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Abstract. In this paper we propose a new genetic programming based approach
for prototype generation in Pattern Recognition problems. Prototypes consist of
mathematical expressions and are encoded as derivation trees. The devised sys-
tem is able to cope with classification problems in which the number of prototypes
is not a priori known. The approach has been tested on several problems and the
results compared with those obtained by other genetic programming based ap-
proaches previously proposed.

1 Introduction

Several modern computational techniques have been introduced in the last years in order
to cope with classification problems [1,2,3]. Among others, evolutionary computation
(EC) techniques have been also employed. In this field, genetic algorithms [4,5] and
genetic programming [6,7] have mostly been used. The former approach encodes a set
of classification rules as a sequence of bit strings. In the latter approach instead, such
rules, or even classification functions, can be learned. The technique of Genetic Pro-
gramming (GP) was introduced by Koza [7] and has already been successfully used in
many different applications [8,9], demonstrating its ability to discovering underlying
data relationships and to representing them by expressions. Only recently, classification
problems have been faced by using GP. In [10], GP has been used to evolve equations
(encoded as derivation trees) involving simple arithmetic operators and feature vari-
ables. The method was tested on different type of data, including images. In [11], GP
has also been employed for image classification, adding exponential functions, con-
ditional functions and constants to the simple arithmetic operators. In both the above
quoted approaches, the data set is divided in a number c of clusters equal to the number
of predefined classes. Thus, these approaches do not take into account the existence of
subclasses within one or more of the classes in the analyzed data set.
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We present a GP based method for determining a set of prototypes describing the
data in a classification problem. In the devised approach, each prototype is representa-
tive of a cluster of samples in the training set, and consists of a mathematical expression
involving arithmetic operators and variables representing features. The devised method
is able to generate a variable number of expressions, allowing us to cope with those
classification problems in which single classes may contain not a priori identifiable
subclasses. Hence, a fixed number of expressions (prototypes) may not be able to effec-
tively classify all the data samples, since a single expression might be inadequate to ex-
press the characteristics of all the subclasses present in a class. The proposed approach,
instead, is able to automatically find the number of expressions needed to represent all
the possible subclasses present in the data set.

According to our method, the set of prototypes describing the classes makes up a
single individual of the evolving population. Each prototype is encoded as a derivation
tree, thus an individual is a list of trees, called multitree. Given an individual and a
sample, classification consists in attributing the sample to one of the classes (i.e. in
associating the sample to one of the prototypes). The recognition rate obtained on the
training set when using an individual is assigned as fitness value to that individual.
At any step of the evolution process, individuals are selected according to their fitness
value. At the end of the process, the best individual obtained, constitutes the set of
prototypes to be used for the considered application.

A preliminary version of this method was presented in [12], where prototypes con-
sisted of simple logical expressions.

The method presented here has been tested on three publicly available databases and
the classification results have been compared with those obtained by the preliminary
version of the method and with another GP based method presented in the
literature [10].

2 Description of the Approach

In the approach proposed here, a prototype representing a class or subclass consists of
a mathematical expression, namely an inequality, that may contain a variable number
of variables connected by the four arithmetic operators (+,-,*,/). Each variable xi, (i =
1, . . . , n) represents a particular feature. Note that an inequality characterizes a region
of the feature space delimited by an hypersurface. Given an expression E and a sample
represented by a feature vector x, we say that E matches the sample x if the values in
x satisfy the inequality E. Training the classifier is accomplished by the EC paradigm
described in Section 3 and provides a set of labeled expressions to be used as prototypes.
Different expressions may have the same label in case they represent subclasses of a
class.

Given a data set and a set of labeled expressions, the classification task is performed
in the following way: each sample of the data set is matched against the set of expres-
sions and assigned to one of them (i.e. to a class or subclass) or rejected. Different cases
may occur:



154 L. P. Cordella et al.

1. The sample is matched by just one expression: it is assigned to that expression.
2. The sample is matched by more than one expression with different number of vari-

ables: it is assigned to the expression with the smallest number of variables.
3. The sample is matched by more than one expression with the same number of

variables and different labels: the sample is rejected.
4. The sample is matched by no expression: the sample is rejected.

Hereinafter, this process will be referred to as assignment process, and the set of sam-
ples assigned to the same expression will be referred to as cluster.

