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Preface

This volume contains the papers presented at the International Workshop on
Intelligent Computing in Pattern Analysis/Synthesis (IWICPAS 2006), which
was organized as a satellite workshop of the 18th International Conference on
Pattern Recognition (ICPR 2006) in Hong Kong. This workshop brings together
researchers and engineers from the field of pattern analysis/synthesis around the
world. It is an international forum for identifying, encouraging and exchanging
new ideas on different topics of pattern analysis/synthesis as well as promot-
ing novel applications in an attempt to extend the frontiers of this fascinating
research field.

IWICPAS 2006 attracted a record number of 264 paper submissions from
20 different countries. Out of these, 51 papers were accepted by the Program
Committee for publication in this volume. The papers in this volume cover topics
including: object detection, tracking and recognition, pattern representation and
modeling, visual pattern modeling, image processing, compression and coding
and texture analysis/synthesis.

The organization of IWICPAS 2006 benefited from the collaboration of many
individuals. Foremost, we express our appreciation to the Program Committee
members and the additional reviewers who provided thorough and timely re-
views. We thank Xuelong Li for his technical assistance with publication of a
special issue of the International Journal of Computer Mathematics (IJCM, Tay-
lor & Francis). Finally, we thank the members of the IWICPAS 2006 Executive
Committee for all their efforts in making IWICPAS 2006 a successful workshop.

It would have been impossible to organize the workshop without the financial
support of the National Natural Science Foundation of China. In addition, the
technical support of Xi’an Jiaotong University is gratefully acknowledged.

August 2006 Ruwei Dai
Workshop Chair, IWICPAS 2006

Nanning Zheng
Program Chair, IWICPAS 2006

Xiaoyi Jiang
Program Co-chair, IWICPAS 2006



Organization

IWICPAS 2006 was organized by the Institute of Artificial Intelligence and Ro-
botics, Xi’an Jiaotong University, China.

Executive Committee

Workshop Chair: Ruwei Dai (Institute of Automation, Academia
Sinica, China)

Program Chair: Nanning Zheng (Xi’an Jiaotong University,
China)

Program Co-chair: Xiaoyi Jiang (University of Münster, Germany)
Organizing Chairs: Yuanyan Tang (Hong Kong Baptist University,

Hong Kong, China)
Yuehu Liu (Xi’an Jiaotong University,

China)
Workshop Secretariat: Xuguang Lan (Xi’an Jiaotong University,

China)
Peilin Jiang (Xi’an Jiaotong University, China)

Program Committee

Narendra Ahuja (USA)
Emin Anarim (Turkey)
Csaba Beleznai (Austria)
Bir Bhanu (USA)
Thomas Breuel (Germany)
Liming Chen (France)
Yung-Fu Chen (Taiwan, China)
Dmitry Chetverikov (Hungary)
Yiuming Cheung (Hong Kong, China)
Da-Chuan Cheng (Germany)
Michal Haindl (Czech Republic)
A.Ben Hamaz (Canada)
Bernd Heisele (USA)
Zhanyi Hu (China)
GuangBin Huang (Singapore)
Xuelong Li (Hong Kong, China)

WenNung Lie (Taiwan, China)
Zhe-Ming Lu (Germany)
Jussi Parkkinen (Finland)
Nicolai Petkov (The Netherlands)
Tomaso Poggio (USA)
Michael Richter (Germany)
Yuanchun Shi (China)
Tieniu Tan (China)
Massimo Tistarelli (Italy)
Klaus Toennies (Germany)
Emanuele Trucco (UK)
Huub van de Wetering

(The Netherlands)
Feiyue Wang (USA)
S.Y. Yuen Kelvin (Hong Kong, China)



VIII Organization

Additional Referees

Himanshu Arora (USA)
Alexia Briassouli (USA)
Sin-Kuo Chai (Taiwan, China)
Chi Kin Chow (Hong Kong, China)
Markus Clabian (Austria)
Shaoyi Du (China)
Chunyu Gao (USA)
Bernard Ghanem (USA)
Arto Kaarna (Finland)
Lasse Lensu (Finland)

Jianyi Liu (China)
Kai Rothaus (Germany)
Dacheng Tao (UK)
Sinisa Todorovic (USA)
F.Tushabe (Uganda)
Hongcheng Wang (USA)
Sooyeong Yi (USA)
Tianli Yu (USA)
Haotian Wu (Hong Kong, China)
Hong Zeng (Hong Kong, China)



Table of Contents

Object Detection, Tracking and Recognition

Robust Tracking with and Beyond Visible Spectrum: A Four-Layer
Data Fusion Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Jianru Xue, Nanning Zheng

Scale Space Based Grammar for Hand Detection . . . . . . . . . . . . . . . . . . . . . . 17
Jan Prokaj, Niels da Vitoria Lobo

Combined Classifiers for Action Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Arash Mokhber, Catherine Achard, Maurice Milgram, Xingtai Qu

Adaptive Sparse Vector Tracking Via Online Bayesian Learning . . . . . . . . . 35
Yun Lei, Xiaoqing Ding, Shengjin Wang

Iterative Division and Correlograms for Detection and Tracking of
Moving Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Rafik Bourezak, Guillaume-Alexandre Bilodeau

Human Pose Estimation from Polluted Silhouettes Using Sub-manifold
Voting Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Chunfeng Shen, Xueyin Lin, Yuanchun Shi

Kernel Modified Quadratic Discriminant Function for Facial
Expression Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Duan-Duan Yang, Lian-Wen Jin, Jun-Xun Yin, Li-Xin Zhen,
Jian-Cheng Huang

3D Motion from Image Derivatives Using the Least Trimmed Square
Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Fadi Dornaika, Angel D. Sappa

Motion and Gray Based Automatic Road Segment Method MGARS
in Urban Traffic Surveillance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Hong Liu, Jintao Li, Yueliang Qian, Shouxun Lin, Qun Liu

A Statistically Selected Part-Based Probabilistic Model for Object
Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

Zhipeng Zhao, Ahmed Elgammal

Approximate Vehicle Waiting Time Estimation Using Adaptive
Video-Based Vehicle Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

Li Li, Fei-Yue Wang



X Table of Contents

Mouth Region Localization Method Based on Gaussian Mixture
Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

Kenichi Kumatani, Rainer Stiefelhagen

Traffic Video Segmentation Using Adaptive-K Gaussian Mixture
Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

Rui Tan, Hong Huo, Jin Qian, Tao Fang

EM-in-M: Analyze and Synthesize Emotion in Motion . . . . . . . . . . . . . . . . . 135
Yuichi Kobayashi, Jun Ohya

Pattern Representation and Modeling

Discriminant Transform Based on Scatter Difference Criterion in
Hidden Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

Cai-kou Chen, Jing-yu Yang

Looking for Prototypes by Genetic Programming . . . . . . . . . . . . . . . . . . . . . 152
L.P. Cordella, C. De Stefano, F. Fontanella, A. Marcelli

Identifying Single Good Clusters in Data Sets . . . . . . . . . . . . . . . . . . . . . . . . 160
Frank Klawonn

A New Simplified Gravitational Clustering Method for Multi-prototype
Learning Based on Minimum Classification Error Training . . . . . . . . . . . . . 168

Teng Long, Lian-Wen Jin

Speaker Identification and Verification Using Support Vector Machines
and Sparse Kernel Logistic Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
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Robust Tracking with and Beyond Visible
Spectrum: A Four-Layer Data Fusion Framework

Jianru Xue and Nanning Zheng

Institute of Artificial Intelligence and Robotics
Xi’an Jiaotong University 710049

Xi’an, Shaanxi, China
{jrxue, nnzheng}@aiar.xjtu.edu.cn

Abstract. Developing robust visual tracking algorithms for real-world
applications is still a major challenge today. In this paper,we focus on
robust object tracking with multiple spectrum imaging sensors. We pro-
pose a four-layer probabilistic fusion framework for visual tracking with
and beyond visible spectrum imaging sensors. The framework consists
of four different layers of a bottom-up fusion process. These four layers
are defined as: visual cues layer fusing visual modalities via an adap-
tive fusion strategy, models layer fusing prior motion information via
interactive multi-model method(IMM), trackers layer fusing results from
multiple trackers via adaptive tracking mode switching, and sensors layer
fusing multiple sensors in a distributed way. It requires only state distri-
butions in the input and output of each layer to ensure consistency of so
many visual modules within the framework. Furthermore, the proposed
framework is general and allows augmenting and pruning of fusing layers
according to visual environment at hand. We test the proposed frame-
work in various complex scenarios where a single sensor based tracker
may fail, and obtain satisfying tracking results.

1 Introduction

Developing robust object tracking algorithms for real world applications remains
a major challenge today and will continue to be one in the near future. In recent
years, motivated by the ongoing cognitive process used by humans to integrate
data continually from their senses to make inference about the external world,
data fusion involves combining information from multiple visible spectrum to
achieve inferences not possible using a single video camera. Researchers try to
build robust object tracking systems with and beyond visible spectrum imaging
sensors by using data fusion techniques, data fusion for tracking in computer
vision has just become a fertile area for growth in both research analysis and
experimentation and includes both civilian and military applications[1,2,3].

Comparing with that most of existing object tracking systems designed for
day and night vision in visible infrared- and thermal-spectrum are built upon
fundamental building blocks, data fusion for visual tracking is a still a hot re-
search topic at its early stage, it suffers from generality and robustness in real
system design. One feasible explanation maybe that data fusion encompasses

N. Zheng, X. Jiang, and X. Lan (Eds.): IWICPAS 2006, LNCS 4153, pp. 1–16, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



2 J. Xue and N. Zheng

many disciplines, including infrared, far infrared, millimeter wave, microwave,
radar, synthetic aperture radar, and electro-optical sensors as well as the very
dynamic topics of image processing, computer vision and pattern recognition.
Within this context, integration of sensor-dependent tracking algorithm is of
increasing importance as progress on the individual tracking modules starts
approaching performance ceilings. Combining different visual tracking modules
requires a common framework which ensures consistency. Only when this frame-
work is available, could it be possible to organize multiple tracking algorithms
and search heuristics into a robust tracking system.

We propose a four-layer probabilistic fusion framework for visual tracking
with and beyond visible spectrum image sensors. To make a real data fusing
tracking system easy to implement, we divide a bottom-up fusion procedure
into four different layers with their corresponding fusion algorithms. Layer 1 is
the visual cues fusion layer which fuses multiple visual modalities via adaptive
fusion strategies. Layer 2 is the models fusion layer which fuses prior motion
information via interactive multiple models(IMM)[4]. Layer 3 is the trackers
fusion layer whcih fuses results from multiple trackers via adaptive tracking gate
adjusting. Layer 4 is the sensors fusion layer which fuses multiple sensors in a
distributed way. This framework can be depicted as Fig. 1.

Fig. 1. The four-layer data fusion framework for object tracking

To ensure consistency among these four sequential fusion layers, we define
state distributions for input and output of each layer. Sequentially for each input
image, each layer provides a probability distribution function(PDF)estimate rep-
resentation of the tracked object state with different state space. One complete
data fusion procedure thus consists of propagation PDF through four stages in
correspondence with the four layers defined above. The idea of propagating PDF
can find its root in the sequential Monte Carlo techniques framework[5,6]. One
important advantage of the sequential Monte Carlo framework is that it allows
the information from different measurement sources to be fused in a principled
manner. Although this fact has been acknowledged before, it has not been fully
exploited within a visual tracking context, where a lot of cues are available to
increase the reliability of the tracking algorithm. Data fusion with particle filters
has been mostly confined visual cues[7,8]. Another similar idea can be find in
[9], it consider combining tracking algorithms in a probabilistic framework, and
allows the combinations of any set of sperate tracking algorithms which output
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either an explicit PDF, or a weighted sample-set. Our work extends this idea
and makes it possible to propagate a PDF through all four layers of the fusion
process.

There are three contributions in this paper. First, we propose a probabilis-
tic four-layer data fusion framework for visual tracking with and beyond visible
spectrum image sensors.Second, we propose a novel adaptive fusion strategy in
visual cues fusion layers. At each time instant, the strategy switch to and fro be-
tween product fusion rule and weighted sum fusion rule according to the defined
reliability of each visual cue. Third, we define a pseudo measurement and adopt
it into the IMM in model fusion layers. The pseudo measurement is defined as
the fusing result of measurements provided by mean shift procedure [10]which
are initialized with predictions from multiple motion models. The fusing coeffi-
cient of each model in IMM is given by two likelihood functions: an image-based
likelihood and a motion-based association probability.

The rest of the paper is organized as followings. We start by defining the
proposed framework in Sect. 2, then we present four fusion layers from Sect. 3
to Sect. 5in details. Finally, the implementation issues and experiment results
are given in Sect. 6 and we draw conclusions in Sect. 7.

2 Framework Overview

A typical tracking algorithm consists of two major components. One is target
representation and localization,the other is filtering and data association. The
former is a bottom-up process which try to cope with the changes in the appear-
ance by exploring and exploiting every visual uniqueness of the target. The later
is a top-down process dealing with the dynamics of the tracked object, learning
of scene priors, and evaluation of different hypothesizes. Tracking algorithms be-
gin with an a priori estimate of an object’s state and update the estimated state
to the time of new observation. Similarly, data fusion process for robust visual
tracking may be partitioned into four layers: (1) visual cues fusion, (2) models
fusion, (3)trackers fusion, and (4)sensors fusion.

Visual cues fusion layer tackles the problem of target representation. It sorts
or correlates observations from multiple filters (within the state space defined
by a single sensor) or multiple sensors into groups, with each group of repre-
senting data related to a single distinct attribute of the target. In the absence
of measurement-origin uncertainty, target tracking faces two interrelated main
challenges: target motion uncertainty and nonlinearity. Multi-model methods[4]
have been generally considered the mainstream approach to maneuvering tar-
get tracking under motion (model)uncertainty. Models fusion layer uses multiple
motion models simultaneously in order to approximate the dynamics of the tar-
get, these models are fused by adopting multiple-model methods(MM).The final
two are trackers fusion layer and sensors fusion layers. Both of them aim to in-
crease the robustness of the system. Here we define robustness as the ability of
the system to track accurately and precisely during or after visual circumstance
that are less ideal. This four-layer structure provides a basic framework for data
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fusion for visual tracking. It can act as a general guideline in designing data
fusion for visual tracking system.

Obviously, the design of data fusion system for visual tracking begins with an
inventory of the tracking algorithms that are available for tracking a particular
target. The raw material for each fusion layers are tracking algorithms and visual
search heuristics. Given a set of visual searching and tracking algorithm, we have
to distribute each of them with careful consideration to four layers according to
their roles in tracking. To ensure consistency among these sequential four fusion
layers, we use a weighted sample set[5]to represent the PDF of the input and
output of each layer. Mapping functions are defined for transformations between
two state space with different dimensions.

We present in Fig. 2 a typical data fusion for visual tracking system which
are with inputs from a CCD Camera, a visible infrared and a thermal-spectrum
sensors. For easy to implement, we just consider layer 1-3 within the channel of a
single sensor. Layer 4 finally output the final fusion result by the input estimate
of these three sensors. In the following sections (Sect. 3 to Sect. 5, more details
of each layers are presented.

Fig. 2. An overview of the fusion process of a typical tracking system with multiple
imaging sensors

3 Layer 1: Visual Cues Fusion

Target representation including geometry , motion, appearance, etc., character-
izes the target in a state space either explicitly or implicitly. Since no single cue
will be robust and general enough to deal with a wide variety of environmen-
tal conditions, their combination promises to increase robustness and generality.
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Using multiple cues simultaneously allows not only to use complementary and re-
dundant information at all times but also allows to detect failures more robustly
and thus enabling recovery.

Overall system performance may be improved in two main ways, either by
enhancing each individual cue, or by improving the scheme for integrating the
information from the different modalities. This leads to two main schemes of
fusing the output of multiple cues: voting and probabilistic approach. In the first
scheme, all visual cues contribute simultaneously to the overall results and none
of the cue has an outstanding relevance compared to the others. That is, each
cue makes an independent decision before these decisions are combined using a
weighted sum. Robustness and generality is a major contribution weighted sum
rule, also Jacobs, R.A.[11] convincingly argue for the need for adaptive multi-
cue integration and support for their claims with psychophysical experiment.
Without ambiguity, we state voting scheme as weighted sum rule since it can be
depicted as a mixture distribution density of the form as formula (1).

P (y1, · · ·yn|x) =
n∑

i=1

αiP (yi|x) (1)

where yi denotes the ith visual cues, x denotes the target state,αi is the weight
of the ith visual cue.

Probabilistic methods take more care in designing the model of each so that
the different cues combine in the desired manner. However, therein also lies
their strength since it forces the user to be explicit in terms of designing the
model and specifying what parameters are used and what assumptions are made.
In real applications, integrating visual cues with probabilistic methods often
ignores correlation among visual cues, and assumes that each visual cue works
independent. With this independence assumption, the probabilistic visual cues
integration can be stated as product rule, and can be depicted as formula (2).

P (y1, · · ·yn|x) =
n∏

i=1

P (yi|x) (2)

Even the independence assumption is violated sometimes, it still achieves better
tracking performance comparing with that using a single visual cue.

Product rule and weighted sum rule have their own advantages and disad-
vantages. The product rule has a wide application because of its optimal under
the independence assumption. However, it is sensitive to the noise, for example,
when the tracked target approaches a similar object, failure occurs when product
rule is used. On the other hand, weighted sum rule will not amplify the noise
contained in the visual cues, but it cannot increase the belief of the estimate, and
cannot be used for a long period. Fig. 3 shows the advantages and disadvantages
of the product rule.

We found that weighted sum rule and product rule can be complementary to
each other especially when occlusion occurs during tracking. This finding forms
the basis of our adaptive fusion strategy: when all cues used are reliable, fusion
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Fig. 3. The left:two dashed curves shows the PDF of the two cues, and the solid-line
curve shows the resulted PDF by the product rule. The middle: an occlusion occurs
between two similar objects. The right: comparing performances of product rule and
weighted sum rule in dealing with occlusion problem. The resulted horizontal direction
marginal densities of the tracked object are shown when one applies these two rules in
fusing edge cue and color cue.

with product rule can increase the belief of the estimate, when one visual cue
degenerates, fusion scheme should switch to weighted sum rule. The uncertainty
of the state estimated by the cue can be used to determine whether this cue is
degeneration or not. We denote Δi as the uncertainty of the ith cues used in
fusion, it can be computed as formula (3).

Δi = ‖Cov(Ci)‖F = (
dim(x)∑
m=1

dim(x)∑
n=1

Cov(Ci)2m,n)1/2 (3)

where Cov(Ci) is the covariance matrix of the weighted sample set of the ith
cue. ‖ · ‖F denote the Frobenius norm. We define the weighted sample set of the
ith cue as {x(n), ωn}Mn=1. Ci means the ith cue,M is the number of sample, and
ωn = p(yi|x(n), Ci) is weight of the ith cue by computing the defined likelihood
function. The Cov(Ci) is defined in formula (4).

Cov(Ci) = E[(x−mi) · (x−mi)T |Ci] =
M∑

n=1

ωn · (x(n)−mi) · (x(n)−mi)T (4)

where mi is the mean of the sample set of the ith cue. that is mi =
∑M

n=1 ωn ·x(n)

We define a threshold ti for each cue to determine whether it is degenerated.
The reliability of each cue is defined as ri = Δ−1

i . Fig. 4 shows an example of
the adaptive fusion strategy for two cues. More specific, this strategy employs
particle filtering technique, estimating second order moment of the weighted
sample set and computing its Frobenius norm to denote how cues are reliable,
and then switch between the product rule and weighted sum rule adaptively.
The weight αi in (1) is computed as formula (5)

αi = Δ−1
i /

h∑
j=1

Δ−1
j (5)
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Fig. 4. Adaptive fusion strategy for two cues fusion

4 Layer 2: Models Fusion

A principled choice of dynamics of a tracking system is essential for good results.
However, video targets are often highly maneuvering targets, which is the reason
that leads to awful track with only one fixed dynamic model. Nowadays, con-
siderable research has been undertaken in the field of hybrid system estimation
theory [12] in radar tracking literature. That means several dynamic models can
be used simultaneously to characterize motion of agile targets. In models fusion
layer, we employ IMM (interacting multiple model) method, one of suboptimal
filtering techniques, along with a pseudo measurement to fuse multiple mod-
els. IMM has been proven to be one of the best compromises between optimal
filtering and computational complexity [12]in radar tracking literature.

We introduce a so-called Pseudo Measurement into multiple-model tracking
framework. The pseudo measurement is obtained by combining image based likeli-
hood function and motion based likelihood function together. Fig. 5 demonstrates
the structure of the Pseudo Measurement based MM Filtering Framework.

Usually, n(n ≥ 1) measurements from several sources are involved in estimating
the state of the target. Let {zi(k)}m(k)

i=1 denote m(k) measurements at time k. The
pseudo measurement z̄(k) we defined as formula (6) is used to drive IMM filter.

z̄(k) =
m(k)∑
i=1

ωi(k) · zi(k) (6)

ωi(k) =
pi(k)∑
i pi(k)

Here, m(k) is the number of measurement at time k. And ωi(k) is the weighting
factor determined by the likelihood pi of each candidate measurement belonging
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Fig. 5. Pseudo Measurement based MM Filtering Framework

to the real target. (6) indicates that fused pseudo measurement is more accurate
than any individual measurement.

When similar targets approach close, it’s reasonable that motion information
is prior to appearance information for tracking system due to easily confusing the
localization of target. So we try to employ the prediction of pseudo measurement
to emphasize the motion information from multiple motion models. Let Mj(k)
be the jth model at time k, then the model probability conditioned on history
measurements is

p(Mj(k)|Zk−1) =
n∑

i=1

p(Mj(k)|Mi(k − 1), Zk−1) · p(Mi(k − 1)|Zk−1) (7)

Where, Zk−1 is history measurement up to time k−1. p(Mj(k)|Mi(k−1), Zk−1)
indicates the model transition probability which is preset and p(Mi(k−1)|Zk−1)
means the previous model probability conditioned on history measurements.
For each model, each corresponding filter (such as standard Kalman filter,or
Particle filter) can calculate a measurement prediction, denoted by Ẑj(k). Then
we achieve the pseudo measurement prediction by

ẑ(k) =
n∑

j=1

p(Mj(k)|Zk−1) · ẑj(k) (8)

This pseudo measurement prediction is crucial in the case of targets’ occlusion.
Further, a straightforward likelihood function is built for pi in (9) using ap-

pearance information as well as motion information.

pi = (Lai)α · (Lmi)β (9)

Where, Lai and Lmi denotes image-based likelihood and motion-based likeli-
hood, respectively. α and β are the weights implying the reliabilities of image-
based and motion-based information respectively, satisfying 0 ≤ α, β ≤ 1. (9)
indicates the likelihood pi is more rigorous after considering both points of view
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in tracking literature: target representation and filtering. In our experiments, we
fix α and β for simpleness in spite of their significance for adaptiveness.

There are many choices of the image-based likelihood Lai, such as image based
template matching function, feature based template matching function and even
statistics based likelihood function. When occlusion occurs, contribution of ap-
pearance information of target fades out while the motion information become
an important role in the tracker. We assume that the measurement innovation,
which is obtained via the pseudo measurement prediction, obeys Gaussian dis-
tribution. Similar to IMM’s mode likelihood definition[4], we define Lmi as

Lmi =
1√

2π|Si|
exp
[
− (zi − ẑ)T · S−1

i · (zi − ẑ)
2

]
(10)

where ẑ is the predicted pseudo measurement, Si is the innovation covariance
which is calculated with measurement covariance Ri in a standard Kalman filter.
The motion-based likelihood function Lmi indicates that the pseudo measure-
ment is biased to motion prediction, controlled by the parameter α and β.

The detailed steps of pseudo measurement based MM filtering algorithm for
models fusion are present in Table 1. Some procedures can be achieved from
IMM algorithm (seeing [4]for details).

5 Layer 3-4: Trackers Fusion and Sensors Fusion

This section presents the algorithm we choose for trackers fusion layer and sen-
sors fusion layer.

Trackers fusion layer. the observation of object’s appearance in image will
vary when it is approaching near to the camera or vice versa. When a target is
far away from the camera system, it appears as light spot in the image. When it
comes near, the size of the spot becomes bigger and bigger, eventually, its shape
feature becomes strong, and finally, texture and geometry of its surface become
clear. This causes much difficulties in tracking system using pin-hole camera
system. Here we adopt an adaptive window algorithm in [13] to determine the
search region. According to the size of the search region, we define four target
appearance mode: (1)point target, (2)target with weak-shape, (3) target with
salience shape, (4) big target. In each mode, we select a set of specified tracking
algorithm for robust tracking. For example, In point target mode, only intensity
information is available, only the intensity-based tracker can be used. When the
target appears with weak-shape, both intensity-based tracker and correlation-
based tracker can be used. With more information coming, more types of tracker
are available. In order to make the tracker switch smoothly between different
modes, a simple weighted sum fusion rule is adopted.

Sensors fusion layer this framework allows many choices of multiple sen-
sors fusion scheme. We choose a distributes multiple sensors fusion scheme since
we have defined the first three fusing layer within a single sensor, so we should
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Table 1. Detailed steps of pseudo measurement based MM filtering in one circle

1. Calculate the mixing probabilities: μk−1|k−1(i, j) = p(i,j)·μk−1(i)

i p(i,j)·μk−1(i)

2. Redo the filters’ initialization

x̂
(j),0
k−1|k−1 = i x̂

(i)
k−1|k−1μk−1|k−1(i, j)

νk−1(i, j) = x̂
(i)
k−1|k−1 − x̂

(j),0
k−1|k−1

P
(j),0
k−1|k−1 = i μk−1|k−1(i, j) · P

(i)
k−1|k−1 + νk−1(i, j) · νT

k−1(i, j)

3. Filters’ prediction: ẑj = Hj · x̄
(j)
k|k−1 = Hj · Fj · x̂

(j),0
k−1|k−1

4. Calculate pseudo measurement prediction ẑ(k) in (8);
5. Mean shift procedure from ẑj for player localization zj and SSD for its
uncertainty Rj ;
6. Get the appearance likelihood Lai via certain localization method;
7. Obtain the motion based likelihood Lmi by (10);
8. Calculate measurement likelihood pi in (9);
9. Combine pseudo measurement z̄ via (6);
10. All filters run as standard Kalman filter;
11. Update model likelihood and probabilities

Λ
(j)
k = N Z̄ − h(x̂(j),0

k|k−1); 0, S
(j)
k ;

η
(j)
k = Λ

(j)
k i p(i, j) · μ

(i)
k−1; μ

(j)
k =

η
(j)
k

i η
(i)
k12. Estimate and covariance combination

x̂k|k = i x̂
(i)
k|kμ

(i)
k ; Pk|k = i μ

(i)
k P

(i)
k|k + [x̂(i)

k|k − x̂k|k] · [x̂(i)
k|k − x̂k|k]T

pay more attention on fusing decisions from these sensors. Distributed scheme
of multi-sensor fusion has a mature theory framework. Since the limitation of
page space, please see [14,15] for detail information on distributed scheme of
multi-sensor fusion.

6 Implementation Issues and Experiment Results

In this section, we discuss some implementation issues of the system, and some
experiment results are also presented. We test the performance of each layer
with both visible video sequence and infrared video sequence containing sev-
eral challenging situations. Since the first three layers of the four-layer fusion
framework are performed within a single sensor channel, so only visible video
or infrared video are used in the experiments of these three layers. It should be
noted experiments in this section just deal with general object tracking without
explicit prior knowledge about its type, so no model-based features are involves
in visual cues fusion layers.
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6.1 Visual Cues Fusion Layer

Two-hand tracking. We test our visual cues fusion algorithm with a video
sequence containing two switching hands. We select the occluded hand as the
target. Two visual cues are fused, one is color cue and the other is the edge cues.
Since particle filer is applied, the likelihood for each cue should be defined. In
this experiment, we adopt the similar likelihood function in[16] for color cue.
and define a Hausdorff distance-based likelihood in formula (11) for edge cue.

p(y|x) = p0 + ks exp−HD2(M,P (x))/2σ2
(11)

where HD denotes Hausdorff distance, and Mt is the edge-template,P (x) is edge
set the candidate x, p0 = 0.1 is constant to make the likelihood bigger than zero
even in the worst case.

Fig. 6 shows some key frames from the tracking result when two hands are
switching. Fig. 7 shows the Frobenius norm value of two cues covariance when
using three different fusion rules. Experiment results show that adaptive strategy
in visual cues fusion layer increases the compactness of the weighted sample
efficiently, which also corresponds to the accuracy and robustness of the tracker,
comparing with weighted sum rule and product rule.

Fig. 6. Tracking results of visual cues fusion layer. The tracked hand position estimated
is marked with a red box attached with particles of each cues. The top row displays
tracking result of the product rule. The middle row shows the result of the weighted
sum rule. And the result of our method, adaptive strategy, is put in the bottom row,
the rule used is shown at the left-bottom of each frame.

6.2 Models Fusion Layer

Tracking football player. We test our algorithm with the video sequence
”football.avi”, compared with other two common algorithms (one is mean shift
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Fig. 7. The Frobenius norm of each cues at each frame,dashed-line curve denotes the
color cue, and solid-line curve denotes the edge cue. The left figure shows the results
of product rule. The middle one shows the results of the weighted sum rule, and the
right shows the results of the adaptive strategy.

procedure only, the other is mean shift with CV model(constant velocity motion
model)based Kalman filtering) in several phases. In video ”football.avi”, a special
target with agile motion is selected to be tracked.

Fig. 8presents estimated position marked with a red cross , only frames
6\10\27\28\29 are shown. Obviously, mean shift method failed when two team-
mates are very close to each other from frame 6 to frame 10, because mean shift
can’t distinguish them well only by player’s appearance. From frame 27 to frame
29 mean shift + Kalman method also failed since the player’s position predicted
in Kalman filter dropped into the region of another similar player. However, our
approach is such a robust tracking method for player tracking that it can succeed
in many hard cases. Secondly, the left figure in Fig.9 shows the history of the
motion model probabilities for the player selected by our algorithm. Obviously,
the motion model probability is not as stable as that in radar literature because
the mean shift procedure is not stable for player localization. Thirdly, we redo
our method only under the modification of parameter γ, comparing their square
root position error with the ground truth marked by hand (the right figure in
Fig.9). This experimental result has proven that the image based likelihood did
help us to improve the player tracking.

6.3 Trackers Fusion Layer

This section presents experiment results of testing the trackers fusion layer. We
choose a peak-based tracker and a correlation-based tracker to fuse in this layer,
algorithms in this layer are tested with an infrared video. The test video contains
challenging situations that target approaching to and leaving the camera. Fig. 10
presents some tracking results. Experiment result shows that a single tracker
cannot track the boat reliably through the test video, while the fused tracker
can. It also shows that fusion of multiple tracker increases not only the reliability
of tracking, but also its accuracy comparing with using a single tracker.

6.4 System Validation

Finally, we show the tracking results of the system presented in Fig. 2. This sys-
tem is equipped with a CCD Camera, a visible infrared and a thermal-spectrum
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Fig. 8. Tracking results of models fusion layer. The tracked player position estimated
is marked with a red cross. The left column displays mean shift only tracking result.
The middle column shows the result of Kalman + mean shift method. And the result
of our method, pseudo measurement based multiple model approach, is put in the right
column.
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Fig. 9. The left figure is motion model probability of player selected. The right one
demonstrates γ adjusting the effectiveness of the image based likelihood.

Fig. 10. Tracking results of trackers fusion layer. From left to right, top to bot-
tom, frames 2,15,25,40 of the input video are chosen to present the tracking results.
Green,blue and red crosses denote the output of the peak-based tracker, the correlation-
based tracker, and the final fusion results, respectively.

Fig. 11. Data fusion tracking system with three sensors. From left to right, top to
bottom, four overlayed views present tracking results of an infrared sensors, a visible
thermal-spectrum sensor, a CCD camera and the final fusion results, respectively.
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sensors. Secs. 6.1,6.2,6.2,6.3 present experiments results of one layer of the four-
layer framework. Fig. 11 presents tracking results of four-layer fusion system with
three sensors at a time instant. Extensive experiments shows that fusion of these
three sensors not only increases the system performance in the accuracy and ro-
bustness, but also extends its applying fields. For more extensive experiments,
please visit our webpage(http://www.aiar.xjtu.edu.cn/videocomputing.html).

7 Conclusion

In this paper,we discuss the designing of robust object tracking with multiple
spectrum imaging sensors. We propose a four-layer probabilistic fusion frame-
work for visual tracking with and beyond visible spectrum sensors. Four different
layers are defined in a bottom-up data fusion process for visual tracking.We show
how feature layer fuses multiple visual modalities via adaptive fusion strategies,
how models layer fuses prior motion information via interactive multi-model
method(IMM), how tracker layer fuses multiple trackers via adaptive tracking
mode switching, and how sensors layer fuses multiple sensors in a distributed
way. We use state distributions as the interface between each two consequen-
tial layers to ensure consistency throughout the framework. Furthermore, the
proposed framework is general and allows augmenting and pruning of fusing lay-
ers according to visual environment at hand. The proposed framework is tested
extensively under various complex scenario where a single sensor based tracker
may fail, and obtain satisfying tracking results.
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Abstract. For detecting difficult objects, like hands, we present an al-
gorithm that uses tokens and a grammar. Tokens are found by employing
a new scale space edge detector that finds scale invariant features at ob-
ject boundaries. We begin by constructing the scale space. Then we find
edges at each scale and flatten the scale space to one edge image. To
detect a hand we define a hand pattern grammar using curve tokens for
finger tips and wedges, and line tokens. We identify a hand pattern by
parsing these tokens using a graph based algorithm. We show and discuss
the results of this algorithm on a database of hand images.

1 Introduction

Object detection is one of the fundamental problems of computer vision. The
most successful technique for detecting objects is to find invariant features, and
then match them to a previously defined set. Finding good features, however,
is difficult. Lowe [1] has shown that scale space invariance is especially impor-
tant. SIFT features produce excellent results when detecting rigid objects that
are affinely trackable. But these features are less useful for objects that have
important information encoded within the shapes of their boundaries. Hands,
and other non-rigid objects are a good example of this. Thus, there is a need
for different features, which are still scale space invariant, but do not suffer from
the lack of affine trackability at boundaries.

Much work has been done on hand tracking [2,3,4], and hand pose estimation
[5,6]. But these do not work for the difficult task of hand detection in a single
cluttered image.

We cast the problem of finding these features as doing a “lexical analysis” on
the input image, producing tokens. In the next section we present a method for
finding these scale invariant tokens at boundaries. Then in the following section,
we define a grammar using this token alphabet that produces all strings identify-
ing a hand. Subsequently, we present an algorithm that implements the grammar
and “parses” these tokens, giving a scale space hand detection algorithm.

2 Finding Tokens

To find tokens at boundaries, it is natural to work with an edge image. A single
edge image, however, is computed at only one scale. A common technique is to
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smooth the image with a particular σ, calculate its derivative, and use gradients
to find local maxima [7]. This can be a problem because if the scale is too large,
needed detail may be lost; if the scale is too small, the edges are likely to be
disconnected. Motivated by this problem, we offer a scale space edge detector,
which avoids these problems. The detected edges then serve as a good source of
scale invariant tokens.

For open hand detection we use two kinds of tokens, curves and lines. Curve
tokens are used to find finger tip curves, and wedge curves for the region where
fingers join. Line tokens are used to find the border of extended fingers. The
algorithms are presented in Sect. 2.2 and 2.3.

2.1 Scale Space Edge Detection

A scale invariant, high-fidelity edge image must have at least two properties. It
has to have much detail in order to have the best chance of finding a particular
shape, as well as have edges that are smooth and connected. These two properties
occur at opposite ends of the scale space [8].

By constructing the scale space of an image, we gain access to the result of
all possible smoothing operations. This information can be used to calculate one
edge image that has a lot of detail using data from the bottom of the scale space,
and at the same time has continuous edges, using data from the top of the scale
space.

There are two steps to calculate a scale space edge image. In the first step, a
Canny scale space is contructed. In the second step, this scale space is “flattened”
to a final edge image.

Step 1: Canny Scale Space. The Canny scale space is derived from the
Gaussian scale space. The Gaussian scale space is constructed as a pyramid
according to [1], but with a maximum of three octaves. From this scale space,
the Canny scale space is derived by applying the Canny edge detection algorithm
on every image in the Gaussian scale space. However, the algorithm is modified
to compute the gradient without additional blurring in the convolution.

Step 2: Flattening the Space. To convert the Canny scale space into one
edge image, it must be flattened without losing too much information. In the
first step, the edge images within each octave are combined into one octave edge
image; in step two these octave images are then combined into a final edge image.

Combining the images within an octave is straightforward. It begins by union-
ing the images in each octave. As a result of this operation, an “on” pixel in the
union image says that it was “on” in at least one scale in this octave. This union
image is then smoothed by setting on any “off” pixels that are surrounded by at
least six “on” pixels. To produce thin edges, the smoothed image is skeletonized.
See Fig. 1.

Combining the octave edge images is more involved, because the images are
different dimensions. The combinations proceed down the scale. Therefore, the
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(a) (b)

(c) (d)

Fig. 1. Combining the images within an octave. (a) The original image. (b) Unioned
octave. (c) Smoothed octave. (d) Skeletonized octave.

top two octaves are combined first, followed by a combination with the lowest
octave image. The combination algorithm overlaps the lower scale image (larger
dimension) with the higher scale image (smaller dimension), thus filling in any
gaps in the lower scale image that are connected in the higher scale image. The
overlap is done segment by segment, rather than all at once. For each connected
segment in the higher scale image, the corresponding points in the lower scale
image are traversed until reaching an end point. At this point, the traversal
continues on the higher scale segment, marking the edge on the lower scale
image, until it is possible to resume again on the lower scale image. See Fig. 2.

After all octave edge images are combined in this manner, the result will be
one scale invariant edge image, that is suitable for finding the needed tokens.

2.2 Curve Tokens

A finger tip and a wedge between fingers can both be characterized as curves.
They only differ in proportion, one is wider than the other. To find these curves
in the edge image, a model-based approach is used. The algorithm is based on
[9]. The models used in experiments are shown in Fig. 3.

Curves are found by superimposing a model’s edge image to different loca-
tions in the scale space edge image, and calculating a similarity score. These
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(a) (b)

(c) (d)

Fig. 2. Combining octave images (detail). (a) The original image. (b) Lower scale
image. (c) Higher scale image. (d) Final edge image.

Fig. 3. This figure shows a subset of the finger tip (left) and wedge (right) models, and
their edges (bottom), used in the scoring method

“candidate” locations of curves are taken to be the end points and mid points of
lines found by a line finder, which is described in Sect. 2.3. To eliminate locations
that are not likely to contain curves, mid points of lines are not taken for the
the top 25% of longest lines.

To handle multiple orientations of curves, the base model is rotated to give
16 rotated versions of the model. Some of these orientations are shown in Fig. 3.
Different curve sizes are handled by precomputing different sized models for each
rotated version, keeping the same proportion.

The score for a given candidate location is the maximum of the scores of all
sizes of the model with the same orientation as the location. The orientation
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for any point in the edge image is determined from the gradient of the image
at the smallest scale in the Gaussian scale space, because this image has the
most accurate orientation data. For each size, actually two opposite orientations
are tried, because the gradient can be negative or positive and have the same
orientation.

To superimpose a model correctly, the center point of a model’s edge curve,
which is the top of a curve, is aligned with the candidate location. The score of
a model, having a particular size and orientation, is calculated using∑

k e
−0.25min(Dk) |mk · vk|

k
, (1)

where k is each model edge point, min(Dk) is the minimum of the five distances
to the closest image edge point that would be obtained by shifting the model
0 and ±1 units in the parallel and perpendicular directions to the model’s ori-
entation, mk is the unit normal vector at the k-th model edge point, and vk is
the unit normal vector at the closest image edge point, given by min(Dk). In
other words, for each model edge point the score is determined by the distance
to the closest image edge point and the orientation difference between the two
points. The model is shifted one unit in four directions, because this increases
its flexibility. The score for a candidate location is compared to a threshold, set
to 0.78 in our experiments, and the location is eliminated if the score is less than
this.

To eliminate curves that are not likely to be finger tips, we make sure that
each curve found is supported by a line token, as found by a modified line finder
described in the next section. The line must be parallel, and close to either one of
the ends of the curve. This is accomplished by searching for lines in a rectangle
7 pixels wide and 2 ∗ curvesize pixels tall and rotated to be parallel with the
curve’s orientation. The rectangle is searched twice, the first time when its side
is centered on one curve end, and the second time when its side is centered on
the other end. The lines must have an orientation within 0.55 rad of the curve’s
orientation, and their length must be at least 1.1 ∗ curvesize.

Since the number of candidate locations is large, especially on curved edges, it
is possible that this process produces overlapping curves. These duplicate curves
are eliminated by calculating the intersection of the bounding rectangles of two
curves. If the intersection is greater than 15% of the area of the smaller curve,
the curve with the lower score is eliminated.

This curve detection algorithm is run with finger tip models, as well as with
finger wedge models.

2.3 Line Tokens

To find lines on a scale space edge image, we use a modifed Burns line finder [10].
The lines are directly extracted from the edge image, instead of using the raw
image as in the original algorithm. As mentioned above, the orientation data for
the scale space edge image comes from the gradient of an image with the smallest
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scale. The Burns algorithm uses two systems of lines to avoid boundary effects
of orientation partitioning. These two systems of lines are resolved differently to
determine the final set of lines.

The lines from either system are processed in order from the longest to the
shortest. For each line, both systems are analyzed for possible merges with other
lines. First, a line merges with the corresponding (on the same pixels) lines in
the other system. If this causes the line to partially extend over neighboring
lines in its own system, then it merges with them as well. The lines in the other
system on the same pixels as this new extension are adjusted (shortened), but
not merged with. The line lengths are updated as the merging goes on, so that
the longest line can be found in the next iteration. This method of resolving the
two systems favors long, unbroken lines, which is what is needed to find finger
lines.

3 Parsing Tokens

To parse curve and line tokens into strings that identify a hand, a grammar
is defined to enforce the detection of the following properties: 1) A finger tip
curve has an opposite orientation of a wedge curve. 2) The endpoints of the
curves must be closer than the centers of the curves. 3) There is a line token
connecting a finger tip curve with a wedge curve. These properties are formally
written below, where t is a finger tip curve, w is a wedge curve, and l is a line
token.

H → tlwltlwltlwltlwlt

H → tlwltlwltlwltlw | wltlwltlwltlwlt
H → tlwltlwltlwlt

H → tlwltlwltlw | wltlwltlwlt
H → tlwltlwlt

H → tlwltlw | wltlwlt

This grammar eliminates strings with three or less curves. The -t-w-t- se-
quence produces a “zigzag” pattern across the hand’s fingers. See Fig. 4 for an
illustration. Any token can be missing, but as soon as this happens, it is no
longer allowed.

3.1 Open Hand Detection (Pattern Parser)

To find the desired pattern, we first construct a complete graph with nodes being
all curve tokens, finger tips and wedges. The edges in the graph, termed g-edges,
correspond to all possible curve combinations. The weight of each g-edge is a
pattern distance [11] between two curves. The pattern distance is defined as a
Euclidian pattern distance,
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Fig. 4. This figure illustrates the zigzag pattern we are looking for

√(
x1 − x2

xRange

)2

+
(
y1 − y2

yRange

)2

+
(
θ1 − (θ2 + π)

π

)2

, (2)

where xRange is the maximum distance in the x-dimension and yRange is the
maximum distance in the y-dimension. The pattern distance between two curves
is the shortest when they are close to each other and have opposite orientations
from each other. This ensures a -tip-wedge-tip- sequence.

The next step is to remove those g-edges that cannot possibly make a valid
combination. The criteria are determined from the properties above. Using the
first property that adjacent curves have to have opposite orientations, g-edges
with orientation difference less than π

2 are removed. The second property says
that a g-edge must connect curves back to back, where the back is the two
endpoints, not the center of the curve. To enforce the third property that there
is a line token connecting the two curves, a rectangular region centered on the g-
edge and 7 pixels wide is searched for a line parallel to the g-edge. The orientation
difference between the g-edge and line must be less than 0.18 rad, and the length
must be between 0.675 and 1.6 times the g-edge length. If no line satisfying this
criteria is found, the g-edge is removed.

Once impossible g-edges are removed, the next step is to find a zigzag pattern
in this graph. This is done using a back-tracking algorithm. Starting at one node,
all possible g-edges connecting it are sorted by the pattern distance above. The
g-edge is picked if it satisfies these criteria: the supporting line token has not
been used previously in this pattern, the line token is less than 1.6 times the
length of the previous line token in the pattern, the angle between this g-edge and
the previous g-edge is between 0.12 rad and 1.05 rad, and the g-edge preserves
the zigzag – does not cross the previous g-edges. Once the g-edge is picked, the
algorithm recursively jumps to that connected node, and looks at all connecting
g-edges again. If it is impossible to continue from a node, the algorithm back-
tracks to the previous node, and takes the next option. The search stops when
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we have at least 4 curves, but not more than 9. The pattern parser is run on
each node of the graph.

To allow one missing curve token when a particular node has run out of
options, we create a virtual curve that is the same size and opposite orientation as
the node, and set its location 3∗curvesize in the parallel and opposite direction of
the node and 0.5 times the distance to the next curve token in the perpendicular
direction. To allow one missing line token, we skip checking for a supporting line
when looking at possible curves.

4 Results

On a database of 216 images of open hands against cluttered backgrounds, con-
taining 1087 fingers, the overall rate of finger tip curve detection is 75%. This
means that on average, close to 4 finger tips are detected. The rate of wedge curve
detection is 65%. The number of false positives, as expected, is high. Figure 5
shows some examples.

To minimize the number of false positives, hand detection was run with the
option to allow missing tokens turned off. The hand pattern was successfuly
found 73% of the time on a database of 244 images of open hands with cluttered
backgrounds. On average, about 4 false positives are found per image, but this
largely depends on the image’s contents. Anything that has a zigzag pattern will
be detected, such as stacked binders. Figure 6 shows some examples.

Fig. 5. Examples of detected curve tokens
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Fig. 6. Examples of detected hand patterns in Fig. 5

5 Discussion, Future Work, and Conclusions

False negatives in curve token detection are caused by the lack of contrast in
the input data, which is necessary for edges to be detected in at least one scale.
Given the difficulty of the region where fingers are joined, it is encouraging that
wedge curves were found. With closed fingers in particular, detection of wedges
is difficult. In the future, more curve models with variable widths can be used
to increase detection.

The number of false positive curve tokens found is proportional to the number
of edge pixels in the edge image. This is because edges are often curve shaped, and
thus detectable by the curve finding algorithm. Also, the curve models are not
unique in a sense that a finger tip curve model may detect a wedge curve feature,
and a wedge curve model may detect a finger tip curve feature. The number of
false positives is not critical, however, because the grammar has really helped to
eliminate most of them.

False negatives in hand detection are caused by missing curve tokens. Hand
detection performed the best when the fingers were spread, but it worked with
closed fingers as well. This is because a hand with fingers spread has a higher
chance of detecting a wedge curve token, as explained above. The already low
false positive rate can be decreased further by considering more features, such
as a hand’s palm, or an image intensity at the location of the finger tip curve
tokens.

In this paper, we presented a new scale space edge detector that enabled us
to find scale invariant tokens at object boundaries. This token finding should be
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useful for any object, where its boundary features are important. We showed its
promise for open hand detection.
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Abstract. In this study, a new method for recognizing everyday life actions is 
proposed. To enhance robustness, each sequence is characterized globally. 
Detection of moving areas is first performed on each image. All binary points 
form a volume in the three-dimensional (3D) space (x,y,t). This volume is 
characterized by its geometric 3D moments which are used to form a feature 
vector for the recognition. Action recognition is then carried out by employing 
two classifiers independently: a) a nearest center classifier, and b) an auto-
associative neural network. The performance of these two is examined, 
separately. Based on this evaluation, these two classifiers are combined. For 
this purpose, a relevancy matrix is used to select between the results of the two 
classifiers, on a case by case basis. To validate the suggested approach, results 
are presented and compared to those obtained by using only one classifier. 

1   Introduction 

Human activity recognition has received much attention from the computer vision 
community since it leads to several applications such as video surveillance for 
security, entertainment systems and monitoring of patients or old people, in hospitals 
or in their apartments. The activity recognition problem is generally divided in two 
steps: 1) detecting and tracking the person in motion, and 2) recognition. 

The focus of this work is on the second problem which is recognizing actions of 
everyday life, such as walking, sitting on a chair, jumping, bending or crouching. 

Since the human body is not a rigid object and may present a multitude of postures 
for the same person, a robust modeling is difficult to obtain. Therefore, appearance 
models are utilized rather than geometric ones.  

Among all existing 2D approaches without models, some consider the sequence as 
a succession of images. Martin and Crowley [1] recognize hand gestures using a finite 
state machine while in Ref. [2,3], the recognition is then carried out with hidden 
Markov models. 

Recently, Bobick and David [4] have presented a view-based approach to the 
recognition of human movement. Both characteristics called MEI and MHI, are 
constructed globally throughout each sequence. Given a set of MEIs and MHIs for 
each view/movement of aerobic exercises, a statistical description of actions is 
obtained using the 7 Hu moments.  
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The global study of the sequence can also be conducted by examining the 
empirical distributions of some characteristics. In Ref. [5], a vector of measurement in 
each pixel is composed of the exit of a bench of 12 space-time filters.  Joint statistics 
on these vectors represented by a multidimensional histogram make it possible to 
carry out the recognition of actions. In Ref. [6], actions are characterized on several 
temporal scales using motion detection. The measurement between two actions is the 
distance between empirical distributions of these features.  Actions can also be 
considered as 3D volumes. Thus, Schechtman and Irani [7] propose to recognize 
actions with a correlation between these volumes while Blank et al. [8] characterize 
them locally using properties of the solution to the Poisson equation. 

Action recognition can be carried out by using and combining multiple results 
provided by several classifiers. The fusion of information, and more precisely the 
combination of classifiers is used to improve the performance of classification 
systems.  

This combination may be considered for instance, in a sequential way. Viola and 
Jones [9] combine increasingly more complex AdaBoost classifiers in a “cascade” 
where a positive response from one classifier triggers the evaluation from the next 
one. For object detection this allows rejecting as many as possible negative instances 
(a negative outcome at any point of the cascade leads to immediate rejection) while 
achieving high true detection rates. The use of AdaBoost method for the training stage 
implies that each new weak classifier depends on the previous ones via the weighting 
of training samples.  

As presented in this work, the fusion may also be performed in a parallel 
framework where the outcomes of independent classifiers are combined. This combi-
nation can be achieved by different approaches. The fuzzy approach [10] utilizes 
“fuzzy” fusion rules. The Bayesian approach [11] is based on probability properties; 
namely the Bayes rule. The neural approach [12] utilizes the outcomes of several 
classifiers which are combined by a neural network. The combination of classifiers 
may also be linear or multiplicative. Czyz et al. [13] use a simple summation rule to 
combine face verification experts which are assumed to be complementary. The result 
of the combination outperforms the best individual expert. Belaroussi et al. [14] also 
linearly combine connexionist models, an ellipse model based on the gradient 
orientation and a skin color model for the purpose of face localization. Tumer and 
Ghosh [15] provide an analytical framework to quantify the improvement in 
classification results of linear and order statistics combining. 

Based on an earlier study [16], the recognition system developed in this work 
utilizes an appearance model. Actions are represented by 3D volumes (x,y,t) which 
are characterized by 3D geometric moments. Invariance to the view point is carried 
out by multiple views of the same action. In this work, the recognition is based on a 
modeling of each class. For a large sequence database, this avoids important 
computing times needed by the nearest neighbor method utilized in Ref. [16]. This 
recognition process consists of a fusion of two classifiers: a nearest center classifier, 
and an auto-associative neural network. The classifier combination is achieved by 
determining which classifier selects the true result for each example of the training 
database.  This allows, when the two experts lead to discordant results, to favor one 
classifier rather than the other, according to the different cases. 
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2   Features Extracted from Sequences 

The first stage of the activity recognition process consists of detecting moving areas. 
Therefore, the current image is compared at each instant with a reference image 
continuously updated. A second stage is also carried out to remove shadows that 
eventually are present in the scene [16].  

The analysis is expanded to represent the 3D volume comprised of all moving 
points detected (x,y,t). This space-time volume contains information, such as, the 
silhouette of the person in each image or the action dynamics. To characterize this 
volume, without extracting (and separating) different information such as posture, 
movement, etc, 3D geometrical moments are considered. Let {x,y,t} be the set of 
points of the binary volume where x and y represent the space coordinates and t, the 
temporal coordinate. The moment of order (p+q+r) of this volume is determined by: 

{ }p q r
pqrA E x y t= . (1)

where E{x} represents the expectation of x. In order to use features invariant to 
translation, the central moments are considered: 

100 010 001{( ) ( ) ( ) }p q r
pqrAc E x A y A t A= − − − . (2)

These moments must also be invariant to scale in order to preserve invariance to the 
size of people or to the distance of the action with respect to the camera. Invariance to 
the duration of actions is also expected. Thus, for preserving the ratio of width-to-
height of the binary silhouettes the following normalization is carried out: 

100 010 001
1/ 4 1/ 4 1/ 4 1/ 4 1/ 2

200 020 200 020 002

p q r

pqr

x A y A t A
M E

Ac Ac Ac Ac Ac

− − −= . (3)

For each action, a vector of features O, composed of the 14 moments of 2nd and 3rd

order is computed: 

O = {M200, M011, M101, M110, M300, M030, M003, M210, M201, M120, M021, M102, M012,
M111}. 

3   Presentation of the Sequence Database 

A sequence database comprising 8 actions is considered, as follows: (1)"to crouch 
down", (2)"to stand up", (3) "to sit down", (4) "to sit up", (5) "to walk", (6) "to bend 
down", (7) "to get up from bending", and (8) "to jump". 

As each action is divided into different viewpoints, 37 different classes are 
considered. The front, 45° and 90° views are captured while others are synthesized 
from the sequences already recorded (at -45°, at -90°) by symmetry. Each action is 
executed by 7 people, and repeated 230 times on average. The entire database 
comprises 1662 sequences. Presented below are some examples of images of the 
database representing various actions and silhouettes of actors. 
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Fig. 1. Sample images from the sequence database 

For the recognition and training of classifiers, the sequence database is divided into 
two disjointed sets: 1) a training database, and 2) a test database. To test invariance of 
the method compared to people morphology, the training database is made up of 
actions carried out by six people. 

4   Recognition with an Auto-associative Neural Network 

The first classifier used for the recognition is an auto-associative neural network 
(AANN). For each of the 37 classes, an AANN is trained, using the training database. 
It consists of a 2-layer neural network for which the desired output is equal to the 
input. In this case the number of output cells is 14 (the same number as inputs), and 
the number of hidden cells is empirically set to 7.  

A pre-treatment is achieved independently on each class to set most of the data 
between –1 and 1. It consists of centering vectors around the mean of their class and 
normalizing along each dimension by three times the standard deviation of the class. 

For the recognition, the vector of features corresponding to the action to recognize 
is normalized with respect to the parameters of each class and presented as input for 
each one of the 37 AANNs. The reconstruction error between the input and the output 
of each AANN is then estimated with the Euclidian distance. Among the 37 classes, 
the one which results in the lowest distance between the input and the output is then 
selected to label the action. Table 1 presents the seven recognition rates obtained by 
placing each of the 7 persons in the test database one by one. These data are average 
recognition rates on all 8 actions. 

Table 1. Recognition rates using AANNs 

Person 1 2 3 4 5 6 7 

Rate 89.3 89.0 81.7 95.1 92.1 91.4 70.8
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Table 2. Average confusion matrix using AANNs 

96.6 0 0 0.7 0 2.7 0 0 

0 96.1 0 0 0 0 3.9 0 

3.3 0 86.0 0 0 10.7 0 0 

0 1.7 0 89.4 0 0 8.9 0 

0.5 0 0.2 0 98.6 0.2 0.4 0 

26.3 0 1.2 0 0 72.5 0 0 

0 14.7 0 4.7 0 0 80.6 0 

0 1.9 0 0 0 2.8 5.3 90.0 

Therefore, one may conclude that actions are well-recognized. The worst 
recognition rate (70.8%) is obtained for person 7 who presents a particular binary 
silhouette due to her clothing: she wears a long skirt and is the only person in the 
database with a skirt. Even if for this person, some actions with a very particular 
binary volume (e.g., “to sit down”) are well recognized, confusion still exists between 
other classes such as “to walk” or “to jump”. Table 2 presents the average confusion 
matrix on the 8 actions obtained by averaging the 7 confusion matrices corresponding 
to those 7 people. 

The most poorly recognized action (72.5%) is action 6, ("to bend down",) 
sometimes confused with action 1 ("to crouch down") which is a nearly similar action. 

5   Recognition with the Nearest Center 

For this stage, the mean vector and the covariance matrix of each class is estimated 
with the training data. The recognition is done by searching the nearest center for the 
vector of features corresponding to the action that has to be recognized using 
Mahanalobis distance. The action is then assigned to the class of this center.  

It could be interesting to consider a mixture of Gaussians to represent each class. 
However, the dimension of the database (about 45 sequences for each one of the 37 
classes) is too low compared to the dimension of the feature space (14) to carry out 
this method. Tables 3 and 4 present the average recognition rates and confusion 
matrix obtained with the nearest center. Despite the differences between the rates for 
each person, the average recognition rates on the seven persons are approximately the 
same for both methods (88.1 for AANNs and 89.7 for the nearest center). In this case, 
the confusion stands between action 4 (“to sit up”) and action 7 (“to get up from 
bending”) which are similar, as well. 

Table 3. Recognition rates using the nearest center 

Person 1 2 3 4 5 6 7 
Rate 97.0 88.8 82.3 95.0 92.7 91.1 69.8
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Table 4. Average confusion matrix using the nearest center 

93.9 0 0 0 0.7 5.4 0 0 

0 92.1 0 0 0 0 7.9 0 

4.6 0 85.9 0 0.5 8.4 0.6 0 

0 3.3 0 77.1 0 0 19.6 0 

0 0 0.4 0 98.0 0.9 0.4 0.2 

6.9 1.3 0.5 0 0 91.0 0 0.3 

0 6.6 0 2.4 0 0 90.7 0.3 

0 6.8 0.8 0 0 0 3.2 89.1 

6   Association of Classifiers 

Results presented in the two previous sections show that classifiers do not have the 
same behavior. It often appears that if one classifier is wrong, the other one selects the 
true result. Therefore, it would be of interest to identify the cases where one classifier 
has to be preferred over the other, especially when the outcomes of the two classifiers 
are different. Thus, for each classifier, a “relevancy matrix” is constructed based on 
the training database. Let cln be the class returned by the nearest center classifier, cld

the one returned by AANNs, and cl the true class. The cell (i,j) of the “relevancy 
matrix” provides the probability that the classifier returns the true result while the two 
classifiers respectively select classes i and j:

( , ) ( | , )

( , ) ( | , )
n n

d d

M i j P cl cl i j

M i j P cl cl i j

= =
= =

. (4)

When both classifiers lead to the same result, the decision is evident. Otherwise, when 
the returned classes are different, the “relevancy matrix” will be used to decide among 
the two classes, which is the true class. Thus, if the nearest center classifier leads to 
class i and the AANN to class j, the expected true class is the one which maximizes 
the a posteriori probability given by: 

( ) ( , ) ( / )

( ) ( , ) ( / )
n n n

d d d

P cl i M i j P s d

P cl j M i j P s d

= =
= =

. (5)

Where dn and dd are the minimum distance generated by each individual classifier, 
and s is a logical variable equal to 1 in case of true result and 0 otherwise. It is 
assumed that P(s/d) is a decreasing exponential function of the distance d:

( 1| ) exp( )P s d dλ= = − . (6)

The parameter  can be evaluated using the recognition results over the training set, 
by computing the observation likelihood: 

/ 1 / 0

( ) exp( ) 1 exp( )
i j

i j
i s j s

L d dλ λ λ
= =

= − − −∏ ∏ .
(7)
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By maximizing the log-likelihood,  satisfies the following relation: 

/ 1 / 0

exp( )
0

1 exp( )
i j

j j
i

i s j s j

d d
d

d

λ
λ= =

−
− + =

− −
. (8)

The root  can be found by iterated dichotomy since the left part of Equation (8) is a 
decreasing function. This method is applied to evaluate n and d, independently for 
each classifier. 

Table 5 and 6 present the recognition rates and confusion matrix obtained with the 
fusion of classifiers. 

Table 5. Recognition Rate Using Association of Classifiers 

Person 1 2 3 4 5 6 7 

Rate 95.1 93.0 86.6 95.7 94.1 94.1 68.4

Table 6. Average Confusion Matrix Using Association of Classifiers 

95.3 0 0 0.7 0 4.0 0 0 

0 92.8 0 0 0 0 7.2 0 

4.6 0 86.5 0 0.5 8.4 0 0 

0 1.2 0 87.8 0 0 11.0 0 

0.5 0 0.2 0 98.6 0.2 0.4 0 

8.2 0 0.5 0 0 91.3 0 0 

0 10.3 0 4.4 0 0 84.9 0.3 

0 1.3 0 0 0 2.8 3.4 92.5 

    As can be seen in Table 5, the recognition rates have improved for most persons 
compared to both classifiers examined independently (except for person 1 and 7). The 
average recognition rate over the 7 persons is a more relevant data: 89.7% for  
the nearest center, 88.1% for AANNs and 91.2% for the association. Furthermore, the 
disparity between the different classes has been reduced as can be seen on  
the diagonal of the confusion matrix. The lowest recognition rate (84.9%) is obtained 
for action 7 (“to get up from bending”), confused with action 2 (“to stand up”). This 
lower recognition rate is higher than it was in the previous cases: 77.1% for the 
nearest center classifier and 72.5% for AANNs. 

7   Summary and Conclusions 

In this work, a method to recognize certain actions of everyday life is proposed. 
Motion detection is initially obtained on each image. The 3D volume constructed for 
each sequence from the binary images resulting from detection, is characterized by its 
3D geometrical moments. Action recognition is carried out by utilizing the fusion of 
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two different classifiers on a database of 1662 sequences divided into 8 actions and 
carried out by 7 people.  

The classifier association is achieved by featuring a “relevancy matrix” that 
identifies cases where a classifier has to be preferred over the other. By combining the 
performances of both classifiers a recognition rate of 91.2% is obtained on the 
database.  

An extension of the number of actors in the database is envisioned to be more 
robust to the silhouette of the person and improve classification results. Furthermore, 
increasing the number of examples per class may lead to a finer modeling of each 
class. 
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Abstract. In order to construct a flexible representation for robust and
efficient tracking, a novel real-time tracking method based on online
learning is proposed in this paper. Under Bayesian framework, RVM
is used to learn the log-likelihood ratio of the statistics of the interested
object region to those of the nearby backgrounds. Then, the online se-
lected sparse vectors by RVM are integrated to construct an adaptive
representation of the tracked object. Meanwhile, the trained RVM clas-
sifier is embedded into particle filtering for tracking. To avoid distraction
by the particles in background region, the extreme outlier model is incor-
porated to describe the posterior probability distribution of all particles.
Subsequently, mean-shift clustering and EM algorithm are combined to
estimate the posterior state of the tracked object. Experimental results
over real-world sequences have shown that the proposed method can
efficiently and effectively handle drastic illumination variation, partial
occlusion and rapid changes in viewpoint, pose and scale.

1 Introduction

Visual tracking is to optimally estimate the state of the interested object within
current frame according to the previously defined object representation. In prac-
tice, it is difficult to track appearance changed object with a fixed representation
due to inevitable variation in viewpoints, pose and illumination conditions. In ad-
dition, cluttered backgrounds and partial occlusion also challenge visual tracker.
Therefore, online learning with all available information for robust tracking is
very necessary and it has been a popular research topic nowadays.

So far, different visual trackers with online learning mechanism can be mainly
categorized to be generative model based [1, 2, 3, 4, 5, 6] and discriminative model
based [7, 8, 9, 10]. WSL tracker [1] maintains object model with stable and tran-
sient statistics that are updated with online EM. Subspace based trackers update
their corresponding models with incremental PCA [2], incremental SVD [3], and
incremental Gramm-Schmidt process [4]. The template tracking with PCA based
linear subspace model is investigated in [5]. With sequential GMM, online density
based appearance model is updated for object tracking in [6]. The disadvantage
of generative model based trackers are that they focus on how to model the
interested object without consideration the cluttered backgrounds. Thus, they
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are apt to be distracted by similar background regions. For this reason, dis-
criminative model based trackers are designed to resist drift from the interested
object to similar background regions. In literature [7,9], different mechanisms
are described to select discriminative features for tracking. In practice, a visual
tracker depending on some sort of feature may fail to work when the foreground
and nearby background regions are not discriminative enough in the specified
feature space. As stated in [8], color feature affords limited power to discrim-
inate an object from similar background regions (especially within gray image
sequences), and an extension of the methods to different feature spaces for better
performance is not obvious. Nguyen [8] proposed to model the foreground and
background texture features with Gabor filters to handle severe aspect changes
of foreground object. The foreground and background templates are adaptively
updated with empirically predefined learning rate. However, improper learning
rate will raise the specter of gradual drift. Ensemble tracking [10] trains an en-
semble of weak classifiers to determine if a pixel belongs to an object or not,
instead of explicitly representing the object. Then, mean shift algorithm [11]
is implemented in the confidence map predicted with trained strong classifier
to find the object location. Collins [12] has pointed out that spatially corre-
lated background distractions could easily attract mean shift window and cause
tracking failure.

Recently, the relevance vector machine (RVM) regression [13] has been used
to build displacement expert for object tracking [14] in which the RVM expert
predicts motion parameters of the interested object. The work of efficient track-
ing with RVM expert is an extension of support vector tracking [15] with sparse
Bayesian learning theory. Nevertheless, the tracker is not tolerant to great vari-
ation of viewpoint, scale and articulation at the same time.

In essence, three key problems in visual tracking are how to construct a flexible
representation of the interested object, to accurately estimate the target state
with available observations, and to reliably update the target representation in
time. To deal with the three problems, this paper intends to design a general
framework of on-line Bayesian learning to extract useful information from all
available observations for tracking, rather than to develop a visual tracker de-
pending on some specified feature space.

This paper is organized as follows. Section 2 discusses the online Bayesian
learning for visual tracking. Section 3 describes probabilistic state inference for
particle filtering. Section 4 investigates how to update the object representation.
Experimental results are demonstrated in Section 5, and some conclusions are
drawn in Section 6.

2 Online Bayesian Learning Framework

At any time t, denote the state of a tracked object within image It by vector
Xt, all state observations up to time t by Zt = {z0, ..., zt}, and all image obser-
vations up to time t by Ot = {I0, ..., It}. Standard Bayesian sequential estimation
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includes two recursive stages: prediction and update. Given all observations up
to time t− 1, the target state at time t is predicted by

p(Xt|Ot−1, Zt−1) = p(Xt|Zt−1)

=
∫

p(Xt|Xt−1)p(Xt−1|Zt−1)dXt−1. (1)

When observations It and zt are available, the state can be update by

p(Xt|Ot, Zt) ∝ p(It, zt|Xt, Ot−1, Zt−1)p(Xt|Ot−1, Zt−1)
= p(It, zt|Xt)p(Xt|Zt−1)
= p(It|Xt)p(zt|Xt)p(Xt|Zt−1), (2)

where p(It|Xt) is the image observation likelihood which is very crucial for visual
tracking, and p(zt|Xt) is the state observation likelihood which will be discussed
in next section.

2.1 Image Observation Likelihood Formulation

Given state Xt of the interested object, image It can be divided into foreground
region RFG and background region RBG, where RFG ∪ RBG = It, and RFG ∩
RBG = ∅. Denote f(x, y) to be the feature value at pixel (x, y) within image
It after mapping It into some feature space. Let pon(RFG|Xt) be the likelihood
of observing region RFG given the representation of the tracked object, and
poff(RBG|Xt) be the likelihood of observing regionRBG from uninterested image
regions. Then, the image observation likelihood can be decomposed as

p(It|Xt) = p(RFG, RBG|Xt)
= pon(RFG|Xt)poff (RBG|Xt)

=
pon(RFG|Xt)
poff(RFG|Xt)

poff(RFG|Xt)poff(RBG|Xt)

=
pon(RFG|Xt)
poff(RFG|Xt)

poff(It|Xt). (3)

Since the likelihood poff(It|Xt) is independent of Xt, we have

p(It|Xt) ∝
pon(RFG|Xt)
poff(RFG|Xt)

= exp{l(RFG|Xt)}, (4)

where l(RFG|Xt) = log {pon(RFG|Xt)/poff(RFG|Xt)} is the log-likelihood ratio
of the interested object distribution to background distribution. Expression (4)
manifests that image observation likelihood p(It|Xt) characterizes not the sim-
ilarity between image region RFG and the interested object representation, but
the degree to which region RFG discriminates the interested object from nearby
background. However, a generative model based tracker just concentrates on the
similarity, which explains why this sort of visual tracker is apt to be distracted
by confused backgrounds.
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Therefore, this paper will focus on online approximation of the log-likelihood
ratio in (4) with statistical learning theory. Under this general framework, the
discriminative information can be online learned for tracking. Consequently, the
visual tracker designed in this paper will be fairly flexible, and can be easily
extended to different feature spaces.

2.2 Sparse Bayesian Learning

During tracking process, the number of available samples for statistical learning
is very limited and computational efficiency is also worthy serious consideration.
In this paper, the log-likelihood ratio in (4) learned by RVM for its superior
performance in sparse Bayesian learning [13]. Compared with SVM [16], the ad-
vantages of RVM include the benefits of probabilistic predictions, exceptional
degree of sparsity, satisfactory generalization ability, and circumventing the con-
straint of Mercer’s condition. Given a set of M -dim samples {xn}Nn=1 along with
corresponding labels {tn}Nn=1, the standard probabilistic formulation of RVM is

tn = g(xn;w) + εn, (5)

where additive noise εn is from zero-mean Gaussian process with variance σ2.
The scalar output of RVM is the linearly weighted sum of input samples:

g(xn;w) =
N∑

i=1

ωiK(x,xi) + ω0, (6)

where K : R
M × R

M → R is the kernel function between two input vectors.
The corresponding weights w = [ω0, ..., ωN ] are determined by RVM training
process. The popular choice of a zero-mean Gaussian prior distribution over w
is preferred:

p(w) = N(w;0,A), (7)

where the diagonal covariance matrix A contains individual hyper-parameters
independently associated with every weight. With assumption of Bernoulli dis-
tribution for p(t|x), the likelihood p(t|w) can be formulated as follows for binary
classification problem:

p(t|w) =
N∏

n=1

σ{g(xn;w)}tn [1− σ{g(xn;w)}]1−tn , (8)

where σ(g) = 1/(1 + e−g) is the sigmoid function to convert real-valued output
to probabilistic prediction. Utilizing Laplace approximation, the best weights
are found according to Σ = (ΦTBΦ + A)−1 and w = ΣΦTBt, where Φ is
the design matrix with Φij = K(xi,xj), and B = diag(β1, ..., βN ) is a diagonal
matrix with βn = σ{g(xn;w)} [1− σ{g(xn;w)}].

With the trained RVM classifier, the log-likelihood ratio of image region RFG

can be predicted by l(RFG|Xt) = g(RFG;w). In order to suppress the possible
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estimation error of very large ‖l(RFG|Xt)‖, we adopt the sigmoid function to
approximate image observation likelihood

p(It|Xt) =
1

1 + exp{−l(RFG|Xt)}
. (9)

Obviously, p(It|Xt) preserves the linear property when l(RFG|Xt) is within range
[−2, 2].

3 Probabilistic State Inference

Particle filtering [17] is a sequential importance sampling method, which has
proven to be a powerful tool for solving nonlinear/non-Gaussian tracking prob-
lems. Its key idea is to approximate required posterior distribution p(Xt|Ot, Zt)
by a weighted set of samples St = {s(n)

t , π
(n)
t |n = 1, ..., Ns}. The corresponding

importance weight of each particle can be calculated by

π
(n)
t = p(It, zt|Xt = s

(n)
t )

= p(It|Xt = s
(n)
t )p(zt|Xt = s

(n)
t ), (10)

where
∑Ns

n=1 π
(n)
t = 1.

3.1 Dynamic Model

Define the state vector of sample s as (x, y,Rx, Ry, ẋ, ẏ, α), where (x, y) indi-
cates the central location of the tracked object, (Rx, Ry) the scales in horizontal
and vertical directions, (ẋ, ẏ) the central motion vector, and α the scale change
velocity. In prediction stage, the state of sample s is propagated through the
first order dynamic model

st = Hst−1 + vt−1, (11)

where matrix H characterizes the transition model, and vt−1 is a zero-mean
multivariate Gaussian random variable. The random samples from Gaussian
distribution are drawn with quasi-random sequence generator instead of pseudo-
random sequence generator for fast convergence [18].

3.2 Statistical Observation Model

Given the generated set of particles St = {s(n)
t , π

(n)
t |n = 1, ..., Ns}, assume the

state observation likelihood is Gaussian distribution:

p(zt|Xt = s
(n)
t ) = N(s(n)

t ;μ, V ), (12)

where μ is the mean and V is the covariance matrix. Usually, only a fraction of
particles approach the true state of the tracked object, and others can be consid-
ered as outliers. In order to accurately estimate the true state of the target, all
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particles in St are clustered into groups with mean shift clustering [19]. The la-
bel of the group in which the particle with largest importance weight is assigned
to be 1, and those of other groups are assigned to be 0. Thus, the zero-labeled
particles are treated as outliers, and their corresponding image observation like-
lihoods are revalued by

p(It|Xt = s
(n)
t ) = min{p(It|Xt = s

(i)
t ) > 0; s(i)

t ∈ St}. (13)

Then, the extreme outlier model [20] is utilized to convert seeking maximum
likelihood of

∏Ns

n=1 π
(n)
t to optimizing

h(μ, V ) =
∑

n

p(It|Xt = s
(n)
t )p(zt|Xt = s

(n)
t )

=
∑

n

ηnN(s(n)
t ;μ, V ), (14)

where ηn = p(It|Xt = s
(n)
t ). From the Jensen’s inequality, we have

log(h(μ, V )) ≥
∑

n

log(
ηnN(s(n)

t ;μ, V )
qn

)qn , (15)

where
∑

n qn = 1, and qn ≥ 0. Subsequently, EM algorithm is used to estimate
μ and V with the following procedure.

Input: initial parameters μ0 and V0 estimated with all one-labeled particles
by above mean shift clustering.

1. E-step: compute qn-s with fixed μm and Vm,

qn =
ηnN(s(n)

t ;μ, V )∑
i ηiN(s(i)

t ;μ, V )
. (16)

2. M-step: update μm and Vm by

μm+1 =
∑

n

qns
(n)
t , (17)

Vm+1 =
∑

n

qn(s(n)
t − μm)(s(n)

t − μm)T . (18)

4 Update Object Representation

Updating target representation is an important component of online learning for
tracking. In order to design a visual tracker independent of color information,
feature extraction modules with gray image as input are preferable. Lowe [21]
proposed a scale invariant feature transform (SIFT), which has achieved out-
standing performance as a reliable local region descriptor [22]. In this paper, the
SIFT descriptor is utilized to represent the interested image region. For efficiency,
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eight orientation integral images [23] are precomputed with normalized image
pixel values in range [0, 1]. The local histograms of oriented gradients within
4× 4 subregions are stacked into a multidimensional feature vector. The kernel
function employed to compute similarity between two input feature vectors with
normalized lengths is the radial basis function:

K(xi, xj) = exp{−(
√

2γ)−2‖xi − xj‖}, (19)

where the kernel width γ is very crucial for convergence of RVM training: too
small kernel width leads to over-fitting, and too large one leads to under-fitting.
Since the maximum Euclidean distance between two SIFT descriptors is

√
2, the

value of γ is determined by 3.5γ =
√

2 (99.95% confidence interval).

4.1 Create Initial Training Set

To learn the log-likelihood ratio of image observation in (4), an online training set
including positive and negative samples is created as follows. Denote the initial
location of the interested object by (x, y,Rx, Ry), the central locations of nega-

tive samples are uniformly generated on the circle with dneg =
√
R2

x + R2
y pixels

away from the object center (x, y), and their corresponding scale perturbation is
up to ±40%. Likewise, the central locations of the positive samples are randomly
generated with dpos pixels away from (x, y), where 0 ≤ dpos ≤ 0.2dneg. Their
corresponding scale perturbation is up to ±20%. To seek the trade-off between
sampling density and RVM computational complexity O(N3), the sample size
for positive set is Npos = 20, and that for negative set is Nneg = 40. The selected
sparse vectors by RVM training will be used to represent the interested object.

4.2 Update Ensemble of Sparse Vectors

Initially, let the object model be U = {u1, u2, ..., uk}, where u1,u2,...,uk are the
selected sparse vectors from positive samples by RVM training. At any time
t > 0, denote the feature descriptor of the tracked object region by ut. If the
image observation likelihood satisfies

0 < b ≤ p(It|Xt) ≤ a < 1, (20)

then add current region descriptor ut to the object model U by incremental
augmentation U = {U, ut}. If the number of elements in U is larger than Npos,
the oldest elements |U | − Npos will be removed to fix the model size to be
|U | = Npos. The parameter a in (20) is used to avoid redundancy resulting from
too much similar region descriptors, and parameter b to resist incorrect addition
of descriptors of the partially occluded regions to the object model. Empirical
values determined by experiments are a = 0.99 and b = 0.1.

In addition, the RVM classifier will be retrained with positive samples from
the object model U and negative samples randomly generated from the nearby
backgrounds when current image observation likelihood p(It|Xt = p(ut)) is below
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the threshold b. Therefore, the object model built with adaptive ensemble of
sparse vectors not only affords discriminative information between tracked object
and the nearby backgrounds, but also benefits from temporal fusion of stable
tracking history.

5 Experiential Results

Experiments were conducted over video sequence captured in different scenarios
to evaluate the performance of the proposed visual tracker, and some representa-
tive results are reported in this paper. The number of particles used for tracking
in all experiments is 150.

5.1 Qualitative Comparisons

The ThreePastShop2Cor.mpg sequence (Fig. 1) has 1521 frames of 384×244 pix-
els (available at [24]). The interested pedestrian walks parallel with two nearby
persons that cast challenge to the visual tracker since the three persons have sim-
ilar appearances (in gray images), and the left most person changes his relative
positions to the right most side during walking. The proposed tracker succeeds in
locking on the interested pedestrian until it is occluded, and our tracking results
are comparable with the discriminative model based tracker via online selection
of Haar features [9].

Fig. 1. Tracking pedestrian among nearby walking persons. The frames 370, 472, 506,
523, 544, 576, 582, 621, 746, and 822 are shown.

To compare with the generative model based tracker adopting subspace learn-
ing, Fig. 2 shows some difficult tracking frames in the Dudek sequence (available
at [25]). The interested human face undergoes significant appearance changes,
such as, occlusion by hand, taking the glass on and off, head rotation and scale
variation. The proposed tracker affords comparable performance with the sub-
space learning based tracker in [4].

To demonstrate the flexibility of the proposed method, the tracking results
in Fig. 3 show the performance the proposed tracker in adapting to severe
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Fig. 2. Tracking Human Face. The frames 1, 209,365, 695, 729, 935, 956, 975, 1096
and 1145 are shown.

illumination variation and continuous jitter of on-vehicle camera. In Fig. 4, the
swift runner within the movie clip from Forrest Gump is tracked. The challenges
include drastic variations in pose, viewpoint and scale. In addition, a portion
of background pixels compassed within the rectangle boundary gives rise to
appearance changes.

Fig. 3. Tracking car over on-vehicle sequence. The frames 1, 224, 388, 444, 455, 508,
711, 733, 1350 and 1520 are shown.

5.2 Computational Complexity

Let Ko be the quantized orientation bins of image gradients, the computational
complexity for calculating integral images with resolution Nh × Nw is O(Nh ×
Nw × Ko). Denote Nr to be the number of sparse vector selected by RVM,
and Ns the number of the sampled particles. The complexity for particle filter
tracking is about O(Nr × Ns) without considering EM optimization initialized
by mean-shift clustering, and that of training RVM is O

(
(Npos + Nneg)3

)
.

On standard PC (P4 2.8GHz and 512M), the implementation of the proposed
method coded in C++ language runs at 65 ms/frame for 384×288 video sequences
with 150 particles. The time cost for calculating integral images of oriented
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Fig. 4. Tracking swift runner. The frames 1, 36, 58, 78, 83 and 165 are shown.

gradients is about 53 ms/frame, while that needed for particle tracking with
adaptive ensemble of sparse vectors is only 12 ms/frame.

6 Conclusions

The paper describes a novel real-time visual tracker via online Bayesian learning.
As the experimental results reported, the proposed method can robustly track
an object in the presence of drastic illumination, partial occlusion and rapid
changes in pose, viewpoint and scale. The main contribution of this paper can
be concluded as follows:

1. Online Bayesian learning of the image observation likelihood of the tracked
object with RVM classification.

2. Temporal fusion of the selected sparse vectors into an adaptive representation
of the tracked object for effective and efficient tracking.

3. Embedding trained RVM classifier into particle filtering.
4. Robust estimation of the target state with mean-shift initialized EM algo-

rithm.

Beacuse of its generality, the proposed framework of online Bayesian learning
could be extended to track different objects with various features. It remains
future work to explore how to combine offline and online learning to improve
visual tracker further.
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Abstract. This paper presents an algorithm for the detection and track-
ing of moving objects based on color and texture analysis for real time
processing. Our goal is to study human interaction by tracking people
and objects. The object detection algorithm is based on color histograms
and iteratively divided interest regions for motion detection. The tracking
algorithm is based on correlograms which combines spectral and spatial
information to match detected objects in consecutive frames.

Keywords: Motion detection, background subtraction, iterative subdi-
vision, objects tracking, correlograms.

1 Introduction

Nowadays, organizations that need a surveillance system can easily get low priced
surveillance cameras but they still need many security agents to keep a perma-
nent look at all time on all the monitors. This approach is not efficient, and in
fact, most of the time video tapes or files are replayed to check on a particular
event after it has happened. Thus, the automation of these systems is needed
as it would allow automatically monitoring all the cameras simultaneously, and
advising security agents only when a suspect event is on-going. This makes video
surveillance an important and challenging topic in computer vision. A surveil-
lance system is composed mainly of three different steps. The first step consists
in detecting objects in motion. The second step is tracking, although some re-
cent works combine these two first steps [1]. Finally, the third step is usually a
high-level interpretation of the on-going events.

In this paper, we present an algorithm for each step. By opposition to previous
works, for example [2] where algorithms are based on grayscale sequences and
shape analysis, the developed algorithms are based on texture and color analysis
to obtain more precise identification of objects.

If we briefly review existing approaches for motion detection, we note that
for stationary cameras, most are based on a comparison with a reference image
frame on a pixel by pixel basis [2,3]. Most important object detection algorithms
are listed in [4]. An analysis of these methods show that they are sensitive to
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local variations and noise, and post-processing is often necessary to filter out er-
roneously labeled motion pixels. However, post-processing cannot fix detection
errors involving large groups of pixels wrongly labeled on a local basis. To tackle
this issue, we propose an algorithm that naturally filters out local variations by
using color histograms on iteratively divided interest regions. Hence, contrarily
to the usual strategy, here we first consider groups of pixels, and then gradu-
ally subdivide regions until a given precision is obtained. Motion detection is at
the beginning a region-based process, and at the end it tends to a pixel-based
method. However, by starting with regions, small perturbations are ignored and
hence the quality of the detection and of the reference background is improved.
Furthermore, color histograms are invariant to image scaling, rotation and trans-
lation, and hence allow focusing on regions with significant motion. Finally, by
controlling the number of subdivisions, our object detection algorithm can be
performed at different scale to adjust to the object shape precision needed for
a given application. That is, a coarse or precise shape of moving objects can be
obtained.

For the tracking step, works are often based on multiple hypotheses analysis
[5], other on statistics [2,3]. We chose to use color and texture combined with
some hypotheses analysis to determine new and previous objects in the scene.
That is, we track by appearance.

Finally for the third step, we focus on tracking object relationships regardless
of their identity. This will allow us analyzing specific behaviors of the detected
objects such as the transportation of objects [2], or an illegal entry in a forbid-
den area [6]. Tracking generically, independently of the identity of objects will
allow us to handle a larger set of objects without strong assumptions too early
in the scene interpretation process. The contributions of this paper are a moving
object detection algorithm that analyses the video frames based on regions of
pixels and the use of correlograms in the HSV color space for object tracking.
The first contribution allows a significantly less noisy detection of moving ob-
jects, and the second allows a robust appearance tracking of moving objects.
The remainder of this paper is organized as follows. In section 2 preprocessing
phase of video sequences is explained, along with the motion detection algorithm
and possible post-processing. Section 3 presents the algorithms for the tracking
and relationship analysis. Then, section 4 shows experimental results and their
analysis. Finally, we conclude and present future works in section 5.

2 Methodology

Preprocessing is used to filter out noise and for color conversion. Then, the object
detection algorithm is applied. To remove remaining shadows, it is possible to
use some post-processing, though not necessary.

2.1 Preprocessing

Video capture is done in the RGB color space; however this color space is not
suited for our application because small changes in the light intensity change
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significantly an object description. We prefer a color space less sensitive to light
intensity. Thus, the HSV color space is used for all the processing because it
provides direct control over brightness to normalize the light intensity V. It
also focuses on the chromaticity present in Hue and Saturation. That is why
H and S are given more importance in the quantization phase. Nonetheless,
Hue is considered to be more reliable for color segmentation. So, the colors are
quantized in 162 bins (18X3X3). Before converting from RGB to HSV space, a
3X3 median filter is applied to clean the image from acquisition noise.

2.2 Detection of Objects in Motion

The first step is to detect object in motion. This issue has been addressed by
many algorithms [2,3,6]. In our application, we specifically need a time efficient
algorithm that is not affected by brightness changes and noise. What we consider
noise is object shadows, changes in the scene that are not of interest such as tree
leaves motion, and also noise resulting from the acquisition which has not been
cleaned by the median filter. To reduce the impact of noise naturally without
many post-processing steps, we propose a method that is not limited to local
pixel change. Instead, we consider groups of pixels to filter out noise by somewhat
averaging changes over a window.

The idea is to split empirically the image into squared regions of the same
size. At each step, color histograms of both reference frame Href and the current
frame Hcur are calculated for each region. Then, the L1 distance metric is used
to measure the distance between both histograms.

The L1 distance returns the level of difference, and it is defined as:

L1 =
∑
|Href(i) −Hcur(i)| (1)

If L1 is larger than a specified threshold, than the regions are different, and
motion is detected in that region. The threshold is fixed as a percentage of the
square size, according to the level of change we want to detect. That is, the
smaller is the square size, the larger will be the value of the threshold. Typically,
Thi+1 = Thi + 0.10 with Th0 =0.20. These values were set experimentally.
Since histograms are normalized, changes in light intensity should not affect the
threshold. More specifically, motion detection algorithm steps are:

1. The image is first split into squares of size X1 by X1, the value of X depends
on the size of the objects we want to track. The larger the object is relatively
to the frame, the larger is X (and vice versa). Let suppose X1=N. (see white
squares in Fig. 1a).

2. For each region, the histograms of both the current and reference frame
are evaluated using the quantization described in section 2. Then, the L1
distance is calculated between each pair of histograms. If according to L1, the
square regions are similar, no motion is detected in that region. Otherwise,
we consider that motion is detected and label this region as an interest region
to be further processed.
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Fig. 1. A) Step one with N=64 (white square), and the first pass of step 2 and 3 (gray
square). B) Final result with Xi=4 (y=4).

3. The interest regions identified at step 2 are split in four smaller squared
region, that is Xi=Xi−1/2 (see the bold gray squares in Fig. 1a, to have
a more accurate segmentation of the objects in motion. Also, to preserve
small extremities of objects, we split in four outside boundaries regions and
include the bordering quarters to the interest regions (see bordering grey
squares in Fig. 1a. Then step 2 is repeated. The reference frame is updated
with the content of the regions where no motion is detected. This way, the
gradual changes in lighting is accounted for. This should allow our algorithm
to perform reliably for outside scenes observed during extended time.

4. We repeat step 3 until Xi==N/2y, where y is a threshold fixed according to
the desired level of precision. Fig. 1b shows the final result for region of 4 by
4 pixels.

At this point, the detection of objects in motion is completed. Compared to
standard background subtraction algorithms, our method does not need a sta-
tistical background model. It provides efficiency with the control of the detected
object shape precision, as coarse or precise shape of objects can be obtained
based on the selected minimum region of interest size (see Fig. 2). Furthermore,
the motion of small objects can be naturally filtered.

Fig. 2. Detecting and tracking moving objects. A) Object detection at fine scale, at
frame 43, B) and C) object detection at coarser scales and D) fragmented object.
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2.3 Postprocessing

Although, the detection algorithm filters out most of the noise, in some frames
noise may persist because of strong shadows. This is caused by the fact that
the floor has strong reflections, and these small reflection regions are in the area
of squared interest regions containing motion. If such small regions are inside
interest area where there is other motion for a number of a subdivision, they
eventually end up at a scale where they have a significant impact of their own
on the histogram of an interest region. That is why some noisy region may be
included in the final segmentation. These noisy regions will be exclusively located
near larger segmented region. They are removed using the algorithm proposed
by Cucchiara et al. for shadow detection [9]. Note that, the HSV quantization
of the frames and histogram difference threshold can be modified to avoid post
processing. In our current work, we aim to do that.

3 Tracking of Object in Motion

The detected objects are tracked using correlograms which have been proven
to be a better feature detector than histograms [7][8]. It is a two-dimensional
matrix C that combines color and texture information by quantizing the spatial
distribution of color. C(i,j) indicates how many times color i co-occurs with
color j according the spatial relationship given by the distance vector V(dx,dy),
where dx and dy represent the displacement in rows and columns respectively.

Let I be the image of width W and height H, the correlogram is defined as
follows:

C(i, j) = |{(x, y) =∈ N2, x < W, y < H|I(x, y) = i∧I(x+dx, y+dy) = j}| (2)

For every detected object its histogram and correlogram in the HSV space is
calculated.

First, the histogram intersection is computed to verify globally if the objects
are coarsely alike. Histogram intersection HI is defined as follows:

HI(x, y) = min(Hp(i, j), Ho(i, j)) (3)

Where Hp and Ho represents the color histogram of the object we are looking
for and the classified one respectively.

Then correlogram intersection is calculated to compare in more precisely both
objects if necessary. Correlogram intersection CI is used generally to check if an
image contains another image. Here we used it to compare objects. It is defined
as follows:

CI(x, y) = min(Cp(i, j), Co(i, j)) (4)

where Cp and Co represents the correlograms of the object we are looking for
(Objp) and the classified one (Objo) respectively. Once the correlegram intersec-
tion is computed, the distance L1 is calculated between Cp and CI. The closer
is the distance to zero, the more likely the object is part of the other one.
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The tracking algorithm works as follows:

1. The color histogram of the new object in the current frame and its correlo-
gram are computed.

2. With each object in the previous scene, histograms intersection HI is com-
puted. We assume that the object size does not change more than 15% from
frame to frame. We believe that it is a reasonable assumption for human
tracking.

3. The distance L1 between Hp and HI is computed. If L1 is larger than the
threshold, then Objp is not the same as Objo. Otherwise, the correlogram
intersection CI of Objp and Objo is computed. The distance L1 between CI
and Cp is computed. If it is smaller than a fixed threshold the objects are
similar. Otherwise, they are different.

4. Steps 1, 2 and 3 are repeated for each object.

One problem that arises often in motion detection is that the object can be
split into at least two parts being considered as two distinct objects. This can be
caused by the fact that the background has the same color and texture as some
parts of the object. This method overcomes the problem and tells if an object
of the current frame has been parts of objects in the previous frame (and vice
versa). This allows us to establish if fragments are part of the same object.

3.1 Tracking of Objects Relationships

Currently, for interpreting a scene, our algorithm cannot identify objects. How-
ever it can tell when an object A has been taken or left by another object B.
This is also done using the correlograms intersection.

Case when an Object is Left. When an object A is left, using correlograms
intersection we can determine that object A and object B were connected as
object C in the previous frame. If object B gets far from A with a distance Z,
than the algorithm determine that it was left by B. The distance Z is being used
to determine whether A and B are fragments of C, or A is left by B. Currently,
Z is simply represented by the distance between the centrods of the left Object
A and the moving object B.

Case when an Object is Taken. When an object A is taken, using correl-
ograms intersection we can determine that object A of the previous frame has
been taken by object B to form object C. Objects are hence merged into one
object. In future work, the system should be able to keep track of the objects
separately even if they are temporarily merged.

4 Experiments

The algorithms described in the previous section were implemented on a 2.6 Ghz
AMD Opteron(tm) and the presented sequence has been captured in an indoor
scene under multiple light sources.
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Fig. 2a shows the result of the motion detection algorithm presented in
section 2. Inside the bounding box, the whole moving object is detected. Note
that the region of the person includes background, partly because of the 4 by
4 pixels minimum square size. This effect is reduced using smaller square size.
Larger square size gives coarser object regions. At some point in the sequence
(Fig. 2d), the color and texture of the person legs and the background are sim-
ilar. As many object detection algorithms this part is not detected. However,
as explained in section 3, the tracking algorithm can determine that both parts
belong to the same object present in previous frame because both fragment cor-
relogram intersects with the correlogram of the whole object previously in the
sequence. The tracking algorithm can also tell if a given object was split some
times in the past using again correlogram intersection.

The bag is deposed in Fig. 3a; however it is still connected to the person, so
the algorithm still consider them as one object. In Fig. 3b, although the bag
and the person are separated; they are still considered as one object because
they are close. This is cause by the choice of our distance threshold. A stronger
criteria based on motion trajectory of objects is under development to obtain
more robust results. Finally, in Fig. 3c the object gets far enough from the
bag, so that our algorithm considers that the bag was set down by the person.
Note that the body parts are still considered to be one object, because not only
the distance between object is important, but also there appearance. Further
work is on the way to segment objects from persons. For the moment, we have
concentrated our efforts on assuring that the fragments of a single object are
considered as such even if detection fails.

Fig. 3. Objects relationship processing A) at frame 88 B) at frame 91 C) at frame 93

Fig. 4 presents performances of the segmentation algorithm on Bootstrapping
and Waving trees sequences presented in [10]. The proposed algorithm performs
relatively well compared to the methods used on the same sequences. For the
Bootstrapping sequence wrong segmentation that occurred is due to the strong
reflection on the floor, and the strong lightning present in the scene; however the
result is close to the ground truth, and all the present people has been detected.
In the waving trees sequence, the waving of the tree leafs does not affect the
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segmentation algorithm. However some false positives occurred on the shirt of
the person because it is green as the color of the background model for the same
position in the image.

Fig. 4. Test of the segmentation algorithm on the test sequences presented in [10]

Fig. 5c and 5d is the frame 362 of the PETS 2001 dataset2 (camera2). In this
outdoor sequence, objects to be detected are small relatively to the frame, so N
is fixed to 32 and Th0 remains equal to 0.20. The car is detected and tracked
correctly since its color and texture are clear enough. When Th0 is incremented
to 0.30, in only 3 frames from the sequence the car is not detected because it
is split in four parts, each part being in a different square region. This makes
only small changes in these regions, thus the motion is not detected. Note that
for the rest of the PETS sequence, where the there are persons walking on the
road. They are too small to be detected at coarse scale and if the algorithm is
applied directly at fine scale for all the images it looses its advantages since the
noise has not been filtered at a coarse scale.

Table 1 shows quantitative results for the detection algorithm which has been
applied to video sequences presented at Fig. 1 (100 frames of size 512X384) and
Fig. 5 (frame 257 to frame 416). The algorithm was executed for both sequences.
For each frame the false negative/positive motion detected squares of size 4X4
were counted and divided on the total number of squares in the image. Then,
the average value for every sequence has been recorded in the table. Also, the
frequency of lost objects (false negative objects) and wrongly detected objects
(false positive objects) is shown. As we can see, if the objects to be detected are
too small relatively to N and Th0 is too large, motions regions are not detected
very well and even some motion objects are totally lost for some frames because
they do not make a significant change in the region’s histogram. Meanwhile,
when Th0 is too small false positive regions increases creating in some frames
false positive objects. Thus, when N is large relatively to motion objects, good
results are achieved with a smaller Th0 and vice versa. Furthermore, the exe-
cution time relative to the number of frames shows that the algorithm is time
efficient.



54 R. Bourezak and G.-A. Bilodeau

Fig. 5. A), B) Detection and tracking of multiple people walking in an atrium and C),
D) Detection and Tracking on frame 362 from pets dataset1 2001 camera2

Table 1. Quantitative evaluation of the detection algorithm

N Th0 FP motion
region (%)

FN
motion

region (%)

FP objects
(%)

FN
objects

(%)

Total
execution
time (sec)

Sequence of Fig.
5b (160 frames) 64

0.10 0.20 0.017 0 0 13
0.20 0.10 0.23 0 0.27 12

32 0.20 0.18 0.017 0 0 15
0.30 0.031 0.14 0 0.019 14

Sequence of Fig.
5d (100 frames)

64 0.20 0.14 0.04 0 0 20
0.30 0.07 0.15 0 0.01 19

32 0.20 0.13 0.017 0 0 16

FP: False postive, FN: False negative

5 Conclusion

In this paper we presented an algorithm for objects motion detection, tracking
and interpretation of basic relationships. This algorithm is efficient, fast and does
not require a background learning phase. Furthermore, the motion detection
algorithm can be performed at different scale to adjust to the object shape
precision needed for one application. Also, the motion of small objects can be
naturally filtered as focus is only on interest regions. Results have demonstrated
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that this approach is promising as it performs adequately to detect and track
object regions.

In future work, the detection algorithm will be adjusted to get a better seg-
mentation of the object borders. Furthermore, an algorithm to process square
regions where no motion is detected will be implemented to predict regions where
the detected objects can hide based on color and textures. It will also permit
to solve occlusion problems. Finally the algorithm will be tested in an outdoor
scene and the object relationship algorithm will be improved using more robust
criteria.
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Abstract. In this paper, we introduce a framework of human pose esti-
mation from polluted silhouettes due to occlusions or shadows. Since the
body pose (and configuration) can be estimated by partial components
of the silhouette, a robust statistical method is applied to extract useful
information from these components. In this method a Gaussian Process
model is used to create each sub-manifold corresponding to the compo-
nent of input data in advance. A sub-manifold voting strategy is then
applied to infer the pose structure based on these sub-manifolds. Exper-
iments show that our approach has a great ability to estimate human
poses from polluted silhouettes with small computational burden.

1 Introduction

Estimation of human pose from monocular videos is a challenging research topic,
as environments may be very complicated. It makes this problem very tough
because the extracted silhouette is always contaminated by shadow, occlusion
between the body and background objects, etc.

A broad range of related works have considered this problem, which can be
roughly classified as two major categories. The first one is generative model,
which typically generates hypotheses of pose structure and chooses the most
similar one to the observation. But inference involves complex search in high
dimensional state spaces. Therefore, most researchers using generative model
exert their efforts to make inference in high dimensional spaces tractable, e.g.,
covariance scaled sampling presented by Sminchisescu [1] and proposal maps
driven MCMC by Lee [2]. However, the computational burden is still very heavy
despite of introducing prior knowledges. Besides, initialization remains a great
challenging problem, because bad initializations lead to explosive search steps.

The other one is discriminative method which recovers the pose structure
from the input data directly. One kind of these approaches casts the pose esti-
mation problem as a database retrieval task. That is, given a query feature, the
database returns pose parameters with the most similar matching feature [3].
Shakhnarovich [4] uses hashing functions for fast approximate similarity search,
and Athitsos [5] accelerates the query by introducing Lipschitz embeddings.
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More recently, discriminative methods based on manifold learning have at-
tracted great attention of researchers for its extrapolating ability and less com-
putation burden. Agarwal [6] uses Relevance Vector Machine, a sparse Bayesian
nonlinear regression to map a feature space to a parameter space. Rosales [7]
further splits the input space into several simpler ones, which have own map-
ping functions. Elgammal [8] also creates a mapping from the manifold to the
input data using RBF interpolation framework in a close form. Lately, Scaled
Gaussian Process Latent Variable Models (SGPLVM) [9] is widely used to learn
the low dimensional embedding for optimizing mapping functions [10]. It learns
a low-dimensional embedding of the high-dimensional pose data and provides a
nonlinear probabilistic mapping from the latent space to the pose space [11].

One common problem of all above approaches is that they do not manipulate
occlusion and shadow. Some researchers have considered this problem. For exam-
ple, Grauman [12] proposed a multi-view shape and structure statistical model
to recover other missing views based on one view without occlusion. But it must
have at least one input view with high quality. Chang [13] decomposes complex
cyclic motion into components and maintains coupling between components to
deal with occlusion. However, the computational cost is still high.

In short, the discriminative methods mentioned above infer the pose structure
by using every element of the input data. So the influence caused by occlusion and
shadow can not be suppressed efficiently. We propose a manifold learning based
method to estimate human poses. In our method, SGPLVM is used to learn the
sub-manifold for each component of the input data (silhouette). Therefore, if one
component feature appears in input data, all the body poses it supports can be
indicated by its corresponding sub-manifold. During the inferring stage, a voting
methodology is adopted to collect the supports from all the sub-manifolds, so
that the latent variable corresponding to the intrinsic body configuration can be
deduced by using a robust statistical method.

The main contributions and advantages of this paper include: 1) Propose a
robust method of pose estimation given a polluted input silhouette with severe
occlusion and shadow; 2) Low on-line computational burden of pose inference
benefitted from the off-line sub-manifold learning; 3) Small training set required.

2 Problem Definition and Inference Framework

Our goal is to estimate pose structure y given input silhouette I. Here, I is
composed of binary value where 1 means the foreground and 0 means the back-
ground obtained by background subtraction or color segmentation. Using ”shape
+ structure” representation, pose structure y is defined as

y ≡
[
y1, · · · , yi, · · · , yd, θ

]
(1)

where yi is the ith pixel value, d is the image size and θ is the vector of 3D
joint angles. Suppose y is D-dimensional. If y is estimated, the joint angles θ
and reconstructed silhouette [y1, · · · , yd] can be obtained simultaneously.
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Although the dimension of y is very high, it can be embedded in a manifold
with much lower latent dimension. Thus we can define a latent variable x in a
low-dimensional space (as low as 2D in our problem), and use Gaussian Process
[11] to create a mapping between x and y.

For a given input image I, we try to find a latent vector x̂ whose corresponding
high dimensional vector ŷ is mostly similar to I. Then the solution is constrained
near the trained manifold. Using Bayesian framework, finding optimal x can be
formulated as a MAP (maximum a posterior) estimation problem,

x̂ = argmax
x

p(x|I) = argmax
x

p(I|x)p(x) (2)

where p(I|x) is the likelihood which can be estimated from the input image I,
and p(x) is the prior probability that can be calculated from the training data.
The following sections will describe how to define these probabilities.

3 Learning Prior Probability Using Gaussian Process
Model

Gaussian Process is used here for dimensional reduction and mapping creation
between the latent variable and the high-dimensional input data. Moreover, it
is also used to learn the prior probability p(x). Here, SGPLVM [9] is applied.

