solution of equation (2) does not contain any
information about the order of firings. More than that, this can have infinite number
of nonnegative integer solutions, some of which work while others fail, and there is a
problem to select working firing count vectors [7].

In our paper [11], linear algebra methods were used for reachability analysis of
a particular class of place/transition Petri nets having no transition invariants
(T-invariants). Algebraically, T-invariants of a Petri net with incidence matrix D are
non-negative integer (1 × m) vectors F such that FD = 0 [13].

This paper generalizes the approach described in [11] for arbitrary place/transition
nets, including Petri nets with T-invariants. The existence of T-invariants in Petri nets
considerably complicates the reachability analysis. In contrast with the scheme in
[11], in the generalized scheme the set of T-invariants for investigation is theoretically
infinite. Nevertheless, as will be shown in this paper, it is always possible to
effectively limit this set without the loss of reachability information and then to use
T-invariants from this finite set for performing a reachability analysis.

2 Notation and Basic Statements

We adopt the notation and basic statements from our paper [11]. In particular, the
structure of any (pure) Petri net will be represented by its incidence matrix (1), in
which rows correspond to transitions and columns correspond to places, as in [1] and
[7].

Let M 0 be an initial marking and M be some other marking of given Petri net PN.
If we are interested in reachability of M from M 0 then marking M will be called
the target marking. It is assumed, throughout the paper, that M0 ≠ M.

In the paper, all vectors are considered as row vectors. In particular, markings of
PN will be expressed as (1 × n) row vectors, so that we can write

610 A.E. Kostin

],...,,[00
2

0
1

0
nmmmM = and],...,,[21 nmmmM = , (3)

where the ith entry in M0 and M denotes the number of tokens in place pi ∈ P.
If marking M is reachable from M0 in PN, then there exists at least one

sequence of markings µ = M0 M1 ... M r with M r = M, and a sequence of firing

transitions
riii ttt ...

21
=τ , with the two sequences related by the state equation

,][1 DieMM mk
kk += − k = 1, 2, ... , r. Here e[ik]m is an (1 × m) control

vector, in which m - 1 entries are zero and the ikth entry is one, indicating that a

transition
ki

t fires at step k . Sequences µ and can be combined to obtain a

reachability path from marking M0 to M r:

 (4)

Its determination is the main problem of reachability analysis. With linear algebra
methods, this analysis is usually carried out in two stages. The first stage is computing
of one or more firing count vectors satisfying equation (2). The second stage is
attempting to find reachability paths corresponding to the computed firing count
vectors [27]. At the first stage, it is important to limit the number of firing count
vectors, without the loss of reachability information. In the proposed approach, this
stage is reduced to the computation of T-invariants of so called complemented Petri
net.

Definition 1. For any Petri net PN with incidence matrix D specified by (1), and
initial and target markings M0 and M represented by vectors (3), there exists a unique
complemented Petri net PNc that has the same set of places P as PN, the set of
transitions Tc = T ∪ {tm+1}, and is described structurally by the incidence matrix

 ,
∆

=
M

D
Dc (5)

where tm+1 is an additional, complementary transition, and ∆M = M0 - M = [∆m1,

∆m2, …, ∆mn], with iii mmm −=∆ 0 , i = 1, 2, …, n [11]. ♦

Using the right side of equation (2) with marking M instead of M 0, control
vector e[m + 1]m+1 instead of F and incidence matrix Dc instead of D, one can get
M + e[m + 1]m+1 Dc = M + ∆M = M 0 . That is, a single firing of the complementary
transition in marking M of PNc results in marking M 0.

It is known that the reproducibility of a firing sequence in a Petri net indicates the
existence of one or more T-invariants [13]. Thus the following statement holds.

Statement 1. Given a Petri net PN with the incidence matrix D and an initial marking
M0, a necessary (but generally not sufficient) condition for some other marking M ≠
M0 to be reachable from M0 is the existence of an integer solution of the matrix
equation Fc Dc = 0 relative to Fc = [f1, f2, …, fm, fm+1], such that Fc ≥ 0 and fm+1 =
1. Here Dc is the matrix defined in (5). ♦

rttt
MMM riii →→→ ...21 10

 A Reachability Algorithm for General Petri Nets Based on Transition Invariants 611

In sequel, each T-invariant of the complemented Petri net PNc having the last entry
fm+1 = 1 will be called a singular complementary T-invariant.

The importance of Statement 1 is that the reachability analysis of the original Petri
net PN can be reduced to the computation and investigation of T-invariants of the
complemented Petri net PNc. One advantage of this reduction is the existence of
efficient techniques for the calculation of T-invariants [14], [15], [16]. Algorithms
for the calculation of T-invariants are implemented in many Petri net software tools
such as INA [17], GreatSPN [18], TimeNET [19], and QPN [20], to mention only a
few. Even more important benefit of this reduction is that the space for the search of
firing sequences, transforming M0 into M in the given Petri net, can be effectively
limited as will be shown in this paper.

It is known that, in any Petri net with T-invariants, there are minimal-support
T-invariants which can be used as generators of all T-invariants of the given net [1],
[13]. Let Φ = {F1, F2, …, Fs} be the set of minimal-support T-invariants of some

Petri net consisting of m = |T| transitions, where ,0],...,,[21 ≠
>= imiii fffF and s is

the number of minimal-support T-invariants. We use here, for a vector X, a denotation

0
≠
>X if X ≥ 0 and xi ≠ 0 for some ith entry of X . Each Fi ∈ Φ specifies a

nonempty subset of transitions ||Fi|| ⊆ T such that tj ∈ ||Fi|| if and only if fij > 0,
with ||Fi|| ⊄ ||Fk|| and ||Fk|| ⊄ ||Fi|| for every pair of distinct indices i, k = 1, 2, …, s.
Here ||Fi|| represents the minimal support of T-invariant Fi .

Statement 2. In any Petri net the number of minimal-support T-invariants is finite [11].

Statement 3. For any Petri net PN, its complemented net PNc includes all T-
invariants of the original net PN [11].

Statement 4. For every reachability path from an initial marking M0 to a target
marking M of a given Petri net PN, there exists a T-invariant F = [f1, f2, …, fm, fm+1]
of the corresponding complemented Petri net PNc of PN, with fm+1 = 1. That is, F is
a singular complementary T-invariant. ♦

Corollary 1. For any Petri net, with given initial and target markings M0 and M
respectively, all existing reachability paths from M0 to M are the paths that can be
created on the set of singular complementary T-invariants. This corollary is a
generalization of the corresponding result for T-invariant-less Petri nets in [11]. ♦

Let Φc = {F1, F2, …, Fw} be a set of all minimal-support T-invariants of PNc, where

,0],,...,,[1,21 ≠+ >= mjjmjjj ffffF with j = 1, 2, …, w. Notice that, according to

the basic property of a T-invariant, each entry in vector Fj may be only a
nonnegative integer [13].

Now, depending on the value of the last entry, the minimal-support T-invariants of
set Φc can be classified into the following three disjoint groups:

 {Fj | fj,m+1 = 0, j ∈ Iw} (6)

 {Fj | fj,m+1 = 1, j ∈ Iw} (7)

 {Fj | fj,m+1 > 1, j ∈ Iw} (8)

612 A.E. Kostin

where Iw = {1, 2, …, w} is the indexing set of Φc. According to Statement 2, each of
these groups is finite. Depending on the Petri net and its initial and target markings,
some or even all these three groups can be empty.

Without the last, (m+1)th entry, T-invariants of group (6), by Statement 3, are
minimal-support T-invariants of the original Petri net PN. We will call members of
group (6) non-complementary minimal-support T-invariants of the complemented
Petri net PNc. Group (7) consists of singular complementary T-invariants. Finally,
members of group (8) are nonsingular complementary T-invariants in which the
complementary transition fires more than once. Together, members of groups (7) and
(8) are called minimal-support complementary T-invariants of PNc.

3 Minimal Singular T-Invariants of a Complemented Petri Net

By Corollary 1, the search for all reachability paths from initial marking M0 to target
marking M in a given Petri net can be carried out only on singular T-invariants of the
corresponding complemented Petri net. These include, first of all, minimal-support
T-invariants of group (7). However, these are not the only singular T-invariants of the
complemented Petri net. Indeed, linear combinations of minimal-support T-invariants
of groups (6), (7), and (8) can yield additional singular T-invariants. The number of
such combinations is infinite in general. However, there exists a finite set of minimal
singular T-invariants of the complemented Petri net.

Consider a linearly-combined T-invariant

 j

w

j jmm FkffffF
=+ ==

1121],,...,,[(9)

with rational coefficients kj, where Fj are minimal-support T-invariants of groups (6),
(7) and (8), and w is the number of elements in the three groups. In agreement with
Corollary 1, we are looking only for those combined T-invariants F which yield fm+1 =
1. Thus, the following constraint must hold for each linear combination F in (9):

 .1
1 1,1 ==

= ++
w

j mjjm fkf (10)

With kj ≥ 0, the product kjFj in (9) can be considered as a contribution of firings of
transitions of T-invariant Fj to firings of transitions of the combined T-invariant F.
On the other hand, a negative coefficient kj in (9) may be interpreted as a reverse, or
backward firing of transitions, corresponding to T-invariant Fj, and this is not legal in
the normal semantics of Petri nets [21]. Thus, for T-invariants of groups (7) and (8),
taking into account (10), their coefficients kj must be in the following range:

 0 ≤ kj ≤ 1. (11)

That is, for groups (7) and (8), in which fj,m+1 ≥ 1, to satisfy (10) the following
inequality must hold:

 1≤jk . (12)

However, coefficients kj for T-invariants of group (6) in (9) may have arbitrary
(non-negative) values without affecting the constraint (10). As a particular case, these

 A Reachability Algorithm for General Petri Nets Based on Transition Invariants 613

T-invariants can be combined in (9) with coefficients kj ≤ 1. The case when T-
invariants of group (6) can be included into linearly-combined T-invariants (9) with
arbitrary large coefficients is considered in Section 6.

The linearly-combined T-invariants (9), with the constraints (10), (11) and (12), are
called minimal singular T-invariants of the complemented Petri net. As a subset, they
include all minimal-support T-invariants of group (7). Minimal singular T-invariants
of the complemented Petri net can be found by existing methods of linear algebra
[23], [24]. Due to space limitation, we omit the details of the computational
procedure.

4 Relation Graph of T-Invariants

In general, each singular T-invariant should be tested for the creation of a reachability
path not only alone, but also in different linear combinations with non-
complementary T-invariants (6), since these T-invariants can “help” the singular T-
invariant to become realizable in given initial marking M0. As will be shown in this
section, in general not all non-complementary T-invariants can affect realization of
the given singular T-invariant.

Definition 2. Let F be a T-invariant of a Petri net, with the support ||F||. Then P(F) =
{pj | ti ∈ ||F||, dij ≠ 0} is a set of places of this Petri net affected by F when
 it becomes realizable in some marking. Here, dij is an element of the incidence
matrix(1). ♦

Statement 5. Let F1 and F2 be some T-invariants of a Petri net, and let P1 and P2 be
sets of places affected by F1 and F2 respectively. If P1 ∩ P2 = ∅, then T-invariants
F1 and F2 have no direct effect on the realizability of each other. ♦

Even if P1 ∩ P2 = ∅, T-invariants F1 and F2 can indirectly affect the realizability of
each other through other T-invariants having common affected places with F1 and
F2. Consider a relation graph of T-invariants. Nodes in this graph are T-invariants.
Two nodes corresponding to T-invariants Fi and Fj are connected by a non-oriented
edge if P(Fi) ∩ P(Fj) ≠ ∅, and the corresponding T-invariants Fi and Fj are called
directly connected T-invariants.

For a Petri net, such a graph generally consists of a number of connected
components. A connected component may include complementary and non-
complementary T-invariants, or only one type of T-invariants. We say that two
T-invariants Fi and Fj can affect realizability of each other if they belong to the same
connected component.

The algorithm for determining all connected components of a graph is well known
[22]. In our problem, the algorithm will determine a connected component consisting
of nodes representing a given singular T-invariant and non-complementary
T-invariants. For this purpose, the algorithm will use the incidence matrix of the
original Petri net and the array of T-invariants.

614 A.E. Kostin

5 Realization of T-Invariants with Borrowing of Tokens

Let p be a place affected by two T-invariants Fi and Fj in a given Petri net. Assume
that, in a given initial marking of the net, Fi is realizable, but Fj can become realizable
if place p accumulates rj tokens during realization of T-invariant Fi. Suppose further
that, at some intermediate step during realization of Fi, ri tokens will be created in
place p. If ri rj then, by temporary borrowing of rj tokens in place p, T-invariant Fj
becomes realizable and, at the end of its realization, will return the borrowed tokens
to place p, so that T-invariant Fi can complete its started realization.

With ri < rj, T-invariant Fj cannot borrow the necessary number of tokens in place
p. However, if T-invariant Fi, after creation of ri tokens in p at some step of its first
realization, can start a new realization before the completion of the first one, then
additional ri tokens will be created in place p, so that this place will now accumulate
2ri tokens. In general, if Fi can start v realizations before the completion of the
previous ones, then place p will accumulate vri tokens. If, for some v, vri rj then,
after borrowing rj tokens in p, T-invariant Fj becomes realizable. After the completion
of its realization, all tokens borrowed by Fj will be returned to place p, and
T-invariant Fi can complete all its started realizations.

The possibility of borrowing of tokens among connected T-invariants can be
determined with the use of a two-dimensional borrowing matrix G. In this matrix,
rows correspond to T-invariants and columns correspond to places of the given Petri
net. Formally, G = [gij], i = 1, 2, …, s; j = 1, 2, …,n, where s is the number of
connected T-invariants and n is the number of places in the net. The elements of
matrix G are integers and have the following meaning. If gij > 0 then, for its
realization, T-invariant Fi needs to borrow gij tokens in place pj affected by some
other T-invariants of the considered group. If gij < 0 then T-invariant Fi, at some
intermediate step of its single realization, creates |gij| tokens in place pj. Finally, gij =
0 means that Fi does not affect place pj.

 To create a borrowing matrix, the proposed algorithm will use the incidence
matrix of the given original Petri net and a group of connected T-invariants of the
corresponding complemented Petri net. Due to a relative simplicity of the underlying
procedure and to space limitation, the details of this procedure are omitted.

6 Combining a Singular Complementary T-Invariant with
Non-complementary T-Invariants

Denote by Fc a singular T-invariant of some complemented Petri net. It can be a
member of group (7) or a minimal T-invariant. If group (6) is not empty, then the
following linear combination

 j
ncjc FkFF += , (13)

with coefficients kj 0, is also a valid singular T-invariant, if components of F are

nonnegative integers. Here j
ncF is a T-invariant of group (6) connected with Fc.

 A Reachability Algorithm for General Petri Nets Based on Transition Invariants 615

The expression (13) implies that the singular T-invariant Fc in general should be
tested for the creation of a reachability path not only alone, but also in different linear
combinations with non-complementary T-invariants (6), since these T-invariants can
“help” the non-realizable T-invariant Fc to become realizable in marking M0.

Without loosing generality, we assume that coefficients kj in (13) are nonnegative
integers. Indeed, if a singular T-invariant Fc is realizable for some non-integer values
of coefficients kj in (13), then it will remain realizable when these coefficient values
are replaced by the nearest integer values not less than kj. The case when kj 1 was

considered in Section 3. With integer coefficients kj > 1, the product j
ncjFk in (13)

corresponds to a multiple realization of T-invariant j
ncF . A multiple realization is a

series of kj sequential or interleaved single realizations. Interleaved realizations of a
T-invariant, if they are possible in a given marking, can have a different effect on
place marking in comparison with sequential realizations. Consider, for example, a
simple Petri net consisting of two transitions t1, t2 and one place p that is the output
place for t1 and the input place for t2. This Petri net has a T-invariant F = [1, 1]
realizable in any initial marking of p. In particular, with the zero initial marking, place
p will never have more than one token if single realizations of F are strictly sequential
as in t1t2t1t2t1t2. However, if single realizations of F are interleaved, place p can
accumulate an arbitrary large number of tokens at some intermediate step.

In general, the number of valid combinations (13) is infinite. This section describes
how to limit the values of coefficients kj in (13) without the loss of reachability
information using the concept of structural boundedness of Petri nets.

It is known [1] that a Petri net is structurally bounded if and only if there exists
a (1 × n) vector Y = [y1, y2, …, yn] of positive integers, such that

 D Y T ≤ 0, (14)

where D is the (m × n)-incidence matrix of the Petri net with m transitions and n
places.

A Petri net is said to be structurally unbounded if and only if there exists a (1 × m)

vector of (nonnegative) integers ,0],...,,[21 ≠
>= mxxxX such that

 TTT MXD ∆= (15)

for some ,0
≠
>∆M where m is the number of transitions in the Petri net, and ∆M is a

(1 × n) vector of marking increments as a result of firing of all transitions
corresponding to vector X .

In a structurally unbounded Petri net, at least one place is structurally unbounded.
A place pi in such a Petri net is said to be structurally unbounded if and only if there

exists a (1 × m) vector 0
≠
>X of nonnegative integers, such that

TTT MXD ∆= for some ∆mi > 0 in 0),...,,...,,(21 ≠
>∆∆∆∆=∆ ni mmmmM .

(16)

It is known that, according to Farkas' lemma [1], one of the systems (14) or (15)
has solutions. For our problem, we do not need to know all solutions of (14) or (15).

616 A.E. Kostin

Rather, it is sufficient to find only one, "minimal" solution of (14) or (15). The
minimal solutions of (14) or (15) can be found as solutions of integer linear
programming (ILP) tasks. For the system (14), the corresponding ILP problem can be
formulated as follows:

 min ,
1=

= n

i iyz sub. to .,...,2,1,1,0 niyDY i
T =≥≤ (17)

For the system (15), the corresponding ILP problem is:

min ,
1=

= m

i ixv sub. to .,...,2,1,0,1,0
1

mixxXD i

m

i i
TT =≥≥>

=≠
 (18)

Let us consider the case when the subnet corresponding to j
ncF is not structurally

bounded and describe how to determine coefficient kj for j
ncF in the linear

combination (13). If j
ncF and Fc belong to different connected components of the

relation graph of T-invariants, then j
ncF should be ignored at all, by setting kj = 0

in (13). On the other hand, if j
ncF and Fc belong to the same connected component of

the relation graph of T-invariants, then the subnet corresponding to j
ncF has

common places with the subnets corresponding to Fc or other non-complementary

T-invariants belonging to the same connected component. Thus, j
ncF can affect

realizability of Fc, directly or indirectly and therefore should be included in (13) with
kj > 0.

Suppose, that j
ncF has the support {t1, t2, …, tl}, l ≤ m, and the set of affected

places {p1, p2, …, pq}, q ≤ n, where m and n are the numbers of transitions and
places in the original Petri net. Assume that Fc, to become realizable, needs to borrow
ni > 0 tokens in each place of set

 {p1, p2, …, ph}, h ≤ q, (19)

in which j
ncF can create tokens during its realization. Then, to facilitate the realize-

bility of Fc,
j

ncF should be included in the linear combination (13) with a positive

integer coefficient kj determined by applying the following steps.

1. Try to solve an ILP problem:

 min ,
1=

= l

i ixv sub. to ,0,1,
1

≥≥∆≥
= i

l

i i
TTT xxMXD (20)

where ∆M = [∆m1, ∆m2, .., ∆mh, ∆mh+1, …, ∆mq] = [n1, n2, …., nh, 0, …, 0] is a vector
of the desired numbers of tokens which are expected to be created in places (19) as a

result of one or more realizations of j
ncF , l is the number of transitions in the support

of j
ncF , and q is the number of places affected by j

ncF . In the matrixmultiplication,

 A Reachability Algorithm for General Petri Nets Based on Transition Invariants 617

only those rows and columns of D are used which correspond to the support of j
ncF

and places affected by j
ncF .

2. If, for the specified vector ∆M, the problem (20) has a solution

],,...,,[**
2

*
1

*
lxxxX = then components of *X represent the total numbers of

firings of respective transitions sufficient to accumulate the desired number of tokens

in places of set (19) in a few realizations of j
ncF , and j

i

i

f

x*

 is the number of

realizations of j
ncF to get the necessary number of firings of transition ti, i = 1, 2, …,

l. In this case,

)....,,2,1|max(
*

li
f

x
k j

i

i
j == (21)

3. If, on the other hand, the problem (20) has no feasible solution then it means that
at least one of places in set (19) pi is structurally bounded and can not accumulate the

desired number of tokens ∆mi in multiple realizations of j
ncF . In this case, using (16),

determine all structurally unbounded places in set (19).
4. Solve the ILP problem (20) simultaneously for all structurally unbounded places

found at the previous step, to obtain a solution vector *X . That is, in solving (20),
vector ∆M should have nonzero entries ni only for structurally unbounded places.
According to Farkas’ lemma, this solution always exists. Then coefficient kj is
determined by the use of expression (21).

In case, when the subnet for j
ncF is found to be structurally bounded, then the

number of tokens in each of its places is bounded. However, this bound generally
depends on realizations of other, connected T-invariants and is not known in advance.
For such a subnet, coefficient kj can be evaluated with the use of the borrowing
matrix G computed for Fc and all its connected non-complementary T-invariants,

including j
ncF . Let, in this matrix, c and j be indexes of rows corresponding to j

ncF

and Fc, respectively. Then it is sufficient to include j
ncF in (13) with coefficient kj,

computed as

 =
|| ji

ci
j g

g
k , (22)

where gci and gji are entries in the borrowing matrix, and the sum is computed for all
pairs gci > 0 and gji < 0. Indeed, with this coefficient, the sufficient number of

interleaved realizations of
j

ncF are allowed to accumulate the required numbers of

tokens in places which are common for Fc and j
ncF and in which T-invariant Fc can

618 A.E. Kostin

borrow them during its realization. In general, coefficient kj calculated as was

described can result in a larger number of realizations of T-invariant j
ncF than is

actually necessary. The reason is that other T-invariants in (13) can also create tokens
in (19).

After computing all coefficients kj in (13), an appropriate method can be applied to
determine a reachability path for the combined T-invariant F if such a path exists. For
this purpose, known computational procedures can be used [11], [27], [28].

7 An Example

This section illustrates the proposed algorithm by an example. The example was
tested with a prototype C program that implemented almost all steps of the algorithm.
For solving the related ILP problems the interactive system QS was used [26].

For this example, Fig. 1 shows a Petri net, consisting of m = 10 transitions and n =
9 places (recall that, in the corresponding incidence matrix, rows correspond to
transitions). The initial and target markings are M0 = [2, 0, 0, 0, 0, 0, 0, 0, 0] and M =
[2, 0, 0, 0, 0, 0, 0, 0, 1], respectively. To get the complemented Petri net, the
algorithm appends a row ∆M = M0 – M = [0, 0, 0, 0, 0, 0, 0, 0, -1] to the original
incidence matrix.

Minimal-support T-invariants of the corresponding complemented Petri net are two
non-complementary T-invariants F1 = [0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0] and F2 = [1, 1, 0,
0, 0, 1, 1, 0, 0, 0, 0], and one singular complementary T-invariant F3 = [0, 0, 0, 0, 0, 0,
0, 1, 1, 1, 1], with the sets of affected places {p1, p3, p4, p5, p6}, {p1, p2, p3, p5, p6} and
{p6, p7, p8, p9}, respectively. Thus, all these T-invariants are connected. F3 can
become realizable if it borrows tokens in places affected by F1 and F2. All these

t3

Fig. 1. The example Petri net

t7

p5

p9

2
t1 p1

t2

p2

t4

p3

t5

p6 t8

t9

t10

p7

p8

 2 p4

t6

2

 A Reachability Algorithm for General Petri Nets Based on Transition Invariants 619

T-invariants can become realizable if they borrow tokens in some of their common
affected places as the borrowing matrix G for this example shows:

 p1 p2 p3 p4 p5 p6 p7 p8 p9

F1: Borrows -1 0 -1 -1 2 -1 0 0 0
F2: Borrows -1 -1 1 0 -1 -1 0 0 0
F3: Borrows 0 0 0 0 0 2 -1 -1 -1

Specifically, F1 needs to borrow two tokens in place p5, F2 needs to borrow one
token in place p3, and F3 borrows two tokens in place p6. A token borrowed by F2 in
place p3 can be produced by F1 in a single realization so that k1 = 1. On the other
hand, F2 is capable, in a single realization, to lend only one token to F1, but two
tokens are necessary in p5 for F1. Therefore, F1 and F2 can help each other to become
realizable. Together, they are capable to produce two tokens in place p6 to be
borrowed by F3.

The desired number of tokens in p5 can be accumulated if the subnet
corresponding to F2 is not structurally bounded. To learn this, the algorithm tries to
solve an ILP problem (17) for F2, in the form in which only variables y1, y2, y3, y5,
and y6 are taken into consideration:

 min z = y1 + y2 + y3 + y5 + y6,

sub. to: -y1 + y2 – y3 ≤ 0, -y2 + y3 + y5 + y6 ≤ 0, -y5 ≤ 0, y1 – y6 ≤ 0, y1, y2, y3, y5, y6 ≥ 1.
This ILP problem has no feasible solution. Thus, the subnet corresponding to F2 is

not structurally bounded, so that at least one of its affected places is not structurally
bounded. We are interested in accumulating two tokens in p5, so that ∆M = [0, 0, 0,
2, 0]. Therefore, with l = 4 and q = 5, the algorithm attempts to solve now an ILP
problem (20):

 min v = x1 + x2 + x6 + x7, sub. to: -x1 + x7 ≥ 0, x1 – x2 ≥ 0,
-x1 + x2 ≥ 0, x2 – x6 ≥ 2, x2 – x7 ≥ 0, x1 + x2 + x6+ x7 ≥ 1.

This ILP problem has the optimal (minimal) solution

].0,2,2,2[],,,[*
7

*
6

*
2

*
1

* == xxxxX Now, using (21), the algorithm finds that

.2)7,6,2,1|max(
2

*

2 === i
f

x
k

i

i

Since T-invariant F2 borrows only one token in place p3 and this token can be
created during a single realization of F1, it is sufficient to have k1 = 1. Thus, the
combined T-invariant is F = F1 + 2F2 + F3 = [2, 2, 1, 1, 1, 2, 3, 1, 1, 1, 1]. For it, the
algorithm creates a reachability path from M0 to M consisting of 16 nodes, with the
sequence of 15 firing transitions t3t1t2t7t1t2t4t5t6t6t8t9t10t7t7. This is the shortest path
although there exist other paths of this length.

8 Conclusion

A new reachability algorithm for general Petri nets is proposed. For a given original
Petri net, the reachability task is reduced to the investigation of T-invariants of the

620 A.E. Kostin

complemented Petri net consisting of the original Petri net and an additional,
complementary transition. It is shown that, without the loss of reachability
information, the algorithm tries to find a reachability path from the initial marking to
the target one using a finite number of T-invariants. During the search for reachability
paths, the algorithm needs memory for storing only the reachability path being
created.

We did not address, in this paper, complexity aspects of the proposed algorithm.
Complexity of some problems of Petri nets was investigated in [25]. We can note only
that the algorithm will spend most of its time calculating minimal-support T-
invariants, solving ILP problems, and trying to find reachability paths for calculated
T-invariants.

References

1. Murata, T.: Petri Nets: Properties, Analysis and Applications. Proc. of the IEEE, vol. 77,
no. 4 (1989) 541 – 580

2. Ichikawa, A., Hiraishi, K.: A Class of Petri Nets that a Necessary and Sufficient Condition
for Reachability is Obtainable. Trans. SICE, vol.24, no. 6 (1988)

3. Kodama, S., Murata, T.: On Necessary and Sufficient Reachability Condition for Some
Subclasses of Petri Nets, TR UIC-EECS 88-8, University of Illinois at Chicago, June
(1988)

4. Caprotti, O., Ferscha, A., Hong, H.: Reachability Test in Petri Nets by Groebner Bases, TR
No. 95-03, Johannes Kepler University, Austria (1995)

5. Kostin, A.E.: The Novel Algorithm for Determining the Reachability in Acyclic Petri Nets.
SIGACT News, vol. 28, no. 2 June (1997) 70 - 79

6. 6. Mayr, E.W.: An Algorithm for the General Petri Net Reachability Problem. SIAM
Journal of Computing, vol. 13, no. 3 (1984) 441 – 459

7. Peterson, J.L.: Petri Net Theory and the Modeling of Systems. Prentice-Hall (1981)
8. Varpaaniemi, K.: On the Stubborn Set Method in Reduced State Space Generation, PhD

Thesis, Dept. of Computer Science and Engineering, Helsinki University of Technology
(1998)

9. Schmidt, K.: Stubborn Sets for Model Checking the EF/AG Fragment of CTL. Fundamenta
Informaticae, vol. 43, no. 1 – 4 (2000) 331 – 341

10. Peled, D.: All from One, One from All. LNCS, vol. 697, Springer-Verlag (1993) 409 –
423

11. Kostin, A. E.: Reachability Analysis in T-Invariant-less Petri Nets. IEEE Trans. on
Automatic Control, vol. 48, no. 6 (2003) 1019 - 1024

12. Murata, T.: State Equation, Controllability, and Maximal Matchings of Petri Nets. IEEE
Transactions on Automatic Control, vol. AC-22, no. 3, (1977) 412 – 416

13. Memmi, G., Roucairol, G.: Linear Algebra in Net Theory. In: Brauer, W. (ed.), Net Theory
and Applications, LNCS, vol. 84, Springer-Verlag (1980) 213 – 223

14. Martinez, J., Silva, M.: A Simple and Fast Algorithm to Obtain All Invariants of a
Generalized Petri Net. In: Girault, C., and Reisig, W. (eds.), Application and Theory of
Petri Nets, Springer-Verlag (1982) 301 – 310

15. Alaiwan, H., Toudic, J.-M.: Recherche des semi-flots, des verrous et des trappes dans les
reseaux de Petri. Technique et Science Informatique, vol. 4, no. 1 (1985) 103 – 112

16. Anishev, P.A., Bandman, O L.: Algorithms and Programs for the Analysis of Properties of
Petri Nets. Preprint no. 762, Academy of Science of USSR, Novosibirsk (1988)

 A Reachability Algorithm for General Petri Nets Based on Transition Invariants 621

17. Roch, S. Starke, P.H.: INA: Integrated Net Analyzer, Ver. 2.2, Humboldt-Universitat zu
Berlin (2001)

18. Chiola, G., Franceschinis, G., Gaeta, R., Ribaudo, M.: GreatSPN 1.7: Graphical Editor and
Analyzer for Timed and Stochastic Petri Nets. Perform. Evaluation, vol. 24, no. 1&2
(1995) 47 – 68

19. German, R., Kelling, C., Zimmerman, A., Hommel, G.: TimeNET: A Toolkit for
Evaluating Non-Markovian Stochastic Petri Nets. Perform. Evaluation, vol. 24, no. 1&2
(1995) 69 – 87

20. Bause, F., Kemper, P.: QPN-Tool for the Qualitative and Quantitative Analysis of
Queuing Petri Nets. Lecture Notes in Computer Science, vol. 794, Springer-Verlag (1994)
321 – 334

21. Murata, T.: A Private Communication, April 18 (1998)
22. Goodrich, M.T., Tamassia, R.: Algorithm Design: Foundations, Analysis and Internet

Examples, John Wiley & Sons (2002)
23. Springer, J.: Exact Solution of General Integer Systems of Linear Equations. ACM Trans.

on Mathematical Software, vol. 12, no. 1, March (1986) 51 – 61
24. Howell, J.A.: Exact Solution of Linear Equations Using Residue Arithmetic.

Communications of the ACM, vol. 14, no. 3 (1971) 180 – 184
25. Jones, N.D., Landweber, L.H., Lien, Y.E.: Complexity of Some Problems in Petri Nets.

Theoretical Computer Science, vol. 4 (1977) 277 – 299
26. Chang, Y.-L., Sullivan, R.S.: QS: Quant System, Version 2.1, Prentice-Hall (1996)
27. Watanabe, T.: The Legal Firing Sequence Problem of Petri Nets. IEICE Transactions on

Inf. & Syst., vol. E83-D, no. 3 (2000) 397 – 406
28. Huang, J.S., and Murata, T.: A Constructive Method for Finding Legal Transition

Sequences in Petri Nets. Journal of Circuits, Systems, and Computers, vol. 8, no. 1 (1998)
189 – 222

Approximability of Bounded Occurrence Max Ones�

Fredrik Kuivinen��

Department of Computer and Information Science,
Linköpings Universitet, S-581 83 Linköping, Sweden

freku@ida.liu.se

Abstract. We study the approximability of MAX ONES when the number of vari-
able occurrences is bounded by a constant. For conservative constraint languages
(i.e., when the unary relations are included) we give a complete classification
when the number of occurrences is three or more and a partial classification when
the bound is two. For the non-conservative case we prove that it is either trivial
or equivalent to the corresponding conservative problem under polynomial-time
many-one reductions.

Keywords: Approximability, Bounded occurrence, Constraint satisfaction prob-
lems, Matching, Max Ones.

1 Introduction

Many combinatorial optimisation problems can be formulated as various variants of
constraint satisfaction problems (CSPs). MAX ONES is a boolean CSP where we are
not only interested in finding a solution but also the measure of the solution. In this
paper we study a variant of MAX ONES when the number occurrences of each variable
is bounded by a constant.

We denote the set of all n-tuples with elements from {0, 1} by {0, 1}n. A subset
R ⊆ {0, 1}n is a relation and n is the arity of R. A constraint language is a finite set
of relations. A constraint language is said to be conservative if every unary relation is
included in the language. In the boolean case this means that the relations {(0)} and
{(1)} are in the language. The constraint satisfaction problem over the constraint lan-
guage Γ , denoted CSP(Γ), is defined to be the decision problem with instance (V,C),
where V is a set of variables and C is a set of constraints {C1, . . . , Cq}, in which
each constraint Ci is a pair (Ri, si) with si a list of variables of length ni, called
the constraint scope, and Ri an ni-ary relation over the set {0, 1}, belonging to Γ ,
called the constraint relation. The question is whether there exists a solution to (V,C)
or not. A solution to (V,C) is a function s : V → {0, 1} such that, for each con-
straint (Ri, (v1, v2, . . . , vni)) ∈ C, the image of the constraint scope is a member of
the constraint relation, i.e., (s(v1), s(v2), . . . , s(vni)) ∈ Ri.

The optimisation problem W-MAX ONES can be defined as follows:

Definition 1 (W-MAX ONES). W-MAX ONES over the constraint language Γ is de-
fined to be the optimisation problem with

� A full version of this paper is available, see [21].
�� Supported by the National Graduate School in Computer Science (CUGS), Sweden.

R. Královič and P. Urzyczyn (Eds.): MFCS 2006, LNCS 4162, pp. 622–633, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Approximability of Bounded Occurrence Max Ones 623

Instance: Tuple (V,C,w), where (V,C) is an instance of CSP(Γ) and w : V → N is
a function.

Solution: An assignment f : V → {0, 1} to the variables which satisfies the CSP(Γ)
instance (V,C).

Measure:
∑

v∈V

w(v) · f(v)

The function w : V → N is called a weight function. In the corresponding unweighted
problem, denoted MAX ONES(Γ), the weight function is restricted to map every vari-
able to 1. The approximability of (W-)MAX ONES has been completely classified
by Khanna et al. [19]. Several well-known optimisation problems can be rephrased
as (W-)MAX ONES problems, in particular INDEPENDENT SET. We will study W-
MAX ONES(Γ) with a bounded number of variable occurrences, denoted by W-MAX

ONES(Γ)-k for an integer k. In this problem the instances are restricted to contain at
most k occurrences of each variable. The corresponding bounded occurrence variant of
CSP(Γ) will be denoted by CSP(Γ)-k.

Schaefer [26] classified the complexity of CSP(Γ) for every constraint language Γ .
Depending on Γ , Schaefer proved that CSP(Γ) is either solvable in polynomial time
or is NP-complete. The conservative bounded occurrence variant of CSP(Γ) has been
studied by a number of authors [11,13,14,15]. One result of that research is that the dif-
ficult case to classify is when the number of variable occurrences are restricted to two,
in all other cases the bounded occurrence problem is no easier than the unrestricted
problem. Kratochvı́l et al. [20] have studied k-SAT-l, i.e., satisfiability where every
clause have length k and there are at most l occurrences of each variable. k-SAT-l is a
non-conservative constraint satisfaction problem. The complexity classification seems
to be significantly harder for such problems compared to the conservative ones. In par-
ticular, Kratochvı́l et al [20] proves that there is a function f such that k-SAT-l is trivial
if l ≤ f(k) (every instance has a solution) and NP-complete if l ≥ f(k) + 1. Some
bounds of f is given in [20], but the exact behaviour of f is unknown.

MAX ONES(Γ)-k can represent many well-known problems. For k ≥ 3, we have for
example, that INDEPENDENT SET in graphs of maximum degree k is precisely MAX

ONES({{(0, 0), (1, 0), (0, 1)}})-k. However, the more interesting case is perhaps k = 2
due to its connection to matching problems. (See [25] for definitions and more infor-
mation about the matching problems mentioned below.) Ordinary weighted maximum
matching in graphs is, for example, straightforward to formulate and we get certain gen-
eralisations “for free” (because they can be rephrased as ordinary matching problems),
such as f -factors and capacitated b-matchings. The general factor problem can also be
rephrased as a MAX ONES(·)-2 problem. A dichotomy theorem for the existence prob-
lem of general factors has been proved by Cornuéjols [8]. Some research has also been
done on the optimisation problem [7].

In this paper, we start the classification of bounded occurrence MAX ONES. Our first
result is a complete classification of W-MAX ONES(Γ)-k when k ≥ 3 and {(0)} and
{(1)} are included in Γ . We show that, depending on Γ , this problem is either in PO,
APX-complete or poly-APX-complete. Our second result is a partial classification of
W-MAX ONES(Γ)-2. We also give hardness results for the non-conservative case.

The outline of the paper is as follows: in Section 2 we define our notation and present
the tools we use. Section 3 and 4 contains our results for three or more occurrences and

624 F. Kuivinen

two occurrences, respectively. Section 5 contains our results for the general case, i.e.,
when the constraint language is not necessarily conservative. Section 6 contains some
concluding remarks. Due to lack of space most of the proofs have been omitted, they
are available in the full version of this paper [21].

2 Preliminaries

For an integer n we will use [n] to denote the set {1, 2, . . . , n}. The Hamming distance
between two vectors x and y will be denoted by dH(x,y). For a tuple or vector x the
n:th component will be denoted by x[n].

Unless explicitly stated otherwise we assume that the constraint languages we are
working with are conservative, i.e., every unary relation is a member of the constraint
language (in the boolean domain, which we are working with, this means that {(0)}
and {(1)} are in the constraint language).

We define the following relationsNANDm = {(x1, . . . , xm) | x1+. . .+xm < m},
EQm = {(x1, . . . , xm) | x1 = x2 = . . . = xm}, IMPL = {(0, 0), (0, 1), (1, 1)},
c0 = {(0)}, c1 = {(1)} and the function hn(x1, x2, . . . , xn+1) =

∨n+1
i=1 (x1 ∧ . . . ∧

xi−1 ∧ xi+1 ∧ . . . ∧ xn+1). For a relation R of arity r, we will sometimes use the
notation R(x1, . . . , xr) with the meaning (x1, . . . , xr) ∈ R, i.e., R(x1, . . . , xr) ⇐⇒
(x1, . . . , xr) ∈ R. If r is the arity ofR and I = {i1, . . . , in} ⊆ [r], i1 < i2 < . . . < in,
then we denote the projection of R to I by R

∣∣
I
, i.e., R

∣∣
I

= {(xi1 , xi2 , . . . , xin) | (x1,
x2, . . . , xr) ∈ R}

Representations (sometimes called implementations) have been central in the study
of constraint satisfaction problems. We need a notion of representability which is a bit
stronger that the usual one, because we have to be careful with how many occurrences
we use of each variable.

Definition 2 (k-representable). An n-ary relation R is k-representable by a set of
relations F if there is a collection of constraints C1, . . . , Cl with constraint relations
from F over variables x = (x1, x2, . . . , xn) (called primary variables) and y =
(y1, y2, . . . , ym) (called auxiliary variables) such that,

– the primary variables occur at most once in the constraints,
– the auxiliary variables occur at most k times in the constraints, and
– for every tuple z, z ∈ R if and only if there is an assignment to y such that x = z

satisfies all of the constraints C1, C2, . . . , Cl.

The intuition behind the definition is that if every relation in Γ1 is k-representable by
relations in Γ2 then W-MAX ONES(Γ2)-k is no easier than W-MAX ONES(Γ1)-k. This
is formalised in Lemma 6.

2.1 Approximability, Reductions, and Completeness

A combinatorial optimisation problem is defined over a set of instances (admissible in-
put data) I; each instance I ∈ I has a finite set SOL(I) of feasible solutions associated
with it. The objective is, given an instance I , to find a feasible solution of optimum value

Approximability of Bounded Occurrence Max Ones 625

with respect to some measure function m defined for pairs (x, y) such that x ∈ I and
y ∈ SOL(x). Every such pair is mapped to a non-negative integer by m. The optimal
value is the largest one for maximisation problems and the smallest one for minimisa-
tion problems. A combinatorial optimisation problem is said to be an NPO problem
if its instances and solutions can be recognised in polynomial time, the solutions are
polynomially-bounded in the input size, and the objective function can be computed in
polynomial time (see, e.g., [1]).

Definition 3 (r-approximate). A solution s ∈ SOL(I) to an instance I of an NPO

problemΠ is r-approximate if max
{

m(I,s)
OPT(I) ,

OPT(I)
m(I,s)

}
≤ r, where OPT(I) is the optimal

value for a solution to I .

An approximation algorithm for an NPO problem Π has performance ratio R(n) if,
given any instance I of Π with |I| = n, it outputs an R(n)-approximate solution.

Definition 4 (PO, APX, poly-APX). PO is the class of NPO problems that can be
solved (to optimality) in polynomial time. An NPO problem Π is in the class APX if
there is a polynomial-time approximation algorithm for Π whose performance ratio is
bounded by a constant. Similarly, Π is in the class poly-APX if there is a polynomial-
time approximation algorithm for Π whose performance ratio is bounded by a polyno-
mial in the size of the input.

Completeness in APX and poly-APX is defined usingAP -reductions [1]. However, we
do not needAP -reductions in this paper, the simpler L- and S-reductions are sufficient
for us.

Definition 5 (L-reduction). An NPO problemΠ1 is said to be L-reducible to an NPO
problem Π2, written Π1 ≤L Π2, if two polynomial-time computable functions F and
G and positive constants β and γ exist such that

– given any instance I of Π1, algorithm F produces an instance I ′ = F (I) of Π2,
such that OPT(I ′) ≤ β · OPT(I).

– given I ′ = F (I), and any solution s′ to I ′, algorithm G produces a solution s to
I such that |m1(I, s) − OPT(I)| ≤ γ · |m2(I ′, s′) − OPT(I ′)|, where m1 is the
measure for Π1 and m2 is the measure for Π2.

It is well-known (see, e.g., Lemma 8.2 in [1]) that, if Π1 is L-reducible to Π2 and
Π1 ∈ APX then there is an AP -reduction from Π1 to Π2.
S-reductions are similar to L-reductions but instead of the condition OPT(I ′) ≤

β · OPT(I) we require that OPT(I ′) = OPT(I) and instead of |m1(I, s) − OPT(I)| ≤
γ · |m2(I ′, s′) − OPT(I ′)| we require that m1(I, s) = m2(I ′, s′). If there is an S-
reduction from Π1 to Π2 (written as Π1 ≤S Π2) then there is an AP -reduction from
Π1 to Π2. An NPO problem Π is APX-hard (poly-APX-hard) if every problem in
APX (poly-APX) is AP -reducible to it. If, in addition,Π is in APX (poly-APX), then
Π is called APX-complete (poly-APX-complete).

We will do several reductions from INDEPENDENT SET (hereafter denoted by MIS)
which is poly-APX-complete [18]. We will also use the fact that for any k ≥ 3, MIS
restricted to graphs of degree at most k is APX-complete [22]. We will denote the latter
problem by MIS-k.

626 F. Kuivinen

The following lemma shows the importance of k-representations in our work.

Lemma 6. For constraint languages Γ1 and Γ2 if every relation in Γ1 can be k-repre-
sented by Γ2 then W-MAX ONES(Γ1)-k ≤S W-MAX ONES(Γ2)-k.

Proof. Given an arbitrary instance I = (V,C,w) of W-MAX ONES(Γ1)-k, we will
construct an instance I ′ = (V ′, C′, w′) of W-MAX ONES(Γ2)-k, in polynomial time.
For each c ∈ C, add the k-representation of c to C′ and also add all variables which
participate in the representation to V ′ in such a way that the auxiliary variables used in
the representation are distinct from all other variables in V ′. Let w′(x) = w(x) for all
x ∈ V and w(x) = 0 if x 	∈ V (i.e., all auxiliary variables will have weight zero).

It is not hard to see that: (a) every variable in I ′ occurs at most k times (b) OPT(I ′) =
OPT(I), and (c) given a solution s′ to I ′ we can easily construct a solution s to I (let
s(x) = s′(x) for every x ∈ V) such that m(I, s) = m(I ′, s′). Hence, there is an S-
reduction from W-MAX ONES(Γ1)-k to W-MAX ONES(Γ2)-k. �

2.2 Co-clones and Polymorphisms

Given an integer k, a function f : {0, 1}k → {0, 1} can be extended to a func-
tion over tuples as follows: let t1, t2, . . . , tk be k tuples with n elements each then
f(t1, t2, . . . , tk) is defined to be the tuple (f(t1[1], t2[1], . . . , tk[1]), . . . , f(t1[n],
t2[n], . . . , tk[n])). Given a n-ary relation R we say that R is invariant (or, closed) un-
der f if t1, t2, . . . , tk ∈ R ⇒ f(t1, t2, . . . , tn) ∈ R. Conversely, for a function f
and a relation R, f is a polymorphism of R if R is invariant under f . For a constraint
language Γ we say that Γ is invariant under f if every relation in Γ is invariant under
f . We analogously extend the notion of polymorphisms to constraint languages, i.e., a
function f is a polymorphism of Γ if Γ is invariant under f . Those concepts has been
very useful in the study of the complexity of various constraint satisfaction problems
(see, e.g., [16]) and play an important role in this work, too.

The set of polymorphisms for a constraint language Γ will be denoted by Pol(Γ),
and for a set of functions C the set of all relations which are invariant under C will be
denoted by Inv(B). The sets Pol(Γ) are clones in the sense of universal algebra. For
a clone C, Inv(C) is called a relational clone or a co-clone. Over the boolean domain
Emil Post has classified all such co-clones and their inclusion structure in [23].

For a set of relations Γ we define a closure operator 〈Γ 〉 as the set of relations that
can be expressed with relations from Γ using existential quantification and conjunction
(note that we are only allowed to use the relations in Γ , hence equality is not necessarily
allowed). Intuitively 〈Γ ∪{EQ2}〉 is the set of relations which can be simulated by Γ in
CSP(Γ). An alternative classification of this set is 〈Γ ∪ {EQ2}〉 = Inv(Pol(Γ)) [24].
These few paragraphs barely scratch the surface of the rich theory of clones and their
relation to the computational complexity of various constraint satisfaction problems, for
a more thorough introduction see [3,4,9].

We say that a set of relations B is a plain basis for a constraint language Γ if every
relation in Γ can be expressed with relations fromB using relations fromB ∪ {=} and
conjunction. Note that this differs from the definition of the closure operator 〈·〉 as we
do not allow existential quantification. See [10] for more information on plain bases.

Approximability of Bounded Occurrence Max Ones 627

We can not only study the co-clones when we try to classify MAX ONES(Γ)-k be-
cause the complexity of the problem do not only depend on the co-clone 〈Γ 〉. However,
the co-clone lattice with the corresponding plain bases and invariant functions will help
us in our classification effort. Furthermore, as we mostly study the conservative con-
straint languages we can concentrate on the co-clones which contain c0 and c1. Figure 1
contains the conservative part of Post’s lattice and Table 1 contains the plain bases for
the relational clones which will be interesting to us (co-clones at and below IV2 have
been omitted as MAX ONES is in PO there).

Fig. 1. Lattice of idempotent co-clones

Table 1. Plain bases for some relational clones.
The list of plain bases are from [10].1

Co-clone Base for clone Plain Basis

IE2 and {Nk | k ∈ N} ∪
{(¬x1∨. . .∨¬xk∨y) |
k ∈ N}

IS10 x ∧ (y ∨ z) {c1, IMPL} ∪
{Nk | k ∈ N}

ISm
10 x ∧ (y ∨ z), hn {c1, IMPL, Nm}‡

IS12 x ∧ (y ∨ ¬z) {EQ2, c1} ∪
{Nk | k ∈ N}

ISm
12 x ∧ (y ∨ ¬z), hn {EQ2, c1, Nm}‡

IL2 x⊕ y ⊕ z {x1 ⊕ . . .⊕ xk = c |
k ∈ N, c ∈ {0, 1}}

ID2 xy ∨ yz ∨ xz {c0, c1, x ∨ y,
IMPL, NAND2}

ID1 xy∨y(¬z)∨y(¬z) {c0, c1, x⊕ y = 0,
x⊕ y = 1}

IM2 and, or {c0, c1, IMPL}
IR2 or, x ∧ (y ⊕ z ⊕ 1) {EQ2, c0, c1}

3 Three or More Occurrences

In this section we will prove a classification theorem for W-MAX ONES(Γ)-k where
k ≥ 3. The main result of this section is the following theorem.

Theorem 7. Let Γ be a conservative constraint language and k ≥ 3,

1. If Γ ⊆ IV2 then W-MAX ONES(Γ)-k is in PO.
2. Else if IS2

12 ⊆ 〈Γ 〉 ⊆ IS12 then (W-)MAX ONES(Γ)-k is APX-complete if EQ2

is not k-representable by Γ and W-MAX ONES(Γ)-k is poly-APX-complete oth-
erwise.

3. Otherwise, W-MAX ONES(Γ) and W-MAX ONES(Γ)-k are equivalent under S-
reductions.

1 In [10] the listed plain basis for ISm
12 is {EQ2, c1} ∪ {Nk|k ≤ m} however, if we have Nm

then Nm−1 can be represented without auxiliary variables by Nm−1(x1, x2, . . . , xm−1) ⇐⇒
Nm(x1, x1, x2, x3, . . . , xm−1), hence the set of relations listed in Table 1 is a plain basis for
ISm

12. The same modification has been done to ISm
10.

628 F. Kuivinen

The first part of Theorem 7 follows from Khanna et al.’s results for MAX ONES [19].
Intuitively the second part follows from the fact that W-MAX ONES({NAND2}) is
equivalent to MIS, hence if we have access to the equality relation then the problem
gets poly-APX-complete. On the other hand, if we do not have the equality relation
then we essentially get MIS-k, for some k, which is APX-complete. The third part
follows from Lemmas 8, 9, 10, and 11.

Dalmau and Ford proved the following lemma in [11].

Lemma 8. If there is a relation R in the constraint language Γ such that R 	∈ IE2,
then either x ∨ y or x 	= y can be 3-represented by Γ . By duality, if there is a relation
R ∈ Γ such that R 	∈ IV2, then either NAND2 or x 	= y can be 3-represented.

We can use the lemma above to get a 3-representation of either EQ2 or IMPL. We
will later, in Lemma 11, show that those relations makes the problem as hard as the
unbounded occurrence variant.

Lemma 9. If there is a relationR in the constraint language Γ such thatR 	∈ IE2 and
R 	∈ IV2, then either EQ2 or IMPL can be 3-represented by Γ .

Proof. From Lemma 8 we know that either x 	= y or both x ∨ y and NAND2 are 3-
representable. In the first case ∃z : x 	= z ∧ z 	= y is a 3-representation of EQ2. In the
second case ∃z : NAND2(x, z) ∧ (z ∨ y) is a 3-representation of IMPL(x, y). �

To get the desired hardness results for the IS10 chain we need to prove that we can
represent EQ2 or IMPL in that case too. To this end we have the following lemma.

Lemma 10. If there is a relation R in the constraint language Γ such that R ∈ IE2
and R 	∈ IS12, then either EQ2 or IMPL can be 3-represented by Γ .

Proof. Let r be the arity ofR then, asR 	∈ IS12, there exists a set of minimal cardinality
I ⊆ [r], such that R

∣∣
I
	∈ IS12.

As g(x, y) = x∧ y is a base of the clone which corresponds to IE2, R
∣∣
I
∈ IE2 im-

plies that g is a polymorphism of R
∣∣
I
. Furthermore, as f(x, y, z) = x ∧ (y ∨ ¬z)

is a base of the clone which corresponds to IS12, R
∣∣
I
	∈ IS12 implies that f is

not a polymorphism of R
∣∣
I
. Hence, there exists tuples t1, t2, t3 ∈ R

∣∣
I

such that
f(t1, t2, t3) = t 	∈ R

∣∣
I
.

There exists a coordinate l1, 1 ≤ l1 ≤ r such that (t1[l1], t2[l1], t3[l1]) = (1, 0, 1),
because otherwise f(t1, t2, t3) = t1. Similarly there exists a coordinate l2, 1 ≤ l2 ≤ r
such that (t1[l2], t2[l2], t3[l2]) is equal to one of (0, 1, 0), (0, 1, 1) or (1, 0, 0). Because
otherwise f(t1, t2, t3) = t2. From now on, the case (t1[l2], t2[l2], t3[l2]) = (1, 0, 0)
will be denoted by (*). Finally, there also exists a coordinate l3, 1 ≤ l3 ≤ r such that
(t1[l3], t2[l3], t3[l3]) is equal to one of (0, 0, 1), (0, 1, 1), (1, 0, 0), (1, 0, 1) or (1, 1, 0),
because otherwise f(t1, t2, t3) = t3. The case (t1[l3], t2[l3], t3[l3]) = (1, 0, 0) will
be denoted by (**).

As R
∣∣
I

is invariant under g we can place additional restrictions on l1, l2 and l3. In
particular, there has to be coordinates l1, l2 and l3 such that we have at least one of the
cases (*) or (**), because otherwise f(t1, t2, t3) = g(t1, t2), which is in R

∣∣
I

and we
have assumed that f(t1, t2, t3) 	∈ R

∣∣
I
. There is no problem in letting l2 = l3 since

Approximability of Bounded Occurrence Max Ones 629

we will then get both (*) and (**). This will be assumed from now on. We can also
assume, without loss of generality, that l1 = 1 and l2 = l3 = 2. We can then construct
a 3-representation as Rφ(x, y) ⇐⇒ ∃z3 . . . zr : R

∣∣
I
(x, y, z3, . . . , zr) ∧ ck3(z3) ∧

ck4(z4) ∧ . . . ∧ ckr (zr) where ki = f(t1[i], t2[i], t3[i]) for 3 ≤ i ≤ r. We will now
prove that Rφ is equal to one of the relations we are looking for.

If (0, 1) ∈ Rφ, then we would have t ∈ R
∣∣
I
, which is a contradiction, so (0, 1) 	∈ Rφ.

We will now show that (0, 0) ∈ Rφ. Assume that (0, 0) 	∈ Rφ. Then, R∗ = R
∣∣
I\{l2}

is not in IS12 which contradicts the minimality of I . To see this consider the following
table of possible tuples in R

∣∣
I
,

1 = l1 2 = l2 = l3 3 4 . . .
t1 1 1 t1[3] t1[4] . . .
t2 0 0 t2[3] t2[4] . . .
t3 1 0 t3[3] t3[4] . . .
a 0 1 f(t1[3], t2[3], t3[3]) f(t1[4], t2[4], t3[4]) . . .
b 0 0 f(t1[3], t2[3], t3[3]) f(t1[4], t2[4], t3[4]) . . .

We know that t1, t2, t3 ∈ R
∣∣
I

and we also know that a 	∈ R
∣∣
I
. Furthermore, if b 	∈ R

∣∣
I
,

then f(t1, t2, t3)
∣∣
I\{l2} 	∈ R∗ which means that I is not minimal. The conclusion is

that we must have (0, 0) ∈ Rφ. In the same way it is possible to prove that unless
(1, 1) ∈ Rφ, I is not minimal.

To conclude, we have proved that (0, 0), (1, 1) ∈ Rφ and (0, 1) 	∈ Rφ, hence we
either have Rφ = EQ2 or Rφ = {(0, 0), (1, 0), (1, 1)}. �

It is now time to use our implementations of EQ2 or IMPL to prove hardness results.
To this end we have the following lemma.

Lemma 11. If EQ2 or IMPL is 3-representable by the constraint language Γ then
W-MAX ONES(Γ) ≤S W-MAX ONES(Γ)-3.

The proof have been omitted from this version. As either EQ2 or IMPL is available
we can construct a cycle of constraints among variables and such a cycle force every
variable in the cycle to obtain the same value. Furthermore, each variable occurs only
twice in such a cycle so we have one occurrence left for each variable.

4 Two Occurrences

In this section, we study W-MAX ONES(Γ)-2. We are not able to present a complete
classification but a partial classification is achieved. We completely classify the co-
clones IL2 and ID2. For Γ such that Γ 	⊆ IL2, ID2 we show that if there is a rela-
tion which is not a ∆-matroid relation (those are defined below) in Γ then W-MAX

ONES(Γ)-2 is APX-hard if W-MAX ONES(Γ) is not tractable.

4.1 Definitions and Results

Most of the research done on CSP(Γ)-k (e.g., in [11,13,14]) has used the theory of ∆-
matroids. Those objects are a generalisation of matroids and has been widely studied,

630 F. Kuivinen

cf. [5,6]. It turns out that the complexity of W-MAX ONES(Γ)-2 depend to a large de-
gree on if there is a relation which is not a∆-matroid relation in the constraint language.
∆-matroid relations are defined as follows.

Definition 12 (∆-matroid relation [11]). Let R ⊆ {0, 1}r be a relation. If x,x′ ∈
{0, 1}r, then x′ is a step from x to y if dH(x,x′) = 1 and dH(x,x′) + dH(x′,y) =
dH(x,y).R is a∆-matroid relation if it satisfies the following two-step axiom: ∀x,y ∈
R and ∀x′ a step from x to y, either x′ ∈ R or ∃x′′ ∈ R which is a step from x′ to y.

As an example of a ∆-matroid relation consider NAND3. It is not hard to see that
NAND3 satisfies the two-step axiom for every pair of tuples as there is only one tuple
which is absent from the relation. EQ3 is the simplest example of a relation which
is not a ∆-matroid relation. The main theorem of this section is the following partial
classification result for W-MAX ONES(Γ)-2. We say that a constraint language Γ is
∆-matroid if every relation in Γ is a ∆-matroid relation.

Theorem 13. Let Γ be a conservative constraint language,

1. If Γ ⊆ IV2 or Γ ⊆ ID1 then W-MAX ONES(Γ)-2 is in PO.
2. Else if Γ ⊆ IL2 and,

– Γ is not ∆-matroid then, W-MAX ONES(Γ)-2 is APX-complete.
– otherwise, W-MAX ONES(Γ)-2 is in PO.

3. Else if Γ ⊆ ID2 and,
– Γ is not ∆-matroid then, W-MAX ONES(Γ)-2 is poly-APX-complete.
– otherwise, W-MAX ONES(Γ)-2 is in PO.

4. Else if Γ ⊆ IE2 and Γ is not ∆-matroid then W-MAX ONES(Γ)-2 is APX-hard.
5. Else if Γ is not ∆-matroid then it is NP-hard to find feasible solutions to W-MAX

ONES(Γ)-2.

Part 1 of the theorem follows from the known results for W-MAX ONES [1]. Part 4
follows from results for CSP(Γ)-2 [13, Theorem 4]. The other parts follows from the
results in Sections 4.3 and 4.4 below.

4.2 Tractability Results for W-MAX ONES(Γ)-2

Edmonds and Johnson [12] has shown that the following integer linear programming
problem is solvable in polynomial time: maximise wx subject to the constraints 0 ≤
x ≤ 1, b1 ≤ Ax ≤ b2 and x is an integer vector. Here A is a matrix with integer
entries such that the sum of the absolute values of each column is at most 2. b1, b2 and
w are arbitrary real vectors of appropriate dimensions. We will denote this problem by
ILP-2. With the polynomial solvability of ILP-2 it is possible to prove the tractability
of a number of W-MAX ONES(Γ)-2 problems.

4.3 Classification of ID2 and IL2

When Pol(Γ) = Pol(ID2) or Pol(Γ) = Pol(IL2) we prove a complete classifica-
tion result. We start with the hardness results for ID2, which consists of the following
lemma.

Approximability of Bounded Occurrence Max Ones 631

Lemma 14. Let Γ be a constraint language such that Pol(Γ) = Pol(ID2). If there
is a relation R ∈ Γ which is not a ∆-matroid relation, then W-MAX ONES(Γ)-2 is
poly-APX-complete.

The main observations used to prove the lemma is that since Pol(Γ) = Pol(ID2) we
can 2-represent every two-literal clause. This has been proved by Feder in [13]. Fur-
thermore, if we have access to every two-literal clause and also have a non-∆-matroid
relation then it is possible to make variables participate in three clauses, which was also
proved in [13]. The hardness result then follows with a reduction from MIS.

We will use some additional notation in the following proofs. For a tuple x =
(x1, x2, . . . , xk) and a set of coordinates A ⊆ [k], x ⊕ A is defined to be the tuple
(y1, y2, . . . , yk) where yi = xi if i 	∈ A and yi = 1 − xi otherwise. We extend this
notation to relations: if R ⊆ {0, 1}n and A ⊆ [n] then R⊕A = {t⊕A | t ∈ R}.

We will now define a constraint language denoted by Q. We will later prove that
W-MAX ONES(Q)-2 is in PO. Q is the smallest constraint language such that:

– ∅, c0, c1, EQ2 and {(0, 1), (1, 0)} are in Q.
– Every relation definable as {t | dH(0, t) ≤ 1} is in Q.
– If R,R′ ∈ Q then their cartesian product {(t, t′) | t ∈ R, t′ ∈ R′} is also in Q.
– If R ∈ Q and n is the arity of R then R⊕A ∈ Q for every A ⊆ [n].
– If R ∈ Q, n is the arity of R and f : [n] → [n] is a permutation on [n] then
{(tf(1), tf(2), . . . , tf(n)) | t ∈ R} is in Q.

The relation betweenQ and the∆-matroid relations in ID2 is given by the following
lemma.

Lemma 15. If R ∈ ID2 is a ∆-matroid relation, then R ∈ Q.

As for the tractability part we have the following lemma.

Lemma 16. Let Γ be a constraint language such that Γ ⊆ ID2, if all relations in Γ
are ∆-matroid relations then W-MAX ONES(Γ)-2 is in PO.

The idea behind the proof is that W-MAX ONES(Q)-2 can be seen as an ILP-2 problem
and is therefore solvable in polynomial time.

As for IL2 the result is the same, non ∆-matroids give rise to APX-complete prob-
lems and absence of such relations makes the problem tractable. Also in this case the
tractability follows from a reduction to ILP-2.

4.4 IE2, IS12 and IS10

The structure of the ∆-matroids do not seem to be as simple in IS12 and IS10 as
they are in ID2 and IL2. There exists relations in IS12 which are ∆-matroid relations
but for which we do not know of any polynomial time algorithm. One such relation is
R(x, y, z, w) ⇐⇒ NAND3(y, z, w)∧NAND3(x, z, w)∧NAND2(x, y). However,
we get tractability results for some relations with the algorithm for ILP-2. In particular
if the constraint language is a subset of {NANDm | m ∈ N}∪{IMPL} then W-MAX

ONES(·)-2 is in PO.
We manage to prove hardness results for every non-∆-matroid relation contained in

those co-clones. The main part of our hardness results for the non-∆-matroid relations
is the following lemma.

632 F. Kuivinen

Lemma 17. Let R(x1, x2, x3) ⇐⇒ NAND2(x1, x2) ∧ NAND2(x2, x3), then
W-MAX ONES({c0, c1, R})-2 is APX-complete.

Note that R is not a ∆-matroid relation. With Lemma 17 and a careful enumeration
of the types of non-∆-matroid relations that exists in IE2, we can deduce the desired
result: if there is a non-∆-matroid relation in the constraint language, then W-MAX

ONES(·)-2 is APX-hard. The proof builds upon the work in [2,13,17].

5 Non-conservative Constraint Languages

In this section we will take a look at the non-conservative case, i.e., we will look at
constraint languages which do not necessarily contain c0 and c1. A relation R is said
to be 1-valid if it contains the all ones tuple, i.e., R is 1-valid if (1, 1, . . . , 1) ∈ R. A
constraint language is said to be 1-valid if every relation in the language is 1-valid.

Theorem 18. For any constraint language Γ which is not 1-valid, if W-MAX ONES

(Γ ∪ {c0, c1})-k is NP-hard for some integer k then so is W-MAX ONES(Γ)-k.

Note that for constraint languages Γ which are 1-valid W-MAX ONES(Γ) is trivial: the
all-ones solution is optimal. The idea in the proof is that we can simulate c1 constraints
by giving the variable a large weight. Furthermore, if there are relations which are not
1-valid then we can represent c0 constraints when we have access to c1 constraints. It
fairly easy to see why this fails to give us any inapproximability results: due to the large
weight used to simulate c1 any feasible solution is a good approximate solution.

6 Conclusions

We have started the study of the approximability properties of bounded occurrence
MAX ONES. We have presented a complete classification for the weighted conserva-
tive case when three or more variable occurrences are allowed. Furthermore, a partial
classification of the two occurrence case has been presented. In the latter case we have
proved that non-∆-matroid relations give rise to problems which are APX-hard if the
unbounded occurrence variant is not tractable. We have also given complete classifica-
tions for the IL2 and ID2 co-clones.

There are still lots of open questions in this area. For example, what happens with
the complexity if the weights are removed? Many constraint satisfaction problems such
as MAX ONES and MAX CSP do not get any harder when weights are added. Such
results are usually proved by scaling and replicating variables and constraints a suitable
number of times. However, such techniques do not work in the bounded occurrence
setting and we do not know of any substitute which is equally general.

Except for the IS12 and IS10 chains the open questions in the two occurrence case
are certain constraint languages Γ such that Γ only contains ∆-matroid relations and
Pol(Γ) = Pol(BR). It would be very interesting to find out the complexity of W-MAX

ONES(·)-2 for some of the classes of ∆-matroid relations which have been proved
to be tractable for CSP(·)-2 in [11,13,14,15]. Instead of trying to classify the entire
IS12 or IS10 chain one could start with IS3

12 or IS3
10. The approximability of the non-

conservative case is also mostly open. In light of [20] the computational structure of
those problems seems to be quite complex.

Approximability of Bounded Occurrence Max Ones 633

References

1. G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela, and M. Protasi.
Complexity and approximation. Springer, 1999.

2. P. Berman and T. Fujito. On the approximation properties of independent set problem in
degree 3 graphs. In WADS ’95, pages 449–460, 1995.

3. E. Böhler, N. Creignou, S. Reith, and H. Vollmer. Playing with boolean blocks, part I: Post’s
lattice with applications to complexity theory. SIGACT News, 34(4):38–52, 2003.

4. E. Böhler, N. Creignou, S. Reith, and H. Vollmer. Playing with boolean blocks, part II:
Constraint satisfaction problems. SIGACT News, 35(1):22–35, 2004.

5. A. Bouchet. Matchings and ∆-matroids. Discrete Appl. Math., 24(1-3):55–62, 1989.
6. A. Bouchet and W. H. Cunningham. Delta-matroids, jump systems, and bisubmodular poly-

hedra. SIAM J. Discret. Math., 8(1):17–32, 1995.
7. R. Carr and O. Parekh. A 1/2-integral relaxation for the a-matching problem. Operations

Research Letters. In Press, Available online 22 September 2005.
8. G. Cornuéjols. General factors of graphs. J. Comb. Theory Ser. B, 45(2):185–198, 1988.
9. N. Creignou, S. Khanna, and M. Sudan. Complexity classifications of boolean constraint

satisfaction problems. Society for Industrial and Applied Mathematics, 2001.
10. N. Creignou, P. Kolaitis, and B. Zanuttini. Preferred representations of boolean relations.

Technical Report TR05-119, ECCC, 2005.
11. V. Dalmau and D. Ford. Generalized satisfability with limited occurrences per variable: A

study through delta-matroid parity. In MFCS ’03, pages 358–367, 2003.
12. J. Edmonds and E. L. Johnson. Matching: A well-solved class of integer linear programs. In

Combinatorial Optimization – Eureka, You Shrink!, pages 27–30, 2001.
13. T. Feder. Fanout limitations on constraint systems. Theor. Comput. Sci., 255(1-2):281–293,

2001.
14. T. Feder and D. Ford. Classification of bipartite boolean constraint satisfaction through delta-

matroid intersection. Technical Report TR05-016, ECCC, 2005.
15. G. Istrate. Looking for a version of schaefer’s dichotomy theorem when each variable oc-

curs at most twice. Technical Report TR652, University of Rochester Computer Science
Department, 1997.

