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Abstract. In this paper, we study the security of 2R− schemes [17,18],
which are the “minus variant” of two-round schemes. This variant con-
sists in removing some of the n polynomials of the public key, and per-
mits to thwart an attack described at Crypto’99 [25] against two-round
schemes. Usually, the “minus variant” leads to a real strengthening of the
considered schemes. We show here that this is actually not true for 2R−

schemes. We indeed propose an efficient algorithm for decomposing 2R−

schemes. For instance, we can remove up to
⌊

n
2

⌋
equations and still be

able to recover a decomposition in O(n12). We provide experimental re-
sults illustrating the efficiency of our approach. In practice, we have been
able to decompose 2R− schemes in less than a handful of hours for most
of the challenges proposed by the designers [18]. We believe that this re-
sult makes the principle of two-round schemes, including 2R− schemes,
useless.

Keywords: Cryptanalysis, Functional Decomposition Problem (FDP),
Gröbner bases, F5 algorithm.

1 Introduction

Last years a new kind of cryptanalysis has made its entrance in cryptography:
the so-called algebraic cryptanalysis. A fundamental issue of this cryptanalysis
consists in finding zeroes of algebraic systems. Gröbner bases, which are a fun-
damental tool of commutative algebra, constitute the most elegant and efficient
way for solving this problem. They provide an algorithmic solution for solving
several problems related to algebraic systems (some of them can be found in [1]).
We present here a new application of Gröbner bases. More precisely, we propose
a new algorithm for solving the Functional Decomposition Problem (FDP). The
problem is as follows:

Functional Decomposition Problem (FDP)
Input : multivariate polynomials h1, . . . , hu.
Find : – if any – multivariate polynomials f1, . . . , fu, and g1, . . . , gn, such that:

(h1, . . . , hu

)
=
(
f1
(
g1, . . . , gn

)
, . . . , fu

(
g1, . . . , gn

))
.

This problem is related to security of 2R− schemes [17,18].
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1.1 Related Works

As stated by E. Biham [6], “the design of this scheme (2R) is unique as it
uses techniques from symmetric ciphers in designing public key cryptosystems,
while still claiming security based on relation to the difficulty of decomposing
compositions of multivariate ... functions”. Anyway, the security of 2R schemes
has been already carefully investigated [6,25,26]. E. Biham proposed in [6] a
successful cryptanalysis of 2R schemes with S-Boxes. This attack exploits the
birthday paradox, but can be avoided by increasing the security parameters of 2R
schemes [18]. At Crypto’99 [25], D.F. Ye, Z.D. Dai, and K.Y. Lam have presented
a quite efficient method for solving the Functional Decomposition Problem. The
security of 2R schemes is indeed related to this problem. To thwart this last
attack, L. Goubin and J. Patarin have proposed [18] to use a general technique for
repairing multivariate schemes, namely keeping secret some polynomials of the
public key. The resulting schemes are called 2R− schemes. Note that V. Carlier,
H. Chabanne, and E. Dottax [9] have described a method for protecting the
confidentiality of block ciphers design exploiting the principle of 2R− schemes.
Usually, the “minus modification” leads to a real strengthening of the considered
schemes. For instance, C∗ is broken [22] while C∗−− is the basis of Sflash [10],
the signature scheme recommended for low-cost smart cards by the European
consortium Nessie1. Here, we show that 2R− is not more secure than 2R.

1.2 Organization of the Paper and Main Results

The paper is organized as follows. We begin in Section 2 by introducing our
notations and defining essential tools used in this paper, namely ideals, Gröbner
bases, and several operations on ideals (sum, intersection, quotient, . . . ). Section
3 gives a brief review of one-round, 2R and 2R− schemes. We also present the
Functional Decomposition problem (FDP) in a more formal manner, which is
at the basis of the security of 2R and 2R− schemes. An algorithm for solving
this problem efficiently would allow to decompose the public key of 2R and 2R−

schemes into two independent quadratic systems, making thereby the principle
of these cryptosystems useless. In Section 4, we present a general algorithm for
solving FDP. Our method is inspired on the algorithm of D.F. Ye, Z.D. Dai, and
K.Y. Lam [25]. Note that their algorithm only works for particular instances of
FDP, namely when u = n, or u = n − 1. Briefly, our algorithm works as follows.
Let (h1, . . . , hu

)
=
(
f1
(
g1, . . . , gn

)
, . . . , fu

(
g1, . . . , gn

))
be an instance of FDP.

