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Abstract. In order to make multithreaded programming manageable, program-
mers often follow a design principle where they break the problem into tasks
which are then solved asynchronously and concurrently on different threads.
This paper investigates the problem of model checking programs that follow
this idiom. We present a programming language SPL that encapsulates this de-
sign pattern. SPL extends simplified form of sequential Java to which we add the
capability of making asynchronous method invocations in addition to the stan-
dard synchronous method calls and the ability to execute asynchronous methods
in threads atomically and concurrently. Our main result shows that the control
state reachability problem for finite SPL programs is decidable. Therefore, such
multithreaded programs can be model checked using the counterexample guided
abstraction-refinement framework.

1 Introduction

Multithreaded programming is often used in software as it leads to reduced latency,
improved response times of interactive applications, and more optimal use of process-
ing power. Multithreaded programming also allows an application to progress even if
one thread is blocked for an I/O operation. However, writing correct programs that use
multiple threads is notoriously difficult, especially in the presence of a shared muta-
ble memory. Since threads can interleave, there can be unintended interference through
concurrent access of shared data and result in software errors due to data race and atom-
icity violations.

Therefore, programmers writing multithreaded code, often adhere to a design idiom
where the computational problem is broken up into tasks which are then assumed to
be finished asynchronously, concurrently, and atomically. Specifically, threads during
their execution may send tasks or events or asynchronous messages to other threads. If
a thread is busy completing a task, the messages sent to it get added to a pool of tasks
associated with the thread. When the thread has completed the current task, it takes out
a task from its pending pool and starts processing it concurrently with other threads.
If the pool is empty the thread waits for a new task or event or message. Even though
these asynchronous tasks are executed concurrently on different threads, an underlying
assumption is that these tasks will be executed atomically. This is often ensured through
various synchronization primitives, such as locks, mutexes, semaphores, etc.

For example, in the Swing/AWT subsystem of Java, a non-GUI thread is not al-
lowed to make any direct changes to the user interface represented by a Swing
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object. Instead such a thread submits the request to the EventQueue by calling
SwingUtilities.invokeLater(runnable). The thread associated with the
Swing event queue handles these requests one by one atomically. This ensures that the
user interface operations are performed in a non-interfering way and the user interface
has a consistent state and look. Another context where this design paradigm is widely
prevalent is multithreaded web servers. When a page request is sent to a web server,
the web server posts the request to a request queue. If there is a free thread in the finite
thread pool of the web server, the free thread removes a request from the request queue
and starts processing the request. The use of threads ensures that multiple requests to
the web-server can be served concurrently. Moreover, synchronization primitives are
used to ensure that the threads do not interfere with each other. Another application
area where this paradigm is used is embedded software which is naturally event-driven.
Finally, multithreaded transaction servers for databases also view transactions as asyn-
chronous requests that are served by the different threads of the server concurrently.
Since requests in this context are transactions, the server ensures that the service of a
transaction satisfies the ACID (atomicity, consistency, isolation, durability) property.

The prevalence of this design idiom has also been observed by Allen Holub [17] in
his book “Taming Java Threads”. In this book, Holub points out that programmers clas-
sify method invocations or messages into two categories: synchronous messages and
asynchronous messages. The handler for synchronous messages doesn’t return until the
processing of the message is complete. On the other hand, asynchronous messages are
processed possibly by a different thread in the background some time after the message
is received. However, the handler for asynchronous messages returns immediately, long
before the message is processed.

In this paper, we investigate the verification of programs written adhering to this
design principle. We introduce a simple programming language, called SPL, that en-
capsulates this design goal. It is a simplified form of sequential Java to which we add
the capability of making asynchronous method invocations in addition to the standard
synchronous method calls and the ability to dynamically create threads. We define its
semantics in terms of concurrently executing threads. We then observe that the require-
ment that asynchronous methods execute atomically, allows us to reason about the pro-
gram using a new semantics wherein the threads service these asynchronous method
invocations serially.

The analysis of SPL programs with respect to the serialized semantics can then pro-
ceed by following the popular methodology of software model checking [29,2,15],
where the program is first automatically abstracted using boolean predicates into one
that has finitely many global states, and the abstracted program is then model checked.
The results of the model checking are then used to either demonstrate a bug/correctness
of the program, or used to refine the abstraction.

The success of the software model checking framework depends upon the model
checking problem for SPL programs with finitely many global states being decidable.
We first observe that the serial semantics ensures that the local stack of at most one
thread is non-empty at any time during the execution; the semantics of such programs
can thus be defined using only one stack. We introduce multi-set pushdown systems
(MPDS) to model such finite SPL programs. MPDSs have finitely many control states,
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one unbounded stack to execute recursive, synchronous methods, and one unbounded
bag to store the asynchronous method invocations. The main restriction that is imposed
on such systems is that messages from the bag be serviced only when the stack is empty,
a consequence of our atomicity requirements. Our main result is that the problem of
control state reachability of MPDSs is decidable, thus demonstrating that SPL programs
can be analyzed in the counterexample guided abstraction-refinement framework.