3.1 SGPLVM

We briefly review the detail of SGLVM here. In contrast to other dimensionality
reduction methods, SGPLVM models the likelihoods of the high-dimensional
training data of pose structure {yi}Ni=1, yi ∈ R

D, as a Gaussian process for
which the corresponding latent variables {xi} are initially unknown. Let Y ≡
[y1 − μ, · · · , yN − μ]T be a training set where the means have been subtracted.
Then the marginalized likelihood of Y is

p(Y |M) =
|W |N√

(2π)ND|K|D
exp

(
−1

2
tr
(
K−1YW 2Y T

))
, (3)

where M =
{
{xi}, α, β, γ, {wi}Dj=1

}
are the latent variables and model parame-

ters; W = diag(w1, · · · , wD) is a diagonal matrix containing a scaling factor for
each data dimension; and K is a N × N kernel matrix whose entry measures
the similarity between two latent variables xi, xj using a RBF function with
parameters α, β, and γ

Kij = k (xi, xj) = αexp
(
−γ

2
‖xi − xj‖2

)
+ β−1δxi,xj , (4)

where δxi,xj is the delta function. Then the negative log-likelihood of (3) is

LGP =
D

2
ln|K|+ 1

2

∑
k

w2
kY

T
k K−1Yk +

1
2

∑
i

‖xi‖2 + ln
αβγ∏
k w

N
k

. (5)

By minimizing (5), the model parameters and latent variables corresponding to
training samples can be learned.
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3.2 Learning and Prediction Using GP Models

To reduce the algorithm complexity, we use the active set and the associated
optimization algorithm. More details can be found in Lawrence’s work [10].

Once the model parameters and the latent variables are learned, the joint
probability of a new latent variable x and its associated pose y is given as [11]

p(x, y|M,Y ) ∝ 1√
(2π)(N+1)Dσ(x)2D

exp

(
−‖W (y − f(x))‖2

2σ2(x)

)
exp

(
−xTx

2

)
.

(6)
Its negative log-likelihood is given by [9]

L(x, y) =
‖W (y − f(x))‖2

2σ2(x)
+

D

2
lnσ2(x) +

1
2
‖x‖2 (7)

with
f(x) = μ + Y TK−1

I,Ik(x)
σ2(x) = k(x, x) − k(x)TK−1

I,Ik(x),
(8)

where KI,I denotes the kernel matrix developed from the active set and k(x) =
[k(x1, x), · · · , k(xN , x)]T , xi ∈ ActiveSet.

It is obvious that, given a new latent variable x, the pose y, with the maximal
probability can be predicted as

y = μ + Y TK−1
I,Ik(x). (9)

From (6), the prediction probability at x is in direct proportion to

exp

(
−xTx

2

)(
σ2(x)

)D
2 . (10)

which is defined as the model prior p(x).
Figure. 1 shows a learned two-dimensional embedding of a walk sequence,

where the red points represent the latent variables corresponding to the training
samples and image intensity value represents the model prior p(x) with bright
regions indicating high prediction probabilities.

4 Sub-manifold Learning for Each Component

This section presents a sub-manifold decomposition and voting strategy to esti-
mate the likelihood p(I|x) given the latent variable x.

4.1 Component Decomposition

For component decomposition in our method, pixel is taken as the component
for convenience. By using component decomposition, p(I|x) can be expressed as
p
(
I1, · · · , Id|x

)
, where Ii is the ith component of I. Here, Ii is binary which is
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Fig. 1. The latent variable space learned by Gaussian Process in our experiment. The
red points are latent variables associated with training samples. The model prior p(x)
is represented as intensity where white regions represent areas with high prior.

the value of I at the ith position of image coordinates. In section 3.2, Equ. (9)
describes the relation between a latent variable x and its predicted pose y with
the maximal probability. Writing it in decomposition manner we have

yi = μi +
(
Y TK−1

I,I

)i

k(x) (11)

where yi represents the ith component having the same meaning with (1), μi is

the ith entry of μ, and
(
Y TK−1

I,I

)i

is the ith row of matrix Y TK−1
I,I .

Obviously, all the poses whose ith component is foreground should be sub-
jected to the following equation

μi +
(
Y TK−1

I,I

)i

k(x) = 1 (12)

A binary map can be created to indicate whether the latent variables is subject
to (12). We denote this map as the sub-manifold of the ith component. One
example is shown in Fig. 2 with the bright blue regions indicating the sub-
manifold with latent variables supporting the ith position of the input image to
be the silhouette. This sub-manifold satisfying (12) is shown as the yellow curve.

4.2 Sub-manifold Learning

Since the silhouette is binary as 1 or 0, the constraint subjected to (12) is
too strict, because the Gaussian Processes only provide continuous predictions.
Therefore, an appropriate threshold is needed to translate the calculated values
into binary values. The threshold value is determined based on the criteria of
minimizing the misclassification risk by using the training data as

T̂i = argmin
T

∑
n

(
yi(n) > T

)
⊕ Ii(n) (13)

Where Ii(n) is the ith component value of the nth silhouette, and yi(n) is the
prediction of Ii(n) using the Gaussian Process. ⊕ is the exclusive or operator.
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Sub-manifold Corresponding to the ith Component
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Fig. 2. The latent variable space and the sub-manifold corresponding to the ith com-
ponent. Left: human silhouette and its ith component shown as the red point. Right:
the latent variable space. The red points are latent variables of training data. The deep
blue region is the embedding space and the bright blue one is the sub-manifold of the
ith component, while the latent variables on the yellow curve are subject to Equ. (12).

Now the sub-manifold of each component expressed with the binary values
can be modified as the following inequation

μi +
(
Y TK−1

I,I

)i

k(x) > T̂ i (14)

Then the binary sub-manifold calculated from (14) in the latent variable space
are complex zones shown as a bright blue region in Fig. 2.

5 Inferring Pose by Sub-manifold Voting

The latent variable x can be obtained by maximizing the posterior probability as
shown in (2). And the pose structure y can be estimated directly based on this
latent variable. This section gives the specification of the observation probability
p(I|x), and the expression of the estimated pose structure y.

5.1 p(I|x) Estimation

Different from most previous methods using regression to infer the pose structure
directly, such as [8][6][12], we use a robust statistical method, sub-manifold voting
strategy, to infer the most probable latent variable. All the latent variables on the
sub-manifold corresponding to each component of input silhouette are voted to
the latent variable space. Then the number of votes from all the sub-manifold at
the latent variable x is accumulated which can be used to estimate the likelihood
probability p(I1, · · · , Id|X).

As shown in Fig. 2, the bright blue regions indicate the sub-manifold with
latent variables supporting the ith position of the input image to be the silhouette
of the human body. It can also be expressed in the reverse way that if the value
in some place of the sub-manifold image Si(x) is ’1’, its corresponding x value
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Fig. 3. Voting in embedding space. The distribution of posterior probability is illus-
trated as intensity and the red star represents the optimized latent variable using MAP.

is one of the candidates of the estimated latent variable. Since the computation
of the sub-manifold of each component of pose vector y is independent of the
input image, it can be calculated off-line during the training phase and stored
in advance. Then the likelihood probability given a latent variable p(I|x) can be
estimated by sub-manifold voting as

p(I|x) ∝
∑

i

Si(x)× Ii (15)

where Si(x) is the sub-manifold value at x corresponding to the ith component,
and Ii is the silhouette value at the ith component.

5.2 Posterior Probability Determination

By combining the definition of the prior and the likelihood probability from
(10)(15), (2) can be converted as

x̂ = arg maxx exp
(
−xT x

2

) (
σ2(x)

)−D
2
∑

i S
i(x)Ii

ŷ = μ + Y TK−1
I,Ik(x̂)

(16)

The distribution of posterior probability is shown in Fig. 3, where the latent
variable with the maximal probability corresponds to the human pose we want
to estimate.

6 Experiment

In this section, we show the performance of the proposed method by a series
of experiments where the input silhouette images are polluted by occlusion or
shadow. The pose parameters can be any description of pose structure, such as
3D joint angles, 3D joint positions, 2D joint positions and so on.

During the inference stage, the input data are human silhouettes which are
obtained by simple background subtraction or color segmentation. In some of
our experiments, the bounds of human body are labeled manually. But in other
experiments, only very rough range of bound is provided in a single image which
can be used to generate several candidate bounds.
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Fig. 4. Pose estimation of different kinds of polluted silhouettes by irregular noise.
Left two in red dash box: the silhouette and the 3D structure of ground truth. Right:
The first row shows the polluted silhouettes. The second row shows 3D pose structures
estimated by our algorithm, and the third row is estimated by regression methods. The
first column is used to test the algorithms using a unpolluted silhouette.

6.1 Pose Estimation for Irregular Noise

We demonstrate the proposed approach on whole body pose estimation of a
walking sequence. The training data include 480 silhouettes with size 80 × 40
associated with 51-dimensional joint angles. The embedding space learned by
Gaussian Process is shown as Fig. 1 where the red points represent the latent
variables corresponding to the training data.

In order to test the robustness of our algorithm, two groups of images polluted
to different extent are used. Firstly, we use graphics software to synthesize a
human body pose as the ground truth shown in the red dashed box as shown
in Fig. 4. The top image in the box is the silhouette and the bottom one is its
associated 3D structure. By adding some noise to the silhouette of ground truth,
we obtain several polluted images which can be taken as polluted by shadow
or background subtraction error. The estimated results using our approach are
given below the input silhouettes in the seconde row shown in Fig. 4. And the
maximum error of silhouette reconstruction is below than 1%.

A method using regression similar to [8][6] is adopted here for comparison.
The new pose x is obtained by minimizing the prediction error between the input
data and prediction value as

x∗ = argminx ‖I − f(x)‖2
f(x) = μ + Y TK−1

I,Ik(x)
(17)

where f(x) is the prediction given x, and I is the input silhouette. Therefore, a
solution for x∗ can be obtained by solving the over-constrained nonlinear equa-
tion. The estimated results using regressions are given below our results in the
third row shown in Fig. 4. It is obviously that the pose estimated using regression
method is very different from the ground truth. Since all the input dimensions
are considered, the estimated results may be influenced greatly by the noise.
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6.2 Real Sequences with Occlusion and Shadow

Here the result of a real sequence about walking is given. We recorded an indoor
video with cluttered backgrounds. This test video contains 30 frames of a subject
walking behind a chair and a board shown in Fig. 5.

For the existence of shadows and occlusion by the chair and the board, some
parts of human body are missing. In stead of labeling human position manually,
a rough search range is calculated automatically based on the result of back-
ground subtraction shown as the red dash box. Then some small sub-windows
are generated in the search range, and the image patches in these sub-windows
are taken as input. Since the maximal posterior can be obtained during the pose
estimation from (16), the pose structure with the largest posterior of these sub-
windows is taken as the best estimation result shown as the 3rd row in Fig. 5.

Fig. 5. Pose estimation of a walking sequence with occlusion and shadow. The 1st row:
input images. The 2nd row: the silhouettes with the red dash box as the search range
of human position. The 3rd row: 3D pose structures estimated by our algorithm.

Since the information of motion consistency is not used, the singularity can
not be avoided for inference from 2D to 3D given only a single view. But the
projected silhouettes of our results fit the input image very well which shows
that our algorithm is very successful. One can overcome the singularity partially
by using multi-views or continuous cues. From the experiment, the estimation
results show that our algorithm can work very well in spite of the existence of
occlusion and shadow at the same time.

7 Conclusion

A method of human pose estimation in complicated environments with occlusion
and shadow is presented. In our method, the input data are decomposed as
small components based on which the corresponding sub-manifolds are created.
A robust statistical method, sub-manifold voting strategy, is used to fuse the
voting results based on all the sub-manifolds and output the estimation.

We intend to explore several avenues to improve the performance of our al-
gorithm in future work. The current algorithm needs a window to specify the
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body position. So we plan to integrate the estimation method into a tracking
framework which can provide good candidate of body position. On the other
hand, we also want to use this method to do posture recognition.
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Abstract. The Modified Quadratic Discriminant Function was first pro-
posed by Kimura et al to improve the performance of Quadratic Dis-
criminant Function, which can be seen as a dot-product method by
eigen-decompostion of the covariance matrix of each class. Therefore,
it is possible to expand MQDF to high dimension space by kernel trick.
This paper presents a new kernel-based method to pattern recognition,
Kernel Modified Quadratic Discriminant Function(KMQDF), based on
MQDF and kernel method. The proposed KMQDF is applied in facial
expression recognition. JAFFE face database and the AR face data-
base are used to test this algorithm. Experimental results show that the
proposed KMQDF with appropriated parameters can outperform 1-NN,
QDF, MQDF classifier.

1 Introduction

Statistical techniques have been widely used in various pattern recognition
problems[1]. Statistical classifiers include linear discriminant function(LDF),
quadratic discriminant function(QDF), Parzen window classifier, nearest-
neighbor(1-NN) and k-NN rules, etc. Under the assumption of multivariate
Gaussian density for each class, the quadratic discriminant function is obtained
based on Bayes theory. The modified QDF(MQDF) proposed by Kimura et al.
[2]aims to improve the computation efficiency and classification performance of
QDF via eigenvalue smoothing, which have been used successfully in the hand-
writing recognition[2,3]. The difference from the QDF is that the eigenvalues of
minor axes are set to a constant. The motivation be-hind this is to smooth the
parameters for compensating for the estimation error on finite sample size.

� The paper is sponsored by Motorola Human Interface Lab Research Founda-
tion(No.303D804372), New Century Excellent Talent Program of MOE(No.NCET-
05-0736), NSFGD(No.04105938).

N. Zheng, X. Jiang, and X. Lan (Eds.): IWICPAS 2006, LNCS 4153, pp. 66–75, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



KMQDF for Facial Expression Recognition 67

On the other hand, kernel-based learning machines, e.g., support vector
machines(SVMs)[4], kernel principal component analysis(KPCA)[5], and kernel
Fisher discriminant analysis(KFD)[6,7,8], have been got much interest in the
fields of pattern recognition and machine learning recently. The basic idea of
kernel methods is finding a mapping such that, in new space, problem solv-
ing is easier(e.g. linear). But the mapping is left implicit. The kernel represents
the similarity between two objects defined as the dot-product in this new vector
space. Thus, the kernel methods can be easily generalized to a lot of dot-product
(or distance) based pattern recognition algorithms. QDF and MQDF can also be
seen as dot-product methods by eigen-decompostion of the covariance matrix.
Therefore, it is nature that MQDF can be generalized to a new high-dimension
space by kernel trick.

This paper proposes a new kernel-based method to pattern recognition, Kernel
Modified Quadratic Discriminant Function(KMQDF), based on kernel methods
and MQDF. For testing and evaluating its performance, the proposed KMQDF
is applied for facial expression recognition(FER) on two face databases. Experi-
mental results show that KMQDF with appropriated parameters can outperform
1-NN, QDF, MQDF classifier.

2 MQDF

In this section we would give a brief review the MQDF. Let us start with the
Bayesian decision rule, which classifies the input pattern to the class of maximum
a posteriori(MAP) probability out of class. Representing a pattern with a feature
vector, the a posteriori probability is computed by Bayes rule:

P (wi|x) = p(x|wi)P (wi)/p(x) (1)

where P (wi) is the a priori probability of class, p(x|wi) is the class probability
density function(pdf) and p(x) is the mixture density function. Since p(x) is
independent of class label, the nominator of (1) can be used as the discriminant
function for classification:

g(wi|x) = p(x|wi)P (wi) (2)

The Bayesian classifier is reduced to QDF under the Gaussian density as-
sumption with varying restrictions. Assume the probability density function of
each class is multivariate Gaussian

p(x|wi) =
1

2π
d
2 |Σ|

1
2
i

exp[
(x− μi)TΣ−1

i (x− μi)
2

] (3)

where μi and Σi denote the mean vector and the covariance matrix of class,
respectively. Inserting (3) into (2), taking the negative logarithm and omitting
the common terms under equal priori probabilities, the QDF is obtained as

g(wi|x) = (x − μi)TΣ−1
i (x − μi) + log |Σi| (4)
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The QDF is actually a distance metric in the sense that the class of minimum
distance is assigned to the input pattern. By eigen-decompostion, the covariance
matrix can be diagonalized as

Σi = BiΛiB
T
i (5)

where Λi is a diagonal matrix formed by the eigenvalues of Σi, Bi is formed by
the corresponding eigenvectors.

According to (5), the QDF can be rewritten in the form of eigenvectors and
eigen-values:

g(wi|x) = BT
i (x− μi)TΛ−1

i BT
i (x− μi) + log |Λi| (6)

=
d∑

j=1

(
1
λij

)[βT
ij(x − μi)]2 +

d∑
j=1

log(λij)

Replacing the minor eigenvalues with a constant, the modified quadratic dis-
criminant function [3] is obtained as follows:

g2(wi|x) =
k∑

j=1

(
1
λij

)[βT
ij(x− μi)]2 +

k∑
j=1

log(λij) (7)

+
d∑

j=k+1

(
1
δi

)[βT
ij(x − μi)]2 + (d− k) log δi

=
k∑

j=1

(
1
λij

)[βT
ij(x− μi)]2 +

k∑
j=1

log(λij)

+(
1
δi

)ri(x) + (d− k) log(δi)

where k denotes the number of principal axed and ri(x) is the residual of sub-
space projection:

ri(x) = ‖x− μi‖2 −
k∑

j=1

[βT
ij(x − μi)]2 (8)

The (8) utilizes the invariance of Euclidean distance.
The advantage of MQDF is multifold. First, it overcomes the bias of minor

eigen-values (which are underestimated on small sample size) such that the clas-
sification performance can be improved. Second, for computing the MQDF, only
the principal eigenvectors and eigenvalues are to be stored so that the mem-
ory space is reduced. Third, the computation effort is largely saved because the
projections to minor axes are not computed[3].

The parameter δi of MQDF can be set to a class-independent constant as the
following equation[2,9]:

δi = (tr(Σi)−
k∑

j=1

λij)/(d− k) =
d∑

j=k+1

λij/(d− k) (9)

where tr(Σi) denotes the trace of covariance matrix.
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3 Kernel MQDF

As a statistical algorithm, MQDF can detect stable patterns robustly and ef-
ficiently from a finite data sample. Embedding the data sample in a suitable
feature by kernel trick, it is possible that MADF can perform better than in the
original feature space. According to this idea, we subsequently present the new
kernel-based method, KMQDF algorithm, in this section.

For a given nonlinear mapping Φ, the input data space IRn can be mapped
into the feature space H . As a result, a pattern in the original input space
IRn is mapped into a potentially much higher dimensional feature vector in
the feature space H . Since the feature space H is possibly infinite dimensional
and the orthogonality needs to be characterized in such a space, it is reasonable
to view H as a Hilbert space. An initial motivation of KMQDF is to perform
MQDF in the feature space H . However, it is difficult to do so directly because
it is computationally very intensive to compute the dot products in a high-
dimensional feature space. Fortunately, kernel techniques can be introduced to
avoid this difficulty. The algorithm can be actually implemented in the input
space by virtue of kernel tricks. The explicit mapping process is not required at
all.

Given a set of M training samples x(xi1, xi2, . . . . . . , xiM ) in IRn, labeled with
the ith class, the covariance operator on the feature space H can be constructed
by

ΣΦ
i = (

1
M

)
M∑

j=1

(Φ(xij)−mΦ
i0)(Φ(xij)−mΦ

i0)
T (10)

where mΦ
0 = ( 1

M )
∑M

j=1 Φ(xij). In a finite-dimensional Hilbert space, this oper-
ator is generally called covariance matrix. Since every eigenvalue of a positive
operator is nonnegative in a Hilbert space[10], it follows that all nonzero eigen-
values of are positive. It is the positive eigenvalues that are of interest to us. It
is easy to show that every eigenvector of ΣΦ

i , β can be linearly expanded by

β =
M∑

j=1

ajΦ(xij) (11)

To obtain the expansion coefficients, let us denote Q = [Φ(xi1) . . . . . . Φ(xiM )],
and form an M ∗M Gram matrix R̃i = QT

i Qi ,whose elements can be determined
by virtue of kernel tricks:

R̃i(u,v) = Φ(xiu)TΦ(xiv) = (Φ(xiu) • Φ(xiv)) = ker(xiu • xiv) (12)

We centralize R̃i byRi = R̃i−1M R̃i−R̃i1M+1M R̃i1M , where 1M = ( 1
M )M×M .

On the other hand, We can denote ΣΦ
i and Ri using Qi as flowing:

ΣΦ
i = (

1
M

)(Qi −Qi1M )(Qi −Qi1M )T (13)

Ri = (Qi −Qi1M )T (Qi −Qi1M ) (14)
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Consider an eignevector-eignevalue pair γi and λi of Ri, we have

1
M

(Qi −Qi1M )(Qi −Qi1M )T (Qi −Qi1M )γi =
1
M

λi(Qi −Qi1M )γi (15)

Inserting (14) to (15),we can get

ΣΦ
i (Qi −Qi1M )γi = (

λi

M
)(Qi −Qi1M )γi (16)

Equation (16) implys that (Qi−Qi1M )γi, λi

M is an eigenvetor-eigenvalue pair of
ΣΦ

i . Furthermore, the norm of (Qi −Qi1M )γi is given by

‖(Qi −Qi1M )γi‖2 = γT
i (Qi −Qi1M )T (Qi −Qi1M )γi = λi (17)

so that the corresponding normalized eigenvetor of ΣΦ
i is βi = (Qi − Qi1M )

γi/
√
λi.

Calculate the orthonormal eigenvetors ri1, ri2 . . . rim of Ri corresponding to
the m largest positive eigenvalues, λi1 ≤ λi2 . . . λim. The orthonormal eigenve-
tors βi1, βi2, . . . , βim of ΣΦ

i corresponding to the m largest positive eignevalues,
λi1
M , λi2

M , . . . , λim

M , which are βi = (Qi −Qi1M )γi/
√
λi, j = 1, 2, 3, . . . ,m.

Analogizing equation (7), in new feature space, we have KMQDF:

gΦ
2 (wi, x) =

k∑
j=1

(
1
λΦ

ij

)[βΦ
ij

T
(Φ(x) −mΦ

i )]2 +
k∑

j=1

log(λΦ
ij) (18)

+
d∑

j=k+1

(
1
δΦ
ij

)[βΦ
ij

T
(Φ(x) −mΦ

i )]2 + (d− k) log(δΦ
i )

=
k∑

j=1

(
M

λij
)
{

[(Qi −Qi1M )γi/
√
λi]T [Φ(x) −Qi1M v]

}2

+
d∑

j=k+1

(
1
δΦ
i

)
{

[(Qi −Qi1M )γi/
√
λi]T [Φ(x) −Qi1M v]

}2

+
k∑

j=1

log(
λij

M
) + (d− k) log(δΦ

i )

=
k∑

j=1

(
M

λij
2 )[rij

T (Rit − 1MRit − R̃i1M 1 + 1M R̃i1M 1)]2

+
d∑

j=k+1

(
1

δΦ
i λij

)[rij
T (Rit − 1MRit − R̃i1M 1 + 1M R̃i1M 1)]2

+
k∑

j=1

log(
λij

M
) + (d− k) log(δΦ

i )
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where Rit = [(Φ(xi1) • Φ(x)), (Φ(xi2) • Φ(x)), . . . . . . , (Φ(xiM ) • Φ(x))],1M v =
( 1

M )M×1 and δi =
∑d

j=k+1(
λij

M )/(d−k). We can utilizes the invariance of Euclid-
ean distance to simply equation (18):

gΦ
2 (wi|x) =

k∑
j=1

(
M

λij
2 )[rij

T (Rit − 1MRit − R̃i1M 1 + 1M R̃i1M 1)]2 (19)

+
k∑

j=1

log(
λij

M
) +

1
δΦ
i

rΦ
i (x) + (d− k) log(δΦ

i )

where

rΦ
i (x) =

∥∥(Φ(x) −mΦ
i )
∥∥2 − k∑

j=1

[βΦ
ij

T
(Φ(x) −mΦ

i )]2 (20)

= (Φ(x) • Φ(x)) − 2 ∗ (1M 1)T •Rit + (1M 1)T R̃i(1M 1)

−
k∑

j=1

(
1
λij

)[rij
T (Rit − 1MRit − R̃i1M 1 + 1M R̃i1M 1)]2

It is expected that the KMQDF algorithm can embed the data in a suitable
feature space, in which we can use MQDF algorithm to discover pattern easily.

4 Facial Expression Recognition Using KMQDF

Facial expression recognition has been an active area of research in the literature
for long time. The ultimate goal in this research area is the realization of intel-
ligent and transparent communications between human beings and machines.
Several facial expression methods have been proposed in the literature[11,12,13].
In recent years, facial expression recognition based on two-dimensional (2-D)
digital images has received a lot of attention by researchers, because it doesn’t
involve 3-D measurements[13] and is suitable for real time application. A more
detailed review on facial expression recognition can be found in[11].

4.1 Feature Extraction

In this paper, we use local Gabor filters to extract the features for facial
expression recognition. Gabor features have been applied widely in the field
of computer vision because of its powerful analysis ability in the conjoint time-
frequency domain. Local Gabor filters[14] optimize the structure of global Gabor
filters, which can achieve the same performance as global Gabor filters but in-
volve less computation and storage.

Principle component analysis (PCA) and linear discriminant analysis (LDA)
are two classical tools widely used in face analysis for data reduction. PCA
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seeks a projection that best represents the original data in a least-squares sense,
and LDA seeks a projection that best separates the data in a least-squares
sense. Many LDA-based algorithms suffer from the so-called “small sample size
problem”(SSS)[15] which exists in high-dimensional pattern recognition tasks,
where the number of available samples is smaller than the dimensionality of
the samples. Facial expression recognition often meets this problem. The most
famous solution to the SSS problem is to utilize PCA concepts in conjunction
with LDA (PCA plus LDA)[16,17]. The effectiveness of the method has been
demonstrated by [16,17,18,19].

In this paper, the process of the experiments consists of three steps. Firstly,
local Gabor filters are used to extract the facial expression features as the de-
scription in[14]. Secondly, the local Gabor features will be reduced based on PCA
plus LDA. Thirdly, the reduced features would be classified using 1-NN, MQDF
and KMQDF respectively.

4.2 Experimental Data

Two face databases are used to test KMQDF. The first one is AR face
database[19], a subset of AR database is used for our experiments. This sub-
set includes 999 images of 126 individuals with 4 different facial expressions.
The images corresponding to the 101 persons are chosen for training (799 sam-
ples), while the remaining images are used to test. We repeat the experiments
5 times by changing the training samples and testing samples to obtain an av-
erage recognition rate. The second one is JAFFE databases[18]. Total of use
the 210 images of 10 individuals are used for our facial expression experiment.
(Each expression of one person includes 3 samples). The images corresponding
to 8 persons (168 samples) are used as the training samples. The residual im-
ages (42samples) are used to test. In the same way, we repeat the experiments
5 times by changing the training samples and testing samples. Fig.1 and Fig. 2
show some example images in AR and JAFFE database.

All images for the experiments are normalized (96*128 pixels) and aligned
based on the position of the eyes as Fig.3 shows.

Fig. 1. Images of one person with 4 different facial expressions in the AR database
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Fig. 2. Images of one person with 7 different facial expressions in the JAFFE database

Fig. 3. Normalized images corresponding to the images in Fig.1

4.3 Experimental Results

A popular kernel, polynomial kernel, is involved in our tests:

ker(x, y) = (x • y + 1)d (21)

To achieve the optimal recognition accuracy, the parameters of KMQDF( k in
the equation (19) and d in the equation (21)) should be selected appropriately.
Experiments show the optimal parameters are different for the different training
set. Figure 4 gives an example that shows how the parameters of KMQDF affect
the recognition accuracy. Table 1 and Table 2 give the results with the optical
parameters on JAFFE and AR database respectively. In both Table1 and Table
2, [T1, T2, . . . , T5] is used to index different testing sets.

From Table 1 and Table 2, it can be seen that the proposed KMQDF classifier
with appropriated parameters can outperform the 1-NN, QDF, MQDF for the

Table 1. The recognition results on JAFFE DB

Test set 1-NN QDF MQDF KMQDF
T1 71.43% 66.67% 69.05% 80.95%
T2 80.95% 69.04% 85.71% 85.71%
T3 66.67% 61.90% 71.43% 73.81%
T4 73.81% 50.00% 78.57% 78.57%
T5 76.19% 78.57% 78.57% 80.95%

Average 73.81% 65.24% 76.67% 80.01%
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Table 2. The recognition results on AR DB

Test set 1-NN QDF MQDF KMQDF
T1 86.5% 87.5% 87.0% 88.5%
T2 85.5% 84.5% 85.5% 86.5%
T3 85.5% 87.0% 86.5% 87.0%
T4 86.5% 87.5% 87.5% 88.0%
T5 86.0% 87.0% 87.5% 88.5%

Average 86.0% 86.7% 86.8% 87.7%

Fig. 4. Experiment results of T1 on the JAFFE database. X-axis is the modification
parameter(k in the equation(19))of KMQDF.

facial expression recognition. Comparing with MQDF, an improvement of 3.3%
recognition accuracy for JAFFE database and an improvement of 0.9% for AR
database are obtained by the proposed kernel MQDF.

5 Conclusion

This paper presents a new kernel-based algorithm: Kernel MQDF, which can per-
form MQDF algorithm in a potentially much higher dimensional feature space.
For testing its classifying capability, the proposed KMQDF is applied for facial
expression recognition on the JAFFE face database and the AR face database.
Experimental results show that the proposed KMQDF can outperform 1-NN,
QDF, MQDF classifier.

Besides, as a new kernel-based algorithm, KMQDF may be expanded to solve
other pattern recognition problems, such as characters recognition, face recog-
nition etc, which merits our further study.
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Abstract. This paper presents a new technique to the instantaneous 3D
motion estimation. The main contributions are as follows. First, we show
that the 3D camera or scene velocity can be retrieved from image deriv-
atives only. Second, we propose a new robust algorithm that simultane-
ously provides the Least Trimmed Square solution and the percentage of
inliers- the non-contaminated data. Experiments on both synthetic and
real image sequences demonstrated the effectiveness of the developed
method. Those experiments show that the developed robust approach
can outperform the classical robust scheme.

1 Introduction

Computing object and camera motions from 2D image sequences has been a
central problem in computer vision for many years. More especially, computing
the 3D velocity of either the camera or the scene is of particular interest to a
wide variety of applications in computer vision and robotics such as calibration,
visual servoing, etc. Many algorithms have been proposed for estimating the 3D
relative camera motions (discrete case) [1,2] and the 3D velocity (differential
case) [3]. While the discrete case requires feature matching and tracking across
the images, the differential case requires the computation of the optical flow field
(2D velocity field). All these problems are generally ill-conditioned.

This paper has two main contributions. First, we introduce a novel technique
to the 3D velocity estimation using image derivatives only, therefore feature ex-
traction and tracking are not required. Second, we propose a robust method that
combines the Least Trimmed Square regression and the Golden Section Search
algorithm where the number of inliers is not known a priori. In our work, we
assume that the scene is far from the camera or it contains a dominant pla-
nar structure. Using image derivatives has been exploited in [4] to make camera
intrinsic calibration. In our study, we deal with the 3D velocity of the camera
or the scene. The paper is organized as follows. Section 2 states the problem.
Section 3 describes the proposed approach. Experimental results on both syn-
thetic and real image sequences are given in Section 4.
� This work was supported by the MEC project TIN2005-09026 and The Ramón y
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2 Problem Formulation

Throughout this paper we represent the coordinates of a point in the image
plane by small letters (x, y) and the object coordinates in the camera coordinate
frame by capital letters (X,Y, Z). In our work we use the perspective camera
model as our projection model. Thus, the projection is governed by the following
equation were the coordinates are expressed in homogeneous form,

λ

⎛⎝x
y
1

⎞⎠ =

⎛⎝f s xc 0
0 r f yc 0
0 0 1 0

⎞⎠
⎛⎜⎜⎝
X
Y
Z
1

⎞⎟⎟⎠ (1)

Here, f denotes the focal length in pixels, r and s the aspect ratio and the
skew and (xc, yc) the principal point. These are called the intrinsic parameters. In
this study, we assume that the camera is calibrated, i.e., the intrinsic parameters
are known. For the sake of presentation simplicity, we assume that the image
coordinates have been corrected for the principal point and the aspect ratio.
This means that the camera equation can be written as in (1) with r = 1, and
(xc, yc) = (0, 0). Also, we assume that the skew is zero (s = 0). With these
parameters the projection simply becomes

x = f
X

Z
and y = f

Y

Z
(2)

Fig. 1. The goal is to compute the 3D velocity from image derivatives

Let I(x, y, t) be the intensity at pixel (x, y) in the image plane at time t.
Let u(x, y) and v(x, y) denote components of the motion field in the x and y
directions, respectively. This motion field is caused by the translational and rota-
tional camera velocities (V,Ω) = (Vx, Vy, Vz , Ωx, Ωy, Ωz). Using the constraint
that the gray-level intensity is locally invariant to the viewing angle and distance
we obtain the well-known optical flow constraint equation:

Ix u + Iy v + It = 0 (3)
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where u = ∂x
∂t and v = ∂y

∂t denote the motion field. Ix = ∂I
∂x and Iy = ∂I

∂y
denote the components of the spatial image gradient. They can be computed by
convolution with derivatives of a 2D Gaussian kernel. The temporal derivative
It = ∂I

∂t can be computed by convolution between the derivative of a 1D Gaussian
and the image sequence.

We assume that the perspective camera observes a planar scene1 described in
the camera coordinate system by Z = αX + β Y + γ. One can show that the
equations of the motion field are given by these two equations:

u(x, y) = a1 + a2 x + a3 y + a7 x
2 + a8 xy (4)

v(x, y) = a4 + a5 x + a6 y + a7 xy + a8 y
2 (5)

where the coefficients are given by:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a1 = −f (Vx

γ + Ωy)
a2 = (Vx

γ α + Vz

γ )
a3 = Vx

γ β + Ωz

a4 = −f (Vy

γ −Ωx)
a5 = (Vy

γ α−Ωz)
a6 = (Vy

γ β + Vz

γ )
a7 = −1

f (Vz

γ α + Ωy)
a8 = −1

f (Vz

γ β −Ωx)

(6)

One can notice that the two solutions (Vx, Vy , Vz, γ) and λ (Vx, Vy, Vz , γ) yield
the same motion field. This is consistent with the scale ambiguity that occurs in
the Structure From Motion problems. The case of a steady camera and a moving
planar scene can be obtained by multiplying the right hand side of Eq.(6) by -1.
Our goal is to estimate the instantaneous velocity (V,Ω) as well as the plane
orientation from the image derivatives (Ix, Iy , It).

In the sequel, we propose a two-step approach. In the first step, the eight
coefficients are recovered by solving the system (3) using the Least Trimmed
Square (LTS) regression and the Golden Section Search algorithm. In the second
step, the 3D velocity as well as the plane orientation are recovered from Eq.(6)
using a non-linear technique.

3 Approach

We assume that the image contains N pixels for which the spatio-temporal deriv-
atives (Ix, Iy, It) have been computed. In practice, N is very large. In order to
reduce this number, one can either drop pixels having small gradient compo-
nents or adopt a low-resolution representation of the images. In the sequel, we

1 Our work also addresses the case where the scene contains a dominant planar
structure.
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do not distinguish between the two cases, i.e., N is either the original size or the
reduced one. By inserting Eqs.(4) and (5) into Eq.(3) we get

Ix a1 + Ixxa2 + Ixy a3 + Iy a4 + Iy xa5 + Iy y a6

+(Ixx
2 + Iy x y) a7 + (Ix x y + Iy y

2) a8 = −It (7)

By concatenating the above equation for all pixels, we get the following over-
constrained linear system:

Ga = e (8)

where a denotes the column vector (a1, a2, a3, a4, a5, a6, a7, a8)T .
It is well known that the Maximum Likelihood solution to the above linear

system is given by:

a = G† e (9)

where G† = (GT G)−1 GT is the pseudo-inverse of the N × 8 matrix G. This
solution is known as the Least Squares solution (LS). In practice, the system
of linear equations may contain outliers. These outliers can be caused by local
planar excursions and derivatives errors. Therefore, our idea is to estimate the
8 coefficients using robust statistics [5,6]. Statisticians have developed various
kinds of robust estimators such as the Least Median of Squares (LMS) and the
RANdom SAmpling Consensus (RANSAC).

3.1 Least Trimmed Square Regression

In this section, we briefly provide the principles of the linear Least Trimmed
Square regression. The LTS regression has been proposed by Rousseeuw [6]. Its
objective is to compute the unknown parameters (in our case, it is the vector a)
by minimizing

e =
h∑

i=1

(r2)i:N (10)

where (r2)1:N ≤ · · · (r2)N :N are the ordered squared residuals obtained for the
linear system (e.g. (8)) associated with any value for the parameters. This is
equivalent to finding the h-subset with the smallest least squares error. The LTS
estimate is then the least square solution to this h-subset. The LTS objective
function is smoother than that of the LMS. However, the implementation of
LTS is less straightforward than the LMS. Notice that h corresponds to the
percentage of non-contaminated data, that is, the percentage of inliers. In [7],
an efficient implementation of the LTS has been proposed when h is known in
advance. The proposed algorithm combines random sampling and an iterative
C-step (Condensation step). The basic idea of the C-step is to start from an
initial solution and update it iteratively by a Least Square estimator performed
on another subset of constraints having the h smallest residuals.
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Random sampling: Repeat the following three steps K times

1. Draw a random subsample of p different equations/pixels (p ≥ 8).
2. For this subsample, indexed by k, compute the eight coefficients, i.e. the vector ak,

from the corresponding p equations using a linear system similar to (8).
3. For this solution ak, determine the squared residuals with respect to the whole set

of N equations. We have N residuals corresponding to the linear system (8). Sort
these residuals and compute the trimmed sum ek = N/2

i=1 (r2)i:N . Note that this
sum can be carried out using another number such as the a priori percentage of
inliers.

Initial solution: Among the random solutions, keep the best solution, i.e., select the
one that provides the smallest error.

Golden section optimization:

1. Select an initial bracketing interval [εa, εb].
2. Split the bracketing interval into three segments εa, ε1, ε2, εb

ε1 = εa + w (εb − εa), and ε2 = εb − w (εb − εa)

where the fraction w = (3 − √
5)/2 = 0.38197 (see [8]).

3. For each percentage, perform several C-steps starting from the best solution found
so far. This provides φ(εa), φ(ε1), φ(ε2), and φ(εb).

4. Compare φ(ε1) and φ(ε2), and update accordingly: i) the best solution, and ii)
the bracketing interval such the new bracketing interval becomes either [εa, ε2] or
[ε1, εb].

5. Generate a new percentage and form a new set of three segments.
6. Evaluate φ at the new generated percentage, ε. Go to step 4.

Fig. 2. Estimating the 8 coefficients using the LTS regression and the Golden Section
Search algorithm

3.2 The Eight Coefficients

The algorithm provided by Rousseeuw assumes that the size of the subset, h,
is known. In practice, however, h is not known. We propose an algorithm that
simultaneously provides the LTS solution and the percentage of inliers.

Our problem consists in solving the 8-vector a using the over-constrained
linear system (8). When the inlier percentage ε = h

N is unknown, we compute it
by minimizing

φ(ε) =
e(ε)
ελ

(11)

where λ is a predefined parameter (in all our tests described in the sequel, we
used λ = 6). The above objective function φ(ε) minimizes the trimmed error
e(ε) while trying to use as many equations/pixels as possible. The minimization
procedure is given a search interval [εa, εb]. Its assumes that in this interval the
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function has a single minimum and locates the minimum by iterative bracketing
with the Golden Section Search algorithm [8]. By default, the minimum of φ is
searched in the interval [0.5, 1.0] assuming that the inlier percentage is at least
50%. Specifying the interval more strictly improves the computational efficiency
of the method. In our case, for an initial bracketing of 10%, about six iterations
are sufficient to locate the minimum of φ(ε) with an acceptable precision of
0.01, i.e. the interval becomes less the 1%. Figure 2 summarizes the proposed
approach that estimates the vector a using the LTS principles and the Golden
Section Search algorithm.

3.3 3D Velocity

Once the vector a = (a1, a2, a3, a4, a5, a6, a7, a8)T is recovered, the 3D velocity
and the plane parameters, i.e., Vx

γ ,
Vy

γ , Vz

γ , Ωx, Ωy, Ωz, α and β, can be recovered
by solving the non-linear equations (6). This is carried out using the Levenberg-
Marquardt technique [8]. In order to get an initial solution one can adopt as-
sumptions for which Eq.(6) can be solved in a linear fashion. Alternatively, when
tracking a video sequence the estimated velocity at the previous frame can be
used as an initial solution for the current frame.

4 Experimental Results

Experiments have been carried out on synthetic and real images.

Fig. 3. A computer generated image of a 3D plane that is rotated about 60 degrees
about an axis perpendicular to the optical axis

4.1 Synthetic Images

A synthetic planar scene was built whose texture is described by:

g(Xo, Yo) ∝ cos(6Xo) (sin(1.5Xo) + sin(1.5 Yo))
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Fig. 4. Average errors obtained with a corrupted system (Gaussian noise and 10 % of
outliers)

where Xo and Yo where the 3D coordinates expressed in the plane coordinate
system, see Figure 3. The resolution of the synthesized images was 160×160 pix-
els. The 3D plane was placed at 100cm from the camera whose focal length is
set to 1000 pixels. A synthesized image sequence of the above planar scene was
generated according to a nominal camera velocity (Vn,Ωn). A reference image
for which we like to compute the camera velocity was then fixed. The associated
image derivatives can be computed or set to their theoretical values. Since we use
synthetic data, the ground-truth values for the image derivatives as well as for
the camera velocity are known. The nominal velocity (Vn(cm/s),Ωn(rad/s))
was set to (10, 10, 1, 0.1, 0.15, 0.1)T . The corresponding linear system (8) was
then corrupted by adding Gaussian noise and outliers to the spatio-temporal
derivatives associated with each pixel. Our approach was then invoked to esti-
mate the camera velocity. The discrepancies between the estimated parameters
and their ground truth were then computed. In our case, the camera velocity was
given by two vectors: (i) the scaled translational velocity, and (ii) the rotational
velocity. Thus, the accuracy of the estimated parameters can be summarized by
the angle between the direction of the estimated vector and its ground truth
direction.

Figure 4 illustrates the obtained average errors associated with the camera
velocity as a function of the Gaussian noise standard deviation. The solid curve
corresponds to a RANSAC-like approach adopting a robust threshold (Eq.(8)),
and the dashed curve to our proposed robust solution (Section 3). Each average
error was computed with 50 random trials. As can be seen, unlike the RANSAC
technique, our proposed method has provided more accurate solution. In the
above experiment the percentage of outliers was set to 10%.

4.2 Real Images

The experiment was conducted on a 300-frame long video sequence of a moving
scene (a newspaper) captured by a steady-camera, see Figure 5. The resolution



3D Motion from Image Derivatives 83

0 50 100 150 200 250
0.6

0.7

0.8

0.9

Frames

Inlier percentage

ε

0 50 100 150 200 250
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Frames

Scaled Translational velocity

Vx
Vy
Vz

0 50 100 150 200 250
0

0.01

0.02

0.03

0.04

0.05

0.06

Frames

R
ad

/s
Rotational  velocity

|| Ω ||

Fig. 5. Top: The used video and the estimated inlier percentage. Bottom: The esti-
mated translational and rotational velocities.

is 160×120 pixels. We used 9 consecutive images to compute the temporal deriv-
atives. The top-right shows the estimated inlier percentage. The bottom-left and
bottom-right show the estimated 3D translational velocity (Vx

γ ,
Vy

γ , Vz

γ ) and the
rotational velocity ||Ω||, respectively.

Although, the ground-truth is not known, we have found that the estimated
3D motion was consistent with the video.

5 Conclusion

This paper presented an approach to the 3D velocity estimation from spatio-
temporal image derivatives. The approach includes a novel robust estimator
combining the LTS principles and the Golden Section Search algorithm.
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Abstract. This paper presents a novel method MGARS to automatic road area 
segmentation based on motion and gray feature for the purpose of urban traffic 
surveillance. The proposed method can locate road region by region growing 
algorithm with the fusion feature of motion information and grayscale of back-
ground image, which is independent to road marker information. An adaptive 
background subtraction approach using gray information is performed to mo-
tion segmentation. In region growing stage, start point that so called seed is se-
lected automatically by motion centroid and local gray feature of background 
image. The threshold of region growing method is adaptively selected for dif-
ferent traffic scenes. The proposed method MGARS can effectively segment 
multi roads without manual initialization, and is robust to road surface pollution 
and tree shadow. The system can adapt to the new environment without human 
intervention. Experimental results on real urban traffic videos have substanti-
ated the effectiveness of the proposed method. 

1   Introduction 

Automated visual traffic surveillance (AVTS) allows the visualization of vehicles on 
the road by using a single camera mounted in perspective view of the road scene that 
it is monitoring, thus enabling traffic-scene analysis [1]. In an AVTS system, moving 
vehicle detection is the basic task for other analysis. However, the performance of an 
AVTS system deteriorates when vehicles appear to occlude each other from the cam-
era’s point of view in a traffic video [2]. Failing to detect and resolve the presence of 
occlusion may lead to surveillance errors, including incorrect vehicle count, incorrect 
tracking of individual vehicles, and incorrect classification of vehicle type. As a re-
sult, methods for occlusion detection must be adopted in order to produce meaningful 
results [5]. These include stereo vision [6], an overhead camera with a viewing axis 
perpendicular to the road surface [7] or roadside mounted camera with a high posi-
tion. Other researchers have done an extensive amount of work on occlusion detection 
and occlusion handling [5]. 

Occlusion problem is serious in urban traffic scenes for lower vehicle speed and lit-
tle distance between vehicles than in highway scenes. In urban traffic monitoring, 
where camera is mounted roadside, occlusion is usually happened in far area. Instead 
of processing entire images, a computer vision system can analyze specific regions (the 
‘focus of attention’) to identify and extract the features of interest [20]. So many papers 
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propose to select better detect region with less vehicle occlusion. Tai [9] use detection 
line of each lane to detect whether the vehicle enters the detection region. Yu [10] use 
the Korean characters on each lane as the lane marks. Vehicle detection and shadow 
rejection are performed based on lane mark. But all the above detection region or de-
tection lines are manually selected. In this case, the detection region is suited only to 
the current traffic video, which should be redefined for a new environment.  

Region for vehicle detection can be seen as certain part of road area. In this paper, 
we focus on automatic road segment (ARS) approach, which is independent to any 
priori knowledge, such as road marker and camera viewing positions. Such a system 
would ease installation of the equipment due to its ability for self-initialization [11]. 
ARS is an important task for an adaptive traffic monitoring system. It enables the 
system to adapt to different environmental conditions.  

In this paper, we propose a novel method MGARS for automatic road area segmen-
tation in urban traffic video. The proposed method can locate road regions by the fu-
sion feature of centroid of moving objects and gray of background image. The system 
block diagram is shown as Fig.1. An adaptive background subtraction approach using 
gray information is performed to motion segmentation. Then centroid of moving ob-
jects is obtained for next region growing process. Road regions are located using re-
gion growing method with automatically selecting seed points. The threshold of region 
growing method is adaptively selected for different traffic scenes. The proposed 
method can segment multi roads without manual initialization, and is robust to road 
surface pollution and tree shadow. Also it is independent to road marker information. 

The rest of this paper is organized as follows. Section 2 provides a summary of 
previous work relevant to road segmentation in traffic video. The next three sections 
describe our proposed algorithm in details, and the results we obtained from experi-
ments on a variety of traffic videos. Section 6 concludes by describing some of the 
important characteristics of our algorithm, and directions for future research. 

Moving object
detection

Get centroid of 
moving object

Road segmentation with 
motion and gray feature 

Post-process

Adaptive background subtraction 
Road detection by Region Grow method 

based on the centroid of moving objects and 
the background gray information.

 Morphological filter 
and Connected components

: process : describe
 

Fig. 1. Block diagram of automatic road segment method MRARS 

2   Previous Work 

In this section, we focus on road segment method in previous research. Real-time road 
segmentation is complicated by the great variability of vehicle and environmental 
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conditions. Changing seasons or weather conditions, time of the day, dirt on the road, 
shadows. Because of these combined effects, robust segmentation is very demanding. 
The approaches in lane detection can be distinguished into two classes, namely lane-
region detection and lane-border detection [4].  

Lane-region approaches detect the lane with the changing intensity distribution 
along the region of a lane. For automatic vehicle guidance case, [18] assumes the road 
just in front of car, and take a few sample to capture the road color. Then flood-fill the 
road region using the sampled colors. The lane-region analysis can also be modeled as 
a classification problem, which labels image pixels into road and non-road classes 
based on particular features, which required extensive training process. Ref. [12] uses 
Gaussian distributions of (R,G,B) values to model the color classes. Ref. [13] use the 
hue, saturation, gray-value (HSV) space as more effective for classification. Besides 
color, the local texture of the image has been used as a feature for classification. Ref. 
[16] uses a normalized gradient measure based on a high-resolution and a low-
resolution (smoothed) image, in order to handle shadow interior and boundaries. 
However changes in outdoor illuminations may change the road colors perceived by 
the camera and introduce errors in the classification. Ref. [11] uses motion informa-
tion in lane detection. An activity map is used to distinguish between active areas of 
the scene where motion is occurring (the road) and inactive areas of no significant 
motion. But lane finding will false when the vehicles change their lane.  

Lane-border detection method considers directly the spatial detection of lane char-
acteristics. According the difference of lane characteristics, two general subclasses 
involve feature-driven approaches and model-driven approaches [4]. Feature-driven 
approaches are based on the detection of edges in the image and the organization of 
edges into meaningful structures (lanes or lane markings). The Road Markings Analy-
sis (ROMA) system is based on aggregation of the gradient direction at edge pixels in 
real-time [14]. In general, edge feature suffer from noise effects, such as strong 
shadow edges sometime. The aim of model-driven approaches is to match the road 
edges with a deformable template, which is usually used in vehicle guidance. The 
Hough Transform is used to extract road boundaries from an image [17]. Ref. [15] use 
snakes to model road segments. Model-based approaches for lane finding have been 
extensively employed in stereo vision systems. Such pproaches assume a parametric 
model of the lane geometry, and a tracking algorithm estimates the parameters of this 
model from feature measurements in the left and right images. Model-driven ap-
proaches provide powerful means for the analysis of road edges and markings. How-
ever, the use of a model has certain drawbacks, such as the difficulty in choosing and 
maintaining an appropriate model for the road structure, the inefficiency in matching 
complex road structures and the high computational complexity [4]. 

3   Robust Motion Segmentation  

3.1   Gray Based Background Subtraction 

In recent years time-adaptive per pixel mixtures of Gaussians background models 
have been a popular choice for modeling complex and time varying backgrounds [6]. 
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This method has the advantage that multi-modal backgrounds (such as moving trees) 
can be modeled. Different to Stauffer’s method [19], we use only gray value of source 
image to construct background image. 

In [19], each pixel is modeled as a pixel process; each process consists of a mixture 
of k adaptive Gaussian distributions. The distributions with least variance and | 
maximum weight are isolated as the background. The probability that a pixel of a 
particular distribution will occur at time t is determined by: 
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In this paper we set k=3 Gaussians. An on-line k-means approximation algorithm 
is used for the mixture model. Every new pixel

tX is checked against the K existing 

Gaussian distribution. A match is found if the pixel value is within L = 2.5 standard 
deviation of a distribution. This is effectively per pixel per distribution threshold and 
can be used to model regions with periodically changing lighting conditions.  

If the current pixel value matches none of the distributions the least probable dis-
tribution is updated with the current pixel values, a high variance and low prior 
weight. The prior weights of the K distributions are updated at time t according to:  

, , 1 ,(1 ) ( )k t k t k tMω α ω α−= − +  .                                         (3) 

where α is the learning rate and 
,k tM is 1 for the model which matched the pixel and 

0 for the remaining models. We set learning rate α =0.002. The changing rate in the 
model is defined by1 α . That is means after 500 frames the background model well 

updated fully. After this approximation the weights are renormalized, the parame-
ters μ  andσ for the unmatched distributions remain the same. The parameters for the 

matching distribution are updated as follows: 

1(1 )t t tXμ ρ μ ρ−= − +  .                                           (4) 

2 2
1(1 ) ( ) ( )T

t t t t t tX Xσ ρ σ ρ μ μ−= − + − − .                                 (5) 

where                                           ( | , )t k kXρ αη μ σ= .                                               (6) 

For change detection a heuristic searches for the learnt distributions that have more 
supporting evidence. The Gaussians are ordered based on the ratio of ω σ . This in-

creases as the Gaussian’s weight increases and its variance decreases. The first B 
distributions accounting for a proportion T of the observed data are defined as back-
ground. We set T=0.8 in this paper. 
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For the non-background pixel, we calculate the gray difference between this pixel in 
current image and in background model. Only the pixel with the difference over the 
threshold 10 is labeled as foreground pixel or motion pixel. Then the difference image is 
binary. In our experiments, the background model can be usually obtained within 100 to 
200 sequence frames, which is good enough for the future segmentation process. 

3.2   Obtain Centroid of Moving Object 

After motion segmentation, the moving objects with their bounding boxes and cen-
troids are extracted from each frame. The centroid (x,y) of a bounding box B corre-
sponding to an object O is defined as follows: 

0 0

( ) , ( )
N N

i i
i i

x x N y y N
= =

= =  .                              (9) 

where N is the number of pixels belong to object O within bounding box B, ix  and 

iy represent the x -coordinate and y -coordinate of the ith pixel in object O.                     

Fig.2 shows some results on an urban traffic video. Fib.2a is one source frame. The 
constructed background image is showed in Fig.2b, which use 100 sequence frames 
with moving objects. And the motion segment result on source image and binary 
image are presented as Fig.2c and Fig.2d. The motion centroids with 3×3 region after 
processing 200 sequence frames are show in Fig.2e. 

 

  

Fig. 2a. Source image Fig. 2b. Constructed background image 
 

   

Fig. 2c. Motion segment Fig. 2d. Binary image Fig. 2e. Motion centroids 
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4   Motion and Gray Based Automatic Road Segmentation MGARS 

In this section, we describe the proposed automatic road segment method using the 
feature of motion centroids and gray value of background image. 

First a 3×3 Gaussian filter is performed on background image to reduce noise. Ex-
perimental results will show the effective of this smooth process.  

The canny edge detection algorithm is known as the optimal edge detector. We use 
canny edge detection on background image to get edge information. 

The region grow algorithm that is also called flood fill method is used in our sys-
tem. Region growing process starts with some point, called “seed”, fills the seed pixel 
neighborhoods inside which all pixel values are close to each other. This process is 
propagated until it reaches the image boundary or cannot find any new pixels to fill 
due to a large difference in pixel values. 

This algorithm need some parameters: coordinates of the seed point inside the road 
area, threshold τ as maximal lower difference and maximal upper difference between 
the values of pixel belonging to the filled domain and one of the neighboring pixels to 
identify, type of connectivity. If connectivity is four, the region growing process tries 
out four neighbors of the current pixel otherwise the process tries out all the eight 
neighbors. 

Ref. [18] uses flood fill method to extract the road region in front of moving vehi-
cle in vehicle guidance. The seed is selected by priori knowledge, which make sure 
the seed must be in the road region. And the threshold is a constant value, which may 
not adapt to different scene. 

In this paper, we propose a novel method MGARS to segment road regions auto-
matically. The method consists of following stages: 

1. Gray background image is divided into 10×10 pixel partitions without overlap. 
2. For each partition, the number of moving centroid, mean and standard deviation 

of gray value and number of edge pixel are calculated. Partition containing mo-
tion centroids is called Centroid Partition here. The total number of Centroid Par-
tition can also be calculated together. 

3. From the bottom of background image, we search the proper Centroid Partition, 
which have number of motion centroids more than 2, standard deviation less then 
10 and the number of edge pixel less than 20. Then the center of this Centroid 
Partition is selected as seed point for region growing process. 

4. Process 8-connectivity region growing algorithm from the above seed point. If 
the gray value of neighbor pixel is similar to the gray value of seed point accord-
ing to the threshold τ , this neighbor pixel is filled.  

5. If 30 percent of pixels in a partition is filled, we define this Centroid Partition is 
filled. Calculate how many Centroid Partitions are filled. If there is enough Cen-
troid Partitions (90 percent in our system) are filled by region growing process, 
the seed point search process can stop, else back to stage 3 to search the next 
proper seed point for region growing. 

6. If the whole partitions in background image are searched, the region growing 
process can stop. 

In stage 3, the strategy we choose proper Centroid Partition is considering the seed 
point should in the road region, which can be got by centroid of moving objects, and 
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its neighbor region should relatively smooth. The method can select seed point avoid 
noise pixel, such as shadow, edge and road smut. 

In stage 4, the min and max difference that is threshold τ is selected automatically. 
Here, we calculate the mean and standard deviation of all Centroid Partitions. If the 
standard deviation is less than 20, which means gray value of road region is so 
smooth, the threshold τ is set to 1, else the threshold τ is set to 2. The compare ex-
periment is show in next section. 

After region growing process, most of the road pixel is filled, then binary the result 
image. Post-processing stage using morphological filter is performed on binary image 
to remove small region and smooth the boundary of road region. Then road regions 
are labeled as connected components. 

5   Experiments 

The test video sequences were taken using a camera on roadside or cloverleaf junction 
in urban. The video was sampled at a resolution of 320×240 and a rate of 25 frames 
per second. We used only grays value of source video, and output a grayscale  
background model. Tests were performed on two representative sequences that might 
be commonly encountered in urban surveillance.  

 

τ =1 

   

Fig. 3a. Background image  
with seed position 

Fig. 3b. Result of region grow Fig. 3c. Edge of extracted  
road region 

τ =2 

   

Fig. 3d. Background image 
with seed position 

Fig. 3e. Result of region grow Fig. 3f. Edge of extracted 
road region 

τ =3 

   

Fig. 3g. Background image 
with seed position 

Fig. 3h. Result of region grow Fig. 3i. Edge of extracted 
road region 
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The first traffic scene with multi roads is medium shot. Fig.3 illustrate the road 
segment results using our proposed method. The first row in Fig.3 shows the results 
with threshold τ =1 in region growing process. Fig.3a displays the positions of proper 
Centroid Partition with seed point. Fig.3b is the result after region growing process 
from the selected seed point as in Fig.3a. After morphology filter, superimposition of 
the edges of road region onto the lighter original background image is shown in 
Fig.3c. It also demonstrates improvements possible using morphological filters in a 
post-processing stage. The results with threshold τ =2 and τ =3 are shown as the 
second and the third row of Fig.3. From the experiment results, we can conclude that 
if the threshold τ is lower, there will need more seed point to flood fill the whole road 
regions. But as Fig.3c shows lower threshold can not get well segment result if road 
region is non consistency in grayscale. The threshold τ =2 can get similar better re-
sult compared with threshold τ =3. The marker on the road region can be removed by 
post-process as shown in Fig.3f. In our system, for this video, threshold τ is auto-
matically selected as 2 according to the standard deviation of all the Centroid Parti-
tions. This experiment can also illustrate that our algorithm can detect multi road 
regions effectively. 

 

τ =1 

   

  Fig. 4a. Background image 
  with shadow 

Fig. 4b. Result of region 
     grow without smooth 

Fig. 4c. Result of region 
grow with Gaussian smooth 

τ =2 

   

Fig. 4d. Result of region grow Fig. 4e. Result of region 
grow with Gaussian smooth 

Fig. 4f. Edge of extracted 
road region 

 

    A typical traffic surveillance scene in urban was considered next where the chal-
lenge was due to the vigorous motion of the trees and the strong shadow on road sur-
face. And the right part is pavement with moving person or bicycle. The result is 
shown in Fig.4. Fig.4a is the background image constructed, which has tree shadow 
on the road surface. Fig.4b is the result of flood filling by threshold τ =1 and without 
Gaussian filter on background image. While Fig.4c is the result by threshold τ =1 and 
after Gaussian filter, which can fill more road pixels than Fig.4b. Fig.4d is the result  
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by threshold τ =2 without Gausssian filter while Fig.4e is by threshold τ =2 and after 
Gaussian filter. From the segment result, we can see that Gaussian filter on the source 
background image before region growing can get better segment results for it can 
smooth background image and remove many noise. Fig.4f is the final edge of road 
region after morphological filter. By the way, the left road is not extracted here for 
there is no moving vehicles appeared in 200 frames in which we get motion centroids. 
If we use more frames to get moving objects, moving vehicle will appear on the left 
road and it can also be extracted well. 

In the experiment, our algorithm successfully segments out the entire road regions 
containing moving vehicles.  

6   Discussion and Conclusions 

In this paper, we present a novel method MGARS to automatically extract road region 
from traffic monitoring video. Fusion features with moving segmentation and gray of 
background image are used for region growing process to get road region. An adap-
tive background subtraction method is proposed and applied to several real life traffic 
video sequences to obtain more accurate motion information of the moving objects. 
Road regions are located using region growing method with automatically selecting 
seed by motion centroid and local gray feature of background image. The threshold of 
region growing method is adaptively selected for different traffic scenes. Satisfactory 
results were obtained in our experiment, and all the road areas with moving vehicles 
are successfully identified through our algorithm. The method shows robustness to 
variations in both road properties and illumination conditions. The algorithm is  
viewpoint independent. No manual initialization or prior knowledge of the road shape 
is needed, the method can also suit to curve road. The proposed method can detect 
multi roads together, and can adapt to the new environment without any human  
intervention.  

Several problems occurred in the experiments. In the stage of motion segmenta-
tion, moving shadow is detected as moving object and the presence of occlusions 
between vehicles make centroid position of moving object is not the real centroid of 
moving vehicle. Also in some case, moving object contains moving person or bicycle, 
which will disturb the result of moving vehicle segmentation. Future improvements 
include using techniques that involve modeling of the motion of vehicles and pedes-
trians in order to produce a better classier. Moving shadow detect can also considered 
in the future research. Further, since the position of the centroid of a moving vehicle 
is recorded during the segment process, this information can be used in the future for 
extracting moving trajectory. 
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Abstract. In an object recognition task where an image is represented as a con-
stellation of image patches, often many patches correspond to the cluttered back-
ground. If such patches are used for object class recognition, they will adversely
affect the recognition rate. In this paper, we present a statistical method for select-
ing the image patches which characterize the target object class and are capable
of discriminating between the positive images containing the target objects and
the complementary negative images. This statistical method select those images
patches from the positive images which, when used individually, have the power
of discriminating between the positive and negative images in the evaluation data.
Another contribution of this paper is the part-based probabilistic method for ob-
ject recognition. This Bayesian approach uses a common reference frame instead
of reference patch to avoid the possible occlusion problem. We also explore dif-
ferent feature representation using PCA an 2D PCA. The experiment demon-
strates our approach has outperformed most of the other known methods on a
popular benchmark data set while approaching the best known results.

Keywords: Computer vision, Pattern representation and modeling, Object detec-
tion, Class recognition, Feature selection.

1 Introduction

Object detection and class recognition is a classical fundamental problem in computer
vision which has witnessed much research. This problem has two critical components:
the representation of the images (image features) and recognizing the object class us-
ing this representation which requires learning models of objects that relate the object
geometry to image representation. Both the representation problem, which attempts to
extract features which capture the essence of the object, and the following classifica-
tion problem are active areas of research and have been widely studied from various
perspectives. The methods for recognition stage can be broadly divided into three cat-
egories: the 3D model-based methods, the appearance template search-based methods,
and the part-based methods. 3D model-based methods ([20]) are successful when we
can describe accurate geometric models for the object. Appearance based matching ap-
proaches are based on searching the image at different locations and different scales
for best match for object ‘template” where the object template can be learned from
training data and act as a local classifier [18,15]. Such approaches are highly success-
ful in modeling objects with wide within-class appearance variations such as in face
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detection [18,15] but they are limited when the within-class geometric variations are
large, such as detecting a motorbike.

In contrast, object recognition based on dense local “invariant” image features have
shown a lot of success recently [8,11,14,19,1,3,6,16,7] for objects with large within-
class variability in shape and appearance. In such approaches objects are modeled as a
collection of parts or local features and the recognition is based on inferring object class
based on similarity in parts’ appearance and their spatial arrangement. Typically, such
approaches find interest points using some operator such as [9] and then extract local
image descriptors around such interest points. Several local image descriptors have been
suggested and evaluated, such as Lowe’s scale invariant features (SIFT) feature [11],
entropy-based scale invariant features [9,6] and other local features which exhibit affine
invariance such as [2,17,13]. Other approaches that model objects using local features
include graph-based approaches such as [5]. In this paper, we adopt a part-based method
with a common reference frame. We also experiment with both PCA and 2D PCA [21]
for image patch representation.

An important subtask in object recognition lies at the interface between feature ex-
traction and their use for recognition. It involves deciding which extracted features are
most suitable for improving recognition rate [19], because the initial set of features is
large, and often features are redundant or correspond to clutter in the image. Finding
such actual object features reduces the dimensionality of the problem and is essential
to learn a representative object model to enhance the recognition performance. Weber
et al. [19] suggested the use of clustering to find common object parts and to reject
background clutter from the positive training data. In such approach large clusters are
retained as they are likely to contain parts coming from the object. Similar approach
has been used in [10]. However, there is no guarantee that large cluster will just con-
tain only object parts. Since the success of recognition is based on using many local
features, such local features (parts) typically correspond to low level feature rather
than actual high level object parts. In this paper we introduce a statistical approach
to select discriminative object parts out of a pool of parts extracted from the training
images.

Contributions: The contribution of this paper is threefold. Firstly, we introduce a
probabilistic Bayesian approach for recognition where object model does not need a
reference part [6]. Instead object parts are related to a common reference frame. Sec-
ondly, we propose a novel approach for unsupervised selection of discriminative parts
that finds features that best discriminate the positive and negative examples. Finally, we
investigate PCA and 2D PCA for image patch representation in our experiment and did
a comparison.

The organization of this paper is as follows. Section 2 describes our part-based prob-
abilistic model, the recognition method and 2D PCA representation for image patch.
Section 3 explains our statistical method for image patch selection. section 4 presents
the results of applying the proposed methods on a benchmark dataset. Section 5 is the
conclusion.
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2 Part-Based Probabilistic Model

We model an object class as a constellation of image patches from the object, which
is similar in spirit to [19], but we also model their relative locations to a common
reference frame. In doing this, we avoid the problem of not detecting the landmark
patch. We assume objects from the same class should always have the same set of
image patches detected and these image patches are similar both in their appearance
and their relative location to the reference frame. The recognition of an object in an
image will be a high probability event of detecting similar image patches sharing a
common reference frame. In our work, we use the centroid as the reference frame and
use the image patches simultaneously to build a probabilistic model for the object class
and the centroid.

2.1 Model Structure

The model structure is best explained by first considering recognition. Using m ob-
served image patches vk, (k = 1, . . . ,m), from an image V , the problem of estimating
the probability P (O,C|V ) of object class O and its centroid C given V can be formu-
lated as (assuming independence between the patches and using Bayes’ rule):

P (O, C|V ) =
P (V |O, C)P (O, C)

P (V )
= P (O, C)

m

k=1

P (vk|O, C)
P (vk)

(1)

We wish to approximate the probability P (vk|O,C) as a mixture of Gaussian model
using the observed patches from the training data. We simplify this by clustering all the
patches selected from the training data into n clusters, Ai, i = 1, . . . , n according to
their appearance and spatial information, which is the 2D offset to the centroid C. We
can decompose P (vk|O,C) as

P (vk|O,C)=
n∑

i=1

P (vk|Ai)P (Ai|O,C)

=
∑n

i=1 P (vk|Ai)P (O,C|Ai)P (Ai)
P (O,C)

(2)

Substituting (2) in (1), we get

P (O,C|V ) ∝
m∏

k=1

∑n
i=1 P (vk|Ai)P (O,C|Ai)P (Ai)

P (vk)
(3)

While performing recognition, P (vk) can be ignored. Assuming that P (C) and
P (O) are independent, we have

P (O,C|V ) ∝
m∏

k=1

n∑
i=1

P (vk|Ai)P (O|Ai)P (C|Ai)P (Ai) (4)
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2.2 Learning

The task of learning is to estimate each term in (4) from the training data. We concate-
nate the image patches’ appearance and spatial vectors as features in the image patches
clustering process. Since the resulting clusters contain similar features, we can assume
image patches from one cluster will follow normal distribution in both appearance and
spatial subspaces. By calculating the sample mean and sample covariance matrix of the
subspaces of these clusters, we can approximate the probability of vk and C for each
cluster Ai, i = 1, . . . , n. We use μv

i and μc
i to denote the sample means for vk and C, re-

spectively, and Σv
i and Σc

i to denote the sample covariances for vk and C, respectively.
Then for cluster Ai we have P (vk|Ai) ∼ N(vk|μv

i , Σ
v
i ) and P (C|Ai) ∼ N(C|μc

i , Σ
c
i ).

The rest of the terms in (4), can be approximated using the statistics from each of the
cluster Ai, i = 1, . . . , n. If the Cluster Ai has ni points of which nij belong to Class
Oj , we can estimate the following: P (Ai) = ni/

∑n
i=1 ni and P (Oj |Ai) = nij/ni

1.

2.3 Recognition

Recognition proceeds by first detecting and selecting image patches, and then evaluat-
ing the probability of the event of detecting object features sharing a common reference
frame, as described in section 2.1. By calculating the probability and comparing it to a
threshold, the presence or the absence of the object in the image may be determined.

Equation 4 can be interpreted as a probabilistic voting where each patch gives a
weighted vote for the object class and centroid given its similarity to each of the clusters.
This formulation extends to handle scale variations by considering each pair of patches
instead of each individual patch.

2.4 Image Feature Representation

The image patch feature concatenated from appearance and spatial information could
be a high dimension vector. Usually PCA is applied to reduce the dimension while re-
taining much of the information. Recently Yang [21] has proposed 2D PCA for image
representation. This method can easily evaluate the covariance matrix accurately to cal-
culate the eigen vectors and also take less time. In this paper, we have experimented
with both approaches and did a comparison.

3 Statistical Image Patch Selection

In an object recognition task where an image is represented as a constellation of image
patches, often many patches correspond to the cluttered background. If such patches
are used to build the model for object class recognition, they will adversely affect the
recognition rate. In this section, we proposed a statistical method for selecting those
images patches from the positive images which, when used individually, have the power
of discriminating between the positive and negative images in the evaluation data.

We formulate the image patch selection problem in a statistical framework by select-
ing those images patches from the positive images which consistently appear in multiple

1 It must be remarked that this model extends to modeling multiple object classes directly, how-
ever, since our problem consists of only one class, we have P (Oj |Ai) = 1.
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instances of the positive images but only rarely appear in the negative images (barring
some hypothetical and pathological cases). Intuitively, if an individual image patch from
a positive image performs well in recognizing the images of the target object, a combi-
nation of a number of such image patches is likely to enhance the overall performance.
This is because the individual classifiers, although weak, can synergistically guide the
combined classifier in producing statistically better results.

Our approach is different from the Boosting method [16]. Boosting is originally a
way of combining classifiers and its use as feature selection is an overkill. In con-
trast, our statistical method does not boost the previous stage but filters out the over-
represented and undesirable clusters of patches corresponding to background. In spirit,
our approach is similar to [4]. We formalize this intuitive statistical idea in the following
straightforward yet effective method for selecting the characteristic image patches.

We select an image patch v ∈ V + from the positive images V + in the training data
if it is able to discriminate between the positive and negative images in the evaluation
data, Ve = {V +

e , V −
e } with a certain accuracy. A complete description of this method

requires describing the classification method using a single image patch and the accu-
racy threshold. For classifying an image V ∈ Ve in the evaluation set, using a single
image patch v ∈ V +, we first calculate the distance, D(V , v) = minν∈V d(ν, v), be-
tween V and v defined as the euclidean distance between v and the closest image patch
from V . For classifying the images in the evaluation data, we use a threshold, t on dis-
tance D(V , v); if D(V , v) < t, the image V is predicted to contain the target object,
otherwise not. Accordingly we can associate an error function, Er(V , v, t) (defined be-
low 5), which assumes a value 1 if and only if the classifier makes the mistake.

Er(V , v, t) =

⎧⎨⎩
0, if (D(V , v) < t ∧ V ∈ V +

e ) ∨
(D(V , v) ≥ t ∧ V ∈ V −

e )
1, otherwise

(5)

Clearly, the performance depends on the parameter t, so we find an optimal circu-
lar region of radius tv around v which minimizes the error rate of the classifier on the
evaluation data. Finally, only those image patches from the positive images are selected
which have recognition rate above a threshold, θ. A description of this algorithm, in

Algorithm 3.1: SELECT PATCHES, Ĥ(V +, Ve, θ)

Ĥ ← ∅;
for each v ∈ V +

do

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

for each V ∈ Ve

do
{
D(V , v) = min

ν∈V
d(ν, v);

tv ← arg min
t∈R+

∑
V∈Ve

Er(V , v, t)

err ← 1
|Ve|

∑
V∈Ve

Er(V , v, tv)

if (err < θ)
then

{
Ĥ ← Ĥ ∪ {v}
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the form of a pseudocode, is given in Algorithm 3.1. This algorithm takes the positive
image patches V +, patches from the evaluation data Ve, and the threshold θ as input
and outputs Ĥ ⊆ V +, the subset of selected image patches.

4 Experiment

4.1 Data Set

The experiment was carried out using Caltech database 2. This database contains four
classes of objects: motorbikes, airplanes, faces, car rear end which have to be distin-
guished from image in the background data set, also available in the database. Each
object class is represented by 450 different instances of the target object, which were
randomly and evenly split into training and testing images. Of the 225 positive images
set aside for selecting the characteristic image patches, 175 were used as the training
images and the remaining 50 were spared to be used as evaluation data. In addition, the
evaluation data also consisted of 50 negative images from the background.

4.2 Image Patch Detection and the Intensity Representation

We use region based detector [9] for detecting informative image patches. We perform
normalization for intensity and rescaled the image patches to 11×11 pixels, thus repre-
senting them as a 121 dimension intensity vectors. Then we tried with both PCA and
2D PCA on these vectors to get a more compact 18 dimension intensity representation.

4.3 Experimental Setting

We extracted 100 image patches for each of the 175 training images, and 100 evalua-
tion images. Following this, we applied the statistical image patch selection selection
method for removing the image patches from the background. In this process, we built
simple classifier from each image patch in the training images and selected the one
which led to a classifier with classification error rate less than 24%, an empirically cal-
culated value. Figure 1 shows results from the image patches selection, which removes
a significant number of patches corresponding to background.

After the image patch selection process, we computed the centroid for each object in
the image. We used 2-D offset between the image patch and the object centroid as the
spatial feature for the image patch and concatenated it with the intensity feature vector
as the feature representation for each image patch. We then used k-means algorithm for
clustering them into 70 clusters (this number was empirically chosen) and calculated
the mean and covariance for them.

4.4 Experimental Results

In the testing phase, we used Kadir & Brady’s[9] feature detector for extracting the
image patches. Then we calculated the probability of the centroid of a possible object
in the image as an indicator of its presence.

2 http://www.vision.caltech.edu/html-files/archive.html
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Fig. 1. Image patch selection. The image patches are shown using a yellow circle on the images.
The left column shows the image patches extracted by Kadir & Brady’s feature detector. The
right column shows image patches selected by the statistical method.

Figure 2 shows the computationally estimated frame for the object along with the
image patches which contributed towards estimating this frame. Observe that the esti-
mated frame was mainly voted by the image patches located on the object. It also shows
some examples of misclassification. There are two major reasons for such misclassifi-
cation. The first is the presence of multiple target objects in the image, as shown in
the airplane example. In this scenario, there is no centroid which gets a strong prob-
ability estimation from the matched parts. The second is poor illumination conditions
which seriously limits the number of initial image patches extracted from the object, as
illustrated by the face example.

We compared our result to the state of the art results from [6] and [12]. Table 1
summarizes the recognition accuracy at the equal ROC points (point at which the true
positive rate equals one minus the false positive rate) of our different approach: no part
selection with PCA, part selection with PCA, part selection with 2D PCA and results
from other recent methods. This shows that the result from 2D PCA representation
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Fig. 2. This figure demonstrates the estimation of object frame in some typical testing image using
statistical part selection. The estimated centroid is indicated by a rectangle. All the image patches
contributed to this estimation are indicated by yellow circles. The bottom row of the images are
some misclassification examples.
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is similar that from PCA and our approach are comparable to other recent methods
reporting equal ROC performance using this data set.

Table 1. Equal ROC performance of our different approaches and other recent methods

Dataset No selection statistial method statistical method Fergus Opelt

with PCA with 2D PCA with PCA [6] [12]

Airplane 54.2 95.8 94.4 90.2 88.9
Motorbike 67.8 93.7 94.9 92.5 92.2
Face 62.7 97.3 98.4 96.4 93.5
Car (rear) 65.6 98.0 96.7 90.3 n/a

5 Conclusion

We have presented a statistical method for selecting informative image patches for
patch-based object detection and class recognition. The experiments show our approach
surpasses the performance of many existing methods. Although this method has been
demonstrated in the context of image patch selection, it is a general method suitable for
selecting a subset of features in other applications. A natural extension of this method is
by integrating the auxiliary information regarding spatial arrangement between image
patches; one way for doing this currently under investigation. In future, we intend to fur-
ther develop and disseminate this framework as a general method for selecting features
by automatically determining various hyper-parameter, which are currently empirically
calculated.
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Abstract. During the last two decades, significant research efforts had
been made in developing vision-based automatic traffic monitoring sys-
tems in order to improve driving efficiency and reduce traffic accidents.
This paper presents a practical vehicle waiting time estimation method
using adaptive video-based vehicle tracking method. Specifically, it is de-
signed to deal with lower image quality, inappropriate camera positions,
vague lane/road markings and complex driving scenarios. The spatio-
temporal analysis is integrated with shape hints to improve performance.
Experiment results show the effectiveness of the proposed approach.

1 Introduction

Traffic monitoring and surveillance is one important research area of Intelligent
Transportation Systems (ITS), which aims to collect real-time traffic flow data
for road usage analysis and collisions warning. Automatic traffic monitoring is
now world-widely accepted as an essential component of advanced traffic man-
agement systems [1]-[6].

To obtain accurate real-time data, various sensors/devices have been designed
to estimate traffic parameters. Magnetic detectors and the sonar and microwave
detectors are the most frequently used ones and proven to yield good perfor-
mances [7]-[9]. But they are usually costly to install and maintain. In many
recent approaches, vision-based monitoring systems appears to be cheap and yet
effective solutions, which are able to monitor wide areas and provide flexible
estimations of traffic parameters [1]-[6], [10]-[24].

Object (vehicle, pedestrian, bicyclist) tracking is the basic function of a traf-
fic monitoring system. Numerous algorithms had been proposed for accurate
and real-time vision based vehicle tracking tasks. Image based object detection
using edge/shape hints attracts great interests now [10]-[13]. Usually, the poten-
tial traffic participators are first separated from the background scene. Then, to
enable precise classification of the moving objects, some characteristics such as
length, width, and height are further recovered and examined. Finally, the found
objects will be tracked to extract the associated traffic parameters. For instance,
adaptive thresholding is a simple but not so effective method, which supposes
that vehicles are compact objects having different intensity form their back-
ground. Thus, to threshold intensities in regions assumes to be able to separate

N. Zheng, X. Jiang, and X. Lan (Eds.): IWICPAS 2006, LNCS 4153, pp. 105–114, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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the vehicle from the background. But false detection of shadows or missed de-
tection of vehicles with similar intensities as theirs environment cannot be avoid
[15]-[16]. Motion based vehicle detection/tracking is another popular method in
traffic monitoring systems. For instance, vehicle detection using optical flow was
discussed in [17]-[18]. Since it is time consuming, many research addresses on fast
optical flow calculation design. Background-frame differencing and inter-frame
differencing are also important methods [19]-[24]. They were proven to be fast
and reliable vehicle detection/tracking methods in many literals. However, all
the above approaches cannot thoroughly solve all traffic monitoring problems
due to variation of lighting condition, vehicle shapes and sizes.

To try to keep up with the steps of U.S., European and Japan, several devel-
oping countries begin to apply cutting edge traffic monitoring and management
techniques to alleviate their fast growing traffic congestions and accidents. How-
ever, the researchers in these countries are now facing the following new challenges:

– because the financial budget for installing city traffic monitoring systems is
limited, the obtained image qualities are often therefore limited;

– due to the same reason, these cameras are frequently installed at inappro-
priate positions, which leads to notable view field and vehicle occlusions
problems;

– the lane markings are often vague and diminished, since they are often
painted tens of years ago;

– mixed traffic flow, which simultaneously contains pedestrians, bicyclists, mo-
tors and vehicles, makes the vehicle waiting time hard to estimate;

– the traffic laws might be violated occasionally or even frequently, which
obviously introduce difficulties for traffic parameter extraction.

Under such conditions, most known methods cannot yield acceptable results
standalone without modifications. Therefore, a new traffic monitoring system
is proposed in this paper as shown in Fig.1. It detects potential vehicles using
spatio-temporal analysis at first. Then, it further examines these interested areas
based on vehicle/road shape information and driving rules to filter the distur-
bances caused by pedestrians and vehicle occlusions. Finally, Section 6 concludes
the whole paper.

To give a detailed explanation, the rest of this paper is arranged as follows:
Section 2-3 analyze driving environment learning; Section 4 examines vehicle
detection and identification algorithms; and Section 5 discusses how to track
vehicle and estimate average waiting time.

2 Lane Markings Detection

Lane detection is unnecessary in vehicle tracking, if the camera is set at an
appropriate position. However, if this condition cannot be met, it is an essential
step in order to determine the vehicle’s relative position to the lanes/roads.

One difficulty here is to detect the vague and diminished lane markings, espe-
cially when parts of the lanes are occluded by vehicles and pedestrians. To solve
this problem, the following adaptive algorithm is proposed and employed.
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Fig. 1. The proposed traffic monitoring system workflow

Adaptive Lane Markings Detection Algorithm:

1) Set an initial edge detection threshold σe;
2) Use Canny edge detection algorithm to detect those apparent edges regard-

ing to σe and filter out the unexpected margin lines generated by camera
problems;

3) Set an initial line detection threshold σl;
4) Use Hough Transformation and a priori road shape templates to find the

potential lane markings in the obtained edge image;
5) Gradually increase σl until only one line is selected as the dominant lane

line. If the dominant lane line cannot be determined by choosing different
σl, adjust σe and go back to step 1);

6) Store the found lane marking line and its direction θl;
7) Use Canny edge detection algorithm to detect as much edges as possible

with a lower threshold σe.
8) Set an relatively lower line detection threshold σl;
9) Use Hough Transformation to find other lane by only searching potential

lines with angles similar to θe;
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10) Adjust σl and go back to step 8), if too many or too few lanes are found
based on a priori knowledge of lane sum. If problem still cannot be solved,
Adjust σe and go back to step 7).

11) Eliminate false lines by calculating their distances to the dominant lane
marking line.

(a) (b)

Fig. 2. (a) lane markings detection results; (b) division of monitoring area

Lane detection does not need to be carried out frequently. Namely, once or
twice a day would be enough. In most situations, to model the lane markings
as lines will yield acceptable results. If really needed, those template-based lane
detection algorithms, i.e. the one described in [25]-[26], will be applied. However,
this will introduce significant calculation cost.

Fig.2(a) shows lane detection example, where the 5th line (top to bottom,
same as follows) indicates the dominant lane marking line, and the 6th and
7th lines are the other detected lane marking lines. And the first four lines
indicate disturbance lines which has similar angles of the lane markings. They
are eliminated by check their distances to the dominant lane marking line. If the
distance is relatively large comparing to other found lane lines, the corresponding
line will be considered as out of Area of Interest (AOI) and eliminated. The two
vertical margin (left and right) lines caused by camera problems are intensionally
discarded. The Hough transformation referring point is the top left corner.

3 Environment Learning and Vehicle Detection

Similar to [27], in order to improve tracking performance, an image got from the
video is divided into three areas as shown in Fig.2(b): distant view, near view and
disappear areas. In Area 1 (distant view), all the moving objects will be labeled
and memorized. While in the Area 2 (near view), only the objects approximately
moving alone the lane direction will be further examined. Any vehicle moves from
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Area 1 into Area 2 will be tracked, even it stops. The lane direction information
will help a lot to remove the disturbances caused by vehicles and bicyclist moving
in the opposite directions. If vehicles move from Area 2 into Area 3 (disappear
areas), it will soon be discarded after a short time, or several frame equivalently.

The area sizes are determined by the focus and range of view of the camera.
Due to the image quality limits of the applied camera, the motion detection
threshold for the objects moving in Area 1 is set smaller than that used for Area
2. Notice that vehicles usually have larger size than pedestrians and bicyclists,
the proposed motion-based vehicle detection algorithm is designed as:

Adaptive Vehicle Detection Algorithm:

1) Set an initial motion detection threshold σm1 for Area 1;
2) Use frame differencing algorithm to detect moving object. If less than 5

objects are detected on average, choose a smaller σm1 and go to step 1);
otherwise, if more than 10 objects are detected, chose a larger σm1 and go to
step 1). The sum of the vehicles here is estimated by lane sum and previous
traffic records;

3) Choose an motion detection threshold σm2 so that σm1 ≈ σm2. Here 1.5 is
an scale factor chosen by considering the applied camera quality;

4) Filter out the objects using lane direction information generated by optical
flow estimation.

Fig. 3. Diagram of two peaks in the histogram of the road areas

To detect all potential road participators in the complex driving scenarios,
frame differencing is employed to deal with multiple moving objects first. Then,
background differencing is used to get the more precise contours of the moving
objects. The road areas is determined by color hints like what proposed in [12]-
[14] and the lane information obtained above. Particularly, the road surface color
is retrieved from the images that satisfy the following two heuristic rules:
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– no (moving) objects are detected on the road areas;
– the shape of the gray histogram of road areas roughly fits the passed record.

This could partly reduce the effect of varied lighting conditions. Normally,
there will only exist two apparent peaks in the histogram as shown in Fig.3,
which indicate dark road surface and light lane markings respectively.

4 Vehicle Identification

To distinguish vehicles, motors and bicyclists in the real time is a difficult prob-
lem, since the size information cannot be easily retrieved in the images obtained
here. Thus, shape information is employed here similar to what discussed in
[28]-[29].

Knowledge-based methods employ a priori knowledge to find potential vehi-
cles in an image. Comparing to the following frequently considered cues: vehicle
geometry structures, shadow beneath the vehicle, texture, symmetry, color, rear-
lights, horizontal overlap assumption yields better results here. Due to low im-
age quality, vehicle texture and color information cannot be properly used here.
Moreover, since the traffic monitoring systems is required to work in cloudy day
time, shadow and rear-lights cues do not work well, either.

It is frequently assumed that road vehicles, especially cars and lesser extent
lorries, consists of a large number of horizontal structures, particularly windows
and bumpers. For example, the horizontal overlap assumption was used in [28] to
each image column may result in several Areas of Interest. The horizontal edge
response in each image column is summed and smoothed with a triangular filter.
And each locally maximal peak which is extracted from the smoothed column
responses will indicate a potential vehicle. A similar method is used to here to
roughly identify bicyclists, motors and vehicles. More specifically, is could be
described as follows:

Adaptive Vehicle Identification Algorithm:

1) Determine the Areas of Interests (AOI) using motion detection. If the width
of an AOI is larger than a pre-selected threshold σw, than split this AOI into
two AOIs from the middle. Repeat this action until all the widths of AOIs
are shorter than σw;

2) Set a relatively large edge detection threshold than what is used for lane
detection, i.e, set σ̂e ≈ σe;

3) Use Canny edge detection algorithm to detect the edges for each AOI found
with σ̂e, then obtain the edge response column sums for each AOI;

4) Distinguish the detected objects based on the heuristic rules listed as below:
i. if the width of an AOI is larger than a pre-selected threshold σ̄w, it may

not be a motor;
ii. if the height of an AOI is larger than a pre-selected threshold σ̄h, it

indicates a vehicle;
iii. if there exit two or more than two dominant peaks in the edge response

column sums, or equivalently there exits apparent valley(s), it must in-
dicate bicyclists;
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iv. if there exits only one dominant peak in the edge response column sums
plot, it usually indicates a motor;

v. if there is a flat top in the edge response column sums plot, it often
indicates a vehicle.

Since the image quality is limited and AOI are much smaller than the whole
image, the obtained response column sums plot usually need to be averagely
smoothed to easily find the peaks/valleys/top.

(a)

(b)

Fig. 4. (a) detected traffic participators: (left) bicyclists, (middle) motor, (c) commer-
cial vehicles; (b) the associated edge response column sums plot

Fig.4(a) shows several typical examples of detected objects. Usually, bicyclists
are detected only because two or more than two bicyclists moving to the same
direction side by side. Thus, there usually exit valleys between peaks as shown
in Fig.4(b).1. The windows, plates and bumpers add significant edge informa-
tion to vehicles comparing to bicyclists and motors (a single hill), which results
in a relatively flat top in the edge response column sums plot, see Fig.4(b).3.
Besides, vehicles usually generate larger AOI than bicyclists and motors. These
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hints cannot perfectly distinguish a vehicle from bicyclists or a motor, however,
experiments shows it works well in many cases and fast enough to guarantee
real-time processing.

5 Vehicle Waiting Time Calculation

In order to apply optimal traffic light control and relieve traffic congestion, the
average vehicle waiting time needs to be approximately estimated. Due to varied
passenger capacity and occupancy, different vehicles/motors waiting times will
be scaled by proper factor first and then added up together.

The most difficult problem is to calculate the waiting time for the stopped
vehicles. Here, a simple yet effective method is applied. It assumes that all the
identified vehicles enter from Area 1 to Area 2 will be registered with their
approximate positions and labeled with an auto-increase ID, respectively. The
waiting time of such a vehicle will be accumulated until it leaves Area 2 to Area
3, or after a pre-determined die-away time span, i.e. ten minutes. Any start
to move vehicles in Area 2 will be compared to the registered vehicles (mainly
position information and traffic rules) to check whether it is a new vehicle or not.
However, the traffic rules used here consider all the possible driving scenarios
including the illegal driving behaviors.

However, the proposed approach makes wrong tracking when the following
cases occur in the practical experiments:

– a vehicle drives backward for a notable distance will be recognized as a new
vehicle or simply discarded;

– some vehicles cannot be detected if the vehicle queue is too long and extents
out of view;

– track-trailers might be recognized as two vehicles;
– the system cannot work well under foggy or heavy rain conditions. New types

of traffic monitoring systems are still in bad need for those cities where such
bad weathers are easily encountered.

Further discussions and experiments will be carried out to improve the track-
ing performance of the proposed system and make it more practicable for the
fast growing transportation markets in the near future.

6 Conclusion

To fast track vehicles in complex driving scenarios, a video-based traffic moni-
toring system is discussed in this paper. Both motion vehicle motion and shape
information is considered to accurately recognize commercial vehicles and mo-
tors from varied road objects including pedestrians and bicyclists. Experiment
results show the effectiveness of this method.
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Abstract. This paper presents a new mouth region localization method which 
uses the Gaussian mixture model (GMM) of feature vectors extracted from 
mouth region images. The discrete cosine transformation (DCT) and principle 
component analysis (PCA) based feature vectors are evaluated in mouth local-
ization experiments. The new method is suitable for audio-visual speech recog-
nition. This paper also introduces a new database which is available for audio 
visual processing. The experimental results show that the proposed system has 
high accuracy for mouth region localization (more than 95 %) even if the track-
ing results of preceding frames are unavailable. 

1   Introduction 

Facial feature localization methods have recently undergone much attention. In par-
ticular, a mouth feature plays an important role for many applications such as auto-
matic face recognition, facial expression analysis and audio visual automatic speech 
recognition.  
    However, automatic mouth localization is especially difficult because of the  
various changes of its shape and person dependent appearance.  In addition, the better 
localization accuracy and faster response speed should be achieved at the same time.   
Many systems use skin color, the vertical and horizontal integration of pixel values in 
a face image[1]-[4]. However those systems are generally not robust for the signifi-
cant change of illumination conditions.  
    Some researchers have tried to find the precise lip contour [5]-[7]. However, most 
of applications don’t need it. For example, in audio visual speech recognition, the 
image of a mouth region is preferred [12]. 
    Lienhart et al. applied the detector tree boosted classifiers to lip tracking [8]. And 
they showed that their tracking system achieved high accuracy and small execution 
time per frame. However, we found that their method often fails to localize a mouth 
area at a frame level. In addition, an eye image is often misrecognized as a mouth. 
Actually they refined the trajectory of mouth by post-processing approach. Although 
some errors at a fame level can be recovered by such a post-processing, better accu-
racy at each frame is of course preferred.  
    The method based on Gaussian mixture models (GMM) [9][10] is one of the prom-
ising approaches since its performance is very high. And it can easily adjust the  
accuracy and computation cost by configuring the parameters such as a number of 
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mixtures. In the GMM based methods, the feature vector representation is a main 
issue for the improvement of the performance.  
    In this paper, we present a new mouth region localization method based on GMM, 
which doesn’t need prohibitively heavy calculation.  This paper is organized as the 
followings: Section 2 describes the training algorithm of GMM and section 3 describes 
the new mouth region localization method. Then section 4 presents the database used 
in experiments. In section 5, experimental results are depicted and discussed. 

2   Training Algorithm  

First this section defines a mouth template image to be localized. Then feature vectors 
used in this paper are explained. This paper evaluates two kinds of feature representa-
tion: (1) discrete cosine transformation (DCT) based feature vector [9] and (2) princi-
ple component analysis (PCA) based feature vector. After that, we describe how to 
construct GMM of the feature vectors. 

2.1   Mouth Template  

In order to construct the template images of a mouth, consistent rules for labeling are 
required. In our system, the width of a mouth region is defined from a left lip corner 
to the right one. And the height is defined from nostrils to a chin. Accordingly the 
mouth templates include non-lip area. Figure 1 shows the samples of the template 
images. By containing non-lip area such as the nostrils, template images can have 
robust information to locate a mouth region because nostrils don’t change largely. If 
we use a lip image only, a mouth region more often fails to be localized because of 
the significant change of lip shape. It is noteworthy that the movements of nostrils 
might have useful information for audio-visual speech recognition. All mouth images 
are scaled to the same size in training stage which is the average size over the training 
images. Thus, the original ratio of the width to the height is not kept the same.  

 

Fig. 1. This figure shows the samples of the mouth template images for training. Note that these 
samples are scaled to the same size. 

2.2   DCT Based Feature Vector 

Let I denote the image normalized by histogram equalization and its size is MxN. 
Then, the 2-D DCT transformation is computed as: 
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2.3   PCA Based Feature Vector 

Let x denote the vector converted from the normalized image. This approach calcu-
lates the followings. 

(1) The mean of the vectors x , 
(2) The covariance matrix C of the vectors, 

(3) The eigenvectors, i  and the corresponding eigenvalues i  of C (sorted so that 

1+≥ ii ), 

After these values are calculated, a feature vector is represented as: 

)( xxy −= T  .  

where the matrix  consists of the t eigenvectors corresponding to the largest ei-
genvalues. 
    Although both methods can de-correlate the elements of an image and compress 
vector size efficiently, the feature vectors obtained by PCA are more dependent of the 
training data. Therefore, PCA based feature vector can deteriorate if there is a gap 
between training and test data.  

2.4   Training GMM  

After feature vectors are calculated, those vectors are classified into k classes by K-
mean algorithm. A mixture weight, mean and covariance of a mixture are obtained by 
dividing the number of samples belonging to the class by the total number of samples 
and calculating a mean and covariance from the samples in the class, respectively.  

2.5   Multi-resolution GMM 

To improve the efficiency of the search, we use the multi-resolution framework. In 
this framework, after the mouth region in a coarse image is located, the estimated 
location is refined in a series of finer resolution image.  

For each training and test image, our system constructs the image pyramid where 
the higher level has the lower resolution. The base image at level 0 has the original 
resolution. Subsequent levels are formed by half resolution image sub-sampled from 
the ones at the one lower level.  At each level, GMM is build from the corresponding 
resolution images. The sizes of feature vectors are kept the same over all levels. 

2.6   Mouth Region Localization Based on GMM 

Figure 2 shows the basic flow chart of our mouth localization system at each level of 
the pyramid. Given an input image, the image with the same size as a window is 
cropped. The window is translated over all pixels of an input image and scaled. Our 
system scales the window in two ways: (1) with the same original ratio of the width to 
 

 (2) 
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the height and (2) without keeping that ratio.  The process (2) is important because the 
mouth template images during the training are resized to the same size without keep-
ing the original ratio due to the change of mouth shape. However, scaling without 
keeping the ratio leads to extremely heavy computation. Thus, our system changes 
that ratio within the range from the training data. Then, feature vector is calculated 
from the cropped image, as mentioned in section 2. Note that the cropped image is 
normalized by histogram equalization. After that, the likelihood of the feature vector 
is computed with the GMM. The position and size which gives the maximum likeli-
hood are estimated as the mouth region.  
    First the above process is performed for the lowest resolution image in the pyramid. 
In order to avoid converging to the local minima, n candidates are kept at each level. 
At the next level, the search area is limited based on the n candidates.  Those steps are 
repeated until the candidate is found at the finest resolution.  

 

Translate and scaling a  window

Keep the window position and size

Calculate a feature vector

Calculate the likelihood

Is it max?

yes
No

An input image at each level

 

Fig. 2. This figure shows the basic flow chart of the mouth localization system. This process is 
repeated from the lowest resolution image to the highest resolution image. 

3   Database for Experiments 

This section describes the specification of the new database we recorded. Though this 
paper addresses only the video processing, the database contains speech data and is 
available for audio visual processing. 
    Figure 3 describes the layout of equipments at the recording. Three pan-tilt-zoom 
(PTZ) cameras are set at different angles for a subject. A cross talking microphone is 
put on speaker’s ear. Three kinds of video data and two kinds of audio data are re-
corded.  The cameras and microphones are connected to different computers. Audio 
and video data streams are synchronized with network time protocol (NTP). Figure 4 
shows the sample images which are taken at 0, 45 and 90 angles, respectively. The 
speakers utter English alpha-numeric strings and English sentences extracted from 
TIMIT database. 39 male and 9 female are recorded.  
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PTZ Camera 2

PTZ Camera 3

64ch microphone array
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Whiteboard

2.48m 1.46m

 

Fig. 3. The layout of equipments at the recording is described 

450 90  

Fig. 4. This figure shows the sample images 

4   Experiment 

4.1   Experimental Conditions 

Table 1 shows the details of experimental conditions. The subjects in test data are not 
included in training data.  In this experiment, images have always only one face. Note 
that we decide the size of mouth templates at level 0 from the average size over all 
training images. In this experiment, only frontal faces are used. 

4.2   Experimental Results and Discussions 

Figure 5 and 6 represent the accuracy of mouth region localization by DCT and PCA 
based feature vector, respectively. The line ‘DN’ presents results when the dimension 
of a feature vector is N. Thus, the line ‘D16’ indicates results when a 16 dimensional 
vector is used. The horizontal axis (x-axis) of each figure represents the average dis-
tance Di  between the manually labeled points and automatically estimated positions 
as  

=
−= 4

1
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4
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l

l
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corrDi pp  . 

  (3) 
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where )4()1( pp are positions of  an upper left, upper right, bottom left and bottom 

right of a mouth region, respectively. )(l
corrp and )(l

estp  mean the labeled and estimated 

positions, respectively.  The smaller Di  means that system can localize a mouth area 
more precisely.   

Table 1. Experimental conditions 

A kind of parameter  Value 

Training data 
2113 images  
30 subjects 

Test data 
319 images 
18 subjects 

The number of mixtures 50 

The number of candidates kept at each level 8 
The size of mouth templates at level 0 
(width, height) 

65, 105  

The maximum pyramid level 3 

Dimensions of feature vectors 16, 24, 32, 48, 54 

The number of mixtures  50, 80 

    The vertical axis (y-axis) represents the cumulative probability of x-axis value 
which is also associated with the accuracy of mouth localization system. For example, 
figure 5 shows that the mouth regions are correctly estimated with probability 0.97 
(accuracy 97 %) by DCT based vector of 54 dimensions when 15≥Di .  On the other 
hand, Figure 6 shows that the accuracy of 95 % is achieved by PCA based method 
under the same condition as the above. Comparing Figure 5 with Figure 6, one can 
see that the mouth can be located more accurately and stably when the PCA based 
feature is used. However, we found that PCA based method rarely estimate the mouth 
region far from the correct position. In other words, the completely different area is 
seldom detected as a mouth region. We consider that those errors occur because the 
mouth shape is not included in the training data. Note that DCT computation is faster 
than PCA.  
    In Figure 7 and Figure8, experimental results are shown when the system uses 
GMMs with 50 Gaussians (50 mixtures) and 80 Gaussians (80 mixtures). In both 
figures, the line ‘MI(DN)’ stands for GMM with I mixtures and a N dimensional fea-
ture vector. Accordingly, the line ‘M50(D48)’ indicates the cumulative probabilities 
when GMM with 50 mixtures and a 48 dimensional feature vector are used. Figure 7 
shows experimental results when the DCT based feature vector is used. And results are 
shown in Figure 8 when the PCA based feature vector is used. Generally by increas-
ing the number of mixtures, we can achieve the better performance for the classifica-
tion of training data. However, in the case that too many mixtures are used for a few 
training data, the performance gets worse because of data sparseness. From Figure 8, 
one can clearly confirm the degradation of the performance when 80 mixtures are 
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Fig. 5. This figure presents accuracy of mouth localization by DCT based feature vector. In this 
figure, ‘D16’ stands for a 16 dimensional feature vector. Accordingly, the line ‘D16’ (with 
diamond symbols) indicates the accuracy when a 16 dimensional feature vector is used. 
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Fig. 6. This figure presents accuracy of mouth localization by PCA based feature vector. In this 
figure, ‘D16’ stands for a 16 dimensional feature vector. Accordingly, the line ‘D16’ (with 
diamond symbols) indicates the accuracy when a 16 dimensional feature vector is used. 

used since it’s too much. However, a situation is more complicated when the DCT 
based feature vector is used. The combination of the number of mixtures and the 
number of dimension influences the performance. For example, even if the number of 
mixtures is a little big, the improvement might be obtained by decreasing the number 
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Fig. 7. This figure shows accuracy of mouth localization for the number of mixtures by DCT 
based feature vector. In this figure, ‘M50(D48)’ stands for GMM with 50 mixtures and a 48 
dimensional feature vector. Accordingly, the line ‘M50(D48)’ (the dotted line with  triangle 
symbols) indicates the accuracy when GMM with 50 mixtures and a 48 dimensional feature 
vector are used. 
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Fig. 8. This figure shows accuracy of mouth localization for the number of mixtures by the 
PCA based feature vector. In this figure, ‘M50(D54)’ stands for GMM with 50 mixtures and a 
54 dimensional feature vector. Accordingly, the line ‘M50(D54)’ (the solid line with diamond 
symbols) indicates the accuracy when GMM with 50 mixtures and a 54 dimensional feature 
vector are used. 
 
of dimensions. In fact, when 80 mixtures and 48 dimensions are set (M80(D48)), the 
best performance is achieved, as shown in Figure 7. Setting too many mixtures also 
leads to heavy computation.    



 Mouth Region Localization Method Based on Gaussian Mixture Model 123 

Di =10
By PCA based

Di =1
By DCT based

Di =2 Di =10Di =5 Di =5

 

Fig. 9. Examples of result images are depicted. Di  is defined in Equation 3 and the same as x-
value in Figure 5-8. 

    Figure 9 shows examples of the mouth images estimated by the DCT and PCA 
based methods. The DCT based method tends to lose the edge of a chin, as shown in 
the image above 10=Di  of Figure 9, where Di  is defined in Equation 3. Note again 
that Di  is also the same as x-value in Figure 5-8. The inaccurate localization of a chin 
is the main reason why the DCT is less accurate than PCA.   