We first construct the ideal ∂Ih =
〈

∂hi

∂xj
: 1 ≤ i ≤ u, 1 ≤ j ≤ n

〉
generated by the

partial derivatives of the his. We then show that for all i, 1 ≤ i ≤ n, xd+1
n gi ∈ ∂Ih,

for some d ≥ 0. In most cases, this allows to recover a basis of the vector space
L(g) = Vect(g1, . . . , gn) generated by g1, . . . , gn. This is the most difficult part
of our algorithm. The fis being indeed recovered from the knowledge of L(g) by
solving a linear system. The complexity of this algorithm depends on the ratio
n/u. For example, our algorithm runs in O(n12), if n/u < 1/2. More generally,
1 https://www.cosic.esat.kuleuven.be/nessie/deliverables/decision-final.pdf
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we provide a global analysis of the theoretical complexity of our method. As a
side effect, we give several insights into the theoretical behavior of the algorithm
of D.F. Ye, Z.D. Dai, and K.Y. Lam. We conclude this section by providing
experimental results illustrating the efficiency of our approach. We have been
able to solve in few hours instances of FDP used in 2R− schemes for most of the
challenges proposed in [18].

2 Preliminaries

Throughout this paper, we denote by K[x1, . . . , xn] the polynomial ring in the
n indeterminate x1, . . . , xn over a finite field K with q = pr elements (p a prime,
and r ≥ 1). The set of polynomials p1, . . . , ps of K[x1, . . . , xn] can be regarded
as a mapping K

n → K
s :

(v1, . . . , vn) �→
(
p1(v1, . . . , vn), . . . , ps(v1, . . . , vn)

)
.

We will call these polynomials components. We will also denote by I = 〈p1, . . . , ps〉
= {

∑s
k=1 pkuk: u1, . . . , us ∈ K[x1, . . . , xn]} the ideal generated by p1, . . . , ps. We

define now essential notions used in this paper. For a more thorough introduction
to these tools, we refer to classical books on commutative algebra, such as [1,11].
Most of the results presented in this part are well known in commutative algebra,
and thus given without proofs. For these proofs, we also refer to [1,11]. The reader
already familiar with Gröbner bases and quotient ideals can skip this part.

2.1 Gröbner Bases

Informally, a Gröbner basis of an ideal is a generatring set of this ideal with
“good” algorithmic properties. These bases are defined with respect to mono-
mial orders. Here, we will use the lexicographic (LEX) and degree reverse lexi-
cographical (DRL) orders, which are definedas follows:

Definition 1. Let α = (α1, . . . , αn) and β = (β1, . . . , βn) ∈ N
n. Then:

– xα1
1 · · · xαn

n ≺LEX xβ1
1 · · · xβn

n , if the left-most nonzero entry of the vector α−β
is positive.
– xα1

1 · · · xαn
n ≺DRL xβ1

1 · · ·xβn
n , if

∑n
i=1 αi >

∑n
i=1 βi, or

∑n
i=1 αi =

∑n
i=1 βi

and the right-most nonzero entry of α − β is negative.

To define Gröbner bases, we have to introduce the following definitions.

Definition 2. For any n-uple α = (α1, . . . , αn) ∈ N
n, we denote by xα the

monomial xα1
1 · · · xαn

n . We define the total degree of this monomial by the sum∑n
i=1 αi. The leading monomial of a polynomial f ∈ K[x1, . . . , xn] is the

largest monomial – w.r.t some monomial ordering ≺ – among the monomials of
f . This leading monomial will be denoted by LM(f, ≺). The leading coefficient
of f , denoted by LC(f, ≺), is the coefficient of LM(f, ≺) in f . The degree of f
– denoted deg(f) – is the total degree of LM(f, ≺). Finally, the maximal total
degree of f is the maximal total degree of the monomials occurring in f .
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We are now ready to define one of the main objects of this paper. Indeed:

Definition 3. A set of polynomials G is a Gröbner basis – w.r.t. a monomial
ordering ≺ – of an ideal I in K[x1, . . . , xn], if for all f ∈ I there exists g ∈ G
such that LM(g, ≺) divides LM(f, ≺). This Gröbner basis is called reduced if,
for all g ∈ G, LC(g, ≺) = 1, and any monomial of g ∈ G is not divisible by
any element of LM(G \ {g}, ≺). Let G be Gröbner basis – w.r.t. a monomial
ordering ≺ – of an ideal I in K[x1, . . . , xn], and d be a positive integer. We call
d-Gröbner basis (or truncated Gröbner basis) of an homogeneous ideal I
the set:

{g ∈ G : deg(g) = d}.

A Gröbner basis of a given ideal is not unique in general. The reduced Gröbner
basis allows to achieve uniqueness. A reduced Gröbner basis can be obtained
from a Gröbner basis in polynomial-time. Gröbner bases are a fundamental tool
to study algebraic systems in theory and practice. They provide an algorithmic
solution for solving several problems related to polynomial systems (some of
them can be found in [1]). The historical method for computing Gröbner bases
is Buchberger’s algorithm [8,7]. Recently, more efficient algorithms have been
proposed. To date, F5 [13] is the most efficient for computing Gröbner bases (a
brief description of this algorithm is given in Appendix A). Here we will concen-
trate on Gröbner bases w.r.t. lexicographical and degree reverse lexicographical
orders.