The rest of the paper is organized as follows. Next, we discuss closely related work
and place our results in context. Section 2 introduces notation, definitions and classical
results used in proving our results. The simple parallel language (SPL) for multithreaded
programming is presented along with its semantics in Section 3. We investigate the
verification problem in Section 4 and conclude by giving a lower bound. Due to lack of
space, we defer some of the proofs to [31].

Related Work. Model-checking algorithms and tools [29,2,15] for single-threaded
programs with procedures based on predicate abstraction have been developed. These
model checkers use the fact that the reachable configurations of pushdown systems
are regular [1,13]. Ramalingam [28] showed that verification of concurrent boolean
programs is undecidable. As a consequence, approximate analysis techniques that over-
approximate [4] and under-approximate [26,3] the reachable states have been consid-
ered, as have semi-decision procedures [25]. Note that the algorithm in [25] can be
shown to terminate if the whole execution of a thread is assumed to be a transaction.
Other techniques [7,16,8] try verifying each thread compositionally, by automatically
abstracting the environment. Finally, the KISS checker [27] for concurrent programs
simulates the executions of a concurrent program by the executions of a sequential pro-
gram, where the various threads of the concurrent program are scheduled by the single
stack of the sequential program. It is worth mentioning [27] first proposed the use of a
single stack to model executions of multithreaded software. Though complete, the KISS
checker is not sound.

There has also been considerable effort in characterizing concurrent systems with
finitely many global states for which the reachability analysis is unknown to be decid-
able. Starting from the work of Caucal [6] and Moller [22], where purely sequential
and purely parallel processes were considered, hierarchies of systems have been de-
fined. Mayr [21] gave many decidability and undecidability results based on a unified
framework. Among the models that allow both recursion and dynamic thread creation,
most disallow any form of synchronization between the threads [11,30,20,23]. More
recently, the model of constrained dynamic pushdown networks (CDPN) [5] was intro-
duced which allowed for thread creation and limited forms of synchronization. CDPNs
have a more sophisticated means to synchronize, but they limit synchronization only be-
tween a parent thread and its descendants. Our model of MPDS, allows dynamic thread
creation and limits context switches to happen only when asynchronous methods have
finished execution. Thus, MPDSs and CDPNs are incomparable and apply to different
multi-threaded programs.

2 Preliminaries

Multi-sets and Strings. Given a finite set Σ, the collection of all finite multi-sets with
elements in Σ will be denoted by Mω[Σ]. We say a ∈ M if a is an element of multi-set
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M . For multi-sets M and M ′, M ∪M ′ is the multi-set union of M and M ′, and M \M ′

the multi-set difference between M and M ′. We use ∅ to denote the empty multi-set.
Recall that Σ∗ is the collection of all finite strings over the alphabet Σ, with ε being
the empty string. Given two finite strings w and w′, we will denote their concatenation
by ww′. For a string w, M(w) will denote the multi-set formed from the symbols of w.
For example, if w = aaba, then M(w) = {a, a, a, b}. Finally, for L ⊆ Σ∗, M(L) =
{M(w) | w ∈ L}.

Well-quasi-orderings. Recall that a quasi-ordering ≤ over a set X , is a binary relation
that is reflexive and transitive. Given a quasi-ordering ≤, an upward closed set U ⊆ X
is a set such that if x ∈ U and x ≤ y then y ∈ U . For a set S ⊆ X , the smallest upward
closed set containing S will be denoted by CL(S), i.e., CL(S) = {x | ∃y ∈ S. y ≤ x}.
For a set S, the minimal elements in S is MIN(S) = {x | ∀y ∈ S. y 	≤ x}.

A quasi-ordering ≤ over X is said to be a well-quasi-ordering (wqo) if for any
infinite sequence x1, x2, x3, . . . of elements in X , there exist indices i, j such that
i < j and xi ≤ xj . We now recall some well-known observations about well-quasi-
orderings [18,12].

Proposition 1. For a wqo ≤ and any set S ⊆ X , MIN(S) is finite.

Proposition 2. For a wqo ≤, any infinite increasing sequence U0 ⊆ U1 ⊆ U2 ⊆ · · ·
of upward closed sets eventually stabilizes, i.e., there is a k ∈ N such that for all i ≥ k
Ui = Uk.