5   Conclusion 

We have successfully developed the accurate mouth localization system, which 
achieved the localization rate 95 % for our database if the average pixel distances Di  
is more than 6 (see Figure 6). It also proved that PCA based feature can improve the 
accuracy of the mouth localization. In the future, we are going to embed this method 
into audio visual speech recognition system. 
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Abstract. Video segmentation is an important phase in video based
traffic surveillance applications. The basic task of traffic video segmen-
tation is to classify pixels in the current frame to road background or
moving vehicles, and casting shadows should be taken into account if
exists. In this paper, a modified online EM procedure is proposed to
construct Adaptive-K Gaussian Mixture Model (AKGMM) in which the
dimension of the parameter space at each pixel can adaptively reflects
the complexity of pattern at the pixel. A heuristic background com-
ponents selection rule is developed to make pixel classification decision
based on the proposed model. Our approach is demonstrated to be more
adaptive, accurate and robust than some existing similar pixel modeling
approaches through experimental results.

1 Introduction

In video based surveillance applications, a basic and important approach called
background subtraction is widely employed to segment moving objects in the
camera’s field-of-view through the difference between a reference frame, often
called background image, and the current frame [1]. The accuracy of the back-
ground image quite impacts on output quality of the whole system, but the
task to retrieve an accurate background is usually overlooked in many video
based surveillance systems. It is complicated to develop a background modeling
procedure that keeps robust in changeful environment and for longtime span.

The simplest background reconstruction scheme adopts the average of all his-
torical frames as the background image, which contains both real background
component and foreground component. Consequently, the arithmetic average
method causes confusion. As an improved version, Running Gaussian Average
[1] is employed instead of arithmetic average, for each pixel (x, y), current back-
ground value Bj(x, y) is given by

Bj(x, y) = αI(x, y) + (1− α)Bj−1(x, y), (1)

where I(x, y) is current intensity, Bj−1(x, y) is last background value and α is a
learning rate often chosen as trade-off between the stability of background and
the adaptability for quick environmental changes. Confusion problem also can
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not be avoided in this approach. Autoscope system [2] adopts such approach but
a background suppression procedure is needed to eliminate the confusion. Tem-
poral Median Filter [1], a nonparametric, welcomed and applicable approach,
uses temporal median value of recent intensities in a length-limited moving win-
dow as the background at each pixel. Temporal Median Filter can generate an
accurate background image under the assumption that the probability of real
background in sight is over 0.5 in initialization phase, and the computational load
of Temporal Media Filter is predictable. But it will totally fail when foreground
takes up more time than background. N. Friedman et al. [3] first use Gaussian
Mixture Model (GMM) to model the pixel process. Their model contains only
three Gaussian components corresponding to road background, moving vehicles
and dynamic casting shadows. Meaning of their approach lies in pixel modeling
and a wise EM framework to train GMM, but it is not clear if the real scene
doesn’t fit such a three components pattern. C. Stauffer et al. [5], [6] work out a
successful improvement based on N. Friedman et al.’s model. They model each
pixel process as a GMM with K Gaussian components, where the constant K is
from 3 to 5, and then employ a heuristic rule to estimate background image. In
their approach, the number of components, K, is a pre-defined constant for each
pixel. Reversible Jump Markov chain Monte Carlo (RJMCMC) methods can be
used to construct GMM with an unknown number of components [10], but there
is no realtime version of RJMCMC for video processing. In this paper, we try
to present an engineering oriented and realtime approach to construct GMM
with an unknown number of components through a modified EM procedure.
As a result, complicated regions in the video is described by more components
adaptively, and simple regions with fewer components vice versa.

The rest of this paper is organized as follows: Section 2 briefly introduces
GMM modeling using EM algorithm. AKGMM learned by a modified EM pro-
cedure and a heuristic background components selection rule are proposed in
Section 3. In section 4, comparative experimental results are analyzed and sec-
tion 5 concludes this paper.

2 Related Work

Parametric probabilistic approaches in image processing usually treat each pixel
independently and try to construct a statistical model for each pixel [3], [4],
[6]. GMM is such a prevalent model usually trained using an iterative proce-
dure called Expectation Maximum algorithm (EM algorithm). EM algorithm is
introduced briefly in this section.

Considering the values of a particular pixel over time as a pixel process, its
history becomes

χ = {xj = Ij(x, y)}nj=1, (2)

where Ij(x, y) is grayscale or color vector at time j for pixel (x, y). A mixture
model of Gaussian distributions can be set up on χ at this pixel to gain on the
underlying PDF [7],



Traffic Video Segmentation Using Adaptive-K Gaussian Mixture Model 127

Fig. 1. A pixel process is constituted by values of a particular pixel over time. For each
pixel in the frame, a statistical model is built upon the corresponding pixel process.

f(x|Θ) =
K∑

i=1

ωiη(x|Θi), (3)

where ωi is the normalized weight of ith Gaussian component Ci, so
∑K

i=1 ωi = 1;
η(x|Θi) is PDF for Ci which can be replaced by

η(x|Θi) =
1√

2πσi

exp[−1
2
(
x− μi

σi
)2]. (4)

Theoretically, the Maximum-Likelihood root of parameters Θ = {ωi, Θi}Ki=1
can be found but in hidden form [7]. In practice, mixture models can be learned
using EM [3], [8]. Because of the requirement of realtime system, an online EM
version [3], [9] was proposed which converges to local expectation maximum
point with high probability. In this variant of EM, three sufficient statistics, Ni,
Si, Zi are considered, where Ni represents the count of samples belonging to
Ci; Si is the sum of these samples, Si =

∑
xj∈Ci

xj ; Zi represents the sum of
the outer product of these samples, Zi =

∑
xj∈Ci

x2
j/n. Consequently, the model

parameters can be calculated from these sufficient statistics as follow,

ωi =
Ni∑K

k=1 Nk

, μi =
Si

Ni
, σ2

i =
1
Ni

Zi − μ2
i . (5)

When a new sample xj comes in, these sufficient statistics are updated as
follow,

N j
i = N j−1

i + P (X ∈ Ci|X = xj , Θ
j−1),

Sj
i = Sj−1

i + xjP (X ∈ Ci|X = xj , Θ
j−1),

Zj
i = Zj−1

i + x2
jP (X ∈ Ci|X = xj , Θ

j−1),
(6)

where

P (X ∈ Ci|X = xj , Θ) =
P (X ∈ Ci, X = xj |Θ)

P (X = xj |Θ)
=

ωiη(xj |Θi)
f(xj |Θ)

, (7)

and we choose {N0
i , S

0
i , Z

0
i }Ki=1 as initial values of these sufficient statistics. From

the updated {N j
i , S

j
i , Z

j
i }Ki=1, we can compute Θj . If the underlying PDF is
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stationary, Θj will converge to local expectation maximum point with high prob-
ability in long run [3], [9].

3 Adaptive-K Gaussian Mixture Model

R. Bowden et al. have successfully segmented low resolution targets using C.
Stauffer et al.’s fixed K model [11], and they argue that it is not suitable for
large scale targets segmentation [11]. The detailed information of large moving
objects’ appearance, i.e., color, texture and etc, makes the pattern of pixels in
the track of objects much complicated. In other words, the objects’ track regions
hold a complex pattern mixed with background components and kinds of object
appearance components, but other regions hold just a stable background pattern.
And in practice, the difference among different regions, which is impacted by
many factors, i.e., acquisition noise, light reflection, camera’s oscillation caused
by wind, is also complicated. It is not suitable to describe every pixel in field-of-
view using a mixture model with fixed K Gaussian components as C. Stauffer
et al. did [5], [6]. We try to describe those pixels with complex pattern using
more Gaussian components adaptively, in other words, bigger K at those pixels,
and those simple pixels using fewer components vise versa. In such strategy, a
more accurate description of the monitoring region is expected. In video based
traffic surveillance applications, vehicles which are relatively large size targets
are tracked.

3.1 Pixel Modeling

When the first video frame comes in, a new Gaussian component is created at
each pixel with the current grayscale as its mean value, an initially high variance,
and low prior weight. In the following, at each pixel, a new instance is used for
updating the model using (6) if a match is found. A match is defined as a pixel
value within 2.5 standard variance of a component. If no match is found, a new
Gaussian component is created and no existing component is disposed.

Then, two problems arise: those three sufficient statistics, {Ni, Si, Zi}, increase
unlimitedly while more frames are captured; K may also increase unlimitedly
at a particular pixel, so the computational load will increase drastically. Firstly,
if
∑K

i=1 N
j−1
i < L, {Ni, Si, Zi} are updated using (6); otherwise we define a

forgetting rate as follow,

β =
∑K

i=1 N
j−1
i∑K

i=1 N
j−1
i + 1

, (8)

then those sufficient statistics are updated using

N j
i = β[N j−1

i + P (X ∈ Ci|X = xj , Θ
j−1)],

Sj
i = β[Sj−1

i + xjP (X ∈ Ci|X = xj , Θ
j−1)],

Zj
i = β[Zj−1

i + x2
jP (X ∈ Ci|X = xj , Θ

j−1)].
(9)
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As a result,
∑K

i=1 Ni will be a constant near by L which is an equivalent time
constant.

Secondly, every L frames, each Gaussian component is checked at any pixel
whether coefficient of some component Ck, that is ωk, is below a pre-defined
threshold ωT. If inequality ωk < ωT holds, component Ck is discarded because
the inequality means there are too few evidences to support that component
which is inspired by low-probability events. 1/L is a reasonable value for ωT,
because a component supported by less than one evidence in L frames shouldn’t
be maintained. After a number of frames are processed, K will adaptively reflects
the complexity of pattern at each pixel, in other words, we can set up a more
accurate description of the monitoring region. In this case, computational cost is
mainly allocated for complicated regions, such as tracks of the moving objects.
Figure 2(b) shows a K-image formed by the components’ number at each pixel,
where grayscale encodes K accumulated by 200 frames using AKGMM. As our
expectation, pixels in the three lanes have more Gaussian components than pixels
in other areas, i.e., barriers by the road.

(a) (b) (c) (d)

Fig. 2. (a) Monitoring scene on a highway; (b) shows a image formed by the com-
ponents’ number where grayscale encodes K; (c) is the background image formed by
mean value of the first Gaussian component at each pixel; (d) plots PDF at point A
labeled in (a)

3.2 Background Estimation

For GMM, measurement ω/σ is proposed to be positively related to the prob-
ability of being background component [5], [6]. Heuristically, C. Stauffer et al.
select the first B components in the sequence of all components ordered by ω/σ
as background, where

B = argmin
b

(
b∑

i=1

ωi > T ). (10)

In such strategy, T is a threshold related to occupancy in traffic applications.
Such background estimation may fail in some cases, i.e., large flow volume, traffic
jam, if the background is just judged from occupancy.

A searching procedure is developed to estimate background in our framework.
Assume the first component in the sequence of components ordered by ω/σ must
be a part of background, and background components set B includes only the
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first component initially while the other components are labeled non-background.
In the iterative searching phase, a non-background component Cnb is labeled
background and included into B if

μnb ∈ [μb − 3σb, μb + 3σb], ∃Cb ∈ B, (11)

where μnb is mean value of Cnb; Cb is some background component with mean
value μb and standard variance σb. The iteration ends until no such compo-
nent Cnb can be found. If a background image is needed, we choose the mean
value of the first component of B, in which elements are also ordered by ω/σ, at
any pixel to form the background image. Figure 2(c) shows such a background
image accumulated by the first 100 frames. Figure 2(d) plots PDF at point A
labeled in Fig.2(a), in which five components are included. Solid line represents
two background components selected by our searching procedure, and dotted
line represents the other three non-background components. Our experimental
results will show that our simple iterative procedure generates accurate back-
ground model in many traffic cases.

3.3 Foreground Segmentation

In terms of the background components set B updated in the previous searching
procedure, a new grayscale at pixel (x, y) is identified as moving vehicle if the
current grayscale matches no component in B when dynamic casting shadow is
out of consideration.

If vehicles cast moving shadows, non-background pixels should be segmented
into vehicles and their casting shadows, otherwise the foreground segmentation
will be enlarged wrongly. Many shadow detection algorithms are proposed, but
most of them are too complex. In our framework, we adopt a simple shadow
detection algorithm called Normalized Cross-Correlation algorithm (NCC algo-
rithm) proposed by Julio et al. [12] to refine the segmentation if dynamic casting
shadow exists. NCC explores the relationship between casting shadow and back-
ground, that is, the intensity of shadowed pixel is linear to the corresponding
background, so the background image provided by AKGMM is used to detect
shadows.

An example of the segmentation refinement applied to the original frame with
shadow is depicted in Fig.3(b). In this figure, white areas correspond to moving
vehicles and gray areas correspond to shadow detection. Figure 3(c) shows the
final foreground segmentation result after applying morphological operators to
eliminate gaps and isolated pixels.

4 Experimental Results

Following comparative experiments demonstrate the performance of our pro-
posed algorithm on two groups of traffic image sequences. Dataset A is recorded



Traffic Video Segmentation Using Adaptive-K Gaussian Mixture Model 131

(a) (b) (c)

Fig. 3. Segmentation result using AKGMM and NCC. (a) is the original frame; (b)
shows the segmentation (shadowed pixels are represented by light gray); (c) is mor-
phological post-processing result after shadow removal.

on a highway; dataset B is by an intersection on a ground road, and the camera
oscillates drastically in the wind. The video size is 320x240 and shadow detection
is incorporated in following experiments. In order to distinguish our framework
from C. Stauffer et al.’s, we name their model Fixed-K Gaussian Mixture Model
(FKGMM) in the following.

4.1 Reflection

In this experiment, FKGMM maintains 3 components at each pixel, while the
average of components’ number in AKGMM is about 6. In the Fig.4(d), we can
see there are more false alarm pixels in the output of FKGMM, and our shadow
areas have better texture than theirs. Whenever a large vehicle passes by the
camera, reflection from the large vehicle impacts on the quantification of the
camera in the whole field-of-view. Column 2 and 3 show the difference between
the two models in such case. In FKGMM, a meaningful component may be
substituted by a new one which is inspired by the sudden reflection to keep K as
a constant. Consequently, the sudden reflection is classified as dynamic casting
shadow. In contrast, AKGMM gives a more accurate background description,
and no component will be destroyed by the sudden reflection, so AKGMM works
better in such cases.

4.2 Camera’s Oscillation

In outdoor applications, camera’s oscillation caused by wind should be taken
into consideration. In this robustness experiment in case of camera’s oscillation, 5
components are maintained and the threshold T in (10) is set to 0.5 for FKGMM.
The background selected by FKGMM will be unimodal at most pixels. As a
result, edges of the ground marks and static objects by the road are identified
as non-background because of the oscillation. By increasing T , FKGMM will
behave better because the background becomes multimodal, but the confusion
problem will occur as analyzed in next subsection. The K-image of AKGMM
depicted in Fig.5(d) illuminates that these edges are described more accurately.
After an opening then a closing morphological operation, our framework takes
on better robustness than C. Stauffer et al.’s.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 4. Corresponding segmentations on dataset A. Top row: the original images at
frames 1443, 2838, 2958. Middle row: the corresponding segmentation using C. Stauf-
fer et al.’s model (shadowed pixels are represented by light gray). Bottom row: the
segmentation using AKGMM.

(a) (b) (c)

(d) (e) (f)

Fig. 5. Segmentation on dataset B in case of camera’s oscillation. (a): the original image
at frame 422; (b)-(c): segmentation using FKGMM and corresponding morphological
post-processing result; (d): K-image of AKGMM; (e)-(f): segmentation using AKGMM
and corresponding morphological post-processing result.
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4.3 Stationary Vehicles

In front of intersections, vehicles occasionally stop to wait for pass signal. To
detect stationary vehicles is a typical problem in video based traffic surveillance.
In dataset B, the vehicles stop for about 15 seconds, 375 frames equivalently,
every 45 seconds’ pass. Figure 6(a) and Fig.6(d) represent such a move-to-stop
process for about 4 seconds. The threshold T is adjusted to 0.9 to keep FKGMM
robust in oscillation. The Gaussian components which correspond to the station-
ary vehicles grow so quickly that these components are included into background
according to (10). Consequently, the stationary vehicles incorporate into back-
ground as showed in Fig.6(e). In our framework, the incorporation occurs pro-
vided that the stationary vehicles cover those pixels more frames than the time
constant L. By choosing an appropriate L, our system keeps robust both in
camera’s oscillation and stationary vehicles case.

(a) (b) (c)

(d) (e) (f)

Fig. 6. Segmentation on dataset B in case of stationary vehicles. (a): original image
at frame 1680; (b)-(c): segmentation of (a) using FKGMM and AKGMM; (d) original
image at frame 1768; (e)-(f): segmentation of (d) using FKGMM and AKGMM.

5 Conclusions and Future Work

A visual traffic surveillance application oriented, probabilistic approach based
large scale moving objects segmentation strategy is presented in this paper. In
our strategy, a modified online EM procedure is used to construct Adaptive-K
Gaussian Mixture Model at each pixel, and a heuristic background components
selection rule is developed to generate accurate background and make pixel classi-
fication decision. Our approach shows good performance in terms of adaptability,
accuracy and robustness, but the computational load is unpredictable because
of the very adaptability. We can constrain the computational load by apply-
ing our approach just in small Region of Interest (ROI). Reasonable heuristic
background estimation rules and adaptability for kinds of environmental changes
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need more study. Some intro-frame tasks, such as vehicle tracking, can be studied
based on the object segmentation.
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Abstract. We have been researching the relationship between human motion 
and emotion. In this paper, our purpose is to extract motion features specific to 
each emotion. We propose a new approach for motion data analysis, which ap-
plies the higher order Singular Value Decomposition(HOSVD) direct to the 
motion data and the wavelet analysis to the synthesized data with SVD. The 
HOSVD models the mapping between persons and emotions. The model can 
synthesize a complete data acting with each emotion for a given new person. 
The wavelet analysis extracts each motion feature from the synthesized data for 
each emotion. Some experimental results using motion capture data for “gait” 
action and 6 emotions – “angry, joy, sad and so on” show  that our method can 
synthesize novel gait motions for a person by using the extracted motion ele-
ments and can extract some features specific to each emotion. 

1   Introduction 

With the spreading popularity of sensing technology or the growing needs of security, 
the analysis of human motion is now the hot area of research. Recently, several  
researches which describe and archive the precise motion of typical dance have been 
reported[1],[2]. Though, our interests concentrate on human motions of general  
people in daily life. 

We have studied the mechanism of human impressions mainly with images[3] and 
our current interest is to study human psychological responses to time-variate stimuli, 
from the view point of Kansei information processing.  

In the literature of motion analysis and synthesis research, there have been model 
based and non-model based methods. Most model based ones are based on hidden 
markov model[4],[5] and non-model based ones are based on PCA or tensor tech-
nique. In this paper, our purpose is to extract motion features specific to each emotion 
and the method, which can synthesize motion specific to each emotion, is adequate 
for our purpose. For a simple implementation,  we use the tensor method  proposed by 
Vasilescu[6] to extract human motion signatures individualizing their movements 
from sample motions. We applied this algorithm to motion data which measured sev-
eral action patterns with several emotions for each subject. According to this method, 
corpus of motion data spanning multiple persons and actions is organized as higher 
order array or tensor which defines multi linear operators over a set of vector spaces. 
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2   The Analyze and Synthesize Methods 

2.1   The Higher Order SVD  

Given a corpus of body motion data of different persons and different emotions, we 
decompose them into two separate subspaces – the person subspace and the emotion 
subspace. 

We use a third-order tensor TKNR ××∈A to represent the human motion configura-

tion, N is the number of persons, K is the number of emotions and T is the number of 
joint feature time samples. We can decompose tensor A using the higher order singular 

value decomposition which is known as the N-mode SVD. N-mode SVD is a generali-
zation of SVD that orthogonalizes N spaces as mode-n product of N orthogonal spaces: 

NNnn UUUU ××××× 32211A  (1) 

Here, A is called as core tensor which governs the interaction between the mode ma-

trices nU , for Nn ,,1= . Mode matrix nU contains the orthonormal vectors 

spanning the column space of the matrix A(n) that results from the mode-n flattening 
of A. 
    N-mode SVD algorithm for decomposing A is : 

1. for Nn ,,1= , calculate matrix nU  in (1) by calculating the SVD of the flat-

tened matrix A(n) and setting nU  to be the left matrix of the SVD. 

2. solve for the core tensor as follows 

     T
NN

T
nn

TT UUUU ××××= 2211AS  (2) 

    It can be calculated in a matrix representation, e.g., 

T
nnNnn

T
n )1221(n)(n) ++−− ⊗⊗⊗⊗= UUUU(UAUS , (3) 

where ⊗ is the matrix Kronecker product. 
Suppose given motion sequences of several persons, we define a data set tensor D 

with size JEP ×× , where P is the number of persons, E is the number of emotions 
and J is the number of joint feature time samples. 

JEP 321 ×××= SD  (4) 

The person matrix [ ]TPn ppp1P = whose person specific row vectors T
np span 

the space of person parameters, encodes per-person invariances across emotions. The 

emotion matrix [ ]TEm eee1E = whose emotion specific row vectors T
me span the 

space of emotion parameters, encodes the invariances for each emotion across differ-
ent person. The joint angle matrix J whose row vectors span the space of joint angles 
are the eigen motions that are normally computed by PCA. 

JE 32 ××= SB  (5) 

defines a set of basis matrices for all the motion features associated with all emotions. 
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JP 31 ××= SC  (6) 

defines a set of basis matrices for all the motion features associated with all persons. 
After extracting J  E, and S, , we have a generative model that can observe motion data 

of a new person performing one of these emotions e and synthesize the remaining 
emotions for this new person in the equation  

T
e p1×= BD ep, , (7) 

where J32 ××= T
ee eSB  and ep,D  is a T××11 tensor and flattening this tensor in 

the person mode yields the matrix e(person)p,D , which can be denoted as T
ed . A com-

plete set of new person is synthesized as follows: 
Tp1×= BD p  (8) 

If several emotions T
ekd are observed, the person parameters are computed as  

follows:  
1

)(
−×= personek

T
ek

T Bdp  (9) 

Similarly, given a known person with an unknown emotion, we can synthesize all 
the persons in the database with the same emotions: 

Te2×=CDe  (10) 

If several persons are observed performing the same emotion pkd , the emotion pa-

rameters are computed as follows: 
1

)(
−×= emotionpk

T
pk

T Cde  (11) 

2.2   Wavelet Analysis 

As long as observing wave forms as a time sequence, wavelet analysis is considered 
to be effective. We applied wavelet transform to the synthesized data described in 
previous section. In wavelet analysis, the wavelet function needs to be selected ade-
quately to data. We tried daubechies’ wavelet family[7] and selected db6 (in case of 
N=6 out of dbN), experimentally.  

2.3   Feature Extraction Process  

The flow of our emotion feature extraction is follows: 

1. to measure motion capture data with gait action expressing each emotion. 
2. to collect all the subject’s motion data for the same emotion. 
3. to apply the HOSVD to the motion data, which are spanned the space of all sub-

jects , all emotions and all joints. 
4. to synthesize other emotions’ motion from a new gait motion data with neutral 

emotion by formulae (9) or (11). 
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5. to apply the wavelet analysis including multi-resolution decomposition and re-
composition to the synthesized motion  and extract each emotion specific motion 
feature. 

3   Motion Data Acquisition 

All the human motion was recorded using a Motion Star system. Subject wore a hub 
system(as shown in Fig.1), which sends each sensor’s 3D information to the server 
wirelessly. Server detects 18 markers and computes each 3D position relative to a 
fixed lab coordinate frame. Each marker is placed on forehead, throat, both shoulders, 
elbows and wrists, sternum, low back, both waists, knees, ankles and toes of a human 
subject. A subject walks on the wood support about 3 times 3 square meter in diago-
nal or stands on the center of the support. We indicate a subject to walk or stand with 
each emotion – we select 1 neutral emotion and 6 emotions -angry, disgust, fear, joy, 
sad and surprise – based on Ekman’s facial research[8]. 

    
Fig. 1. Left image shows a subject who takes a T-stance pose wearing magnetic sensors. Right 
image shows a skelton image which connects each sensor with line.  

3.1   Subjects 

In order to collect a training data, 4 subjects (2 male and 2 female) are selected from 
young actors and actresses who belong to a theater company.  

3.2    Action Patterns 

As an action pattern – gait is adopted because its routine action in our daily life is 
considered to be adequate to analyze. Gait action is considered to have a distinctive 
routine motion common between people, which is independent on an emotion specific 
motion. Subjects are instructed to perform gait action in 3 seconds expressing each 
emotion and repeat many times. 

4   Results and Discussions 

We focus on the lean of body and the angle between arms or legs, and analyze each 
joint angles and joint velocity. Three joint angles are analyzed - the angle between 
 

body and upper arm, upper arm and front arm, upper leg and lower leg. All matrix 
computation is performed using Matlab 7.0. 
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Fig. 2. Wavelet decomposed waveform for each resolution level: the case of angle between 
right upper and front arm for each emotion center top graph shows raw data – angle time 
sequence, below 6 graphs show recomposed waveform by wavelet transform and inverse 
wavelet transform with each resolution level 

    Fig. 2, Fig.3 and Fig.4 show the example of wavelet analyses for the angle time 
sequence between upper and front arm, between upper arm and upper body, and be-
tween lower and upper leg, respectively. These angles reflect the crook of elbow and 
mainly the motion of front arm, the arm motion forward or backward of the upper  
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Fig. 3. Wavelet decomposed waveform for each resolution level: the case of angle between 
right upper body and upper arm for each emotion center top graph shows raw data – angle time 
sequence, below 6 graphs show recomposed waveform by wavelet transform and inverse wave-
let transform with each resolution level 

body and the bending of knee, respectively. In these graphs, “source” means a raw 
synthesized signal for each emotion and “level” means a temporal scale ( level 
1,2,…,5 correspond to time cycle with 21,22,…,25 frames, respectively. Here, 1 frame 
corresponds to 1/60 second ).  Lower level reflects fine motion and higher reflects 
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Fig. 4. Wavelet decomposed waveform for each resolution level: the case of angle between 
right lower and upper leg for each emotion center top graph shows raw data – angle time se-
quence, below 6 graphs show recomposed waveform by wavelet transform and inverse wavelet 
transform with each resolution level 

 
larger motion. From these figures, angry and joy show clear periodic peaks in higher 
level 5 and 6, but fear, disgust and sad show no clear peaks at any temporal scale. 
These means that angry and joy show periodic motion, while disgust, fear and sad 
show irregular motion on arm.  Fig.4 reflects the leg motion, each emotion shows  
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Table 1. Extracted motion features for each emotion 

emotion tempo wave feature 

The angle between upper & front arm 

neutral normal periodicity, synchronicity over scales 

angry faster large & steep peaks repeated in longer period 

disgust random short periodicity, clear peak irregular but continual 

fear faster short periodicity, tiny peaks 

joy normal 
continual steep peak in short period, synchronous be-

tween scales 

sad irregular a little change, no clear peak 

surprise slower temporal large peak which decays 

The angle between upper arm & upper body 

neutral normal clear periodicity at large scales 

angry slower synchronous to gait, stronger the right side 

disgust normal frequent small peaks at fine scale 

fear unclear tiny peaks at fine scale 

joy normal large clear peaks,  synchronous over scales 

sad slow no peaks 

surprise normal temporal large peak which decays 

The angle between lower & upper leg 

neutral normal stronger periodicity  with larger scale 

angry a bit slower a bit stronger periodicity at each scale 

disgust a bit faster strong periodicity at middle scale, 

fear unclear tiny peaks at each scale 

joy faster strong periodicity synchronous between scales 

sad a bit slower small peaks at the edge of periodic wave 

surprise slow large peaks which decays 
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clear peaks at several scales. Angry and joy show strong continual peaks especially at 
level 5, while disgust and surprise show a irregular peaks. This means that angry and 
joy hold leg’s periodic motion, but disgust and surprise break it.  Fear and sad show a 
periodic alternation of a steep peak and a mild peak at mid scale. This reflects a slug-
gish gait. Total motion features for each emotion extracted by wavelet analysis are 
summarized in Table 1. 

5   Conclusion and Future Extensions 

We propose a motion analysis and synthesis method based on the higher order SVD 
and wavelet analysis, in order to extract motion features specific to emotions. Our 
method applies the higher order SVD to the motion time sequence acted with each 
emotion and compute a mapping model between persons and emotions. The genera-
tive model synthesizes a novel person’s motion data acting each emotion or a known 
person’s motion data with the other emotions. Experimentally, our method can syn-
thesize a new person’s each motion sequence with other emotions. The analyses ap-
plying a wavelet transform to the synthesized data can extract each motion feature for 
each emotion. 

Experimentally, in gait action, we confirmed our method could extract motion fea-
ture for each emotion. For example, gait with angry or joy gave an enhancing motion 
of gait action, joy gave the continual enhancing effect of gait motion both arm and 
leg. Angry gives the enhancing effect on bending arm or leg and the periodicity of 
swinging arms is lost. While, disgust, fear, and sad show a depressed motion of gait 
action, arms are kept lifting and legs show a sluggish gait motion. In the case of sur-
prise, an instant large motion which decays is shown in each joint, and so forth. 

In future work, we plan to investigate psychological responses to the animated data 
generated using our synthesized motion data and construct a motion corpus specific to 
each emotion. 
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Abstract. In this paper, a novel feature extraction method based on scatter dif-
ference criterion in hidden space is developed. Its main idea is that the original 
input space is first mapped into a hidden space through a kernel function, where 
the feature extraction is conducted using the difference of between-class scatter 
and within-class scatter as the discriminant criterion. Different from the existing 
kernel-based feature extraction methods, the kernel function used in the pro-
posed one is not required to satisfy Mercer’s theorem so that they can be chosen 
from a wide range. It is more important that due to adoption of the scatter dif-
ference as the discriminant criterion for feature extraction, the proposed method 
essentially avoids the small size samples problem usually occurred in the kernel 
Fisher discriminant analysis. Finally, extensive experiments are performed on a 
subset of FERET face database. The experimental results indicate that the pro-
posed method outperforms the traditional scatter difference discriminant analy-
sis in recognition performance. 

1   Introduction 

Over the last years, nonlinear variants of linear algorithms have become possible by 
the so-called “kernel trick”, originally introduced in SVMs [1]. Basically, the linear 
algorithms are written in the form of dot products which are substituted by kernel 
functions which directly compute the dot products in a high-dimensional nonlinear 
space. Kernel Fisher discriminant analysis (KFD) [2, 3], the famous one of them, has 
widely been applied to many pattern recognition problems and its good performance 
is available. However, KFD has two intrinsic limitations. First, it always encounters 
the difficulty of singularity of the within-class scatter matrix in feature space, which is 
the same one as its linear version, LDA. A number of regularization techniques [4-7] 
that might alleviate this problem have been suggested. Unfortunately, most of the 
approaches discard the discriminant information contained in the null space of the 
within-class covariance matrix, yet this information is very effective for the small 
sample size. Recently, a novel classifier, referred to as maximum scatter difference 
classifier (MSDC), is presented [8]. Its main idea is that one finds the optimal projec-
tion direction depended on the difference of between-class scatter and within-class 
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scatter (SD) rather than their ratio (i.e., the Fisher criterion), which avoids the prob-
lem of the small sample size in nature. MSDC, however, extracts only an optimal 
projection vector for the resulting classification, which is insufficient for multi-class 
classification task. Second, the kernel functions used in KFD must satisfy the Mer-
cer’s condition or they have to be symmetric and positive semidefinite. However, 
kernel functions available are limited and have mainly the following ones: polynomial 
kernel, Gaussian kernel, sigmoidal kernel, spline kernel, and others. The limited num-
ber of kernel functions restrains the modeling capability for KFD when confronted 
with highly complicated applications. 

To overcome the above-mentioned weaknesses of KFD, a novel feature extraction 
method, named as discriminant transform based on scatter difference criterion in 
hidden space (HSDD) is proposed in this paper. Different from KFD, the proposed 
HSDD method adopts SD as projection criterion. As a result, it is not required to 
calculate the inverse of within-class scatter matrix and the trouble of singularity is 
avoided essentially. Motivated by the hidden function mapping used in radial basis 
function networks (RBFs), we will extend the range of usable kernels that are not 
required to meet the Mercer’s condition. A new kernel function for nonlinear map-
ping, called similarity measurement, is employed in the method. Finally, the proposed 
method has been used in face recognition. The experimental results on the FERET 
face database indicate the proposed method is effective and encouraging. 

The rest of this paper is organized as follows: Section 2 describes the principle and 
algorithm of HSDD. In Section 3, experimental results on the FERET face image 
databases demonstrate the effectiveness and efficiency of HSDD. Finally, conclusions 
are presented in Section 4. 

2   Principle and Method 

2.1   Hidden Space 

Let X={x1, x2, … , xN}denote the set of N independently and identical distributed 
(i.i.d.) patterns. Define a vector made up of a set of real-valued functions {ϕi(x)|i=1, 
2, …, n1}, as shown by 

( ) [ ( ), ( ),..., ( )]= Tx x x x
11 2 nϕ ϕ ϕ ϕ , (1) 

where ∈ ⊂x X n . The vector ( )xϕ maps the points in the n-dimensional input space 

into a new space of dimension n1, namely,  

[ ( ), ( ),..., ( )]⎯⎯→ = Tx y x x x
11 2 n

ϕ ϕ ϕ ϕ . (2) 

Since the set of functions { ( )xiϕ } plays a role similar to that of a hidden unit in radial 

basis function networks (RBFNs), we refer to ( )xiϕ , i=1, …, n1, as hidden functions. 

Accordingly, the space, { | [ ( ), ( ),..., ( )] , }= = ∈Ty y x x x x X
11 2 nϕ ϕ ϕ , is called the 

hidden space or feature space. 
Now consider a special kind of hidden function: the real symmetric kernel function 

k(xi, xj)= k(xj, xi). Let the kernel mapping be 



146 C.-k. Chen and J.-y. Yang  

[ ( , ), ( , ),..., ( , )]⎯⎯→ = Tx y x x x x x xk
1 2 Nk k k . (3) 

The corresponding hidden space based on X can be expressed as { |= =y y  

[ ( , ), ( , ), ..., ( , ), ]  ∈ Tx x x x x x x X1 2 Nk k k whose dimension is N. 

It is only the symmetric for kernel functions that is required, which will extend the 
set of usable kernel functions in HSDD while the rigorous Mercer’s condition is re-
quired in SVMs. Some usual hidden functions are given as follows: sigmoidal kernel: 

( ) ( )( ), = ⋅ +x x x xi j i jk S v c , Gaussian radial basis kernel : ( ), exp( )
2

2

−= − x x
x x i j

i j 2
k , 

polynomial kernel: ( ) ( )( ), = ⋅ +x x x x
d

i j i jk b ,  > ≥0, b 0 , and d is a positive 

integer. 
In what follows, we will define a new kernel mapping directly based on two-

dimensional image matrix rather than one-dimensional vector. 

Definition 1.  Let Ai and Aj are two m×n image matrices. A real number s is defined 
by 

( )
( , )

( )

+
=

+

T T

T T

A A A A
A A

A A A A
i j j i

i j
i i j j

tr
s

tr
, (4) 

where tr(B) denote the trace of a matrix B. The number s(Ai, Aj) is referred to as the 
similarity measurement of both Ai and Aj. 

According to the definition 1, it is easy to show that the similarity measurement s 
has the following properties: 

(1)  ( , ) ( , )=A A A Ai j j is s ; 

(2)  ( , ) ( , )= T TA A A Ai j i js s ; 

(3) ( , )− ≤ ≤A Ai j1 s 1 , if ( , ) =A Ai js 1 , then =A Ai j . 

 

From the above properties, it is clear to see that  s(Ai, Aj) represents the relation of 
similarity between two image matrices, Ai and Aj. If the value of s(Ai, Aj) approaches 
one, the difference of both Ai and Aj reaches zero, which shows that Ai is nearly the 
same as Aj. 

Definition 2. A mapping : × →m n Nϕ is defined as follows, 

(., ) [ ( , ), ( , ),..., ( , )]= =A A A A A A A T
1 2 Ns s s sϕ . (5) 

The mapping ϕ is called the similarity kernel mapping. Thus, the hidden space associ-
ated with ϕ  is given by { | [ ( , ), ( , ),..., ( , ), ]= = ∈ Tz z A A A A A A A X1 2 Ns s s . 

2.2   Feature Extraction Based on Scatter Difference Criterion in Hidden Space 

Suppose { }=X Ai i = 1,2,...,N is a set of m×n training images, which contains c 

pattern classes, 1 2 c, ,..., . According to the definition 2, each training image, Ai, 
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i=1, … , N, is mapped to the hidden space through the similarity kernel mapping ϕ. 
Let zi be the mapped image in  of the original training image Ai, that is, 

[ ( , ), ( , ),..., ( , )]i 1 2 Ns s s= Tz A A A A A Ai i i . (6) 

The mean vector, covariation matrix, and prior probability of the ith class in the hid-
den space  are, respectively, denoted by μi, Ki, and ( )iP . Then, the between-class 

scatter matrix and within-class scatter matrix in  are defined as follows. 

( )( )( )= − − T
K

c

b i i i
i=1

P μ μ μ μ , (7) 

( ) ( )( ){ } ( )|= − − =T
K E z z K

c c

w i i i i i i
i=1 i=1

P Pμ μ , (8) 

where E(M) is the expectation of a matrix M, ( )( ){ }= − − T
K E z zi i i iμ μ , and 

{ } ( )= =E z
c

i i
i=1

Pμ μ denotes the total mean vector of training samples. 

From the scatter matrices defined above, the scatter difference criterion is defined 
as follows, 

( ) ( )J = −Tw w K K ws b w , (9) 

where w is any N-dimensional vector in the hidden space . The vector w* maximiz-
ing the criterion function Js(w) is chosen as an optimal projection direction for 
HSDD. Thus, the projected feature vectors in the direction reach its maximum class 
separability. 

Theorem 1. The optimal projection vector is the unitary vector that maximizes Js(w), 
i.e., the unitary eigenvector of the matrix Kb-Kw corresponding to the largest eigen-
value. 

Proof.   The problem to solve the optimal discriminant vector w* maximizing Js(w) in 
Eq. (9) is equivalent to the following one, 

( ) ( )
( )Max J Max Max

= = =

−
= − =

T
T

Tw w w

w K K w
w w K K w

w w
b w

s b w
1 1 1

. (10) 

Since  

( ) ( )T T

T T I

− −
=

w K K w w K K w

w w w w
b w b w , (11) 

where I is an identity matrix. Note that the formula (11) is a rayleigh quotient in the 
space . According to the extreme value property of the rayleigh quotient [9], the 
optimal discriminant vector w* maximizing Js(w) corresponds to the unitary eigenvec-
tor of the matrix Kb-Kw with the largest eigenvalue.                                                   
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In general, it is not enough to have only one optimal projection vector. We usually 
need to select a set of projection vectors maximizing the criterion function Js(w). 

Corollary 1. A set of best discriminant vectors maximizing Js(w) in Eq. (9) are taken 
as the orthonormal eigenvectors of the following eigenequation (12) corresponding to 
the first d largest eigenvalue, that is, 

( ) λ− =K K w wb w j j j j = 1,...,d . (12) 

Finally, the obtained optimal discriminant vectors, say , , ...,  w w w1 2 d , are used for 

feature extraction in the space . 
It is clear that unlike the KFD methods based on the Fisher criterion, which fails to  

calculate its optimal discriminant vectors when the within-class scatter matrix Kw is of 
singularity, which usually occurs in its real-world applications, it is always easy to 
compute the optimal projection directions of HSDD no matter the matrix Kw is singu-
lar or not. In addition, the eigendecomposition for HSDD simply bases on the matrix 
Kb-Kw rather than the matrix -1

bK Kw , which is used in the conventional KFD methods. 

Thus, the computation time consumed by HSDD is much smaller than one by KFD. 

2.3   Feature Extraction 

Let , , dw w1  denote a set of optimal discriminant vectors extracted by Eq. (12). 

Given a training image A, we can obtain the discriminant feature vector y by the fol-
lowing transformation:  

=y W zT  (13) 

where, 

  [ , , , ]=W w w w1 2 d   

[ ( , ), ( , ),..., ( , )]=z A A A A A A T
1 2 Ns s s .  

3   Experiments 

The proposed method was applied to face recognition and tested on a subset of the 
FERET face image database [10, 11]. This subset includes 1400 images of 200 indi-
viduals (each individual has 7 images). It is composed of the images named with two-
character strings: “ba”, “bd”, “be”, “bf”, “bg”, “bj”, and “bk”. These strings indicate 
the kind of imagery, see [11]. This subset involves variation in facial expression, 
illumination, and poses (±150 and ±250). In our experiment, the facial portion of each 
original image was cropped based on the location of eyes and, the cropped image was 
resized to 80×80 pixels and pre-processed by histogram equalization. The seven  
images of one person in the FERET face database are shown in Figure 1. 
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Fig. 1. Seven cropped images of one person in the FERET face database 

In our experiment, three images of each subject are randomly selected for training, 
while the remainder is used for testing. Thus, the total number of training samples is 
200×3=600 and the total number of testing samples is 200×4=800. Apart from the 
similarity measurement kernel, two popular kernels are involved in our tests. One is 
the polynomial kernel ( , ) ( )= ⋅x y x y Tk +1  and the other is the Gaussian RBF ker-
nel ( , ) exp( || || / )= − −x y x y 2 σk . KFD and HSDD are, respectively, used for testing and 
comparison. A minimum-distance classifier is employed for classification. For the 
sake of conciseness, KFD and HSDD with the polynomial kernel, the Gaussian RBF 
kernel and the similarity measurement kernel are, respectively, denoted by KFD_P, 
KFD_G, KFD_S, HSDD_P, HSDD_G and HSDD_S. The above experiments are 
repeated 10 times. In each time, the training sample set is chosen at random so that 
the training sample sets are different for each test. The average recognition rate across 
10 times of each method over the variation of dimensions is plotted in Fig. 2. In addi-
tion, the average CPU time consumed for training and testing, and the best recogni-
tion rates are given in Table 1. 

From Fig. 1 and Table 1, we can see that HSDD_S is superior to KFD’s, 
HSDD_G, and HSDD_P in recognition accuracy. The result verifies the effectiveness 
of similarity measurement as kernel function. In addition, the speed of three methods 
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Fig. 2. The average recognition rate (%) across 10 tests of each method with the variation of 
dimensions 
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Table 1. The average CPU time (s) consumed for training and testing and the top recognition 
rates (%) of the four methods (CPU: Pentium 2.4GHZ, RAM: 640Mb) 

Method KFD_P KFD_G KFD_S HSDD_P HSDD_G HSDD_S 
Recognition rate 78.61 78.83 79.13 82.45 82.47 83.25 
CPU time 97.86 125.15 99.25 48.21 59.96 41.09 

 
of HSDD_S, HSDD_G, and HSDD_P is faster than KFD’s. This result is reasonable 
since the proposed algorithms are based on the scatter difference criterion rather than 
the Fisher criterion adopted in KFD, which saves much time due to avoid the compu-
tation of the inverse of the within-class scatter matrix. 

4   Conclusion 

A new feature extraction method, coined discriminant transform based on scatter 
difference criterion in hidden space, is developed in this paper. Compared to the exist-
ing KFD methods, HSDD has two prominent advantages: first, it is free to the singu-
larity of the within-class scatter matrix so that the computation time required is  
reduced considerably; second, since the kernel is no longer required to meet the Mer-
cer’s condition, the range of kernel functions available is widened. As a result, one 
may find more desirable kernel according to the present problem itself. Our experi-
ments demonstrate that the proposed method is effective and efficient. 
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Università di Salerno

84084 Fisciano (SA) – Italy
amarcelli@unisa.it

Abstract. In this paper we propose a new genetic programming based approach
for prototype generation in Pattern Recognition problems. Prototypes consist of
mathematical expressions and are encoded as derivation trees. The devised sys-
tem is able to cope with classification problems in which the number of prototypes
is not a priori known. The approach has been tested on several problems and the
results compared with those obtained by other genetic programming based ap-
proaches previously proposed.

1 Introduction

Several modern computational techniques have been introduced in the last years in order
to cope with classification problems [1,2,3]. Among others, evolutionary computation
(EC) techniques have been also employed. In this field, genetic algorithms [4,5] and
genetic programming [6,7] have mostly been used. The former approach encodes a set
of classification rules as a sequence of bit strings. In the latter approach instead, such
rules, or even classification functions, can be learned. The technique of Genetic Pro-
gramming (GP) was introduced by Koza [7] and has already been successfully used in
many different applications [8,9], demonstrating its ability to discovering underlying
data relationships and to representing them by expressions. Only recently, classification
problems have been faced by using GP. In [10], GP has been used to evolve equations
(encoded as derivation trees) involving simple arithmetic operators and feature vari-
ables. The method was tested on different type of data, including images. In [11], GP
has also been employed for image classification, adding exponential functions, con-
ditional functions and constants to the simple arithmetic operators. In both the above
quoted approaches, the data set is divided in a number c of clusters equal to the number
of predefined classes. Thus, these approaches do not take into account the existence of
subclasses within one or more of the classes in the analyzed data set.
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We present a GP based method for determining a set of prototypes describing the
data in a classification problem. In the devised approach, each prototype is representa-
tive of a cluster of samples in the training set, and consists of a mathematical expression
involving arithmetic operators and variables representing features. The devised method
is able to generate a variable number of expressions, allowing us to cope with those
classification problems in which single classes may contain not a priori identifiable
subclasses. Hence, a fixed number of expressions (prototypes) may not be able to effec-
tively classify all the data samples, since a single expression might be inadequate to ex-
press the characteristics of all the subclasses present in a class. The proposed approach,
instead, is able to automatically find the number of expressions needed to represent all
the possible subclasses present in the data set.

According to our method, the set of prototypes describing the classes makes up a
single individual of the evolving population. Each prototype is encoded as a derivation
tree, thus an individual is a list of trees, called multitree. Given an individual and a
sample, classification consists in attributing the sample to one of the classes (i.e. in
associating the sample to one of the prototypes). The recognition rate obtained on the
training set when using an individual is assigned as fitness value to that individual.
At any step of the evolution process, individuals are selected according to their fitness
value. At the end of the process, the best individual obtained, constitutes the set of
prototypes to be used for the considered application.

A preliminary version of this method was presented in [12], where prototypes con-
sisted of simple logical expressions.

The method presented here has been tested on three publicly available databases and
the classification results have been compared with those obtained by the preliminary
version of the method and with another GP based method presented in the
literature [10].

2 Description of the Approach

In the approach proposed here, a prototype representing a class or subclass consists of
a mathematical expression, namely an inequality, that may contain a variable number
of variables connected by the four arithmetic operators (+,-,*,/). Each variable xi, (i =
1, . . . , n) represents a particular feature. Note that an inequality characterizes a region
of the feature space delimited by an hypersurface. Given an expression E and a sample
represented by a feature vector x, we say that E matches the sample x if the values in
x satisfy the inequality E. Training the classifier is accomplished by the EC paradigm
described in Section 3 and provides a set of labeled expressions to be used as prototypes.
Different expressions may have the same label in case they represent subclasses of a
class.

Given a data set and a set of labeled expressions, the classification task is performed
in the following way: each sample of the data set is matched against the set of expres-
sions and assigned to one of them (i.e. to a class or subclass) or rejected. Different cases
may occur:
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1. The sample is matched by just one expression: it is assigned to that expression.
2. The sample is matched by more than one expression with different number of vari-

ables: it is assigned to the expression with the smallest number of variables.
3. The sample is matched by more than one expression with the same number of

variables and different labels: the sample is rejected.
4. The sample is matched by no expression: the sample is rejected.

Hereinafter, this process will be referred to as assignment process, and the set of sam-
ples assigned to the same expression will be referred to as cluster.

3 Learning Classification Rules

As already said, the prototypes to be used for classification are given in terms of in-
equalities, thus they may be thought of as computer programs and can be generated by
adopting the GP paradigm. Our GP based system starts by randomly generating a pop-
ulation of p individuals. An individual is made by a set of prototypes each encoded as
a derivation tree, so that it is a multitree (i.e. a list of trees). The number of trees mak-
ing up an individual will be called length of the individual: in the initial population, it
ranges from 2 to Lmax. Afterwards, the fitness of the initial individuals is evaluated. In
order to generate a new population, first the best e individuals are selected and copied
in the new population so as to implement an elitist strategy. Then (p − e)/2 couples
of individuals are selected using the tournament method and manipulated by using two
genetic operators: crossover and mutation. The crossover operator is applied to each of
the selected couples, according to a chosen probability factor pc. Then, the mutation is
applied to the obtained individuals according to a probability factor pm. Finally, these
individuals are added to the new population. The process just described is repeated for
NG generations. In order to implement the above system the following steps must be
executed:

- definition of the structure to be evolved;
- choice of the fitness function;
- definition of the genetic operators.

In the following each of these steps is detailed.

3.1 Structure Definition

In order to generate syntactically correct expressions (i.e., prototypes), a nondetermin-
istic grammar is defined. A grammar G is a quadruple G = (T ,N , S,P), where T and
N are disjoint finite alphabets. T is the terminal alphabet, whereas N is the non-
terminal alphabet. S, is the starting symbol and P is the set of production rules used
to define the strings belonging to the language. The grammar employed is given in
Table 1.

Each individual consists of a variable number of derivation trees. The root of every
tree is the symbol S that, according to the related production rule, can be replaced
only by the string “C”. The symbol C can be replaced by any mathematical expres-
sion obtained by recursively combining variables, representing features, and operators.



Looking for Prototypes by Genetic Programming 155

Table 1. The context free grammar used for generating the expressions employed as prototypes.
In the right column, the probability of being chosen for each of the right side clause is shown.

Number Rule Probability
1 S −→ C 1.0
2 C −→ [E > V ] | [E < V ] equiprobable
3 E −→ PFD | P 0.4, 0.6
4 D −→ PFD | P | V 0.5, 0.25, 0.25
5 F −→ ∗ | + | / | − equiprobable
5 P −→ x0 | x1 | . . . | xN equiprobable
6 V −→ +0.XX | − 0.XX equiprobable
7 X −→ 0|1|2|3|4|5|6|7|8|9 equiprobable

Summarizing, each individual is a list of derivation trees whose leaves are the terminal
symbols of the grammar defined for constructing the set of inequalities. The set of in-
equalities making up an individual is obtained by visiting each derivation tree in depth
first order and copying into a string the symbols contained in the leaves. In such string,
each inequality derives from the corresponding tree in the list. To reduce the probability
of generating too long expressions (i.e. too deep trees) the action carried out by a pro-
duction rule is chosen on the basis of fixed probability values (shown in the last column
of Table 1). Moreover, an upper limit has been imposed on the total number of nodes
contained in an individual, i.e. the sum of nodes of each tree. Examples of individuals
are shown in Fig. 1.

The matching process is implemented by an automaton which accepts as input an
expression and a sample and returns as output the value true or false depending on the
fact that the sample matches or not the expression.

3.2 Training Phase and Fitness Function

The aim of the training phase is that of generating the prototypes. The system is trained
with a set containing Ntr samples. During training, the fitness of each individual in the
population has to be evaluated. This process implies the following steps:

1. The assignment of the training set samples to the expressions belonging to the indi-
vidual is performed. After this step, ni (ni ≥ 0) samples will have been assigned to
the i-th expression. The expressions for which ni > 0 will be referred to as valid,
whereas the ones for which ni = 0 will be ignored in the following steps.

2. Each valid expression is labeled with the label most widely represented in the cor-
responding cluster.

3. The recognition rate (on the training set) of the individual is evaluated and assigned
as fitness value to that individual.

In order to favor those individuals able to obtain good performances with a lesser num-
ber of expressions, the fitness of each individual is increased by k/Ne, where Ne is the
number of expressions in the individual and k is a constant.
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Parents

4TT T T1 2 3

(a)
3T T T1 2

(b)

Offspring

4T T T T1 2 3

(c)
3T T T1 2

(d)

Fig. 1. An example of application of the crossover operator. The top figures (a and b)show a
couple of individuals involved as parents of the crossover operator. The bottom figures (c and d)
show the offspring obtained after the application of the operator. In this case case, t1 and t2 ha
been chosen respectively equal to 2 and 1.

3.3 Genetic Operators

The choice of encoding the individuals as lists of derivation trees (see Section 3.1)
allows us to implementing the genetic operators in a simple way.

The crossover operator is applied to two individuals I1 and I2 and yields two new
individuals by swapping parts of the lists of the initial individuals (see Figure 1). As-
suming that the lengths of I1 and I2 are respectively L1 and L2, the crossover is applied
in the following way: the first individual is split in two parts by randomly choosing an
integer t1 in the interval [1, L1], so generating two multitrees I

′
1 and I

′′
1 , respectively

of length t1 and L1 − t1. Analogously, by randomly choosing an integer t2 in the in-
terval [1, L2], two multitrees I

′
2 and I

′′
2 are obtained from I2. Two new individuals are

obtained: the first, by merging I
′
1 and I

′′
2 and the second by merging I

′
2 and I

′′
1 .

It is worth noting that the implemented crossover operator allows us to obtain indi-
viduals of variable length. Hence, during the evolution process, individuals made of a
variable number of prototypes can be evolved.

The mutation operator is independently applied to every tree of an individual I with
probability pm. More specifically, given a tree Ti, the mutation operator is applied by
randomly choosing a single nonterminal node in Ti and then activating the correspond-
ing production rule in order to substitute the subtree rooted under the chosen node.

4 Experimental Results

Three data sets have been used for training and testing the previously described ap-
proach. The sets are made of real data and are available at UCI site (http://www.ics.uci.
edu/∼mlearn/MLSummary.html) with the names IRIS, BUPA and Vehicle.

IRIS is made of 150 samples of iris flowers of three different classes, equally dis-
tributed in the dataset. Four features, namely sepal length, sepal width, petal length and
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petal width, are used for describing the samples. BUPA is made of 345 samples repre-
senting liver disorder using six features. Two classes are defined. The samples of the
data set Vehicle are feature vectors representing 3D vehicle images. The data set has
846 samples distributed in four classes: 18 features characterize each sample.

In order to use the grammar shown in Table 1 the feature values of the data sets taken
into account have been normalized in the range [−1.0, 1.0]. Given a not normalized
sample x = (x1, . . . , xN ), every feature xi is normalized using the formula: xi = (xi−
xi)/2σi where xi and σi, respectively represent the mean and the standard deviation of
the i-th feature computed over the whole data set.

Each dataset has been divided in two parts, a training set and a test set. These sets
have been randomly extracted from the data sets and are disjoint and statistically in-
dependent. The first one has been used during the training phase to evaluate, at each
generation, the fitness of the individuals in the population. The second one has been
used at the end of the evolution process to evaluate the performance of our method. In
particular, the recognition rate over the test set has been computed using for classifica-
tion the best individual generated during the training phase.

The values of the evolutionary parameters, used in all the performed experiments,
have been heuristically determined and are: Population size = 500; Tournament size =
6; Elithism size = 5; Crossover probability = 0.5; Mutation probability = 0.3; Number
of Generations = 300; Maximum number of nodes in an individual = 1000; maximum
length of an individual = 20. The value of the constant k (see Subsection 3.2) has been
set to 0.1.

In order to investigate the generalization power of our system, i.e. a measure of its
performance on new data, the recognition rates both on training and test sets have been
taken into account for the different considered data sets. In Figure 2 such recognition
rates, evaluated every 50 generations in a typical run, are displayed for BUPA and Ve-
hicle data sets. It can be seen that the recognition rate increases with the number of
generations both for the training set and for the test set. The best recognition rates occur
in both cases nearby generation 250 and then remain stationary.

The proposed approach has been compared with another GP based approach previ-
ously proposed in [10]. Furthermore, the results obtained by the preliminary version of
the method [12] are also shown for comparison. The substantial difference between the
new and the old version of the method consists in the form of the encoded expressions:
in [12] each expression contains a variable number of logical predicates connected by
Boolean operators. Each predicate represents an assertion establishing a condition on
the value of a particular feature of the samples. This implies that the hypersurfaces

Table 2. The recognition rates Rnew, Rold and RMuni obtained respectively by the method pre-
sented here, its preliminary version and the method presented in [10]

Data sets Rnew Rold RMuni

IRIS 99.6 99.4 98.67
BUPA 78.6 74.3 69.87
Vehicle 70.2 66.5 61.75



158 L. P. Cordella et al.

Generation
50 100 150 200 250 300

R
ec

o
g

n
it

io
n

 r
at

e

55,0

60,0

65,0

70,0

75,0

80,0

Test  set
Training set

Generation
50 100 150 200 250 300

R
ec

o
g

n
it

io
n

 r
at

e

50,0

55,0

60,0

65,0

70,0

75,0

Test  set
Training set

Fig. 2. Typical runs for BUPA (top) and Vehicle (bottom) datasets

separating the regions of the feature space belonging to different classes can only be
hyperplanes parallel to the axes. In the new version of the method such hypersurfaces
are of polynomial type, thus enabling a more effective separation between classes.

In Table 2 the recognition rates achieved on the test set by the three methods are
shown. The results have been obtained by using the 10-fold cross validation procedure.
Since the GP approach is a stochastic algorithm, the recognition rates have been aver-
aged over 10 runs. Hence, 100 runs have been performed for each data set. Note that, in
[10], the number of prototypes is a priori fixed, while in our method it is automatically
found. The results show that the proposed method outperforms those used for compari-
son on all the data sets taken into account, confirming the validity of the approach.

5 Conclusions

A new GP based approach to prototype generation and classification has been proposed.
A prototype consists of a set of mathematical inequalities establishing conditions on
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feature values and thus describing classes of data samples. The method is able to auto-
matically find the number of clusters in the data, without forcing the system to find a
predefined number of clusters. This means that a class is neither necessarily represented
by one single prototype nor by a fixed number of prototypes. A remarkable feature of
our method is that the hypersurfaces separating the regions of the feature space belong-
ing to different classes are of polynomial type, thus enabling an effective separation
between classes. The results show that the proposed method outperforms those used for
comparison.

References

1. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. John Wiley & sons, Inc. (2001)
2. Zhang, G.P.: Neural networks for classification: a survey. IEEE Transactions on Systems,

Man, and Cybernetics, Part C 30 (2000) 451–462
3. Quinlan, J.R.: C4.5: programs for machine learning. Morgan Kaufmann Publishers Inc.

(1993)
4. Holland, J.H.: Adaptation in Natural and Artificial Systems: An Introductory Analysis with

Applications to Biology, Control and Artificial Intelligence. MIT Press (1992)
5. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning.

Addison-Wesley Longman Publishing Co., Inc. (1989)
6. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural

Selection. MIT Press, Cambridge, MA, USA (1992)
7. Koza, J.R.: Genetic programming II: automatic discovery of reusable programs. MIT Press,

Cambridge, MA, USA (1994)
8. Sette, S., Boullart, L.: Genetic programming: principles and applications. Engineering Ap-

plications of Artificial Intelligence 14 (2001) 727–736
9. Bastian, A.: Identifying fuzzy models utilizing genetic programming. Fuzzy Sets and Sys-

tems 113 (2000) 333–350
10. Muni, D.P., Pal, N.R., Das, J.: A novel approach to design classifiers using genetic program-

ming. IEEE Trans. Evolutionary Computation 8 (2004) 183–196
11. Agnelli, D., Bollini, A., Lombardi, L.: Image classification: an evolutionary approach. Pat-

tern Recognition Letters 23 (2002) 303–309
12. Cordella, L.P., De Stefano, C., Fontanella, F., Marcelli, A.: Genetic programming for gener-

ating prototypes in classification problems. In: Proceedings of the 2005 IEEE Congress on
Evolutionary Computation. Volume 2., IEEE Press (2005) 1149–1155



Identifying Single Good Clusters in Data Sets

Frank Klawonn

Department of Computer Science
University of Applied Sciences Braunschweig/Wolfenbuettel

Salzdahlumer Str. 46/48
D-38302 Wolfenbuettel, Germany
f.klawonn@fh-wolfenbuettel.de

http://public.rz.fh-wolfenbuettel.de/~klawonn/

Abstract. Local patterns in the form of single clusters are of interest
in various areas of data mining. However, since the intention of cluster
analysis is a global partition of a data set into clusters, it is not suitable
to identify single clusters in a large data set where the majority of the
data can not be assigned to meaningful clusters. This paper presents a
new objective function-based approach to identify a single good cluster in
a data set making use of techniques known from prototype-based, noise
and fuzzy clustering. The proposed method can either be applied in or-
der to identify single clusters or to carry out a standard cluster analysis
by finding clusters step by step and determining the number of clusters
automatically in this way.

Keywords: Cluster analysis, local pattern discovery.

1 Introduction

Cluster analysis aims at partitioning a data set into clusters. It is usually assumed
that, except for some noise data, most of the data can be assigned to clusters.
However, when we are interested in detecting local patterns, standard clustering
techniques are not suited for this task.

In various applications, cluster analysis is applied, although the focus is on
detecting single interesting patterns, instead of partitioning the data set. For
instance, cluster analysis is very often applied in the context of gene expression
data in order to find groups (clusters) of genes with a similar expression pattern.
The approach described in this paper was also motivated by an analysis of gene
expression data where we applied standard clustering in the first step [4], but
the main intention of the biologists was to find local patterns instead of a global
partition into clusters. However, there are many other areas like the analysis of
customer profiles where local patterns are of high interest.

A number of different approaches for the detection of local patterns have
already been proposed and studied in the literature. For categorical data, nu-
merous variants of the a priori algorithm for finding frequent item sets and
association rules are very popular [8]. Scan statistics [7,3] can be used to search
for local peaks in continuous data sets. However, due to the high computational
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costs, they are not suited for high-dimensional data and are very often applied
in the context of geographical clusters, for instance places with an unusually
high rate of a certain disease. In [9] a statistical approach is described that tries
to circumvent the high computational costs of scan statistics by restricting the
search space for the price of sub-optimal solutions. In this paper, we do not
follow the more statistical idea of finding regions with high densities in the data
space, but clusters that are more or less well separated from the rest of the data.

Fig. 1. An example data set

Figure 1 shows an almost ideal example of a data set we consider here. It
contains an almost well-separated cluster close to the top-left of the figure made
of 200 data points, whereas the other 600 data points are scattered all over the
data space and do not form meaningful clusters. Of course, figure 1 serves only
illustration purposes, real data sets will have more than two dimensions.

The approach presented in this paper follows the concept of prototype-based
cluster analysis, however, trying to find only one single cluster at a time. From
the perspective of the single cluster, that we are trying to find in one step, data
not belonging to this cluster is considered as noise. Therefore, we incorporate the
idea of noise clustering into our approach. Section 2 provides a brief overview on
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the necessary background of prototype and objective function-based clustering
including noise clustering. In section 3 the new approach is introduced in detail.
Short comments on application scenarios are provided in section 4, before we
conclude the paper with a perspective on future work.

2 Prototype- and Objective Function-Based Clustering

In prototype-based clustering clusters are described by certain parameters that
determine the prototype of the cluster. In the most simple case of c-means clus-
tering, the prototype has the same form as a data object, assuming that clusters
correspond more or less to (hyper-)spheres. Nevertheless, more flexible clus-
ter shapes can also be covered by using more sophisticated prototypes. Cluster
shapes might range from ellipsoidal shapes of varying size to non-solid clusters
in the form of lines, hyperplanes or shells of circles and ellipses, the latter being
more interesting in the area of image analysis. In this paper, we only mention
c-means prototypes for our approach. However, our approach can be easily ap-
plied to any other cluster shape that is used in prototype-based clustering. For an
overview on different cluster shapes and an introduction to objective function-
based clustering we refer for instance to [5].

Once the form of the prototype is chosen, the idea of most prototype-based
clustering techniques is to minimize the following objective function

f =
c∑

i=1

n∑
j=1

um
ijdij (1)

under the constraints

c∑
i=1

uij = 1 for all j = 1, . . . , n. (2)

It is assumed that the number of clusters c is fixed. We will not discuss the
issue of determining the number of clusters here and refer for an overview to
[1,5]. The set of data to be clustered is {x1, . . . , xn} ⊂ IRp. dij is some distance
measure specifying the distance between datum xj and cluster i, for instance
the (quadratic) Euclidean distance of xj to the ith cluster centre in the case
of c-means clustering. uij is the membership degree of datum xj to the ith
cluster. In the case of classical deterministic clustering, we require uij ∈ {0, 1}.
However, here we will need the more general concept of fuzzy clustering and
allow uij ∈ [0, 1]. The parameter m > 1, called fuzzifier, controls how much
fuzzy clusters may overlap. The constraints (2) lead to the name probabilistic
clustering, since in this case the membership degree uij can also be interpreted
as the probability that xj belongs to cluster i.

The parameters to be optimized are the membership degrees uij and the
cluster parameters that are not given explicitly here. They are hidden in the
distances dij . Since this is a non-linear optimization problem, the most common
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approach to minimize the objective function (1) is to alternatingly optimize
either the membership degrees or the cluster parameters while considering the
other parameter set as fixed.

Davé [2] introduced the technique of noise clustering. Noise clustering uses the
same objective function as (1). However, one of the clusters – the noise cluster –
does not have any prototype parameters to be optimized. All data objects have
a fixed (large) distance δ to this noise cluster. In this way, data objects that are
far away from all other clusters are assigned to the noise cluster.

3 Identifying Single Clusters

As mentioned in the introduction, we are not interested in partitioning the data
set, but in finding single clusters step by step. In order to find one single cluster,
we adopt the idea of prototype-based clustering reviewed in the previous section.

We can simplify the notation, since we do not have to deal with c clusters, but
only with two clusters: The proper cluster, we want to identify, and the noise
cluster. We denote the membership degree of data object xj to the cluster to be
identified by uj and its distance to this cluster by dj . According to the constraint
(2), the membership degree to the noise cluster is 1 − uj . The distance to the
noise cluster is denoted by δ. We also choose m = 2 as the fuzzifier. This means
that the objective function (1) including the constraints (2) simplifies to

f1 =
n∑

j=1

u2
jdj + (1 − uj)2δ2. (3)

The distance δ to the noise cluster influences the possible size of the single cluster,
we want to identify. The larger the noise distance, the larger the single cluster
can be. However, we are not able to specify δ a priori. In [6] an approach was
proposed that also considers a single cluster together with a noise cluster. There,
the noise distance δ is varied. Starting from a very large value δ is decreased in
small steps until it reaches zero. While δ decreases, data objects are moved
from the proper cluster to the noise cluster. The proper cluster is identified
by analysing the fluctuation of the data from the proper cluster to the noise
cluster. Although effective, this approach requires high computational costs for
the repeated clustering while δ is decreasing. Also the analysis of the fluctuation
of the data is not trivial.

In this paper, we try to adapt δ automatically during the clustering process.
Therefore, we extend the objective function (3) by three further terms. We want
our proper cluster to be well-separated from the remaining data, i.e. from the
noise cluster. When the proper cluster is well separated from the noise cluster,
membership degrees should tend to the values zero and one. There should be
few data with intermediate values. Assuming uj ∈ [0, 1], the following term is
maximal, if uj ∈ {0, 1} holds for all data objects j. It is minimal, if all uj are
equal to 0.5.

f2 =
n∑

j=1

u2
j + (1− uj)2 (4)
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It is also desirable, that our proper cluster is not empty and all data are assigned
to the noise cluster. The term

f3 =
n∑

j=1

u2
j (5)

is maximised, when data objects are assigned to the proper cluster with high
membership degrees.

Finally, we need an additional condition for the noise distance δ. Otherwise,
if we could choose δ freely, minimizing (3) would automatically lead to δ = 0.
The fourth term

f4 = δ (6)

should be maximised in order to favour larger values δ. A large δ also means
that the proper cluster can be larger.

The objective function, we want to minimize for identifying the single cluster,
is a linear combination of these four terms. Since only (3) should be minimized,
whereas the other three should be maximised, we choose a negative coefficient
for (4), (5) and (6). The overall objective function to be minimized is

f =
a1

n
f1 −

a2

n
f2 −

a3

n
f3 − a4f4. (7)

We have introduced the factor 1
n for the first three terms, in order to make the

choice of the coefficients independent of the number of data. 1
nf1 is the weighted

average distance, weighted by the membership degrees, of the data to the two
clusters. 1

nf2 can be interpreted as an indicator of how well separated the proper
cluster is from the remaining data. It can assume values between 0.5 and 1. 1

nf3
corresponds to the proportion of data in the proper cluster. The final term f4 is
already independent of the number of data.

The parameters in f to be optimized are

– the membership degrees uj ∈ [0, 1] (j ∈ {1, . . . , n}),

– the noise distance δ > 0 and

– the cluster prototype parameters that are hidden in the distances dj .

In order to apply the alternating optimization scheme, we have to find the
optimal values for each set of parameters, while the other parameters are con-
sidered as fixed.

Taking the partial derivative of f with respect to uj leads to

∂f

∂uj
= 2

a1

n
ujd

2
j − 2

a1

n
δ2 + 2

a1

n
ujδ

2 − 2
a2

n
uj − 2

a2

n
uj + 2

a2

n
− 2

a3

n
uj. (8)

For a minimum, it is necessary that the partial derivative is zero. Setting (8) to
zero, we obtain

uj =
a1δ

2 − a2

a1d2
j + a1δ2 − 2a2 − a3

. (9)
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The partial derivative of f with respect to δ is

∂f

∂δ
= 2

a1

n
δ

n∑
j=1

(1 − uj)2 − a4,

leading to
δ =

a4

2a1
1
n

∑n
j=1(1− uj)2

. (10)

The cluster prototype parameters occur only in the distances dj and therefore
only in the term f1 of the objective function. Therefore, the derivation for the
cluster prototype parameters is the same as for standard fuzzy clustering. In the
most simple case of a fuzzy c-means prototype, the prototype is a vector v ∈ IRp

like the data objects. The corresponding equation for v is then

v =

∑n
j=1 u

2
jxj∑n

j=1 u
2
j

. (11)

The four coefficients a1, . . . , a4 determine, how much influence the corresponding
terms in the objective function have. Since only the proportions between these
coefficients and not their absolute values play a role in the optimization, we can
choose a1 = 1 without loss of generality. Therefore, equations (9) and (10) can
be simplified to

uj =
δ2 − a2

d2
j + δ2 − 2a2 − a3

(12)

and
δ =

a4

2 1
n

∑n
j=1(1− uj)2

, (13)

respectively.
The principal algorithm to find a single cluster is then as follows:

1. Choose a2, a3, a4 ≥ 0.
2. Choose ε > 0 for the stop criterion.
3. Initialise v and δ (randomly or as described in section 4).
4. Update the uj ’s according to equation (12).
5. Update δ according to equation (13).
6. Update v according to equation (11) (or to the corresponding equation, if

other than fuzzy c-mean prototypes are considered).
7. Repeat steps 4,5,6 until v is not changed significantly anymore, i.e. until
‖ vnew − vold ‖< ε.

In step 4 we have to make sure that 0 ≤ uj ≤ 1 holds. In order to satisfy this
condition, we define a lower bound for the noise distance δ. When we want the
denominator in (12) to be positive, even for small distances dj or at least for
distances about dj = a3, we have to require that δ2 ≥ 2a2, i.e. δ ≥

√
2a2 holds.

Therefore, we define δ =
√

2a2 in case (13) yields a value smaller than
√

2a2. For
very small values of dj this might still lead to a negative denominator in (12).
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It is obvious that we should choose uj = 1 in these cases, i.e. assign the data
object xj fully to the very close proper cluster.

Recommendations for the choice of the parameters a2, a3, a4 will be provided
in the next section.

4 Application Scenarios

The main objective of identifying a single cluster is still to find the correct
cluster prototype and to assign the corresponding data correctly to the cluster.
Therefore, the most important term in the objective function (7) is f1. Since we
assume a1 = 1, the other parameters should be chosen smaller than one. Our
experiments with various data sets have shown that in most cases a4 ≈ a3 ≈ 10a2
is a suitable relation between the coefficients. The crucial point is then the choice
of the parameter a2. Since this coefficient determines also the minimal noise
distance, it should depend on the expected distances dj in the data set. When
we assume that the data set is normalised to the unit hyper-cube, the distance
values dj still depend on the dimension p of the data and a4 ≈ (p · 0.1)2 worked
quite well.

In the example data set from figure 1 our algorithm is able to identify the
cluster in the top left correctly, depending on the initialisation. As long as the
initial cluster centre v is not too far away from the dense data cluster – the
initial prototype does not have to be within the data cluster – the cluster will be
identified correctly. However, when the initial prototype v is too far away from
the cluster to be identified, the cluster might not be found. We cannot expect
this, since our algorithm does not carry out any explicit scanning of the data
set. Therefore, we recommend to carry out standard c-means clustering and use
the resulting cluster centres as initialisations for our algorithm. The initial value
for δ can then be based on the average distance of the data to the corresponding
cluster. We have applied this technique to gene expression data and were able
to identify clusters relevant from the biological point of view. Due to the limited
space, we cannot discuss the details of this application here.

5 Conclusions

We have proposed an efficient approach to identify single clusters. Future work
will focus on the influence of the choice of the coefficients a2, a3, a4 to be chosen
in our algorithm as well as on results using more complex cluster prototypes.
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Abstract. In this paper1, we propose a new simplified gravitational
clustering method for multi-prototype learning based on minimum clas-
sification error (MCE) training. It simulates the process of the attraction
and merging of objects due to their gravity force. The procedure is sim-
plified by not considering velocity and multi-force attraction. The pro-
posed hierarchical method does not depend on random initialization and
the results can be used as better initial centers for K-means to achieve
higher performance under the SSE (sum-squared-error) criterion. The
experimental results on the recognition of handwritten Chinese charac-
ters show that the proposed approach can generate better prototypes
than K-means and the results obtained by MCE training can be further
improved when the proposed method is employed.

1 Introduction

Many real world problems of pattern classification are non-linear separable.
Multi-prototype learning and classification can solve many such problems by
forming complex boundary for each class of patterns. It is especially suitable
for recognition of handwritten characters because characters of one category are
usually written in different styles by different people [2]. The recognition accu-
racy can be improved significantly when multiple prototypes are well designed
and a multi-prototype minimum distance classifier is employed [1][2]. Proto-
type selection by hand is not guaranteed to build an optimal prototype set and
it is not practical for recognition of Chinese characters of which the number of
categories is more than 3,000. So it is necessary to make effort on automatic pro-
totype learning to build optimal prototype sets for classifiers. As a well known
statistical clustering technique, K-means [3] is usually used to build the multiple
prototypes [2][9]. The prototypes obtained by K-means can be further fine tuned
to achieve much higher recognition accuracy by some prototype learning meth-
ods such as learning vector quantization (LVQ) [4] and minimum classification
1 The paper is sponsored by New Century Excellent Talent Program of MOE

(No.NCET-05-0736), NSFGD (No.04105938).
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error (MCE) training [5][6]. The empirical rules of LVQ have not enough of a
mathematical basis to guarantee design optimality and the convergence mech-
anism has not been mathematically elaborated [7]. The MCE training which
has quite similar rules as an improved version of LVQ aims at minimizing a
smooth approximation function of the error rate. It can be used to adjust the
initial prototype set iteratively under the minimum classification error criterion
to generate high quality prototypes [6]. However, does the selection of the initial
prototype set affect the local minimum finally converged by MCE training?

In this paper, we introduce a new simplified gravitational clustering method
for multi-prototype learning based on MCE training. It simulates the process of
the attraction and merging of objects due to their gravity force. The procedure
is simplified by not considering velocity and multi-force attraction. The proposed
hierarchical clustering method does not depend on thresholds which are usually re-
quired by agglomerative hierarchical clustering and density-based clustering [11].
And it does not have random initialization problems which may lead to incorrect
results in K-means algorithm. The method gives not only a reasonable clustering
result but also better initial centers for K-means to achieve higher performance
under SSE (sum-squared-error) criterion. It can be used to generate initial proto-
types for the multi-prototype learning based on MCE. Experiments were carried
out on the recognition of handwritten Chinese characters and proved the efficiency
of our method. The recognition performance of the 4-prototypes template gener-
ated by the proposed hybrid method is even higher than the 8-prototypes template
generated by traditional K-means method. The results also indicate that when the
initial prototype set is improved by our method the fine tuned prototype set ob-
tained by MCE training achieves better performance as well.

2 A New Simplified Gravitational Clustering

The gravitational clustering algorithm was first proposed in [10], and has been
discussed in a recent paper [8]. It iteratively simulates the movement of each
object due to the gravity force during a time interval and check for possible
merge. As it simulates the whole physical process, the velocity of each object
needs to be recalculated after each time interval based on a co-efficient of the air
resistance and the vector sum of the gravity forces, which the object experiences
from all other objects remaining in the physical system [8].

We simplify the process by making an assumption that if each time only
one pair of objects which are likely to meet and merge first are freed to move
and merged, at the same time other objects are fixed and not affected by the
movement and mergence, the final clustering result can still well describe the
characteristics of the spatial distribution of the objects.

The simplified gravitational clustering (SGC) is performed as follows:

Step 1. Let {X1, X2, . . . , XN} be a set S of N objects on D dimensions. Set all
objects’ initial mass as:

mi = 1, i = 1, 2, . . . , N. (1)
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Step 2. Find the pair of objects which are most likely to meet and merge first
by the following equation:

{Xi, Xj} if {i, j} = arg min
i,j

(‖Xi −Xj‖ ×
mi + mj

2
) (2)

Step 3. Merge the pair of objects to generate a new object. The mass of the new
object is given by:

mt = mi + mj (3)

And the position of the new object is the centroid of the pair of objects:

Xt =
miXi + mjXj

mi + mj
(4)

Step 4. Add the new object Xt to the set S and delete the objects Xi and Xj

from it.

Step 5. Terminate if the number of objects in the set S reaches k which is the
desired number of clusters, otherwise, go to step 2.

The final remaining objects can represent the clusters by their positions. It
can be easily proved that their positions are the centroids of all the objects
merged to them no matter what the merging sequence is. Thus if the cluster
number k is 1, the result is the centroid of all objects which is the same as the
K-means algorithm.

The eq. (2) is important which determines the merging sequence. It is defined
by the assumption that heavier objects move together more slowly. This makes
the cluster centers distributed more equally and avoid to get centers at the
outliers because of some lonely points, which is also a drawback of the K-means
algorithm. It is not the same as the traditional gravitational clustering which is
based on gravity theory [8], in which heavier objects have stronger gravity forces
and move together earlier than light objects at the same distance. Experiments
convinced us the measurement employed in eq. (2) is a good and robust choice
for clustering and multi-prototype learning as well.

Because the new object generated by the mergence is located at the centroid
of all the objects merged to it, the results should be the same as the K-means
algorithm if the final partition of the objects given by the SGC is the same
as the partition which the K-means gives. However, the SGC method does not
guarantee the SSE criterion. So it can be combined with the K-means algorithm.
When the centers obtained from the SGC are used as the initial centers for the
K-means, the clustering results get better under the SSE criterion. The Fig. 1
shows an example, in which the cluster centers obtained by three methods, K-
means, SGC and the combined are given. From the results, it can be seen that the
traditional K-means algorithm with random initialization can lead to incorrect
clustering results. It is also shown that the results given by the SGC are slightly
different from the K-means after combined. This leads to fewer iterations of
K-means in the hybrid method.
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Fig. 1. An example of the clustering results (“+” represents the centers obtained by
the K-means, “×” for the SGC method and “◦” for the combined)

In Fig. 2, a real world example is shown. The data points are the projection of
the training samples’ LDA-based features of the handwritten Chinese character
“ ” on the first two dimension plain. The training samples are used in the
experiments in section 4. As the number of clusters is fixed, the clustering method
for the prototype generation should be able to generate descriptive prototypes for
the spatial distribution of the sample points while the number of clusters is not
an optimal one. The example shows that with some random initialization, the
K-means generate much less descriptive prototypes than the proposed method.

Fig. 2. A real world example of clustering results (“+” represents the centers obtained
by the K-means, “×” for the SGC method and “◦” for the combined)
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3 Multi-prototype Learning Based on Minimum
Classification Error Training

We employed the same LDA-based Gabor feature extraction as which is discussed
in [6] for the recognition of handwritten Chinese characters. All the prototypes
are represented by 256-dimensional LDA-based feature vectors. The clustering
methods are used to generate the multi-prototype template from the training
samples. In this paper, the three clustering methods, K-means, SGC and the
combined method are used to generate the prototypes respectively and the per-
formances are compared. All of them are unsupervised clustering methods.

As the prototype learning is a supervised process, the supervised clustering
methods such as LVQ and MCE can achieve better performance than the un-
supervised clustering methods for prototype generation. We employed the MCE
training technique as the multi-prototype learning method to fine tune the pro-
totype sets obtained from the unsupervised clustering. It is the same as [6] but
the learning strategy is modified. In our MCE training, all the training samples
are used to update the prototypes no matter the samples are correctly recog-
nized or not. In our experiment, this strategy performed better than the one
used in [6].

4 Experiments

Several experiments were performed on the recognition of handwritten Chinese
characters. All the experiments were based on the recognition of 3755 categories
of level 1 Chinese characters in GB2312-80 which is a national Chinese character
set standard. We randomly selected 250 samples for each category from the China
863 National Handwriting Database HCL2000. 200 samples among them were
used as training set and other 50 samples formed the testing set, i.e. 751,000
samples for train-ing and 187,750 samples for testing in total.

In the first experiment, we tested the recognition performance on the tem-
plates of different number of prototypes generated by different clustering meth-
ods. The processing time was about 40, 175 and 200 seconds for the K-means,
SGC and the combined method respectively when building the 4-prototypes
template using the C++ programming language compiled program. The com-
putation environment was on a PC with an Intel P4 3.0G CPU and 512M mem-
ory. The curves of the results are shown in Fig. 3. The results show it clearly
that the multi-prototype classifier is much better than the single-prototype one.
The recognition accuracy can be improved more than 2 percent by using an
8-prototypes template generated by the proposed method. They also indicate
that by using the combined clustering method, the performance of 4-prototypes
template is even better than which of 8-prototypes template generated by the
traditional K-means method.

In the second experiment, we tried to find out how the performance is affected
by the different tries of random initial points for K-means algorithm. The recog-
nition results are listed in Table 1. By choosing the best result of 8-prototypes
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template obtained by K-means, the recognition rate of 90.21% is still lower than
the rate of 4-prototypes template generated by the combined method, which is
90.22%. This indicates that not only the storage of the templates but also the
recognition time can be saved 50% to achieve the same performance by using
the proposed hybrid method.

Fig. 3. Recognition performance of the different number of prototypes templates gen-
erated by the different clustering methods

Table 1. Recognition accuracy (%) of using K-Means with 10 different random initial-
izations

Number of
prototypes Recognition accuracy by 10 different random initializations Mean

4 89.94, 90.00, 89.97, 90.00, 89.91, 90.04, 89.96, 89.96, 89.96, 89.95 89.97
8 90.18, 90.18, 90.15, 90.19, 90.20, 90.10, 90.21, 90.20, 90.14, 90.17 90.17

In the third experiment, the MCE training was performed to fine tune the 4-
prototypes template. Fig. 4 shows the learning curves for MCE training on open-
test. It indicates that the recognition rate can be improved another 2 percent
by using the MCE training. It also shows that the local minimum converged
by MCE training can be improved by choosing a better initial prototype set.
From the figure, it seems that the prototype sets obtained by the SGC and the
combined method converged to the same local minimum even the performances
of them are different at the beginning.
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Fig. 4. Learning curves for MCE training on open-test: recognition accuracies (%) as
a function of epoch number by the different initial templates obtained by the different
clustering methods

5 Conclusion

In this paper, we have introduced a new simplified gravitational clustering
method for multi-prototype learning based on MCE training. It’s a hierarchi-
cal agglomerative clustering method which does not depend on thresholds or
random initialization. The main idea is to find equally distributed centers to
better describe the spatial distribution of the sample data by using a modified
distance. The results of the proposed method can be used as the initial centers
for K-means to achieve higher performance under the SSE criterion. Experiments
on the recognition of handwritten Chinese characters proved the efficiency of the
proposed method. As the number of the prototypes can be reduced to achieve the
same performance, the proposed technique saves not only the storage of the tem-
plates but also the computation time of the recognition. The experiments also
showed us an interesting result that the prototypes obtained by MCE training
can be further improved by choosing a better initial prototype set.
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Abstract. In this paper we investigate two discriminative classifica-
tion approaches for frame-based speaker identification and verification,
namely Support Vector Machine (SVM) and Sparse Kernel Logistic Re-
gression (SKLR). SVMs have already shown good results in regression
and classification in several fields of pattern recognition as well as in
continuous speech recognition. While the non-probabilistic output of the
SVM has to be translated into conditional probabilities, the SKLR pro-
duces the probabilities directly.

In speaker identification and verification experiments both discrimi-
native classification methods outperform the standard Gaussian Mixture
Model (GMM) system on the POLYCOST database.

1 Introduction

The use of speaker recognition and its applications is already widespread, e.g.
access to a private area or in telephone banking systems, where it is important
to verify that the person prompting the credit card number is the owner of the
card.

The field of speaker recognition can be divided into two tasks, namely speaker
identification and speaker verification. The speaker identification task consists
of a set of known speakers or clients (closed-set) and the problem is to decide
which person from the set is talking.

In speaker verification the recognition system has to verify if a person is the
one he claims to be (open-set). So the main difficulty in this setup is that the
system has to deal with known and unknown speakers, so-called clients and
impostors respectively.

In speech and speaker recognition Gaussian mixtures are usually a good choice
in modeling the distribution of the speech samples both in continuous speech
recognition with multi-state left-to-right Hidden Markov Models (HMMs) and
for text-independent approaches with single-state HMMs [1]. It has to be noted
that good performance of GMMs depends on a sufficient amount of data for
the parameter estimation. In speaker recognition the amount of speech data of
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each client is limited. Normally, only a few seconds of speech are available and
so the parameter estimation might not be very robust. Especially if the data is
limited, SVMs show a great ability of generalization and a better classification
performance than GMMs. Also, in continuous speech recognition SVMs were
integrated into HMMs to model the acoustic feature vectors [2].

There have been several approaches of integrating SVMs into speaker veri-
fication environments. One method is not to discriminate between frames but
between entire utterances. These utterances have different lengths and so a map-
ping from a variable length pattern to a fixed size vector is needed. Several meth-
ods like the Fisher-kernel [3] map the resulting score-sequences of the GMMs
into a high dimensional score-space where a SVM is then used to classify the
data in a second step, e.g. [4].

2 GMM Based Speaker Recognition

In the past several years there has been a lot of progress in the field of speaker
recognition [5][1]. State of the art systems are based on modeling a speaker-
independent universal background model (UBM) which is trained on the speech
of a large number of different speakers. For each client of the system a speaker-
dependent GMM is then derived from the background model by adapting the
parameters of the UBM using a maximum a posteriori (MAP) approach [6].

The GMM is the weighted sum of M component Gaussian densities given by:

p(x|λ) =
M∑
i=1

ci N (x|μi,Σi) (1)

where ci is the weight of the i’th component and N (x|μi,Σi) is a multivariate
Gaussian with mean vector μi and the covariance matrix Σi.

The mixture model is trained using standard methods like the Expectation
Maximization (EM) algorithm. Finally the probability that a test-sentence X =
{x1, ...,xN} is generated by the specific speaker model λ is calculated by the
log-likelihood over the whole sequence:

logP (X|λ) =
N∑

i=1

logP (xi|λ). (2)

Given a set of speakers the task of speaker identification is to deduce the most
likely client C from a given speech sequence:

Ĉk = argmax
k

P (X|λk). (3)

In the case of speaker verification the decision of accepting a client is usually
based on the ratio between the summed log likelihoods of the specific speaker
models and the background model. Defining the probability P (X|λk) as the
probability of client Ck producing the sentence X and P (X|Ω) as the probability
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of the background model, the client is accepted if the ratio is above a speaker-
independent threshold δ:

log
P (X|λk)
P (X|Ω)

> δ. (4)

This results in two possible error rates, the first one is the false-reject (FR) error
rate (PReject|Target): the speaker is the claimed client but the likelihood-ratio of
equation (4) is lower than the threshold. The second error rate is the false-accept
(FA) error rate: the speaker is not the claimed one but the likelihood-ratio is
higher than δ and the speaker is accepted (PAccept|NonTarget).

For the performance measure of a speaker verification system the decision cost
function (DCF) is given. The DCF is defined as a weighted sum of the FR and
the FA probabilities:

Cdet = CFR × PReject|Target × PTarget

+CFA × PAccept|NonTarget × (PNonTarget) (5)

with the predefined weightsCFR, CFA and prior probabilities PTarget, PNonTarget

= 1− PTarget.

3 Support Vector Machines

Support Vector Machines (SVM) were first introduced by Vapnik and developed
from the theory of Structural Risk Minimization (SRM) [7]. We now give a
short overview of SVMs and refer to [8] for more details and further references.
SVMs are linear classifiers that can be generalized to non-linear classification
by the so-called kernel trick. Instead of applying the linear methods directly to
the input space R

d, they are applied to a higher dimensional feature space F
which is nonlinearly related to the input space via the mapping Φ : R

d → F .
Instead of computing the dot-product in F explicitly, a kernel function k(xi,xj)
satisfying Mercer’s conditions is used to compute the dot-product. A possible
kernel function is the Gaussian radial basis function (RBF) kernel:

k(xi,xj) = exp
(
−‖xi − xj‖2

2σ2

)
. (6)

Suppose we have a training set of input samples x ∈ R
d and corresponding

targets y ∈ {1,−1}.The SVM tries to find an optimal separating hyperplane in
F by solving the quadratic programming problem:

W (α) =
N∑

i=1

αi −
1
2

N∑
i=1

N∑
j=1

αiαjyiyjk(xi,xj) (7)

under the constraints
∑N

i=1 αiyi = 0 and 0 < αi < C ∀i. The parameter C
allows us to specify how strictly we want the classifier to fit to the training data.
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The output of the SVM is a distance measure between a pattern and the
decision boundary:

f(x) =
N∑

i=1

αik(xi,x) + b (8)

where the pattern x is assigned to the positive class if f(x) > 0. For the posterior
class probability we have to model the distributions P (f |y = +1) and P (f |y =
−1) of f(x) computing the probability of the class given the output by using
Bayes’ rule [9] :

P (y = +1|x) = g(f(x), A,B) =
1

1 + exp(Af(x) + B)
(9)

where the parameters A and B can be calculated by a maximum likelihood
estimation [9].

4 Sparse Kernel Logistic Regression

Considering again a binary classification problem with targets y ∈ {0, 1}, the
success probability of the sample x belonging to class 1 is given by P (y = 1|x)
and P (y = 0|x) = 1− P (y = 1|x) that it belongs to class 0.

In Kernel Logistic Regression we want to model the posterior probability of
the class membership via equation (8). Interpreting the output of f(x) as an
estimate of a probability p(x,α) we have to rearrange equation (8) by the logit
transfer function

logit{P (x,α)} = log
P (x,α)

1− P (x,α)
= f(x) (10)

which results in the probability:

P (x,α) =
1

1 + exp(−f(x))
. (11)

If we assume that the training data is drawn from a Bernoulli distribution con-
ditioned on the samples x, the negative log-likelihood (NLL) l{α} of the condi-
tioned probability P (y|x,α) can be written as

l{α} = −
N∑

i=1

yif(xi)− log (1 + exp(f(xi)))

+
λ

2
‖f‖2 (12)

with the ridge-penalty λ
2 ‖f‖2 = αTKα to avoid over-fitting to the training

data [10]. K is defined as the kernel matrix with entries Kij = k(xi,x). To
minimize the regularized NLL we set the derivatives ∂l{α}

∂α to zero and use the
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Newton-Raphson algorithm to iteratively solve equation (12). This algorithm is
also referred to as iteratively re-weighted least square (IRLS), e.g. [11]:

αnew =
(
K + λW−1)−1

z (13)

with the adjusted response

z =
(
Kαold + W−1(y − p)

)
(14)

where p is the vector of fitted probabilities with the i’th element P (αold,xi) and
W is the N ×N weight matrix with entries P (αold,xi)(1− P (αold,xi)) on the
diagonal.

A sparse solution can be achieved if we involve only basis functions corre-
sponding to a subset S of the training set R:

f(x) =
q∑

i=1

αik(xi,x) q � N (15)

with q training samples. If we apply equation (15) instead of (8) in the IRLS
algorithm we get the following sparse formulation:

αnew =
(
KT

NqWKNq + λKqq

)−1
KT

NqWz̃ (16)

with z̃ =
(
KNqα

old + W−1(y − p)
)
, the N × q matrix KNq = k(xi,xj);xi ∈

R,xj ∈ S and the q × q regularization matrix Kqq = k(xi,xj);xi,xj ∈ S.
This sparse variant was introduced by [11]. The SKLR aims to minimize the

NLL iteratively by adding training samples to a subset S of selected training
vectors until the algorithm converges to some value. Starting with an empty
subset we have to minimize the NLL for each xl ∈ R of the training set:

l{xl} = −yT (Kl
Nqα

l) + 1T log(1 + exp(Kl
Nqα

l))

+
λ

2
αlT Kl

qqα
l (17)

with the N × (q + 1) matrix Kl
Nq = k(xi,xj);xi ∈ R,xj ∈ S ∪ {xl} and the

(q + 1)× (q + 1) regularization matrix Kl
qq = k(xi,xj);xi,xj ∈ S ∪ {xl}. Then

we add the vector for which we get the highest decrease in NLL to the subset:

x∗
l = argmin

xl∈R
l{xl}. (18)

While in the original Newton-Raphson algorithm we iteratively estimate the
parameter α applying the IRLS algorithm we can use a one step approximation
here [11]. In each step we approximate the new α with the fitted result from the
current subset S which we estimated in the previous minimization process.
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5 Multi-class Problems

Naturally, kernel logistic regression could be extended to multi-class problems.
But for comparison with binary classifiers like the SVM we decided to use a
common one-versus-one approach where C(C − 1)/2 classifiers learn pairwise
decision rules [12], which is easier than solving C large problems. The pairwise
probabilities μij ≡ P (qi|qiorqj ,x) of a class qi given a sample vector x belonging
to either qi or qj are transformed to the posterior probability P (qi|x) by [13]:

P (qi|x) = 1/

⎛⎝ C∑
j=1,j �=i

1
μij
− (C − 2)

⎞⎠ . (19)

6 Experiments

For all experiments we used the POLYCOST dataset [14]. This dataset contains
110 speakers (63 females and 47 males) from different European countries. The
dataset is divided into 4 baseline experiments (BE1-BE4), from which we used
the text-independent set BE4 for speaker identification and the text-dependent
set BE1 for the speaker verification experiments.

In the feature extraction the speech data is divided into frames of 25ms at
a frame rate of 10ms and a voiced/unvoiced decision is obtained using a pitch
detection algorithm. Only the voiced speech is then parameterized using 12 Mel-
Cepstrum coefficients as well as the frame-energy. The first and the second order
derivatives are added, resulting in feature vectors of 39 dimensions. The para-
meters of the baseline GMM models were estimated using the HTK toolkit [15].

For the identification experiments we used 2 sentences of each speaker for the
training and 2 sentences as development test set. The evaluation set contains up
to 5 sentences per speaker, all in all 664 true identity tests. From every speaker
there is a total amount of only 10 to 20 seconds of free speech for the training and
about 5 seconds per speaker for the evaluation. The parameters of the different
classifiers were validated on the development set.

Table 1. Speaker Identification experiments on the POLYCOST database using dif-
ferent classification methods

Classifier IER (%)
GMM 10.84
SVM 8.89
SKLR 8.58

The utterances are classified to that speaker with the highest speaker-model
score defined in equation (3). Because of the fact that all speakers are known
to the system, the error rate is simply computed as Identification Error Rate
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(IER). As can be seen in table 1, both the SVM and the SKLR classifiers clearly
outperform the GMM baseline system. The SKLR classifier decreases the IER
of the baseline system by about 20.8% relatively.

In the verification experiments the sentence “Joe took father’s green shoe
bench out” is given as a fixed password sentence shared by all clients. The
classifiers are trained on 4 sentences of each speaker. We used the same pa-
rameters as in the identification experiments. For the GMM environment a
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Fig. 1. DET curves for the three systems on the POLYCOST-BE1 verification task

gender-independent background model is trained by 22 non-client speakers from
the POLYCOST database. The evaluation test consists of 664 true client tests
and 824 impostor trials. The results of the three classifiers are given in figure 1
as detection error tradeoff (DET) plot. The DET shows the tradeoff between
false-rejects (FR) and false-accepts (FA) as a decision threshold [16].

Additionally we report the Equal Error Rate (EER) and the DCF as per-
formance measure in table 2. The parameters of the cost function used in the
experiments are CFR = 10, CFA = 1 and PTarget = 0.01. As one can see in the
table, the DCF of the evaluation test is reduced from 0.034 of the GMM baseline
system to 0.019 of the SVM system.

Table 2. Comparison of the EER and the DCF for three systems on the POLYCOST-
BE1 speaker verification task

Classifier EER (%) DCF
GMM 4.09 0.034
SVM 2.16 0.019
SKLR 3.31 0.029
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While the SVM clearly outperforms the GMM baseline, the SKLR performs
only slightly better than the GMM system. This might be due to the fact that
there was no special parameter estimation on the verification task and so the
SVM exhibits a better generalization performance than the SKLR.

7 Conclusion

In this paper we presented two discriminative methods for frame-based speaker
identification and verification. Both methods outperform the GMM baseline in
the speaker recognition experiments. Because the decision process depends di-
rectly on the discrimination of the different speaker models there is no need for
a score normalization by a background model. The advantage of the SKLR is
that it directly models the posterior probability of the class membership.

The main drawback of the discriminative classification methods is the time
and memory consuming parameter estimation, so that it is not possible to use
larger datasets directly. One idea is not to use a multi-class method like the
one-versus-all or one-versus-one approach of section 5 but to use a fixed set of
background speakers. The speech sentences are then classified in a one-versus-
background approach which is computational more effective if the background
set is not to large.

In our future research we will extend the verification system to larger datasets
and different speech conditions, like telephone and cellular speech.

References

1. D. Reynolds, “An overview of automatic speaker recognition technology,” in Proc.
IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 4,
2002, pp. 4072–4075.
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Abstract. Monitoring abnormal patterns in data streams is an impor-
tant research area for many applications. In this paper we present a new
approach MAPS(Monitoring Abnormal Patterns over data Streams) to
model and identify the abnormal patterns over the massive data streams.
Compared with other data streams, ICU streaming data have their own
features: pseudo-periodicity and polymorphism. MAPS first extracts pat-
terns from the online arriving data streams and then normalizes them
according to their pseudo-periodic semantics. Abnormal patterns will
be detected if they are satisfied the predicates defined in the clinician-
specifying normal patterns. At last, a real application demonstrates that
MAPS is efficient and effective in several important aspects.

1 Introduction

Nowadays, many applications generate data streams and an increasing need is
arising to distinguish different status on the fly such as normal and abnormal, for
instance, network intrusion detection, and telecommunication fraud detection.
Static data sets could be considered to be a fixed process such as normal distri-
bution, however a data stream has a temporal dimension, and it’s necessary to
spot the potential abnormities over time for further inspection. Thus monitoring
abnormal patterns is an important area in data stream settings and has received
considerable attention in various communities[1][2][3][4][19][20].

1.1 Goals and Challenges

Medical data monitoring is an important application area of data stream; the
ICU(Intensive Care Unit) is equipped with many advanced machines from all
kinds of vital sign monitoring equipment to life support equipments. Those equip-
ments dynamically measure the patient’s physiological functions continuously,
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and generate a large amount of data streams, what the clinicians may have diffi-
culties in getting information from the data stream, not only may the amount of
information available be greater than can be assimilated, but the clinical environ-
ment provides distractions with other tasks, still worse, current monitors flood
clinicians with false alarms, providing further unnecessary distraction. Therefore
detecting anomalies in the data streams is urgently needed, the changes repre-
sent the patients status, and the aim of this paper is to support the abnormal
pattern semantics and improving the treating quality. There are three major

Fig. 1. ECG Data streams

challenges to fulfill the tasks we declare above:

– The ICU data streams which output in a high-frequency often involves
stochastic process. This feature greatly complicates the problem of mod-
eling and prediction. Previous methods often become fruitless when they
encounter such a situation;

– Data streams in the ICU environment always contains pseudo-periodic data
in which outliers exists, which also increase the difficulty in monitoring ab-
normal patterns;
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– Another striking feature of ICU data streams is polymorphism:For a specific
application, the data stream has certain semantics[4], but the changes of the
same kind of streams may have different semantics. In ICU data streams, the
changes of streams have diverse semantics for different patients or diseases.

Fig. 2. Overview of the Pattern Monitor Module in DESC

1.2 Our Contributions

We have implemented a patient-based prototype information system from the
perspective of clinicians – Data Stream Engine based Clinical information
system[6] [7](DSEC). DSEC consists of 6 modules: preprocessing, data queue,
query network, load shedder, pattern monitor and query output. Figure.2 de-
picts the overview of the pattern monitor module in our system. Our implemen-
tation introduces a new model of pseudo-periodic streams and presents a new
algorithm— to spot the abnormities occurring in data streams. Real application
cases show that MAPS do a good work while dealing with pseudo-periodic and
polymorphic data streams.

1.3 Paper Outlines

The outline of this paper is as follows: In section 2 we discuss the related work on
abnormal pattern monitoring in data stream environment. Section 3 presents the
pseudo-periodic model we apply to process the data streams. Section 4 gives the
implementation of our algorithm in detail and analysis the complexity of the algo-
rithm. The application of our method in several aspects are presented in Section
5. At last, Section 6 summarizes the whole paper and discusses the future work.

2 Related Work

Detection of changes in data stream has been discussed in [16], the proposed
method provides meaningful description and quantification of these changes, and
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on the assume, the method provide statistical guarantees on the reliability of de-
tected changes and also provide quantification and descriptions of the changes,
but the method is based on the assumption that the points in the streams
are independently generated, and the description of changes only is meaning-
ful in statistics, and our method detect the change with semantics for specific
application.

MAIDS[14] is a general-purpose tool for data stream analysis and is designed
to process high rate and multi-dimensional stream data. MAIDS adopts a flex-
ible tilted time window framework throughout all of the functional modules.
The pattern monitoring module, StreamPatternF inder, has been constructed
to discover frequent patterns and sequential patterns. The underlying algorithm
essentially adopts the extended frequent pattern growth approach which discov-
ers frequent patterns for the interested sets of items specified by users. However,
the main idea of counting approximate frequent pairs in MAIDS can’t easily
handle the continuous semantics in high-frequent data streams, because moni-
toring abnormal patterns by summing up its frequency is a relative long-term
process and not feasible in ICU environment.

Lilian Harada[13] proposed an improved method base on the IBM string
matching algorithm. It efficiently detect some complex temporal patterns over
data streams. The method scans the data stream with a sliding window and
checks the data inside the window to see if they satisfy the pattern predicates.
But it only fit for discrete data, which changes relatively slow.

Researches on specific data stream focus on financial applications, Huanmei
Wu[17] proposes a 3-tier online segmentation and pruning algorithm according
to the stock market’s zigzag shape, and defines an alternative similarity subse-
quence measure, it also introduces the event-driven online similarity matching to
reduce system burden, but it only considers single stream. StatStream[5] treats
pair-wise correlated statistics in an online fashion, focusing on similarity for
whole streams, not on subsequence similarity, and the weight of different stream
subsequence is not considered.

Our work differs from previous research in several aspects. The problem ad-
dressed here is application driven, and we focus on the abnormity detection to
support some aspects in the complex intrinsic semantics of the stream[4]. And
the existing techniques similarity matching do not address appropriately the
special concerns in abnormity detection in support of semantics.

3 Pseudo-periodicity Semantics in ICU Data Streams

The ICU data streams often exhibit great regularity without exactly repeating.
For example, heartbeats always have the characteristic lub-dub pattern which
occurs again and again, yet each recurrence differs slightly from each other. Some
beats are faster, some slower, some are stronger and some weaker. Sometimes a
beat may be missed due to several reasons. Nonetheless, the overriding regularity
of the heartbeat is its most striking feature. Our method models such near
repetition using the idea of pseudo-functions.
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Definition 1. A data stream is an ordered sequence of records with a timestamp:
{(s[0], t0),(s[1], t1), . . .}, where each of s[i] can have z attributes a[0], . . . , a[z−1].
An attribute can be quantitative or categorical.