LEX and DRL Gröbner Bases
Lexicographical Gröbner bases (LEX Gröbner bases) offer a way for eliminating
variables.

Theorem 1 (Elimination Theorem). Let I be an ideal in K[x1, . . . , xn], and
k ∈ {1, . . . , n}. If G is a LEX Gröbner basis of I, then G ∩ K[xk+1, . . . , xn] is a
Gröbner basis of I ∩ K[xk+1, . . . , xn].

The shape of degree reverse lexicographical Gröbner bases (DRL Gröbner bases)
is much more complicated. However, DRL Gröbner bases have several interesting
properties. For instance, the polynomials of lowest degree of an ideal I appear
in a DRL Gröbner bases of this ideal. More precisely:

Theorem 2. Let I ⊂ K[x1, . . . , xn], d = min{deg(f) : f ∈ I}, and G be a DRL
Gröbner basis of I. Then:

Vect
(
g ∈ G : deg(g) = d

)
= Vect

(
g ∈ I : deg(g) = d

)
.

Proof. A proof of this theorem can be found in [3]. �

We should mention that the variable xn has a special role for the DRL order.

Lemma 1. Let f ∈ K[x1, . . . , xn], and m be a positive integer. Then:

xm
n |f ⇐⇒ xm

n |LM(f, ≺DRL).
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Sum, Intersection, and Quotient of Ideals
We now go over the definitions of several operations on ideals.

Definition 4. Let I and J be ideals in K[x1, . . . , xn]. Then:
– the sum of I and J , noted I + J , is the I + J = {f + g : f ∈ I and g ∈ J }.
– the intersection of I and J , is defined as I ∩ J = {f ∈ K[x1, . . . , xn] : f ∈
I and f ∈ J }.
– I + J and I ∩ J are ideals.

Given two ideals and their generators, we would like to compute a set of genera-
tors for the intersection. This is actually much more delicate than the analogous
problem for sums, which is straightforward. Indeed, I = 〈p1, . . . , ps〉 + J =
〈g1, . . . , gr〉 = 〈p1, . . . , ps, g1, . . . , gr〉. The following result permits to solve the
problem for intersections.

Theorem 3. Let I, J be ideals in K[x1, . . . , xn], and t be a new variable. Then:

I ∩ J =
(
t · I + (1 − t) · J

)
∩ K[x1, . . . , xn],

where t · I = {t · h : h ∈ I}, and (1 − t) · J = {(1 − t) · h : h ∈ J } are in
K[t, x1, . . . , xn].

This result, together with the Elimination Theorem (i.e. Theorem 1), provide a
method for computing intersections of ideals. Given ideals I = 〈p1, . . . , ps〉 and
J = 〈g1, . . . , gr〉 in K[x1, . . . , xn], we consider the ideal 〈t · p1, . . . , t · ps, (1 − t) ·
g1, . . . , (1 − t) · gr〉 ⊂ K[t, x1, . . . , xn]. Those elements of a LEX Gröbner basis
(with t �LEX x1 �LEX · · · �LEX xn) that do not contain the variable t will
exactly form a Gröbner basis for I ∩ J .

Definition 5. Let I and J be ideals in K[x1, . . . , xn]. The ideal quotient of
I by J , denoted I : J , is the set

I : J = {f ∈ K[x1, . . . , xn] : fg ∈ I, for all g ∈ J }.

The following proposition relates the quotient operation to the sum and inter-
section operations.

Proposition 1. Let I, and {Ik}1≤k≤r be ideals in K[x1, . . . , xn]. Then:

i) (
⋂r

k=1 Ik) : I =
⋂r

k=1(Ik : I)
ii) I : (

∑r
k=1 Ik) =

⋂r
k=1(I : Ik)

If f is a polynomial and I an ideal, we shall write I : f instead of I : 〈f〉. A
special case of ii) is:

I : 〈f1, . . . , fr〉 =
r⋂

k=1

(I : fk).

We now address the question of computing generators of the ideal quotient I : J .
The following observation is crucial:
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Theorem 4. Let I be an ideal in K[x1, . . . , xn], and f ∈ K[x1, . . . , xn]. If
〈g1, . . . , gp〉 = I ∩ 〈f〉, then

〈g1/f, . . . , gp/f〉 = I : f.