Pushdown Systems. A pushdown system (PDS) is P = (Q, Γ, δ, q0, γ0), where Q is
a finite set of states, Γ is a finite set of stack alphabets, q0 ∈ Q is the initial state,
γ0 ∈ Γ is the initial stack configuration, and δ ⊆ (Q × Γ ) × (Q × Γ ∗) is the transition
relation. The execution of a PDS can be described in terms of a transition system over
configurations, which are (q, w) ∈ Q × Γ ∗. We say (q1, w1γ) −→ (q2, w1w2) if there
is a transition ((q1, γ), (q2, w2)) ∈ δ. We say a configuration (q, w) is reachable iff
(q0, γ0) −→∗ (q, w), where −→∗ is the reflexive, transitive closure of −→, and that a
control state q is reachable iff (q, w) is reachable for some w ∈ Γ ∗. It is well-known
that the problem of control state reachability is decidable (see [13,1]); this is the content
of the next theorem.

Theorem 1. Given a PDS P , checking if a control state q is reachable is decidable in
O(n3) time, where n is the size of the PDS P .

3 Programming Language

We describe a simple parallel language SPL, which captures the essential concepts of
multithreaded programs with asynchronous atomic methods. The SPL language is a
simplified form of the sequential Java language. Similar to Java, the SPL language sup-
ports objects. In addition to definition of classes, we allow the definition of a special
type called thread. Instances of a class is called an object and instances of a thread is
called a thread object. A thread of control is associated with every thread object. The
objects in SPL behave similarly as in Java. A method invocation of an object is syn-
chronous and its execution is carried out using a stack. However, for thread objects we



304 K. Sen and M. Viswanathan

introduce a new semantics for method invocation. Specifically, we assume that an invo-
cation of a method of a thread object is asynchronous and atomic. If a thread of control
invokes a method of a thread object, then the method call returns immediately and the
call is added as a message to a global message bag. If the thread of control associated
with the callee object is not busy processing a message, then it takes out a message
(i.e., a call to one of its methods) targeted to it from the global bag and starts executing
it atomically and concurrently with other threads. Note that in an execution of a SPL

program, several threads can execute concurrently. The atomicity condition requires
that for every possible interleaved execution of a SPL program, there exists an equiva-
lent execution with the same overall behavior where the methods of the thread objects
are executed serially, that is, the execution of a thread object method is not interleaved
with actions of other threads. This particular restriction ensures that the execution of a
method of a thread object is not interfered by other threads through shared objects.

P ::= defn∗ (new T ).md(c∗)
defn ::= class C {field∗ meth1∗} | thread T {field∗ meth2∗}
field ::= type fd

meth1 ::= (type | void) md(arg∗){local∗ stmt∗}
meth2 ::= void md(arg∗){local∗ stmt∗}

stmt ::= l : S;
S ::= x = e | x.fd = y | x.md(y∗) | if x goto l′ | return x
e ::= new type | null | this | c | x | x.fd | x.md(y∗) | f(x∗)

arg ::= type x
local ::= type y
type ::= C | T | primitive types such as int, float, boolean, etc.

l ::= label
x, y ::= variable name

C ::= class name
T ::= thread name
fd ::= a field name

md ::= a method name
f ::= pre-defined functions such as + , -, *, /, etc.
c ::= constants such as 1, 2, true, etc.

Fig. 1. SPL Syntax

3.1 Syntax of SPL

The formal syntax of SPL is given in Figure 1. A program in SPL consists of a sequence
of definitions of classes and threads followed by an asynchronous method invocation
of a newly created thread object. Observe that the execution of a statement can access at
most one shared memory location. This allows us to treat the execution of a statement as
an atomic operation. Branching and looping constructs are imitated using the statement
if x goto l, where l is the label of a statement in the method that contains the if statement.
We assume that a program in SPL is properly typed.
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3.2 Semantics of SPL

In the semantics of SPL, we assume that actions of multiple threads can interleave in any
way; however, we impose the restriction that the execution of an asynchronous method
must be atomic. We call this semantics the concurrent semantics of SPL.

The concurrent semantics of SPL is given by augmenting more rules to the standard
semantics of Java. Instantaneous snapshot of the execution of a SPL program is called
a configuration. Formally, a configuration C is a 3-tuple (q, S, M), where

– q is the global state containing the value of every object and thread object currently
in use in the program and the program counter of each thread associated with every
thread object.

– S is a map from a thread object to an execution stack. The stack for each thread
is used in the usual way to execute an asynchronous method sequentially. Note
that the invocation of an object method is always synchronous and the method is
executed by the caller thread by creating a new stack frame in its stack.

– M is a multi-set or bag of messages. Whenever, a thread invokes a method of
a thread object, the target thread object, the method name, and the values of the
arguments passed to the method are encoded into a message and placed in the bag.
We use M ∪ e to represent the multi-set obtained by adding the element e to the
multi-set M .

Let C be set of all configurations. We define a transition relation C �s
t C′ (see Figure 2)

for the concurrent semantics. Such a relation represents the transition from the config-
uration C to C′ due to the execution of the statement s by the thread t. Henceforth, if
t is a thread object, then we will also use t to denote the thread of control associated
with the thread t. The transition relations are described abstractly using a number of
functions described, informally, below:

– THREADS(q) returns the set of thread objects that are created in the execution.
– GETNEXTSTATEMENT(q, t) returns the next statement to be executed by the thread

t. The function uses the value of the program counter found in q for the thread t
to determine the next statement. If the thread t is not executing any asynchronous
method, then the function returns ⊥.