16. P. Jeavons, D. Cohen, and M. Gyssens. Closure properties of constraints. Journal of the
ACM, 44:527–548, 1997.

17. V. Kann. Maximum bounded 3-dimensional matching in max snp-complete. Inf. Process.
Lett., 37(1):27–35, 1991.

18. S. Khanna, R. Motwani, M. Sudan, and U. V. Vazirani. On syntactic versus computational
views of approximability. SIAM J. Comput., 28(1):164–191, 1998.

19. S. Khanna, M. Sudan, L. Trevisan, and D. P. Williamson. The approximability of constraint
satisfaction problems. SIAM J. Comput., 30(6):1863–1920, 2000.

20. J. Kratochvı́l, P. Savický, and Z. Tuza. One more occurrence of variables makes satisfiability
jump from trivial to np-complete. SIAM J. Comput., 22(1):203–210, 1993.

21. F. Kuivinen. Approximability of bounded occurrence max ones. Technical Report
arXiv:cs.CC/0606057, 2006.

22. C. Papadimitriou and M. Yannakakis. Optimization, approximation, and complexity classes.
In STOC ’88, pages 229–234. ACM Press, 1988.

23. E. Post. The two-valued iterative systems of mathematical logic. Annals of Mathematical
Studies, 5:1–122, 1941.

24. R. Pöschel and L. Kaluznin. Funktionen- und Relationenalgebren. DVW, Berlin, 1979.
25. W. R. Pulleyblank. Matchings and extensions. In Handbook of combinatorics (vol. 1), pages

179–232. MIT Press, 1995.
26. T. J. Schaefer. The complexity of satisfiability problems. In STOC ’78, pages 216–226. ACM

Press, 1978.

Fast Iterative Arrays with

Restricted Inter-cell Communication:
Constructions and Decidability

Martin Kutrib1 and Andreas Malcher2

1 Institut für Informatik, Universität Giessen
Arndtstr. 2, D-35392 Giessen, Germany
kutrib@informatik.uni-giessen.de

2 Institut für Informatik, Johann Wolfgang Goethe Universität
D-60054 Frankfurt am Main, Germany

a.malcher@em.uni-frankfurt.de

Abstract. Iterative arrays (IAs) are one-dimensional arrays of inter-
connected interacting finite automata with sequential input mode. We
investigate IAs which work in real time and whose inter-cell communi-
cation is bounded by some constant number of bits not depending on
the number of states. It is known [13] that such IAs can recognize rather
complicated unary languages with a minimum amount of communica-
tion, namely one-bit communication, in real time. Some examples are

the languages {a2n | n ≥ 1}, {an2 | n ≥ 1}, and {ap | p is prime}. Here,
we consider non-unary languages and it turns out that the non-unary
case is quite different. We present several real-time constructions for cer-
tain non-unary languages. For example, the languages {anbn | n ≥ 1},
{an(bn)m | n, m ≥ 1}, and {anbamb(ba)n·m | n, m ≥ 1} are recognized
in real time by 1-bit IAs. Moreover, it is shown that real-time 1-bit IAs
can, in some sense, add and multiply integer numbers. Furthermore, clo-
sure properties and decidability questions of communication restricted
IAs are investigated. Due to the constructions provided, non-closure re-
sults as well as undecidability results can be shown. It turns out that
emptiness is still undecidable for 1-bit IAs despite their restricted com-
munication. Thus, also the questions of finiteness, infiniteness, inclusion,
and equivalence are undecidable.

1 Introduction

Iterative arrays (IAs) are devices consisting of many identical deterministic finite
automata, sometimes called cells, which themselves are homogeneously intercon-
nected with a fixed finite number of neighboring cells. An IA reads the input
sequentially via a distinguished communication cell. The state of each cell is
changed at discrete time steps by applying its transition function synchronously.
Formal language aspects of multidimensional IAs were first studied by Cole in [5]
where closure properties of IAs operating in real time are investigated. Further-
more, a technique is developed which allows to show that some languages cannot

R. Královič and P. Urzyczyn (Eds.): MFCS 2006, LNCS 4162, pp. 634–645, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Fast Iterative Arrays with Restricted Inter-cell Communication 635

be accepted by real-time IAs. As a consequence it turned out that the language
class accepted by real-time IAs is incomparable with the context-free languages.
In [4] it is shown that linear time and two dimensions are sufficient to accept all
context-free languages. The ability of real-time IAs to accept rather complicated
unary languages was first shown in [6] where a real-time IA for prime numbers is
constructed. Other examples are {a2n | n ≥ 1}, {an2 | n ≥ 1}, or {an! | n ≥ 1}.
Some recent results concern infinite hierarchies beyond linear time [8] and be-
tween real time and linear time [2], hierarchies depending on the amount of
nondeterminism [3] and the number of alternating transitions performed by the
communication cell [1], and descriptional complexity issues [10].

All these results concern iterative arrays where the states of the neighboring
cells are communicated in one time step. That is, the number of bits exchanged
is determined by the number of states. A natural and interesting restriction of
IAs is to limit the number of bits to some constant being independent of the
number of states. Iterative arrays with restricted inter-cell communication have
been investigated in [12,13], where algorithmic design techniques for sequence
generation are shown. In particular, several important infinite, non-regular se-
quences such as exponential or polynomial, Fibonacci and prime sequences can
be generated in real time. In [14] the computational capacity of one-way cellular
automata with restricted inter-cell communication is considered.

In [9] some formal language aspects of IAs with restricted inter-cell commu-
nication accepting non-unary languages are investigated. As main results two
hierarchies concerning the dimension and the number of bits communicated
could be shown. Thus, some questions raised in [12] could be answered. Fur-
thermore, the computational capacity of real-time and linear-time IAs with re-
stricted inter-cell communication has been compared with the power of two-way
cellular automata with restricted inter-cell communication. In this paper, these
results are extended by some significant results for one-dimensional real-time
IAs with restricted inter-cell communication.

2 Definitions and Preliminaries

We denote the rational numbers by Q, the integers by Z, the positive integers
and zero {0, 1, 2, ...} by N and the set of positive integers by N+. The empty
word is denoted by λ, the reversal of a word w by wR, and for the length of w
we write |w|. The set of words over some alphabet A whose lengths are at most
l ∈ N is denoted by A≤l. Set inclusion and strict set inclusion are denoted by ⊆
and ⊂, respectively. By REG we denote the set of regular languages.

A one-dimensional iterative array is a one-dimensional array (i.e. N) of fi-
nite automata, sometimes called cells, where each of them is connected to its
nearest neighbors. For convenience we identify the cells by their coordinates.
Initially they are in the so-called quiescent state. The input is supplied sequen-
tially to the distinguished communication cell at the origin. For this reason, we
have two different local transition functions. The state transition of all cells but
the communication cell depends on the current state of the cell itself and the

636 M. Kutrib and A. Malcher

current states of its neighbors. The state transition of the communication cell
additionally depends on the current input symbol (or if the whole input has
been consumed on a special end-of-input symbol). In an iterative array with
k-bit restricted inter-cell communication, during every time step each cell may
communicate only k bit of information to its neighbors. These bits depend on the
current state and are determined by so-called bit-functions. The finite automata
work synchronously at discrete time steps.

Definition 1. A one-dimensional iterative array with k-bit restricted inter-cell
communication (IAk) is a system 〈S,A, F, s0, k, bl, br, δ, δ0〉, where

(1) S is the finite, nonempty set of cell states,
(2) A is the finite, nonempty set of input symbols,
(3) F ⊆ S is the set of accepting states,
(4) s0 ∈ S is the quiescent state,
(6) k ∈ N+ is the number of bits which can be communicated to neighbor cells,
(7) bl, br : S → {0, 1}k are bit functions which determine the bits to communi-

cate to the left and right neighbors, satisfying bl(s0) = br(s0) = (0, . . . , 0),
(8) δ : S×({0, 1}k)2 → S is the local transition function for non-communication

cells satisfying δ(s0, (0, . . . , 0), (0, . . . , 0)) = s0,
(9) δ0 : S × (A ∪ {#}) × {0, 1}k → S is the local transition function for the

communication cell.

Fig. 1. A one-dimensional one-bit iterative array. The upper box between two cells
denotes the bit channel from left to right. The lower box denotes the bit channel from
right to left.

Let M be an IAk. A configuration of M at some time t ≥ 0 is a description
of its global state which is a pair (wt, ct), where wt ∈ A∗ is the remaining
input sequence and ct : N → S is a mapping that maps the single cells to their
current states. The configuration (w0, c0) at time 0 is defined by the input word
w0 and the mapping c0(i) = s0, i ∈ N, while subsequent configurations are
chosen according to the global transition function ∆. Let (wt, ct), t ≥ 0, be a
configuration, then its successor configuration (wt+1, ct+1) = ∆

(
(wt, ct)

)
is as

follows:
ct+1(i) = δ

(
ct(i), br(ct(i− 1)), bl(ct(i+ 1))

)
for all i ∈ N+, and ct+1(0) = δ0(ct(0), a, bl(ct(1))) where a = #, wt+1 = λ
if wt = λ, and a = a1, wt+1 = a2 · · · an if wt = a1 · · · an. Thus, the global
transition function ∆ is induced by δ and δ0.

A word w is accepted by an IAk if at some time i during its course of com-
putation on input w the communication cell becomes accepting.

Fast Iterative Arrays with Restricted Inter-cell Communication 637

Definition 2. Let M = 〈S,A, F, s0, k, bl, br, δ, δ0〉 be an IAk.

(1) A word w ∈ A∗ is accepted by M, if there exists a time step i ∈ N+ such
that ci(0) ∈ F .

(2) L(M) = {w ∈ A∗ | w is accepted by M} is the language accepted by M.
(3) Let t : N+ → N+, t(n) ≥ n+ 1, be a mapping. If all w ∈ L(M) are accepted

with at most t(|w|) time steps, then L is said to be of time complexity t.

The family of all languages which can be accepted by an IAk with time com-
plexity t is denoted by Lt(IAk). If t equals the function n+1, acceptance is said
to be in real time and we write Lrt(IAk). The linear-time languages Llt(IAk)
are defined according to Llt(IAk) =

⋃
i∈Q,i≥1 Li·n(IAk).

Definition 3. Let L ⊆ A∗ be a language over an alphabet A and l ∈ N+ be a
constant. Two words w ∈ A≤l and w′ ∈ A≤l are l-left-equivalent with respect to
L if for all y ∈ A∗: wy ∈ L ⇐⇒ w′y ∈ L. N�(l, L) denotes the number of
l-left-equivalence classes with respect to L.

Lemma 1. [9] Let k ∈ N+ be a constant number. If L ∈ Lt(IAk), then there
exists a constant p ∈ N+ such that N�(l, L) ≤ p · 2k·l for all l ∈ N+ and all time
complexities t : N+ → N+.

3 Constructions

It is known [13] that 1-bit IAs can recognize rather complicated unary languages
such as, for example, {a2n | n ≥ 1}, {an2 | n ≥ 1}, or {ap | p is prime} in
real time. The main result in this section is that even 1-bit communication is
sufficient to realize binary counters. This enables us to accept rather complicated
non-unary languages and to show non-closure and undecidability results in the
next sections. We start with a lemma which shows that an additive speed-up in
IAks is always possible. The benefit of this lemma is that we do not have to care
about additive constant factors which may arise in constructions.

Lemma 2. Lrt+p(IAk) = Lrt(IAk) for any constant number p ∈ N+.

Proof. Group p cells into the communication cell and simulate the first p cells
there. This enables the communication cell to perform p steps in the (n + 1)st
step at once. �

Example 1. Real-time 1-bit IAs can count by storing the binary encoding of the
current value in its cells. The information to be communicated are carry-overs
and the position of the most significant bit of the counter. This can be realized
by 1-bit IAs: The bit channel from left to right is used to transport carry-overs
and the most significant bit of the counter is marked in the bit channel from
right to left.

638 M. Kutrib and A. Malcher

Lemma 3. {anbn | n ≥ 1} ∈ Lrt(IA1)

Proof. The principal idea is as follows. We implement a binary counter according
to Example 1. Then, the counter is increased for every input symbol a. When
reading the first b, we send a signal which switches the counter from increasing
to decreasing. Then, the counter is decreased for every input symbol b. Finally,
when reading the end-of-input symbol, we check whether the counter is zero and
accept or reject the input.

To realize the signal, we can observe that the communication cell always
alternately sends 1-bits (carry-over) and 0-bits (no carry-over) and that the
remaining cells never send two subsequent 1-bits. Thus, two subsequent 1-bits
can be considered as signal S. Due to technical reasons two cells are grouped into
one cell, so we can speak of pairs. Each coordinate contains the current state of
the counter according to Example 1 and is marked • if it is the most significant
bit of the counter. Additionally, each cell contains two registers P and R. In P
it is marked whether it is counted forwards ⊕ or backwards 9. In R it is marked
whether a second 1-bit for transporting the signal S has to be sent to the right.

Now, the binary counter is increased for every input symbol a and P is marked
with ⊕. If the second coordinate of the communication cell produces a carry-
over, the bit channel to the right is set to 1. If any other cell gets a 1-bit from
the left, this is interpreted as a carry-over and the binary counter is increased.
If the left coordinate of a pair is the most significant bit of the counter, the bit
channel to the left is set to 1. So, while reading a’s, the counter is increased
and the number of cells as well as the rightmost active cell including the most
significant bit is extended to the right. If the communication cell reads the first
b, counting forwards has to be turned into counting backwards. To this end,
the communication cell will send two subsequent 1-bits to the right. To avoid
confusion of 1-bits arising from a carry-over with 1-bits arising from the signal
S, we introduce four additional time steps in which the communication cell does
not process the input. The first two time steps are used to send a possible carry-
over from the communication cell to the right. In this case we can observe that
there is a 1-bit in the right bit channel at the first time step and a 0-bit in
the second one. In the next two time steps the communication cell sends two
subsequent 1-bits to the right which will be again sent to the right with the
help of the register R and change the register P from ⊕ to 9. Since a 1-bit
in the right bit channel is interpreted as carry-over and changes the counter in
the appropriate cell, a second 1-bit in the right bit channel, due to the signal
S, must cancel the previously made changes. Since two cells are grouped into
one cell, this is always possible. Then, we continue to read the input, the binary
counter is decreased for every input symbol b and the number of cells as well as
the rightmost active cell including the most significant bit is shortened to the
left. Finally, when reading the end-of-input symbol it has to be checked whether
the counter has been decreased to zero. In this case, the input is accepted and
otherwise rejected. It can be observed that the automaton works in real time plus
four time steps. Due to Lemma 2 the computation can be sped up to real time.
Thus, {anbn | n ≥ 1} ∈ Lrt(IA1). An example schematically accepting a4b4 may

Fast Iterative Arrays with Restricted Inter-cell Communication 639

Fig. 2. Schematic computation of a non sped up 1-bit iterative array accepting a4b4

in 13 time steps

be found in Fig. 2. It should be added that the main reason for grouping two
cells into one was to enable the easy alternation between counting forwards and
backwards by using the signal S. It is easily observed that we can realize any
number of such alternations by the same construction which will be very useful
for the next lemmas. �
Lemma 4. {an(bn)m | n,m ≥ 1} ∈ Lrt(IA1)

Proof. 1. Implement two binary counters C1 and C2.
2. Increase C1 and C2 for every input symbol a.
3. When reading the first b, send a signal which switches C1 from increasing to

decreasing and C2 to do nothing. The number n is thus binary encoded in C2.
4. Decrease C1 for every input symbol b. The current configuration of C1 can be

divided into two parts, namely the active part from the first cell to the cell
with the most significant bit and the non-active, remaining cells which are
right from the cell with the most significant bit. It can be observed that the
latter cells are no longer used to decrement n. Now, the idea is to copy the
contents of C2, i.e. the binary encoding of n, successively to the non-active
part of C1. To this end, we mark some cell i whenever it shifts the most
significant bit to its left neighbor. In the next time step, copy the contents
of the ith cell of C2 to the ith cell of C1.

5. When the first counter is zero, copy the contents of the communication cell
of C2 to the communication cell of C1. Thus, the binary encoding of n has
been copied to C1. Then, start a new decrement cycle with step 4. in the
next time step.

6. When reading the end-of-input symbol, check whether C1 is zero.
�

640 M. Kutrib and A. Malcher

The constructions presented in the next two lemmas are necessary to show un-
decidability results in Section 5. The lemmas show that IA1s can “add” negative
and positive integers as well as “multiply” positive integers.

Lemma 5. {anbmcl | (n,m, l ≥ 1) ∧ (m > n) ∧ (−n+m = l)} ∈ Lrt(IA1)

Proof. 1. Implement a binary counter.
2. Increase the counter for every input symbol a.
3. When reading the first b, send a signal which switches the counter from

increasing to decreasing.
4. Decrease the counter for every input symbol b.
5. If the counter is zero, send a signal which switches the counter from decreas-

ing to increasing.
6. Increase the counter for every further input symbol b.
7. When reading the first c, send another signal which switches the counter

from increasing to decreasing.
8. Decrease the counter for every input symbol c.
9. When reading the end-of-input symbol, check whether the counter is zero.

�
Lemma 6. {anbamb(ba)n·m | n,m ≥ 1} ∈ Lrt(IA1)

Proof. 1. Implement three binary counters C1, C2, C3 which store n,m,m.
2. While reading (ba)∗, alternately look at C2 (reading a b) and C1 (reading an
a).

3. For every input symbol b, decrease C2. By the same technique as in Lemma 4,
the contents of C3 are successively copied to the non-active part of C2.

4. For every input symbol a, check whether C2 is zero. If so, decrease C1 by
one, copy the contents of the communication cell of C3 to the communication
cell of C2 and start a new decrement cycle of C2 in the next time step.

5. When reading the end-of-input symbol, check whether C1 is zero.
�

An obvious generalization of the construction shows that the following languages
can be similarly accepted by IA1s.

– {anbamb(baaaa)n2·m3 | n,m ≥ 1} ∈ Lrt(IA1)
– {anbambalb(baaaaaa)n2·m3·l2 | n,m, l ≥ 1} ∈ Lrt(IA1)

4 Generative Capacity and Closure Properties

In the next theorem we summarize the results concerning the generative capacity
of IAks.

Theorem 1. For any fixed number k ∈ N+ holds

– Lrt(IAk) ⊂ Lrt(IAk+1)
– REG ⊂ Lrt(IAk) ⊂ Llt(IAk).
– Lrt(IAk) is incomparable to the context-free languages (CFL)

Fast Iterative Arrays with Restricted Inter-cell Communication 641

Proof. The first two assertions are shown in [9]. It is shown in [5] that there is
a language L ∈ CFL and L 	∈ Lrt(IA). Thus, L 	∈ Lrt(IAk). On the other hand,
the language L′ = {anbamb(ba)n·m | n,m ≥ 1} ∈ Lrt(IAk) due to Lemma 6, but
L′ 	∈ CFL. �

We next investigate the closure properties of the language classes accepted by
real-time IAks and start with positive closure results.

Lemma 7. Lrt(IAk) is closed under complementation, intersection with regular
languages, union with regular languages, and right concatenation with regular
languages.

Proof. All constructions can be realized in the communication cell and thus are
identical to the general case of unrestricted communication [11]. �

It is shown in Lemma 12 that real-time IAks are not closed under arbitrary
inverse homomorphisms. Nevertheless, Lrt(IAk) is closed under inverse letter-
to-letter homomorphisms. A homomorphism h : A→ A′ is called letter-to-letter
if h(a) = a′ for a ∈ A and a′ ∈ A′ where A and A′ are two alphabets.

Lemma 8. Lrt(IAk) is closed under inverse letter-to-letter homomorphisms.

Proof. The simulation of the inverse letter-to-letter homomorphism can be real-
ized in the communication cell. �

We next present a language introduced in [9] which will be very useful in the
following proofs.

Lemma 9. [9] For k ≥ 2 let Ak = {a0, . . . , a2k−2}. Then a real-time IAk can
be constructed accepting the following language L.

L = {u1 . . . um$e2m+4$ex$e2x$v | m,x ∈ N+ and x ≤ m,

ui ∈ Ak with 1 ≤ i ≤ m, and v = ux}

We now turn to non-closure results and first show non-closure under union and
intersection. In case of unrestricted communication these operations can be re-
alized using the Cartesian product construction whereas such constructions are
not possible in case of restricted communication.

Lemma 10. Let k ∈ N+ with k ≥ 2. Then Lrt(IAk) is not closed under inter-
section and union.

Proof. Let Ak = {a0, . . . , a2k−2} and A′k be some symbols such that Ak∩A′k = ∅
and |Ak ∪ A′k| = 2k+1. Let Mk = {M1,k, . . . ,Mn,k} be an enumeration of all
subsets of Ak ∪A′k of size 2k − 1.

For given j ∈ N+ such that 1 ≤ j ≤ |Mk| we consider languages

L(j, k) = {u1 . . . um$e2m+4$ex$e2x$v$wj,k | m,x ∈ N+, x ≤ m,

ui ∈Mj,k with 1 ≤ i ≤ m, and v = ux}

642 M. Kutrib and A. Malcher

where wj,k is some fixed word from M∗
j,k which enumerates all elements from

Mj,k and thus identifies the set Mj,k. By a similar construction as is given in
Lemma 9 we obtain that L(j, k) ∈ Lrt(IAk).

We next consider some letter-to-letter homomorphism hj,k : Ak ∪ A′k ∪
{e, $} −→ Mj,k ∪ {e, $} such that hj,k(u) = u for u ∈ Mj,k ∪ {e, $} and
define

L′(j, k) = h−1
j,k(L(j, k)) ∩ (Ak ∪A′k)∗$e∗$e∗$e∗$Mj,k$wj,k

and obtain

L′(j, k) = {u1 . . . um$e2m+4$ex$e2x$v$wj,k | m,x ∈ N+, x ≤ m,

ui ∈ Ak ∪A′k with 1 ≤ i ≤ m, and v = hj,k(ux) ∈Mj,k}

Since Lrt(IAk) is closed under inverse letter-to-letter homomorphism and
intersection with regular sets, we obtain L′(j, k) ∈ Lrt(IAk). For each pair
u1, u2 ∈ Ak ∪ A′k with u1 	= u2 we next choose some homomorphism hj,k and
thus a set L′(j, k) such that hj,k(u1) 	= hj,k(u2). We observe that there are at
most

(2k+1

2

)
such sets. Let Lk be the (finite) union of these sets. We next show

that Lk 	∈ Lrt(IAk) which implies that Lrt(IAk) is not closed under union.
By way of contradiction, we assume that Lk ∈ Lrt(IAk). Due to Lemma 1

there exists a constant p ∈ N+ such that N�(l, Lk) ≤ p · 2k·l, for all l ∈ N+.
On the other hand, consider two different words w = u1 · · ·ul and w′ =

v1 · · · vl. Since they are different, there is an i such that ui 	= vi. Furthermore,
there is a homomorphism hj,k such that hj,k(ui) 	= hj,k(vi). We consider two
words y = w$e2l+4$ei$e2i$hj,k(ui)$wj,k and y′ = w′$e2l+4eie2i$hj,k(ui)$wj,k.
Due to the suffix wj,k we know that y and y′ are in L′(j, k) if they are in Lk.
It is easy to observe that y ∈ Lk since hj,k(ui) = ui. On the other hand, we
know that hj,k(vi) 	= hj,k(ui) which implies that y′ 	∈ L′(j, k). Thus, y′ 	∈ Lk.
Therefore, we obtain y ∈ Lk ⇐⇒ y′ 	∈ Lk.

There are (2k+1)l different words of this form. Choosing l such that 2l > p, we
obtain the following lower bound on the number of induced equivalence classes:

N�(l, Lk) ≥ (2k+1)l = 2l2k·l > p · 2k·l

This is a contradiction. Thus, Lk 	∈ Lrt(IAk). Since Lrt(IAk) is closed under
complementation, Lrt(IAk) is not closed under intersection as well. �

To show the non-closure under union for k = 1 we cannot apply the above
idea directly, because each set Mj,k contains only one element. Then each ho-
momorphism hj,k maps A1 ∪ A′1 to only one element. Thus, we cannot find
any homomorphism hj,k separating two different elements u1 and u2. But some
adaptions and finer arguments involving estimations about Fibonacci numbers
make the proof also work for the case k = 1. The proof is omitted due to space
considerations.

Fast Iterative Arrays with Restricted Inter-cell Communication 643

Lemma 11. Lrt(IA1) is not closed under intersection and union.

We next show non-closure under arbitrary inverse homomorphisms whereas clo-
sure under inverse letter-to-letter homomorphisms is known (Lemma 8). Its proof
and the proof of Lemma 13 are omitted due to space considerations. The closure
properties of Lrt(IAk) are summarized in Table 1.

Table 1. Closure properties of Lrt(IAk). ∩R and ∪R denote intersection and union
with regular sets. ·R and R· denote right and left concatenation with regular sets.

∩ ∪ ∩R ∪R · ∗ h hλ h−1 h−1
1-1 ·R R· R

Lrt(IA) + + + + + − − − − + + + − −
Lrt(IAk) + − − + + − − − − − + + − −
CFL − − + + + + + + + + + + + +

Lemma 12. Lrt(IAk) is not closed under inverse homomorphism.

Lemma 13. Lrt(IAk) is not closed under homomorphism, λ-free homomor-
phism, and reversal. Lrt(IAk) is not closed under left concatenation with regular
languages, concatenation, and Kleene star.

5 Decidability Questions

For real-time IAs with unrestricted communication it is known that many decid-
ability questions are undecidable [10,11]. One may ask under which additional
conditions undecidable questions become decidable. Since the generative capac-
ity of real-time IAks is weaker than real-time IAs, it is a natural question whether
undecidable questions for real-time IAs are decidable for IAks. Furthermore, it
is easy to observe that the methods to show undecidability for real-time IAs do
not work in case of restricted communication. Nevertheless, in this section we
show that all known undecidable questions for real-time IAs remain undecidable
for real-time IAks. This shows again that even real-time IAs with a minimum
amount of communication are very powerful.

We first show that emptiness is undecidable for real-time IAks by reduction
from the undecidability of Hilbert’s tenth problem which is the problem of de-
ciding whether a given polynomial p(x1, . . . , xn) with integer coefficients has an
integral root. I.e.: Are there integers α1, . . . , αn such that p(α1, . . . , αn) = 0. The
same approach has been used in [7] to show that emptiness is undecidable for
certain multi-counter machines. As is remarked in [7], it is sufficient to restrict
the variables x1, . . . , xn to assume non-negative integers only. Such a polynomial
has the following form:

p(x1, . . . , xn) = t1(x1, . . . , xn) + . . .+ tr(x1, . . . , xn)

644 M. Kutrib and A. Malcher

where each tj(x1, . . . , xn) (1 ≤ j ≤ r) is a term of the form

tj(x1, . . . , xn) = sjx
ij1
1 . . . x

ijn
n

with sj ∈ {+1,−1} and ij1 , . . . , ijn ≥ 0.
Now, consider the following language given a polynomial p(x1, . . . , xn) with

integer coefficients.

L(p) = {aα1
1 . . . aαn

n $(ak1b)β1 . . . $(akrb)βr | α1, . . . , αn ≥ 0, kj = ij1 + . . .+ ijn ,

βj = α
ij1
1 . . . α

ijn
n , s1β1 + . . .+ srβr = 0}

Lemma 14. L(p) ∈ Lrt(IA1)

Proof. We sketch the construction of a real-time IA1 accepting L(p) which has
to calculate βj = α

ij1
1 . . . α

ijn
n for 1 ≤ j ≤ r and to calculate the sum s1β1 +

. . . + srβr. The first calculation, which is a multiplication of positive integers,
can be realized with a generalization of Lemma 6. The second calculation is
the summation of positive and negative integers which can be realized with a
generalization of Lemma 5. The second part of the input is divided into blocks of
the form $(akj b)βj . It can be observed from Lemma 5 and Lemma 6 that kj · βj

(βj) time steps are sufficient to perform the first (second) calculation for one
block. When reading the end-of-input symbol, it has to be checked whether the
current value of the counter representing the second calculation is zero. In this
case, the input is accepted and otherwise rejected. �

Theorem 2. Let k ≥ 1 be an integer. It is undecidable for an arbitrary real-time
IAk M whether L(M) = ∅.

Proof. Due to Lemma 14 we can construct a real-time IA1 M accepting L(p).
It is easy to observe that M accepts the empty set if and only if p(x1, . . . , xn)
has no solution in the non-negative integers. Since Hilbert’s tenth problem is
undecidable, we obtain that the emptiness problem for real-time IA1s is unde-
cidable. �

Corollary 1. Let M be a real-time IAk. The problems finiteness, infiniteness,
universality, inclusion, equivalence, regularity, and context-freedom are undecid-
able for these automata.

Proof. Consider the language L(M){a}∗ for some new alphabet symbol a. Ob-
viously, L(M){a}∗ ∈ Lrt(IAk) and L(M){a}∗ is finite ⇔ L(M) = ∅. Since
emptiness is undecidable, finiteness is undecidable as well. The other claims can
be proven similarly. �

The next theorem shows that it is undecidable whether a language accepted by a
real-time IAk+1 is already accepted by some real-time IAk. The proof is omitted
due to space considerations.

Theorem 3. Let M be a real-time IAk+1. Then the problem whether L(M) ∈
Lrt(IAk) is undecidable.

Fast Iterative Arrays with Restricted Inter-cell Communication 645

References

1. Buchholz, T., Klein, A., Kutrib, M.: Iterative arrays with a wee bit alternation. In:
Ciobanu, G., Păun, G. (eds.): FCT 1999, volume 1684 of LNCS. Springer-Verlag,
Berlin (1999) 173–184

2. Buchholz, T., Klein, A., Kutrib, M.: Iterative arrays with small time bounds. In:
Nielsen, M., Rovan, B. (eds.): MFCS 2000, volume 1893 of LNCS. Springer-Verlag,
Berlin (2000) 243–252

3. Buchholz, T., Klein, A., Kutrib, M.: Iterative arrays with limited nondetermin-
istic communication cell. In: Ito, M., Imaoka, T. (eds.): Words, Languages and
Combinatorics III. World Scientific Publishing, Singapore (2003) 73–87

4. Chang, J. H., Ibarra, O. H. , Palis, M. A.: Parallel parsing on a one-way array of
finite-state machines. IEEE Transactions Computers C-36 (1987) 64–75

5. Cole, S. N.: Real-time computation by n-dimensional iterative arrays of finite-state
machines. IEEE Transactions Computers C-18 (1969) 349–365

6. Fischer, P. C: Generation of primes by a one-dimensional real-time iterative array.
Journal of the ACM 12 (1965) 388–394

7. Ibarra, O. H.: Reversal-bounded multicounter machines and their decision prob-
lems. Journal of the ACM 25 (1978) 116–133

8. Iwamoto, C., Hatsuyama, T., Morita, K., Imai, K.: On time-constructible functions
in one-dimensional cellular automata. In: Ciobanu, G., Păun, G. (eds.): FCT 1999,
volume 1684 of LNCS. Springer-Verlag, Berlin (1999) 317–326

9. Kutrib, M., Malcher, A.: Fast cellular automata with restricted inter-cell communi-
cation: computational capacity. Proceedings of IFIP TCS 2006, Santiago de Chile
(to appear)

10. Malcher, A.: On the descriptional complexity of iterative arrays. IEICE Transac-
tions on Information Sciences E87-D (2004) 721–725

11. Seidel, S. R.: Language recognition and the synchronization of cellular automata.
Technical Report 79-02, University of Iowa (1979)

12. Umeo, H., Kamikawa, N.: A design of real-time non-regular sequence generation
algorithms and their implementations on cellular automata with 1-bit inter-cell
communications. Fundamenta Informaticae 52 (2002) 257–275

13. Umeo, H., Kamikawa, N.: Real-time generation of primes by a 1-bit-communication
cellular automaton. Fundamenta Informaticae 58 (2003) 421–435

14. Worsch, T.: Linear Time Language Recognition on Cellular Automata with Re-
stricted Communication. In: Gonnet, G., Panario, D., Viola, A. (eds.): LATIN
2000, volume 1776 of LNCS. Springer-Verlag, Berlin (2000) 417–426

Faster Algorithm for Bisimulation Equivalence

of Normed Context-Free Processes

S�lawomir Lasota� and Wojciech Rytter��

Institute of Informatics, Warsaw University, Warsaw, Poland

Abstract. The fastest known algorithm for checking bisimulation equiv-
alence of normed context-free processes worked in O(n13) time. We give
an alternative algorithm working in O(n8polylog n) time, As a side ef-
fect we improve the best known upper bound for testing equivalence of
simple context-free grammars from O(n7polylog n) to O(n6polylog n).

1 Introduction

Equivalence checking, that is determining whether two systems are equal under
a given notion of equivalence, is an important verification problem with a long
history. In this paper we consider systems described by context-free grammars.
It is well known that language equivalence is undecidable in this class [1]. A
decidability result was obtained by Korenjak and Hopcroft [12] for a restricted
class of deterministic context-free grammars (simple grammars). Remarkably,
the language containment is undecidable even for simple grammars [6].

In the context of process algebras, a grammar may be considered as a de-
scription of a transition graph rather than a language. The adequate concept
of equivalence is then bisimilarity (bisimulation equivalence), a notion strictly
finer than language equivalence. For graphs generated by context-free grammars,
called context-free processes, bisimilarity is known to be decidable due to the re-
sult of [5]. It has also been demonstrated that bisimilarity is the only equivalence
in van Glabbeek’s spectrum [7] which is decidable for context-free processes. This
places bisimilarity in a very favourable position.

Historically the first decision procedure for bisimilarity on infinite-state sys-
tems was given by [3] for a class of normed context-free processes, those defined
by grammars in which, roughly, each nonterminal generates at least one word.
Clearly, language equivalence is still undecidable in this class, as normedness
assumption does not facilitate testing language equality. As language equiva-
lence and bisimilarity coincide on deterministic graphs (in fact, the whole van
Glabbeek’s spectrum collapses), the result of [3] was a strict extension of [12].

Later, decidability was extended to all context-free processes [5].
In the case of normed context-free processes, a number of simplifications of

the proof of [3] appeared [4,10], relying on particular decomposition properties of
� Partially supported by the Polish Kbn grant No. 4 T11C 042 25 and by European

Community Research Training Network Games.
�� Supported by the Polish Kbn grant No. 4 T11C 044 25.

R. Královič and P. Urzyczyn (Eds.): MFCS 2006, LNCS 4162, pp. 646–657, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Faster Algorithm for Bisimulation Equivalence 647

bisimilarity, and yielding an exponential upper bound for bisimilarity checking. A
side effect was an improvement for the equivalence of simple grammars, compared
to the complexity of the algorithm of [12] which was O(nv), where n is the
length of the grammar and v is the length of the shortest word generated, in
general exponential in n. Independently, Caucal [4] proposed an algorithm for
equivalence of simple grammars working in time O(n3v).

Huynh and Tian [11] did a next step and proved that complexity of bisimilarity
is in NPNP, the second level of the polynomial hierarchy. A first polynomial-time
procedure was finally presented by Hirshfeld, Jerrum and Moller [9].

The algorithm in [9] works in time O(n13) and is hence not satisfactory
from the practical point of view. This motivated a further research: in [2] an
O(n7polylog n) time algorithm was proposed for the equivalence of simple gram-
mars. In this paper we report a further progress: we give an O(n8polylog n) time
algorithm for bisimilarity on normed context-free processes, thus improving pre-
vious O(n13) time of [9]. We believe that our algorithm is conceptually simpler
than that of [9]. It is based on the following two insights. First, we avoid an
iterative computation of bisimilarity, by a chain of approximants of the greatest
fixed point; instead, we are able to reduce the problem of computing the greatest
bisimulation to the problem of finding the greatest solution of certain system of
boolean equations, and use the linear-time procedure to find this solution. Sec-
ondly, we contribute to the algorithmic theory of compressed strings: we develop
a fast algorithm for an auxiliary problem on strings called the First Mismatch
Problem, working in O(n5polylog n) time. As a direct corollary, the equivalence
of simple grammars can be decided in O(n6polylog n) time, which beats the
complexity of the (fastest known) algorithm of [2].

Context-Free Processes and Bisimilarity. Let Σ be a finite alphabet and
V = {X1, . . . , Xm} a finite set of variables. By a process definition ∆ we mean
a finite set of rules of the form: X

a−→ α, with a ∈ Σ and α ∈ V∗. Such
process definitions are usually called in the literature Basic Process Algebra, or
Context-Free Processes. The explanation of the latter is that each rule can be
seen as a production X −→ aα of a context-free grammar in Greibach normal
form. Elements of V∗ are called here processes ; a variable X can be seen as an
elementary process.
∆ defines a transition system: its states are processes α ∈ V∗; and for each

a ∈ Σ, there is a transition relation containing triples (α, a, β), where a ∈ Σ

and α, β ∈ V∗, written α a−→ β. The transition relations are defined by a prefix
rewriting: Xβ a−→ αβ whenever ∆ contains a rule X a−→ α, and β ∈ V∗.

Definition 1. Given a binary relation R over V∗, we say that a pair (α, β) of
processes satisfies expansion in R if

– whenever α a−→ α′, there exists some β′ with β a−→ β′ and (α′, β′) ∈ R; and
– whenever β a−→ β′, there exists some α′ with α a−→ α′ and (α′, β′) ∈ R.

A binary relation S satisfies expansion in R if each pair (α, β) ∈ S does. A
relation R is a bisimulation if it satisfies expansion in itself. We say that α and
β are bisimilar, denoted by α ∼ β, if (α, β) belongs to some bisimulation.

648 S. Lasota and W. Rytter

Assume that ∆ is normed, i.e., for each variableX ∈ V∗ there is a finite sequence
X

a1−→ α1 . . .
ak−→ αk = ε leading from X to the empty process ε. By |X | denote

the smallest length of such sequence and call it the norm of X (intuitively, |X |
is the length of the shortest word generated from X).

We consider the following Normed-BPA-Bisim Problem:

Instance: A normed ∆ and X,Y ∈ V with |X | = |Y |, X 	= Y .
Question: Is X ∼ Y ?

A more general problem of checking whether α ∼ β, for any α, β ∈ V∗, can be
easily reduced to the above one. We use notation Õ(f(n)) for O(f(n) polylog n)
in the sequel. The size of ∆, denoted by n, is the sum of lengths of all the rules
in ∆. Our main result is the following:

Theorem 1. Normed-BPA-Bisim Problem can be solved in time Õ(n8).

2 Terminology and Tools Used in the Main Algorithm

The normedness assumption implies that each variable has at least one rule in
∆. We extend additively the norm to all processes: |ε| := 0, |Xα| := |X | + |α|.
Bisimilarity preserves norm, as a sequence of transitions X a1−→ . . .

ak−→ ε leading
to ε must be necessarily matched by a sequence leading to ε as well:

Proposition 1. If α ∼ β then |α| = |β|.
Let Σ, V and ∆ be fixed from now on. We assume that the variables in V are
ordered so that |Xi| ≤ |Xj | whenever i < j. It is easy to show the following:

Proposition 2. Norms of all variables can be computed in time Õ(n).

The following fact is easily derived from the unique decomposition property [9].

Lemma 1. If αα′ ∼ ββ′ and |α| ≥ |β| then for some γ, α ∼ βγ and γα′ ∼ β′.

As s direct corollary we get a cancellation property:

Lemma 2. If γα ∼ γβ then α ∼ β.

We will need a notion of base, which is a slight adaptation of [9]. Intuitively, it
describes ways of decomposing an elementary process into smaller ones:

Definition 2. A base is a set B of pairs (Xj , Xiγ), at most one for each pair
(Xj , Xi), such that i < j, γ ∈ V∗ and |Xj | = |Xiγ|.

A base is full iff whenever Xj ∼ Xiβ, for j > i, then (Xj , Xiγ) ∈ B, for
some γ ∼ β.

Note that whenever (Xj , Xiγ) ∈ B then necessarily Xiγ ∈ {X1, . . . , Xj−1}+. In
the sequel we rely on the following lemma proved in [9]:

Lemma 3. A full base B0 can be constructed, in time O(n3), such that the
length of γ is O(n), for each (Xj , Xiγ) ∈ B0. Furthermore, B0 contains a pair
(Xj , Xiγ) for each i, j such that j > i.

Faster Algorithm for Bisimulation Equivalence 649

Remark 1. By cancellation, if Xj ∼ Xiγ, then γ is unique up to bisimilarity.
Basing on this observation, the construction of B0 is by inspecting an arbitrarily
chosen sequence of |Xi| norm-reducing moves from Xj . Any process obtained at
the end of such a sequence is a good candidate for γ.

Remark 2. Note that B0, being full, contains all pairs (Xj , Xi) with Xj ∼ Xi.

Fix the full base B0 from now on. Pairs (Xj , Xiγ) ∈ B0 we call decomposition
pairs, or d-pairs in short. A d-pair (Xj , Xiγ) will be denoted by zji.

In the sequel we will treat the d-pairs as boolean variables. The basic intuition
will be that zji = true just in case when Xj ∼ Xiγ holds. We will also build
the positive boolean formulas on top of d-pairs, by boolean connectives ∧, ∨
and symbols true, false (no negation). The empty conjunction (disjunction) is
allowed as a formula and understood as true (false, respectively).

A valuation is a mapping v from B0 to {true, false}. We extend valuations
to formulas in the obvious way.

Definition 3. A boolean equation system is a set of equations of the form

zji = ψji,

one for each zji ∈ B0, where ψji is a positive boolean formula with variables from
B0. A solution is any valuation v such that v(zji) = v(ψji) for each zji ∈ B0.

Valuations are in one-to-one correspondence with subsets of B0: for B ⊆ B0, a
corresponding valuation vB assigns true to a variable zji if and only if zji ∈ B.
Each boolean equation system has the greatest solution B̄: start with B = B0
and iteratively update B by removing zji from B if vB(ψji) = false, until B
eventually stabilizes yielding B̄. A relevant observation is a folklore (see e.g. [8]):

Lemma 4. The greatest solution of a boolean equation system can be computed
in time linear wrt. the size of the system.

The overall idea underlying the algorithm is as follows. Bisimilarity is the greatest
bisimulation, i.e., ∼ satisfies expansion in itself. Hence, by Knaster-Tarski fix-
point theorem, it is also the greatest fixed point: α ∼ β if and only if (α, β)
satisfies expansion in ∼. One crucial insight is that computing this greatest
fixed point can be reduced to finding the greatest solution of certain system
of boolean equations. Another insight is that the system of equations can be
constructed effectively (due to Lemma 5 below). These two insights allowed us
to obtain an algorithm working in time Õ(n8).

Consider any sub-base B ⊆ B0 and two processes α, β ∈ V∗ of equal norm.
We write α =B β if α and β can be shown equal by applying any number of
substitutions Xj �−→ Xiγ, where (Xj , Xiγ) ∈ B. Formally:

Definition 4. For B ⊆ B0, let =B be the smallest symmetric relation over
processes containing all identical pairs α =B α and such that if (Xj , Xiγ) ∈ B
and αXiγβ =B δ then αXjβ =B δ.

650 S. Lasota and W. Rytter

Example 1. If |A| > |B| > |C| > |D| > |E| and B0 = {(A,BBD), (A,ECEB),
(C,DE), (B,CD), (B,DED), . . .} then we have AEBBBD =B BBCCDA for
B = {(A,BBD), (B,CD), (C,DE)}, due to the derivations of the same string:

AEBBBD
A=BBD−−−−→ BBDEBBBD

B=CD−−−→ BBDECDBBD,

BBCCDA
C=DE−−−→ BBDECDA

A=BBD−−−−→ BBDECDBBD.

Note that B is inclusion-minimal, i.e., there is no B′ � B with AEBBBD =B′

BBCCDA.

As B0 contains a pair (Xj , Xiγ) for each i and j with j > i, it follows that for
α, β of equal norm some sub-base B with α =B β always exists; in particular
α =B0 β. The relevant issue will be to find such B possibly small. For future
reference, let B∼ ⊆ B0 be the set of all d-pairs (Xj , Xiγ) satisfying Xj ∼ Xiγ.

Definition 5. We say that B is a matching sub-base for α, β iff it is an
inclusion-minimal subset of B0 such that (i) α =B β and (ii) α ∼ β implies
B ⊆ B∼.

In particular, by inclusion-minimality the matching sub-base for α, α is ∅. Condi-
tion (ii) says that a bisimilar pair can be shown equal by using only bisimilar sub-
stitutions. This property will follow by the unique decomposition (cf. Lemma 1)
and by our intricate construction of the sub-base in the proof of Lemma 5. The
proof of the lemma is postponed to Section 4.

Lemma 5. For any processes α, β of length O(n) with |α| = |β|, we can compute
in Õ(n6) time a matching sub-base Bα,β containing O(n) d-pairs.

3 The Main Algorithm

Basing on Bα,β , we define a matching formula for α, β, denoted by φα,β , as
follows: if |α| = |β|, then φα,β is a conjunction of all d-pairs zji belonging to
Bα,β , otherwise φα,β is false.

In the algorithm we construct a boolean equation system containing an equa-
tion zji = ψji for each zji and then apply Lemma 4. The intuition is that formula
ψji expresses the property that the d-pair zji satisfies expansion in ∼. However,
instead of directly referring to α ∼ β in ψji, we will prefer to use formulas φα,β

as subformulas in ψji, relying on condition (ii) in Definition 5.
Let zji = (Xj , Xiγ). The formula ψji is defined as follows:

ψji =
∧
a

(∧
β

∨
α

φβ,αγ ∧
∧
α

∨
β

φβ,αγ

)
, (1)

where a ranges over Σ, α ranges over {δ : Xi
a−→ δ ∈ ∆} and β ranges over

{δ : Xj
a−→ δ ∈ ∆}.

Faster Algorithm for Bisimulation Equivalence 651

Example 2. As an illustration, consider ∆ containing variables X1, . . . , X7 and
the rules X5

c−→ X1, X7
a−→ X5, etc., as shown in the picture:

��������X5

a

��
c

��

c

��

b

��

��������X4

a

��

c

��

b

��

c��
��������X7

a

��

a

		

��������X1

a

a,c
��

��������X3

a

��

a,c

��

��������X6

a
��

a
��

ε ��������X2a

a
��

∆ is essentially finite-state. All variables have norm 1 except |X7| = |X6|
= 2. Let B0 = {z76 = (X7, X6), z72 = (X7, X2X5), z65 = (X6, X5X4), z64 =
(X6, X4X4), z62 = (X6, X2X4), z54 = (X5, X4), z32 = (X3, X2), . . .}. B∼ =
{(X3, X1), (X5, X4), (X7, X6), (X6, X2X4), (X7, X2X5)}. For instance, the equa-
tion for z76 is:

z76 =
(
φX5,X4∨φX5,X6

)
∧
(
φX6,X4∨φX6,X6

)
∧
(
φX6,X4∨φX5,X4

)
∧
(
φX6,X6∨φX5,X6

)
.

The first conjunct describes possible matchings for X7
a−→ X5, by X6

a−→ X4 or
X6

a−→ X6; the second conjunct describes possible matchings forX7
a−→ X6, etc.

Note for instance that φX5,X4 = z54. Furthermore φX6,X6 = true as BX6,X6 = ∅;
and φX5,X6 = false as |X5| 	= |X6|. After simplification we derive: z76 = z54.
Similarly we derive:

z54 = z54 ∧
(
z51 ∨ z31

)
∧
(
z54 ∨ z43

)
∧
(
z31 ∨ z43

)
∧
(
z51 ∨ z54

)
.

The greatest solution of the equation system is {z31, z54, z76, z62, z72}.

Algorithm Normed-BPA-Bisim(∆,X, Y); // |X | = |Y |
(1) compute a full base B0; // c.f. Lemma 3
(2) for each (Xj , Xiγ) ∈ B0 and a ∈ Σ do

for each Xj
a−→ β and Xi

a−→ α in ∆ do
compute the formula φβ,αγ ;

(3) for each zji = (Xj , Xiγ) ∈ B0 do
construct the boolean expression (1);

// this yields a boolean equation system S

(4) compute the greatest solution B̄ ⊆ B0 of S;
(5) return [(X,Y) ∈ B̄].

652 S. Lasota and W. Rytter

Lemma 6. The algorithm works in time Õ(n8).

Proof. Step (1) requires time O(n3), by Lemma 3. The total number of invo-
cations of the procedure computing φβ,αγ in step (2) is O(n2). Hence, step (2)
can be completed in time Õ(n8), by Lemma 5, and this is dominating the total
cost. The size of the boolean equation system built in step (3) is O(n3): indeed,
the length of each subformula φβ,αγ is O(n), and there is a quadratic number
of such formulas in the right-hand sides of equations. The equation system can
be constructed in time O(n3) and its greatest solution can be computed in the
same time, by Lemma 4. �

Lemma 7. The algorithm is correct.

Proof. Correctness follows directly from the equality B∼ = B̄, which is shown
below in two steps.

We show B∼ ⊆ B̄ first. Denote by ψji the right-hand side of equation (1) for
zji = (Xj , Xiγ). B̄, as the greatest solution of the equation system, is the greatest
subset B ⊆ B0 such that zji ∈ B (i.e., vB(zji) = true) implies vB(ψji) = true.
Hence we will only show that zji ∈ B∼ (i.e, Xj ∼ Xiγ) implies vB∼(ψji) = true.

Indeed. If Xj ∼ Xiγ then this pair satisfies expansion in ∼. Consider any pair
β ∼ αγ relevant for the expansion, with Xj

a−→ β and Xi
a−→ α for some a.

By point (ii) in Definition 5 we know that all d-pairs appearing in the matching
formula φβ,αγ are bisimilar. As this applies to any pair β ∼ αγ, the right-hand
side formula ψji is true under valuation vB∼ , as required.

Now we will prove B̄ ⊆ B∼. Consider any solution B of the equation system
and any d-pair zji = (Xj , Xiγ) ∈ B. Thus the right-hand side ψji evaluates to
true under valuation vB . Consider any matching formula φβ,αγ appearing in
ψji. If it is true under valuation vB then Bβ,αγ ⊆ B and hence β =B αγ, by
point (i) in Definition 5. Hence, by the very construction of ψji on top of the
matching formulas φβ,αγ it follows that (Xj , Xiγ) satisfies expansion in =B.

But =B is clearly contained in
B≡, the smallest congruence containing B. As

the d-pair z was chosen arbitrarily, we have shown that B satisfies expansion

in
B≡, i.e., B is a so called Caucal base, or self-bisimulation [4]. By a standard

argument
B≡⊆∼, and hence B ⊆ B∼. As all this was said for an arbitrary solution,

in particular B̄ ⊆ B∼ as required. �

4 Computing a Matching Sub-base

This section contains the construction of sub-basesBα,β and the proof of Lemma 5.
To this aim we need to refine the concept of base a little bit further.

Definition 6. Aproductionisanypair(Xi, γ),writtenXi → γ,suchthat |Xi| = |γ|
and γ ∈ {X1, . . . , Xi−1}+. A decomposition grammar
(d-grammar)G is any set of productionsXi → γ, at most one for each variableXi.

Let V(G) denote the set of allXi such that (Xi → γ) ∈ G for some γ. Variables in
V(G) and V \V(G) are called nonterminal and terminal symbols, respectively.

Faster Algorithm for Bisimulation Equivalence 653

Each nonterminal Xi has precisely one production, hence generates a single
nonempty word G(Xi) ∈ (V \V(G))+. We extend this to words α ∈ V∗ in the
obvious way and write G(α) for the single word in (V \V(G))∗ generated from
α. A d-grammar G induces an equivalence =G over V∗: α =G β iff α and β
generate the same word, i.e., G(α) = G(β).

Assume |α| = |β| hence |G(α)| = |G(β)|. One of G(α), G(β) can not be a
proper prefix of the other. Hence, if α 	=G β, the words G(α) and G(β) must
have the left-most mismatching pair of variables. Formally: there is some i, j, γ
such that i 	= j, γXi is a prefix of G(α) and γXj is a prefix of G(β). W.l.o.g.
assume i < j. The pair (Xj , Xi) is called the first mismatch-pair of α and β
wrt. G and denoted by First-MP(α, β,G). If |α| = |β| and α =G β, we put
First-MP(α, β,G) = nil. We define First Mismatch Problem:

Input: A d-grammar G and two processes α, β ∈ V∗ of equal norm.
Output: First-MP(α, β,G).

Lemma 8. First Mismatch Problem can be solved in time Õ(n5), if the
lengths of α, β and all productions Xi → γ in G are in O(n).

Section 5 is devoted to the proof of this lemma. In the rest of this section
Lemma 8 will be used to prove Lemma 5.

Computation of Bα,β; // |α| = |β|
G := ∅;
while First-MP(α, β,G) 	= nil do

(Xj , Xi) := First-MP(α, β,G);
// let γ be the unique process such that (Xj , Xiγ) ∈ B0

G := G ∪ {Xj → Xiγ};
Bα,β := G.

Note that G is always a d-grammar in the course of the computation, as whenever
a production Xj → Xiγ is added to G, Xj has no production yet in G.

For instance, for B0 and the two processes considered in Example 1 we obtain
BAEBBBD,BBCCDA = {(A,BBD), (C,DE), (B,DED)}.

Proof (of Lemma 5). The computation of Bα,β needs O(n) calls to First Mis-
match Problem, hence it completes in Õ(n6) time.

Now we will show that Bα,β is a matching sub-base for α, β, in the sense of
Definition 5. By the very construction, Bα,β is an inclusion-minimal d-grammar
with α =Bα,β

β. Furthermore, clearly Bα,β ⊆ B0. Hence, the equivalence =Bα,β

induced by Bα,β as a d-grammar is a special case of the relation =B induced by
a sub-base B ⊆ B0, cf. Definition 4. This completes the proof of condition (i) in
Definition 5.

654 S. Lasota and W. Rytter

For condition (ii), assume α ∼ β. We will show that Bα,β ⊆ B∼. It is sufficient
to prove that each production Xj → Xiγ added to G in the course of the
computation satisfies Xj ∼ Xiγ.

Assume therefore G ⊆ B∼ (this implies G(α) ∼ G(β)) and G(α) 	= G(β). We
need to consider the first mismatch-pair of α and β wrt. G, say (Xj , Xi). By
Lemma 2 we can ignore the matching prefixes of G(α) and G(β), and then by
Lemma 1 applied to α = Xj and β = Xi, we conclude that for some γ′ it holds
Xj ∼ Xiγ

′. Let γ be the unique process for which (Xj , Xiγ) ∈ B0. As B0 is full,
it satisfies γ ∼ γ′. As a consequence, Xj ∼ Xiγ as required. �

5 Algorithm for the First Mismatch Problem

Let G be a given d-grammar. We start with the problem of equality-testing:
for two nonterminals S1, S2 test if they generate the same string. We identify
informally the names of nonterminals with their values, so it can be written as
S1 = S2 instead of S1 =G S2.

If A → A1A2 . . . Ar, then by cut-points, or decomposition points, we mean
the positions |A1|, |A1|+ |A2|, . . . , |A1|+ |A2|+ |A3|+ . . . |Ar−1|, see Figure 1.

i B

5A4A

k

3AA1

A

A2

Fig. 1. Assume there is a production A → A1A2 In this case i = |A1|+ |A2|+ |A3|
is the third cut-point of A (black circle) and k is the distance between the possible
occurrence of B and the beginning of A. Validity of the overlap item (A, B, i, k) is
equivalent to B = A[k + 1 . . . k + |B|].

An overlap item is a 4-tuple (A,B, i, k) such that i is a decomposition point
of A and k is a beginning position of a potential occurrence of B in A which
overlaps i, see Figure 1. Overlapping means that the occurrence of B is touching
the point i, i.e., k ≤ i ≤ k + |B| ≤ |A|. This overlap item is said to be valid iff
B = A[k + 1 . . . k + |B|].

The equality of two nonterminals S1, S2 is equivalent to the overlap item
α0 = (S1, S2, F irstDecPoint(S1), 0), where FirstDecPoint(S1) denotes the
first decomposition point of S1. Let us fix in this section S1, S2 and α0.

We say that a set of items Γ = {γ1, γ2, . . . , γp} covers an item β iff

[α0 =⇒ (γ1 & γ2 & . . . & γp)] and [(γ1 & γ2 & . . . & γp) =⇒ β].

Faster Algorithm for Bisimulation Equivalence 655

Observe that if Γ covers α0 then equality of S1 = S2 is equivalent to validity
of all items in Γ .

Recall that nonterminals are ordered with respect to the increasing norms of
their values. If D is a set of items then DeleteLexMax(D) returns lexicograph-
ically maximal element of D and removes it from D. An item is atomic iff the
nonterminals occurring in this item generate only terminal symbols. We can test
validity of each individual atomic item in constant time.
We describe the basic functions in the equality testing.

The function SubtleInsert(β,D) inserts β into D in Õ(n) time. For every
nonterminal B and every cut-point of A we keep only at most three occurrences
of B overlapping A on this cut-point. Correctness follows from the fact that the
set of occurrence of the same string overlapping a given cut-point is a single
arithmetic progression. The function SubtleInsert inserts only if it is necessary,
and if it inserts β and there are already three occurrences overlapping the same
cut-point then one of them is removed.

Next we describe how to implement the function GENERATE. Let α be a
non-atomic item. GENERATE(α) is a set of items satisfying the following prop-
erty: (1) it is of size O(n); (2) it contains only items lexicographically smaller
than α; (3) it covers α.

function EqTest(S1, S2); // |S1| = |S2|
for each production do

sort the set of its cut-points;
α0 := (S1, S2, F irstDecPoint(S1), 0); D := {α0};
while D contains a non-atomic item do

α := DeleteLexMax(D);
for each β ∈ GENERATE(α) SubtleInsert(β,D);

Comment: D covers α0 and consists only of atomic items;

return [(∀ α ∈ D) valid(α)]

Lemma 9. Let α = (A,B, i, k). We can compute GENERATE(α) satisfying
the conditions (1-3) above in Õ(n) time.

Proof. In the proof we use temporarily other type of items: an internal item is
a triple (X,Y, t), where t is a potential occurrence of B in A, not necessarily
overlapping a cut-point of A. Assume α = (A,B, i, k), and there is a pro-
duction B → B1B2 . . . Br. We can locate each of Bi in A and we have a set
of internal items (A,B1, k), (A,B2, k + i1), . . . (A,Br, k + i1 + . . . + ir−1). We
can design a subroutine overlapify(A,Bp, k + i1 + . . . + ip−1), this subroutine
finds an overlap item which covers this internal item. It is possible to design
such a subroutine overlapify which, applied to all internal items, finds together

656 S. Lasota and W. Rytter

in Õ(n) time the set of overlap items covering them. Consequently it finds a
set of smaller overlap items covering (A,B, i, k). The leftmost and rightmost
internal item is overlapified in Õ(n) time, all others are processed in logarith-
mic time, using the sorted order of cut-points and a kind of binary search. This
set of overlap items is returned by the function GENERATE. Figure 2 shows
how the overlap item (A,B, ∗, ∗) is decomposed into the set of internal items
(A,B1, ∗), (A,B2, ∗), . . . (A,B6, ∗). The leftmost and rightmost internal items
are covered by finding the lowest common ancestors (denoted by X, U in Fig-
ure 2) of the endpoints of B1 and B6. This takes O(n) time. All other internal
items are covered in logarithmic time, after merging cut-points of B and the set
S (illustrated as small darkened circles in Figure 2) of decomposition points of
nonterminals branching from the paths from the root to the nodes X,U . It is
crucial that after sorting cut-points for each nonterminal we can preprocess S
in such a way that binary searching (because S will be sorted) can be done in
logarithmic time. The set S is of size O(n2) but it consists of O(n) groups of
cut-points of nonterminals on the branches from A to X or U . Each group is
sorted. Also the beginning and ending positions (O(n) together) of these groups
can be first sorted. We omit the details.

X

Y

Z
U

B2 B3 B4 B5 B6B1

A

B

Fig. 2. (A,B1, ∗) is covered by (X, B1, ∗, ∗), (A, B4, ∗) is covered by (B, Z, ∗, ∗) and
(A,B3, ∗) is covered by (Y, B3, ∗, ∗), the ∗’s denote corresponding positions in the
items. The set S consists of small darkened circles.

Proof (of Lemma 8). First we analyse the function GENERATE. The total num-
ber of overlap items is O(n3), we process each item only once with the function
GENERATE, it takes Õ(n) time per single item, according to Lemma 9. Alto-
gether the complexity of equality test is Õ(n4).

Now we can find the first mismatch using the algorithm for equality testing
and a kind of binary search. We need at most O(n) instances of equality testing,
since the depth of the grammar is O(n). Hence the overall time is Õ(n5).

Faster Algorithm for Bisimulation Equivalence 657

6 Equivalence of Simple Grammars

The class of simple grammar is the largest class of context-free grammars for
which equivalence problem can be tested in deterministic polynomial time. This
is nontrivial since inclusion problem for this class of grammars is undecidable. A
simple grammar is a context-free grammar in Greibach normal form, such that
whenever A→ a α and A→ a β then α = β. The main component in the Õ(n7)
time algorithm of [2] is the computation of the first mismatch problem in Õ(n6)
time. As we improved this to Õ(n5) we have immediately the following result.

Theorem 2. Equivalence of simple grammars can be tested in Õ(n6) time.

References

1. Y. Bar-Hillel, M. Perles, and S. Shamir. On formal properties of simple phrase
structure grammars. Zeitschrift fuer Phonetik, Sprachwissenschaft, und Kommu-
nikationsforschung, 14:143–177, 1961.

2. C. Bastien, J. Czyżowicz, W. Fraczak, and W. Rytter. Prime normal form and
equivalence of simple grammars. In Proc. CIAA’05, volume 3845 of LNCS, pages
79–90. Springer-Verlag, 2005.

3. J. Beaten, J. Bergstra, and J. Klop. Decidability of bisimulation equivalence for
processes generating context-free languages. In Proc. PARLE’87, volume 259 of
LNCS, pages 94–113. Springer-Verlag, 1987.

4. D. Caucal. Graphes canoniques des graphes algébraiques. Informatique Théoretique
et Applications (RAIRO), 24(4):339–352, 1990.

5. S. Christensen, Y. Hirshfeld, and C. Stirling. Bisimulation equivalence is decidable
for all context-free processes. Information and Computation, 12(2):143–148, 1995.

6. E.P. Friedman. The inclusion problem for simple languages. Theoretical Computer
Science, 1:297–316, 1976.

7. R. v. Glabbeek. The linear time - branching time spectrum. In Proc. CONCUR’90,
pages 278–297, 1990.

8. J. Groote and M. Keinänen. A Sub-quadratic Algorithm for Conjunctive and
Disjunctive BESs. CS-Report 04-13, Department of Mathematics and Computer
Science, Technische Universiteit Eindhoven, June 2004.

9. Y. Hirshfeld, M. Jerrum, and F. Moller. A polynomial algorithm for deciding bisim-
ilarity on normed context-free processes. Theoretical Computer Science, 15:143–
159, 1996.

10. H. Huettel and C. Stirling. Actions speak louder than words: proving bisimilar-
ity for context-free processes. In Proc. LICS’91, pages 376–386. IEEE Computer
Society Press, 1991.

11. D. Huynh and L. Tian. Deciding bisimilarity of normed context-free processes is
in ΣP

2 . Theoretical Computer Science, 123:183–197, 1994.
12. A. Korenjak and J. Hopcroft. Simple deterministic languages. In Proc. 7th Annual

IEEE Symposium on Switching and Automata Theory, pages 36–46, 1966.
13. W. Plandowski. Testing equivalence of morphisms on context-free languages. In

Proc. ESA’94, volume 855 of LNCS, pages 460–470. Springer-Verlag, 1994.
14. A. Shinohara, M. Miyazaki, and M. Takeda. An improved pattern-matching for

strings in terms of straight-line programs. Journal of Discrete Algorithms, 1(1):187–
204, 2000.

Quantum Weakly Nondeterministic

Communication Complexity

François Le Gall1,2

1 Department of Computer Science, The University of Tokyo
7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan

2 ERATO-SORST Quantum Computation and Information Project, JST
Hongo White Building, 5-28-3 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan

legall@qci.jst.jp

Abstract. In this paper we study a weak version of quantum nondeter-
ministic communication complexity, corresponding to the most natural
generalization of classical nondeterminism, in which a classical proof has
to be checked with probability one by a quantum protocol. We prove that,
in the framework of communication complexity, even the weak version
of quantum nondeterminism is strictly stronger than classical nondeter-
minism. More precisely, we show the first separation, for a total func-
tion, of quantum weakly nondeterministic and classical nondeterministic
communication complexity. This separation is quadratic and shows that
classical proofs can be checked more efficiently by quantum protocols
than by classical ones.

1 Introduction

1.1 Quantum Nondeterminism

Classical nondeterminism, although being an unrealistic model of computa-
tion, is a fundamental concept in computational complexity with practical ap-
plications, as shown, for example, by the importance of the theory of NP -
completeness. There are two different views of classical nondeterminism. A non-
deterministic process computing a Boolean function f(x) can be seen as a de-
terministic process B receiving, besides the input x, a guess, or proof, z and
satisfying the following conditions: if f(x) = 1 there should exist a proof z such
that B(x, z) = 1; if f(x) = 0 then B(x, z) = 0 for all proofs z. Another view
of nondeterminism is to consider B receiving no proof, but being probabilistic.
Then B should output 1 with positive probability if and only if f(x) = 1. It is
easy to see that the two models are perfectly equivalent in the classical setting.

These two views of nondeterminism can been extended to obtain two alter-
native definitions of quantum nondeterminism. The first one, which we call in
this paper quantum strong nondeterminism, is the quantum version of the prob-
abilistic view of nondeterminism: the quantum process B should output 1 with
positive probability if and only if f(x) = 1. The second one, which we call quan-
tum weak nondeterminism, is the extension of the first view of nondeterminism:

R. Královič and P. Urzyczyn (Eds.): MFCS 2006, LNCS 4162, pp. 658–669, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Quantum Weakly Nondeterministic Communication Complexity 659

if f(x) = 1 there should exist a classical proof z such that B(x, z) = 1 with prob-
ability 1; if f(x) = 0 then B(x, z) = 0 with probability 1 for all classical proofs
z. In this case, B is thus an exact quantum checking procedure.1 The point is
that, contrary to the classical case, in the quantum setting these two definitions
do not seem equivalent and, in the query complexity framework, strong nonde-
terminism has be shown to be indeed stronger than weak nondeterminism: de
Wolf [28] has provided a total function for which the strongly quantum nonde-
terministic query complexity is O(1), while its quantum weakly nondeterministic
query complexity is Ω(

√
n), where n is the input length.

The main advantages of the strong version of quantum nondeterminism is
that the definition is mathematically very convenient and that it leads to many
interesting results. For quantum Turing machines, this gives a complexity class
known as quantum-NP , which has been shown to be equal to the classical com-
plexity class co − C=P [13,14,29]. For communication protocols, de Wolf [28]
has presented an algebraic characterization of quantum strongly nondetermin-
istic communication complexity. Moreover, unbounded (O(1) vs. Ω(log n))) and
exponential (O(log n) vs. Ω(n)) gaps are known between quantum strongly non-
deterministic and classical nondeterministic communication complexity of some
total functions [22,28]. The latter results show the power of quantum strong
nondeterminism but, in our opinion, this concept is in a way too powerful to be
directly compared with classical nondeterminism. Above all, it lacks the view
of nondeterminism as a proof that can be efficiently checked, a view that has
been fundamental in complexity theory, for example leading to concepts such as
probabilistically checkable proofs (PCP). We refer to [28] for another discussion
about these two definitions and a third natural definition where the proof is
allowed to be a quantum state, which we will not consider in this paper. We
only mention that, although quantum proofs can be extremely useful in some
cases (see in particular the works [1,25] studying the power of quantum proofs in
certificate complexity and communication complexity, but in the setting where
proofs have to be checked only with high probability), as far as quantum weakly
nondeterminism is concerned, the proof has to be checked without error and, in
this case, the advantage of quantum proofs over classical proofs is not obvious
at all.

1.2 Our Contributions

In this paper, we focus on quantum weak nondeterminism and particularly
quantum weakly nondeterministic communication complexity, which has, to our
knowledge, never been studied before this work. We show a quadratic gap
between classical nondeterministic and quantum weakly nondeterministic com-
munication complexity for a total function. We believe that this separation of
classical nondeterministic communication complexity and the weakest model

1 Previous works about quantum procedures receiving proofs focus on randomized
(bounded-error) checking [17,21,26]. However, in this paper, even in the quantum
setting the proofs have to been checked exactly.

660 F. Le Gall

of quantum nondeterministic communication complexity, although being only
quadratic, is another indication of the power of quantum computation. Indeed,
the proof being classical, such a separation reveals that, if quantum exact check-
ing procedures are allowed, the process of guessing proofs is more powerful than
with classical deterministic checking procedures.

Many separations of quantum and classical communication complexity are
known in the usual two-players model [2,5,8,16,18,24,28]. In particular, an ex-
ponential separation of quantum exact communication complexity and classical
nondeterministic communication complexity has been shown for a partial func-
tion (i. e. a function where the inputs satisfies a promise) by Buhrman, Cleve and
Wigderson [8]. But, except de Wolf’s result [28], no gap larger than quadratic be-
tween classical and quantum complexity, for any mode of computation, is known
for total functions. Moreover, before the present work, the polynomial separa-
tions for total functions already found [2,16,8,18] were based on functions related
to database search-like problems, which are trivial if classical nondeterminism is
allowed, and thus cannot be used to show a gap between quantum weak nonde-
terminism and classical nondeterminism. The total function we consider in order
to show the separation is new, based on the concept of Hadamard codes, and is
inspired by a function considered by Buhrman, Fortnow, Newman and Röhrig
[9] in the slightly different framework of query complexity and property testing.