3 Learning Classification Rules

As already said, the prototypes to be used for classification are given in terms of in-
equalities, thus they may be thought of as computer programs and can be generated by
adopting the GP paradigm. Our GP based system starts by randomly generating a pop-
ulation of p individuals. An individual is made by a set of prototypes each encoded as
a derivation tree, so that it is a multitree (i.e. a list of trees). The number of trees mak-
ing up an individual will be called length of the individual: in the initial population, it
ranges from 2 to Lmax. Afterwards, the fitness of the initial individuals is evaluated. In
order to generate a new population, first the best e individuals are selected and copied
in the new population so as to implement an elitist strategy. Then (p − e)/2 couples
of individuals are selected using the tournament method and manipulated by using two
genetic operators: crossover and mutation. The crossover operator is applied to each of
the selected couples, according to a chosen probability factor pc. Then, the mutation is
applied to the obtained individuals according to a probability factor pm. Finally, these
individuals are added to the new population. The process just described is repeated for
NG generations. In order to implement the above system the following steps must be
executed:

- definition of the structure to be evolved;
- choice of the fitness function;
- definition of the genetic operators.

In the following each of these steps is detailed.

3.1 Structure Definition

In order to generate syntactically correct expressions (i.e., prototypes), a nondetermin-
istic grammar is defined. A grammar G is a quadruple G = (T , N , S, P), where T and
N are disjoint finite alphabets. T is the terminal alphabet, whereas N is the non-
terminal alphabet. S, is the starting symbol and P is the set of production rules used
to define the strings belonging to the language. The grammar employed is given in
Table 1.

Each individual consists of a variable number of derivation trees. The root of every
tree is the symbol S that, according to the related production rule, can be replaced
only by the string “C”. The symbol C can be replaced by any mathematical expres-
sion obtained by recursively combining variables, representing features, and operators.
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Table 1. The context free grammar used for generating the expressions employed as prototypes.
In the right column, the probability of being chosen for each of the right side clause is shown.

Number Rule Probability
1 S −→ C 1.0
2 C −→ [E > V ] | [E < V ] equiprobable
3 E −→ PFD | P 0.4, 0.6
4 D −→ PFD | P | V 0.5, 0.25, 0.25
5 F −→ ∗ | + | / | − equiprobable
5 P −→ x0 | x1 | . . . | xN equiprobable
6 V −→ +0.XX | − 0.XX equiprobable
7 X −→ 0|1|2|3|4|5|6|7|8|9 equiprobable

Summarizing, each individual is a list of derivation trees whose leaves are the terminal
symbols of the grammar defined for constructing the set of inequalities. The set of in-
equalities making up an individual is obtained by visiting each derivation tree in depth
first order and copying into a string the symbols contained in the leaves. In such string,
each inequality derives from the corresponding tree in the list. To reduce the probability
of generating too long expressions (i.e. too deep trees) the action carried out by a pro-
duction rule is chosen on the basis of fixed probability values (shown in the last column
of Table 1). Moreover, an upper limit has been imposed on the total number of nodes
contained in an individual, i.e. the sum of nodes of each tree. Examples of individuals
are shown in Fig. 1.

The matching process is implemented by an automaton which accepts as input an
expression and a sample and returns as output the value true or false depending on the
fact that the sample matches or not the expression.

3.2 Training Phase and Fitness Function

The aim of the training phase is that of generating the prototypes. The system is trained
with a set containing Ntr samples. During training, the fitness of each individual in the
population has to be evaluated. This process implies the following steps:

1. The assignment of the training set samples to the expressions belonging to the indi-
vidual is performed. After this step, ni (ni ≥ 0) samples will have been assigned to
the i-th expression. The expressions for which ni > 0 will be referred to as valid,
whereas the ones for which ni = 0 will be ignored in the following steps.

2. Each valid expression is labeled with the label most widely represented in the cor-
responding cluster.

3. The recognition rate (on the training set) of the individual is evaluated and assigned
as fitness value to that individual.

In order to favor those individuals able to obtain good performances with a lesser num-
ber of expressions, the fitness of each individual is increased by k/Ne, where Ne is the
number of expressions in the individual and k is a constant.
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Fig. 1. An example of application of the crossover operator. The top figures (a and b)show a
couple of individuals involved as parents of the crossover operator. The bottom figures (c and d)
show the offspring obtained after the application of the operator. In this case case, t1 and t2 ha
been chosen respectively equal to 2 and 1.

3.3 Genetic Operators

The choice of encoding the individuals as lists of derivation trees (see Section 3.1)
allows us to implementing the genetic operators in a simple way.

The crossover operator is applied to two individuals I1 and I2 and yields two new
individuals by swapping parts of the lists of the initial individuals (see Figure 1). As-
suming that the lengths of I1 and I2 are respectively L1 and L2, the crossover is applied
in the following way: the first individual is split in two parts by randomly choosing an
integer t1 in the interval [1, L1], so generating two multitrees I

′

1 and I
′′

1 , respectively
of length t1 and L1 − t1. Analogously, by randomly choosing an integer t2 in the in-
terval [1, L2], two multitrees I

′

2 and I
′′

2 are obtained from I2. Two new individuals are
obtained: the first, by merging I

′

1 and I
′′

2 and the second by merging I
′

2 and I
′′

1 .
It is worth noting that the implemented crossover operator allows us to obtain indi-

viduals of variable length. Hence, during the evolution process, individuals made of a
variable number of prototypes can be evolved.