In ICU data streams, for example, there are many attributes representing dif-
ferent physiological meanings, such as end expiratory pressure, exhaled minute
volume, and spontaneous minute volume. Every attribute is an indispensable
part of stream and they are correlated with each other.

Definition 2. A predicate p specifies the conditions for any of the z attributes
of a record stream r[i].

e.g. p[j] = fj0(r[i].a[0]) AND . . . AND fj(z−1)(r[i].a[z − 1]), where fjt(r[i].a[t])
can be a conjunction of inequalities of involving attribute a[t] of record r[i] with
a constant, or with attribute a[t] of the next record r[i + 1].

Definition 3. A stream pattern is an ordered list of m predicates p[0], . . . , p[m]
which are satisfied by m consecutive records of the data stream.

A function f(t) is said to be periodic of a period T if f(t) = f(t+T ) for all t. In
general, T is the smallest value for which it holds. However, many phenomena
in the real life is just repetitious and not strictly periodic, such as the heartbeat
of humans. The property of exhibiting great regularity without being periodic
is considered to be pseudo-periodic in our models, because it is quite different
from the periodicity although there are several similarities between them.

Definition 4. A stream s is pseudo-periodic if the attributes of s satisfied the
following function :

PP (t) =
∑

i

αiF (ωit + ϕi) (1)

where PP (t) represents a pseudo-periodic functions and F (t) is a template func-
tions of PP (t).

Note that, the ωi is a stretching parameters which lengthens or shortens the
period and the ϕi is a translating parameter which represents nonuniform timing
of the progress, such as the acceleration or deceleration of heartbeats in our
models.

While we are transforming the pseudo-periodic data streams into periodic
ones, we should achieve unbiased estimation of the ωi and ϕi using the ρ-norm.
This is defined to be the norm induced by the inner product :

〈f, pp〉ρ ≡ lim
k→∞

1
2k

∫ k

−k

f(t)pp(t)dt (2)

In the equation(3), f(t) and pp(t) are periodic functions of periods Tf and
Tpp. Tf and Tpp need not be the same numerically. So we can get that

||f ||ρ =
√
〈f, f〉ρ (3)
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4 Monitoring Abnormal Patterns over ICU Data Streams

4.1 Modeling the Pseudo-periodical Data Streams

Most of existing pseudo-periodic model are aiming to process continuous signals,
discrete data sets have rarely been paid much attention to. The shortcoming of
the upper functions is that they can be only applied to continuous infinite signals.
When we implements the methods in discrete time and data driven, we should
expand the functions to meet the realistic conditions. To apply these functions
to finite data sets, we should suppose the template function f(t) is defined by
n points in a period T . And then we can calculate the ρ-inner product as the
�2-inner product normalized by the size of the support of the template, which
can be depicted as the following formula :

〈fω,pp〉ρ ≡
〈fα,pp〉
Nω

≡ 1
Nω

Nω∑
t=1

f(ωt)pp(t) (4)

The purpose of modeling phenomena exhibiting cyclical patterns with pseudo-
periodic functions is that we can decompose the patterns into a periodic data set
with a set of parameters. These parameters define the deviations of the original
pattern from the true periodicity.

At each local period, f(ωt) can be obtained from F (t). Our algorithm ex-
tracts pp(t) from PP (t) with an proper translation and then estimates the three
parameters αi, ωi, ϕi. In the practical implementation, it is more convenient to
use the parameter ψi other than ϕi. The two variable are related by :

ϕi ≡
j<i∑
j=0

2π
ωj

+ ψi (5)

With appropriate f(ωt) and pp(t), the cost function at the ith pseudo-periodic
can be computed in the following way :

D(ω, ϕ, α) = ||αf(ωt + ϕ)− pp(t)||2p
= ||αf(ωt + ϕ)||2 − 2〈αf(ωt + ϕ), pp(t)〉ρ + ||pp(t)||2 (6)

Theorem 3.1 in [10] shows that in the formula 5 the first and third terms on
the right side are translation and stretch invariant, and guarantees that both
||f ||ρ and ||pp||ρ are independent of ω and ϕ.

According to the previous statement, in order to find the best representation
of PP (t), we should find the minimum value of D(ω, ϕ, α). Now the problem of
minimizing D(ω, ϕ, α) is equivalent to maximizing

D̄(ω, ϕ, α) = 〈αf(ωt + ϕ), pp(t)〉ρ (7)

To achieve this goal, we choose the steepest descent method. So the parameters
can be updated with the following formula:

ωk+1 = ωk − λω
dD̄

dω
≈ ωk − λω

D̄(ωk)− D̄(ωk + Δω)
Δω
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ϕk+1 = ϕk − λϕ
dD̄

dϕ
≈ ϕk − λϕ

D̄(ϕk)− D̄(ϕk + Δϕ)
Δϕ

(8)

αk+1 = αk − λα
dD̄

dα
≈ αk − λα

D̄(αk)− D̄(αk + Δα)
Δα

The algorithm will stop and consider the current parameters to be satisfactory
when all the three derivatives change sign and meet the conditions: |dD̄

dα | < εα,
|dD̄

dω | < εω, |dD̄
dϕ | < εϕ.

4.2 MAPS: Monitoring Abnormal Patterns over Data Streams

In this part, we will show that how MAPS monitors the anomalies in high-
rate arriving data streams. MAPS is composed of three parts, the main part
Monitor Pattern, two sub-part Normalize Pattern and Check Abnormity.

Algorithm 1. Monitor Pattern
Input: Data stream S and normal periodic pattern p.
Output: Abnormal patterns list AP list.

1: for i = 1 . . . k do
2: Windowi ← first mi records from the data stream
3: end for
4: while not at the end of stream S do
5: for i = 1 . . . k do
6: Divide the window into disjoint sub-windows
7: according to their repetition
8: for each sub-window do
9: NP item ← Normalize Pattern()

10: Append NP item to NP list
11: end for
12: for each element in NP list do
13: AP list ← Check Abnormity()
14: end for
15: Delete the window and report the abnormity, GOTO step 1
16: end for
17: end while

The main part of MAPS provides a framework of extracting patterns from
online data streams. The algorithm in Monitor Pattern reduces the problem
from the streaming data scenario to the problem of comparing two sample sets.
We also assume that only a bounded amount of memory is available, and in the
DESC the size of the data stream is much larger than the amount of available
memory.

Normalize Pattern accomplishes the task of choose a template function and
then calculate the appropriate values of parameters ω, ϕ and α.
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Algorithm 2. Normalize Pattern
Input: Sample normal pattern P and pseudo-periodic pattern pP .
Output: Normalized pattern list NP list.

1: Calculate the cost function D̄(ω, ϕ, α)
2: Calculate the partial function of dD̄

dα ,dD̄
dω ,dD̄

dϕ respectively.
3: ω ← 0,ϕ← 0,α← 0
4: while |dD̄

dα | > εα or |dD̄
dω | > εω or |dD̄

dϕ | > εϕ do

5: ω ← ω − λω
D̄(ω)−D̄(ω+Δω)

Δω

6: ϕ← ϕ− λϕ
D̄(ϕ)−D̄(ϕ+Δϕ)

Δϕ

7: α← α− λα
D̄(α)−D̄(α+Δα)

Δα
8: end while
9: return the normalized pattern αf(ωt + ϕ)

The correlations between two stream patterns can be measured with the
PearsonR model. PearsonR defines the correlation between two patterns o1
and o2 as :

Rε =
∑

(o1 − ō1)(o2 − ō2)√
(o1 − ō1)2 × (o2 − ō2)2

(9)

where ō1 and ō2 are the mean of all attributes values in o1 and o2, respectively.

Algorithm 3. Check Abnormity
Input: Normalize pattern list NP list and sample abnormal pattern

list SAP list.
Output: Abnormal pattern list AP list.

1: for each item in the SAP list
2: for each item in the NP list
3: if R(itemSAP , itemNP ) ≤ Rε

4: Append itemNP to AP list
5: end if
6: end for
7: end for

5 Application Case

As we mentioned in the introduction, we have developed a clinical information
system, DSEC, to assist doctors and nurses in medical decision support. This
prototype system have several novel features in addition to abnormal pattern
monitoring: 1) A complete data stream processing and querying architecture
for medical application; 2) a load-shedding mechanism[8] used to avoid system
crash when high data rate occurs; 3)friendly graphic user interface facilitating the
analysis the high volume stream data. Fig.3. illustrates the system architecture
of DSEC.
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Fig. 3. System Architecture of DSEC

6 Conclusion and Future Work

Our work focuses on the monitoring abnormal patterns over ICU data streams.
The algorithm we proposed has the following desirable characteristics:

– it represents complex repetitive phenomena as a periodic process with a set
of parameters and defines the deviation of the process from true periodicity.

– The algorithm MAPS goes deep into the intrinsic semantics in the ICU
data streams and efficiently identifies the anomalies just in a single pass of
streams.

– Normal patterns and thresholds can be automatically adjusted according to
the specification of clinicians. The design has greatly improved the flexibility
and scalability of the module. This also solved the polymorphism mentioned
above.

Future research can proceed in several directions. One possibility is to dy-
namically change the weight of each streams according to the feedback of the
monitoring result. Because in multi-dimensional data streams, each stream has
its own repetitious features and semantic meanings. Still another problem is
combining the distribute feature with current semantics analysis, so we can get
more precise and efficient methods to monitor the patients’ states.
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1 Introduction

Recently, the operational speeds of the integrated circuits are increasing rapidly.
There have been many researches about transmission lines because they are
very important for designing high performance integrated circuits. As well as
transmission lines, the analysis of the power distribution of printed circuit boards
becomes more and more important [1-3]. The analysis of the power distribution is
important for designing decoupling capcitors. In the power distribution analysis,
the finite element method is often applied. However, in the finite element method,
in order to obtain the accurate results, we have to discretize the object into the
many small elements and to solve large scale equations. It is very time consuming
to solve those large scale equations by conventional degital computing.

We have proposed an efficient method to solve large scale equation of the plane
circuits using Cellular Neural Networks (CNNs) [4-7]. Since the large processing
ability of CNNs, there have been many papers about the applications for adopt-
ing CNNs for analyzing spatio-temporal phenomena such as pattern formations
and traveling waves [6-8]. In our method, we transform the plane into correspond-
ing equivalent circuit, and analyze the equivalent circuit using CNNs [9-10]. In
this paper, we verify the accuracy of the proposed method and investigate its
capability for various kinds of the simulation models. We show how transform
the plane into the equivalent circuit in section 2. The concept of CNNs is ex-
plained in section 3. In section 4, we show how analyze the voltage propagation
using CNNs and illustrative examples of our simulations.

2 Plane Circuits

As the operating speed of the integrated circuits increases, many complicated
phenomena such as the signal/power integrity are occured. In the high speed
integrated circuits, analyzing the power distribution of the power/groung plane
is important for designing the decoupling capacitors. Analysis of power distrib-
utions are classified into three classes by modeling methods, full-wave electro-
magnetic model, modified nodal model and lumped circuits model. Full-wave
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electromagnetic model is based on the physical electromagnetic field equations.
Although this model is most accurate model, solving those equations needs much
time and computation.

The partial-element equivalent circuit (PEEC) methods is often adopted for
analyzing the power distribution of the multi-layer printed circuit bords[3,11]. In
this method, the power/ground plane is discretized spatially and approximated
by linear R, L, C, and G elements. Fig. 1 shows the transformation of the plane
into the equivalent circuit.

t

d

w
w

(a) Plane discretization
( )

i-1

i

i+1

j-1 j j+1

R

R

R RL L

L

L

vi,j

vi-1,j

vi+1,j

vi,j-1 vi,j+1

C G

ii,j

( )
(b) Plane circuit

Fig. 1. Transformation of the plane

The magnitudes of these parameters are decided by the discretization size and
the physical characteristics of the plane;

R =
2
σct

+ 2
√

πfμ0

σc
, L = μ0d, G = 2πfC tan δ, C = ε0εr

w2

d
, (1)

where
ε0: dielectric constant in vacuum, εr: relative dielectric constant,
μ0: magnetic permeability in vacuum, σc: resistivity of the conductor,
δ: loss tangent of the conductor, f : operating freaquency.
The state equations of equivalent circuit are described as follows;⎧⎪⎪⎨⎪⎪⎩

dvi,j

dt
= −G

C
vi,j +

1
C
ii,j ,

dii,j
dt

= −R

L
ii,j +

1
L

(vi−1,j + vi+1,j + vi,j−1 + vi,j+1 − 4vi,j).

(2)
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Normalizing by

τ =
1√
LC

t, (3)

we have⎧⎪⎪⎪⎨⎪⎪⎪⎩
dvi,j

dτ
= −G

√
L

C
vi,j +

√
L

C
ii,j ,

dii,j
dτ

= −R

L
ii,j +

1
L

(vi−1,j + vi+1,j + vi,j−1 + vi,j+1 − 4vi,j).

(4)

If we discretize the plane into n × n elements, we have to solve 2n2 differential
equations. In order to obtain accurate results, we have to discretize the plane
into many small elements and to solve large scale equations. It takes much time
to solve these large scale equations by conventional digital computers.

3 Solving Plane Circuits Via Cellular Neural Networks

Cellular Neural Networks (CNNs) have been established by combining the con-
cepts of neural networks and cellular automata [4,5]. Since its speed advantage of
the processing, CNNs have been noted as applications for the image processing
and solvind partial differential equations in last two decades.
CNNs have the array structure consisting of fundamental elements, called cell.
Each cell connects its neighbor cells and makes contribution each other. The cell
can be implimented by simple analog circuit. Because of constructive simplicity,
CNNs are suited for LSI implimentation.

In our research, we adapt the two-layer cellular neural networks. The concept
of multi-layer CNNs has been proposed and its high proccessing abilities have
been reported. Fig. 2 shows the cell structure of two-layer CNNs.
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I1xu(i,j;k,l) I1xy(i,j;k,l) I1yx

y1iju1ij

C Rx Ry

I21xy(i,j;k,l)

E2ij

x1ij

I2xu(i,j;k,l) I2xy(i,j;k,l) I2yx

y1iju2ij

C Rx Ry

I12xy(i,j;k,l)

I1

I2

Fig. 2. Cell structure of two-layer CNN
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Assuming Rx = Ry = 1[Ω] and C = 1[F] for simplicity, the state equation of
the cell is described as follow;⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx1ij

dt
= −x1ij +

∑
C(k,l)∈Nr(i,j)

A1(i, j; k, l)y1kl

+
∑

C(k,l)∈Nr(i,j)

B1(i, j; k, l)u1kl +
∑

C(k,l)∈Nr(i,j)

C1(i, j; k, l)y2kl + I1,

dx2ij

dt
= −xi,j +

∑
C(k,l)∈Nr(i,j)

A2(i, j; k, l)y2kl

+
∑

C(k,l)∈Nr(i,j)

B2(i, j; k, l)u2kl +
∑

C(k,l)∈Nr(i,j)

C2(i, j; k, l)y1kl + I2,

(5)
where uij , xij and yij indicate the input voltage, the state voltage and the output
voltage of C(i, j), respectively. In general CNNs, the output voltages are defined
by the following piecewise linear function,⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

y1ij =
1
2

(|x1ij + 1| − |x1ij − 1|) ,

y2ij =
1
2

(|x2ij + 1| − |x2ij − 1|) .

(6)

In state equations, the coefficients A and B indicate the weights of connectivity
between the connected neighbor cells. The output of the first layer contribute
to the state of the second layer and the output of the second layer contribute
to the state of the first layer. The connectivity between the first layer and the
second layer is described by coefficient C. These coefficients are given by matrix
form and they are called cloning templates. The behavior of CNNs is decided by
these cloning templates.

In our method, we solve the large scale equations which obtained by discretiz-
ing the plane using the two-layer CNN. Both state equations of the plane and
the CNNs have local interconnection. Comparing (4) and (5), we can apply each
discretized element to each CNN cell. Then we have following cloning templates.

A1 =

0 0 0

0 1 − G L
C

0

0 0 0

, B1 = 0, C1 =

0 0 0

0 L
C

0

0 0 0

, I1 = 0.

A2 =

0 0 0

0 1 − R C
L

0

0 0 0

, B2 = 0, C2 =

0 C
L

0

C
L

−4 C
L

C
L

0 C
L

0

, I2 = 0.

(7)

Since the discretized model is linear, we redefine the output equations as follows,⎧⎨⎩
y1ij = x1ij ,

y2ij = x2ij .

(8)



Spatial-temporal Analysis Method of Plane Circuits 199

In following section, we carry out the simulations based on the fourth-order
Runge-Kutta method, and are applied the fixed boundary condition [12]. The
size of CNN array is 100 × 100. We assume the physical characteristic of the
plane, t = 0.03[mm], d = 0.2[mm], σc = 5.8× 107[S/m] and εr = 4.7.

4 Direction Difference of the Lattice-Like Structure

Preceding the simulation, we confirm the accuracy of the equivalent circuits. If
the plane is uniform, at the points whose distance from an arbitrary point in
Euclidean space are the same, the observed phenomena must be the same.

First, we set the discretization size w = 2.0[mm]. Assuming the dielectric loss
can be neglected, we have following cloning templates;

A1 =

0 0 0

0 1 0

0 0 0

, B1 = 0, C1 =

0 0 0

0 17.4 0

0 0 0

, I1 = 0,

A2 =

0 0 0

0 1 0

0 0 0

, B2 = 0, C2 =

0 0.058 0

0.058 −0.23 0.058

0 0.058 0

, I2 = 0.

(9)

We set the impulse voltage at (50, 50) and simulate the transient response. We
measure the voltage at three points (46, 53), (47, 54) and (50, 55) which distance
from the impulse is the same. Measured results are shown in Fig. 3 (b). As a

(a) Location of the points (b) Measured results

Fig. 3. Direction difference (w = 2.0[mm])

result, the measured voltages at (46, 53) and (47, 54) are completely the same
value. However, the measured voltages at (50, 55) do not agree with the voltage
at (46, 53) or (47, 54). The difference proceeds from the lattice-like structure of
the equivalent circuit. Moreover, the voltages oscillate widely.
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We reset the discretization size smaller, w = 0.4[mm], and the impulse voltage
around (50, 50) as the area, not as the point. Then, the cloning templates are
given as follows;

A1 =

0 0 0

0 1 0

0 0 0

, B1 = 0, C1 =

0 0 0

0 86.9 0

0 0 0

, I1 = 0,

A2 =

0 0 0

0 1 0

0 0 0

, B2 = 0, C2 =

0 0.012 0

0.012 −0.048 0.012

0 0.012 0

, I2 = 0.

(10)

As well as the above simulation, we simulate the transient response and mea-
sure the voltage at the same three points. Note that since we reset the discretiza-
tion size, the cordinates of the points are replaced as shown in Fig. 4 (a). The
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(a) Location of the points (b) Measured results

Fig. 4. Direction difference (w = 0.4[mm]).

measured results are shown in Fig. 4 (b). We can see that difference between
(50, 75) and (30, 65) or (35, 70) is smaller than previous case and the oscilations
converge immediately. In following simulations, we adapt the same way.

5 Illustrative Examples

In this section, we show some interesting examples of our simulations.

5.1 Uniform Plane

We simulate the voltage propagation on the uniform plane. We assume two-
impulse voltage shown in Fig. 5 and simulate how the voltage propagates on the
plane. Fig. 6 shows the snap shots of the transient state. We can see the voltage
propagates spatially and the voltage waves interfere each other.
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Fig. 5. Initial State of the two-impulse voltage

Fig. 6. Transient response for two-impulse

5.2 Irragular Shaped Plane

Next, we simulate the voltage propagation on the irragular shaped plane. Our
method can be adjusted to analyze the arbitrary shaped plane easily. As an
example, we simulated the plane shown in Fig. 7. As well as the above simulation,
we assume the impulse voltage and simulate how the voltage propagate on the
plane. Fig. 8 shows the snap shot of the voltage propagation. We can see the
voltage propagates along the conductor strips.

5.3 External Input

The above method can simulate only the transient response for the initial
state. Now, we modify the equivalent circuit to be able to simulate the phe-
nomena which the plane has external inputs. The improved model is shown in
Fig.9.
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Fig. 7. Initial state for the irragular plane

Fig. 8. Transient response of the irragular plane

Then the state equations of the equivalent circuit are given as follows;⎧⎪⎪⎨⎪⎪⎩
dvi,j

dτ
= −G

√
L

C
vi,j +

√
L

C
ii,j +

√
L

C
Ji,j ,

dii,j
dτ

= −R

L
ii,j +

1
L

(vi−1,j + vi+1,j + vi,j−1 + vi,j+1 − 4vi,j).

(11)

Hence, we have the following cloning templates;

A1 =

0 0 0

0 1 − G L
C

0

0 0 0

, B1 =

0 0 0

0 L
C

0

0 0 0

, C1 =

0 0 0

0 L
C

0

0 0 0

, I1 = 0,

A2 =

0 0 0

0 1 − R C
L

0

0 0 0

, B2 = 0, C2 =

0 C
L

0

C
L

−4 C
L

C
L

0 C
L

0

, I2 = 0.

(12)
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Fig. 9. Modified plane circuit

As an example, we simulate the transient response of the pulse input on the
uniform plane. We set the pulse input Ji,j around (50, 50). Fig. 10 shows the
snap shot of the transient response for pulse input.

Fig. 10. transient response for the pulse

6 Conclusion

In this paper, we showed that the power distribution of the power/ground plane
of printed circuit boards can be analyzed by two-layer CNNs. We adopt the
PEEC method to approximate the characteristic of the plane and solve the
circuit equations of the plane circuit using CNNs. Although our research is only
the simulations, CNN will provide for a solution with higher seepd than any
other known methods. Moreover, in our method, it is easy to simulate various
planes with changing parameters because we use the cloning templates as the
characteristics of the plane.
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Abstract. We synchronize background music with a video by chang-
ing the timing of music, an approach that minimizes the damage to
music data. Starting from a MIDI file and video data, feature points
are extracted from both sources, paired, and then synchronized using
dynamic programming to time-scale the music. We also introduce the
music graph, a directed graph that encapsulates connections between
many short music sequences. By traversing a music graph, we can gener-
ate large amounts of new background music, in which we expect to find
a sequence which matches the video features better than the original
music.

1 Introduction

Background music (BGM) enhances the emotional impact of video data. Here,
BGM means any kind of music played by one or more musical instruments, and
should be distinguished from sound effects, which are usually short sounds made
by natural or artificial phenomena. We introduce a method that synchronizes
BGM with motion in video data. Well-synchronized BGM helps to immerse the
audience in the video, and can also emphasize the features of the scenes.

In most cases of film production, the picture comes first and music and sound
effects are usually added once the picture is completed [1]. In order to obtain
music that synchronizes with a particular video, we have to hire a composer.
Since this approach is expensive, it is more common, especially in a small pro-
duction or home video, to fit existing recorded music to the video after it has
been produced. But, it is not simple to find a piece of music that matches the
video scene. One may have to go through several scores, and listen to many
selections in order to find a suitable portion for a given scene. Furthermore, it is
still hard to match the selected music with every significant feature of the video.

Our goal is the automatic generation of synchronized video by choosing and
modifying the music sequence, with the aim of avoiding drastic changes which
make damage to music. Our system analyzes MIDI and video data to find the
optimal matches between features of the music and the video using DP (Dynamic
Programming). This is followed by modification of the time domain, so as to
match the musical features while preventing noticeable damage.

We also exploit the music graph [2], as a music rearrangement method. Sim-
ilar to a motion graph [3,4,5], a music graph encapsulates connections between
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several music sequences. Music can be generated by traversing the graph and
then smoothing the resulting melody transitions. The music graph can be uti-
lized in our synchronization system to generate new tunes that will match the
video better than the original music.

The contributions of our research can be summarized as follows:

– We introduce a feature-based matching method which can extract the opti-
mal matching sequence between the background music and video.

– We introduce a stable time warping method to modify the original music
that can prevent noticeable damage to the music.

– Using the music graph, we can generate novel background music which has
better coherence with video than the original music.

2 Related Work

There has been a lot of work on synchronizing music (or sounds) with video. In
essence, there are two classes of approach, depending on whether one is modifying
a video clip for given music, or vice versa.

Foote et. al [6] computed the novelty score at each part of the music, and
analyzed the movements of the camera in a video. Then, a music video can be
generated by matching an appropriate video clip to each part of the original
music. Another segment-based matching method was introduced by Hua et. al
[7]. Since home video, which is pictured from typical people, has low quality
and unnecessary clips, Hua et. al calculated the attention score of each video
segment as the method for extracting important shots. Using the beat analy-
sis of video data, they attempted to create a coherent music tempo and beat.
Then, the tempo and beat of given background music can be adjusted by the
computed tempo and beat. Mulhem et. al [8] introduced aesthetic rules, which
are commonly used by real video editors, as a method of video composing.

In addition to the previous research that considered the composing of video
segments, Jehan [9] suggested a method to control the video time domain and
synchronized the feature points of both video and music. Using the temporary
data manually given, he adjusted the dance clip by time-warping for the syn-
chronization to the background music. Our method is similar to this method,
but we considered the reverse direction: the time-warping of music.

Yoo et. al [10] suggested a method to generate long background music se-
quences from a given music clip using a music texture synthesis technique. Lee
et. al [2] introduced a music graph concept that is an utility for synchronization
of music and the motion in the character animation. Since the video is more com-
monly used than animation scenes, we adapted the music graph to the method
for a video-based BGM generater.

3 Feature Extraction

We will represent a video clip in the time interval [tb, te] as a multidimensional
curve, A(t) = (a1(t), a2(t), ..., an(t)), tb < t < te, which is called a feature curve.
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Each of the component functions ai(t) represent a quantitative or qualitative
property of the video clip, such as:

– Shot Boundary.
– Camera Movement (Panning, Zoom-in/out).
– The movement of any object in the video clip.
– An arbitrary function specified by the user.

Similar to the video clip, the BGM can also be represented by a multidimen-
sional BGM curve, which we will write M(s) = (m1(s),m2(s), ...,mm(s)), sb <
s < se. Each component function mi(s) represents any quantitative or qualita-
tive property of the music, such as:

– Note pitch, duration, or velocity (volume).
– Inter-onset interval (duration between consecutive notes).
– Register (interval between highest and lowest pitches).
– Fitness for a fixed division (see Equation 3).
– Chord progression.
– Feeling of the music.
– An arbitrary function specified by the user.

Collecting such samples from the BGM is not easy when its source is analogue
or digital sound data. A MIDI file makes extraction of the necessary data much
easier. In the following subsections, we will look at some examples of how feature
points are obtained from the video and BGM curves.

3.1 Video Feature Extraction

There are several methods for feature extraction of video in computer vision
and image processing. Ma et. al [11] suggested the feature extraction method
using the motion of object, variance of human face appearing in the video, and
camera movement. Foote [6] used the variance of brightness to compute the
feature points. In our work, for analyzing the camera movement, we use ITM
(Integral Template Matching) method, which was introduced by Lan [12]. Using
ITM, we can extract the shot boundary, and analyze the dominant motion of
camera and its velocity at the same time. The ITM system uses MAD (Mean
Absolute Difference) method to derive the camera movement. The time instances
having sharp local maximum MAD can be considered as shot boundaries. We
can also determine DM (Dominant Motion) of the camera by considering the
camera motion having minimum MAD. The equation of MAD is defined by:

MAD(Δx) =
1
N

∑
x∈T

|Li(x) − Li+1(x + Δx)| (1)

where Δx is a translation of image basis, and Li is ith frame of the video. We
use three types of Δx, especially vertical, horizontal and zoom in(out). After
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computing dominant motion, we assume that the changing points of DM as
feature points.

The features of a video clip are influenced by shot boundary and variation
of camera movement dominantly. Additionally, we extract the other features
from each shot. Inside an single shot, we applied the Camshift [13] method for
tracking the object played in the shot clip. Using Camshift, we can analyze the
movement of the user selected object (see Figure 1). By tracking the trajectory
of the selected region, we can construct the positional curve p(t) of the selected
object.

The component feature curves ai(t) are converted into feature functions fi(t)
that represent the scores of the candidate feature points. For example, an fi(t)
can be derived from ai(t) as follows:

fi(t) =
{
q if a′i(t) = 0 and a′′i (t) > 0
0 otherwise , (2)

where q is a predefined score corresponding to the importance of the features.
For example, we use 1.0 as a shot boundary score, and 0.8 as a camera movement
score. The score of the object movement can be computed to be proportional
to the secondary derivative of the positional curve. Finally, the video feature
function F (t) can be computed by merging the component feature functions
fi(t). The user can select either one feature function or merge several functions
together to give an overall representation of the video.

Fig. 1. Object Tracking using Camshift

3.2 Music Feature Extraction

In our work, low-level data such as note pitch and note velocity (volume) can
be extracted from MIDI files, and these data can be used to analyze higher-level
data such as chord progressions [14]. These data are represented in separate BGM
curves that can either be continuous or bouncing. The note velocity (volume)
m1(s) in Figure 2(a) is a continuous function which represents the change in note
volume through time. By contrast, the fitness function m2(s), which determines
whether a note is played near a quarter note (a note played on the beat), is of
the bouncing type. For example, the fitness function m2(s) can be defined as
follows:

m2(s) =
{
|s− sk| if a note exist in [sk − ε, sk + ε]
0 otherwise , (3)
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sk = kΔs, Δs =
se − sb

4Nm
(k = 0, 1, 2, · · ·), (4)

where ε is a small tolerance, and Nm is the number of bars of the BGM; thus
Δs is the length of a quarter note. (Note that the time signature of the BGM in
Figure 2 is 4

4 ). Feature points can be extracted from the BGM curves in various
ways depending on the kind of data we are dealing with. For example, we may
consider the local maximum points of the note velocity (volume) curve to be the
features of this curve, because these are notes that are played louder than the
neighboring notes.

44&
q q q q q q q q q
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 s 
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Fig. 2. An example of BGM curves and feature point detection: (a) note velocity
(volume); (b) fitness to quarter note

The BGM curves mi(s) are converted into the feature functions gi(s), as
shown in Figure 2. In some cases, the fitness function can be used directly as the
feature function since it represents discrete data. For example, m2(s) is inverted
in order to represent how well the note fits a quarter note:

g2(s) =

⎧⎪⎨⎪⎩
1

m2(s)
if m2(s) �= 0

0 otherwise

, (5)

Finally, the BGM feature function G(s) can be computed by merging the normal-
ized component feature functions. The user can select either one feature function
or merge several feature functions together to form the final representation of
the music.

4 Synchronization Using DP Matching

DP matching is a well-known method for retrieving similarities in time series
data such as speech or motion. Using DP matching, we can find the partial
sequence from the given BGM that best matches the video clip, while also pairing
the feature points from the video and music. And to synchronize the music and
video, we modify the music using feature pairs that will not cause severe damage
to the music.
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4.1 DP Matching

The DP matching method does not require the video and music to be of the
same time length. However, we will assume that the music sequence is longer
than the video so that we are sure there is enough music for the video. Following
Section 3, we assume that F (t), tb ≤ t ≤ te, and G(s), sb ≤ s ≤ se, are the
feature functions for the video and music, respectively. For DP matching, we
use ti, i = 1, ..., T , and sj , j = 1, ..., S, which consist, respectively, of T and
S sampled feature points of F (t) and G(s), and which satisfy F (ti) > 0 and
G(sj) > 0, for all i and all j. Note that we place default sample feature points
at the boundary of each feature function, such that t1 = tb, tT = te, s1 = sb,
and sS = se. The distance d(F (ti), G(sj)) between a video feature point and a
BGM feature point can be given by the following formula:

d(F (ti), G(sj)) = c0(F (ti)−G(sj))2 + c1(ti − sj)2, (6)

where c0 and c1 are weight constants that control the relative influence of the
score difference and the time distance. The DP matching method calculates
d(F (ti), G(sj)) using a matching matrix q(F (ti), G(sj)), of dimension T × S.
The matching matrix is calculated as follows:

q(F (t1), G(sj)) = d(F (t1), G(sj)) (j = 1, ..., S) (7)

q(F (ti), G(s1)) = d(F (ti), G(s1)) + q(F (ti−1), G(s1))
(i = 2, ..., T ) (8)

q(F (ti), G(sj)) = d(F (ti), G(sj)) + min

⎛⎝q(F (ti−1), G(sj))
q(F (ti−1), G(sj−1))
q(F (ti), G(sj−1))

⎞⎠
(i = 2, ..., T, j = 2, ..., S) (9)

D(F, G) = min{q(F (tT ), G(sj)) | 1 ≤ j ≤ S}. (10)

Here q(F (tT ), G(sj)) is the total distance between the video feature point se-
quence F and the partial BGM feature point sequence of G, when F (tT ) matches
G(sj). Moreover, D(F,G) is the total distance between F and the partial se-
quence of G starting from s1. In order to find the optimal match, we increase
the starting time of G from s1 to sS−T and calculate the matching matrix again
until we get the minimum value of D(F,G). This dynamic programming al-
gorithm naturally establishes the optimal matching pairs of motion and music
feature points with time complexity O(N3), where N = max(T, S).

4.2 Music Modification

Now we synchronize the feature points by time-scaling the music to match the
feature pairs obtained from DP matching. First we plot the feature pairs and
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interpolate the points using a cubic B-spline curve [15]. The reason we use curve
interpolation is to minimize the perceptual tempo change around the feature
pairs. Once an interpolation curve C(u) = (s(u), t(u)) has been computed, each
music event, occurring at a time s∗ = s(u∗), is moved to t∗ = t(u∗) (see Figure
3(a)).

Before we apply the scaling to the music, we discard the points that will give
large local deformations and lead to abrupt time scaling of the music. The points
to be discarded are further than a user-specified threshold from the least-squares
line, which approximates all the feature pairs. The red points in Figure 3(a) are
removed, producing the new curve illustrated in Figure 3(b). This new curve will
change the tempo of the music locally, with natural ritardando and accelerando
effects.

C(u ) = ((s ), (t ))

s (music)s (music)

t (video) t (video)

b

t*

a

c d s

(a) (b)

a'

b'

c d*

* * *

Fig. 3. Music time-scaling using B-spline curve interpolation. The red circles on the
s-axis indicate the feature points of the BGM, and the red crosses on the t-axis indicate
the feature points of the video: (a) all feature pairs used to interpolate the curve; (b)
after removal of feature pairs that will damage the music.

5 Music Graph

The music graph [2] encapsulates connections between several music sequences.
New sequences of music can be generated by traversing the graph and applying
melody blending at the transition points. The goal of the music graph is to retain
the natural flow of the original music, while generating many new tunes.

A traversal of the music graph begins at a vertex selected by the user. Because
every edge in the music graph is weighted by the chord distance, the next edge in
the traversal can be selected by a random process, influenced by the score, as in a
Markov chain [16], which is used as a standard tool for algorithmic composition
in computer music [17,18].

The system randomly traverses the music graph repeatedly (100 times in
our work), retrieving new music sequences. We expect that some of these will
synchronize more effectively with the motion than the original music clips. We
measure the disparity between each new music sequence and the given video
using the DP matching distance function, and select the sequence corresponding
to the minimum distance.
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Fig. 4. Basic concept of Music graph

6 Results

In our experiments, we used two video clips, showing Flybar and scenes of Venice;
and the music data have various genres including classic, waltz, and dance.

We synchronized the Flybar (Figure 5(a)) clip with Light Character Polka
BGM which is composed by Johann Strauss. The length of the video clip is 43
seconds and the BGM is 198 seconds. We used the fitness of quaternote as a
main feature score of the music, and used the shot boundary, camera movement
and object movement as a video feature score.

The other one is the scenes of Venice (Figure 5(b)). We used An der schönen
blauen Donau, which was composed by Johann Strauss, as a BGM. The length
of the video clip is 33 seconds and the BGM is 201 seconds. We also used the
fitness of quaternote as a feature score of the music, and use the shot boundary
as a video feature score.

In the case of the Flybar video, we used the movement of objects as a dominant
feature of the synchronization, while for the Venice scene, we used the shot
boundary as a dominant term, for generating the similar effects to any music
video. Although there are some non-uniform shot changes, we could create a
nicely synchronized video by the music modification.

The next example used the music graph. Using the single BGM, Gm sonata
Op. 49 which was composed by Beethoven, we constructed the music graph.
The original music is composed with two main parts, a piano solo and orchestral

(a) (b)

Fig. 5. Sample video clip: (a) Flybar (b) Scenes of Venice
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music. As a result of similarity analysis, we extracted 329 transitions in the
resulting music graph. By traversing the music graph, we synchronized the fea-
tures of the Flybar video and the synthesized music. Consequently, more dynamic
BGM is composed which is more coherent with movement of object than any
original music. Table 1 shows the comparison of the synchronization using the
original BGM and synthesized BGM generated by music graph.

Table 1. Music graph can generate more synchronized BGM (having less DP matching
distance) compared with original BGM

BGM Length Distance of DP matching
′Gm sonata Op. 49′ 168 sec 8.92

Music graph 44 sec 7.09

7 Conclusion

We have suggested a method to synchronize background music and video using
DP matching and the music graph. Our method matches the feature points
extracted from the music and video by time scaling the music. By modifying
of music a little, we can minimize the changes to the original data necessary to
synchronize the feature points.

The music graph is a new way to synthesize new music from a directed graph
of music clips. It has various applications. In this paper we show how it can be
used to generate well-synchronized background music for the given video. There
are several factors that could make the music graph more useful. Replacing ran-
dom search with systematic traverse methods, as used in motion graph research
[4,5], is one possibility. Additionally, we could extend the functions for transition
distance and melody blending to consider melodic or rhythmic theories.

Using the difference of DP matching, we can measure the suitability of BGM.
Using our database system, we can extract the most suitable BGM by compari-
son of the matching score. However, to synchronize the mood of BGM and video,
maybe the user must select the BGM candidates.

At a higher level, it may be possible to parameterize both music and video
in terms of their emotional content [19]. Synchronizing emotions could be a
fascinating project.

Acknowledgement. This work was supported by the Ministry of Information
& Communications, Korea, under the Information Technology Research Cen-
ter(ITRC) Support Program.
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Abstract. Combining visual shape-capturing and vision-based object
manipulation without intermediate manual interaction steps is impor-
tant for autonomic robotic systems. In this work we introduce the concept
of such a vision system closing the chain of shape-capturing, detecting
and tracking. Therefore, we combine a laser range sensor for the first
two steps and a monocular camera for the tracking step. Convex shaped
objects in everyday cluttered and occluded scenes can automatically be
re-detected and tracked, which is suitable for automated visual servoing
or robotic grasping tasks. The separation of shape and appearance in-
formation allows different environmental and illumination conditions for
shape-capturing and tracking. The paper describes the framework and
its components of visual shape-capturing, fast 3D object detection and
robust tracking. Experiments show the feasibility of the concept.

1 Introduction

A lot of detection and tracking methods have been introduced to computer
vision, visual servoing gets more and more important in robotic applications and
some approaches for visual learning techniques have been presented. However,
these techniques are usually dissociated from each other and the connections
between them are manually at best.

In this work we present a concept of a vision system that guides the manip-
ulation of convex shaped objects. Robotic applications such as visual servoing
or grasping tasks are the goal. Our main contribution is the closing of the gap
between shape-capturing, detecting and tracking the object, integrating the indi-
vidual vision steps in a fully automatic way. The approach is to show the object
once to the robot vision system. It is scanned by a laser range sensor that derives
a volumetric object description for further detection and tracking. Performing
the detection in a totally different environment (e.g. in a home environment on
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potential object places) is possible and results in the object pose, which is the
starting pose for the subsequent tracker. This monocular tracker uses the 3D-
pose as well as the 3D-object model delivered during the shape-capturing step
for continuously updating the pose of the object. Appearance information for
the tracker (cues in any form, i.e., interest points in the system proposed) is de-
rived not until now, i.e., from the actual scene – discoupling the illumination and
environmental conditions of the shape-capturing and the manipulation steps.

The paper is structured as follows: After an overview of related approaches
in the next section, the main concept, the reasons for using Superquadrics and
the discrete vision steps are described in detail in Section 2. First experiments
are given in Section 3 and further work is outlined in Section 4.

1.1 State of the Art

Kragic and Christensen [7] clearly outline the desire for a fusion of shape and
appearance information in robotic servoing and grasping. They emphasize the
lack of robustness of model based techniques when trying to track line features
of highly textured objects. Their solution is the usage of training images and
their projection into the eigenspace. In contrast to this, we are integrating two
different sensors, namely a laser scanner for providing the object model (= shape-
capturing step) as well as the starting pose of the object in the scene (= detection
step) and a CCD-camera (= tracking step). In contrast to the former (shape),
the latter exploits appearance information. The problem of line features lies
in our understanding not only in textured objects but also in situations where
occlusions occur and especially when handling non-rectangular objects. We aim
to solve both with our framework.

Currently information for the different tasks is often provided manually. In [5],
[6], model databases are required containing local information about the model.
Our contribution is a framework that allows model data, initial pose information
as well as interest points for the tracking part to be automatically provided by
the sensors.

Moreover our framework operates an automatic vision system including the
object capturing process for size and shape parameters without any user interac-
tion. Pioneer work in learning for 3D object recognition was done by Mukherjee
et al. [14] and an approach for vision-based active learning for robot grasp-
ing tasks was introduced by Salganicoff [16]. Our learning – we call it shape-
capturing – differs from the latter contributions in that way that we understand
the learning process as a coded object description temporarily stored for further
processing rather than classifying objects to similar groups by comparing them
in a database.

A recent work by Taylor et al. [18] uses a similar full system assembly as
we do. They, too, combine a laser scanner with vision but stereo instead of
monocular. Their approach is finding geometrically primitive objects (bowls,
cylinders, boxes) in a scene without previous learning. To achieve this, a scene
segmentation is performed using surface curvature. The main difference to our
work is that we divide this step into two parts: shape-capturing (see Sec. 2.1)
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Fig. 1. Concept of our perceptual system: The fully automatic sequence starts with
the object capturing where the size and shape parameters are gained that are used for
subsequent object detection and tracking in an occluded and cluttered scene

and detection of the learned object in the scene (Sec. 2.2). That way, we avoid
the computational expensive segmentation and enable the handling of convex
objects with less geometric constraints than [18].

Concerning the tracking part, we like to pick a recent paper by Yoon et al. [19]
who presented a combination of a laser scanner and a camera for a tracking task.
The selection of line features for the tracking is done manually from the range
image – allowing to track complex objects (such as a toy lorry).

2 Concept

Fig. 1 shows the overall concept. First, the target object is shown unoccluded to
the laser scanner which automatically derives shape and size parameters storing
them in terms of a Superquadric model description (see Sec. 2.1). Detection
(Sec. 2.2) is performed in the real-world scene without further user interaction
as the parameters are already known from shape-capturing. The detection leads
to the pose (position and orientation) of the object, starting the tracking part
(Sec. 2.3) that additionally uses the object dimension acquired in the capturing
step. The output, i.e., the updated pose, can be used for any further robotic task:
grasping, visual servoing and so on. Fig. 2 shows the experimental assembly of
the system with the vision equipment and the linear axis.

Stereo vision is usually prone to show weak accuracy and problems arise when
dealing with not or weakly textured objects. Our approach aims at delivering the
pose of an object with respect to the robot arm in order to be able to perform vi-
sual servoing, grasping tasks etc., which all needs high accuracy. The combination
of a laser scanner and a colour camera requires a single parametric description of
the object to be handled that can be passed along the different steps. Multiple
parametric models have been introduced for 3D object recovery. Superquadrics
are perhaps the most popular because of several reasons. The compact shape
can be described with a small set of parameters ending up in a large variety of
different basic shapes. The recovery of Superquadrics has been well investigated
and even global deformations can be easily adopted [17]. Additionally, they can
be used as volumetric part-based models desirable for robotic manipulations.
These advantages cannot be found in other geometric entities, which predestine
the Superquadric model for our application. For further information regarding
Superquadrics, please refer to [1].
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Fig. 2. Experimental sensor assembly with laser source and the ranger camera, the
CCD camera for the tracking and a measurement table where the scene for the exper-
iment in Fig. 4 is arranged

The usage of Superquadrics for a system such as ours has several advantages.
First of all, Superquadrics are purely shape-based, which frees us from using
approximately the same illumination conditions when acquiring the shape, de-
tecting and tracking the object. Second, it enables the possibility to describe
a large variety of different objects especially with the extension of global de-
formations. Most everyday objects such as commodity boxes, cups or tin cans
can be described or well approximated. Third, Superquadrics use only a small
set of parameters therefore providing a very compact description of the object’s
surface. This implies a fourth advantage: The computation of the 3D-model co-
ordinates that is necessary for the tracking part, can numerically be solved in a
straight-forward manner.

2.1 Capturing the Shape of the Object

Before a robot can handle a convex shaped object, the vision system needs
information about it. We propose a shape-capturing step by showing the object
to the system and extracting its geometric properties. We use a laser range finder
to acquire a range image in which the 3D shape of the object has to be directly
recovered. As many sides of the object as possible (i.e., no degenerate view) and
no other objects should be visible to the laser scanner. Due to the symmetry of
most every-day objects one view is sufficient.

2.2 Detecting the Object

The task of this module is to scan the scene of interest to obtain a single-view
range image and detect the object in process real time. The method needed for
this purpose must robustly handle object occlusions in a cluttered scene. In order
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to achieve fast detection results a probabilistic approach is used to verify pose
hypotheses of the learned model. For keeping the computational effort low, the
search process is structured in a two-level hierarchy.

First the low-level search (probabilistic pose estimation) is RANSAC-based
[3] with samples on sub-scaled raw data to speed up the Superquadric recovery
using the Levenberg-Marquardt [13] minimization. The best fit of the low level
search is again refined finding the optimal pose which is saved.

Second the high level selection (pose verification) is necessary due to faulty
detections in the low level search results. To resolve these ambiguities a ranked
voting [15] of the pose hypotheses is applied considering three constraints: the
quality of fit, the number of points on the Superquadric surface and the number
of the Superquadric’s interior points.

The hierarchical two-level search achieves a fast and robust detection result
especially in cluttered scenes. Because of fitting the learned object model to local
surface patches and verify them globally within the refinement step, disconnected
surface patches can be associated to one entire part. This enables a robust detec-
tion of partly occluded objects. For more details on this algorithm please refer
to [2]. The detected pose of the object is the initialization for the subsequent
tracking with a monocular camera and the recovered shape and size parameters
from the shape-capturing process provide the required model to the tracker.

2.3 Tracking the Object

Provided with starting pose information from the detection step, our tracker
projects the Superquadric, acquired during the shape-capturing step, into the
current camera image. The usage of Superquadrics involves the possibility of a
fast computation of the convex hull which provides the boundaries of the pro-
jected object, within which interest points are now searched using any detector,
e.g. hessian-laplace or harris-affine (a very good comparison can be found in [11]).
For each detected point, a descriptor [12] is saved that contains its properties.
Here again, any descriptor may be used, e.g. SIFT [9]. The main focus lies on
good repeatability as the majority of detected points should be found again in
the next frame with a very similar descriptor. However, timing behaviour is of
course also a very important issue. Note that the appearance information of
the object for the tracking is obtained directly from the actual scene situation,
enabling the handling of different illumination and occlusion conditions of the
model acquisition and the tracking step. The interest points are finally repro-
jected into the image for computation of the object coordinates. Here another
strength of the used model stands out: A Superquadric describes the closed sur-
face of an object, hence, the computation of the intersection point of the ray
of sight through the interest point and the model immediately delivers the 3D-
model coordinates of this point. This enables the association of every detected
interest point in 2D with its 3D-coordinates on the object.

The tracking loop works as follows: Interest points are searched in the 2D-
neighborhood of the points found in the previous image. Correspondences
between the points in the two frames are established via comparing their
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signatures. Finally, the pose is determined using the algorithm by Lu et al. [10].
The image points from the current image are taken as observed 2D-points and
the corresponding points from the previous tracking step provide the 3D object
coordinate information. For handling wrong matches, the RANSAC [3] method
is applied using the number of point votes and selecting the best result respec-
tively the mean of the largest pose cluster in case of multiple equal votes. The
interest points of the current frame are again projected onto the object model
and the interest point positions are stored in object coordinates for the next
tracking step. All interest points are used for the matching with the next frame,
independently of whether they have been used when matching with the previous
image or not. Thus, the overall number of points for the tracking may vary and
newly appearing points are seamlessly integrated into the tracking process. This
way, appearing sides of the object that were occluded before are available for
supporting the tracking process. In this way problems with rotational motions
are reduced.

2.4 Calibrating the System

First, the sensors have to be calibrated individually for the sake of accuracy.
Second, the coordinate systems of the scanner and the camera must be registered
onto each other for executing an automatic sequence of the different steps.

The calibration of the laser scanner is done using the geometrical approach.
With a 3D calibration object with markers on at least two different planes,
the pose of the laser plane and the extrinsic parameters of the camera can be
calculated as described in [4].

The tracking camera is calibrated with the calibration tool Camcalb, intro-
duced in [20]. This tool provides the intrinsic camera parameters in order to
undistort the camera images for enhancement of tracking robustness and addi-
tionally gives the extrinsic parameters (position and orientation of the calibration
plate) for fulfilling the last calibration step:

Laser coordinate system and camera coordinate system are finally registered
via transformation between the respective world coordinate systems. This leads
to the possibility of transforming the target object’s position and orientation ob-
tained by the laser scanner during the detection step into the coordinate system
of the tracking camera.

3 Experimental Results

Fig. 3 shows an uncluttered scene for tracking a cylinder (one of the basic
Superquadric shapes). The object (3a) is scanned (3b) and a Superquadric is
fitted (3c). Scanning the scene (3d) leads to the location of the learned Su-
perquadric (3e). This provides the starting pose (3f) for the tracker (3g–3i).

Table 1 shows the parameters of the Superquadric – both ground-truth and
the captured values.

Fig. 4 shows another whole vision sequence as presented in this paper for a
more complex example. Again, we chose an every-day commodity item as object
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(a) Object of interest (b) Range image of object (c) Fitted Superquadric

(d) Range image of scene (e) Detection of the object (f) Tracker starting frame

(g) Tracking frame #7 (h) Tracking frame #11 (i) Tracking frame #16

Fig. 3. Experiment 1: Handling of a cylinder. Capturing model (first row), Detecting
(second row) and Tracking (last row). The reprojected pose is depicted as mesh-grid.

to be retrieved and tracked, this time a rectangular rice box. Table 2 sums up
the parameters retrieved by the shape-capturing step. Although the accuracy of
the shape-capturing is deficient on the shortest side of the object, tracking is not
affected. This leads back to the derivation of the tracking cues, i.e. the interest
points, from the actual scene whereas an edge-detector would be misdirected.

Note that during detection (second row of Fig. 4), the rice box now lies in an
arbitrary position and is partially occluded by the white bowl, the tin can as
well as the mallet shaft. The reprojected white lines in the last two rows refer
to the pose of the tracker. The white points are the locations of the interest
points. The matching example on the right of the third row is a zoomed clip
of frame #18. The black dots indicate the positions where interest points have
been found in the previous step, the white dots the locations of the points in the
current frame. Note that there are some white points that have no match with
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(a) Object of interest (b) Object range image (c) Fitted Superquadric

(d) Occluded object (e) Scene range image (f) Detected object

(g) Starting pose (h) Matching example

(i) Frame #1 (j) Frame #18 (k) Frame #23 (l) Frame #28

Fig. 4. Experiment 2: Fig. (a) to (c): Capturing the object parameters; Fig. (d) to (f):
Detection of the object in the scene; Fig. (g): Starting pose of the object; Here, the
pose is depicted as white lines; Fig. (h): Matching example: Black dots from frame #17
are matched with white dots from frame #18; Fig. (i) to (l): Some tracking frames

black ones (no white chain). Nevertheless, these points are stored for the next
iteration as they may possibly be matched with points of frame #19.

Furthermore the occlusion caused by the mallet shaft is dynamic during track-
ing due to the motion of the rice box. Additionally, the hand coming from the
left also occludes a part of the box. Finally, even the number of visible faces of
the box changes. Nevertheless, the pose is recovered with sufficient accuracy.
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Table 1. Summarized learned Superquadric size and shape parameters of the tin can

parameter size [mm] shape
a1 a2 a3 ε1 ε2 kx ky

model 24.5 24.5 85.2 0.1 1.0 0.0 0.0
true object 26.5 26.5 86.5 0.0 1.0 0.0 0.0

Table 2. Summarized learned Superquadric size and shape parameters of the rice box

parameter size [mm] shape
a1 a2 a3 ε1 ε2 kx ky

model 96.8 74.9 27.1 0.2 0.1 0.0 0.0
true object 95.0 75.0 22.5 0.0 0.0 0.0 0.0

4 Conclusion and Further Work

With this work we presented a vision concept that closes the gap between cap-
turing the shape of a convex object and handling it in a cluttered and occluded
scene – in an automatic way. The fusion of shape and appearance proved to be
well suited for this purpose. A laser range scanner for retrieving object parame-
ters as well as for detecting the object in the scene, is combined with a monocular
CCD camera that is liable for the tracking part. This concept has been shown
to provide a stable solution for shape-capturing, detecting and tracking different
Superquadric shapes as cylinders and boxes.

As further work, tests – including timing analysis and quantitative evalua-
tion – of the system will be done on our existing pan-tilt laser range sensor.
Accessibility and grasping analysis will follow as soon as we mount the unit on a
mobile platform. As extension for this concept, the shape-capturing and detec-
tion of more complex objects will be tackled. These objects may be expressed
by a composition of several Superquadrics. This requires a learning process that
parses subparts of an object automatically [8]. The current bottleneck of the
tracker as far as timing is concerned is the 3D pose estimation. To achieve cam-
era frame rate, code optimization has to be done and matching robustness must
be increased in order to reduce the number of required RANSAC-iterations. Fur-
thermore, the additional usage of cues as for example edges may also support
the robustness of the monocular pose estimation.
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Abstract. Focusing on the encryption of digital image and video, this paper re-
ports an intrinsic weakness of all existing discrete-cosine-transform (DCT) based
algorithms. This serious weakness of DCT is analyzed theoretically and then
demonstrated practically. As an instance, a novel attack algorithm is proposed to
acquire the sketch information from the encrypted data without any pre-
knowledge of the encryption algorithm. Thereafter, to solve this problem, a full
inter-block shuffle (FIBF) approach is developed and it can be employed to im-
prove the encryption security in all DCT-based algorithms, such as JPEG, MPEG
and H.26x.

1 Introduction

Recently, with the rapid incensement of visual information, digital image and video en-
cryption approaches have been widely studied upon many important data resources,
such as military satellite images, patent design blueprints, and visual net meetings
[1,2,3]. These applications always require ultra-high security level to keep the image
and/or video data confidential between users, in other word, it is essential that nobody
could get to know the content without a key for decryption. Moreover, it worth empha-
sizing that a video segment normally contains a number of single frames. Therefore,
from this point of view, image encryption can be regarded as a basis of video encryp-
tion (Note that: video motion vector should also be encrypted). So, this paper mainly
focuses on digital image encryption.

Previous image encryption algorithms can be classified into three major categories:

• Spatial domain-based [4]: this category always treats an image as a set of single pix-
els and does not consider too much about (1) the correlation among pixels within
an image and (2) the characteristics of individual images. There-fore, modern en-
crypting algorithms can be utilized upon images, which are processed as general
data without considering size, redundancy, and other is-sues. In these algorithms,
the general encryption usually destroy the correlation among pixels and thus make
the encrypted images incompressible;
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• Frequency domain-based [7,8,9,10,11,12]: aiming at reducing the size of the
encrypted image for network applications etc., a number of image encryption al-
gorithms have been developed in transform domain to keep the result images com-
pressible. The most popular frequency domains are: Wavelet transform [12] and
discrete-cosine-transform (DCT) [8,9,10,11]. As an efficient and effective domain,
8 × 8 DCT-based algorithms1 have been widely employed, e.g., signs flipping [7],
DC and non-zero ACs scramble [8], intra-block shuffle [9], DC splitting and intra-
block shuffle [9], and inter-block shuffle [10,11]. These algorithms are different in
secrecy and affection of compression ratio, while the proper combination of differ-
ent methods may give better performance and security; and
• Entropy coding based [5,6]: this is a complex class of image encryption approaches.

Herein, we only give a brief description because it is not our major concern and
not used as frequently as the frequency domain-based ones. In these encryption
algorithms, different entropy coding tables are chosen by keys [5,6], and which
causes compression ratio reduced slightly. Such as the algorithms of enciphering
headers, these entropy coding based algorithms have also some disadvantages: (1)
an encrypted image is invisible without the right key. Such if a user has an invisible
image, s/he can not judge whether the image file is destroyed or the key is wrong;
and (2) the more serious thing is that it makes quantum state amplification possible
since only the right key can make encrypted image visible, and that causes quantum
exhausting attack realizable.

These existing DCT-based image encryption algorithms worked in many applications
and gave satisfactory results as well. Unfortunately, a serious problem is ignored: The
ability of image information protection is hard to be examined. In fact, the securities
of these image encryption algorithms are mostly evaluated by eyes. This is certainly an
insecure and unreasonable way. As a result, many algorithms in DCT-based encryption
systems seem to be good, but most of them may leak out the sketch information of the
encrypted images even though the attacker has no pre-knowledge about the encryption
algorithm and the key.

This paper reports an intrinsic weakness of conventional DCT-based image encryp-
tion approaches and then gives an enhanced method to avoid this problem in applica-
tions. This paper is organized as follows: Section 2 briefly introduces previous work
on DCT-based image encryption. In Section 3, based on theoretical analysis, a novel
scheme is reported to attack conventional encryption approaches. This newly proposed
scheme is named as non-zero-counting attack (NZCA). Section 4 then gives a full inter-
block shuffle (FIBS) solution, which improves the existing DCT-based image encryption
approaches to avoid the NZCA-liked attacks. Finally, Section 5 concludes and states fu-
ture work.

2 DCT-Based Encryption Approaches (DBEA)

DCT-based algorithms are normally established based on image sub-blocks, which are
sized 8 pixels by 8 pixels. When DCT coefficients in one sub-block are encrypted, the

1 In this paper, 8 × 8 size is used for analyzing the DCT-based algorithms.
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inverse DCT (IDCT) cannot reconstruct the original sub-block. The key criterions are
compression ratio, computing complexity and key quantity etc. There are two kinds of
encryption techniques: scramble and shuffle. [5,6,7,8,9,10,11]

Previously, a number of image encryption algorithms have been proposed and suc-
cessfully employed based on DCT, such as:

• Signs flipping [7]: This method treats signs as bit stream (negative as 1 and positive
as 0), and encrypt them with a key. From another point of view, signs flipping can
be regarded as a special case of the most significant bits (MSB) scramble, which
will be introduced below;
• DC and non-zero ACs scramble [8]: Scramble of DC coefficients, averages of pix-

els in each sub-block, can change energy amplitudes and demolish image impres-
sion. Scramble of AC coefficients can destroy image texture and make image baf-
fling. It has been noticed that only DC coefficients scramble or only AC coefficients
scramble cannot obtain high security, so that both DC and AC coefficients should be
scrambled. To keep high compression ratio, zeros are usually not scrambled. Some-
times, only several most significant bits (MSBs) are scrambled in order to save key
bits;
• Intra-block shuffle [9] and DC splitting and intra-block shuffle [9]: The early method

of shuffle is to shuffle all intra-block coefficients simply. However, DC coefficient is
often larger than AC coefficients, and easy to be located and restored. To avoid this
bug, DC coefficient can be split into two parts: four lowest bits set to DC coefficient
and highest bits set to AC63 position, the highest frequency component, and then
all coefficients are shuffled. Coefficients shuffle changes energy distribution in fre-
quency domain, and makes encrypted image incomprehensible. At the same time,
coefficients shuffle ruins the effect of zigzag scan and reduces compression ratio
observably. An improvement is to divide the 64 coefficients into several bands and
limit shuffle within each band. Different bands relate to different security levels.
Shuffle more bands will obtain higher security; and
• Inter-block shuffle [10,11]: Another shuffle method is inter-block shuffle. To sim-

plify algorithm complexity, two kinds shuffle are ordinarily adopted. The simpler
one takes sub-block as basic unit, and shuffle all sub-blocks. The security of this
algorithm is low since it is just like a jigsaw puzzle for image sub-blocks. The
other algorithm takes all coefficients of the same frequency position as a group,
and shuffle within each group. Usually, shuffle of low frequency coefficients can
make image incomprehensible.

These above algorithms have different characteristics and therefore are suitable for
different applications. Moreover, by properly combining (some of) them, better perfor-
mance and security may be achieved.

Figure 1 shows several image encryption results. The original Lena image is given
in the top-left, which is sized 512 × 512. The top-right and bottom-left sub-figures
show experimental results of the original image encrypted by a scramble and a intra-
block shuffle algorithms respectively. Finally, a combination algorithm of scramble and
shuffle is performed and the result is shown in the bottom-right sub-figure. In the ex-
periments: (1) the employed scramble algorithm is: DC and non-zero AC coefficients
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scramble. Data to be scrambled should have at least 10 bits, otherwise 0 was inserted
ahead for positive data or 1 was inserted for negative data; and (2) the shuffle algorithm
employed here is: DC splitting and intra-block shuffle. Shuffle table is generated and
changed base the key.

(a) (b)

(c) (d)

Fig. 1. Existing DCT-based image encryption algorithms. (a) The original Lena image. (b) The
result image encrypted with DC and non-zero ACs scramble. (c) The result image encrypted
with DC splitting and intra-block shuffle. (d) The result image encrypted with both scramble and
shuffle - the combination result of the algorithms used in (b) and (c).

Note that: some obscure edges are still perceptible in the shuffle result, Figure 1(c).
This phenomenon exists because: there are often large AC coefficients when a sub-block
contains edge information. Thereafter these large AC coefficients usually cause strong
dark-to-light visual effect, even if they are shuffled to other locations. These eye-catcher
sub-blocks results in the obscure edges.

3 Non-Zero-Counting Attack (NZCA): Risk of DBEA

The encrypted images in Figure 1 appear to be security, unfortunately they can still leak
some information, i.e., the security of encrypted images cannot be guaranteed by these
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conventional encryption algorithms. For instance, in this Section, a novel attack scheme,
named non-zero-counting attack (NZCA), is designed to catch the sketch information
from encrypted images without pre-knowledge about the encryption algorithm.

As a sample attack scheme, the NZCA is thus proposed based on the below fact:
In an 8 × 8 DCT-based encryption algorithm, the zero coefficients in each image sub-
block are usually not scrambled (alternatively, increases by one in the algorithm of DC
splitting and intra-block shuffle) to keep high compression ratio (a successive series of
zeros benefits the run-length coding after zigzag scan). In other word, some frequency
band information is not encrypted. On the other hand, the image sub-blocks, which con-
tain much edge information, usually have more non-zero coefficients than the smooth
sub-blocks. Moreover, sub-blocks with different textures often have different amounts
of non-zero coefficients, and there will be a large number of non-zero coefficients if
a sub-block is chaotic. This means that: the amount of non-zero coefficients implies
some characteristics, especially texture and edge information, of the corresponding sub-
block.

As illustrated in Figure 2, the amounts of non-zero coefficients for Figure 1(a). It
shows the percent of sub-blocks, which contain n non-zero coefficients, to the total
sub-blocks.

Fig. 2. The statistical results of non-zero coefficients for Figure 1(a)

This sample attack algorithm is introduced in Table 1. Several key issues of this
algorithm are then stated and analyzed individually.

Parameter selection: Experimental results show that the NZCA algorithm works in
most cases. Figure 3 shows some broken results of Figure 1(d) with different pairs of
parameters r1 and r2. It can be drawn from Figure 3 that broken sketches benefit from
proper selections of r1 and r2. An interesting phenomenon is noticed that Figure 3(b)
is somehow like inverse of Figure 3(c), and vice versa. Then it is known that 25 is a
proper threshold of inner sub-blocks and edge sub-blocks. Images are different from



230 W. Li and Y. Yuan

Table 1. Non-Zero-Counting Attack (NZCA)

Step Content

Input Encrypted images IE .
Output Decrypted (sketch) images IDE .

1 To generate the statistical chart of non-zero coefficients for IDE .
2 To determine thresholds r1 and r2 to define emphasized region.
3 For each 8 × 8 sub-block BE in IE ,
4 To get the amount of non-zero coefficients (including DC coefficient) n.

5

To computer the pseudo-luminance value Y of each sub-block by:

Y =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

255 − 50 × n/r1 (n < r1)
50 + 100 × (r1 + r2 − 2n)/(r2 − r1) (r1 ≤ n ≤ r2)
255 − 50 × (64 − n)/(64 − r2) (n > r2)

6 In IDE , assign the value of all 64 pixels within BE with the Y value.
7 End.
8 If the IDE is not good enough, repeat 1-7.

one to another; therefore, it is hard to decide the best parameters. As in the machine
learning fields, parameter tuning is a very popular mechanism and has been widely
used. In this case, abundant experiences are desirable. Moreover, an adaptive scheme
will also be an important future work as stated later.

(a) (b) (c)

Fig. 3. Broken results of encrypted image Figure 1(d). (a) r1 = 11, r2 = 39; (b) r1 = 11, r2 = 25;
(c) r1 = 26, r2 = 39.

Target encryption algorithms: The attack scheme is performed on Figure 1(d), in
which both scramble and shuffle are employed. In fact, it can be noticed from Table 1
that the NZCA algorithm is independent of the encryption algorithm. It is worth em-
phasizing that: some background edges are ignored in Figure 2(d). This is because that
they are defocused and not as sharp as foreground edges.

Image resolution: As introduced before, in most of the DCT-based processes, the min-
imum units are sub-blocks sized 8 pixels by 8 pixels. Therefore, in the attack results
(sketches), all details within one sub-block cannot be captured. In other word, what can
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be got is mosaic-liked images, but that is enough for human to recognize the major
content of the target image. As we know, human’s vision system is sensitive on low-
frequency parts, and this NZCA attack scheme can exactly show such information to
attackers.

It is nature that if the image has higher resolution, more sub-blocks will be con-
tained and fewer details will be included in a sub-block, in that case, the attack results
(sketches) will be much clearer — the higher the image resolutions, the better the attack
performances.

Fig. 4. Non-zero-counting attack (NZCA) effects at different resolutions. The first row shows
original images of different sizes, say, 525×375, 1050×750, and 2100×1500, respectively, from
left to right. The second row shows the encrypted images. The bottom row provides the broken
sketches.

In addition, in modern digital image processing systems, people usually keep and
transform high quality/resolution images, especially for some sensitive application
fields, e.g., military satellite images etc. So, this attack algorithm can work more ef-
fectively. Experiments were carried out to show the performance of NZCA upon the
same image of different resolutions, which is shown in Figure 4. When the original im-
age size is around 2100 × 1500, the attack result can show not only the major content
but also some details. Herein, obviously we can see that: the conventional DCT-based
image/video encryption algorithms are not safe any longer.
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4 Full Inter-Block Shuffle (FIBS): Enhancement of DBEA

In Section 3, we introduced a kind of serious attack algorithms for DCT-based im-
age encryption. To guarantee the security of image communication, it is essential to
develop an effective approach to stand against the NZCA attack. By taking this issue
into account: the NZCA algorithm is based on the precondition of unchanged amounts
of non-zero coefficients in each sub-block (not caring the influence of DC coefficient
splitting), there are two options to enhance the conventional DCT-based encryption
algorithms:

• Zeros to non-zeros: To change some zeros to non-zeros according to the keys may
make the algorithm(s) stronger against the NZCA attack. However, it meanwhile
increases the amount of non-zeros greatly, and will decrease compression ratio
hugely. Therefore, it is not a good method; and
• Coefficients inter-block shuffle: This solution does not change the total amount of

non-zeros, but their locations only. As a result, the compression ratio is slightly
changed.

Theoretically, by shuffling the inter-block coefficients, the NZCA attack should be
avoid to some extent. Unfortunately, thing is not such easy and there are some key issues
to study, i.e., which and how many coefficients to shuffle?

To simplify the inter-block procedure, the shuffle is usually carried on upon coeffi-
cients of the same frequency position. It is therefore normally enough to make image
incomprehensible by shuffling merely the lowest frequency coefficients. How-ever, it
is not to withstand the NZCA attack. The reason can be described as follows: Human
naked eyes are not sensitive to small high frequency components, especially when the
image looks chaotic. So, it is enough for human eyes security to shuffle only some
low frequency coefficients. However the NZCA algorithm is more sensitive to high fre-
quency components than low frequency ones, since low frequency ones are often non-
zero. Even if low frequency coefficients are shuffled, the NZCA can still catch texture
information from high frequency coefficients. This analysis is confirmed by experiment
results shown in Figure 5.

In general, a partial inter-block shuffle can benefit the image encryption algorithm,
but it is not enough to withstand the NZCA attack. Therefore, in this paper, a full inter-
block shuffle (FIBS) is proposed and examined as in the last column in Figure 5. Herein,
note that: comparing with computation cost, security is a bigger concern for image
encryption applications.

In Figure 5, it can be seen that when the 10 lowest coefficients are shuffled, the
encrypted image looks incomprehensible, but the broken sketch is almost as clear as
Figure 1(d). Even when the 30 lowest coefficients shuffled, the broken sketch is still
recognizable. Thus, it can be concluded that shuffle of almost all coefficients is neces-
sary to withstand the NZCA attack. When the shuffle procedure is random enough, the
amount of non-zero coefficients of each sub-block will be close to their average value
as shown in Figure 5. Then all possible information is covered up and the security of
encrypted image is ensured.
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Fig. 5. Full inter-block shuffle (FIBS). The last column shows the advantage of FIBS against the
NZCA attack, the corresponding bands are 0-63. The first two columns stand for partial inter-
block shuffles on bands 0-9 and 0-29 respectively. The top row gives encrypted images by inter-
block shuffle; the middle row gives the statistical charts of these encrypted images, while the last
row provides attack results with r1 = 26 and r2 = 39.

5 Conclusion and Future Work

In this paper, conventional discrete-cosine-transform (DCT) based image encryption
algorithms are reported to be unsafe and have big potential to be attacked. This kind
of attack algorithms are based on the invariant amounts of non-zero coefficients of the
8 × 8 DCT image sub-blocks. There are very few non-zero coefficients if a sub-block
is smooth or gradual, on the other hand, more non-zero coefficients can be gain if a
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sub-block contains much edges information. In general, the amount of non-zero co-
efficients implies some characteristics of the original image. As a sample, a non-zero-
counting attack (NZCA) scheme is introduced to generate a rough sketch of the original
image by setting pseudo-luminance values for each sub-block. To avoid the NZCA-
liked attack, a solution, named full inter-block shuffle (FIBS), is then developed to
enhance these encryption algorithms in JPEG, MPEG, H.26x, etc. The FIBS is demon-
strated to effectively destroy the invariance of non-zero coefficient amount. Therefore,
the existing DCT-based image encryption algorithms are enhanced to be much securer.
An adaptive parameter selection procedure of the NZCA attack, the complexity reduc-
tion of the FIBS, and other information hiding strategies [13] will be our future work.
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Abstract. In this paper, we reconstruct the corresponding 3D face
model using only one 2D image. 3D feature points are obtained by opti-
mally approximating 2D feature points set with defined similarity. Then,
a shape model is reconstructed by the warp function algorithm. Finally,
a realistic face model is created through texture mapping with regis-
tration method such as affine transform. Results show that the models
we reconstruct are comparatively realistic, and they can be used for
face recognition or computer animation. The computation speed is also
satisfying.

Keywords: face reconstruction, similarity, optimal approximation, tex-
ture mapping.

1 Introduction

Face recognition with PIE (pose, illumination, and expression) is a challenging
problem. It is hard to solve this problem only through dealing with 2D images.
However, incorporation of computer graphics provides a possible solution. If a
corresponding 3D model is reconstructed and added with some PIE or animation,
it is comparatively easy for recognition.

3D face model reconstruction has greatly developed recently. Methods using
three images to reconstruct are prevalent [1], [2], [3] and easy to implement. But
they can not be applied to all situations because it is difficult to obtain such ideal
images at any time. So we concentrate on the instance with a monocular vision.
Recently, Volker Blanz et al. [4] used a 3D morphable model to fit the image
by optimization procedure. They acquired their models by a series of processes:
linear combination, some rotation, illumination parameters and cost function.
Their optimal matching was a complex process, and it took about 4.5 minutes
on a workstation with a 2GHz P4 processor. Besides, Dalong Jiang et al. [5] used
an integrated face reconstruction method for face recognition. They located key
facial points by an alignment algorithm, then reconstructed a geometric model,
and extracted texture to the model at last. This method simply calculated the
weights used for linear combination. So it is better to devise more sophisticated
methods to enhance realisiticity.
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In this paper, we generate a corresponding 3D model only using one frontal
image fast. Choosing a frontal image is because it can provide maximal infor-
mation for reconstruction. However, such reconstruction is an ill-posed problem,
so how to achieve optimal approximation is the key. It contains two essentials:
how to obtain the optimal shape model and how to best map texture onto the
shape model. Any fault will badly affect the realisticity of the model. So we take
the 3D face model database into consideration and obtain finer weights using a
statistic method for linear combination, which is an easily accepted idea.

There are two steps for model reconstruction: shape reconstruction and tex-
ture mapping. First, we locate some feature points since the warp function needs
them. 3D feature points can be obtained with a weight vector by optimally ap-
proximating 2D feature points with defined similarity. And 2D feature points can
be located by some prevalent method. So far the well-studied methods include
ASM (Active Shape Model) [6], AAM (Active Appearance Model) [7].Then, the
shape model can be reconstructed by an elastic warp function algorithm TPS
(Thin-Plate Spline) [8]. Finally, we get a real face model by texture mapping
with registration method such as affine transform. Results show that the mod-
els we reconstruct are comparatively realistic, and they can be used for face
recognition or computer animation. The computation speed is also satisfying.

The rest of this paper is organized as follows. Two basic assumptions are
made on top of this section. Shape reconstruction based on similarity optimal
approximation is introduced in section 3. Section 4 provides the texture mapping
algorithm. Experimental results are given in section 5 and conclusion is drawn
in section 6.

2 Basic Assumptions

We use the optimal approximation method to handle this problem. How to
reconstruct an optimal model is the key issue in this paper. Before our generation,
we make the following assumptions:

(1) The models are neutral expression, and their coordinates have been recti-
fied without need to perform any rotation transformation.

(2) 3D optimal feature points can be obtained by the weights during the
process of optimally approximating 2D target feature points.

3 Shape Reconstruction

In this section, we elucidate the method which is used to generate the 3D shape
model automatically. We select a frontal facial image under the condition of
normal illumination and neutral expression for reconstruction. Then, two proce-
dures are applied to yield the desired model, namely, (1) shape reconstruction
and (2) texture mapping. The framework of 3D model reconstruction shows in
Fig. 1. And the following subsections will describe these two procedures in detail.
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3.1 Feature Points Extraction

The extracted feature points fall into two categories: model feature points and
target image feature points. The 3D model feature points are manually selected
on the sample models off-line to ensure precision. We select 60 feature points
on every 3D sample model and project them to obtain the corresponding 2D
projection feature points, which will be used for the optimal approximation
(discussed later). 100 male and 100 female facial models are used for the sake of
statistic computation later.

Input Image

Feature Points

Warping Function

Acquired Model

Average Shape

Texture Mapping

Shape Reconstruction

Similarity 
Approximation

Fig. 1. The framework of 3D face model reconstruction

As for the target feature points, we can extract them by some automatic
algorithms, which ensures our procedure fully automatic. Here we choose ASM
algorithms [6] to acquire 60 corresponding facial target feature points in the
same order.

3.2 Optimal Approximation

According to the assumptions above, we can use a weight vector to approximate
the 3D optimal feature points. We write the selected 3D model feature points
in the column vector form as Si = (X1, Y1, Z1,...Xn, Yn, Zn)T . Where m is the
number of sample models, and n is the number of selected feature points. Here
m = 200, n = 60. X,Y, Z are the spatial coordinates of the 3D model feature
points. In order to acquire the corresponding 3D optimal feature points based
on the 3D model feature points, we use the weight vector ω to calculate them.
So the corresponding 3D optimal feature points can be written as:
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Sopt =
m∑

i=1

ωiSi . (1)

Where Sopt are the generated 3D optimal feature points. Generally, we make

such constraints as ωi ≥ 0 and
m∑

i=1
ωi = 1.

Also according to the assumptions, we can get the optimal weight vector based
on the 2D projection feature points. Similarly, let S′ = (X ′

1, Y
′
1 , ...X

′
n, Y

′
n)T be

the vector of 2D optimal feature points and we can write the generated 2D
optimal feature points as:

S′
opt =

m∑
i=1

ωiS
′
i . (2)

Let the 2D target feature points on the target image are S0 = (X1, Y1, ...
Xn, Yn)T . We intent to minimize the following square error function

ε2 = ||S0 −
m∑

i=1

ωiS
′
i||2 = min . (3)

According to Tukey’s bi-weight method [9], a series of normally distributed
weights can be obtained, which conforms well to the natural laws. However, it
is no easy to work out those ones. So, here, we define a new measure named
similarity to help work out the optimal weights.

Definition of Similarity. It’s a key issue to define the match degree between
the 2D projected feature points and those on the target image. And so does to
get the optimal solution of linear combination. We define four criteria to evaluate
the resemblance of two facial feature points. They are: (1) the accumulated angle
error, (2) the variance of angles, (3) the variance of length and (4) the variance
of length proportion.

As show in Fig. 2, we first calculate the mean point of 60 feature points

(X̄, Ȳ ) = (
n∑

i=1

Xi,

n∑
i=1

Yi) . (4)

as basic point. Then, before computing the similarity, we define:

ρk
i = ||(Xk

i , Y
k
i )− (X̄k, Ȳ k)|| . (5)

θk
i = arcsin

Lk
i

ρk
i

, Lk
i =
|b ∗ (Xk

i − X̄k)− (Y k
i − Ȳ k)|√

1 + b2
. (6)

λk
i =
||(Xk

i , Y
k
i )− (X̄k, Ȳ k)||

||(X0
i , Y

0
i )− (X̄0, Ȳ 0)|| . (7)
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Fig. 2. Several essentials for calculating similarity. ρ: the distance from current point
to basic point, θ: the angle from benchmark line to current line, L: the distance from
current point to the benchmark line

Here, i = 1, 2, ...n , and k = 0, 1, 2, ...m.When k = 0, the formulas and the
parameters represent those of the target feature points. When k = 1, 2, ...m, they
represent those from the 2D projected feature points. L represents the distance
from the feature point to the benchmark line.

For every S′, we make:

(1) the accumulated angle error: θk
Dif =

∑
Δθ =

n∑
i=1

(θk
i −θ0

i )

(2) the variance of angles: θk
V ar = 1

n

∑
(Δθ)2 = 1

n

n∑
i=1

(θk
i −θ0

i )2

(3)the variance of length: ρk
V ar = 1

n

∑
(Δρ)2 = 1

n

n∑
i=1

(ρk
i−ρ̄k)2

(4) the variance of length proportion: λk
Var = 1

n

∑
(Δλ)2 = 1

n

n∑
i=1

(λk
i−λ̄k)2

in (3) and (4), ρ̄k = 1
n

n∑
i=1

ρk
i , λ̄k = 1

n

n∑
i=1

λk
i , respectively. So, we define four

components of similarity to evaluate the match degree between the projection
feature points and target ones. Finally, we add the four components with certain
weights, and the total similarity ξk is calculated as follows:

ξk = a0θ
k
Dif + a1θ

k
V ar + a2ρ

k
V ar + a3λ

k
Var . (8)

where a0, a1, a2, a3 are the weights for adjusting the best similarity.

Optimal Weights. In the above section, we have given the formula of approx-
imation expression based on weights. Now we can evaluate this expression using
the devised similarity measure. Here, the similarity measure is actually error
measure, as opposed to the common sense of similarity. The purpose is to assign
greater weights for those of small similarity and at the same time to make the
outliers have zero or small weights in order to minimize the error.
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So, we use the method named normal weight. The weights are defined as:

ωk =
1√
2πσ

e
(ξk)2

2πσ2 . (9)

Where σ2 = 1
m

m∑
k=1

(ξk − ξ̄)2, and ξ̄ = 1
m

m∑
k=1

ξk.

Fig. 3. The optimal weights and optimal similarity approximation

We let ωi = ωi for the sake of unification. To satisfy the constraints above, we
normalize ωi = ωi

m

i=1
ωi

. The optimal weights and optimal similarity approximation

show in Fig. 3.

3.3 Warping Using TPS

Just as described above, we have acquired correspondent 3D optimal feature
points Sopt, we may reconstruct the shape model by elastic warp function. Here,
we use an improved TPS (Thin-plate Spline) algorithm.

f(x, y, z) = a1 + axx + ayy + azz +
n∑

i=1

wiU(Pi − (x, y, z)) . (10)

The new coordinates can be calculated using such formula. This does work
to other radial basic function, such as linear, Gaussian, multi-quadric, etc. The
reconstructed shape model shows in Fig. 4.

4 Texture Mapping

Since we got shape model, we may acquire satisfying model by texture mapping.
For better registration, we extract correspondent texture information by such
method as affine transform.



Automatic 3D Face Model Reconstruction Using One Image 241

TPS Function

Fig. 4. The reconstructed shape model after elastic warp

Affine transform is calculated as follows:

I ′ = c ∗ I + o . (11)

Here, c and o represent scale and offset respectively. As defined before, we
simply calculate the two items as:

c =

1
n

n∑
i=1
||(X ′

i, Y
′
i )− (X̄ ′, Ȳ ′)||

1
n

n∑
i=1
||(Xi, Yi)− (X̄, Ȳ )||

, o = (X̄ ′, Ȳ ′)− (X̄, Ȳ ) . (12)

And for the profile texture information, we refer to Jiang’s algorithm [5].

5 Experimental Results

For each input images, we locate the 60 target feature points with the ASM
method automatically, and reconstruct their corresponding 3D models. Experi-
mental results show as follows:

(1) Computation speed
We do experiment for more than 200 images. It will take about 3.8S on a

workstation with a 2GHz P4 processor, which is enormously less than the one
according to the Voker Blanz’s method, and less than the one from Jiangs’ too.

(2) Realisticity
To such an ill-product problem, how to evaluate the realisticity of the model

is difficult. Actually, the aim we reconstruct such a 3D face model is for face
recognition. In order to demonstrate the advantage of our algorithm, we save a
2D projection image when the model is frontal. Then, we use it to reconstruct
correspondent model, and compare it with the original one. Experimental results
show that our algorithm has perfect regenerative property. The results show in
Fig. 5.

Also, we may acquire the model with PIE by changing some parameters, which
is useful for recognition or animation. Fig. 6 shows the model with PIE.
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Fig. 5. The model reconstructed compares with the original one. The upper model is
the one already exist in the database, and we change its poses at degree 0, -30, -90,
30, 90, up 45, down 45. The reconstructed model through our method is described
underneath, so do its poses

(a) (b) (c)

Fig. 6. Face model with PIE. (a) face pose after 30 degree left rotation (b) face illu-
mination with left spot lighting (c) face expression of surprise

(3) Some disadvantages
Our algorithm does work well when reconstructing shape model, but attention

should be paid the texture mapping. Texture is very sensitive to the input image
and the registration. So we should improve our algorithm more about this in the
future work.

Such algorithm does less work to the face image with glasses. Since we have
no models with glasses, we could not generate such model with various depths.
Besides, how to estimate whether a face is with glasses is still a challenging
problem.

6 Conclusion

In this paper, we reconstruct a corresponding 3D face model using only one 2D
image. 3D feature points can be obtained by optimally approximating 2D feature
points set using defined similarity. Then, shape model can be reconstructed by
warp function algorithm. Finally, we get real face model by texture mapping with
registration method such as affine transform. Results show that the models we
reconstruct are comparatively realistic, and they can be used for face recognition
or computer animation. The computation speed is also satisfying.
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Except for profile information, the models we reconstruct have extraordinary
added information, which will do help to recognition.

Acknowledgments. Portions of the research in this paper use the BJUT-3D
Face Database.
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Abstract. This paper will demonstrates that Computational Intelli-
gence methods based on picture grammar can be efficiently applied to the
development of intelligent diagnosis support systems. The computational
intelligence methods in the form o linguistic formalism can facilitate an
in-depth semantic analysis of the medical patterns and visualizations.
The main objective is to present the possibilities of medical structure
meaning description and computer interpretation based on selected ex-
amples of hand and spinal cord images. Presented further procedures for
semantic description and reasoning will be based on the model of cogni-
tive analysis which can imitate the process of reasoning in human mind.
The application of such methods allow to detect and classify the most
important lesion in the analysed structures.

1 Introduction

The development of soft-computing techniques, based on the analysis taking ad-
vantage of graph image grammars, has had a significant impact on the develop-
ment of medical information systems: they enable interpretation of the meaning
of some diagnostic image classes. Together with the use of such techniques, in-
formation sys-tems were directed at possibilities that enable an in-depth seman-
tic analysis aimed at formulating diagnostic recommendations and supporting
the tasks associated with automatic medical diagnostics. In the field of image
analysis where advanced tech-niques are used, of huge importance became the
structural methods of applying graph and tree formalisms. Information systems
constructed on such methods are directed at attempts to automatically under-
stand the semantics of analysed images, and therefore at their content meaning
interpretation. The cognitive resonance process are very similar in operation
to the model of human visual perception [1,7]. During semantic analysis there
are looking for coincidence between expectations concerning the registered cases
and their actual features. The outcome of these results is that these methods
gain in importance and can be used on a wider scale to support the meaning of
diagnostic interpretation of selected image classes.
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The analysis of images conducted in this paper will go in the direction to eval-
uate the possibilities of expansive graph grammar application for the recognition
and intelligent meaning analysis of wrist radiogrammes, and spinal cord CT ex-
aminations. In the paper we defined effective, syntactic analyser algorithms for
classes describing both cases of morphological elements falling within physiolog-
ical norms, and, for selected cases of diseases showing their symptoms as visible
irregularities on analysed visualizations.

2 Processing of Medical Visualizations

All kinds of images analysed here were, before their analysis, subject to pre-
processing aimed at showing structure contours and their identification enabling
a later search of the spanned graph with a selected width analysis technique.

In order to obtain a structure description in the form of a graph it is necessary
to conduct pre-processing operations first. These result in the separating of the
individual parts of medical structures. Among such operations the most impor-
tant are the image segmentation and the operation of spanning the graph on the
selected parts. To extract individual structures and separate their contours on
the examined images we tried to used the histogram programming algorithm and
the method of structure separation as described in the paper [6]. After image
segmentation further stages of analysis composed of image coding used terminal
symbols of the introduced language, and shape approximation.

As a result of the execution of such stages it is possible to obtain a new image
representation in the form of hierarchic semantic tree structures and subsequent
production steps of this representation from the initial grammar symbol [4,7].

In intelligent cognitive system the recognition of whether a given represen-
tation of the actual image belongs to a class of images generated by languages
defined by one of possible number of grammars. Such grammars can be consid-
ered to belong to sequential, tree and graph grammars while recognition with
their application is made in the course of a syntactic analysis performed by the
system [7].

The main element of a correctly functioning diagnosis support system is,
analysis preparation of a cognitive method of disease units and pathological
lesions as occurring in the hand, and spinal cord. The cognitive analysis con-
tained in the DSS system is aimed to propose an automatic correct interpretation
method of these extremely complicated medical images. Such images are difficult
to interpret due to the fact that various patients have various morphologies of
the imaged organs. This is true both of the correct state and if there are any
disease lesions. The skeletal, and nervous systems, similarly as most elements
of the human body, is not always correctly built and fully developed from the
birth. The anatomy and pathomorphology differentiate between a number of de-
velopmental defects of these systems. It often occurs that these systems for the
first couple of years functions correctly and only after some time there are some
troubles with theirs functioning.



246 L. Ogiela, R. Tadeusiewicz, and M.R. Ogiela

3 Grammar Classification of Hand Images

The hand images analysis described in this paper has focused primarily on the
analysis of the number and spatial relations between individual wrist bones. An
intelligent interpretation of the analysed cases can enable the identification of
lesions such as occurrence of os centrale or other additional wrist bones. It may
also point to a lack of or lesions in the shape of scaphoid or capitate bones as
well as their synostoses with other wrist parts. As the development of research
and syntactic image recognition techniques progress, analyses will become in-
creasingly more complex. This means that more and more subtle irregularities
in their number, build and mutual location in the wrist will be detected.

Real example of hand image showing pathological lesion in the form of wrist
bone necrosis has been shown on figure 1.

Fig. 1. Image showing lesions in the form of a vascular necrosis of lunate

For the analysed hand images it is necessary to define an appropriate linguis-
tic formalism that is an appropriate graph grammar defining a language. The
language is defined in such a way that one could describe using it, without any
ambiguities, every image representing a spatial system composed of elements
similar to the wrist bone system. In this way we create a tool, which describes
all possible the shapes and locations of wrist bones, both the correct ones and
the pathological ones. The linguistic formalism that we propose in this paper to
execute the task of mirroring real medical image forms into graph formulas fit
for computer processing, will be an expansive graph grammar [7].

The analysis of hand images was performed using the grammar defined below.

Gsc = (N,Σ, Γ, P, S), where, (1)

Non-terminal set of peak labels N= {ST, ULNA SCAPHOID, LUNATE,
TRIQUETRUM, PISIFORM, TRAPEZIUM, TRAPEZOID, CAPITATE, HA-
MATE, m1, m2, m3, m4, m5}.

Terminal set of peak labels Σ = {r, u s, l, t, p, tm, tz, c, h, m1, m2,
m3, m4, m5}

Γ - edge label set, Start symbol S=ST, P - is a finite production set presented
on figure 2.



Cognitive Approach to Visual Data Interpretation 247

Fig. 2. Production set introducing a representation of the correct build and the number
of bones in the wrist

4 Spinal Cord Images Interpretation

For the cognitive analysis of spinal cord images the following attributed grammar
has been proposed:

Gsc = (ΣN , ΣT , P, ST ) (2)

where: ΣN - stands for a set of non-terminal symbols (intermediary in the process
of image description generation), ΣT - stands for a set of terminal symbols (final
symbols describing shape features), P - stands for a production set, ST - stand
for the grammar start symbol.

ΣN = {CHANGE, STENOSIS, DILATATION, TUMOR, N, D, S}, ΣT =
{n, d, s} Apart from these, the following meaning was given to terminal elements
present in the description:

n∈[-11◦, 11◦], d∈(11◦, 180◦), s∈(-180◦, -11◦), ST = CHANGE

P production set has been defined as in Table 1.
The proposed grammar makes it possible to detect various kinds of spinal

cord or meningeal stenoses characteristic for neoplastic lesions and inflammatory
processes of the spinal cord. Figure 3, 4, 5 present images of the spinal cord
with a visible deformation, and the diagrams of the spinal cords. The bold lines
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represents the area of occurrence of the anomalies within the structure of the
spinal cords. The set of chords, cross-cutting the spinal cord in subsequent points
perpendicularly to its axis demonstrate how the width diagram was made.

Table 1. Production set defining pathological signs

Pathological sign Grammar description Semantic actions

Dilation/cyst 1. CHANGE → DILATATION Sign = dilatation
2. DILATATION → D N S | D N | D S
3. CHANGE → TUMOR Sign = tumor

Neoplasm 4. TUMOR → D S D S | S D S N |
| S D S D | D S D N

Compression 5. CHANGE → STENOSIS Sign = stenosis
6. STENOSIS → S N D | S D | S N

Elements of the 7. N → n | n N Sign= location; length;
detected lesions 8. D → d | d D diameter,quantity,severity

9. S → s | s S

Spinal cord width diagrams (figure 3, 4, 5) present, in the most concise form,
the results of spinal cord morphology analysis. It is the most precious source
of information when one is looking for pathological lesions and it contains all-
important data about the examined fragment of central nervous system. At
the same time it ignores all spinal cord image details unimportant from the
diagnostic point of view. Image 3, 4, 5 presents an example of results obtained
by the author in the course of examinations for a given disease case.

Fig. 3. Spinal cord and width diagram. Diagnostic description of spinal cord lesions
with disk hernation detected as a result of cognitive analysis.
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Fig. 4. Spinal cord and width diagram. Diagnostic description of spinal cord lesions
with arachnoid cyst detected as a result of syntax analysis.

Fig. 5. Spinal cord and width diagram. Diagnostic description of spinal cord lesions
with diskitis detected as a result of cognitive analysis.

The results presented here have been achieved by the application of attribute
grammar and they are an example of the cognitive approach to the medical data
considered here. The type of lesion detected here has been assigned based on its
location and on morphometric parameters determined by the grammar semantic
procedures.

5 Conclusions

In order to perform meaning analysis on presented images with the use of a lin-
guistic mechanism as described in this paper, the MISA (Medical Image Syntax
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Analyser) computer system has been developed. This enables the analysis and
classification of kinds images presented in this paper. The application efficiency
of cognitive analysis procedures, using this system, reach the level of 90,5%.
These results are obtained as a result of the application of semantic analysis
algorithms conducted in reasoning modules of the proposed system and based
on semantic actions assigned to structural rules.

The use of proposed grammars is an important step towards the application
of structural graph methods in practical analysis tasks of complex multi-object
images. This is an important expansion of previous research on the use of struc-
tural application methods for medical image analysis [7] that related primarily
to single structures or organs and did not take into consideration the analy-
sis of objects composed of many parts. The application of structural methods
can therefore significantly expand the possibilities offered by traditional medical
information systems and medical diagnostic support systems. Moreover, such
procedures could create semantic PACS system components that, in their oper-
ation, will support the semantic categorisation and indexation of various diag-
nostic images, including such images that show the complex medical structures
of organs.
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Abstract. The modelling of human visual process is considerably im-
portant for developing future autonomous agents such as mobile robots
with vision capability. The future efforts will be directed at using this
knowledge to develop powerful new algorithms that mimic the human vi-
sion capability. In this paper we focus on the process of how the human
eye forms an image. We use genetic algorithms to synthetically model
this process and interpret the results on different types of objects. In
particular, we investigate which of the image properties stabilise early
and which ones later, i.e. as the image forms iteratively, does the shape
appear before the texture?

1 Introduction

Considerable effort has been spent on computational modelling of human vi-
sion. The human eye has variable resolution capability (e.g. foveal vision is of
high resolution whereas peripheral vision is of low resolution). The foveal and
peripheral capabilities of the human eye have been the inspiration for a range
of computer vision algorithms for describing attentive mechanisms and image
compression. However, the process of how the image forms has not been fully
investigated. The rod and cone cells within the human eye are stimulated to
give us day and night vision. This is a complex process in which an image is
stabilisied and formed starting from noise. Two example scenarios can illustrate
this process: (a) Imagine opening your closed eyelids very slowly; (b) Move from
a very dark room to another room with dim lighting. In both cases, the retinal
image is formed of the scene starting from noise (the dark scene with your eyes
closed or in a dark room). The seamless quality in the images that you see is
possible because human vision updates images, including the details of motion
and color, on a time scale so rapid that a "break in the action" is almost never
perceived. The range of color, the perception of seamless motion, the contrast
and the quality, along with the minute details, that most people can perceive
make "real-life" images clearer and more detailed than any seen on a television
or movie screen. The efficiency and completeness of your eyes and brain is un-
paralleled in comparison with any piece of apparatus or instrumentation ever
invented. We know this amazing function of the eyes and brain as the sense of
vision. The image formation process can be modelled as discrete. We can for-
mulate the following question. As the image is formed, which properties of the
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image (colour, texture, shape, etc.) stabilise earlier and which take longer? The
rate at which texture, shape and other image primitives are organised, on the
basis of which we interpret what is in the scene, is important to study for un-
derstanding the human response times. If a human observer has to react to an
image (e.g. label it, take action, etc.) then how long will they take?

In this paper we use genetic algorithms to evolve images from random (noise).
The use of genetic algorithms for image evolution has been significantly limited
even though they have been widely used for a range of image processing oper-
ations as discussed in section 2. In particular we focus on images with differ-
ent content, e.g. low texture content (snow, sky, water), high texture regularity
(cloth, grass, path), bright colours (starfish, fire) and variable texture and colour
(garden, hair). The process of pixel manipulation (chromosome encoding, mu-
tation and crossover) and assigning a fitness function is not trivial. We discuss
these issues in section 3. In section 4 we present our results. We first detail the
image properties we aim to monitor with increasing GA iterations. Thereafter
we present our results and interpret them.

2 GAs in Image Processing

Genetic algorithms (GAs) are robust search mechanisms based on the theoretical
workings of biological systems. They are based on the concepts of reproduction,
cross-over and mutation to evolve coded populations to find the maximum of
some described fitness function. GAs have been used in a variety of different
aspects of image processing. In [2], morphological filters for the purpose of film
dirt removal from archival film material were designed using genetic algorithms.
Morphological filters can remove noise in images while preserving the structure.
Their design can be complex and GAs are well suited to optimisation problems
that are difficult to model. Rather than using user input for the fitness function,
a training set is artificially created by selecting a small noise-free region of the
image and creating noise within it. The best filter in terms of a fitness function
is the filter created under constraint that returns the artificially noisy section to
its original state.

Colour quantisation, also referred to as colour image segmentation, is a likely
area of image processing for genetic algorithms. The evaluation of methods, how-
ever, is a difficult task with no clear standard method [3]. Homogeneous regions
extracted with the K-Means clustering method was used as the fitness function
in [4] and the segmentation problem is treated as an unsupervised clustering
problem. The GA was used for finding the most natural clusters. This method,
while producing reasonable results, was crude in the sense that most of the
parameterisation of the algorithm was experimentally optimised. None of the
parameter optimisations were discussed.

In [5], evolutionary simulation methods have been used to enhance contrast in
greyscale images by evolving the contrast curve. Through each generation, user
input is required to determine the fitness of the modified contrast curve. The
proposal would be impractical as at least several hundred images would have to
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be reviewed by a user. In light of this, it was suggested to use multiple regression
techniques to simulate user input. In their tests, they found that this method of
image enhancement performed at least as well as the conventional alternative,
histogram equalisation. In some cases, the results were greatly improved with the
evolutionary technique. Their method, however, does not take into consideration
any local image variations that might be hurt in viewability terms by a uniform
contrast enhancement. The use of subjective fitness functions has been used in
other systems and was suggested as a viable method in [1] when the fitness
function would otherwise be too difficult to design and the users’ aesthetics are
required.

In [6], the authors proposed a method of histogram equalisation by encoding
four parameters of the statistical scaling histogram equalisation as a genome.
The fitness is performed automatically as opposed to the user-subjective fit-
nesses in previous works. It is noted that a good contrast and enhanced image
has a higher number of pixels laying on edges in the image. To this, the fit-
ness is evaluated by performing the statistical scaling using the genome’s four
parameters, edge detecting, and counting edge pixels. Generally, this method
outperformed traditional histogram equalisation methods.

GAs have been used to select an optimal set of standard image processing tools
to best enhance an image in [7,8]. Genomes are coded as strings representing a set
of image processing functions. In [7], the genomes strings were sectioned based on
the refinement of parameters for each individual operation. The encompassed the
simple operations of hue thresholding, brightness thresholding, smoothing, edge
enhancement, contraction, expansion, and reversion. In [8], a slightly different
approach was taken where the genomes are encoded as a series of instructions
and parameters randomly selected and ordered. In both, the fitness is determined
based on the difference between the enhanced image and some predefined goal
image either given as a objective or as a comparison of training data. A genetic
programming method similar to these genetic algorithm methods is presented in
[9] in which the random combination of processing sequences are evaluated.

3 Pixel Manipulation Using a GA

In this paper we develop a methodology for evolving a target image from noise
(random valued pixels). The target image serves as the final desired output
image. This is a challenging process since pixel based chrosmosomes are very
large in size and convergence can be very slow. In the following sections we will
describe a method for genome encoding, crossover, mutation, and evaluation
designed for the direct manipulation of pixels using a GA.

3.1 Genome Operations

Unlike the methods previously discussed, the approach we describe here deals
with direct pixel manipulation. To this end, the genome encoding is a direct
mapping of and nxm image to an nxm array of valid RGB values. Freedom for
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pixel evolution is key so no constraints have been placed on the genome outside
of the fitness functions. The genomes are initialised with random integer values
between 0 and 255 independantly for all values in R, G and B. Crossover is per-
formed as a uniform crossover producing children as the random combinations of
seperate R, G and B components of the parent genomes. Mutation is performed
by randomly changing values in R, G and B at a very small probability. The
new value is chosen by the old value -a shift value randomly selected between 0
and some variation limit. The variational limit is set initially to a large value,
say 255, and then is re-evaluated at after every generation so that as the GA
converges, the variation of pixels is less severe.

The objective, or fitness function, of the GA is the combination of several
fitness functions. First, we must consider the fitness of the pixels in relation to
the given image. By definition, the pixel difference between two images is defined
by the Euclidean distance as:

d(I, J) =
n∑

i=0

m∑
j=0

|I(i, j)− J(i, j)|

where I and J are the images and I(i, j) is defined as the vector of colour compo-
nents {r,g,b} at pixel (x,y). We modify this value using the inverse exponential
cumulative distribution function (CDF) to more steeply penalise large difference
values as

d(I, J) =
n∑

i=0

m∑
j=0

−log(1− I(i, j)− J(i, j))
λ

assuming, in this case, that the difference between colours is normalised between
0 and 1. The inverse CDF produces a steeper response curve to large values as
shown in Figure 1. The steeper response effects the convergence by requiring on
average fewer generations to achieve a better closer pixel match seen in Figure 2.

3.2 Feature Fitness Functions

In order to show this encoding can be used for image enhancement, we pro-
pose using a series of feature fitness functions combined together with the image
structure fitness function discussed above. The combination would have to show
preference to the image structure so that the image would remain visually rep-
resentative of the original. We approach the combination of these features as a
multicriterion optimisation problem. While considered a naive approach [10], the
weighted sum combination of fitness satisifies the need for computational sim-
plicity. In our problem, any extra population requirement for the fitness function
can be seen as a hinderance as pixel-coding genomes is already a large memory
overhead. The combining for the fitness functions is then defined as

F = fs

n∑
i=0

ωifici
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Fig. 1. Inverse exponential CDF against a linear Euclidean distance
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Fig. 2. Over ten runs on the same image, the exponential had in the same generation
a better result than the simple Euclidean and converged 310 generations more quickly

where fs is the structural fitness, ωi is a weighting for the feature, fi, and ci is a
normalisation factor for the fitness so that all the fitness functions fall between
the same range. For our purposes, we use a common weighting factor for the
fitness functions such that ω = 1

2(n+1) . This asserts that the supporting feature
fitness functions are suppressed equally and effectively against the structural
fitness function.

4 Results

We first test the GA’s ability to mutate a pixel-coded genome to converge on
a given image using the structural fitness described by the inverse exponential
CDF. We take a total of ten images including cloth, fire, garden, grass, hair, path,
sky, snow, starfish and water. Each image is of size 50x50 pixels. We initialise the
genetic algorithm with random pixels representing the chromosome with the aim
of reproducing these images in separate trials. The GA runs for a maximum of
450 iterations. After every 10 iterations, the fitness is evaluated as the difference
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between the following features of the reconstructed and target image: colour
pixel difference, contrast, correlation, energy and homogeneity (Haralick [11]).
Table 1 shows these feature values on the original images.