We present an efficient quantum weakly nondeterministic protocol computing
our function, which generalizes the protocol in [9], based on the local testability
property of Hadamard codes and the fact that, with the promise that a string
is in the Hadamard code, the string can be decoded efficiently using Bernstein-
Vazirani algorithm [6]. The main contribution of our work is the proof of a
classical lower bound on the number of bits of communication necessary for any
classical nondeterministic protocol that computes our function. This is obtained
by showing an upper bound on the number of inputs for which each message
can be used, which is basically a problem of extremal combinatorics. This gives
a separation O(log n) vs. Ω(log2 n), where n is the input length, of respectively
quantum weakly nondeterministic and classical nondeterministic communication
complexity, for our total function.

The paper is structured as follows. We present definitions in Section 2. We
then show the quantum upper bound in Section 3 and the classical lower bound
in Section 4. Finally, we discuss open problems in Section 5

2 Notations and Definitions

2.1 Notations

In this paper, we will mainly work in vector spaces of the form {0, 1}n with the
usual addition of vectors x = (x0, . . . , xn−1) and y = (y0, . . . , yn−1) defined as
x⊕y = (x0⊕ y0, . . . , xn−1⊕ yn−1), where xi⊕ yi denotes the parity of xi and yi.
The dot product of two vectors x and y is x ·y =

⊕n−1
i=0 xiyi. We will in several

occasions consider integers in {0, · · · , 2n − 1} as vectors of {0, 1}n through their
binary encoding.

Quantum Weakly Nondeterministic Communication Complexity 661

We define a function δ over Z× Z as follows.

δ(a, b) =
{

0 if a = b
1 if a 	= b

, for any integers a and b.

For k ≥ 1, we denote by Sk the set {1, · · · , 2k − 1}\{2j | 0 ≤ j ≤ k− 1}, i. e. the
set of integers in {1, · · · , 2k − 1} that are not a power of 2. Finally, for any
i ∈ {1, · · · , 2k − 1}, we denote by [i] the largest power of 2 smaller or equal to
i. In other words, [i] = 2�log2 i�.

We now recall the definition of Hadamard codes.

Definition 1. For any integer k ≥ 1, the Hadamard code of length 2k, denoted
Hk, is the set

{
h(w) |w ∈ {0, 1}k

}
, where h(w) is the binary vector of length

2k with i-th coordinate w · i (for 0 ≤ i ≤ 2k − 1).

Notice that Hk is a linear code containing 2k codewords of length 2k.

2.2 Classical Nondeterministic Communication Complexity

We first recall the definition of classical nondeterministic communication com-
plexity. We refer to the textbook by Hromkovič [20] for further details. Given
a set of pairs of strings X × Y , where X ⊆ {0, 1}∗ and Y ⊆ {0, 1}∗, and a
function f : X × Y → {0, 1}, the communication problem associated to f is the
following: Alice has an input x ∈ X , Bob an input y ∈ Y and their goal is to com-
pute the value f(x, y). We suppose that Alice and Bob have unlimited compu-
tation power. Moreover, a proof is given to the protocol: Alice and Bob each
receive a string which is private, i. e. each player cannot see the other’s part of
the proof. We say that a protocol P is a nondeterministic protocol for f if, for
each (x, y) ∈ X × Y , the following holds: if f(x, y) = 1 then there is a proof
such that the protocol outputs 1; if f(x, y) = 0 then, for all proofs, the protocol
outputs 0.

The communication complexity of a nondeterministic protocol P that com-
putes correctly f , denoted N(P, f), is the maximum, over all the inputs (x, y)
and the proofs, of the number of bits exchanged between Alice and Bob on
this input. The nondeterministic communication complexity of the function f ,
denoted N(f), is the minimum, over all the nondeterministic protocols P that
compute f , of N(P, f).

We now recall the notions of rectangle, covering and their relation with classi-
cal nondeterministic complexity. A rectangle ofX×Y is a subset R ⊆ X×Y such
that R can be written as A×B for some A ⊆ X and B ⊆ Y . The rectangle R is
said to be 1-monochromatic for f if, for all (x, y) ∈ R, f(x, y) = 1. A 1-covering of
size t for f is a set of t rectangles R1, · · · , Rt of X×Y that are 1-monochromatic
for f and such that R1 ∪ · · · ∪Rt = {(x, y) ∈ X × Y | f(x, y) = 1}. Let C1(f) be
the minimum, over all the 1-covering of f , of the size of the covering. Then the
following fact holds (we refer to [20] for the proof).

Fact 1. N(f) = �log2 C
1(f)�.

662 F. Le Gall

2.3 Quantum Weakly Nondeterministic Communication Complexity

Let us now consider quantum communication complexity. We refer to Nielsen
and Chuang [23] for details about quantum computation and to [7,19,27] for
good surveys of quantum communication complexity.

We define quantum weakly nondeterministic protocols as in the classical case,
the only modification being that the messages are now allowed to be quantum:
Alice and Bob receive inputs x, y and two classical strings corresponding to
a classical proof, communicate through a quantum channel and their goal is
to compute f(x, y). In this model there is no prior entanglement between the
two players. Moreover, we consider the most general setting where both Alice
and Bob receive a (private) proof. Actually, the quantum protocol presented in
Section 3 can be used even if only one player receives the proof.

Definition 2. We say that such a quantum protocol is a weakly nondetermin-
istic protocol for f if, for each (x, y) ∈ X × Y , the following holds:

(i) if f(x, y) = 1 then there is a classical proof such that the protocol outputs 1
with probability 1;

(ii) if f(x, y) = 0 then, for all classical proofs, the protocol outputs 0 with
probability 1.

Similarly to the classical case, the quantum weakly nondeterministic commu-
nication complexity of f is the minimum, over all the quantum weakly non-
deterministic protocols computing f , of the number of quantum bits (qubits)
exchanged between Alice and Bob on the worst instance and the worst proof.
We are thus considering the worst-case complexity of exact quantum protocols
receiving classical proofs.

As explained in the introduction of this paper, a stronger definition of quan-
tum nondeterministic protocols can be given [22,28], corresponding to proba-
bilistic protocols using quantum messages that output 1 with positive prob-
ability if and only if f(x, y) = 1. The main reasons why we think studying
the power of quantum protocols resulting from Definition 2 is meaningful is
that, first, this definition corresponds to the original version of classical non-
determinism, based on the notion of proof, and, second, we believe quantum
strongly nondeterministic protocols are in a way too powerful to be “fairly”
compared with classical nondeterministic protocols. Let us give a simple exam-
ple that illustrates the latter point. The non-equality function is the function
NEQn : {0, 1}n × {0, 1}n → {0, 1} such that NEQn(x, y) = 1 if x 	= y and
NEQn(x, y) = 0 if x = y. Massar, Bacon, Cerf and Cleve [22] have shown a
quantum strongly nondeterministic protocol for NEQn using exactly one qubit
of communication. In comparison, it is well known that N(NEQn) = Θ(logn)
(see for example [20]). We explain their simple protocol, which shows the power
of quantum strong nondeterminism. Alice sees its input x as an integer in
{0, · · · , 2n − 1}, prepares the state

1√
2
(cos

(xπ
2n

)
|0〉+ sin

(xπ
2n

)
|1〉)

Quantum Weakly Nondeterministic Communication Complexity 663

and sends it to Bob. Bob rotates it by the angle of −yπ/2n, obtaining the state

1√
2
(cos

(
(x− y)π

2n

)
|0〉+ sin

(
(x− y)π

2n

)
|1〉).

Measuring this state gives 1 with positive probability if x 	= y. In the case x = y,
then the probability of measuring 1 is 0. The quantum communication protocol
that does the above state manipulations, measures the final state and outputs
the outcome of the measurement is thus a quantum strongly nondeterministic
communication protocol for NEQn using only one qubit of communication, in
a way incomparable with classical nondeterminism.

2.4 Our Total Function

We now define the communication problem HEQk,k′ (Hadamard Equality) that
is used to show the separation of quantum weakly nondeterministic and classical
nondeterministic communication complexity.

Hadamard Equality (HEQk,k′ , for k, k′ ≥ 1)

Alice’s input: a vector a = (a1, . . . , a2k−1) in {0, · · · , 2k′ − 1}2
k−1

Bob’s input: a vector b = (b1, . . . , b2k−1) in {0, · · · , 2k′ − 1}2
k−1

output:
{

0 if (0, δ(a1, b1), . . . , δ(a2k−1, b2k−1)) ∈ Hk\{(0, . . . , 0)}
1 else

Notice that, for any a and b in {0, · · · , 2k′ − 1}, we have δ(a, b) = 0 if
and only if a = b. Thus the problem HEQk,k′ can be seen as a two-leveled
string equality problem: the hard case is for Alice and Bob to check whether
(0, δ(a1, b1), . . . , δ(a2k−1, b2k−1)) = (0, . . . , 0) and, to do this, they have, intu-
itively, to check whether δ(ai, bi) = 0 for at least k different values of the index
i. The point is that the nondeterministic communication complexity of testing
the equality of two integers of k′ bits is Θ(k′). Thus, intuitively, the classical
nondeterministic communication complexity of HEQk,k′ is Ω(kk′). We will, in
Section 4, prove that this intuition is correct.

To our knowledge, the function HEQk,k′ has never been considered before,
but the case k′ = 1 is similar to a property testing problem considered by
Buhrman, Fortnow, Newman and Röhrig [9] in the framework of query com-
plexity. The original (promise) problem in [9] is, for a fixed subset Ak of Hk, to
decide whether a string x is in Ak or the Hamming distance between x and any
string of Ak is sufficiently large, by querying as few bits of x as possible. By set-
ting Ak = Hk\{(0, . . . , 0)}, and replacing “sufficiently large” by “positive”, we
obtain a definition similar to HEQk,1. However, as far as communication com-
plexity is concerned, the results in [9] do not imply any separation of classical
nondeterminism and quantum weak nondeterminism.

664 F. Le Gall

3 Quantum Upper Bound

In this section, we present an efficient quantum weakly nondeterministic pro-
tocol for HEQk,k′ . We first prove the following lemma, which restates, in our
notations, a well-known property of the Hadamard code.

Lemma 1. Let x = (x0, x1, . . . , x2k−1) be a vector in {0, 1}2k

such that x0 = 0.
Then x ∈ Hk if and only if xi = x[i] ⊕ xi−[i] for all the indexes i in Sk.

Proof. Take a vector x ∈ Hk and an integer i in Sk. ¿From the definition of the
Hadamard code, there exists a vector w ∈ {0, 1}k such that xi = w ·i, x[i] = w ·i′
and xi−[i] = w · i′′, with i′ = [i] and i′′ = i− [i]. Then x[i]⊕xi−[i] = w · (i′⊕ i′′) =
w · i from the definition of [i].

Now we prove that there exist at most 2k vectors in {0, 1}2k

satisfying this
property. Since |Hk| = 2k, this will conclude the proof. Take two vectors x and
x′ such that x0 = x′0 = 0 and x2l = x′2l for all l ∈ {0, . . . , k − 1}. If x and
x′ both satisfy the property, then the other bits are uniquely determined and
thus, necessarily, x = x′. This implies that we can construct at most 2k different
vectors satisfying this property. �

We then present the main result of this section.

Theorem 1. For any positive integers k and k′, there exists a quantum weakly
nondeterministic protocol using less than 3(k+ k′) qubits of communication that
computes the function HEQk,k′ .

Proof. We describe our quantum protocol, which is actually a generalization
of (a modified version of) the quantum query protocol in [9]. Suppose that the
inputs are a = (a1, . . . , a2k−1), b = (b1, . . . , b2k−1) and that (a,b) is a 1-instance
of HEQk,k′ . This means that one of the two following cases holds:

(i) (0, δ(a1, b1), . . . , δ(a2k−1, b2k−1)) /∈ Hk; or
(ii) (0, δ(a1, b1), . . . , δ(a2k−1, b2k−1)) = (0, . . . , 0).

Alice first guesses which case holds. If (i) really holds then, from Lemma 1, there
exists an integer j ∈ Sk such that δ(aj , bj) 	= δ(a[j], b[j])⊕ δ(aj−[j], bj−[j]). Alice
guesses this index j, sends the value of her guess j and the three integers aj ,
a[j] and aj−[j] (using a classical message). Bob then checks whether δ(aj , bj) 	=
δ(a[j], b[j])⊕ δ(aj−[j], bi−[j]), outputs 1 if it holds, and 0 else.

Now suppose that Alice guessed that (ii) holds. Alice then creates and sends
Bob the state

1√
2k

2k−1∑
m=0

|m〉|am〉,

where the first register consists in k qubits and the second register k′ qubits.
Here, we use the convention a0 = 0. Bob applies on the state he received the
unitary transform

|m〉|r〉 �→ (−1)δ(r,bm)|m〉|r〉,

Quantum Weakly Nondeterministic Communication Complexity 665

for all m ∈ {0, · · · , 2k − 1} and r ∈ {0, · · · , 2k′ − 1}, with the convention b0 = 0.
He then sends back the resulting state to Alice. Alice now performs the unitary
transform

|m〉|r〉 �→ |m〉|r ⊕ am〉,
for any m ∈ {0, · · · , 2k − 1} and r ∈ {0, · · · , 2k′ − 1}. Here r ⊕ am denote the
bitwise parity of the binary encodings of r and am. The resulting state is

1√
2k

2k−1∑
m=0

(−1)δ(am,bm)|m〉|0〉.

From now, it is simply Bernstein-Vazirani algorithm [6] (or Deutsch-Jozsa
algorithm [12]). Alice applies a Hadamard transform on each of the k qubits
of the first register and measures the first register of the resulting state in the
computational basis, outputs 1 if the result is 0 and outputs 0 else. If (ii) really
holds, the state before the measurement being |0〉|0〉, her measurement result is
necessarily 0. She then outputs 1 without error. For any 1-instance of HEQk,k′ ,
there is thus a guess that can be verified with probability 1 by this protocol.

Now consider the behavior of this protocol on a 0-instance, i. e. an instance
such that (0, δ(a1, b1), . . . , δ(a2k−1, b2k−1)) ∈ Hk\{(0, . . . , 0)}. If Alice guesses
that the case (i) holds, then, from Lemma 1, the checking procedure always
outputs 0. If Alice guesses that the case (ii) holds, then at the end of the checking
procedure, before doing the measurement, the state will be |c〉|0〉 for some c ∈
{1, · · · , 2k − 1}. Measuring this state will give c which is different from 0. Thus
the checking procedure outputs 0 with probability 1, whatever Alice’s guesses
are. We conclude that the above protocol is correct on 0-instances as well. �

4 Classical Lower Bound

First, notice that there exists a nondeterministic classical protocol for HEQk,k′

using O(kk′) communication bits. The protocol is similar to the quantum proto-
col of Theorem 1, but, when Alice guesses that (0, δ(a1, b1), . . . , δ(a2k−1, b2k−1))
= (0, . . . , 0), she sends the k integers a2s , for all s ∈ {0, · · · , k − 1}, instead
of sending the state 1√

2k

∑2k−1
m=0 |m〉|am〉. Bob then outputs 1 if and only if

δ(a2s , b2s) = 0 for all these integers s. The objective of this section is to show
that this protocol is basically optimal.

The proof of the lower bound is based on the following result.

Theorem 2. Let k and k′ be two positive integers such that k ≥ 3 and k′ ≥ k.

Consider any subset A ⊆ {0, · · · , 2k′ − 1}2
k−1

such that, for any two elements
a = (a1, . . . , a2k−1) and b = (b1, . . . , b2k−1) of A, the following condition holds.{

(0, δ(a1, b1), . . . , δ(a2k−1, b2k−1)) = (0, . . . , 0) if a = b
(0, δ(a1, b1), . . . , δ(a2k−1, b2k−1)) /∈ Hk if a 	= b (1)

Then A necessarily satisfies

|A| ≤ 2k′2k−k(k′−k−1).

666 F. Le Gall

Proof. Our proof is inspired by a new proof by Babai, Snevily and Wilson [4] of
a result by Frankl [15], itself generalizing a result by Delsarte [10,11], which gives
an upper bound on the size of any code in function of the cardinality of the set
of Hamming distances that occurs between two distinct codewords (but these
results are basically different from what we need to prove our upper bound).

Denote A = {0, · · · , 2k′ − 1}2
k−1

, and consider any subset A ⊆ A such that
any two elements a and b of A satisfy Equation (1). For each a ∈
{0, · · · , 2k′ − 1}, consider the polynomial εa over the field of rational numbers
defined as follows.

εa(X) = 1− X

a

X − 1
a− 1

· · · X − (a− 1)
1

X − (a+ 1)
−1

· · · X − (2k′ − 1)
a− (2k′ − 1)

Notice that εa(b) = δ(a, b) for any a and b in {0, · · · , 2k′ − 1}. Now, given a
vector a = (a1, . . . , a2k−1) in A , we define the multivariate polynomial

fa(X) = fa(X1, . . . , X2k−1) =
∏
i∈Sk

(
1− εai(Xi)− εa[i](X[i])− εai−[i](Xi−[i])

)
.

The polynomial fa has the property that any monomial it contains has as most
|Sk| = 2k−k−1 distinct indeterminates Xj in it. For each fa, we construct a new
polynomial as follows: for each variable Xj appearing in fa with an exponent
e > 2k′ −1, we replace Xe

j by Xe
j reduced modulo Xj(Xj−1) . . . (Xj−(2k′−1)).

Call f ′a the new polynomial. Notice that, as functions over the rationals, fa and
f ′a have the same values over A . As a function, each f ′a is in the span of all the∑2k−k−1

i=0 (2k′−1)i
(2k−1

i

)
monomial functions in which at most 2k−k−1 distinct

variables enter and such that the exponent of each variable is at most 2k′ − 1.
From the hypothesis on A, Lemma 1 implies that the following holds for all

a and b in A.

f ′a(b) = fa(b) ≡
{

1 mod 2 if a = b
0 mod 2 if a 	= b

We now show that this implies that the |A| functions f ′a for a ∈ A are linearly
independent over the rationals. Take |A| rationals λa such that

∑
a∈A λaf

′
a = 0.

Without loss of generality, we can actually consider that the λa are integers. The
evaluation of the two sides of this expression at the point b gives λb ≡ 0 mod 2.
Thus, necessarily, λa ≡ 0 mod 2 for all a ∈ A. Suppose that the λa are not all
zero and denote Λi = {a ∈ A such that λa 	= 0 and 2i|λa} for i ranging from
1 to r, where r is the greatest integer such that 2r appears in the prime power
decomposition of some λa. Evaluating, for increasing i from 1 to r, the functions∑

a∈Λi
(λa/2i)f ′a gives that Λ1 = ∅. Thus λa = 0 for all a ∈ A.

The fact that the |A| functions f ′a are linearly independent over the rationals
implies that

|A| ≤
2k−k−1∑

i=0

(2k′
− 1)i

(
2k − 1
i

)
≤

2k−k∑
i=0

(2k′
)i

(
2k

i

)
.

Quantum Weakly Nondeterministic Communication Complexity 667

Now notice that, in the case k′ ≥ k, the function h : j �→ (2k′
)j
(2k

j

)
is

an increasing function over {0, · · · , 2k}: for any i ∈ {0, · · · , 2k − 1}, we have
h(i+ 1)/h(i) = 2k′

(2k − i)/(i+ 1) ≥ 2k′
2−k ≥ 1. We can now give the following

upper bound.

|A| ≤ 2k · (2k′
)2

k−k

(
2k

2k − k

)
= 2k · (2k′

)2
k−k

(
2k

k

)
Using the standard fact

(2k

k

)
≤ (e2k/k)k, where e is the Euler constant, we

obtain, for k ≥ 3,

|A| ≤ 2k(2k′
)2

k−k
(
2k
)k

= 2k′2k−k(k′−k−1),

which concludes the proof of the theorem. �
We are now ready to prove the lower bound on the classical nondeterministic
complexity of HEQk,k′ .

Theorem 3. Let k and k′ be two positive integers such that k ≥ 3 and k′ ≥ k.
Then N(HEQk,k′) ≥ k(k′ − k)− (k + k′).

Proof. Denote again A = {0, · · · , 2k′ − 1}2
k−1

. Notice that for any a ∈ A ,
(a,a) is a 1-instance of HEQk,k′ . We show a lower bound on the number of 1-
monochromatic (forHEQk,k′) rectangles of A ×A necessary to cover {(a, a)|a ∈
A }. Here covering means that the union of the rectangles has only to include
{(a,a) | a ∈ A }. Such a lower bound obviously implies a lower bound on the
number of 1-monochromatic rectangles necessary to cover all the 1-instances of
HEQk,k′ .

Any 1-monochromatic rectangle of a covering of {(a, a)|a ∈ A } can be consid-
ered, without loss of generality, to be of the form A×A for some subset A ⊆ A .
By the definition of a 1-monochromatic rectangle, for each a = (a1, . . . , a2k−1)
and b = (b1, . . . , b2k−1) in A, Equation (1) must hold. Then, from Theorem
2, even for the largest 1-monochromatic rectangle of the form A × A, we have
|A| ≤ 2k′2k−k(k′−k−1). This implies that at least

(2k′
)2

k−1

|A| ≥ 2kk′−k2−k−k′

1-monochromatic rectangles are necessary to cover {(a, a) | a ∈ A }. The non-
deterministic complexity of HEQk,k′ is thus, using Fact 1, at least kk′ − k2 −
k − k′. �
This theorem directly implies the quadratic separation.

Corollary 1. There is a quadratic separation of quantum weakly nondetermin-
istic and classical nondeterministic communication complexity.

Proof. By considering for example the case k′ = 2k. The quantum weakly non-
deterministic communication complexity of HEQk,2k is, from Theorem1, O(k)
and its classical nondeterministic communication complexity is, from Theorem 3,
Ω(k2). �

668 F. Le Gall

5 Open Problems

The main open problem is whether a separation of classical nondeterministic
and quantum weakly nondeterministic communication complexity larger than
quadratic can be shown between for a total function. Is an exponential gap
achievable? It may indeed be the case that, for total functions, the largest gap
achievable is polynomial and, possibly, quadratic.

Another interesting question is whether quantum proofs can be more helpful
than classical proofs as far as quantum weakly nondeterminism is concerned,
that is, when the proof has to be checked without error.

Acknowledgments

The author is grateful to H. Imai, T. Ito, H. Kobayashi and S. Tani for helpful
comments about this work.

References

1. S. Aaronson. Quantum Certificate Complexity. Proceedings of 18th Annual IEEE
Conference on Computational Complexity, pp. 171–178, 2003.

2. S. Aaronson and A. Ambainis. Quantum Search of Spatial Regions. Theory of
Computing, 1, pp. 47–79, 2005.

3. L.M. Adleman, J. DeMarrais and M.A. Huang. Quantum Computability. SIAM
Journal on Computing, 26(5), pp. 1524–1540, 1997.

4. L. Babai, H. Snevily and R. M. Wilson. A New Proof of Several Inequalities on
Codes and Sets. Journal of Combinatorial Theory, Series A 71, pp. 146–153, 1995.

5. Z. Bar-Yossef, T. S. Jayram and I. Kerenidis. Exponential Separation of Quan-
tum and Classical One-way Communication Complexity. Proceedings of the 36th
Annual ACM Symposium on Theory of Computing, pp. 128–137, 2004.

6. E. Bernstein and U. Vazirani. Quantum Complexity Theory. SIAM Journal on
Computing, 26(5), pp. 1411–1473, 1997.

7. H. Buhrman. Quantum Computing and Communication Complexity. Bulletin of
the EATCS, pp. 131–141, 2000.

8. H. Buhrman, R. Cleve and A. Wigderson. Quantum vs. Classical Communication
and Computation. Proceedings of the 30th Annual ACM Symposium on Theory of
Computing, pp. 63–68, 1998.

9. H. Buhrman, L. Fortnow, I. Newman and H. Röhrig. Quantum Property Testing.
Proceedings of the 14th Annual ACM-SIAM Symposium on Discrete Algorithms,
pp. 480–488, 2003.

10. P. Delsarte. An Algebraic Approach to the Association Schemes of Coding Theory.
Philips Res. Suppl. 10, 1973.

11. P. Delsarte. The Association Schemes of Coding Theory. In “Combinatorics;
Proceedings of the NATO Advanced Study Institute, Breukelen, 1974, Part 1”,
Math. Centre Tracts, No. 55, Math. Centrum, Amsterdam, pp. 139–157, 1974.

12. D. Deutsch and R. Jozsa. Rapid Solution of Problems by Quantum Computation.
Proceedings of the Royal Society of London Series A, 439, pp. 553–558, 1992.

Quantum Weakly Nondeterministic Communication Complexity 669

13. S. Fenner, F. Green, S. Homer and R. Pruim. Determining Acceptance Probability
for a Quantum Computation is Hard for the Polynomial Hierarchy. Proceedings of
the Royal Society of London Series A, 455, pp. 3953–3966, 1999.

14. L. Fortnow and J. Rogers. Complexity Limitations on Quantum Computation. Jour-
nal of Computern and System Sciences, 59(2), pp. 240–252, 1999.

15. P. Frankl. Orthogonal Vectors in the n-dimensional Cube and Codes with Missing
Distance. Combinatorica 6, pp. 279–285, 1986.

16. P. Høyer and R. de Wolf. Improved Quantum Communication Complexity Bounds
for Disjointness and Equality. Proceedings of the 19th International Symposium
of Theoretical Aspects of Computer Science, pp. 299–310, 2002.

17. A. Yu Kitaev. Quantum NP. Public Talk at the 2nd Workshop on Algorithms in
Quantum Information Processing, 1999.

18. H. Klauck. On Quantum and Probabilistic Communication: Las Vegas and One-
way protocols. Proceedings of the 32nd Annual ACM Symposium on Theory of
Computing, pp. 644–651, 2000.

19. H. Klauck. Quantum Communication Complexity. Proceedings of the Workshop
on Boolean Functions and Applications at the 27th International Colloquium on
Automata, Languages and Programming, pp. 241–252, 2000.

20. J. Hromkovič. Communication Complexity and Parallel Computation. Springer-
Verlag, 1997.

21. E. Knill. Quantum Randomness and Nondeterminism. Los-Alamos e-print archive,
quant-ph/9610012, 1996.

22. S. Massar, D. Bacon, N. Cerf and R. Cleve. Classical Simulation of Quantum En-
tanglement without Local Hidden Variables. Physics Reviews A, 63, 052305, 2001.

23. M. A. Nielsen and I. L. Chuang. Quantum Computation and Quantum Information.
Cambridge University Press, 2000.

24. R. Raz. Exponential Separation of Quantum and Classical Communication Com-
plexity. Proceedings of the 31st Annual ACM Symposium on Theory of Computing,
pp. 358–367, 1999.

25. R. Raz and A. Shpilka. On the Power of Quantum Proofs. Proceedings of 19th
Annual IEEE Conference on Computational Complexity, pp. 260–274, 2004.

26. J. Watrous. Succint Quantum Proofs for Properties of Finite Groups. Proceedings
of the 41st Annual Symposium on Foundations of Computer Science, pp. 537–546,
2000.

27. R. de Wolf. Quantum Communication and Complexity. Theoretical Computer Sci-
ence, 287(1), pp. 337–353, 2002.

28. R. de Wolf. Nondeterministic Quantum Query and Communication Complexity.
SIAM Journal on Computing 32(3), pp. 681–699, 2003.

29. T. Yamakami and A. C. -C. Yao. NQPC = co − C=P . Information Processing
Letters 71, pp. 63–69, 1999.

Minimal Chordal Sense of Direction and

Circulant Graphs

Rodrigo S.C. Leão and Valmir C. Barbosa�

Universidade Federal do Rio de Janeiro
Programa de Engenharia de Sistemas e Computação, COPPE

Caixa Postal 68511, 21941-972 Rio de Janeiro - RJ, Brazil
rleao@cos.ufrj.br, valmir@cos.ufrj.br

Abstract. A sense of direction is an edge labeling on graphs that follows
a globally consistent scheme and is known to considerably reduce the
complexity of several distributed problems. In this paper we study a
particular instance of sense of direction, called a chordal sense of direction
(CSD). In special, we analyze the class of k-regular graphs that admit a
CSD with exactly k labels (a minimal CSD). We prove that connected
graphs in this class are Hamiltonian and that the class is equivalent to
that of circulant graphs, presenting an efficient (polynomial-time) way
of recognizing it when the graphs’ degree k is fixed.

Keywords: Chordal sense of direction; Cayley graphs; Circulant graphs.

1 Introduction

In this paper we model a distributed system as an undirected graph G on
n vertices having no multiple edges or self-loops. Vertices according to this
model stand for processors, edges for bidirectional communication channels. For
terminology or notation on graph theory not defined here we refer the reader to
[1].

Every edge of G is assumed to have two labels, each corresponding to one of
its end vertices. In [2], a property of this edge labeling was introduced which can
considerably reduce the complexity of many problems in distributed computing
[3]. This property refers to the ability of a vertex to distinguish among its incident
edges according to a globally consistent scheme and is formally described in [4].
An edge labeling for which the property holds is called a sense of direction and
is necessarily such that all the edge labels corresponding to a same vertex are
distinct (the edge labeling is then what is called a local orientation). We say that
a sense of direction is symmetric if it is possible to derive the label corresponding
to one end vertex of an edge from the label corresponding to the other. We say
that it is minimal if it requires exactly ∆(G) distinct labels, where ∆(G) is
the maximum degree in G. For a survey on sense of direction, we refer the
reader to [5].

� Corresponding author.

R. Královič and P. Urzyczyn (Eds.): MFCS 2006, LNCS 4162, pp. 670–680, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Minimal Chordal Sense of Direction and Circulant Graphs 671

2

5

5

5

5

5
5

5

5

5

5

8

8

8

8

8

8

8

8

8

2

2

2

2

2

2

2

2

2 8

1

5

5

6

4

5
5

5

6

4

5

9

9

9

9

9
9

9

9

9

9

1

1

1

1
1

1

1

1

1

(a) (b)

Fig. 1. A graph with an edge labeling that is an MCSD (a) and another graph with
an edge labeling that is a CSD but not an MCSD (b). Vertices are ordered clockwise.

A particular instance of symmetric sense of direction, called a chordal sense of
direction (CSD), can be constructed on any graph by fixing an arbitrary cyclic
ordering of the vertices and, for each edge uv, selecting the difference (modulo n)
from the rank of u in the ordering to that of v as the label of uv that corresponds
to u (likewise, the label that corresponds to v is the rank difference from v to
u). In Figure 1(a), an example is given of a minimal chordal sense of direction
(MCSD). It is relatively easy to see that there exist graphs that do not admit
an MCSD, as for instance the one in Figure 1(b).

Given a finite groupA and a set of generators S ⊆ A, a Cayley graph is a graph
H whose vertices are the elements of the group (V (H) = A) and whose edges
correspond to the action of the generators (uv ∈ E(H) ⇐⇒ ∃s ∈ S : v = s ∗ u,
where ∗ is the operation defined for A). We assume that the set of generators
is closed under inversion, so H is an undirected graph. An edge labeling of H
assigning two labels to each edge in such a way that each of an edge’s labels
corresponds to one of its end vertices is called a Cayley labeling if, for edge uv,
the label that corresponds to vertex u is s such that v = s ∗ u.

In [6], it was shown that a regular graph’s edge labeling is a minimal symmetric
sense of direction if and only if the graph is a Cayley graph and the labeling is a
Cayley labeling. This result was later extended to directed graphs in [7], where
the problem of recognizing labeled Cayley graphs was also demonstrated to be
solvable in parallel polynomial time. This latter result uses the same O(n14.256)-
time algorithm of [8], where the problem of deciding whether a given labeling is
a sense of direction of a given graph was solved.

A circulant graph (also known as a chordal ring) is a Cayley graph over Zn, the
cyclic group of order n under the addition operation. The relevance of circulant
graphs is due to their connectivity properties (small diameter, high symmetry,
etc.), which render them excellent topologies for network interconnection, VLSI,
and distributed systems [9]. The problem of recognizing circulant graphs is still

672 R.S.C. Leão and V.C. Barbosa

challenging: results are known only for very specific instances, like the cases of n
prime [10], geometric circulant graphs [11], and recursive circulant graphs [12].

In this paper we analyze the regular graphs that admit an MCSD. We describe
their structure, show that they are all Hamiltonian if connected, and moreover
demonstrate an equivalence between certain distinct labelings. We also show that
the class of regular graphs that admit an MCSD and the class of circulant graphs
are equivalent to each other. A straightforward consequence of our analysis is
that the problem of recognizing circulant graphs can be polynomially solved
when the graphs’ degree is fixed.

The remainder of the paper is organized in the following manner. We start
in Section 2 with basic results on the structure of regular graphs that admit
an MCSD. Then in Section 3 we develop the argument that all such graphs, if
connected, are necessarily Hamiltonian. In Section 4 we discuss the problem of
deciding whether a k-regular graph admits an MCSD and show, for fixed k, that
this can be achieved polynomially. This result carries on to the recognition of
circulant graphs after we prove, in Section 5, the equivalence of such graphs and
regular graphs that admit an MCSD. Conclusions follow in Section 6.

Throughout the text, the operators +n, −n, and ·n represent, respectively,
the modulo-n operations of addition, subtraction, and multiplication.

2 MCSD’s of Regular Graphs

Let G be a k-regular graph that admits an MCSD, λ a labeling that is an MCSD
of G, and Γ ⊆ {1, . . . , n− 1} the set of labels used by λ. Since λ is minimal, we
may write Γ = {γ1, . . . , γk} and assume, further, that γ1 < · · · < γk. We denote
by λu(uv) the label of edge uv that corresponds to vertex u. We also write
λ(uv) = {λu(uv), λv(uv)} = {γi, γj} with 1 ≤ i, j ≤ k. It is easy to see that
for any CSD there exists a symmetry function ψ such that ψ(λu(uv)) = λv(uv),
given by ψ(γi) = n − γi for γi ∈ Γ . We start by highlighting an important
property of λ.

Lemma 1. If k is even, then the edges of G are labeled by λ with the label
pairs {γ1, n − γ1}, . . . , {γk/2, n − γk/2}. If k is odd, then a further label pair is
{γ�k/2�, n− γ�k/2�} = {n/2, n/2}.

Proof. The k/2 label pairs for the case of k even follow directly from the defini-
tion of ψ and from the fact that |Γ | = k. If k is odd, then the label γ�k/2� = n/2
(necessarily an integer, since k odd implies n even when G is k-regular) remains
unused by any of those pairs, so a further label pair is {n/2, n/2}. �

By Lemma 1, we can always refer to λ by simply giving the �k/2� labels that
are no greater than n/2. Having established this property of λ, we now set out
to describe more about the structure of graphs that admit an MCSD. In what
follows, we say that a graph H decomposes into the two subgraphs A and B
when V (A)∪V (B) = V (H), E(A)∪E(B) = E(H), and E(A)∩E(B) = ∅. Also,
recall that a 2-factor of H is a collection of vertex-disjoint cycles from H that
spans all of its vertices.

Minimal Chordal Sense of Direction and Circulant Graphs 673

Theorem 2. G decomposes into �k/2� 2-factors and, if k is odd, a perfect
matching as well. For 1 ≤ i ≤ �k/2�, the edges of the ith 2-factor are labeled
with γi, and the edges of the perfect matching with n/2.

Proof. The k edges incident to each vertex are labeled with distinct members
of Γ on their near ends. So each of the �k/2� label pairs asserted initially in
Lemma 1 can be used to identify a different 2-factor. Such 2-factors encompass
all of G, with the exception of the edges whose label pair is {n/2, n/2} in the
odd-k case (again, in Lemma 1). But these clearly constitute a perfect matching
in G. �

3 The Necessity of a Hamiltonian Cycle

In this section we assume that G is connected and begin by asserting a relation-
ship between two vertices that belong to a same cycle of one of the 2-factors
established in Theorem 2. Let us denote by r(u) the rank of vertex u in the
cyclic ordering that underlies the CSD.

Lemma 3. For 1 ≤ i ≤ �k/2�, two vertices u and v belong to a common cycle
of the 2-factor whose edges are labeled with γi if and only if r(v) = r(u) +n tγi

for some integer t ≥ 0.

Proof. If u and v share a common γi-labeled cycle, then traversing the cycle
from u to v in the direction that exits a vertex along the γi-labeled end of the
edge adds (modulo n) γi rank units to r(u) for each edge traversed. Then there
exists a nonnegative integer t such that r(v) = r(u) +n tγi.

Conversely, if r(v) = r(u) +n tγi for some t ≥ 0, then, since every vertex has
an incident edge labeled with γi on the near end, v can be reached by a path
that begins at u, exclusively uses edges labeled with γi, and has t edges. Clearly,
such a path is part of a cycle of a 2-factor whose edges are labeled with γi. �

Recall now that two integers a and b are relative primes, denoted by a ⊥ b, if
gcd(a, b) = 1.

Fact 4. Let a and b be integers. Then a ⊥ n if and only if the smallest b > 0
that satisfies b ·n a = 0 is b = n.

We are now in position to demonstrate that G is Hamiltonian. We do this by
splitting the proof into cases that bear on the relative primality between each of
γ1, . . . , γ�k/2� and n.

Theorem 5. If there exists γi ∈ {γ1, . . . , γ�k/2�} such that γi ⊥ n, then G has
a Hamiltonian cycle whose edges are labeled with γi.

Proof. By Fact 4, the smallest integer t > 0 that satisfies t ·n γi = 0 is t = n. In
the same way, for any vertex u, the smallest t > 0 that satisfies r(u) +n tγi =
r(u) is also t = n. By Lemma 3, vertex u is on an n-vertex cycle whose edges
are labeled with γi. �

674 R.S.C. Leão and V.C. Barbosa

Before we proceed to the case in which no γi ∈ {γ1, . . . , γ�k/2�} is such that
γi ⊥ n, we give a necessary condition for such a scenario to happen.1 We also
prove a general property on the relative primality between the greatest common
divisor of all the labels that are no greater than n/2 (including, if applicable,
n/2 itself) and n.

Lemma 6. If no γi ∈ {γ1, . . . , γ�k/2�} exists such that γi ⊥ n, then for 1 ≤ i ≤
�k/2� the edges of G labeled with γi form a 2-factor with di cycles of the same
length, where di = gcd(γi, n) > 1.

Proof. First rewrite t ·n γi = 0 as t ·n/di
γi/di = 0 and notice that γi/di ⊥ n/di.

By Fact 4, it follows that t = n/di is the smallest integer that satisfies t ·n/di

γi/di = 0, and hence also t ·n γi = 0. By Lemma 3, each cycle of the 2-factor
whose edges are labeled with γi comprises n/di vertices, so by Theorem 2 the
number of such cycles is di. �

Lemma 7. Let d = gcd(γ1, . . . , γ�k/2�). Then d ⊥ n.

Proof. Let ti ≥ 0, for 1 ≤ i ≤ �k/2�, be an integer. Thus,
∑

i tiγi is a multiple
of d and represents, for an arbitrary walk in G, the rank difference along the
CSD’s cyclic vertex ordering from the walk’s initial vertex to its final vertex. To
see why any walk is thus contemplated, notice that a walk that uses ti edges
labeled with n− γi on their near ends as vertices are exited along the walk can
be substituted for by another one that connects the same two vertices and uses
n/ gcd(γi, n) − ti edges labeled with γi instead. Therefore, for a walk between
arbitrary vertices u and v, the rank difference between these vertices in the cyclic
ordering is given by t ·n d for some t ∈ {0, . . . , n−1}. And, since G is connected,
every possible value of t ·n d (i.e., 0, . . . , n− 1) must result from a distinct value
of t. If such is the case, then gcd(d, n) = 1, that is, d ⊥ n.2 �

It is important to recall that, when k is odd, γ�k/2� = n/2 by Lemma 1. In this
case, by Lemma 7 we must have d = 1 (since d divides n/2, therefore n as well,
which for d > 1 contradicts the lemma). The existence of a Hamiltonian cycle
when none of γ1, . . . , γ�k/2� is relatively prime to n can now be proven.

Theorem 8. If no γi ∈ {γ1, . . . , γ�k/2�} exists such that γi ⊥ n, then G has a
Hamiltonian cycle.

Proof. For γi any member of {γ1, . . . , γ�k/2�}, let C1, . . . , Cdi be the cycles of
the 2-factor whose edges are labeled with γi. By Lemma 6, di = gcd(γi, n); by
hypothesis, di > 1. We show that a Hamiltonian cycle exists that uses portions
of the cycles C1, . . . , Cdi and interconnects them by edges with labels other
than γi.
1 The reader should note that Theorem 5 and Lemma 6 could be coalesced into one

single result stating that the number of cycles in the 2-factor whose edges are labeled
with γi for 1 ≤ i ≤ �k/2� is gcd(γi, n). We choose to do otherwise for clarity’s sake
only.

2 A formal proof of this implication can be found in Section 4.8 of [13].

Minimal Chordal Sense of Direction and Circulant Graphs 675

u

�i �i

v

Ca
Ca+1

v’

u’�i

n ���j

�j

�i

Fig. 2. A path connecting vertices u and v and whose edges are labeled with γj , γi,
and n− γj (in this order). Cycles Ca and Ca+1 belong to the 2-factor whose edges are
labeled with γi.

�i �j �j

�j
n ���j

n ���i

n ���i

�j n ���j

�i �i

n ���i

�i

�i

�i

n ���i

n ���j n ���j

C1
C2 Cdij

Fig. 3. Larger cycle using the cycles whose edges are labeled with γi and edges labeled
with γjL

Let γj ∈ {γ1, . . . , γ�k/2�} be such that it is not a multiple of di.3 If u and v
are adjacent vertices on a cycle Ca in {C1, . . . , Cdi−1}, then there exist edges
labeled with γj that connect u and v to vertices u′ and v′, respectively, where
u′ and v′ are adjacent on cycle Ca+1. This is summarized in the equality

γj +n γi +n (n− γj) = γi, (1)

which refers to the illustration in Figure 2.
If we let dij = gcd(γi, γj), we can then interconnect groups of dij cycles from

{C1, . . . , Cdi} through the edges labeled with γj , as in Figure 3, yielding di/dij

larger cycles. If γi ⊥ γj (i.e., dij = 1), then the proof is complete. Otherwise, we
can interconnect these larger cycles in the same way through edges labeled with
some γk such that dk ⊥ dj .

The case in which none of γ1, . . . , γ�k/2� is a γk such that dk ⊥ dj has d′ =
gcd(γ1, . . . , γ�k/2�) > 1. In this case, if no edges are labeled with n/2, then every
path in G, say from u to v, is such that r(v) −n r(u) is a multiple (modulo
n) of d′. And since G is connected, this has to hold for all vertex pairs in the
graph, even those whose rank differences are not a multiple of d′. This is clearly
contradictory, so there have to exist edges labeled with n/2 (in which case k
3 The case in which every one of γ1, . . . , γ�k/2	 is a multiple of di has a trivial Hamil-

tonian cycle that uses only edges labeled with γi and n/2.

676 R.S.C. Leão and V.C. Barbosa

must be odd, by Lemma 1) and we must have d′ ⊥ n/2 (by Lemma 7, according
to which gcd(d′, n/2) ⊥ n). This latter conclusion allows us to substitute n/2 for
γj in (1), and then we see that the edges labeled with n/2 connect two distinct
cycles of the 2-factor whose edges are labeled with γi. Thus, the larger cycles
formed by interconnecting the cycles C1, . . . , Cdi through edges labeled with γj

can be appropriately interconnected by the edges labeled with n/2. �

The following is then straightforward.

Corollary 9. G has a Hamiltonian cycle.

Proof. By Theorems 5 and 8. �

Note, finally, that even though the presence of a Hamiltonian cycle is a necessary
condition for an edge labeling to be an MCSD in connected regular graphs, it is
not a sufficient condition. In fact, it is easy to find k-regular graphs that have
a Hamiltonian cycle but do not admit a CSD with k labels, as the example in
Figure 1(b).

4 Deciding Whether an MCSD Exists

Given an arbitrary set {γ1, . . . , γ�k/2�} of labels such that γ1 < · · · < γ�k/2�,
if none of its members is greater than n/2 with γ�k/2� = n/2 in the odd-k
case, then one can easily (polynomially) generate a k-regular graph H with an
MCSD by simply arranging the n vertices in a cyclic ordering and, for each γi ∈
{γ1, . . . , γ�k/2�}, connecting pairs of vertices whose ranks in the ordering differ by
γi and labeling the resulting edges with {γi, n−γi} appropriately. In order for H
to be connected, by Lemma 7 we require in addition that gcd(γ1, . . . , γ�k/2�) ⊥ n.
Thus, a possible direction towards the development of an algorithm to check
whether a given k-regular graph G admits an MCSD is to generate H in this
way for every pertinent set of labels,4 and then to check whether H is isomorphic
to G.

When we fix the input graph’s degree (i.e., k is a constant), the maximum
number of candidate labelings to be checked if we ignore the restriction that
gcd(γ1, . . . , γ�k/2�) ⊥ n in the connected case is(

�n/2�
�k/2�

)
= O(nk),

a polynomial in n. In [14], the isomorphism of graphs of bounded degree was
shown to be testable in polynomial time. Thus, we can decide whether G admits
an MCSD also polynomially.

The complexity of the overall MCSD test can be clearly improved if we con-
sider the possible isomorphism between graphs generated from distinct valid
label sets. We say that two distinct labelings λ and λ′ are equivalent, denoted
4 It is easy to see that H is unique for a given set of labels.

Minimal Chordal Sense of Direction and Circulant Graphs 677

(a) (b)

Fig. 4. Isomorphic graphs with equivalent MCSD labelings, based on the label sets
{1, 2, 5} (a) and {3, 4, 5} (b)

by λ ≡ λ′, if they generate isomorphic graphs. For example, it can be easily seen
that the labelings λ and λ′, drawing respectively on the label sets {1, 2, 5} and
{3, 4, 5}, generate isomorphic 5-regular graphs on 10 vertices (see Figure 4), so
λ ≡ λ′. Let us then consider a transformation of λ into λ′ that preserves the
MCSD property. In what follows, λ draws on the set {γ1, . . . , γ�k/2�} for labels,
λ′ on {γ′1, . . . , γ′�k/2�}.

Theorem 10. Let α < n/2 be an integer such that α ⊥ n. For 1 ≤ i ≤ �k/2�,
let

γ′i =
{
α ·n γi if α ·n γi ≤ n/2
n− α ·n γi if α ·n γi > n/2.

If λ is an MCSD for G, then so is λ′.

Proof. It suffices that we argue that no member of {γ′1, . . . , γ′�k/2�} is greater
than n/2 with γ�k/2� = n/2 for k odd, that every two members of this set are
distinct, and also that the vertices can be rearranged cyclically so that λ′ is
indeed a CSD. The first of these properties holds trivially and the second follows
from well-known number-theoretic properties.5 As for the third property, clearly
it suffices for the vertices to be arranged into a cyclic ordering in which vertex
u has rank r′(u) such that r′(u) = α ·n r(u). �

It is easy to see that any α > n/2 would produce the same results as its symmet-
ric modulo n. We can also see that any λ comprising a γi such that γi ⊥ n can
yield a λ′ with γ′i = 1. For such, it is sufficient to take α as the multiplicative
inverse (modulo n) of γi.

It is also curious to note that the transformation in Theorem 10 ensures that
γi ⊥ n if and only if γ′i ⊥ n. To see this, consider for example the case of γ′i =
α ·n γi. By using Euclid’s Theorem [13] and the fact that α ⊥ n in succession, we
have gcd(α ·n γi, n) = gcd(αγi, n) = gcd(γi, n), thence gcd(γ′i, n) = gcd(γi, n).
5 We once again refer the reader to Section 4.8 of [13].

678 R.S.C. Leão and V.C. Barbosa

5 MCSD’s and Circulant Graphs

There is a clear equivalence between circulant graphs and regular graphs that
admit an MCSD. We describe it formally in the following theorem.

Theorem 11. G is circulant of generator set S if and only if it is |S|-regular
and admits an MCSD.

Proof. Let G be a circulant graph of generator set S. Then uv ∈ E(G) if and
only if there exists s ∈ S such that v = u +n s. Let λ be a labeling for G
such that λu(uv) = s. Since the vertices of G are elements of Zn, they already
have a natural cyclic ordering in which r(u) = u for all u ∈ V (G). So λu(uv) =
r(v) −n r(u) and λ is a CSD of G. Also, as every vertex is connected to the
vertex ranking s higher (modulo n) than itself for every s ∈ S, G is |S|-regular
and λ uses |S| labels (thence the CSD is minimal).

Conversely, if G is a k-regular graph that admits an MCSD, then |Γ | = k and
there exists a cyclic ordering of the vertices such that each edge uv is labeled
with λu(uv) = r(v) −n r(u), where 0 ≤ r(u) ≤ n − 1. Letting V (G) = Zn so
that u = r(u) and S = Γ yields λu(uv) = v −n u for all uv ∈ E(G), thence
v = u +n λu(uv). G is therefore circulant of generator set S. �

One first example of how Theorem 11 sheds new light on the two concepts
involved comes from considering the result on circulant graphs in [15], which
implies in the connected case that gcd(s0, . . . , sk, n) = 1, where si, for 0 ≤ i ≤ k,
is an element of the set of generators. This is of course coherent with Lemma 7
and Corollary 9, and a straightforward implication of the general result of [15]
is that a circulant graph is Hamiltonian if and only if it is connected [16]. Our
approach introduces new ways of constructing Hamiltonian cycles in this case.

Another interesting insight is the following. An n × n matrix is said to be
circulant if its ith line is the cyclic shift of the first line by i positions, where
0 ≤ i ≤ n − 1. Another characterization of circulant graphs is that a graph is
circulant if its adjacency matrix is circulant. By the equivalence established in
Theorem 11, it then becomes possible to approach the problem of recognizing
regular graphs that admit an MCSD along a different route: since it is well-
known that the isomorphism between two graphs G and H can be viewed as
a permutation of lines and columns of the adjacency matrix of G (A(G)) that
generates that of H , we can test whether a regular graph G admits an MCSD
by finding a permutation of lines and columns of A(G) such that the resulting
matrix is circulant.

We note, in addition, that the transformation defined in Theorem 10 also has
an analogue in the literature on circulant graphs. Let G and H be circulant
graphs such that their sets of generators are R and S, respectively. We say that
R and S are proportional, denoted by R ∼ S, if, for some a ⊥ n, r = a ·n s
bijectively for r ∈ R and s ∈ S. Clearly, if R ∼ S then G is isomorphic to H . The
converse statement was conjectured in [17] and is known as Ádám’s conjecture.
However, in [18] the conjecture was proven false.

Minimal Chordal Sense of Direction and Circulant Graphs 679

The problem of recognizing circulant graphs, finally, is probably the one most
affected by the equivalence of Theorem 11. Even though the algorithm we suggest
to test whether a k-regular graph admits an MCSD is polynomial only for fixed
k, when applied to the context of circulant graphs it is the only known result on
arbitrary topologies (without any restrictions on the structure or the number of
vertices) for that class.

6 Conclusions

We have in this paper considered two classes of graphs, namely those that are
regular and admit an MCSD and those that are circulant. We have contributed
new properties and insights to the study of graphs in both classes.

Our contribution to the study of regular graphs that admit an MCSD has
been a detailed study of their structure in terms of 2-factors and perfect match-
ings, and also proving that, when connected, they are necessarily Hamiltonian.
We have in addition shown that fixed-degree regular graphs can be tested for
admitting an MCSD in polynomial time. This latter result is based on the well-
known result that testing two bounded-degree graphs for isomorphism can be
achieved polynomially.

After demonstrating that regular graphs with an MCSD are equivalent to cir-
culant graphs, we then discussed several new insights into the study of circulant
graphs that the equivalence highlights. Of special significance has been the dis-
covery of the first result on the recognition of arbitrary circulant graphs: if they
have fixed degree, then they can be recognized in polynomial time as well.

Acknowledgments

The authors acknowledge partial support from CNPq, CAPES, and a FAPERJ
BBP grant.

References

1. Bondy, J.A., Murty, U.S.R.: Graph Theory with Applications. North-Holland,
New York, NY (1976)

2. Santoro, N.: Sense of direction, topological awareness and communication com-
plexity. SIGACT News 2 (1984) 50–56

3. Flocchini, P., Mans, B., Santoro, N.: On the impact of sense of direction on message
complexity. Information Processing Letters 63 (1997) 23–31

4. Flocchini, P., Mans, B., Santoro, N.: Sense of direction: definitions, properties and
classes. Networks 32 (1998) 165–180

5. Flocchini, P., Mans, B., Santoro, N.: Sense of direction in distributed computing.
Theoretical Computer Science 291 (2003) 29–53

6. Flocchini, P.: Minimal sense of direction in regular networks. Information Process-
ing Letters 61 (1997) 331–338

7. Boldi, P., Vigna, S.: Minimal sense of direction and decision problems for Cayley
graphs. Information Processing Letters 64 (1997) 299–303

680 R.S.C. Leão and V.C. Barbosa

8. Boldi, P., Vigna, S.: On the complexity of deciding sense of direction. SIAM
Journal on Computing 29 (2000) 779–789

9. Bermond, J.C., Cornellas, F., Hsu, D.F.: Distributed loop computer networks: a
survey. Journal of Parallel and Distributed Computing 24 (1995) 2–10

10. Muzychuk, M., Tinhofer, G.: Recognizing circulant graphs of prime order in poly-
nomial time. The Electronic Journal of Combinatorics 5 (1998) #R25

11. Muzychuk, M., Tinhofer, G.: Recognizing circulant graphs in polynomial time:
an application of association schemes. The Electronic Journal of Combinatorics 8
(2001) #R26 in number 1

12. Fertin, G., Raspaud, A.: Recognizing recursive circulant graphs. Electronic Notes
in Discrete Mathematics 5 (2000) 112–115

13. Graham, R.L., Knuth, D.E., Patashnik, O.: Concrete Mathematics: A Foundation
for Computer Science. Second edn. Addison-Wesley, Boston, MA (1994)

14. Luks, E.M.: Isomorphism of graphs of bounded valence can be tested in polynomial
time. Journal of Computer and System Sciences 25 (1982) 42–65

15. Boesch, F., Tindell, R.: Circulants and their connectivities. Journal of Graph
Theory 8 (1984) 487–499

16. Burkard, R.E., Sandholzer, W.: Efficiently solvable special cases of bottleneck
travelling salesman problems. Discrete Applied Mathematics 32 (1991) 61–76

17. Ádám, A.: Research problem 2-10. Journal of Combinatorial Theory 2 (1967) 393
18. Elspas, B., Turner, J.: Graphs with circulant adjacency matrices. Journal of

Combinatorial Theory 9 (1970) 297–307

Querying and Embedding Compressed Texts

Yury Lifshits1 and Markus Lohrey2

1 Steklov Institut of Mathematics, St.Petersburg, Russia
2 Universität Stuttgart, FMI, Germany

yura@logic.pdmi.ras.ru, lohrey@informatik.uni-stuttgart.de

Abstract. The computational complexity of two simple string problems on com-
pressed input strings is considered: the querying problem (What is the symbol at a
given position in a given input string?) and the embedding problem (Can the first
input string be embedded into the second input string?). Straight-line programs
are used for text compression. It is shown that the querying problem becomes
P-complete for compressed strings, while the embedding problem becomes hard
for the complexity class Θp

2 .

1 Introduction

During the last decade, the massive increase in the volume of data has motivated the
need for algorithms on compressed data, like for instance compressed strings, trees, or
pictures. The general goal is to develop efficient algorithms that directly work on com-
pressed data without prior decompression, or to prove under general assumptions from
complexity theory that such efficient algorithms do not exist. In this paper we concen-
trate on algorithms on compressed strings. We investigate two computational problems,
which can be trivially solved in linear time for uncompressed input strings: the query-
ing problem and the embedding problem. In the embedding problem we have given two
input strings p (the pattern) and t (the text), and we ask whether p can be embedded into
t, i.e., p can be obtained by deleting some letters of the text t at arbitrary positions, see
Section 4 for a formal definition. In the querying problem the input consists of a string
s, a position i ∈ N, and a letter a, and we ask, whether the i-th symbol of s is a.

For string compression, we choose straight-line programs (SLPs), i.e., context-free
grammars that generate exactly one word. Straight-line programs turned out to be a very
flexible and mathematically clean compressed representation of strings. Several other
dictionary-based compressed representations, like for instance Lempel-Ziv (LZ) factor-
izations [24], can be converted in polynomial time into straight-line programs and vice
versa [18]. This implies that complexity results, which refer to classes above determinis-
tic polynomial time, can be transfered from SLP-encoded input strings to LZ-encoded
input strings. It turns out that the computational complexity of the querying problem
and the embedding problem becomes very different, when input strings are encoded via
SLPs: While for SLP-compressed strings the querying problem (also called compressed
querying problem) becomes complete for deterministic polynomial time (Thm. 4), the
embedding problem (also called fully compressed embedding problem; the term “fully”
is used because both, the pattern and the text are assumed to be compressed) becomes
hard for the class Θp

2 (Thm. 1). The latter class consists of all problems that can be

R. Královič and P. Urzyczyn (Eds.): MFCS 2006, LNCS 4162, pp. 681–692, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

682 Y. Lifshits and M. Lohrey

accepted by a deterministic polynomial time machine with access to an oracle from NP
and such that furthermore all questions to the oracle are asked in parallel [23]. Θp

2 is
located between the first and the second level of the polynomial time hierarchy; it con-
tains NP and coNP and is contained in Σp

2 ∩ Π
p
2 . We are currently not able to prove

a matching upper bound. The best upper bound for the fully compressed embedding
problem that we can prove is PSPACE (Prop. 1). A corollary of the Θp

2-hardness of
the fully compressed embedding problem is Θp

2-hardness of the longest common subse-
quence problem and the shortest common supersequence problem on SLP-compressed
strings, even when both problems are restricted to two input strings. These problems
have many applications e.g. in computational biology [10].

The paper is organized as follows. After introducing the necessary concepts in Sec. 2,
we prove in Sec. 3, based on a reduction from the super increasing subset sum problem
[11], P-completeness of the compressed querying problem for a binary input alphabet.
For a variable input alphabet, we sharpen this result by showing that even for RLZ-
encoded strings the compressed querying problem is P-complete, which solves an open
problem from [7]. RLZ-encodings (restricted Lempel-Ziv encodings) can be seen as a
restricted form of straight-line programs. In Sec. 4 we show that the fully compressed
embedding problem is Θp

2-hard. The proof is divided into two main parts. First we
prove NP-hardness by a reduction from the subset sum problem (Sec. 4.1). Second, we
show how to simulate boolean operations via fully compressed embedding (Sec. 4.2).
By taking together these two parts we can deduce hardness for Θp

2 (Sec. 4.3).
Let us briefly discuss related work. Research on pattern matching problems for

dictionary-based compressed strings started with the seminal paper [1]. In [17], a poly-
nomial time algorithm for testing whether two SLPs represent the same text was pre-
sented. The technique of [17] was extended in [8,14] in order to show that the fully
compressed pattern matching problem can be solved in polynomial time as well. The
fully compressed pattern matching problem is the compressed version of the classi-
cal pattern matching problem: for two given SLPs P and T we ask, whether the text
represented by T can be written as upv, where p is the text represented by the SLP
P . Note the difference between the fully compressed pattern matching problem and the
fully compressed embedding problem studied in this paper: In the latter problem we also
search for a compressed pattern in a compressed text, but we allow that the pattern oc-
curs scattered, i.e., with gaps, in the text. This more liberal notion of pattern-occurrence
makes the application of periodicity properties of words, which are crucial in [8,14,17],
impossible, and is in some sense the reason for the higher complexity of the fully com-
pressed embedding problem. A similar complexity jump was observed when moving
from ordinary (1-dimensional) to 2-dimensional texts, i.e., rectangular pictures: In this
framework, fully compressed pattern matching becomesΣP

2 -complete [3].
The computational problems mentioned so far can be all formulated as particular

compressed membership problems, where we ask whether a given compressed text be-
longs to some formal language, which may either be fixed or given in the input, e.g.,
in form of an automaton or a grammar. Precise complexity results for these problems
were obtained in [2,13] for regular languages and [12] for context-free languages.

Whereas it is NP-complete to compute (and even hard to approximate up to a con-
stant factor) a minimal SLP that generates a given input string [4], several approaches

Querying and Embedding Compressed Texts 683

for generating a small SLP that produces a given input string were proposed and ana-
lyzed in the literature, see e.g. [4,21].

We refer to [7,15,18,19,20,22] for a more detailed discussion of algorithmic prob-
lems on compressed strings.

2 Preliminaries

We assume that the reader has some basic background in complexity theory [16]. LetΣ
be a finite alphabet. The empty word overΣ is denoted by ε. For a word s = a1 · · ·an ∈
Σ∗ (ai ∈ Σ) let |s| = n, |s|a = |{i | ai = a}| (for a ∈ Σ), s[i] = ai (for 1 ≤ i ≤ n),
and s[i, j] = aiai+1 · · ·aj (for 1 ≤ i ≤ j ≤ n). If i > j we set s[i, j] = ε.

Following [18], a straight-line program (SLP) over the terminal alphabet Σ is a
context-free grammar G with ordered non-terminal symbols X1, . . . , Xm (Xm is the
starting symbol) such that there is exactly one production for each symbol: eitherXi →
a, where a ∈ Σ is a terminal, or Xi → XjXk for some j, k < i. The language gen-
erated by the SLP G contains exactly one word that is denoted by eval(G). More gen-
erally, every nonterminalXi produces exactly one word that is denoted by evalG(Xi).
We omit the index G if the underlying SLP is clear from the context. The size of G is
|G| = m.

We may allow in SLPs more general productions of the form Xi → w with w ∈
(Σ ∪ {X1, . . . , Xi−1})∗. We may even allow exponential expressions of the form Xk

j

for j < i and a binary coded integer k ∈ N in the right-hand side w. Such a production
can be replaced by O(log(k)) many ordinary productions.

3 Querying the i-th Symbol

In this section, we study the following computational problem Compressed Querying:
INPUT: SLP G (over the terminal alphabet Σ), position i ∈ N, and a ∈ Σ
QUESTION: eval(G)[i] = a?

We prove that Compressed Querying is P-complete. This means that unless P = NC,
where NC is the class of all problems that can be solved in polylogarithmic time using
polynomially many processors, there does not exist an efficient parallel algorithm for
Compressed Querying, see [9] for background on P-completeness. All reductions in
this section are NC-reductions, i.e., they can be computed in polylogarithmic time with
only polynomially many processors.

Theorem 1. Compressed Querying is P-complete. Hardness for P even holds for a
binary terminal alphabet.

Proof. Membership in P is easy to see: first compute for every non-terminal X of the
input SLP the length �X of the generated string eval(X). Now, if we have a production
X → Y Z and we want to determine eval(X)[i] then we first check whether i ≤ �Y .
In this case we have to find eval(Y)[i]. On the other hand, if i > �Y , then we have to
determine eval(Z)[i− �X]. This simple idea leads to a polynomial time algorithm.

We prove P-hardness by an NC-reduction from the P-complete problem Super In-
creasing Subset Sum [11]:

684 Y. Lifshits and M. Lohrey

INPUT: Integers w1, . . . , wn, t in binary form such that wi >
∑i−1

j=1 wj for all 1 ≤
i ≤ n (in particular w1 > 0).

QUESTION: Do there exist x1, . . . , xn ∈ {0, 1} such that
∑n

i=1 xi · wi = t?
Thus, let w1, . . . , wn, t be integers such that wi >

∑i−1
j=1 wj . Let g1, . . . , gn ∈ {0, 1}∗

be defined as follows, where sj = w1 + · · ·+ wj for 1 ≤ j ≤ n:

g1 = 10w1−11 gj = gj−10wj−sj−1−1gj−1 for 2 ≤ j ≤ n

It is straightforward to construct from the instance (w1, . . . , wn, t) in NC an SLP that
generates the string gn. Note that wj > sj−1 and hence wj − sj−1 − 1 ≥ 0. Moreover,
we claim that |gj | = sj +1. This is certainly true for j = 1 since s1 = w1. For j ≥ 2 we
obtain inductively |gj | = 2|gj−1|+wj−sj−1−1 = 2sj−1+2+wj−sj−1−1 = sj +1.

We claim that gn[t + 1] = 1 if and only if there exist x1, . . . , xn ∈ {0, 1} such that∑n
i=1 xi · wi = t, which proves the theorem. For this, we prove by induction on j that

for every p ≥ 0: gj [p+ 1] = 1 if and only if ∃x1, . . . , xj ∈ {0, 1} :
∑j

i=1 xi · wi = p.
If j = 1, then g1[p + 1] = (10w1−11)[p + 1] = 1 if and only if p = 0 or p = w1,
which proves the induction base. Now assume that j ≥ 2. Then gj [p + 1] = 1 if
and only if (gj−10wj−sj−1−1gj−1)[p + 1] = 1 if and only if (gj−1[p + 1] = 1 or
gj−1[p + 1 − |gj−1| − wj + sj−1 + 1] = 1) if and only if (gj−1[p + 1] = 1 or
gj−1[p+1−sj−1−1−wj+sj−1+1] = gj−1[p+1−wj] = 1) (since |gj−1| = sj−1+1).
By induction, this is true if and only if

∃x1, . . . , xj−1 ∈ {0, 1}
{

j−1∑
i=1

xi · wi = p or
j−1∑
i=1

xi · wi = p− wj

}
.

But this is equivalent to ∃x1, . . . , xj ∈ {0, 1} :
∑j

i=1 xi · wi = p. �

Note that in Thm. 1, P-hardness already holds for a binary alphabet. If we allow the ter-
minal alphabet to be part of the input, then we can prove P-hardness even for a restricted
form of SLPs, so called restricted Lempel-Ziv encodings, briefly RLZ-encodings [7].
For a given string w ∈ Σ+, the RLZ-factorization of w is the unique factorization
w = f1f2 · · · fn such that for every i ≥ 1, fi is either the longest non-empty prefix of
fifi+1 · · · fn such that there exists 1 ≤ j ≤ k < i with fi = fj · · · fk, or (if such a
prefix does not exist) fi is the first symbol of fifi+1 · · · fn. In this situation, the RLZ-
encoding of w, briefly RLZ(w) is the sequence c1c2 · · · cn, where ci = fi if fi ∈ Σ
or ci = [j, k] if fi 	∈ Σ and fi = fj · · · fk. Note that from RLZ(w) one can easily
construct an SLP generating w.

Example 1. Let w = abaababaabaababaababa. Then the RLZ-factorization of w is
a |b |a |aba |baaba |ababaaba |ba and RLZ(w) = aba[1, 3][2, 4][4, 5][2, 3].

The next theorem solves an open problem from [7], where a corresponding result for
LZ-encoded input strings (see [7] for the definition) was shown. It should be noted
that there are polynomial time transformations between RLZ- and LZ-encodings [7,
Lemma 1], but by the results from [7] there cannot be an NC-transformation from LZ-
encodings to RLZ-encodings unless P = NC.

Querying and Embedding Compressed Texts 685

Theorem 2. The following problem is P-complete:
INPUT: An alphabet Σ, a string w ∈ Σ∗ given by its RLZ-encoding, a position

i ∈ N, and a ∈ Σ
QUESTION: w[i] = a?

Proof. Membership in P follows from Thm. 1. For P-hardness we use almost the same
construction as in the proof of Thm. 1. For a given instance (w1, . . . , wn, t) of Super
Increasing Subset Sum we define strings g1, . . . , gn ∈ {1, $1, . . . , $n}∗ as follows,
where sj = w1 + · · ·+ wj for 1 ≤ j ≤ n:

g1 = 1$w1−1
1 1 gj = gj−1$

wj−sj−1−1
j gj−1 for 2 ≤ j ≤ n

The proof of Thm. 1 shows that gn[t + 1] = 1 if and only if there exist x1, . . . , xn ∈
{0, 1} such that

∑n
i=1 xi ·wi = t. It remains to prove that RLZ(gn) can be constructed

in NC from (w1, . . . , wn, t). In the following let �(i) for i ∈ N be the number of factors
in the RLZ-factorization of ai. One can show that �(i) ∈ O(log(i)) and RLZ(ai) can
be calculated in NC from the binary encoding of i. Now we determine the number λi of
factors of the RLZ-factorization of the string gi. We have λ1 = 2+ �(w1− 1) and λi =
λi−1+�(wi−si−1−1)+1 for i > 1. Thus, λi = (i+1)+

∑i
k=1 �(wk−sk−1−1). Also

the numbers λi (1 ≤ i ≤ n) can be calculated in NC using the prefix sum algorithm.
Now we can set in parallel for all 1 ≤ i ≤ n the factor from position λi−1 + 1 to λi of
RLZ(gn) (where λ0 = 0) to RLZ($wi−si−1−1

i)+λi−1 [1, λi−1], where RLZ(w)+j is the
same as RLZ(w) but where j is added to all numbers. �

4 Complexity of Embedding

A string p = a1 · · · am can be embedded into a string t = b1 · · · bn (ai, bj ∈ Σ), briefly
p ↪→ t, if there exist positions 1 ≤ i1 < i2 < · · · < im ≤ n such that bik

= ak for
1 ≤ k ≤ m. We also say that p is a subsequence of t, see the following diagram:

a1 a2 a3 · · · am−1 am

· · · a1 · · · a2 · · · a3 · · · am−1 · · · am · · ·

In this section, we study the complexity of the following problem Fully Compressed
Embedding, for short Embedding:

INPUT: SLPs P and T
QUESTION: eval(P) ↪→ eval(T)?