The mutation operator is independently applied to every tree of an individual I with
probability pm. More specifically, given a tree Ti, the mutation operator is applied by
randomly choosing a single nonterminal node in Ti and then activating the correspond-
ing production rule in order to substitute the subtree rooted under the chosen node.

4 Experimental Results

Three data sets have been used for training and testing the previously described ap-
proach. The sets are made of real data and are available at UCI site (http://www.ics.uci.
edu/∼mlearn/MLSummary.html) with the names IRIS, BUPA and Vehicle.

IRIS is made of 150 samples of iris flowers of three different classes, equally dis-
tributed in the dataset. Four features, namely sepal length, sepal width, petal length and
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petal width, are used for describing the samples. BUPA is made of 345 samples repre-
senting liver disorder using six features. Two classes are defined. The samples of the
data set Vehicle are feature vectors representing 3D vehicle images. The data set has
846 samples distributed in four classes: 18 features characterize each sample.

In order to use the grammar shown in Table 1 the feature values of the data sets taken
into account have been normalized in the range [−1.0, 1.0]. Given a not normalized
sample x = (x1, . . . , xN ), every feature xi is normalized using the formula: xi = (xi−
xi)/2σi where xi and σi, respectively represent the mean and the standard deviation of
the i-th feature computed over the whole data set.

Each dataset has been divided in two parts, a training set and a test set. These sets
have been randomly extracted from the data sets and are disjoint and statistically in-
dependent. The first one has been used during the training phase to evaluate, at each
generation, the fitness of the individuals in the population. The second one has been
used at the end of the evolution process to evaluate the performance of our method. In
particular, the recognition rate over the test set has been computed using for classifica-
tion the best individual generated during the training phase.

The values of the evolutionary parameters, used in all the performed experiments,
have been heuristically determined and are: Population size = 500; Tournament size =
6; Elithism size = 5; Crossover probability = 0.5; Mutation probability = 0.3; Number
of Generations = 300; Maximum number of nodes in an individual = 1000; maximum
length of an individual = 20. The value of the constant k (see Subsection 3.2) has been
set to 0.1.

In order to investigate the generalization power of our system, i.e. a measure of its
performance on new data, the recognition rates both on training and test sets have been
taken into account for the different considered data sets. In Figure 2 such recognition
rates, evaluated every 50 generations in a typical run, are displayed for BUPA and Ve-
hicle data sets. It can be seen that the recognition rate increases with the number of
generations both for the training set and for the test set. The best recognition rates occur
in both cases nearby generation 250 and then remain stationary.

The proposed approach has been compared with another GP based approach previ-
ously proposed in [10]. Furthermore, the results obtained by the preliminary version of
the method [12] are also shown for comparison. The substantial difference between the
new and the old version of the method consists in the form of the encoded expressions:
in [12] each expression contains a variable number of logical predicates connected by
Boolean operators. Each predicate represents an assertion establishing a condition on
the value of a particular feature of the samples. This implies that the hypersurfaces

Table 2. The recognition rates Rnew, Rold and RMuni obtained respectively by the method pre-
sented here, its preliminary version and the method presented in [10]

Data sets Rnew Rold RMuni

IRIS 99.6 99.4 98.67
BUPA 78.6 74.3 69.87
Vehicle 70.2 66.5 61.75
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Fig. 2. Typical runs for BUPA (top) and Vehicle (bottom) datasets

separating the regions of the feature space belonging to different classes can only be
hyperplanes parallel to the axes. In the new version of the method such hypersurfaces
are of polynomial type, thus enabling a more effective separation between classes.

In Table 2 the recognition rates achieved on the test set by the three methods are
shown. The results have been obtained by using the 10-fold cross validation procedure.
Since the GP approach is a stochastic algorithm, the recognition rates have been aver-
aged over 10 runs. Hence, 100 runs have been performed for each data set. Note that, in
[10], the number of prototypes is a priori fixed, while in our method it is automatically
found. The results show that the proposed method outperforms those used for compari-
son on all the data sets taken into account, confirming the validity of the approach.

5 Conclusions

A new GP based approach to prototype generation and classification has been proposed.
A prototype consists of a set of mathematical inequalities establishing conditions on
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feature values and thus describing classes of data samples. The method is able to auto-
matically find the number of clusters in the data, without forcing the system to find a
predefined number of clusters. This means that a class is neither necessarily represented
by one single prototype nor by a fixed number of prototypes. A remarkable feature of
our method is that the hypersurfaces separating the regions of the feature space belong-
ing to different classes are of polynomial type, thus enabling an effective separation
between classes. The results show that the proposed method outperforms those used for
comparison.
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