Table 1. Original image texture features

Image pixel diff. contrast correlation energy homogeneity
cloth 0.4264 0.4343 0.2040 0.7867 0.4264
fire 0.1714 0.9438 0.1579 0.9186 0.1714

garden 0.9278 0.5869 0.0845 0.7014 0.9278
grass 0.3988 0.2819 0.3385 0.8213 0.3988
hair 0.4906 0.6337 0.1564 0.7950 0.4906
path 0.2384 0.6381 0.3034 0.8835 0.2384
sky 0.0302 0.8917 0.6972 0.9849 0.0302

snow 0.0588 0.8728 0.5112 0.9727 0.0588
starfish 0.6208 0.8547 0.1121 0.7872 0.6208
water 0.0620 0.8758 0.4424 0.9690 0.0620

Table 2 shows the final fitness value on the ten images using the GA. The
best possible fitness is 0 which implies that the target image has been perfectly
reconstructed.

Table 2. The final fitness values after GA convergence across ten different images
evolved from random noise

Image pixel diff. contrast correlation energy homogeneity
cloth 0.0001 0.0151 0.0082 0.0045 0.0048
fire 0.0041 0.0020 0.0021 0.0011 0.0021

garden 0.0128 0.0024 0.0000 0.0002 0.0007
grass 0.0031 0.0020 0.0062 0.0023 0.0005
hair 0.0021 0.0025 0.0051 0.0007 0.0009
path 0.0001 0.0020 0.0062 0.0022 0.0047
sky 0.0014 0.0037 0.0148 0.0058 0.0018

snow 0.0089 0.0183 0.0542 0.0203 0.0092
starfish 0.0027 0.0057 0.0004 0.0002 0.0012
water 0.0020 0.0090 0.0185 0.0059 0.0045

The following conclusions can be drawn from Table 2: (a) The most accurate
pixel based reconstruction of images is possible for cloth and path; The least
accurate case is garden; (b) In terms of contrast, the best reconstructed images
are fire, grass and path; The least accurate cases are snow and cloth; (c) On
correlation, energy and homogeneity measures, garden is the best reconstructed
image and snow the worst case. The summed pixel difference percentages are
calculated on the assumption that on average, the pixel difference of noise from
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a given image is 128 per channel. From these results, we can see that the GA can
effectively generate the goal image from noise using the fitness function. We then
need to test the GAs ability to mutate the pixel-coded genome to convergence
given the extra components of shifting the mean channel histograms of the image
by a fixed amount in each channel. In the red and blue channels, the shift is -25
and in the green, the shift is +25. Results are shown in Table 3.

Table 3. Pixel difference and Harlick texture feature results across the same ten images
evolved from random noise compared, taking into account histogram shift features,
against their respective expected goal images

Image pixel diff. contrast correlation energy homogeneity
cloth 0.1218 0.1486 0.0652 0.0063 0.0254
fire 0.0481 0.1343 0.0555 0.0288 0.0649

garden 0.1023 0.0873 0.0078 0.0036 0.0091
grass 0.0370 0.0297 0.0002 0.0453 0.0176
hair 0.1781 0.3951 0.1647 0.0420 0.0944
path 0.1419 0.2689 0.2106 0.2417 0.1239
sky 0.0717 0.2498 0.3318 0.3808 0.1183

snow 0.1371 0.0384 0.0882 0.0226 0.0192
starfish 0.0551 0.1812 0.0189 0.0200 0.0255
water 0.1363 0.0653 0.1322 0.0501 0.0327

There are a couple of issues that we must concern ourselves in these results.
The first is that for most of the image convergence implies a weakening correla-
tion in texture. This is attributed to the lack of any texture features represented
in the fitness function. The weakness in the fitness function is clearly shows here
that convergence can be achieved through pixel values alone as opposed to any
global or regional view of the image. The second concern is that for the path
image, the structure and texture were all but lost leading to a divergence from
expected pixel results and the textural features of the image.

Finally in Figure 3, we show the changes in these features through increasing
GA iterations. We include three other fitness features, namely Edge Magnitude,
Signal to Noise Ratio and Regional Pixel Standard Deviation. We find that
most features stabilise (no longer change) after: Cloth: (200 iterations) Fire:
(350 iterations); Garden: (200 iterations); Grass: (250 iterations); Hair: (250
iterations); Path: (300 iterations); Sky: (400 iterations); Snow (900 iterations);
Starfish: (250 iterations); and Water (350 iterations). This shows that most image
objects are easy to reconstruct in a short amount of time, whereas objects with
fine texture such as water, fire, sky and snow take much longer. If we monitor
the change in features over iterations, we observe that image contrast increases
most rapidly, whereas the signal to noise ratio takes the longest to stabilise. Most
notably the edge information becomes visible quite early on which suggests that
the structure of objects in an image appear much earlier than the fine details
such as colour and texture (as evidenced by the slow rate of increase of other
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Fig. 3. The change in feature fitness on 9 sample images that are evolved from random
for a maximum of 450 generations

features). It is also important to note that the feature fitness (except for signal
to noise ratio) increases exponetially. Hence, the basic details of the image do
not take much time to form however the fine details take much longer.

In future work, these plots can be correlated with the human response time.
Consider a controlled experiment with a human observer with closed eyes. As
they open their eyes in a controlled manner, they can describe what they see in
the image, e.g. how clear is the contrast, can they see the edges, can they label
the scene, etc. If these plots correlate well with respect to the response time
then we have a good methodology based on GA that mimics the human visual
system. Furthermore, such responses and plots can be correlated on a larger set
of images, grouped by type (image categories can be created based on its texture,
shape and colour content).

5 Conclusions

In this paper, we have described a method of pixel-based genome encoding
for image reconstruction with GAs. This is different from the usual GA image
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techniques as it treats the image as a large data optimisation problem as op-
posed to a parametric optimisation. First, we demonstrated that it is possible to
achieve close convergence on image generation from randomly initialised noisy
genomes. This served to show that our fitness function was sufficient to reproduce
the given image. Following this, we showed that modifying the fitness functions
to combine the fitness functions manipulating image features lead to reasonable
reproductions of the given image with considerations of the feature modifica-
tions. These reproductions confirm that the direct pixel manipulation method of
GA-based image reconstruction is a viable technique. Furthermore, we analysed
which image features stabilise earlier than later with increasing GA generations.
Further work is now needed on correlating these findings with the actual human
eye behaviour under controlled experimental conditions.
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Abstract. This paper studies on new recovery of incomplete observation matrix 
for converting existing 2-D video sequences to 3-D content. In situations when 
converting previously recorded monoscopic video to 3-D, several entries of the 
observation matrix have not been observed and other entries have been per-
turbed by the influence of noise. In this case, there is no simple solution of SVD 
factorization for shape from motion. In this paper, a new recovery algorithm is 
proposed for recovering missing feature point, by minimizing the influence of 
noise, using iteratively geometrical correlations between a 2-D observation  
matrix and 3-D shape. The results in practical situations demonstrated with  
synthetic and real video sequences verify the efficiency and flexibility of the 
proposed method. 

1   Introduction 

In order to provide sufficient 3-D content, it is important to convert existing 2-D 
video clip into 3-D content [1], [2]. In real life video clips, these projections are not 
visible along the entire image sequence due to occlusion and a limited field of view. 
Thus, the observation matrix is incomplete. In this case, there are actually some weak 
points in matrix factorization. Many researchers have developed 3-D reconstruction 
methods using SVD factorization methods in difference ways. The matrix collects  
2-D trajectories of projections of feature points (FPs) [3]-[8] or other primitives  
[9]-[12]. Sub-optimal solutions were proposed in [3] and [13]. Tomasi and Kanade [3] 
proposed that the missing FPs of the observation matrix are ‘filled in’, in a sequential 
and heuristic way, using SVD of observed partial matrices. Jacobs [13] improved 
their method by fitting an unknown matrix of a certain rank to an incomplete noisy 
matrix resulting from measurements in images, which is called Linear Fitting (LF). 
However, his method presents no approach to determine whether the incomplete ma-
trix is stable or unstable. Guerreiro and Aguiar [14] proposed Expectation-Maxi-
mization (EM) and Two-Step (TS) iterative algorithm. The algorithms converged to 
the global optimum in a very small number of iterations. However, the performance 
of both EM and TS are influenced by noisy observation.  

In the paper, a new missing FP estimation method that is executed under noisy ob-
servation matrix is proposed and it is compared with LF, EM and TS. The experimen-
tal results demonstrate that the proposed algorithm is more robust than LF, EM and 
TS, with respect to the sensibility to noise.  
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2   Novel Missing FP Estimation 

3-D reconstruction error is dependant on the total viewing angle and the total number 
of frames [15]-[18]. In practice, several entries of the matrix may not be observed or 
be observed with noise due to occlusion, image low resolution, and so on. By this 
reason, the 3-D reconstruction error is relative to the number of available image 
frames. It means that, when the observation matrix has noisy entries, the more the 
number of image frames gives the better result. Therefore, in order to obtain accurate 
3D-contents it is obviously essential that the missing FPs of the observation matrix 
must be estimated accurately. In this section, some specific geometry between the 
noise of the 2-D observation matrix and the error of 3-D shape is described. 

2.1   3-D Error Space and Its Parameters 

In order to evaluate the precision of the 3-D shape reconstructed from a noisy obser-
vation matrix, the 3-D error space is introduced as follows:  

i)  For recovering a missing FP (
mp ), its initial position ( ep Δ+t

) is first fit roughly 
and three FPs (

bAp ,
bBp , and 

bCp ) are randomly selected, which are called bias 
FPs being neighbors of the missing FP (

mp ), on the same 2-D image plane. Next, 
new FPs (

iq ) are added, which are called Reference Points (RPs), on a circular 
pattern ( ir cΔ= ) centering on the missing FP (

mp ). The aspects are shown in 
Fig. 1(a), where 

2Π  is a reference plane composed of 
iq  on the 2-D image plane 

and 
imqp  is a reference vector (RV) composed of 

mp  and 
iq  on the 2-D image 

plane. 

epp Δ+= tm
, (1) 

imi cpq Δ+= , Z,,,i 21= , (2) 

where 
tp , eΔ , 

iq , and 
icΔ  are a true FP, a noise vector, RPs, and circle radius on 

the 2D image plane, respectively. 
ii)  Using affine SVD factorization, the roughly fitted FP (

mp ), three bias FPs 
(

bAp ,
bBp , and 

bCp ), and circular RPs (
iq ) are reconstructed to *

mP ,  ( *
bAP , *

bBP , and 
*

bCP ), and *
iQ  on the 3-D reconstruction space, respectively (see Fig. 1(b)).  

*
i

*
m

*
i CPQ Δ+= , (3) 

where *
mP  and *

iCΔ  are the reconstructed RPs and its circular parameter on 3-D 
reconstruction space. The symbol ‘*’ means a perturbation.  

iii) A 3-D error space is defined as the coordinates of 3-D point vectors without per-
turbation, which are transformed from three Euclidean distances between three 
bias FPs ( *

bAP , *
bBP , and *

bCP ) and a FP ( *P ) on 3-D reconstruction space. For ex-
ample, the 

mP  on 3-D error space can be transformed from the missing FP ( *
mP ) 

on 3-D reconstruction space by three Euclidean distances between three bias FPs 
and the missing FP on the same 2-D image plane as 

( )CBAm L,L,L=P , (4) 
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where **
bAmAL PP= , **

bBmBL PP= , and **
bCmCL PP= . Also the circular RPs ( *

iQ ) 

can be also expressed as 
iQ on the 3-D error space as 

( )CiBiAii L,L,L=Q , (5) 

where **
bAmAiL PP= , **

bBmBiL PP= , and **
bCmCiL PP= , { }Z,,,i 21= .  

This aspect is shown in Fig. 1(c), where 
3Π  is a reference plane composed of 

iQ  
on the 3-D error space and 

imQP  is a Reference Vector (RV) composed of  
mP  

and 
iQ  on the same 3-D error space. 
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*
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Fig. 1. Comparison of some parameters on 2-D image plane, 3-D reconstruction space, and 3-D 
error space. (a) noisy FP, three bias FPs and circular RPs on 2-D image plane. (b) parameters 
reconstructed from (a) on 3-D reconstruction space. (c) parameters transformed from (b) on 3D 
error space. 

2.2   Geometrical Correlations Between Two Reference Plane 
2Π  and 

3Π  

Assume that the noise vectors of a 2-D FP and the error vectors of its 3-D recon-
structed FP are perpendicular to the camera optic axis and have approximately the 
same orientation and the nearly proportional size to each other. According to our 
considerations, the relationships between two reference planes 

2Π  and 
3Π  are ana-

lyzed on the 2-D image plane and the 3-D error space. In investigating the geometri-
cal correlations, the following motivating facts are found: 
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Plane: Since 2-D RVs are on a plane 
2Π , the 3-D RVs are also approximately located 

on a plane 
3Π . 

{ },...,Z,iim 212 ==Π ,qp , { },...,Z,iim 213 =≅Π ,QP . (6) 

Pattern: If the RPs on 
2Π  are distributed on a circular pattern, then the RPs on 

3Π  
are distributed on an ellipse and are very close to be circular.  

{ }iq : circular pattern on 
2Π , { }iQ : ellipse pattern on 

3Π . (7) 

Symmetry: If two of any RVs on 
2Π  exist on symmetrical positions with 

mp , then 
their positions on 

3Π  are nearly symmetric.  

ba imim qpqp -≅ ⇔
ba imim QPQP -≅ . (8) 

Size: If two of any RVs on 
2Π  are in the same direction with different sizes, then the 

RVs on 
3Π  keep their magnitude relationships and ratios relative to the size.  

ba imim qpqp < ⇔
ba imim QPQP < , (9) 

Angle: If three RVs on 
2Π  are arranged in some angles, then the RVs on 

3Π  are also 
arranged similarly, while keeping the relationship of magnitude and ratio around the 
angle.  

21 ++ ∠<∠ imiimi qpqqpq ⇔
21 ++ ∠<∠ imiimi QPQQPQ . (10) 

According to the above investigations, it can be observed that there are these geometrical 
correlations such as plane, pattern, symmetry, size, and angle between on 

2Π  and 
3Π . 

These aspects are always true for not only synthetic images but also real images. There-
fore, the estimation algorithm for estimating the missing FPs can be derived using 
above facts in the next section. 

2.3   Geometrical Estimation of Missing FP 

When a FP deviates from its observation matrix position, its 3-D point reconstructed 
by affine SVD factorization is also misaligned. In this section, we estimate the noise 
vector of the missing FP using the geometrical correlations described previously. Since 

( )CBAm L,L,LP  and ( )CiBiAii L,L,LQ  are transformed from (3) on the 3-D error space, 
an error vector of a missing FP can be expressed as  

tm PPE =Δ , (11) 

where 
tP  is the true FP on 3D error space. Because 

tP  is unknown parameter, an 
approximate 

tP′  is substituted. It can be obtained from a sub-matrix without missing 
FP. Also the relationship is satisfied with 

itit QPQP ′⋅≅⋅′ , where 
iQ  is the mean of 

iQ s. Hence, the approximate error vector can be represented as 

( )( )111 ,,/ iittm −′×′=′=′Δ QQPPPE , (12) 

where ( )212121 z,zy,yxx≡× QP  and ≡
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    If 0≠′EΔ , this means some noise exists in 
mP  on 3D error space and also in 

mp  of 
(1). In order to obtain the noise vector ( e′Δ ) of the missing FP on 

2Π , we first calculate 
the error vector from the parameters represented on 

3Π  of the 3D error space. 

,i
id

d

2

∈
=Θ argmin   

⋅′

⋅′
= −

imtm

imtm

ifor
QPPP

QPPP
cos 1 , (13) 

dm

tm

dA
QP

PP ′
= , { }Z,,,d 21∈ , (14) 

where 
dΘ  is the minimum angle between 

tm PP ′  and 
dmQP , and 

dA  is the ratio of the 
size of 

tm PP ′  based on 
dmQP . Next, according to the geometrical correlations, the 

noise vector of the missing FP on 
2Π  is derived from (13) and (14) as 

⋅

⋅
= −

1

11

qpqp

qpqp

mdm

mdm

d cosθ , (15) 

dmdd A qp=α . (16) 

Therefore, the missing FP (
mp ) can be updated as 

epp ′−= Δmt
~ , (17) 

where ( )dd ,f θαΔ ≡′e , which is a vector with magnitude 
dα and angle 

dθ . If E ′Δ  is 
larger than the predefined threshold, then 

t
~p  is set up to 

mp  and the above procedure 
is repeated until the position converses sufficiently close to the true position. 

3   Analysis of Two Recovery Approaches for Multi-frame 

To test our algorithm for multi-frame, two recovery approaches here are examined. 
Generally, the noise level of missing FPs may be higher than the potential noise level 
within noisy observation data. As much as possible, the missing FPs have to be  
estimated until the potential noise level. To solve this problem, we introduce two 
recovery approaches. The necessary three frames without missing FPs are called sub-
observation matrix or simply sub-matrix. The rest frames are allowed with or without 
them. The two approaches are described in detail with Fig. 2. Red circles and Black 
squares are missing FPs by tracking failure and by occlusions, respectively. Here, 
Approach–I always uses four frames which are a sub-matrix consisting of the first 
three frames and one frame with missing FPs. On the other hand, Approach-II uses 
variable sub-matrix. That is, although the size of initial sub-matrices of Approach–I 
and Approach-II are the same, the size of the sub-matrix for Approach–I is fixed but 
that of the sub-matrix for Approach–II is increased gradually after solving each frame. 
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(a)     (b) 

Fig. 2. Recovering sequences. (a) Approach–I (A,B,C, ). (b) Approach–II  (A,B,C,  

4   Experimental Results 

In this section, we describe experiments that illustrate the behavior of the proposed 
algorithm using synthetic and real video sequences. The evaluation of our method is 
confirmed through experimental results by comparing with other approaches, LF, EM 
and TS. 

4.1   Synthetic Video Sequence 

For synthetic cube, we preset camera configuration as shown in Fig. 3(a), a cube is set 
on a 3-D world with a set of cameras. The size of the cube is 1x1x1 [unit], and the 
cube contains eight 3-D corner points. All points are tracked from 20 image frames 
taken to cover 180 degrees. The cube is placed with its centroid at 2.5[unit] from the 
first camera. The cameras are pointed towards the centroid of the cube. Fig. 3(b) pre-
sents a pattern of the missing FPs. The positions of its entries in the observation ma-
trix are corrupted with holes. Yellow squares represent successfully tracked entries. 
Red circles denote missing FPs that are not received initially, this result in some holes 
in the observation matrix. For confirming the convergence of the proposed geometri-
cal approach, we set the following reference points. The RPs (

iq , 1021 ,,,i = ) around 
a missing FP (

mp ) are located at the constant interval angles on a circle and its radius 
is set up to 20.ci =Δ  [unit]. The number of RPs has no limitation because the pro-
posed algorithm is able to use the geometrical correlations if the number of reference 
points is greater then three (see Fig. 1).  

 

 
(a) (b) 

Fig. 3. Synthetic cube sequence. (a) camera configurations around a 3D cube. (b) pattern of 
missing FPs (Red) in the observation matrix. 

1  2  3  4  5  6…
Image frames (I)

20

Feature
points
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    In order to compare with the performance of Approach-I and Approach-II for 
multi-frame, Fig. 4 shows the criterion and the reconstructed shapes with iteration 10 
times. The white Gaussian noise (Δεε) is embedded into an observation matrix (W ) 
and the added noise (Δe) is the position error of the roughly estimated missing FPs. 
Some symbols are defined as follows: S0 is the 3-D shape reconstructed from W  
which will is used as a criterion, Ss from the sub-matrix of W ′ , Sa from W ′ , and  
S1 and S2 are the 3-D shapes after recovering by Approach-I and Approach-II,  
respectively.  

W'

W

Δεε

Δe

By sub-matrix of W'

CriterionS0

Ss

Sa

S1

S2

By only W

Affine SVD 
factorization

Observation
matrices on 2D

By W'

By W' after Approach-I

By W' after Approach-II

Reconstructed
shapes on 3D  

Fig. 4. Criterion and reconstructed 3-D shapes 

    Table 1 represents their 3D-RMS errors. When Δεε=0 and Δe=0.1, |S0-Sa| is 
0.004828, due to the effect of only added noise. For only white Gaussian noise, in the 
case of Δεε=0.001 and Δe=0, |S0-Sa| is 0.000095. When the absent of added noise, |S0-
Ss| is larger then |S0-Sa|. Similarly, |S0-S1| is larger then |S0-S2|. It means that the larger 
the number of image frames, the smaller the 3D-RMS error under the influence of 
noise. Anyway, |S0-S2| in all cases are nearly the same to |S0-Sa| in the case of no 
added noise. More precisely, the reconstructed results after recovering using Ap-
proach-II is almost nearly equal to the result using all frames with absence of added 
noise. According to the results, we can draw the Approach-II is the best.  

Table 1. 3D-RMS errors for synthetic cube sequence 

Δε [unit] 0 0.001 0.001 0.001 

Δe [unit] 0.1 0 0.02 0.1 
|S0-Ss| 0 0.000437 0.00437 0.000437 
|S0-Sa| 0.004828 0.000095 0.01000 0.004857 
|S0-S1| 0 0.000285 0.00282 0.000280 
|S0-S2| 0 0.000111 0.00110 0.000110 

    Fig. 5(a)-(b) plot the 2D-RMS errors and 3D-RMS errors under various noise distri-
butions. The results of the proposed algorithm by Approach-II are superior to that of 
the LF, EM, and TS algorithms for 10 times iteration, as the proposed method is de-
signed to minimize the influence of noise. Improved results can be achieved after 
greater iterations. 
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(a)      (b) 

Fig. 5. RMS errors under influence of noise level from zero to 0.1 [unit]. (a) 2-D reprojection 
errors (2D-RMS). (b) 3-D reconstruction errors (3D-RMS). 

4.2   Real Video Sequence 

In order to test the proposed algorithm on real data, the entries of an observation ma-
trix are tracked over the 30-frame ‘toyhotel’ sequence. The 3rd frame (480x512) is 
presented in Fig. 6(a), where the tracked FPs are denoted by symbol ‘+’. The FPs 
 

 
(a)     (b) 

 
(c)     (d) 

Fig. 6. Real video sequence and RMS errors. (a) 3rd frame of hotel sequence with the tracked 
FPs. (b) observation matrix (30x442). (c)  2-D reprojection errors (2D-RMS). (d) 3-D recon-
struction errors (3D-RMS).  
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were extracted by the Harris interest operator [19]. The observation matrix of the 
video frames is presented in Fig. 6(b), where red points are the observed entries. The 
proposed algorithm is verified against noise distribution from zero to 2 [pixel]. In the 
real data, Jacobs’ method cannot be solved because of excessive sensitivity for high 
level of noise. Therefore, the proposed method is only compared with EM and TS, 
except for LF method. Fig. 6(c)-(d) illustrates the results of the estimated missing 
FPs. The proposed method by Approach-II leads to results of greater accuracy in 
various levels of noise. In addition, the trend of the 2D-RMS errors and 3D-RMS er-
rors for real sequence closely follow that of the synthetic sequence. Therefore, it can 
be confirmed that the proposed method provides more satisfied results not only for the 
synthetic sequences, but also for real sequences. 

5   Conclusions 

To solve the problem of missing FPs for converting 2-D video sequence to 3-D con-
tent, a new recovery algorithm is presented by minimizing the influence of noise. The 
main idea is to estimate missing FPs by the geometrical correlations between 2-D 
image plane and 3-D error space. The achievements of the proposed system are pre-
sented using experimental results for synthetic and real sequences. In the results, it 
can be confirmed that our recovery algorithm can provide more accurate estimation 
results than the LF, EM, and TS algorithms’ in various levels of noise by handling 
directly the orientation and distance of the missing FPs. 

In the near future, our system will support the real-time creation of 3-D video mate-
rial from 2-D video with self-occluding objects. Furthermore, the proposed method 
will assist 3-D content creation by advancing 3-D TV significantly and increasing its 
attractiveness. 
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Abstract. SAR (Synthetic Aperture Radar) images have been widely
used nowadays, as the SAR system is capable of scanning the earth
surface objects into high resolution images. Before the SAR images are
used, the geolocation step is needed to locate arbitrary pixels in an im-
age accurately. Geolocation is very important in geometric rectification,
geocoding, as well as object location and detection in the SAR image. In
this paper, we propose a novel geolocation algorithm, which is a hybrid
of an iterative algorithm and the conventional analytic algorithm based
on Range-Doppler (RD) location model. First a new analytic algorithm
adopted in our approach is presented. Next, in order to correct the geom-
etry and terrain height, an iterative routine is integrated into the pro-
cedure. The experiment results indicate that our algorithm is efficient
and can achieve higher accuracies compared with three state-of-the-art
location algorithms.

1 Introduction

With the rapid development of the SAR technology, SAR products have been
widely used in diverse fields recently, such as forestry, agriculture, geology,
oceanography etc.. Despite the popularity of SAR products, the geometric dis-
tortion problem caused by variable terrain hampers the further application of the
SAR images, and also inhibits the collocation of SAR images with geographically
referenced information acquired from other sources. In order to better utilize the
SAR images, we need to accurately locate every pixel in the SAR image in order
to eliminate the inherent geometric distortions. The process of the pixel location
is called geolocation. It is very important in the geometric rectification, and can
be used to locate objects in the SAR images.

An important issue in geolocation or pixel location is the construction of
the geolocation model. Up to now, many models have been proposed, includ-
ing Konecny model, Leberl model, Polynomial model and RD (Range-Doppler)
model [1,2,5,6]. These models can be divided into two categories: models based
on radar collinear equation, such as Konecny model and Leberl model, and RD
model. Compared with the former one, the RD model is deduced from the prin-
ciple of SAR imagery and can work without the attitude angle of the sensor or

N. Zheng, X. Jiang, and X. Lan (Eds.): IWICPAS 2006, LNCS 4153, pp. 270–280, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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any reference points. Thus the RD model has become the main pixel location
method recently, especially when applied on the space-borne SAR images.

The process of solving the geolocation model is identical to the process of pixel
location. Pixel location plays an important role in real applications for several
reasons as given below. Firstly, it is a key procedure to rectify the geometric
distortion of the SAR images. The pixel location result has a major impact on
the accuracy of ortho-rectification and geocoding of SAR images. Secondly, the
geometric rectification methods based on GCP (Ground Control Point) or DEM
(Digital Elevation Model) can surely achieve very high accuracy. However, one
major drawback of these methods is that they can not be applied to SAR images
that are acquired from areas without topography map or DEM. In contrast, the
absolute pixel location method is able to work as long as the platform ephemeris
data are provided. The term ”absolute” means that the location process is done
only with the metadata in the SAR product and without any extra information,
such as GCP and DEM, which is defined in the specification recommended by
CEOS (Committee on Earth Observations Satellites) [3].

This paper is organized in five parts as follows. Section 2 briefly introduces
the principle of the RD model. In Section 3, after several algorithms solving
the model are discussed, our algorithm is presented. Section 4 presents some
experiment results and shows that our algorithm is efficient and can achieve a
high accuracy. Section 5 concludes.

2 RD Geolocation Model

In this section, we give a brief introduction to the RD geolocation model. In
1981, Brown proposed an absolute pixel location method which can locate an
arbitrary pixel in the SAR image without any reference points or control points
[4]. Curlander developed the Range-Doppler geolocation theory on the SEASAT
SAR based on Brown’s work [5,6]. Most RD geolocation models used now are
based on the Curlander’s RD theory.

SAR, as a kind of active remote sensor, can provide a precise distance between
the sensor and the target and the Doppler frequency of the echo wave. In the
imagery process, the absolute location of the image pixel can be determined by
these two factors. We can obtain the distance between the sensor and target
according to the echo delay time. All the points on the ground with the same
distance to the sensor form a circle. According to the Doppler shift, we could
infer that all the points on the ground with the same Doppler frequency form
a hyperbola (Fig. 1). The two curves intersect at four points. The left/right
ambiguity is resolved by our knowledge of the side of the platform from which
the radar beam is directed, while the branch of the hyperbola is indicated by
the sign of the Doppler shift.

Fig. 1 gives the SAR geolocation model defined in the GEI (Geocentric Equa-
torial Inertial) coordinate system. In the GEI system, the earth center is the
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origin, the x axis points toward the vernal equinox and the z axis points to the
north pole, the y axis completes a right-handed system. As the principle of the
RD geolocation theory introduced above, for a fixed target on the ground, its
position vector Rt = (xt, yt, zt)T satisfies three equations: (1) Range equation,
(2) Doppler equation, and (3) Earth model equation.

z
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EARTH
CENTER

EARTH MODEL

VERNAL EQUINOX

SAR SENSOR (S)
ISO-

DOPPLER
CONTOUR

T

NORTH
POLE
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FLIGHT PATH

NADIR TRACK

e

Fig. 1. GEI coordinate system illustrating a graphical solution for the pixel location
equations [8]

The range equation is given by

R = | Rs −Rt | (1)

where R is the distance between the sensor and the target, Rs and Rt are the
sensor and the target position vectors, respectively.

The Doppler equation is given by

fd = − 2
λ

(Rs −Rt)(V s − V t)
|Rs −Rt|

(2)

where λ is the radar wavelength, fd is the Doppler frequency, and V s, V t are
the sensor and the target velocity vectors, respectively.

The third equation is the earth model equation. An oblate ellipsoid can be
used to model the earth’s shape as follows

x2
t + y2

t

(Re + h)2
+

z2
t

R2
p

= 1 (3)
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where Re is the radius of earth at the equator, h is the local target elevation
relative to the assumed model, and Rp, the polar radius, is given by

Rp = (1− f)(Re + h) (4)

where f is the flattening factor.
The target location as given by its position vector Rt = (xt, yt, zt)T , is deter-

mined from the simultaneous solution of Eqn. (1), Eqn. (2) and Eqn. (3) for the
three unknown target position parameters, as illustrated in Fig. 1.

3 Algorithms

After the construction of the RD geolocation model, we begin to discuss the
algorithms solving the model in this section. The process of solving the model is
actually identical to the process of the absolute pixel location of the SAR image,
that is, given the row index and the column index (i, j) of a pixel in the image,
the longitude and latitude of the pixel can be calculated according to the RD
model. The three basic equations introduced above was proposed by Curlander
in 1982. Curlander also analyzed the location accuracy and the sources of the
location errors. However, Curlander didn’t present the details about how to solve
the model.

In recent years, several algorithms have been proposed for the above problem
and can be classified into two categories: numerical algorithms and analytic
algorithms. We’ll first introduce these algorithms and then present our approach.

3.1 Numerical Algorithm

Alaska Satellite Facility implemented a numerical algorithm in its public open
software processing SAR images [8]. We refer this method as ASF algorithm.

The main idea of the ASF algorithm is to adjust the attitude of the sensor
using the given Doppler centroid frequency and the slant range, then calculate
the target position vector with the attitude. The details can be found in [8]. The
advantage of the ASF algorithm is its high location accuracy. Its main drawback
is that many iterative steps used in the routine reduce its efficiency heavily.

3.2 Analytic Algorithm

Li (1983) proved that the analytic solution can be archived if the earth is re-
garded as a sphere with the local radius, but he didn’t give the specific solution
[9]. Xiaokang Yuan (1997) is the first to implement an analytic algorithm for the
absolute geolocation based on the RD model. He conducted intensive analysis on
this algorithm and its location errors in theory [10]. However, he didn’t try any
experiments or use any SAR product to verify his algorithm. We refer this algo-
rithm as AGM (Analytic Geolocation Method). Jingping Zhou developed a new
algorithm based on the AGM algorithm [7]. He called this algorithm Relative
Geolocation Method. We denote this algorithm with RGM for short.
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The analytic algorithms need no iterative steps, and their main procedures
are as follows: Firstly, we can calculate the position of the nadir. If the spherical
angel of the target relative to the nadir could be calculated, we can get the tar-
get position. The main advantage of the analytic algorithms are their efficiency
compared with the ASF algorithm. However, their low location accuracy makes
them of little practice.

3.3 Our Algorithm – An Ierative Analytic Algorithm

In order to improve the location accuracy while keeping a moderate efficiency,
we incorporate the iterative step into the analytic algorithm. As a result, we
implement a new algorithm that outperforms the above ones.

Since the reference coordinate system used in most SAR products is ECR
(Earth Centered Rotating) system, our model and algorithm is also implemented
in this reference frame. As shown in Fig. 2, in the ECR system, the Z axis points
toward the north pole, the X axis points toward the prime meridian, and the
Y axis completes a right-handed system. The only difference between the GEI
system and the ECR system is the earth rotating angle, thus the basic three
equations, Eqn. (1), Eqn. (2) and Eqn. (3) have the same forms in the ECR
coordinate system as they are in the GEI system. It should be noted that V t = 0
in the ECR coordinate system.

Now we first present the new analytic algorithm adopted in our approach. As
shown in Fig. 2, a local coordinate system is constructed, in which the platform
is the origin and so called PCS (Platform Coordinate System). In the PCS, the
z axis points from the earth center to the sensor, the y axis is perpendicular to
the plane determined by the z axis and the velocity of the sensor, and the x axis
completes a right-handed system. It is noted that the x axis direction is close to
the sensor’s velocity, but they are not identical in most cases.

The point S′ intersected by the line lying between the sensor S and the earth
center O, and the earth surface is called nadir. Given the sensor position vector
Rs, we can get the longitude and the latitude of the nadir S′ and thus the length
of OS′, RL, called the local radius. With a small area around the nadir, the earth
surface can be regarded as a sphere, so we can assume that Rt = OT = OS′ =
RL, where Rt is the magnitude of the target position vector.

In the triangle �OST , we have

cosα =
R2

s + R2 −R2
t

2RsR
(5)

where Rs is the magnitude of the sensor position vector and α = � OST .
As shown in Fig. 3, T ′ is the projection of the target T onto the xy plane,

and β = � xST ′, the angle with which the x axis needs to revolve clockwise to
the vector

−−→
ST ′ direction. The range vector from the sensor to the target R is

determined by its magnitude R and α, β angle. Since R is given in advance and
we have got α, the problem left is to compute β.
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The coordinate transformation matrix from the local coordinate system to
the ECR system M is given by

M = { xe,ye, ze} (6)

where xe, ye, ze are the unit vectors of the three axes of the local coordinate
system. According to the definition of the local coordinate system, we have⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ze =
Rs

|Rs|

ye =
Rs × V s

|Rs||V s|
xe = ye × ze

(7)

Eqn. (7) shows that the transformation matrix M is the function of the sen-
sor position vector and velocity vector. The sensor velocity vector in the local
coordinate system V ′

s = (vx, vy, vz)T is given by

V ′
s = M−1V s (8)

The range vector R in the local coordinate system R′ is given by

R′ = RP (9)

where P = (xp, yp, zp)T is the unit vector in vector R direction, and is given by⎧⎪⎨⎪⎩
xp = sinα cosβ

yp = − sinα sinβ
zp = − cosα

(10)

In the local coordinate system, the Doppler equation becomes

fd = − 2
λR

R′V ′
s = − 2

λ
PV ′

s (11)

Substituting from V ′
s = (vx, vy, vz)T and Eqn. (10), we get

fd = − 2
λ

[vx sinα cosβ + vy(− sinα sinβ) + vz(− cosα)] (12)

Simplifying the equation above, we have

A cosβ + B sinβ + C = 0 (13)

where ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
A = − 2

λ
vx sinα

B =
2
λ
vy sinα

C =
2
λ
vz cosα− fd

(14)
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By solving the equation above, we have

cosβ =
−AC ±B

√
A2 + B2 − C2

A2 + B2 (15)

where the ± ambiguity is resolved by the knowledge of the sensor pointing di-
rection, we get + when the direction is right and - when it is left. Now we have
both α and β. After inserting them into Eqn. (10), we get the vector P . Then
the slant range vector R is given by

R = MR′ = MRP = RMP (16)

Inserting this equation into R = Rt−Rs , we get the target position vector Rt,

Rt = Rs + R = Rs + RMP (17)

At last, we can calculate the longitude and the latitude of the target according
to its position vector Rt.

Now we have presented a new analytic location algorithm. Next, we’ll in-
troduce the iterative steps into it to implement our algorithm. The detailed
procedures are given as follows:

(1) Get RL, Rt according to the above method.
(2) Calculate α using Eqn. (5).
(3) According to the location algorithm presented above, we can get the position

vector Rt = (xt, yt, zt)T of the target and its longitude, latitude and elevation
(Lt, δt, h).

(4) Calculate R′
L = Rt − h. If |R′

L − RL| < 0.01, then stop the iteration and
export the result (Lt, δt). Otherwise, let RL = R′

L and return to step (2).

4 Experiment

4.1 Data Set

The data used for experiments are four scenes of EAR SAR imagery product,
three of which are acquired in Zengcheng district of Guangdong Province and the
forth one was acquired in Xiamen city in Fujian Province. The basic attributes
of the SAR images are listed in Table 1.

Table 1. Basic attributes of the SAR imagery products for the experiment

Index District Product Type Scene Identification Radar direction Image size
1 Zengcheng ERS-1.SAR.PRI 18-Aug-97 Right look 8173×8000
2 Zengcheng ERS-1.SAR.PRI 9-Jun-97 Right look 8173×8000
3 Zengcheng ERS-1.SAR.PRI 22-Sep-97 Right look 8173×8000
4 Xiamen ERS-2.SAR.PRI 27-Feb-98 Right look 8200×8000
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4.2 Evaluation Method

Using the Corners. The SAR processor will save the longitude and the lat-
itude of the four corners of the SAR image into the product metadata when
generating level 1B product from level 0 product. Therefore we can use ge-
olocation algorithms to locate these four corners, compare the location results
with the longitude and the latitude of the four corners given in the metadata
and calculate the errors between them to evaluate the location accuracy of the
algorithm.

Assume the longitude and the latitude of the four corners given in the meta-
data are (Ln, δn), n = 1, 2, 3, 4. By locating the pixels of the four corners, we get
the location results, (L′

n, δ
′
n), n = 1, 2, 3, 4. The average errors in the longitude

and the latitude, EL and Eδ respectively, are given by

EL =
1
4

4∑
n=1

|L′
n − Ln| (18)

Eδ =
1
4

4∑
n=1

|δ′n − δn|. (19)

which are regarded as the evaluation guideline.

Using GCP. We could manually collect some GCPs comparing the SAR im-
age with the topography map in the same district. The following procedures
are similar to those of the former evaluation method. We locate the pixels cor-
responding to these GCPs, and compare the location results with the position
results acquired from the topography map.

Efficiency Evaluation. Since it is time consuming to locate all the pixels in
the image, we just locate part of the image to test the efficiency performance
of the algorithms. We could locate the first, the middle and the last row of the
SAR image using the same algorithm and note down the time consumed.

4.3 Results

The evaluation results using the corners are provided in Table 2.
Table 2 shows that for the longitude, the location accuracies of the ASF,

the RGM and our algorithm are nearly the same. Our algorithm has the least
average error while the AGM algorithm has the largest one. For the latitude,
the location accuracies of the ASF, the AGM and our algorithm are almost the
same, and the AGM has the least average error while the RGM has the largest
one. The accuracy for the latitude of our algorithm is only a little worse than
that of the AGM algorithm. We can see that the results from all the four scenes
have the same conclusion. Taking the accuracies in both longitude and latitude
into account, we can find our algorithm outperforms the other three.
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Table 2. Evaluation results using the corners (unit: 10−5degree)

Algorithms
1 2 3 4

EL Eδ EL Eδ EL Eδ EL Eδ

ASF 36.627 144.67 59.32 161.4 56.187 151.98 25.994 110.25
AGM 374.14 114.95 397.57 131.67 393.18 122.26 364.77 80.023
RGM 46.689 1333.6 69.476 1352.9 66.274 1345.3 37.469 1328.3

Our Algorithm 29.214 134.51 30.562 151.2 35.209 141.75 36.654 99.658

Table 3. Efficiency performance of the algorithms (unit: second)

Algorithm Time
ASF 20.6
AGM 2.1
RGM 2.1

Our Algorithm 10.9

With regard to the efficiency, we select one of the four images to test the
performance of the algorithms and the results are shown in Table 3.

Table 3 demonstrates that although our algorithm is still slower than the two
analytic algorithms, its efficiency has improved dramatically compared with the
ASF algorithm.

In summary, our algorithm can achieve a higher accuracy while keeping a mod-
erate efficiency. Considering the performances in both accuracy and efficiency,
we can find that our algorithm obviously outperforms the other three.

5 Conclusions and Future Work

In this paper, a novel geolocation algorithm of SAR images is proposed based on
an iterative analytic method. The experiment results show that our algorithm is
superior to the other three approaches widely used in real applications.

The location accuracies of current geolocation algorithms are all subject to
the platform ephemeris errors. The product types of the experiment data used
in the paper are all ERS SAR products, the platform ephemeris of which has
a high accuracy. In order to validate the robustness of our algorithm, we’ll use
other types of SAR products for experiment.
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Abstract. This paper explores the feasibility of using an eye tracker as an image 
retrieval interface.  A database of image similarity values between 1000 Corel 
images is used in the study. Results from participants performing image search 
tasks show that eye tracking data can be used to reach target images in fewer 
steps than by random selection.  The effects of the intrinsic difficulty of finding 
images and the time allowed for successive selections were also investigated. 

1   Introduction 

Images play an increasingly important part in the lives of many people. There is a 
critical need for automated management, as the flow of digital visual data increases 
and is transmitted over the network. Retrieval mechanisms must be capable of han-
dling the amount of data efficiently and quickly. Existing systems are capable of re-
trieving archiving material according to date, time, location, format, file size, etc. 
However, the ability to retrieve images with semantically similar content from a data-
base is more difficult. 

One of the major issues in information searching is the problem associated with 
initiating a query. Indeed lack of high-quality interfaces for query formulation has 
been a longstanding barrier to effective image retrieval systems [19]. Users find it 
hard to generate a good query because of initial vague information [18] (i.e. “I don’t 
know what I am looking for but I’ll know when I find it”). Eye tracking presents an 
adaptive approach that can capture the user’s current needs and tailor the retrieval 
accordingly. Understanding the movement of the eye over images is an essential com-
ponent in the research.  

Research in the applications of eye tracking is increasing, as presented in 
Duchowski’s review [3] of diagnostic and interactive applications based on offline 
and real-time analysis respectively. Interactive applications have concentrated upon 
replacing and extending existing computer interface mechanisms rather than creating 
a new form of interaction. The tracking of eye movements has been employed as a 
pointer and a replacement for a mouse [5], to vary the screen scrolling speed [12] and 
to assist disabled users [1]. Dasher [20] uses a method for text entry that relies purely 
on gaze direction. In its diagnostic capabilities, eye-tracking provides a comprehen-
sive approach to studying interaction processes such as the placement of menus 
within web sites and to influence design guidelines more widely [10].  The imprecise 
nature of saccades and fixation points has prevented these approaches from yielding 
benefits over conventional human interfaces. Fixations and saccades are used to  
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analyze eye movements, but it is evident that the statistical approaches to interpreta-
tion (such as clustering, summation and differentiation) are insufficient for identifying 
interests due to the differences in humans’ perception of image content. More robust 
methods of interpreting the data are needed. There has been some recent work on 
document retrieval in which eye tracking data has been used to refine the accuracy of 
relevance predictions [16]. Applying eye tracking to image retrieval requires that new 
strategies be devised that can use visual and algorithmic data to obtain natural and 
rapid retrieval of images.  

Traditional approaches of image retrieval suffer from three main disadvantages. 
Firstly there is a real danger that the use of any form of pre-defined feature measure-
ments will be unable to handle unseen material.  Image retrieval systems normally 
rank the relevance between a query image and target images according to a similarity 
measure based on a set of features. Pre-determined features can take the form of 
edges, colour, location, texture, and others. Secondly the choice of low-level features 
is unable to anticipate a user's high-level perception of image content. This informa-
tion cannot be obtained by training on typical users because every user possesses a 
subtly different subjective perception of the world and it is not possible to capture this 
in a single fixed set of features and associated representations. Thirdly descriptive text 
does not reflect the capabilities of the human visual memory and does not satisfy 
users’ expectations. Furthermore the user may change his/her mind and may also be 
influenced by external factors.   

An approach to visual search should be consistent with the known attributes of the 
human visual system and account should be taken of the perceptual importance of 
visual material. Recent research in human perception of image content [7] suggests 
the importance of semantic cues for efficient retrieval. Relevance feedback mecha-
nisms [2] is often proposed as a technique for overcoming many of the problems 
faced by fully automatic systems by allowing the user to interact with the computer to 
improve retrieval performance. This reduces the burden on unskilled users to set 
quantitative pictorial search parameters or to select images (using a mouse) that come 
closest to meeting their goals. This has prompted research into the viability of eye 
tracking as a natural input for an image retrieval system. Visual data can be used as 
input as well as a source of relevance feedback for the interface. Human gaze behav-
iour may serve as a new source of information that can guide image search and  
retrieval. 

Human eye behaviour is defined by the circumstances in which they arise. The eye 
is attracted to regions of the scene that convey what is thought at the time to be the 
most important information for scene interpretation. Initially these regions are pre-
attentive in that no recognition takes place, but moments later in the gaze the fixation 
points depend more upon either our own personal interests and experience or a set 
task. Humans perceive visual scenes differently. We are presented with visual infor-
mation when we open our eyes and carry out non-stop interpretation without diffi-
culty. Research in the extraction of information from visual scenes has been explored 
by Yarbus [21], Mackworth and Morandi [9] and Hendersen and Hollingworth [6]. 
Mackworth and Morandi [9] found that fixation density was related to the measure of 
informativeness for different regions of a picture and that few fixations were made to 



 Perceptual Image Retrieval Using Eye Movements 283 

regions rated as uninformative. The picture was segmented and a separate group of 
observers were asked to grade the rate of informativeness. Scoring the informative-
ness of a region provides a good insight into how humans perceive a scene or image. 
Henderson and Hollingworth [6] described semantic informativeness as the meaning 
of an image region and visual informativeness as the structural information. Fixation 
positions were more influenced by the former compared to the latter. The determina-
tion of informativeness and corresponding eye movements are influenced by task 
demands [21].  

Previous work [13] used a visual attention model to score the level of informative-
ness in images and found that a substantial part of the gaze of the participants during 
the first two seconds of exposure is directed at informative areas as estimated by the 
model. Subjects were presented with images with clear regions-of-interest and results 
showed that these attracted eye gaze on presentation of the images studied. This led 
credence to the belief that the gaze information obtained from users when presented 
with a set of images could be useful in driving an image retrieval interface. More 
recent work [14] compared the performance of the eye and the mouse as a source of 
visual input. Results showed faster target identification for the eye interface than the 
mouse for identifying a target image on a display. 

In this paper, experiments are described that explore the viability of using the eye 
to drive an image retrieval interface. Preliminary work was reported in [15]. In a  
visual search task, users are asked to find a target image in a database and the number 
of steps to the target image are counted. It is reasonable to believe that users will look 
at the objects in which they are interested during a search [13] and this provides the 
machine with the necessary information to retrieve a succession of plausible candidate 
images for the user. 

2   Data and Apparatus 

1000 images were selected from the Corel image library. Images of 127 kilobytes and 
256 x 170 pixel sizes were loaded into the database. The categories included boats, 
landscapes, vehicles, aircrafts, birds, animals, buildings, athletes, people and flowers. 
The initial screen (including the position of the target image) is shown in Figure 1. 
Images were displayed as 229 x 155 pixel sizes in the 4 x 4 grid display. 

An Eyegaze System [8] was used in the experiments to generate raw gazepoint lo-
cation data at the camera field rate of 50 Hz (units of 20ms). A clamp with chin rest 
provided support for chin and forehead in order to minimize the effects of head 
movements, although the eye tracker does accommodate head movement of up to 1.5 
inches (3.8cm). Calibration is needed to measure the properties of each subject’s eye 
before the start of the experiments. The images were displayed on a 15" LCD Flat 
Panel Monitor at a resolution of 1024x768 pixels.  The loading of 16 images in the  
4 x 4 grid display took an average of 100ms on a Pentium IV 2.4GHz PC with 
512MB of RAM. Gaze data collection and measurement of variables were suspended 
while the system loaded the next display.  The processing of information from the eye 
tracker is done on a 128MB Intel Pentium III system with a video frame grabber 
board. 
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Fig. 1. Standard start screens for all participants 

    A measure [17] was used to pre-compute similarity scores between all pairs of 
images in the database.  Images are presented in a 4 by 4 grid with target image pre-
sented in the top left corner of the display.  The user is asked to search for the target 
image and on the basis of the captured gaze behaviour, the machine selects the most 
favoured image.  The next set of 15 images are then retrieved from the database on 
the basis of similarity scores and displayed for the next selection.  The session stops 
when the target image is found or a prescribed number of displays is reached. 

A random selection strategy (the machine randomly selects the most favoured im-
age) was employed to provide a performance base-line which any more intelligent 
approach would need to exceed. 

3   Experiment Design 

3.1   Selection of Target Images 

It was found that as the number of randomly retrieved images in each display was 
increased, the likelihood of finding the target image also increased. A histogram plot 
of the frequency distribution of steps to target for every image in the database re-
vealed the easy-to-find and hard-to-find images.  4 easy-to-find and 4 hard-to-find 
target images were picked for the experiment.  These are shown in Figure 2. 
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Fig. 2. Target Images (Four easy-to-find images on the right and four hard-to-find images on 
the left) 

3.2   Experimental Procedure 

Thirteen unpaid participants took part in the experiment. Participants included a mix 
of students and university staff. All participants had normal or corrected-to-normal 
vision and provided no evidence of colour blindness. 

One practice run was allowed to enable better understanding of the task at hand 
and to equalise skill levels during the experiment. Participants understood that there 
would be a continuous change of display until they found the target but did not know 
what determines the display change. The display change is determined by eye selec-
tion of an image, using the sum of all fixations of 80ms and above on an image posi-
tion, up to a fixation threshold. Two fixation thresholds of 400ms and 800ms were 
employed as a factor in the experiment. The display included either no randomly 
retrieved image (all 15 images are selected on the basis of similarity scores) or one 
randomly retrieved image (one image is randomly selected from the database). Par-
ticipants performed 8 runs, using all image types (easy-to-find and hard-to-find). Four 
treatment combinations of the two fixation thresholds (400ms and 800ms) and two 
randomly-retrieved levels (0 and 1) were applied to each image type.  Any sequence 
effect was minimised by randomly allocating each participant to different sequences 
of target images. The first four runs were assigned to each image type. There was a 1 
minute rest between runs. The maximum number of steps to target was limited to  
26 runs. 
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4   Results and Discussion 

Three dependent variables, the number of steps to target, the time to target (F1),  and 
the number of fixations (F2) of 80ms and above were monitored and recorded during 
the experiment. 8 dependent variables were recorded for each participant. The average 
figures are presented in Table 1. 

Table 1. Analysis of Human Eye Behaviour on the Interface (rounded-off mean figures) 

Image Type 
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0 38.5% 14 34.944 99 400ms 
1 53.8% 18 36.766 109 
0 38.5% 14 55.810 153 

Easy-to-find 
800ms 

1 15.4% 11 51.251 140 
0 69.2% 23 52.686 166 

400ms 
1 84.6% 23 50.029 167 
0 92.3% 24 104.999 327 

Hard-to-find 
800ms 

1 69.2% 19 83.535 258 

104 figures were entered for each dependent variable into repeated measures 
ANOVA with three factors (image type, fixation threshold and randomly-retrieved).  

The results of the ANOVA performed on the steps to target revealed a significant 
main effect of image type, F(1,12)=23.90, p<0.0004 with fewer steps to target for 
easy-to-find images (14 steps) than the hard-to-find images (22 steps). Easy-to-find 
target images were found in fewer steps by participants than the hard-to-find images 
as predicted by the evidence obtained using the random selection strategy. 

The main effect of the fixation threshold was not significant with F(1,12)=1.50, 
p<0.25. The main effect of randomly-retrieved was also not significant, F(1,12)=0.17, 
p<0.69. Generally, the influence of including one randomly retrieved image in each 
display produced little or no difference in the steps to target, time to target and fixation 
numbers. Even when compared with the random selection tool, the steps to target did 
not significantly differ. All two-factor and three-factor interactions were not significant.  

The analysis of the time to target produced similar results to the analysis of the 
number of fixations. There was a significant main effect of image type, 
F1(1,12)=24.11, p<0.0004, F2(1,12)=21.93, p<0.0005, with shorter time to target and 
fewer fixations for easy-to-find images (40.468s and 125 fixations) than the hard-to-
find images (71.331s and 229 fixations). The main effect of the fixation threshold was 
also similarly significant with F1(1,12)=18.27, p<0.001 and F2(1,12)=16.09, p<0.002. 
There were more fixations and more time was spent on hard-to-find images than the 
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easy-to-find images. This is consistent with the conclusion of Fitts et al [4] that com-
plex information leads to longer fixation durations and higher fixation numbers. 

In line with the steps to target, the main effect of randomly-retrieved was also not 
significant, F1(1,12)=1.49, p<0.25 and F2(1,12)=0.76, p<0.40.  

Image type interacted with the fixation threshold, F1(1,12)=8.04, p<0.015 and 
F2(1,12)=5.84, p<0.032, and an analysis of simple main effects indicated a significant 
difference in time to target and fixation numbers for the fixation thresholds when 
hard-to-find images were presented, F1(1,12)=20.00, p<0.001 and F2(1,12)=16.25, 
p<0.002, but interestingly, no significant difference when easy-to-find images were 
presented, F1(1,12)=3.62, p<0.08 and F2(1,12)=3.57, p<0.08. There was no significant 
difference in the time to target and fixation numbers between the threshold levels for 
the easy-to-find images as opposed to the hard-to-find images. In other words, setting 
a higher threshold did not significantly differ when either 400ms or 800ms was used 
for the easy-to-find images, but it did for the hard-to-find images. However, the steps 
to target did differ for both image types under either of the threshold conditions. A 
future experiment will be needed to investigate whether the thresholds can be reduced 
further, at least for the easy-to-find images.  

The same treatment combinations experienced by all participants were applied to 
the random selection tool to obtain 104 dependent variables (steps to target). By com-
bining the variables, 208 figures were entered into a mixed design multivariate 
ANOVA with two observations per cell and three factors (selection mode, image type 
and randomly-retrieved). The average figures are presented in Table 2.  

Table 2. Comparison of Eye and Random Selection (rounded-off mean figures) 

Selection Mode Image Type 
Randomly-
retrieved 

Target not 
found (fre-

quency) 

Steps to 
target 

0 38.5% 14 Easy-to-find 
1 34.6% 15 
0 80.8% 23 

Eye gaze 
Hard-to-find 

1 76.9% 21 
0 57.7% 20 

Easy-to-find 
1 38.5% 16 
0 96.2% 25 

Random selection 
Hard-to-find 

1 92.3% 26 

In summary the results of the ANOVA revealed a main effect of the selection 
mode, F(2,23)=3.81, p<0.037, with fewer steps to target when the eye gaze is used 
(18 steps) than when random selection is used (22 steps). There was also a main effect 
of image type, F(2,23)=28.95, p<0.00001 with fewer steps to target for easy-to-find 
images (16 steps) than the hard-to-find images (24 steps). 

Further analysis of simple main effect revealed that there was a significant differ-
ence between the modes for the hard-to-find images, F(2,23)=3.76, p<0.039 as op-
posed to the easy-to-find images, F(2,23)=2.02, p<0.16.  
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The participants using the eye tracking interface found the target in fewer steps 
than the automated random selection strategy and the analysis of simple effect attrib-
uted the significant difference to the hard-to-find images. This meant that the prob-
ability of finding the hard-to-find images was significantly increased due to human 
cognitive abilities as opposed to the indiscriminate selection by random selection.  
Some did not reach the hard target after 26 successive displays. Future experiment 
will concentrate on improving the chances of getting to the target using information 
extracted from the scan path. 

5   Conclusions 

Experiments have shown that an eye tracking interface together with pre-computed 
similarity measures yield a significantly better performance than random selection 
using the same similarity information.  A significant effect on performance was also 
observed with hard-to-find images.  This was not seen with easy-to-find images where 
with the current database size a random search might be expected to perform well. 

An eye controlled image retrieval interface will not only provide a more natural 
mode of retrieval but also have the ability to anticipate the user’s objectives coupled 
with user relevance feedback, thereby retrieving images extremely rapidly and with a 
minimum of thought and manual involvement. In future interfaces, eye tracking will 
not only be used as a rapid and continual information gathering tool for input to im-
prove query formulation but also to build up a visual behavioural pattern using the 
time series information from the data. The ensuing interface will require a model for 
matching possible interests between images in the database. Visually similar regions 
will need to be linked between all regions within the images present in the database. 
Adaptive algorithms could then be used to improve the model for individual users. 
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Abstract. The 2-dimensional Hilbert scan (HS) is a one-to-one map-
ping between 2-dimensional (2-D) space and one-dimensional (1-D) space
along the 2-D Hilbert curve. Because Hilbert curve can preserve the spa-
tial relationships of the patterns effectively, 2-D HS has been studied
in digital image processing actively, such as compressing image data,
pattern recognition, clustering an image, etc. However, the existing HS
algorithms have some strict restrictions when they are implemented. For
example, the most algorithms use recursive function to generate the
Hilbert curve, which makes the algorithms complex and takes time to
compute the one-to-one correspondence. And some even request the sides
of the scanned rectangle region must be a power of two, that limits
the application scope of HS greatly. Thus, in order to improve HS to
be proper to real-time processing and general application, we proposed
a Pseudo-Hilbert scan (PHS) based on the look-up table method for
arbitrarily-sized arrays in this paper. Experimental results for both HS
and PHS indicate that the proposed generalized Hilbert scan algorithm
also reserves the good property of HS that the curve preserves point
neighborhoods as much as possible, and gives competitive performance
in comparison with Raster scan.

1 Introduction

A space-filling curve is a continuous mapping of a one-dimensional interval into
a two-dimensional area (a plane-filling function) or a three-dimensional volume.
Among the space-filling curves, the Hilbert curve is known to preserve point
neighborhoods as much as possible. This trait makes it useful in multidimen-
sional signal processing. Especially, with the rapid development of digital image
processing, the Hilbert curve, as a scan technique, is applied widely in digi-
tal image processing, such as image compression [1,8], clustering an image [2,9]
and so on [10,11]. Currently there also have been several algorithms [3-6] for
2-dimensional Hilbert scan, such as the Kamata algorithm [3,4], the Agui algo-
rithm [5] and the Quinqueton algorithm [6]. However, these algorithms more or
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(a) 2×2 (b) 4×4 (c) 8×8

Fig. 1. Original 2-D Hilbert scan

less have some restrictions. For example, the Agui algorithm and the Quinque-
ton algorithm use the recursive functions to generate the curve, which makes
the algorithm complex and takes time to compute the one-to-one mapping cor-
respondence, so it is very difficult to apply them in the real-time systems. And
the Kamata algorithm has the strict restriction on the size of rectangle region
which required that one side of the scanned rectangle should be even and the
both sides should have the same division times. Therefore, to relax these limita-
tions for general application, Hilbert scan needs to be improved up to be proper
to an arbitrary-sized rectangle region. In the paper, based on the look-up ta-
ble method, we proposed a novel Hilbert scan algorithm to generate mapping
pattern for arbitrarily-sized arrays. And this generalized Hilbert scan is called
as 2-D Pseudo-Hilbert scan (PHS). The proposed algorithm is suitable for real-
time processing and easy to be implemented in hardware. Furthermore, like as
HS, PHS can also preserve the spacial neighborhood relationships in a rectangle
region, which has been confirmed by the experimental results.

2 A Pseudo-hilbert Scan Algorithm

The Peano curve published in 1890 is a locus of points in N -dimensional space. It
was an analytical solution of a space-filling curve. Fig. 1 shows three curves with
different resolutions, (a)2×2, (b)4×4, (c)8×8. In the figure, the binary numbers
express the address alignment.

2.1 The Address Assignment

In this subsection, we define the expression of a point in a rectangle with size lx
and ly. In order to discuss expediently, we assume lx ≥ ly. The coordinate of a
point is denoted as (X , Y ), and the rectangle is represented as

R(lx, ly) = {X,Y |0 ≤ X < lx, 0 ≤ Y < ly}. (1)

Then the division times of each side can be calculated by the following equations,

Mx = log2(
lx
2

),My = log2(
ly
2

), (2)
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where the operator �z� means the integer part of a real number z. As lx ≥ ly,
it is easy to get Mx ≥ My. Thus, the address of a point in R(lx, ly) can be
expressed as a 2(Mx + 2)-bit binary number,

2bits︷ ︸︸ ︷
xMx+2yMx+2

2bits︷ ︸︸ ︷
xMx+1yMx+1 · · · · · ·

2bits︷︸︸︷
x1y1︸ ︷︷ ︸

2(Mx+2)bits

. (3)

And the coordinates of a point (X,Y ) can be expressed as two (Mx + 2)-bit
binary numbers,

X = xMx+2xMx+1 · · · · · ·x2x1 (4)

Y = yMx+2yMx+1 · · · · · · y2y1 (5)

where xm and ym (1 ≤ m ≤ Mx + 2) are 0 or 1. Note that, (Mx − My)-
bit binary number y3+
M−1y3+
M−2 · · · y3 equals to 0 in the binary sequences
yMx+2yMx+1 · · · · · · y2y1. So the memory can be saved effectively by eliminat-
ing these bits. However, for simplicity, we use (Mx + 2)-bit binary number to
represent address in the paper.

2.2 The Division Rules of a Rectangle

Since the size of a rectangle is arbitrary, its values are not always the power of 2.
Thus we proposed a new division method to split the sides of a rectangle. Each
side of the scanned region must be subject to following ”Division Rule”:

1. l(0) = l, k = 0;
2. If 2 · 2M−k ≤ l(k) < 3 · 2M−k, we split l(k) into 2M−k and l(k)− 2M−k;

If l(k) = 3 · 2M−k, we split l(k) into 2M−k and 2 · 2M−k;
If 3 · 2M−k < l(k) < 4 · 2M−k, we split l(k) into 2 · 2M−k and l(k)− 2 · 2M−k;

3. k = k + 1, make the results of k-th splitting equal to l(k). Until k = M , the
division is completed. Otherwise, skip to step 2 and divide l(k) sequentially.

So based on the above division rules, the vertical side of a rectangle R(lx, ly)
can be divided for My times, the horizontal side can be divided for Mx times.
However, in order to make the scan comply to Hilbert scan in global sense (that
is, the scanning of blocks submits to the Hilbert scan), we should divide the
vertical side and horizontal side for the same times. So the splitting times of a
rectangle are My times (My ≤Mx), and then the rectangle can be divided into
2My × 2My blocks. Thus we can make use of Hilbert curve to scan 2My × 2My

blocks. The scan from the k-th depth nodes to the (k + 1)-th depth nodes is
ordered by look-up tables, where k = 1, 2, · · · ,My. In the following, we introduce
the look-up tables for HS in 2-D space.

2.3 The Hilbert Scan of Block

Hilbert curves (parent region) R(2M , 2M ) includes four sub-rectangle regions
(child region) which are congruent with R(2M−1, 2M−1). As shown in Fig.2, we
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Fig. 2. The basic patterns of 2-D Hilbert curves (the number 1-4 means curve type)

(a) B-EE (b) B-OE (c) B-EO (d) B-OO

Fig. 3. The scanning manners of four templates of block, when the entry is point 1

use four 2-D Hilbert curves to connect these four congruent sub-rectangle regions.
Each curve is identified by the number (from 1 to 4), which is curve type. For
creating the addresses, we prepare two look-up tables. One is a terminal table
T 2

trm and the other is an induction table T 2
ind, which are shown as follows

respectively:

T 2
trm = (T 2

trm[γ][i]) =

⎛⎜⎜⎝
00 01 11 10
00 10 11 01
11 10 00 01
11 01 11 10

⎞⎟⎟⎠ ,T 2
ind = (T 2

ind[γ][i]) =

⎛⎜⎜⎝
2 1 1 4
1 2 2 3
3 4 4 1
3 4 4 1

⎞⎟⎟⎠ ,

where γ is the curve type, and T 2
trm[γ][i] and T 2

ind[γ][i] represents the elements
of the two tables, respectively. For example, Fig.1 (a) shows the addresses and
curve types in four child regions, in the case where the curve type γ = 1. Thus
we can arrange the four addresses according to the first row of terminal table,
that is,

00 −→ 01 −→ 11 −→ 10. (6)

And Fig.1 (b) shows the curve types in the order of scanning child regions, which
is obtained according to the first row of induction table as follows,

2 −→ 1 −→ 1 −→ 4. (7)

2.4 Scanning Manner

Considering all the four types of rectangle region (lx-ly)—E-E, E-O, O-E and
O-O (E and O represent even length and odd length), the 2My × 2My blocks can
be classified into the four templates which are shown in Fig.3. In the figure ◦
denotes the entry and • denotes the exit, they express the scanning manner of
the points in a block. It is noted that Fig.3 described only one case when the
entry point located number 1. During the scan procedure, according to the end
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point of previous block, we can decide the entry of the current scanned block.
And based on the value of (My +1)− th depth nodes we select the point of exit.

To make a summary, the whole Pseudo-Hilbert scan algorithm is shown in the
following. It shows our Pseudo-Hilbert scan algorithm for generating all addresses
((2Mx+2)-bit binary number) in a rectangle regionR(lx, ly). As initial condition,
the value of γ(0) equals one.

Pseudo-Hilbert scan

program Address assignment in a rectangle (Output)

/ ∗Address assignment of the blocks ∗ /
for i0 = 1, 2, · · · , 4

α0 = Ttrm[γ(0)][i(0)]
γ(1) = Tind[γ(0)][i(0)]
l(1) = division(l(0), α0)

...
...

for im = 1, 2, · · · , 4
αm = Ttrm[γ(m)][i(m)]
γ(m + 1) = Tind[γ(m)][i(m)]
l(m) = division(l(m− 1), αm)

...
...

for iMy−1 = 1, 2, · · · , 4
αMy−1 = Ttrm[γ(My − 1)][i(My − 1)]
l(My) = division(l(My − 1), αMy)

/ ∗ Computation of address in each block ∗ /
b = block type(l(My))
if b = B OE or B OO

if it is the first block
go to scanning 1

else
go to scanning 8

else if b = B EO
if it is the first block

go to scanning 2
else

go to scanning 7
else

s = scanning type((My), γ(My − 1))
go to scanning s

scanning 1:
for i = 0, 1, · · · , lx − 1

for j = 0, 1, · · · , ly − 1
α = ij
output < α0 · · ·αMy−1αMy >
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(a) Group A (1-4)

(b) Group B (5-8)

Fig. 4. Two group of scanning curves (the number 1-8 means the manner of scan)

...
...

scanning 8:
for i = 0, 1, · · · , ly − 1

for j = lx − 1, · · · , 1, 0
α = ji
output < α0 · · ·αMy−1αMy >

(The algorithm generating 2-D Pseudo-Hilbert curve. )

From the algorithm, it can be seen that at the m-th splitting, we obtain two-
bit binary number αm from the terminal table T trm. And from the induction
table T ind, we obtain the curve type γ(m + 1) for the next splitting. In the
algorithm, l(m) is a vector which represents the two sides (lx(m), ly(m)) of a
rectangle. We use the function ”division( )” to split each side into two parts
according to ”Division-Rule” and then to choose the two sides (lx(m+1), ly(m+
1)) corresponding to the address αm, which are X- and Y - side respectively. Here,
m(0 ≤ m ≤ My) is the number of splits. The procedures above are performed
until m = My, so that we obtain the upper 2My bits (α0α1 · · ·αMy−1) in each
address. In the following steps, we compute the lower 2(Mx−My +2) bits αMy .
Firstly, we use the function ”block type( )” to obtain the block type according
to the two sides l(My). Then, using the function ”scanning type( )”, we select
the scanning curve of a block from scanning 1 to scanning 8 shown in Fig.4, and
we obtain the remnant binary number αMy .

In order to explain the algorithm, we give an example of a rectangle region
R(5, 5). After 1 time division, R(5, 5) can be divided into 4 blocks including all
types of blocks mentioned above—{B(lx, ly)|(lx, ly) = (3, 3), (3, 2), (2, 2), (2, 3)},
where B(lx, ly) represents a block with the size lx×ly. Each block is identified by
the number (from 1 to 4), which is the order of the block scan. Fig.5 shows the
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Fig. 5. An example of the address assignment to the lattice point ”p” using Pseudo-
Hilbert scan

address for lattice point ”P” which is located at (X,Y ) = (4, 0). Since My = 1,
the address of ”P” needs 6(= 2My + 4)-bit binary number to represent. We
compute the address by the following steps:

1. i(k), γ(k), α(k) and b are a scanning order, a curve type, an address, and a
block type respectively, where k means k-th splitting. γ(0) = 1 is given.

2. This step is the computation of the upper 2 bits in the address to ”P”.
According to the division rule, we obtained four subrectangles expressed in
section 3.2 (Fig.5). Fig.5 shows that ”P” is in the shaded region. So we get
i(0) = 4, and we know γ(0) = 1. Then, we obtain α1 = Ttrm[γ(0)][i(0)] =
Ttrm[1][4] = 4.

3. This step is the computation of the lower 4 bits of the address. The block
with α1 = 10 is congruent with B(2, 3). Thus according to PHS algorithm,
scanning 7 is selected as the scanning manner. So it is known that the entry
point is (3, 2) and the order of the point ”P” is the forth among the six
lattice points in the forth block. So we obtained α2 = 0100.

4. Hence, the address of ”P” is α1α2 = 100100.

PHS algorithm is performed through referring to the look-up tables and scan-
ning manner function in a block. Table 1 shows a comparison of storage memory
and computation complexity with our method and recursive method.

Table 1. Comparison of computation complexity and storage memory

Method Computation complexity Storage memory

Our method O(4My lxly) 64
Recursive method O(24My+My2My+1

) 10My

3 Experiments and Results

Three examples of pseudo-Hilbert scan are shown in Fig.6 with different resolu-
tion, (a)64×64, (b)100×100, (c)97×123. When the size of both sides are power
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(a) 64×64 (b) 100×100

(c) 123×97

Fig. 6. Examples of Pseudo-Hilbert scan for different size of rectangle

of 2, the Pseudo-Hilbert curve is the same as Hilbert curve as shown in Fig.6 (a).
Comparing Fig.6 (a) with (b) and (c), it can be seen easily that PHS submits
to HS on the level of blocks, and in details the most segments of Pesudo-Hilbert
curve have the same structure as HS. So it can be concluded that the PHS has
the similar property of HS that scan curve preserves point neighborhoods as
much as possible. In order to demonstrate the neighborhoods property of PHS,
we made a statistical simulation by computer, which is resemble as the method
provided by T. Agui[5]. This statistical simulation has the following tow steps,

1. Take two points a(x1, y1), b(x2, y2) randomly, where 1 ≤ x1, x2 ≤ M and
1 ≤ y1, y2 ≤ N (M and N represent the horizontal length and vertical length
of a rectangle, respectively).

2. Then, calculate the square Euclidean distance d (d ∈ [0, (M−1)2+(N−1)2])
and the scanning length l (l ∈ [0,M ·N ]) between these two points.

d = (x2 − x1)2 + (y2 − y1)2; (8)

N(d) = N(d) + 1; (9)



298 J. Zhang, S.-i. Kamata, and Y. Ueshige

L(d) = L(d) + l; (10)

where N and L are two vectors.

After many enough recursive trials (Step 1 and 2), we can compute the mean
scanning length by the following equation.

L(d) = L(d)/N(d) (11)

In Fig.7, we show the relationship between L(d) and d. Fig.7 (a) is the case of
HS with size 64×64. Fig.7 (b) and (c) show the PHS and Raster scan respectively,
with the same size 97 × 123. From Fig.7 (a) and (b), it can be seen that the
trends of the both curves are nearly the same, which proved that PHS can
also preserve point neighborhoods as much as possible. For comparison between
Pseudo-Hilbert scan and Raster scan as shown in Fig.7 (b) and (c), it is clearly
that between the L(d) and d, the proportional relationship of PHS is much better
than that of the Raster scan. Especially with the increasing of L, this superiority
becomes greatly obvious.
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(a) Hilbert scan, 64 × 64
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(b) Pseudo-Hilbert scan, 97 × 123
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(c) Raster scan, 97 × 123

Fig. 7. Relation between mean square Euclidean distance and the scanning length
between two points
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4 Conclusions

In this paper, we proposed a Pseudo-Hilbert scan algorithm. The proposed algo-
rithm, based the look-up table method, has lower computational complexity and
faster scan. Thus the algorithm is suitable for application of real-time systems.
Furthermore, PHS is proper for any arbitrarily-sized rectangle region. Thus the
constraints in HS are significantly relaxed, which enlarges the application of
the 2-D Hilbert curve. At the end of paper, the results of simulation is shown.
Through the simulation results, it can be demonstrated that the neighborhood
property of PHS can also work as well as HS. A future problem to be solved is
a generalization of our algorithm for 3-D and N-D Pseudo-Hilbert scan.
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Abstract. Numerous high-quality image stitching algorithms have been
published in the recent years. Mosaics created by these methods are of
high quality if the input images are not distorted. However, if the source
images are blurred, parts of the resulting mosaic will be blurred also.
In this paper we propose a method to create high-quality panoramas
from video sequences that contain also low-quality frames. Moreover,
our method is computationally efficient, which makes it attractive for
hand-held devices. The algorithm uses motion detection to display cor-
rectly moving objects in the sequence. The colors of the mosaic are also
balanced to handle changes in camera exposure times.

1 Introduction

Image stitching is used to combine several images into one wide-angled mosaic
image. Traditionally mosaic images have been constructed from a few separate
photographs, but nowadays that video recording has become commonplace, it is
possible to consider also video sequences as a source for mosaic images. When a
mosaic image is constructed from single photographs, the procedure is straight-
forward because the amount of images is rather limited. With video sequences,
the situation is different. Even a short video clip contains vast amounts of data,
that is mostly redundant due to large overlaps between frames.

Because of the overlap, it is clear that not all frames from the sequence are
needed to construct a mosaic that covers the whole scene. The frame selection
process has been researched only little [1],[2] and until now, it has been assumed
that the video frames are of good quality. Practically this is not the case, since
pictures are often taken freehand, which leads to blurred images in many occa-
sions. In this paper we will propose a new method to select the best frames from
a video sequence and then create a high-quality panorama from those images.

2 Related Work

The whole process of creating a mosaic image consists of several smaller tasks,
of which image registration is the most important one. Stitching algorithms use
both feature-based [2] and direct approaches [3], [4] in the registration process.

N. Zheng, X. Jiang, and X. Lan (Eds.): IWICPAS 2006, LNCS 4153, pp. 300–307, 2006.
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The definitions and properties of these two fundamentally different methods are
explained well in the survey of Zitová and Flusser [5].

An image stitching algorithm also needs to use some kind of motion detection
to avoid the distortion of moving objects [3]. This problem and its solutions are
covered extensively in the survey of Radke [6]. In stitching applications, Davis [3]
solved the problem by drawing the seams around moving objects by Dijkstra’s
algorithm. In the method created by Zhu [4] the moving objects were extracted
by differencing three successive frames and defined further by calculating an
active contour for each object.

Once the registration and motion detection is done, the images can be stitched.
The stitching process consists of local blending operations and of radiometric ad-
justments. The paper of Zomet [7] contains a good comparison of image blending
methods and also proposes a new approach of optimizing the stitching result by
a gradient-based cost function. Szeliski proposed a simple, local blending method
to eliminate seam artifacts [8]. Xiao [9] reduced the exposure differences of an
image pair by setting the mean and standard deviation of the registered image
to be the same as that of the reference image.

Fig. 1. Block diagram of our algorithm

3 The Algorithm

The issue of selecting the best frames for an image mosaic has not been addressed
until now. The work closest to ours has been made by Li [1]. In the method of
Li the amount of distortion caused by rotation and perspective is evaluated and
a suitable subset of images is chosen to form a mosaic. Also Hsu [2] has selected
frames for the construction of a panorama. He has only considered the criteria
of suitable overlap.

Our method relies on the recent image registration method of Vandewalle
[10], that can register blurred, rotated and translated frames. After registration,
motion detection is performed to each frame. The frames used for stitching are
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selected by estimating their quality by a couple of different parameters. Our
algorithm tries to use as few frames as possible, since the seams are the places
where the image quality is most probably degraded.

The image sequence is processed in three phases, as depicted in Figure 1. In
the first phase the frames are registered consecutively, so that each frame n is
registered against frame n-1. The consecutive registration approach ensures that
the overlap between frames is as large as possible. This makes registration and
motion detection more robust. Simultaneously with the registration, the amount
of motion blur is calculated. The best frames are selected for the mosaic based on
their quality. The choices depend on the amount of moving objects and motion
blur in the frames. Also, the frames are selected so that their mutual offset is as
large as possible.

After the frames have been chosen, the centermost frame is selected as the
root frame. A shortest spanning tree is constructed between frames based on
their mutual translations. Then each selected frame is re-registered against its
parent [11]. This ensures that the accumulated registration errors from the first
phase disappear and that the registration is performed optimally.

In the final phase of the algorithm, the selected frames are stitched together. In
the stitching process we use the method of Xiao [9] to minimize color differences
caused by variable exposure times. Finally, the small geometric and photometric
misalignments are compensated by a bilinear weighting function [8].

3.1 Projection and Camera Motion Model

We used the idea of manifold projection, originally introduced by Peleg [12]. In
manifold projection a thin strip is taken from the center of each frame to be
used in the construction of the mosaic image. Peleg states that the frames can
be registered accurately by a rigid camera motion model if it is assumed that
significant motion parallax or change of scale does not occur. Manifold projection
offers excellent image quality, since frames do not have to be projected to a
different surface for the construction of the mosaic. Manifold projection is also
quick to process.

3.2 Motion Blur Estimation

Motion blur is determined simultaneously with the first-phase registration. The
image registration method of Vandewalle requires the calculation of the ampli-
tude spectrum for each image to be registered. The spectrum is now also used
for blur estimation by calculating the amount of high-frequency components in
it. Vandewalle states that the frequencies above a certain limit ρmax need to
be discarded in the registration process, since those frequencies contain alias if
the image is blurred. The darkened area in Figure 2 depicts the frequency area
from ρmax to the maximum frequency, which we use to estimate the amount of
blur. If the sum of the frequencies in the area is small, it means that sharp image
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Fig. 2. An amplitude spectrum of a fictional image. The darkened area depicts the
high-frequency area that is used to estimate the image blur.

details are absent due to blurring. A large sum tells us that the frame is free of
blur.

Of course, these values can only be used for comparing frames that depict
roughly the same scene, since the scene contents also affect the result.

3.3 Frame Selection

The frame selection process is a matter of weighting the importance of different
frame features. According to experiments, the presence of moving objects is
the most important criteria, since the most severe artifacts are created in the
stitching process by moving objects that get clipped. The factor of second highest
importance was chosen to be the amount of blur. Finally, frames that are farther
away from the previous selected frame, are preferred.

In practice each frame gets a quality value that is calculated from the afore-
mentioned factors and this can be implemented successfully in many different
ways. The quality values are computed for a certain scope of frames at a time.
The scope encompasses the frames that have a suitable translation with respect
of the previous selected frame, as depicted in Figure 3.

Fig. 3. The scope of frame selection
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3.4 Stitching Phase

Once the best frames have been selected, the mosaic may be created. First of
all, the colors are balanced between adjacent frames in the way that Xiao used
in his paper [9]. The merging of two images is most critical in the area where the
images meet. This seam area can be processed in many ways, but we have chosen
bilinear weighting [8], since it produces good results compared to the amount
of calculations it requires. It is important to remember that more sophisticated
seam handling is beneficial only when the registration step produces erroneous
results.

In our method blending is done with a gaussian weighting mask similarly to
[13] if no moving objects are present. If there are moving objects, the seam is
drawn outside the boundaries of moving objects.

Fig. 4. The images in the top row are a small detail from a mosaic that was created
without frame selection. The images in the bottom row show the corresponding areas
from a mosaic that was constructed with frame selection. All of the images are magnified
and even the best frames in this sequence were somewhat blurred.

4 Experimental Results

The algorithm was tested with many different video sequences containing mov-
ing objects and motion blur. The sequences we used were recorded freehand
by a couple of different cameras. The consequence of freehand recording was
that the frames were rotated slightly to unpredictable directions and that some
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Table 1. The effect of blur detection to image quality (PSNR)

Sequence With blur detection No blur detection
Example A 27.0 25.0
Example B 29.1 26.8

Fig. 5. Mosaic images created by our algorithm. The cut in the trees in the top image
is real, not a stitching error.

unintentional camera tilt was also present. In other words, the sequences were
taken in very practical conditions. Mosaic results can be seen in Figure 5 and
Figure 6.

The impact of frame selection to the mosaic quality was tested by creating the
same mosaic with blur detection and without it. Corresponding areas from both
mosaics were compared against a blur-free input frame with the standard PSNR
[14] measure. The results can be seen in Table 1 and magnified and cropped
details from both examples are shown in Figure 4.

According to these tests the algorithm produced high-quality results with
very good computational efficiency. On a 3.0 GHz desktop computer running
Matlab 7.1 the execution speed was over 4 frames per second (with frame size
352x288).

We used rather broad strips (34% of the frame width) from frames to construct
the panorama images with manifold projection.
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Fig. 6. A 360 degree panorama constructed by our method. For viewing purposes the
panorama is cut in two pieces.

5 Conclusion

We have presented a stitching algorithm with the novel idea of evaluating the
frames and selecting the best ones for the mosaic. The presented algorithm is
capable of handling moving objects in the video sequence and can correct prob-
lems caused by varying lighting conditions. The method is also computationally
efficient, which makes it attractive for hand-held devices.
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Abstract. Image composition is a frequently-used editing technique.
Existed approaches rarely consider the issue of luminance consistency.
In this paper, an image composition method with salience preservation
is proposed, which focuses on how to achieve the luminance consistency.
Our method includes salience determination, whitepoint correction and
luminance adjustment. Salience depends not only on luminance, but
also on chrominance, an approach fully exploiting the difference of lumi-
nance and chrominance is suggested. A whitepoint correction schema by
aligning the principle color axes is presented. Meanwhile, the luminance
consistency composition is formulated as a nonlinear optimization with
respect to the salience constraint, hence the composition could achieve
the consistent luminance and preserve the appropriate salience.

1 Introduction

Image composition and separation are two kinds of primary image manipulations.
The composition is generally served for putting the different parts of image/images
together to produce a novel image. Quite a few people regard that if all parts are
present, the easy operation like copy and paste is enough to compose them. How-
ever, whether these parts bear the same or similar illumination is hard to guaran-
tee, and the inconsistent lighting causes the composition to be unrealistic. To our
knowledge, there are few literatures discussing this issue. In this paper, we concen-
trate on how to compose images with the consistent luminance.

(a) Patch (b) Background (c) Composition

Fig. 1. Image Composition
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Some definitions, including patch, background and composition, are introduced
in advance for the presentation necessity. Patch is the extracted image used
for composition, for instance, the region bounded by the red contour in Fig.
1(a). Background is the composition target of patch, as the illustration of Fig.
1(b). Composition is the merging result of patch and background . Essentially
speaking, patch is the source of composition, it tells “what” should be composed,
background describes the location, that is, “where” is the composition place, and
composition is the “result” of blending patch and background .

Seamless image composition should gratify three consistencies: perspective,
geometry and illumination. When the patch and background bear the compati-
ble depth and harmonic size, the consistent luminance is critical to final compo-
sition. Most commercial softwares adopt the schema of uniformly adjusting the
patch luminance, which is based on the shifting whitepoint. But even the patch
and background have the same whitepoint, they still can hold the compatible
dynamic range. That is, after the uniform luminance adjusting, the patch might
appear too dim or bright. Hence, to maintain the same whitepoint as well as the
harmonious dynamic range is necessary to image composition.

Keeping the features of a patch is also crucial to image composition. In [5,6] the
gradient is used as the image features, and it is retained during manipulations.
Sun et al [2] proposed the Poisson-based matting method, in which gradient vec-
tor served as the guidance field, and the transparency scalar is extracted under
the Dirichlet boundary condition. However, in image composition, directly spec-
ifying the surrounding luminance via Dirichlet boundary condition may produce
unfavorable results when the luminance of the patch is very discrepant with the
one of the background. In the paper the luminance of background is exploited for
adjusting the one of patch. Additionally, Fattal et al [6] suggested an approach
which the image feature is maintained during the dynamic range compression,
our method is an inverse to [6], we adjust the patch’s dynamic range to match
the one of background.

Humans’ eyes can distinguish object not by the absolute luminance and
chrominance, but by the relative ones. Humans’ visual perception depends on
the salience, which describes the exciting location and degree to eye. Gooch et al
[1] presented a method which could transform the color image to gray one with
salience preservation, and the differences of luminance and chrominance between
pixels are utilized to evaluate the salience. We employ the approach of [1] for
measuring the salience contained within the patch. The difference between the
literature [1] and our method is that the goal of literature [1] is to keep as much
feature as possible, while ours is to adjust the dynamic range according to the
salience.

The rest of the paper is organized as follows: in next section we review the re-
lated works. In section 3, we present three subproblems of our approach: salience
determination, adjusting the patch luminance by color axes alignment, lumi-
nance modification with salience preservation. In section 4, we present some
results, and draw our conclusions in the last section.
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2 Related Work

In this section the issues, including the gradient domain manipulation, dynamic
range modulation and salience evaluation, are briefly reviewed.

The poisson PDE is the widely-used approach to perform the image compo-
sition. However, it is difficult to pleasingly handle two kinds of composition: the
patch with large size, the existence of outstanding difference in chrominance and
luminance between the patch and background.

Gradient is an important image feature, which is exploited for many image
manipulations. Levin [3] proposed an image stitching approach, in which the
similarity based on the gradient between the input and stitched images is con-
structed, and used for stitching. As we know, the same gradients don’t mean
the same illuminations. When the distinct luminance difference exists in images,
only depending upon the gradient is hard to achieve the pleasing effect.

Maintaining the appropriate dynamic range between the patch and the back-
ground is necessary for image composition. The taken images of the same object
under different illumination appear different dynamic range. Therefore, by mod-
ulation of dynamic range, the same patch could be placed into the different
illumination background. Existing methods [7,9] are focus on how to compress
the dynamic range of image so as to display it on displaying devices with lim-
ited dynamic range, and simultaneously preserve the significant cues, while we
modify the dynamic range of patch for bearing the apparent visual cues.

Salience depends on the chrominance and luminance besides the dynamic
range. The conventional conversion from color image to gray image is uniformly
mapping the dynamic range, and easily causes the loss of salience. Gooch et al [1]
proposed a method for efficiently measuring the salience, which fully take advan-
tages of the difference of chrominance and luminance. Meanwhile, since a signed
color distance based on salience is constructed, the visual cues is significantly
preserved in Gooch’s demonstrations.

3 Image Composition with Luminance Consistency

3.1 Salience Determination

The salience expresses the conspicuity which most excites the eyes’ attention
[11,12]. The salience map is a scalar field which describes all pixels’ salience.
The salience of the patch and the background are different, and the inharmonic
luminance between them further magnifies the salience difference, consequently
the composition gives rise to the unrealistic perception. In this paper, the patch’s
salience is used for achieving the consistent composition.

CIE La∗b∗ color space is adopted by lots of image manipulations for its strong
separating capability between color luminance and chrominance, in which the
chrominance plane is composed by the orthogonal a∗ and b∗ axes. In La∗b∗ color
space, luminance has little correlation with chrominance. No matter which kind
of color space is employed, the color difference need to be evaluated firstly. Be-
sides the conventional color distance estimation, Rubner et al [8] proposed the
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EMD (Earth Mover’s Distance) to measure the dissimilarity of two images, which
allows for partial matches and could reflect the perceptual distance (ground dis-
tance) to some extent. The salience in [1] is significantly preserved in transform-
ing the color image to gray one. Salience more corresponds with the perception
than EMD, hence it is exploited in the paper.

Salience is related to illuminance and chrominance. For any two pixels r and
s, let ΔLrs be their luminance difference (Lr − Ls), ΔArs and ΔBrs separately
be the difference of a∗ and b∗ channels, and ΔCrs be the chrominance difference
(ΔArs, ΔBrs). Gooch [1] introduced the parameter θ for signifying the chromi-
nance variation towards lightening or darkening, and the chrominance plane is
divided into two parts along the perpendicular direction to θ, different θ denotes
different chrominance alteration. Most importantly, Gooch suggested a crite-
ria to weight the salience embedded within the image, which is adopted in our
approach.

δ(α, θ)rs=

⎧⎪⎨⎪⎩
ΔLrs if |ΔLrs|>crunch(‖−−→ΔCrs‖)
crunch(‖−−→ΔCrs‖) if

−−→
ΔCrs ·−→υθ ≥ 0

crunch(−‖−−→ΔCrs‖) otherwise

(1)

Where −→νθ = (cos θ, sin θ), and crunch is the hyperbolic crunch function, in which
small values are preserved but large ones approach the given threshold α. Eq. (1)
presents the salience evaluation by the luminance and chrominance differences.
And it is consistent with the visual experience of human, in which the salience
depends not only on the luminance, but also on the chrominance.

Ar =
∑
s

δrs (2)

The salience sum defined by Eq. (2) reflects the global salience, which essen-
tially is the affinity referred in [10].

(a) Original Image (b) Salience (c) Colorbar

Fig. 2. Salience

Fig. 2(a) shows the patch used in this paper. The evaluated salience map by
Eq. (1) and Eq. (2) and the used colorbar are displayed in Fig. 2(b) and 2(c),
respectively. It is obvious that the salience map depends on the luminance and
chrominance together. Meanwhile, it corresponds to visual cues.
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3.2 Color Axes Alignment

The patch and the background are often taken under the different illumination,
hence they have the different white point. White point somewhat reflects the
color distribution, which is determined by the principle color axes. The approach
of aligning the principle color axes between the patch and the background is
exploited for adjusting the chrominance of patch. And the modified patch is
used for further adjusting in the following section.

Let Cp and Cb be the color matrix of patch and background, Cc be the color
matrix of the patch after composition. The principle color axes of Cp, Cc and
Cb are evaluated by SVD method. That is, Cp = UpSpV

T
p , Cc = UcScV

T
c and

Cb = UbSbV
T
b , where Sp, Sc and Sb denote the principle color axes of Cp, Cc and

Cb, respectively. In fact, Sc is equivalent to Sb, hence the principle color axes of

(a) (b)

(c) (d)
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a

bc

d

(e)

Fig. 3. Color Axes Alignment

Cc = UcScV
T
c is replaced by Sb for adjusting the white point of the patch, this

is, Cc = UcSbV
T
c .

In Fig. 3(e), four pink rectangles, labelled by letters a, b, c and d, serve as dif-
ferent background images to correct the white point of patch (Fig. 2(a)), and the
corresponding results are showed in Fig. 3(a), 3(b), 3(c) and 3(d), respectively.
For the same patch, when the different background is employed for correcting
the patch’s white point, the patch shows the different chrominance.

3.3 Luminance Adjustment

Luminance adjustment is to cause the patch to bear the salience. After the align-
ment of principle color axes, the chrominance of the patch and the background
has been very similar. However, the patch is still lack of salience. In this section,
a salience preservation method is presented, which is accomplished by modifying
the luminance of patch. The modification involves two aspects: local and global.
Local adjustment is referred to the operation within the current and neighbor-
ing pixels, while the global one is concerned with the manipulation among the
current and non-neighboring pixels.

Luminance adjustment within the gradient domain easily produce the blurry
effect, hence the salience is not well preserved. In [4,13,14], the optimization
method is employed, which could achieve better effects and maintain the fine
details, therefore in this paper the luminance adjusting is also based on the
optimization approach.
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(a) (b) (c)

(d) Poisson (e) Photoshop (f) Our Method

Fig. 4. Composition Compare

Let Ω be the pixel set of patch, (r, s) be a pair of pixels, which r and s may be
adjacent, or non-adjacent. The luminance adjustment with salience constraint is
formulated as that.
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min f(L)
L

=
∑

(r,s)∈Ω

((Lr − Ls)− ωδrs)
2 (3)

where Lr and Ls denote the luminance of pixel r and s, respectively. δrs is the
evaluated salience in section 3.1. ω(0 ≤ ω ≤ 1) is the adjustable scalar of salience
holding degree. Higher ω is able to preserve stronger salience, while lower ω is
capable of keeping weaker salience. If ω is zero, the composition degenerates to
the naive “copy” and “paste” operations.

Luminance adjustment is performed within the whole patch.

4 Results

In Fig. (4), three groups of results are demonstrated, which are composed by the
Fig. 2(a) with the Fig. 4(a), 4(b) and 4(c), respectively. Each group compares
the composition of Poisson [5], Photoshop and our method, which are orderly
illustrated in the first, second and third column of Fig. 4(d), 4(e) and 4(f). From
the comparison, we can notice that the part of Poisson composition appears too
dim or too bright, but the patch is entirely merged into the background. The
composition of Photoshop could not keep the salience, while our composition
result preserve the salience well, while still keep the consistent luminance.

It should be noted that our schema emphasizes the luminance consistency
between the patch and the background, while could maintain the salience of the
patch. Photoshop accomplishes the composition by globally adjusting the patch
luminance, and the final composition depends on the user manipulation skill. Our
schema considers the influence of the background, and the luminance adjustment
is subject to the background luminance as well as salience. Additionally, in the
shown examples Poisson can not generate the pleasing composition, but the
patch is fully merged into the background, while the results from Photoshop
and ours do not fully mix the patch with the background, this issue is solved in
our future investigation.

5 Conclusion

Luminance consistency is an important issue in image composition. Global ad-
justment could not achieve the consistent luminance and preserve the salience.
In this paper a novel image composition method is proposed, which could pre-
serve the patch salience. Different white point between patch and background
influences the composition, hence the white point of patch is corrected by the
method of principle color axes alignment. Meanwhile, the patch luminance is
nonlinearly adjusted with the constraint of salience. Experiments show that our
method could achieve the consistent illumination composition, especially when
the illumination between patch and background is significantly different.

It should be noted that Poisson method could well perform the image compo-
sition when the background luminance around the patch boundary approximates
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to be a constant. Meanwhile, Photoshop is able to achieve the pleasing compo-
sition when the patch and the background have the similar whitepoint.

How to harmonically transmit the luminance along the patch boundary is
solved in our recent work. In future, we would investigate the video composition
with salience preservation.
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Abstract. Shape filters are a family of connected morphological operators that
have been used for filament enhancement in biomedical imaging. They interact
with connected image regions rather than individual pixels, which can either be
removed or retained unmodified. This prevents edge distortion and noise ampli-
fication, a property particularly appreciated in filtering and segmentation. In this
paper we investigate their performance using a generalized notion of connectivity
that is referred to as ”clustering-based connectivity”. We show that we can cap-
ture thin fragmented structures which are filtered out with existing techniques.

1 Introduction

Biomedical data sets often contain curvi-linear, dendritic or other filamentous structures
of interest which are susceptible to acquisition noise. Enhancing these structures can be
of particular importance to certain medical applications and many methods have been
proposed [3]. Some common drawbacks among them is noise amplification and edge
distortion while they can also be computationally expensive.

In mathematical morphology, a family of operators called connected filters has been
developed which interact with regions characterized by some notion of connectivity.
According to these filters, connected regions can either be removed or retained unmod-
ified based on a pre-specified attribute (shape in this case) but new edges cannot emerge.
This edge and therefore shape-preserving property makes connected filters competitive
to existing morphological methods for filament enhancement such as the multi-scale
approach in [11].

The objects targeted are thin, plate-like (Fig. 1) and elongated structures which are
often fragmented at higher gray-levels according to the standard connectivity. We aim
at countering this with a further improvement of the method presented in [11]. This is
by using a more general notion of connectivity termed clustering-based connectivity
[8, 9] which models object clusters as individual connected regions. We demonstrate
our findings and compare them to the existing method using three different 3-D data
sets. In each case we study the parameters which maximize the filter’s performance in
association with the underlying clustering-based connectivity.

Following this section there is a short reference to the concept of connectivity and
connectivity openings complemented by the notion of clustering-based connectivity. In
Section 3 the shape filters and their extensions to gray-scale are presented while in Sec-
tion 4 we discuss their applications to 3-D medical data sets. The work is summarized
with some conclusions in Section 5.
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Fig. 1. 3-D Shape filtering using 26 connectivity: The image on the left illustrates an isosurface
projection of a human head at isolevel 208. Increasing the isolevel to visualize the skull removes
important details. The image on the right illustrates a shape filter enhancing the thin, plate-like
structures comprising the skull and all the noise at an isolevel 96.

2 Theory

2.1 Connectivity Classes and Openings

The set-theoretic notion of connectivity in discrete spaces such as Z
2 describes how

groupings are realized in digital images. Connectivity in mathematical morphology is
given by connectivity classes, a construct defined as:

Definition 1. Let E be an arbitrary (non-empty) set. A family C ⊆ P(E) is called a
connectivity class if it satisfies:

1. ∅ ∈ C and for all x ∈ E, {x} ∈ C ,
2. for any {Ai} ⊆ C for which

⋂
Ai �= ∅ ⇒

⋃
Ai ∈ C

Members of C are called connected sets [8, 9] and Definition 1 means that both the
empty set and singleton sets are connected, and any union of connected sets which have
a non-empty intersection is also connected.

Addressing objects in binary images is often more practical using connected compo-
nents or grains which are connected parts of an object of maximal extend, i.e. they are
connected and not smaller than any other connected part of the same object. Writing
this explicitly, we say that C is a connected component of a binary image X if there is
no set C′ ⊃ C such that C′ ⊆ X and C′ ∈ C.

Connected components are groupings of connected sets containing a certain point
x ∈ E in their intersection. The operator Γx to access them is called a connectivity
opening marked by x and is given by:

Γx(X) =
⋃
{Ai ∈ C | x ∈ Ai and Ai ⊆ X} . (1)
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Furthermore, ∀x /∈ X , Γx(X) = ∅. Connectivity openings are characterized by three
properties; they are anti-extensive, increasing and idempotent operators. For a given set
X each property implies the following:

1. Anti-extensiveness: Γx(X) ⊆ X ,
2. Increasingness: if X ⊆ Y ⇒ Γx(X) ⊆ Γx(Y ),
3. Idempotence : Γx(Γx(X)) = Γx(X).

The operator Γx is explicitly related to a connectivity class C if satisfying the set of
conditions given by Serra [8] (also in [6]) in the following theorem:

Theorem 1. The datum of a connectivity class C on P(E) is equivalent to the family
{Γx | x ∈ E} of openings on x such that:

1. every Γx is an algebraic opening,
2. for all x ∈ E, we have Γx(X) = {x},
3. for all X ⊆ E, x, y ∈ E,Γx(X) and Γy(X) are equal or disjoint,
4. for all X ⊆ E, and all x ∈ E, we have x /∈ X ⇒ Γx(X) = ∅.

Connectivity openings characterize uniquely the connectivity class they are associated
with and there is a one-to-one correspondence between the two.

2.2 Clustering-Based Connectivity

Connected components of X according to C are separated by elements of the back-
ground. If however the distance separating them is smaller than the size of a given
structuring element (SE), it is possible to define a cluster [1,6,9] in a child connectivity
class Cψ, where ψ denotes a structural operator referred to as clustering. Following is a
list summarizing the properties required to define a clustering:

1. ψ is increasing and extensive.
2. ψ(C) ⊆ C.
3. For a family {Xi} in P(E) such that ψ(Xi) ∈ C, ∀ i, and

⋂
i Xi �= ∅ ⇒

ψ(
⋃
Xi) ∈ C.

4. ψ does not create connected components; i.e., if ∀x ∈ C, C = Γx(ψ(X)) ⇒
X ∩ C �= ∅.

5. ψ treats the clusters of X independently; i.e., if ∀x ∈ C, C = Γx(ψ(X)) ⇒
ψ(X ∩ C) = C.

More details on each item are given in [1]. Typically, ψ is either a dilation or a closing
and generates a mask image, called the connectivity mask by expanding X .

Definition 2. Let C be a connectivity class in P(E) and ψ be an increasing and exten-
sive operator on P(E). Then

Cψ = {X ∈ P(E) | ψ(X) ∈ C} (2)

is a clustering-based connectivity class for which C ⊆ Cψ.
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If, for ψ the above five properties hold, and furthermore, ψ(∅) = ∅ and

ψ(X ∩ Γx(ψ(X))) = Γx(ψ(X)), (3)

we have a strong clustering [1].

Definition 3. Let {Γx | x ∈ E} be the connectivity openings associated with C. If ψ
is a strong clustering on P(E), the family of connectivity openings {Γψ

x | x ∈ E}
associated to Cψ are given by

Γψ
x (X) =

{
Γx(ψ(X)) ∩X, if x ∈ X (4a)

∅, otherwise (4b)

In the following, every time we use the term clustering we mean a strong clustering.

3 Shape Filters

Filtering a binary image based on the attributes of its connected components requires a
criterion T commonly given by:

T (C) = (Attr(C) ≥ λ) (5)

where Attr is some attribute value of a connected component C and λ a pre-selected
threshold. Components that satisfy (5) are retained while the rest are removed. Binary
attribute filters in the anti-extensive case can be categorized to attribute openings or
thinnings depending on whether the attribute criterion is increasing or not. The case
that Attr(C) is non-increasing implies that for any two nested components C1 and C2,

C1 ⊆ C2 � Attr(C1) ≤ Attr(C2), (6)

i.e. their attributes need not be ordered in the same way. Comparing the attribute value
of a connected component against λ is by means of a trivial thinning ΦT on the output
of the connectivity opening of (1). The trivial thinning is an anti-extensive, idempotent
and non-increasing operator defined as ΦT : C → C which for a connected component
C ∈ C yields C if T (C) is true, and ∅ otherwise. Furthermore, ΦT (∅) = ∅. For a binary
image X , the attribute thinning is given by:

ΦT (X) =
⋃

x∈E

ΦT (Γx(X)). (7)

Attribute thinnings sensitive to structures of a given shape are called shape filters.
The filamentous structures that we investigate, are thin elongated structures that are
characterized by a high trace of the moment of inertia tensor I(C) compared to their
volumeV (C). For 3-D data sets, I(C) has a minimum for a sphere and increases rapidly
as the object becomes more elongated [11]. It is defined as:

I(C) =
V (C)

4
+
∑
x∈C

(x− x)2 (8)
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and scales with size to the fifth power whereas the volume scales with the third power
of the size. Therefore the ratio

Attr(C) =
I(C)

V 5/3(C)
(9)

is a purely shape dependent attribute which together with (7) defines a filter sensitive to
elongated shapes.

Connected filters in general rely on some notion of connectivity. In the case of (7)
the term Γx(X) relates the filter to the connectivity class C and the connected compo-
nents it returns are unique. Extending connected filters to sets characterized by second-
generation connectivity is by replacing the connectivity opening with the associated
operator. For clustering-based connectivity this is Γψ

x .
The cases in which the attribute criterion of a filter is increasing, like the volume

of a 3-D connected component V (C), extend to gray-scale trivially [4, 5] based on the
principle of threshold superposition [2]. For the non-increasing, translation and shift
invariant shape descriptor of (9), gray-scale attribute filters based on either type of con-
nectivity can be computed efficiently using the subtractive filtering rule [10]. This is
a non-pruning, tree-based filtering strategy in which if a tree node (corresponding to a
connected component of the thresholded image at level h) is reduced in gray-scale, its
descendants are lower by the same amount. It is realized on a tree structure for second-
generation connectivity representation termed the Dual-Input Max-Tree algorithm that
is based on [7] and extended details can be found in [4,5]. The experiments that follow
are based on this arrangement.

4 Experiments

In this section we experiment with the 3-D shape filter discussed in Section 3, using
clustering-based connectivity. In this first approach to non-linear volumetric filtering
using this specific type of second-generation connectivity, the objective is to enhance
and extract filamentous details from a number of noisy biomedical data sets. The present
study investigates the factors that affect the performance of the proposed filter. We iden-
tify five critical parameters namely: (i) the neighborhood of each volume element in 3-
D, (ii) the size of the structuring element to be used, (iii) the type of clustering operator
ψ, i.e. a dilation or a closing, (iv) the way the attributes are calculated (on X or ψ(X))
and (v) the attribute threshold used with the filter.