– EXECUTENEXTSTATEMENT(q, S(t), t) executes the next statement of the thread t
following the standard sequential Java semantics and returns a pair containing the
updated global state q′ and the updated map S′ in which the stack S′(t) has possibly
been modified. The program counter of the thread t is also updated appropriately
in the global state q′.

– SETNEXTSTATEMENT(q, S(t), t, t.md(v∗)), where v denotes a value, creates a
stack frame in the stack S(t) to prepare for the invocation of the method md and
sets the program counter of t in q to the first statement of the method md of t. The
updated global state q′ and the map S′ is returned by the function.

– SKIPNEXTSTATEMENT(q, t) updates the program counter in q of the thread t, such
that the thread t skips the execution of the next statement.

– [[x]]S(t) returns the value of the local variable x, which is obtained from the topmost
stack frame of the stack S(t).
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[JAVA SEMANTICS]

∃t ∈ THREADS(q).(s = GETNEXTSTATEMENT(q, t)
∧ s �= ⊥ ∧ ¬(s = x.md(y∗) ∧ [[x]]S(t) ∈ THREADS(q)))

∧ (q′, S′) = EXECUTENEXTSTATEMENT(q, S(t), t)

(q, S, M) �s
t (q′, S′, M)

[CONSUME MESSAGE]

∃t ∈ THREADS(q).(GETNEXTSTATEMENT(q, t) = ⊥
∧ (q′, S′) = SETNEXTSTATEMENT(q, S(t), t, t.md(v∗)))

(q, S, M ∪ {t.md(v∗)}) �⊥
t (q′, S′, M)

[SEND MESSAGE]

∃t ∈ THREADS(q).(s = GETNEXTSTATEMENT(q, t)
∧ (s = x.md(y∗) ∧ [[x]]S(t) ∈ THREADS(q)))

(q, S, M) �s
t (SKIPNEXTSTATEMENT(q, t), S, M ∪ {[[x]]S(t).md([[y]]∗S(t))})

Fig. 2. Concurrent Semantics

The initial configuration of a SPL program defn∗ (new T ).md(c∗), given by C0 =
(q0, S0, M0), where q0 contains the thread object, say t, created by the new T expres-
sion, S0 maps t to an empty stack, and M0 contains the only message t.md(c∗). The
program counter of t in q0 is undefined. Thus the CONSUME MESSAGE is the only rule
applicable to the initial configuration.

Atomicity Requirement. The concurrent semantics of SPL allows arbitrary interleav-
ing of multiple threads. However, we want to impose the restriction on possible inter-
leavings so that the execution of each asynchronous method is atomic. We next describe
this atomicity requirement.

We abstractly represent a finite execution of the form C0 �s1
t1 C1 �s2

t2
C2 · · · Cn−1 �sn

tn
Cn of a SPL program following the concurrent semantics

by the sequence τ =�s1
t1 �s2

t2 · · · �sn
tn

Cn. We use MSET(τ) to represent
the multi-set {(t1, s1), (t2, s2), . . . , (tn, sn)}. We restrict the set of executions that
can be exhibited by a SPL program following the concurrent semantics by im-
posing the atomicity requirement on asynchronous method executions as follows.
If a finite execution τ =�s1

t1 �s2
t2 · · · �sn

tn
(q, S, M) be such that ∀t ∈

THREADS(q).(GETNEXTSTATEMENT(q, t) = ⊥), then τ is said to be a valid exe-
cution of the program following the concurrent semantics iff the following holds. There

exists a finite execution τ ′ =�s′
1

t′
1
�s′

2
t′
2

· · · �s′
n

t′
n

(q′, S′, M ′) of the program following
the concurrent semantics such that
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1. (q, S, M) = (q′, S′, M ′),
2. MSET(τ) = MSET(τ ′),
3. if for any two elements (t, s) and (t, s′) in the MSET(τ), �s

t appears before �s′

t

in the sequence τ , then �s
t also appears before �s′

t in the sequence τ ′, and
4. in the sequence τ ′, all transitions after a �⊥

t and before any �⊥
t′′ are of the form

�s
t′ such that t = t′ and s 	= ⊥.

The above requirement ensures that the execution of an asynchronous method by a
thread is atomic. In general, it has been shown that such atomicity requirements for
multithreaded programs can be guaranteed statically by using a type system for atom-
icity [14] or dynamically through rollback [32]. We assume that the language SPL is
augmented with an atomicity type system or implemented in a way such that an execu-
tion of a program in the language following the concurrent semantics is always valid.

