
Communicating Timed Automata:
The More Synchronous, the More

Difficult to Verify�

Pavel Krcal and Wang Yi

Uppsala University, Sweden
{pavelk, yi}@it.uu.se

Abstract. We study channel systems whose behaviour (sending and
receiving messages via unbounded FIFO channels) must follow given
timing constraints specifying the execution speeds of the local compo-
nents. We propose Communicating Timed Automata (CTA) to model
such systems. The goal is to study the borderline between decidable and
undecidable classes of channel systems in the timed setting. Our tech-
nical results include: (1) CTA with one channel without shared states
in the form (A1, A2, c1,2) is equivalent to one-counter machine, implying
that verification problems such as checking state reachability and chan-
nel boundedness are decidable, and (2) CTA with two channels without
sharing states in the form (A1, A2, A3, c1,2, c2,3) has the power of Tur-
ing machines. Note that in the untimed setting, these systems are no
more expressive than finite state machines. This shows that the capa-
bility of synchronizing on time makes it substantially more difficult to
verify channel systems.

1 Introduction

FIFO channels (i.e., unbounded buffers) are widely used as a communication
mechanism in concurrent systems. In many applications, channels are a critical
element for the correct functioning of such systems. In this work, we study
timed systems whose components communicate through (unbounded) channels.
An example of such systems is illustrated in Figure 1, where A1 is a producer (or
sender) which generates messages and puts them into the buffer c1,2 and A2 is
a consumer (or receiver) which gets messages from the buffer. Assume that the
production and consumption of messages must follow given timing constraints
(specifying the relative execution speeds of the producer and the consumer). A
relevant question to ask is whether the channel is bounded, and if it is, what is
the maximal size of the buffer. This is a typical scenario in designing embedded
systems, where it is desirable to know a priori the maximal size of a buffer
needed to avoid buffer overflow and over-allocation of memory blocks in the
final implementation.

� Partially supported by the European Research Training Network GAMES.

T. Ball and R.B. Jones (Eds.): CAV 2006, LNCS 4144, pp. 249–262, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

250 P. Krcal and W. Yi

A1 A2

c1,2

Fig. 1. A schema of a CTA with one channel

In the literature, channel systems have been studied intensively in the un-
timed setting, within the context of verification of infinite state systems (see
below for related work which provides a brief summary of known results). To
our best knowledge, this is the first attempt to study channel systems in the
timed setting. The existing works address mainly channel systems that are a fi-
nite set of Communicating Finite State Machines (CFSMs). In the CFSM model,
no notion of time is assumed and systems run in a fully asynchronous manner in
the sense that any local move of a machine is allowed at any time. We observe
that for systems modeled as CFSMs, the source of infiniteness is in not only
unbounded channels but also the capability of synchronization or exchanging in-
formation between the machines. In fact, asynchronous systems – as illustrated
in Figure 1 and 2 with only one-directional communication, where the receivers
are not allowed to inform directly or indirectly the senders about the receipt
of messages – are no more expressive than finite state machines [Pac03, CF05],
and thus all properties such as reachability and channel boundedness are decid-
able. Roughly speaking, synchronization within CFSMs may be achieved through
either shared states [BZ83], or two-direction communication [FM97] or combina-
tion of accepting conditions and doubled one-direction channels [Pac03, Pac82].
The synchronization features together with the unboundedness of channels are
the essential source of undecidability for channel systems in the untimed setting.