The first data set is an isosurface projection of an 8 bit, 256× 256× 256 rotational
b-plane CT-angiogram (CTA) of the arteries of the right half of a human head (Fig. 2).
A contrast agent was used and an aneurysm is present. The volume contains a dense
cloud of low intensity noise centered within the structures of interest. To generate the
connectivity mask we consider the first three parameters listed earlier. For volume sets
it is common to use a 26 neighborhood since a 6 neighborhood often results in ”loosely”
connected components. Masks generated by a dilation expand the original set creating
a number of structures of previously disconnected elements. In noisy backgrounds, this
can result in grouping the noise elements to high attribute structures and create con-
nections with the structures of interest. Using structural closings instead, the unwanted
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Fig. 2. Isosurface projections of a CTA scan containing an aneurysm and the output of the elon-
gation filter based on standard connectivity (both at isolevel 0). The middle row shows the filtered
outputs using a mask based on a dilation and a closing respectively. The bottom row shows the
difference volumes between the filter outputs using clustering-based connectivity based on a clos-
ing vs. a dilation and based on a closing vs. the standard connectivity. Most vessel-like structures
are preserved using a closing-based connectivity.
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connections between small objects tend to break apart while structures merged by wide
bridging regions are maintained. This is illustrated at the middle row of Fig. 2 where the
image on the left shows the response of an elongation filter with λ=3 using a mask based
on a dilation with a cubic SE of size 3 × 3 × 3. The image on the right is the response
of the same filter using a mask by a structural closing instead. It is evident that a dila-
tion even with a relatively small SE merges most of the noise together with the blood
vessels creating a structure with large overall volume and small elongation. Filtering
removes all but certain regions disconnected from the clustered volume. The results can
be compared with the filter response using standard, 26-connectivity - top right image.
The bottom row shows the difference volumes between the filter responses. In the left
image we compare the responses using a closing and a dilation. It can be seen that most
of the structure of interested is lost. The right image shows the difference in the re-
sponse using a closing-based clustering connectivity and the standard connectivity. We
see a number of elongated structures missed by the filter using standard connectivity.
With the closing-based connectivity, these vessel fragments are merged with the overall
structure and hence they are retained.

The second data set shown at the top left image of Fig. 3, is a 256 × 342 × 243,
8-bit confocal microscopy volume of a pyramidal neuron. The noise density here is
not as high as the previous data set, but the filamentous structures (the dendrites in
this case) are fragmented at low levels. Filtering using standard connectivity removes
noise together with a considerable fraction of the dendrites. If the volume is clustered
however, nearby fragments are connected into a single entity with overall elongation
greater than the threshold λ and hence are retained. The top right image shows the result
of an elongation filter with λ=2 using the standard connectivity at a 26 neighborhood.

Creating a mask with a structural closing is often not sufficient to counter the issue
of noise clustering. Noise can be clustered in arbitrary arrangements and along arbitrary
orientations. Two examples are illustrated at the first two images of Fig. 4 where both
clustered arrangements have a similar elongation measure (attributes computed on the
clustered sets are referred to as C-attributes). If the elongation measure is computed
based on the expanded sets as illustrated at the corresponding connectivity masks at
the last two images, the attributes of the two clustered arrangements are separated by
a larger margin that distinguishes easier compact from elongated clusters. Attributes
computed on the expanded sets of the mask are referred to as M-attributes.

The two images of the middle row of Fig. 3 illustrate the filter response with a con-
nectivity mask generated by a structural closing with a cubic SE of size 5 × 5 × 5
and corresponding C- and M-attributes respectively. The difference volumes computed
between the responses with C-attributes, and M-attributes vs. 26-connected filtering,
respectively, are shown at the bottom row. It can be seen that together with a consid-
erable fraction of the dendrites claimed by the filter based on clustering connectivity,
computing M-attributes outperforms the output based C-attributes which fails to deal
with clustered noise effectively. The top first four images are isosurface projections at
level 1 and the last two at level 0.

The last data set is a 256 × 256 × 124, 8-bit, phase contrast magnetic resonance
angiogram (MRA) of a human head. In this experiment we target the blood vessels and
experiment with the size of the SE to be used along ψ in generating the connectivity
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Fig. 3. Isosurface projections of the neuron and the output of the elongation filter based on the
standard connectivity, both at isolevel 1. The middle row illustrates the filter performance by
computing the structure attributes based on the clustered volume and based on the expanded
volume which constitutes the mask. The bottom row shows the difference volumes between the
C-attributes vs. 26-connected filtering, and between the M-attributes vs. 26-connected filtering.
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Fig. 4. The elongation measures of the clustered sets X and Y (first and second image from the
left) are similar if the we compute the C-attributes. The M-attributes instead are computed on
ψ(X) and ψ(Y ) (third and fourth image from the left respectively) and obviously the elongation
of ψ(X) is smaller compared to that of ψ(Y ).

mask. The top left image of Fig. 5 shows the input volume at isolevel 50 (details start
to appear only after this threshold). The top right image and the two at the middle
row (starting from the left) show the responses of an elongation filter with λ = 2 using
standard connectivity, and clustering connectivity based on masks by a 3 × 3 × 3 and
5× 5× 5 cubic SE respectively (at isolevel 5). The filter uses M-attributes and from the
difference volumes between the responses of the filter using clustering connectivity
with 33-based mask vs. standard connectivity and with 53-based mask vs. standard
connectivity, it can be seen that both deal relatively well with clustered noise (isolevel
1) and they both capture vessel fragments but at a varying detail. To examine their in-
between differences we also compute the difference volume between the output with
33-based mask vs. 53-based mask and the reverse (Fig. 6). The left image illustrates
that with an increasing size of SE, the overall signal intensity in the vessels is reduced,
though there is no distortion. On the other hand as the size of the SE increases the
number of fragments captured increases as well, as shown in the righthand image. This
also contributes to some additional clustered noise. In general the size of the SE can
only be determined by the amount of detail required and a quantitative evaluation is
only possible given the ground truth.

5 Discussion

In this paper we compared the performance of connected filters for filament enhance-
ment, based on classical connectivity and clustering-based connectivity. From the dif-
ference volumes produced in the previous section it can be seen that the 3-D shape filter,
sensitive to elongated structures, captures filamentous details in greater accuracy when
dependent upon an underlying clustering-based connectivity. This is because fragments
of the filamentous structures are clustered with their original body, contributing to an
overall elongation attribute greater than their own if treated separately.

The parameters influencing the performance of the filter have also been studied and
we demonstrated how each one affects the filter response and in what way. A compari-
son with different elongation thresholds has not been carried out since it is obvious that
as the value of λ increases the more elements will be filtered out. This can be useful
for capturing highly elongated structures. In the case of blood vessels the handling of
each vessel separately involves a different type of second-generation connectivity called
contraction-based connectivity which is not studied here.

A drawback of filters relying on a clustering-based connectivity is that of noise clus-
tering. We minimize this effect by considering the structure attributes based on the
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Fig. 5. Isosurface projection of the MRA at isolevel 50 and the output of the elongation filter
based on the standard connectivity at isolevel 5. The middle row illustrates the filter outputs
using a clustering-based connectivity with masks generated by a structural closing with a cubic
SE of size 3 × 3 × 3 and 5 × 5 × 5 respectively. The bottom row shows the difference volumes
between the two filter outputs compared against the volume generated by the filter based on
standard connectivity.
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Fig. 6. The difference volumes between a filter based on the 33-based mask vs. the 53-based
mask, and the reverse, at isolevel 1

connectivity mask instead of the clustered volume. We are currently working on fur-
ther improvements by creating connectivity masks with adaptive structuring elements
sensitive only to the direction of elongation.
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Abstract. In this paper, we present a novel methodology on document image 
analysis (DIA) which harnesses the mechanism of preattentive visual guidance 
in human vision. Summarizing the psychophysical discoveries on preattentive 
vision, we propose two types of computational simulations of this biological 
process: the visual similarity clustering and visual saliency detection, based on 
which we implement a novel biological plausible way to guide the 
interpretation of document images. Experimental results prove the efficiency of 
these two computational processes, whose outputs can be further utilized by 
other task-oriented DIA applications. 

Keywords: Document image analysis, preattentive visual guidance, texture 
synthesis, dynamic clustering, visual saliency. 

1   Introduction 

Detecting and segmenting semantic contents from document images is a challenging 
task. In recent years, there have been proposed dozens of matured algorithms in the 
document image analysis (DIA) domain, oriented at different application scenarios. 
Some of them are quite successful in automatically converting specific classes of 
paper-based documents, in batches, into their electronic counterparts [1, 2, 3, 4]. 
However, little attention has been paid to the adaptability of the DIA methods while 
they are encountered with constantly switching environments, such as from simple 
layouts to complex layouts, from upright to geometric distorted images, from clean 
background to clutter background etc. As a result, current DIA systems are quite 
specialized for specific class of samples and quite demanding for image quality, 
which greatly reduce the usability of OCR techniques. In this paper, we propose a 
new attempt towards a generic DIA approach adapting to various cases. Our original 
idea is motivated by the mechanism of preattentive visual guidance in human vision. 

In the literature, most DIA methods process binary images by investigating simple 
geometric features. For example, the famous RLSA method [1] discriminates text and 
non-text contents by the distance between foreground pixels and extracts text contents 
after a run-length smearing preprocessing. But unfortunately, RLSA method is 
sensitive to noise, page orientation and font size, making it unsuitable for constructing 
adaptive systems. Another branch of methods, referred to as the connected component 
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aggregation methods [5, 6],  utilize alignment and spacing consistency of text 
components and perform a bottom-up hierarchical reconstruction of document 
layouts. Such bottom-up methods can be well suited for segmenting arbitrary layouts, 
only if the text line aggregation results are reliable. In many cases this is hard to 
achieve by using only geometric features and local merging scheme without any 
global directive. Furthermore, analysis on binary connected components is also 
unreliable in noisy, skewed and irregular document images. Limited by such 
disadvantages, the bottom-up methods are inadequate to discriminate text and non-
text contents robustly. To make full use of image appearance in document analysis, 
some researchers proposed the texture-based methods [7, 8, 9, 10], which model each 
homogeneous region in document images as a texture pattern. By extracting texture 
statistics as features, dynamic or static classifier techniques are applied to classify the 
image pixels as text or non-text. Frequently used texture features include Gabor 
responses [7], morphological masked pixel values [8, 10], wavelet coefficients [9] etc. 
Although the texture-based methods model the visual appearance of different contents 
in document images, the texture features they used are derived from mathematical 
perspectives and hence are not biological plausible. Therefore, it is hard to tell how 
well these texture features can characterize unknown visual patterns, which is an 
important factor to realize adaptability. 

Based on the above observation, we consider a brand-new adaptive DIA solution 
from the biological plausible perspective. Summarizing the latest discoveries in 
psychophysical research on preattentive vision, we propose a novel computational 
model in this paper to simulate the preattentive visual guidance mechanism in human 
vision in document image analysis. The model contains two kinds of computations: 
visual similarity clustering (VSC) and visual saliency detection (VSD). The former 
one simulates the categorical characteristics of preattentive vision in summarizing 
homogeneous regions. And the latter one simulates the visual center-surround 
characteristics to spot salient regions. This two-part information is further combined 
to guide visual search of specific document contents. Initial experimental results show 
that the computation of VSC and VSD results are quite adaptive and highly comple-
mentary, which is helpful for robust segmentation of various document images. 

The rest of the paper will be arranged as follows. In section 2, we introduce our 
computational model for preattentive visual guidance. The implementation of VSC 
and VSD processes is illustrated in details in section 3 and section 4 respectively. 
Experimental results are demonstrated in section 5, followed by the conclusion and 
discussion in section 6. 

2   Computational Model for Preattentive Visual Guidance 

Human vision is highly robust in capturing useful objects out of distracter elements in 
the visual field. Such adaptive power is attributed to the visual guidance mechanism 
deployed in the primary visual cortex. That is, the high-level cognitive functionality is 
not to be executed at every position in the scene. On the contrary, the visual guidance 
mechanism serves as a system bottle-neck to direct the interpretation of the whole 
scene [11]. Until now, most researchers agree that the major work of preattentive 
visual guidance is contributed by low-level neurons, which investigate simple visual 
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properties throughout the scene in very short instant simultaneously [12]. Psycho-
physical experiments have shown that some visual searching task can be finished 
accurately within 200~250 milliseconds, which is too short for serial attention to  
be involved. The visual properties affirmed in such experiments are called pre-
attentive [12]. 
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Fig. 1. Our computational model for preattentive visual guidance in DIA 

In this paper, we notice two types of visual hints that can be discerned in the 
preattentive vision: visual similarity and visual saliency. Mathematical representation 
of the former has been conjectured by Julesz and further proven by psychophysical 
and computational experiments [13, 14, 15]. Also, computational models for the latter 
has also been focused in recent years by Treisman, Ullman, Koch and Itti etc. [11, 16, 
17, 18]. Motivated by these two streams of research efforts, we propose in this paper a 
computational model characterizing the preattentive visual guidance mechanism in 
document image analysis. As shown in figure 1, the input image is first decomposed 
by series of preattentive feature channels. Then these separated feature maps will go 
through two independent processes: visual similarity clustering (VSC) and visual 
saliency detection (VSD). The VSC process categorizes homogeneous regions by 
measuring quantitative visual similarity. On the other hand, the VSD process points 
out salient regions different from their neighbors. Both of these two processes 
compute only preattentive visual properties. In a document image, the VSC results are 
useful in aggregating homogeneous text contents; while the VSD results provides us 
with hints to find out conspicuous titles, separating lines, edges and graphics etc. In 
the following stage called selective attention, which is oriented to specific object 
extraction task, a series of focuses of attention (FOA) will be determined by 
consulting the VSC and VSD results. The final attentive cognition of various 
document contents will be executed in these selective FOAs serially. 
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3   Visual Similarity Clustering 

To discuss the subjective visual similarity perception, we must first find out a 
numerical way to measure it quantitatively. Before the studies on human vision 
system, this problem had no generic solution. The early characteristic features for 
texture were merely proposed according to mathematical convenience or task 
dependant heuristics [19]. Later, physiological research on visual cortex revealed the 
spatial/frequency representation of image in human vision system. Such discovery 
inspired researches to use spatial/frequency localized filters as generic texture feature 
extractors. In 1995, Heeger and Bergen accomplished the first texture synthesis 
experiment by matching the histograms of image pyramids between the synthesized 
and target images [14]. Their experiments reveal that image pairs with closely 
matched histograms also share similar visual appearance. Later, Zhu etc. offered a 
stricter mathematical framework to ensure the convergence of histogram matching 
and further argued that marginal histogram statistics pooled from Gabor filters can 
serve as generic features to characterize various homogeneous textures [15, 20]. 
Based on Zhu’s work, Liu developed the quantitative measurement of visual 
similarity between two image patterns, based on the 2χ -distance of Gabor histogram 

features [19]. His work was applied in texture classification. 
In our work, we are interested to use visual similarity measurement in document 

image segmentation, which is a variant case of texture classification. So the first 
problem is how to characterize visual patterns in the document images by 
representative texture features. And second, the similarity-based segmentation should 
be self-adaptive to various document images. Since the definite texture classes can not 
be statically defined among different document images (even the pattern for text 
contents varies greatly in different pages), the best way to accomplish adaptability is 
through dynamic clustering. Therefore, our major implementation problem in VSC is: 
first, to select a series of representative filters and histogram bins to extract the Gabor 
histogram features from document images; and second, to derive a mathematical 
plausible way to cluster the features so as to obtain adaptive segmentation results. 

To solve the first problem, we must investigate in what scale that the document 
contents will illustrate homogeneous visual textures. Generally speaking, font sizes of 
the perceptible text contents in document images vary from 2 pts to 32 pts (we regard 
that characters with sizes bigger than 32 pts can not be treated as homogeneous 
texture). In the very low resolution, text contents demonstrate line pattern and 
character blob pattern. With increasing resolution, the character stroke pattern will 
gradually emerge. These three patterns can be well captured by Gabor and Laplacian 
of Gaussian filters. Therefore, we first prepare a bank of filters containing Gabor 
filters (denoted as G) and Laplacian of Gaussian filters (denoted as LoG) covering 
consecutive scales and orientations in frequency domain. The mathematical 
expressions of these two kinds of filters are as follows: 

2 2
2
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( , | , ) exp{ [4( cos sin ) ( sin cos ) ]}

2
2
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To capture the three typical texture patterns of text contents from 2 pts to 32 pts, 
we choose parameters 2,2,4,6,8,10 and =0 ,45 ,90 ,135T θ= , which results in a 
filter bank consisting 24 G filters (only use cosine components) and 6 LoG filters. 
To further select representative filters from these 30 filters, a visual similarity testing 
experiment is performed. That is, we choose a sufficient set from , with whose 
histograms we can fully characterize the visual appearance of the referenced image 
Iobs, which we pick up as typical visual pattern from document images. The filter 
selection process is presented in [21], in which we followed the Minimax entropy 
principle and used Markov Chain Monte Carlo sampling [15] to match the histograms 
between the synthesized and original images. By matching the histograms from more 
and more filter channels, the synthesized image become more and more similar to the 
referenced image. The experiment finally selects the following 13 filters to form the 
representative filter set : 

1. G(T, ), T = 2, 4, and = 0º, 45º, 90º, 135º; 
2. G(T, ), T = 6, and = 0º, 90º; 
3. LoG(T), T = 2, 4, 6. 

 

Fig. 2. GHF of different texture patterns, with the concatenated histograms of all 13 channels 
and the magnified histograms in two particular channels (G(4,90º) and LoG(4)) 

To make the histograms extracted from different images comparable, we normalize 
the responses of each filtered image to the fixed range [-1, 1] before pooling 
histograms. In our experiment, the GHF vector Hυ for the site υ  is calculated within 

a neighboring window ofυ , where the window size we choose is 32. With 11 bins of 
histograms extracted from each filter channel, we construct a 143-dim Gabor 
histogram feature (GHF) vector for each site. Figure 3 compares the GHF vectors of 
different visual patterns extracted from document images. 
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For the second problem, we define the distance metric between two GHF  
vectors as their Euclidian distance, just for the convenience to perform K-means 
clustering. 

 1
2

1 2 1 2

2( ) ( )( , ) ( ( ) )i i

i

D H H h hυ υ υ υ= −  (3)  

Another clustering parameter, that is, the initial class number K, is set to 4 in our 
experiment. This is empirically determined by observing that there are usually 4 types 
of contents in a document image: text, photograph, line drawing and white space. And 
also experiments indicate that setting K>4 will cause the homogeneous class 
corresponding to text contents to split into smaller classes. Therefore by setting K=4 
initially we can conserve the homogeneity of text regions. As for the simple plain 
documents which probably contain less than 4 distinctive classes of visual patterns, 
we allow the clustering procedure to drop the empty classes. 

After setting the distance measurement and initial state, the K-means clustering is 
ready to run. The clustered results are dynamic, depending on the specific contents of 
different documents. Therefore, we need to identify which class in the clustered 
results belongs to the text contents. To our empirical observation, texture features in 
the main body text contents usually demonstrate higher energy in the Gabor filter 
responses. Therefore, we calculate the following texture energy for each GHF vector 
as follows: 

| |
( )

1

i

i

E Eυ υ
=

=  (4) 

Here, ( )iEυ  refers to the variance of filter responses in the ith channel, which can be 

computed through the histogram. Then the texture energy kE for the whole class of 

GHF vectors can be further estimated by counting the most frequent texture energy. 
By this means we can sort the K classes in descending order according to their texture 
energies (i.e., class 1 has the maximal texture energy). We select class 1 and class 2 as 
the candidate classes for text contents. In our experiments, for most tested document 
images, text contents occupy one of these two clustered classes. 

4   Visual Saliency Detection 

Compared with the top-down categorical VSC process, the VSD process undertakes a 
bottom-up investigation on how different a site is from its neighbors. Here we use the 
computational architecture proposed by Itti [18] to obtain a salient map for the input 
image. In [18], Itti computed saliency in three independent feature channels: the color 
channel, the intensity channel and the orientation channel. In our work, since the 
similarity of Gabor orientation features has already been investigated in the VSC 
process, we carry out visual saliency detection in only two feature channels: the color 
and the intensity channels (for gray scale image, only intensity channel is calculated). 
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The input image is first decomposed into one intensity and four color channels. Then 
multi-scale representation for each channel is constructed, using a Gaussian pyramid. 
The center-surround difference is calculated between different coarse scales 
(surrounded values) and fine scales (centered values), resulting in 12 feature maps in 
the color channel and 6 feature maps in the intensity channel. Finally, the color salient 
map, the intensity salient map and the overall salient map are calculated respectively 
by normalizing and combining these feature maps. Computational details can be 
found in [18]. 

5   Experimental Results 

We perform several groups of experiments to test the adaptability of VSC and VSD in 
computing homogeneous regions and salient regions among various document 
images. These two kinds of information can be further utilized by other task-oriented 
modules to detect specific contents in document images. For example, one who is 
interested in extracting text lines can access the homogeneous regions in the VSC 
results. Another looking for titles, separating lines, edges and graphics etc., can access 
the salient regions in the VSD results. In the VSC process, it is obvious that with 
more semantic homogeneous contents categorized into the same class, the more 
layout segmentation can benefit from it. On the other hand, the more the salient 
regions are independent of the homogenous regions, the easier it is to find out the 
salient objects. Therefore, we pay attention to two criteria in evaluating the 
performance of our visual preattentive guidance computation: the region homogeneity 
in VSC and the complementary extent between the VSC and VSD results. 

The first experiment is for complex newspaper images. Figure 3 shows the 
clustered results by VSC for 3 newspaper images scanned in 150 dpi. 4-class 
segmentation results are obtained for each sample, from which we can see that: the 
main body text contents in each sample occupy a major visual class stably. In the 
English sample, they belong to class 2 (dark gray); while in the Chinese samples, they 
belong to class 1 (black). It can be easily explained that when there is strong periodic 
texture pattern in the image (e.g., the halftone image in the English sample), text 
contents will not occupy the first class. Otherwise, they will occupy the first class. In 
figure 4, the pixels clustered as text contents are picked up separately to see the 
homogeneity of the clustered results particularly. As we see, the majority of text 
contents are successfully segmented. It should be mentioned that we have not added 
any spatial continuity constraints in the clustering; while the homogeneity is still 
satisfying, which indicate that our GHF features can really reflect visual similarity. It 
is interesting to see that the halftone patterns in the photographs also make them stand 
out as a unique visual class. 

The second experiment is for simple plain document images. The experiment is 
repeated in both up-right and skewed samples to test the adaptability of VSC to 
skewness. Figure 5 shows the clustered results. Notice that they have been reduced to 
include only 2 classes. 
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Fig. 3. Segmentation results in the first experiment, using K=4. The 4 pixel values: black, dark 
gray, light gray and white represent 4 clustered classes, sorted by their texture energy from high 
to low. (a) Segmentation result of a complex Chinese newspaper, with the body text occupying 
class 1. (b) Segmentation result of an English newspaper, with the body text occupying class 2. 
(c) Segmentation result of another Chinese newspaper, less complex, with the body text 
occupying class 1. 

The third experiment compares the VSC and VSD results in the same image. 
Figure 6a shows the salient map calculated for a newspaper image. The gray scale 
values in it indicate the salient values detected in these pixels. Figure 6b shows a 
thresholded version of 7a. We can see that the main titles, separating lines, edges and 
boundaries pop out in the results. As compared with the homogenous regions shown 
in figure 6c (i.e., the same results in figure 5c), the VSD results are highly 
complementary to the VSC results and they reflect the discontinuous changes in the 
image. 
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(a) (b) (c) 

   
Fig. 4. Text contents extracted from the segmentation results in figure 4 

 
                  (a)       (b)           (c)            (d) 

    
Fig. 5. Segmentation results for simple plain documents. The algorithm automatically reduced 
class number K to 2 I n order to adapt the simple contents. 

   
(a) (b) (c) 

Fig. 6. Comparison of the VSD and VSC results. (a) salient map calculated by VSD; (b) the 
thresholded version of (a); (c) homogeneous text contents segmented from VSC results. 
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6   Conclusion and Future Work 

We have demonstrated a computational method to implement preattentive visual 
guidance in document image analysis. Our ultimate goal is to achieve real adaptability 
for target segmentation in any type of document samples. The VSC computation is 
thus proposed to categorize similar contents in the image. And the VSD computation 
is introduced to simulate the detection of salient regions. Both of these two processes 
are proposed based on the current discovery from psychophysics experiments. Initial 
experiments show that the VSC process is able to cluster the image contents into 
visual homogenous regions, especially for the main body text contents. The clustered 
results are quite stable in distinctively different document samples. And the VSD 
results reveal the salient regions in document images, corresponding to major titles, 
separating lines and edges etc. Both results can be further utilized in a specific DIA 
task to extract and interpret different types of semantic contents. Being undertaken in 
a data-driven manner, these two processes both have the inherent potential to 
implement adaptability and the experimental results also support this fact. 

Our future work will focus on two problems. The first is to develop more efficient 
visual similarity clustering algorithm. Since the current normalization method in VSC 
tends to diminish the deference between histograms, better normalization method and 
distance metric are needed to improve the numerical characterization of visual 
similarity. The second is to add more user-driven heuristic after the preattentive stage 
to extract task-oriented contents from the VSC and VSD results, with which the 
preattentive visual guidance can really benefit the adaptability of document image 
analysis. 
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Abstract. In this paper, we present efficient and simple image segmentations
based on the solution of two separate Eikonal equations, each originating from
a different region. Distance functions from the interior and exterior regions are
computed, and final segmentation labels are determined by a competition crite-
rion between the distance functions. We also consider applying a diffusion partial
differential equation (PDE) based method to propagate information in a manner
inspired by the information propagation feature of the Eikonal equation. Experi-
mental results are presented in a particular medical image segmentation applica-
tion, and demonstrate the proposed methods.

1 Introduction

Content extraction from images usually relies on a segmentation, i.e., extraction of the
borders of target structures. Accurate segmentation may be hampered by noise in the
image acquisition, the complexity of the arrangement of the target objects with respect
to the surrounding structures, and the computational cost of the algorithm used. In this
study, a new algorithm to segment the boundary of a closed structure is developed based
on ideas of propagation and diffusion of image information. Our work is motivated
by anatomical structures such as lymph nodes, (see Figure 1), whose extraction from
medical images, such as Magnetic Resonance (MR) images, is an important task for
subsequent quantitative analysis. Clinically useful segmentations should be fast and
accurate, so that quick and precise interpretation of the anatomical structures can be
obtained.

Segmentation methods based on information propagation have been performed us-
ing the fast marching algorithm. For example, in Deschamps et al. [1], simultaneous
propagations are performed to estimate two potentials between two points to extract a
path in a vessel. The minimal paths between two points p0 and p1 are computed by si-
multaneous propagations from the two points until they meet at a common point p2, and
by back-propagating from p2 to both p0 and p1, then joining the two paths. They also
described an approach to build a path given only a starting point and a given path length
to reach. While this approach is suitable for the extraction of tubular structures, our goal
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c© Springer-Verlag Berlin Heidelberg 2006



340 B. Peny et al.

is different. Although we also make use of two distance maps, we do not need to extract
a minimal path through a back-propagation from the point where the two fronts meet,
but we seek for the result of the competition of the two fronts in reaching a given point.
Similarly, Cohen et al. [2,3] used a fast marching algorithm for segmenting tubular
structures like vessels, incorporating geodesic distance of the points on the propagation
path to the seed point as a freezing measure. Similarly, a multiphase fast marching al-
gorithm was utilized in [4], where all distinct regions are propagated simultaneously
according to their respective velocities, which depend on posterior probability densities
of each region.

There are also similarities between watershed algorithms and the fast marching algo-
rithms. The Eikonal PDE has been used in [5] for modeling watershed segmentation that
is constructed by flooding the gradient image. Different segmentation results have been
obtained by changing the flooding criteria [6] such as constant height, area or volume.
A form of diffusion has been used for image segmentation in [7] by a random-walker
concept. This technique differs from our approach in that it was introduced in a graph
theoretic framework [8], and formulated as a linear system of equations solved through
conjugate gradients.

In this paper we present four methods. The first three methods compute distance
functions treating image edge or image gradient information as locally slower to prop-
agate information or as high local distance. These three methods employ the Eikonal
equation and thus can be computed rapidly by the fast marching algorithm. Inspired by
the same distance ideas, we also present a fourth method based on diffusion PDEs, in
which edge information is propagated from the interior or exterior of the structure.

Fig. 1. Example of an MR image with a region of interest (ROI) around a lymph node

2 Segmentation by Interior/Exterior Distance Competition

The first step in the proposed segmentation method is to compute two distance func-
tions. One distance function represents the distance of any point in the image domain
to the nearest of a set of prespecified points interior to the structure and the other dis-
tance function represents the distance of any point in the image domain to the nearest
of a set of prespecified points exterior to the structure. We will defer choice of the
prespecified interior and exterior points until later, but for now we will state that they
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should respectively be clearly inside and outside the boundaries of the target structure.
For instance a rectangular region of interest (ROI), completely surrounding the desired
structure, whose borders are exterior points and center are interior points, can be se-
lected. The local distance depends on the image intensity variation of the region that
we want to segment. Regions that are more likely to be edges should be interpreted as
regions in which distance information propagates more slowly. This idea will be imple-
mented in several different ways. In the first, we weight the distance function directly
on the binary map resulting from an edge detection on the image, for instance using a
Canny edge detector. Edges in the edge map correspond to obstacles when the distance
function is computed. The second method generalizes the first method, by defining the
local distance as the gradient magnitude of the image. The third method combines the
different weights on the distance function. The fourth method in inspired by distance
propagation ideas and uses a diffusion PDE as will be explained.

The first three methods comprise a propagation of information using a weighted
shortest distance, they can be implemented by solving an Eikonal PDE. To achieve fast
computation of the two different distance functions, we used the fast marching algo-
rithm. Our fourth idea requires a diffusion PDE as we will explain. The next subsec-
tions describe briefly the fast marching algorithm, how to adapt it to fit our ideas, and
the diffusion method.

2.1 Method

The fast marching algorithm [9] is designed to compute the position of a propagating
front with position varying speed given by the function F > 0. Let a function D : Ω ∈
R

n −→ R describe the arrival time of the front when it crosses each pixel (x,y), where
n = 2 for an image function, n = 3 for an image volume. Fast marching solves the
Eikonal equation which can be represented by

|∇D| = F, D = 0 on G

where G is a prespecified subset of R
n.

If the speed function F is constant, then D represents the distance function to G. In
our segmentation method the speed of the motion will be selected differently based on
intensity variation as explained previously.

Our method proceeds as follows:

1. Compute the two distance functions: one for the interior by setting G = Di and the
other for the exterior by setting G = De needed in our segmentation algorithm.

2. Set up the image information propagation algorithm either through a propagation
operation with fast marching or through a diffusion equation. The starting points
set are the set of seeds, which we are sure that they belong to the background
that surrounds the structure to segment (Known points). These are the boundary
conditions for both the Eikonal PDE and the diffusion PDE.
The Eikonal PDE:

– In fast marching [9], after we label the Known pixels, pixels that are neighbors
of the already Known points are labeled as Trial. All other image pixels are
labeled as Far points.
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– Exterior: Run the fast marching algorithm by computing the weighted L1 dis-
tances , where the specific weights will be explained in the next subsections.
The value of each pixel then corresponds to the distance to the exterior set and
is denoted as De.

– Interior: Run the fast marching a second time for the interior set to obtain dis-
tance function Di. The method starts this time with interior points as Known
set.

Similarly, the diffusion PDE is solved twice with two different set of boundary
conditions to obtain two distance functions Di and De at its steady state solution.

3. The region interior is considered the set of points where the interior distance is less
than the exterior distance, i.e., {(x, y) : Di(x, y) < De(x, y)}

The different weights of the distance function as well as the diffusion are explained
in the following sub-sections.

2.2 Fast Marching with Edge Map

Our first approach is to compute the distance function where edge pixels represent
points where the information is propagated slowly in the shortest path between a pixel
and the starting set of points, G. The Eikonal equation then transforms to:

|∇D| = (1 + Edge Map) . (1)

Any edge detection algorithm with binary output can be used to obtain the edge map.
In our results, we use a Canny edge detector. In the fast marching algorithm the edge
pixels are marked as having infinity as their initial distance and are labeled as known. In
this way they will not be processed during the distance function computation. The first
column in Figure 2 depicts the two distance functions computed by starting from both
the interior and the exterior seed points.

2.3 Fast Marching with Gradient

In the second method, we treat regions with high gradient magnitude as having high
local distance, and regions with low gradient magnitude as having low local distance.
The Eikonal equation then takes the form:

|∇D| = (|∇I|) (2)

The second column in Figure 2 depicts the two distance functions computed in this
way.

2.4 Diffusion Equation

The linear heat equation on a function D is given by dD
dt = ΔD with initial conditions

D(x, y)|t=0 = D0(x, y). A finite difference approximation to this equation for n = 2,
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Fig. 2. Rows 1. Exterior distance; 2. Interior distance function. Columns 1. with edge map; 2.
with gradient; 3. with diffusion.

that is obtained by implementing a forward Euler numerical scheme with the maximally
stable time step is,

D(x, y) =
1
4
D(x + 1, y) +

1
4
D(x− 1, y)

+
1
4
D(x, y − 1) +

1
4
D(x, y + 1) , (3)

hence diffusing edge information from the boundaries towards the non-boundary re-
gions.

Inspired by the Eikonal equation and fast marching techniques, where we propagate
the information from the boundaries or the seeds of the domain Ω towards unlabeled
points, diffusion equations can also be utilized for segmentation with a similar twist
for creating two smooth distance functions for the interior seeds and the exterior seeds.
To introduce image dependent terms to the diffusion equation, our intuition is that the
diffusion takes the path of least resistance, that is the path where the one-sided image
gradient in a given direction is low. The definition of the four one-sided image gradients
or sub-gradients around a pixel are given by

I−
x (x, y) = I(x, y) − I(x − 1, y), I+

x (x, y) = I(x + 1, y) − I(x, y)

I−
y (x, y) = I(x, y) − I(x, y − 1), I+

y (x, y) = I(x, y + 1) − I(x, y)

We can create an image-based discrete diffusion equation by introducing the image-
driven weights to the discrete Laplacian equation as follows,

D(x, y) =
wE∑
wi

D(x + 1, y) +
wW∑
wi

D(x− 1, y)

+
wN∑
wi

D(x, y − 1) +
wS∑
wi

D(x, y + 1), (4)

wE = e−β(I+
x )2 , wW = e−β(I−

x )2 ,

wN = e−β(I−
y )2 , wS = e−β(I−

y )2 , i ∈ {E,W,N, S}.

Hence, using the set of seeds for the exterior region and the interior region as two
distinct set of boundary conditions, we estimate the two distance functions De and Di
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corresponding to the exterior and interior after a set amount of diffusion time. Similar
to our approach using Eikonal equation, we form the segmentation map by taking the
minimum of the distance functions at each point. The last column in Figure 2 depicts
the resulting distance functions estimated by the diffusion method.

This image-weighted diffusion we seek for our distance function D is similar in
spirit but also quite different in the basic idea and the application from the work of
Perona-Malik et al. [10] who used anisotropic diffusion for filtering images respecting
image gradient directions. Using a similar weighted diffusion equation based on image
gradients ∂I/∂t = ∇ · (w(|∇I|)∇I), they actually solve for the image function I not
the distance function D as we do.

2.5 Combined Method

In the second method explained in Section 2.3, which uses the gradient magnitude as the
local distance function, we found some cases where the algorithm leaked. This is partly
explained by the fact that for some interior regions, their edges are quiet weak, so the
gradient is lower as expected. To prevent those leaks and increase robustness, one can
combine the first two methods in Section 2.2 and 2.3. This corresponds to weight the
distance function also by edge information. The method consists of first computation
of the edge map as explained before to result in a binary image of the ROI. This binary
image is then directly added to the gradient image by a factor α. The Eikonal equation
then takes the form:

|∇D| = (|∇I|+ α ∗ E) , (5)

where E is the binary edge map. This will result in increased gradient effects where
there are edges.

The algorithm described is very flexible in that it is possible to have different distance
functions for the foreground and background set of points. This flexibility may help for
segmentation of textured interior regions for example. One can add, to the foreground
distance function, some interior intensity information, which will smooth the local gra-
dient and decrease some texture or noise influence. We do not smooth the background
distance function, because exterior region may include other structures. The idea is to
compute the mean intensity of the foreground set of points, say Imean. The image at
each pixel p will then have a local weight of (I [p]− Imean)2, which we add to the
foreground Eikonal equation by a factor β:

∣∣∇Di
∣∣ = (|∇I|+ α ∗ E + β ∗ (I − Imean)2

)
, (6)

where E is the binary edge map and Imean is the mean intensity of the foreground set
of points.

3 Results and Conclusions

The Eikonal PDE-based approaches presented in this paper, as expected, are very fast.
With the Eikonal PDEs (through fast marching), on a volume of interest of 603, the
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segmentation is completed in less than 0.76 seconds with the 3D algorithm, and in less
than 0.03 seconds if run on single image slice, on a Pentium 4 2.4 GHz processor. With
the diffusion PDE, the segmentation is completed in 1.75 seconds for a 2D implementa-
tion. Although we extended the diffusion approach to 3D as well, the computation times
increased to order of 1 to 2 minutes, therefore, we have not utilized the diffusion-based
approach for the 3D experiments.

Placement of interior and exterior seeds is flexible, and can be done by for instance
a mouse brush. However, we opted a simple mouse drag operation on an image slice
that sets exterior seeds in the form of a 2D rectangular border, then the interior seeds
are automatically set to the set of pixels in the center of this rectangle. This type of 2D
initialization is used in our both 2D and 3D experiments.

In Figure 3, sample segmentation results (labeled as blue contours) are presented for
lymph node structures in MR images under different situations. By analyzing the re-
sults based on the edge map algorithm, in some cases the segmentation is not as precise
as the other methods. The Canny edge detector propagates strong edges and discards
the weak ones, and this leads to either edge noise (row 3, 4 and 5), or “holes” in the
edge map (row 1). This will influence directly the distance functions and in turn the
final segmentation. Still the result can be acceptable as an initialization to a more so-
phisticated segmentation algorithm. Those errors are reduced by our second approach
that uses image gradient in the Eikonal PDE. The distances found are then smoother,
and our segmentation matches the node contour better. In cases where a strong edge
is situated near the node contour, the gradient method may be slightly attracted to it
(rows 1 and 5), and comes from the fact that the gradient is a local intensity variation
characteristic. Despite small incoherences, the results have very good quality. Finally
the diffusion method performs well in strong edge neighborhoods, but easily smears
the information when objects are merged, hence obtains a mid-way distance estimation
(rows 1 and 3 in Fig. 3). This can be explained by the fact that the algorithm is based
on a diffusion of intensity variation around pixels, so merged structures will affect the
segmentation more than other structures in the neighborhood of the node. Finally our
combined method optimizes the results, in difficult nodes. The edge information re-
strains the leak that we could see in the gradient method, for example row 3 and 5 in
Fig. 3.

The results are confirmed by the statistics we found during our tests(see Table 1). We
compute the mean of falsely rejected pixels (Type II error) and falsely accepted pixels
(Type I error) on the resulting contours of the presented four segmentation methods
compared with the manually delineated node contours. The very low value in the Type
I error of the edge map method is explained by its conservative behavior due to binary
edge information onto which the propagating front can get stuck. This implies that we
missed part of the interior area, hence a high value for the Type II error. On the other
hand the Gradient and Diffusion methods are more prone to leaks and have then a higher
Type I error. Finally the combined method is a good compromise between leaking and
conservative error. Of course this appreciation depends on how we want to use the
segmentation and we may prefer one algorithm over another because of its evolution
characteristics. We want to note that the ground truth of each node was drawn using
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Fig. 3. Segmentation Results. Columns(a-f): a. ROI image; b. Node manually delineated; c. Edge
Map Method; d. Gradient Method; e. Diffusion Method, f. Combined Method. (α = 10, β = 1
in Eq.(6)).

Table 1. Error type I and II statistics over the Data Base (≈50 nodes)

Edge Map Method Gradient Method Diffusion Method Combined Method

Type I 0.015 0.247 0.256 0.081
Type II 0.453 0.115 0.189 0.257

a mouse and by our own learned interpretation from clinicians,where the boundaries
should be, this may then cause some result discrepancies due to imprecisions.

Segmentation in 3D through Eikonal PDEs is easily achieved by extending the fast
marching, and the gradient computations to the third dimension. Example results from
two nodes are shown in Fig. 4.
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Fig. 4. 3D Segmentation of anatomic structures based on Eikonal PDEs

Fig. 5. A liver tumor is segmented using the Combined Algorithm on a CT volume

Fig. 6. 3D Segmentation results on CT sequences of Fig. 5

We perform the segmentation also on other type of images, like for example in Fig. 5
on Computed Tomography (CT) sequences to segment a tumor in the liver as shown on
the right. The 3D tumor extraction results are shown in Fig. 6. The Fig. 7 is an example
of a breast mass segmentation in an ultrasound image. As we can see, ultrasound images
have speckle noise, that hampers segmentation, therefore we had to pre-process the
image with high level of smoothing, to reduce it. The results show that our algorithm
works for different types of images and may be tuned for applications other than lymph
node segmentation.

In conclusion, we presented efficient and simple image segmentations based on ideas
from the Eikonal and diffusion PDEs, by computing the distance functions for the
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Fig. 7. A breast mass segmented using the Combined Algorithm on a Ultrasound image

exterior and interior regions, and determining the final segmentation labels by a compe-
tition criterion between the distance functions for reaching a given point. Each method
has its pros and cons, according to the image characteristics, but our experiments
demonstrated that among the presented methods, the combined fast marching method
achieved a better speed vs. accuracy ratio, hence the best utility when compared to the
other three methods.
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Abstract. IRON is a low level operator dedicated to the estimation of single 
and multiple local orientations in images. Previous works have shown that 
IRON is more accurate and more selective than Gabor and Steerable filters, for 
textures corrupted with Gaussian noise. In this paper, we propose two new fea-
tures. The first one is dedicated to the estimation of orientation in images dam-
aged by impulsive noise. The second one applies when images are corrupted 
with an amplitude modulation, such as an inhomogeneous lighting. 

Keywords: Image Processing, Orientation estimation, Anisotropy, Impulse 
noise, Amplitude modulation, IRON. 

1   Introduction 

For three decades, many works have concerned orientation estimation in images. Ap-
plications of orientation estimation concern, for example, texture characterization 
[4][8], anisotropic diffusion [11][13] or image segmentation [2]. 

Orientations have specific characteristics which have to be taken into account in 
the estimation process. First, orientation doesn’t always exist. In case of uniform grey 
level images or isotropic textures, no orientation can be estimated. Besides, when ori-
entation exists, it depends on the scale of analysis. Considering that, generally, statis-
tical techniques can be used to derive large scale orientation from local orientation 
[1][7][2], we will focus on local orientation estimation. 

Differential approaches [5][8] are conventional for local orientation estimation. 
They are based on the local computation of first or second order derivatives of all the 
points of the image. Nevertheless these methods fail if more than one single orienta-
tion appear at a given location. In such a case, the response of derivative operators re-
sults from a non-linear mixture of the true local orientations. 

Other popular methods for orientation estimation are based on a set of oriented fil-
ters. Among them, we can quote Gabor filters [2] [3] and Steerable filters [6] [10]. 
Operator IRON (Isotropic and Recursive Orientation Network) is another example of 
an oriented operator [9]. It consists in an oriented network of parallel lines along 
which we compute a homogeneity feature. The output of this feature indicates the 
confidence in the tested orientation. For such methods, accuracy and selectivity both 
depend on the number of filters and on the size of their computing support. Exercised 
on synthetic and real images, IRON provides more accuracy, noise robustness and se-
lectivity than Gabor or Steerable filters [9]. 
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Fig. 1. Texture corrupted with amplitude modulation (profile function and grey level image). 
Isolevel lines orientation (solid lines), and original orientation (dashed line). 

These methods are generally well suited for multiple local orientation estimation. 
Nevertheless, in some specific circumstances, they are unable to provide accurate and 
robust estimations. More particularly, we have found that when amplitude modulation 
occurs, orientation estimation becomes biased. Figure 1 shows a texture for which the 
sinusoidal profile is modulated with an affine function. This is the kind of images re-
sulting, for example, from an inhomogeneous lighting. In this case, amplitude modu-
lation affects the direction of isolevel curves which are not anymore equal to the per-
ception of the orientation from the uncorrupted image. Therefore, all the classical 
orientation operators will provide us with an erroneous estimation. 

When impulse noise occurs, classical operators also fail to estimate orientations 
properly. Figure 2a shows a directional texture corrupted with salt and pepper noise. 
Figure 2b shows the local orientation estimation in this picture, using Gabor filters. 
The size of the computing support is equivalent the size of the arrows. Indeed, the salt 
and pepper noise affects significantly the orientation estimation. Other estimators 
such as the Steerable Filters or Gradient masks would provide even worse estimations 
at the same scale. 

In this paper, we propose two new homogeneity features for IRON, in order to deal 
with each of these problems. The first one relies on the Robust Homogeneity Function 
(RHF) instead of variance estimation, and will be effective in case of impulse noise. 

 

Fig. 2. Texture corrupted with salt and pepper noise and Gabor orientation estimation 

The second one, based on the identification of local affine modulation parameters, 
solves the case of amplitude modulation. 

In the second part of this paper, we shortly describe IRON, already introduced in 
[9]. In the third part, we propose two new homogeneity features. The first one is dedi-
cated to images corrupted by impulse noise, and the second one to amplitude modu-
lated directional textures. In the fourth part, we present and discuss some results. 
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2   The IRON Orientation Estimator 

2.1   General Presentation 

IRON was introduced in [9]. It is an oriented operator working in the spatial domain. 
Its principle is to compute a homogeneity feature along a network of parallel lines ori-
ented θ . This feature depends on the grey levels of the pixels found on these lines. 

Each network is made of L lines and each line consists in p points. The distance be-
tween each line and the distance between two consecutive points on a line are equal to 
the pitch of the pixel grid. 

The network can be either symmetric or asymmetric. In the first case, the lines lie 
on both sides of the central point. The resulting orientation is estimated modulo π . In 
the second case, the lines lie only on one side of the central point thus providing with 
an orientation modulo 2π . 

 

Fig. 3. IRON symmetric network of 3 lines and 5 points per line 

Since the network points do not always line up on the pixel grid, the grey level val-
ues of the network points (Fig. 3) are computed using a bi-dimensional interpolation.  

In [9], we have proposed an implementation based on the rotation of the image in-
stead of the rotation of the network itself. This implementation reduces the computa-
tional cost of the interpolation stage. 

2.2   Network Tuning 

The parameters L and p act upon both the size and the shape of the network.  
The shape of the network affects its selectivity and also its noise robustness. The 

size of the network depends on the scale of analysis. Increasing the number of lines 
allows increasing noise robustness. However, in the same time the selectivity of our 
operator decreases. 

Another important aspect of IRON is the choice of the homogeneity feature. We 
have already proposed in [9] the following homogeneity feature H. 

( )
1

1

0 , , 1, ,
1 1

, ,
pL

i j i j
j i

H x y v vθ θθ ε
−−

+
= =

= + −  (1) 
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θ,, jiv  is the interpolated grey level on the ith point from the jth line of the network ori-

ented θ  (Fig. 3). 0ε  is a constant close to 0. It avoids the denominator to be null. 

In the general case of an image corrupted with a Gaussian noise, the most appro-
priate function relies on variance estimation.  

( ) ( )

1
2 2

0 , , , ,
1 1 1

1 1
, ,

1

p pL

i j k j
j i k

V x y v v
L p pθ θθ ε

−

= = =

= + −
−

 (2) 

For both features, the recursive implementation described in [9] is possible, thus 
reducing considerably its computational cost. 

In case of more complex textures, for instance, when amplitude modulation or im-
pulse noise occurs, other features can be defined in order to be more suited to the lo-
cal configuration. 

3   New Features for IRON 

3.1   Robust Homogeneity Function 

The classical homogeneity feature for IRON is based on variance estimation, and then 
it is more appropriate in case of a Gaussian noise. We propose here a new feature spe-
cifically designed to tackle impulse noise.  

This new feature relies on a robust estimation of the homogeneity, using two medi-
ans instead of the two means in (2). It consists in computing along each line of the 
network "the median of the deviation from the median grey level". 

For a network of L lines and p points per line, with orientation θ , we obtain the 
Robust Homogeneity Function RHF: 

( ) ( )
1

0 , , , ,
1 11

1
, ,

L p p

i j k j
i kj

RHF x y v v
L M Mθ θθ ε

−

= ==

= + −  (3) 

where M(.) stands for the median operator and θ,, jiv  for the grey level of a point of 

the network. 
Since the value of the RHF feature does not depend on the extreme values of the 

grey levels found on the network, it will be robust to a noise strongly corrupting a 
small number of pixels. 

3.2   Affine Model Identification 

We propose now a second feature for IRON. Its aim is to provide with unbiased ori-
entation estimations when amplitude modulation affects the directional texture. Let 
consider a horizontal directional texture, corresponding to the following intensity 
model: 

( ) ( ) ( )ˆ , .f i j h j g i=  (4) 

where h(j) is a the profile function, and g(i) the modulation function.  
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In order to estimate the orientation θ̂  with IRON, we design a feature which mini-

mizes the quadratic difference ε  between the intensity ( )jif ,  and the model: 

( ) ( ) ( ) ( )( )
( ) ( )∈

−=
θ

θε
Vji

2jifigjh
,

,.
 

(5) 

( )V θ  is the neighborhood used to compute IRON in the direction θ . L, the num-

ber of lines and p, and the number of points per line define the dimensions of this 
neighborhood. 

Let us consider that the modulation is slow compared with the variation of the pro-
file function h. Therefore, this modulation can be assumed to be locally linear and g(i) 
can be approximated by an affine function: ( ) iig .1 α+= . 

The quadratic difference then becomes: 
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The minimum value for ε  is obtained when its derivatives, regarding h and α , are 
null. 
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From these equations we obtain: 
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Let us define K1, K2, K3: 
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Introducing the following terms in (10), we finally obtain: 
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Solving this equation allows us to determine the affine modulation function g and 
profile function f for each of the tested orientations. The minimum value of ( )θε  in-
dicates the orientation for which the model fits the best with the image.  

As this framework has been designed using an affine modulation model, it will ap-
ply perfectly for a texture affected by an illumination gradient (Fig. 1). We will see in 
the result section that it is also effective in case of a non affine modulation, while this 
modulation is slow regarding the amplitude variations of the profile function. 

4   Results and Discussion 

4.1   Impulse Noise 

In order to compare the efficiency of various orientation estimators, we use synthetic 
textures corrupted by a salt and pepper noise. However, any kind of impulse noise could 
be considered as well. The profile function of the synthetic texture is a sine with period 
6 pixels and θ =20° (Fig. 2). For each operator we compute the Mean Angular Devia-
tion (MAD) in order to depict the effect on the noise on the orientation estimation. 

( ) ( )( )
( , )

1 ˆ , , ,
x y

MAD x y x y
N

= Δ Θ Θ  (13) 

where N is the size of the sample (i.e. the number of pixels (x,y) considered), Θ̂ stands 

for the estimated orientation and ( )212121 ,min),( θθπθθθθ −−−=Δ , [ [0,θ π∈ . 

We compute IRON symmetric with the RHF feature and compare the results with 
Gabor (quadrature) filters [2] [3] and Steerable (E4) filters [6] [10]. We test the fol-
lowing sizes for the computing support 11x11 and 21x21. All other parameters for 
Gabor and Steerable Filters are tuned in order to get the best estimations. In each case, 
180 orientations are tested (angular step=1°) for 100 noise realizations, giving the fol-
lowing results. 

Table 1. Angular error MAD for synthetic textures (sine profile function with period 6 pixels 
and θ =20°), corrupted with impulse noise 

MAD  
(degrees) 

Computing  
Support Size 

Noisy Pixels:  
5% 

Noisy Pixels: 
20% 

IRON 11x11 0.6° 4.0° 
(RHF) 21x21 0.0° 0.7° 
Gabor 11x11 16.0° 24.0° 

 21x21 0.6° 1.6° 
Steerable 11x11 3.4° 0.9° 

(E4) 21x21 14.2° 2.7° 
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Using the feature RHF with IRON gives the best estimations whatever the support 
size or the ratio of noisy pixels. Experiments with other textures, noises or computing 
support size confirm these results.  

Figure 4 shows the results obtained with a real fingerprint image corrupted with 
impulse noise. The noisy pixel ratio is 20%. For all filters, computing support size is 
15x15. This size is a fair compromise in order to obtain smooth orientation maps and 
to detect minutiae. All other parameters for Gabor and Steerable Filters are tuned in 
order to get the best estimations. 180 orientations are tested (angular step=1°). 

 

Fig. 4. a: Fingerprint image corrupted with 20% impulse noise; b: Orientation map without 
noise (IRON Variance); c: Color palette; d: Orientation map using IRON RHF;  
e: Orientation map using Gabor filters; f: Orientation map using Steerable E4 filters 

Figure 4b is the reference orientation map, computed applying IRON with its 
original variance feature [9] to the uncorrupted version of Figure 4a. The map is 
smooth everywhere except around minutiae. 

Figure 4d shows that the results obtained with IRON RFH on the corrupted image 
are very close to the reference map even if some errors appear.  

On the opposite, Figure 4e and 4f show that Gabor and the Steerable filters are 
strongly affected by the impulse noise. Theses maps are very irregular and estimation 
error close to 90° are frequent. 

4.2   Amplitude Modulation 

For this experiment, we exercise IRON with affine model identification for three 
kinds of synthetic textures. The profile function of theses textures is a sine with period 
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10 pixels with various orientations. The first texture, called Tex1, is corrupted using 
an affine modulation with the same orientation as the texture in Fig. 1. Tex2 is  
corrupted using the same affine modulation but with a different orientation. Tex3 is 
corrupted using a non affine modulation: ( ) ( )modmod .sin. Ti2A1ig π+=  with 

50mod =T  pixels and 5.0mod =A  (Fig 4a). 

Table 2 shows the MAD values obtained with IRON, Gabor (quadrature) and Steer-
able Filters E4. 

Table 2. Angular error MAD in case of amplitude modulation 

MAD 
(degrees) 

IRON  
(Affine) 

Steerable  
(E4) 

Gabor 

Tex1 0.0° 1.03° 0.28° 

Tex2 0.0° 1.01° 0.22° 

Tex3 0.0° 1.08° 7.23° 

 

Fig. 5. a: Texture (Tex3) (non affine amplitude modulation); b: Gabor Filters; c: Steerable  
Filters (E4); d: IRON Affine; e: Orientation palette 

Unlike Gabor and Steerable filters, our new feature appears to be insensitive to 
amplitude modulation, even in case of a non affine modulation (Fig. 5d).  

Figure 6 shows the results obtained with an ancient engraving image corrupted 
with non affine amplitude modulation. The period of the modulation is 30 pixels, and 
its orientation is 30°. For all filters, computing support size is set to 15x15. All other 
parameters for Gabor and Steerable Filters are tuned in order to get the best estima-
tions. 180 orientations are tested (angular step=1°). 

Figure 6b is the reference orientation map. It is computed applying the classical 
IRON variance feature [9] to the uncorrupted version of figure 6a. Figure 6d depicts 
the results obtained with IRON Affine. As expected, the amplitude modulation does 
not significantly affect the corrupted image.  

On an another hand, Figure 6e and 6f show that Gabor and the Steerable filters are 
strongly influenced by the modulation, even for the thin vertical lines. 
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Fig. 6. a: Engraving image corrupted with amplitude modulation;  b: Orientation map without 
noise (IRON Variance); c: Color palette; d: Orientation map using IRON Affine; e: Orientation 
map using Gabor filters;  f: Orientation map using Steerable E4 filters 

5   Conclusion 

IRON is a general framework for single and multiple local orientation estimation. 
Previous works have shown that IRON is more accurate and selective than classical 
operators, for textures corrupted with Gaussian noise.  

In this paper, we have introduced two new homogeneity features which allow us to 
adapt IRON when impulsive noise or amplitude modulation occurs. Exercised on both 
synthetic and real images, these new features show their efficiency to overcome such 
perturbations. 

Therefore, knowing a priori the kind of perturbation which corrupts the image al-
lows us to choose the appropriate feature and thus enhance the adaptability of the 
IRON network for single and multiple local orientation estimation. 
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financial support. 
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Abstract. This paper presents a new statistical approach for learning
automatic color image correction. The goal is to parameterize color inde-
pendently of illumination and to correct color for changes of illumination.
This is useful in many image processing applications, such as color im-
age segmentation or background subtraction. The motivation for using
a learning approach is to deal with changes of lighting typical of indoor
environments such as home and office. The method is based on learn-
ing color invariants using a modified multi-layer perceptron (MLP). The
MLP is odd-layered and the central bottleneck layer includes two neurons
that estimates the color invariants and one input neuron proportional to
the luminance desired in output of the MLP(luminance being strongly
correlated with illumination). The advantage of the modified MLP over
a classical MLP is better performance and the estimation of invariants to
illumination. Results compare the approach with other color correction
approaches from the literature.

1 Introduction

The apparent color of objects in images depends on the color of the light source(s)
illuminating the scene. That is why changes in illumination cause apparent color
changes in images. Because of this color constancy problem, image processing
algorithms using color, such as color image segmentation or object recognition
algorithms, tend to lack robustness to illumination changes. Such changes occur
frequently in images due to shadows, switching lights on or off, and the variation
of sunlight during the day. To deal with this, a color correction scheme that can
compensate for illumination changes is needed.

Section 2 presents the state of the art for color correction. Section 3 details our
approach, based on learning color correction using a modified MLP. The motiva-
tion for this is discussed, and the learning method is described. The approach is
compared to using a classical MLP for learning color correction. Section 4 shows
experimental results and comparisons.

2 Illumination Correction - State of the Art

Color in images is usually represented by a triband signal, for instance Red-
Green-Blue (RGB). As discussed in the introduction, this signal is sensitive to
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changes in illumination. However, image processing techniques need to be ro-
bust to such changes. Therefore color needs to be parameterized independently
of illumination. This can be done by parameterizing color with one or two pa-
rameters or by correcting the triband signal. A number of color parametrization
and color correction schemes have been described in the literature.

An example of mono-band parametrization of color is hue (from hue-
saturation-value, a.k.a. HSV) [GW01]. Examples of bi-band color parameteri-
zation are chrominances uv (from the YUV color space) [GW01] and the ab
values from the CIE Lab color space [GW01]. These three color representations
(H, uv or ab) are analytical and thus do not require learning. They are fast
pixel-wise methods. They have a limited robustness to illumination changes.

An approach for estimating color invariants from images consists in calculating
ratios of RGB components at a given pixel (R/B) or between neighboring pixels
(such as (Rx1Gx2)/(Gx1Rx2)) [GS99]. This method is also pixel-wise and thus
fast. These invariants are also very robust to illumination changes. However, a
lot of information about the original color signal is lost, and reconstructing the
original signal from these invariants is difficult.

A more sophisticated method has been proposed by [FDL04]. It estimates a
mono-band invariant and is based on a physical model of image formation. It
works globally on the image. In (log(R/B), log(G/B)) color space, an axis invari-
ant to illuminant color is determined by entropy minimisation. The projection of
colors onto a line perpendicular to the invariant axis gives corrected colors. The
approach does not require learning and applies to any type of illuminant, but is
relatively slow. It also requires that the image contains relatively few different
colors and also includes many changes of illumination for each color.

Yet another approach explicitly estimates the color of the illuminant [FCB97].
A neural network estimated the chromaticity of the illuminant from the his-
togram of chromaticity of the image. The method works globally from the whole
image and supposes there is only one illuminant for the entire image.

3 A Statistical Approach to Measure Color Invariants

3.1 A Modified Multi-layer Perceptron: Motivation

The motivation of this work is twofold: (1) to parameterize color compactly
and independently of illumination by two invariants (2) to do it in real-time.
Firstly, two parameters are needed to parameterize color with enough degrees
of freedom to reconstruct a triband signal, given a luminance (or a gray level
signal). Secondly, real-time processing (or more exactly video rate processing, e.g.
processing 25 or 30 images per second) is also necessary for some applications.
This means that methods such as [FCB97] and [FDL04] are out, since they
work on the whole image. To obtain real time performance, pixel-wise processing
is necessary. Hue-Saturation and uv (from YUV) and ab (from the CIE Lab
color space) are three 2-parameter pixel-wise representations of color from the
literature that can be calculated in real-time. However they lack robustness
to illuminations changes. Mathematical and/or physical models could be used
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Fig. 1. A classical MLP with 4 inputs can be used to perform color correction.
(Ri, Gi, Bi) is the input color. (Rd, Gd, Bd) is the desired output color, corresponding
to the same color seen under a different illumination. L is the luminance of the expected
output and is a direct function of the illumination. This fourth input neuron prevents
the mapping to be learnt by the MLP from including one-to-many correspondences and
thus makes it solvable. If the MLP contains a bottleneck layer with 3 neurons, then
these perform a re-parameterization of RGB space. However the three color parameters
estimated by the 3 neurons have no reason to be invariant to illumination.

to find a more robust parameterization [GS99]. They are very general, but lose
information so that the original color signal is difficult to reconstruct from them.
However, in practice, a limited range of illumination sources, and thus a limited
range of illumination changes, are available in indoor environments. It is therefore
interesting to use learning methods to find a color parameterization invariant to
the ”usual” illumination changes. While more restricted in their application, such
parameters should also be more robust. Another interest of learning about typical
illuminants in indoor environments is that it provides global a priori information
about the illuminants, so the approach is not completely local (considering the
fact that Land’s Mondrian experiments showed that illuminant correction cannot
be performed purely locally [LM71]). In practice, the lighting customarily found
in home and offices comes from fluorescent lights, incandescent light bulbs and
natural sunlight from windows. They tend towards the whitish and yellowish
areas of the spectrum (very few bluish or reddish lights). These are the sort of
illuminants that our approach will deal with.

Our learning method of choice has been neural networks and more specifically
multi-layer perceptrons (or MLPs), for their ease of use and adaptability. The
first architecture that comes to mind to estimate a re-parametrization of color
robust to illumination changes is a odd-layered MLP with three input neurons,
three output neurons, and three neurons in its bottleneck layer (plus a bias neu-
ron of course). The 3 neurons of the bottleneck layer would reparameterize color.
Or, if color reparameterization was not desired, and only color correction was
aimed for, a generic MLP with 3 input neurons and 3 output neurons could be
used, and the number of layers and neurons per hidden layer could be optimised.
The measured (R,G,B) values corresponding to the same color viewed under two
different illuminations can be given as input and ouput of the MLP to train it.
However, several illumination changes are possible, and this means that the same
entry could correspond to several different outputs. This is impossible for a MLP.
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Therefore a classical MLP with 4 inputs needs to be used. To reflect the fact
that the same input color can correspond to different output colors depending
on illumination, a fourth input, the luminance desired in output, is added to the
MLP. The architecture of such a MLP is shown in fig. 1 with a bottleneck layer
to reparameterize color with 3 parameters. However, in such an architecture,
the influence of color and illumination would be mixed in the 3 parameters. The
coding of color independently of illumination is not garanteed.

To force the MLP to code color independently of illumination, the architecture
of the traditional MLP is modified and a new architecture is proposed to force the
network to separate color and luminance. The modified architecture is illustrated
by fig. 2. The new MLP includes a compression layer with two neurons (λ, μ).
During training, it learns from the inputs (Ri, Gi, Bi) and the desired outputs
(Rd, Gd, Bd) to compress color into two parameters (λ, μ). However this is not
a trivial compression network. The difference is that there is a fourth input,
a context input, which is directly dependent on illumination, and which has
its input point in the middle layer of the network (where (λ, μ) are calculated).
This context input does not depend on the input (Ri, Gi, Bi) or the actual output
(R̂d, Ĝd, B̂d) of the network, but on the desired luminance Ld = Rd+Gd+Bd

3 of the
output of the network. With such an input, the network learns to reconstruct the
desired output color using directly Ld as an input. Thus it learns to ignore the
luminance of the input (Ri, Gi, Bi) and learns to estimate two variables (λ, μ)
that are invariant to illumination, and related only to color.

The approach does not require any camera calibration or knowledge about
the image.

3.2 Training the Modified Multi-layer Perceptron

As shown in fig. 2, the modified MLP includes 5 layers (this could be generalized
to an odd number of layers). The input and output layers have 3 neurons each
(plus an additional bias), for RGB inputs and outputs. The middle layer includes
3 neurons (two real and one virtual, excluding bias): their outputs are called λ, μ
and L. The second and fourth layers have arbitrary numbers of neurons (typically
between 3 and 10 in our experiments). The links between neurons are associated
to weights. Neurons have sigmoid activation functions. The network includes
biases and moments [Bis96].

A database of images showing the same objects under different illuminations
is used to train the modified MLP. The illuminations are typical of indoor en-
vironments such as home and office: fluorescent lights, incandescent light bulbs
and natural sunlight coming from windows.

A classic MLP training scheme based on backpropagation is applied, with
two additional changes due to the structure of the modified MLP. As commonly
done with MLPs, a pixel is randomly sampled at each iteration from the training
set. Its RGB values before and after an illumination change (from real images)
are used as input (Ri, Gi, Bi) and desired output (Rd, Gd, Bd) to the network.
Propagation and back-propagation are then performed, with two modifications
(as mentioned above). First, during propagation, the output L of the third neu-
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Fig. 2. A modified MLP for color correction and color invariant learning. (Ri, Gi, Bi)
is the input color. (Rd, Gd, Bd) is the desired output color, corresponding to the same
color seen under a different illumination. Ld = Rd+Gd+Bd

3 is the luminance of the
desired output and is a direct function of the illumination. λ and μ are the color
parameters invariant to illumination that the MLP is trained to estimate. (R̂d, Ĝd, B̂d)
are the actual outputs of the network. Bias neurons are omitted from this figure.

ron of the third layer is forced to the value of the luminance corresponding to
the desired output color, e.g. Ld = (Rd + Gd + Bd)/3 . The idea is that the
network is trained to do the best possible reconstruction of the RGB output
(Rd, Gd, Bd) from the intermediate variables λ, μ and the imposed luminance
Ld. Since Ld is a direct function of the illumination, the estimated λ and μ
should be related to characteristics of color that are invariant to illumination.
The second modification to training the MLP (compared to classic propagation
and back-propagation) is that, during back-propagation, the error on the output
L of the third neuron is not back propagated.

3.3 Use of the Modified Multi-layer Perceptron

The trained modified MLP can be used to correct color images. Each image pixel
is propagated through the trained network to find the invariants λ and μ. An arbi-
trary luminanceL is imposed on the pixel by forcing the output of the third neuron
of the third layer to L. The output of the trained network then gives the corrected
color. If a constant luminance L is used for all pixels in the image, an image cor-
rected for shadows and for variations of illumination across the image and between
images is obtained. The color correction can be tabulated for fast implementation.

The approach could be easily extended to a greater number of inputs and
outputs than 3 or different inputs/outputs than RGB. For instance, YUV or
HSV, or redundant characteristics such as RGBYUVLab could be used as inputs
and outputs.

4 Image Correction Results

4.1 Experimental Conditions and Database

The network was trained using 546000 pixels. These were randomly sampled
from 91 training images (6000 pixels per image), taken by 2 webcams (Philips
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ToUCam Pro Camera and Logitech QuickCam Zoom). The training images are
of different indoor scenes (and partial views of the outdoors through windows)
under varying illuminations, from home and office environments. An example is
shown in fig. 3. The variations of illuminations are caused by indoor lighting such
as typically found in homes and offices (fluorescent lights and incandescent light
bulbs) and natural sunlight (coming from windows). Testing was performed on
other images taken by the 2 webcams used for training and by a third webcam,
not used for training, a Logitech QuickCam for Notebooks Pro.

Fig. 3. Examples of images before and after an illumination change from the training
database. This database includes examples of illumination changes typical of office and
home environments.

In practice, using 8 neurons in the second and fourth layers of the MLP gives
good performance. A gain of 1.0 was used, with a momentum factor of 0.01 and
a learning rate of 0.001. Pixels that were too dark (luminance ≤ 20) or too bright
/ saturated (luminance ≥ 250) were not used for training.

4.2 Comparison with a ”Classical” Multi-layer Perceptron

Table 1 shows that the modified MLP (fig. 2) performs better in reconstructing
target images than a classic MLP (fig. 1). The reconstruction is done given the
expected luminances Ld of the pixels of the desired target image.

Table 1. Mean error between reconstructed and target images for a ”classical” MLP
and the modified MLP presented in this article. The mean error was calculated using
748 320x240 test images (not in the training set). The error is averaged over the three
color components (R,G,B).

for a classical MLP for the modified MLP
mean error (in pixel values, 10.47 5.54

the pixel values going from 0 to 255)
relative mean error 4.11% 2.17 %

4.3 Invariant Estimation by the Modified MLP

Figure 4 shows the two invariants (λ, μ) learnt by the modified MLP and cal-
culated on an image (see part (1) of fig 4) of unknown illumination. The two
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Fig. 4. Example of color correction learnt by the modified MLP. (1) is the
original image (unknown illumination). (2) and (3) show the 2 invariants λ and μ
estimated by the MLP from the image. (4) is the locus of the invariants in the uv
chrominance space of image pixel values. (5) is the corrected image reconstructed
by the modified MLP with the pixel luminance inputs set to values proportional
to the pixel luminances in the original image (plus a constant). (6) is the cor-
rected image reconstructed by the modified MLP with the pixel luminance inputs
set to a constant value for all pixels. (7) shows the 7 color peaks found by mean
shift [CRM00] in the corrected image shown in (6). (8) shows the resulting image
segmentation.

invariants are seen in parts (2) and (3) of the figure. It can be seen that objects
of similar color to the human eye have similar values of λ and μ. In addition,
part (4) of fig. 4 shows the locus of the invariant values (λ, μ) in the image
as a fonction of the chrominance values (u, v) (from YUV color space) of the
image pixels. This plot demonstrates that the locii of the two invariants are not
identical, and thus we have two invariants and not only one.

Part (6) of the figure shows the corrected image estimated by the modified
MLP from the two invariants (λ, μ) and a constant luminance input over the
image. Much of the influence of shading and variations of illumination across
the image is removed, apart from specularities (white saturated areas) which
are mapped to gray by the network. Indeed areas of similar color to the human
eye in the original image (despite shading and illumination) have much more
homogeneous color in the corrected image. This can be further seen by perform-
ing mean-shift based color segmentation [CRM00] on the corrected image. Seven
areas of uniform color are readily identified and segmented (see part (7) and (8)
of fig. 4) from the corrected image. They correspond roughly to what is expected
by a human observer. This example illustrates that our modified MLP success-
fully learns a parameterization of color by two parameters that are invariant to
illumination.



366 B. Bascle, O. Bernier, and V. Lemaire

Fig. 5. Comparison of the pixel-wise color correction by the modified MLP presented
in this paper and the whole-image color correction method of Finlayson et al [FDL04].
Application to shadow detection. Example I. (a) and (d) original image. (b) invariant
image obtained using the method of [FDL04]. (c) shadow edges estimated from (b). (e)
corrected image estimated using the modified MLP. (f) and (g) results of mean shift
color segmentation [CRM00] from (e). (g) shadow edges estimated from (f).

4.4 Performance of a LUT Implementation of the Trained Modified
MLP

Color correction by the modified MLP can be tabulated, making it one the fastest
possible color correction approaches. Execution time for image correction, based
on a Look-Up Table implementation of the modified MLP, is 3.75 ms for an
entire 320x240 image, on a Pentium4 3GHz. Such a fast LUT implementation is
possible because the approach is pixel-wise.

An HSV correction scheme could be as fast (since it could also be implemented
using LUTs), but it would be less performant, as illustrated on a example by fig.
6. A color correction scheme based on [FDL04] would be of equal performance, as
illustrated on examples by fig. 5. It could deal with more changes of illumination,
since our approach is limited to the type of frequently found indoor lighting the
modified MLP was trained for. However, working globally on the image, it could
not be implemented as a LUT, and would thus be significantly slower.

4.5 Comparison with Other Color Correction Methods from the
Literature

Figures 6 and 5 compare our color correction approach with an HSV-based
correction (HSV being hue-saturation-value) and the color correction scheme
of [FDL04] on several examples and for different applications.

Figure 6 compares our approach to HSV-based color correction and applies
it to color-based background subtraction. The two first images of the first and
second columns of the figure show that the color correction scheme presented
in this paper is indeed robust to changes in illumination, since there is much
less difference between the images after correction than before. Figure 6 also
shows that the correction performed in this paper compares favorably with an
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Fig. 6. Comparison of the pixel-wise color correction by the modified MLP presented
in this paper and pixel-wise HSV-based color correction, HSV being the well known
hue-saturation-value color space

HSV-based color correction (which consists in taking an RGB color to hue-
saturation-value space, setting its value/luminance to a constant, then going
back to RGB space to get the corrected color).

Figure 5 illustrates that our correction is of similar quality to that of Fin-
layson et al [FDL04] (briefly described in the introduction of this paper). The
application of color correction is the detection of shadow contours (which can be
used for shadow removal, as shown in [FDL04]). Even though it might be less
robust to large light changes or unusual light changes (such as turning on a blue
or red light), our method is faster, being pixel-wise.

5 Conclusion

This paper presents a new neural network-based approach to estimating image
color independently of illumination. A modified multi-layer perceptron is trained
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to estimate two color invariants and an illumination- corrected color for each in-
put color. It is trained for typical indoor home and office lighting (fluorescents
and light bulbs) and outdoor natural light, using two webcams. Experiments
with light changes and another webcam show that the training seems to have
good generalization properties. The approach could be generalized to other appli-
cations where one or several invariants of a signal (here color) to a perturbation
(here illumination) need to be found. If a database of signals before and af-
ter perturbation, and measurements directly correlated to the perturbation are
available, then a modified MLP architecture of the type presented here can be
used to learn the invariants.
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Abstract. Blur identification is one important part of image restora-
tion process. Linear motion blur is one of the most common degradation
functions that corrupts images. Since 1976, many researchers tried to
estimate motion blur parameters and this problem is solved in noise free
images but in noisy images improvement can be done when image SNR
is low. In this paper we have proposed a method to estimate motion
blur parameters such as direction and length using Radon transform
and Feed-Forward back propagation neural network for noisy images. To
design the desired neural network, we used Weierstrass approximation
theorem and Steifel reference Sets. The experimental results showed al-
gorithm precision when SNR is low and they were very satisfactory.

Keywords: Linear Motion blur, Restoration, Neural network, noisy
images.

1 Introduction

The aim of image restoration is to reconstruct or estimate the uncorrupted image
by using the degraded image. In this paper, we consider degradation caused by
linear motion blur and additive noise. Equation (1) shows the relation between
the observed image g(x, y) and its uncorrupted version f(x, y) [1].

g(x, y) = f(x, y) ∗ h(x, y) + n(x, y) (1)

In equation (1), h is the blurring function that convolves in original image and
n is the additive noise function. According to equation (1) the aim of blur iden-
tification is to estimate h by using g. Since 1976, many researchers tried to solve
this problem when the blurring function is linear motion blur and most of them
tried to extend their work to noisy images [2] [3] [4][6][1].
In best of our knowledge the only method that used neural networks to estimate
motion blur parameters is presented in [7]. In this paper Adaline network is
used but its weak point is that it needs f to estimate h. Other methods that are
based on neural networks used blind restoration methods [8][9]. In this paper
we presented a method which use Radon transform to find motion direction and
a Feed-Forward Back-Propagation network to find motion length. This network
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tries to model bispectrum of an image which is noise free in theory. The authors
in [3] used the bispectrum of image in a different manner to find motion parame-
ters,too. Our method works for noise free and noisy images in lower SNR. The
lowest SNR that our method supports is about 20dB in average and in best of
our knowledge it is lowest from other presented methods since now.

The rest of paper is organized as follows: In section 2 the motion blur pa-
rameters are introduced. In section 3 finding motion blur parameters in noise
free and noisy images are described. In subsections of this section we described
the architecture of designed neural network. Experimental results are given in
section 4 and finally we present our conclusion.

2 Motion Blur Attributes

The general form of linear motion blur function is given as follows[2]:

h(m,n) =
{

1
L if |m| ≤ L

2 cosφ and n = mtan(φ)
0 otherwise

(2)

As seen in equation (2), motion blur depends on two parameters: Motion
Length (L) and Motion Direction (φ).

The frequency response of h is a SINC function. This implies that : ”If an
image is affected only by motion blur and no additive noise, then in its frequency
response we can see dominant parallel dark lines (figure 1-b) that correspond to
very low values (near zero) [2][6][5]”.

3 Motion Blur Parameter Estimation

3.1 Motion Direction Estimation

To find motion direction, we used the parallel dark lines that appear in frequency
response of degraded image as shown in figure 1-b. The motion blur direction
(φ) is equal to the angle (θ) between any of these parallel dark lines and the
vertical axis[1]. In frequency response of noisy images, these dark lines disappear
but because of SINC structure of degradation function a white bound appears
around frequency center (this bound also exists at frequency response of noise
free image). The direction of white bound corresponds to motion blur direction.
This fact is shown in figure 2. Therefore to find motion direction, in noise free
images and noisy images we should find dark lines and above mentioned bound
direction, respectively. Because we can assume a bound as a collection of parallel
lines, we can use same algorithms for both cases. To find motion direction, Radon
transform [1] is used. Following equations show using Radon transform to find
motion direction.

k(u, v) = log(|G(u, v)|) (3)

R(ρ, θ) =
∫ ∞

−∞
k(ρ cos θ − s sin θ, ρ sin θ + s cos θ)ds (4)
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In these equations G(u, v) shows image frequency response and R(ρ, θ) shows
Radon transform result. The highest spot of R in θ axis shows the motion di-
rection. To find this highest spot we used cepstrum analysis as a pitch detection
algorithm. Figures 3, 4 shows the result of applying Radon transform on a noise
free and noisy image, respectively. As we can see in figure 4, in noisy case two
peaks may exist in Radon transform result. This event occurs due to the white
bound structure. The parallel lines in a bound can be extracted in two perpen-
dicular directions along length and width of bound. Therefore to distinguish the
peak that corresponds to motion direction in noisy case, the peak that is created
regarding to bound length is selected. More details of using Radon transform for
finding motion direction is given in our previous work [1].

Fig. 1. (a)Boat image degraded by linear motion blur using L = 30 Pixel, φ = 135◦

and no additive noise, (b) frequency response of (a)

Fig. 2. (a) The image (256 × 256) of Barbara which is degraded by motion blur with
parameters L = 30 Pixel and φ = 45◦ and Gaussian additive noise with zero mean
(SNR = 35 dB). (b) its Fourier spectrum

3.2 Motion Length Estimation

After finding motion direction as described in above, we rotate image axis by
motion direction. After this rotation we can consume all related functions to be
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Fig. 3. Result of Radon Transform on the frequency response of a noise free image

Fig. 4. Result of Radon Transform on the frequency response of a noisy image

Fig. 5. Bispectrum of an image with different noise levels

in horizontal direction. To design a precise algorithm in noisy images we used the
bispectrum of image which in theory is not dependent to noise. Our proposed
method is different from similar works[3][6] and has higher precision and lowest
SNR support. The discrete bispectrum of the ith segment of degraded image
denoted by Bi(k, l) is defined on l = 0 (central slice) in 1-D case such as follow
[3]:

Bi(k, 0) = |Fi(k)H(K) + Wi(K)|2[Fi(0)H(0) + Wi(0)]
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= |Fi(k)H(k)|2Fi(0)H(0) + ... + |Wi(k)|2Wi(0) (5)

Where Fi(K) is the Fourier transform of ith segment of original image, H(K) is
the Fourier transform of degradation function and Wi(K) is the Fourier trans-
form of ith segment of noise field. Each line of image is supposed to be as separate
segments to calculate bispectrum of image. In theory, all terms of equation (5)
except the first one should average to zero. Therefore the average of Bi on all
segments does not depend on the noise. The average of bispectrum segments are
define as:

B̂(k, 0) =
1
N

N∑
i=1

|Fi(k)H(k)|2Fi(0)H(0) (6)

Regarding to equation (6) we can conclude that zero places of B̂ corresponds
to zero places of H which has a SINC structure therefore some peaks and valleys
created in B̂. Figure 5 shows B̂ of an degraded image with different noise levels.
As we can see in the figure 5, the main lobe of B̂ has the same structure and
size in different noise levels. Therefore, to find the motion length we tried to
model the shape of main lobe of bispectrum. Due to bispectrum properties, the
lobe width is not image and noise dependent. Regarding to equation (6) we can
conclude that:

L ∝ 1
Wu

(7)

Where Wu is central lobe width of B̂ in a noisy image. To find motion length,
we have tried to convert the equation (7) to a relation using neural networks.

3.3 Mathematical Basics

In this section we described how we can estimate the motion length based on
the equation (7). The main goal in this section is to find a function L = g(Wu).
Based on Weierstrass approximation theorem [10], we can find a unique poly-
nomial to model g(Wu) which its error is ε in worst case. Regarding to these
theorems, because we are sure that g(Wu) exists, we try to find its coefficients.
To create reference set for nonlinear interpolation we degraded some images in
horizontal direction with specified motion length and we measured Wu. Because
we used the specified values for motion length (L), created samples are distrib-
uted uniformly on a specified interval, But the values of measured Wu are not
distributed uniformly on its interval. This indicates that we can not estimate L
by using Wu in some intervals of created reference set. To overcome this prob-
lem, we tried to find a function Wu = f(L) to create a complete reference set.
By using f(L) and by noting to Steifel reference set[11] we created a proper
reference set to estimate g(Wu).
To estimate a polynomial for a function, Steifel proposed the following reference
set on the interval [a, b]:

xi =
b + a

2
+

b− a

2
∗ cos(

π × i

n + 1
) i = 0..n+ 1 (8)
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3.4 Neural Network Architecture

To estimate f(L) and g(Wu) we designed a Feed-Forward back propagation
neural network. The network inputs (x0..xn−1) participate in computing 2th..nth

coefficient of polynomial and the bias value b shows the first coefficient of it.
Figures 6 and 7 show the design of this network for a polynomial of order 10.
The designed network consists of two layer such that each layer has one neuron.
The first layer has 9 inputs and since its transfer function is a linear transfer
function, its output is :

O1 =
9∑

i=1

(IW{1, 1}i × xi) + b{1} (9)

In equation (9), O1 is the output of first layer and xi and IW{1, 1}i are inputs
(reference set) and input weights, respectively. The second layer has only one in-
put which is connected to output of first layer which is calculated using equation
(9). This layer has also an input bias. The output of second layer is calculated
using following equation:

O2 = LW{2, 1} × O1 + b{2} (10)

At first we used this network to estimate f(L) by using MSE (Mean Square
Error) as performance error measure, delta rule as learning rule and gradient
descent back propagation as training procedure. After 71 episode MSE of re-
sult was lower than 0.0028. To estimate L = g(Wu), we supposed the range
of motion Length as given in [4.5, 53] and by using Steifel reference set theo-
rem (equation (8)) the reference set was created. This reference set was used

Fig. 6. Overall architecture of designed neural network

Fig. 7. Detail architecture of designed feed-forward neural network
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to estimate L = g(Wu) by using a network similar to network used to estimate
Wu = f(L). The difference between these two networks is that, in the designed
network for estimating L = g(Wu) we used order 14 polynomial which increased
the precision. By using same learning and training method, the networks were
trained. After 9636 episodes the MSE was 0.03.To find main lobe width of B̂
cepstrum analysis was used.

4 Experimental Results

We have applied the above algorithms on more than 80 (256 × 256) standard
images like Camera man, Lena, Barbara, Baboon,etc. These images were de-
graded by different orientations and lengths of motion blur (0 ≤ φ ≤ 180 and
5 ≤ L ≤ 50). Then we have added additive Gaussian noise with zero mean
and different variances to these images and these images were used as our al-
gorithm input. Table (1) show the summary of results of our algorithm. In this
table the columns named ”Angle Tolerance” and ”Length Tolerance” show the
absolute value of estimation errors respectively. The low values of the average
and standard deviation of errors, show the high precision of our algorithm. Our
algorithm has a robust behavior at SNR > 20 dB. In lower SNR the algorithm
precision decreases and sometimes it can not find motion direction. The esti-
mated polynomial has the best performance in the range of motion length. If we
increase the order of the polynomial it causes some abnormally in the curve. In
comparison with related works our algorithm has better precision and supports
lower SNR.

Table 1. Experimental results of our algorithm on 80 degraded standard images
(256 × 256) with additive noise (SNR > 20 dB) (using bispectrum modeling)

Cases Angle Tolerance Length Tolerance
(Degree) (Pixel)

Best Estimate 0 0.0
Worst Estimate 2 2

Average Estimate 0.9 0.8
Standard Deviation 0.69 0.62

5 Conclusion

In this paper we presented a robust method to estimate the linear motion blur
parameters. For estimating motion direction we used Radon transform which
helped us to overcome the difficulties with Hough transform and similar meth-
ods to find the candidate points for line fitting. To estimate motion length in
noisy images we have designed a method based on neural network with great
performance. The evaluation of our method percision on more than 80 stan-
dard degraded noisy images is shown table 1. The low value of errors shows the
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algorithm precision. In our future work we plan to extend our work on devel-
oping noise removal methods which can preserve edges to increase the motion
estimation precision.
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Abstract. A new contourlet transform based on shear invariant is pro-
posed for image denoising. Image denoising by means of the contourlet
transform(CT) introduces many visual artifacts due to the Gibbs-like
phenomena. Due to the lack of transform invariance of the contourlet
transform, we employ a shear technique to develop shear invariant con-
tourlet denoising scheme (SICT). This scheme achieves enhanced estima-
tion results for images that are corrupted with additive Gaussian noise
over a wide range of noise variance. Experiments show that the pro-
posed approach outperforms the translation invariant wavelets method
and translation invariant contourlets method both visually and in terms
of the PSNR values at most cases. Especially, SICT yields better visual
results even has worse PSNR result than translation invariant contourlet
transform.

1 Introduction

In image modeling, simple models are constructed to capture the defining char-
acteristics of complex natural images[1]. Accurate models can enhance image
processing such as compression, denoising and image retrieval. An important
aspect of an efficient image transform is directionality. Having this feature,
a transform would have the potential to handle 2D singularities[2]. Although
the wavelet transform has been proven to be powerful in many signal and
image processing applications, wavelets are not optimal in capturing the two
dimensional singularities found in images. Recently, many directional image
transforms have been introduced. These transforms, unlike separable transforms
such as wavelets, can efficiently capture the intrinsic geometrical structures in
natural images such as smooth contour edges. Candès and Donoho pioneered
the Curvelet representation[3] which is shown to be optimal in a certain sense
for functions in the continuous domain with curved singularities. Inspired by
curvelets, Do and Vetterli developed the Contourlet representation[4] based on
an efficient two dimensional nonseparable filter banks that can deal effectively
with images having smooth contours.

Contourlets possess not only the main features of multiresolution and time-
frequency localization, but they also show a high degree of directionality and
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anisotropy. The contourlet transform employs Laplacian pyramids to achieve
multiresolution decomposition and directional filter banks to achieve directional
decomposition. Owing to the geometric information, the contourlet transform
achieves better results than discrete wavelet transform in image analysis
applications[1].

Ramin Eslami and Hayder Radha develop a translation invariant (TI) scheme
of a general multichannel multidimensional filter band and apply their findings
to the contourlet transform to obtain a TI contourlet transform (TICT)[2]. Fur-
thermore, they demonstrate that the TICT attains better PSNR values in most
denoising experiments when compared with the TI wavelet transform (TIWT)
scheme. And visually, TICT is capable of better retaining edges and textures in
the denoised images.

In addition to translation invariant, an efficient image representation has to
account for the geometry pervasive in natural scenes. In this paper we address a
new algorithm to overcome transform variance, named the shear invariant con-
tourlet transform (SICT), which can induce more directionality than translation
invariant and produce satisfied results both visually and in terms of the PSNR
values.

This paper is organized as follows. In Section 2, the construction of the con-
tourlet transform is introduced. Then, in Section 3, translation invariant and
shear invariant are described in details. Based on Bresenham algorithm, a shear
invariant method for image denoising is proposed in Section 4, and the denoising
results are compared with that of translation invariant contourlet and wavelets
based method both visually and in terms of the PNSR. Finally, concluding re-
marks are given in Section 5.

2 The Contourlet Transform

Recently there has been a wide interest in image representations that efficiently
handle geometric structure[5]. This comes from the recognition that wavelets
essentially fail to take advantage of geometric regularity, a common feature in
natural images. Minh Do and Martin Vetterli[6][7] introduced the contourlet
transform as a means to fix the failure of wavelets in handling geometry, which
provides sparse representation at both spatial and directional resolutions. As a
new image decomposition scheme, the contourlet transform is constructed by
combining two distinct and successive decomposition stages: a multiscale de-
composition followed by a directional decomposition. The first stage is a Lapla-
cian pyramid (LP) multiscale decomposition that transforms the image into one
coarse version plus a set of LP bandpass images. The second stage applies ap-
propriately 2D quincunx filtering and critical subsampling to decompose each
LP detail subband into a number of wedge shaped subbands, and thus capturing
directional information. Finally, the image is represented as a set of directional
subbands at multiple scales. The contourlet transform is perfect reconstruction
and almost critically sampled with a small redundancy factor of up 4/3 due to
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Fig. 1. A flow graph of the contourlet transform. The image is first decomposed into
subbands by the Laplacian pyramid and then each detail image is analyzed by the
directional filter banks

the Laplacian pyramid. Fig.1 shows a flow graph of multilevel contourlet decom-
position.

When compared to the discrete wavelet transform, the contourlet transform
involves basis functions that are oriented at any power of two’s number of di-
rections with flexible aspect ratios. With such richness in the choice of bases,
contourlets can represent any one dimensional smooth edges with close to opti-
mal efficiency. Various experiments clearly show that smooth edges are efficiently
represented by few local coefficients in the right directional subbands, leading
to better representation of fine contours. Indeed, nonlinear approximation using
contourlets can achieve the optimal approximation rate for piecewise images.
Fig.2 shows the subband images of test image Lena[8].

Fig. 2. An example of contourlet transform of the Lena image. Small coefficients are
colored black while large coefficients are colored white. Larger rectangles correspond
to finer subbands
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3 Translation Invariant and Shear Invariant

The main disadvantage of the contourlet-based transforms is the occurrence
of artifacts that are caused by setting some transform coefficients to zero for
nonlinear approximation. Also in the context of multiscale expansions imple-
mented with filter banks, dropping the basis requirement offers the possibility
of an expansion that is translation invariant, a crucial property in a number of
applications. For instance, in image denoising via thresholding in the wavelet
domain, the lack of translation invariant(TI) causes pseudo-Gibbs phenomena
around singularities, so does it in the contourlet domain.

Translation invariant was first introduced as a useful remedy for discrete
wavelet transform(DWT). It actually provides a tight translation invariant frame
which is beneficial to image denoising. Since contourlet transform is nearly crit-
ical sampled, TI was naturally adopted to boost up its denoising performances.
In paper [9], R. Eslami and H. Radha introduce translation invariant in the con-
tourlet domain using Cycle Spinning for image denoising, called TICT, TICT
yields great performance than contourlet transform method.

General speaking, TI is just among a large family which follows the form:

f̂ =
1
N

(
N∑

i=1

T−1
i [D[Ti(f)]]) . (1)

Where f , f̂ are the image to be and has been recovered, D is the denoising
operator and Ti is an invertible change. In general speaking, the invertible change
in TI is just to say translation transform.

3.1 Shear Invariant

Though TI does work, with simple translations, it wouldn’t take advantage of
contourlet’s directionality. And, most importantly, the polyphase sampling point
of a directional filter bands(DFB) has already covered the whole image grid, so
translation won’t help much. A new scheme that will make use of contourlet’s
characteristic is wanted, in this paper, we introduce shear invariant(SI) as a
remedy for this problem.

Shear distorts the shape of an object such that the transforms shape appears
as if the object were composed of internal layers that had been caused to slide
over each other. Two common shearing transformations are those that shift
coordinate x values and those that shift y values. Shear is essentially a coordinate
transform:

Si,αf, i = 1, 2;S1,α =
(

1 α
0 1

)
, S2,α =

(
1 0
α 1

)
. (2)

An x-direction shear relative to the x axis is produced with the transformation
matrix S1,α and y-direction shear matrix is S2,α. Based on this transform, shear
an image with Si,α can introduce additional directions easily. An example can
be seen in Fig.3, the shear transform for Lena image is shown with shear factor
α = ±3/4 in Si,α, i = 1, 2.
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Shearing presents more directions in the image, and the directional details can
be maintained better after the contourlet transform. Enrichment of directions is
the key advantage of SI. On the other hand, shearing will elongate the segment
of special direction and thus zooms in some geometric structure, for example
the horizontal line is prolonged by a factor of

√
2 under the shear of S2,1, and

is shifted under the shear of S1,1. This will of course help the recovery of some
specific directional information. At the same time, the shrinkage of some other
structure can be compensated by other kind of shear matrix.

Fig. 3. Four direction shear transform with different value of α

3.2 The Bresenham Algorithm

For an N × N image, shear with S2,α can be accomplished by translating the
ith column with a distance of α × i, where i is an integer ranging from 0 to
N − 1. Interpolation is surely needed in the case of fractional translations when
|α| < 1, so it is inevitable that interpolation error would be induced. Here, the
Bresenham’s Line Algorithm that is invertible and high accuracy order is used
for our purpose to translate the pixels in original image. Bresenham Algorithm is
an accurate and efficient raster line-generating algorithm, which uses only incre-
mental integer calculations. For instance, considered the scan-conversion process
for line with positive slope less than 1.0, pixel positions along a line path are
then determined by sampling at unit x intervals. Starting from the left endpoint
(xs, ys) of a given line, we step to each successive column (x position) and plot
the pixel whose scan line y value is closet to the line path. Fig.4 demonstrates
the ith step in this process.

Assuming we have determined that the pixel at (xk, yk) is to be displayed, we
next need to decide which pixel to plot in column xk+1 = xk + 1. Our choice is
the pixels at positions (xk +1, yk) and (xk +1, yk +1), it can get the right answer
by the special rule. This step repeats until get the right endpoint (xe, ye).

As a result, for the special value of α for shear along y axis, we can computer
the value of each pixel on the line from point (0, 0) to point (N − 1, α×N), and
translate each column of the image base on the pixel value and get the shearing
image about shear factor α. This method is inevitable and fast, because it only
operates on integer calculation.
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Fig. 4. Bresenham Algorithm

4 Denoising

The contourlet transform has been shown to be a better alternative choice than
wavelets for image denoising. In paper [9], a cycle spinning algorithm is employed
to improve the denoising performance of contourlets. Based on SI, the shear
invariant contourlet transform (SICT) model is applied in denoising zero-mean
additive white Gaussian noise. The SICT can be evaluate by following fomula:

f̂ =
1
N

(
N∑

i=1

S−1
i [D[Si(f)]]) . (3)

Where f , f̂ are the image to be and has been recovered, D is the contourlet
transform and Si is shear transform.

We performed a series of denoising experiments in order to test our SICT
method. The paper performed a nonlinear approximation experiment in which
one keeps some transform coefficients with the largest magnitudes and set the
rest to zero and then reconstruct the image. Experiments are performed on two
images all of size of 512× 512. In particular, we examined the Wiener filter and
three different types of multiresolution decomposition: TIWT, CT, TICT. The
last of these has got the satisfied PSNR results. We used biorthogonal Daubechies
9/7 wavelets for comparison. The wavelet transforms and TI wavelet transform
(TIWT) are implemented using Wavelab802[10]. For the LP stage of contourlets,
we also used the same biorthogonal filters and applied 5 levels of decomposition.
The images are contaminated by a zero-mean Gaussian noise with a standard
deviation of σ , ranging from 20 to 80. Since for TI denoising, hard thresholding
usually yields better results than soft thresholding, we use hard thresholding with
a fixed threshold value equal to 3σ[11], so does SICT. A numerical comparison of
the denoising results is given in Tables 1. One can see that the TICT approach
significantly outperforms the Wiener filter, TIWT and CT approach. While in
most examples, SICT gives slightly better PSNR results than the TICT and has
a clearer boundary when SICT is the PSNR results of TICT’s math.
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Table 1. PSNR values of the denoising for different σ

σ Noise Wiener WT1 TIWT2 CT3 TICT4 SICT5

20 22.1029 30.2054 28.7282 30.8645 29.1384 31.5415 31.4524
30 18.5779 27.9473 27.0030 28.9934 27.3083 29.6677 29.6542
40 16.1042 26.1221 25.7835 27.9630 26.0215 28.3381 28.3667

Lena 50 14.1424 24.5381 24.8833 26.9058 24.9406 27.3543 27.3962
60 12.5674 23.1948 24.2348 26.0190 24.2137 26.5560 26.6556
70 11.2390 22.0958 23.6173 25.3685 23.5297 25.9418 26.1037
80 10.0742 21.0535 22.7896 24.8461 22.9321 25.3397 25.5328
20 22.0977 26.2354 25.4906 27.9548 26.2708 28.4717 28.4004
30 18.6013 24.7241 23.4096 25.1874 24.2674 26.3260 26.2814
40 16.0771 23.4413 22.3156 24.1638 22.9531 24.8979 24.8719

Barbara 50 14.1566 22.3785 21.7712 23.0656 22.1341 23.8844 23.9096
60 12.5780 21.4532 21.2608 22.4954 21.4699 23.1919 23.2074
70 11.2285 20.5894 20.8660 22.0159 20.9387 22.6634 22.7111
80 10.0600 19.7955 20.4499 21.7216 20.4327 22.2596 22.2923

1Wavelet Transform 2TI Wavelet Transform 3Contourlet Transform
4TI Contourlet Transform 5SI Contourlet Transform

The PSNR vs. standard deviation curves for the images Lena and Barbara
are provided in Fig. 5. It is clear that the TICT and SICT denoising scheme
are both capable of further retaining edges and fine details when compared with
others scheme. Furthermore, SICT approach yields slightly better PSNR results
when compared with TICT at most cases.
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Fig. 5. PSNR vs. σ of the image denoising for the Lena and Barbara images. It should
be pointed out that the curves of SICT and TICT method almost have the same path,
especially in the right figure, because the PSNR value of SICT and TICT are quite
similar
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(a) Original image (b) Noisy image(σ = 40)

(c) Denoised Image Using Wiener Filter (d) Denoised Image Using TIWT

(e) Denoised Image Using CT (f) Denoised Image Using TICT

(g) Denoised Image Using SICT

Fig. 6. The original image, noisy image and denoised results of the part of Barbara image
at σ=40 using different schemes(from (c) to (g)): Wiener filter, TIWT, CT, TICT, SICT
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It should be pointed out that even TICT has higher PSNR result than SICT
when σ = 40 for the Barbara image, TICT’s artifacts of Gibbs-like phenomena
is obvious than SICT’s. Parts of the denoised results of the Barbara image at
σ = 40 are shown in Figure 6 together with the original image and noisy image.
It can be seen that the parallel lines on the tablecloth disturb each other in TICT
denoising result and straight line is curved, but these texture are recovered well
in SICT denoising result. So the TICT approaches produce significant visual
artifacts than SICT even TICI has the better PSNR result.

5 Conclusion

Designed by Do and Vetterli, the contourlet transform provides an efficient multi
scale directional representation of an image. In a contourlet decomposition, the
images are first passed through a pyramid Laplacian decomposition, then the
high frequency subband images from each scale are passed through directional
filters with prescribed orientation resolution. Both operation above involve down-
sampling in their analysis sections and therefore, they are translation variant.

According to TICT, we developed the shear invariant method in the contourlet
transform, called SICT. Shearing introduces many new directions in the image,
so directional details can be recovered better than TICT recur to SI in image
denoising. Experiments show that SICT approach outperforms the translation
invariant wavelets and translation invariant contourlets both visually and in
terms of the PSNR values at most cases. Especially, SICT yields better visual
results even has worse PSNR result than TICT.
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Abstract. In this paper, a region-based shock-diffusion equation is presented for 
image denoising and edge sharpening. An image is divided into three-type dif-
ferent regions according to image features: edges, textures and details, and flat 
areas. For edges, a shock-type backward diffusion is performed in the gradient 
direction to the isophote line (edge), incorporating a forward diffusion in the 
isophote line direction; while for textures and details, a soft backward diffusion is 
done to enhance image features preserving a natural transition. Moreover, an 
isotropic diffusion is used to smooth flat areas simultaneously. Finally, a shock 
capturing scheme with a special limiter function is developed to speed the 
process with numerical stability. Experiments on real images show that this 
method produces better visual results of the enhanced images than some related 
equations. 

1   Introduction 

Main features and information of an image are presented in its edges, textures and local 
details, which are also very important to the visual quality of the image. Because of 
some limitations of imaging process, however, edges may not be sharp in images. In 
addition to noise, both small intensity difference across edge and big edge width will 
result in a weak and blurry edge. 

Image enhancement and sharpening are important operations in image processing 
and computer vision. Many different methods have been put forth in the past [1]. 
However, major drawbacks of these methods are that they also enhance noise in image, 
and ringing artifacts may occur along both sides of an edge. More importantly, tradi-
tional image sharpening methods mainly increase the gray level difference across edge, 
while its width remains unchanged. For a wide and blurry edge, increasing simply its 
contrast produces only very limited effect. 

In the past decades there has been a growing amount of research concerning partial 
differential equations in image enhancement, such as anisotropic diffusion filters [2-5] 
for edge preserving noise removal, and shock filters [6-9] for edge sharpening. Here 
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incorporating anisotropic diffusion with shock filter, we present a region-based 
shock-diffusion equation to remove image noise, and to sharpen edges by reducing 
their width simultaneously. 

An image comprises regions with different features, such as edges, textures and 
details, and flat areas, which should be treated differently to obtain a better result in an 
image processing task. In our algorithm, for edges between different objects, a 
shock-type backward diffusion is performed in the gradient direction to the isophote 
line (edge), incorporating a forward diffusion in the isophote line direction. For textures 
and details, shock filters with the sign function enhance image features in a binary 
decision process, which produce unfortunately a false piecewise constant result. To 
overcome this drawback, we use a hyperbolic tangent function to control softly changes 
of gray levels of the image. As a result, a soft shock-type backward diffusion is in-
troduced to enhance these features while preserving a natural transition in these areas. 
Finally, an isotropic diffusion is used to smooth flat areas simultaneously. 

After we have discussed the difficulty of the numerical implementation to this type 
equation, in order to solve effectively the nonlinear equation to obtain discontinuous 
solution with numerical instability, a shock capturing scheme is developed with a 
special limiter function to speed the process.  

This paper is organized as follows. In section 2, some related equations are intro-
duced for enhancing images: anisotropic diffusions and shock filters. Then, we propose 
a region-based shock-diffusion equation. In section 3, we implement the proposed 
method and test it on real images. Conclusions are presented in section 4. 

2   Region-Based Shock-Diffusion Equation 

2.1   Some Related Work 

One of most influential work in using partial differential equations (PDEs) in image 
processing is the anisotropic diffusion (AD) filter, which was proposed by P. Perona 
and J. Malik [13] for image denoising, enhancement, sharpening, etc. Let ( ),x y ∈Ω  

2R⊂ , and [ )0,t + ∞∈ , a multi-scale image [ )0,( , , ): Ru x y t + ∞Ω × → , is evolved 
according to the following equation: 

( , , ) ( ( ( , , ) ) ( , , ))u x y t div g u x y t u x y t
t

∂ = ∇ ∇∂ , 2( ) 1 (1 ( ) )g u u K∇ = + ∇         (1) 

where K  is a gradient threshold. The scalar diffusivity ( )g u∇ , chosen as a non-in-
creasing function, governs the behaviour of the diffusion process.  