In order to construct a basis of an ideal quotient, we proceed as follows. Given
ideals I = 〈p1, . . . , ps〉 and J = 〈g1, . . . , gr〉 in K[x1, . . . , xn], we compute a basis
for the intersections I ∩ 〈g1〉, . . . , I ∩ 〈gn〉 by using the above described method.
For each i, we divide by f each element of a basis of I ∩ 〈gi〉. This leads to a
basis for I : gi. We then obtain a basis for I : J by computing the intersections⋂r

k=1(I : gi).

3 2R− Schemes

In [20], T. Matsumoto and H. Imai proposed one of the first examples of PKCs
using compositions of multivariate polynomials. The public key of one of them,
called C∗ ([21]), represented by “t ◦ ψ ◦ s”, where t, s are two secret linear
mappings over GF (2)n, and ψ is the multivariate representation of GF (2n) →
GF (2n), x �→ x1+2θ

. This scheme has been broken by J. Patarin at Crypto’95
[22].

One-round schemes [17,18] are generalizations of C∗. The public key of these
schemes is indeed of the form “t ◦ ψ ◦ s”, where t, s are two affine mappings
over K

n, and a ψ : K
n → K

n is a bijective mapping given by n multivariate
polynomials of degree two. J. Patarin and L. Goubin [17,18] propose several
constructions for ψ:

1. S-box functions: (a1, . . . , an) �→
(
S1(a1 . . . , an1), S2(an1+1 . . . , an1+n2), . . . , Sb(an1+n2+···+nd−1+1, . . . , an)

)
,

where n =
∑

i ni, and each Si : Kni → Kni is quadratic.
2. Triangular functions:

(a1, . . . , an) �→
(
a1, a2+q1(a1), a3+q2(a1, a2, a3), . . . , an+qn−1(a1, . . . , an−1)

)
,

where each qi is quadratic.
3. Combinations of S-box and triangular functions.

They showed that all these constructions are insecure [17,18]. To circumvent
attacks, they introduce two-round schemes whose public key is the composition
of two one-round schemes. The secret key of two-round schemes consists of:

Three affine bijections r, s, t : Kn → Kn.
Two applications ψ, φ : Kn → Kn, given by n quadratic polynomials.

The public key is composed of n polynomials p1, . . . , pn of total degree 4 describing:

p = t ◦ ψ ◦ s ◦ φ ◦ r, Kn → Kn.
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When all the polynomials are given, this scheme is called 2R scheme. If only
some of them are given, it is called 2R− scheme. The public-key part of the
computation is merely an application of the mapping p (for encrypting a message,
or checking the validity of a signature). For the secret-key computations, we
need to invert the mappings ψ and φ. The authors then propose to choose the
mappings among the constructions 1, 2, 3 described above and also:

4. C∗ functions: monomials over an extension of degree n over K,
5. D∗ functions [16].

In [17,18], it has been proved that when ψ is chosen in the classes 2. and 4., then
the resulting 2R scheme is weak. It is not clear that a similar result holds for
2R− schemes.

Anyway, does composing two weak one-round schemes leads to a secure
scheme ? The answer is closely related to the difficulty of the following problem:

Functional Decomposition Problem (FDP)
Input : h = (h1, . . . , hu) ∈ K[x1, . . . , xn]u.
Find : – if any – f = (f1, . . . , fu) �= h ∈ K[x1, . . . , xn]u, and g = (g1, . . . , gn) ∈
K[x1, . . . , xn]n, such that:

(
h1(x), . . . , hu(x)

)
=
(
f1
(
g1(x), . . . , gn(x)

)
, . . . , fu

(
g1(x), . . . , gn(x)

))
,

noted h(x) = (f ◦ g)(x) hereafter, where x = (x1, . . . , xn).

During the last years several results have been obtained on the univariate polyno-
mial decomposition area [15,23,24]. However, multivariate decomposition prob-
lem has not been studied so much. Particular instances (multi-univariate,...) of
FDP have been investigated in [23,19]. In [12], M. Dickerson provided several
insights into the theoretical complexity of FDP. However, this kind of results
solely guarantees the difficulty of the worst-case. In the cryptographic context,
D.F. Ye, Z.D. Dai, and K.Y. Lam presented in [25,26] a quite efficient method
for solving instances of FDP used in 2R. Note that their method only works
when u = n, or u = n−1 [26]. To the best of our knowledge, there exists no pre-
viously known algorithm for solving FDP when u < n − 1. An efficient method
for solving FDP in this case would permit to decompose 2R− schemes into two
independent schemes given by quadratic polynomials. To break these schemes,
we then would only have to solve two quadratic systems. As mentioned by J.
Patarin and L. Goubin [18], this would make the principle of two-round schemes,
including 2R−, useless.