Serialized Semantics. To effectively reason about the behavior of a SPL, we introduce
the serialized semantics of SPL and show that for the reasoning purpose we can only
consider the serialized semantics of SPL.

Similar to the concurrent semantics, in the serialized semantics, we assume that there
is global state q, a global message bag or a multi-set of messages M , and a map S from
thread objects to stacks. Then the following happens in a loop. If there is a message
(i.e., an asynchronous method call along with values for its arguments) for a thread in
the bag, then the thread removes the message from the bag and executes the method in
the message. No other thread is allowed to interleave their executions till the execution
of the method terminates. During the execution of the method, the executing thread can
call asynchronous methods of any thread object. Those calls along with the values for
their arguments are placed in the bag as messages. Note that a non-deterministic choice
is associated with the picking of a message from the bag.

We define a transition relation C −→s
t C′ for the serialized semantics. The rules

for transition in the serialized semantics is same as that in the concurrent semantics
except for the rule [CONSUME MESSAGE] (see Figure 3). In the serialized semantics,
the rule is applicable if none of the threads is executing an asynchronous method and
there is a message in the bag. In the concurrent semantics, the rule is applicable if
there exists a thread, which is not executing an asynchronous method, and there is a
message for the thread in the bag. Note that the atomicity requirement trivially holds in
the case of serialized semantics. We represent a finite execution of the form C0 −→s1

t1
C1 −→s2

t2 C2 · · · Cn−1 −→sn
tn

Cn following the serialized semantics by the sequence
−→s1

t1 −→s2
t2 · · · −→sn

tn
Cn.

[CONSUME MESSAGE]

∀t ∈ THREADS(q).(GETNEXTSTATEMENT(q, t) = ⊥)
∧ (q′, S′) = SETNEXTSTATEMENT(q, S(t′), t′, t′.md(v∗))

(q, S, M ∪ {t′.md(v∗)}) −→⊥
t′ (q′, S′, M)

Fig. 3. Serialized Semantics
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Given that a program in SPL always exhibits valid executions following the con-
current semantics, the next result shows that any execution of the program following
the concurrent semantics is equivalent to an execution of the program following the
serialized semantics.

Proposition 3. For any program execution �s1
t1 �s2

t2 · · · �sn
tn

(q, S, M) where
∀t ∈ THREADS(q).GETNEXTSTATEMENT(q, t) = ⊥, there is a serialized execution

−→s′
1

t′
1
−→s′

2
t′
2

· · · −→s′
n

t′
n

(q′, S′, M ′) such that (q, S, M) = (q′, S′, M ′).

The above result allows us to treat any valid execution of a program in SPL following
the concurrent semantics in terms of an equivalent execution following the serialized
semantics. Reasoning about a serialized execution is easier because in such an execution
we have to consider a sequence of method invocations by different threads, where the
execution of each method can be reasoned sequentially. In fact, in the next section we
show that reachability of finite programs in SPL is decidable. It is worth mentioning that
the reachability of a program in SPL following the concurrent semantics is not decidable
if we do not impose the atomicity restriction.

4 Verifying SPL Programs

In this section we consider the problem of verifying SPL programs. Recall that for
SPL programs restricted to valid concurrent executions, we observed (in Section 3.2)
that reasoning about serialized executions is sufficient when answering questions about
global state reachability. Further, during a serialized execution of a SPL program, at
any point only one thread executes an asynchronous method up to completion without
interleaving with any other thread. This implies that the stack of at most one thread is
non-empty at any point in a serialized execution. As a result, we can define the (serial-
ized) semantics using only one stack which is re-used by every active thread.

The verification of serialized SPL programs can proceed by following the familiar
methodology of abstracting SPL programs, model checking, checking the validity of
a counterexample, and then refining the abstraction if the counterexample if found to
be invalid. Using standard predicate abstraction techniques, an SPL program over ar-
bitrary data types can be abstracted into an SPL program all of whose variables are
boolean. The steps of checking counterexamples and refining, again can be performed
using well-known algorithms. In this section, we therefore focus our attention on model
checking finite SPL programs. We first define the formal model of multi-set pushdown
systems (MPDS) that have finitely many global states, one stack to execute recursive,
synchronous method calls, and one message bag to store pending asynchronous method
calls. Such MPDSs define the (serialized) semantics of finite SPL programs. We then
show that the control state reachability problem for MPDSs is decidable. Finally, we
conclude this section by showing that the control state reachability problem has a lower
bound of EXPSPACE.

4.1 Multi-set Pushdown Systems

We present the formal definition and semantics of multi-set pushdown systems.
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Definition 1. A multi-set pushdown system (MPDS) is a tuple A = (Q, Γ, Δ, q0, γ0),
where Q is a finite set of global states, Γ is a finite set of stack and multi-set symbols,
Δ ⊆ (Q×Γ )× (Q×Γ ∗ ×Γ ) is the transition relation, q0 ∈ Q is the initial state, and
γ0 ∈ Γ is the initial method call.