By formally developing the divergence term, (1) can be put in terms of second de-
rivatives taken in the gradient direction ( N ) and in the isophote line direction (T ): 

2 2 22 2 2 2 2 2( ( ) ( ) ) ( ( ))NN TT
u uK K u K u uK K u
t

∂ = − ∇ + ∇ + + ∇∂
            (2) 

where              
22 2

22 2

( 2 )

( 2 )

NN x xx y yy x y xy

TT x yy y xx x y xy

u u u u u u u u u

u u u u u u u u u

= + + ∇

= + − ∇
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u• and u•• denote the first and the second derivatives in the corresponding directions. 
Performing a backward diffusion for Ku >∇ along N , this formulation can clearly 
interpret the edge sharpening effect by (1).  

Different from the nonlinear parabolic diffusion process, L. Alvarez and L. Mazorra 
[7] proposed an anisotropic di usion with shock filter (ADSF) equation by adding a 
hyperbolic equation, called shock Filter which was introduced by S.J. Osher and L.I. 
Rudin [6], for noise elimination and edge sharpening: 

   sign( )sign( )NN N TT
u G u G u u cu
t σ σ

∂ = − +∇∗ ∗∂
                      (3) 

where Gσ is a Gaussian function with standard deviation σ , and c  is a positive  
constant.  

A more advanced scheme was proposed by P. Kornprobst, et al. [8], which combines 
image coupling, restoration and enhancement (CRE) in the following equation: 

0( )+ ( + ) (1 )sign( )f r NN TT e NN
u a u u a h u u a h G u u
t τ τ σ

∂ = − − − − ∇∗∂
           (4) 

where and,    f r ea a a  are some constants, 0u is the original noise image; hτ =  
( ) 1Nh G uτ σ =∗ , if NG uσ τ<∗ , and 0 elsewhere. The first term on the right is a 

fidelity term to carry out a stabilization effect.   
In order to reinforce robustness against noise, G. Gilboa et al. [9] generalized the 

real-valued diffusion to the complex domain, by incorporating the free Schrödinger 
equation. They utilized the imaginary part to approximate the smoothed second de-
rivative when the complex diffusion coefficient approaches the real axis, and proposed 
an interesting complex diffusion process (CDP): 

2 arctan( Im( )) NN TT
uu a u u u

t
λ λπ θ

∂ = − + +∇∂
                         (5) 

where Im(x) is the imaginary part of a complex variable x, ire θλ = is a complex sca-
lar,θ  is a small angle, λ  is a real scalar; and a is a parameter to control the sharpness of 
the slope near zero. 

2.2   The Region-Based Shock-Diffusion Equation 

An image comprises regions with different features, such as edges, textures and details, 
and flat areas, which should be treated differently to obtain a better result in an image 
processing task. Here we divide an image into three-type regions by its smoothed gra-
dient magnitude: big gradients (such as boundaries of different objects), medium gra-
dients (such as textures and details) and small gradients (such as smoother segments 
inside different areas).  

For edges between different objects, a shock-type backward diffusion is performed 
in the gradient direction, incorporating a forward diffusion in the isophote line. For 
textures and details, in equations (3) and (4), to enhance an image using the sign func-
tion sign(x) is a binary decision process, which is a hard partition without middle 
transition. Unfortunately, the obtained result is a false piecewise constant image in 
some areas producing bad visual quality (see Fig.2). We notice that the change of 
texture and detail is gradual in these areas. In order to approach this change, we use a 
hyperbolic tangent membership function th(x) to guarantee a natural smooth transition 
in these areas, by controlling softly changes of gray levels of the image. As a result, a 
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soft shock-type backward diffusion is introduced to enhance these features. Finally, an 
isotropic diffusion is used to smooth flat areas simultaneously. 

Thus, incorporating shock filter with anisotropic diffusion, we develop a re-
gion-based shock-diffusion equation (RSE) process to reduce noise, and to sharpen 
edges while preserving image features simultaneously: 

( )sign(( ) )

G

N NN T TT N G NN N

u G u

u c u c u w u u u
t

σ= ∗
∂ = + −∂

                           (6) 

with Neumann boundary condition, where the parameters are chosen as follows ac-
cording to different image regions: 
 

 
Nc  Tc  ( )NNw u  

1T( )G Nu >  0 2

11 (1 )TTl u+  1 

2 1T < T( )G Nu ≤  0 2

11 (1 )TTl u+  2th( )NNl u  

else 1 1 0 

 
where Gσ  is defined in previous section, and  N Tc c  are the normal and tangent flow 
control coefficients respectively. The tangent flow control coefficient is used to prevent 
excess smoothness to smaller details; 

2l  is a parameter to control the gradient of the 
membership function th(x); 1T  and 2T  are two thresholds; 

1l  and 
2l are constants.   

3   Numerical Implementation and Experimental Results 

3.1   A Shock Capturing Scheme  

Nonlinear convection-diffusion evolution equation is a very important model in the 
fluid dynamics, which can be used to depict transmission processes of momentum, 
energy and mass of fluid. Because of its hyperbolic characteristic, the solution to the 
convection-diffusion equation often has discontinuity even if its initial condition is very 
smooth. Mathematically only weak solution can be obtained here. If a weak solution 
satisfies the entropic increase principle for an adiabatic irreversible system, then it is 
called a shock wave.  

When one solves numerically a convection-diffusion equation using a difference 
scheme, he may find some annoying problems in numerical simulation, such as insta-
bility, over smoothing, spurious oscillation or wave shift of a scheme. The reason for 
above is that, despite the original equation are deduced according to some physical 
conversation laws, its discrete equation may deviate from these laws, which can bring 
about numerical dissipation, numerical dispersion and group velocity of wave packets 
effects in numerical solutions specially for the hyperbolic term. Therefore, the hyper-
bolic term must be discretized carefully so that the flow of small scale and shock waves 
can be captured accurately.  

Besides of satisfying consistence and stability, a good numerical scheme also need 
to capture shock waves. One method to capture shock waves is to add artificial  
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viscosity term to the difference scheme for controlling and limiting numerical fluctua-
tions near shock waves. But by this method it is inconvenient to adjust free parameters 
for different tasks, and the resolution of shocks can also be affected. Another method is 
to try to stop from numerical fluctuations before them appear, which is based on the 
TVD (Total Variation Diminishing) and nonlinear limiters. Their main idea is to use a 
limiter function to control the change of the numerical solution by a nonlinear way, and 
the corresponding schemes satisfy the TVD condition and eliminate above disadvan-
tage effects, which guarantee of capturing shock waves with a high resolution. 

In a word, when solving numerically a nonlinear convection-diffusion equation like 
(6) using a difference scheme, the hyperbolic term must be discretized carefully  
because discontinuity solutions, numerical instability and spurious oscillation may 
appear. Shock capturing methods with high resolution are effective tools. For more 
details, we refer the reader to the book [10]. Here, we develop a speeding scheme by 
using a proper limiter function. 

An explicit Euler method with central difference scheme is used to approximate 
equation (6) except the gradient term Nu . Below we detail a numerical approach to it. 

On the image grid, the approximate solution is to satisfy: 

( , , ),  , ,n
iju u ih jh n t i j n Z +≈ Δ ∈                                           (7) 

where h and t are the spatial and temporal step respectively. Let h = 1, n
ijuδ + and n

ijuδ −  
are forward and backward difference schemes of n

iju  respectively. A limiter function MS 
is used to approximate the gradient term: 

2 2( ( , )) ( ( , ))n n n n
N x ij x ij y ij y ijMS MSu u u u uδ δ δ δ+ − + −= +                                (8) 

where  

and

and

,  

,  
( , )

,    0

0,    0

x x y

y x y
MS x y

x x y xy

x y xy

<
>

=
= >
= ≤

                                          
(9)

 

The MS function bears fewer 0 in value than the minmod function does in the x-y plane 
(see Fig.1), which also make the scheme satisfy the numerical instability. Because the 
gradient term represents the transport speed of the scheme, the MS function makes our 
scheme evolve faster with a bigger transport speed than those with the minmod  
function. 

In [8], other than above flux limitation technique, a fidelity term 0( )u u− is used to 

carry out the stabilization task, and they also displayed that the SNRs of results tend 
towards 0 if  0fa = . However, this is not enough to eliminate overshoots, and this term 

also affect its performance. 

3.2   The Coupled Iteration 

Based on preceding discussion, when implementing iteratively equation (6), we find 
that the shock and diffusion forces will cancel mutually in a single formula. We split 
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equation (6) into two formulas and propose the following coupled scheme by iterating 
with time steps:  

0 0 0

n 1 n n

n 1 n 1 n 1 n 1

,  

( ( )sign(( ) ) )

( )

G

NN G NN N

N NN T TT

v u u G u

v u t w v u u

u v t c v c v

σ
+

+ + + +

= = ∗
= + Δ −
= + Δ +

                             (10) 

where tΔ  is the time step, 0u is an original image. By computing iteratively in the order 
of 1 1 2 20 0 ,v u v uu v→ → → → → →  we finally obtain the enhanced image after 
some steps. 

 

  
 

Fig. 1. The comparison of the MS function with the minmod function 

3.3   Experiments 

We present results obtained by using our scheme (6), and compare its performance with 
those of above related methods, where the parameters are selected, which allow the best 
results for all methods. 

First, we compare performances of related methods on the blurred Cameraman 
image (Gaussian blur, σ =2.5) with added high level noise (SNR=14dB). In this case, 
weaker features are smeared by big noise in the image, which are difficult to be restored 
completely. In Fig.2, as it can be seen, although the AD method denoises the image 
well specially in the smoother segments, it produces the blurry image with unsharp 
edges, whose ability to sharpen edges is limited, because of its poor sharpening process 
with the improper diffusion coefficient along the gradient direction (see Equation (2)). 
Moreover, with the diffusion coefficient in inverse proportion to the image gradient 
magnitude along the tangent direction, it does not diffuse fully in this direction and 
presents rough contours.  

For the ADSF and CRE methods, though they sharpen edges very well, in a binary 
decision process they yield the false piecewise constant images, which look unnatural 
with a discontinueous transition in the homogenous areas. Further, the ADSF method 
cannot reduce noise well only by a single directional diffusion in the smoother regions.  
    In Fig.2, performing a complex diffusion process, the CDP method presents a rela-
tive good result. But on edges with big gradient magnitude between different objects, 
because the diffusion process is weighted by the arctan(x), the sharpness of its result is 
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Fig. 2. Enhancement of the Cameraman by different methods (from top-left to bottom-right): a 
noisy blurred image, results by AD, ADSF, CRE, CDP and RSE respectively 
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somewhat lower than that using the sign(x). Because of its complex scalar λ , CDP does 
perform a complete isotropic diffusion in smoother regions, where the real part of λ  is 

commonly not equal to λ  in value, and thus the result is not very satisfactory. And that, 
it should be pointed out that image enhancement by the complex computation is time 
consuming than the real one. 

The best visual quality is obtained by enhancing the image using RSE, which en-
hances most features of the image with a natural transition in the homogenous areas, 
and produces pleasing sharp edges and smooth contours while denoising the image 
effectively (see Fig.2). 

Finally, we discuss the performances of these methods in smoothing image contours 
on bigger gradients in the tangent direction of edges. In Fig.2, as we explain above, 
image contours obtained by AD are not smooth with blurry edges in the gradient di-
rection. The results obtained using ADSF, CRE and RSE respectively all present 
smooth contours in the tangent direction. Because the real part of its complex scalar λ  
in value is not equal to zero, CDP do not perform a complete tangent diffusion, which 
results in its not very smooth contours. 

It is also noticed that in [9], the effect of the robustness against noise by a complex 
diffusion was interpreted only by observations and experiments, and their theoretical 
justification is weak. They use the imaginary part to approach the Laplacian of the 
smoothed original image, which is not better choice than the smoothed second normal 
derivative of the image in the gradient direction. The latter can afford a more accurate 
directional estimation of edges in the sense of image geometry. Finally we did not find 
remarkable effects by the complex diffusion process in the experiments. 

On the selection of parameters in our model, in order to estimate image features 
better and thus to obtain a more satisfactory visual quality, the standard deviation σ  in 
Gaussian smoothing should be bigger with increasing noise’s level; and, thresholds 1T  

and 2T  can be adopted according to the strength of image features in the histogram of 

the smoothed gradient magnitude. Commonly 1l and 2l can be chosen as constants. 

4   Conclusions 

This paper deals with image enhancement for noisy blurry images. By reducing the 
width of edges, a region-based shock-diffusion equation is proposed to remove noise 
and to sharpen edges.  

Our model performs a powerful process to noise blurry images, by which we not 
only can remove noise and sharpen edges effectively, but also can smooth image con-
tours even in the presence of high level noise. Enhancing image features such as edges, 
textures and details with a natural transition in interior areas, this method produces 
better visual quality than some relative equations.  
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Abstract. A novel statistical framework for segmentation of the
echocardiographic images is presented. The framework begins with pre-
segmentation at a low resolution image and passes the result to the high
resolution image for a fast optimal segmentation. We applied Rayleigh
distribution to analyze the echocardiographic image, and introduced a
posterior probability-based level set model. The model is applied for
the pre-segmentation. The pre-segmentation result at the low resolu-
tion is used to initialize the front for the high resolution image with a
fast scheme. At the high resolution, an efficient statistical active contour
model is used to make the curve smoother and drives it closer to the real
boundary. Segmentation results show that the statistical framework can
extract the boundary accurately and automatically.

1 Introduction

Many heart diseases are accompanied with the change of heart shape. Automatic
segmentation of echocardiographic images that helps identify early features of
pathological changes plays an important role in medical diagnosis. Although var-
ious segmentation methods have been widely investigated, there are still chal-
lenges for ultrasound image segmentation because of noise and low contrast.

Early approaches for segmentation of echocardiographic images include some
statistical methods[2]. However, the detection accuracy of these methods is to
be validated. In the decade, many researches on ultrasound signals have proved
that the intensity of ultrasound images is close to Rayleigh distribution, such as
[13][14]. Some researchers began to apply the Rayleigh distribution to analyze
the ultrasound images.

Recently, Sethian et al firstly introduced the level set method into geometric
active contour models for numerical implementation [1]. Many level-set-based
models for image segmentation were proposed in the past [4][5], because the
level set method is steady and suitable for various topology changes. Chan pro-
vided an active contours model without edges[6], but it only applied the mean
intensity of inner and outer curve to analyze the images, which was difficult to
segment complicated images such as ultrasound ones. A geodesic model based
on gradient vector flow was proposed by Nikos[7], but it costed a great deal of
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computation time and might fail in weak boundary. Other researchers devel-
oped segmentation algorithms with priori shape knowledge to detect boundaries
in echocardiographic images [3]. However, the shape knowledge is usually diffi-
cult to learn. In most cases, the extensive training cost is necessary. Especially,
a learned shape template can be only used to segment a specific class of im-
ages with a similar boundary shape. Recently, the shape information about the
target to be segmented was combined into the active contour models, such as
[9][10], which improved the segmentation result of specific shape similar to the
shape template, but the shape template was difficult to describe the real medical
tissues with various individuality.

This paper presents an efficient segmentation framework for echocardiographic
images with Rayleigh distribution. The remainder of the paper is organized as
follows. In Section 2, the proposed framework is described in detail. In Section
3, experiments are presented; and finally, conclusions are reported.

2 Statistical Segmentation Framework

The proposed segmentation framework is based on multiresolution technique,
which is robust to the speckle noise in the original ultrasound images. The al-
gorithm begins with pre-segmentation at a low resolution and passes the result
to the high resolution for a fast optimal segmentation. At the low resolution, a
Rayleigh distribution-based model is developed for pre-segmentation. Further-
more, a fast method passing solution from low resolution to high resolution is
developed. At the high resolution, an external statistical constraint is applied to
optimize the final result.

2.1 Nonlinear Scale Space

Perona and Malik showed that a scale space could be represented by a progression
of images computed by the heat diffusion equation [11][12]. The heat diffusion
equation for the pixel at location (x, y) of image I and time t is:

∂I

∂t
= div(D · ∇I) (1)

Where ∇ is the gradient operator,D is the heat diffusion coefficient. When
D is defined as a constant in all locations, the diffusion equation is equal to
isotropic diffusion, i.e. Gaussian smoothing. When D is a matrix, the equation is
anisotropic diffusion. Perona and Malik firstly introduced nonlinear diffusion into
the image processing context. The Perona-Malik(P-M) diffusion equation[12] is
isotropic and nonlinear diffusion like Gaussian smoothing, but it reduces the
diffusion coefficient in the edges, so it may protect the edges in the ultrasound
images while removing the noise. The diffusion coefficient of P-M diffusion equa-
tion is given by

D = exp(−‖∇I‖
2

K2 ) (2)
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Where k is a parameter. We then build a scale space based on nonlinear diffusion
pyramid to analyze the echocardiographic image by the P-M diffusion equation.

2.2 Rayleigh Distribution-Based Statistical Model

As mentioned before, the intensity distribution of the original echocardiographic
image is close to Rayleigh distribution. The Rayleigh distribution is described
as:

P (I(x)|Ωu) =
I(x)
μu

exp(−I(x)2

2μu
), μu > 0 (3)

Where I(x) is the intensity value of pixel x,μu is the Rayliegh parameter and
Ωu represents the region u in the ultrasound image. The equation (3) describes
the probability density of the intensity I(x) belonging to the specific Rayleigh
distribution with parameter μu.

According to the Bayesian rule, the posterior probability can be obtained.

P (Ωu|I(x)) =
P (I(x)|Ωu)P (Ωu)

P (I(x))
(4)

Where P (Ωu) is the prior probability of region Ωu . The region probability
function based on the posterior probability can be defined as:

Pu =
∏

x∈Ωu

P (Ωu|I(x)) (5)

If the image has two different regions,u = a or b , where a is the target to be
extracted, b is the background. The segmentation procedure is to find the suitable
region Ωa and Ωb so as to maximize the criterion f = PaPb . The maximum
criterion is maximal when all the pixels including the target and background are
classified accurately.

The multiplication of f can be transformed into the summation.

l = − log f = −(logPa + logPb) (6)

According to gradient descendent method, the speed function for level set can
be obtained.

F (Io(x)) = log μa−logμb+
Io(x)2 − 2μa

2μa
− Io(x)2 − 2μb

2μb
+log(p(Ωb))−log(p(Ωa))

(7)
Where μu = 1

2Nu

∑
x∈Ωx

I(x)2. The equation (7) is the speed function of point
Io(x) to be updated, which is a Rayleigh distribution-based statistical model.
Obviously, the equation (7) is also a region-based model, because it only uses
the inner and outer region information of the evolution curve.

Usually, the prior probability P (Ωa) and P (Ωb) can be obtained by a pre-
segmentation algorithm such as Fuzzy C-Means. In most simple case, P (Ωa) is
approximatively equal to P (Ωb), if the prior probability is ignored. A similar
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model with Rayleigh distribution was published in [13]. The model made use
only of the likelihood with Rayleigh distribution, i.e. the equation (3), so the
prior information about the regions to be segmented was ignored. Therefore,
the model is special case of the proposed model, where P (Ωa) = P (Ωb) . The
segmentation result of the model in [13] is demonstrated in the experiment.

According to level set method, the evolution equation for level set is defined
as:

∂Φ

∂t
= ε(F − λk)|∇Φ| (8)

Where k is the curvature of the evolution curve,Φ is the level set function, and
F is given in equation (7). ε and λ are the weight parameters. The curvature
item λk makes the curve length minimum when the curve converges.

In most cases, the region-based models may bring more computational cost.
More importantly, the models may converge at a local minimum solution. There-
fore, we choose geodesic active contour as the boundary information estimation
term [4]. The pre-segmentation model is then given by:

∂Φ

∂t
= α×F |∇Φ|+(1−α){g(|∇I|)(c1 + c2k) · |∇Φ|− (∇g(|∇I|) ·−→N ) · |∇Φ|} (9)

Where α is a weight parameter. c1 ,c2 are the parameters,−→N is the unit normal
vector of the curve, k is the curvature,I is the intensity value of original image.
Note that the minimum length constraint of Rayleigh model is written into
the geodesic contour model. The equation (9) is the evolution equation for pre-
segmentation at low resolution, which can be implemented by level set method.

2.3 Passing Solution Between the Adjacent Levels

In order to improve the segmentation performance, the pre-segmentation solution
at the low resolution should be passed to the high resolution and a new evolution
is performed for desirable results. Conventional methods for passing solution are
high computational cost because they interpolate the obtained contour at the
high resolution. In this section, we present a more efficient scheme based on
mathematical morphology.

Step 1. Passing all the interior points to the high resolution
If μ is a scaling factor from the low resolution Lj+1 to the high resolution Lj ,

there are μ ∗ μ points in Level Lj , which correspond to one point at level Lj+1.
For example, if μ is 2, for a point u(i, j) at Lj+1, the corresponding four points
are u(2i, 2j),u(2j+1, 2j) ,u(2i, 2j+1) ,u(2i+1, 2j+1) at Lj . Therefore, we can
obtain all interior point locations of the evolution curve at level Lj.

Step 2. Extracting the Front
After Step 1, we obtain all interior point locations at high resolution level,

seeing the left image of figure 1. We then apply morphological dilation to extract
the boundary of the interior region, i.e. the front. The extraction operation is
defined as:

ImageB = ImageA⊗A− ImageA (10)
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The structure element A is 3*3 strong template. ImageA is the mirror image
at high resolution level, where let the all interior points be 1 and other points
be 0. ImageB is the mirror image of the extracted front. See Figure1.

Fig. 1. Extracting the Front

Step 3. Dilation around the front
The dilation operation is defined as:

ImageC = ImageB ⊗B (11)

Fig. 2. Rebuilding the narrow band

Dilation operation is performed around the extracted front, whose structure
element B is a disc. In our method, usual computational cost, such as fast
marching algorithm, is unnecessary. Meanwhile, the reconstruction method is
self-adaptive, and the radius of the disc is also the narrowband width, which
can be reset during the evolution. During the dilation operation, the distance
between a point in the narrow band and the center of disc should be stored in
the temporary memory, which is also the new distance function value.

After Step 3, a new narrow band at the high resolution is rebuilt. It is also
the initial state of a new evolution. The scheme passing solution from the low
resolution to high resolution is very rapid, because the mathematical morphology
operators are more efficient than conventional interpolation computation.

2.4 Local Statistical Model for Optimization

After pre-segmentation at the low resolution, the initial curve is obtained. Al-
though the curve is close to the real boundary, the optimization segmentation is
necessary for more accurate result.
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Without the further constraints, the boundary-based models such as geodesic
active contour are easy to leak from weak boundary. The global information-
based models such as Yezzi’s global model should not be applied to optimize
segmentation because the global approaches are based on all the image data.
They are invalid in echocardiographic images because it is very difficult to es-
timate the global intensity distribution in original images with a great deal of
noise. The more important thing is that a pre-segmentation result has been ob-
tained, so the global separation is unnecessary. Therefore, we develop a local
model based on the statistical method. The energy function is given by:

E = −(μ′
a − μ′

b)
2 + λ

∮
ds (12)

Where
μ′

a =
1

2N ′
a

∑
x∈Ωa

I(x)2H(Φ(I(x)) + r)H(−Φ(I(x))) (13)

μ′
b =

1
2N ′

b

∑
x∈Ωb

I(x)2H(Φ(I(x)) + r)H(−Φ(I(x))) (14)

μ′
a ,μ′

b are the Rayleigh parameters of target and background region in the orig-
inal image.Φ is the level set function, whose value of the points inside evolution
curve is smaller than 0, and that of exterior points is bigger than 0. H is the
Heaviside function. r is a positive constant, which is often defined as the width
of narrowband. Accordingly, N ′

a,N ′
b are the pixel number inside and outside

the curve in narrowband respectively. It is obvious that μ′
a ,μ′

b are also the
Rayleigh parameter estimation of inside and outside curve in the narrowband,
whose distance function absolute values are smaller than the constant r .

∮
ds is

the Euclidean length of the curve, which makes the curve smoother. λ is a weight
parameter. The equation (12) is a local model, which only analyzes the region,
whose distance function absolute values are smaller than the constant r . The
equation (12) is straightforward, where the curve should make the difference of
Rayleigh distribution of the two regions inside and outside the curve as big as
possible.

The Euclidean length of the curve C is given by L =
∮
ds. It is easy to prove

that the flow
∂C

∂t
= k
−→
N (15)

Where k is the curvature of curve C. Accordingly, the speed function is defined
as:

F = −∇E = (μ′
a − μ′

b) · (
I(x)2 − 2μ′

a

N ′
a

+
I(x)2 − 2μ′

b

N ′
b

) + λk (16)

The curve evolution equation for optimization segmentation is then defined as:

∂Φ

∂t
= {(μ′

a − μ′
b) · (

I(x)2 − 2μ′
a

N ′
a

+
I(x)2 − 2μ′

b

N ′
b

) + λk}|∇Φ| (17)

Where Φ is level set function.
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3 Experiment

We choose the sequences of echocardiographic images as experimental datasets.
The final objective is to track the heart movement. We segment every image
in the dataset and reconstruct the heart issue. Before reconstruction, image
segmentation is performed using the proposed method in this paper.

Before the segmentation, the nonlinear diffusion pyramid is built. The para-
meters of Perona-Malik diffusion equation are chosen as: t = 0.2 ,k = 0.1, which
are suitable for most images. The default iteration number is 10. After smooth-
ing the original image, we subsample it to create the subsequent levels of the
pyramid. In the following experiments, the parameters are chosen as follows. In
equation 9,α = 0.6,c1 = 1,c2 = 0.2 work well in most images. In the equation
17,λ is fixed to 0.4.

We provide two groups of experiments to demonstrate the performance of
the proposed method, which describe the segmentation result of original ul-
trasound images with different slices. The original images are shown in Figure
3.1 and Figure 5.1. In the first experiment, Figure3.2 is a low resolution im-
age obtained from the diffusion pyramid of original image. Figure 3.3 denotes
the initial state of the evolution curve, which is described by a white curve.
The curve is propagated under the pre-segmentation model, i.e. the equation 9,
where the region-based and boundary-based information are applied for accu-
rate segmentation. Figure 3.4 is the pre-segmentation result at a low-resolution
level. Figure 4.1 magnifies the pre-segmentation result image one times. Figure
4.2 is the initial state of the curve at high resolution level. The initial solu-
tion is passed from the low resolution image Figure 3.4 by our mathematical
morphology-based scheme. The curve of Figure 4.1 and Figure 4.2 is almost
equivalent to each other, which proves that the solution in the low resolution
is transferred to high resolution level accurately. The result demonstrates that
our method has an excellent performance in terms of accuracy. Figure 4.3 is
the optimized result under the local constraint of statistical model(the equation
17). Compared with the pre-segmentation result 3.4 or 4.1, it is closer to real
boundary and smoother. Figure 5 and Figure 6 are the segmentation results
of another slice. We also provide the pre-segmentation and optimized result re-
spectively, which demonstrate the similar performance like the first experiment.
Every computation time of the above experiments is no more than 5 seconds,
where our model is implemented in the computer with CPU P4-1.6GHz and
256M memory.

The segmentation results of two conventional snake, Ning’s active contour[15]
and Rayleigh statistical model[13], are given by Figure 7. Figure 7.1 is the pre-
segmentation result of the Ning’s model in low resolution image. The intensity
distribution seems to be Gaussian after a big Gaussian template is applied in the
original image. However, the curve is easy to leak from the boundary, because
the gradient information is too weak. Figure7.2 shows the result of Rayleigh
statistical model in [13]. The curve without boundary information converges at
a local minimum location and several wrong regions are labeled. It is obvious that
the result of Rayleigh statistical model in [13] was sensitive to inhomogeneous
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3.1 3.2 3.3 3.4

Fig. 3. original image and segmentation result at the low resolution level. 3.1 original
image;3.2 low resolution image; 3.3 the initial state; 3.4 pre-segmentation result.

4.1 4.2 4.3

Fig. 4. the initial state and optimized result at high resolution level. The similarity
of 4.1 and 4.2 shows the accuracy of our scheme for passing solutions between the
adjacent levels.

5.1 5.2 5.3 5.4

Fig. 5. original image and segmentation result at the low resolution level. 5.1 original
image;5.2 low resolution image; 5.3 the initial state; 5.4 pre-segmentation result.

regions with serious noises, because the intensity of real ultrasound image is
often low SNR( Signal Noise Ratio). In this case, an efficient smoothing scheme
like the proposed mulitiresolution framework is necessary. Moreover, in order to
describe the intensity distribution accurately, the prior information should be
included.
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6.1 6.2 6.3

Fig. 6. the initial state and optimized result at high resolution level. 6.1 the magnified
image of 5.4; 6.2 the initial state at high resolution level;6.3 the optimized result.

7.1 7.2

Fig. 7. The segmentation result of Ning’s model and Rayleigh statistical model. 7.1
Ning’s model, 7.2 Rayleigh statistical model.

4 Conclusions

In this paper, we proposed a novel statistical multiresolution framework for
segmentation of left ventricle image. We applied the Rayleigh distribution to
analyze the original ultrasound images, and provided a Rayleigh-based model,
which describes the region information of the target to be extracted and back-
ground. The model is based on the optimization of maximal posterior proba-
bility of two partitioned regions. A pre-segmentation model integrating region-
and boundary-based information function was designed to analyze the image at
a low resolution level. Meanwhile, a rapid scheme passing the solution from the
low resolution to high resolution was also developed. The scheme was based on
mathematical morphology and did not need interpolation computation. The high
performance also makes it suitable for real-time applications. Furthermore, an ef-
ficient statistical optimization method at the high resolution level was proposed,
which propagates the curve towards the real boundary. The proposed optimiza-
tion approach is local and rapid because the initial curve is close to desirable
result. The proposed framework is implemented in a level set method and is
suitable for various topologic changes. This segmentation framework was tested
using a great deal of ultrasound images and the experiments showed that it is
accurate.
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Abstract. Most previous super-resolution (SR) approaches are imple-
mented with two individual cascade steps, image registration and image
fusion, which handicaps the incorporation of the structural information
of the objects of interest, e.g. human faces, into SR in a parallel way.
This prior information is beneficial to either robust motion estimation or
fusion with higher quality. In this paper, SR reconstruction is formulated
as Bayesian state estimation of location and appearance parameters of
a face model. In addition, a sequential Monte Carlo (SMC) based algo-
rithm is proposed to achieve the probabilistic state estimation, i.e. SR
reconstruction in our formulation. Image alignment and image fusion are
combined into one unified framework in the proposed approach, in which
the prior information from the face model is incorporated into both regis-
tration and fusion process of SR. Experiments performed on synthesized
frontal face sequences show that the proposed approach gains superior
performance in registration as well as reconstruction.

1 Introduction

Super-resolution (SR) refers to reconstructing a high resolution (HR) image from
a series of low resolution (LR) images. In most traditional approaches, SR re-
construction is implemented with two individual cascade steps, i.e., image regis-
tration and image fusion [1]. Image registration is performed prior to the fusion
step in order to compute the relative motion fields between pixels of consec-
utive image frames. The LR image frames are aligned by using the estimated
motion fields and then fused into a HR image by some sophisticated techniques,
in which additional constraints on the desired HR image are usually imposed so
as to resolve the inherent illness of the inverse process of reconstruction [1,2].

Image registration is such a critical step to SR reconstruction that the accu-
racy of the estimated motion fields determines the quality of reconstructed HR
images [3]. The Lucas-Kanade (LK) algorithm and its variants are widely used
for motion estimation in SR reconstruction due to their efficiency [4]. Though the
LK based algorithms with pyramid searching strategy can handle a wide range
of translation, it is not robust enough to obtain accurate motion fields in many

N. Zheng, X. Jiang, and X. Lan (Eds.): IWICPAS 2006, LNCS 4153, pp. 406–415, 2006.
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critical cases, e.g., non-linear motion, low quality images. The performance of
motion estimation can be improved further by combining the prior information
of object. These techniques may be helpful for SR reconstruction.

The second step, data fusion, essentially needs to make use of the information
about the image formation process that yields the LR image sequences. Besides,
the prior knowledge pertaining to the original HR image is required to regularize
the ill-posed inverse process of reconstruction. Recently, recognition-based priors
have been incorporated into the fusion step to substitute the smoothness priors
[1,5,6,7]. However, it is supposed that accurate motion fields have been estimated
prior to fusion, that is, the recognition-based priors are not incorporated into
both steps of the SR reconstruction.

We observe that there exists a dilemma in the previous SR methods that
the fusion of LR image frames demands accurate motion estimation. However,
the lack of HR image information, leads to the difficulties in obtaining accurate
motion fields. The cause of this dilemma lies in that the process of SR recon-
struction is divided into two steps connected in an open-loop way. On the other
hand, it is beneficial for both steps to take into account the prior information
of the object. In this paper we pose SR reconstruction as Bayesian state estima-
tion of location and appearance parameters of a face model. The face model is
composed of several conditional dependent statistical models to represent facial
components with geometrical constraints. Both the appearance parameters and
location parameters are simultaneously estimated by a novel SMC based method
within this unified Bayesian framework. The high level prior knowledge in terms
of statistical models is incorporated into the both steps of SR reconstruction,
which yields both robust motion estimation and high quality SR reconstruction.
The textures of the facial components are generated by the estimated appear-
ance parameters, and then laid in the estimated positions to obtain the desired
HR face image.

2 Part-Based Face Model

As known, a face is such an object that presents highly structured characteristics.
These characteristics can be summarized as follows: 1) a face can be composed
of several components in a semantic sense, e.g., eyes, nose and mouth; 2) each
component exhibits structural appearance; and 3) the locations and appearance
of the components are highly constrained. We use a graphical model [8] to repre-
sent the appearance of the facial components as well as the relationships between
the components.

We only consider four facial components, i.e. two eyes, nose and mouth,
because these components are the key features to determine the identity of a
face. Figure 1 gives the graphical structure of the proposed model. The graph
is composed of four nodes and exhibits a tree structure. The nodes Xi rep-
resent the locations and appearance parameters of facial components, denoted
as Xi := (li,ai). Locations are given by affine parameters, i.e. translations in the
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image plane and scale l = (tx, ty, s), while appearance parameters for each node
are determined via principal component analysis (PCA) model of each facial
component, which is similar to modular eigenface [9]. The appearance of each
facial component is generated by:

Ti = Ti0 + Φiai (1)

where Ti0 denotes the mean feature of the ith component and Φi is a matrix
composed of the principal eigen vectors of the covariance of the ith component.

X1

X
3

X2

X4

E
1,3 E

2,3

E
3,4

Fig. 1. The graphical structure of part-based face model

The edge set E =
⋃

Ei,j in the graph indicates the conditional dependence be-
tween facial components. These dependences are related by pair wise interaction
potentials ψ(Xi,Xj):

ψ(Xi,Xj) = ψl(li, lj)ψa(ai, aj) (2)

where i and j are the indices of graph nodes. The tree structure in this graphical
model is specified in advance for the simplicity of the learning process.

The appearance model for each facial component and the potentials in Eq.
(2) are learnt from a number of example images with annotated positions and
masks of facial components. Performing standard PCA on the training images
of facial components can yield the appearance models. We model the poten-
tial between the positions of facial components ψl as a Gaussian density. The
mean and variance of the Gaussian density are estimated from the annotated
positions. And the potential functions ψa relating coefficients of appearance
models are approximated by kernel density estimates [10] from the training
images.

Once the trained models are available, images of any facial components can be
generated by specified appearance parameters ai and then these images can be
set to their corresponding locations li to produce a face image. SR reconstruction
of a face image becomes probabilistic estimation of the values of four nodes Xi

from the available LR images.
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3 Bayesian Formulation of SR Reconstruction

We cast the SR reconstruction of a face image as the probabilistic state es-
timation of N nodes Xt = (X1t, · · · ,Xit, · · · ,XNt) given LR image frames
Yt = (Y1, · · · ,Yt) up to time t. These estimated parameters give a plausible
high quality image by accumulating observed information from the LR image
sequence and incorporating prior knowledge from the defined face model. The
posterior probability density can be recursively updated as [11]:

p(Xt

∣∣Yt) ∝ p(Yt |Xt)
∫

Xt−1

p(Xt |Xt−1)p( Xt−1
∣∣Yt−1) (3)

where the likelihood p(Yt |Xt) expresses how the current state Xt fits the ob-
servations available at time t. We assume that a face performs the movement
with slight deviation from frontal view so that facial components do not occlude
each other. The likelihood can be represented as the product of the likelihood
densities of facial components, that is

p(Yt |Xt) =
∏

i

p(Yit |Xit) (4)

The transition density p(Xt |Xt−1) gives the relationship between the face states
of two consecutive time steps, t and t− 1 . Motivated by the idea of using MRF
to model the constraints between components within a time step [12,13], we
factorize the transition density as:

p(Xt |Xt−1) ∝
∏

i

p(Xit

∣∣Xi(t−1))
∏

(i,j)∈E

ψ(Xit,Xjt) (5)

This factorization makes it possible to extract the interactions between nodes
out of the integral over Xt−1 in Eq. (3).

4 SMC Based Inference Algorithm

In a SMC method [11], the posterior density p(Xt−1
∣∣Yt−1 ) is approximated by

a set of samples Xk
t−1 associated with corresponding weights wk

t−1, i.e.,{Xk
t−1,

wk
t−1}Ns

k=1 , where Ns is the number of samples. Then the integral in Eq. (3) is
approximated as the summation of the weighted samples:

p(Xt

∣∣Yt) ≈ p(Yt |Xt)
∑

k

wk
t−1p(Xt

∣∣Xk
t−1) (6)

We draw samples Xk
t from the prior transition density p(Xt

∣∣Xk
t−1) , that is

Xk
t ∼ p(Xt

∣∣Xk
t−1) (7)
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and then the associated weights wk
t are updated as

wk
t = p(Yt

∣∣Xk
t ) wk

t−1 (8)

With the samples Xk
t properly weighted by wk

t , the state up to a time step t
can be inferred by a MAP estimate or a mean estimate. Eqs. (7) and (8) give
one iteration step of a standard SMC method. We need to devise a novel sam-
ple propagating and weight updating algorithm to accommodate the proposed
graphical structure.

4.1 Sample Propagation

Substituting Eq. (5) into Eq. (6), we obtain:

p(Xt

∣∣Yt) ≈ p(Yt |Xt)
∏

ij∈E

ψ(Xit,Xjt)[
∑

k

wk
t−1

∏
i

p(Xit

∣∣∣Xk
i(t−1)) (9)

This means that we can use the samples of
∏
i

p(Xit

∣∣∣Xk
i(t−1)) instead of directly

sampling from p(Xt

∣∣Xk
t−1) as Eq. (7) to approximate the integral over Xt−1 in

Eq. (refeqn3). We independently sample the transition density of each compo-
nent, p(Xit

∣∣∣Xk
i(t−1)) , in order to form the samples {Xk

t }Ns

k=1 :

Xk
t ∼

∏
i

p(Xit

∣∣∣Xk
i(t−1)) (10)

For any nodes in the graph shown in Figure 1, the state vector is composed of
location and appearance parameters, that is,

p(Xit

∣∣∣Xi(t−1)) = p(lit,ait

∣∣li(t−1), ai(t−1) ) (11)

Derived from multiplication rule, we rewrite it as

p(lit,ait

∣∣li(t−1),ai(t−1) ) = p(ait

∣∣lit, li(t−1),ai(t−1) )p(lit
∣∣li(t−1), ai(t−1) ) (12)

We assume that location lit is determined only by the given location at the
previous time step (t-1), and is independent from the appearance at (t-1), ai(t−1),
i.e.,

p(lit
∣∣li(t−1),ai(t−1) ) = p(lit

∣∣li(t−1) ) (13)

Thus, we can sample a new particle for location lkit from the above dynamics
model as typical SMC methods do. The probability of the appearance at t given
lit, li(t−1) and ai(t−1) is assumed as a Gaussian:

p(ait

∣∣lit, li(t−1),ai(t−1) ) = N(ai(t−1),Qi(t−1)) (14)

where Qi(t−1) is a diagonal matrix with the elements depending on the difference
between lit and li(t−1). Large movements are likely to yield great appearance
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variations, and thus the elements in Qi(t−1) are rewarded with larger values.
Otherwise, smaller variances will be specified. Noticing (14), we use Kalman-like
updating equations to propagate appearance coefficients ait similar to those in
[14]. Starting from an initial density ai0 ∼ N(āi0,Pi0) , the probability density
of appearance is updated as:

Pit = (ΦT
i Φi + (Qi(t−1) + Pi(t−1))

−1)−1 (15)

āit = Pit(Φ
T
i Yit + (Qi(t−1) + Pi(t−1))

−1āi(t−1)) (16)

These updating equations circumvent sampling in the higher dimensional ap-
pearance subspace so that the proposed method can be implemented in an effi-
cient way.

4.2 Weight Updating

Noticing Eq. (9), we can treat the constraint between nodes as an additional
term to update the weights,

wk
t = wk

t−1p(Yt

∣∣Xk
t )
∏

ij∈E

ψ(Xk
it,X

k
jt)=wk

t−1

∏
i

p(Yit |Xit)
∏

ij∈E

ψl(lkit, l
k
jt)ψa(ak

it, a
k
jt)

(17)
where ψl(lkit, l

k
jt) and ψa(ak

it, a
k
jt) are obtained during the training stage as de-

scribed above. The likelihood p(Yit |Xit) is calculated as:

p(Yit |Xit) ∝ exp(−1
2

∥∥Tk
it −Ti0 −Φiak

it

∥∥2
Σ

) (18)

where Tk
it is the image obtained by warping the observed LR image with the

affine transformation fk, which is determined by the location samples lkit. The
distance in Eq. (18) is defined as

‖x‖2Σ = xTΣ−1x (19)

where Σ is a diagonal matrix with the elements as the eigen values of the co-
variance of each component.

We perform the modified SMC iteration as Eqs. (13), (15), (16) and (17) to
obtain the appearance and location parameters via given the LR images Yt up
to time step t. We generate patches of facial components with the estimated
appearance parameters and fuse them by the estimated location parameters to
yield HR face image.

5 Experimental Results

We selected 143 frontal neutral face images from AR data set [15] and flipped
them horizontally to double the amount of images. All the images were manually
annotated 4 points: the centers of the eyeballs, the tip of the nose, and the center
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of the mouth. Then PCA models of the four components were built from the ex-
tracted images of the corresponding components. We used 10 PCA coefficients to
represent the appearance of each component. The interaction potentials between
the coefficients were obtained by kernel density estimation from the annotated
positions of facial components and corresponding appearance coefficients. Figure
2 shows the learnt interaction potential functions between the first appearance
parameters of the connected facial components.

 

Fig. 2. The potential functions between the first appearance parameters of the facial
components

The performance of the proposed approach is examined on synthetic face im-
age sequences. We warped a HR face image into several LR images by specifying
location parameters, and then corrupt the LR images by using i.i.d. Gaussian
noise with various power dependent on the location parameters.

We investigate the performance of the proposed approach on alignment para-
meter estimation by compare with the widely used LK algorithm. Figure 3 shows
the mean estimation errors obtained by the two algorithms when translational
parameters vary with the scaling parameter fixed to 0.5. It can be seen that
both algorithms gain accurate estimation. However, the estimation error of LK
algorithm becomes higher than the proposed approach when large translation
occurs, although the pyramid scheme is adopted in our implementation of LK
algorithm. It is reported that LK algorithm is able to estimate large translations
with the sub-pixel accuracy. But it is worth noting that the additive noise varies
with movement parameters in the experiments, which breaks the brightness con-
sistence assumption in the LK algorithm. In contrast, our approach takes the
appearance variations (see Eqs. (15) and (16)) into account so that it gains supe-
rior performance. Figure 4 demonstrates the estimate errors with various scaling
parameters. As the pyramid scheme cannot cope with large scale variations, LK
algorithm does not work well in these cases. However, in our approach, the sam-
pling based inference SMC algorithm that maintains multiple hypotheses can
recover from non-maximal modals. Figure 4 shows that the proposed approach
gives accurate estimation even when the scaling variation up to 1.8.
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Fig. 3. The mean estimation errors obtained by the proposed approach and LK
algorithm
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Fig. 4. The effects of scale variations on estimation accuracy

The quality of the reconstructed image by the proposed approach is evaluated
subjectively. Figure 5 shows the reconstruction images when down sampling fac-
tor is set to 4. It can be shown that bi-cubic interpolation does less on details
recovery. Figure 5 (c) shows the reconstructed HR images with the appearance
parameters estimated by the proposed approach, where only four facial compo-
nents (i.e. eyes, nose, and mouth) are considered. Thus, we only estimate the
appearance parameters of these facial components and reconstruct the patches of
these components. The proposed approach reconstructs HR images with superior
visual quality. Because we use the PCA based models derived from the statis-
tical characteristics of face images, the resultant images are robust to additive
noise. In the experiments, we find that the reconstructed appearance is not sen-
sitive to location parameters, especially translations, in contrast to the results
of traditional two-step SR algorithms [3]. Figure 5 (d) shows that there exist



414 H. Huang et al.

distinct boundaries between facial components and inconsistent overall bright-
ness and some trivial artifacts present. This deficiency can be amended by im-
posing compatible constraints among the overlapped regions of the facial com-
ponents as what Freeman et al. [16] did.

(a) The original images

(b) The HR image obtained by bi-cubic interpolation

(c) The reconstructed HR images estimated by the proposed approach

(d) The reconstructed HR images estimated by the proposed approach

Fig. 5. The results of reconstructing LR face images

6 Conclusion

In this paper, we propose a Bayesian super-resolution approach that combines
image alignment and image fusion into one unified framework. The prior informa-
tion of appearance and position from the face model is incorporated into both
alignment and fusion processes of super-resolution, and the higher resolution
images are reconstructed via an SMC based inference algorithm. Experimen-
tal results show that the proposed approach gains superior performance in the
alignment as well as high quality reconstruction. The proposed approach is a
primitive attempt for SR via a Bayesian estimation perspective quietly different
from existing ones. It is expected that the other inference algorithm than the
SMC based one can be used to get more robust and efficient estimation.
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Abstract. Hyperspectral images can be represented either as a set of
images or as a set of spectra. Spectral classification and segmentation and
data reduction are the main problems in hyperspectral image analysis. In
this paper we propose a Bayesian estimation approach with an appropri-
ate hiearchical model with hidden markovian variables which gives the
possibility to jointly do data reduction, spectral classification and image
segmentation. In the proposed model, the desired independent compo-
nents are piecewise homogeneous images which share the same common
hidden segmentation variable. Thus, the joint Bayesian estimation of
this hidden variable as well as the sources and the mixing matrix of the
source separation problem gives a solution for all the three problems of
dimensionality reduction, spectra classification and segmentation of hy-
perspectral images. A few simulation results illustrate the performances
of the proposed method compared to other classical methods usually
used in hyperspectral image processing.

1 Introduction

Hyperspectral images data can be represented either as a set of images xω(r) or
as a set of spectra xr(ω) where ω ∈ Ω indexes the wavelength and r ∈ R is a pixel
position [1,2,3]. In both representations, the data are dependent in both spatial
positions and in spectral wavelength variable. Classical methods of hyperspectral
image analysis try either to classify the spectra xω(r) in K classes {ak(ω), k =
1, · · · ,K} or to classify the images xω(r) in K classes {sk(r), k = 1, · · · ,K},
using the classical classification methods such as distance based methods (like K-
means) or probabilistic methods using the mixture of Gaussian (MoG) modeling
of the data. These methods thus either neglect the spatial structure of the spectra
or the spectral natures of the pixels along the wavelength bands.

The dimensionality reduction problem in hyperspectral images can be written
as:

xr(ω) =
K∑

k=1

sk(r) ak(ω) + εr(ω), (1)

N. Zheng, X. Jiang, and X. Lan (Eds.): IWICPAS 2006, LNCS 4153, pp. 416–424, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Hierarchical Markovian Models for Hyperspectral Image Segmentation 417

where the ak(ω) are the K spectral source components and sk(r) are their as-
sociated images.

This relation, when discretized, can be written as follows:

x(r) = As(r) + ε(r) (2)

x(r) = {xi(r), i = 1, · · · ,M} is the set of M observed images in different bands
ωi, A is the mixing matrix of dimensions (M,K) whose columns are composed
of the spectra ak(ω), s(r) = {sk(r), k = 1, · · · ,K} is the set of K unknown
components (source images) and ε(r) = {εi(r), i = 1, · · · ,M} represents the
errors.

The main objective in unsupervised classification of the spectra is to find both
the spectra ak(ω) and their associated image components sk(r). This problem,
written as in equation (2) is recognized as the Blind Source Separation (BSS) in
signal processing community, for which, many general solutions such as Princi-
pal Components Analysis (PCA) and Independent Components Analysis (ICA)
have been proposed. In general, PCA is used as a feature extraction step before
applying ICA for spectral classification. However these general methods do not
account for the specificity of the hyperspectral images.

Indeed, as we mentioned, neither the classical methods of spectra or images
classification nor the PCA and ICA methods of BSS give satisfactory results
for hyperspectral images. The reasons are that, in the first category of methods
either they account for spatial or for spectral properties and not for both of them
simultaneously, and PCA and ICA methods do not account for the specificity of
the mixing matrix and the sources.

In this paper, we propose to use this specificity of the hyperspectral images
and consider the dimensionality reduction problem as the blind sources sepa-
ration (BSS) of equation (2) and use a Bayesian estimation framework with a
hierarchical model for the sources with a common hidden classification variable
which is modelled as a Potts-Markov field. The joint estimation of this hidden
variable, the sources and the mixing matrix of the BSS problem gives a solution
for all of the three problems of dimensionality reduction, spectra classification
and segmentation of hyperspectral images.

2 Proposed Model and Method

We propose to consider the equation (2) written in the following vector form:

x = As + ε (3)

where we used x = {x(r), r ∈ R}, s = {s(r), r ∈ R} and ε = {ε(r), r ∈
R} and we are going to account for the specificity of the hyperspectral im-
ages through a probabilistic modeling of all the unknowns, starting by assum-
ing that the errors ε(r) are centered, white, Gaussian with covariance matrix
Σε = diag

[
σ2

ε1 , .., σ
2
εM

]
. This leads to

p(x|s,A,Σε) =
∏
r
N (As(r),Σε) (4)



418 A. Mohammad-Djafari, N. Bali, and A. Mohammadpour

The next step is to model the sources. As we mentioned in the introduction,
we want to impose to all these sources s(r) to be piecewise homogeneous and
share the same common segmentation, where the pixels in each region are con-
sidered to be homogeneous and associated to a particular spectrum representing
the type of the material in that region. We also want that those spectra be
classified in K distinct classes, thus all the pixels in regions associated with
a particular spectrum share some common statistical parameters. This can be
achieved through the introduction of a discrete valued hidden variable z(r) rep-
resenting the labels associated to each type of material and thus assuming the
following:

p(sj(r)|z(r) = k) = N (mjk, σ
2
j k

), k = 1, · · · ,K (5)

with the following Potts-Markov field model

p(z) ∝ exp

⎡⎣β∑
r

∑
r′∈V(r)

δ(z(r)− z(r′))

⎤⎦ (6)

where z = {z(r), r ∈ R} represents the common segmentation of the sources
and the data. The parameter β controls the mean size of those regions.

We may note that, assuming a priori that the sources are mutually indepen-
dent and that pixels in each class k are independent form those of class k′, we
have

p(s|z) =
∑

k

∑
r∈Rk

∑
j

p(sj(r)|z(r) = k) (7)

where Rk = {r : z(r) = k} and R = ∪kRk.
To insure that each image sj(r) is only non-zero in those regions associated

with the kth spectrum, we impose K = N and mjk = 0, ∀j �= k and σ2
j k

=
0.001, ∀j �= k. We may then write

p(s|z) =
∑
r

p(s(r)|z(r) = k)) =
∑
r
N (mk(r),Σk(r)) (8)

where mk(r) is a vector of size N with all elements equal to zero except the
k-th element k = z(r) and Σk(r) is a diagonal matrix of size N × N with all
elements equal to zero except the k-th main diagonal element where k = z(r).

Combining the observed data model (3) and the sources model (6) of the
previous section, we obtain the following hierarchical model:

3 Bayesian Estimation Framework

Using the prior data model (4), the prior source model (5) and the prior Potts-
Markov model (6) and also assigning appropriate prior probability laws p(A) and
p(θ) to the hyperparameters θ = {θε,θs} where θε = Rε and θs = {(mjk, σ

2
j k

)},
we obtain an expression for the posterior law
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• • • • • • • • • • • xi(r)|s(r)| | | | | | | | | | |• • • • • • • • • • • sj(r)|z(r)| | | | | | | | | | |•↔•↔•↔•↔•↔•↔•↔•↔•↔•↔• zj(r)|zj(r′), r′ ∈ V(r)
1 1 1 1 2 2 3 3 3 1 1 z(r) = {1, · · · , K}

Fig. 1. Proposed hierarchical model for hyperspectral images: the sources sj(r) are
hidden variables for the data xi(r) and the common classification and segmentation
variable z(r) is a hidden variable for the sources. In this figure the horizontal axis
represents the pixel position r.

p(s, z,A,θ|x) ∝ p(x|s,A,θε) p(s|z,θs) p(z) p(A) p(θ) (9)

In this paper, we used conjugate priors for all of them, i.e., Gaussian for the
elements of A, Gaussian for the means mjk and inverse Gamma for the variances
σ2

j k
as well as for the noise variances σε

2
i .

When given the expression of the posterior law, we can then use it to define an
estimator such as Joint Maximum A Posteriori (JMAP) or the Posterior Means
(PM) for all the unknowns. The first needs optimization algorithms and the
second integration methods. Both are computationally demanding. Alternate
optimization is generally used for the first while the MCMC techniques are used
for the second.

In this work, we propose to separate the unknowns in two sets (s, z) and
(A,θ) and then use the following iterative algorithm:

– Estimate (s, z) using p(s, z|Â, θ̂,x) by

ŝ ∼ p(s|ẑ, Â, θ̂,x) and ẑ ∼ p(z|Â, θ̂,x)

– Estimate (A,θ) using p(A,θ|ŝ, ẑ,x) by

Â ∼ p(A|ŝ, ẑ, θ̂,x) and θ̂ ∼ p(θ|ŝ, ẑ, Â,x)

In this algorithm, ∼ represents either argmax or generate sample using or still
compute the Mean Field Approximation (MFA). To implement this algorithm,
we need the following expressions:
• p(s|z,A,θ,x) ∝ p(x|s,A,Σε) p(s|z,θ).
It is then easy to see that p(s|z,A,θ,x) is separable in r:

p(s|z,θ,x) =
∏
r

p(s(r)|z(r),θ,x(r))

=
∏
r
N (s̄(r),B(r)) (10)

with ⎧⎨⎩B(r) =
[
AtΣ−1

ε A + Σ−1
z(r)

]−1

s̄(r) = B(r)[AtΣ−1
ε x(r) + Σ−1

z(r)mz(r)]
(11)
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In this relation mz(r) is a vector of size n with all elements equal to zero except
the k-th element where k = z(r) and Σz(r) is a diagonal matrix of size n × n
with all elements equal to zero except the k-th diagonal where k = z(r).
• p(z|A,θ,x) ∝ p(x|z,A,θ) p(z), where

p(x|z,A,θ) =
∏
r

p(x(r)|z(r),A,θ) (12)

=
∏
r
N (Amz(r),AΣz(r)A

t + Σε).

It is then easy to see that, even if p(x|z,A,θ) is separable in r, p(z|A,θ,x) is
not and it has the same markovian structure that p(z).
• p(A|z,θ,x) ∝ p(x|z,A,θ) p(A).
It is easy to see that, with a Gaussian or uniform prior for p(A) we obtain a
Gaussian expression for this posterior law. Indeed, with an uniform prior, the
posterior mean is equivalent to the posterior mode and equivalent to the Maxi-
mum Likelihood (ML) estimate Â = argmaxA {p(x|z,A,θ)} whose expression
is:

Â =

[∑
r

x(r)s̄′(r)

] [∑
r

s̄(r)s̄′(r) + B(r)

]−1

where s̄(r) and B(r) are given by (11).
• p(Rε|z,A,θ,x) ∝ p(x|z,A,θ) p(Rε).
It is also easy to show that, with an uniform prior on the logarithmic scale or
an inverse gamma prior for the noise variances, the posterior is also an inverse
gamma.
• p(θ|z,A,x) ∝ p(x|z,A,θ) p(θ)
Again here, using the conjugate priors for the means mjk and inverse gamma
for the variances σ2

j k
we can obtain easily the expressions of the posterior laws

for them.
Details of the expressions of p(A|z,θ,x), p(Rε|z,A,θ,x) and p(θ|z,A,x) as

well as their modes and means can be found in [4].

4 Computational Considerations and Mean Field
Approximation

As we can see, the expression of the conditional posterior of the sources is sep-
arable in r but this is not the case for the conditional posterior of the hidden
variable z(r). So, even if it is possible to generate samples from this posterior
using a Gibbs sampling scheme, the cost of the computation is very high for real
applications. The Mean Field Approximation (MFA) then becomes a natural
tool for obtaining approximate solutions with lower computational cost.
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The mean field approximation is a general method for approximating the
expectation of a Markov random variable. The idea consists in, when considering
a pixel, to neglect the fluctuation of its neighbor pixels by fixing them to their
mean values [5,6]. Another interpretation of the MFA is to approximate a non
separable

p(z) ∝ exp

[
β
∑
r

∑
r′

δ(z(r)− z(r′))

]
∝
∏
r

p(z(r)|z(r′), r′ ∈ V(r))

with the following separable one:

q(z) ∝
∏
r

q(z(r)|z̄(r′), r′ ∈ V(r))

where z̄(r′) is the expected value of z(r′) computed using q(z). This approxi-
mate separable expression is obtained in such a way to minimize the Kullback-
Leibler divergence measure KL(p, q) for a given class of separable distributions
q ∈ Q.

Using now this approximation in the expression of the conditional posterior
law p(z|A,θ,x) gives the separable MFA

q(z|A,θ,x) =
∏
r

q(z(r)|z̄(r′), r′ ∈ V(r),A,θ,x(r))

where q(z(r)|z̄(r′), r′ ∈ V(r),A,θ,x(r)) =
p(x(r)|z(r),A,θ) q(z(r)|z̄(r′), r′ ∈ V(r))

and z̄(r) can be computed by

z̄(r) =

∑
z(r) z(r) q(z(r)|z̄(r′), r′ ∈ V(r),A,θ,x(r))∑

z(r) q(z(r)|z̄(r′), r′ ∈ V(r),A,θ,x(r))

5 Simulation Results

The main objectives of these simulations are: first to show that the proposed
algorithm gives the desired results, and second to compare its relative perfor-
mances with respect to some classical methods. For this purpose, first we gen-
erated some simulated data according to the data generatin model, i.e.; starting
by generating z(r), then the sources s(r), then using some given spectral signa-
tures obtained from real materials, construct the mixing matrix A and finally
generate data x(r). Fig. 2 shows two examples of such data generated with the
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following parameters: case 1: M = 32, N = 4,K = 4 and SNR=20 dB and case
2: M = 32, N = 8,K = 8 and SNR=20 dB.

Fig. 3 shows a comparison of the results obtained by two classical spectral
and image classification methods using the classical K-means with the results
obtained by the proposed method on these two simulated data sets.

We are applying these methods on other dataset with ground truth and will
report on this in the final camera ready paper of the conference.
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Fig. 2. Examples of data generating process: a) z(r) b) spectral signatures used to
construct the mixing matrix A and c) M simulated images. Upper row: M = 32,
K = 4 and image sizes (64x64), Lower row: M = 56, K = 8 and image sizes (128x128).

6 Conclusion

Classical methods of data reduction in hyperspectral imaging use classification
methods either to classify the spectra or to classify the images in K classes
where K is, in general, much less than the number of spectra or the number of
observed images. However, these methods neglect either the spatial organization
of the spectra or the spectral property of the pixels along the spectral bands. In
this paper, we considered the dimensionality reduction problem in hyperspectral
images as a source separation and presented a Bayesian estimation approach with
an appropriate hierarchical prior model for the observations and sources which
accounts for both spectral and spatial structure of the data, and thus, gives the
possibility to jointly do dimensionality reduction, classification of spectra and
segmentation of the images.
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Fig. 3. Dimensionality reduction by different methods: a) Spectral classification using
K-means, b) Image classification using K-means, c) Proposed method. Upper row
shows estimated z(r) and lower row the estimated spectra. These results have to be
compared to the original z(r) and spectra in previous figure.
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Fig. 4. Real data: a) Spectral classification using K-means, b) Image classification
using K-means, c) Proposed method. Upper row shows estimated z(r) and lower row
the estimated spectra
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Abstract. We propose an adaptive geometry compression method based
on 4-point interpolatory subdivision schemes. It can work on digital curves
of arbitrary dimensions. With the geometry compression method, a dig-
ital curve is adaptively compressed into several segments with different
compression levels. Each segment is a 4-point subdivision curve with a
subdivision step. In the meantime, we provide high-speed 4-point interpo-
latory subdivision curve generation methods for efficiently decompressing
the compressed data. In the decompression methods, we consider both the
open curve case and the closed curve case. For an arbitrary positive inte-
ger k, formulae of the number of the resultant control points of an open
or closed 4-point subdivision curve after k subdivision steps are provided.
The time complexity of the new approaches are O(n), where n is the num-
ber of the points in the given digital curve. Examples are provided as well
to illustrate the efficiency of the proposed approaches.

Keywords: geometry compression, subdivision scheme, 4-point subdi-
vision, interpolatory subdivision, high-speed curve generation.

1 Introduction

It is a common practice to compress data before they are archived. With ubiqui-
tous applications of computers and network, gigantic amount of data are contin-
uously generated. In the meantime, the increasing demand for communication
and data exchange over network beats the limitation of the network band. Data
compression becomes more and more important and receives more and more
attentions [7, et al]. While data compression has a long history and has achieved
a high level of sophistication, some new tools are eager to be discovered to fill
the gap between the requirement and the ability of data compression. Geometry
compression is relatively new, and becomes a hot topic in a short time after it
appeared [6,7,9,10,11,12,13, et al]. Wavelet transforms [7, et al], multiresolution
[6, et al] and various trees [13, et al] are frequently used in geometry compression.

Almost all geometry compression methods focus on how to compress three-
dimensional meshes. In this paper, we will propose a new geometry compres-
sion method based on 4-point interpolatory subdivision schemes. With our new
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method, a digital curve of an arbitrary dimension is compressed into one or sev-
eral subdivision curve segments. The advantages of our method are at least as
follows.

– It is able to work on a digital curve of an arbitrary dimension. And any
sequence of data can be considered as a digital curve of a certain dimension.

– The set of the inner control points of the resultant subdivision curves is
exactly a subset of the points of the compressed curve.

– It is possible to simplify the pattern recognition of some digital curves into
the pattern recognition of the subdivision curve segments after data com-
pression. The inner control points of the resultant subdivision curves may
be considered as the key points of the given digital curves, since they can be
used to reproduce the given digital curves after data decompression.

Our work gives contributions to the area about subdivision curves and sur-
faces as well. The first subdivision scheme for generating subdivision curves was
proposed by Chaikin [2] in 1974. The 4-point interpolatory subdivision [4] ap-
peared in 1987. Recently, research on subdivision schemes for generating curves
and surfaces becomes popular in graphical modeling [3,9, et al], animation [14, et
al] and CAD/CAM [8, et al] because of their stability in numerical computation
and simplicity in coding. Much work on subdivision surfaces is carried out in
several important topics such as Boolean operations [1], mesh editing [14], and
adaptive tessellation [9]. And a lot of work [5, et al] has been carried out on the
4-point subdivision schemes as well. In this paper, we will provide approaches
for the high-speed 4-point interpolatory subdivision curve generation to speed
up the data decompression.

The remaining part of the paper is arranged as follows. A brief review of the
4-point interpolatory subdivision curve is given in Section 2. A data compres-
sion method is provided in Section 3. The high-speed generation approaches are
provided in Section 4 for the open 4-point interpolatory subdivision curve and
the closed 4-point interpolatory subdivision curve, respectively, to speed up the
data decompression. Section 5 uses some examples to illustrate the efficiency of
the proposed approaches. Some concluding remarks are given in the last section.

2 4-Point Interpolatory Subdivision Schemes

In this section, we briefly go through the 4-point interpolatory subdivision
schemes given by [4]. Initially, a set of points M0 = {P0,0,P1,0, · · · ,Pn0−1,0}
is given, where Pi,0(i = 0, 1, · · · , n0 − 1) are points, and n0 is the number of
the points. The subdivision is preformed in a recursive procedure. At each sub-
division step, some points before the subdivision are inherited, and some new
points are inserted into the point set such that the number of the points usually
becomes larger and larger. Let Mk = {P0,k,P1,k, · · · ,Pnk−1,k} be the resultant
point set after the kth (k = 0, 1, 2, · · · ) subdivision step, where nk is the number
of the points in Mk. All points Pi,k in Mk are called control points as well.

The 4-point interpolatory subdivision curves can be classified into categories:
the open case or the close case. At the kth subdivision step, the points inherited
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from Mk−1 are Pi,k−1, where i = 1, 2, · · · , (nk−1 − 2) for the open case, and
i = 0, 1, · · · , (nk−1− 1) for the close case. The point Pj,k to be inserted between
Pi,k−1 and Pi+1,k−1 at the kth subdivision step is

Pj,k = (w + 0.5)(Pi,k−1 + Pi+1,k−1)− w(Pi−1,k−1 + Pi+2,k−1), (1)

for each i = 1, 2, · · · , (nk−1 − 3) under the open case, and

Pj,k = (w + 0.5)(P(i%nk−1),k−1 + P((i+1)%nk−1),k−1)
−w(P((i−1)%nk−1),k−1 + P((i+2)%nk−1),k−1),

(2)

for each i = 0, 1, · · · , (nk−1 − 1) under the close case, where the weight w is
a given real number. Usually, the value of w is suggested to be 1

16 . In Equa-
tion (2), the modulus symbol (%) is used such that each subscription is in the
set {0, 1, · · · , nk−1 − 1}. Note that from Mk−1 to Mk, the points P0,k−1 and
Pnk−1−1,k−1 are discarded for the open case after the subdivision, which is called
the shrink property of an open 4-point interpolatory subdivision curve. When
k → ∞, the point set M∞ becomes a limit subdivision curve. M∞ is an open
curve under the open case, and a closed curve under the close case.

3 Data Compression

In this section, we propose a geometry compression method for digital curves
based on the above schemes. Here, a digital curve is an open polygonal curve or
a closed polygonal curve (i.e. a polygon), represented by n vertices {P0,P1, · · · ,
Pn−1}. The principle of the geometry compression is, as shown in Figure 1(a),

– that for the open case, we do not need to store Pi which satisfy

‖Pi − [(w + 0.5)(Pi−1 + Pi+1)− w(Pi−3 + Pi+3)]‖2 ≤ e, (3)

where i = 3, 4, · · · , (n− 4), and e is the given error tolerance;
– and that for the close case, we do not need to store Pi which satisfy∥∥Pi −

[
(w + 0.5)(P(i−1)%n + P(i+1)%n)− w(P(i−3)%n + P(i+3)%n)

]∥∥
2 ≤ e,

(4)
where i = 1, 3, 5, · · · , i ≤ (n− 1), and e is the given error tolerance.

The points satisfying Equations (3) and (4) are called the removable points,
which can be reproduced by the 4-point interpolatory subdivision schemes.

If the given digital curve is a closed curve with an even number of the vertices
and each odd vertex Pi, where i = 1, 3, · · · , (n − 1), is a removable point the
digital curve can be compressed into a closed subdivision curve with the control
points {P0,P2, · · · ,Pn−2}. Thus, the compression ratio is 2 : 1. And the proce-
dure can be recursively carried out, so the compression ratio can be higher than
2 : 1. Otherwise, we compress the digital curve in the same way as the open case.
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Fig. 1. Principle of geometry compression: (a) mask of a removable point, (b) bound-
ary case, and (c) close case

If the given digital curve is an open curve and {Pa,Pa+2, · · · ,Pb} are remov-
able points, then the points {Pa−3,Pa−2, · · · ,Pb+2,Pb+3} can be compressed
into {P′

−1Pa−3,Pa−1, · · · ,Pb+1,Pb+3,P′
n}, where

P′
−1 =

(w + 0.5)(Pa−3 + Pa−1)−Pa−2

w
−Pa+1 (5)

and

P′
n =

(w + 0.5)(Pb+3 + Pb+1)−Pb+2

w
−Pb−1 (6)

are two auxiliary points. Because of the shrink property, we need two auxiliary
points P′

−1 and P′
n to keep Pa−3 and Pb+3 after one subdivision step, Under this

case, the compression ratio is [(b − a) + 7] : (b−a)+12
2 . For example, as shown in

Figure 1(b), when a = b = i, the compression ratio is 7 : 6. Thus, the algorithms
for the open case and the close case are as follows.

Algorithm 1. Geometry compression for the open case.
Input: the point set {P0,P1, · · · ,Pn−1}, the error tolerance e, the

weight w, and the current subdivision step k (with an initial
value k = 0).

Output: a set of compressed data set S (with an empty initial value S =
Φ).

1. if (n ≤ 7) // note: the number of the vertices is too small for the compression.
let M be an open subdivision curve with {P0,P1, · · · ,Pn−1} and the
subdivision step k; insert M into S, and output S; go to Step 7;

2. let a = 0;
for (i = 3; i ≤ (n− 4); i+ = 2)

if (Pi is a removable point according to Equation (3) )
let a = i, and go to Step 3;

3. if (a is zero) // note: no points could be compressed.
let M be an open subdivision curve with {P0,P1, · · · ,Pn−1} and the
subdivision step k; insert M into S, output S, and go to Step 7;
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else if (a > 3)
let M be an open subdivision curve with {P0,P1, · · · ,Pa−3} and the
subdivision step k; insert M into S;

4. let b = a;
for (i = a + 2; i ≤ (n− 4); i+ = 2)

if (Pi is not a removable point according to Equation (3) )
go to Step 5;

else let b = i;
5. call Algorithm 1 with the input {P′

−1Pa−3,Pa−1, · · · ,Pb+1,Pb+3,P′
n}, e,

w and (k+ 1), where P′
−1 and P′

n are calculated according to Equations (5)
and (6), and obtain the set S1; insert all elements of S1 into S;

6. if ( b < (n− 4) )
call Algorithm 1 with the input {Pb+3,Pb+4, · · · ,Pn−1}, e, w and k,
and obtain the set S2; insert all elements of S2 into S;

output S;
7. End of Algorithm 1.

Algorithm 2. Geometry compression for the close case.
Input: the point set {P0,P1, · · · ,Pn−1}, the error tolerance e, the

weight w, and the current subdivision step k (with an initial
value k = 0).

Output: a set of compressed data set S (with an empty initial value S =
Φ).

1. if (n < 6) // note: the number of the vertices is too small for the compression.
let M be a closed subdivision curve with {P0,P1, · · · ,Pn−1} and the
subdivision step k; insert M into S, output S, and go to Step 4;

2. if ( n is odd)
call Algorithm 1 with the input {P0,P1, · · · ,Pn−1}, e, w and k, and
obtain the set S; output S, and go to Step 4;

3. if ( all points Pi (where i = 1, 3, · · · , (n− 1)) are removable points)
call Algorithm 2 with the input {P0,P2, · · · ,Pn−2}, e, w and (k+1),
and obtain the set S; output S;

else
call Algorithm 1 with the input {P0,P1, · · · ,Pn−1}, e, w and k, and
obtain the set S; output S;

4. End of Algorithm 2.

In Algorithms 1 and 2, we only check whether the points in the given point set
are removable points at most twice, and we do not check whether any auxiliary
point produced by Equation (5) or (6) is a removable point. Therefore, although
Algorithms 1 and 2 contain loops and recursive procedures, the time complexity
of both Algorithms 1 and 2 is O(n).
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4 Data Decompression

With the method introduced in Section 3, a digital curve is compressed into some
subdivision curve segments. Hence, the problem here is how to obtain the points
in Mk, which is the point set after k subdivision steps are carried out from the
initial control point set M0. According to the method in Section 2, in order to
obtain Mk, we need to calculate all the control points in M1,M2, · · · ,Mk−1.
Unfortunately, we do not need M1,M2, · · · ,Mk−1 at all, but only Mk. Thus,
we need extra memory to store those unnecessary points, and experience shows
that the time cost in this way increases sharply with respect to the subdivision
step k. In this section, we will provide the high-speed generation approaches.
One is for the open subdivision curve, and the other one is for the closed curve.

4.1 Open Curve Generation

In this subsection, we only consider the open 4-point subdivision curve. First, we
need to obtain the value of nk, which is the number of points in Mk, such that
we could allocate memory to store the coordinates of the points in Mk before
computing the coordinates. According to Section 2, from Mk−1 to Mk, all the
points except for the first and the last points in Mk−1 are inherited, and the
number of new points inserted into Mk is 3 less than the number of the points
in Mk−1. Thus, we obtain nk with respect to nk−1 in Lemma 1.

Lemma 1. If n0 ≥ 5, the number of the points in Mk is nk = (nk−1 − 2) +
(nk−1 − 3) = 2nk−1 − 5, for k = 1, 2, · · · .

According to Algorithms 1 and 2, no subdivision is necessary to be performed
on a set of points which number is less than 5. Therefore, we do not consider the
case when n0 < 5. Recursively apply the above lemma, and we obtain nk with
respect to n0 in Theorem 1.

Theorem 1. If n0 ≥ 5, the number of the points in Mk is nk = 2k(n0− 5)+ 5,
for k = 0, 1, 2, · · · .

The remaining part of the subsection will provide the method for calculating the
coordinates of the points in Mk. It is based on the following important theorem.
The theorem can be proved by the mathematical induction method according
to Section 2.

Theorem 2. For k = 0, 1, 2, · · · , we have Pi×2k+2,k = Pi+2,0, where i =
0, 1, 2, · · · , and i× 2k + 2 < nk.

Thus, according to Theorem 2 and Equation (1), we have the following algorithm
for calculating the coordinates of the points in Mk.

Algorithm 3. Calculating coordinates of points in Mk for the open case.
Input: M0 and the weight w with the assumption that n0 ≥ 5.
Output: Mk.
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1. calculate nk according to Theorem 1;
2. allocate memory for Mk to store the coordinates of nk points in Mk;
3. for (i = 0, i0 = 2, ik = 2; ik < nk; i + +, i0 + +, ik+ = 2k)

Pik,k = Pi0,0 according to Theorem 2;
4. P0,k = P0,0; P1,k = P1,0; Pnk−1,k = Pn0−1,0; Pnk−2,k = Pn0−2,0;
5. for (i = k; i >= 1; i−−)

P = (w + 0.5)(P1,k + P2,k)− w(P0,k + P2i+2,k);
P2i−1+2,k = (w + 0.5)(P2,k + P2i+2,k)− w(P1,k + P2i+1+2,k);
P0,k = P1,k; P1,k = P;
for (j = 2i + 2i−1 + 2,m = 2; j < nk − 3− 2i−1; j+ = 2i,m+ = 2i)

Pj,k = (w + 0.5)(P2i+m,k + P2i+1+m,k)− w(Pm,k + P3×2i+m,k);
P = (w + 0.5)(Pnk−2,k + Pnk−3,k)− w(Pnk−1,k + Pnk−3−2i,k);
Pnk−3−2i−1,k = (w + 0.5)(Pnk−3,k + Pnk−3−2i,k) − w(Pnk−2,k +
Pnk−3−2i+1,k);
Pnk−1,k = Pnk−2,k; Pnk−2,k = P;

6. End of Algorithm 3.

In Algorithm 3, we assume that n0 ≥ 5, so we have nk ≥ 5. In the algorithm,
any point in Mk, except for P0,k, P1,k, Pnk−1,k and Pnk−2,k, are calculated
only once. Therefore, the time complexity of Algorithm 3 is O(nk), which is the
lowest bound of calculating all points in Mk.

4.2 Closed Curve Generation

This subsection focuses on the approach for the high-speed generation of the
closed subdivision curve. According to Section 2, from Mk−1 to Mk, all the
points in Mk−1 are inherited, and the number of new points inserted into Mk

is equal to nk−1. Thus, we obtain the conclusions in Lemma 2 and Theorem 3.

Lemma 2. The number of the points in Mk is nk = 2nk−1, for k = 1, 2, · · · .

Theorem 3. The number of the points in Mk is nk = n0×2k, for k = 0, 1, · · · .

To calculate the coordinates of the points in Mk, one important conclusion is
drawn in Theorem 4.

Theorem 4. For k = 0, 1, 2, · · · , we have Pi×2k,k = Pi,0, where i = 0, 1, 2, · · · ,
and i× 2k < nk.

Thus, according to Theorem 4 and Equation (2) in Section 2 for calculating
new points, we obtain the following algorithm. Similar to Algorithm 3, the time
complexity of the following algorithm is O(nk).

Algorithm 4. Calculating coordinates of points in Mk for the close case.
Input: M0 and the weight w.
Output: Mk.
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1. calculate nk according to Theorem 3;
2. allocate memory for Mk to store the coordinates of nk points in Mk;
3. for (i = 0, ik = 0; ik < nk; i + +, ik+ = 2k)

Pik,k = Pi,0 according to Theorem 4;
4. for (i = k; i >= 1; i−−)

for (j = 2i−1,m = −2i; j ≤ nk − 2i−1; j+ = 2i,m+ = 2i)
Pj,k = (w+0.5)(P(2i+m)%nk,k+P(2i+1+m)%nk,k)−w(Pm%nk ,k+
P(3×2i+m)%nk,k);

5. End of Algorithm 4.

5 Examples

Experiment has been carried out on a lot of examples. Three examples are shown
in Figures 2 and 3. The first example is a digital curve, which is the contour
curve of a horse as shown in Figure 2. The original curve as shown in Figure
2(a) contains 5413 points. It is compressed into 11 subdivision curve segments,
which total number of the control points are 178. The ratio of the numbers of
points is 5413 : 178 ≈ 30 : 1. We alternate the red solid lines and blue dashed
lines to identify different subdivision curve segments. Due to the shrink property
of the 4-point interpolatory subdivision curves, some auxiliary points, which are
out of the contour curve of the horse, are necessary as shown in Figure 2(b).
In these examples in this section, the error tolerance is 0.007, and w = 1

16 . In
Example 1, we consider the original digital curve as an open curve. The closed
curve case is shown in Figure 3(d). The blue solid curve is the original digital
curve, which contains 672 points. After the data compression, it becomes a closed
subdivision curve with 21 control points. The ratio of the numbers of points is
672 : 21 = 32 : 1.

Two examples as shown in Figures 3 are used to illustrate the efficiency of the
data decompression algorithms. The polygonal curves or the polygons formed
by M0 are dashed in those two figures, and the solid curves are the results after
several iterate subdivision steps. The numbers of the control points in M0 of
Examples 2 and 3 are 14 and 21, respectively. Table 1 gives the time cost of

(a) (b)

Fig. 2. Example 1: (a) before data compression, and (b) after data compression
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(a) (b) (c) (d)

Fig. 3. Open case (a) and close case (b) of Example 2; open case (c) and close case
(d) of Example 3

Table 1. Performance of approaches

Example 2 Example 3
k Tno(s) Tfo(s) Tnc(s) Tfc(s) Tno(s) Tfo(s) Tnc(s) Tfc(s)
3 0.00026 0.00022 0.00030 0.00025 0.00040 0.00035 0.00045 0.00037
4 0.00046 0.00037 0.00063 0.00049 0.00089 0.00067 0.0011 0.00077
5 0.0011 0.00069 0.0019 0.00096 0.0020 0.00012 0.0030 0.00015
6 0.0027 0.0013 0.0040 0.0019 0.0053 0.0023 0.0071 0.0029
7 0.0064 0.0026 0.012 0.0045 0.015 0.0050 0.023 0.0069
8 0.019 0.0053 0.038 0.0084 0.050 0.010 0.081 0.013
9 0.061 0.011 0.14 0.016 0.18 0.020 0.30 0.026
10 0.23 0.023 0.52 0.036 0.67 0.043 1.24 0.054
11 0.88 0.047 2.47 0.073 3.25 0.080 5.96 0.11
12 4.33 0.090 11.5 0.14 14.8 0.16 25.9 0.21

the approaches on Examples 2 and 3. In the table, k represents for the iterate
subdivision steps. Tno and Tnc represent for the time cost with the method
given by [4] on the open curves and the closed curves, respectively. Tfo and Tfc

represent for the time cost by Algorithm 3 on the open curves and Algorithm
4 on the closed curves, respectively. All the data are calculated on a personal
computer with 2.0 GHz CPU and 512M memory. The programming language
is C++. As shown in Table 1, the new approaches are much faster than the
traditional method in [4].

6 Conclusions

This paper provides an adaptive geometry compression method based on 4-point
interpolatory subdivision schemes. It can work on digital curves of arbitrary
dimensions, for example, d dimensions if the points are all of d−dimensions.
The examples shown in Figures 2 and 3(d) show that the data compression
ratios could be about 30 : 1. For decompressing the compressed data, this paper
as well provides high-speed 4-point interpolatory subdivision curve generation
methods such that decompression could be performed efficiently. As shown in the
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examples, the new approaches are able to reduce the time cost sharply. The high-
speed 4-point interpolatory subdivision curve generation methods not only take
advantages to data decompression, but also give great benefit to the real-time
display and interaction of 4-point subdivision curves.

Acknowledgements

The research was supported by Chinese 973 Program(2002CB312100), and the
National Science Foundation of China (60403047, 60533070). The second author
was supported by the project sponsored by a Foundation for the Author of
National Excellent Doctoral Dissertation of PR China (200342), and a Program
for New Century Excellent Talents in University(NCET-04-0088).

References

1. H Biermann, D Kristjansson, and D Zorin. Approximate Boolean operations on
free-form solids. In Proceedings of SIGGRAPH, pages 185–194, 2001.

2. G Chaikin. An algorithm for high-speed curve generation. Computer Graphics and
Image Processing, 3:346–349, 1974.

3. F Cheng and J-H Yong. Subdivsion depth computaion for Catmull-Clark subdiv-
sion surfaces. Computer-Aided Design and Applications, 3(1-4):to appear, 2006.

4. N Dyn, D Levin, and JA Gregory. A 4-point interpolatory subdivision scheme for
curve design. Computer Aided Geometric Design, 4(4):257–268, 1987.

5. MF Hassan, IP Ivrissimitzis, NA Dodgson, and MA Sabin. An interpolating 4-point
C2 ternary stationary subdivision scheme. Computer Aided Geometric Design,
19(1):1–18, 2002.

6. A Khodakovsky, P Schroder, and W Sweldens. Progressive geometry compression.
In Proceedings of SIGGRAPH, pages 271–278, 2000.

7. Z Ma, N Wang, G Wang, and S Dong. Multi-stream progressive geometry com-
pression. Journal of Computer-Aided Design & Computer Graphics, 18(2):200–207,
2006.

8. J Stam. Exact evaluation of Catmull-Clark subdivision surfaces at arbitrary para-
meter values. In Proceedings of SIGGRAPH, pages 395–404, 1998.

9. J-H Yong and F Cheng. Adaptive subdivision of Catmull-Clark subdivision sur-
faces. Computer-Aided Design and Applications, 2(1-4):253–261, 2005.

10. J-H Yong, S-M Hu, and J-G Sun. Degree reduction of uniform B-spline curves.
Chinese Journal of Computers, 23(5):537–540, 2000.

11. J-H Yong, S-M Hu, and J-G Sun. CIM algorithm for approximating three-
dimensional polygonal curves. Journal of Computer Science and Technology,
16(6):552–559, 2001.

12. J-H Yong, S-M Hu, J-G Sun, and X-Y Tan. Degree reduction of B-spline curves.
Computer Aided Geometric Design, 18(2):117–127, 2001.

13. J Zhang and CB Owen. Octree-based animated geometry compression. In Data
Compression Conference, pages 508–517, 2004.
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Abstract. The Integer Wavelet Transform (IWT) has proved particu-
larly successful in the area of embedded lossy-to-lossless image coding.
One of the possible methods to realize the IWT is the lifting scheme.
Here we construct a new class of IWTs parameterized simply by one free
parameter, which are obtained by introducing a free variable to the lift-
ing based factorization of a Deslauriers-Dubuc interpolating filter. The
exact one-parameter expressions for this class of IWTs are deduced and
different IWT can be easily obtained by adjusting the free parameter. In
particular, several IWTs with binary coefficients are constructed. Exten-
sive experiments show, as compared with some state-of-the-art IWTs,
that our transforms have more superior compression performance for
both lossless and lossy image coding, and yet require only comparable
computational complexity. Besides, a quantization method suitable for
IWT is also discussed in this paper.

Keywords: Integer Wavelet Transform (IWT); Lossy-to-lossless image
coding; Lifting scheme; Compression performance; Computational com-
plexity; Quantization.

1 Introduction

The Discrete Wavelet Transform (DWT) has been applied extensively to digital
signal and image processing, especially digital image transform coding. However,
it has an insufferable drawback, i.e., the wavelet coefficients are real numbers,
and in this case efficient lossless image coding is not possible with it. With the
introduction of the Integer Wavelet Transform (IWT), there has been a growing
interest in it for embedded image coding application [1,2,3,4,5,6,7]. Such trans-
forms are invertible in finite-precision arithmetic, map integers to integers, and
approximate to their conventional counterparts (i.e., nonreversible DWT) from
which they are derived [3,4]. Due largely to these properties, transforms of this
type are extremely useful for compression systems requiring efficient handling
of lossless coding, minimal memory usage, or low computational complexity.
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Furthermore, these transforms are particularly attractive for supporting func-
tionalities such as progressive lossy-to-lossless recovery of images [2,5,7]. The
symmetric extension, as a solution to the boundary problem of finite-length sig-
nals during the transform, is also well explored [6].

Using IWT instead of DWT, most DWT-based codecs can be used for lossless
image coding without any modification, and yield very good performance [7,8].
They often produce an embedded bitstream, that is, the quality of the recon-
structed image increases as more encoded bits become available to the decoder.
The decoding can be stopped at any point of the bitstream.

One of the methods to realize the IWT is the Lifting Scheme (LS) [9,10],
which allows an efficient implementation of the DWT. Since Perfect Reconstruc-
tion (PR) is ensured by the structure of the LS itself, the IWT can be realized
by a basic modification to the lifting based DWT, i.e., result in each lifting step
is rounded to the nearest integer [1]. The IWT family constructed here is also
based on this LS framework. It begins with the lifting based factorization of
a Deslauriers-Dubuc interpolating filter [11]. After factorization, a free variable
is introduced and the one-parameter expressions for this class of IWTs are de-
duced. This parameter presents us a free choice to construct different IWT, and
it can be assigned any real number. We then construct several IWTs with their
lifting filters all having binary (dyadic-fraction) coefficients, and compare them
with some state-of-the-art transforms on the basis of their computational com-
plexity, lossy compression performance, and lossless compression performance.
The evaluation results show that our transforms give people new choices to build
systems with improved compression performance. We also discuss a quantization
method suitable for IWT, which is similar to that used in [5].

2 Construction of the Integer Wavelet Transforms

2.1 Lifting Scheme for Integer Wavelet Transform

The LS is a possible implementation of the DWT. Its structure guarantees that
the scheme is reversible, regardless of the filters used. Figure 1 depicts the lifting
based forward wavelet decomposition (The reconstruction algorithm is a simple
reverse procedure). The input signal s(l−1) (The superscript ‘l’ is used to denote
the current level of the DWT) is split into two signals corresponding to evenly
and oddly indexed samples. Then the even signal is convolved with the lifting
filter Pi(z) and the result is subtracted from the odd one. This action is called
a dual lifting step or prediction step. The predicted odd signal is then convolved
with the lifting filter Ui(z) and added to the even one. We call it a prime lifting
step or update step. Eventually, after, say, M pairs of prediction and update
steps, the even samples will become the low-pass coefficients s(l), while the odd
samples become the high-pass coefficients d(l), up to a scaling factor K. Again,
the low-pass coefficients s(l) is regarded as input signal to implement the next
level of wavelet decomposition.
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Fig. 1. The lifting based forward wavelet transform: First splitting the signal, then
alternating prediction and update steps, and finally a scaling

Without loss of generality, it will be assumed that the LS starts with a pre-
diction step and is composed of an even number of steps. It is sufficient to set
P1(z) or UM (z) to be 0 to take into account all other cases.

To realize the IWT, one can round the result in each lifting step to the nearest
integer [1]. This kind of operation is nonlinear, however, the structure of LS
ensures that PR property is still preserved. Here, there arises one problem that
how to deal with the scaling factor K because of dividing one integer by it is
nonreversible. Two solutions to this issue are available: If K is close to 1, we can
omit the scaling step. Otherwise, it has been shown in [10], with at most three
extra lifting steps, K can always be set to 1. If we denote the rounding operation
as Round(), the lifting based forward IWT can be shown as Fig. 2. Also, the
inverse transform can be trivially deduced by a simple reverse procedure.
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Fig. 2. Forward IWT based on the lifting scheme. Each lifting step is followed by a
rounding to the nearest integer operation

2.2 Parametrization Construction of the IWTs

Our new IWT family is also based on the LS framework. It begins with the well-
known Deslauriers-Dubuc interpolating filter with 4 Vanishing Moments (VMs)
[11], which is given by

H(z) = 2−5(−z3 + 9z + 16 + 9z−1 − z−3) . (1)

We use it as the synthesis low-pass filter. Obviously, by letting the analysis
low-pass filter H̃(z) = 1, and the associated high-pass filters satisfy

G(z) = z−1 H̃(−z−1), G̃(z) = z−1 H(−z−1) , (2)
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we can find a trivial Biorthogonal Wavelet Filter Bank (BWFB) permitting PR
condition.1

Using the Euclidean algorithm presented in [10], the analysis polyphase matrix
P̃ (z) for this BWFB is factored into

P̃ (z) =
[
H̃e(z) G̃e(z)
H̃o(z) G̃o(z)

]
=

[
1 −9(1+z−1)+(z+z−2)

16
0 1

]
, (3)

where H̃e(z2) = (H̃(z) + H̃(−z))/2 and H̃o(z2) = z(H̃(z) − H̃(−z))/2; G̃e(z2)
and G̃o(z2) are similarly defined.

To improve H̃(z), we introduce a new lifting filter having the linear phase

U(z) = α(1 + z) + β
(
z−1 + z2) , (4)

and append it into (3). Then the new analysis polyphase matrix P̃ new(z) is
turned into

P̃ new(z) =

[
1 −9(1+z−1)+(z+z−2)

16
0 1

][
1 0

U(z) 1

]
. (5)

Now we should find the relationship between parameters α and β. It is easy
to obtain the new analysis low-pass filter H̃new(z) using (5), which is given by

H̃new(z) = 8−9α+β
8 + α

(
z + z−1

)
− 8α+9β

16

(
z2 + z−2

)
+ β

(
z3 + z−3

)
+ α−9β

16

(
z4 + z−4

)
+ β

16

(
z6 + z−6

)
.

(6)

H̃new(z) must satisfy the low-pass and high-pass conditions

H̃new(1) = 1, H̃new(−1) = 0 , (7)

and after simple manipulation, we can achieve

β =
1
4
− α . (8)

Substituting (8) into (6), we can obtain the final expression for H̃new(z)

H̃new(z) = 33−40α
32 + α

(
z + z−1

)
+ 4α−9

64

(
z2 + z−2

)
+ 1−4α

4

(
z3 + z−3

)
+ 40α−9

64

(
z4 + z−4

)
+ 1−4α

64

(
z6 + z−6

)
.

(9)

According to (5), the filter G̃(z) is invariable, this implies that filter H(z) is also
changeless, i.e., (1). The associated high-pass filters can be obtained with (2).

1 In practical application, it should handle the normalizing factor
√

2, which can be
ignored in the implementation of the DWT by scaling the analysis low-pass filter
and the synthesis low-pass filter by factors of 1/

√
2 and

√
2, respectively, or vice

versa, so that perfect reconstruction is maintained.
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In (5), substituting (8) into the lifting filter U(z), we obtain

P̃ new(z) =

[
1 −9(1+z−1)+(z+z−2)

16
0 1

] [
1 0

4α(1+z)+(1−4α)(z−1+z2)
4 1

]
. (10)

If we denote the input signal s(l−1)[n] is split into two signals s(l)
0 [n] and d

(l)
0 [n],

the above matrix factorization can generate a new class of IWTs parameterized
by the free parameter α, which are shown as (for convenience of exposition, the
superscript ‘l’ is omitted){

d[n]=d0[n]−
⌊ 1

16 (9(s0[n]+s0[n+1])− (s0[n−1]+s0[n+2])) + 1
2

⌋
s[n]=s0[n]+

⌊1
4 (4α(d[n−1]+d[n])+(1−4α)(d[n−2]+d[n+1]))+ 1

2

⌋ . (11)

Here, �t� indicates the largest integer not exceeding t.
Now we can see that a new class of 13/7 BWFBs and their associated IWTs

parameterized simply by the free parameter α are constructed. We employ the
notation (Ñ , N) to indicate that the analysis and synthesis wavelets have Ñ and
N VMs, respectively, then in this case, it has VMs (4, 2).

Remark 1. About the construction technique, we also point out that

– The construction technique never yields a particular BWFB (or IWT) that
somehow could not be found using other techniques before. The significance
of this technique is that it generates closed-form parametrization expression
for a new class of 13/7 BWFBs (or IWTs). Using the expressions, one can
construct an infinite number of IWTs with simple lifting filter coefficients
and desired properties.

– This construction technique can be generalized to other case, for example,
by using the Deslauriers-Dubuc interpolating filter with 2 VMs, one can
construct a new class of 9/3 IWTs parameterized by one free parameter.

3 Examples and Quantization

3.1 Examples

In (11), we can assign arbitrary real number to the free parameter α to obtain
different IWT, however, for the purpose of decreasing computational complexity,
the dyadic fractions are preferable. Here we give 5 transforms with their lifting
filters all having binary coefficients. To make a through comparison, 3 state-of-
the-art IWTs known to be effective for image coding are also presented. They
are listed in Table 1.

3.2 Quantization

The transforms under evaluation are 1-D in nature, 2-D images are handled
by transforming the rows and columns in succession. Although it is possible to
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Table 1. Integer wavelet transforms under evaluation

Name α CGa VMs Description
13/7-A 3/8 8.798 (4, 2) ——
13/7-B 5/16 9.414 (4, 2) ——
13/7-C 9/32 9.359 (4, 4) equation (4.5) in [1]
13/7-D 17/64 9.240 (4, 2) ——
9/7-Mb 1/4 9.066 (4, 2) equation (4.2) in [1]
5/11 — 9.039 (4, 2) equation (4.6) in [1]
9/3 — 9.153 (2, 4) equation (4.3) in [1]
5/3 — 9.092 (2, 2) equation (4.1) in [1], recommended in JPEG2000 [7]

a “CG” denotes the coding gain (in dB) of the corresponding nonreversible DWT. It is
computed using the method presented in [13], and a first-order Markov model with
correlation factor ρ = 0.95 is assumed as the input. The DWT decomposition level
is 5.

b 13/7-C and 9/7-M wavelets were, respectively, also known as the improved Donoho
wavelets having VMs (4, 4) and (4, 2) [9].

utilize these transforms without quantization, for example, in JPEG 2000 stan-
dard [7], it should be noted that these transforms are not orthonormal. Thus, the
transformed image subband coefficients need to be scaled (quantized) appropri-
ately to ensure optimum rate-distortion performance. We use a method similar
to that described in [5] to compute the scaling factor (the reciprocal of the quan-
tization step) of every subband. This consists of the following three stages: For
each subband, first the scaling factor of the corresponding nonreversible DWT
is computed using the method presented in [12]; Because the obtained scaling
factors are usually floating point numbers, and cannot be used on the integer
subband coefficients, they then be normalized so that the minimum scaling fac-
tor is 1.0; finally, all the normalized scaling factors are rounded to the nearest
power of two. The last stage make the multiplication operation become an up-
ward shift of the image bitplanes. In our experiment, a 5-level IWT is applied
and 16 subbands are generated, the normalized scaling factors are given in Table
2. The values in the table were obtained by normalizing all the scaling factors
such that the scaling factor of HH subband of the finest level is 1.0 (See [7] to
obtain the details about the naming rule for subbands).

4 Performance Analysis

Now we investigate the performance of the transforms under evaluation for im-
age compression. Comparisons of their computational complexity as well as the
lossless and lossy image compression performance are made.

4.1 Computational Complexity

All of the transforms under evaluation are calculated using only fixed-point
arithmetic; particularly, only integer addition/subtraction, and multiplication
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Table 2. Normalized scaling factors for the IWTs under evaluation for a 5-level 2-D
wavelet decomposition

IWTs

Subbands 13/7-A 13/7-B 13/7-C 13/7-D 9/7-M 5/11 9/3 5/3
LL5 38.024 39.501 39.138 38.685 38.066 31.183 30.172 29.696
HL5(LH5) 20.295 20.655 20.673 20.639 20.575 16.900 15.573 15.773
HH5 10.832 10.800 10.920 11.011 11.121 9.160 8.038 8.378
HL4(LH4) 10.149 10.329 10.338 10.321 10.289 8.492 7.838 7.934
HH4 5.417 5.401 5.461 5.507 5.562 4.620 4.066 4.234
HL3(LH3) 5.083 5.173 5.178 5.169 5.152 4.328 4.020 4.062
HH3 2.718 2.710 2.739 2.762 2.789 2.388 2.127 2.207
HL2(LH2) 2.597 2.644 2.645 2.639 2.629 2.319 2.205 2.215
HH2 1.417 1.413 1.427 1.437 1.450 1.345 1.251 1.283
HL1(LH1) 1.560 1.590 1.583 1.574 1.561 1.465 1.456 1.445
HH1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

operations are required. Since all lifting filter coefficients are dyadic fractions,
the division operations can be implemented as bit shifts, this means that �x/2N�
is equivalent to the arithmetic right shift of x by N bits. We use the number
of addition, multiplication, and shift operations of computing one sample pair
(s[n], d[n]) as the comparison unit. Since the forward transform has the same
computational complexity as that of the inverse transform, we only consider the
former. The comparison results are listed in Table 3.

Table 3. Computational complexity. Note, the results of the last three transforms are
concluded from [1]

Transform 13/7-A 13/7-B 13/7-C 13/7-D 9/7-M 5/11 9/3 5/3
Addition 10 10 10 10 8 10 8 6
Multiplication 2 2 3 2 1 0 2 0
Shift 2 2 2 2 2 3 2 2
Total 14 14 15 14 11 13 12 8

From Table 3, we can see that the 5/3 transform requires the least computa-
tion, followed by the 9/7-M, 5/11, and 9/3 transforms as a group, and then the
others as a group. Particularly, the 5/3, and 5/11 transforms are truly multi-
plierless (i.e., their underlying lifting filters all have coefficients that are strictly
powers of two).

4.2 Compression Performance

Extensive experiments were performed to compare the performance of the IWTs
under evaluation for image compression. For the purpose of fair and consistent
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comparisons, except for the type of transform, other experiment conditions are
same: A 5-level transform is applied to the source images to generate a wavelet
subband decomposition consisting of 16 subbands; and the symmetric extension
is used at the image edges during transforms. The subbands are quantized using
the method described in Sect. 3.2, and then encoded with one of the best DWT-
based image codecs, called “Set Partitioning in Hierarchical Trees (SPIHT)”,2

as proposed by Said and Pearlman [8].
The experiment is performed using a large number of images. Due to the lim-

itation of space, we have selected two standard grayscale images, namely, Lena
and Barbara as representatives. Lena is chosen because of its predominantly
“smooth” background which is typical of natural images, while Barbara is se-
lected for its high frequency or texture regions in the tablecloth, trousers, and
the scarf. Both lossy and lossless compression were considered here.

Lossless Compression Performance. In the lossless case, compression per-
formance was measured in terms of the final bit rate (in bpp). Table 4 shows the
final bit rates of the test images for the various transforms under evaluation. For
each image, the best result has been highlighted, whereas the worst result has
been highlighted and shown in italics type. Clearly, no single transform performs
best for both images. For Lena, the 13/7-C, 13/7-D, 13/7-B, 9/7-M, and 5/11
transforms perform best, on the contrary, the 9/3, 5/3, and 13/7-A transforms
are inferior. For Barbara, the 13/7-B, 13/7-C, and 13/7-D transforms perform
best, followed by the 5/11, 9/7-M, and 13/7-A transforms as a group, and then
the 9/3 and 5/3 transforms perform worst. Obviously, the 13/7-B and 13/7-C
transforms are preferable for both images.

Table 4. Lossless compression results (in bpp)

IWTs
Image 13/7-A 13/7-B 13/7-C 13/7-D 9/7-M 5/11 9/3 5/3
Lena 4.4240 4.3904 4.3861 4.3880 4.3911 4.3912 4.4359 4.4240
Barbara 4.8918 4.8443 4.8553 4.8655 4.8728 4.8709 4.9505 4.9656

Objective Lossy Compression Performance. Both images are compressed
in a lossy manner at five compression ratios (i.e., 128:1, 64:1, 32:1, 16:1, and 8:1)
using the transforms under evaluation. The image quality was then measured
using the well-known PSNR metric (in dB). The test results are given in Table
5. For each test image and compression ratio pair, the best result and worst
result are shown in the same manner as that used in Table 4.

As can be seen, for Lena, at high compression ratios (i.e., 32:1 or greater),
the 13/7-B, 13/7-C, and 13/7-D transforms perform best in approximately that
order, followed by the 9/3, 5/11, and 9/7-M transforms as a group, and the

2 The “SPIHT” codec used here is rebuilt based on the “Qccpack” software packet by
J. E. Fowler, which is downloaded from the website: http://qccpack.sourceforge.net.
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Table 5. Lossy compression results for Lena and Barbara images (in dB)

Lena Compression ratios Barbara Compression ratios
Transforms 128:1 64:1 32:1 16:1 8:1 128:1 64:1 32:1 16:1 8:1
13/7-A 27.67 30.33 32.93 35.79 38.44 22.68 24.34 26.85 30.49 35.19
13/7-B 27.96 30.63 33.20 36.08 38.79 22.97 24.56 27.19 31.07 35.65
13/7-C 27.94 30.61 33.19 36.06 38.76 22.92 24.40 26.97 30.91 35.55
13/7-D 27.91 30.54 33.13 35.96 38.65 22.90 24.30 26.83 30.74 35.30
9/7-M 27.82 30.39 32.98 35.76 38.50 22.77 24.11 26.62 30.49 35.16
5/11 27.70 30.46 33.19 36.15 38.86 22.65 23.78 26.36 30.42 35.53
9/3 27.84 30.46 33.16 36.14 38.93 22.86 23.99 26.50 30.33 35.22
5/3 27.66 30.29 32.96 36.05 38.99 22.75 23.81 26.20 30.01 34.97

5/3 and 13/7-A transforms fare the worst. As the compression ratio decreases,
the 5/11, 5/3, and 9/3 transforms perform best, whereas the 9/7-M and 13/7-
A transforms fare the worst; although the 13/7 transforms (except for 13/7-A)
are inferior to the 5/11, 5/3, and 9/3 transforms, the differences among them
are small, and can be neglected in practice. For Barbara, generally, the 13/7-B
and 13/7-C transforms perform best, followed by 13/7-D, 13/7-A, and 9/7-M
transforms as g group, whereas the 5/3, 5/11, and 9/3 transforms are the worst.
Clearly, the 13/7-B and 13/7-C perform best for both images.