The following upper bound for Embedding is easy to prove:

Proposition 1. Embedding belongs to PSPACE.

Proof. The straightforward greedy algorithm that solves the embedding problem for un-
compressed strings in linear time results in a PSPACE-algorithm for SLP-compressed
strings. The crucial observation is that a position in a string, which is represented by an
SLP, can be stored in polynomial space with respect to the size of the SLP. �

686 Y. Lifshits and M. Lohrey

A simple greedy algorithm for checking eval(P) ↪→ eval(T) can be easily implemented
within the time bound |eval(P)| · |T |O(1) ≤ 2O(|P |) · |T |O(1). This shows in particular
that Embedding is fixed parameter tractable in the sense of [5], when the size of the
pattern-SLP is chosen as the parameter (which is reasonable, because in most pattern
matching applications the pattern is much smaller than the text).

Our main result states that Embedding is hard for the complexity class Θp
2 . In

Sec. 4.1, we prove NP-hardness. Then, in Sec. 4.2 we show how to simulate boolean
operations with Embedding. From this, we deduce hardness for Θp

2 in Sec. 4.3.

4.1 NP-Hardness of Embedding

Let us recall the well-known NP-complete problem Subset Sum (see [6]):
INPUT: Integers w1, . . . , wn, t in binary form
QUESTION: Do there exist x1, . . . , xn ∈ {0, 1} with

∑n
i=1 xi · wi = t?

Theorem 3. Embedding is NP-hard.

Proof. We prove the theorem by a polynomial time reduction from Subset Sum to
Embedding. Let t, w = (w1, . . . , wn) be input data for Subset Sum. W.l.o.g. assume
that n ≥ 2. We are going to construct SLPs G and H such that there exists a subset of
{w1, . . . , wn} with sum equal to t if and only if eval(G) ↪→ eval(H).

We begin with some notation. Let s = w1 + · · ·+wn andN = 2ns. We can assume
that t < s. Let x ∈ {0, 1, . . . , 2n − 1} be an integer. With xi (1 ≤ i ≤ n) we denote
the i-th bit in the binary representation of x, where x1 is the least significant bit. Thus,
x =

∑n
i=1 xi2i−1. We define x◦w =

∑n
i=1 xiwi. Hence, x◦w is the sum of the subset

of {w1, . . . , wn} encoded by the integer x. Hence, t, w is a positive instance of Subset
Sum if and only if ∃x ∈ {0, . . . , 2n − 1} : x ◦w = t. We now define strings g and h as
follows:

h1 =
2n−1∏
x=0

(10s) = (10s)2
n

h2 = 02N h3 =
2n−1∏
x=0

(0x◦w10s−x◦w)

h4 = 0t+1 h0 = h1h2h3h4 h = h5N
0

g0 = 103N+t10N+1 g = g5N−1
0

We use the symbol
∏

to denote the concatenation of the corresponding words per-
formed in the order x = 0, . . . , 2n − 1.

We first claim that the strings g and h can be generated by SLPs of polynomial size
with respect to the size of the input t, w. Note that with only one exception, namely the
definition of h3, only a constant number of concatenations and integer exponents with
polynomially many bits are used in the definition of g and h. These constructions can
be directly realized by SLPs. Finally, a construction of a polynomial size SLP for h3
was presented in [12].

Now we prove that g ↪→ h if and only if ∃x ∈ {0, . . . , 2n − 1} : x ◦ w = t.
First assume that there is x ∈ {0, . . . , 2n − 1} such that x ◦ w = t. Consider the prefix
h1h2h3h4h1 of h. We can embed g0 = 103N+t10N+1 into h1h2h3h4h1: map the initial

Querying and Embedding Compressed Texts 687

1 of g0 to the x-th block 10s of h1. Since x◦w = t, the number of 0’s in h1h2h3 between
the 1 in the x-th block 10s of h1 and the x-th block 0x◦w10s−x◦w = 0t10s−t of h3 is
precisely N − (x− 1)s+ 2N + (x− 1)s+ t = 3N + t, see the following diagram:

10s · · · 10s · · · 10s

x-th block

0 · · · 0 · · · 0t10s−t · · ·
x-th block

h1︷ ︸︸ ︷ h2︷ ︸︸ ︷ h3︷ ︸︸ ︷
︸ ︷︷ ︸

N−(x−1)s zeros

︸ ︷︷ ︸
2N zeros

︸ ︷︷ ︸
(x−1)s+t zeros

To these 3N + t many 0’s we map the first 3N + t many 0’s of g0. Then the second
1 of g0 is mapped to the 1 in the x-th block 0t10s−t of h3. The next N + 1 many
0’s following this 1 are used for embedding the remaining N + 1 many 0’s of g0. The
crucial point is that after this embedding, we again arrive at the 1 in the x-th block 10s

of h1, see the following diagram:

· · · 0t10s−t · · ·
x-th block

0 · · · 0 10s · · · 10s · · · 10s

x-th block

h3︷ ︸︸ ︷ h4︷ ︸︸ ︷ h1︷ ︸︸ ︷
︸ ︷︷ ︸

N−(x−1)s−t
zeros

︸ ︷︷ ︸
t+1
zeros

︸ ︷︷ ︸
(x−1)s

zeros

This observation shows that gk
0 can be embedded into hk+1

0 = (h1h2h3h4)k+1 for every
k ≥ 1. In particular g = g5N−1

0 ↪→ h5N
0 = h.

Next, we prove the reverse direction. Assume that g ↪→ h. We have to show that
there is x ∈ {0, . . . , 2n − 1} such that x ◦ w = t. In order to deduce a contradiction,
assume that x ◦ w 	= t for all x ∈ {0, . . . , 2n − 1}. It turns out that not every 0 in
h can be the image of a 0 from g under our embedding g ↪→ h. Let us estimate the
total number of such unused 0’s. Our embedding g ↪→ h consists of 5N − 1 disjoint
embeddings of g0 into h. There are two 1’s in g0 and there are exactly 3N + t many
0’s between them. We claim that there is no pair of two 1’s with exactly 3N + t many
0’s between them in h. In order to prove this, we consider two 1’s in h and make a case
distinction on the position of the first 1. First assume that the left 1 belongs to h1. More
precisely, assume that the left 1 is the 1 in the y-th block 10s of h1. By reading exactly
3N + t many 0’s in h, we arrive at position t+ 1 (if t < y ◦w) or t+ 2 (if t > y ◦w) in
the y-th block of h3; note that t < s. But since y ◦ w 	= t, this position cannot contain
a 1. This proves the case that the left 1 belongs to h1. The following diagram visualizes
the situation (where we assume that t > y ◦ w):

10s · · · 10s · · · 10s

y-th block

0 · · · 0 · · · 0y◦w10s−y◦w · · ·
y-th block

h1︷ ︸︸ ︷ h2︷ ︸︸ ︷ h3︷ ︸︸ ︷
︸ ︷︷ ︸

N−(y−1)s zeros

︸ ︷︷ ︸
2N zeros

︸ ︷︷ ︸
(y−1)s+t zeros︸ ︷︷ ︸

3N+t zeros

In the second case, the left 1 in our pair is situated in h3. Then, by reading exactly
3N + t many 0’s in h, we end up in h2, which does not contain 1’s at all:

688 Y. Lifshits and M. Lohrey

· · · 0 · · ·010 · · ·0 · · · 0 · · · 0

h3︷ ︸︸ ︷ h4h1︷ ︸︸ ︷ h2︷ ︸︸ ︷
︸ ︷︷ ︸

N zeros
︸ ︷︷ ︸

N+t+1 zeros
︸ ︷︷ ︸

2N zeros

We have now shown that for each embedding of g0 in h between the images of the two
1’s in g0, there must be at least 3N + t + 1 many 0’s in h. Thus, for every embedding
of g0 = 103N+t10N+1 in h we need at least 3N + t+ 1 +N + 1 = 4N + t+ 2 many
0’s in h. Since g = g5N−1

0 , we need at least

(4N + t+ 2) · (5N − 1) = 5N · (4N + t+ 1) + (N − t− 2) > 5N · (4N + t+ 1)

many 0’s in h. For the last inequality note that N = s · 2n ≥ 4s > s + 2 > t + 2.
We obtain a contradiction, because from the construction of h, we see that h contains
precisely 5N · (4N + t+ 1) many 0’s. �

4.2 Simulating Boolean Operations

Proposition 2. For SLPs G and H over a terminal alphabet Σ, |Σ| ≥ 1, we can
construct in polynomial time SLPs G′ and H ′ over the terminal alphabetΣ such that

eval(G) ↪→ eval(H) ⇔ eval(G′) 	↪→ eval(H ′). (1)

Proof. Let eval(G) = g1 · · · gk and eval(H) = h1 · · ·hm. For a ∈ Σ let Xa =
(a1 · · · an)m+1, where {a1, . . . , an} = Σ \ {a} (the order on Σ \ {a} is arbitrary
here; if n = 0, then Xa = ε). Let a ∈ Σ be arbitrary and let G′ and H ′ be SLPs with

eval(G′) = eval(H)a = h1 · · ·hma and eval(H ′) = Xg1g1 · · ·Xgk
gk.

These SLPs can be constructed in polynomial time from G and H . For G′ this is clear.
For H ′ we have to replace every terminal symbol a in G by a new nonterminal A
and add the rule A → Xaa. It remains to show (1). First assume that eval(G) 	↪→
eval(H). Then we can write eval(H) = R1g1 · · ·RlglRl+1, where l < k and for
1 ≤ i ≤ l + 1, the word Ri does not contain the letter gi. Since |Ri| ≤ m, for every
1 ≤ i ≤ l + 1 we have Ri ↪→ Xgi . Thus, we can embed the prefix eval(H) =
R1g1 · · ·RlglRl+1 of eval(G′) into the prefix Xg1g1 · · ·Xgl

glXgl+1 of eval(H ′). The
final letter a of eval(G′) can be either also mapped to Xgl+1 (if a 	= gl+1; here it is
important that |Xgl+1 | > m so that Rl+1 does not completely occupy Xgl+1) or it can
be mapped to gl+1 (if a = gl+1):

R1 g1 R2 g2 · · · Rl gl Rl+1 a

Xg1
g1 Xg2

g2 · · · Xgl
gl Xgl+1

gl+1 · · ·

Now assume that eval(G) ↪→ eval(H). Then we can write eval(H) = R1g1 · · ·RkgkR,
where for 1 ≤ i ≤ k, the word Ri does not contain the letter gi. We claim that

∀1 ≤ i ≤ k : R1g1 · · ·Rigi 	↪→ Xg1g1 · · ·Xgi−1gi−1Xgi . (2)

Querying and Embedding Compressed Texts 689

Our proof goes by induction on i. In the case i = 1 this follows, since g1 does not occur
in Xg1 . For the induction step assume that (2) is true for some i ≥ 1 and that moreover

R1g1 · · ·RigiRi+1gi+1 ↪→ Xg1g1 · · ·Xgi−1gi−1XgigiXgi+1 . (3)

Recall that the last symbol gi+1 ofR1g1 · · ·Ri+1gi+1 does not occur in the suffixXgi+1

of Xg1g1 · · ·XgigiXgi+1 . Thus, (3) implies that already R1g1 · · ·RigiRi+1gi+1 ↪→
Xg1g1 · · ·Xgi−1gi−1Xgigi and henceR1g1 · · ·RigiRi+1 ↪→ Xg1g1 · · ·Xgi−1gi−1Xgi .
But this contradicts (2).

For i = k, (2) implies R1g1 · · ·Rkgk 	↪→ Xg1g1 · · ·Xgk−1gk−1Xgk
. But then

eval(G′) = R1g1 · · ·RkgkRa 	↪→ Xg1g1 · · ·Xgk−1gk−1Xgk
gk = eval(H ′). �

Thm. 3 and Prop. 2 immediately imply that Embedding is also coNP-hard.

Proposition 3. For SLPsG1, H1, G2, H2 over a terminal alphabetΣ, |Σ| ≥ 2, we can
construct in polynomial time SLPs G, H over the terminal alphabetΣ such that

(eval(G1) ↪→ eval(H1) and eval(G2) ↪→ eval(H2)) ⇔ eval(G) ↪→ eval(H).

Proof. W.l.o.g. assume that G1 and G2 (resp. H1 and H2) have disjoint sets of non-
terminals. Let Si (resp. Ti) be the start non-terminal of Gi (resp. Hi). Let N = 1 +
max{|eval(H1)|, |eval(H2)|}. Then G (resp. H) contains all productions of G1 and
G2 (resp. H1 and H2) and the additional production S → S11N01NS2 (resp. T →
T11N01NT2), where 0, 1 ∈ Σ. Here, S (resp. T) is the start non-terminal of G (resp.
H). Thus,

eval(G) = eval(G1) 1N 0 1N eval(G2) and

eval(H) = eval(H1) 1N 0 1N eval(H2).

Clearly, if eval(G1) ↪→ eval(H1) and eval(G2) ↪→ eval(H2), then we have eval(G) ↪→
eval(H). For the other direction note that if eval(G1)1N01Neval(G2) can be embedded
into eval(H1)1N01Neval(H2), then by the choice of N , the 0 at position |eval(G1)|+
N + 1 in eval(G1)1N01Neval(G2) can neither be mapped to the prefix eval(H1) nor
to the suffix eval(H2) of eval(H). Thus, this 0 has to be mapped to the 0 at position
|eval(H1)| +N + 1 in eval(H1)1N01Neval(H2). This implies that both eval(G1) ↪→
eval(H1) and eval(G2) ↪→ eval(H2). �

Proposition 4. For SLPsG1, H1, G2, H2 over a terminal alphabetΣ, |Σ| ≥ 2, we can
construct in polynomial time SLPs G, H over the terminal alphabetΣ such that

(eval(G1) ↪→ eval(H1) or eval(G2) ↪→ eval(H2)) ⇔ eval(G) ↪→ eval(H).

Proof. W.l.o.g. assume that G1, G2, H1, and H2 have pairwise disjoint sets of non-
terminals. Let Si (resp. Ti) be the start non-terminal of Gi (resp. Hi). Let N = 1 +
|eval(G1)| + |eval(G2)|. Then G contains all productions of G1 and G2 and the addi-
tional production S → S101N0S2. The SLPH contains all productions ofG1,H1,G2,
H2 and the additional production T → T101NS10S21N0T2. Thus, we have

eval(G) = eval(G1) 0 1N 0 eval(G2) and

eval(H) = eval(H1) 0 1N eval(G1) 0 eval(G2) 1N 0 eval(H2).

690 Y. Lifshits and M. Lohrey

Clearly, if eval(G1) ↪→ eval(H1) or eval(G2) ↪→ eval(H2), then eval(G) ↪→ eval(H).
For the other direction assume that eval(G) = eval(G1) 0 1N 0 eval(G2) can be em-
bedded into eval(H) = eval(H1) 0 1N eval(G1) 0 eval(G2) 1N 0 eval(H2). Consider
the 1N -block of eval(G). If a 1 from this block is mapped to the prefix eval(H1) of
eval(H), then eval(G1) ↪→ eval(H1). If a 1 from the 1N -block of eval(G) is mapped
to the first 1N -block of eval(H), then the 0 at position |eval(G1)|+1 in eval(G) cannot
be mapped to the right of the 0 at position |eval(H1)| + 1 in eval(H). But then again
the prefix eval(G1) of eval(G) is embedded into the prefix eval(H1) of eval(H). Com-
pletely analogously it follows that if a 1 from the 1N -block of eval(G) is mapped to the
suffix eval(H2) of eval(H) or to the second 1N -block of eval(H), then eval(G2) ↪→
eval(H2). The only remaining case, namely that every 1 in the 1N -block of eval(G) is
mapped into eval(G1) 0 eval(G2) cannot occur, since N > |eval(G1)eval(G2)|. �

4.3 Hardness for Θp
2

Recall that Θp
2 is the class of all problems that can be accepted by a deterministic poly-

nomial time machine with access to an oracle from NP and such that furthermore all
questions to the oracle are asked in parallel [23].

Proposition 5. If A ⊆ {0, 1}∗ is NP-complete, then the following problem is Θp
2-

complete:
INPUT: A boolean circuit C (i.e., a circuit with AND-gates, OR-gates, NOT-gates,

and input gates), where every input gate g is labeled with a word w(g) ∈ {0, 1}∗.
QUESTION: DoesC evaluate to true when every input gate g evaluates to true (resp.

false) if w(g) ∈ A (resp. w(g) 	∈ A)?

Proof. For membership in Θp
2 note that we can evaluate all input gates of C in paral-

lel by using the language A as an oracle. Then, the whole circuit can be evaluated in
polynomial time. Hardness for Θp

2 follows from a result from [23]: It is Θp
2-complete

to decide for a given list of strings w1, w2, . . . , wn ∈ {0, 1}∗, whether the number
|{i | wi ∈ A}| is odd. By taking a boolean circuit for parity, this problem can be easily
encoded into a boolean circuit with A-instances at input gates. �

Theorem 4. Even for SLPs over a binary terminal alphabet, Embedding is Θp
2-hard.

Proof. Let C be a circuit with input gates labeled with instances of the NP-complete
Subset Sum problem. By the usual doubling argument, we can assume that negation
gates only occur directly above input gates. We first define inductively for every gate c
strings u(c) and v(c) and then argue that (i) c evaluates to true if and only if u(c) ↪→
v(c) and (ii) u(c) and v(c) can be generated by “small” SLPs. If c is an unnegated input
gate that is labeled with the Subset Sum instance I then u(c) = g and v(c) = h, where
g and h are the two strings that are constructed from I in the proof of Thm. 3. If c is a
negated input gate that is labeled with the Subset Sum instance I , then again we first
construct from I the words g and h as described in the proof of Thm. 3. Then we apply
the construction from the proof of Prop. 2 to g and h and assign the resulting strings to
u(c) and v(c), respectively. For AND- and OR-gates we use the constructions from the
proofs of Prop. 3 and 4, resp.: If c is an AND-gate with inputs c1 and c2, then

Querying and Embedding Compressed Texts 691

u(c) = u(c1) 1N 0 1N u(c2) and v(c) = v(c1) 1N 0 1N v(c2), (4)

where N = 1 + max{|v(c1)|, |v(c2)|}. If c is an OR-gate with inputs c1 and c2, then

u(c) = u(c1) 0 1N 0 u(c2) and v(c) = v(c1) 0 1N u(c1) 0 u(c2) 1N 0 v(c2), (5)

where N = 1 + |u(c1)| + |u(c2)|. From Thm. 3 and Prop. 2–4 it follows immediately
that C evaluates to true if and only if u(o) ↪→ v(o), where o is the output gate of C.

It remains to argue that for every gate c, the strings u(c) and v(c) can be generated
by SLPs of size polynomially bounded in the size of the circuit C (which is the number
of gates plus the size of all Subset Sum instances at the input gates of C). Note that if
we define n(c) = max{|u(c)|, |v(c)|} then we have n(c) ≤ 8 ·max{n(c1), n(c2)}+ 5
in case c is an AND- or OR-gate with inputs c1 and c2.1 It follows that n(c) is bounded
exponentially in the size of the circuit C. Moreover, we can calculate the binary repre-
sentations of the lengths |u(c)| and |v(c)| for every gate c in polynomial time. Thus, we
can construct SLPs of polynomial size for the factors 1N in (4) and (5). This implies
that for every gate c, u(c) and v(c) can be generated by SLPs of polynomial size. �

Let us close this paper with a corollary of Thm. 4. In the problem Longest Common
Subsequence (LCS) (resp. Shortest Common Supersequence (SCS)), one asks for
a finite set R of strings and n ∈ N whether there is a string w with |w| ≥ n and
∀v ∈ R : w ↪→ v (resp. |w| ≤ n and ∀v ∈ R : v ↪→ w). These problems are known to
be NP-complete, but for |R| = 2 they can be solved in polynomial time (see [6]). For
SLP-encoded input strings, LCS and SCS can be both solved in PSPACE.

Corollary 1. The problems LCS and SCS for SLP-encoded input strings are Θp
2-hard,

even if |R| = 2 for the input set R.

Proof. For u, v ∈ Σ∗ we have u ↪→ v if and only if ({u, v}, |u|) (resp. ({u, v}, |v|)) is
a true instance of LCS (resp. SCS). Hence, the corollary follows from Thm. 4. �

5 Open Problems

The main open problem that remains from this paper concerns the precise complexity of
Embedding. Our results leave a gap from Θp

2 to PSPACE. In Thm. 2 (P-completeness
of querying RLZ-encoded input strings) it is open, whether the underlying alphabet can
be fixed to, e.g., a binary alphabet.

Acknowledgments. This work was done during a visit of the first author at Univer-
sity of Stuttgart, Germany, which was supported by the DFG project GELO. The first
author was also supported by grants from the projects INTAS 04-77-7173 and NSh-
8464.2006.1.

1 Such a bound would not hold for a NOT-gate, since one application of the construction for
Prop. 2 may lead to a quadratic blow-up in the size of the generated strings. Therefore we have
to assume that NOT-gates only appear at input gates.

692 Y. Lifshits and M. Lohrey

References

1. A. Amir, G. Benson, and M. Farach. Let sleeping files lie: Pattern matching in Z-compressed
files. J. Comput. Syst. Sci, 52(2):299–307, 1996.

2. M. Beaudry, P. McKenzie, P. Péladeau, and D. Thérien. Finite monoids: From word to circuit
evaluation. SIAM J. Comput., 26(1):138–152, 1997.

3. P. Berman, M. Karpinski, L. L. Larmore, W. Plandowski, and W. Rytter. On the complexity
of pattern matching for highly compressed two-dimensional texts. J. Comput. Syst. Sci.,
65(2):332–350, 2002.

4. M. Charikar, E. Lehman, A. Lehman, D. Liu, R. Panigrahy, M. Prabhakaran, A. Sahai, and
A. Shelat. The smallest grammar problem. IEEE Trans. Inf. Theory, 51(7):2554–2576, 2005.

5. R. G. Downey and M. R. Fellows. Parametrized Complexity. Springer, 1999.
6. M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of

NP–completeness. Freeman, 1979.
7. L. Gasieniec, A. Gibbons, and W. Rytter. Efficiency of fast parallel pattern searching in

highly compressed texts. In Proc. MFCS’99, LNCS 1672, pages 48–58. Springer, 1999.
8. L. Gasieniec, M. Karpinski, W. Plandowski, and W. Rytter. Efficient algorithms for Lempel-

Ziv encoding (extended abstract). In Proc. SWAT 1996, LNCS 1097, pages 392–403.
Springer, 1996.

9. R. Greenlaw, H. J. Hoover, and W. L. Ruzzo. Limits to Parallel Computation: P -
Completeness Theory. Oxford Univ. Press, 1995.

10. D. Gushfield. Algorithms on Strings, Trees, and Sequences. Cambridge Univ. Press, 1999.
11. H. J. Karloff and W. L. Ruzzo. The iterated mod problem. Inf. Comput., 80(3):193–204,

1989.
12. M. Lohrey. Word problems and membership problems on compressed words. SIAM J.

Comput., 35(5):1210 – 1240, 2006.
13. N. Markey and P. Schnoebelen. A PTIME-complete matching problem for SLP-compressed

words. Inf. Process. Lett., 90(1):3–6, 2004.
14. M. Miyazaki, A. Shinohara, and M. Takeda. An improved pattern matching algorithm for

strings in terms of straight-line programs. In Proc. CPM 97, LNCS 1264, pages 1–11.
Springer, 1997.

15. G. Navarro. Regular expression searching on compressed text. J. Discrete Algorithms, 1(5–
6):423–443, 2003.

16. C. H. Papadimitriou. Computational Complexity. Addison Wesley, 1994.
17. W. Plandowski. Testing equivalence of morphisms on context-free languages. In Proc.

ESA’94, LNCS 855, pages 460–470. Springer, 1994.
18. W. Plandowski and W. Rytter. Complexity of language recognition problems for compressed

words. In Jewels are Forever, Contributions on Theoretical Computer Science in Honor of
Arto Salomaa, pages 262–272. Springer, 1999.

19. W. Rytter. Algorithms on compressed strings and arrays. In Proc. SOFSEM’99, LNCS 1725,
pages 48–65. Springer, 1999.

20. W. Rytter. Compressed and fully compressed pattern matching in one and two dimensions.
Proceedings of the IEEE, 88(11):1769–1778, 2000.

21. W. Rytter. Application of Lempel-Ziv factorization to the approximation of grammar-based
compression. Theor. Comput. Sci., 302(1–3):211–222, 2003.

22. W. Rytter. Grammar compression, LZ-encodings, and string algorithms with implicit input.
In Proc. ICALP 2004, LNCS 3142, pages 15–27. Springer, 2004.

23. K. W. Wagner. More complicated questions about maxima and minima, and some closures
of NP. Theor. Comput. Sci., 51:53–80, 1987.

24. J. Ziv and A. Lempel. A universal algorithm for sequential data compression. IEEE Trans.
Inf. Theory, 23(3):337–343, 1977.

Lempel-Ziv Dimension

for Lempel-Ziv Compression�

Maria Lopez-Valdes

Departamento de Informática e Ing. de Sistemas, Maŕıa de Luna 1,
Universidad de Zaragoza. 50018 Zaragoza, Spain

marlopez@unizar.es

Abstract. This paper describes the Lempel-Ziv dimension (Hausdorff
like dimension inspired in the LZ78 parsing), its fundamental properties
and relation with Hausdorff dimension. It is shown that in the case of
individual infinite sequences, the Lempel-Ziv dimension matches with the
asymptotical Lempel-Ziv compression ratio. This fact is used to describe
results on Lempel-Ziv compression in terms of dimension of complexity
classes and vice versa.

1 Introduction

Lutz [9] developed effective dimension (a Hausdorff like dimension) to quanti-
tatively analyze the structure of complexity classes. Later, other authors have
developed dimensions such as constructive or finite-state dimension and have
found new connections with information theory. In particular, the motivation of
this paper is the relation between dimension and compression. In this context, it
was shown that polynomial-time and finite-state dimension can be characterized
by the best compression ratio of polynomial-time and finite-state compressors re-
spectively [8,4]. As consequence, some results on dimension of complexity classes
can be interpreted as compressibility results.

This paper focusses on the relation between dimension and the Lempel-Ziv
compressor (LZ78) [12,11]. This compression algorithm is probably the most
widely studied of the universal compressors (compressors that do not depend
on the distribution of the sequence source). Previous results have shown that
polynomial-time and finite-state dimension are respectively a lower and up-
per bound of the asymptotical Lempel-Ziv compression ratio [8,4]. However,
by defining a dimension that matches the Lempel-Ziv compression ratio, results
on Lempel-Ziv compression could be directly used to determine the dimension
of some complexity classes. Alternatively, researchers in the compression do-
main have pointed out that it would be interesting to define a Hausdorff like
dimension inspired in the LZ78 parsing, and to see in which cases this dimen-
sion would match with the Hausdorff dimension. This is because it is expected

� This research was supported by Spanish Government MEC project TIN2005-08832-
C03-02.

R. Královič and P. Urzyczyn (Eds.): MFCS 2006, LNCS 4162, pp. 693–703, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

694 M. Lopez-Valdes

that dimension would allow to deal with open problems related with Lempel-Ziv
compression.

This paper describes the Lempel-Ziv dimension (Hausdorff like dimension
inspired in the LZ78 parsing), its fundamental properties and relation with
Hausdorff dimension. This dimension is naturally included in the existing hi-
erarchy of dimensions defined until now. Furthermore, in the case of individual
sequences, the Lempel-Ziv dimension matches with the asymptotical Lempel-Ziv
compression ratio. This result is used to show some applications on dimension of
complexity classes. Finally, results on dimension and ergodic theory are used to
partially solve the open question raised by Lutz and others [6,7] on the one-bit
catastrophe in the LZ78 compressor.

This paper is distributed as follows. Section 2 outlines the preliminaries on the
Lempel-Ziv compressor, measure, entropy and dimension. Section 3 describes the
polynomial-time and finite-state dimension and some results related with com-
pression. Section 4 develops the Lempel-Ziv dimension and fundamental prop-
erties. Section 5 describes results on Lempel-Ziv compression in terms of results
on dimension of complexity classes and vice versa (in particular the one-bit
catastrophe in the LZ78 compressor).

2 Preliminaries

Let a string be a finite and binary sequence w ∈ {0, 1}∗. Let |w| denote the
length of a string and λ the empty string. The Cantor space C is the set of all
infinite binary sequences. Let x[i . . . j] for 0 ≤ i ≤ j denote the i-th through the
j-th bits of x, where x ∈ {0, 1}∗ ∪ C. Let wx denote the concatenation of the
string w and the string or sequence x. Let w � x denote that w is a prefix of x.

Let a parsing of a string w ∈ {0, 1}∗ be a partition of w into phrases w1, w2, . . . ,
wn such that w1w2 . . . wn = w. Let a distinct parsing of a string w ∈ {0, 1}∗ be a
parsing of w such that no phrase, except possibly the last phrase, is the same as
an earlier phrase. Let a valid distinct parsing of a string w ∈ {0, 1}∗ be a distinct
parsing of w such that if wi is a phrase in the string w, then every prefix of wi

appears before wi in the distinct parsing. Note that each string w has an unique
valid distinct parsing.

The LZ78 compression algorithm encodes a given string with its valid distinct
parsing. This is done by replacing each phrase with a code word representing a
pointer and a bit. The pointer indicates the longest proper prefix of the phrase
and the bit is the last bit of the phrase. Together, they completely specify the
phrase being encoded. The output of the compression algorithm on the string w
is denoted LZ(w). (See [11,12] for more details).

2.1 Probability Measures on C and Entropy

Let Cw be the cylinder generated by a string w ∈ {0, 1}∗, given by Cw = {S ∈
C | w � S}. Let F be the σ-algebra generated from the cylinder sets of C. Let
ν : F → [0, 1] be a countable additive, nonnegative measure with total mass 1.

Lempel-Ziv Dimension for Lempel-Ziv Compression 695

Then, the triple (C,F , ν) is known as a probability space and ν is a probability
measure on C.

A measure ν is stationary if ν(T−1X) = ν(X) for all X ∈ F , where T is
the left-shift on C (i.e. for b ∈ {0, 1} and S ∈ C, T (bS) := S). A measure ν is
ergodic if any T -invariant set X (any set such that T−1X = X) has ν(X) = 0
or ν(X) = 1.

On one hand, each probability measure ν is identified on C with a function
µ : {0, 1}∗ → [0, 1] defined by µ(w) = ν(Cw). This function µ verifies the follow-
ing Kolmogorov’s consistency conditions

(i) µ(λ) = 1.
(ii) µ(w0) + µ(w1) = µ(w) for all w ∈ {0, 1}∗.

On the other hand, by Kolmogorov’s Existence Theorem [1], for each
µ : {0, 1}∗ → [0, 1] satisfying the consistence conditions, there exists a unique
probability measure ν on C such that ν(Cw) = µ(w). Then, for simplicity, a
function µ verifying (i) and (ii) will be referred also as a probability measure on
C.

Let the entropy of an stationary measure µ on C be:

H(µ) = limn
Hn(µ)

n , where Hn(µ) =
∑

w∈{0,1}n µ(w) log 1
µ(w) . (1)

Theorem 1. [3] (Entropy-rate Theorem) Let µ be a stationary ergodic proba-
bility measure on C. Then, it exists a constant h ≥ 0, such that

lim
n
− 1
n

logµ(S[0 . . . n− 1]) = h

almost surely. This constant h is called the entropy rate of µ.

Theorem 2. [3] For a stationary measure µ, the entropy H(µ) is always defined.
If µ is a stationary ergodic measure, then the entropy rate h and the entropy H(µ)
are equal.

2.2 Gales and Hausdorff Dimension

Definition 1. Let s ∈ [0,∞).

1. An s-supergale is a function d : {0, 1}∗ → [0,∞) satisfying

d(w) ≥ 2−s[d(w0) + d(w1)]

for all w ∈ {0, 1}∗.
2. An s-supergale d succeeds on a sequence S ∈ C if

lim sup
n

d(S[0 . . . n]) = ∞.

3. The success set of d is S∞[d] = {S ∈ C | d succeeds onS}.

696 M. Lopez-Valdes

In 2003, Lutz [9] proved a characterization of classical Hausdorff dimension in
terms of the s-supergales.

Theorem 3. [9] For every X ⊆ C,

dimH(X) = inf{s ∈ [0,∞) | ∃ s-supergale d s.t. X ⊆ S∞[d]}.

3 Polynomial-Time Dimension, Finite-State Dimension
and Lempel-Ziv Compression

This section describes the polynomial-time and finite-state dimension and some
results related with compression.

Based in the characterization of classical Hausdorff dimension, Lutz developed
resource-bounded dimension [9] by introducing a resource-bound∆ and requiring
the supergales to be ∆-computable.

dim∆(X) = inf{s ∈ [0,∞) | ∃ ∆-computable s-supergale d s.t. X ⊆ S∞[d]}.

This is the case of polynomial-time dimension that is defined by restricting
attention to polynomial-time s-supergales (see [9] for further details).

Definition 2. The polynomial-time dimension of X ⊆ C is

dimp(X) = inf{s ∈ [0,∞) | ∃ p-computable s-supergale d s.t. X ⊆ S∞[d]}.

The polynomial-time dimension of a sequence S ∈ C is dimp(S) = dimp({S}).

Also following this scheme, finite-state dimension is defined by restricting at-
tention to s-supergales that are specified by finite-state devices (see [4] for a
complete introduction).

Definition 3. The finite-state dimension of a set X ⊆ C is

dimFS(X) = inf{s ∈ [0,∞) | ∃ finite-state s-supergale d s.t. X ⊆ S∞[d]}.

The finite-state dimension of a sequence S ∈ C is dimFS(S) = dimFS({S}).

The next proposition states that to add a string in the beginning of a sequence
does not change its polynomial-time neither the finite-state dimension.

Proposition 1. For all S ∈ C and w ∈ {0, 1}∗,

1. dimp(wS) = dimp(S).
2. dimFS(wS) = dimFS(S).

The polynomial-time dimension is characterized as the best asymptotic
compression-ratio attained by some special class of polynomial-time compres-
sors. Lempel-Ziv compressor is in this class. Then,

Lempel-Ziv Dimension for Lempel-Ziv Compression 697

Proposition 2. [8] For every S ∈ C,

dimp(S) ≤ lim inf
n

|LZ(S[0 . . . n− 1])|
n

.

In [4] the authors obtained the following compressibility characterization of
finite-state dimension of a sequence,

dimFS(S) = ρFS(S)

where ρFS(S) is the best compression ratio attainable for the infinite sequence
S by any information lossless finite-state compressor.

On the other side, it’s well known [12,11] that

lim inf
n

|LZ(S[0 . . . n− 1])|
n

≤ ρFS(S).

Therefore, we can obtain the relationship between finite-state dimension and
Lempel-Ziv compresion.

Proposition 3. For every S ∈ C,

lim inf
n

|LZ(S[0 . . . n− 1])|
n

≤ dimFS(S).

Thus, the polynomial-time dimension and the finite-state dimension are respec-
tively a lower and upper bound of the Lempel-Ziv compression-ratio.

4 Lempel-Ziv Dimension

This section develops Lempel-Ziv dimension and its fundamental properties.
Notice that the previous section is a good example of the close relationship
between dimension and compression. The Lempel-Ziv dimension allows to see
the Lempel-Ziv compression under the dimension point of view.

The definition of the Lempel-Ziv dimension is motivated by [10]. In this paper,
the constructive dimension is defined by taking advantage of the existence of an
universal constructive subprobability measure [13]. This allows us to center the
definition in a single family of supergales {d̃s}s≥0,

cdim(X) = inf{s ∈ [0,∞) | X ⊆ S∞[d̃s]}.

The Lempel-Ziv algorithm (LZ78) is universal and asymptotically optimal for
finite-state compressors [11,12]. Therefore, as in the case of constructive dimen-
sion, we can define the Lempel-Ziv dimension in terms of a single family of
supergales, {ds

LZ}s≥0.

Definition 4. For each s ∈ [0,∞), let the Lempel-Ziv s-supergale ds
LZ be:

ds
LZ(λ) = 1

ds
LZ(w) =

2s|w|

n!
#{i∈{1...n} | u wi}

n if w = w1w2 . . . wnu

2s|w|
n! if w = w1w2 . . . wn

698 M. Lopez-Valdes

where w1, . . . wn are the distinct phrases in the valid distinct parsing of w and
u = wi for some i ∈ {1 . . . n}.

Remark 1. For every polynomial-time computable real s, the Lempel-Ziv s-
supergale is polynomial-time computable.

Proposition 4. The Lempel-Ziv s-supergale is optimal for the class of finite-
state s-supergales. That is, there exists α > 0 such that for all s ∈ [0,∞) and all
d finite-state s-supergale,

ds
LZ(w) ≥ αd(w),

for every w ∈ {0, 1}∗ (long enough).

Remark 2. For all s, t ∈ [0,∞) and w ∈ {0, 1}∗,

ds
LZ(w)2−s|w| = dt

LZ(w)2−t|w|.

Definition 5. The Lempel-Ziv dimension of X ⊆ C is,

dimLZ(X) = inf{s ∈ [0,∞) | X ⊆ S∞[ds
LZ]}.

The Lempel-Ziv dimension of a sequence S ∈ C is dimLZ(S) = dimLZ({S}).

Remark 3. For all X ⊆ Y ⊆ C, dimLZ(X) ≤ dimLZ(Y).

The following theorem states that the Lempel-Ziv dimension of any set X ⊆ C
is completely determined by the dimension of the individual sequences in the
set.

Theorem 4. For all X ⊆ C,

dimLZ(X) = sup
S∈X

dimLZ(S).

This theorem implies one important property of dimension, its countable stabil-
ity.

Corollary 1.

1. For all sets X,Y ⊆ C,

dimLZ(X ∪ Y) = max{dimLZ(X), dimLZ(Y)}.

2. Let X1, X2 . . . ⊆ C,

dimLZ(
∞⋃

i=1

Xi) = sup
i∈IN

dimLZ(Xi).

The main theorem of this section gives an exact characterization of the
Lempel-Ziv dimension of an infinite sequence in terms of the asymptotical com-
pression ratio attained by the Lempel-Ziv algorithm.

Lempel-Ziv Dimension for Lempel-Ziv Compression 699

Theorem 5. Let S ∈ C,

dimLZ(S) = lim inf
n

|LZ(S[0 . . . n− 1])|
n

.

The following result is a consequence of Remark 1 and Proposition 4. By The-
orem 5, the second part is a reformulation of Propositions 2 and 3 in terms of
dimension.

Theorem 6. Let X ⊆ C,

dimp(X) ≤ dimLZ(X) ≤ dimFS(X).

In particular, for all S ∈ C,

dimp(S) ≤ dimLZ(S) ≤ dimFS(S).

By Proposition 1 and Theorem 6 we have the following relationship between the
Lempel-Ziv dimension of S and wS.

Theorem 7. Let S ∈ C and w ∈ {0, 1}∗, then

|dimLZ(S)− dimLZ(wS)| ≤ dimFS(S)− dimp(S).

In particular, if dimFS(S) = dimp(S), then for all w ∈ {0, 1}∗,

dimLZ(S) = dimLZ(wS).

A consequence of this Theorem is that for sequences such that the polynomial-
time dimension and finite-state dimension are equal, the one-bit catastrophe
(defined in the next section) is not verified.

Definition 6. Let the class LZBIT be the set of all sequences S such that for
all w ∈ {0, 1}∗, dimLZ(S) = dimLZ(wS).

We use Lempel-Ziv dimension to endow LZBIT with internal dimension struc-
ture.

Definition 7. For X ⊆ C, the dimension of X in LZBIT is

dim(X |LZBIT) = dimLZ(X ∩ LZBIT).

5 Applications

In this section we partially solve the open question raised by Jack Lutz and
other authors [6,7] on the one-bit catastrophe (without the need of studying the
asymptotic valid distinct parsing). We also give some results about the Lempel-
Ziv compressibility of sequences from results in polynomial-time and finite-state
dimension and vice versa.

The one-bit catastrophe conjecture says that the compression ratio of an in-
finite sequence can change substantially when we add an initial bit on the se-
quence. In terms of dimension the conjecture reads as: S ∈ C verifies the one-bit
catastrophe iff dimLZ(S) 	= dimLZ(bS) for some b ∈ {0, 1}. Let us illustrate this
conjecture with the following example.

700 M. Lopez-Valdes

Example 1. Let S = 101100111000 . . .1n0n . . . ∈ C that is clearly highly com-
pressed by Lempel-Ziv algorithm. Let t(w) be the number of phrases in the
valid distinct parsing of w ∈ {0, 1}∗. Let w1 = S[0 . . .29], w2 = S[0 . . . 109] and
w3 = S[0 . . . 239]. Then,

t(w1) = 10 ⇒ |LZ(w1)| = 35 t(1w1) = 13 ⇒ |LZ(1w1)| = 53
t(w2) = 20 ⇒ |LZ(w2)| = 101 t(1w2) = 29 ⇒ |LZ(1w2)| = 146
t(w3) = 30 ⇒ |LZ(w3)| = 151 t(1w3) = 45 ⇒ |LZ(1w3)| = 271

In the case of S it seems that the longer the prefixes are, the better they are
compressed. However, in the case of the prefixes of 1S, it seems that LZ78 does
not compress anything.

With results derived in this section, we will show that both sequences are
asymptotically highly compressible and do not verify the one-bit catastrophe.

5.1 Stochastic Sequences and Ergodic Measures

In this subsection we present classes of stochastic sequences that do not verify the
one-bit catastrophe with probability 1 and determine its Hausdorff, polynomial-
time and Lempel-Ziv dimension.

Definition 8. Let S ∈ C and m ∈ IN. Let the relative probability for each
w ∈ {0, 1}m and each n ≥ m be

pm(w|S[0 . . . n− 1]) =
#{0 ≤ i ≤ n+m | S[i . . . i+m− 1] = w}

n−m+ 1
.

The limiting relative probability is defined as

pm(w|S) = lim
n
pm(w|S[0 . . . n− 1]),

provided the limit exists.

Definition 9. A sequence S ∈ C is stochastic if pm(w|S) exists for any m ∈ IN
and any w ∈ {0, 1}m. Let S ⊆ C denote the set of all stochastic sequences.

Every stochastic sequence S ∈ S induces a unique stationary measure on C,
µS : {0, 1}∗ → [0, 1] such that µS(w) = p|w|(w|S). (See [1]).

Definition 10. Let µ be a stationary measure. The set of frequency typical
sequences of µ is:

T (µ) = {S ∈ S | µS = µ}.

Remark 4. Let S ∈ S and w ∈ {0, 1}∗, then wS ∈ S and wS ∈ T (µS).

The next results will be useful to determine the Lempel-Ziv dimension of fre-
quency typical sequences of a stationary ergodic measure.

Theorem 8. (LZ78 Universality Theorem) Let µ be a stationary ergodic mea-
sure on C with entropy rate h and S ∈ T (µ) then,

lim
n

|LZ(S[0 . . . n− 1])|
n

= h almost surely.

Lempel-Ziv Dimension for Lempel-Ziv Compression 701

From [2] we have the following result.

Proposition 5. Let µ be a stationary ergodic measure with entropy rate h. For
all S ∈ T (µ),

dimFS(S) = h.

Theorem 9. [5] Let µ be a stationary ergodic measure with entropy rate h. The
Hausdorff dimension of the set of frequency typical sequences of µ is h. That is,

dimH(T (µ)) = h.

Corollary 2. Let µ be a stationary ergodic measure with entropy rate h, then

1. dimp(T (µ)) = dimLZ(T (µ)) = h.
2. dim(T (µ) |LZBIT)) = h.
3. If S ∈ T (µ), then dimLZ(S) = h almost surely.
4. If S ∈ T (µ), then S ∈ LZBIT almost surely.

This corollary states that: (i) almost all frequency typical sequences of a sta-
tionary ergodic measure have Lempel-Ziv compression ratio equal to the entropy
rate; (ii) the compression ratio of all of them is always less than h; and (iii) al-
most all of them do not verify the one-bit catastrophe.

We use next the last Corollary in a particular class of measures, which includes
the uniform measure.

Definition 11. Let α ∈ [0, 1]. The α-coin-toss probability measure on C is

µα(w) = (1− α)#(0,w)α#(1,w),

where #(b, w) is the number of times that the bit b appears in the string w.

In other words, µα(w) is the probability that S ∈ Cw when S ∈ C is chosen
according to a random experiment in which the ith bit of S is decided by tossing
a 0/1-valued coin whose probability of 1 is α.

Proposition 6. Let α ∈ [0, 1] and let H be the binary entropy function H :
[0, 1] → [0, 1] defined by

H(α) = α log
1
α

+ (1− α) log
1

1− α
.

Then, µα is a stationary ergodic measure with entropy rate H(α).

Definition 12. A sequence S ∈ C is normal (S ∈ NORMAL) if S ∈ T (µ
1
2).

That is, S is normal if every string w ∈ {0, 1}∗ has asymptotic frequency 2−|w|

in S.

Theorem 10. Let α ∈ [0, 1].

1. dimH(T (µα)) = dimp(T (µα)) = dimLZ(T (µα)) = H(α).
2. dim(T (µα) |LZBIT) = H(α).

702 M. Lopez-Valdes

3. For S ∈ T (µ), then dimLZ(S) = H(α) almost surely.
4. For S ∈ T (µ), then S ∈ LZBIT almost surely.

In particular,

1. dimH(NORMAL) = dimp(NORMAL) = dimLZ(NORMAL) = 1
2. dim(NORMAL |LZBIT) = 1.
3. For S ∈ NORMAL, then dimLZ(S) = 1 almost surely.
4. For S ∈ NORMAL, then S ∈LZBIT almost surely.

In [7] it is proved that sequences with Lempel-Ziv dimension 1 (that is, sequences
that Lempel-Ziv algorithm does not compress) are in NORMAL. However, it is
also showed that the converse does not hold. Notice that here we show that
almost all normal sequences have dimLZ(S) = 1 and do not verify the one-bit
catastrophe.

Since the binary entropy function is surjective on [0,1], then we have that
there exist sequences with Lempel-Ziv compression ratio η (for any η ∈ [0, 1])
that don’t verify the one-bit catastrophe:

Corollary 3. For all η ∈ [0, 1] there exist sequences S ∈ LZBIT with
dimLZ(S) = η.

5.2 Highly LZ Compressible Sequences

Definition 13. An infinite sequence S ∈ C is highly LZ compressible if

lim inf
n

|LZ(S[0 . . . n− 1])|
n

= 0

That is, in terms of Lempel-Ziv dimension, dimLZ(S) = 0.

Definition 14. Let S ∈ C and m ∈ ZZ+,

1. The factor set Fm(S) is the set of all finite strings of length m that appear
in S.

2. The factor complexity function, pS : IN → IN, counts the number of factors
of each m, that is pS(m) = |Fm(S)|.

In [2] it is proved that finite-state dimension of sequences with pS(m) = 2o(m)

are equal to zero. Then we have the following theorem.

Theorem 11. Every S ∈ C with pS(m) = 2o(m) is highly LZ compressible and
S ∈ LZBIT.

In particular, by using this result on example 1, sequence S is highly compressible
and S ∈ LZBIT since S satisfies pS(m) = m(m+ 1).

Other applications of this Theorem are,

Corollary 4. 1. If S is the binary expansion of a rational number, S is highly
LZ compressible and S ∈ LZBIT.

Lempel-Ziv Dimension for Lempel-Ziv Compression 703

2. Sturmian sequences, Morphic sequences, Automatic sequences are highly LZ
compressible and are in LZBIT (See [2]).

3. Every S ∈ REG is highly LZ compressible and S ∈ LZBIT.

References

1. P. Billingsley. Probability and Measure. John Wiley & Sons, Inc., New York, N.Y.,
1979.

2. C. Bourke, J. M. Hitchcock, and N. V.Vinodchandran. Entropy rates and finite-
state dimension. Theoretical Computer Science, 349, 2004.

3. T.M. Cover and J.A. Thomas. Elements of Information Theory. John Wiley &
Sons, Inc., New York, N.Y., 1991.

4. J. J. Dai, J. I. Lathrop, J. H. Lutz, and E. Mayordomo. Finite-state dimension.
Theoretical Computer Science, 310:1–33, 2004.

5. K. Hojo, B. Ryabko, and J. Suzuki. Performance of data compression in
terms of hausdorff dimension. TIEICE: IEICE Transactions on Communica-
tions/Electronics/ Information and Systems, 310:1761–1764, 2001.

6. L.A. Pierce II and P.C. Shields. Sequences incompressible by SLZ (LZW) yet fully
compressible by ULZ. Numbers, Information and Complexity, Kluwer Academic
Publishers, pages 385–390, 2000.

7. J. I. Lathrop and M. J. Strauss. A universal upper bound on the performance of the
Lempel-Ziv algorithm on maliciously-constructed data. In B. Carpentieri, editor,
Compression and Complexity of Sequences ’97, pages 123–135. IEEE Computer
Society Press, 1998.

8. M. López-Valdés and E. Mayordomo. Dimension is compression. In Proceedings
of the 30th International Symposium on Mathematical Foundations of Computer
Science, pages 676–685. Springer-Verlag, 2005.

9. J. H. Lutz. Dimension in complexity classes. SIAM Journal on Computing,
32:1236–1259, 2003.

10. J. H. Lutz. The dimensions of individual strings and sequences. Information and
Computation, 187:49–79, 2003.

11. D. Scheinwald. On the lempel-ziv proof and related topics. In Proceedings of the
IEEE, volume 82, pages 866–871, 1994.

12. J. Ziv and A. Lempel. Compression of individual sequences via variable rate coding.
IEEE Transactions on Information Theory, 24:530–536, 1978.

13. A. K. Zvonkin and L. A. Levin. The complexity of finite objects and the devel-
opment of the concepts of information and randomness by means of the theory of
algorithms. Russian Mathematical Surveys, 25:83–124, 1970.

Characterizing Valiant’s Algebraic Complexity

Classes

Guillaume Malod1 and Natacha Portier2

1 Kyoto University, Japan
malod@kuis.kyoto-u.ac.jp

2 École Normale Supérieure de Lyon, France
Natacha.Portier@ens-lyon.fr

Abstract. Valiant introduced 20 years ago a theory to study the com-
plexity of polynomial families. Using arithmetic circuits as computation
model, these classes are easy to define and open to combinatorial tech-
niques. In this paper we gather old and new results under a unifying
theme, namely the restrictions imposed upon the gates, building a hier-
archy from formulas to circuits. As a consequence we get simpler proofs
for known results such as the equality of the classes VNP and VNPe or
the completeness of the determinant for VQP, and new results such as a
characterization of the class VP or answers to both a conjecture and a
problem raised by Bürgisser [1]. We also show that for circuits of poly-
nomial depth and unbounded size these models have the same expressive
power and characterize a uniform version of VNP.

Keywords: Algebraic complexity, Valiant’s theory, polynomials, Perma-
nent, Determinant, arithmetic circuits, skew circuits.

1 Introduction

The common case in favor of studying arithmetic circuits is that they offer a
compact representation of polynomials. Results by Kaltofen [2] and von zur Ga-
then [3] show the feasibility of such a representation scheme by studying the ef-
fects of standard symbolic manipulations. Valiant’s algebraic complexity classes
appear in this context as the relevant formalization of intractability, explaining
for instance why we have no efficient algorithm for general iterated derivation,
as it would imply the equality of the classes VP and VNP. Arithmetic circuits
also relate to Boolean complexity. Kabanets and Impagliazzo [4] link the de-
randomization of Polynomial Identity Testing with super-polynomial arithmetic
circuit lower bounds for the Permanent (i.e. the separation of the classes VP and
VNP). Koiran [5] shows that the complexity of computing certain integers such
as n! is related to Valiant’s classes. Arithmetic circuits can also be considered as
Boolean inputs and define new problems with interesting consequences in com-
plexity, as is shown by [6], where the problem of deciding whether an arithmetic
circuit computes a positive number is related to numerical analysis.

Our interest in Valiant’s classes is based on a slightly different perspective.
These classes can be seen as representing computations by circuits in general, be

R. Královič and P. Urzyczyn (Eds.): MFCS 2006, LNCS 4162, pp. 704–716, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Characterizing Valiant’s Algebraic Complexity Classes 705

they arithmetic or Boolean. Their definition is very simple so that the combina-
torial insights are unfettered by computational details. Moreover the reductions
used are low level (p-projections, as used for example in [7]), thus retaining the
algebraic character of problems and giving very strong completeness results.

We stress this combinatorial aspect by introducing a restriction on circuits to
give a characterization of the class VP (Theorem 1). This greatly simplifies one
the main steps in the completeness proof of the Permanent. It also illustrates
our point on the general nature of these classes, because we can deduce a new
circuit characterization of LOGCFL and #LOGCFL (Propositions 2 and 3).

A stronger restriction applies to the class VQP, which captures the complexity
of the Determinant. We use it to give full answer to a conjecture by Bürgisser [1]
stating that several operations of linear algebra are VQP-complete (Theorem 5).
The restricted circuits used have in fact been previously introduced by Toda [8].
We import his definition of a class capturing the complexity of the Determinant
and suggest that it is better suited to the task than VQP. The completeness of
the Determinant for this class yields an answer to another question raised by
Bürgisser: the Determinant family is indeed linearly closed (Proposition 5). We
finally use similar circuit techniques to characterize a uniform version of VNP
(Theorem 9).

2 Basic Definitions

Valiant’s complexity classes revolve around the representation of polynomials
over a given field by arithmetic circuits. More details can be found in [1,3].

Definition 1. An arithmetic circuit is a finite acyclic directed graph with ver-
tices of in-degree 0 or 2 and exactly one vertex of out-degree 0. Vertices of
in-degree 0 are called inputs and labeled by a constant or a variable. The other
vertices, of in-degree 2, are labeled by × or + and called computation gates. We
distinguish left and right arguments to a computation gate (i.e. each arrow in
our graph is implicitly labelled with L or R depending on whether it is a left or
right input). The vertex of out-degree 0 is called the output. The vertices of a
circuit are commonly called gates and its edges arrows.

The polynomial represented by a circuit can easily be defined by induction.
Circuits represent a computation where one can reuse partial results. If we do
not allow this, that is if we require each argument to be computed especially for
a given computation step, then the graph underlying the circuit must be a tree.
Such circuits are called expressions, arithmetic terms or formulas (we shall use
the latter). We associate the following parameters to a given circuit.

Definition 2. The size of a circuit is its number of gates. The depth is the
maximal length of a directed path from an input to an output. The degree of a
gate is defined recursively: any input is of degree 1; the degree of a + gate is the
max of the incoming degrees; the degree of a × gate is the sum of the incoming
degrees. The degree of the circuit is the degree of its output gate.

706 G. Malod and N. Portier

As usual in complexity theory we are interested in asymptotics, in this case the
growth of the size of the circuits representing a sequence of polynomials. We
give here the definitions of Valiant’s classes and the reductions used. Note that
the classes depend on a chosen field, but as we are interested in combinatorial
techniques this will not play a role in this paper.

Definition 3. A sequence of polynomials (fn) belongs to VP if there exists a
sequence of circuits Cn of polynomially bounded size and degree such that Cn

represents fn.
A sequence of polynomials (fn) belongs to VNP if there exists a polynomial p
and a sequence gn ∈ VP such that fn(x̄) =

∑
ε̄∈{0,1}p(|x̄|) gn(x̄, ε̄).

A polynomial f is a projection of a polynomial g if f(x̄) = g(a1, . . . , am), where
the ai are elements of the field or variables among x1, . . . , xn. A sequence (fn) is
a p-projection of a sequence (gn) if there exists a polynomially bounded function
t(n) such that fn is a projection of gt(n) for all n.

It is obvious that VP is included in VNP. Valiant’s hypothesis is that this in-
clusion is strict; it remains a major open problem of complexity theory. We can
define similar classes using formulas in place of circuits. These classes play an
important part in the completeness proof of the permanent.

Definition 4. A sequence of polynomials (fn) belongs to the class VPe if there
exists a sequence of formulas Fn of polynomially bounded size such that Fn

represents fn.
A sequence of polynomials (fn) belongs to VNPe if there exists a polynomial p
and a sequence gn ∈ VPe such that fn(x̄) =

∑
ε̄∈{0,1}p(|x̄|) gn(x̄, ε̄).

The main result in Valiant’s theory is the completeness of the Permanent fam-
ily of polynomials for the class VNP, over fields of characteristic different from
2. The permanent of a matrix of size n with variables entries zi,j is defined as
PERn(zi,j) =

∑
σ∈Sn

∏n
i=1 zi,σ(i). In this definition, Sn is the group of permu-

tations of {1, . . . , n}. This result stands in stark contrast to the fact that the
Determinant family belongs to the class VP. The determinant is defined as the
permanent but with positive and negative monomials depending on the sign s(σ)
of the permutation: DETn(zi,j) =

∑
σ∈Sn

s(σ)
∏n

i=1 zi,σ(i).

3 Characterizing VP

Whereas the class VNP captures the complexity of the Permanent and many
other problems, there is no natural complete problem for the class VP. We give
here an intuitive characterization which we hope may provide better insight.
For this purpose we introduce the following definition, exploiting the interplay
between circuits and formulas in Valiant’s theory.

Definition 5. Let α be a gate receiving arrows from gates β and γ. We say
that α is disjoint if the sub-circuits associated to β and γ are disjoint from one
another. A circuit is multiplicatively disjoint if all its multiplication gates are
disjoint.

Characterizing Valiant’s Algebraic Complexity Classes 707

A circuit is a formula if and only if all its gates are disjoint. A multiplicatively
disjoint circuit behaves like a formula for multiplications. Disjoint multiplica-
tions can be seen as a way to control the degree of the polynomial computed
by a circuit, which links this technique to the retarded multiplication scheme
used in [9] to characterize the class (P. However it also provides combinatorial
information, as we will see in the next section. Multiplicatively disjoint circuits
of polynomial size characterize VP.

Theorem 1. A sequence of polynomials (fn) belongs to VP if and only if there
exists a sequence (Cn) of multiplicatively disjoint circuits, of polynomially boun-
ded size, such that Cn represents the polynomial fn.

This theorem is an obvious consequence of Lemma 1 and 2 below. The first
lemma can be shown by an easy induction on the size of the circuit. For the
second, the basic idea is comparable to the näıve transformation of a circuit into
a formula by duplicating gates. However, for multiplicatively disjoint circuit, the
construction can be done in such a way that the degree of the circuit is a bound
on the number of copies needed for a given gate, so that we avoid a potentially
exponential growth in size. A proof of this theorem can also be obtained from
the characterization of circuits of polynomial size and degree by semi-unbounded
circuits of polynomial size and logarithmic depth in [10].

Lemma 1. If C is a multiplicatively disjoint circuit of size t, its degree is less
than or equal to t.

Lemma 2. If C is a circuit of size t and degree d, there exists a multiplicatively
disjoint circuit C′, which computes the same polynomial and whose size is less
than or equal to dt.

4 Consequences

4.1 Formulas and Circuits

One major open question is whether circuits are more powerful than formulas at
the polynomial level, i.e. whether the inclusion VPe ⊆ VP is strict or not. The
first step of the completeness proof of the Permanent is to show that under a
Boolean sum formulas and circuits have the same power. A technically involved
proof of this can be found for example in [1]. The above characterization of VP
yields a simpler and more intuitive proof, which we will sketch here.

Theorem 2. VNP = VNPe over any field.

The inclusion VNPe ⊆ VNP is obvious. It is easy to see that, in order to prove
the inclusion VNP ⊆ VNPe, we need only prove the inclusion VP ⊆ VNPe. We
therefore need to express the polynomial represented by a circuit as a sum of
formulas. For a given circuit we will consider graphs called parse trees. These
graphs appear under different names in several previous works [10,11,12,13,14].

708 G. Malod and N. Portier

We will use them in the context of arithmetic circuits, in the spirit of this quote
from [11]: a parse tree is “a family tree which charts the generation of a particular
monomial in the final result”.

Definition 6. The set of parse trees of a circuit C is defined by induction on
its size:

– If C is of size 1 it has only one parse tree, itself.
– If the output gate of C is a + gate whose arguments are the gates α and β,

the parse trees of C are obtained by taking either a parse tree of Cα and the
arrow from α to the output or a parse tree of Cβ and the arrow from β to
the output.

– If the output gate of C is a × gate whose arguments are the gates α and β,
the parse trees of C are obtained by taking a parse tree of Cα and a parse
tree of a disjoint copy of Cβ and the arrows from α and β to the output.

It turns out that the polynomial computed by a circuit is the sum of the values
of its parse trees. This is true in general, and can easily be shown by induction.
We write PT(C) for the set of parse trees of a circuit C and val(T) for the value
of parse tree T .

Lemma 3. If C is a circuit for the polynomial f , f(x̄) =
∑

T∈PT(C) val(T).

To prove the inclusion VP ⊆ VNPe we thus wish to write a polynomial in VP
as a sum of formulas. We can use the previous lemma, but we need to show that
we can indeed sum over all parse trees and compute the value of a parse tree. In
other words we will in fact sum over all possible Boolean words of a given length,
as in the definition of VNPe, therefore we need to have a formula to recognize
when a word encodes a parse tree and to compute its value. This task is easier
for multiplicatively disjoint circuits, thanks to the following proposition, which
is not hard to prove.

Proposition 1. A circuit C is multiplicatively disjoint iff each parse tree of C
is a sub-graph of C.

The useful implication for us is that in the case of multiplicatively disjoint circuits
all parse trees are sub-graphs. And since the circuit is of polynomial size, it is
straightforward, if somewhat tedious, to recognize and compute the value of the
parse trees of a circuit with a formula.

4.2 Boolean Classes Defined by Multiplicatively Disjoint Circuits

In this short subsection, we illustrate the general nature of results in Valiant’s
theory by applying them in the Boolean setting. The name VP might suggest
that the related Boolean class is P, but if one looks at circuit definitions of
Boolean classes, it is obvious that the closest class is LOGCFL. This is reflected
in the polynomial proof tree size property identified by Venkateswaran [15] to
characterize LOGCFL. In our context, this property is illustrated by the fact that

Characterizing Valiant’s Algebraic Complexity Classes 709

all proof trees of a multiplicatively disjoint circuit are sub-circuits, and thus have
the same size bound as the circuit. We get a straightforward characterization of
LOGCFL by multiplicatively disjoint circuits, where we use the Boolean opera-
tors as ring operations and define the degree of a circuit accordingly. The proof
uses Venkateswaran’s characterization of LOGCFL by semi-unbounded circuits
of polynomial size and logarithmic depth in [15], then the equivalence with cir-
cuits of polynomial size and degree from [10], and finally the equivalence with
multiplicatively disjoint circuits of polynomial size from Theorem 1.

Proposition 2. LOGCFL is the class of languages accepted by uniform se-
quences of multiplicatively disjoint Boolean circuits of polynomial size.

By arithmetizing the circuit definition of this class in the manner described
in [16] we get a characterization of #LOGCFL.

Proposition 3. #LOGCFL is the class of functions computed by uniform se-
quences of multiplicatively disjoint arithmetic circuits of polynomial size.

Note that these results can be contrasted to the known links between NC1 and
formulas, and between NL and skew circuits: uniform sequences of formulas can
be used to characterize NC1 and (NC1 while skew circuits characterize NL or
(L. The hierarchy of restrictions we are studying in this paper thus also exists
in the Boolean case.

5 The Complexity of the Determinant

5.1 The Class VQP

The Determinant family is known to belong to the class VP. However it is not
known to be VP-complete, nor is it thought to be. The class VQP, defined via
circuits of quasi-polynomial size, was introduced to further study the complexity
of the Determinant. Indeed one can find proofs of completeness of the Determi-
nant for VQP in [1,3]. Strengthening the restriction on multiplications enabled us
to give in [14] a simpler proof. As a matter of fact, this strengthened restriction
had already been introduced by Toda in [8] with the definition of weakly skew
circuits. This last work is extremely relevant to the complexity of the Determi-
nant in Valiant’s theory: the connection between skew or weakly skew circuits
and the determinant of integer matrices is well known, but it is surprising that
the class VQP is used to capture the complexity in Valiant’s setting when a
definition based on skew circuits is much more natural. We define such a class
in the next section and provide details there. As the techniques for both classes
are similar, and as we strongly favor this new class, only definitions and results
will be stated for the class VQP, without further details.

Definition 7. A function t from N to N is quasi-polynomially bounded if there
exist two constants a and b such that t(n) ≤ na·logb n for all n ≥ 2.

710 G. Malod and N. Portier

A sequence of polynomials (fn) belongs to the class VQP if its number of vari-
ables and degree is polynomially bounded and if it is represented by a circuit of
quasi-polynomially bounded size.
A sequence (fn) is a qp-projection of a sequence (gn) if there exists a quasi-
polynomially bounded function t such that for all n fn is a projection of gt(n)

Theorem 3. The Determinant is VQP-complete over any field.

The following algebraic characterization of whether VNP is included in VQP is
noted in [3] (it is shown in [1] that VQP is not included in VNP).

Theorem 4. VNP ⊆ VQP iff the Permanent is a qp-projection of the Deter-
minant.

Consider now the families of polynomials (Fn), (Gn) and (Hn) defined by Fn =
Tr(Xn), Gn = Tr(X1 · · ·Xn) and Hn = Tr(DET(X) · X−1), where Tr is the
trace, and X or Xi are matrices with n2 variables. The following theorem, which
can be proved using the ideas in the next section, is our answer to conjecture 8.1
from [1]1.

Theorem 5. The families (Fn), (Gn) and (Hn) are VQP-complete over any
field.

5.2 The Class VPws

We have already said that [8] gives an excellent account of the complexity of
the Determinant, which can be immediately transposed into Valiant’s setting.
In fact, Toda defines the very natural class DET(poly) of polynomial families
which can be expressed as the determinant of a sequence of matrices (with
variable or constant entries) of polynomially bounded size. This class is shown
to be characterized by skew arithmetic circuits, and equivalently by a new type
of circuits, called weakly skew. Recall that a circuit is skew if all multiplication
gates have at most one argument which is not an input gate. The condition is
somewhat relaxed for weakly skew circuits.

Definition 8. A circuit is weakly skew if for any multiplication gate α, receiving
arrows from gates β and γ, one of the two sub-circuits Cβ or Cγ is only connected
to the rest of the circuit by the arrow going to α.

One can see formulas as computations where each argument of a gate is computed
exclusively for that gate. In the case of weakly skew circuits, this condition
must hold for at least one of the two arguments of each multiplication. This
requirement will be sufficient for a an important construction to go through
for weakly skew circuits: the so-called universality property. It has already been
proved for formulas and the Determinant: the polynomial computed by a formula
s is a projection of the Determinant of a matrix of size polynomial in s. The
1 A partial answer to this conjecture was given in [17].

Characterizing Valiant’s Algebraic Complexity Classes 711

main step of the proof is to build weighted graphs with adequate weight. Let
G be an edge-weighted directed graph with two vertices s and t, the weight of
a path from s to t is the product of the weights of the edges appearing in the
path. The weight of (s, t) in G is the sum of the weights of all paths from s to
t. Such a graph can also be built for weakly skew circuits.

Lemma 4. Let C be a weakly skew circuit of size m, there exists an acyclic
directed graph G, with two distinguished vertices s and t, such that: G is of size
m+ 1 and the weight of (s, t) in G is the polynomial computed by C.

When proving the lemma for formulas, one can build the graph by induction in
the following manner: an input gate becomes an edge weighted with the corre-
sponding variable or constant; for an addition gate we place the graphs corre-
sponding to the arguments in parallel; for a multiplication gate we place them
in series. Going from a formula to a weakly skew circuit one must strengthen the
property being proved so that it applies to circuits with multiple output gates.
Therefore we wish to build a graph which has a vertex tα for several gates α in
the circuit such that the weight of the graph between s and tα is the polynomial
represented by α. The induction steps above still work except that by placing
the circuits in series when we multiply we may change the weight of the gates
of the second circuit. The weakly skew condition guarantees that we will not
need the values of these gates later in the circuit, so that the construction goes
through. Indeed, one can see weakly skew circuits as the most expressive circuits
for which this construction can work, in the sense that any polynomial which
is the weight of a graph of size s can be computed by a weakly skew circuit
of size polynomial in s (this is a consequence of the completeness results which
follow). From this construction we can show the universality of the Determinant
for weakly skew circuits, as noted by Toda.

Lemma 5. If f is a polynomial computable by a weakly skew circuit of size m,
f is a projection of DETm+1.

Let us now transplant Toda’s class in Valiant’s framework: we will call it VPws
and define it directly by weakly skew circuits.

Definition 9. A sequence of polynomials (fn) belongs to the class VPws if it is
represented by a sequence of weakly skew circuits of polynomially bounded size.