4 A General Algorithm for Solving FDP

In this part, we present a new algorithm for solving FDP. Our approach is
inspired on the works of D.F. Ye, Z.D. Dai, and K.Y. Lam [25,26]. According
to these authors, we can restrict our attention to homogeneous instances of
FDP [25]. The homogenization of a polynomial p ∈ K[x1, . . . , xn], denoted p∗,
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is defined by p∗(x0, x1, . . . , xn) = x
deg(p)
0 p(x1/x0, . . . , xn/x0), where x0 is a new

variable. For any mapping f : K
n → K

u, given by the polynomials f1, . . . , fu, we
define its homogenization by f∗ = (xdeg(f)

0 , f∗
1 , . . . , f∗

n). The dehomogenization
of f∗ is then f =

(
f∗
1 (1, x1, . . . , xn), . . . , f∗

n(1, x1, . . . , xn)
)
. We have:

Lemma 2 ([25]). Let f : K
n → K

u and g : K
n → K

n be two mappings, then:

(f ◦ g)∗ = f∗ ◦ g∗.

Note 1. In [25], it is stated that this lemma is correct only if deg(f)deg(g) > |K|.
We no longer need this condition over K[x1, . . . , xn].

Thus, if we can decompose h∗ = f∗ ◦ g∗, then a decomposition of h = f ◦ g is
simply obtained by dehomogenization of f∗ and g∗[25]. Now, we assume that
f : K

n → K
u and g : K

n → K
n are two homogeneous functions of degree two.

Finally, let h = f ◦ g, and {hi}1≤i≤u, {fi}1≤i≤u, {gi}1≤i≤n be the components of
h, f, g respectively.

4.1 Description of the Algorithm

The aim of our algorithm is to find the vector space L(g) = Vect(g1, . . . , gn)
generated by g1, . . . , gn. More precisely, this vector space will be recovered from
a DRL Gröbner basis of a suitable ideal. Note that the knowledge of L(g) is
sufficient for decomposing h. Indeed, any bijective linear combination A of the
gis leads to a decomposition of h since:

h = (f ◦ A−1) ◦ (A ◦ g).

Let us first assume that we know the vector space L(g). For all i, 1 ≤ i ≤ u:

fi =
∑

1≤k,�≤n f
(i)
k,�xkx� ∈ K[x1, . . . , xn],

gi =
∑

1≤k,�≤n g
(i)
k,�xkx� ∈ K[x1, . . . , xn].

Therefore, for all i, 1 ≤ i ≤ u:

hi = fi(g1, . . . , gn) =
∑

1≤k,�≤n

f
(i)
k,�gkg�. (1)

By comparing the coefficients in the right-most and left-most parts of these
equalities, we obtain a linear system of O(uC2

n+2) equations in the uC2
n+2 un-

known coefficients of the fis. It seems difficult to rigorously evaluate the rank
of this linear system, a question that has been avoided in the previous works on
FDP [25,26]. However, it is very likely that this linear system is of full rank when
the fis are dense polynomials. For the instances of FDP used in 2R− schemes,
we experimentally only obtain linear systems of full rank. The difficult part is
actually to determine the vector space L(g). For this, we observe that:

∂hi

∂xj
=

∑

1≤k,�≤n

fk,�

(
∂gk

∂xj
g� + gk

∂g�

∂xj

)
. (2)
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The polynomials g1, . . . , gn being of degree two, their partial derivatives are of
degree one. Hence:

∂Ih =
〈

∂hi

∂xj
: 1 ≤ i ≤ u, 1 ≤ j ≤ n

〉
⊆ 〈xkg�〉1≤k,�≤n = V .

This ideal ∂Ih usually provides enough information for recovering the polyno-
mials g1, . . . , gn.

Theorem 5. Let M(d) be the set of monomials of degree d ≥ 0 in x1, . . . , xn,
and

Vd = Vect (mgk : m ∈ M(d + 1), and 1 ≤ k ≤ n) ,

Ṽd = Vect
({

m
∂hi

∂xj
: m ∈ M(d), 1 ≤ i ≤ u, and 1 ≤ j ≤ n

})
.

Then, for all i, 1 ≤ i ≤ n:

xd+1
n gi ∈ ∂Ih, if dim(Ṽd) ≥ n|M(d + 1)|,

where dim(Ṽd) is the dimension of Ṽd as a vector space over Vd.

Proof. We first study the case d = 0. Let Ṽ = Ṽ0 be the linear space generated
by the partial derivatives of the his, i.e.:

Ṽ0 = Ṽ = Vect

({
∂hi

∂xj

}1≤i≤u

1≤j≤n

)

⊂ ∂Ih.