We let q to range over Q, γ to range over Γ , w to range over Γ ∗, M to range
over Mω[Γ ]. The semantics of an MPDS A is defined in terms of a transition
system as follows. A configuration C of A is a tuple (q, w, M) ∈ Q × Γ ∗ ×
Mω[Γ ]. The initial configuration of A is (q0, ε, {γ0}). The transition relation −→
on configurations is −→1 ∪ −→2, where −→1 and −→2 are defined as follows:
(q, wγ, M) −→1 (q′, ww′, M ∪ {γ′}) if and only if ((q, γ), (q′, w′, γ′)) ∈ Δ; and
(q, ε, M ∪ {γ}) −→2 (q, γ, M). Observe that −→1 corresponds to the transition rules
[JAVA SEMANTICS] and [SEND MESSAGE] and −→2 corresponds to the transition rule
[CONSUME MESSAGE] in Figure 3. Also note that there is no transition from (q, ε, ∅)
for any q ∈ Q; therefore, A halts when it reaches a configuration of the form (q, ε, ∅).
Finally, −→∗, −→∗

1 denote the reflexive, transitive closure of −→ and −→1, respec-
tively.

Definition 2. A configuration (q, w, M) is said to be reachable iff (q0, ε, {γ0}) −→∗

(q, w, M). A control state q is said to be reachable if for some w ∈ Γ ∗ and M ∈
Mω[Γ ], (q, w, M) is reachable.

4.2 Control State Reachability in MPDSs

We are interested in verifying if a certain global state (or set of global states) of a finite
SPL program is reachable. This is the same as checking if a certain control state (or set
of control states) is reachable in the MPDS associated with the SPL program. Let us fix
an MPDS A = (Q, Γ, Δ, q0, γ0). Recall that a control state q is reachable if for some w
and M , (q0, ε, {γ0}) −→∗ (q, w, M). That means for some q1, q2, . . . qn, γ1, γ2 . . . γn

and M1, M2, . . . Mn, we have

(q0, ε, {γ0}) −→2 (q0, γ0, ∅) −→∗

1 (q1, ε, M1 ∪ {γ1}) −→2 (q1, γ1, M1) −→∗

1 (q2, ε, M2 ∪ {γ2})
−→2 (q2, γ2, M2) · · · −→∗

1 (qn, ε, Mn ∪ {γn}) −→2 (qn, γn, Mn) −→∗

1 (q, w, M)

Thus, the problem of checking whether a control state q is reachable, conve-
niently breaks up into two parts: for some q′, w, γ, M and M ′, check whether
(q0, ε, {γ0}) −→∗ (q′, ε, M ′ ∪ {γ}) and whether (q′, γ, M ′) −→∗

1 (q, w, M). Fur-
ther observe that (q′, γ, ∅) −→∗

1 (q, w, M) for some w and M iff (q′, γ, M ′) −→∗
1

(q, w, M ′ ∪ M) for every M ′. Hence, we can further simplify our tasks as follows. For
some q′ and γ, check whether (q0, ε, {γ0}) −→∗ (q′, ε, M ′ ∪ {γ}) for M ′ and whether
(q′, γ, ∅) −→∗

1 (q, w, M) for some M and w. We will call the first coverability prob-
lem and the second control state reachability without context switches problem. We will
treat these problems one by one and show each to be decidable.

Reachability Without Context Switches. We will first consider the problem of check-
ing if for some w, M , (q′, γ, ∅) −→∗

1 (q, w, M). Observe that since the messages in
the bag do not play a role in the transition −→1, we can ignore the asynchronous
method calls that are generated during a transition in order to decide this problem.
Thus, this problem can be reduced to checking reachability in pushdown systems. More
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formally, consider the pushdown system P = (Q′, Γ ′, δ′, q′0, γ
′
0) where Q′ = Q the

states of the MPDS A, Γ ′ = Γ , q′0 = q′, γ′
0 = γ, and δ′ is defined as follows:

((q1, γ1), (q2, w2)) ∈ δ iff ((q1, γ1), (q2, w2, γ2)) ∈ Δ (transition relation of A) for
some γ2. The MPDS A and the PDS P are related as follows.

Proposition 4. A configuration (q1, w1) is reachable in P iff (q′, γ, ∅) −→∗
1

(q1, w1, M) for some M .

The proof is straightforward and skipped in the interests of space. Hence based on
Proposition 4 and Theorem 1, we can conclude that the control state reachability prob-
lem, without context switches is decidable in polynomial time for MPDSs.

Coverability. We now study the problem of coverability. Recall that, given a state q′

and a stack symbol γ, we need to decide if for some M ′ ∈ Mω[Γ ], (q0, ε, {γ0}) −→∗

(q′, ε, M ′ ∪ {γ}). We will introduce a new model of regular multi-set systems (RMS),
which are slight generalization of multi-set automata, and show that the coverability
problem can be reduced to a reachability problem on RMS. We will then show that the
reachability problem for RMSs is decidable.