The previous universality lemma, together with a computation by weakly skew
circuits (see the combinatorial work of Mahajan & Vinay [18]), gives us a nat-
ural proof of the completeness of the Determinant for the class VPws, a direct
transposition of Toda’s work in Valiant’s setting. Note that this completeness
is under standard p-projections, which is one reason we suggest this class be
preferred to VQP.

Theorem 6. The sequence (DETn) is VPws-complete over any field.

Defining VPws via weakly skew circuits puts it naturally between VPe and VP.
Using Lemma 4 and some graph tricks, we can also show the completeness of

712 G. Malod and N. Portier

the families (Fn), (Gn) and (Hn) for this new class. The completeness of (Fn)
then implies an alternative characterization of VPws by skew circuits.

Theorem 7. The families (Fn), (Gn) and (Hn) are VPws-complete over any
field.

Proposition 4. A sequence of polynomials (fn) belongs to the class VPws if it
is represented by a sequence of skew circuits of polynomially bounded size.

5.3 The Permanent and the Determinant

Introducing VPws enables us to provide another complexity theoretic character-
ization of the relation between the Permanent and the Determinant, similar to
Theorem 4, but more natural. Both these results are interesting in that they re-
late a question from computational complexity to an easily stated mathematical
problem.

Theorem 8. The Permanent is a p-projection of the Determinant iff VPws =
VNP.

Several articles have been written on the links between the Permanent and the
Determinant, going back to Pólya [19], who asks whether one can change the
sign of the entries of a {0, 1} matrix so that the Determinant of the resulting
matrix is the Permanent of the original one. A result such as the one above
indicates that even the more general procedure of computing a Permanent as
the Determinant of a polynomially bigger matrix is probably not possible in the
general case.

Using the completeness of the Determinant for the class VPws, we can also
answer a question raised by Bürgisser [1] (Problem 3.2). He defines the notion
of linearly closed families.

Definition 10. A family (gn) is called linearly closed if any linear combination∑n
k=1 λkgik

is a projection of some gm, where m is polynomially bounded in
the number n of terms and maxk ik. Hereby the sets of variables of the gi are
supposed to be (made) disjoint for distinct k.

Bürgisser then asks whether the Determinant family has this property . The
answer is positive. It is interesting to see this “mathematical” property of the
Determinant proved by a technique from complexity theory.

Proposition 5. The Determinant is linearly closed.

Indeed, each Determinant in the linear combination can be computed by a weakly
skew circuit. If we multiply the result of each circuit by the appropriate coefficient
and then sum them, the resulting circuit is still weakly skew. By completeness,
this circuit can be computed as the Determinant of a matrix whose size depends
on the size and number of matrices in the linear combination.

Characterizing Valiant’s Algebraic Complexity Classes 713

6 Characterizing Uniform VNP

We have considered the increasing expressive power of the following sequence
of models, when the size is polynomially bounded: formulas, weakly skew cir-
cuits, multiplicatively disjoint circuits. One of the reasons VQP was considered
a “good” class is that if we allow a quasi-polynomially bounded size, all these
classes are equal (cf. [3]). This collapse also occurs if we polynomially bound the
depth rather than the size. And, as we shall see in this section, in the uniform
case the resulting class is VNP.

We wish to compare the respective expressive power of Boolean sums in front
of a circuit of polynomial size and degree (VNP) on the one hand and of circuits of
polynomial depth and degree on the other. This is related to the characterization
of (P via circuits of polynomial depth and degree in [13]. We will show that a
similar theorem holds for a uniform version of Valiant’s algebraic classes.

At the non-uniform level it is easy to see that circuits of polynomial depth
and degree are at least as powerful as VNP. Indeed a sequence in VNP is defined
from a sequence in VP which is represented by circuits of polynomial size and
degree, and therefore polynomial depth and degree. By computing in parallel all
the values of these circuits for all Boolean strings of appropriate length and then
summing, we get a circuit of polynomial depth and degree. The summation can
be done in polynomial depth because there is a simply exponential number of
gates to sum.

For the converse we would like to express the polynomial computed by a
circuit of polynomial depth and degree as a sum of the values of a circuit of
polynomial size and degree. We will use the same strategy as when proving the
equality of VNP and VNPe. The value of a circuit is written as the sum of the
values of its parse trees. Although there is no polynomial bound on the size of
our original circuit, the constraints on depth and degree give us a constraint on
the size of the parse trees, as noticed in [13].

Lemma 6. Any parse tree of a circuit of depth p and degree d is of size less
than or equal to pd.

However we also need to recognize efficiently whether a Boolean string encodes a
parse tree or not (previously we used the sub-circuit property because our circuits
were of polynomial size). This will be made possible by the second ingredient,
uniformity. We will use the condition given in [13]. Define the direct connection
language of a sequence of circuits Cn as the set of strings of the form 〈n, g, y, p〉
such that either (i) g is an addition gate in cn and y is an input of g, or (ii) g
is a multiplication gate in cn and y is a left or right input of g depending on p,
or (iii) g is a gate name in cn and y is the type of g. A sequence of circuits Cn

is DLOGTIME-uniform if its direct connection language can be recognized by a
deterministic Turing machine in time logarithmic in the size of the circuits. In
our case, with circuits of exponential size, it means that we can get information
on an arrow or a gate in polynomial time.

Let us now define the uniform classes we have mentioned. For Valiant’s classes,
P-uniformity is the most plausible notion, meaning that the circuit Cn is

714 G. Malod and N. Portier

produced by a Turing machine in polynomial time upon input of n in unary.
We will also assume that the circuits in the sequence use a fixed set of con-
stants.

Definition 11. A sequence of polynomials is in the class VPu if it is represented
by a P-uniform sequence of circuits of polynomial size and degree.
A sequence of polynomials (fn) belongs to VNPu if there exists a polynomial p
and a sequence gn ∈ VPu such that fn(x̄) =

∑
ε̄∈{0,1}p(|x̄|) gn(x̄, ε̄).

Theorem 9. A sequence of polynomials (fn) belongs to VNPu iff it can be rep-
resented by a DLOGTIME-uniform sequence of circuits of polynomial depth and
degree.

The proof of this theorem follows the sketch given above. The remainder is
technical details which we will not give here. Note the similarity of this charac-
terization with the characterization of (P by Venkateswaran [13]. In both cases
the class characterized is uniform. In our description of the proof strategy we
emphasize the role played by uniformity. What happens in the non-uniform case?

We will use a converse of Valiant’s criterion (cf. [1]) to answer this question.
Valiant gave a criterion for showing that specific sequences of polynomials belong
to VNP, the rough idea being that sequences whose coefficient function is in
(P/poly belong to VNP. One can show a converse of this theorem by using
the coefficient function (we will not give details here, this is noted in [20] and
can be proved using techniques from [14]). Such a converse states that if we
have a family of functions (fn), where fn : {0, 1}n →

[
0, . . . , 2p(n)

]
, and if we

define gn(x1, . . . , xn) =
∑

ε̄∈{0,1}n fn(ε̄) xε1
1 · · ·xεn

n , then (gn) ∈ VNP implies
(fn) ∈ (P/poly .

Now consider any sequence of functions fn : {0, 1}n →
[
0, . . . , 2p(n)

]
and

view it as the coefficient function of a sequence gn(x̄) =
∑

ε̄ fn(ε̄)xε1
1 · · ·xεn

n . We
can compute in polynomial depth these monomials and the integer coefficients
and just sum them, so that the sequence (gn) can be computed by a sequence
of circuits of polynomial depth and degree. If the hypothesis is true in this
non-uniform case, then (gn) belongs to VNP. Thus (fn) belongs to (P/poly .
However there exists functions which are not in PSPACE/poly , and thus not in
(P/poly , which contradicts the assumption. Thus the uniformity condition is not
insignificant, but rather an essential ingredient of the proof.

7 Conclusion

We have shown in this paper that different classes in Valiant’s framework can be
defined via a hierarchy of circuits of polynomial size, from formulas to weakly
skew circuits to multiplicatively disjoint circuits, and that all these restrictions
become equivalent for polynomial depth and (in the uniform case) define the
class VNP. These characterizations came with new results and new proofs of old
results. In our view, one important aim of this paper is to bring attention to the
work of Toda [8] and suggest the adoption of the class VPws.

Characterizing Valiant’s Algebraic Complexity Classes 715

To stress the importance of this class we could like to find other complete
polynomials. For any polynomial family which is shown to be in VP we should
check if one can show that it is VPws-complete. The class VPws can also be seen
as capturing the computational power of directed acyclic graphs with weights.
When one builds a graph as in Lemma 4 starting from a formula, the resulting
directed graph is series-parallel, a property which has been studied in the context
of task ordering or parametrized complexity. The question of the respective power
of weakly skew circuits versus formulas, which is the question of whether the
Determinant can be computed by formulas, is exactly the problem of whether
a general st-dag can be transformed into a series-parallel one of same weight
without an explosion of its size. We think it would be interesting to study these
links.

As for the characterization of VP, it could help us find a natural complete
problem. A good strategy for this is to look more closely at the class LOGCFL,
its properties and complete problems. One possibility would be to use the tensor
formulas defined in [21], where an example of a LOGCFL-complete problem is
given. Indeed, the different kinds of tensor formulas seem to fit very well with
the classes VPws, VP and VNP, and we hope to explore this link in a future
work.

References

1. Bürgisser, P.: Completeness and reduction in algebraic complexity theory. Volume 7
of Algorithms and Computation in Mathematics. Springer-Verlag, Berlin (2000)

2. Kaltofen, E.: Uniform closure properties of p-computable functions. In: STOC ’86:
Proceedings of the eighteenth annual ACM symposium on Theory of computing,
New York, NY, USA, ACM Press (1986) 330–337

3. von zur Gathen, J.: Feasible arithmetic computations: Valiant’s hypothesis. J.
Symb. Comput. 4 (1987) 137–172

4. Kabanets, V., Impagliazzo, R.: Derandomizing polynomial identity tests means
proving circuit lower bounds. In: Proceedings of the 35th Annual ACM Symposium
on Theory of Computing, June 9-11, 2003, San Diego, CA, USA. (2003) 355–364

5. Koiran, P.: Valiant’s model and the cost of computing integers. Computational
Complexity 13 (2005) 131–146

6. Allender, E., Bürgisser, P., Kjeldgaard-Pedersen, J., Miltersen, P.: On the com-
plexity of numerical analysis. Electronic Colloquium on Computational Complexity
(ECCC) (2004)

7. Immerman, N., Landau, S.: The complexity of iterated multiplication. Inf. Comput.
116 (1995) 103–116

8. Toda, S.: Classes of arithmetic circuits capturing the complexity of computing
the determinant. IEICE Transactions on Information and Systems E75-D (1992)
116–124

9. Babai, L., Fortnow, L.: Arithmetization: a new method in structural complexity
theory. Comput. Complexity 1 (1991) 41–66

10. Allender, E., Jiao, J., Mahajan, M., Vinay, V.: Non-commutative arithmetic cir-
cuits: depth reduction and size lower bounds. Theoret. Comput. Sci. 209 (1998)
47–86

716 G. Malod and N. Portier

11. Jerrum, M., Snir, M.: Some exact complexity results for straight-line computations
over semirings. J. ACM 29 (1982) 874–897

12. Venkateswaran, H., Tompa, M.: A new pebble game that characterizes parallel
complexity classes. SIAM J. Comput. 18 (1989) 533–549

13. Venkateswaran, H.: Circuit definitions of nondeterministic complexity classes.
SIAM J. Comput. 21 (1992) 655–670

14. Malod, G.: Polynômes et coefficients. PhD thesis, Université Claude Bernard
Lyon 1 (2003)

15. Venkateswaran, H.: Properties that characterize LOGCFL. J. Comput. Syst. Sci.
43 (1991) 380–404

16. Allender, E.: Arithmetic Circuits and Counting Complexity Classes. In Krajicek,
J., ed.: Complexity of Computations and Proofs. Volume 13 of Quaderni di Matem-
atica. Seconda Universita di Napoli (2004) 33–72

17. Bläser, M.: Complete problems for valiant’s class of qp-computable families of
polynomials. In: COCOON ’01: Proceedings of the 7th Annual International Con-
ference on Computing and Combinatorics, London, UK, Springer-Verlag (2001)
1–10

18. Mahajan, M., Vinay, V.: Determinant: Combinatorics, algorithms, and complexity.
Chicago J. Theor. Comput. Sci. 1997 (1997)

19. Pólya, G.: Aufgabe 424. Arch. Math. Phys. 20 (1913) 271
20. Périfel, S.: Polynômes donnés par des circuits algébriques et généralisation du

modèle de Valiant. Master’s thesis, École Normal Supérieure de Lyon, France
(2004)

21. Damm, C., Holzer, M., McKenzie, P.: The complexity of tensor calculus. Compu-
tational Complexity 11 (2002) 54–89

The Price of Defense�

Marios Mavronicolas1, Loizos Michael2, Vicky Papadopoulou1,
Anna Philippou1, and Paul Spirakis3

1 Department of Computer Science, University of Cyprus, Nicosia CY-1678, Cyprus
{mavronic,viki,annap}@ucy.ac.cy

2 Division of Engineering and Applied Sciences, Harvard University, Cambridge,
MA 02138

loizos@eecs.harvard.edu
3 Research Academic Computer Technology Institute (RACTI), Rion, Patras 26500,

Greece & Department of Computer Engineering and Informatics, University of
Patras, Rion, Patras 26500, Greece

spirakis@cti.gr

Abstract. We consider a strategic game with two classes of confronting
randomized players on a graph G(V, E): ν attackers, each choosing ver-
tices and wishing to minimize the probability of being caught, and a
defender, who chooses edges and gains the expected number of attack-
ers it catches. The Price of Defense is the worst-case ratio, over all Nash
equilibria, of the optimal gain of the defender over its gain at a Nash equi-
librium. We provide a comprehensive collection of trade-offs between the
Price of Defense and the computational efficiency of Nash equilibria.

– Through reduction to a Two-Players, Constant-Sum Game, we prove
that a Nash equilibrium can be computed in polynomial time. The
reduction does not provide any apparent guarantees on the Price of
Defense.

– To obtain such, we analyze several structured Nash equilibria:

• In a Matching Nash equilibrium, the support of the defender is
an Edge Cover. We prove that they can be computed in poly-
nomial time, and they incur a Price of Defense of α(G), the
Independence Number of G.

• In a Perfect Matching Nash equilibrium, the support of the de-
fender is a Perfect Matching. We prove that they can be com-
puted in polynomial time, and they incur a Price of Defense of
|V |
2 .

• In a Defender Uniform Nash equilibrium, the defender chooses
uniformly each edge in its support. We prove that they incur a
Price of Defense falling between those for Matching and Perfect
Matching Nash Equilibria; however, it is NP-complete to decide
their existence.

• In an Attacker Symmetric and Uniform Nash equilibrium, all
attackers have a common support on which each uses a uniform
distribution. We prove that they can be computed in polynomial

time and incur a Price of Defense of either
|V |
2 or α(G).

� This work was partially supported by the IST Program of the European Union under
contract number IST-2004-001907 (DELIS).

R. Královič and P. Urzyczyn (Eds.): MFCS 2006, LNCS 4162, pp. 717–728, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

718 M. Mavronicolas et al.

1 Introduction

Motivation and Framework. We revisit a network game with attackers and
a defender, introduced recently by Mavronicolas et al. [9] and further studied in
[5,10]; the game was conceived as an appropriate theoretical model of security
attacks and defenses in emerging networks like the Internet. In this network
game, nodes are vulnerable to infection by threats, called attackers. Available to
the network is a security software (or firewall [3]), called the defender, cleaning
some part of the network.

This network game is partially motivated by Network Edge Security [8], a
new distributed firewall architecture where a firewall is implemented in a dis-
tributed way and protects the subnetwork spanned by the nodes participating
in the distributed implementation. The simplest case where the subnetwork is a
single link (with its two incident nodes) offers the initial basis for the theoreti-
cal model of Mavronicolas et al. [9]. Understanding the mathematical pitfalls of
this simplest model is a necessary prerequisite for making rigorous progress in
analyzing distributed firewall architectures with more involved topologies.

Each attacker (called vertex player) targets a node of the network chosen
via its own probability distribution on nodes; the defender (called edge player)
chooses a single link via its probability distribution on links. A node chosen by
an attacker is destroyed unless it crosses the link being cleaned by the defender.
The Individual Profit of an attacker is the probability that it is not caught; the
Individual Profit of the defender is the expected number of attackers it catches.

To the best of our knowledge, this network game is the first strategic game
where the network is explicitly modeled as a non-cooperative player (the de-
fender). Unlike previously studied games that evaluated the effect of selfish be-
havior on system performance using the Price of Anarchy [7] (which implicitly
modeled the system), we pursue this evaluation via the Price of Defense: the
worst-case ratio of ν over the Individual Profit of the defender.

We are interested in analyzing the Price of Defense for Nash equilibria [11,12],
where no single player has an incentive to deviate from its strategy. How does
the Price of Defense vary with Nash equilibria? Are there Nash equilibria that
both are tractable and offer good Price of Defense? Such questions are the focus
of our work. Our answers make a comprehensive collection of trade-offs between
Price of Defense and computational complexity of Nash equilibria.

Contribution. We prove that a (mixed) Nash equilibrium for our network game
can be computed in polynomial time (Theorem 4). The proof is by reduction
to the case of two players (one attacker and one defender), which is shown to
be Constant-Sum. Two-Players, Constant-Sum games are reducible to Linear
Programming [13], hence solvable in polynomial time. The reduction to Linear
Programming hides the Price of Defense. This invites considering classes of Nash
equilibria with sufficient structure for evaluating the Price of Defense.

Matching Nash Equilibria. Introduced in [9], a Matching Nash equilibrium satis-
fies several (necessary) covering properties of Nash equilibria and two additional

The Price of Defense 719

properties (for example, the support of the vertex players is an Independent Set);
in addition, all vertex players use a common distribution, and each player uses
a uniform distribution on its support.

– We provide a new characterization of graphs admitting Matching Nash equi-
libria (Theorem 5). Such graphs have their Independence Number equal to
their Edge Covering Number. The characterization improves an earlier one
from [9]. The characterization benefits from an improved understanding of
structural properties of Matching Nash equilibria.

– We translate the characterization into a polynomial time algorithm to (de-
cide the existence of and) compute a Matching Nash equilibrium (Theo-
rem 6). This relies on obtaining a polynomial time algorithm for the (new)
graph-theoretic problem of deciding, given a graph G(V,E), whether its In-
dependence Number α(G) and Edge Covering Number β′(G) are equal, and
yielding, if so, a Maximum Independent Set for the graph (Proposition 1).

– We prove that the Price of Defense for them is α(G) (Theorem 7).

Perfect Matching Nash Equilibria. A Perfect Matching Nash equilibrium is a
Perfect Matching one where the support of the edge player is a Perfect Matching.

– We provide a characterization of graphs admitting a Perfect Matching Nash
equilibria (Theorem 8). Such graphs have a Perfect Matching and their In-

dependence Number equals |V |2 .
– We translate the characterization into a polynomial time algorithm to (de-

cide the existence of and) compute a Perfect Matching Nash equilibrium
(Theorem 9). This relies on obtaining a polynomial time algorithm for the
(new) graph-theoretic problem of deciding, given a graph with a Perfect

Matching, whether its Independence Number equals |V |2 , and yielding, if so,
a Maximum Independent Set for the graph (Proposition 2).

– We prove that the Price of Defense for them is |V |2 (Theorem 10).

The relation between the Prices of Defense for Perfect Matching and Matching

Nash equilibria is the relation between |V |
2 and α(G). For graphs that have

both Matching and Perfect Matching Nash equilibria, Theorem 8 implies that

α(G) = |V |
2 and the two Prices of Defense coincide (as do the two classes of

equilibria). Consider a graph that has a Matching Nash equilibrium but not a
Perfect Matching one. By the characterization of Matching Nash equilibria in

[9, Theorem 3], α(G) ≥ |V |
2 (else, there could not be enough vertices inside

an Independent Set to which vertices outside have to be matched). Thus, the
Price of Defense for Perfect Matching Nash equilibria may not exceed that for
Matching Nash equilibria.

Defender Uniform Nash Equilibria. In a Defender Uniform Nash equilibrium, the
defender chooses each edge in its support with uniform probability. Such equi-
libria are inspired by the recent Uniform Nash equilibria introduced by Bonifaci

720 M. Mavronicolas et al.

et. al. [1,2] for (classes of) bimatrix games. Bonifaci et al. [1,2] proved that
deciding the existence of Uniform Nash equilibria is NP-complete.

– We provide a characterization of graphs admitting Defender Uniform Nash
equilibria (Theorem 11). The characterization involves Regular Subgraphs
and Independent Sets. (Remarkably, Regular Subgraphs were also encoun-
tered in the work of Bonifaci et al. [1,2].)

– We prove that deciding the existence of a Defender Uniform Nash equi-
librium is NP-complete (Theorem 12). This employs a reduction from the
UNDIRECTED PARTITION INTO HAMILTONIAN SUBGRAPHS OF SIZE AT
LEAST SIX problem, which is proved NP-complete (Theorem 3). Our NP-
completeness result strengthens the corresponding NP-completeness results
of Bonifaci et al. [1,2] since it applies to a specific game.

– We prove that the Price of Defense for them is (π + 1) · |V |, for some 0 ≤ π ≤
1
2. We argue that this value is always between those for Perfect Matching
and Matching Nash equilibria.

Compared with Matching Nash equilibria, Defender Uniform Nash equilibria
provide a sometimes better Price of Defense, but they are hard to compute
(unless P = NP).

In an Attacker Symmetric Uniform Nash equilibrium, there is a common sup-
port for attackers and each attacker uses a uniform probability distribution.

– We provide a characterization of graphs admitting Attacker Symmetric Uni-
form Nash equilibria (Theorem 11).

– We translate the characterization into a polynomial time algorithm to (de-
cide the existence and) compute an Attacker Symmetric Uniform Nash equi-
librium (Theorem 15). This is in contrast to the NP-completeness for the
relative class of Defender Uniform Nash equilibria.

– We prove that the Price of Defense here is either |V |2 or α(G) (Theorem 16).

2 Background, Definitions and Preliminaries

Graph Theory. Throughout, we consider an undirected graphG = 〈V,E〉 with
no isolated vertices. For a vertex set U ⊆ V , denote G(U) the subgraph of G
induced by U , and EdgesG(U) = {(u, v) ∈ E : u ∈ U and v ∈ U}. For an edge
set F ⊆ E, denote G(F) the subgraph of G induced by F . For a vertex set
U ⊆ V , denote NeighG(U) = {u /∈ U : (u, v) ∈ E for some vertex v ∈ U}. For a
vertex v ∈ V , denote dG(v) the degree of vertex v in G.

A vertex set IS ⊆ V is an Independent Set if for all pairs of vertices u, v ∈
IS, (u, v) /∈ E. A Maximum Independent Set is one that has maximum size;
denote α(G) its size. A Vertex Cover is a vertex set V C ⊆ V such that for
each edge (u, v) ∈ E either u ∈ V C or v ∈ V C. A Minimum Vertex Cover is
one that has minimum size; denote β(G) its size. An Edge Cover is an edge
set EC ⊆ E such that for every vertex v ∈ V , there is an edge (v, u) ∈ EC.
A Minimum Edge Cover is one that has maximum size; denote β′(G) its size.

The Price of Defense 721

A Matching is a set M ⊆ E non-incident edges. A Maximum Matching is one
that has maximum size; α′(G) denotes its size. The currently fastest algorithm

to compute a Maximum Matching runs in time O
(√

|V ||E| · log|V |
|V |2
|E|

)
[6]. It

is known that a Minimum Edge Cover can be computed in polynomial time via
computing a Maximum Matching. (See, e.g., [15, page 115].) A Perfect Matching
is a Matching that is also an Edge Cover. For a graph G, α(G) + β(G) = |V |,
while also α′(G) + β′(G) = |V | (Gallai’s Theorem). Also, α′(G) ≤ β(G). Hence,
α(G) ≤ β′(G).

Fix a set U ⊆ V . G is a U -Expander graph (and the set U is an Expander) if
for each set U ′ ⊆ U , |U ′| ≤ |NeighG(U ′) ∩ (V \U)|. An Expanding Independent
Set [9] is an Independent Set IS such that V \IS is an Expander.

Game Theory. Consider a strategic game Π(G) = 〈N , {Si}i∈N , {IP}i∈N 〉:

– The set of players is N = Nvp ∪Nep, where Nvp has ν vertex players vpi,
called attackers, 1 ≤ i ≤ ν and Nep has edge player ep, called defender.

– The strategy set Si of vertex player vpi is V , and the strategy set Sep

of the edge player ep is E. So, the strategy set S of the game is S =(
×

i ∈ Nvp
Si

)
× Sep = V ν × E.

– Fix any profile s = 〈s1, . . . , sν , sep〉 ∈ S, also called a pure profile.
• The Individual Profit of vertex player vpi is a function IPs(i) : S →
{0, 1} such that IPs(i) =

{
0, si ∈ sep

1, si 	∈ sep
; intuitively, the vertex player

vpi receives 1 if it is not caught by the edge player, and 0 otherwise.
• The Individual Profit of the edge player ep is a function IPs(ep) : S → N

such that IPs(ep) = |{i : si ∈ sep}|; intuitively, the edge player ep
receives the number of vertex players it catches.

A mixed strategy for player i ∈ N is a probability distribution over Si; thus, a
mixed strategy for a vertex player (resp., edge player) is a probability distribution
over vertices (resp., edges) of G. A profile s = 〈s1, . . . , sν , sep〉 is a collection of
mixed strategies; si(v) is the probability that vertex player vpi chooses vertex v
and sep(e) is the probability that the edge player ep chooses edge e.

The support Supports(i) of player i ∈ N in the profile s is the set of pure strate-
gies to which i assigns a strictly positive probability. Denote Supports(vp) =⋃

i∈Nvp
Supports(i) and Edgess(v) = {(u, v) ∈ E : (u, v) ∈ Supports(ep)}.

A profile s is Uniform if each player uses a uniform distribution on its support.
A profile s is Attacker Symmetric if, for all vertex players vpi, vpk ∈ Nvp,
si(v) = sk(v), for each v ∈ V . An Attacker Symmetric Uniform profile is an
Attacker Symmetric profile where each attacker uses a uniform distribution on
the common support. A profile is Defender Uniform if the edge player uses a
uniform distribution on its support.

For a vertex v ∈ V , the probability that the edge player ep chooses an edge
containing the vertex v is denoted as Ps(Hit(v)). For a vertex v ∈ V , denote as

722 M. Mavronicolas et al.

VPs(v) the expected number of vertex players choosing vertex v. For each edge
e = (u, v) ∈ E, VPs(e) is the expected number of vertex players choosing either
u or v.

A profile s induces an Expected Individual Profit IPs(i) for each player i ∈ N ,
which is the expectation according to s of its Individual Profit. The profile s is
a (mixed) Nash equilibrium [11,12] (abbreviated as NE) if for each player i ∈ N ,
it maximizes IPs(i) over all profiles that differ from s only with respect to the
mixed strategy of player i. We use a characterization of NE from [9]:

Theorem 1 ([9]). A profile s is a Nash equilibrium if and only if (1) for each
vertex v ∈ Supports(vp), Ps(Hit(v)) = minv′∈V Ps(Hit(v′)) and (2) for each edge
e ∈ Sup− ports(ep), VPs(e) = maxe′∈E VPs(e′).

A Covering profile is a profile s such that (1) Supports(ep) is an Edge Cover and
(2) Supports(vp) is a Vertex Cover of the graph G(Supports(ep)). It is shown in
[9] that a Nash equilibrium s is a Covering profile. (It is also shown in [9] that a
Covering profile is not necessarily a Nash equilibrium.) An Independent Covering
profile [9] is a Uniform, Attacker Symmetric, Covering profile s such that (1)
Supports(vp) is an Independent Set of G and (2) each vertex in Supports(vp)
is incident to exactly one edge in Supports(ep). Clearly, by the fact that s is a
Covering profile and Condition (2), it follows that for an Independent Covering
profile s, |Supports(vp)| = |Supports(ep)|. It is finally shown in [9] that for an
Independent Covering profile s, there is a Matching M ⊆ Supports(ep) that
matches each vertex in V \Supports(vp) to some vertex in Supports(vp); note that
|M | = |V \Supports(vp)|. The same work shows that an Independent Covering
profile is a NE, called a Matching NE [9]. A graph-theoretic characterization of
Matching NE is provided there:

Theorem 2 ([9]). A graph G admits a Matching NE if and only if G has an
Expanding Independent Set.

We study algorithmic problems of existence and computation of various classes
of Nash equilibria for the considered game. CLASS NE EXISTENCE asks whether
Π(G) admits a CLASS NE; FIND CLASS NE search for a CLASS NE of Π(G),
assuming that such exists. Variable CLASS takes values GENERAL, MATCHING,
PERFECT MATCHING, DEFENDER UNIFORM and ATTACKER SYMMETRIC
UNIFORM; it determines the classes of general, Matching, Perfect Matching, De-
fender Uniform Attacker Symmetric Uniform Nash equilibria, respectively. We
note that for all values of CLASS, membership of a profile in CLASS can be ver-
ified in polynomial time. Since a Nash equilibrium can be verified in polynomial
time (by Theorem 1), it follows that CLASS NE EXISTENCE ∈ NP .

The Price of Defense (abbreviated as PoDG) is the worst-case ratio, over all
Nash equilibria s, of ν

IPs(ep)
.

3 Some Problems from Graph Theory

For our negative results, we will use two NP-complete graph-theoretic problems,
stated here in the style of Garey and Johnson [4]:

The Price of Defense 723

DIRECTED PARTITION INTO HAMILTONIAN SUBGRAPHS OF SIZE AT LEAST
THREE
Input: A directed graph Gd(Vd, Ed).
Question: Can the vertex set Vd be partitioned into disjoint sets V1, · · ·Vk,
for some k, such that each Vi contains at least three vertices and induces a
Hamiltonian subgraph?

The problem DIRECTED PARTITION INTO HAMILTONIAN SUBGRAPHS OF
SIZE AT LEAST THREE is NP-complete [14]. To the best of our knowledge, the
following problem is new:

UNDIRECTED PARTITION INTO HAMILTONIAN SUBGRAPHS OF SIZE AT
LEAST SIX
Input: An undirected graph G(V,E).
Question: Can the vertex set V be partitioned into disjoint sets V1, · · ·Vk, for
some k, such that each Vi contains at least six vertices and induces a Hamiltonian
subgraph?

There is a variant of this problem, UNDIRECTED PARTITION INTO HAMIL-
TONIAN SUBGRAPHS OF SIZE AT LEAST SIX, which is cited in [4, GT13] as
NP-complete. We strengthen this result by proving:

Theorem 3. UNDIRECTED PARTITION INTO HAMILTONIAN SUBGRAPHS
OF SIZE AT LEAST SIX is NP-complete.

Sketch of Proof. UNDIRECTED PARTITION INTO HAMILTONIAN SUB-
GRAPHS OF SIZE AT LEAST SIX ∈ NP : one can guess a partition of V into
disjoint sets V1, · · ·Vk, each of size at least six, together with a vertex sequence
for each set Vi, and verify in polynomial time that the vertex sequence for each
set Vi is a Hamiltonian circuit for the subgraph induced by the set. To prove
NP-hardness, we reduce from DIRECTED PARTITION INTO HAMILTONIAN
SUBGRAPHS OF SIZE AT LEAST THREE. �
For our positive results, we will consider two new graph-theoretic problems:

MIS EQUAL MINIMUM EDGE COVER
Instance: A graph G(V,E).
Output: A Maximum Independent Set of size β′(G) if α(G) = β′(G), or No if
α(G) < β′(G).

MIS EQUAL HALF ORDER
Instance: A graph G(V,E).

Output: A Maximum Independent Set of size |V |
2 if α(G) = |V |

2 , or No if

α(G) 	= |V |
2 .

For these two new problems, we use reductions to 2SAT to prove:

724 M. Mavronicolas et al.

Proposition 1. MIS EQUAL MINIMUM EDGE COVER ∈ P
Sketch of Proof. Compute a Minimum Edge Cover EC. (Recall that EC
consists of vertex-disjoint star graphs.) Use EC to construct a 2SAT instance φ
with variable set V as follows:

(1) For each edge (u, v) ∈ E, add the clause (ū ∨ v̄) to φ.
(2) For each single-edge star graph (u, v) ∈ EC, add the clause (u∨ v) to φ.
(3) For each multiple-edge star graph of EC with center vertex u, add the

clause (ū ∨ ū) to φ.

We prove that G has an Independent Set of size |EC| (hence, α(G) = β′(G)) if
and only if φ is satisfiable; when φ is satisfiable, the set {u | χ(u) = 1} is such a
Maximum Independent Set. �
Proposition 2. MIS EQUAL HALF ORDER ∈ P, when restricted to the class
of graphs having a Perfect Matching.

Sketch of Proof. Compute a Perfect Matching M of G. Use M to construct
a 2SAT instance φ with variable set V as follows:

(1) For each edge (u, v) ∈ E, add the clause (ū ∨ v̄) to φ.
(2) For each edge (u, v) ∈M , add the clause (u ∨ v) to φ.

We prove that G has α(G) = |V |
2 if and only if φ is satisfiable; if φ is satisfiable,

the set {u | χ(u) = 1} is such a Maximum Independent Set of size |V |2 . �

4 General Nash Equilibria

Denote as Π̂(G) the Two-Players special case of Π(G) with ν = 1. Consider
a NE ŝ of Π̂(G). Construct from ŝ an Attacker Symmetric profile s for Π(G),
where for each vertex player vpi, for each vertex v ∈ V , si(v) = ŝvp(v), where vp
denotes the vertex player of Π̂(G); for the edge player ep, for each edge e ∈ E,
sep(e) = ŝep(e). We prove that s satisfies the characterization of NE in Theorem
1; so, s is a NE for Π(G) and can be computed from ŝ in polynomial time. We
prove that the Two-Players game Π̂(G) is Constant-Sum:

IPŝ(vp) + IPŝ(ep) =
v∈V

ŝvp(v) 1−
e∈Edgess(v)

ŝep(e) +
(u,v)=e ∈E

ŝep(e)ŝvp(e)

=
v∈V

ŝvp(v)−
v∈V

ŝvp(v)
e∈Edgess(v)

ŝep(e) +
(u,v)=e ∈E

ŝep(e)ŝvp(e)

= 1−
(u,v)=e ∈E

ŝep(e) (ŝvp(e)) +
(u,v)=e ∈E

ŝep(e)ŝvp(e)

= 1.

Since a Nash equilibrium for a Two-Players, Constant-Sum game can be com-
puted in polynomial time via reduction to Linear Programming [13], we have:

Theorem 4. FIND GENERAL NE ∈ P

The Price of Defense 725

5 Matching Nash Equilibria

We first prove some graph-theoretic properties of Matching Nash equilibria.

Lemma 1. In a Matching NE s, Supports(vp) is a Maximum Independent Set.

Lemma 2. In a Matching NE s, Supports(ep) is a Minimum Edge Cover.

Theorem 5. The graph G admits a Matching NE if and only if α(G) = β′(G).

Sketch of Proof. Assume first that α(G) = β′(G). Let IS and EC be a Maxi-
mum Independent Set and a Minimum Edge Cover, respectively. So, |IS| = |EC|.
Consider a Uniform, Attacker Symmetric profile s with Supports(vp) = IS and
Supports(ep) = EC. Thus, |Supports(vp)| = |Supports(ep)|. By construction, s is
Uniform and Attacker Symmetric profile, Supports(ep) is an Edge Cover of G,
and Supports(vp) is an Independent Set of G. So, there remains to show Condi-
tion (2) in the definition of a Covering profile and additional Condition (2) in
the definition of an Independent Covering profile. Since EC is a Minimum Edge
Cover, it is a union of disjoint star graphs. Since |Supports(vp)| = |Supports(ep)|
and Supports(vp) is an Independent Set, it follows that Supports(vp) consists of
all terminal vertices of the star graphs. This implies that both (i) Supports(vp)
is a Vertex Cover of the graph G(Supports(ep)) (Condition (2)) and (ii) each
vertex in Supports(vp) is incident to exactly one edge of Supports(ep) (addi-
tional Condition (2)). Hence, s is an Independent Covering profile. Since an
Independent Covering profile is a NE, the claim follows. Assume now that G
admits a Matching NE s. By Lemma 1, Supports(vp) is a Maximum Indepen-
dent Set, so that |Supports(vp)| = α(G). By Lemma 2, Supports(ep) is a Min-
imum Edge Cover, so that |Supports(ep)| = β′(G). Since s is a Matching NE,
|Supports(vp)| = |Supports(ep)|. So, α(G) = β′(G). �
The constructive parts of the sufficiency proofs of Proposition 1 and Theorem 5
yield a polynomial time algorithm MatchingNE to compute a Matching NE:

Algorithm MatchingNE
Input: A graph G(V, E).
Output: The supports in a Matching NE s for G, or No if such does not exist.

1. Compute a Minimum Edge Cover EC of G.
2. Construct an instance φ of 2SAT as follows:

– For each edge (u, v) ∈ E, add the clause (ū ∨ v̄) to φ.
– For each single-edge star graph (u, v) ∈ EC, add the clause (u ∨ v) to φ.
– For each multiple-edge star graph of EC with center vertex u, add the clause

(ū ∨ ū) to φ.
3. Compute a satisfying assignment χ of φ, or output No if such does not exist.
4. Set IS = {u | χ(u) = 1}.
5. Set Supports(ep) := EC and Supports(vp) := IS.

Theorem 6. Algorithm MatchingNE solves FIND MATCHING NE in time

O

(√
|V ||E| · log|V |

|V |2
|E|

)
.

726 M. Mavronicolas et al.

By Lemma 1 and the definition of a Covering profile, we can easily show:

Theorem 7. For Matching NE, PoDG = α(G).

6 Perfect Matching Nash Equilibria

A Perfect Matching NE is a Matching NE s such that Supports(ep) is a Perfect
Matching. To obtain the characterization, we prove:

Lemma 3. For a Perfect Matching NE s, |Supports(vp)| = |V |
2 .

Theorem 8. A graph G admits a Perfect Matching NE if and only if G has a

Perfect Matching and α(G) = |V |
2 .

Sketch of Proof. Assume first that G has a Perfect Matching M and α(G) =
|V |
2 . Consider a Maximum Independent Set IS of G. Define a Uniform, Attacker

Symmetric profile s with Supports(ep) := M , Supports(vp) := IS. By the choice
of Supports(ep), we only need to prove that s is an Independent Covering pro-
file. Since a Perfect Matching is a Minimum Edge Cover, this reduces to the
corresponding proof of Theorem 5 (where Supports(ep) was chosen as a Mini-
mum Edge Cover). Assume now that G admits a Perfect Matching NE s. Then,
Supports(ep) is a Perfect Matching of G. Since a Perfect Matching NE is a special
case of a Matching NE, Lemma 1 applies to yield that Supports(vp) = α(G). By

Lemma 3, Supports(vp) = |V |
2 . So, α(G) = |V |

2 , as needed. �

The constructive parts of the sufficiency proofs of Proposition 2 and Theorem 8
yield a polynomial time algorithm to compute a Perfect Matching NE:

Algorithm PerfectMatchingNE
Input: A graph G(V, E).
Output: The supports in a Perfect Matching NE s, or No if such does not exist.

1. Compute a Perfect Matching M of G, or output No if such does nots exist.
2. Construct an instance φ of 2SAT as follows:

– For each edge (u, v) ∈ E, add the clause (ū ∨ v̄) to φ.
– For each edge (u, v) ∈ M , add the clause (u ∨ v) to φ.

3. Compute a satisfying assignment χ of φ, or output No if such does not exist.
4. Set IS = {u | χ(u) = 1}.
5. Set Supports(ep) := M and Supports(vp) := IS.

Theorem 9. Algorithm PerfectMatchingNE solves FIND PERFECT MATCHING

NE in time O
(√

|V ||E|· log|V |
|V |2
|E|

)
.

Observe that a Perfect Matching NE is a Matching NE for which, by Theorem
8, α(G) = |V |

2 . Hence, Theorem 7 implies:

Theorem 10. For Perfect Matching NE, PoDG = |V |
2 .

The Price of Defense 727

7 Defender Uniform Nash Equilibria

A Defender Uniform NE is a Defender Uniform profile that is a NE. We prove
a characterization of graphs admitting Defender Uniform NE:

Theorem 11. A graph G admits a Defender Uniform NE if and only if there
are non-empty sets V ′ ⊆ V and E′ ⊆ E and an integer r ≥ 1 such that:

(1/a) For each v ∈ V ′, dG(E′)(v) = r.
(1/b) For each v ∈ V \V ′, dG(E′)(v) ≥ r.
(2) V ′ can be partitioned into two disjoint sets V ′i and V ′r such that:

(2/a) For each v ∈ V ′i , for any u ∈ NeighG(v), it holds that u /∈ V ′.
(2/b) The graph 〈V ′r ,EdgesG(V ′r) ∩ E′〉 is an r-regular graph.
(2/c) The graph 〈V ′i ∪ (V \V ′),EdgesG(V ′i ∪ (V \V ′)) ∩E′〉 is a (V ′i , V
\V ′) -bipartite graph.

Theorem 12. DEFENDER UNIFORM NE EXISTENCE is NP-complete.

Sketch of Proof. Recall that DEFENDER UNIFORM NE EXISTENCE ∈ NP .
To prove NP-hardness, we reduce from the NP-complete UNDIRECTED PAR-
TITION INTO HAMILTONIAN SUBGRAPHS OF SIZE AT LEAST FOUR. �

By the characterization of Defender Uniform NE (Theorem 11, we prove:

Theorem 13. In a Defender Uniform Nash equilibrium, PoDG = (π + 1) · |V |,
for some 0 ≤ π ≤ 1

2 .

The worst case (maximum value) of PoDG occurs when Supports(vp) is the max-
imum possible and V ′r is empty. Then, the Defender Uniform NE s is actually
a Matching NE and, by Proposition 7, PoDG = α(G). For the best case (mini-
mum value), recall that by Condition (2/b) of the characterization of Defender
Uniform NE, the graph 〈V ′i ∪ (V \V ′),EdgesG(V ′i ∪ (V \V ′)) ∩ E′〉 is a (V \V ′)-
Expander graph. Thus, |(V \V ′)| ≤ |V ′i |. Since |V | = |V ′r | + |V ′i | + |(V \V ′)|, it

follows that |V ′r | + 2|V ′i | ≥ |V |. Hence, |V ′i | + |V ′r |
2 ≥ |V | − |V ′r |

2 = |V |
2 . So,

Defender Uniform NE fall between Perfect Matching and Matching NE (with

respect to PoDG), for the case where |V |2 ≤ α(G).

8 Attacker Symmetric Uniform Nash Equilibria

An Attacker Symmetric Uniform NE is an Attacker Symmetric Uniform profile
that is a NE. We prove a characterization of graphs admitting Attacker Sym-
metric Uniform NE:

Theorem 14. A graph G admits an Attacker Symmetric Uniform Nash equi-
librium if and only if:

(1) There is a probability distribution p : E → [0, 1] such that:
(1/a)

∑
e∈EdgesG(v) p(e) =

∑
e′∈EdgesG(v′) p(e

′), ∀ v, v′ ∈ V and

728 M. Mavronicolas et al.

(1/b)
∑

e∈EdgesG(v) p(e) > 0 ∀ v ∈ V , OR
(2) α(G) = β′(G).

Theorem 15. FIND ATTACKER SYMMETRIC UNIFORM NE ∈ P

Using Theorem 14 and Theorem 7, we finally prove:

Theorem 16. In an Attacker Symmetric Uniform NE, PoDG is |V |2 or α(G).

References

1. V. Bonifaci, U. Di Iorio and L. Laura, “On the Complexity of Uniformly Mixed
Nash Equilibria and Related Regular Subgraph Problems”, Proceedings of the 15th
International Symposium on Fundamentals of Computation Theory, pp. 197–208,
Vol. 3623, LNCS, 2005.

2. V. Bonifaci, U. Di Iorio and L. Laura, “New Results on the Complexity of Uni-
formly Mixed Nash Equilibria”, Proceedings of the First International Workshop
on Internet and Network Economics, pp. 1023–1032, Vol. 3828, LNCS, 2005.

3. E. R. Cheswick and S. M. Bellovin, Firewalls and Internet Security, Addison-
Wesley, 1994.

4. M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the
Theory of NP-Completeness, W. H. Freeman & Co., 1979.

5. M. Gelastou, M. Mavronicolas, V. Papadopoulou, A. Philippou and P. Spirakis,
“The Power of the Defender”, Proceedings of the 2nd International Workshop on
Incentive-Based Computing, 2006, to appear.

6. A. V. Goldberg and A. V. Karzanov, “Maximum Skew-Symmetric Flows”, Pro-
ceedings of the 3rd Annual European Symposium on Algorithms, pp. 155–170, Vol.
979, LNCS, 1995.

7. E. Koutsoupias and C. H. Papadimitriou, “Worst-case Equilibria”, Proceedings
of the 16th Annual Symposium on Theoretical Aspects of Computer Science, pp.
404–413, Vol. 1563, LNCS, 1999.

8. T. Markham and C. Payne, “Security at the Network Edge: A Distributed Firewall
Architecture”, Proceedings of the 2nd DARPA Information Survivability Confer-
ence and Exposition, Vol. 1, pp. 279-286, 2001.

9. M. Mavronicolas, V. G. Papadopoulou, A. Philippou and P. G. Spirakis. “A Net-
work Game with Attacker and Protector Entities”, Proceedings of the 16th Annual
International Symposium on Algorithms and Computation, pp. 288–297, Vol. 3827,
LNCS, 2005.

10. M. Mavronicolas, V. G. Papadopoulou, A. Philippou and P. G. Spirakis, “A Graph-
Theoretic Network Security Game”, Proceedings of the First International Work-
shop on Internet and Network Economics, pp. 969–978, Vol. 3828, LNCS, 2005.

11. J. F. Nash, “Equilibrium Points in N-Person Games”, Proceedings of National
Acanemy of Sciences of the United States of America, pp. 48–49, Vol. 36, 1950.

12. J. F. Nash, “Non-Cooperative Games”, Annals of Mathematics, Vol. 54, No. 2, pp.
286–295, 1951.

13. J. von Neumann, “Zur Theorie der Gesellschaftsspiele”, Mathematische Annalen,
Vol. 100, pp. 295–320, 1928.

14. L. G. Valiant, “The Complexity of Computing the Permanent”, Theoretical Com-
puter Science, Vol. 8, No. 2, pp. 189–201, 1979.

15. D. B. West, Introduction to Graph Theory, Prentice Hall, Second edition, 2001.

The Data Complexity of MDatalog

in Basic Modal Logics

Linh Anh Nguyen

Institute of Informatics, University of Warsaw
ul. Banacha 2, 02-097 Warsaw, Poland

nguyen@mimuw.edu.pl

Abstract. We study the data complexity of the modal query language
MDatalog and its extension eMDatalog in basic modal logics. MDatalog
is a modal extension of Datalog, while eMDatalog is the general modal
Horn fragment with the allowedness condition. As the main results, we
prove that the data complexity of MDatalog and eMDatalog in K4, KD4,
and S4 is PSPACE-complete, in K is coNP-complete, and in KD , T , KB ,
KDB , and B is PTIME-complete.

1 Introduction

Modal logics can be used to reason about knowledge and belief. It is desirable to
study modal extensions of deductive databases. First tries in this direction were
done in our previous works [9,10] (modal Datalog defined in [5, Definition 23]
is completely different, as it is formulated in classical logic and uses only unary
or binary predicates). In [9], we extended Datalog for monomodal logics, giving
two languages: MDatalog and eMDatalog. The first one is a natural extension of
Datalog, while the second one is the general modal Horn fragment with a refined
condition of allowedness. It was shown in [9] that MDatalog and eMDatalog have
the same expressiveness in normal monomodal logics. In [10], we studied an
extension of MDatalog for multimodal logics of belief and presented bottom-up
computational methods for (multi)modal deductive databases.

It is well known that the data complexity of Datalog is complete in PTIME
(see, e.g., [6]). In [10], we proved that the data complexity of MDatalog in some
multimodal logics of belief which are extensions of KD45 is in PTIME. In [9], we
gave sufficient conditions for MDatalog in 13 basic monomodal logics (except K
and K4) to obtain PTIME complexity for computing queries. The complexity
results of [9, Theorem 7.3] are not formulated in the way of the data complexity
and the relation between them is not close.

In this paper, we study the data complexity of MDatalog and eMDatalog in all
of the 15 basic monomodal logics, which are extensions of the logic K using any
combination of axioms D, T , B, 4, and 5. The data complexity of MDatalog
and eMDatalog is related to the complexity of the propositional modal Horn
fragment. In [3], Fariñas del Cerro and Penttonen showed that the satisfiability
problem of sets of modal Horn clauses in S5 is decidable in PTIME. In [1], Chen

R. Královič and P. Urzyczyn (Eds.): MFCS 2006, LNCS 4162, pp. 729–740, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

730 L.A. Nguyen

and Lin showed that the similar problem for a normal monomodal logic L being
an extension ofK5 (write K5 ≤ L) is also decidable in PTIME. Chen and Lin also
proved that for a normal modal logic L such that K ≤ L ≤ S4 or K ≤ L ≤ B, in
particular, for L ∈ {K,KD,KB,KDB,B,K4,KD4,S4}, the problem is PSPACE-
hard. They also made a comment that the problem is still PSPACE-hard for
S4 even when the modal depth is restricted to 2. In [8], we showed that the
complexity of the satisfiability problem of sets of modal Horn clauses with finitely
bounded modal depth in KD , T , KB , KDB , and B is decidable in PTIME.
These PTIME results can further be categorized as PTIME-complete. In [11],
we showed that the satisfiability problem of sets of modal Horn clauses with
modal depth bounded by k ≥ 2 in the modal logics K4 and KD4 is PSPACE-
complete, and in K is NP-complete.

In this paper we prove that, for L being any one of the 15 basic monomodal
logics, the data complexity of MDatalog and eMDatalog in L is the same as the
complexity of the unsatisfiability problem in L of the propositional modal Horn
fragment with modal depth bounded by k ≥ 2. This means that the data com-
plexity of MDatalog and eMDatalog in K4, KD4, and S4 is PSPACE-complete,
in K is coNP-complete, and in the remaining logics is PTIME-complete.

2 Preliminaries

2.1 Definitions for Modal Logics

The language for propositional modal logics extends the language of classical
propositional logic with two modal operators � and �.

A Kripke frame is a triple 〈W, τ,R〉, where W is a nonempty set of possible
worlds, τ ∈ W is the actual world, and R is a binary relation on W , called
the accessibility relation. A propositional Kripke model, sometimes briefly called
a model, is a tuple 〈W, τ,R, h〉, where 〈W, τ,R〉 is a Kripke frame and h is a
function that maps each world of W to a set of primitive propositions. A model
graph is a tuple 〈W, τ,R,H〉, where 〈W, τ,R〉 is a Kripke frame and H is a
function that maps each world of W to a formula set.

Given a Kripke model M = 〈W, τ,R, h〉 and a world w ∈ W , the satisfaction
relation |= is defined as usual for the classical connectives with two extra clauses
for the modal operators as below:

M,w |= �ϕ iff ∀v ∈ W. R(w, v) implies M, v |= ϕ
M,w |= �ϕ iff ∃v ∈ W. R(w, v) and M, v |= ϕ.

We say that ϕ is satisfied at w in M if M,w |= ϕ. We say that ϕ is satisfied
in M and call M a model of ϕ if M, τ |= ϕ.

If we consider all Kripke models, with no restrictions on R, we obtain a nor-
mal propositional modal logic with a standard Hilbert-style axiomatization K .
Other normal propositional modal logics are obtained by adding to K certain
axioms. The most popular axioms used for extending K are D, T , B, 4, and
5, which respectively correspond to seriality (∀x∃y.R(x, y)), reflexiveness, sym-
metry, transitiveness, and euclideaness (∀x∀y ∀z.R(x, y)∧R(x, z) → R(y, z)) of

The Data Complexity of MDatalog in Basic Modal Logics 731

the accessibility relation. The names of normal propositional modal logics often
consist of K and the names of the added axioms, e.g. KDB is the logic which
extends K with the axioms D and B. The special cases are T , B, S4, and S5,
which stand for KT , KTB, KT 4, and KT 5, respectively.

We refer to the properties of the accessibility relation of a modal logic L as
the L-frame restrictions. A Kripke model M is an L-model if the accessibility
relation of M satisfies all L-frame restrictions. We say that ϕ is L-satisfiable if
there exists an L-model of ϕ. We write Γ |=L ϕ to denote that ϕ is satisfied in
every L-model of Γ .

The modal depth of a formula ϕ is the maximal nesting depth of modal oper-
ators occurring in ϕ; e.g., the modal depth of p ∧�(�q ∨�r), where p, q, r are
primitive propositions, is 2.

The length of a formula ϕ is the total number of symbols occurring in ϕ. The
size of a formula set is the sum of the lengths of its formulas.

The size of a propositional Kripke model M = 〈W, τ,R, h〉 is the sum of the
number of its worlds, the size of its accessibility relation, and the total number
of primitive propositions from its worlds, i.e. |W |+ |R|+Σw∈W |h(w)|.

In this work, we consider also first-order modal logics. We restrict to first-order
modal logics with fixed-domain (i.e. all possible worlds in a first-order Kripke
model have the same domain) and rigid terms (i.e. the semantics of terms does
not depend on possible worlds). As usual for database models, we assume that
the signature contains predicate symbols and constant symbols, but no function
symbols. The definitions given for propositional modal logics can be shifted in a
natural way for first-order modal logics.

We refer to [2,4] for further reading on modal logics.

2.2 The Modal Query Languages MDatalog and eMDatalog

An MDatalog program clause is a formula of the form

∀x1 . . .∀xk �h(B1 ∧ . . . ∧Bl → A)

where �h is a sequence of h operators �, h ≥ 0, l ≥ 0, and

– A, B1, . . . , Bl are of the form �E, �E, or E, with E being a classical atom
(recall that a classical atom is a formula of the form p(t1, . . . , tn)),

– x1, . . . , xk are all variables occurring in (B1 ∧ . . . ∧Bl → A),
– all variables of A occur also in B1 ∧ . . . ∧Bl.

The last condition in the above definition is usually called allowedness (or
range-restrictedness). It implies that if l = 0 then k = 0 and A is a ground for-
mula. We will write the above program clause in the form �h(A← B1, . . . , Bl).
We will also write ϕ← ψ for ψ → ϕ.

An MDatalog program is a set of MDatalog program clauses.
We now define an extension of MDatalog called eMDatalog, which allows more

sophisticated program clauses.
A formula is positive if it does not contain ¬ and ←. A formula ϕ is called a

non-negative modal Horn formula iff one of the following conditions holds:

732 L.A. Nguyen

– ϕ is a classical atom;
– ϕ is of the form ψ ← ζ, where ψ is a non-negative modal Horn formula and
ζ a positive formula without quantifiers such that if ζ1 ∨ ζ2 is a subformula
of ζ then ζ1 and ζ2 have the same variables1;

– ϕ = �ψ, or ϕ = �ψ, or ϕ = ψ ∧ ζ, where ψ and ζ are non-negative modal
Horn formulas.

In the following, E denotes a classical atom and V ar(ϕ) denotes the set of
variables of ϕ. Define the constraint allowed(ϕ, V) for a non-negative modal
Horn formula ϕ and a set of variables V recursively as follows:

allowed(E, V) ≡ (V ar(E) ⊆ V)
allowed((ψ ← ζ), V) ≡ allowed(ψ, V ar(ζ) ∪ V)
allowed(ψ ∧ ζ, V) ≡ allowed(ψ, V) ∧ allowed(ζ, V)
allowed(�ψ, V) ≡ allowed(ψ, V)
allowed(�ψ, V) ≡ allowed(ψ, V)

An eMDatalog program clause is a formula of the form ∀x1 . . .∀xk ϕ, where ϕ
is a non-negative modal Horn formula, x1, . . . , xk are all variables of ϕ, and the
constraint allowed(ϕ, ∅) is true. Observe that an eMDatalog program clause not
containing ← is a ground formula.

An eMDatalog program is a finite set of eMDatalog program clauses.
For x being a tuple of variables (x1, . . . , xk), we write ∃x ϕ(x) to denote the

formula ∃x1 . . .∃xk ϕ and assume that x1, . . . , xk are variables occurring in ϕ. In
that case, for c being a tuple of constant symbols (c1, . . . , ck), we write ϕ(c) to
denote the formula obtained from ϕ by substituting each xi by ci, for 1 ≤ i ≤ k.

A query to an MDatalog/eMDatalog program is a formula of the form ∃x ϕ(x),
where x is a tuple of all variables of ϕ (which can be empty) and ϕ is a positive
formula without quantifiers such that if ζ1 ∨ ζ2 is a subformula of ϕ then ζ1 and
ζ2 have the same variables2.

Fix a first-order modal logic L. Given an MDatalog/eMDatalog program P
and a query ∃x ϕ(x), the goal is to check whether P |=L ∃x ϕ(x), and to find
tuples c of constant symbols such that P |=L ϕ(c).

The following proposition states that MDatalog has the same expressiveness
as eMDatalog. It was proved in [9] for the case without ∨ in non-negative modal
Horn formulas. The proof for the extension with ∨ is straightforward.

Proposition 1. For any eMDatalog program P , there exists an MDatalog pro-
gram P ′ such that for any query ∃x ϕ(x) in the language of P , the answers
w.r.t. P ′ are exactly the answers w.r.t. P . Moreover, P ′ can be computed from
P in polynomial time and the modal depth of P ′ is equal to the modal depth of P .

For example, the eMDatalog program {�(p(a) ∧ q(a))} can be transformed to
the MDatalog program {�r, �(p(a) ← r), �(q(a) ← r)}.
1 This extends the corresponding definition given in [9] with ∨.
2 This condition was not considered in [9].

The Data Complexity of MDatalog in Basic Modal Logics 733

2.3 Modal Deductive Databases and Data Complexity

An MDatalog/eMDatalog program clause is either a rule or a fact. A rule is a
program clause containing ←, while a fact does not contain ←. Note that an
MDatalog fact is a ground formula of the form �hA, where h ≥ 0 and A is a
formula of the form �E, �E, or E with E being a classical atom. Observe also
that an eMDatalog fact is a positive ground formula not containing ∨.

A predicate p is defined by an MDatalog/eMDatalog program clause ϕ if p
appears in ϕ in the left hand side of all the occurrences of ←.

A modal deductive database can be specified by an MDatalog/eMDatalog
program. It can be divided into two parts: an extensional part and an inten-
sional part. The extensional part consists of facts defining so called extensional
predicates. The intensional part consists of rules and facts defining so called
intensional predicates, which are not extensional predicates.

When measuring the “data complexity” of a query language for deductive
databases, the query to the program specifying the database is grouped with
the intensional part of the database and treated as a fixed query, while the ex-
tensional part of the database is treated as input. Suppose that we are given an
MDatalog (resp. eMDatalog) program P representing a modal deductive data-
base and a query ∃xϕ(x). Denote the extensional part of the database by D and
the intensional part by P ′. We call the pair (P ′, ∃xϕ(x)) an MDatalog (resp.
eMDatalog) query and D an extensional MDatalog (resp. eMDatalog) database
instance (edb instance for short).

We say that the data complexity of MDatalog (resp. eMDatalog) in a modal
logic L is in a complexity class C if the recognition problem of checking whether
P ′ ∪ D |=L ϕ(c) with D taken as input is in the complexity class C for every
MDatalog (resp. eMDatalog) query (P ′, ∃xϕ(x)) and every tuple c of constant
symbols.

We say that the data complexity of MDatalog (resp. eMDatalog) is complete
in a complexity class C, or C-complete, if it is in C and there exist an MDatalog
(resp. eMDatalog) query (P ′, ∃xϕ(x)) and a tuple c of constant symbols such
that the problem of checking whether P ′ ∪D |=L ϕ(c) with D taken as input is
C-complete.

It is not clear whether the data complexity of eMDatalog is the same as the
data complexity of MDatalog in every modal logic. The problem is that when
transforming an eMDatalog program to an MDatalog program, we introduce new
rules, which causes that the resulting “query” depends on the input. For this
reason, we will study the data complexity of both MDatalog and eMDatalog.

3 Simple Cases

In this section, we show that the data complexity of MDatalog and eMDatalog
in K5, KD5, K45, KD45, KB5, and S5 is PTIME-complete, and in K4, KD4,
and S4 is in PSPACE.

Let (P, ∃xϕ(x)) be a fixed MDatalog/eMDatalog query, c be a fixed tuple of
constant symbols for substituting x, and D be an input edb instance with size n.

734 L.A. Nguyen

Let P ′ be the set of all ground instances of program clauses of P using the
constant symbols occurring in P , c, and D. It is easily seen that the size of P ′ is
bounded by a polynomial of n. Observe that P ∪D |=L ϕ(c) iff P ′ ∪D |=L ϕ(c)
iff P ′ ∪ D ∪ {¬ϕ(c)} is L-unsatisfiable. The latter set can be treated as a set
of propositional formulas. It consists of so called Horn formulas. By the results
of [3,1], checking whether P ′ ∪ D ∪ {¬ϕ(c)} is L-unsatisfiable is decidable in
PTIME (w.r.t. n) for L ∈ {K5, KD5, K45, KD45, KB5, S5}.3 By Ladner [7],
for L ∈ {K4, KD4, S4}, checking whether P ′ ∪D ∪ {¬ϕ(c)} is L-unsatisfiable is
decidable in PSPACE (the Horn property is not important here). We arrive at:

Theorem 1. The data complexity of MDatalog and eMDatalog in K5, KD5,
K45, KD45, KB5, and S5 is PTIME-complete.

The lower bound follows from that the data complexity of Datalog is complete
in PTIME (see, e.g., [6]).

Lemma 1. The data complexity of MDatalog and eMDatalog in K4, KD4, and
S4 is in PSPACE.

4 The Data Complexity of MDatalog in K , K4, KD4, S4

In this section, we show that the data complexity of MDatalog and eMDatalog
in K4, KD4, and S4 is PSPACE-complete, and in K is coNP-complete.

Lemma 2. Every finite set X of propositional modal Horn clauses can be trans-
formed in PTIME to a set Y of propositional modal Horn clauses such that:

– Y contains at most one negative clause, which is of the form ← p;
– each non-negative clause of Y contains no more than 3 literals;
– the modal depth of Y is the same as the modal depth of X;
– Y is L-satisfiable iff X is L-satisfiable, for any normal modal logic L.

Proof. Let p be a fresh primitive proposition. Replace each negative clause ϕi =
�s(← B1, . . . , Bk) of X by the following clauses:

�s(pi,s ← B1, . . . , Bk), �s−1(pi,s−1 ← �pi,s), . . . , p← �pi,1

where pi,s, . . . , pi,1 are fresh primitive propositions. (If s = 0 then ϕi is replaced
by p ← B1, . . . , Bk.) Then add to the obtained set the clause ← p. Denote the
resulting set by X ′.

Next, replace each non-negative clause ϕi = �s(A← B1, . . . , Bk) ofX ′, where
k > 2, by the following clauses:

�s(pi,2 ← B1, B2)
�s(pi,3 ← pi,2, B3)
. . .
�s(pi,k ← pi,k−1, Bk)
�s(A← pi,k)

3 The definitions of Horn clauses in [3,1] are more restrictive than our definition of Horn
formulas [8]. However, every set of Horn formulas can be transformed in polynomial
time to a set of Horn clauses that preserves satisfiability.

The Data Complexity of MDatalog in Basic Modal Logics 735

where pi,2, . . . , pi,k are fresh primitive propositions. Let Y be the resulting set.
It is easy to verify that Y satisfies the assertions of the lemma.

Corollary 1. Let X be a set of propositional modal Horn clauses such that:
the modal depth of X is not greater than 2, X contains at most one negative
clause, which is of the form ← p, and each non-negative clause of X contains
no more than 3 literals. Then the problem of checking whether X is L-satisfiable
is NP-complete for L = K and PSPACE-complete for L ∈ {K4,KD4,S4}.

Proof. This corollary immediately follows from Lemma 2 and the results of [11,1]
that the satisfiability problem of sets of propositional modal Horn clauses with
modal depth bounded by k ≥ 2 in K is NP-complete, in K4, KD4, and S4 is
PSPACE-complete.

Lemma 3. Let X be as in Corollary 1 with ψ = ← q being the only negative
clause. Then there exist an MDatalog query (P, ϕ), where P does not depend on
X and ϕ is a positive ground formula depending only on ψ, and an edb instance
D with size in polynomial order in the size of X such that X is L-satisfiable iff
P ∪D �L ϕ, where L is any normal modal logic.

Proof. Each non-negative clause of X is of the form �s(A← B1, . . . , Bk), where
0 ≤ s ≤ 2, 0 ≤ k ≤ 2, and A,B1, . . . , Bk are of the form p, �p, or �p. Let K be
the number of such possible forms (i.e. K = 3× 3× (1 + 3 + 3× 3)).

Suppose that primitive propositions occurring in X are numbered from 1 to
n and denoted by p1, . . . , pn. We represent each non-negative clause ξ of X by
a first-order program clause representing the form of ξ plus a ground first-order
atom indicating ξ. For simplicity, we illustrate this using a clause ξ = ��(pi ←
�pj ,�pk). Let 1 ≤ t ≤ K be the number indicating the form of this clause. The
clause ξ is then represented by ��(p(x) ← �p(y),�p(z), clause(t, x, y, z)) and
��clause(t, i, j, k). Note that the program clause depends only on the form of
ξ, while the atom indicates ξ. In this way, the set of non-negative clauses of X is
represented by an MDatalog program P and a set D of ground first-order atoms.
Furthermore, we can assume that P does not depend on X , as we can include
in P an appropriate program clause for every 1 ≤ t ≤ K.

If ψ =← pi then let ϕ = p(i). It is clear that X is L-satisfiable iff P∪D∪{¬ϕ}
is L-satisfiable, and iff P ∪D �L ϕ, where L is any normal modal logic.

Theorem 2. The data complexity of MDatalog and eMDatalog in K4, KD4,
and S4 is PSPACE-complete.

Proof. By Lemma 1, the data complexity of MDatalog and eMDatalog in K4,
KD4, and S4 is in PSPACE. Let X be a set of propositional modal Horn clauses
as in Lemma 3. By Corollary 1, the problem of checking L-satisfiability of X for
L ∈ {K4,KD4,S4} is PSPACE-complete. By Lemma 3, this problem is reducible
in polynomial time to a problem of answering a fixed MDatalog query (P, ϕ)
w.r.t. an edb instanceD depending onX (here, without loss of generality, assume
that ϕ is fixed). Hence, the data complexity of MDatalog and eMDatalog in K4,
KD4, and S4 is complete in PSPACE.

736 L.A. Nguyen

Theorem 3. The data complexity of MDatalog and eMDatalog in K is coNP-
complete.

Proof. We first show that the data complexity of eMDatalog in K is in coNP.
Let (P, ϕ) be a fixed eMDatalog query, where ϕ is a positive ground formula, and
D be an eMDatalog edb instance. To answer the query w.r.t. the input D in the
logic K is to check whether P ∪D |=K ϕ, or equivalently, whether P ∪D∪{¬ϕ}
is K -unsatisfiable.

Let n be the size of D and c be the modal depth of P ∪{¬ϕ}. Let P ′ be the set
of all ground instances of clauses of P using the constant symbols occurring in P ,
ϕ, D. The size of P ′ is bounded by a polynomial of n. Observe that P ∪D∪{¬ϕ}
is K -satisfiable iff P ′ ∪D ∪ {¬ϕ} is K -satisfiable.

Consider the process of constructing a K -model graph for P ′∪D∪{¬ϕ}. At the
beginning, the model graph contains only the actual world τ with P ′∪D∪{¬ϕ}
in the negative normal form as the content. Then for every world w and every
formula ψ from the content of w, we realize ψ at w as follows. If ψ = ζ1∨ . . .∨ζk
then nondeterministically choose some ζi and add ζi to the content of w. If
ψ = �ζ then create a new empty world u, connect w to u via the accessibility
relation, and add ζ to the content of u. If ψ = �ζ then add ζ to the content of
every world accessible from w. If at the end we obtain a model graph which is
saturated (in the sense that, for every w, every formula ψ in the content of w has
been realized at w) and is consistent (in the sense that no world contains both
p and ¬p for some primitive proposition p), then P ′ ∪D∪{¬ϕ} is K -satisfiable.
Observe that if a world w in the constructed model graph is inconsistent (i.e.
w contains both p and ¬p for some p), then the path from τ to w via the
accessibility relation is not longer than c, sinceD contains only positive formulas.
This means that when checking consistency of the constructed model graph, we
need to pay attention only to worlds not far away from τ than c edges. The
total size of that fragment of the constructed model graph is bounded by a
polynomial of n. Hence, checking whether P ′ ∪ D ∪ {¬ϕ} is K -satisfiable can
be nondeterministically done in polynomial time. Consequently, the problem of
answering the query (P, ϕ) w.r.t. the input D in the logic K is in the coNP class.

Analogously as in the proof of Theorem 2, using Corollary 1 and Lemma 3 we
conclude that the data complexity of MDatalog and eMDatalog in K is complete
in coNP.