Surprisingly, the 5/3 transform cannot result in the expected results, the rea-
son is that with the introduction of the quantization, the rate-distortion perfor-
mance of the IWT is very similar to that of the real transform (DWT), however
the 5/3 real transform has lower coding gain (see Table 1).

Subjective Lossy Compression Performance. For lossy image compres-
sion, from above analysis, we can see that the transforms under evaluation can
be divided into three groups in the descending order of the compression perfor-
mance. The 13/7-B and 13/7-C transforms are regarded as a group, followed by
the 13/7-D, 9/3, and 9/7-M transforms as a group, and lastly the 13/7-A, 5/11,
and 5/3 transforms as a group. From each group we select one representative,
respectively, i.e., 13/7-B, 9/7-M, and 5/3 transforms, to evaluate their subjec-
tive compression performance, particularly, the potential of preserving edges and
textures. Since the human eye often cannot distinguish a low compression ratio
lossy reconstruction of an image from the original, the subjective testing was
done at compression ratio of 32:1. Figure 3 shows the reconstructed Barbara
image for three representatives. To make the differences evident and also the
limitation of space, we only give part of the image. It is observed that the image
quality corresponds well with the objective measure of PSNR. Clearly, the 13/7-
B transform preserves more textures in the tablecloth and trousers than 9/7-M
and 5/3 transforms.
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Fig. 3. Part of the reconstructed Barbara image at compression ratio of 32:1. (a)
Original image, (b) 13/7-B transform, (c) 9/7-M transform, (d) 5/3 transform

5 Conclusion

We have constructed a new class of 13/7 integer wavelet transforms (IWTs) pa-
rameterized simply by one free parameter, this class of transforms are obtained
by appending a free variable to the lifting based factorization of a Deslauriers-
Dubuc interpolating filter. The free parameter presents people a choice to con-
struct different IWT. By assigning dyadic fractions to the free parameter, we
constructed 5 IWTs, i.e., 13/7-A, 13/7-B, 13/7-C, 13/7-D, and 9/7-M trans-
forms, with their lifting filters all having binary coefficients. Comparisons be-
tween these transforms and 3 state-of-the-art IWTs, i.e., 5/11, 9/3, and 5/3
transforms, which are suitable for image coding, are made on the basis of their
computational complexity, lossy compression performance, and lossless compres-
sion performance. The results show that 13/7-B and 13/7-C transforms have
more superior compression performance to other transforms under evaluation for
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both lossless and lossy image coding, and yet require only comparable compu-
tational complexity. These new transforms give us new choices to build systems
with improved compression performance. Besides, a quantization method for the
IWT is discussed, and the experiment results show that it is very effective to
improve the compression performance.

The transforms constructed here also have drawbacks, for example, their com-
putational complexity is higher than 5/3 transform, so constructing new IWT
with higher compression performance and computational complexity comparable
to that of 5/3 transform is expected in the next stage of our research.
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Damien Ernst1, Raphaël Marée, and Louis Wehenkel

Department of Electrical Engineering and Computer Science
Institut Montefiore - University of Liège
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Abstract. We report in this paper some positive simulation results ob-
tained when image pixels are directly used as input state of a reinforce-
ment learning algorithm. The reinforcement learning algorithm chosen
to carry out the simulation is a batch-mode algorithm known as fitted
Q iteration.

1 Introduction

Reinforcement learning (RL) is learning what to do, how to map states to ac-
tions, from the information acquired from interaction with a system. In its clas-
sical setting, the reinforcement learning agent wants to maximize a long term
reward signal and the information acquired from interaction with the system is
a set of samples, where each sample is composed of four elements: a state, the
action taken while being in this state, the instantaneous reward observed and
the successor state.

In many real-life problems, such as robot navigation ones, the state is made
of visual percept. Up to now, the standard approach for dealing with visual
percept in the reinforcement learning context is to extract from the images some
relevant features and use them, rather than the raw image pixels, as input state
for the RL algorithm (see e.g. [3]). The main advantage of this approach is that
it leads to a reduction of the input space for the RL algorithm which eases the
problem of generalization to unseen situations. Its main drawback is that the
feature extraction phase needs to be adapted to problem specifics.

Recently, several research papers have shown that in the image classifica-
tion framework, it was possible to obtain some excellent results by applying
directly state-of-the-art supervised learning algorithms (e.g. tree-based ensem-
ble methods, SVMs) on the image pixels (see e.g. [5]). Also, recent developments
in reinforcement learning have led to some new algorithms which allow to take
full advantage, in the reinforcement learning context, of the generalization per-
formances of any supervised learning algorithm [1,4]. We may therefore wonder
whether using one of these new RL algorithms directly with the raw image pixels
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as input state, without any feature extraction, could lead to some good perfor-
mances. In a first attempt to answer this question, we carried out simulations
and report in this paper our preliminary findings.

The next section of this paper is largely borrowed from [1] and introduces, in
the deterministic case, the fitted Q iteration algorithm used in our simulations.
Afterwards, we describe the test problem and discuss the results obtained in
various settings. And, finally, we conclude.

2 Learning from a Set of Samples

2.1 Problem Formulation

Let us consider a system having a deterministic discrete-time dynamics described
by:

xt+1 = f(xt, ut) t = 0, 1, . . . (1)

where for all t, the state xt is an element of the state space X , the action ut is
an element of the action space U .

To the transition from t to t+ 1 is associated an instantaneous reward signal
rt = r(xt, ut) where r(x, u) is the reward function bounded by some constant
Br.

Let μ(·) : X → U denote a stationary control policy and Jμ denote the return
obtained over an infinite time horizon when the system is controlled using this
policy (i.e. when ut = μ(xt), ∀t). For a given initial condition x0 = x, Jμ is
defined as follows:

Jμ(x) = lim
N→∞

N−1∑
t=0

γtr(xt, μ(xt)) (2)

where γ is a discount factor (0 ≤ γ < 1) that weighs short-term rewards more
than long-term ones. Our objective is to find an optimal stationary policy μ∗,
i.e. a stationary policy that maximizes Jμ for all x.

Reinforcement learning techniques do not assume that the system dynamics
and the cost function are given in analytical (or even algorithmic) form. The
sole information they assume available about the system dynamics and the cost
function is the one that can be gathered from the observation of system trajec-
tories. Reinforcement learning techniques compute from this an approximation
π̂∗

c,T of a T -stage optimal (closed-loop) policy since, except for very special con-
ditions, the exact optimal policy can not be decided from such a limited amount
of information.

The fitted Q iteration algorithm on which we focus in this paper, actually
relies on a slightly weaker assumption, namely that a set of one step system
transitions is given, each one providing the knowledge of a new sample of in-
formation (xt, ut, ct, xt+1) that we name four-tuple. We denote by F the set
{(xl

t, u
l
t, c

l
t, x

l
t+1)}

#F
l=1 of available four-tuples.
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2.2 Dynamic Programming Results

The sequence of QN -functions defined on X × U

QN (x, u) = r(x, u) + γmax
u′∈U

QN−1(f(x, u), u′)∀N > 0

with Q0(x, u) ≡ 0 converges, in infinity norm, to the Q-function, defined as the
(unique) solution of the Bellman equation:

Q(x, u) = r(x, u) + γmax
u′∈U

Q(f(x, u), u′) (3)

A policy μ∗ that satisfies

μ∗(x) = arg max
u∈U

Q(x, u) (4)

is an optimal stationary policy.
Let us denote by μ∗

N the stationary policy

μ∗
N (x) = arg max

u∈U
QN (x, u) . (5)

The following bound on the suboptimality of μ∗
N holds:

‖Jμ∗ − Jμ∗
N ‖∞ ≤

2γNBr

(1− γ)2
. (6)

2.3 Fitted Q Iteration

The fitted Q iteration algorithm computes from the set of four-tuples F the func-
tions Q̂1, Q̂2, . . ., Q̂N , approximations of the functions Q1, Q2, . . ., QN defined
by Eqn (3), by solving a sequence of standard supervised learning regression
problems. The policy

μ̂∗
N (x) = arg max

u∈U
Q̂N (x, u) (7)

is taken as approximation of the optimal stationary policy. The training sample
for the kth problem (k ≥ 1) of the sequence is

((xl
t, u

l
t), r

l
t + γmax

u∈U
Q̂k−1(xl

t+1, u)), l = 1, . . . ,#F (8)

with Q̂0(x, u) = 0 everywhere. The supervised learning regression algorithm
produces from this training sample the function Q̂k that is used to determine
the next training sample and from there, the next function of the sequence.
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Fig. 1. Figure (a) gives information for the position dynamics and the reward function
for the agent navigation problem. Figure (b) plots the optimal policy μ∗(p) for the
values of p ∈ {0, 10, . . . , 100}×{0, 10, . . . , 100}. Orientation of the triangle for a position
p gives information about the optimal action(s) μ∗(p).

3 Simulation Results

3.1 The Test Problem

Experiments are carried out on the navigation problem whose main characteris-
tics are illustrated on Figure 1a. An agent navigates in a square and the reward
he gets is function of his position in the square. He can at each instant t either
decide to go up, down, left of right (U = {up, down, left, right}). We denote by
p the position of the agent. The horizontal (vertical) position of the agent p(0)
(p(1)) can vary between 0 and 100 with a step of 1. The set of possible positions
is P = {0, 1, 2, . . . , 100}× {0, 1, 2, . . . , 100}. When the agent decides at time t to
go in a specific direction, he moves 25 steps at once in this direction, unless he
is stopped before by the square boundary.

The reward signal rt observed by the agent is always zero, except if the agent
is at time t in the upper right part of the square and the lower left part of the
square where reward signals of 1 and 2 are observed, respectively (Br = 2). The
decay factor γ is equal to 0.5. The optimal policy, plotted on Figure 1b drives
the agent to one of these corners. Even if larger reward signals are observed the
lower left corner, the optimal policy does not necessarily drive the system to
this corner. Indeed, due to the discount factor γ that weighs short-term reward
signal more than long-term ones, it may be preferable to observe smaller reward
signals but sooner.

Our goal is to study the performances of the fitted Q iteration algorithm
when the input state for the RL algorithm is not the position p but well a
visual percept. In this context, we represent on top of the navigation square
a navigation image, and we have supposed that when being at position p, the
agent has access to the visual percept pixels(p) which is a vector of pixel values
that encodes the image region surrounding its position p (Figure 2). The matrix
giving the grey levels of the 100 tiles of Figure 2 is given in 5.

In our study, we have partionned the 100 × 100 navigation image into one
hundred 10×10 subimages that we name tiles. For every tile, we have selected a
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is the (30 ∗ i + j)th element of this vector.
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pixels(pt) = 30*30 element vector such that
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observation image when

186 186 250 250 250 250103103

Fig. 2. Visual percept pixels(pt) for the agent when being position pt. Pixels of the
30 × 30 observation image which are not contained in the 100 × 100 navigation image,
which happens when pt(i) < 15 and/or pt(i) > 85, are assumed to be black pixels (grey
level=0).

grey level at random in {0, 1, . . . , 255} and set all its pixels to this grey level. After
having generated the image, we have checked whether two different positions p
were indeed leading to different vectors of pixel values pixels(p). This check has
been done in order to make sure that considering pixels(p) rather than p as
input state does not lead to a partially observable system.

3.2 Four-Tuples Generation

To generate the four-tuples we consider one step episodes with the initial position
for each episode being chosen at random among the 101 ∗ 101 possible positions
p and the action being chosen at random among U . More precisely, to generate
a set F with n elements, we repeat n times the sequence of instructions:

1. draw p0 at random in P and u at random in U ;
2. observe r0 and p1;
3. add (pixels(p0), u0, r0, pixels(p1)) to F .

3.3 Fitted Q Iteration Algorithm

Within the fitted Q iteration algorithm, we have used in our simulations a regres-
sion tree based ensemble method called Extra-Trees [2].1 To apply this algorithm
at each iteration, the training sample defined by Eqn (8) is split into four subsam-
ples according to the four possible values of u, and Q̂k(x, u) for each value of u is
obtained by calling the Extra-Trees algorithm on the corresponding subsample.
The number of iterations N of the fitted Q iteration algorithm is chosen equal
to 10, leading to an upper bound of 0.015625 in Eqn (6) which is tight enough
for our purpose, since Jμ∗

(x) ∈ [0.25, 4]. The policy μ̂∗
10(x) = arg maxu Q̂10(x, u)

is taken as approximation of the optimal stationary policy.

1 The Extra-Trees algorithm has three parameters M (the number of trees that are
built to define the ensemble model), nmin (the minimum number of samples of non-
terminal nodes) and K (the number of cut-directions explored to split a node). They
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Fig. 3. Figures (a-c) plot the policy μ̂∗
10 computed for increasing values of #F . The

orientation of the triangles indicate the value of μ̂∗
10(pixels(p)); white triangles indicate

that it coincides with an optimal action. Figure (d) plots the score of the policies: the
horizontal line indicates the score of the optimal policy, the darker curve (with smaller
scores) corresponds to the case of pixel based learning with growing number of four-
tuples, while the lighter curve provides the scores obtained with the same samples when
the position p is used as state representation.

3.4 Results

Figures 3a-c show how the policies μ̂∗
10 change when increasing the size of the

set of four-tuples. In particular, Figure 3c shows that with 8000 four-tuples, the
policy almost completely coincides with the optimal policy μ∗ of Figure 1b. To
further assess the speed of convergence of the algorithm, we have plotted on
Figure 3d the score2 of policies obtained in different conditions. We observe that
with respect to the compact state representation in terms of positions, the use
of the pixel based representation slows down but does not prevent convergence.
Indeed, with #F = 10, 000 the score of the pixel based policy has almost con-
verged to the optimal one, which is a fairly small sample size if we compare it
to the dimensionality of the input space of 900. This suggests that the fitted
Q iteration algorithm coupled with Extra-Trees is able to cope with a low-level

have been set to M = 50, nmin = 2 (yielding fully developed trees) and K = 900
(equal to the dimensionality of the input space).

2 The score of a policy is defined here as the average value over all possible initial
states of the return obtained over an infinite time horizon when the system follows
this policy.
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Fig. 4. Evolution of the score with the size of the constant grey level tiles. #F = 2000.

representation where information is scattered in a rather complex way over a
large number of input variables.

To illustrate the influence of the navigation image characteristics on the re-
sults, we carried out an experiment where we have changed the size of the con-
stant grey level tiles while keeping constant the size of the observation images.
The results, depicted on Figure 4, show that the score first increases, reaches a
maximum, and decreases afterwards.

To explain these results, we first notice that the Extra-Trees method works
by inferring from a sample T S = ((il, ol), l = 1, . . . ,#T S) a kernel K(i, i′), from
which an approximation of the output o associated with an input i is computed
by ô(i) =

∑
(il,ol) K(i, il)ol. The value of K(i, il) thus determines the importance

of the output ol in the prediction, and for our concern the main property of the
Extra-Trees kernel is that it takes larger values if the vectors i and il have
many components which are close to each other, i.e. if there exists many values
of j ∈ {1, 2, · · · , size of vector i} such that i[j] is close from il[j] [2]. Next, we
note from Figure 3d that when the algorithm is applied to a training set of size
2000 with positions as inputs (i.e. T Sp = ((pl, ol), l = 1, . . . ,#T Sp)) it provides
close to optimal scores. With this input representation, elements (pl, ol) such
that pl is geometrically close to p tend to lead to a high value of K(p, pl) and
one may therefore reasonably suppose that when using pixel vectors as inputs,
good results will be obtained only if the resulting kernel K(pixels(p), pixels(pl))
is strongly enough correlated with the geometrical distance between p and pl,
which means that the closer two positions the more similar the corresponding
vectors of pixel values should be.

With this we can explain the influence of the size of the tiles on the score in
the following way. Let pl be a position such that its 30× 30 observation image
is fully contained in the square. Then, when the navigation image is composed
of randomly chosen 1 × 1 tiles, for a position p �= pl there is no reason that
the value of K(pixels(p), pixels(pl)) should depend on the geometrical distance
between p and pl. In other words, the kernel derived in these conditions will
take essentially only two values, namely K(pixels(p), pixels(pl)) = 1 if p = pl

and K(pixels(p), pixels(pl)) ≈ 1/#T S otherwise. Thus, the output predicted at
a position far enough from the square boundary will essentially be the average
output of the training set, except for positions contained in the training sample.
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When the tiles become larger, the dependence of the amount of similar pixels
of two observation images on their geometrical distance increases, which leads
to a more appropriate approximation architecture and better policies. However,
when the tiles size becomes too large the sensitivity of the pixel based kernel
with respect to the geometrical distance eventually decreases. In particular, the
loss of observability above a certain tiles size translates into a dead-band within
which the kernel remains constant, which implies suboptimality of the inferred
policy, even in asymptotic conditions.

4 Conclusions

We have applied in this paper a reinforcement learning algorithm known as fit-
ted Q iteration to a problem of navigation from visual percepts. The algorithm
uses directly as state input the raw pixel values. The simulation results show
that in spite of the fact that in these conditions the information is spread in a
rather complex way over a large number of low-level input variables, the rein-
forcement learning algorithm was nevertheless able to converge relatively fast
to near optimal navigation policies. We have also highlighted the strong depen-
dence of the learning quality on the characteristics of the images the agent gets
as input states, and in particular on the relation between distances in the high-
dimensional pixel-based representation space and geometrical distances related
to the physics of the navigation problem.

5 Image Description

We provide hereafter the 10× 10 matrix giving the grey levels of the 100 tiles of
Figure 2:

164 55 175 6 132 27 35 255 47 11
169 155 87 5 77 39 197 179 82 111
5 92 176 10 148 37 57 119 32 193

156 110 54 38 186 103 190 212 241 108
65 103 125 239 73 235 128 199 3 247
42 129 233 3 250 101 196 119 108 192
199 91 240 254 71 2 250 250 36 227
109 150 111 224 244 152 57 205 173 174
124 242 42 62 0 234 252 127 28 114
163 7 198 92 192 163 115 208 160 168
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Abstract. Regions of Interest (ROI) image coding enables the regions
important to medical diagnosis to be encoded and transmitted at higher
quality than the other regions. In the paper, a new ROI coding method
called Compensation-based Partial Bitplane Alternating Shift (CPBA-
Shift) is described. The proposed method divides all bitplanes of ROI
and background (BG) coefficients into two portions-Alternating Shift
Portion (ASP) and Compensation Shift Portion (CSP). In ASP, partial
the most significant bitplanes of ROI and BG coefficients are shifted by
bitplane-by-bitplane. In CSP, the least significant bitplanes of ROI and
BG coefficients are scaled using compensation scheme according to the
compression quality in ROI and BG. Simulation experiments show that
the new method, in addition to alleviating the drawbacks of both ROI
coding methods in JPEG2000, can support arbitrarily shaped multiple
ROI coding with different degrees of interest without coding the shapes
information.

Keywords: medical image, image coding, region of interest, JPEG2000,
bitplane shift.

1 Introduction

The medical image compression is necessary because they produce prohibitive
amounts of data. For example, the CT or MRI image, which produce human body
pictures in digital form. Additionally, the wireless transmission of medical images
and wireless medical diagnosis also need the efficient and high quality medical
image compression methods. Many current compression schemes provide a very
high compression rate but with considerable loss of quality. On the other hand, in
some areas in medicine, it may be sufficient to maintain high image quality only
in the Region of Interest (ROI) or in diagnostically important regions. Based on
these facts, ROI coding for medical images is proposed [1], [2].
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The functionality of ROI coding is significant in medical applications where
certain parts of the image are of higher importance than others. In such a case,
these ROIs need to be encoded at higher quality than the background (BG).
During the transmission of the image, these regions need to be transmitted first
or at a higher priority, as for example in the case of progressive transmission.
ROI coding is based on wavelet transforms and lifting scheme. More recently,
two basic coding strategies are presented in the literatures-ROI coding based on
zerotree or zero-block scheme [1], [2] and ROI coding based on EBCOT [3], [4].
Because the latter can realize spatial scalability and reduces coding complexity,
it has been researched and applied widely for medical image compression. The
most important ROI coding methods based on EBCOT are Maxshift method and
the general scaling-based method, which are recommended by the JPEG2000
standard [3], [4].

Although these ROI coding methods in JPEG2000 are efficient, they have
some disadvantages for the medical image compression. For example, in the gen-
eral scaling based method, all shape information of ROI must be encoded and
transmitted, which rapidly increases the complexity of encoder implementations
and decreases the overall coding efficiency [5]. In Maxshift method, the scal-
ing value of the ROI coefficients is constant. This means in all the subbands,
where the ROI/BG distinction is applied, no information about the non-ROI
coefficients can be received until every detail of the ROI coefficients has been
fully decoded, even if the detail is imperceptible random noise or unnecessary
information [6], [7].

In this paper, we present a efficient ROI coding method for medical image
called Compensation-based Partial Bitplane Alternating Shift (CPBAShift). The
new method takes advantage of the flexibility of bitplane scaling scheme and di-
vides all bitplanes of ROI and BG coefficients into two portions-Alternating Shift
Portion (ASP) and Compensation Shift Portion (CSP). For different portions,
different shift strategies are implemented. The CPBAShift method not only en-
ables the flexible adjustment of compression quality between ROI and BG, but
also alleviates the drawbacks of both ROI coding methods in JPEG2000. Ad-
ditionally, the proposed method can support arbitrarily shaped multiple ROI
coding with different degrees of interest without coding the ROI shapes.

This paper is organized as follows. In Section 2, ROI coding methods in
JPEG2000 and their disadvantages are reviewed. In Section 3, the CPBAShift
method for single ROI coding is presented, while the multiple ROI coding based
on the presented method is given in Section 4. In Section 5, experimental results
for CT and MRI medical images are shown. Finally, the conclusions are drawn
in Section 6.

2 ROI Coding in JPEG2000 and Their Disadvantages

JPEG2000 defines two kinds of ROI coding methods: Maxshift method and the
general scaling base method. They can be completed by bitplanes scaling of ROI
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coefficients, which includes four-step process: ROI mask generation, scaling value
selection, coefficients of ROI or BG shift, and bitplane entropy coding. The main
purpose of ROI mask is to determine the set of wavelet coefficients that belong
to the ROI and BG. When an image is coded with one ROI, it should be possible
to reconstruct the entire ROI at a higher bit rates than BG portion [4].

2.1 The General Scaling Based Method

The general scaling based method is recommended by part 2 of the JPEG2000
standard. In the method, regions of interest can have better quality than the rest
at any decoding bit-rate. In other words, this implies a non-uniform distribution
of the quality inside the image. The general scaling-based method can support
a bitplane scaling with the arbitrary value, so allows fine control on the relative
importance between ROI and BG [3].

However, the general scaling based method has two major drawbacks. First,
it needs to encode and transmit the shape information of the ROIs. This rapidly
increases the algorithm complexity. Second, if arbitrary ROI sharps are desired,
the shape coding will consume a large number of bits, which significantly de-
creases the overall coding efficiency [4].

2.2 Maxshift Method

We know that both the general based scaling method and Maxshift method take
full advantage of the bitplane scaling scheme, but ”max-shift” technology must
scale all bitplanes of ROI coefficients up over the maximum bitplane of all BG
coefficients or scale all bitplanes of BG coefficients down below the minimum
bitplane of all ROI coefficients. So Maxshift method is a particular case of the
general scaling-based method when the scaling value is so large that there is no
overlapping between BG and ROI bitplanes, i.e., so the scaling value, s, must
satisfy (1):

s � max (Mb) ; (1)

The max(Mb) is the largest number of magnitude bitplanes for all BG co-
efficients. All significant bits associated with the ROI after scaling will be in
higher bitplanes than all the significant bits associated with the background.
Therefore, ROI shape is implicit for the decoder in this method, and arbitrarily
shaped ROI coding can be supported. Based on the above advantages, JPEG2000
coding standard recommends Maxshift method in part 1 as the core ROI coding
algorithm [7].

Fig. 1 shows the comparison of scaling scheme between the general scaling
based method and Maxshift method. The upper diagram shows the bitplane
distribution based on the general scaling based method and the scaling value is
6. The lower diagram depicts the scaling strategy of Maxshift method and the
scaling value is 11.
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Fig. 1. Comparison of scaling scheme between the general scaling based method and
Maxshift method

2.3 The Disadvantages of ROI Coding Methods in JPEG2000

For the general scaling based method, there are two main drawbacks. First, it
needs to encode and transmit the shape information of the ROIs. This rapidly
increases the complexity of encoder and decoder. Second, if arbitrary ROI sharps
are desired, the shape coding will consume a large number of bits, which signif-
icantly decreases the overall coding efficiency.

Maxshift method can solve above these problems efficiently, but it has three
limitations. First, it does not have the flexibility for an arbitrary scaling value
to define the relative importance of the ROI and the BG wavelet coefficients
as in the general scaling-based method. Second, this method requires decoding
of all ROI coefficients before accessing bitplanes of the background and uses
large shifting values that significantly increase the number of total bitplanes
to encode. Finally, when there are multiple ROIs in the same image, any ROI
cannot have its own scaling value and therefore different priority during encoding
and transmission of the image.

Because of the limitations of two standard ROI coding algorithms, A improved
Maxshift method was proposed in [6] with low scaling values. It is implemented
by removing all the overlapping bitplanes between ROI and BG coefficients,
which relatively modified the quantization steps of coefficients. However, the
method brought the reduction of final ROI and BG qualities. A bitplane-by-
bitplane shift (BbBShift) method was proposed in [7] by shifting these bitplanes
on a bitplane-by-bitplane basis instead of shifting them all at once in Maxshift
method. Although it supports arbitrarily shaped ROI coding without coding
shapes, it is difficult for the BbBShift method to code multiple ROIs with dif-
ferent priority during encoding and transmission.

3 New ROI Coding Scheme Using CPBAShift Method

The proposed CPBAShift method, which combines the advantages of bitplane-
by-bitplane shift scheme and the maximum shift technique, can encode ROI
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image efficiently. It divides all original bitplanes of ROI and BG coefficients into
two portions-ASP and CSP. For different portions, different shift strategies are
implemented. In ASP, partial the most significant bitplanes of ROI and BG
coefficients are shifted by bitplane-by-bitplane. In CSP, the general and least
significant bitplanes of ROI and BG coefficients are scaled using compensation
scheme according to the compression quality in ROI and BG.

Fig. 2. Comparison of scaling scheme between CPBAShift method and BbBShift
method

Fig. 2 shows the comparison of scaling scheme between CPBAShift method
and BbBShift method. The upper diagram gives the bitplane scaling model based
on BbBShift method and the number of bitplanes by alternating scaling is 6. The
lower diagram depicts the scaling strategy of CPBAShift method. According to
Fig. 2, we can define these bitplanes of ROI and BG in ASP or CSP using a
series of symbols as follows:

1. S1−ROI is the number of the most significant ROI bitplanes.
2. S1−BG is the number of the most significant BG bitplanes.
3. S2−ROI is the number of the general significant ROI bitplanes.
4. S2−BG is the number of the least significant BG bitplanes.
5. S3−ROI is the number of the least significant ROI bitplanes.

Definition 1. The symbol b is defined as a bitplane belonged to the ROI or the
BG before the bitplanes are shifted.

Definition 2. The bottom bitplane of original image before shifted is defined as
bitplane 1, the next to bottom as bitplane 2, and so on.

At the encoder, the basic encoding steps are given as follows:

Step 1. For any bitplane b ∈ ROI;
1. If 0 < b � S3−ROI then no shift b;
2. If S3−ROI < b � S2−ROI + S3−ROI then shift b up to bitplane b +

S2−BG − S3−ROI ;
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3. If b > S2−ROI + S3−ROI then shift b up to bitplane 2(b − S3−ROI) −
S2−ROI + S2−BG.

Step 2. For any bitplane b ∈ BG;
1. If 0 < b � S2−BG then no shift b;
2. If b > S2−BG then shift b up to bitplane 2b+ S2−ROI − S2−BG − 1;

At the decoder, for any given bitplane of non-zero wavelet coefficient, the first
step is to complete the arithmetic decoding. The second step is to identify
whether it is a bitplane of the ROI coefficient or the BG coefficient. Third step
is to shift all bitplanes of ROI and BG down to the original positions. the basic
encoding steps are given as follows:

1. If 0 < b � S2−BG then b ∈ ROI or b ∈ BG, no shift b and decoding directly;
2. If S2−BG < b � S2−BG + S2−ROI then b ∈ ROI, shift b down to bitplane

b + S3−ROI − S2−BG;
3. If b = S2−ROI +S2−BG +2i, i = 1, 2, · · · , S1−ROI then b ∈ ROI, shift b down

to bitplane (b + S2−ROI − S2−BG)/2 + S3−ROI ;
4. If b = S2−ROI + S2−BG + 2i − 1, i = 1, 2, · · · , S1−BG then b ∈ BG, shift

bitplane b down to (b− S2−ROI + S2−BG + 1)/2.

At the encoder, S2−ROI , S3−ROI and S2−BG must satisfy (2):

S2−BG = S2−ROI + S3−ROI ; (2)

At the decoder, if the wavelet coefficient’s most significant bitplane belongs
to bitplanes of ROI, then it must be is an ROI coefficient. Otherwise, it is a BG
coefficient. The bitplanes are then shifted back to their original levels by the
decoding algorithm.

4 Multiple ROI Coding Based on CPBAShift Method

In JPEG2000, both the Maxshift method and the general scaling based method
can support the multiple ROI coding. However, the drawback of Maxshift is that
the bitplanes of all ROIs must be scaled with the same values, which does not
have the flexibility to allow for an arbitrary scaling value to define the relative
importance of the ROIs and BG wavelet coefficients, and cannot code ROIs
according to different degrees of interest. Additionally, in Maxshift method, all
bitplanes of the BG coefficients cannot be decoded until the all bitplanes of all
ROIs are decoded.

The general scaling based method can offer the multiple ROIs coding with dif-
ferent degrees of interest, but it needs to encode the shape information of ROIs.
This shape information significantly increases the complexity of encoder/decoder
when the number of the ROIs increases. Additionally, it is not convenient for the
general scaling based method to deal with different wavelet subbands according
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to different degrees of interest, which is very important to code and transmit for
objectors.

The proposed CPBAShift method not only can support arbitrary ROIs shape
with-out shape coding, but also allows arbitrary scaling value between the ROIs
and BG, which enables the flexible adjustment of compression quality in ROIs
and BG ac-cording to different degrees of interest. The encoding and decoding
algorithm for multiple ROIs are similar to that for single ROI in CPBAShift
method. Fig. 3 presents the basic scaling scheme of CPBAShift method in mul-
tiple ROI coding.

Fig. 3. The basic scaling scheme of CPBAShift method in multiple ROI coding

Although CPBAShift method can code multiple ROIs efficiently using the
alternating and compensating scheme, two points must be satisfied during bit-
plane scaling. First, if the degree of interest of every ROI is different, S2−ROI−i

and S3−ROI−i will is various. However, the scaling values from S3−ROI−i to
S2−ROI−i must is constant and equal to max(S2−ROI−i). Second, S1−ROI−i

must is equal to S1−BG:

S1−BG = S1−ROI−i = c(i = 1, 2, · · ·); (3)

According to the scaling rules for multiple ROI coding, at low bit rates, these
most important bitplanes of ROIs and BG will be encoded and transmitted
firstly. At mediate bit rates, these ROIs will obtain different coding qualities
based on different degrees of interest by adjusting the values of S2−ROI . At high
bit rates, both ROIs and BG can be coded with high quality and difference
between them is not very noticeable.

5 ROI Coding Results for Medical Images

Fig. 4 shows the comparison of single ROI coding results between CPBAShift
method and Maxshift method at 0.5bpp for 512× 512 CT image. the left shows
the original CT image. The mediate is the reconstructed CT image using
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Maxshift method and the right gives the reconstructed CT image using CP-
BAShift method. We adopt (5, 3) integer wavelet and select an arbitrarily shaped
ROI covering 11.66% of the whole image.

Fig. 5 presents two reconstructed 512 × 512 MRI images based on multiple
ROI coding with two arbitrary shaped ROIs. The left picture is the compression
result using Maxshift method, but the right picture is the coding result using
CPBAShift method. The decoding rate is 1.0bpp and ROI-1 covering about
5.63% of the whole image and ROI-2 covering about 3.95%. We still adopt (5, 3)
integer wavelet filters.

Fig. 4. Comparison of single ROI coding between Maxshift method (mediate) and
CPBAShift (right) at 0.5bpp for 512 × 512 CT image

Fig. 5. Comparison of multiple ROI coding between Maxshift method (left) and CP-
BAShift (right) at 1.0bpp for 512 × 512 MRI image

In Fig. 6, we give two reconstructed 512× 512 CT images with two arbitrary
shaped ROIs. The left picture is the compression result using Maxshift method,.
The right picture is the coding result using CPBAShift method. The decoding
rate is 0.5bpp and ROI-1 covering about 4.18% of the whole image and ROI-2
covering about 3.18%.
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Fig. 6. Comparison of multiple ROI coding between Maxshift method (left) and CP-
BAShift (right) at 0.5bpp for CT image

6 Conclusions

In this paper, we describe a new ROI coding method so-called CPBAShift. The
new algorithm can not only complete single and multiple ROI coding efficiently,
but also has more flexible strategy of bitplane scaling, its primary advantages
are presented as follows:

First, the new method can support arbitrary shaped ROI coding without
coding the shape information, which ensures the low complexity in real-world
applications. Second, the whole scaling values of all bitplanes are fewer than
Maxshift method, which decreases the risk of bitstream overflow. Third, the
proposed method can control flexibly the quality between the ROIs and BG by
adjusting scaling values of ROI or BG. Finally, the new method can support
multiple ROI coding with different degrees of interest. In a word, we expect this
idea is valuable for future research in medical image coding based on ROI.
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Abstract. A new lifting scheme of 7/5 biorthogonal wavelet filter banks
(BWFB) which include BT 7/5 filter banks of Brislawn and Treiber for
image compression applications is presented in this paper. The functional
relations between all coefficients of the 7/5 BWFB and their lifting para-
meters with respect to a one free lifting parameter are derived. Moreover,
all coefficients of 7/5 BWFB and their lifting parameters are rational
numbers, compared to CDF 9/7 filter banks of Cohen, Daubechies and
Feauveau with irrational coefficients in JPEG2000 standard, 7/5 BWFB
not only have advantage of easy computation but also are very suitable
for VLSI hardware implementation. Finally, two 7/5 BWFB namely 7/5
BWFB-1 and 7/5 BWFB-2 are proposed. The experimental results show
that the peak signal-to-noise ratio (PSNR) of the reconstructed images
using 7/5 BWFB-1 and 7/5 BWFB-2 is 0.1dB less than CDF 9/7 fil-
ter banks but is higher 1.2dB than LT 5/3 filter banks of LeGall and
Tabatabai within compression ratio 100:1. Therefore, the 7/5 BWFB-1
and 7/5 BWFB-2 are the ideal replacement of CDF 9/7 filter banks in
the JPEG2000 standard for image compression applications.

1 Introduction

The design of the wavelet filter and the algorithm of compression coding are
two most important factors in JPEG2000 image compression systems [1]. Since
CDF 9/7 filter banks [2] developed by Cohen, Daubechies and Feauveau have
linear phase and excellent image compression performance, they have been ap-
plied most widely in the image compression applications. However, there is a
common complaint about CDF 9/7 filter banks by some researchers that their
coefficients are irrational number and thus requires a floating-point implemen-
tation. This will not only increase the computational complexity but also bring
a great disadvantage to VLSI hardware implementation. The purpose of our
study is to find a new wavelet filter banks with rational coefficients whose the
image compression performances are close to CDF 9/7 filter banks and better
than LT 5/3 filter banks of LeGall and Tabatabai. Sweldens et al have presented
the lifting scheme [3][4] in 1996 that is called as the second generation wavelet,

N. Zheng, X. Jiang, and X. Lan (Eds.): IWICPAS 2006, LNCS 4153, pp. 465–474, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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and is an entirely spatial construction of wavelet. The lifting scheme for fast
wavelet transform has many characteristics that are suitable for the VLSI hard-
ware implementation. For example, the lifting scheme doesn’t refer to the Fourier
transformation, which leads to a speedup of 2 times faster than the Mallat algo-
rithm based on convolution; it allows for an in-place implementation of the fast
wavelet transform, this means the wavelet transform can be calculated without
allocating auxiliary memory; all operations within one lifting step can be done
entirely in parallel while the only sequential part is the order of the lifting op-
erations; it is particularly easy to build nonlinear wavelet transform, a typical
example is a wavelet transform that maps integers to integers, such transform is
important for hardware implementation and lossless image coding; it allows for
adaptive wavelet transforms, this means one can start the analysis of a function
from the coarsest levels and then build the finer levels by refining only in the
areas of interest; the multiresolution analysis for classical wavelet transform is
inherited.

This paper constructs a class of biorthogonal 7/5 wavelet filter banks
(BWFB), and also presents a kind of structure and implementation of the 7/5
BWFB for the lifting scheme of fast wavelet transform. In addition, it is found
that when the lifting parameter for the 7/5 BWFB is 0.05 and 0.08, the per-
formance for image compression turns out to be better than other situations,
we named them as 7/5 BWFB-1 and 7/5 BWFB-2 in this paper that are rec-
ommended in JPEG2000 standard part 2. [5]-[7]. Finally, in order to verify the
image compression performances of 7/5 BWFB-1 and 7/5 BWFB-2, we have
developed the system of the image compression that supports the 7/5 BWFB-1
and 7/5 BWFB-2 as well as the CDF 9/7 and LT 5/3 filter banks.

The present paper is organized as follows. In section 2, the lifting scheme
using Euclidean algorithm on two channel filter banks is introduced. In section
3, lifting implementation for fast wavelet transform using 7/5 BWFB is car-
ried out. Section 4 provides both 7/5 BWFB-1 and 7/5 BWFB-2 for JPEG2000
image compression coding, and experimental results are discussed. Finally, in
section 5, we conclude the paper.

2 The Lifting Scheme for 7/5 BWFB

2.1 Two Channel Filter Banks for 7/5 BWFB

We consider a two channel filter banks as shown in Fig.1, suppose a symmetric
7/5 BWFB, and {H0(z), G0(z)} denotes low pass filters and {H1(z), G1(z)}
denotes high pass filters for analysis and synthesis stage respectively.

The low pass filters of 7/5 BWFB are given by{
H0(z) = h0 + h1(z + z−1) + h2(z2 + z−2) + h3(z3 + z−3))
G0(z) = g0 + g1(z + x−1) + g2(z2 + z−2) (1)
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Fig. 1. Two channel filter banks

The polyphase representation of the lowpass analysis filter H0(z) and the
lowpass synthesis filter G0(z) for 7/5 BWFB are given by{

H0e(z) = h0 + h2(z + z−1)
H0o(z) = h1(z + 1) + h3(z2 + z−1) (2){

G0e(z) = g0 + g2(z + z−1)
G0o(z) = g1(z + 1) (3)

Where H0e(z) and G0e contains the even coefficients, and H0o and G0o con-
tains the odd coefficients. Thus we can build the decomposition based on the
Euclidean algorithm [8] with a focus on applying it to wavelet filtering.

2.2 Lifting Scheme of 7/5 BWFB

Here take two Laurent polynomials a(z) and b(z) with the restricts that a(z)
and b(z) �= 0 with |a(z)| ≥ |b(z)|. Then there always exist a Laurent polynomial
q(z) (i.e. quotient) with |q(z)| = |a(z)| − |b(z)|, and a Laurent polynomial r(z)
(i.e. remainder) with |r(z)| < |b(z)| to make the equation reasonable. We denote
this as: q(z) = a(z)/b(z) and r(z) = a(z)%b(z). First let a0(z) = H0e(z) and
b0(z) = H0o(z), then iterate the following steps starting from i = 0{

ai+1(z) = bi(z)
bi+1(z) = ai(z)%bi(z)

(4)

Note that in case |H0o(z)| > |H0e(z)|, the first quotient q1(z) is zero. We thus
obtain the Euclidean decomposition as follows

Step1

⎧⎨⎩
a1(z) = b0(z) = H0o = h1(z + 1) + h3(z2 + z−1)
b1(z) = a0(z)%b0(z) = H0e(z) = h0 + h2(z + z−1)
q1(z) = 0

(5)

Step2

⎧⎨⎩
a2(z) = b1(z) = H0e = h0 + h2(z + z−1)
b2(z) = a1(z)%b1(z) = s2(1 + z)
q2(z) = t2(1 + z)

(6)
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Step3

⎧⎨⎩
a3(z) = b2(z) = s2(1 + z)
b3(z) = a2(z)%b2(z) = s3
q3(z) = t3(1 + z−1)

(7)

Step4

⎧⎨⎩
a4(z) = b3(z) = s3
b4(z) = a3(z)%b3(z) = s4 = 0
q4(z) = t4(1 + z)

(8)

In the equations above, si is the lifting parameter and ti is the dual lifting
parameter, which are as follows⎧⎪⎪⎨⎪⎪⎩

s1 = 0, t1 = 0
s2 = h1 − h3 − h0h3/h2, t2 = h3/h2
s3 = h0 − 2h2, t3 = h2

2/[h1h2 − (h0 + h2)h3]
s4 = 0, t4 = [(h1 − h3)h2 − h0h3]/[(h0 − 2h2)h2]

(9)

3 Implementation of Lifting Scheme for 7/5 BWFB

Using the method described above, this section will provides the implementation
of lifting scheme for 7/5 BWFB. Here the factorization of filter pair {H0e, H0o}
are as follows [

H0e(z)
H0o(z)

]
=
[

1 0
q2(z) 1

] [
1 q3(z)
0 1

] [
1 0

q4(z) 1

] [
s3
0

]
(10)

Set α = t2, β = t3, γ = t4, K = s3, so the polyphase matrix for the 7/5
BWFB can be expressed as

P̃ (z) =
[

h0 + h2(z + z−1) g1(1 + z−1)
h1(z + 1) + h3(z2 + z−1) −g0 − g2(z + z−1)

]
=
[

1 0
q2(z)1

] [
1 q3(z)
0 1

] [
1 0

q4(z) 1

] [
K 0
0 1/K

]
=
[

1 0
α(1 + z) 1

] [
1 β(1 + z−1)
0 1

] [
1 0

γ(1 + z) 1

] [
K 0
0 1/K

]
(11)

So we have ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

h0 = (1 + 2βγ)K
h1 = [α(1 + βγ) + γ(1 + 2αβ)]K
h2 = βγK
h3 = αβγK
g0 = (1 + 2αβ)/(2K)
g1 = −β/(2k)
g2 = αβ/(2k)

(12)

We start with a sequence x = {xj |j ∈ ZZ} and denote the result of applying
the lowpass filter H0(z) and downsampling as a s = {sj|j ∈ ZZ}, and sequence
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s(i) and d(i) are used to denotes the intermediate values computed during lifting.
Then Lazy wavelet are given by

s
(0)
i = x2i, d

(0)
i = x2i+1

Finally, the factorization leads to the following implementation of the forward
transform

s
(1)
l = s

(0)
l + α(d(0)

l + d
(0)
l−1)

d
(1)
l = d

(0)
l + β(s(1)

l + s
(1)
l+1)

s
(2)
l = s

(1)
l + γ(d(1)

l + d
(1)
l−1)

sl = Ks
(2)
l

dl = d
(1)
l /K

The implementation of the inverse transform are as follows

s
(2)
l = sl/K

d
(1)
l = Kdl

s
(1)
l = s

(2)
l − γ(d(1)

l + d
(1)
l−1)

d
(0)
l = d

(1)
l − β(s(1)

l + s
(1)
l+1)

s
(0)
l = s

(1)
l − α(d(0)

l + d
(0)
l−1)

The lifting structure of the 7/5 BWFB is shown in Fig.2.
From Equation (12) and normalization condition for the 7/5 BWFB we can

get

β = −1/[2(1 + 2α)], γ = (1− 4α2)/4, K = 1/(1 + 2α) (13)

Equation (13) shows that β, γ, K can be all expressed by a free parameter
α. We consider now using the algorithm of approximation and Hölder regularity
[9][10] to find a compactly supported 7/5 BWFB which will satisfy the perfect
reconstruction (PR) condition. In the 7/5 category this leaves a single unused
degree of freedom α = 0.05 and α = 0.08 that have an excellent image compres-
sion performances than other situations, and they are defined as 7/5 BWFB-1
and 7/5 BWFB-2. The structure of 7/5 BWFB for lifting scheme is plotted as
in Fig.2. The coefficients of 7/5 BWFB-1 and 7/5 BWFB-2 and corresponding
lifting parameters are shown in Table.1-Table.4.

4 Experiment and Discussion

In order to verify the performances of image compression for 7/5 BWFB-1 and
7/5 BWFB-2, we have developed a new image compression system based on
JPEG2000 standard, it not only supports both CDF 9/7 filter and LT 5/3 fil-
ter banks but also supports both 7/5 BWFB-1 and 7/5 BWFB-2 through im-
proves Jasper1.701.0 version in JPEG2000 standard. In addition, a great deal
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Fig. 2. The structure of 7/5 BWFB for lifting scheme (a) the decomposition (b)
the reconstruction

Table 1. The coefficients of the 7/5 BWFB-1

n hi(analysis) gi(synthsis)

0 31/44 21/40
±1 449/1760 1/4
±2 -9/88 -1/80
±3 -9/1760

Table 2. The lifting parameters of the 7/5 BWFB-1

parameters values

α 1/20
β -5/11
γ 99/400
K 11/10

of gray bitmaps in standard test image library were tested using 5 levels of
wavelet decomposition and scalar quantization and EBCOT coding algorithm
[11][12]. The objective coding results with PSNR in dB for standard 512× 512
pixel and 8bits depth Peppers.bmp, Lena.bmp, Goldhill.bmp, Baboon.bmp and
Women.bmp testing images were tabulated in Table.5-Table.9. The differences
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Table 3. The coefficients of the 7/5 BWFB-2

n hi(analysis) gi(synthsis)

0 79/116 27/50
±1 373/1450 1/4
±2 -21/232 -1/50
±3 -21/2900

Table 4. The lifting parameters of the 7/5 BWFB-2

parameters values

α 2/25
β -175/406
γ 609/2500
K 29/25

of PSNR values for the reconstructed image between 7/5 BWFB-1 and CDF
9/7 filter banks were represented as Δ1D, similarly, the differences between 7/5
BWFB-2 and CDF 9/7 filter banks were represented as Δ2D, the differences
between 7/5 BWFB-1 and LT 5/3 filter banks were represented as Δ1L, the
differences between 7/5 BWFB-2 and LT 5/3 filter banks were represented as
Δ2L. It is easy to find from table.5-Table.9 that the performances of the im-
age compression for 7/5 BWFB-1 and 7/5 BWFB-2 are very close to CDF 9/7
filter banks and also is much better than LT 5/3 filter banks. Moreover, we
compared PSNR values of reconstructed image using different filters in Fig.3,
and the abscissa denotes compression ratio which is integral power for 2, the
ordinate denotes PSNR values of the reconstructed image. It is illustrated that
PSNR values of the reconstructed image using 7/5 BWFB-1 is only 0.1dB less
than the CDF 9/7 filter banks, but 1.2dB higher than the LT 5/3 filter banks
about testing image Woman.bmp in Fig.3. However, when the compression ratio
(C.R.) is greater than 100:1, the compression performances using 7/5 BWFB-1
is 0.01dB less than the LT 5/3 filter banks. The subjective comparisons of the

Table 5. PSNR evaluation for the Peppers.bmp in dB

C.R. CDF 9/7 LT 5/3 7/5 BWFB-1 7/5 BWFB-2 Δ1D Δ2D Δ1L Δ2L

4:1 43.1083 41.3481 42.6307 42.7673 -0.4476 -0.3410 +1.2826 +1.4192
8:1 38.2030 37.5476 37.9269 37.9936 -0.2761 -0.2094 +0.3793 +0.4460
16:1 35.7832 35.2654 35.4361 35.4170 -0.3471 -0.3662 +0.1707 +0.1516
32:1 33.4908 33.0552 33.0767 33.0125 -0.4141 -0.4783 +0.0215 -0.0427
64:1 30.7161 30.3354 30.3600 30.2256 -0.3561 -0.4905 +0.0246 -0.1098
100:1 28.4688 28.2567 28.0892 28.1015 -0.3796 -0.3673 -0.1675 -0.1552
128:1 27.5009 27.2342 27.2028 27.1584 -0.2981 -0.3425 -0.0314 -0.0758
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Table 6. PSNR evaluation for the Lena.bmp in dB

C.R. CDF 9/7 LT 5/3 7/5 BWFB-1 7/5 BWFB-2 Δ1D Δ2D Δ1L Δ2L

4:1 42.9495 41.1995 42.3858 42.4764 -0.5637 -0.4731 +1.1863 +1.2769
8:1 38.0703 37.3410 37.6658 37.6953 -0.4045 -0.3750 +0.3248 +0.3543
16:1 35.1721 34.4984 34.6425 34.6254 -0.5296 -0.5467 +0.1441 +0.1270
32:1 32.3538 31.7087 31.7193 31.7408 -0.6345 -0.6130 +0.0106 +0.0321
64:1 29.5526 28.9618 29.0785 29.0370 -0.4741 -0.5156 +0.1167 +0.0752
100:1 27.7308 27.2636 27.2375 27.2836 -0.4933 -0.4472 -0.0261 +0.0200
128:1 26.8370 26.4218 26.5133 26.4455 -0.3237 -0.3915 +0.0915 +0.0237

Table 7. PSNR evaluation for the Goldhill.bmp in dB

C.R. CDF 9/7 LT 5/3 7/5 BWFB-1 7/5 BWFB-2 Δ1D Δ2D Δ1L Δ2L

4:1 39.5641 38.6910 39.0016 39.1366 -0.5625 -0.4275 +0.3106 +0.4456
8:1 35.0873 34.5923 34.8390 34.9030 -0.2483 -0.1843 +0.2467 +0.3107
16:1 32.3438 31.9067 32.0199 32.0405 -0.3239 -0.3033 +0.1132 +0.1338
32:1 30.0213 29.6347 29.7234 29.8100 -0.2979 -0.2113 +0.0887 +0.1753
64:1 28.1324 27.8516 27.8709 27.9310 -0.2615 -0.2014 +0.0193 +0.0794
100:1 26.9970 26.5792 26.7023 26.7312 -0.2947 -0.2658 +0.1231 +0.1520
128:1 26.3435 26.1060 26.1177 26.0853 -0.2258 -0.2582 +0.0117 -0.0477

Table 8. PSNR evaluation for the Baboon.bmp in dB

C.R. CDF 9/7 LT 5/3 7/5 BWFB-1 7/5 BWFB-2 Δ1D Δ2D Δ1L Δ2L

4:1 34.8018 34.1268 34.2124 34.2179 -0.5894 -0.5839 +0.0856 +0.0911
8:1 29.0705 28.6222 28.4054 28.4574 -0.6651 -0.6131 -0.2168 -0.1648
16:1 25.5388 25.0646 25.1061 25.2201 -0.4327 -0.3187 +0.0415 +0.1555
32:1 23.1835 22.8077 22.8375 22.8973 -0.3460 -0.2862 +0.0298 +0.0896
64:1 21.6200 21.3188 21.2840 21.3689 -0.3360 -0.2511 -0.0348 +0.0501
100:1 20.8802 20.6963 20.7797 20.8718 -0.1005 -0.0084 +0.0834 +0.1755
128:1 20.6537 20.4250 20.5121 20.5506 -0.1416 -0.1031 +0.0871 +0.1256

reconstructed image were demonstrated in Fig.4 at compression ratio 16:1 with
the testing image Women.bmp. The compression performances using the 7/5
BWFB-1 and 7/5 BWFB-2 are almost identical with CDF 9/7 filter banks.

We can see easily from this paper that compression performances using the
CDF 9/7 filter banks are always better than 7/5 BWFB-1, 7/5 BWFB-2 and
LT 5/3 filter banks when compression ratios is less than 100:1, 0.1-0.6dB higher
than 7/5 BWFB-1 and 7/5 BWFB-2, and 0.5-1.4dB higher than LT 5/3 filter
banks. When compression ratio are 100:1 and over, the compression performance
using LT 5/3 filter banks are little better than 7/5 BWFB-1 and 7/5 BWFB-2 by
about 0.05-0.1 dB. In addition, when testing image includes much information
for low frequency such as Woman.bmp bitmap, PSNR values of reconstructed



A New Wavelet Lifting Scheme for Image Compression Applications 473

Table 9. PSNR evaluation for the Women.bmp in dB

C.R. CDF 9/7 LT 5/3 7/5 BWFB-1 7/5 BWFB-2 Δ1D Δ2D Δ1L Δ2L

4:1 45.8728 44.4178 45.4255 45.5494 -0.4473 -0.3234 +1.0077 +1.1316
8:1 39.1503 38.1474 38.7211 38.8229 -0.4292 -0.3274 +0.5737 +0.6755
16:1 34.5551 33.9244 34.1463 34.2185 -0.4088 -0.3366 +0.2219 +0.2941
32:1 31.4530 31.0521 31.2834 31.3065 -0.1696 -0.1465 +0.2313 +0.2544
64:1 29.5272 29.1728 29.2553 29.2425 -0.2719 -0.2847 +0.0825 +0.0697
100:1 28.2210 27.9241 27.9271 27.8405 -0.2939 -0.3805 +0.0030 -0.0836
128:1 27.3979 27.2418 27.1850 27.1185 -0.2129 -0.2794 -0.7391 -0.1233
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Fig. 3. The objective comparison of compression performance using different filter

(a) (c)(b) (d) (e)

Fig. 4. The compression performance comparison using different filter (a) original im-
age (b) CDF 9/7 filter banks (c) LT 5/3 filter banks (d) 7/5 BWFB-1 (e) 7/5 BWFB-2
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image reduce slowly with the increase of the compression ratio because loss
for low frequency is very little. However, when testing image includes many
information for high frequency, for example Babbon.bmp bitmap, PSNR values
for reconstructed image reduce quickly with the increase of the compression ratio
because loss for high frequency is very much.

5 Conclusions

The lifting scheme and implementation structure of 7/5 BWFB-1 and 7/5 BWFB-
2 are derived in detail. In addition, the 7/5 BWFB-1 and 7/5 BWFB-2 with
rational coefficients whose performances of image compression are highly close
to CDF 9/7 filter banks have been obtained. Finally, we can concluded that the
image compression performances using 7/5 BWFB-1 and 7/5 BWFB-2 based
on JPEG2000 standard will be better than CDF 9/7 filter banks in terms of
computational complexity and VLSI hardware implementation.
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Abstract. The highest fidelity representations of realistic real-world
materials currently used comprise Bidirectional Texture Functions
(BTF). The BTF is a six dimensional function depending on view and
illumination directions as well as on planar texture coordinates. The
huge size of such measurements, typically in the form of thousands of
images covering all possible combinations of illumination and viewing
angles, has prohibited their practical exploitation and obviously some
compression and modelling method of these enormous BTF data spaces
is inevitable. The proposed approach combines BTF spatial clustering
with cluster index modelling by means of an efficient Markov random
field model. This method allows to generate seamless cluster index of
arbitrary size to cover large virtual 3D objects surfaces. The method
represents original BTF data using a set of local spatially dependent
Bidirectional Reflectance Distribution Function (BRDF) values which
are combined according to synthesised cluster index and illumination /
viewing directions. BTF data compression using this method is about
1 : 100 and their synthesis is very fast.

1 Introduction

Recent progress in graphics hardware computational power finally enables fast
and visually realistic rendering of virtual reality models that until recently was
impossible. Such realistic models require, among others, natural looking textures
covering virtual objects of rendered scene. Applications of these advanced texture
models in virtual reality systems now allow photo-realistic material appearance
approximation for such complex tasks as visual safety simulations or interior
design in automotive/airspace industry or architecture.

For the aim of such advanced applications a smooth textures lit by reflectance
models alternatively combined with bump-mapping are not able to offer correct
and realistic reproduction of material appearance. This is caused due to inherited
complexity of many materials whose rough structure produces such visual effects
as self-shadowing, masking, inter-reflection or subsurface scattering. The one way
to capture these material’s attributes is using much more complex representation
of a rough or 3D texture called Bidirectional Texture Function (BTF). BTF is
a six dimensional function depending on view and illumination directions as
well as on planar texture coordinates as illustrated in Fig.1. This function is
typically acquired in the form of several thousands images covering varying light
and camera directions. However, a huge size of measured BTF data prevents

N. Zheng, X. Jiang, and X. Lan (Eds.): IWICPAS 2006, LNCS 4153, pp. 475–484, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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their usage in any useful application so introduction of some fast compression
and modelling method for BTF data is inevitable.

The majority of results in the BTF area deal mainly with compression. They
are based either on eigen-analysis of BTF data space [1,2,3,4] or on applications of
pixel-wise reflectance models [5,6,7,8]. Although these methods can provide rea-
sonable compression ratios ( 1

20 −
1

200 ) and visual quality, their main drawback is
that they do not allow arbitrary size BTF synthesis, i.e. the texture enlargement.

To solve this problem additional BTF enlargement methods are necessary.
Unfortunately there are not many BTF enlargement approaches available. A
majority of the available methods are based either on simple texture repeti-
tion with edge blending or on more or less sophisticated image tiling methods
[9,10,11,12] and they can be adapted also for BTF synthesis, e.g., [13].

Finally a group of probabilistic BTF models was recently proposed [14], [15].
These methods allow unlimited texture enlargement, BTF texture restoration,
huge BTF space compression and even modelling of previously unseen BTF data.
They are based on rough BTF segmentation in a space of illumination and view-
ing directions. The individual clusters representatives are BTF images closest to
cluster centers, which are combined with estimated range-map in bump-mapping
filter for required illumination and viewing angles. Although these methods reach
huge impressive compression ratios they sometimes compromise visual quality
for certain materials. In this paper we present a novel BTF model enabling

Fig. 1. Relationship between illumina-
tion and viewing angles within texture
coordinate system

Fig. 2. Illumination directions (i = 1 . . . 81)
in used BTF data. Viewing directions (v =
1 . . . 81) are the same.

seamless enlargement of BTF data. The overall scheme of the proposed model
is illustrated in Fig.3. The method starts with normal-map estimation of the
underlying material surface using photometric stereo. The estimated normal-
map N is enlarged to the required size using probabilistic MRF model. In the
following step the original BTF data are clustered in the spatial planar space.
The results are cluster representatives C and cluster index I, which is used for
new cluster index IS generation up to the size of synthesised normal-map NS .
This enlargement exploits matching between estimated N and synthesised NS

normal-maps and BRDFs at neighbouring spatial locations.
This paper is organised as follows. The spatial BTF data segmentation is de-

scribed in Section 2, the surface geometry estimation (normal-map) is described
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Fig. 3. The overall scheme of the proposed BTF enlargement method

in Section 3. The surface geometry synthesis using MRF model is subject of
Section 4, while the final BTF data enlargement step is described in Section 5.
Following sections show results of the proposed model, discuss its properties and
conclude the paper.

2 BTF Space Segmentation

BTF data employed in this study were measured at the Bonn University [16]. We
used BTFs of two different types of lacquered wood. Each dataset comprises 81
viewing positions nv and 81 illumination positions ni (see Fig.2) resulting into
6551 images with resolution (rectified measurements) 800 × 800. To decrease
computational demands of the following BTF clustering step an image tiling
approach was applied. The method [12] finds sub-optimal paths in original data
to cut required set of contactable BTF tiles. In our experiments only one BTF
tile per material was used.

The input to our algorithm is such a seamless BTF tile in the form of ni nv

illumination/view dependent images of size nx×ny. A vector of BTF values for a
fixed planar position will be called local BRDF and denoted as BRDF in scope of
this paper. In the first preprocessing step all BTF images were converted to CIE
Lab perceptually uniform colour space and only data from luminance channel
L was used in data vector. The following K-means clustering was performed in
the nx×ny planar space corresponding to individual pixels of BTF. Each pixel
represents BRDF of surface geometry at a planar location (x, y). The clustering
distance function is:

d(x, y, i, v, k) =
nv∑

v=1

ni∑
i=1

|B(i, v, x, y)−C(k, i, v)| cos θv , (1)

where B(i, v, x, y) is the corresponding BTF value, C(k, i, v) are cluster centers
and i = 1 . . . ni and v = 1 . . . nv are illumination and viewing directions of
the original BTF data (see Fig.2), respectively. The view elevation angle cosine
accommodates the shortening of surface emitting area. The clustering results
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in the index array I(x, y) ∈ 1 . . . nc and the set of nc cluster representatives
C(k, i, v) of the size nc × 3ninv corresponding to the closest colour BRDFs
to cluster centers. Note that the individual colour BRDFs representing cluster
centers C correspond to representative set of material locations bearing the most
distinct appearance over the BTF tile. Results of the proposed BTF clustering
(nc = 256) mapped on 3D object in comparison with original BTF data mapping
are shown in the first two rows of Fig.6.

3 Surface Geometry From BTF

In order to find smooth spatial representation of the cluster index I for a fur-
ther enlargement by means of MRF model we used normal-map describing a
geometry of the original material surface. For this purpose the standard photo-
metric stereo technique [17] was applied. This approach is advantageous since
the BTF data comprises number of images with fixed viewpoint and variety of
defined illumination source directions. As we have much more than three differ-
ent light positions we used overdetermined photometric stereo. All directions to
light sources are ordered in rows of matrix L and corresponding pixel intensity
for different illumination directions are ordered to the vector E(x, y). Then sur-
face normal-map N of BTF tile at each pixel was computed by means of the
least-squares fitting

N(x, y) =
(LT L)−1LT E(x, y)
||(LT L)−1LT E(x, y)|| . (2)

Alternative approach using range-scanner is costly and does not allow satisfac-
tory measurement of textile materials due to laser beam scattering in material
structure.

4 Probabilistic Normal-Map Modelling

The smooth texture model based on MRF 3D causal auto-regressive (CAR)
model [18,19] was applied to normal-map modelling. The overall scheme of the
3D CAR MRF model is depicted in Fig.4. As an input of the model was image
of size N ×M = 512× 512 generated by repetition of the seamless normal-map
tile estimated in the previous step.

4.1 Spatial Factorisation

Input tiled normal-map Ȳ• (the notation • has the meaning of all possible
values of the corresponding index) is decomposed into a multi-resolution grid
and each resolution data are independently modelled by their dedicated CAR
models. Each one generates a single spatial frequency band of the normal-map.
An analysed normal-map is decomposed into multiple resolutions factors using
Laplacian pyramid and the intermediary Gaussian pyramid Ÿ

(k)
• which is a
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Fig. 4. The overall 3D CAR smooth model scheme

sequence of images in which each one is a low-pass down-sampled version of its
predecessor. The Gaussian pyramid for a reduction factor n is

Ÿ (k)
r =↓nr (Ÿ (k−1)

•,i ⊗ w) k = 1, 2, . . . , (3)

where Ÿ
(0)
• = Ȳ•, ↓n denotes down-sampling with reduction factor n and ⊗

is the convolution operation. The convolution mask based on weighting func-
tion (FIR generating kernel) w is assumed to execute separability, normalisa-
tion, symmetry and equal contribution constrains. The FIR equation is then
Ÿ

(k)
r =

∑l
i,j=−l ŵiŵj Ÿ

(k−1)
2r+(i,j). The Laplacian pyramid Ẏ

(k)
r contains band-pass

components and provides a good approximation to the Laplacian of the Gaussian
kernel. It can be constructed by differencing single Gaussian pyramid layers:

Ẏ (k)
r = Ÿ (k)

r − ↑nr (Ÿ (k+1)
• ) k = 0, 1, . . . , (4)

where ↑n is the up-sampling with an expanding factor n.

4.2 3D Causal Auto-Regressive Model

Multi-spectral normal-map was in the previous step decomposed into a multi-
resolution grid and each resolution data is modelled independently by inde-
pendent Gaussian noise driven 3D CAR MRF model that enable simultaneous
modelling of all resolution factors.

Let the normal map Y is indexed on a finite rectangular three-dimensional
N ×M × 3 underlying lattice I, where N ×M is the image size. Let us denote
a simplified multi-index r to having two components r = {r1, r2, r3}. The first
component is a row index, the second one is a column index and the third is a
normal vector index, respectively. Ir specifies shape of the contextual neighbour-
hood (CN) around the actual index r = {r1, r2, r3}. Causality is fulfilled when
all data obtained from CN are known (not missing pixels).

From this causal CN the data are arranged in a vector Xr =[Y T
r−s : ∀{s}∈ Ic

r ]T .
The (CAR) random field is a family of random variables with a joint proba-

bility density on the set of all possible realisations Y of the M ×N × 3 lattice
I, subject to the following condition:

p(Y |Θ,Σ−1) = (2π)−
3(MN−1)

2 |Σ−1|
(MN−1)

2 (5)

exp

{
−1

2
tr

{
Σ−1

(
−I
ΘT

)T

ṼMN−1

(
−I
ΘT

)}}
,
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where I is identity matrix, Θ is parameter matrix, Σ is covariance matrix of
Gaussian white noise and

Ṽr−1 =
(
ṼY Y (r−1) Ṽ T

XY (r−1)

ṼXY (r−1) ṼXX(r−1)

)
. (6)

The used notion is ṼAB(r−1) =
∑r−1

k=1 AkB
T
k .

Simplified notation r, r−1, . . . denotes the multi-channel process position in
I, i.e., r = {r1, r2, r3}, r− 1 is the location immediately preceding {r1, r2, r3},
etc. A direction of movement on the underlying image sub-lattice is common
rows scanning. The data from model history obtained during adaptation are
denoted as Y (r−1).

The 3D CAR model can be expressed as a stationary causal uncorrelated noise
driven 3D autoregressive process:

Yr = ΘXr + er , (7)

where Θ = [A1, . . . , Aη] is the 3 × 3η parameter matrix and η = card(Ic
r ) ,

Ic
r is a causal CN, er is a Gaussian white noise vector with zero mean and a

constant but unknown covariance matrix Σ.

4.3 Parameter Estimation

There are two matrices, the parameterer matrix Θ̂r and the noise covariance
matrix Σ̂r, to estimate / update in each step, i.e., CN shift on image lattice.
Owing to the model causality and the normal-Wishart parameter prior single
CAR model parameters (8),(9) can be estimated analytically [19]. The parameter
matrix estimate is

Θ̂T
r−1 = V −1

XX(r−1)VXY (r−1) , (8)

while the covariance matrix estimate is

Σ̂r−1 =
λ(r−1)

β(r)
, (9)

where λ(r) = VY Y (r)−V T
XY (r)V

−1
XX(r)VXY (r), VAB(r−1) = ṼAB(r−1) + VAB(0) and

matrices VAB(0) are the corresponding matrices from the normal-Wishart para-
meter prior. The estimates (8),(9) can be also evaluated recursively if necessary.
Where the β(r) = β(0)+ r−1 represents number of model movements on image
plane (β(0) > 1).

4.4 Normal-Map Synthesis

The CAR model synthesis is very simple and the Markov random field can be
directly generated from the model equation (7) with respect to CN data vector
Xr and the estimated parameter matrix Θ̂r using a multivariate Gaussian white-
noise generator. The fine-resolution normal-map is obtained from the pyramid
collapse procedure, which is inverse process to the spatial factorisation (3),(4)
described in Section 4.1. The comparison of synthesised normal-maps NS with
their originals N is illustrated in the first row of Fig.5.
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Fig. 5. The first row: Estimated normal tiles (small) and their synthesised counterparts
(large) for wood01 (left) and wood01 (right). The second row: clustered BTF tiles
for θi = 15o, φi = 180o, θv = 0o, φv = 0o (small) and corresponding BTF images
synthesised using enlarged cluster index IS (large).

5 New Cluster Index Synthesis

New cluster index IS is obtained by row-wise scanning of synthesised normal-map
NS . For each normal in the NS the nk closest normals from normal-map N of
original BTF tile is determined with respect to the Euclidean metric between two
unite vectors. However, this approach alone is unsatisfactory because it allows
ambiguous normals assignment owing to the material surface. For instance, a
normal vector pointing straight upwards can represent either a peak or a valley
on the surface. Thus, if a new index is created only based on normal matching
the resulted enlarged BTF images are very noisy, while the synthesised structure
of normal-map is considerably suppressed. To improve a spatial continuity of
generated new cluster index we used information of surface height, occlusion
and masking of surface points which is hidden in colour BRDFs of individual
stored clusters C. Individual cluster indices corresponding to candidate normal
k from N are obtained from the same (x, y) location from I as is the spatial
location of the normal k. From obtained nk normal candidates from the original
index I the optimal one k∗ is chosen that minimise distance D between the
candidate’s BRDF and the BRDFs of its surrounding pixels at the locations
(x, y − 1) and (x− 1, y) from the causal neighbourhood in IS (10)

k∗ = arg min
k=1...nc

(D(I(xk , yk), IS(x, y − 1)) + D(I(xk, yk), IS(x − 1, y))) . (10)
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To speed up this process a mutual distances between each couple of nc clusters
is precomputed (11) and stored in a form of matrix D of size nc × nc

D(a, b) =
nv∑

v=1

ni∑
i=1

|C(a, i, v)−C(b, i, v)| cos θv . (11)

The (xk∗ , yk∗) position in new index IS is obtained by means of IS(x, y) =
I(xk∗ , yk∗) using the clusters indices from original index I. Proposed matching
scheme incorporates such effects as masking and occlusions and together with
normals matching enable reliable and perceptually correct spatial ordering of
individual clusters in new enlarged index IS . Additionally, this ordering enforces
continuity constraint by placement of the similar BRDFs into neighbouring po-
sitions in generated cluster index IS .

Fig. 6. Results of the proposed BTF data enlargement method mapped on 3D object
(third row) in comparison with one original BTF tile mapping (first row) and its
segmentation into nc = 256 clusters (second row) for two kinds of lacquered wood.
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For BTF rendering from the proposed model the cluster representatives C
and synthesised cluster index IS have to be stored enabling compression ratio
approximately 1

100 (for nc = 256). The required BTF value is obtained as

BTF (x, y, i, v) = C(IS(x, y), i, v) .

An example of BTF images synthesised from the model for both tested materials
compared with original BTF tiles is shown in the second row of Fig.5.

6 Results

The proposed method was applied to BTF enlargement of two different types
of smooth lacquered wood. The original BTF tile of wood01 have size 122 ×
125 and for wood02 it is 137 × 142. The size of synthesised normal-maps and
subsequently index arrays was for both the materials 300×300. Example of single
planar BTF image enlarged by the proposed method is shown in the second row
of Fig.5. Comparison of the enlarged BTF data mapped on 3D object with
original BTF tile mapping is shown in Fig.6. The interpolation for arbitrary
(non-measured) illumination and viewing angles was performed by means of
barycentric coordinates [20]. The time demands of the analytical part of the
proposed method are not too important since the BTF segmentation, normal-
map estimation and synthesis and finally estimated and synthesised normals
matching are offline tasks. The most time-consuming part of the method is BTF
tile clustering that takes approximately one hour when using nc = 256 clusters
for BTF tile of wood02, while the remaining analytical steps are much faster,
depending on the size of original and required normal-map. For BTF tile of
wood02 and required new cluster index IS size 512×512 it takes several seconds
only. All experiments were performed on PC Athlon 1.9GHz, 2GB RAM. A
compression ratio of the proposed method for 256 clusters is approximately 1

100 .

7 Summary and Conclusions

This paper proposes new technique for seamless BTF data enlargement. The
method strictly separates analytical offline part from the fast possibly real-time
synthesis part of the modelling process. The BTF clustering allows to trade-off
compression ration and visual quality. The method shows the best performance
for spatially random i.e. non-regular types of BTFs such as the tested lacquered
wood or leather, etc. The method enables fast seamless BTF data enlargement
to arbitrary size with minimal additional storage requirements since the number
of clusters is fixed.
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Abstract. A directional multiresolution approach was proposed for tex-
ture analysis and classification based on a modified contourlet transform
named the stationary wavelet-based contourlet transform (SWBCT).
In the phase for extracting features after the decomposition, energy
measures, Hu moments and co-occurrence matrices were calculated re-
spectively. The progressive texture classification algorithm had better
performance compared with several other methods using wavelet, sta-
tionary wavelet, brushlet, contourlet and Gabor filters. Moreover, in the
case that there are only small scale samples for training, our method can
also obtain a satisfactory result.

1 Introduction

The analysis of texture in images plays an important role in image processing. A
great deal of research on how to analyze texture efficiently has been done during
the past decades. Early work about texture analysis is based on the second-order
statistics of textures. However, a common weakness shared by these methods is
that they primarily focus on the coupling between image pixels on a single scale,
while methods based on multiresolution analysis often outperform them and have
received more and more attention [1]. So far, the most popular spatial-frequency
technique in texture analysis is wavelet [2], [3] and Gabor filters [4], [5].

As we all know, direction is a vital feature of texture. However, separable
2D wavelet transform has limited directions which are horizontal, vertical, or
diagonal. Although it can provide an optimal representation for one-dimensional
piecewise smooth signals, it fails in the geometry of image edges. Therefore,
several new Multiscale Geometric Analysis (MGA) systems have been proposed,
such as brushlet [6], [7], [8] and contourlet [9], [10]. In this paper, we present
a modified contourlet transform based on stationary-wavelet, which keeps the
merits of contourlet and has much finer directional decomposition. We apply
it to the classification of the Brodatz texture images and show its efficiency in
extracting features of texture images.

The rest of the paper is organized as follows. First, contourlet and WBCT
are explained briefly in Section 2. The construction of SWBCT we proposed
is elucidated in Section 3. And Section 4 describes several methods for feature
extraction of SWBCT coefficients. Section 5 illustrates the simulation and nu-
merical results. Finally, the conclusions are drawn in Section 6.
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2 Contourlet and WBCT

2.1 Contourlet

Contourlet transform, which is one of the new MGA tools and is proposed by
M.N. Do and Martin Vetterli in 2002, can efficiently represent contours and tex-
tures in images. It is based on a local, directional, and multiresolution expansion.

Curvelet frame is a multiscale, directional transform for detecting smooth
contours. However, curvelet, introduced in the continuous domain firstly, is fit
for rotation calculation and two-dimensional frequency partition based on pole
coordinate, which makes it easy to implement in continuous domain but difficult
in discrete. On the contrary, contourlet is proposed directly in discrete domain
and has a double filter bank structure by combining LP and DFB for obtaining
sparse expansions for typical images having smooth contours.

Fig. 1. The construction of contourlet

2.2 Wavelet-Based Contourlet Transform (WBCT)

Some approaches have been proposed based on contourlet. One of them is
CRISP-contourlet [11] which is out of redundancy and uses a non-separable filter
bank. Another is WBCT [12] which has a structure similar to that of contourlet.
Wavelet is used to implement the multiscale decomposition, and then the DFB
is applied to each highpass subband for the angular decomposition (Fig.2). Since
wavelet filters are not perfect in splitting the frequency space to the lowpass and
highpass components, fully decomposed DFB is used on each band [12].

Fig. 2. A schematic plot of WBCT using 2 wavelet levels with 4, 8 directional subbands
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3 Stationary-Wavelet Based Contourlet Transform

When WBCT is applied to texture analysis, the classification accuracy declines
rapidly with increasing levels, which can be seen clearly from the results of ex-
periments later. The reason is that when the levels increase, the subbands will
narrow. If the subband is too small, the local features will change greatly with
different samples which actually belong to the same class. Thus the features ex-
tracted are unstable. That’s why the classification accuracy of many transforms,
such as wavelet, brushlet, WBCT, descends when the levels increase to a certain
degree. The subbands of WBCT are much smaller than those of wavelet and
contourlet. Thus in the case of small number of levels, WBCT has high accu-
racy. But in the case of large number of levels, its accuracy drops faster than
that of wavelet.

Redundant information is useful in image processing, such as edge detection,
denoising, and image reconstruction. Considering that stationary wavelet has
a high redundancy, it has superiority over wavelet in texture analysis. Hence,
we introduce stationary wavelet to overcome the disadvantages of WBCT. Sta-
tionary wavelet does not carry out subsampling operation after every filtering.
Instead, it implements the expansion of filters by inserting zero in every two co-
efficients of both highpass filter and lowpass filter. For example, the jth highpass
and lowpass filters are as follows:

h
(j)
k =

{
hk/2j , k = 2jm m ∈ ZZ
0 else , g

(j)
k =

{
gk/2j , k = 2jm m ∈ ZZ
0 else . (1)

The steps of our algorithm are as follows: first, carry out stationary wavelet
transform to images. Next, apply DFB to three highpass subbands, LH, HL, and
HH, and obtain 3×2n directional subbands. Then iterate these steps for lowpass
subband until satisfy the decomposition levels. The construction of SWBCT
is shown in Fig.3. Due to the redundancy of stationary wavelet, the highpass

Fig. 3. A schematic plot of SWBCT
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subbands obtained by multiscale decomposition have the same size with the
original image. Thus when DFB is used to highpass subbands, it will not happen
that the decomposition subbands narrow with the increasing levels. So, higher
accuracy can be gotten. The following experiments also show that our method
is effective in texture analysis.

4 Texture Classification Based on SWBCT

4.1 Feature Extraction Based on SWBCT

At present, among the spatial-frequency techniques for the texture feature ex-
traction, energy measures of the wavelet subbands have been known as ef-
fective features and widely used. Hu invariant moments, as well as statistics
of co-occurrence matrices of the subbands, can also be features. In this pa-
per, we compare these three methods through experiments, and demonstrate
that energy measures of subbands shows better in the texture classification for
SWBCT.

Energy Measures. The method Energy Measure has been used widely. Both
[1] and [8] adopt this method. We apply SWBCT to the classification of tex-
ture images. In the feature extraction stage, our strategy is to take the energy
measures of all the subbands including one lowpass band and every directional
subband in each level. The dimension is determined by levels and directions in
each level. Different energy measures can be defined as the texture features. In
our experiment, the Norm1 Energy Measure is used

E =
1
N

N∑
K=1

|CK | . (2)

Co-occurrence Matrices. The method in [13] is that first, SWBCT is used,
followed by calculating co-occurrence matrices from all the subbands, then con-
trast, entropy, angular second moment, and inverse different moment are com-
puted via the co-occurrence matrices. We also adopt this method in this
paper.

Hu Moments. The quantized Hu invariant moment vectors are used [7]. To
begin with, SWBCT is applied to the texture images. Then we derive seven Hu
moments respectively from all the subbands that we got previously. The seven
Hu moments are denoted as

M1 = (μ20 + μ02), (3)

M2 = (μ20 − μ02)2 + 4μ2
11, (4)

M3 = (μ30 − 3μ12)2 + (3μ21 − μ03)2, (5)

M4 = (μ30 + μ12)2 + (μ21 + μ03)2, (6)
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M5 = (μ30 − 3μ12)(μ30 + μ12)[(μ30 + μ12)2 − 3(μ21 + μ03)2]
+ (3μ21 − μ03)(μ21 + μ03)[3(μ30 + μ12)2 − (μ21 + μ03)2], (7)

M6 = (μ20 − μ02)[(μ30 + μ12)2 − (μ21 + μ03)2]
+ 4μ11(μ30 + μ12)(μ21 + μ03), (8)

M7 = (3μ21 − μ03)(μ30 + μ12)[(μ30 + μ12)2 − 3(μ21 + μ2
03)]

+ (μ30 − 3μ12)(μ21 + μ03)[3(μ30 + μ12)2 − (μ21 + μ03)2], (9)

where μpq = 1
NM

N∑
1

M∑
1
f(x, y)(x−x̄)p(y−ȳ)q, x̄ = m10/m00, and ȳ = m01/m00 .

4.2 Texture Classification Based on SWBCT

The whole classification system in this paper is shown in Fig.4. In the stage of
feature extraction following decomposition, for comparison, three methods above
are used respectively. Considering the effectiveness of our method itself, the
simple classifier KNN is used. We also use wavelet, stationary wavelet, contourlet,
WBCT, brushlet and Gabor filters to perform the same experiments for the
comparison with SWBCT.

Fig. 4. Texture classifying system

5 Experiments

All experiments here adopt both wavelet and stationary wavelet with the ‘db4’
filters and decomposition levels from 1 to 5. For contourlet, WBCT and SWBCT,
in the DFB stage we use the ‘pkva’ filters [9], and in the multiscale decomposi-
tion stage, the ‘9-7’ filters for contourlet while the ‘db4’ filters for WBCT and
SWBCT. With regard to the DFB, When decomposition levels from 1 to 5 are
used respectively, the numbers of directional decomposition from the coarsest
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scale to the finest are 8 for 1 level, 4,8 for 2 levels, 4,4,8 for 3 levels, 4,4,8,8 for
4 levels, 4,4,8,8,16 for 5 levels. For comparison, Gabor filters are also used. Jain
and Farrokhnia [5] suggested a dyadic Gabor filter bank. 5 radial frequencies (for
images of size 128 × 128) and 4 directions are suggested [5]. In this paper, the
discrete radial center frequencies 2

√
2,4
√

2,8
√

2,16
√

2,32
√

2 cycles/image-width
and directions 0 ◦,45 ◦,90 ◦,135 ◦ are used, so a total of 20 filters can be gotten.

The set of test data in our experiments is constituted under the Brodatz al-
bum. Brodatz album consists of 112 natural textures, each of which has been
stored as a 640×640 image. Given that some of the textures in the album are
not homogeneous (Fig.5), to some extent, the existing of these textures hardly
has anything to do with the comparison between different algorithms [8], so they
are removed in our experiment. There are 34 inhomogeneous textures removed.
Accordingly we get a test data set of 78 textures, which includes some visual
similar texture images. Each texture selected is divided into 25 non-overlapping
sub-samples of size 128×128, 10 for training and 15 for test. Thus, the whole
training data set has 780 samples and the whole test data set has 1950 ones. In
our experiments, 10 training samples for each class are selected stochastically,
and 15 samples left as testing ones. An average of results is calculated by run-
ning the program many times. The 34 textures removed in our experiment are
listed as follows: D005, D007 D013, D030, D031, D036, D038, D040, D042, D043,
D044, D045, D054, D058, D059, D061, D063, D069, D079, D080, D088, D089,
D090, D091, D094, D096, D097, D098, D099, D100, D103, D106, D108, D110.

Fig. 5. Eight examples of inhomogeneous textures in Brodatz album; left to right: D42,
D43, D44, D58, D59, D90, D91, D97

5.1 Classification of Brodatz Textures Based on Energy Measures

This experiment is carried out to test the performance of energy measures of
SWBCT for texture classification. The Norm1 energy measures are calculated,
and K in KNN is 1, 3, 5 respectively. The results are shown in Table 1. L in
tables means the decomposition level.

From Table 1, when the level is three, most methods here achieve their best
accuracy and among the best results of all methods, SWBCT produces the best
one. It’s clear that texture features can be extracted effectively by SWBCT. From
Table 2, we can conclude that the performance of the popular Gabor filters is
inferior to SWBCT and even not superior to wavelet, although Gabor filters are
the preferred filter in several works [4], [5], [14]. The poor performance of the
Gabor filter which has optimal joint resolution in the spatial and the frequency
domains indicates that optimal joint resolution is not the ultimate goal [15].
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Table 1. Classification accuracy of Brodatz textures with energy measures

L=1 L=2 L=3 L=4 L=5
K=1 Wavelet 0.8782 0.9420 0.9487 0.9410 0.9200

Stationary wavelet 0.8813 0.9415 0.9649 0.9728 0.9610
Brushlet 0.5695 0.8582 0.9577 0.9521 0.9400
Contourlet 0.8729 0.9523 0.9612 0.9651 0.9719
WBCT 0.9032 0.9567 0.9584 0.9468 0.9037
SWBCT 0.9579 0.9711 0.9786 0.9730 0.9723

K=2 Wavelet 0.8051 0.8924 0.9220 0.9058 0.8849
Stationary wavelet 0.8155 0.9085 0.9372 0.9471 0.9429
Brushlet 0.3875 0.7810 0.9359 0.9367 0.8945
Contourlet 0.8494 0.9258 0.9405 0.9548 0.9547
WBCT 0.8675 0.9271 0.9317 0.9212 0.8666
SWBCT 0.9248 0.9470 0.9588 0.9564 0.9499

K=3 Wavelet 0.7687 0.8651 0.9035 0.8885 0.8706
Stationary wavelet 0.7786 0.8863 0.9265 0.9398 0.9324
Brushlet 0.3765 0.7600 0.9196 0.9188 0.8818
Contourlet 0.8341 0.9073 0.9283 0.9490 0.9463
WBCT 0.8553 0.9049 0.9205 0.9167 0.8605
SWBCT 0.9121 0.9323 0.9429 0.9437 0.9370

Table 2. Classification accuracy using dyadic Gabor filter bank with energy measures

K = 1 K = 3 K = 5
Dyadic Gabor filter bank 0.9171 0.8624 0.8120

5.2 Classification in the Case of Small Scale Training Samples

This experiment is carried out for testing the performance of our method in
the case of small scale training samples. Learning from the conclusion in 5.1,
3 decomposition levels are used for all methods. The other parameters in this
experiment are the same with those in 5.1. Here, we figure out the classification
accuracy curves in Fig.6. The level axis gives the number of training samples
and the vertical one gives the classification accuracy with K = 1.

Even in the case of small scale training samples, our method can still get high
classification accuracy. With the number of training samples increasing from
1 to 24, SWBCT almost gets the best results all the time, and has a notable
predominance with small scale training samples. When there are only 2 samples
of each class for training, the accuracy of SWBCT exceeds 90% and it reaches
95% when 4 for training, while the other methods’ accuracy is much lower. It’s
of great significance to have high accuracy in the case of small scale samples
in some applications of image processing, especially for SAR, of which we can
hardly afford enough samples for training.
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Fig. 6. The classification accuracy curves with increasing training samples

5.3 Classification Based on Hu Moments and Co-occurrence
Matrices

In order to find the effects of different methods for extracting features of subband
coefficients on classification accuracy, Hu moments and co-occurrence matrices
are used respectively. 10 training samples for each class are selected stochastically
and an average of results is calculated by running the program many times. K
in KNN equals 1. L means the decomposition level.

From Table 3 and 4, we find the method based on Hu moments is better than
the one based on co-occurrence matrices but not performs as well as energy
measures. The method based on SWBCT can still has a better result than the
other ones. It must be pointed out that an accuracy of 99.7% is received in paper
[13], for there are only 10 textures in its experiments rather than 78 here.

From Table 5, we can find that when Hu moments and co-occurrence matrices
are used, Gabor filters have better performance than wavelet. Especially, in the
case of co-occurrence matrices, Gabor filters get the best result compared with

Table 3. Classification accuracy with Hu moments

L = 1 L = 2 L = 3 L = 4 L = 5
Wavelet 0.8615 0.9116 0.9348 0.9271 0.8499
Stationary wavelet 0.8782 0.9174 0.9488 0.9509 0.9531
Brushlet 0.5308 0.7944 0.9365 0.9311 0.8679
Contourlet 0.9191 0.9415 0.9475 0.9336 0.9620
WBCT 0.9130 0.9164 0.9321 0.9167 0.8393
SWBCT 0.9463 0.9650 0.9723 0.9691 0.9713
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Table 4. Classification accuracy with co-occurrence matrices

L = 1 L = 2 L = 3 L = 4 L = 5
Wavelet 0.8121 0.8347 0.7835 0.7531 0.7507
Stationary wavelet 0.8001 0.8473 0.8665 0.8844 0.8823
Brushlet 0.7820 0.7757 0.7897 0.6759 0.5470
Contourlet 0.7747 0.8336 0.8147 0.8307 0.7909
WBCT 0.6723 0.7061 0.7041 0.6263 0.6528
SWBCT 0.7769 0.8118 0.8686 0.8783 0.9237

Table 5. Classification accuracy using dyadic Gabor filter bank with Hu moments
and co-occurrence matrices

Hu moments Co-occurrence matrices
Dyadic Gabor filter bank 0.9373 0.9325

the other transforms in this paper, but it’s not as good as that of wavelet with
energy measures. So it can be concluded that for Gabor filters, Hu moments
may be the best choice, while energy measures for the other transforms in this
paper.

6 Conclusion

In this paper, we proposed a new multiscale and multidirectional transform
for texture analysis. The results of the experiments above show our method
gets the highest classification accuracy. Even in the case of small scale training
samples, it can still have accuracy over 90%. In the meantime, we can draw
the conclusion that when wavelet, stationary wavelet, brushlet, contourlet, and
SWBCT are used for texture classification, energy measures of subbands outper-
form Hu moments and co-occurrence matrices, and have less time for training and
testing.

SWBCT inherits almost all the advantages of contourlet, multiresolution, mul-
tidirectional and anisotropy, and has much finer directional decomposition while
overcoming the disadvantages of WBCT. When it refers to texture classifica-
tion, SWBCT outperforms those widely used methods based on wavelet and
contourlet, and can go further in mining the texture features than WBCT.
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Abstract. In this paper, we propose a novel method for unsupervised
color-texture segmentation. The approach aims at combining color and
texture features and active contours to build a fully automatic segmen-
tation algorithm. By fully automatic, we mean the steps of region initial-
ization and calculation of the number of regions are performed automat-
ically by the algorithm. Furthermore, the approach combines boundary
and region information for accurate region boundary localization. We val-
idate the approach by examples of synthetic and natural color-texture
image segmentation.

Keywords: Color, texture, boundary, active contours, automatic
segmentation.

1 Introduction

Image segmentation has been, and still is, the subject of active research in com-
puter vision and image analysis. In most of past works, the emphasis was put
to develop algorithms based either on color [13,15] or texture features [8,9,11].
However, there is a limited number of works that attempted to consider both
features together to build a unified segmentation framework. The benefice of
combining color and texture features has been shown in the past for distinguish-
ing between regions having the same color but different textures and vice-versa
[2,6,12]. Also, there has been a very few attempts to combine region and bound-
ary information while taking color and texture properties into account. On the
other hand, texture-based segmentation techniques require a prior learning step
about the type of textures to be segmented, which makes the methods not fully
automatic.

In [12,15], an active contours approach was proposed to segment texture im-
ages where the contours are driven by a combination of texture and color fea-
tures. However, the results were shown only for bimodal image segmentation
and the region initialization is performed manually. A major issue comes when
extending these methods to an arbitrary number of regions where the complexity

N. Zheng, X. Jiang, and X. Lan (Eds.): IWICPAS 2006, LNCS 4153, pp. 495–504, 2006.
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of the algorithms increases and the segmentation is prone to converge to undesir-
able local minima [2,14]. In [4], the authors proposed an automatic segmentation
into blobs having the same color. However, since no texture information is used,
the approach may over-segment images with different texture. Recently, we pro-
posed in [2] an approach based on active contours for automatic segmentation
of images with arbitrary number of regions. The approach combines region and
boundary information for segmentation and proved to be less sensible to over-
segmentation than in [4]. However, it relies on color image information to dis-
criminate between different regions which may still fail to differentiate between
different textures having the same color.

In the present work, we propose an automatic method for color-texture seg-
mentation based on active contours model. The segmentation is steered by the
combination of region and boundary information. The region information is
based on mixture modeling of the combined color and texture features, while
the boundary information is modeled by using the polarity information. The al-
gorithm is based on a novel region initialization method that we have proposed
recently in [2]. Moreover, we use the level set formalism for the implementation
of the contour evolution. We show on real world examples the performance of the
proposed method in achieving a fully automatic segmentation of color-texture
images with an arbitrary number of regions.

This paper is organized as follows: In section (2), we present the proposed
model for automatic segmentation. In section (3) some experimental results are
shown, followed by general conclusions and future work.

2 Description of the Segmentation Model

2.1 Region Initialization

To initialize correctly the region contours, we proceed by the method that we
have proposed recently in [2]. The method is composed of two steps. The first step
aims at capturing the region kernels by using homogeneous seeds. The second
step consists of calculating the number of regions and grouping the seeds to form
the initial regions.

To capture the region kernels in the first step, we perform a smoothing on the
image by using an adaptive scale. This aims at diminishing color fluctuations
in texture areas while preserving the region boundaries. To detect if a pixel lies
on a texture, we calculate the polarity of the neighborhood of the pixel. Let
v(vx, vy) be the color gradient vector as proposed in [2]. A structure matrix S
for the pixel x = (x, y) is defined by:

S = Gσ ∗ (vT v) = Gσ ∗
(
vx · vx vx · vy

vy · vx vy · vy

)
(1)

where vT denotes the transpose of the vector v. Gσ is a Gaussian kernel with a
scale σ that smoothes each element of the matrix S by the convolution operation
∗. Assume now that ν1 and ν2 are the eigenvalues of S, where ν1 > ν2. When
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ν1 ' ν2, the neighborhood of the pixel W (x) has a dominant orientation in the
direction of the eigenvector that corresponds to ν1. This constitutes an index
of the presence of a real region boundary. Let us denote the normalized vector
in this direction by η. The polarity P (x) that measures the extent at which
the color gradient vectors in the neighborhood of x are oriented in the same
direction, is given by:

P (x) =
∑

(p,q)∈W (x)

Gσ ∗ 〈v(p, q),η〉 (2)

where 〈〉 denotes the vector scalar product. The smoothing scale for the pixel
neighborhood W (x) is chosen by looking at the behavior of P (x) to changing
σ. In a typical image region, homogeneous in color or texture, an edge will hold
the polarity near 1 for all the scale values; whereas, the polarity vanishes on a
texture by increasing the scale (see fig. (1) for illustration). By varying the scale
σ from 1 to 6, we choose the smoothing scale beyond which the polarity does
not vary more than a fixed threshold. In fig. (2), we show the polarity output

(P � 0) (P � 0) (P � 1)

Fig. 1. Different values of the polarity of a pixel represented by the green point in
different images containing texture

(rightmost image) calculated for texture image (left image). We show also the
gradient response for the image (middle image). Note that to visualize the gra-
dient response and polarity images, we changed the dynamic of their grey levels.
Clearly, the polarity permits for capturing more accurately the real boundaries
of the texture object. Finally in fig. (3), an example of region initialization is
shown where the images contain texture regions. Seeds are initialized where the
value of the polarity vanishes. Remark that no seeds were initialized on the real
region boundaries, allowing to capture only the region kernels. Note that at this
stage of the algorithm, the seeds are not classified yet to regions.

The second step of the region initialization algorithm consists of grouping the
seeds into regions. Here, we use a combination of color and texture features to
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(a) (b) (c)

Fig. 2. An example of pixel polarity calculation. Fig. (a) represents the original image,
fig. (b) represents the gradient response for the image and fig. (c) represents the polarity
image.

(a) (b) (a) (b)

Fig. 3. Examples of region contours initialization by using homogeneous seeds. Fig. (a)
represents the original image and (b) the result of region initialization.

calculate a mixture of pdfs that models the distribution of these features. For
color features, CIE-L∗a∗b∗ color space has been chosen for its uniformity. For
texture features, for each pixel neighborhood, a correlogram [7] is calculated.
An element of the correlogram matrix Cd,θ(ci; cj) should give the probability
that given a pixel x1 of color ci, a pixel x2 at distance d and orientation θ from
x1 is of color cj . We calculate the correlogram for 4 orientations (d, 0), (d, π

4 ),
(d, π

2 ) and (d, 3π
4 ). Let D, be the total number of displacements. We derive

from each correlogram three typical characteristics that are namely: Inverse
Difference Moment (IDM), Energy (E) and Correlation (C). E and C measure
respectively the homogeneity of the texture while IDM measures the coarseness
of the texture. The formulation of these characteristics is given by:

E =
1
D

ci,cj d,θ

(Cd,θ(ci; cj))2 (3)

IDM =
ci,cj d,θ

1
D(1 − ‖ci − cj‖2)

Cd,θ(ci; cj) (4)

C =
ci,cj d,θ

(ci − μi)(cj − μj)
D|Σi||Σj | Cd,θ(ci; cj) (5)

where μi =
∑

cj
ciC

d,θ(ci; cj) and Σi =
∑

cj
(ci − μi)T (ci − μi)Cd,θ(ci; cj). The

first sum of the above equations is made over the color entries of the correlogram
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matrix. The second sum averages the features over all the considered displace-
ments. Note here that for simplicity, we used only one neighborhood size for each
pixel neighborhood to calculate the correlogram matrix.

Fig. 4. Representation of the neighborhood used to calculate the correlogram matrix

2.2 Fitting a Mixture Model to Regions

To model the distribution of the features, we use a mixture of General Gaussian
distributions (GGD) as in [2]. The formalism GGD yielded a good compromise
between fitting the image data while not over-fitting the real number of compo-
nents in the mixture [2,3]. In the following, we give the formalism of GGD. Let
U = (u1, . . . , un) be the combined color-texture features vector; the probability
of the vector according to the mixture is given by:

p(U/θk) =
n∏

i=1

(
 ki

2σki
· exp

(
−ψki

∣∣∣∣ui − μki

σki

∣∣∣∣λki
))

(6)

where the coefficients  and ψ are given by:  ki =
λki

Γ(3/λki)
Γ(1/λki)

Γ (1/λki)
and ψki =[

Γ (3/λki)
Γ (1/λki)

]λki
2

. We denote by Γ (u) the gamma function that is defined by the in-

tegral: Γ (m) =
∫∞
0 zm−1emdz, where m and z are real variables. In function (6),

μki and σki are the pdf location and standard deviation in the ith dimension of
the feature vector U . In the same dimension, the parameter λki ≥ 1 controls the
tails of the distribution for being peaked or flat. Having M regions, a mixture
of M GGDs is calculated for the seeds data by using the Maximum Likelihood
Estimation [2]. In order to estimate automatically the number of components of
the mixture, we use the AIC information-theory criterion [1] that is given by the
following formula:

AIC = −log(L(Θ)) + 2ξ (7)

Where log(L(Θ)) is the log-likelihood given the data. The log-likelihood reflects
the overall fit of the mixture model (smaller values indicate worse fit). Thus, the
first term of the AIC decreases with the number of mixture components. ξ is the
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number of estimated parameters included in the model. The second term of the
AIC penalizes over-fitting the number of components in the mixture.

In a final step for region initialization, we group the seeds into regions by
maximizing for each seed the membership probability of its features vectors,
given by following function:

argmaxk

(
N∏

l=1

(πkp(Ul/θk))

)
(8)

where N is the number of pixels contained in each seed. πk∈{1,...,M}, designates
the a priori probability of the kth mixture component. Fig. (5) shows the result
of seed grouping. The first image shows the homogeneous seed initialization. The
second image shows the seeds after being grouped into regions.

Fig. 5. Example of grouping the seeds into regions

2.3 Adaptive Color-Texture Segmentation

In the following, we use the notation Ωk and ∂Ωk to designate respectively a re-
gion and its boundaries. The objective of the segmentation is to create a partition
of the image composed of M regions P = {Ω1, ..., ΩM}, where

⋃M
i=1 Ωk = Ω and

the formed regions are considered to be homogeneous with respect to color and
texture characteristics variation. We formulate the segmentation by using a vari-
ational model as we have proposed recently in [2]. In the model, the parameters
of the mixture of pdfs modelling the region information are calculated adaptively
to segmentation. The objective function underlying the model is formulated by
the following energy functional:

E(∂Ωk∈{1,...,M}, Θ) =
M∑

k=1

[
α

∮
∂Ωk

g(P (s))ds

+ β

∫∫
Ωk

−log (p(θk/U(x))) dx
]

(9)

where Θ designates the mixture parameters that include the parameters of each
pdf of the mixture θk and the mixing parameters πk∈{1,...,M}. The boundary
information is added in the first term of the functional (9) by using the formalism
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of GAC [5]. Here g is a strictly decreasing function of the absolute value of the
polarity P , which is given by g(P (x)) = 1

|P (x)|+ε with ε is a constant parameter.
In this term s represents the arc-length parameter. The second term of the
functional (9) represents the region information. This term aims to minimize
the Bayes error classification of the pixels in each region [2].

To minimize the energy according to the region contours, we calculate the
Euler-Lagrange equations. After introducing the level set formalism for the con-
tours [10], we obtain the following motion equation for each region contour:

dΦk

dt
= (αVb(Φk)− βVr(Φk)) |∇Φk| (10)

where

Vb(Φk) = g(P (Φk))κ +∇g(P (Φk)) · ∇Φk

|∇Φk|
(11)

Vr(Φk) = log (πk · p(U(Φk)/θk))− log (πh · p(U(Φk)/θh)) (12)

where Φk : (2 → ( is a level set function and the contour ∂Ωk is represented
by its zero level set. The symbol κ stands for the curvature of the zero level
set. The term Vb represents the boundary velocity that regularizes the curve
and aligns it with the region boundaries. Meanwhile, the term Vr represents the
region velocity. In the interior of a region, the boundary term vanishes and the
contour is driven only by the region information. Here, in the objective of having
the best classification of pixels, the region term is made as a competition for a
given pixel between the current region Ωk and the region Ωh �= Ωk that has the
maximum posterior probability for the pixel feature vector.

3 Experiments

The experiments that we have conducted consists of the segmentation of syn-
thetic and natural images containing texture regions. For all the segmentations,
the size of the seeds in region initialization is fixed to (7×7) pixels and the inter-
seed distance is 3 pixels. Note that we used the approach that we have proposed
in [2] to minimize the energy functional (9). This involves a minimization accord-
ing to the region contours and another minimization according to the mixture
parameters. Moreover, for all the segmentation examples we set α = β = 0.5.
We put ε = 0.5 in the function g of the boundary term of the functional (9).
Note also that to reduce the computation time, the steps of polarity and tex-
ture features calculation for each pixel in a segmented image is performed in an
off-line process.

To illustrate the advantage of combining color and texture features, we show
on fig. (6) the segmentation of mosaic images composed by 4 regions each. These
images have the following property: each region has the same color as its horizon-
tal/vertical neighboring region, while the vertical/horizontal neighboring region
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has the same texture. Clearly separating texture and texture features yielded
incorrect segmentations while combining them resulted in good segmentations.
To measure the performance of our method, we show on fig. (7) two examples of
images segmented by using our method and the Blobworld method [4]. Clearly,
our method suffers less from over-segmentation where the capturing of region
kernels initially excluded the pixels of the boundaries, which avoided the creation
of small regions that over-segment the images in these parts as Blobworld does.
The evolution of the region kernels by the combination region and boundary
information permits for capturing the real boundaries of the salient objects.

In fig. (8), we show the segmentation of images with different number of re-
gions. The first row of the figure shows three segmentations mosaic of Brodatz
textures. The second and third rows of the figure show the segmentation of
examples of natural images. The salient regions (with homogeneous color and
texture) have been successfully retrieved in both synthetic and natural images
by the algorithm, which proves the performance of the approach. We emphasize
on the fact that all the segmentations have been performed in a fully automatic
fashion, which is an important factor for segmenting automatically large col-
lections of natural images for the purpose of content-based image retrieval for
instance. This point constitutes one of the key contributions of the present work.
Finally, for computation time, the algorithm is relatively fast comparing to the
state of the art. Excluding the time spent for computing the boundary (polarity)
and texture features, the algorithm took few seconds to segment the most of the
images shown in the present section.

(a) (b) (c) (d)

Fig. 6. Fig(a) represents the original image. Fig(b) represents a segmentation by using
only texture features. Fig(c) represents a segmentation by using only color features.
Fig(c) represents a segmentation by using a combination of texture and color features.
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(a) (b) (c) (d)

Fig. 7. Examples showing the performance of our method: (a) shows the original im-
ages, (b) shows a smoothed version of the images by using an adaptive scale, (c) shows
the segmentation of the images by using the Blobworld method and (d) shows the
segmentation by using our method

Fig. 8. Examples of color-texture image segmentation by using the proposed approach

4 Conclusions

In the presented approach, we proposed a new framework for unsupervised color-
texture segmentation by using active contours. The method takes advantage of
boundary and region information sources to perform a segmentation of color tex-
ture images with an arbitrary number of regions. Moreover, the method operates
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in a fully automatic fashion, which makes a contribution in the state of the art
of the domain and motivates its application to the purpose of segmenting image
collections in the future.
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