According to (2), each element of Ṽ can be written as a sum of {xkg�}1≤k,�≤n.
Now let AṼ ∈ Mn2×n2(K) be a matrix associated to the linear transformation
Vect

(
{xkg�}1≤k,�≤n

)
�→ Ṽ . For some basis:

AṼ =

⎛

⎜
⎜⎜
⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜
⎝

x1g1 · · · xng1 · · · xkg� · · · x1gn · · · xngn
∂h1
∂x1

· · ·
... · · ·

∂h1
∂xn

· · ·
... · · ·

∂hi

∂xj
· · ·

... · · ·
∂hn

∂x1
· · ·

... · · ·
∂hn

∂xn
· · ·

⎞

⎟
⎟⎟
⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟
⎠

One can see at once that the xngis lie in Ṽ if the number of linearly inde-
pendent rows of this matrix is at least equal to its number of columns. That
is, xngi ∈ ∂Ih, for all i, 1 ≤ i ≤ n, if:
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dim(Ṽ ) ≥ n|M(1)| = n2.

Observe that dim(Ṽ ) is upper-bounded by un. Thus, dim(Ṽ ) ≥ n|M(1)| = n2

only holds if u = n. This explains why the method proposed in [25,26] is limited
to 2R schemes. To circumvent this problem, we have to consider a vector space
of higher dimension. This is the motivation for considering:

Ṽd = Vect
({

m
∂hi

∂xj
: m ∈ M(d), 1 ≤ i ≤ u, and 1 ≤ j ≤ n

})
.

From (2), we deduce that each polynomial of Ṽd can be written as a sum of
elements of:

Vd = Vect (mgk : m ∈ M(d + 1), and 1 ≤ k ≤ n) .

Let then AṼd
be a matrix associated to Vd �→ Ṽd. For some basis:

AṼd
=

⎛

⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎝

· · · · · · mgk · · · · · ·
... · · ·
... · · ·

m ∂hi

∂xj
· · ·

... · · ·

... · · ·

⎞

⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎠

Thus, xd+1
n gi ∈ Ṽ ⊂ ∂Ih, for all i, 1 ≤ i ≤ n, if dim(Ṽd) is at least equal to the

number of columns of AṼd
. That is, if dim(Ṽd) ≥ n|M(d + 1)|. �

Remark 1. At the end of this part, we will provide an explicit value of d in
function of the ratio n/u.

According to Theorem 5, the polynomials gis are contained, up to some power
of xn, in ∂Ih. Therefore, the quotient of this ideal by a suitable power of xn

contains the polynomials g1, . . . , gn.

Corollary 1. Using the same notations as in Theorem 5. If dim(Ṽd) ≥ n|M(d+
1)|, then:

L(g) ⊂ 〈g1, . . . , gn〉 ⊆ ∂Ih : (xd+1
n ).

Proof. The proof of this corollary is obviously deduced from Theorem 5, and
very definition of the quotient. �
Thus each element of L(g) is included in ∂Ih : (xd+1

n ). Let then G be a (reduced)
DRL Gröbner basis of this ideal. It is then natural to consider the set Bg =
Vect

(
g ∈ G : deg(g) = 2

)
, since according to Theorem 2:

L(g) = Bg, if #Bg = n, and min
(
deg(g) : g ∈ G

)
= 2.



Cryptanalysis of 2R− Schemes 367

If these conditions are not fulfilled, then one can not recover efficiently L(g) from
Bg. Observe that the condition #Bg = n implies that there exists a unique de-
composition (up to bijective linear combinations). To get away with these prob-
lems, we can apply several heuristics such as computing ∂Ih : (xd+1

1 ), . . . , ∂Ih :
(xd+1

n−1). In practice, it has been always sufficient to compute ∂Ih : (xd
n), for a

suitable d (i.e. dim(Ṽd) ≥ n|M(d + 1)|).

4.2 The Algorithm AlgoFDP

We describe now our algorithm for general instances of FDP, i.e. we no longer
suppose here that h is given by homogeneous polynomials.

AlgoFDP
Input: h = f ◦ g : K

n → K
u, given by u polynomials h1, . . . , hu ∈ K[x1, . . . , xn] of degree 4

Output : f ′
1, . . . , f

′
u, g′1, . . . , g

′
n, such that

(
h1, . . . , hu

)
=
(
f ′
1
(
g′1, . . . , g

′
n

)
, . . . , f ′

u

(
g′1, . . . , g

′
n

))

h∗
0(x0, x1, . . . , xn) ← x4

0
h∗

i (x0, x1, . . . , xn) ← x4
0hi(x1/x0, . . . , xn/x0), for all i, 1 ≤ i ≤ u

∂I∗
h ←

〈
∂h∗

i

∂xj
: 0 ≤ i ≤ u, 0 ≤ j ≤ n

〉

Let d be the smallest integer such that dim(Ṽ ∗
d ) ≥ n|M(d + 1)|, with:

Ṽ ∗
d = Vect

({
m

∂h∗
i

∂xj
: m ∈ M(d), 0 ≤ i ≤ u, and 0 ≤ j ≤ n

})
.