5 The Data Complexity of eMDatalog in KD, T , KB ,
KDB , and B

In this section, we show that the data complexity of MDatalog and eMDatalog in
KD , T , KB , KDB , and B is complete in PTIME. For this aim, we first present
an algorithm of constructing a “least” L-model for a given eMDatalog program,
where L ∈ {KD,T,KDB,B}.

We say that a propositional Kripke model M is less than or equal to M ′ if
for every positive propositional formula ϕ, if M |= ϕ then M ′ |= ϕ. M is called

The Data Complexity of MDatalog in Basic Modal Logics 737

a least L-model of an eMDatalog program P if M is an L-model of P and M is
less than or equal to every L-model of P . Observe that if M is a least L-model
of P and ϕ is a positive propositional formula then P |=L ϕ iff M |=L ϕ.

In the algorithm given below, as a data structure we have a model graph
M = 〈W, τ,R,H〉 and a binary relationR′ being the skeleton of R. We sometimes
refer toM as the propositional model 〈W, τ,R, h〉, with h(x) = {E | E is a ground
classical atom belonging to H(x)}. We write M,u |= ϕ to denote that ϕ is true
at u in the model M .

We will use a procedure CreateEmptyTailL(x0) defined as: Add an infinite
chain of new empty worlds x1, x2, . . . to W , set R′ = R′ ∪ {(xi, xi+1) | i ≥ 0},
and set R to the least extension of R′ that satisfies all L-frame restrictions.
(Note that the chain can be coded as a finite chain, which will be dynamically
expanded when necessary).

Algorithm 1
Input: A ground eMDatalog program P in L ∈ {KD,T,KDB,B}

treated as a set of propositional formulas.
Output: A least L-model M = 〈W, τ,R, h〉 of P .

1. Set W = {τ}, H(τ) = P , R′ = ∅.
CreateEmptyTailL(τ).

2. For every u ∈W and for every ϕ ∈ H(u):
(a) If ϕ = (ψ ← ζ) and M,u |= ζ then set H(u) = H(u) ∪ {ψ}.
(b) If ϕ = ψ ∧ ζ then set H(u) = H(u) ∪ {ψ, ζ}.
(c) If ϕ = �ψ then for every v ∈W s.t. R(u, v) set H(v) = H(v) ∪ {ψ}.
(d) If ϕ = �ψ and ¬(∃x R′(u, x) ∧ ψ ∈ H(x)) then:

Let uψ be a new world.
Set W = W ∪ {uψ}, H(uψ) = {ψ}, R′ = R′ ∪ {(u, uψ)}.
CreateEmptyTailL(uψ).

3. While some change occurred, repeat step 2.

This algorithm is very similar to Algorithm 5.1 in [8], which constructs a least
L-model for a given positive propositional modal logic program. The following
lemma can be proved as done for Algorithm 5.1 in [8].

Lemma 4. The above algorithm always terminates and the constructed model
M is a least L-model of P .

Let M = 〈W, τ,R, h〉 be a Kripke model. Define the distance from τ to a world
w ∈ W via R to be the length of a shortest path from τ to w via R (undefined
if there does not exist such a path). For k ≥ 0, we define M|k to be the model
obtained from M by restricting it to the worlds with the distance from τ via R
not greater then k. The following lemma can be proved easily.

Lemma 5. Let M = 〈W, τ,R, h〉 be a Kripke model and ϕ a formula with modal
depth not greater than k. Then M |= ϕ iff M|k |= ϕ.

738 L.A. Nguyen

If we are given an eMDatalog program P representing a modal deductive data-
base and a positive ground formula ϕ to check whether P |=L ϕ, then instead of
constructing a least L-model M of P to check whether M |= ϕ we can construct
only M|k and check whether M|k |= ϕ where k is a number not less than the
modal depth of ϕ. In the following we show that such a restricted model M|k
can be constructed without having the whole model M .

Let ϕ be a positive ground formula and ψ be a subformula of ϕ with a fixed
position. We define the modal context of ψ in ϕ to be the sequence of modal
operators occurring in ϕ such that ψ is under the scope of them. For example,
the modal context of �(r∧s) in �(�p∧�(�q∧�(r∧s))) is ��, which consists
of the first and the second �. We call a sequence of modal operators a modality
and denote the empty modality by ε.

For L ∈ {T,KDB,B}, let the set of rules for shrinking modalities in L consist
of: � → ε if L ∈ {T,B}, �� → ε and �� → ε if L ∈ {KDB,B}. Note that
the first rule corresponds to axiom T , while the two latter rules correspond to
axiom B. A modality : is reducible to ε in L ∈ {T,KDB,B} if ε is derivable
from : using the rules for shrinking modalities in L.

Lemma 6. Consider Algorithm 1 and a moment when a formula ψ is added to
H(x). Suppose that the distance from τ to x via R′ is greater than the modal
depth of every rule of P . Then:

– there exists �ψ ∈ H(y) s.t. R′(y, x) holds; or
– there exists �ψ ∈ H(y) s.t. x = yψ (i.e. x is created from y using �ψ); or
– before adding ψ to H(x) there exists already ψ′ ∈ H(x) such that ψ is a

subformula of ψ′ under a modal context which is reducible to ε in L.

Proof. We prove this lemma by induction on the number of steps needed to add
ψ to H(x). The only non-trivial case is when ψ is added to H(x) at Step 2c
with x = v, L ∈ {KDB,B} and R′(v, u) holds. Consider that case. Applying
the induction hypothesis for the moment when ϕ = �ψ is added to H(u), we
obtain that �ϕ ∈ H(v) or �ϕ ∈ H(v) or before adding ϕ to H(u) there exists
already ϕ′ ∈ H(u) such that ϕ is a subformula of ϕ′ under a modal context
which is reducible to ε in L. By repeatedly applying the induction hypothesis
for the moment when ϕ′ is added to H(u), we derive that there exists a formula
ξ ∈ H(u) such that ϕ is a subformula of ξ under a modal context which is
reducible to ε and ξ was added to H(u) because �ξ ∈ H(v) or �ξ ∈ H(v). It is
easily seen that the inductive assertion immediately follows.

Lemma 7. Consider Algorithm 1. Suppose that ϕ ∈ H(u) and the distance
from τ to u via R′ is greater than the modal depth of every rule of P . Then
every subformula ψ of ϕ under a modal context which is reducible to ε will be
added to H(u).

Proof. By induction on the structure of ϕ.

We now present a modified version of Algorithm 1. The modifications are high-
lighted by another font.

The Data Complexity of MDatalog in Basic Modal Logics 739

Algorithm 2
Input: A ground eMDatalog program P in L ∈ {KD,T,KDB,B}

treated as a set of propositional formulas.
A number k greater than the modal depth of every rule of P .

Output: A model M = 〈W, τ,R, h〉.

1. Set W = {τ}, H(τ) = P , R′ = ∅.
CreateEmptyTailL(τ).

2. For every u ∈W with H(u) not empty and for every ϕ ∈ H(u):
(a) If ϕ = (ψ ← ζ) and M,u |= ζ then set H(u) = H(u) ∪ {ψ}.
(b) If ϕ = ψ ∧ ζ then set H(u) = H(u) ∪ {ψ, ζ}.
(c) If ϕ = �ψ then for every v ∈W s.t. R(u, v) set H(v) = H(v) ∪ {ψ}.
(d) If ϕ = �ψ and ¬(∃x R′(u, x) ∧ ψ ∈ H(x)) and the path from τ to u via

R′ is shorter than k then:
Let v be a new world.
Set W = W ∪ {v}, H(v) = {ψ}, R′ = R′ ∪ {(u, v)}.
CreateEmptyTailL(v).

(e) If L ∈ {T,KDB,B} and the path from τ to u via R′ has length k then, for
every subformula ψ of ϕ under a modal context which is reducible to ε in
L, set H(u) = H(u) ∪ {ψ}.

3. While some change occurred, repeat step 2.

Lemma 8. Let P be a ground eMDatalog program s.t. the modal depths of the
rules of P are not greater than k. Let M and M ′ be respectively the outputs
of Algorithm 1 and Algorithm 2 for P in L ∈ {KD,T,KDB,B}. Then M|k is
isomorphic with M ′.

This lemma immediately follows from Lemmas 6 and 7.

Theorem 4. The data complexity of MDatalog and eMDatalog in L ∈ {KD, T,
KDB, B} is PTIME-complete.

Proof. Since the data complexity of Datalog is complete in PTIME (see, e.g.,
[6]), it suffices to show that the data complexity of eMDatalog in L is in PTIME.

Let (P ′, ϕ) be a fixed eMDatalog query, where ϕ is a positive ground formula,
and D be an eMDatalog edb instance. To answer the query w.r.t. the input D
in L is to check whether P ′ ∪D |=L ϕ. Let P ′′ be the set of all ground instances
of clauses of P ′ using the constant symbols occurring in P ′, ϕ, D. Observe that
P ′ ∪D |=L ϕ iff P ′′ ∪D |=L ϕ.

Let P = P ′′ ∪D and let k be the maximum of the modal depths of P ′ and ϕ
plus 1. Note that k is fixed. Let M be the result of the execution of Algorithm
2 for P and k. By Lemmas 4, 5, and 8, we have that P ′′ ∪D |=L ϕ iff M |= ϕ.

Let n be the size of D. As the query (P ′, ϕ) is fixed, the size of P ′′ is bounded
by a polynomial of n. The size of M and the number of steps needed to construct
M are bounded by a polynomial in the size of P ′′. Checking whether M |= ϕ can
be done in polynomial time in the sizes of M and ϕ. Totally, checking whether
P ′ ∪ D |=L ϕ can be done in polynomial time in the size of the input D, and
hence the data complexity of eMDatalog in L is in PTIME.

740 L.A. Nguyen

The remaining logic KB is an almost serial (see [9]) modal logic corresponding
to B. Using the techniques of [8,9], we can derive the following result.

Corollary 2. The data complexity of MDatalog and eMDatalog in KB is
PTIME-complete.

6 Conclusions

We have proved that, for L being any one of the 15 basic monomodal logics, the
data complexity of MDatalog and eMDatalog in L is the same as the complexity
of the unsatisfiability problem in L of the propositional modal Horn fragment
with modal depth bounded by k ≥ 2. This result is a bit surprising, as MDatalog
and eMDatalog are fragments of first-order modal logics and can contain data
with unbounded modal depth. The eMDatalog language is an interesting frag-
ment of modal logic that has low complexity in KD , T , KB , KDB , and B . On the
other hand, the PSPACE-complete data complexity of MDatalog in K4, KD4,
and S4 shows that these latter modal logics (and their multimodal extensions)
are hard in the view of deductive databases (unless PSPACE = PTIME).

Acknowledgements. I would like to thank the reviewers for useful comments.

References

1. C.C. Chen and I.P. Lin. The computational complexity of the satisfiability of modal
Horn clauses for modal propositional logics. Theor. Comp. Sci., 129:95–121, 1994.

2. M.J. Cresswell and G.E. Hughes. A New Introduction to Modal Logic. Routledge,
1996.

3. L. Fariñas del Cerro and M. Penttonen. A note on the complexity of the satisfia-
bility of modal Horn clauses. Logic Programming, 4:1–10, 1987.

4. M. Fitting and R.L. Mendelsohn. First-Order Modal Logic. Springer, 1998.
5. G. Gottlob, E. Grädel, and H. Veith. Linear time datalog and branching time logic.

In Logic-Based Artif. Int., pages 443–467. Kluwer Academic Publishers, 2000.
6. Ch. Koch and S. Scherzinger. Lecture notes on database theory. http://www-db.

cs.unisb.de/teaching/dbth0506/slides/dbthdatalog2.pdf.
7. R. Ladner. The computational complexity of provability in systems of modal propo-

sitional logic. SIAM Journal of Computing, 6:467–480, 1977.
8. L.A. Nguyen. Constructing the least models for positive modal logic programs.

Fundamenta Informaticae, 42(1):29–60, 2000.
9. L.A. Nguyen. The modal query language MDatalog. Fundamenta Informaticae,

46(4):315–342, 2001.
10. L.A. Nguyen. On modal deductive databases. In J. Eder, H.-M. Haav, A. Kalja,

and J. Penjam, editors, Proc. of ADBIS 2005, LNCS 3631, pages 43–57. Springer,
2005.

11. L.A. Nguyen. On the complexity of fragments of modal logics. In R. Schmidt,
I. Pratt-Hartmann, M. Reynolds, and H. Wansing, editors, Advances in Modal
Logic - Volume 5, pages 249–268. King’s College Publications, 2005.

The Complexity of Counting Functions

with Easy Decision Version�

Aris Pagourtzis1 and Stathis Zachos1,2

1 Department of Computer Science, School of ECE,
National Technical University of Athens, Greece

{pagour, zachos}@cs.ntua.gr
2 CIS Department, Brooklyn College, CUNY

Abstract. We investigate the complexity of counting problems that be-
long to the complexity class #P and have an easy decision version. These
problems constitute the class #PE which has some well-known represen-
tatives such as #Perfect Matchings, #DNF-Sat, and NonNegative
Permanent. An important property of these problems is that they are
all #P-complete, in the Cook sense, while they cannot be #P-complete
in the Karp sense unless P = NP.

We study these problems in respect to the complexity class TotP,
which contains functions that count the number of all paths of a PNTM.
We first compare TotP to #P and #PE and show that FP ⊆ TotP ⊆
#PE ⊆ #P and that the inclusions are proper unless P = NP.

We then show that several natural #PE problems — including the
ones mentioned above — belong to TotP. Moreover, we prove that TotP
is exactly the Karp closure of self-reducible functions of #PE. Therefore,
all these problems share a remarkable structural property: for each of
them there exists a polynomial-time nondeterministic Turing machine
which has as many computation paths as the output value.

1 Introduction

The complexity class #P, introduced by Valiant [Val79a], is the class of
functions that count the number of accepting paths of a polynomial-time non-
deterministic Turing machine (PNTM). This class contains several interesting
problems, in particular counting variants of classical NP-search problems. Some
complete problems for this class, and thus hard to compute, are #Sat, #Cliq-
ues, etc. A noteworthy fact is that, while for these problems the decision (ex-
istence) version is NP-complete, there are other #P-complete problems which
have easy (polynomial-time decidable) existence versions: #Perfect Match-
ings, #DNF-Sat, and many more.

In this paper we investigate the complexity of such “hard-to-count-easy-to-
decide” problems (a term borrowed from [DHK00]). A key observation is that
these latter problems are #P-complete under Cook reductions — but cannot
� Research supported in part by grant E∆285, under the ΠENE∆ 2003 programme

of the General Secretariat of Research and Technology of Greece.

R. Královič and P. Urzyczyn (Eds.): MFCS 2006, LNCS 4162, pp. 741–752, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

742 A. Pagourtzis and S. Zachos

be #P-complete under Karp reductions. It turns out that Cook reductions blur
structural differences between counting problems and complexity classes. The
reason is that #P as well as several other classes is not closed under Cook re-
ductions (under reasonable assumptions). Therefore, in an effort to characterize
these problems, we look for subclasses of #P— closed under Karp reduction —
for which there is a possibility that (some of) these problems are Karp-complete.

The complexity class TotP was introduced in [KPSZ98] as the class of func-
tions that count the total number of computational paths of a PNTM; it was
proved that this new class is equivalent to #P under Cook reductions. On the
other hand, it was shown in [KPZ99] that #P does not reduce to TotP under
Karp reductions, that is, TotP is a proper subset of #P unless P = NP.

A second class of functions with similar properties was introduced in [Pag01].
This class was called #PE (for #P “Easy”) since it contains all functions f of #P
such that for any input x the question ‘f(x) > 0?’ is polynomial-time decidable.
By definition, #PE contains #Perfect Matchings and #DNF-Sat but not
#Sat unless P=NP.

Here we explore the relations among #P, #PE, and TotP, and we clarify
which #PE problems are contained in TotP. Our most important results can be
summarized as follows.

– FP ⊆ TotP ⊆ #PE ⊆ #P. Inclusions are proper unless P = NP; that is, TotP,
#PE, and #P are not Karp-equivalent unless P = NP. On the other hand,
FPTotP[1] = FP#PE[1] = FP#P[1]; that is, TotP, #PE, and #P are Cook[1]-
equivalent.

– #Perfect Matchings, #DNF-Sat, #NonCliques, and NonNegative
Permanent, as well as some related problems, are in TotP, in fact TotP-
complete under Cook[1] reduction.

– TotP is exactly the Karp closure of self-reducible functions of #PE. This
implies that all these problems possess a remarkable structural property: for
each of them there exists a PNTM with as many computation paths as the
output value.

2 Preliminaries and Definitions

Our model of computation is the polynomial-time bounded nondeterministic
Turing machine (PNTM), i.e., there is some polynomial p so that for any input
x, all computation paths have length at most p(|x|), where |x| is the length of
the input. A counting function Σ∗ → IN is associated with a PNTM M :

accM (x) = #accepting paths of M on input x

In his seminal paper [Val79a] Valiant introduced the class of counting func-
tions #P:

#P = {accM |M is a PNTM}

The Complexity of Counting Functions with Easy Decision Version 743

Equivalently, #P can be seen as the class of functions that count the number
of solutions of NP-search problems.

#P is a class of very high complexity: Toda showed [Tod91] that PH ⊆ P#P[1],
where PH stands for the Polynomial-Time Hierarchy.

We consider functional oracles and use Pg to denote the class of languages
that can be decided by a polynomial-time deterministic Turing machine (PDTM)
with access to an oracle function g. For a function class G, PG =

⋃
g∈G Pg. The

function classes FPg and FPG are defined analogously, considering PDTMs with
output equipped with a function oracle.

For complexity classes of functions F and G, F − G denotes the class of
functions that can be expressed as the difference of one function in F and one
function in G.

Reductions between functions can be defined in a similar manner to the
Cook/Turing and Karp/many-one reductions between languages. Valiant
[Val79a] presented a Cook reduction with one oracle call (that is, a Cook[1]
reduction) from any problem in #P to #Perfect Matchings. Since then,
Cook[1] reductions between functions have been widely used (e.g., in [Kre88,
KST89, TW92]); Krentel in [Kre88] calls such reductions metric. The notion of
Karp/many-one reducibility between functions has also been often used in the lit-
erature [Wag86, Tor88, Vol94]. When referring to counting functions correspond-
ing to NP-search problems, this kind of reduction is often called parsimonious, a
name credited to Simon [Sim75]. We shall use the terms “Cook”, “Cook[1]”, and
“Karp”, as shortcuts for “poly-time Turing”, “poly-time 1-Turing”,and “poly-
time many-one”, respectively.

Definition 1. Polynomial-time reductions between functions:

– Cook (poly-time Turing) f ≤p
T g : f ∈ FPg.

– Cook[1] (poly-time 1-Turing) f ≤p
1−T g : f ∈ FPg[1].

– Karp (poly-time many-one) f ≤p
m g : ∃h ∈ FP, ∀x f(x) = g(h(x)).

All three reductions are reflexive and transitive, and the following holds for all
functions f, g:

f ≤p
m g ⇒ f ≤p

1−T g ⇒ f ≤p
T g

We say that G is closed under ≤r iff f ≤r g ∧ g ∈ G ⇒ f ∈ G.
For a function class F , a function g is called F -hard under a reduction ≤r if

for all f ∈ F , f ≤r g. A function g is called F-complete under ≤r if it is F -hard
under ≤r and g ∈ F .

There is an important difference between Karp and Cook reductions. Namely,
most of the known function classes that can be defined via PNTMs (including
#P) are closed under ≤p

m. On the other hand, the class FP#P[1] by definition
Cook[1]-reduces to #P, while it is not contained in #P (unless PH collapses—
see [TW92]); this means that #P is not closed under ≤p

1−T unless PH collapses.

744 A. Pagourtzis and S. Zachos

Therefore, we can say that Cook reductions blur structural differences between
complexity classes of functions [KPZ99].1

3 Appropriate Classes for “Hard-to-Count-Easy-to-
Decide” Problems

The difference between Karp and Cook reductions mentioned in the previous sec-
tion is well reflected in the behavior of #P-complete problems. While there exist
problems which are #P-complete under both reductions (namely, the counting
versions of most NP-complete problems), there also exist problems which are #P-
complete only under the Cook reduction (unless P=NP). These latter problems
usually have a decision version in P and are sometimes called “hard-to-count-
easy-to-decide” problems. Some examples: #Perfect Matchings, #DNF-
Sat, #NonCliques.

We would like to determine the exact complexity of such problems. We are
therefore looking for reasonably defined subclasses of #P that contain them;
ideally we would like to show that (some of) these problems are complete for
some subclass F of #P under Karp reduction (or under a reduction for which
F is closed). Two recently introduced classes are good candidates: #PE [Pag01]
and TotP [KPSZ98].

3.1 The Classes #PE and TotP

For each function f ∈ Σ∗ → IN we define a related language:

Lf = {x | f(x) > 0}
Note that for function problems this language represents a natural decision ver-
sion of the problem. In particular, if a function f corresponds to the counting
version of a search problem (i.e., f counts how many solutions are there for a
given instance) then Lf corresponds to the existence version.

The class #PE contains functions of #P whose related language is in P (i.e.,
the question “f(x) > 0?” is polynomial-time decidable). In other words, #PE
by definition contains all hard-to-count-easy-to-decide problems.

The definition of TotP involves a function associated with every PNTM M :

totM (x) = (#paths of M on input x)− 1

Remark 1. The ‘minus one’ in the definition of totM above was introduced so
that the function can have a zero value.

TotP is defined as the class of all totM functions:

TotP = {totM |M is a PNTM}
TotP and #PE have several similarities — and some differences. We next

investigate the relation between them, as well as their relation to #P.
1 This is true for language classes as well. For example, the CNF-Sat problem is

complete under Cook reduction both for NP and PNP.

The Complexity of Counting Functions with Easy Decision Version 745

3.2 Inclusions Among TotP, #PE, and #P

Proposition 1. 1. #P ⊆ TotP− FP [KPSZ98].
2. FP ⊆ TotP ⊆ #PE ⊆ #P. Inclusions are proper, unless P = NP.

Proofs are omitted due to lack of space; they will be included in the full version
of the paper.

The fact that inclusions in Proposition 1.2 are proper unless P = NP, together
with the fact that TotP, #PE, and #P, are closed under Karp reduction, implies
the following.

Corollary 1. TotP, #PE, and #P are not Karp-equivalent unless P = NP.

It is easy to see that for any polynomially length-bounded2 function class F it
holds F − FP ⊆ FPF . Hence, Proposition 1 can be used to show that:

Corollary 2. FPTotP[1] = FP#PE[1] = FP#P[1]. That is, TotP, #PE, and #P are
Cook[1]-equivalent.

A further implication of the above, combining with the result of Toda [Tod91],
is that PH ⊆ PTotP[1] = P#PE[1].

The above corollaries imply that under Karp reduction #P-complete, #PE-
complete and TotP-complete problems constitute disjoint classes, unless P = NP,
while under Cook[1] reduction TotP-complete problems are contained in #PE-
complete problems which are contained in #P-complete problems.

Hence, the information that a problem is #P-complete under Cook[1] reduc-
tion does not suffice in order to classify the problem well. For example, #Per-
fect Matchings is a known #P-complete problem under Cook[1] reduction.
It is not hard to observe that it is also #PE-complete. Could it even be TotP-
complete? In the next section we answer this question in the affirmative.

4 Some #P-Complete Problems Are Also TotP-Complete

Theorem 1. #Perfect Matchings is TotP-complete under Cook[1] reduc-
tion.

Proof. #Perfect Matchings is certainly TotP-hard under Cook[1]-reduction,
since it is #P-complete under this reduction [Val79b] and TotP ⊆ #P. It remains
to prove that #Perfect Matchings belongs to TotP.

We construct a PNTM M which, for any input graph G, makes nondetermin-
istic choices so that the number of computation paths is equal to the number of
perfect matchings of G plus one — hence totM (G) = #PM(G). We present the
description of M in the form of a nondeterministic algorithm.

2 A function is polynomially length-bounded if ∃ polynomial p s.t. for all x, |f(x)| ≤
p(|x|).

746 A. Pagourtzis and S. Zachos

Nondeterministic algorithm for #PerfectMatchings (#PM)

(* For an input graph G = (V, E), the computation tree has #PM(G) + 1 leaves *)

begin

if #PM(G) = 0 then stop
else nondet. choose between

stop (* dummy additional path *)

call GenTree(G)

end.
procedure GenTree(G: graph)

begin
select an edge e = (v, u) of G;

G0 := G− {u, v, and all edges incident to v or u};
G1 := G− {e};
cases

if both #PM(Gi) > 0 then nondet. choose between
call GenTree(G0)

call GenTree(G1);

if for only one i ∈ {0, 1} it holds #PM(Gi) > 0 then call GenTree(Gi);

if both #PM(Gi) = 0 then stop (* e is the only edge of G *)

end-cases
end

Showing that the computation tree of the above algorithm has #PM(G) + 1
leaves reduces to showing that for any graphG with at least one perfect matching,
the computation tree of GenTree(G) has exactly #PM(G) leaves. This can be
shown by induction on the number of edges of G. Details are omitted. �
As an immediate corollary, it turns out that one of the central problems in
Valiant’s seminal paper on class #P [Val79a] is also TotP-complete under Cook
[1]-reduction.

Corollary 3. Computing the permanent of n × n (0, 1)-matrices is TotP-
complete under Cook[1]-reduction.

Remark 2. We can extend the above corollary to the problem of computing the
permanent of any matrix with nonnegative integer entries. In Sect. 6 we will
obtain this result as a consequence of the Main Theorem of Sect. 5.

5 TotP Is the Class of Self-reducible #PE Functions

5.1 Self-reducibility

In the previous section we proved that important #PE problems are in TotP.
A key property of these problems is the possibility to reduce them to other in-
stances of the same problem. Let us now formalize this notion of self-reducibility
(somewhat different from Ko’s self-reducibility [Ko83]):

The Complexity of Counting Functions with Easy Decision Version 747

Definition 2. A function f : Σ∗ → IN is called poly-time self-reducible if there
exist polynomials r and q and polynomial time computable functions h : Σ∗ ×
IN → Σ∗ , g : Σ∗ × IN → IN , and t : Σ∗ → IN such that for all x ∈ Σ∗:

(a) f(x) = t(x) +
∑r(|x|)

i=0 g(x, i)f(h(x, i)), that is, f can be processed recur-
sively by reducing x to h(x, i), (0 ≤ i ≤ r(|x|)), and

(b) the recursion terminates after at most polynomial depth (that is, the value
of f on instance h

(
. . . h(h(x, i1), i2) . . . , iq(|x|)

)
can be computed deterministically

in polynomial time).

5.2 Main Theorem

We are now ready to state and prove the main theorem of this paper. Let #PESR
be the class of all self-reducible functions of #PE.

Theorem 2. TotP is exactly the closure under Karp reductions (≤p
m) of #PESR.

Proof. 1. Closure≤p
m
(#PESR) ⊆ TotP:

It suffices to show that #PESR ⊆ TotP because TotP is closed under ≤p
m.

Consider a function f ∈ #PESR. Since f ∈ #PE, the question f(x) > 0
can be decided in polynomial time. This property, together with the existence
of poly-time computable functions t, h, and g, and of polynomial r, such that
f(x) = t(x) +

∑r(|x|)
i=0 g(x, i)f(h(x, i)), allows us to design a nondeterministic

algorithm with a computation tree with exactly f(x) + 1 leaves. A description
of the algorithm follows.

Nondeterministic algorithm for a self-reducible #PE function f

(* On input x, the computation tree has f(x) + 1 leaves *)

begin

if f(x) = 0 then stop
else nondet. choose between

stop (* dummy additional path *)

call GenTreef(x)

end.
procedure GenTreef(x)

begin
if f(x) can be computed directly in polynomial time then

spawn f(x) nondeterministic branches

at each branch stop (* recursion has finished *)

else
compute g(x, i), h(x, i), for all i, 0 ≤ i ≤ r(|x|), and t(x);

check whether g(x, i)f(h(x, i)) > 0, 0 ≤ i ≤ r(|x|), and whether t(x) > 0;

nondet. choose between
spawn g(x, 0) nondet. branches provided g(x, 0)f(h(x, 0)) > 0

at each branch call GenTreef(h(x, 0)); (* subtree with

g(x,0)f(h(x, 0)) comp. paths *)
...

748 A. Pagourtzis and S. Zachos

spawn g(x, r(|x|)) nondet. branches provided g(x, r(|x|))f(h(x, r(|x|))) > 0

at each branch call GenTreef(h(x, r(|x|))); (* subtree with

g(x, r(|x|))f(h(x, r(|x|))) comp. paths *)

spawn t(x) nondet. branches provided t(x) > 0

at each branch stop; (* subtree with t(x) comp. paths *)

end
(* The statement provided condition means that the corresponding nondeterministic

choice will be executed only if condition holds. *)

As in the proof of Theorem 1, it can be shown by induction on the recursion
depth that the computation tree of GenTreef on input x has exactly f(x)
leaves.

Note that during the operation of GenTreef at least one of g(x, i)f(h(x, i)),
0 ≤ i ≤ r(|x|), t(x) must be non-zero because GenTreef is called only for x’s
for which f(x) > 0. If only one of these values is nonzero, this step is actually
deterministic.

By Condition (b) of Definition 2 the recursion depth is polynomial on |x|,
hence each computation path needs polynomial time.

2. TotP ⊆ Closure≤p
m
(#PESR):

Consider a TotP function f with corresponding PNTM M . Let M ′ be a modi-
fication of M which omits the leftmost computation path of M (if there are at
least two). Clearly, for all x with f(x) > 0, it holds:

f(x) = totM (x) = (#paths of M on input x)− 1 = #paths of M ′ on input x

Let us define a function f ′ : Σ∗ ×Σ∗ → IN associated with M ′ such that for
every x ∈ Σ∗, f ′(x, y) gives the number of paths of the computation tree of M ′

on input x after following the nondeterministic choices described by y. If there
is no such path, f ′(x, y) = 0.

Claim: f Karp-reduces to f ′, i.e., f ≤p
m f ′. Indeed, let h be defined as follows:

h(x) =
{

(x, ε) if f(x) > 0
(x, 1q(|x|)+1) otherwise

where q is the polynomial that bounds the running time of M ′.
Clearly, h ∈ FP and f(x) = f ′(h(x)), which proves the claim.
We will now prove that f ′ ∈ #PESR. It is not hard to see that f ′ ∈ TotP and

hence, f ′ ∈ #PE. The following shows that f ′ is self-reducible:

– f ′(x, y) = f ′(x, y0) + f ′(x, y1) + t(x, y),

where t(x, y) =
{

1 if y corresponds to a leaf of M ′(x)
0 otherwise

– f ′(x, y) = 0 for |y| = q(|x|) + 1, hence the recursion depth is at most poly-
nomial. �

The Complexity of Counting Functions with Easy Decision Version 749

6 Applications of the Main Theorem

Notice that the containment of #Perfect Matchings in TotP (Sect. 4) can in
fact be obtained as an immediate corollary of the Main Theorem; actually one
only needs the part Closure≤p

m
(#PESR) ⊆ TotP. We will now show that several

other #P-complete problems are in TotP and therefore are TotP-complete under
Cook[1]-reduction.

More TotP-Complete Problems. The following problems are known (or can
be easily shown) to be #P-complete [Val79a, Val79b, AJ90]:

1. #DNF-Sat: given a DNF Boolean formula, count the number of its satis-
fying assignments.

2. #Monotone-2-Sat: given a CNF Boolean formula with exactly two posi-
tive literals per clause, count the number of its satisfying assignments.

3. #NonCliques: given a graph G and number k, count the number of size-k
subgraphs of G that are not cliques.

4. #NonIndependent Sets: given a graph G and number k, count the num-
ber of size-k subgraphs of G that are not independent sets.

5. NonNegative Permanent: given a n × n matrix A with nonnegative in-
teger entries compute its permanent (cf. [Val79a]).

6. Ranking: given an NFA M and a word x, count the number of words ≤ x
that are accepted by M .

Theorem 3. The problems #DNF-Sat, #Monotone-2-Sat, #Non-
Cliques, #NonIndependent Sets, NonNegative Permanent, and
Ranking are TotP-complete under Cook[1] reduction.

Proof. We prove the theorem for problem #NonCliques. Proofs for the re-
maining problems are omitted due to lack of space (to be included in the full
version of the paper).

#NonCliques is #P-complete under Cook[1] reduction, because the problem
of computing the number of size-k cliques of G which is #P-complete (under
Karp, and therefore also under Cook[1] reduction) reduces to #NonCliques as
follows:

#Cliques(G, k) =
(
n

k

)
−#NonCl(G, k)

Besides, it is easy to decide if one non-clique of size k exists: it happens so
if and only if G is not a complete graph and 2 ≤ k ≤ n (n being the number
of nodes of G). Therefore #NonCliques is in #PE. To prove containment in
TotP we will show that #NonCliques is poly-time self-reducible.

Indeed, consider an instance of #NonCliques, that is a graph G(V,E) and
an integer k. Consider also a node v and let u1, . . . , ul be the nodes of G that
are not adjacent to v. Let also:

750 A. Pagourtzis and S. Zachos

G0 := (V \ {v}, E − {all edges incident to v}) and
G1 := (V \ {v, u1, . . . , ul}, E \ {all edges incident to v, u1, . . . ul}).

A careful observation reveals that the following are true:
#NonCl(G0, k) = # non-cliques of size k that do not contain v
#NonCl(G1, k− 1) = # non-cliques of size k that contain v but none of the ui’s∑l+1

i=2

(
n−i
k−2

)
= # non-cliques of size k that contain v and at least one of the ui’s.

Therefore:

#NonCl(G, k) = #NonCl(G0, k) + #NonCl(G1, k − 1) +
l+1∑
i=2

(
n− i

k − 2

)
For correctness, we also need to define that for any G, #NonCl(G, 1) = 0 and
#NonCl(G, k) = 0 if k > n.

The above equality implies that #NonCliques has the self-reducibility prop-
erty and therefore belongs to TotP. Hence, #NonCliques is TotP-complete un-
der Cook[1] reduction. �

7 TotP-Completeness Under Many-One Reductions

As already mentioned, all #P-complete problems under the Cook[1] reduc-
tion that belong to TotP (e.g., #Perfect Matchings, #DNF-Sat, #Non-
Cliques) are also TotP-complete (and #PE-complete) under Cook[1]; and
vice-versa, since #P Cook[1]-reduces to TotP. We will now focus to TotP-
completeness in the many-one sense.

TotP is a ‘syntactic’ class (each PNTM defines a function in TotP); hence
it has a complete function under the Karp reduction. We would like to know
whether there are natural TotP-complete problems under some many-one re-
duction3. We do not know the answer yet but there are some hints. The first
is that any such problem has to be TotP-complete under the corresponding 1-
Turing reduction (presumably Cook[1] or some stronger reduction, e.g., logspace
1-Turing), and therefore also #P-complete under the Cook[1] reduction, since
#P Cook[1]-reduces to TotP. The second hint is given by the following proposi-
tion, which is an immediate consequence of the fact that many-one reductions
between functions preserve the function value.

Proposition 2. If a function f that admits an FPRAS is many-one complete
for TotP then all functions in TotP admit an FPRAS.

(FPRAS stands for “Fully Polynomial Randomized Approximation Scheme”.)

Remark 3. The above implies that if #Perfect Matchings or #DNF-Sat
is TotP-complete under some many-one reduction, then all functions in TotP
admit an FPRAS since these two problems admit an FPRAS, as was shown in
3 Here we mean not only the Karp reducibility (polynomial-time many-one) but any

reasonable many-one reducibility, e.g., the logarithmic space one.

The Complexity of Counting Functions with Easy Decision Version 751

[JS96] and [KLM89] respectively. This in turn would imply that problem #BIS
(counting independent sets in a bipartite graph) as well as several problems which
are AP-interreducible to #BIS [DGGJ03] also admit an FPRAS, because it can
be easily seen that #BIS belongs to TotP; however, it was noted in [DGGJ03]
that no FPRAS is known for any of these problems.

8 Conclusions

In this paper we have investigated the complexity of counting functions with easy
decision version, with the help of two recently introduced complexity classes:
#PE, which contains all these functions, and TotP, which contains functions
that count the total number of paths of PNTMs.

Our main result is that TotP is exactly the Karp-closure of self-reducible
#PE functions. Important counting problems such as #Perfect Matchings,
#DNF-Sat, NonNegative Permanent, and #NonCliques, belong to this
class. This implies that they all possess a new computational model, namely for
each of them there is a PNTM with as many computation paths as the function
value. This characterization may help discover new properties of such problems.

On the other hand, it could be the case that these problems belong to an even
smaller class, e.g., a subclass of TotP. Hence, we would like to be able to deter-
mine their exact complexity. That is, to show that #Perfect Matchings (or
#DNF-Sat, or #NonCliques, etc.) is TotP-complete under Karp reduction,
or find a subclass of TotP, closed under Karp reduction, for which these prob-
lems are Karp-complete. The latter seems to be more likely, taking into account
the remark that follows Proposition 2. Another promising approach, proposed
in [DHK00], is to employ other (weaker) kinds of reductions under which #P,
#PE, and TotP are closed.

Finally, let us remark that subclasses of #P that contain functions with easy
decision version have been defined in [SST95] and [HHKW05]. It is an interesting
open question to see how these classes relate to TotP and #PE.

Acknowledgments. We would like to thank Jacobo Torán, Johannes Köbler,
Phokion Kolaitis, and Mihalis Yannakakis for discussions and observations that
helped us clarify notions and improve the readability of the paper.

References

[AJ90] C. Àlvarez, B. Jenner. A very hard log space counting class. In Proceedings
of Structure in Complexity Theory Conference 1990: 154–168.

[DHK00] A. Durand, M. Hermann, and P. G. Kolaitis. Subtractive reductions and
complete problems for counting complexity classes. Theoretical Computer
Science 340(3): 496-513, 2005.

[DGGJ03] M. Dyer, L. A. Goldberg, C. Greenhill, and M. Jerrum. On the relative
complexity of approximate counting problems. Algorithmica 38(3): 471–
500 (2003).

752 A. Pagourtzis and S. Zachos

[HHKW05] L.A. Hemaspaandra, C.M. Homan, S. Kosub, and K.W. Wagner. The
complexity of computing the size of an interval. Technical Report
cs.cc/0502058, ACM Computing Research Repository, February 2005.
(Preliminary version: L.A. Hemaspaandra, S. Kosub, and K.W. Wag-
ner, The complexity of computing the size of an interval, in Proceedings
ICALP 2001, LNCS 2076, pp. 1040-1051, Springer 2001.)

[JS96] M. Jerrum and A. Sinclair. The Markov chain Monte-Carlo method: an
approach to approximate counting and integration. In Approximation
Algorithms for NP-hard Problems (Dorit Hochbaum, ed.), PWS, pp. 482–
520, 1996.

[KLM89] R.M. Karp, M. Luby, and N. Madras. Monte-Carlo approximation al-
gorithms for enumeration problems. Journal of Algorithms 10: 429–448
(1989).

[KPSZ98] A. Kiayias, A. Pagourtzis, K. Sharma, and S. Zachos. The complexity of
determining the order of solutions. In Proceedings of the First Southern
Symposium on Computing, Hattiesburg, Mississippi, 4–5 December 1998.

[KPZ99] A. Kiayias, A. Pagourtzis, and S. Zachos. Cook Reductions Blur Struc-
tural Differences Between Functional Complexity Classes. In Proceedings
of the 2nd Panhellenic Logic Symposium, pp. 132-137, Delphi, 13–17 July
1999.

[Ko83] On Self-Reducibility and Weak P-Selectivity. Journal of Computer and
System Sciences, 26(2):209–221, 1983.

[Kre88] M. W. Krentel. The complexity of optimization problems. Journal of
Computer and System Sciences, 36(3):490–509, June 1988.

[KST89] J. Köbler, U. Schöning, and J. Torán. On counting and approximation.
Acta Informatica, 26(4):363–379, 1989.

[Pag01] A. Pagourtzis. On the complexity of hard counting problems with easy
decision version. In Proceedings of the 3rd Panhellenic Logic Symposium,
Anogia, Crete, 17–21 July 2001.

[SST95] S. Saluja, K. V. Subrahmanyam, and M. N. Thakur. Descriptive Complex-
ity of #P Functions. Journal of Computer and System Sciences, 50(3):
493–505 (1995).

[Sim75] J. Simon. On some Central Problems of Computational Complexity. PhD
thesis, Cornell University, Ithaca, NY, 1975.

[Tod91] S. Toda. PP is as hard as the polynomial-time hierarchy. SIAM Journal
on Computing, 20(5):865–877, 1991.

[TW92] S. Toda and O. Watanabe. Polynomial-time 1-Turing reductions from
�PH to �P. Theoretical Computer Science, 100(1):205–221, 1992.

[Tor88] J. Toran. Structural Properties of the Counting Hierarchies. PhD thesis,
Facultat d’Informatica de Barcelona, 1988.

[Val79a] L. G. Valiant. The complexity of computing the permanent. Theoretical
Computer Science, 8(2):189–201, April 1979.

[Val79b] L. G. Valiant. The complexity of enumeration and reliability problems.
SIAM Journal on Computing, 8(3):410–421, August 1979.

[Vol94] H. Vollmer. On different reducibility notions for function classes. In Pro-
ceedings of the 11th Annual Symposium on Theoretical Aspects of Com-
puter Science, volume 775 of Lecture Notes in Computer Science, pages
449–460, Caen, France, 24–26 February 1994. Springer.

[Wag86] K. W. Wagner. Some observations on the connection between counting
and recursion. Theoretical Computer Science, 47(2):131–147, 1986.

On Non-Interactive Zero-Knowledge Proofs of

Knowledge in the Shared Random String Model

Giuseppe Persiano and Ivan Visconti

Dipartimento di Informatica ed Appl., Università di Salerno, Italy
{giuper, visconti}@dia.unisa.it

Abstract. In this paper we study the notion of a Double-Round NIZ-
KPK in the SRS model. In a Double-Round NIZKPK prover and verifier
have access to the same random string Σ and, in addition, the prover is
allowed to send one message to the verifier before Σ is made available.
The verifier needs not to reply to this message. The random string and
initial prover message can then be used in any polynomial number of
proofs each consisting of a single message.

We show how to construct Double-Round non-malleable NIZKPKs
in the SRS model by only requiring the existence of one-way trapdoor
permutations. In contrast, regular NIZKPKs require the existence of
cryptosystems with an extra density property, called dense secure cryp-
tosystems. We then show that Double-Round NIZKPKs can replace one-
round NIZKPKs in the design of secure protocols. The replacement has
no significant effect on the round complexity of the larger protocol but it
removes the need of the existence of dense secure cryptosystems. We give
examples of cryptographic constructions that use one-round NIZKPKs
and that are improved when using Double-Round NIZKPKs: 1) the con-
struction of 3-round resettable zero-knowledge arguments in the UPK
model [EUROCRYPT 2001]; 2) the construction of a constant-round
(n− 1)-secure simulatable coin-flipping protocol [EUROCRYPT 2003].

1 Introduction

Non-Interactive Zero Knowledge (NIZK, for short) is an important cryptographic
primitive originally shown to exist in the shared random string (SRS, for short)
model [5,11] where the prover and the verifier share a random string and the
prover gives one-message zero-knowledge proofs.

Besides its conceptual significance within the theory of zero knowledge, NIZK
has been an important building block for several cryptographic protocols. For
instance, simulation-sound NIZK is used in the constructions of public-key cryp-
tosystems secure under chosen ciphertext attacks [21] and in the constructions
of group signature schemes based on general complexity assumptions [3]. The
notion of a NIZK proof of knowledge (NIZKPK, for short) has been used for
constructing non-malleable [9] NIZKPKs [6], non-malleable interactive zero-
knowledge arguments [1], round-efficient resettable zero-knowledge arguments in
the UPK model [18] and (n− 1)-secure simulatable coin flipping protocols [15].

R. Královič and P. Urzyczyn (Eds.): MFCS 2006, LNCS 4162, pp. 753–764, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

754 G. Persiano and I. Visconti

All these constructions work in the SRS model and consider one round per proof
sent by the prover to the verifier. Recently in [2] a non-malleable NIZKPK has
been constructed in a specific trusted PKI model (which is a relaxed assump-
tion compared to the CRS model) by only requiring the existence of one-way
trapdoor permutations. Under the same assumptions, the same result can be
achieved in the common reference string model using specific reference strings,
but unfortunately in this case the reference string must be generated by a trusted
third party (i.e., it can not be taken from a natural phenomenon or as result of
a coin-flipping protocol).

An important issue is the design of NIZK proofs of membership and proofs of
knowledge based on as weak as possible assumptions. In this paper we focus on
computational zero knowledge and for one-round NIZK proofs of membership in
the SRS model, the weakest assumption known to be sufficient is the existence
of one-way trapdoor permutations [11,4] (we only consider proof system with
efficient provers) whereas for one-round NIZK proofs of knowledge (NIZKPK,
for short) so-called dense secure cryptosystems in addition to one-way trapdoor
permutations have been shown to be sufficient [8] and necessary [7] (for non-
trivial relations). This state of things contrasts with the interactive case in which
one-way functions are known to be sufficient [14] and necessary [19] (for non-
trivial languages) and to the CRS and the specific trusted PKI models where
dense secure cryptosystems are not necessary for the construction of one-round
NIZKPKs.

We stress that the SRS model assumes that prover and verifier have access to
the same uniformly distributed random string, and thus it is assumed that there
exists a source of randomness (e.g., the result of a natural event or a trusted
third party that works as dealer) that is not under the control of the parties. If
instead such a source of randomness does not exist, the standard way of using
NIZK as sub-protocol of a larger interactive protocol involves running a coin-
tossing protocol to construct a random string Σ and then use Σ as the shared
random string for NIZK proofs. Such an approach is often useful to improve
the round-complexity of protocols [18,10] or to exploits some nice properties of
NIZK proofs [3,21,1].

1.1 New Constructions and Results

In this paper, we define Double-Round NIZK proofs in the SRS model. Here,
similarly to one-round NIZK proofs in the SRS model of [5,11], prover and verifier
have access to the same random string Σ and, in addition, we allow the prover
to send one message to the verifier before Σ is made available. The verifier needs
not to reply to this message. The same random string and initial prover message
can then be used by the prover to prove any polynomial number of theorems
using a single message for each of them.

We show how to construct Double-Round NMNIZKPKs under the sole as-
sumption that one-way trapdoor permutations exist. In contrast, in the SRS
model one-round NIZKPKs for non trivial relations are known to require dense
secure cryptosystems [7] (even if non-malleability is not required) and can be

On NIZK Proofs of Knowledge in the SRS Model 755

constructed using one-way trapdoor permutations and dense secure cryptosys-
tems (by using the NIZK proof of membership by [11] as a building block in the
construction of NIZKPK of [8] which in turn can be used to obtain non-malleable
NIZKPK as shown in [6]).

More precisely, our results are the following.

1. In Theorem 1, we show that, assuming existence of one-way trapdoor per-
mutations, there exists a Double-Round single-theorem NIZKPK ∆ in the
SRS model for all polynomial-time relations. The main technique used for
this result is the combined use of two different extractable commitments.

2. We show that ∆ is a Double-Round unbounded Non-Interactive Witness-
Indistinguishable Proof of Knowledge (NIWIPK, for short). We stress that
this second step towards our construction of Double-Round non-malleable
NIZKPK requires some attention. Indeed, unlike one-round NIZK in the SRS
model, not all Double-Round single-theorem NIZKPKs are also unbounded
witness indistinguishable.

3. We prove the existence of Double-Round unbounded NMNIZKPKs in the
SRS model under the assumption that one-way trapdoor permutations exist.
The result is obtained by following the transformation of [6] that constructs
an unbounded NMNIZKPK in the SRS model.

Although Double-Round NIZK in the SRS model are weaker than (one-round)
NIZK in the SRS model, Double-Round NIZK proofs retains two important
properties of NIZK proofs in the SRS model. First of all, communication is
still mono-directional: from prover to verifier only. Thus the zero-knowledge and
the extractability properties are trivially preserved if proofs are concurrently
composed (after the shared random string has been made available). Moreover,
we insist on the shared string Σ to be uniformly distributed. Thus, Σ can be
obtained as the result of probabilistic natural phenomenon. If we remove this
requirement, then we obtain the so-called CRS model which is more difficult to
justify.

We finally stress that one can see an implicit interaction required to guarantee
that the first prover message is sent before the SRS is announced. However, this
holds in part for the classical notion of one-round NIZK since the proofs can not
be sent before the SRS is announced. The concrete notion of non-interactiveness
in both cases concerns the fact that the announcement of the first prover message
(in the double-round case) and the announcement of the SRS (in both cases)
has to be done only once.

Applications to Protocol Design. Double-Round NIZKPK can replace one-round
NIZKPK in the design of secure protocols. The replacement does not significantly
increase the number of rounds of the protocol and it reduces the assumptions
needed from existence of dense secure cryptosystems and one-way trapdoor per-
mutations (which are currently the weakest assumptions known to suffice for
one-round NIZKPK [11,8]) to the assumption of existence of one-way trapdoor
permutations (which we show in this paper to be sufficient for Double-Round
NIZKPK). We stress also that, by the results of [7], dense secure cryptosystems

756 G. Persiano and I. Visconti

are necessary for one-round NIZKPK in the SRS model, therefore any construc-
tion based on one-round NIZKPK will need to assume the existence of dense
secure cryptosystems.

We exemplify the power of Double-Round NIZKPK in the SRS model by
discussing applications to constructions of secure protocols. In particular in [20],
we show ho to use Double-Round NIZKPK for removing the need of dense secure
cryptosystem from the 3-round concurrently sound resettable zero-knowledge
argument system of [18] and from the (n − 1)-secure simulatable coin flipping
protocol of [15].

Remark on certified One-Way Trapdoor Permutations. In the rest of the paper
we will consider certified one-way trapdoor permutations. These permutations
admit an efficient algorithm that verifies whether the description of a function
f corresponds to a permutation. An implementation of such a primitive can be
based for instance on the RSA assumption (see [16]).

2 Double-Round NIZK Proofs

Definition 1. ∆ = (�,P = (P1,P2),V) is a Double-Round non-interactive
proof system for the language L ∈ NP if:

1. � is a polynomial, P1,P2,V are probabilistic polynomial-time algorithms.
2. Completeness: for all x ∈ L of length k, for all y such that RL(x, y) = true,

for all strings Σ of length �(k), we have that

Prob
[
(Pre, PreAux)←P(1k);V(x, Pre,P2(x, y, Pre, Σ, PreAux), Σ) = true

]
= 1.

3. Soundness: for all pairs of algorithms A = (A1,A2), we have that

Prob
[
(Pre, PreAux) ← A1(1k); Σ ← {0, 1}�(k); (x,Π)←A2(Pre, Σ, PreAux) :

x 	∈ L andV(x, Pre, Π,Σ) = true] < ν(k),

for some negligible function ν.

Definition 2. ∆ = (�,P = (P1,P2),V ,S = (S1,S2)) is a Double-Round single-
theorem NIZK proof system for the language L if:

1. (�,P = (P1,P2),V ,) is a Double-Round non-interactive proof system for L
2. S1,S2 are probabilistic polynomial-time algorithms;
3. Single-Theorem Zero Knowledge: for all non-uniform probabilistic polynomial-

time adversaries A = (A1,A2), we have that∣∣Prob [ExptA(k) = 1]− Prob
[
ExptSA(k) = 1

]∣∣ < ν(k)

for some negligible function ν, where the experiments ExptA(k) and ExptSA(k)
are defined as follows:

On NIZK Proofs of Knowledge in the SRS Model 757

ExptA(k): ExptSA(k) :
(Pre, PreAux) ← P1(1k) (Pre, Σ, PreAux) ← S1(1k)
Σ ← {0, 1}�(k) (x, y, s) ← A1(Pre, Σ) : (x, y) ∈ RL

(x, y, s) ← A1(Pre, Σ) : (x, y) ∈ RL Π ← S′(x, y, Pre, Σ, PreAux)
Π ← P2(x, y, Pre, Σ, PreAux) return A2(Pre, Π, s)
return A2(Pre, Π, s)

where S′(x, y, Pre, Σ, PreAux) def= S2(x, Pre, Σ, PreAux).

In a Double-Round single-theorem NIZK proof system the preprocessing mes-
sage of the prover can be used to give only one non-interactive zero-knowledge
proof. We stress though that the zero-knowledge property is guaranteed even
if the statement is adversarially chosen after the preprocessing stage has been
performed and the string Σ has appeared. In a Double-Round unbounded NIZK
proof system instead the simulator is required to simulate a polynomial number
of proofs on adversarially and adaptively chosen instances. In other words, the
same first message Pre and the same random string Σ can be used to give any
polynomial number of proofs.

Definition 3. A Double-Round single-theorem NIZK proof system for the lan-
guage L ∈ NP ∆ = (�,P = (P1,P2),V ,S = (S1,S2)) is a Double-Round
unbounded NIZK proof system for L if the following property holds.
Unbounded Zero Knowledge: for all non-uniform probabilistic polynomial-time
adversaries A, there exists a negligible function ν such that, for all sufficiently
large k, we have that∣∣Prob [ExptA(k) = 1]− Prob

[
ExptSA(k) = 1

]∣∣ < ν(k)

where the experiments ExptA(k) and ExptSA(k) are defined as follows:

ExptA(k) : ExptSA(k) :
(Pre, PreAux) ← P1(1k) (Pre, Σ, PreAux) ← S1(1k)
Σ ← {0, 1}�(k) return AS′(·,·,Pre,Σ,PreAux)(Σ)
return AP2(·,·,Pre,Σ,PreAux)(Σ)

where S′(x, y, Pre, Σ, PreAux) def= S2(x, Pre, Σ, PreAux) and the pair of the first
two inputs to P2 and S′ is in RL.

Next we present the notion of Double-Round non-interactive proof of knowledge.
We follow the standard notion of extraction in the SRS model (see [8]) by con-
sidering straight-line extraction only. In order to achieve witness extraction, the
extractor algorithm that establishes the random string will run as input the first
round of the adversarial prover.

758 G. Persiano and I. Visconti

Definition 4. ∆ = (�,P = (P1,P2),V ,E = (E1,E2)) is a Double-Round non-
interactive proof of knowledge (NIPK, for short) for the language L ∈ NP with
witness relation RL if:

1. (�,P ,V) is a Double-Round non-interactive proof system for L;
2. (E1,E2) is a pair of probabilistic polynomial-time algorithms such that for

any pair of algorithms A = (A1,A2) and for sufficiently large k there exists
a negligible function ν(k) such that

Prob
[
ExptEA (k)

]
≥ Prob [ExptA(k)]− ν(k),

where the experiments ExptA(k) and ExptEA (k) are defined as follows:

ExptA(k) : ExptEA (k) :
(Pre, PreAux) ← A(1k) (Pre, PreAux) ← A(1k)
Σ ← {0, 1}�(k) (Σ, aux) ← E1(Pre)
(x,Π) ← A(Pre, Σ, PreAux) (x,Π) ← A(Pre, Σ, PreAux)
return V(x, Pre, Π,Σ) y ← E2(Σ, aux, x, Pre, Π)

return true if (x, y) ∈ RL

Note that the existence of such a pair of algorithms (E1, E2) referred to as witness
extraction implies the soundness condition.

The definitions of Double-Round non-malleable NIZK proof system, Double-
Round simulation sound NIZK proof system and Double-Round witness indis-
tinguishable non-interactive proof system can be found in the full version of the
paper [20].

3 Double-Round NIZK Proofs of Knowledge

In this section we show a Double-Round single-theorem NIZKPK in the SRS
model that is based on the existence of certified one-way trapdoor permutations.
Here, we consider a generic NP-language L and assume that for a string x ∈ L
of length n, there exists a witness of length at most m = poly(n).

3.1 Assumptions and Tools

Our constructions are based on the following tools.

Certified One-Way Trapdoor Permutations. We assume the existence of a family
F of certified one-way trapdoor permutations. Specifically, we have a quadruple
of efficient algorithms (GenT,EvalT, InvT,VerT). The generator algorithm
GenT, on input a security parameter 1k, outputs the description of a permuta-
tion f over {0, 1}k and the associated trapdoor information tf . We will assume

On NIZK Proofs of Knowledge in the SRS Model 759

wlog that the size of tf is k. The evaluation algorithm EvalT, on input the de-
scription of a permutation f over {0, 1}k and a string x ∈ {0, 1}k, outputs f(x).
The inverting algorithm InvT, on input the description of permutation f over
{0, 1}k, the associate trapdoor information tf and z ∈ {0, 1}k, outputs f−1(z).
The verifying algorithm VerT verifies whether the description of a function f
corresponds to a permutation of F . Such a primitive can be implemented for
instance by using the RSA assumption (see [16]).

Non-Interactive Extractable Commitment Schemes. Intuitively a commitment
scheme can be seen as the digital equivalent of a sealed envelope. If a party A
wants to commit to some message m she just puts it into the sealed envelope, so
that whenever A wants to reveal the message, she opens the envelope. Clearly,
such a mechanism can be useful only if it meets some basic requirements. First
of all the digital envelope should hide the message: no party other than A should
be able to learn m from the commitment (this is often referred in the literature
as the hiding property). Second, the digital envelope should be binding, meaning
with this that A can not change her mind about m, and by checking the opening
of the commitment one can verify that the obtained value is actually the one A
had in mind originally (this is often referred to as the binding property).

Informally, a non-interactive extractable commitment scheme is a non-
interactive commitment scheme with an efficient extractor that, on input a com-
mitment com of a messagem and a special trapdoor, outputsm. The following two
main variants of extractable commitment schemes are known. We denote by HC a
hard-core predicate for a family of certified one-way trapdoor permutationsF [13].

1. Non-Interactive Extractable Commitment in the CRS Model: In
this case the extractor receives as auxiliary input a trapdoor corresponding
to the information stored in the reference string; such commitment schemes
exist for instance under the assumption that secure cryptosystems exist [17].

2. Non-Interactive Extractable Commitment in the SRS Model: In
this case the extractor receives as auxiliary input a trapdoor corresponding
to the shared random string; such commitment schemes have been shown to
exist if and only if dense secure cryptosystems exist [7].

A main tool that we construct and use in our constructions of Double-Round
NIZKPK is a non-interactive extractable commitment scheme in the SRS model
with the following additional requirements:

1. the committer algorithm sends a set-up message before the shared random
string appears;

2. once the shared random string is available, the committer algorithm can
output any polynomial number of non-interactive extractable commitments.

Our construction of Double-Round NIZKPK implies the existence of such
commitment schemes under the assumptions that certified one-way trapdoor
permutations exist; we stress that both commitment schemes known in lit-
erature and discussed above require either a common reference string or the

760 G. Persiano and I. Visconti

existence of dense secure cryptosystems. Therefore, the resulting construction
for an extractable commitment scheme is novel and of independent interest.

In our construction of Double-Round NIZKPK we will use the following two
extractable commitment schemes that exist under the assumption that one-way
certified trapdoor permutations exist.
Deterministic Extractable Commitment in the SRS Model. Let f be a permuta-
tion over {0, 1}k (for which the associated trapdoor tf is known to the committer)
and let Σ be a k-bit shared random string. Then to commit to a bit b it is enough
to compute com = HC(f−1(Σ)) ⊕ b. The “commitment” key is simply com. It is
easy to see that the commitment is perfectly binding (f is a permutation) and
computationally hiding (f is one-way). We will denote by Com(Σ, (f, tf), b) the
algorithm that returns a pair (com, dec) of commitment/decommitment keys of
bit b with shared random string Σ, certified one-way trapdoor permutation f
and corresponding trapdoor tf . We observe that if f−1(Σ) is known, it is possible
to extract the bit committed to by com, i.e., the commitment scheme described
above is an extractable commitment scheme in the SRS model. The notation
is easily extended to Com(Σ, (f, tf), w) with w of length l and Σ of length lk.
Note that once the shared random string Σ is established, the above described
commitment scheme is deterministic and therefore if two different strings are
committed by using Σ then the hiding property does not hold anymore.

Extractable Commitment in the CRS Model. In a different scheme, for commit-
ting to a bit b using as reference string a certified one-way trapdoor permutation
g, the committer picks a random z ∈ {0, 1}k such that HC(z) = b and computes
the commitment com = g(z). The commitment scheme can be easily extended
to strings and, with a slight abuse of notation, we denote by Com(g, w) the
algorithms that returns a pair (com, dec) of commitment/decommitment keys
for the string w using certified one-way trapdoor permutation g. The decommit-
ment key dec associated with commitment com = (com1, . . . , coml) is simply the
sequence z1, . . . , zl where, g(zi) = comi for i = 1, . . . , l and w = HC(z1) · · · HC(zl).
We make the two simple observations that if the trapdoor information associ-
ated with g is known, then it is possible to extract the value committed to by
com and that knowledge of the trapdoor information is not needed to compute
the commitment. Moreover, the same certified one-way trapdoor permutation g
(i.e., the same shared random string) can be used to perform any polynomial
number of commitments while still preserving the hiding property.

One-Round NIZK Proofs. We denote by (Prover,Verifier) a one-round NIZK
proof system for an NP-complete language, say the language HAM of Hamil-
tonian graphs. The one-round NIZK proof system (Prover,Verifier) can be
constructed under the assumption of the existence of certified one-way trapdoor
permutations [11] and we denote by SH = (SH

1 ,SH
2) the associated simulator.

Algorithm Prover takes three arguments: an instance x, a random string Σ,
and a witness y for x. The simulator SH = (SH

1 ,SH
2) works into two stages: first

it generates a string Σ along with auxiliary information aux; then, on input x,
the string Σ, and the auxiliary information aux , it outputs a “proof” Π .

We will use the two following languages Λ0, Λ1 ∈ NP :

On NIZK Proofs of Knowledge in the SRS Model 761

1. τ0 = (f, g,Σ, comTrap) ∈ Λ0 if comTrap is an extractable commitment of the
trapdoor information tg with respect to g in the SRS model; Σ is the shared
random string and f is the certified one-way trapdoor permutation used in
the commitment scheme.

2. τ1 = (x, g, comWit) ∈ Λ1 if comWit is an extractable commitment of a witness
y for “x ∈ L” computed by means of the permutation g in the CRS model.

In the description of our proof systems we will often run Prover,Verifier,
SH of a one-round NIZK proof system for the NP-complete language HAM
on input an instance of Λ0 (resp. Λ1) and we actually mean that the standard
reduction from Λ0 (resp. Λ1) to an instance for Hamiltonicity is applied before
the one-round NIZK proof system starts.

Deterministic One-Round NIZK Proof Systems. In general, in a one-round NIZK
proof system the prover is assumed to be randomized and thus, for the same
shared random string and the same theorem, the prover might give different
proofs. However, if we fix the random tape of the prover then the prover becomes
deterministic and the same proof is produced with respect to the same shared
random string and the same theorem. We notice though that such a deterministic
prover might lose the zero-knowledge property should the same random tape be
used for the same reference string and different theorems. However, as it will
be evident in what follows, we will use a deterministic prover only to prove the
same theorem several times with respect to the same shared random string.

We denote by Prover(R; . . .) and by S(R; . . .) the execution of a prover
Prover(. . .) or a simulator S(. . .) for a one-round NIZK proof system when R
is used by the prover and by the simulator as random tape.

3.2 Construction for Double-Round NIZKPK

We now discuss our construction of Double-Round NIZKPK based on the ex-
istence of any certified one-way trapdoor permutation. In order to achieve the
result, we crucially use the deterministic one-round NIZK proof systems and the
extractable commitment schemes in the CRS and in the SRS models discussed
above. In particular we obtain a Double-Round unbounded NIWI proof sys-
tem that then can be used to obtain a Double-Round unbounded non-malleable
NIZKPK by means of the transformation of [6].

Overview. In the preprocessing stage, the prover picks a random tape R and two
certified one-way trapdoor permutations f, g along with their trapdoors tf and tg
and sends (f, g) to the verifier. Once the shared random string Σ = Σ1 ◦Σ2 ◦Σ3
is made available the prover performs the following steps to produce a proof Π
that he knows a witness y for x ∈ L.

1. The shared random string Σ1 is used to compute the commitment comTrap
of the trapdoor tg by means of (f, tf) and using the extractable commitment
scheme in the SRS model discussed above. Notice that this commitment is
deterministic (for fixed Σ1) and all proofs Π produced by the prover will
contain the same commitment comTrap of tg.

762 G. Persiano and I. Visconti

2. The permutation g is used to compute the pair (comWit, decWit) of com-
mitment and decommitment keys of the witness y for “x ∈ L” by using the
extractable commitment scheme in the CRS model discussed above. Note
that the commitments comWit will differ from proof to proof.

3. The random string Σ2 and knowledge of decTrap are used to compute a one-
round NIZK proof (of membership) π0 that τ0 = (f, g,Σ1, comTrap) ∈ Λ0.
Notice that τ0 is the same for all proofs Π that the prover will produce and,
since the prover uses the same random tape R, all proofs π will share the
same proof π0 that τ0 ∈ Λ0.

4. Finally, the random string Σ3 and knowledge of (y, decWit) are used to com-
pute a one-round NIZK proof (of membership) π1 that τ1 = (x, g, comWit) ∈
Λ1.

A formal description of the protocol is found in Figure 1.
The zero-knowledge property follows from the hiding properties of the com-

mitments and the zero-knowledge of the one-round NIZK proof system employed.
For the proof of knowledge property, the idea is to construct the string Σ1 =
(Σ1,1, · · · , Σ1,k) by picking zi at random from {0, 1}k and setting Σ1,i = f(zi),
where f is the one-way trapdoor permutation chosen by the prover in the first
message. Notice that since f is a permutation the string Σ1 is uniformly distrib-
uted. Thus when the prover produces comTrap the extractor manages to extract
the trapdoor tg of g. Knowledge of tg then allows the extractor to obtain the
witness y from comWit.

Theorem 1. Under the assumption that certified one-way trapdoor permuta-
tions exist, there exists (constructively) a single-theorem Double-Round NIZK
proof of knowledge for NP.

See [20] for the proof.

Double-Round NIWI and Non-Malleable Proofs. Our goal is to design a Double-
Round non-malleable unbounded NIZKPK and one could (incorrectly) think
that the transformation of [6] that constructs a one-round NMNIZKPK from
a (possibly malleable) one-round single-theorem NIZKPK could be used. Then,
the results should follow by applying the transformation of [6] to the Double-
Round single-theorem NIZKPK of the previous section. We observe though that
the transformation of [6] implicitly uses the following properties of one-round
NIZK in the SRS model (proved in [12,11]): 1) any one-round single-theorem
NIZK proof system is also a one-round single-theorem NIWI proof system; 2)
any one-round single-theorem NIWI proof system is also a one-round unbounded
NIWI proof system.

However consider the simplified Double-Round single-theorem NIZKPK proof
system in which only one certified one-way trapdoor permutation f is used and
the witness y for “x ∈ L” is committed to by using only the extractable com-
mitment in the SRS model. As we discussed above, such a commitment scheme
is deterministic (for a fixed shared random string Σ) and thus, if the same
shared random string Σ is used to commit to more than one witness, then the

On NIZK Proofs of Knowledge in the SRS Model 763

Preprocessing Stage
Algorithm P1(1

k)
1. randomly pick a random tape R and certified one-way trapdoor permutations

f and g over {0, 1}k along with their trapdoor information tf and tg by running
algorithm GenT on input 1k;

2. set Pre = (f, g) and PreAux = (R, tf , tg);
return (Pre, PreAux).

Receive random string Σ = Σ1 ◦Σ2 ◦Σ3.
Proof Stage

Algorithm P2(x, y, Pre, Σ, PreAux) where (x, y) ∈ RL.
1. (comTrap, decTrap) = Com(Σ1, (f, tf), tg);
2. (comWit, decWit) = Com(g, y);
3. π0 = Prover(R; (f, g,Σ1, comTrap), Σ2, decTrap);
4. π1 = Prover((x, g,comWit), Σ3, decWit);
5. set Π = (comTrap, comWit, π0, π1);

return Π ;
V’s decision

if the verifier algorithm Verifier of each of the two one-round NIZK proofs of
membership and the verify algorithm VerT of the certified one-way trapdoor
permutations f and g output true then output true, otherwise output false.

Fig. 1. The Double-Round NIZKPK for NP

hiding property does not hold anymore. Consequently, the protocol is neither un-
bounded zero-knowledge nor even unbounded witness indistinguishable. What
is surprising is that this simplified protocol still enjoys the single-theorem zero-
knowledge property and this could be (incorrectly) considered sufficient for the
transformation of [6].

Non-Malleable NIZKPKs. We also show that the Double-Round NIZKPK of
Figure 1 is a Double-Round unbounded NIWIPK. Moreover, following the con-
struction of [6] for the SRS model, we show how to obtain a Double-Round un-
bounded NMNIZK proof of knowledge starting from a Double-Round unbounded
NIWIPK. For the lack of space, details are found in [20].

Acknowledgments

The work described in this paper has been supported in part by the Euro-
pean Commission through the IST Program under Contract IST-2002-507932
ECRYPT and the FP6 program under contract FP6-1596 AEOLUS.