Definition 3. A regular multi-set system (RMS) is a tuple R = (Q, Γ, δ, q0, γ0), where
Q is the set of the states of R, Γ is the multi-set alphabet, q0 ∈ Q is the initial state, and
δ ⊆ ((Q × Γ ) × (Q × L)) is the transition relation with L ⊆ Γ ∗ being a regular lan-
guage. A configuration is the pair (q, M), where q ∈ Q and M ∈ Mω[Γ ] and the initial
configuration is (q0, {γ0}). The semantics of a RMS is given by the transition relation
↪→ over configurations. We say (q, M∪{γ}) ↪→ (q′, M ′) iff there is ((q, γ), (q′, L)) ∈ δ
and w ∈ L such that M ′ = (M ∪ M(w)).

Regular multi-set systems are a generalization of multi-set automata, where instead of
a transition adding the same multi-set to a bag every time, an RMS transition chooses a
multi-set from among a collection described by a regular language and adds to the bag.

We will consider reachability problems for RMSs. A pair (q, γ) is said to be reach-
able iff there is some M such that (q0, {γ0}) ↪→∗ (q, M ∪ {γ}). We will show that the
coverability problem of MPDS can be reduced to such a reachability problem. But for
that we need to make an important observation about MPDSs.

Proposition 5. For MPDS A, and any states q1, q2 and stack symbol γ1 define
M(q1, q2, γ1) = {M | (q1, γ1, ∅) −→∗

1 (q2, ε, M)}. There is a regular language
L(q1, q2, γ1) such that M(L(q1, q2, γ1)) = M(q1, q2, γ1).

Proof. Consider the following pushdown automaton P = (Q′, Σ, Γ ′, δ, q′0, γ
′
0, F )

where Q′ = Q the states of A, input alphabet Σ = Γ , stack alphabet Γ ′ = Γ , ini-
tial state q′0 = q1, initial stack configuration γ′

0 = γ1, F = {q2}, and the transition
relation δ ⊆ Q × Γ × Σ × Q × Γ ∗ is defined as follows: ((p1, γ

′
1), γ

′
2, (p2, w)) ∈ δ

iff ((p1, γ
′
1), (p2, w, γ′

2)) ∈ Δ. In other words, P has a transition on input γ′
2 exactly

if the corresponding transition in MPDS A asynchronously calls γ′
2. Let L(P) be the

language accepted by P simultaneously by empty stack and final state. It is easy to see
that M(L(P)) = M(q1, q2, γ1).

We now recall an important observation due to Parikh [24].
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Theorem 2 (Parikh). For an context-free language L1 there is a regular language L2
such that M(L1) = M(L2). Moreover, given a PDA recognizing L1 we can effectively
construct an automaton for L2.

Hence, there is a regular language L(q1, q2, γ1) such that M(L(q1, q2, γ1)) =
M(L(P)) = M(q1, q2, γ1). 
�

Lemma 1. Given an MPDS A, there is an RMS R with the same states and multi-set
alphabet such that (q0, ε, {γ0}) −→∗ (q, ε, M ∪ {γ}) for any M in the MPDS iff (q, γ)
is reachable in R.

From Lemma 1 we observe that the coverability problem of MPDS is decidable pro-
vided checking if (q, γ) is reached in an RMS is decidable. We, therefore, focus on the
reachability problem of RMSs. We will show that this problem is decidable by using
properties about well-quasi-orderings (wqo) and performing backward reachability as
in [12].

For the rest of this section let us fix an RMS R = (Q, Γ, δ, q0, γ0). Let us define an
ordering ≤ over the configurations of a RMS as follows: (q, M) ≤ (q′, M ′) iff q = q′

and M ⊆ M ′. An immediate consequence of Dickson’s Lemma [9] is the fact that this
ordering is a wqo. For a set of configurations S, define PRE(S) = {(q, M) |∃(q′, M ′) ∈
S.(q, M) ↪→ (q′, M ′)} to be the set of configurations that can reach some configuration
in S in one step. Finally, let PRE∗(S) =

⋃
i∈N

PREi(S) be the set of all configurations
that can reach some configuration in S in finitely many steps.

Recall that to check if (q, γ) is reachable, we need to see if some configuration in
V = CL({(q, {γ})}) is reachable from the initial configuration of the RMS. Hence, we
will compute PRE∗(V ) and check if (q0, {γ0}) ∈ PRE∗(V ). Observe that in an RMS,
if (q1, M1) ↪→ (q2, M2) then for every M , (q1, M1 ∪ M) ↪→ (q2, M2 ∪ M). Thus,
for an upward closed set U , PRE(U) is also upward closed. This suggests the following
algorithm. Compute progressively the sets Ui, where U0 = V and Ui+1 = PRE(Ui)∪Ui.
The sequence U0, U1, . . . is an increasing sequence of upward closed sets, and so by
Proposition 2 we know that this sequence stabilizes in finitely many iterations.