Compute a reduced 2-DRL Gröbner basis G of ∂I∗
h : (xd+1

n )
Bg∗ ←

{
g∗ ∈ G, deg(g∗) = 2

}

If #Bg∗ �= n + 1 or min
(
deg(g) : g ∈ G

)
�= 2 then Return Fail

Recover a basis Bf∗ of Vect(f∗) by solving the system of linear equations given by (1)
Return

{
g∗(1, x1, . . . , xn) ∈ Bg∗

}
and

{
f∗(1, x1, . . . , xn) ∈ Bf∗

}

Remark 2. In practice, our algorithm never returned Fail for instances of FDP
used in 2R−.

Theorem 6. Let g∗0(x0, x1, . . . , xn) = x2
0, and g∗i (x0, x1, . . . , xn) = x2

0gi(x1/
x0, . . . , xn/x0), for all i, 1 ≤ i ≤ n. Moreover, let M(d) be the set of monomials
of degree d ≥ 0 in x0, x1, . . . , xn, and

V ∗
d = Vect (mg∗k : m ∈ M(d + 1), and 0 ≤ k ≤ n) ,

Ṽ ∗
d = Vect

({
m

∂h∗
i

∂xj
: m ∈ M(d), 0 ≤ i ≤ u, and 0 ≤ j ≤ n

})
.

AlgoFDP returns a solution of FDP (and not Fail) in:

O(n3(d+3)),

where d is the smallest integer such that dim(Ṽ ∗
d ) ≥ (n + 1)|M(d + 1)|.

Proof. Let us suppose that our algorithm returns a solution (and not Fail).
According to Corollary 1, we know that for all i, 0 ≤ i ≤ n, g∗i ∈ ∂I∗

h : (xd+1
n ).

The complexity of AlgoFDP is then dominated by the cost of computing a reduced
DRL Gröbner basis G of ∂I∗

h : (xd+1
n ). This step can be done as explained
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in Section 2. However, an alternative method can be used in this particular
situation. This is due to the particular role of xn in a DRL order. From Lemma
1, we know that if xd+1

n divides the leading monomial of a polynomial, then it also
divides the entire polynomial. Thus, we can restrict our attention to polynomials
of a DRL Gröbner Bases G′ of ∂I∗

h whose leading monomials contain xd+1
n . One

can see directly that:

(
g ∈ G : deg(g) = 2

)
=
(

g′

xd+1
n

: g′ ∈ G′, and xd+1
n |LM(g′, ≺DRL)

)
.

More precisely, it is sufficient to compute a reduced (d + 3)-DRL Gröbner ba-
sis of ∂I∗

h. According to Appendix A, this can be done with the F5 algorithm
in O(n3(d+3)). From a practical point of view, the two methods proposed for
computing G are similar. But the last one is more suitable for evaluating the
complexity. �

Remark 3. It should be noticed that our algorithm can easily be adapted for
polynomials f of degree greater that 2.

Comparison with Previous Approach
In short, our method can be viewed as a generalization of the approach of D.F.
Ye, Z.D. Dai, and K.Y. Lam [25,26]. When u = n, it is sufficient to consider
the ideal ∂I∗

h : (x1
n) for recovering L(g). This is a simplified description of the

method described in [25,26]. When u < n, ∂I∗
h : (x1

n) no longer provides enough
information for recovering L(g). To overcome this difficulty, we proposed here to
consider ideals of the form ∂I∗

h : (xd+1
n ). We then proved that L(g) is contained

in this ideal as soon as d is sufficiently large.
It is important to know the exact value of the parameter d. This value can

be lower-bounded in fonction of the ratio n/u. For this, we observe that (n +
1)|M(d+1)| = (n+1)Cd+1

n+1+d and dim(Ṽ ∗
d ) is very likely to be equal (u+1)(n+

1)Cd
n+d. We then obtain that d should verify:

d ≥ n

u
− 1.

For instance, if the number of equations removed (i.e. n−u) is smaller than �n
2 �,

this yields a complexity of O(n12), and O(n9) if u = n. We will show now that
this approximation is perfectly coherent with our experimental results.

4.3 Experimental Results

Generation of the Instances
We have only considered instances h = f ◦ g of FDP admitting a solution. We
constructed these instances in the following way:

– f = t ◦ ψ ◦ s and g = φ ◦ r, with r, s, t ◦ ψ ◦ s : Kn → Kn are random affine
bijections, and ψ, φ : Kn → Kn are S-box functions contructed as explained in
Section 3. We then remove r ≥ 0 polynomials of h.
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Programming language – Workstation
The experimental results have been obtained with a Xeon bi-processor 3.2 Ghz,
with 6 Gb of Ram. The instances of FDP have been generated using the Maple
software. We used our own implementation (in language C) of F5 for computing
truncated Gröbner bases.