References

1. B. Barak. Constant-Round Coin-Tossing with a Man in the Middle or Realizing
the Shared Random String Model. In FOCS ’02, pp. 345–355, 2002.

2. B. Barak, R. Canetti, J. Nielsen, and R. Pass. Universally Composable Protocols
with Relaxed Set-up Assumptions. In FOCS ’04, pp. 394–403, 2004.

764 G. Persiano and I. Visconti

3. M. Bellare, D. Micciancio, and B. Warinschi. Foundations of Group Signatures: For-
mal Definitions, Simplified Requirements, and a Construction Based on General As-
sumptions. In Eurocrypt ’03, vol. 2045 of LNCS, pp. 614–629. Springer-Verlag, 2003.

4. M. Bellare and M. Yung. Certifying Cryptographic Tools: The Case of Trapdoor
Permutations. In Crypto ’92, vol. 740 of LNCS, pp. 442–460. Springer Verlag, 1993.

5. M. Blum, A. De Santis, S. Micali, and G. Persiano. Non-Interactive Zero-
Knowledge. SIAM J. on Computing, 20(6):1084–1118, 1991.

6. A. De Santis, G. Di Crescenzo, R. Ostrovsky, G. Persiano, and A. Sahai. Robust
Non-Interactive Zero Knowledge. In Crypto ’01, vol. 2139 of LNCS, pp. 566–598.
Springer-Verlag, 2001.

7. A. De Santis, G. Di Crescenzo, and G. Persiano. Necessary and sufficient assump-
tions for non-interactive zero-knowledge proofs of knowledge for all np relations.
In ICALP 00, vol. 1853 of LNCS, pp. 451–462. Springer Verlag, 2000.

8. A. De Santis and G. Persiano. Zero-Knowledge Proofs of Knowledge Without
Interaction. In FOCS ’92, pp. 427–436, 1992.

9. D. Dolev, C. Dwork, and M. Naor. Non-Malleable Cryptography. SIAM J. on
Computing, 30(2):391–437, 2000.

10. C. Dwork and M. Naor. Zaps and their Applications. In FOCS ’00, pp. 283–293,
IEEE Computer Society Press, 2000.

11. U. Feige, D. Lapidot, and A. Shamir. Multiple Non-Interactive Zero Knowledge
Proofs Under General Assumptions. SIAM J. on Computing, 29(1):1–28, 1999.

12. U. Feige and A. Shamir. Witness Indistinguishable and Witness Hiding Protocols.
In STOC ’90, pp. 416–426. ACM, 1990.

13. O. Goldreich and L. Levin. A Hard-Core Predicate for all One-Way Functions. In
STOC ’89, pp. 25–32, 1989.

14. O. Goldreich, S. Micali, and A. Wigderson. Proofs that Yield Nothing But Their
Validity or All Languages in NP Have Zero-Knowledge Proof Systems. JACM,
38(3):691–729, 1991.

15. J. Katz, R. Ostrovsky, and A. Smith. Round Efficiency of Multi-Party Computation
with a Dishonest Majority. In Eurocrypt ’03, vol. 2045 of LNCS, pp. 578–595.
Springer-Verlag, 2003.

16. A. Lysyanskaya, S. Micali, L. Reyzin, and H. Shacham. Sequential Aggregate
Signatures from Trapdoor Permutations. In Eurocrypt ’04, vol. 3027 of LNCS, pp.
74–90. Springer-Verlag, 2004.

17. P. MacKenzie and K. Yang. On Simulation-Sound Trapdoor Commitments. In
Eurocrypt ’04, vol. 3027 of LNCS, pp. 382–400. Springer-Verlag, 2004.

18. S. Micali and L. Reyzin. Min-Round Resettable Zero-Knowledge in the Public-key
Model. In Eurocrypt ’01, vol. 2045 of LNCS, pp. 373–393. Springer-Verlag, 2001.

19. R. Ostrovsky and A. Wigderson. One-Way Functions are Essential for Non-Trivial
Zero Knowledge. In ISTCS ’93, pp. 3–17. IEEE Computer Society Press, 1993.

20. G. Persiano and I. Visconti. On Non-Interactive Zero-Knowledge Proofs of
Knowledge in the Shared Random String Model. Full version, available at
http://www.dia.unisa.it/professori/visconti/dr.pdf, 2006.

21. A. Sahai. Non-Malleable Non-Interactive Zero Knowledge and Adaptive Chosen-
Ciphertext Security. In FOCS ’99, pp. 543–553, IEEE Computer Society Press, 1993.

Constrained Minimum Enclosing Circle with

Center on a Query Line Segment

Sasanka Roy1, Arindam Karmakar1, Sandip Das2, and Subhas C. Nandy1

1Indian Statistical Institute, Calcutta - 700108, India
2Institut de Mathmatiques de Bourgogne, Dijon - 21078, France

Abstract. In this paper, we will study the problem of locating the center
of smallest enclosing circle of a set P of n points, where the center is
constrained to lie on a query line segment. The preprocessing time and
space complexities of our proposed algorithm are O(n log n) and O(n)
respectively; the query time complexity is O(log2 n). We will use this
method for solving the following problem proposed by Bose and Wang
[3] - given r simple polygons with a total of m vertices along with the
point set P , compute the smallest enclosing circle of P whose center lies
in one of the r polygons. This can be solved in O(n log n+m log2 n) time
using our method in a much simpler way than [3]; the time complexity
of the problem is also being improved.

1 Introduction

The smallest enclosing circle problem was originally posed in 1857 by Sylvester
[13]. Here, a set P of n points are distributed on a 2D plane, and the objective
is to identify a point c (not necessarily a member of P) such that the maximum
Euclidean distance of the members of P from c is minimum among all other
points on the plane. In other words, here the objective is to report the center
of the minimum radius circle which can enclose all the points in P . An O(n2)
time algorithm was proposed long ago by Elzinga and Hearn [5]. Later, Shamos
and Hoey [12] and Preparata [10] independently proposed algorithms for this
problem; each of them runs inO(n log n) time. Lee [8] proposed the furthest point
Voronoi diagram, which can also be used for solving this problem in O(n log n)
time. Finally Megiddo [9] proposed an optimal O(n) time algorithm for solving
this problem using prune-and-search technique.

Several constrained versions of the smallest enclosing circle problem are also
available in the literature. Megiddo [9] studied the case where the center of
the smallest enclosing circle of the point set P is constrained to lie on a given
straight line. The time complexity of this algorithm is O(n). Hurtado, et al. [6]
provided an O(n + m) time algorithm for finding the smallest enclosing circle
of n points such that its center lies inside a convex polygon of size m. Bose
et al. [2] considered the generalized version of the problem where the center
of the smallest enclosing circle of P is constrained to lie inside a given simple
polygon of size m. Their proposed algorithm runs in O((n+m) log(n+m) + k)

R. Královič and P. Urzyczyn (Eds.): MFCS 2006, LNCS 4162, pp. 765–776, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

766 S. Roy et al.

time, where k is the number of intersections of the boundary of the polygon
with the furthest point Voronoi diagram of P . In the worst case, k may be
O(n2). This result is later improved to O((n + m) logm + m logn) [3]. In a
further generalization of this problem, r (≥ 1) simple polygons with a total
of m vertices are given; one of them can contain the center of the smallest
enclosing circle of the point set P [3]. The time complexity of this version is
O((n+m) logn+ (n

√
r +m) logm+m

√
r + r

3
2 log r).

In this work, we will consider the online query version of the problem proposed
in [9]. Given the point set P , we preprocess them such that given any arbitrary
query line segment L, the smallest enclosing circle with center on L can be
reported efficiently. We first consider that the query object L as a line, and
propose two algorithms for this problem. The first one explains the idea of our
method. The preprocessing time and space of this method are both O(n log n),
and the query time complexity is O(log2 n). The second one uses a complicated
idea to create the data structure such that the space complexity is reduced to
O(n) keeping the preprocessing and query time complexities unchanged. Next,
we show that the same method works when the query object L is a line segment
with the same complexity results.

We show that our algorithm can be used for solving the following problem:
Given a set P of n points, and r simple polygons with a total of m vertices.
Compute a smallest enclosing circle of P whose center lies inside one of these
r polygons. Our proposed algorithm is simple, and it solves this problem in
O(n log n+m log2 n) time, Thus, our algorithm is an improvement of the time
complexity of the problem over that of [3].

2 Basic Results

It can be easily observed that, the smallest circle enclosing the vertices of the
convex hull of a point set P will also enclose all the points in P . We assume
that the vertices of the convex hull of P are ordered in anticlockwise direction.
We first describe the role of furthest point Voronoi diagram in computing the
smallest enclosing circle of P , and then use it to solve our online query problem.

Let V(P) denote the furthest point Voronoi diagram of P . It partitions the
plane into n unbounded convex regions, namely R(p1), R(p2), . . . , R(pn), such
that for any point p ∈ R(pj), δ(p, pj) > δ(p, pk) for all k = 1, 2, . . . , n, and k 	= j.
Here δ(., .) denotes the Euclidean distance between a pair of points. Computing
the convex hull of P needs O(n log n) time and O(n) space, and then computing
V(P) needs O(n) time and space [1]. Given a query point q, this data structure
can report the region R(pi) containing q in O(log n) time.

Lemma 1. [8] In the unconstrained situation, the smallest enclosing circle of
P always passes through at least two points of P .

Lemma 1 says that, the center c of the unconstrained smallest enclosing circle of
P always lies on an edge e of V(P). In [8], an algorithm is proposed for computing
c; this runs in O(n logn) time. We will use this information in designing the

Constrained Minimum Enclosing Circle 767

constrained smallest enclosing circle of P whose center c′ lies on a given query
line segment L. We first develop the algorithm for the case where the query
object L is a line. Next, we show that a minor modification of that algorithm
works when L is a line segment.

In our discussion, we will use C and C′ to denote the unconstrained and
constrained smallest enclosing circles respectively; c and c′ denote the center of
C and C′ respectively (see Fig. 1(a)). If ρ and ρ′ denote the radius of C and C′

respectively, then ρ ≤ ρ′. As opposed to the fact that C must pass through at
least two points of P (see Lemma 1), C′ may pass through only one point in P .
The following observation lists distinct cases to be considered for computing c′.

Observation 1. For a convex polygon P ,

(a) if C′ passes through only a single point p ∈ P then p is the furthest point
from the query line L, and the perpendicular projection of p on the line L
(denoted by p′) lies inside R(p), and vice-versa. Here, p′ = c′ is the center
of the circle C′.

(b) if C′ passes through exactly two points p1, p2 ∈ P then its center c′ is the in-
tersection point of L with an edge e of V(P), where e is on the perpendicular
bisector of p1 and p2.

(c) if C′ passes through more than two points of P , then c′ must be a vertex of
V(P), and this vertex lies on the line L.

In order to test whether C′ passes through a single point in P , we perform the
following steps:

1. Identify the point p ∈ P which is farthest from L.
2. Compute the perpendicular projection of p on L. Let this point be ĉ.
3. Identify the point q ∈ P whose Voronoi region R(q) contains the point ĉ.
4. If q = p then C′ passes through p, and hence c′ = ĉ.

The query time in step 1 is O(log n) time [4] with a preprocessing, which needs
O(n log n) time and O(n) space. Step 2 can be done in constant time. For step
3, the point location can be performed in O(log n) time using an O(n) size data
structure for V(P), which can be constructed in O(n log n) time [11]. Thus, we
have the following lemma.

Lemma 2. If C′ passes through only a single point P , then its center c′ can
be computed in O(log n) time using a preprocessed data structure of size O(n),
which can be constructed in O(n logn) time.

If the above test fails, then C′ passes through two or more points of P as men-
tioned in Observation 1. Here, the center c′ of the circle C′ will be an intersection
point of L and an edge of V(P). In the degenerate case, this point may be a vertex
of V(P), indicating that C′ passes through more than two points of P .

Let L intersect the edges e1, e2, . . . , em of V(P) in order, and ai denote the
intersection of L with ei. The above discussions say that c′ will coincide with
a member in A = {a1, a2, . . . , am}. Let ρ(ai) denote the radius of the smallest
enclosing circle of P with center at ai.

768 S. Roy et al.

Lemma 3. The sequence {ρ(a1), ρ(a2), . . . , ρ(am)} is unimodal.

Proof. Let ρ(ak) = minm
i=1 ρ(ai). We show that ρ(aj) < ρ(aj+1) for j = k, k +

1, . . . ,m − 1. Similarly, it can be shown that ρ(aj′) < ρ(aj′−1) for j′ = k, k −
1, . . . , 2, 1 (see Fig. 1(a)).

Draw a line � perpendicular to L at the point ak. If ek is the Voronoi edge
corresponding to points p, p′ ∈ P , then p and p′ lies on different sides of �, and
δ(p, ak) = δ(p′, ak). Let p (resp. p′) be to the right (resp. left) of �. Now, for
any point α in the interval [ak, ak+1] (on the line L), α ∈ R(p′) and δ(α, p′) >
δ(ak, p

′). Thus, we have ρ(ak+1) > ρ(ak). Next we prove that ρ(ak+1) < ρ(ak+2).

a1

a2 a3=c’

a4

C

C’
c

ρ(a1) > ρ(a2) >ρ(a3) and ρ(a3) <ρ(a4)

(a)

c

u

e

p’

p

u’

α
β

ρ(α)

ρ(β)

(b)

L

l

p

p’

Fig. 1. (a) Proof of Lemma 3, and (b) Proof of Lemma 4

Let ek+1 be the Voronoi edge corresponding to p′ and p′′. Choose a point γ ∈
[ak+1, ak+2] on the line L. Using the same argument, it can be shown that
ρ(ak+1) = δ(p′, ak+1) = δ(p′′, ak+1) < δ(p′′, γ). Thus, ρ(γ) > ρ(ak+1) since
the circle enclosing P with center at γ has to enclose p′′. Proceeding similarly,
we can prove the other inequality results. �

It is already mentioned that each cell of V(P) is an unbounded convex region and
the center c of the unconstrained smallest enclosing circle C lies on an edge of
V(P). Thus, V(P) may be viewed as a directed tree T with c as root node, and all
the Voronoi vertices are the internal nodes of T (see Fig. 1(a)). The leaf nodes are
hypothetical in the sense that these are at the open ends of the half-line edges.
In order to clearly define the leaf-nodes of T , we consider an axes-parallel square
which contains all the vertices of V(P), and observe its intersections with all the
unbounded edges of V(P). Let these be E = {η1, η2, . . . , ηn} in anticlockwise
order along the boundary of the square. These will serve the role of leaf nodes
in T . We will use π(v) to denote the directed path from c to v in T . We will also
use depth(v) to denote the number of nodes on the path π(v).

Constrained Minimum Enclosing Circle 769

Lemma 4. If Tu denotes the subtree rooted at an internal node u ∈ T , then
ρ(v) > ρ(u) for each vertex v ∈ Tu, v 	= u.

Proof. Let u′ be a successor of u in T . We need to prove ρ(u) < ρ(u′). Consider
the directed edge e = (u → u′). The regions adjacent to e are R(p) and R(p′)
respectively, where p, p′ ∈ P . Thus, the edge e is the perpendicular bisector of the
line segment [p, p′]. At any point α ∈ e, ρ(α) = δ(α, p) = δ(α, p′). Moreover, for a
pair of points α, β ∈ e, if δ(α, u) < δ(β, u), then ρ(α) < ρ(β) because of the fact
that both the triangles∆pp′α and∆pp′β are isosceles, having the same base, and
the other vertex is moving away from the base along the perpendicular bisector
of the base. Thus, ∆pp′α is inside ∆pp′β (see Fig. 1(b)). Thus, ρ(u′) > ρ(u).
Applying the same technique recursively, the lemma follows. �

Lemma 4 says that as we go far from c along a path in T , the ρ value of the nodes
along that path increases monotonically. Thus, if a Voronoi region R contains c
as its vertex, then ρ(c) is minimum among the ρ values of all other vertices in
R. If R does not have c as one of its vertices, and ρ(w) = minv∈R ρ(v), then
for every vertex v ∈ R, the path from c to v in T passes through node w. In
addition, the following result is an implication of Lemma 4.

Corollary 4.1. If L intersects a path π(ηi) more than once, then the intersection
point having minimum depth is the candidate for being c′.

3 Constrained Smallest Enclosing Circle Problem with
Center on a Query Line

In our actual problem, the vertices of a convex polygon P are given in anticlock-
wise order. We propose two methods for this problem. The first one is simple
but it takes O(n logn) space. It gives a clear idea about our method. In the next
one, we adopted a complicated pointer structure to reduce the space complexity
to O(n). For both the methods, the preprocessing time complexity is O(n log n),
and the query time complexity is O(log2 n).

Suppose the furthest point Voronoi diagram V(P) of the polygon P is already
computed, and is stored in the form of a directed tree T with root at c. Each
node v is attached with its ρ(v) value, which can be easily computed by observing
the cells of V(P) in which v belongs. In addition, each node is attached with a
parent pointer which points to its predecessor in T . The set E of leaf nodes of
T are also stored in an array, and each element in E points to its corresponding
element in T .

3.1 Method-1

Preprocessing
In this method, we attach a few pointers with each node of T by performing
a depth first search on the tree T in the preprocessing phase. Let v be a node
with depth(v) = m. We attach a secondary structure Bv with node v which is

770 S. Roy et al.

an array of size �logm�. These will contain the address of the nodes at depth
�m

2 �, �
3m
4 �, �

7m
8 �, . . . respectively along the path π(v) in the mentioned order

(see Fig. 2(a)). The computation of these pointers are described below.

c=root

level(vk)=k(say)

level(vj)=k/2

level(vl)=3k/4

level(vp)=k’(say)

level(vr)=k’/2

level(vm)=3k’/4

vp

vm

vr

vl

vj

vk

c

v

η
j L

(a) (b)

Fig. 2. (a) Intuitive idea of the secondary structures, and (b) Illustration of Lemma 6

We implement the stack required for the depth first search using an array.
During the depth first search when the path follows a forward edge, we push
the address of the corresponding node in the stack. While backtracking from
a node v, we create the secondary structure Bv, and then pop v from the
stack.

Lemma 5. The Preprocessing phase can be completed in O(n log n) time and
using O(n log n) space.

Proof. The furthest point Voronoi diagram V(P) can be computed in O(n log n)
time [11]. The computation of c needs O(n) time [9]. Assigning the direction of
the edges in T needs another O(n) time. Finally, the depth first search needs
O(n) time. While processing a node v during the backtrack, the creation of the
array Bv of pointers needs O(log n) time in the worst case because depth(v) ≤ n.
The space complexity also follows from the same argument. �

Query answering
Given a query line L, we identify two paths π(ηk), π(ηk′), where ηk, ηk′ ∈ E such
that the leaf nodes of all the paths Π1 = {π(ηk+1), π(ηk+2),
. . . π(ηk′−1)} lie in the opposite side of c with respect to L, and the leaf nodes of
all the paths inΠ2 = {π(ηk′), π(ηk′+1), . . . π(ηk−1), π(ηk)} lie in the same side of c
with respect to L. Note that, all the paths inΠ1 are intersected by the line L. The
paths π(ηk) and π(ηk′) can be identified in O(log n) time using the arrayE.

Lemma 6. The center c′ of the circle C′ must be an intersection point of L with
one of the paths in Π1.

Proof. It is already mentioned in Observation 1 (b) & (c) that the point c′ lies
on a path of Π1 ∪Π2. We need to prove that if c′ is observed on a path in Π2,
then it must also lie on some path of Π1 also.

Constrained Minimum Enclosing Circle 771

Consider an ηj such that the path π(ηj) ∈ Π2 and c′ lies on π(ηj). By the
definition of Π2, the points c and ηj are in the same side of L. Since L intersects
the path π(ηj), there exists a vertex (say v ∈ T) which lies in the opposite side of
ηj with respect to L. Now, consider the path π(v), where c and v lies in different
sides of L (see Fig. 2(b)). This path has also been intersected by L. As Π1 is
non-empty and the Voronoi regions are convex, there exists a path in Π1 passing
through v. This proves the lemma. �

Lemma 7. If the line L intersects a path π(ηj) multiple times, and the center
c′ lies on π(ηj), then c′ will be the intersection point which is closest to c along
the path π(ηj).

Proof. Follows from Corollary 4.1. �

Searching for an intersection of L with a path
The following lemma says that the secondary structures attached to the nodes
in a path helps us in searching for an intersection point of that path with
line L.

Lemma 8. The worst case time complexity of searching for an intersection point
of L with the path π(ηj) is O(log n).

Proof. Let depth(ηj) = m. We refer to the nodes on the path π(ηj) as v1(= c), v2,
. . . , vm(= ηj). We first consider the first link in Bvm . This points to the v�m

2 �-th
node on that path. If c and v�m

2 � are in the same side of L, then L has at least
one intersection in the sub-path from v�m

2 � and vm; otherwise it has intersected
π(v�m

2 �). In the former case, we need to observe the next link of vm, and in the
latter case, we need to observe the first link in Bv� m

2 � . Proceeding this way, we
can easily identify an edge on the path π(ηj) of T which has been intersected
with L. This needs O(�logm�) time. �

Searching for c′ along L
Let A = {a1, a2, . . . , aµ} be a sequence of intersection points of L with the
edges of T , where aj lies on path π(ηj). Let c′ = ai. As the sequence of ρ val-
ues of the members in A is unimodal (see Lemma 3), both the sub-sequences
{ρ(ai), ρ(ai−1), . . . ρ(a1)} and {ρ(ai), ρ(ai+1), . . . ρ(aµ)} are monotonically
increasing. So, we can identify c′ by performing a binary search among the
members in A. While considering a path π(ηj), we compute aj as mentioned in
the earlier subsection. Next, we compute ρ(q) and ρ(q′) for a pair of points q
and q′ at a distance ε (≤ min(δ(aj , aj−1), δ(aj , aj+1))) from aj on line L. This
helps us to decide whether c′ = aj or c′ is towards left or right from aj along L.

Note that L may intersect a path, say π(ηj) many times. If c′ ∈ π(ηj), then by
Lemma 7, it is the point of intersection of L and the path π(ηj) which is closest
to c along π(ηj). Suppose we have a situation where aj 	= c′ but c′ ∈ π(ηj).
The following lemma says that c′ will also lie on some other path, say π(ηk).
Finally, we will show that our algorithm will also explore the path π(ηk), and
will identify c′.

772 S. Roy et al.

Lemma 9. If L intersects the path π(ηj) more than once, say at q1 and q2, and
depth(q1) < depth(q2), then (i) there exists another intersection point q (may be
q1 itself) which lies on some other path, say π(η�) ∈ Π1, on which q2 does not
lie, and (ii) ρ(q) ≤ ρ(q1) < ρ(q2) (equality holds if q = q1).

Proof. Similar to the proof of Lemma 6. �

As the paths in Π1 are non-crossing, the entire path of π(η�) starting from q
lies in one side of the path π(ηj). This leads to the fact that the members of
E corresponding to the paths in Π1 are in the same order as the order of the
intersection points of L with the corresponding paths.

We perform binary search among the members in E. For each choice ηj , we
compute the intersection point aj on π(ηj), and then check whether aj = c′ or
we need to move towards left (resp. right) on L by computing ρ values of two
points on L in the ε neighborhood of aj . Thus, we have the following theorem
stating the complexity results of Method-1.

Theorem 1. Method-1 correctly computes c′ with O(n log n) preprocessing time
and space complexities, and with worst case query time complexity O(log2 n).

Proof. The correctness of our proposed algorithm follows from Lemma 9. The
preprocessing time and space complexity results follow from Lemma 5. The query
time complexity follows from Lemma 8 and the fact that we may need to compute
O(log n) elements of A to find c′. �

3.2 Method-2

We now describe a different method of creating the secondary structure for each
node in T . This will reduce the space complexity of the problem to O(n) keeping
the preprocessing and query time complexities unchanged.

Revised secondary structure
Instead of keeping O(log n) pointers as the secondary structure of each node in
T , we store only two link fields, namely ptr 1 and ptr 2 with each node in T .
The ptr1 pointer attached to a node v ∈ π(ηj) indicates that while searching
for an intersection of L with the path π(ηj), if node v is reached, then such an
intersection point must be observed in the path segment between the nodes v
and v.ptr1. The ptr2 pointer of node v points to the middlemost node in the
path segment between v and v.ptr1. In order to set these two pointers of the
nodes in T , we have to create a temporary data structure as mentioned below.

Let the maximum depth of a leaf node in T be m∗. We first create a temporary
array A of size 2α, where 2α−1 < m∗ ≤ 2α. Each entry of the array A consists
of two fields, which are also named as ptr 1 and ptr 2 respectively.

Consider a path of length 2α whose nodes are c = v1, v2, v3, . . . , v2α = η.
As mentioned earlier, the search in a path of T starts from its leaf node, and
L may intersect any edge on that path. A portion of the path is indicated by
the corresponding interval of node-indices. Thus, initially we have the interval
[20, 2α]. We use a stack whose each element is a tuple of the form (I, i), where I is

Constrained Minimum Enclosing Circle 773

v
32

v
31

v
24

v
30

v
29

v
28

v
27

v
26

v
25

v
23

v
22

v
15

v
21

v
20

v
19

v
18

v
17v

16
v

14
v

13
v

6
v

12
v

11v
10

v
9

v
8

v
7

v
5

v
4

v
3v

2
c=v

1

Fig. 3. Secondary structures of the nodes in T

an interval of node-indices, and i is an integer (0 ≤ i ≤ logn). Initially, we push
the tuple ([20, 2α], 0) onto the stack. Each time we pop an element ([a, b], i) from
stack. Set ptr 1 and ptr 2 of A[b− i] to a and a+b

2 respectively. If a+ 1 = b− i,
then ptr 2 of A[b− i] is set to b− i itself (see Fig. 3). If a+1 	= b− i, the interval
I = [a, b] gets split into two sub-intervals of node indices, namely I1 = [a, a+b

2]
and I2 = [a+b

2 , b]. We push both the tuples (I1, 0) and (I2, i + 1) in the stack.
The process continues until the stack becomes empty. The creation of the array
A is clearly illustrated in Fig. 3. Here ptr1 and ptr2 pointers of that node are
represented using dashed and solid edges respectively.

After the creation of the array A, we will set ptr1 and ptr2 of each node v by
performing a depth first search as in Method-1. Here, while popping a node v
from the i-th position of the stack, we will set v.ptr1 and v.ptr2 by A[i].ptr1 and
A[i].ptr2 respectively.

Lemma 10. If a path π(η) from c to a leaf node η in T is of length 2β (β ≤ α),
then the aforesaid link setting can report an intersection point of L with π(η) in
O(β) time.

Proof. We will use only ptr 2 to prove this lemma. The role of pointer ptr 1 will
be clear in the next subsection.

Let depth(η) = 2α. As in Method-1, α pointers are available to η, which are
stored in the ptr2 fields of α nodes from η towards the root. So, here we can use
these pointers moving upwards from η. In addition, while visiting these nodes, it
has checked whether L has intersected the edges attached to these α nodes. The
pointers which were present in the secondary structures of these α− 1 nodes in
Method-1, are not necessary in this method.

Suppose, after processing β (≤ α) nodes starting from η, we could identify
a node having depth 2α−1 + 2α−2 + . . . + 2α−β such that L has intersected
an edge in the sub-path from v(2α−1+2α−2+...+2α−β−1) to v(2α−1+2α−2+...+2α−β).
The search interval is further pruned using the α − β pointers attached to
v(2α−1+2α−2+...+2α−β). The process continues until the edge of π(η) is identi-
fied which has been intersected by L. The result follows from the fact that, the
total number of link traversals in this process is at most α.

774 S. Roy et al.

Next, consider the case where depth(η) = 2β, β < α. Here, observe that the
similar link structure is maintained among the nodes in v1, v2, . . . , v2β (see Fig.
3). Thus, the result follows. �

Searching in a path
Consider a path π(η), where η is a leaf node and depth(η) = m, where 2β−1 <
m ≤ 2β, and β ≤ α. Without loss of generality, assume that the nodes are
named as c = v1, v2, . . . , vm = η, where m = 2β−1 + 2β−2 + . . .+ 2β−j +m′, and
m′ < 2β−j−1. Suppose the query line L intersects the edge (v�, v�+1) ∈ π(η).
Here we need to consider two cases depending on whether (1) L intersects the
path π(η) between v0 and v2β−1+2β−2+...+2β−j , or (2) L intersects the path π(η)
below v2β−1+2β−2+...+2β−j .

Case 1: We use the following notations to describe our search algorithm. Let
θ = 2β−1+2β−2+ . . .+2β−k and θ′ = θ−2β−k = 2β−1+2β−2+ . . .+2β−k−1.
Our search starts from vm, and it consists of two major tasks: (i) identify θ
such that v� lies in the interval of node-indices [vθ, vθ′], and (ii) search for
the intersection in the interval of node indices [vθ, vθ′].
The task (i) is performed using ptr 1. Task (ii) is done using a binary search
using ptr 2. Let us now observe Fig. 3 to understand the search technique.
Consider a typical instance where the path length ism = 29, and assume that
L has intersected the edge (v�, v�+1), where � = 2. Thus, here θ = 16 and θ′ =
1. The query involves the following link traversals (i) v29 → v28 → v24 → v16
using pointer ptr 1, and then (ii) we apply binary search (as mentioned in
Lemma 10) in the interval [v16, v1] using ptr 2 to reach the node v3. The
intersection point of L with the edge (v1, v2) will then be identified.

Case 2: If L intersects an edge below v2β−1+2β−2+...+2β−j , then it can also be
detected in O(log n) time by expressing m′ as that of m.

Theorem 2. The preprocessing time and space complexities of Method-2 are
O(n log n) and O(n) respectively, and the worst case query time complexity is
O(log2 n).

Proof. In addition to the preprocessing steps of Method-1, we had to create the
array A containing the node indices on a path. This step needs O(2α) time, if the
length of the longest path m∗ lies in 2α−1 < m∗ ≤ 2α. The secondary structure
of each node is of size 2, and it needs an additional O(1) time for each node in
T while executing the depth first search. Thus both the preprocessing time and
space complexity results follow.

In the worst case query time complexity analysis, we will study the search
time on a path only. The location of c′ among the possible paths remain same
as in Method-1. The searching in a path in this method consists of two parts: (i)
the number hops needed to reach from vm to vθ, and (ii) the time needed for the
binary search to reach from vθ to v� using ptr 2, Both the steps need O(α) hops.
Since, we may need to inspect O(log n) paths in the worst case (see Lemma 8),
the result follows. �

Constrained Minimum Enclosing Circle 775

4 Constrained Smallest Enclosing Circle Problem with
Center on a Query Line Segment

We now consider that the query object L is a line segment. Let L̂ be the line
containing the line segment L. We apply Method-2 to identify the center ĉ ∈ L̂
of the constrained smallest enclosing circle. If ĉ is observed to be inside L, then
report c′ = ĉ. Otherwise, by Lemma 3, the center of the desired constrained
smallest enclosing circle is one of the endpoints of L which is closest to ĉ (with
respect to the Euclidean distance). Finally, the radius of the desired smallest
enclosing circle is δ(p, c′), where p ∈ P is the point whose corresponding Voronoi
cell contains c′.

5 Constrained Smallest Enclosing Circle Problem with
Center in a Given Set of Polygons

Here the query objects are r simple polygons with a total of m edges. We first
compute the furthest point Voronoi diagram V(P), to identify the center c of the
unconstrained smallest enclosing circle. If it is inside one of these polygons, we
report the answer. Otherwise, the center will be on the boundary of one of these
polygons. For each edge (line segment), We compute the center of the constrained
smallest enclosing circle with center on that edge, and report the radius of the
smallest one. Thus, the overall time complexity becomes O(n logn +m log2 n),
where |P | = n. In [2], it is mentioned that there may exist more than one such
circle attaining the smallest radius. Our algorithm can report all these circles
with the same time complexity.

References

1. A. Aggarwal, L. J. Guibas, J. Saxe, and P. W. Shor, A linear-time algorithm
for computing the Voronoi diagram of a convex polygon, Discrete Computational
Geometry, vol. 4, pp. 591-604, 1989.

2. P. Bose and G. Toussaint, Computing the constrained Euclidean, geodesic and link
center of a simple polygon with applications, Studies of facility location analysis, vol.
15, pp. 37-66, 2000.

3. P. Bose and Q. Wang, Facility location constrained to a polygonal domain, Theo-
retical Informatics, 5th Latin American Symposium, LNCS 2286, pp. 153-164, 2002.

4. O. Daescu, N. Mi, C. Shin and A. Wolff, Furthest-point queries with geometric
and combinatorial constraints, Computational Geometry: Theory and Applications,
to appear in 2006.

5. J. Elzinga and D. W. Hearn, Geometrical solutions to some minimax location prob-
lems, Transpotation Science, vol. 6, pp. 379-394, 1972.

6. F. Hurtado, V. Sacristan and G. Toussaint, Facility location problems with con-
straints, Studies in Locational Analysis, vol. 15, pp. 17-35, 2000.

7. D.T. Lee and Y.T. Ching. The power of geometric duality revised, Information
Processing Letters, vol. 21, pp. 117-122, 1985.

776 S. Roy et al.

8. D.T. Lee, Furthest neighbour Voronoi diagrams and applications, Report 80-11-FC-
04, Dept. Elect. Engrg. Comput. Sci., Northwestern Univ., Evanston, IL, 1980.

9. N. Megiddo, Linear-time algorithms for linear programming in R3 and related prob-
lems, SIAM J. Comput., vol. 12, pp. 759-776, 1983.

10. F. P. Preparata, Minimum spanning circle, Technical report, Univ. Illinois, Urbana,
IL, in Steps into Computational Geometry, 1977.

11. F. P. Preparata and M. I. Shamos,Computational Geometry: An Introduction, Sec-
ond edition, Springer Verlag, 1990.

12. M.I. Shamos and D. Hoey, Closest-point problem, Proc. 16th Annual IEEE Sympos.
Found. Comput. Sci., pages 151-162, 1975.

13. J. J. Sylvester, A question in the geometry of situation, Quarterly Journal of Math-
ematices, pp. 1-79, 1857.

Hierarchical Unambiguity

Holger Spakowski1,� and Rahul Tripathi2

1 Institut für Informatik, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
spakowsk@cs.uni-duesseldorf.de

2 Department of Computer Science and Engineering, University of South Florida,
Tampa, FL 33620, USA

tripathi@cse.usf.edu

Abstract. We develop techniques to investigate relativized hierarchical unam-
biguous computation. We apply our techniques to push forward some known
constructs involving relativized unambiguity based complexity classes (UP and
Promise-UP) to new constructs involving arbitrary levels of the relativized
unambiguous polynomial hierarchy (UPH). Our techniques are developed on
constraints imposed by hierarchical assembly of unambiguous nondeterminis-
tic polynomial-time Turing machines, and so our techniques differ substantially,
in applicability and in nature, from standard techniques (such as the switch-
ing lemma [Hås87]), which are known to play roles in carrying out similar
generalizations.

Aside from achieving these generalizations, we resolve a question posed by
Cai, Hemachandra, and Vyskoč [CHV93] on an issue related to nonadaptive Tur-
ing access to UP and adaptive smart Turing access to Promise-UP.

1 Introduction

Baker, Gill, and Solovay in their seminal paper [BGS75] introduced the concept of rel-
ativization in complexity theory, and showed that the primitive levels of the polynomial
hierarchy, i.e. P and NP, separate in some relativized world. Baker and Selman [BS79]
made progress in extending this relativized separation—P 	= NP in some relativized
world—to the next levels of the polynomial hierarchy: They proved that there is a rela-
tivized world where Σp

2 	= Πp
2 , and so Σp

2 	= Σp
3 relative to the same world. However,

Baker and Selman [BS79] observed that their proof techniques do not apply in achieving
relativized separations at higher levels of the polynomial hierarchy because of certain
constraints in their counting argument. Thus, it required the development of entirely
different proof techniques for separating all the levels of the relativized polynomial hi-
erarchy. The landmark paper by Furst, Saxe, and Sipser [FSS84] established the close
connection between the relativization of the polynomial hierarchy and lower bounds for
small depth circuits computing certain functions. Techniques for proving such lower
bounds were developed in a series of papers [FSS84, Sip83, Yao85, Hås87], which
were motivated by questions about the relativized structure of the polynomial hierar-
chy. Yao [Yao85] finally succeeded in separating the levels of the relativized polynomial

� Supported in part by the DFG under grants RO 1202/9-1 and RO 1202/9-3.

R. Královič and P. Urzyczyn (Eds.): MFCS 2006, LNCS 4162, pp. 777–788, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

778 H. Spakowski and R. Tripathi

hierarchy by applying these new techniques. Håstad [Hås87] gave the most refined pre-
sentation of these techniques via the switching lemma. Even to date, Håstad’s switching
lemma [Hås87] is used as an indispensable tool to separate relativized hierarchies, com-
posed of classes stacked one on top of another. (See, for instance, [Hås87, Ko89, BU98,
ST] where the switching lemma is used as a strong tool in proving the feasibility of or-
acle constructions.) A major contribution of our paper lies in demonstrating that certain
known oracle constructions involving the primitive levels of the unambiguous poly-
nomial hierarchy (UPH) and the promise unambiguous polynomial hierarchy (UPH),
i.e. UP and PPromise-UP

s , respectively, can be extended to oracle constructions that in-
volve arbitrary higher levels of UPH, purely by counting arguments alone. In fact, it
seems implausible to achieve these extensions by well-known techniques from circuit
complexity (e.g., the switching lemma [Hås87] and the polynomial method surveyed
in [Bei93, Reg97]).

The class UP is the unambiguous version of NP. UP has proved to be useful in
studying worst-case one-to-one one-way functions [Ko85, GS88] and some closure
properties of #P [OH93]. Lange and Rossmanith [LR94] generalized the notion of
unambiguity to higher levels of the polynomial hierarchy. They introduced the follow-
ing unambiguity based hierarchies: AUPH, UPH, and UPH. It is known that AUPH
⊆ UPH ⊆ UPH ⊆ UAP [LR94, CGRS04], where UAP (unambiguous alternating
polynomial-time) is the analog of UP for alternating polynomial-time Turing machines.
These hierarchies received renewed interests in some recent papers (see, for instance,
[ACRW04, CGRS04, ST, GT05]). Spakowski and Tripathi [ST], developing on circuit
complexity-theoretic proof techniques of Sheu and Long [SL96], and of Ko [Ko89],
obtained results on the relativized structure of these hierarchies. Spakowski and Tri-
pathi [ST] proved that there is a relativized world where these hierarchies are infinite.
They also proved that for each k ≥ 2, there is a relativized world where these hierar-
chies collapse so that they have exactly k distinct levels and their k’th levels collapse to
PSPACE. The present paper supplements this investigation with a focus on the struc-
ture of the unambiguous polynomial hierarchy.

1.1 Results

We prove a combinatorial lemma (Lemma 1) and demonstrate its usefulness in gener-
alizing known relativization results involving classes such as UP and Promise-UP to
new relativization results that involve arbitrary levels of the unambiguous polynomial
hierarchy (UPH).

In Subsection 4.1, we use Lemma 1 to show that certain inclusion relationships
between bounded ambiguity classes (UPO(1) and FewP) and the levels of the unam-
biguous polynomial hierarchy (UPH) do not relativize. Theorem 2 of this subsection
subsumes an oracle result of Beigel [Bei89] for any constant k ≥ 1 and Theorem 4
generalizes a result of Cai, Hemachandra, and Vyskoč [CHV93] from the case of k = 2
to the case of any arbitrary k ≥ 2; the parameter k is a part of these theorems.

Subsection 4.2 studies the issue of simulating nonadaptive access to UΣp
h, the h’th

level of the unambiguous polynomial hierarchy, by adaptive access to UΣp
h. Theorem 6

of this subsection generalizes a result of Cai, Hemachandra, and Vyskoč [CHV92] from

Hierarchical Unambiguity 779

the case of h = 1 to the case of any arbitrary h ≥ 1; the parameter h is a part of the
theorem. Lemma 1 is used as a key tool in proving Theorem 6.

We improve upon Theorem 6 of Subsection 4.2 in Subsection 4.3. There are com-
pelling reasons for the transition from Subsection 4.2 to Subsection 4.3, which we elab-
orate in Subsection 4.3. Theorem 8 in that subsection not only resolves a question posed
by Cai, Hemachandra, and Vyskoč [CHV93], but also generalizes one of their results.
In particular, Theorem 8 holds for any total, polynomial-time computable and poly-
nomially bounded function k(·) and arbitrary h ≥ 1, while a similar result of Cai,
Hemachandra, and Vyskoč [CHV93] holds only for any arbitrary constant k and h = 1;
the parameters k and h are parts of Theorem 8. Lemma 1 is one of the ingredients in
the proof of this theorem.

Subsection 4.4 investigates the complimentary issue of simulating adaptive access to
UΣp

h by nonadaptive access to UΣp
h. Theorem 9 of this subsection generalizes a result

of Cai, Hemachandra, and Vyskoč [CHV93] from the case of h = 1 to the case of
any arbitrary constant h ≥ 1. Again, Lemma 1 is useful in making this generalization
possible.

In Subsection 4.5, we study the notion of one-sided helping introduced by Ko [Ko87].
Theorem 10 of this subsection generalizes and improves one of the results of Cai,
Hemachandra, and Vyskoč [CHV93].

Finally, in Section 5 we consider the possibility of imposing more stringent restric-
tion in the statement of Lemma 1. The investigation in this subsection leads to a generic
collapse of UΣp

k to P, for each k ≥ 1, under the assumption P = NP. This generalizes
a result of Blum and Impagliazzo [BI87] from the case of k = 1 to the case of any
arbitrary k ≥ 1.

Due to the space limit, all proofs are omitted. They will appear in the full version of
the paper.

2 Preliminaries

2.1 Notations

Let N+ denote the set of positive integers. Σ denotes the alphabet {0, 1}. For every
oracle NPTM N , oracle A, and string x ∈ Σ∗, we use the shorthand NA(x) for “the
computation tree of N with oracle A on input x.” We fix a standard, polynomial-time
computable and invertible, one-to-one, multiarity pairing function 〈., . . . , .〉 throughout
the paper. Let ◦ denote the composition operator on functions. For any polynomial p(.)
and integer i ≥ 1, let (p◦)i(·) denote p ◦ p ◦ · · · ◦ p(·), i.e. the polynomial obtained by
i compositions of p.

For any complexity class C and for any natural notion of polynomial-time reducibil-
ity r (e.g., r ∈ {m, dtt, tt, k-tt, T, k-T, b}), let Rp

r(C) denote the closure of C under r.
That is, Rp

r(C) =df {L | (∃L′ ∈ C)[L ≤p
r L′]}. We refer the reader to any standard

textbook in complexity theory (e.g. [BC93, HO02, Pap94]) for complexity classes and
reductions not defined in this paper.

We introduce a notion called a Σk(A)-system. This notion is useful for concisely
representing the computation of a stack of oracle NPTMs.

780 H. Spakowski and R. Tripathi

Definition 1. 1. For any k ∈ N+ and A ⊆ Σ∗, we call a tuple [A;N1, N2, . . . , Nk],
where A is an oracle and N1, N2, . . . , Nk are oracle nondeterministic Turing ma-
chines, aΣk(A)-system. The computation of a Σk(A)-system [A;N1, N2, . . . , Nk]
on input x, denoted by [A;N1, N2, . . . , Nk](x), is defined as follows:

– For k = 1, [A;N1](x) =df N
A
1 (x), and

– for k > 1, [A;N1, N2, . . . , Nk](x) =df N
L(N ···

L(NA
k)

2)
1 (x).

2. The language accepted by a Σk(A)-system, denoted by L[A;N1, N2, . . . , Nk], is
defined inductively as follows:

L[A;N1, N2, . . . , Nk] =df

{
L(NA

1) if k = 1, and

L(NL[A;N2,N3,...,Nk]
1) if k > 1.

We capture the notion of unambiguity in Σk(A)-systems in the following definition.

Definition 2. 1. We say that a Σk(A)-system [A;N1, N2, . . . , Nk] is unambiguous if
for every 1 ≤ i ≤ k and for every x ∈ Σ∗, [A;Ni, Ni+1, . . . , Nk](x) has at most
one accepting path.

2. For any Σk(A)-system [A;N1, N2, . . . , Nk], we define

Lunambiguous[A;N1, N2, . . . , Nk]=

L[A;N1, N2, . . . , Nk] if [A;N1, N2, . . . , Nk]is
unambiguous,

undefined otherwise.

Roughly speaking, a property of an oracle machine is called robust if the machine re-
tains that property with respect to every oracle. Below we define the property of robust
unambiguity for a Σk(A)-system.

Definition 3. We say that a Σk(A)-system [A;N1, N2, . . . , Nk] is robustly unambigu-
ous if for every setB, theΣk(A⊕B)-system [A⊕B;N1, N2, . . . , Nk] is unambiguous.

2.2 Promise Problems and Smart Reductions

Even, Selman, and Yacobi [ESY84] introduced and studied the notion of promise prob-
lems. Promise problems are generalizations of decision problems in that the set of
Yes-instances and the set of No-instances must partition the set of all instances in a
decision problem, whereas this is not necessarily the case with promise problems. Over
the years, the notion of promise problems has proved to be useful in complexity theory.
(See [Gol05] for a nice survey on some such applications of promise problems.)

Definition 4 (Based on [Gol05]; cf. [ESY84]). A promise problem Π = (Πyes, Πno)
is defined in terms of disjoint sets Πyes, Πno ⊆ Σ∗. The set Πyes is called the set of
Yes-instances, the set Πno is called the set of No-instances, and the set Πyes ∪ Πno is
called the promise set.

Definition 5. A set L polynomial-time smart Turing reduces to a promise problemΠ =
(Πyes, Πno), denoted by L ≤p

s,T Π or L ∈ PΠ
s , if there is a deterministic polynomial-

time Turing machine M such that for all x ∈ Σ∗,

Hierarchical Unambiguity 781

1. x ∈ L⇐⇒MΠ(x) accepts, and
2. if MΠ(x) asks a query y to Π , then y ∈ Πyes ∪Πno.

If on all input x ∈ Σ∗, the querying machine M asks at most k queries, for some
constant k ∈ N+, then we say that L polynomial-time smart k-Turing reduces toΠ and
write L ≤p

s,k-T Π or L ∈ PΠ[k]
s .

The following definitions are standard.

Definition 6. Let Π be any promise problem. Rp
s,T (Π) is the class of all sets L such

that L ≤p
s,T Π; for all k ∈ N+,Rp

s,k-T (Π) is the class of all sets L such that L ≤p
s,k-T

Π; Rp
s,b(Π) is the class of all sets L for which there exists some k ∈ N+ such that

L ≤p
s,k-T Π .

Definition 7. For any class of promise problems C and any reduction r ∈ {T, k-T, b},
we define Rp

s,r(C) =df

⋃
Π∈C R

p
s,r(Π).

We will study the computational power of smart Turing reductions to a particular class
of promise problems, namely the class Promise-UP, which is defined as follows.

Definition 8. Promise-UP is the class of all promise problems Π = (Πyes, Πno) for
which there exists a nondeterministic polynomial-time Turing machine N such that for
all x ∈ Σ∗, x ∈ Πyes ⇐⇒ #accN (x) = 1, and x ∈ Πno ⇐⇒ #accN (x) = 0.

The class PPromise-UP
s of sets that polynomial-time smart Turing reduce to Promise-UP

is a prominent class that behaves remarkably differently than the related class PUP.
While PPromise-UP

s is known to contain the class FewP and the graph isomorphism
problem [AK02], similar results for the case of PUP are unknown.1

2.3 Unambiguity Based Hierarchies

Niedermeier and Rossmanith [NR98] observed that the notion of unambiguity in
NPTMs can be generalized in three, perhaps distinct, ways to define unambiguity based
hierarchies.

Definition 9 (Unambiguity Based Hierarchies [LR94, NR98]).

1. The alternating unambiguous polynomial hierarchy AUPH =df

⋃
k≥0 AUΣp

k =⋃
k≥0 AUΠp

k , where AUΣp
0 = AUΠp

0 =df P and for every k ≥ 1, AUΣp
k =

∃! ·AUΠp
k−1 and AUΠp

k =df ∀! ·AUΣp
k−1. 2

1 Arvind and Kurur [AK02] showed that the graph isomorphism problem (GI) belongs to
the class SPP. Crasmaru et al. [CGRS04] observed that the proof of classifying GI into
SPP, as given by Arvind and Kurur [AK02], actually yields a somewhat improved classifi-
cation for GI. Their observation was that the graph isomorphism problem in fact belongs to
Rp

s,T (Promise-UP), a subclass of SPP.
2 For any arbitrary class C, ∃! · C is the class of all sets L for which there exists a polynomial
p(·) and a set L′ ∈ C such that for all x ∈ Σ∗, if x ∈ L then there exists a unique y ∈ Σp(|x|)

such that 〈x, y〉 ∈ L′, and if x
∈ L then for all y ∈ Σp(|x|), 〈x, y〉
∈ L′. Likewise, ∀! · C is
the class of all sets L for which there exists a polynomial p(·) and a set L′ ∈ C such that for
all x ∈ Σ∗, if x ∈ L then for all y ∈ Σp(|x|), 〈x, y〉 ∈ L′, and if x
∈ L then there exists a
unique y ∈ Σp(|x|) such that 〈x, y〉
∈ L′.

782 H. Spakowski and R. Tripathi

2. The unambiguous polynomial hierarchy is UPH =df

⋃
k≥0 UΣp

k , where UΣp
0 =df

P and for every k ≥ 1, UΣp
k =df UPUΣp

k−1 . For each k ≥ 0, the class UΠp
k =df

coUΣp
k .

3. The promise unambiguous polynomial hierarchy is UPH =df

⋃
k≥0 UΣ

p
k , where

UΣp
0 =df P, UΣp

1 =df UP, and for every k ≥ 2, UΣp
k is the class of all sets L ∈

Σp
k such that for some oracle NPTMs N1, N2, . . ., Nk, L = L(NL(N ···

L(Nk)

2)
1),

and for every x ∈ Σ∗ and for every 1 ≤ i ≤ k − 1, NL(N ···
L(Nk)

2)
1 (x) has at most

one accepting path and if Ni asks a query w to its oracle L(N ·
··L(Nk)

i+1) during the

computation of N ·
··L(Nk)

1 (x), then N ·
··L(Nk)

i+1 (w) has at most one accepting path.
For each k ≥ 0, the class UΠp

k =df coUΣp
k .

The following relationships among these complexity classes and other important classes
are known.

Theorem 1. 1. For all k ≥ 0, AUΣp
k ⊆ UΣp

k ⊆ UΣp
k ⊆ Σp

k [LR94].
2. For all k ≥ 1, UP≤k ⊆ AUΣp

k ⊆ UΣp
k ⊆ UΣp

k ⊆ UAP ⊆ SPP ([LR94]
+ [NR98] + [CGRS04]).

3 Main Lemma

Our main lemma is Lemma 1, which we will use throughout this paper for generalizing
known oracle constructions involving classes such as UP and Promise-UP to new or-
acle constructions involving arbitrary levels of the UPH. Roughly, Lemma 1 states the
computational limitations of a Σk(O)-system, for any arbitrary k ≥ 1, under certain
weak conditions.

Lemma 1. Fix a Σk(O)-system [O;N1, N2, . . . , Nk], a string x ∈ Σ∗, and a set U ⊆
Σ∗ such thatO∩U = ∅. Let r(.) be a polynomial that bounds the running time of each
of the machines N1, N2, . . . , Nk. Then the following holds:

1. Suppose [O;N1, N2, . . . , Nk](x) accepts and for every A ⊆ U with ||A|| ≤ k,
[O ∪A;N1, N2, . . . , Nk] is unambiguous. Let

C = {α ∈ U | [O ∪ {α};N1, N2, . . . , Nk](x) rejects}.

Then ||C|| ≤ 5k ·
∏k

i=1(r◦)i(|x|).
2. Suppose [O;N1, N2, . . . , Nk](x) rejects and for every A ⊆ U with ||A|| ≤ k + 1,

[O ∪A;N1, N2, . . . , Nk] is unambiguous. Let

C = {α ∈ U | [O ∪ {α};N1, N2, . . . , Nk](x) accepts}.

Then ||C|| ≤ 5k ·
∏k

i=1(r◦)i(|x|).

Hierarchical Unambiguity 783

Any oracle machine can be interpreted as a function mapping a set of strings to an-
other set of strings as follows: A machine N maps any set O to the set L(NO). There-
fore it makes sense to consider the function L : 2Σ∗ → 2Σ∗

defined by a Σk(·)-
system [·;N1, N2, . . . , Nk]. (That is, define L so that for every O ⊆ Σ∗, L(O) =df

L[O;N1, N2, . . . , Nk].) We introduce a convenient notion called “(h, t)-ambiguity” for
(partial) functions such as the ones defined by Σk(·)-systems.

Definition 10. For any h ∈ N+ and polynomial t(·), we call a partial function L :
2Σ∗ → 2Σ∗

(h, t)-ambiguous if for every O, U ⊆ Σ∗ with O ∩ U = ∅, one of the
following is true:

1. For some A ⊆ U with ||A|| ≤ h, L(O ∪A) is undefined, or
2. for every w ∈ Σ∗,

||{α ∈ U | w ∈ L(O ∪ {α}) ⇐⇒ w /∈ L(O)}|| ≤ t(|w|).

The machine N1 in a Σk(O)-system [O;N1, N2, . . . , Nk] has oracle access to the set
L[O;N2, N3, . . . , Nk]. In many of our proofs, we first apply Lemma 1 to prove that
under certain conditions the Σk−1(·)-subsystem [·;N2, N3, . . . , Nk] defines a (k, t)-
ambiguous function L′, where t is some polynomial and for any O ⊆ Σ∗, L′(O) is
defined to be L[O;N2, N3, . . . , Nk]. Then we can assume that the machine N1 has
oracle access to the set L(O), where L can be any arbitrary (k, t)-ambiguous function,
rather than to the set L[O;N2, N3, . . . , Nk]. This works because the (k, t)-ambiguity
of the function L′ defined by the Σk−1(·)-subsystem [·;N2, N3, . . . , Nk] is the only
property of L′ that is needed in the proofs. This approach greatly simplifies our proof
arguments since we will not need to deal with stacks of oracle NPTMs.

4 Applications

4.1 Comparing Bounded Ambiguity Classes with the Levels of UPH

We compare nondeterministic polynomial-time complexity classes (UPO(1) and FewP),
which are based on Turing machines having restrictions on the number of accepting
paths, with levels of the unambiguous polynomial hierarchy (UPH). It is known that
UP≤k ⊆ UΣp

k in all relativized worlds. Theorem 2 shows the optimality of this inclu-
sion with respect to relativizable proof techniques. Beigel [Bei89] constructed an oracle
relative to which UPk(n)+1 	⊆ UPk(n), for every polynomial k(n) ≥ 2. Theorem 2 sub-
sumes this oracle result of Beigel [Bei89] for any constant k.

By a slight modification of the oracle construction in Theorem 2, we can show that
the second level of the promise unambiguous hierarchy UΣp

2 is not contained in the
unambiguous polynomial hierarchy UPH. Results on relativized separations of levels
of some unambiguity based hierarchy from another hierarchy have been investigated
earlier. Rossmanith (see [NR98]) gave a relativized separation of AUΣp

k from UΣp
k ,

for any k ≥ 2. Spakowski and Tripathi [ST] constructed an oracle relative to which
AUΣp

k 	⊆ Πp
k , for any k ≥ 1. Our relativized separation of UΣp

2 from UPH does not
seem to be implied from these previous results in any obvious way.

784 H. Spakowski and R. Tripathi

Theorem 2. (∀k ≥ 1)(∃A)[UPA≤k+1 	⊆ UΣp,A
k].

A straightforward adaptation of the proof technique in Theorem 2 allows to separate
the second level, UΣp

2 , of the promise unambiguous polynomial hierarchy from the
unambiguous polynomial hierarchy, UPH, in some relativized world. We obtain this
relativized separation via Theorem 3, where a subclass, namely FewPA, of UΣp,A

2 is
separated from UPHA.

Theorem 3. (∃A)
[
FewPA � UPHA

]
.

Corollary 1. There is a relativized world where UΣp
2 is not contained in UPH.

Cai, Hemachandra, and Vyskoč [CHV93] proved that smart 2-Turing access to
Promise-UP cannot be subsumed by coNPUP∪NPUP in some relativized world. As a
consequence, they showed that there is a relativized world where smart bounded adap-
tive reductions to Promise-UP and smart nonadaptive reductions to Promise-UP are
nonequivalent, a characteristic that stands in contrast with the cases of UP and NP.
(Both UP and NP are known to have equivalence between bounded adaptive reduc-
tions and nonadaptive reductions in all relativized worlds (see [CHV93, Wag90].) We
generalize their result in Theorem 4, where we prove that smart k-Turing access to

Promise-UP cannot be relativizably contained in coNPUΣp,A
k−1 ∪ NPUΣp,A

k−1 , for any
k ≥ 2.

Theorem 4. (∀k ≥ 2)(∃A)
[
Rp

s,k-T (Promise-UPA) � coNPUΣp,A
k−1 ∪NPUΣp,A

k−1

]
.

4.2 Simulating Nonadaptive Access by Adaptive Access (Non-promise Case)

It is known that adaptive Turing access to NP is exponentially more powerful compared
to nonadaptive Turing access to NP. That is, Rp

(2k−1)-tt(NP) ⊆ Rp
k-T (NP) [Bei91]

and this inclusion relativizes. However, for the case of unambiguous nondeterministic
computation such a relationship between nonadaptive access and adaptive access is
not known. Cai, Hemachandra, and Vyskoč [CHV92] showed that even proving the
superiority of adaptive Turing access over nonadaptive Turing access with one single
query more might be nontrivial for unambiguous nondeterministic computation:

Theorem 5 ([CHV92]). For any total, polynomial-time computable and polynomially
bounded function k(·), there exists an oracle A such that

Rp
(k(n)+1)-tt(UPA) 	⊆ Rp,A

k(n)-T (UPA).

In the next theorem, we generalize this result to the higher levels of the unambiguous
polynomial hierarchy UPH.

Theorem 6. For any total, polynomial-time computable and polynomially bounded
function k(·), and h ∈ N+, there exists an oracle A such that

Rp
(k(n)+1)-dtt(UPA≤h) 	⊆ Rp,A

k(n)-T (UΣp,A
h),

and hence Rp
(k(n)+1)-dtt(UΣ

p,A
h) 	⊆ Rp,A

k(n)-T (UΣp,A
h).

Hierarchical Unambiguity 785

4.3 Simulating Nonadaptive Access by Adaptive Access (Promise Case)

Cai, Hemachandra, and Vyskoč [CHV93] proved the following partial improvement of
their Theorem 5.

Theorem 7 ([CHV93]). For any constant k, there exists an oracle A such that

Rp
(k+1)-tt(UPA) 	⊆ Rp,A

s,k-T (Promise-UPA).

Note that we have replaced “UP” by “Promise-UP” on the righthand side of the non-
inclusion relation of Theorem 5. This is a significant improvement for the following
reason. The computational powers of Rp

b (UP) and Rp
s,b(Promise-UP) (the bounded

Turing closure of UP and the bounded smart Turing closure of Promise-UP, respec-
tively) are known to be remarkably different in certain relativized worlds. While it is
easy to show that UP≤k is robustly (i.e., for every oracle) contained in PPromise-UP

s,k-T for
any k ≥ 1, we have shown in Theorem 2 that for no k ≥ 2, UP≤k is robustly contained
in PUP. Therefore, it is not immediately clear whether this improvement is impossible,
i.e. whether Rp

(k+1)-tt(UP) ⊆ Rp
s,k-T (Promise-UP) holds relative to all oracles.

However, Cai, Hemachandra, and Vyskoč [CHV93] could achieve this improvement
only by paying a heavy price. In their own words:

In our earlier version dealing with UPA, the constant k can be replaced by
any arbitrary polynomial-time computable function f(n) with polynomially
bounded value. It remains open whether the claim of the current strong version
of Theorem 3.1 can be similarly generalized to non-constant access.

We resolve this open question. We show that Theorem 7 holds with constant k replaced
by any total, polynomial-time computable and polynomially bounded function k(·).
This result is subsumed as the special case h = 1 of our main result, Theorem 8, of this
subsection.

Theorem 8. For any total, polynomial-time computable and polynomially bounded
function k(·), and h ∈ N+, there exists an oracle A such that

Rp
(k(n)+1)-dtt(UPA≤h) 	⊆ Rp,A

s,k(n)-T (Promise-UPUΣp,A
h−1),

and hence Rp
(k(n)+1)-dtt(UΣ

p,A
h) 	⊆ Rp,A

s,k(n)-T (Promise-UPUΣp,A
h−1).

Theorem 8 is furthermore a generalization of Theorem 7 to higher levels of the unam-
biguous polynomial hierarchy.

4.4 Simulating Adaptive Access by Nonadaptive Access

Sections 4.2 and 4.3 studied the limitations of simulating nonadaptive queries to UP≤h

by adaptive queries to UΣp
h in relativized settings. This section complements these

investigations. In particular, Theorem 9 of this section shows that in a certain relativized
world, it is impossible to simulate adaptive k-Turing access to UP≤h by nonadaptive
(2k−2)-tt access to UΣp

h. This also implies optimality of robustly (i.e., for every oracle)

786 H. Spakowski and R. Tripathi

simulating adaptive k-Turing accesses by nonadaptive (2k − 1)-tt accesses to classes
such as UP≤h and UΣp

h, since for any class C, we can trivially, via brute-force method,
simulate adaptive k-Turing reduction to the class by nonadaptive (2k − 1)-tt reduction
to the same class.

Theorem 9 generalizes a result of Cai, Hemachandra, and Vyskoč [CHV93] from the
case of h = 1 to the case of arbitrary constant h ≥ 1.

Theorem 9. For any constants k, h ∈ N+, there exists an oracleA such that

Rp
k-T (UPA≤h) � Rp,A

(2k−2)-tt(NPUΣp,A
h−1),

and hence Rp
k-T (UPA≤h) � Rp,A

(2k−2)-tt(UΣ
p,A
h).

4.5 Fault-Tolerant Access

Ko [Ko87] introduced the notion of one-sided helping by a set A in the computation of
a set B. A set A is said to provide one-sided help to a set B if there is a deterministic
oracle Turing machineM computingB and a polynomial p(·) such that (a) on any input
x ∈ B, MA(x) accepts in time p(|x|), and (b) for all inputs y and for all oracles C,
MC(y) accepts (though perhapsMC(y) may take a longer time than p(|y|)) if and only
if y ∈ B. Since the machine M , accepting the set B, is capable of answering correctly
on faulty oracles, i.e. oraclesC different from the oracleA that provides one-sided help
to B, the oracle access mechanism is termed fault-tolerant (see [CHV93]). Ko [Ko87]
defined P1-help(A) to be the class of all sets B that can be one-sided helped by A.

We generalize and improve the relativized separation of P1-help(UP) from UP by
Cai, Hemachandra, and Vyskoč [CHV93] in Theorem 10.

Theorem 10. For all h ≥ 1, there exists an oracle A such that

P1-help(UPA≤h) � Rp,A
s,b (Promise-UPUΣp,A

h−1).

5 Robust Unambiguity

So far we looked at several applications of Lemma 1 in constructing relativized worlds
involving arbitrary levels of the unambiguous polynomial hierarchy. Lemma 1, in
essence, shows the computational limitations of a Σk(A)-system under certain weak
restrictions. What if we impose a more stringent restriction on a Σk(A)-system? This
question is relevant to our next investigation.

We study the power of robustly unambiguousΣk(A)-system in Theorem 11. (Recall
from Section 2, a Σk(A)-system [A;N1, N2, . . . , Nk] is robustly unambiguous if for
every oracle B, [A ⊕ B;N1, N2, . . . , Nk] is unambiguous.) Theorem 11 illustrates the
following fact: A robustly unambiguousΣk(A)-system is so weak that given any oracle
set B and input x, the hierarchical nondeterministic polynomial-time oracle access to
B in [A⊕B;N1, N2, . . . , Nk](x) can be stripped down and turned into a deterministic
polynomial-time oracle access (to B) without changing the acceptance behavior of the
Σk(A ⊕B)-system on input x. As a corollary, we obtain a generic collapse of UΣp

k to
P, for each k ≥ 1, assuming P = NP.

Hierarchical Unambiguity 787

Theorem 11. For all A ⊆ Σ∗ and k ≥ 1, if the Σk(A)-system [A;N1, N2, . . . , Nk] is
robustly unambiguous, then for every B ⊆ Σ∗,

L[A⊕B;N1, N2, . . . , Nk] ∈ PΣp,A
k ⊕B.

Corollary 2. If P = NP, then relative to a (Cohen) genericG, P = UΣp
k for all k ≥ 1.

The last corollary generalizes a result of Blum and Impagliazzo: If P = NP, then
relative to a (Cohen) generic G, PG = UPG [BI87]. Fortnow and Yamakami [FY96]
demonstrated that similar collapses relative to any (Cohen) generic G do not occur at
higher levels of the polynomial hierarchy. They proved that for each k ≥ 2, there exists

a tally set in UPΣp,G
k−1,G ∩ Πp,G

k but not in PΣp,G
k−1,G. Thus Corollary 2 contrasts with

this generic separation by Fortnow and Yamakami.

Acknowledgment. We thank Lane Hemaspaandra and Jörg Rothe for their constant
encouragement and support.

References

[ACRW04] S. Aida, M. Crâsmaru, K. Regan, and O. Watanabe. Games with uniqueness prop-
erties. Theory of Computing Systems, 37(1):29–47, 2004.

[AK02] V. Arvind and P. Kurur. Graph isomorphism is in SPP. In Proceedings of the
43rd IEEE Symposium on Foundations of Computer Science, pages 743–750, Los
Alamitos, November 2002. IEEE Computer Society.

[BC93] D. Bovet and P. Crescenzi. Introduction to the Theory of Complexity. Prentice Hall,
1993.

[Bei89] R. Beigel. On the relativized power of additional accepting paths. In Proceed-
ings of the 4th Structure in Complexity Theory Conference, pages 216–224. IEEE
Computer Society Press, June 1989.

[Bei91] R. Beigel. Bounded queries to SAT and the boolean hierarchy. Theoretical Com-
puter Science, 84(2):199–223, 1991.

[Bei93] R. Beigel. The polynomial method in circuit complexity. In Proceedings of the 8th
Structure in Complexity Theory Conference, pages 82–95, San Diego, CA, USA,
May 1993. IEEE Computer Society Press.

[BGS75] T. Baker, J. Gill, and R. Solovay. Relativizations of the P=?NP question. SIAM
Journal on Computing, 4(4):431–442, 1975.

[BI87] M. Blum and R. Impagliazzo. Generic oracles and oracle classes. In Proceedings
of the 28th IEEE Symposium on Foundations of Computer Science, pages 118–126,
October 1987.

[BS79] T. Baker and A. Selman. A second step toward the polynomial hierarchy. Theoret-
ical Computer Science, 8:177–187, 1979.

[BU98] C. Berg and S. Ulfberg. A lower bound for perceptrons and an oracle separation
of the PPPH hierarchy. Journal of Computer and System Sciences, 56(3):263–271,
1998.

[CGRS04] M. Crâsmaru, C. Glaßer, K. Regan, and S. Sengupta. A protocol for serializing
unique strategies. In Proceedings of the 29th International Symposium on Mathe-
matical Foundations of Computer Science. Springer-Verlag Lecture Notes in Com-
puter Science #3153, August 2004.

788 H. Spakowski and R. Tripathi

[CHV92] J. Cai, L. Hemachandra, and J. Vyskoč. Promise problems and access to unam-
biguous computation. In Proceedings of the 17th Symposium on Mathematical
Foundations of Computer Science, pages 162–171. Springer-Verlag Lecture Notes
in Computer Science #629, August 1992.

[CHV93] J. Cai, L. Hemachandra, and J. Vyskoč. Promises and fault-tolerant database ac-
cess. In K. Ambos-Spies, S. Homer, and U. Schöning, editors, Complexity Theory,
pages 101–146. Cambridge University Press, 1993.

[ESY84] S. Even, A. Selman, and Y. Yacobi. The complexity of promise problems with
applications to public-key cryptography. Information and Control, 61(2):159–173,
1984.

[FSS84] M. Furst, J. Saxe, and M. Sipser. Parity, circuits, and the polynomial-time hierarchy.
Mathematical Systems Theory, 17:13–27, 1984.

[FY96] L. Fortnow and T. Yamakami. Generic separations. Journal of Computer and
System Sciences, 52(1):191–197, February 1996.

[Gol05] O. Goldreich. On promise problems. Technical report TR05–018, Electronic Col-
loquium on Computational Complexity (ECCC), 2005.

[GS88] J. Grollmann and A. Selman. Complexity measures for public-key cryptosystems.
SIAM Journal on Computing, 17(2):309–335, 1988.

[GT05] C. Glaßer and S. Travers. Machines that can output empty words. Technical report
TR05–147, Electronic Colloquium on Computational Complexity (ECCC), 2005.