To prove decidability of the reachability problem, all we need to show is that we can
compute a representation of Ui+1, given a representation of Ui. We can represent an
upward closed set U by its minimal elements MIN(U) which will be finite (by Proposi-
tion 1). Thus, we need to describe how to compute MIN(Ui+1) from MIN(Ui).

Consider any upward closed set U and (q, M) ∈ MIN(U). For a transition tq =
((q′, γ), (q, L)) ∈ δ (whose destination is state q) and w ∈ L define MIN(PREw

tq
(U))

to be (q′, (M \ M(w)) ∪ {γ}). In other words, MIN(PREw
tq

(U)) is the least configura-
tion that can make a transition using tq by pushing M(w) elements into the bag and
reach a configuration in U . Let S = {MIN(PREw

tq
(U)) | for every w ∈ L, (q, M) ∈

MIN(U) and transition tq} Our first observation is that S can be represented using reg-
ular languages.

Lemma 2. There are regular languages Lq such that S =
⋃

q∈Q{q} × M(Lq).

Finally, we show that given an automaton representation of S, we can compute
MIN(PRE(U)). From the definition of S it follows that CL(S) = PRE(U). Thus
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MIN(PRE(U)) = MIN(S). Our next observation is that given an automaton representa-
tion of S, MIN(S) is computable.

Lemma 3. Given finite automata Aq for each Lq such that S =
⋃

q∈Q{q} × M(Lq),
MIN(S) is computable.

4.3 EXPSPACE Lower Bound

We now show that the control state reachability problem is, in fact, computationally very
difficult; we prove the problem is EXPSPACE-hard. The proof relies on ideas for show-
ing the hardness of the reachability problem of Petri Nets due to Lipton [19]. Therefore,
we first recall definitions needed to state Lipton’s observation, and then sketch how they
can be used to prove the lower bound.

Lipton’s result can be seen as showing a lower bound for halting problem of spe-
cial programs called net programs [10]. A net program is a finite sequence of labeled
commands that manipulate finitely many counter variables. Each statement of a net
program is labeled. The basic commands that constitute a net program are as follows:
incrementing a counter x (
 : x = x + 1); decrementing a counter x (
 : x = x − 1);
unconditional branching (
 : goto 
1); nondeterministic branching (
 : goto 
1 or goto

2); subroutine call (
 : gosub 
1); return from subroutine (
 : return); and halt (
 : halt).
So a net program is a sequence of distinctly labeled commands such that the targets of
goto and gosub statements are correct labels. Lipton’s result applies to well-structured
net programs, which are programs that can be decomposed into a main program that
only calls level 1 subroutines, which in turn only call level 2 subroutines, etc., and the
jump commands in a subroutine only have other commands of the same subroutine as
target. In terms of such programs Lipton’s result can be stated as follows.

Theorem 3 (Lipton [19,10]). Given a well-structured net program P the problem of
checking if some computation ends in the statement halt is EXPSPACE-hard.

We will prove an EXPSPACE lower bound for the control state reachability of MPDSs
by showing that every well-structured net program can be simulated by an MPDS. More
precisely, for any well-structured net program P , there is an MPDS A(P ) such that
some computation of P halts if and only if a special state qhalt is reachable in A(P ).
Unfortunately, due to lack of space, we cannot give all the details of the construction
of A(P ); instead we will only sketch the main ideas. Corresponding to each labeled
statement 
 : stmt, we will have a control state q�. For each variable x, there will be
a multi-set symbol x; the number of such symbols n the bag will denote the current
value of x. The stack at all times will have only one symbol, which will be popped at
times to remove a message from the multi-set store. We will now sketch the translation
of each of the basic commands. The goto statements just involve a change of control
state without changing either the stack or the multi-set store. Incrementing x involves
making a new asynchronous call to x (i.e., adding x to the multi-set). Decrementing x
is a two step process: first we pop the stack (to get to an empty stack) and reach a new
control state q′. State q′ has the property that if the new method serviced (i.e., removed
from multi-set and put on stack) is anything other than x, then it simply makes the same
asynchronous call again, pops the stack and goes back to q′; on the other hand if the
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new method to be serviced is x, it simply new moves to the control state corresponding
to the next statement. The idea in simulating subroutine calls is to transfer control to the
control state of the subroutine, and then at the same time make an asynchronous call
that stores the return address. On a return, we do something similar to the decrement
step, to only service the message storing the return address; based on the return address
we go to the appropriate new control state. The resulting MPDS has the same order of
control states as the net program, and the stack alphabet is also of the same size as the
net program. Thus, based on all these observations, we have the following theorem.

Theorem 4. The control state reachability problem for MPDSs EXPSPACE-hard.
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