Table Notations
The following notations are used in the table below:
– n, the number of variables,
– b, the number of blocks (as defined in Section 3),
– ni, the number of variables in each block (see Section 3),
– q, the size of the field,
– r, the number of polynomials removed,
– dtheo = �n

u − 1�, the predicted (see 4.2) value of d for which AlgoFDP returns
a solution
– dreal, the real value of d for which AlgoFDP returns a solution
– T , the total time taken by our algorithm,
–

√
qn, the current security bound [18,6] for 2R− schemes.

Practical Results
Let us now present results obtained with our algorithm.

n b ni r q dtheo dreal T
√

qn

8 4 2 0 65521 0 0 0.0 s.
8 4 2 4 65521 1 1 0.0 s. ≈ 264

8 4 2 5 65521 2 2 0.3 s. ≈ 264

8 4 2 6 65521 3 3 1.9 s. ≈ 264

10 5 2 5 65521 1 1 0.2 s. ≈ 280

10 5 2 6 65521 2 2 3.2 s. ≈ 280

10 5 2 7 65521 3 3 21.4 s. ≈ 280

10 5 2 8 65521 4 4 180.8 s. ≈ 280

12 3 4 0 65521 1 1 0.1 s.
12 3 4 5 65521 1 1 0.9 s. ≈ 296

12 3 4 6 65521 1 1 0.9 s. ≈ 296

12 3 4 7 65521 2 2 20.5 s. ≈ 296

12 3 4 8 65521 2 2 25.2 s. ≈ 296

12 3 4 9 65521 3 3 414 s. ≈ 296

20 5 4 0 65521 0 0 1.6 s.
20 5 4 5 65521 1 1 55.2 s. ≈ 2160

20 5 4 10 65521 1 1 78.9 s. ≈ 2160

20 10 2 10 65521 1 1 78.8 s. ≈ 2160

20 2 10 10 65521 1 1 78.7 s. ≈ 2160

24 6 4 0 65521 0 0 4.9 s.
24 6 4 12 65521 1 1 376.1 s. ≈ 2192
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30 15 2 15 65521 1 1 2910.5 s. ≈ 2160

32 8 4 0 65521 0 0 31.3 s.
32 8 4 10 65521 1 1 3287.9 s. ≈ 2256

32 8 4 16 65521 1 1 4667.9 s. ≈ 2256

36 18 2 15 65521 1 1 13427.4 s. ≈ 2256

Interpretation of the Results
Let us mention that n = 16 and n = 32 were two challenges proposed by the
designers of 2R− schemes. First it should be observed that the parameters b and
ni of the S-box functions seem irrelevant for the complexity of our algorithm. We
also tested our algorithm for instances of FDP constructed with various forms of
ψ, φ (C∗+S-Box functions, Triangular+S-Box functions,. . . ) and several values
of q. These results are very similar to the ones obtained for S-Box functions,
and thus not quoted here. The major observation is that our algorithm behaves
exactly as predicted. That is, dtheo = �n

u − 1� is exactly equal to the dreal

observed in practice.
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Appendix A

The F5 Algorithm

The historical method for computing Gröbner bases is Buchberger’s algorithm
[8,7]. Recently, more efficient algorithms have been proposed. To date, F5 [13]
is the most efficient for computing Gröbner bases. In a nutshell, this algorithm
constructs incrementally the following matrices in degree d:

Ad =

m1 � m2 � m3 . . .
t1f1
t2f2
t3f3
. . .

⎡

⎢
⎢
⎣

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

⎤

⎥
⎥
⎦

where the indices of the columns are monomials sorted for the admissible order-
ing ≺ and the rows are product of some polynomials fi by some monomials tj
such that deg(tjfi) ≤ d. For a regular system [13] the matrices Ad are of full
rank. In a second step, row echelon forms of theses matrices are computed, i.e.

A′
d =

m1 m2 m3 . . .
t1f1
t2f2
t3f3
. . .

⎡

⎢
⎢
⎣

1 0 0 . . .
0 1 0 . . .
0 0 1 . . .
0 0 0 . . .

⎤

⎥
⎥
⎦

Note that for each d, A′
d contains a d-Gröbner basis of the ideal considered.

Important parameters to evaluate the complexity of F5 is the maximal degree
d occurring in the computation and the size of the matrix Ad. The overall cost
is thus dominated by (#Ad)

3. Very roughly, (#Ad) can be approximated by
O(nd). A more precise complexity analysis can be found in [4,5].
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