[Hås87] J. Håstad. Computational Limitations of Small-Depth Circuits. MIT Press, 1987.
[HO02] L. Hemaspaandra and M. Ogihara. The Complexity Theory Companion. Springer,

2002.
[Ko85] K. Ko. On some natural complete operators. Theoretical Computer Science,

37(1):1–30, 1985.
[Ko87] K. Ko. On helping by robust oracle machines. Theoretical Computer Science,

52:15–36, 1987.
[Ko89] K. Ko. Relativized polynomial time hierarchies having exactly k levels. SIAM

Journal on Computing, 18(2):392–408, 1989.
[LR94] K.-J. Lange and P. Rossmanith. Unambiguous polynomial hierarchies and expo-

nential size. In Proceedings of the 9th Structure in Complexity Theory Conference,
pages 106–115. IEEE Computer Society Press, June/July 1994.

[NR98] R. Niedermeier and P. Rossmanith. Unambiguous computations and locally defin-
able acceptance types. Theoretical Computer Science, 194(1–2):137–161, 1998.

[OH93] M. Ogiwara and L. Hemachandra. A complexity theory for feasible closure prop-
erties. Journal of Computer and System Sciences, 46(3):295–325, 1993.

[Pap94] C. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.
[Reg97] K. Regan. Polynomials and combinatorial definitions of languages. In L. Hemas-

paandra and A. Selman, editors, Complexity Theory Retrospective II, pages 261–
293. Springer-Verlag, 1997.

[Sip83] M. Sipser. Borel sets and circuit complexity. In Proceedings of the 15th ACM
Symposium on Theory of Computing, pages 61–69. ACM Press, 1983.

[SL96] M. Sheu and T. Long. UP and the low and high hierarchies: A relativized separa-
tion. Mathematical Systems Theory, 29(5):423–449, 1996.

[ST] H. Spakowski and R. Tripathi. On the power of unambiguity in alternating ma-
chines. Theory of Computing Systems. To appear.

[Wag90] K. Wagner. Bounded query classes. SIAM Journal on Computing, 19(5):833–846,
1990.

[Yao85] A. Yao. Separating the polynomial-time hierarchy by oracles. In Proceedings of
the 26th IEEE Symposium on Foundations of Computer Science, pages 1–10, 1985.

An Efficient Algorithm Finds Noticeable Trends

and Examples Concerning the Černy Conjecture

A.N. Trahtman

Bar-Ilan University, Dep. of Math., 52900, Ramat Gan, Israel
trakht@macs.biu.ac.il

http://www.cs.biu.ac.il/∼trakht/Testas.html

Abstract. A word w is called synchronizing (recurrent, reset, directed)
word of a deterministic finite automaton (DFA) if w sends all states
of the automaton on a unique state. Jan Černy had found in 1964 a
sequence of n-state complete DFA with shortest synchronizing word of
length (n − 1)2. He had conjectured that it is an upper bound for the
length of the shortest synchronizing word for any n-state complete DFA.

The examples of DFA with shortest synchronizing word of length
(n − 1)2 are relatively rare. To the Černy sequence were added in all
examples of Černy, Piricka and Rosenauerova (1971), of Kari (2001) and
of Roman (2004).

By help of a program based on some effective algorithms, a wide class
of automata of size less than 11 was checked. The order of the algorithm
finding synchronizing word is quadratic for overwhelming majority of
known to date automata. Some new examples of n-state DFA with mini-
mal synchronizing word of length (n−1)2 were discovered. The program
recognized some remarkable trends concerning the length of the minimal
synchronizing word.

Keywords: Deterministic finite automaton, synchronizing word, algo-
rithm, complexity, Černy conjecture.

Introduction

We consider a DFA with complete state transition graph Γ and transition semi-
group S over alphabet Σ. Let n be the size of DFA and q be the size of Σ.

The problem of synchronization of DFA is natural and various aspects of this
problem were touched upon the literature. Synchronization makes the behavior
of an automaton resistant against input errors since, after detection of an error,
a synchronizing word can reset the automaton back to its original state, as if
no error had occurred. Therefore different problems of synchronization draw the
attention.

A problem with a long story is the estimation of the minimal length of synchro-
nizing word. Most known as a Černy conjecture, it was aroused independently
by distinct authors. Jan Černy had found in 1964 [2] n-state complete DFA with
shortest synchronizing word of length (n−1)2 for q = 2. He had conjectured that
it is an upper bound for the length of the shortest synchronizing word for any

R. Královič and P. Urzyczyn (Eds.): MFCS 2006, LNCS 4162, pp. 789–800, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

790 A.N. Trahtman

n-state complete DFA. The problem can be reduced to automata with strongly
connected graph [2]. The best known upper bound is now equal to (n3 − n)/6
[5], [8], [9], [12]. The conjecture holds true for a lot of automata, but in general
the problem remains open. This simply looking conjecture is now one of the
most longstanding open problems in the theory of finite automata. Moreover,
the examples of automata with shortest synchronizing word of length (n − 1)2

are infrequent. After the sequence found by Černy and example of Černy, Piricka
and Rosenauerova [3] of 1971 for q = 2, the next such example was found by
Kari [6] only in 2001 for n = 6 and q = 2. Roman [14] had found an analogical
example for n = 5 and q = 3 in 2004. There are no examples of automata for
the time being such that the length of the shortest synchronizing word is greater
than (n− 1)2.

The testing of synchronizing automata is an indispensable part of investiga-
tion in this area [1], [4], [10], [11], [13], [19]. The best known to date algorithm
of Eppstein [4], [10] improves an algorithm of Natarjan [11] and finds a synchro-
nizing word for n-state DFA in O(n3 + n2q) time.

We present a new efficient algorithm for finding a synchronizing word. The
actual running time of the algorithm on a lot of examples proved to be essentially
less than in case of O(n3q) time complexity. For clear majority of automata, the
time complexity is O(n2q). It gives a chance to extend noticeably the class of
considered DFA. This algorithm plays a central role in the program for search
of automata with minimal reset word.

The program studied all automata with strongly connected transition graph
of size n ≤ 10 for q = 2 and of size n ≤ 7 for q ≤ 4. All known and some new
examples of DFA with shortest synchronizing word of length (n− 1)2 from this
class of automata were checked. So all examples of DFA with shortest synchro-
nizing word of length (n− 1)2 in this area are known for today. The size of the
alphabet of the examples is two or three. The situation in the neighborhood of
the bound (n−1)2 of Černy (minimal reset words of relatively great length) was
also studied.

There are no contradictory examples for the Černy conjecture in this class
of automata. Moreover, the program does not find new examples of DFA with
reset word of length (n − 1)2 for automata with n > 4 as well as for q > 3. No
such examples exist for alphabet of size four if n ≤ 7.

And what is more, the examples with minimal length of reset word disappear
even for values near the Černy bound (n − 1)2 with growth of the size of the
automaton as well as of the size of the alphabet. The gap between (n− 1)2 and
the nearest of the minimal lengths of reset word appears for n = 6. There are
no 6-state automata with minimal length of synchronizing word of 24 for q ≤ 4.

The following table displays this interesting trend for the length of minimal
reset words less than (n− 1)2.

size n=5 q <= 4 n=6 q <= 4 n=7 q <= 4 n=8 q=2 n=9 q=2 n=10 q=2
(n− 1)2 16 25 36 49 64 81

max length 15 23 32 44 58 74

An Efficient Algorithm Finds Noticeable Trends 791

The program uses also straightforward algorithm for finding synchronizing
word of minimal length. A help algorithm of the program verifies whether or
not a given DFA is synchronizing. It is a modification of an algorithm of O(n2q)
time complexity supposed by Eppstein [4], [10]. Our version has O(n2q) time
complexity only in the worst case and we use usually only its linear part.

The comparison of the experimental data suggests that the length of the
synchronizing word found by central algorithm of the program is not far from
the length of the minimal synchronizing word. This length was not greater than
n2 in all billions cases studied for today. The results of the algorithms altogether
correspond to the Černy conjecture. All above algorithms are implemented in
our package TESTAS [19].

Preliminaries

Let us consider a deterministic finite automaton with state transition graph Γ
and transition semigroup S over alphabet Σ. The states of the automaton are
considered below as vertices of the transition graph Γ .

The number of vertices of the graph Γ is denoted by |Γ |.
A maximal strongly connected component of a directed graph will be denoted

for brevity as SCC.
If there exists a path v ∈ Σ+ from vertex p to vertex q in the transition graph

of DFA then let us denote the vertex q as pv.
Let Γv denote the mapping of the graph [automaton] Γ by help of v ∈ Σ+,

let us call |Γv| rank and |Γ | − |Γv| defect of the mapping v.
A word v ∈ Σ+ is called synchronizing word of an automatonA with transition

graph Γ if |Γv| = 1. An automaton (and its transition graph) possessing a
synchronizing word is called synchronizing.

A word w is called 2-reset word of the pair p,q if pw = qw.
Suppose p ; q if pw = q for some word w.
A state [a vertex] q is called sink of an automaton [of a graph] if p ; q for

all p.
An automaton [a graph Γ] is called complete if for every state [vertex] p and

every σ ∈ Σ the state [vertex] pσ exists.
The direct product Γ 2 of two copies of graph Γ over an alphabet Σ consists of

vertices (p,q) and edges (p,q) → (pσ,qσ) labelled by σ. Here p,q ∈ Γ , σ ∈ Σ.

1 Some Auxiliary Properties

Two following two simple lemmas belong rather to the folklore.

Lemma 1. [2] [18], [10] The directed labelled graph Γ is synchronizing if and
only if Γ 2 has sink state.

Lemma 2. [18] The sets of synchronizing words of the graphs Γ and Γ 2

coincide.

792 A.N. Trahtman

Lemma 3. Let Γ be strongly connected graph of synchronizing automaton. Then
for every state p ∈ Γ there exists a word s of length not greater than |Γ | such
that p 	∈ Γs.

Proof. Let us denote the set of states from Γ \ Γu for all u such that |u| ≤ i as
Qi. The complement of the set Qi let us denote as Ci.

The automaton is synchronizing. Therefore there exists a letter α such that
|Γα| < |Γ |, whence Q1 is not empty. The graph Γ is strongly connected. There-
fore there exists a letter β and a state c ∈ Ci−1 such that cβ ∈ Qi−1. Hence
|Ci−1β ∩ Ci−1| < |Ci−1| and the states from Ci−1β \ Ci−1 belong to Qi. Thus
Qi−1 ⊂ Qi and the size of Qi is growing with i.

Consequently, for some i ≤ |Γ | |Qi| = |Γ |. Thus for every state p ∈ Γ there
exists a word s of length not greater than |Γ | such that p ∈ Q|s| and p 	∈ Γs.
Lemma 4. Suppose p 	∈ Γs for a word s and a state p of transition graph Γ of
DFA.

Then there exist two minimal integer k and r such that psk = psk+r. The
pair of states p,psr has 2-reset word sk and for every i < k the pair of states
psi,psr+i has 2-reset word sk−i. The word sk is a 2-reset word for at least k
different pairs of states.

In the case r = 1 every pair of states psi,psk for every i < k has 2-reset word
sk−i.

Proof. The sequence ps,ps2, ...,pst, ... is finite and belongs to Γs. Therefore
such k and r exist. Two states psi and psr+i are mapped by the power sk−i on
psk = psk+r as well as the states p and psr are mapped by the power sk on
psk. All states psi are distinct for i ≤ k, whence the word sk unites at least k
distinct pairs of states.

In the case r = 1, two states psi and psk are mapped by the word sk−i on
psk = psk+1 as well as the pair of states p, psk is mapped by the power sk on
psk. All states psi are distinct for i ≤ k, whence the word sk unites also in this
case at least k distinct pairs of states.

Lemma 5. Suppose rα = tα for a letter α and two distinct states r, t of transi-
tion graph Γ of DFA and let the states r and rα be consecutive states of a cycle
C of Γ .

Then there exists a word s of length of the cycle C such that rs = r and
|Γs| < |Γ |. For some state p ∈ Γ \ Γs there exists a minimal integer k such
that psk = psk+1. The pair of states p,psk has 2-reset word sk and for every
i < k the pair of states psi,psk has 2-reset word sk−i. The word sk unites at
least k + 1 distinct states.

Proof. A word s with first letter α can be obtained from consecutive letters on
the edges of the cycle C. Therefore |s| is equal to the length of the cycle and
rs = r. |Γs| < |Γ | follows from rα = tα.

From rs = r 	= t and rα = tα follows that ts = r 	= t and tsi 	= t for
any integer i. In the case t ∈ Γ \ Γs suppose p = t, and so the state p is
defined. In opposite case for some state t1 holds t1s = t. If t1 ∈ Γ \ Γs suppose

An Efficient Algorithm Finds Noticeable Trends 793

p = t1, else for some state t2 holds t2s
2 = t. Let us continue this procedure

until tk−1 ∈ Γ \ Γs for some k such that tk−1s
k−1 = t. Such minimal k exists

and all states t, t1, ..., tj for j ≤ k are distinct because tsi 	= t for any integer
i. The state t therefore has a preimage p = tk−1 in Γ \ Γs by mapping sk−1,
whence psk = psk+1 = r.

So the pair of states p,psk has 2-reset word sk and for every i < k the pair of
states psi,psk has 2-reset word sk−i. The states psi for i ≤ k and p are distinct
because of the choice of k. The word sk maps all these states on the state r.

Obvious is the following

Lemma 6. Suppose qs = q for m states q from Γ and for some word s such
that sk = sk+1. Then |Γsk| = m.

2 Synchronizing Algorithms

The following help construction was supposed by Eppstein [4]. Let us keep for any
pair of states r,q the first letter α of the minimal 2-reset word w of the pair of
states together with the length of the wordw. The corresponding letter of the pair
of states rα,qα is the second letter of w. The 2-reset word w of minimal length
can be restored on this way. The time and space complexity of this preprocessing
is O(|Γ 2|) [4] and it will be used in majority of considered algorithms.

A help algorithm with O(|Γ |2q) time complexity in the worst case based on
Lemmas 1 and 2 verifies whether or not a given DFA is synchronizing [4], [19].
The main part of the algorithm follows [4] (see also [10]). Our modification of the
algorithm finds first all SCC of the graph (a linear algorithm) and then checks
the minimal SCC of the graph (if exists). The program for search of automata
with relatively great minimal reset word uses this algorithm on the preliminary
(and quite often linear) stage.

An efficient semigroup algorithm, essential improvement of the algorithm from
[4], based on the properties of syntactic semigroup and inspired by Lemmas 3 -
6 is used on the next stage and plays a central role in the program.

2.1 A Semigroup Algorithm for Synchronizing Word

We consider the square Γ 2 and the reverse graph I of Γ . The graph I is not
deterministic for synchronizing graph Γ .

Suppose that the graph Γ is synchronizing, all sink states are found on the
stage of checking of the synchronizability, the graph Γ 2 and the reverse graph I
were build.

Let us find by help of the reverse graph I for any pair of states r,q from Γ 2 the
first letter of the minimal 2-reset word w of the pair and the length of w [4]. So for
any pair of states (r,q) can be restored a 2-reset word w of minimal length.

The set of states (r,q) can be ordered according to the length of the word
w. The ordering can be made linear in the size of the set. One can find first
the number of all pairs (r,q) with given length of minimal 2-reset word for any

794 A.N. Trahtman

length, then adjust an interval for to place the pairs and then allocate the pairs
of states in the interval according to the value of the length.

We use also an another idea for to reorder the pairs of states. The number of
preimages of the state rw = qw by mapping wk for any integer k can be used
for the ordering together with the length |w|. Let us call this order the second.
The number of preimages can be found in linear time for given pair of states
(r,q) using the reverse graph I. The corresponding words may form a set of
generators of a subsemigroup of the semigroup A of all reset words and we will
use only linear number of pairs studied for this aim.

The important part of the preprocessing supposed by Eppstein was the com-
puting of the mapping Γw of the graph Γ induced by the minimal 2-reset word
w of the pair of states r,q. This stage begins from the shortest words w and
therefore is linear for any considered pair of states r,q. Nevertheless, the time
complexity of the stage is O(Γ 3). For to avoid the extremes of this step, our
algorithm stops on linear number of pairs. The obtained set G of 2-reset words
is considered as a set of generators of some subsemigroup from A and will be
marked together with corresponding pairs of states. The time complexity of this
step is therefore O(Γ 2). Let us reorderG in the second order and use the mapping
of the graph induced by powers of generators.

Let Γi be consecutive images of the graph Γ = Γ0 such that for wi ∈ A holds
Γiwi+1 = Γi+1 and |Γi| > |Γi+1|. Let Ai be a semigroup generated by the set
w1, ... wi. Let us check pairs of states corresponding to the words from G. If the
pair belongs to Γi then the corresponding minimal reset word wi+1 may be used
for to find the image Γi+1.

In the case no minimal 2-reset word of a pair from Γi was marked, let us
consider the products of marked words. If some product unites a pairs of states
of Γi, then let us use the mapping, mark the product of words and the pair of
states. Let us notice that on this step are considered not all marked pairs. The
number of considered products must be linear in the size of Γ . The product of
two mappings can be found in linear time. Therefore the time complexity of this
stage is O(|Γ |k) for the defect k of the mapping of Γi.

If two considered stages still do not find a reset word, then the new generator
must be added to considered subsemigroup Ai. Let us take a pair of states r,q
from Γi with reset word wi. Suppose wi = uivi such that the word vi was marked.
Then the mapping wi can be found in |Γ ||ui| time. Let us notice that only on
this step the time complexity may by greater than quadratic.

Lemma 7. Let Γi be consecutive images of the graph Γ = Γ0 such that for vi

from semigroup A Γivi+1 = Γi+1, |Γi| > |Γi+1| and |Γs| = 1 for some integer s.
Let Ai be a semigroup generated by the set w1, ... wi such that wi = uivi is a
reset word for some pair of states from Γi−1 and vi is a marked element of the
subsemigroup Ai−1.

Then the considered algorithm has max(O(|Γ |2q), O(|Γ ||u1...us|) time com-
plexity.

Proof. The time complexity of the step of the building of Γ 2 is O(|Γ |2q). So
O(|Γ |2q) is a lower bound for the complexity of the considered algorithm.

An Efficient Algorithm Finds Noticeable Trends 795

Let the set w1, ... wi generate Ai. The creation of the mapping wi needs
|Γ ||ui|+ 1 steps because for the marked element vi the mapping is known.

The element will be marked and used only if it is either a generator from Ai

or a product of two marked elements. With a marked semigroup element will be
associated the mapping of Γ defined by the element. The finding of the mapping
of the product of two elements with known images is linear in the size of the graph.

We repeat the process with the obtained image Γi. The defect of the mapping is
growing on every step. After not over than |Γ | − 1 steps Γ will be synchronized.

The process of recording of the synchronizing word is linear in the length
of the word. The length of the synchronizing word found by the algorithm in
billions of practical experiments was less than |Γ |2 in all considered cases. The
stage of adding of new generators was used only in a small number of cases, only
some percents of considered synchronizing automata. The minimal number of
generators of the semigroup A is usually small. For instance, for all Černy graphs
there are only two generators. Therefore the time complexity of the algorithm is
O(|Γ |2q) in overwhelming majority of cases and the algorithm can be considered
as almost quadratic.

2.2 Modification of Eppstein Algorithm

Some version of the program uses also a modification of Eppstein algorithm [4],
[10] for finding synchronizing word of O(|Γ |3 + (|Γ |2q) time complexity. The
favorable idea of Eppstein was to keep with any pair of states r,q the first letter
of the minimal reset word w, its length and the image of the set of states by help
of the mapping induced by the word w. The building of the images has O(|Γ |3)
time complexity and is a most wasteful part of the algorithm.

Our modification of the Eppstein algorithm (called below a cycle algorithm)
instead of a word w considers a power of this word until stabilization of the rank
of the image. It proved to be fruitful in many cases including such extraordinary
case as graphs of Černy [2]. The length of the reset word obtained by the al-
gorithm in this case reaches its minimum. We omit sometimes this stage of the
program despite the growing number of the graphs studied on the next stage.
Nevertheless, the observation period of the whole of the program is essentially
smaller in spite of the fact that the next stage is non-polynomial.

Theorem 8. [5], [8] Let C be set of size k and let us consider a sequence of
its subsets Ci of size m such that any Ci includes a two-element subset of C
not included in every Cj for j < i. Then the length of the sequence is less than
(k −m+ 2) ∗ (k −m+ 1)/2.

Corollary 9. Let Γ be transition graph of an automaton with |Γ | states and let
us consider a sequence of subsets Ci of states of the automaton of size m or less
such that any Ci includes a two-element subset of states of Γ not included in
every Cj for j < i. Suppose the length of the sequence is (|Γ | −m+ 2) ∗ (|Γ | −
m + 1)/2. Then at least one Ci contains less than m states. Any sequence of
length (|Γ |3−|Γ |)/6 of considered kind for distinct m contains a set of size one.

796 A.N. Trahtman

The value (|Γ |3−|Γ |)/6 is well known and was mentioned time and again [5], [8],
[9], [12]. The combinatorial theorem 8 can be used for estimation of the length
of the reset word obtained by Eppstein, cycle and semigroup algorithms. The
theorem considers distinct mappings of the graph of the automaton induced by
the letters of the alphabet of the labels such that any new mapping has at least
one pair of states that does not belong to any previous mapping of the same
rank. For given rank k of mapping in considered algorithms there are at most
(|Γ | + k)(|Γ | + k − 1)/2 or less than |Γ | distinct mappings. The pair of states
with a most short reset word creates a sequence of such mappings and therefore
the theorem 8 can be used here. Corollary 9 implies

Proposition 10. The length of the reset word obtained by Eppstein, cycle and
semigroup algorithms is less than (|Γ |3 − |Γ |)/6.
So the time complexity of the algorithm in the most worst case is O(|Γ |3q).
Really this most worst case is very rare, for all automata studied for today by
these algorithms, it was less than |Γ |2.

2.3 An Algorithm for Finding Synchronizing Word of Minimal
Length

On the last stage, the program uses a straightforward algorithm for finding
synchronizing word of minimal length. The last one is not polynomial in the
most worst case (the finding of the synchronizing word of minimal length is
NP-hard [4], [10], [15]). The program for search of minimal reset word uses this
algorithm relatively rare.

The algorithm is a revision of an algorithm for finding the syntactic semi-
group S of size s with q generators on the base of transition graph [17]. We find
mappings of the graph of the automaton induced by the letters of the alphabet
of the labels. Mappings with the same set of states are identified. It essentially
simplified the process in comparison with the algorithm from [17]. Distinct map-
pings are saved. For this aim, any two mappings must to be compared, so we
have O(s(s− 1)/2) steps. Let us notice that the size of the syntactic semigroup
is in general not polynomial in the size of the transition graph.

The mappings correspond to semigroup elements. With any mapping let us
connect a previous mapping and the letter that creates the mapping. On this
way, the path on the graph of the automaton can be constructed.

Proposition 11. The algorithm finds a list of all words (elements of syntactic
semigroup) of length k where k is growing. The first synchronizing word of the
list has minimal length.

The time complexity of the considered procedure is O(|Γ |qs2) with O(|Γ |s) space
complexity.

2.4 Checking Synchronizability

The algorithm is based on the Lemma 1 and presents a modification of an algo-
rithm from [4].

An Efficient Algorithm Finds Noticeable Trends 797

First let us check SCC using the first-depth search and find the SCC Γs of
sink states from Γ . If there are no sink state then the graph has no synchronizing
word and the algorithm stops. Exactly one sink state implies synchronizability
and the algorithm also stops. The time and space complexity of these step are
linear. Now we can consider the graph Γs with at least two sink states.

The next step is the consideration of Γ 2
s . We unite any pair of states (p,q)

and (q,p), all states (r, r) are united in one state (0, 0). Then let us mark sink
state (0, 0) and all ancestors of (0, 0) using the first-depth search on the reverse
of the obtained graph G. The graph Γ is synchronizing if any node of G will be
marked. The time and space complexity of the algorithm in the most worst case
is O(|Γ |2q).

3 Experimental Data

The considered synchronization algorithms were used in a program for search of
automata with minimal reset word of relatively great length. The program has
investigated all complete DFA for n ≤ 10, q = 2 and for n ≤ 7, q ≤ 4.

An automaton with k states outside sink SCC A of the transition graph
can be mapped on A by word of length not greater than k(k − 1)/2. Therefore
only automata with strongly connected transition graphs need investigation. The
graphs with synchronizing proper subgraph obtained by moving off letters from
the alphabet are omitted too. The program reduced also the number of studied
isomorphic copies of automata. The case of n = 2 is not considered because any
synchronizing automaton with two states has reset word of length (n− 1)2 = 1.

The known n-state automata with minimal reset word of length (n− 1)2 are
presented by sequence of Černy [2] (here n=28):

$ $ $ $ $ $ $ $ $ $ $ $ $ $)))))))))))))a a a a a a a a a a a a ab b b b b b b b b b b b b
5 5 5 5 5 5 5 5 5 5 5 5 5

1

0

a b a

$ $ $ $ $ $ $ $ $ $ $ $ $ $ (((((((((((((a a a a a a a a a a a a a

b b b b b b b b b b b b b b

5 5 5 5 5 5 5 5 5 5 5 5 5 5

by automata supposed by Černy, Piricka and Rosenauerova [3] (CPR), by Kari
[6] and Roman [14].

$ $ $ b a

$
) ()�
��6 #

##70

b

a b

a
a

$ $

$ $
a a

a a$
$

���8

999: ���8

999:

) a

)
a

1

0�
�
�
�6

b b
b

b

b

$ $ $

$ $ #
##;#
##7 �

��6�
��<

c c
�
��6�
��<

#
##7()

a

ab

a, b c a, b

b

Our program has found five new following examples on the border (n − 1)2.
The loops of the complete graphs are omitted here for simplicity.

798 A.N. Trahtman

$ $
$
$

(�
��6�
��<

#
##7#
##;

10

b

a

a

c

$ $ $
$

((()#
##;�

��<�
��6
00
1 a

a a
c

c ab $ $
$
(a) (

b

�
��<

#
##7

ba
#
##;a $ $

$
(�

��6�
��<

#
##7#
##;c

a

a, b

$
$
$
1b
0
1a

0
c1

The corresponding reset words of minimal length are: abcacabca, acbaaacba,
baab, acba, bacb. All considered algorithms have found the same reset word
for every example. The size of the syntactic semigroup found by the package
TESTAS is 148, 180, 24, 27 and 27 correspondingly.

No doubts that some automata from this list, especially for n = 3, were
sometimes studied by specialists, but we have not found any mention of.

There are no contradictory examples for the Černy conjecture in considered
class of automata. Moreover, the program does not find new examples of au-
tomata with reset word of length (n− 1)2 for n > 4 and q > 3.

And what is more, the examples with minimal length of reset word disappear
even for values near the Černy bound (n − 1)2 with growth of the size of the
automaton. The gap appears for n = 6. There are no 6-state automata with
minimal length of synchronizing word equal to 24 for q ≤ 4.

The following table displays this noteworthy trend for the maximum of lengths
of minimal reset words. The mentioned above examples on the Černy border are
not taken in account in the third line of the table.

size n=5 q <= 4 n=6 q <= 4 n=7 q <= 4 n=8 q=2 n=9 q=2 n=10 q=2
(n− 1)2 16 25 36 49 64 81

max length 15 23 32 44 58 74

The gap between (n − 1)2 and the length of the minimal reset word grows
with n. This growing gap supports the following funny

Conjecture 1. The set of n-state DFA (n > 2) with minimal reset word of
length (n − 1)2 contains only the sequence of Černy and the eight automata
mentioned above, three of size 3, three of size 4, one of size 5 and one of size 6.

Let us consider the synchronization algorithms from the package TESTAS on
some above-mentioned objects and on a modification [16] of a graph KMM sup-
posed by Kim, McNaughton, McCloskey [7].$ $ $ $ $ $ $ $ $ $ $ $ $ $)))))))))))))a a a a a a a a a a a a a

1

0
b a

�
�
�
�
�
��=

b

	
	
	
	
	
		>

b

#
#
#
#
#
#7

b

 *

b
��

��
��

��
��

��?

b

 b

p t
$ $ $ $ $ $ $ $ $ $ $ $ $ $(((((((((((((a a a a a a a a a a a a a

An Efficient Algorithm Finds Noticeable Trends 799

Complete closure KMML of this graph is obtained from KMM by adding
loops in all necessary cases. The n-state automata supposed by Černy will be
denoted by C< n >.

The following table presents the name of the automaton, the number of its
states, the size of the syntactic semigroup, the length of synchronizing word
found by the Eppstein algorithm [4], by the cycle and the semigroup algorithm,
by the minimal synchronizing word algorithm with the corresponding number of
mappings of the set of states.

name CPR Roman Kari C6 C9 C17 KMM KMML C28 C151
graph size 4 5 6 6 9 17 28 28 28 151

semigroup size 145 1397 17265 2742 218718 huge 22126 > 106 huge huge
Eppstein alg 9 17 26 27 78 375 4 51 1202 57190

cycle algorithm 9 18 27 25 64 256 4 57 729 22500
semigroup alg 9 17 27 25 64 256 4 27 729 22500
minimal length 9 16 25 25 64 256 4 27 729 22500

mappings 9 22 46 56 501 131053 12 41035 vast vast

One can compare the results of the algorithms. Equality of the length of
minimal synchronizing word and of synchronizing word found by the semigroup
algorithm and by Eppstein or cycle algorithm holds in some cases. In particular,
it’s true even for such extreme objects as Černy automata. Moreover, we obtain
not infrequently the same synchronizing words. The transition semigroup of
the Černy automaton has a nilpotent element of order n − 1, and the minimal
synchronizing word of the automaton is a subword of a power of this element.

As for the size of the syntactic semigroup from the table, the most discouraging
example gives us the Kari automaton. The size of the syntactic semigroup of the
Černy automaton is very great too, it is about O(22n). Maximal size nn of the
syntactic semigroup is reached for the examples of n = 3, q = 3. It is the
semigroup of all transformations of 3-element set.

References

1. D. S. Ananichev, A. Cherubini, M.V. Volkov, An inverse auromata algo-
rithm for recognizing 2-collapsing words. Springer, Lect. Notes in Comp. Sci.,
2450(2003),270-282

2. J. Černy, Poznamka k homogenym eksperimentom s konechnymi automatami,
Math.-Fyz. Čas., 14(1964) 208-215.

3. J. Černy, A. Piricka, B. Rosenauerova, On directable automata, Kybernetika
7(1971), 289-298.

4. D. Eppstein, Reset sequences for monotonic automata. SIAM J. Comput., 19(1990)
500-510.

5. P. Frankl, An extremal problem for two families of sets, Eur. J. Comb., 3(1982)
125-127.

6. J. Kari, A counter example to a conjecture concerning synchronizing word in finite
automata, EATCS Bulletin, 73(2001) 146-147.

800 A.N. Trahtman

7. Kim S., McNaughton R., McCloskey R. A polynomial time algorithm for the local
testability problem of deterministic finite automata, IEEE Trans. Comput., N10,
40(1991) 1087-1093.

8. A.A. Kljachko, I.K. Rystsov, M.A. Spivak, An extremely combinatorial problem
connected with the bound on the length of a recurrent word in an automata.
Kybernetika. 2(1987) 16-25.

9. Z. Kohavi, J. Winograd, Establishing certain bounds concerning finite automata,
J. Comp. System Sci., 7(1973), 288-299.

10. D. Lee, M.Yannakakis, Principle and methods of testing finite state mashines - A
survey, Proc. of IEEE, 8, 84(1996) 1090-1123.

11. B.K. Natarajan, An algorithmic approach to the automated design of parts ori-
enters. Proc. of 27th Annual Symp. Foundations of CS, IEEE, 1986, 132-142.
Springer, Lect. Notes Comp. Sci., 62(1978) 345-352.

12. J.-E. Pin, On two combinatorial problems arising from automata theory, Annals
of Discrete Math., 17(1983) 535-548.

13. J.-K. Rho, F. Somenzi, C. Pixley, Minimum Length Synchronizing Sequences of
Finite State Machine, Proc. of 30th ACM/IEEE DA Conf., 1993, 463-466.

14. A. Roman, A note on Cerny Conjecture for automata with 3-letter alphabet (sub-
mitted).

15. A. Salomaa, Generation of constants and synchronization of finite automata, J. of
Univers. Comput. Sci., 8(2) (2002), 332-347.

16. A.N.Trahtman, Optimal estimation on the order of local testability of finite au-
tomata. Theoret. Comput. Sci., 231(2000) 59-74.

17. A.N. Trahtman, Verification of algorithms for checking some kinds of testability.
In Algebraic Methods in Language Processing, TWLT 21, eds. F.Spoto, G. Scollo,
A. Nijholt. 2003, 253-263.

18. A.N. Trahtman, Černy conjecture for DFA accepting star-free languages. ICALP,
Workshop on synchronizing automata, Turku, Finland, 2004.

19. A.N. Trahtman, Some results of implemented algorithms of synchronization. 10-th
Journees Montoises d’Inform. Theor., LIege, Belgia, 2004.

On Genome Evolution with Innovation�

Damian Wójtowicz and Jerzy Tiuryn

Institute of Informatics, Warsaw University
Banacha 2, 02-097 Warsaw, Poland
{dami, tiuryn}@mimuw.edu.pl

Abstract. We introduce and analyse a simple probabilistic model of
genome evolution. It is based on three fundamental evolutionary events:
gene duplication, loss and innovation, and it is called DLI model. The
focus of the paper is around the size distribution of gene families. The
formulas for equilibrium gene family sizes are derived showing that they
follow a logarithmic distribution. We consider also a disjoint union of DLI
models and we present the result of this study. Some empirical results
for microbial genomes are presented.

1 Introduction

The seminal Ohno’s work [12] shows that gene duplication is a fundamental
feature of evolution. It creates the redundancy necessary to free one copy of a
gene to evolve a new function, thus it constitutes a substratum for the Darvinian
selection for adaptive fitness. This duplication process leads to an appearence
of paralogous genes. Recall, that any two genes evolved through a duplication
from a single ancestral gene, are called paralogs. We do not discuss here the
important issue of deciding which genes are paralogous. An in depth discussion
of this matter can be found in [4]. Here, we assume that all genes have been
already clustered into groups of pairwise paralogous genes. We call such groups
gene or paralog families. It should be also mentioned that clustering can be made
in many different ways [5,14,18,2,1].

The paralog families constitue a significant part of all genes in a genome,
about half of the genes have detectable paralogous gene [15]. Therefore the
evolution of multigene families has attracted a great deal of attention in com-
parative genomics during the last decade. It has been noticed that genomes
contain gene families of various sizes and these sizes change over time1. How-
ever, size distribution of gene families in a genome seems to be invariant over
time [14,15,5,6,7,8,18]. We propose a model of genome evolution in the spitit of
Kimura [9], i.e. in the total absence of selective presures or at least we have to
� This work was partially supported by KBN grants: 3 T11F 021 28

and 3 TF11 016 28.
1 Various biochemical processes (like gene duplication and loss, point mutation, re-

combination, gene conversion, translocation, horizontal transfer and many others)
constantly act on a genome and therefore it changes over time (together with its
gene families).

R. Královič and P. Urzyczyn (Eds.): MFCS 2006, LNCS 4162, pp. 801–811, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

802 D. Wójtowicz and J. Tiuryn

assume that at a genome level, selective pressure does not substantially change
the shape of gene family size distribution. We are fully aware that such a purely
neutralistic model cannot be truly realistic. However, it explains the biological
observations and it can be very useful in further discussions in this topic. The
essential feature of our model is that it describes the dynamics of the genome
at the level of genes. It is based on three fundamental evolution events:

– gene duplication – an event in which one gene gives rise to two genes which
cannot be operationally distinguished between themselves; they remain in
the same genome and are therefore paralogs;

– gene loss – an event which leads to a removal of the gene from the genome;
– gene innovation – an event which introduces new genes; it may occur through

a horizontal gene transfer of genes between species, especially frequent in
case of bacteria or phages [10], or acquired through a series of mutations in
a noncoding part of the genome.

We focus on a mathematical analysis of the model from the point of view of
paralog family size distribution.

Related Work
A motivation for the present work comes from the study of size distribution of
gene familes in several microbial genomes which was undertaken in late 90’s.
Slonimski et al. [14], Huynen and van Nimvegen [5] and Jordan et al. [6] counted
the number of i-element families of paralogous genes (for i = 1, 2, 3, . . .) in sev-
eral genomes which have been already sequenced. They came up with different
claims concerning the shape of the observed distribution: logarithmic distribu-
tion in [14,6] (the probability of being an i-element cluster is proportional to
θi/i, where 0 < θ < 1), and power law distribution in [5] (the probability is pro-
portional to i−γ , where γ > 1). It follows from the above contradicting claims
that it may be very difficult to decide what actually is the observed distribu-
tion if we rely merely on the biological data. A decisive answer should come by
adopting a certain mathematical model of a genome evolution together with a
rigorous analysis of the distribution within this model. Yanai et al. designed a
simple model of the genome evolution, but they show only that it is possible to
tune the parameters of the model to obtain the distributions that match closely
the observed paralog distributions of the genomes considered by the authors.
No mathematical analysis was given in this paper.

To our knowledge the first paper which proposes a model of genome evolution
together with complete mathematical analysis of the equilibrium frequences of
domain families is the one by Karev et al. [7,8]. The model in this paper is
similar to our DLI model and is based on three elementary processes: domain
birth (duplication), domain death (deletion) and domain innovation, the so called
BDIM model. Karev et al. [7] show in their paper that depending on relative rates
of birth and death of domains in families (these rates depend on the size of the
family and are constant in time) one obtains various equilibrium distributions,
including logarithmic and power law.

On Genome Evolution with Innovation 803

In spite of similarities of the BDIM model and the DLI model presented in
the present paper, they differ in three important respects: (i) BDIM model is
a continuous time process described by a finite system of differential equations,
while our model is a discrete time Markov chain with infinitely many states.
(ii) BDIM model sets a fixed upper bound on the maximal size of a family, while
our model allows families of arbitrary unbounded size. It is not clear what are the
consequences for the resulting distribution if one bounds the maximal size of the
family. In technical terms bounding the size results in a finite system of differen-
tial equations (as this is the case for the BDIM model), while without the bound
the system becomes infinite. (iii) Finally, our model presents a particular process
of evolution, while BDIM model studies the general quantitative relationships
between gene families depending on general relative rates of evolution.

Two models in the spirit of the present paper were analysed in [16] (DL
model – a model without the gene innovation event) and [17] (DLC model –
a model with the gene accumulated change instead of the gene innovation event).
It is shown that the asymptotic distribution in DL model is geometric (the
probability of being an i-element cluster is proportional to θi, where 0 < θ < 1),
while in DLC model it is a logarithmic distribution. The DL model was treated
only as an intermediate step towards an analysis of more complicated models
and it shouldn’t be surprising that the geometric distribution does not fit the
genomic data. Unfortunately, both models, DL and DLC, have an undesirable
drawback – depending on the parameters of the model, they have only two types
of behaviour: either a colapse of the genome or an exponential explosion (both
with probability 1). In order to avoid this unstable behaviour of the genome
size in both models, we introduce a gene innovation event. This makes our new
model more realistic.

Main Contributions of the Paper
The main result of the paper is the statement that in the presence of gene
innovation, the asymptotic size distribution of gene families in the DLI model
is the logarithmic distribution whose parameter depends only on the ratio of
probability of gene duplication and loss, and does not depend on the rate of
innovation. A precise formulation of this result is given in Theorem 1.

The second result of the paper, Theorem 2, shows that a disjoint union of the
DLI models result in a linear combination of logarithmic distributions. We also
give a forumla for the weights of this combination. This analysis is motivated
by the fact that many gene families evolve at different rates and it is natural
to introduce different groups of paralog families, each evolving independently
according to its own DLI model of evolution with individual parameters.

The paper is organized as follows. In Section 2 we describe the DLI model and
present the main result concerning this model. The proof of this result is moved
to Section 3. Study of a disjoint union of DLI models is presented in Section 4.
Section 5 contains a presentation of the experimental results for five bacteria
and five yeasts. Concluding remarks are presented in Section 6.

804 D. Wójtowicz and J. Tiuryn

2 DLI Model of Evolution

In this section we describe formally the model of gene duplication, loss and
innovation in a genome, called DLI model. We view a genome as a finite collection
of genes. We do not assume that genes have any structure – they are treated as
atomic objects which undergo various evolutionary events. The events happen
randomly and each gene evolves independently of other genes. The whole process
is discrete in the sense that we observe in discrete time moments the state of the
genome. In order to keep track of evolution of paralog families we assume that
each gene has its own color. The intuition behind colors is that two genes have the
same color if, and only if, they are paralogs. Hence monochromatic gene families
correspond to families of paralogous genes. We assume that at our disposal we
have an unlimited supply of colors. A genome is naturally partitioned into gene
families according to colors. A gene family in a genome is the set of all genes of
the genome which have the same color. For i ≥ 1 let Ci be the collection of all
i-element gene families. In the present paper we are going to study family size
distributions. A family size distribution of a genome is a probability distribution
(fi)i≥1 on positive integers, where fi = |Ci|

∞
k=1 |Ck| is the probability of observing

an i-element family in the genome.
The process of genome evolution consists of two independent subprocesses:

internal change and external impact. We describe them separately.

Internal Change: Dupliaction and Loss Process
This is an instance of a Birth and Death process [3]. Fix the real parameters
a, p > 0 such that p+ ap < 1. In one step of internal change of a genome each
gene of genome is independently:

– duplicated with probability ap. Both copies of the gene inherit the color of
their parent.

– lost with probability p. The gene is removed from the genome.
– remains unchanged with probability 1− p− ap.

The quantity a is called a duplication constant. Remark also that a lost con-
stant is assumed to equal 1.

External Impact: Innovation Process
We assume that we have an external source of genes (a black box) which injects
genes into the genome randomly according to a certain distribution (πi)i≥0,
whose expected number is υ = τp (τ is called an innovation constant and p
is a probability of gene loss). It means that in one step the innovation process
injects i genes with probability πi. We assume that the injected genes have brand
new colors, i.e. colors which do not occur in the genome, and moreover that the
colors of injected genes are pairwise different. It will turn out that the choice of
the distribution is irrelevant, as long as the expected number υ =

∑∞
i=0 i · πi of

injected genes is finite and positive. In fact, it will follow from the main result
of this paper that the asymptotic gene family size distribution of the innovation
process does not even depepend on υ. As we will see later innovation process
stabilizes the size of the genome throughout the evolution.

On Genome Evolution with Innovation 805

Thus the whole process of genome evolution is described by three positive
reals: a, p, and τ , such that p + ap < 1. A one step of genome evolution is
illustrated in Figure 1.

genes paralog family from class C
3

G=

G’=

genome

p
U

p
D p

L
p

L
p

L
p

L
p

L
p

D
p

D
p

Dp
U

p
U

probabilities

s
t
e
p

n
s
t
e
p

n
+

1

2�

Fig. 1. Illustration of definitions and sample evolution of genome (from G to G′). Here
we use the notation pL = p, pD = ap, and pU = 1− p− ap.

We assume throughout this paper that the initial genome at step n = 0
consists of K > 0 one element gene families. In order to keep the size of the
genome roughly around K during the evolution we need to make some assump-
tions on the parameters of the model. Observe that when a > 1 then the size
of the genome grows exponentially fast due to internal change. So the addition
of innovation makes things even worse. On the other hand when a < 1, then
internal change causes the number of genes decrease exponentially fast, but in
this case innovation compensates for this loss. This follows from the following
simple computation. Given K genes in the genome, in the next step there are on
average (p−ap)K genes lost due to internal change and υ = τp genes introduced
due to innovation. Hence, on average, the size of the genome in the next step
is τp + (1 − p + ap)K. Repeating this argument n times and passing with n to
infinity immediately yields the asymptotic size of the genome equal to τ/(1−a).

Now we can state the main result of our paper.

Theorem 1. For any 0 < a < 1 and τ > 0, if p > 0 is sufficiently small,
then for a sufficiently large number of evolution steps the observed family size
distribution in the genome is close to the logarithmic distribution with parame-
ter a, i.e. the probability of observing a i-element family in the genome is close
to C · ai/i, where C is a normalizing constant. Moreover the size of the genome
is close to τ/(1 − a). All the above properties do not depend on the initial size
K of the genome, subject to the condition that initially all genes have pairwise
different colors.

The above theorem agrees for a = 1/2 with the so called First Law Of Genomic
stated for small families by Slonimski et al. [14,15].

806 D. Wójtowicz and J. Tiuryn

3 Sketch of the Proof of Theorem 1

Let E(n)
i be the expected number of i-element families in the above presented

process of evolution after n steps (i ≥ 1, n ≥ 0). Assuming that the initial genome
has K genes with pairwise different colors, we have E(0)

1 = K and E
(0)
j = 0 for

j > 1. For n > 0, we obtain an infinite system of equations for (E(n)
i)i≥1:{

E
(n)
1 =

∑∞
j=1E

(n−1)
j · P(j � 1) + τp

E
(n)
i =

∑∞
j=1E

(n−1)
j · P(j � i) for i > 1,

(1)

where P(j � i) =
∑�i/2�

k=0

(
j

i−2k,k

)
(1− p− ap)i−2k(ap)kpj−i+k, for i, j ≥ 1, is the

probability that a gene family of size j gets size i as a result of an internal change
of the genome. The situation is slightly different for i = 1 since singletons, in
addition to the obvious possibility of arriving from other classes by adjusting
their size, could have been also created by the gene innovation event.

Let Q = (P(j � i))j,i≥1 and T = (τp, 0, 0, . . .). System equation (1) can
be rewritten in matrix notation: (E(n)

1 , E
(n)
2 , E

(n)
3 , . . .) = (E(n−1)

1 , E
(n−1)
2 ,

E
(n−1)
3 , . . .)Q+ T . It follows that

(E(n)
1 , E

(n)
2 , E

(n)
3 , . . .) = (K, 0, 0, . . .)Qn + T

n−1∑
i=0

Qi (2)

for all n ≥ 0. We are interested in the asymptotic distribution which is derived
from (2), when n tends to infinity. Notice that a priori it is not clear that such
a distribution always exists.

For i ≥ 1, let q(n)
p,i be a probability that a random family in the genome after

n steps of evolution process has size i. Then

q
(n)
p,i =

E
(n)
i∑∞

j=1 E
(n)
j

. (3)

Of course, for every n ≥ 0 the distribution
(
q
(n)
p,i

)
i≥1 exists. The next result

says that the asymptotic distribution exists too.

Proposition 1 (Existence of asymptotic distribution). Let 0 < a < 1,
τ > 0 and p > 0. Then there exists the asymptotic distribution of gene family
sizes:

(qp,i)i≥1 = lim
n→∞

(
q
(n)
p,i

)
i≥1.

Sketch of proof: The idea of this proof is similar to the proof presented in our
previous paper [16]. It uses generating functions2. Thus, let fp,n(x) be a probabil-
2 Let S = (si)i∈I be a sequence of reals and I be a subset of non-negative integers. A

generating function for S is a function f defined by power series f(x) = i∈I six
i.

When S is a probability distribution then the generating function f is called proba-
bility generating function. See [3].

On Genome Evolution with Innovation 807

ity generating function for the distribution (q(n)
p,i)i≥1, i.e. fp,n(x) =

∑∞
i=1 q

(n)
p,i x

i.
We have to show that the limit function fp(x) = lim

n→∞fp,n(x) exists.

We start with the generating function for sequence E(n) =
(
E

(n)
i

)
i≥1. Let

gp,n(x) = Kϕ(n)(x)+τp
∑n−1

i=1 ϕ
(i)(x), where ϕ(x) = p+(1−p−ap)x+apx2 and

ϕ(i) is i-fold composition of ϕ with itself (with ϕ(0) being the identity function).
It follows from equation (2) and Theorem 4 in [16] that the generating function
for E(n) is hp,n(x) =

∑∞
i=1 E

(n)
i xi = gp,n(x) − gp,n(0). Notice, that hp,n(1) is

the number of families in the genome after n steps of the process. Thus we have
fp,n(x) = hp,n(x)/hp,n(1).

Next, we prove (using Lemma 1 and Lemma 2 in [16]) that for every |x| <
a−1, there exists the limit cp(x) = limn→∞(hp,n(1) − hp,n(x)), which is finite.
Moreover, for x ≥ 0 we have: cp(x) = 0 iff x = 1. Thus the limit function fp(x)
exists. �

It can be also proved, using Vitali’s Theorem, that fp is an analytic function
with radius of convergence a−1. Moreover, it satisfies the following functional
equation

fp(ϕ(x)) = fp(x) +
τp

cp(0)
(1− x). (4)

See a similar argument in the proof of Theorem 1 in [17]. It should be clear that
cp(0) = limn→∞ hp,n(1) is the asymptotic number of families in the genome.

It follows from the theory of analytic function (the identity property) that
function fp is the unique analytic function which satisfies (4) and the constraint
fp(0) = 0 (as well as fp(1) = 1). In this sense, the distribution

(
qp,i

)
i≥1 is com-

pletely characterized by (4). Unfortunately, it cannot be expresed by elementary
functions.

Now we can conclude the proof of Theorem 1. It follows from equation (4)
that

fp(ϕ(x)) − fp(x)
ϕ(x) − x

=
τp

cp(0)
1− x

ϕ(x)− x
=

τ

cp(0)
1

1− ax
.

Intuitively it should be clear that the left side of the above equation tends
to f ′(x), as p → 0+, because of limp→0+ ϕ(x) = x. Rigorously, it is explained
in the proof of Theorem 7 in [16] (see equation (30)). It can be also shown (see
a similar proof of Lemma 6 in [17]) that there exists the limit

lim
p→0+

cp(0) =
τ

C · a , (5)

where C = (− ln(1−a))−1. Thus, we get a differential equation f ′(x) = Ca/(1−
ax). Solving it, with constraint f(0) = 0, we obtain

f(x) = C · (− ln(1 − ax)) = C ·
∞∑

i=1

ai

i
xi.

This completes sketch of the proof of Theorem 1.

808 D. Wójtowicz and J. Tiuryn

4 Disjoint Union of DLI Models

It is well known that gene families evolve at different rates [11,5], and there is
a coherent behaviour of genes from one family, i.e. genes from the same family
have the same probabilities of duplication and loss. For example, families that
are responsible for life processes of an organism possibly do not show propensity
to high change over time. Thus it is natural to assume that we have different
groups of paralog families, each group evolving according to a DLI model with
individual parameters of gene duplication, loss and innovation.

Let M > 0 be a number of different groups of gene families in the above sense.
Thus we have a family of M DLI models with parameters (am, pm, τm)M

m=1,
where am and τm are duplication and innovation constants in the m-th group of
families, and pm is a probability of gene loss. We also assume that initially the
m-th group has Km one element gene families, for m = 1, . . . ,M . Without loss
of generality we may assume that pm = p, for m = 1, . . . ,M . Let us call this
model, an M -DLI model.

Let E(n)
m,i be the expected number of i-element familes in the m-th group

of paralog familes after n steps of the M -DLI evolution process. Thus, an ex-
pected number of i-element families after n steps of the process equals E(n)

i =∑M
m=1E

(n)
m,i and the probability of observing in the genome after n steps an

i-element family equals (compare it with equation (3)):

q
(n)
p,i =

∑M
m=1E

(n)
m,i∑∞

j=1
∑M

k=1 E
(n)
k,j

. (6)

It should be clear that the asymptotic size distribution of paralog families in
M -DLC model is a mixture of M logarithmic distributions with parameters am

(m = 1, 2, . . . ,M). We state it precisely in the following theorem.

Theorem 2. Let 0 < am < 1, τm > 0 and p > 0, for m = 1, . . . ,M . Then
for a sufficiently small value of p and a sufficiently large number of steps of the
evolution process, the size distribution of paralog families in M -DLI model tends
to the mixture of logarithmic distributions:

PM-DLI(i) ≈
M∑

m=1

αm · Cm
ai

m

i
i = 1, 2, 3, . . . ,

where Cm = (− ln(1−am))−1 and αm = τma−1
m C−1

m
M
k=1 τka−1

k
C−1

k

is an asymptotic fraction
of families in the m-th group among all families.

Sketch of proof: We transform equation (6) into q
(n)
p,i =

∑M
m=1 α

(n)
m,p · q(n)

m,p,i,

where α(n)
m,p =

∞
j=1 E

(n)
m,j

M
k=1

∞
j=1 E

(n)
k,j

and q
(n)
m,p,i =

E
(n)
m,i

∞
j=1 E

(n)
m,j

. We have already know,

from the analysis of DLI model, that limp→0+ limn→∞ q
(n)
m,p,i = Cm

ai
m

i . Thus, we

On Genome Evolution with Innovation 809

have to find αm = limp→0+ limn→∞ α
(n)
m,p. It follows from the proof of Propo-

sition 1 that αm,p = limn→∞ α
(n)
m,p = cm,p(0)

M
k=1 ck,p(0)

. Next using (5) we have
limp→0+ ck,p(0) = τm/(C · am). This completes sketch of the proof. �

5 Experimental Results

In order to compare the observed families of paralogous genes which occur in
species with the values predicted by our model we have examined five bacter-
ial genomes: Bacillus anthracis Ames, Burkholderia mallei ATCC:23344, Desul-
fovibrio vulgaris Hildenborough, Geobacter sulfurreducens PCA, Pseudomonas
putida KT2440. In addition to this we have also considered five genomes of yeast
species: Candida glabrata, Debaromyces hansenii, Klyveromyces lactis, Saccha-
romyces cerevisiae and Yarrowia lipolytica, whose genomes (with the exception
of S. cerevisiae) have been recently sequenced [1]. The bacterial paralogous fam-
ilies were taken from TIGR-CMR [13] web service3, while the yeast genomes
were taken from the CBI web site4.

As it was observed by many researchers [5,7,14] the distribution of large
families of paralogous genes in organisms is very uneven: large families may
span hundreds of classes, most of them empty. For this reason some researchers
[14,15] restrict an analysis of families to small classes (cluster size 2 through 6),
while others [5,7] group families into bins, each containing a certain prespeci-
fied minimal number of families. In our analysis we choose the latter method.
The observed data was fitted to a mixture of two logarithmic distributions
Plog(i) ∝ β

ai
1
i + (1 − β)ai

2
i and the parameters a1, a2 and β were choosen to

minimize the value of Pearson’s χ2–test. For each genome, before the χ2–test
was evaluated we grouped the expected paralog family frequencies into bins, each
containing at least 10 genes. For all analysed genomes, with the exception of S.
cerevisiae, P (χ2) for this model was at least 5%, i.e. no significant difference
between the observed and predicted values was detected. The values of parame-
ters a1, a2, β and the goodness-of-fit P (χ2) for bacterial and yeasts genomes are
presented in Tables 1 and 2, respectively.

Tables 1 and 2 can make the impression that distribution parameters for bac-
terial and yeasts genomes are grouped around different values. Unfortunately
this observation reveals an artifact due to the method of clustering paralogous
genes. We have experimented (data not shown) with another method of cluster-
ing (TribeMCL [2]) which in case of bacteria resulted in a different clustering for
which the parameters were similar to those for yeasts. This experiment clearly
indicates that the shape of the distribution of paralog families under study may
critically depend on the method of clustering. This calls for further investigation,
especially in the light of lack of ”golden standards” in this area.

3 http://www.tigr.org/tigr-scripts/CMR2/paralog info form.spl
4 http://cbi.labri.fr/Genolevures/raw/fam/family-20040327-byfamily.txt

810 D. Wójtowicz and J. Tiuryn

Table 1. Paralogous families in bacterial genomes [13] and the parameters of best-fit
2-DLI model

Genome max. fam. 2-DLI model
size a1 a2 β P (χ2)

Bacillus anthracis Ames 107 0.62 0.95 0.95 80 %

Burkholderia mallei 109 0.67 0.97 0.92 21%

Desulfovibrio vulgaris H. 89 0.63 0.98 0.98 50%

Geobacter sulfurreduncens 108 0.66 0.97 0.96 5%

Pseudomonas putida 110 0.66 0.95 0.89 21%

Table 2. Paralogous families in yeasts genomes [1] and the parameters of best-fit 2-DLI
model

Genome max. fam. 2-DLI model
size a1 a2 β P (χ2)

Candida glabrata 58 0.35 0.90 0.98 77%

Debaryomyces hansenii 54 0.49 0.94 0.97 5%

Kluyveromyces lactis 49 0.42 0.91 0.97 10%

Saccharomyces cerevisiae 57 0.43 0.93 0.98 2%

Yarrowia lipolytica 48 0.36 0.92 0.97 15%

6 Conclusions

It is really difficult to reach any biological conclusion concerning the shape of
size distribution of paralog families by merely fitting the data. Therefore we
propose a simple, but a very natural model of genome evolution, which includes
three types of events: gene duplication, loss and innovation. We show that the
observed family size distribution in the DLI model is close to the logarithmic
distribution. What is perhaps little unexpected is that this distribution does not
depend on the rate of innovation and only depends on relative rates of duplication
vs. loss. We present also a disjoint union of DLI models and we conclude that the
resulting distribution is a linear combination of the logarithmic distributions.

It is not the intension of our paper to suggest that only a mixture of logarith-
mic distributions can properly explain the observed data. Genome evolution is
a complicated stochastic process which involves many events in addition to the
ones considered in this paper. Thus, we do not claim that our model is the most
accurate description of this process. Nevertheless it explains well the observed
properties of the real data. It would be interesting to see how other evolutionary
events, when introduced into the model, affect the asymptotic distribution.

The model without the gene innvoation event but with an accumulated cha-
nge, the DLC model, has already been analysed in [17]. The model presented here
is more realistic. By introducing an innovation, we avoid here the undesirable
property of a shrinking or an infinite growth of the genome.

An interesting result of the presented paper is also the fact that knowing only
the size of a genome, one can predict the number of gene families in this genome.

On Genome Evolution with Innovation 811

References

1. B. Dujon et al., Genome evolution in yeasts. Nature 430, pp. 35-44, 2004.
2. A.J. Enright, S. Van Dongen, C.A. Ouzounis, An efficient algorithm for large-scale

detection of protein families. Nucleic Acids Research 30(7), pp. 1575-84, 2002.
3. W. Feller, An introduction to probability theory and its applications. John Wiley

and Sons, Inc. New York, London, 1961.
4. W.M. Fitch, Homology, a personal view on some of the problems. Trends in Ge-

netics, 16(5), pp. 227-321, 2000.
5. M.A. Huynen, E. van Nimwegen, The Frequency Distribution of Gene Family Size

in Complete Genomes. Molecular Biology Evolution 15(5), pp. 583–589, 1998.
6. K. Jordan, K.S. Makarova, J.L. Spouge, Y.I. Wolf, E.V. Koonin, Lineage-Specific

Gene Expansions in Bacterial and Archeal Genomes. Genome Research 11, pp. 555–
565, 2001.

7. G.P. Karev, Y.I. Wolf, A.Y. Rzhetsky, F.S. Berezovskaya, E.V. Koonin, Birth and
death of protein domains: A simple model of evolution explains power law behav-
ior., BMC Evolutionary Biology 2:18, 2002.

8. G.P. Karev, Y.I. Wolf, E.V. Koonin, Simple stochastic birth and death models of
genome evolution: was there enough time for us to evolve? Bioinformatics 19:15,
pp. 1889–1900, 2003.

9. M. Kimura, The Neutral Theory of Molecular Evolution. Cambridge University
Press, Cambridge, 1983.

10. Wen-Hsiung Li, Moclecular Evolution. Sinauer Associates, Inc., Publishers, Sun-
derland Massachusetts, 1997.

11. H. Luz, M. Vingron, Family specific rates of protein evolution. Bioinformatics
22(10), pp. 1166-1171, 2006.

12. S. Ohno, Evolution by Gene Duplication. Springer Verlag, Berlin, 1970.
13. J.D. Peterson, L.A. Umayam, T.M. Dickinson, E.K. Hickey, O. White The Com-

prehensive Microbial Resource. Nucleic Acids Research 29:1, pp. 123-125, 2001.
14. P.P. Slonimski, M.O. Mosse, P. Golik, A. Henaût, Y. Diaz, J.L. Risler, J.P. Comet,

J.C. Aude, A. Wozniak, E. Glemet, J.J. Codani, The first laws of genomics. Mi-
crobial and Comparative Genomics 3:46, 1998.

15. P.P. Slonimski, Comparision of complete genomes: Organization and evolution.
Proceedings of the Third Annual Conference on Computational Molecular Biology,
RECOMB’99 Stanislaw Ulam Memorial Lecture, ACM Press, 310, 1999.

16. J. Tiuryn, R. Rudnicki, D. Wójtowicz, A case study of genome evolution: from
continuous to discrete time model. In Fiala,J., Koubek,V. and Kratochv́ıl,J. (eds),
Proceedings of Mathematical Foundations of Computer Science 2004, LNCS 3153,
Springer, pp. 1–24, 2004.

17. J. Tiuryn, D. Wójtowicz, R. Rudnicki, A Model of Evolution of Small Paralog
Families in Genomes. (submited for publication), 2006.

18. I. Yanai, C.J. Camacho, C. DeLisi, Predictions of Gene Family Distributions in
Microbial Genomes: Evolution by Gene Duplication and Modification. Physical
Review Letters 85(12), pp. 2641–2644, 2000.

Author Index

Aichholzer, O. 86
Aleksandrov, L. 98
Allauzen, C. 110
Arrighi, P. 122
Arvind, V. 134

Barbosa, V.C. 670
Beigel, R. 146
Berstel, J. 157
Blanchet-Sadri, F. 167
Boyar, J. 179
Boyer, L. 190
Brandes, U. 202

Carayol, A. 214
Carpi, A. 226
Caucal, D. 214
Chen, J. 238
Cheng, Q. 250
Cherubini, A. 256
Cohen, J. 267
Constantinescu, S. 280
Cremet, V. 1

Dakota Blair, D. 167
Das, S. 765
Diekert, V. 292
Djidjev, H.N. 98
Dojer, N. 305
Domaratzki, M. 315
Dynia, M. 327

El Oraiby, W. 339
Elsässer, R. 351

Fanelli, A. 363
Flammini, M. 363
Fomin, F. 267
Fortnow, L. 375
Fraigniaud, P. 24

Gál, A. 387
Gargano, L. 399
Garillot, F. 1
Gasarch, W. 146

Gavoille, C. 38
Gawrychowski, P. 256
Geffert, V. 412
Geuvers, H. 39
Gfeller, B. 424
Glaßer, C. 436
Glenn, J. 146
Goncharov, S. 447
Grohe, M. 58
Gronemeier, A. 459
Gu, X. 471
Guo, H. 98

Hassin, R. 480
Heggernes, P. 267
Hemaspaandra, L.A. 528
Hirshfeld, Y. 492
Hliněný, P. 505
Hoefer, M. 517
Homan, C.M. 528
Huemer, C. 86

Ilcinkas, D. 24
Ilie, L. 280
Iwama, K. 540

Jonsson, P. 549
Jurdziński, T. 561

Kanj, I.A. 238
Kappes, S. 86
Karmakar, A. 765
Kik, M. 573
Kisielewicz, A. 256
Kĺıma, O. 584
Koiran, P. 596
Kostin, A.E. 608
Kozen, D. 73
Kratsch, D. 267
Kucherov, G. 267
Kuivinen, F. 622
Kurur, P.P. 134
Kutrib, M. 634
Kuty�lowski, J. 327

814 Author Index

Larose, B. 584
Lasota, S. 646
Le Gall, F. 658
Leão, R.S.C. 670
Lenglet, S. 1
Lerner, J. 202
Lewis, R.V. 167
Li, M. 84
Lifshits, Y. 681
Loeb, I. 39
Lohrey, M. 292, 681
Lopez-Valdes, M. 693
Lutz, J.H. 471

Maheshwari, A. 98
Malcher, A. 634
Malod, G. 704
Mavronicolas, M. 717
Melideo, G. 363
Meyer auf der Heide, F. 327
Michael, L. 717
Miller, A. 292
Mohri, M. 110
Monnot, J. 480
Morizumi, H. 540
Moscardelli, L. 363
Mossakowski, T. 447

Nandy, S.C. 765
Nguyen, L.A. 729
Nordh, G. 549
Nussbaum, D. 98

Odersky, M. 1
Ogihara, M. 375

Pagourtzis, A. 741
Papadopoulou, V. 717
Peeters, L. 424
Pelc, A. 24
Peralta, R. 179

Perifel, S. 596
Persiano, G. 753
Philippou, A. 717
Piochi, B. 256
Portier, N. 704
Poupet, V. 190

Rabinovich, A. 492
Rescigno, A.A. 399
Roy, S. 765
Rytter, W. 646

Sack, J. 98
Salomaa, K. 315
Savelli, A. 157
Schindelhauer, C. 327
Schmitt, D. 339
Schröder, L. 447
Segev, D. 480
Spakowski, H. 777
Speckmann, B. 86
Spirakis, P. 717

Tesson, P. 584
Theyssier, G. 190
Tiuryn, J. 801
Tóth, C.D. 86
Trahtman, A.N. 789
Travers, S. 436
Trifonov, V. 387
Tripathi, R. 777

Visconti, I. 753

Wójtowicz, D. 801
Weber, B. 424
Widmayer, P. 424

Xia, G. 238

Zachos, S. 741

	Frontmatter
	Invited Talks
	A Core Calculus for Scala Type Checking
	Tree Exploration with an Oracle
	Distributed Data Structures: A Survey on Informative Labeling Schemes
	From Deduction Graphs to Proof Nets: Boxes and Sharing in the Graphical Presentation of Deductions
	The Structure of Tractable Constraint Satisfaction Problems
	On the Representation of Kleene Algebras with Tests
	From Three Ideas in TCS to Three Applications in Bioinformatics

	Contributed Papers
	Decompositions, Partitions, and Coverings with Convex Polygons and Pseudo-triangles
	Approximate Shortest Path Queries on Weighted Polyhedral Surfaces
	A Unified Construction of the Glushkov, Follow, and Antimirov Automata
	Algebraic Characterizations of Unitary Linear Quantum Cellular Automata
	A Polynomial Time Nilpotence Test for Galois Groups and Related Results
	The Multiparty Communication Complexity of Exact-{\itshape T}: Improved Bounds and New Problems
	Crochemore Factorization of Sturmian and Other Infinite Words
	Equations on Partial Words
	Concrete Multiplicative Complexity of Symmetric Functions
	On the Complexity of Limit Sets of Cellular Automata Associated with Probability Measures
	Coloring Random 3-Colorable Graphs with Non-uniform Edge Probabilities
	The Kleene Equality for Graphs
	On the Repetition Threshold for Large Alphabets
	Improved Parameterized Upper Bounds for Vertex Cover
	On Comparing Sums of Square Roots of Small Integers
	A Combinatorial Approach to Collapsing Words
	Optimal Linear Arrangement of Interval Graphs
	The Lempel-Ziv Complexity of Fixed Points of Morphisms
	Partially Commutative Inverse Monoids
	Learning Bayesian Networks Does Not Have to Be NP-Hard
	Lower Bounds for the Transition Complexity of NFAs
	Smart Robot Teams Exploring Sparse Trees
	{\itshape k}-Sets of Convex Inclusion Chains of Planar Point Sets
	Toward the Eigenvalue Power Law
	Multicast Transmissions in Non-cooperative Networks with a Limited Number of Selfish Moves
	Very Sparse Leaf Languages
	On the Correlation Between Parity and Modular Polynomials
	Optimally Fast Data Gathering in Sensor Networks
	Magic Numbers in the State Hierarchy of Finite Automata
	Online Single Machine Batch Scheduling
	Machines that Can Output Empty Words
	Completeness of Global Evaluation Logic
	NOF-Multiparty Information Complexity Bounds for Pointer Jumping
	Dimension Characterizations of Complexity Classes
	Approximation Algorithms and Hardness Results for Labeled Connectivity Problems
	An Expressive Temporal Logic for Real Time
	On Matroid Representability and Minor Problems
	Non-cooperative Tree Creation
	Guarantees for the Success Frequency of an Algorithm for Finding Dodgson-Election Winners
	Reductions for Monotone Boolean Circuits
	Generalised Integer Programming Based on Logically Defined Relations
	Probabilistic Length-Reducing Automata
	Sorting Long Sequences in a Single Hop Radio Network
	Systems of Equations over Finite Semigroups and the \#CSP Dichotomy Conjecture
	Valiant's Model: From Exponential Sums to Exponential Products
	A Reachability Algorithm for General Petri Nets Based on Transition Invariants
	Approximability of Bounded Occurrence Max Ones
	Fast Iterative Arrays with Restricted Inter-cell Communication: Constructions and Decidability
	Faster Algorithm for Bisimulation Equivalence of Normed Context-Free Processes
	Quantum Weakly Nondeterministic Communication Complexity
	Minimal Chordal Sense of Direction and Circulant Graphs
	Querying and Embedding Compressed Texts
	Lempel-Ziv Dimension for Lempel-Ziv Compression
	Characterizing Valiant's Algebraic Complexity Classes
	The Price of Defense
	The Data Complexity of MDatalog in Basic Modal Logics
	The Complexity of Counting Functions with Easy Decision Version
	On Non-Interactive Zero-Knowledge Proofs of Knowledge in the Shared Random String Model
	Constrained Minimum Enclosing Circle with Center on a Query Line Segment
	Hierarchical Unambiguity
	An Efficient Algorithm Finds Noticeable Trends and Examples Concerning the \v{C}erny Conjecture
	On Genome Evolution with Innovation

	Backmatter