A2

c1,2

A1

c2,3

A3

Fig. 2. A schema of a CTA with two channels

As a model for timed systems communicating via channels, we propose and
study Communicating Timed Automata (CTA), i.e., networks of timed automata
extended with (unbounded) channels. A CTA is a channel system where the
sending and receiving transitions of machines are constrained with clock con-
straints. We shall show that channel systems (with one channel) as illustrated
in Figure 1, which accept only regular languages in the untimed setting, are
expressive enough to simulate one-counter machines in the timed setting. How-
ever, the density of time adds no more expressive power (than discrete time),
and many questions of interests such as reachability and channel boundedness
are still decidable for CTA with one channel. As a main technical contribution,

Communicating Timed Automata 251

we present a novel proof showing that CTAs with one channel without sharing
states are no more expressive than one-counter machines. The proof uses the
notion of CDR (Clock Difference Relations) developed in [KP05]. To study the
borderline of decidability and undecidability for CTA, we have shown that CTAs
with two channels, as illustrated in Figure 2, can simulate Turing machines. By
this we show the theoretical limits of analysis of timed systems with unbounded
channels.

Related Work. Channel systems, i.e., networks of communicating finite state
machines (CFSMs) have been widely studied in the untimed setting, as a model
for communication protocols, in which no global notion of time is assumed
and any local move of FSMs at any time is allowed. The first undecidabil-
ity results for the untimed setting were presented in [BZ83] showing that two
FSMs with shared states and one channel can simulate Turing machines. Further
results consider even more restricted settings, showing that two identical sim-
ple FSMs with one channel in both directions are powerful enough to simu-
late a Turing machine [FM97]. A suprising result due to [Pac03, Pac82] is that
two FSMs connected by two channels going in the same direction can simu-
late Initial Post’s Correspondence Problem, and therefore have the power of
Turing machines. Classes of CFSMs with decidable reachability problems have
been identified in [CF05] (half-duplex systems), [Pac03] (cyclic systems with
one channel bounded), and [PP92] (cyclic systems with one-type messages).
Abstractions of CFSMs for acceleration in reachability analysis are presented
in [FPS03]. Another recent work [GMK04] shows the equivalence of several for-
malisms when the communication is existentially bounded. Apart from work
on systems with perfect channels, systems with unreliable channels have been
studied in [AJ96a, AJ96b]. An excellent survey on work in this direction can be
found in [CFP96].

2 Communicating Timed Automata

We assume that the reader is familiar with timed automata [AD94]. A network of
Communicating Timed Automata (CTA) is a tuple (A1, A2, . . . , An, ci1,j1 , ci2,j2 ,
. . . , cim,jm) where each Ai = (Qi, Act, Ci, Ei, q

0
i , Fi) is a timed automaton and

each ci,j , i, j ∈ {1 . . . n} is an unidirectional unbounded channel containing mes-
sages sent from Ai to Aj . Mutually disjoint finite sets Q1, . . . Qn contain loca-
tions of Ai’s. A finite set Act denotes a communication alphabet common for
all Ai’s. In addition, we assume that automata may perform an internal transi-
tion denoted by ε. Ci is a finite set of real-valued clocks (Ci, Cj are disjoint for
i �= j), q0

i ∈ Qi is an initial location, and Fi ⊆ Qi is a set of accepting locations.
Ei ⊆ Qi × ({1 . . . n}×{?, !}×Act)∪{ε}×G(C)×2C×Qi is the set of transitions
of Ai, where G(C) and 2C are timed automata guards and resets, respectively.
Transitions are labeled by not only a letter from Act, but also information about
whether a letter is sent or received (! or ?, respectively) and to or from which

channel. We write qi
k!a,g,r−→ q′i when (qi, k!a, g, r, q′i) ∈ E. Channels are assumed

to be perfect. We denote the contents of a channel by finite words over Act.

252 P. Krcal and W. Yi

Let νi : Ci �→ R≥0 denote a valuation of clocks in Ai. Let νi |= g denote
that the guard g is satisfied by νi and r(νi), r ⊆ Ci denote a valuation where all
clocks from r are reset and other clocks keep their values. A state of the system
is a tuple (q1, ν1, . . . , qn, νn, w1, . . . , wm), where qi ∈ Qi is a location of Ai and
wk ∈ Act∗ is the content of channel cik,jk

. We define the semantics of CTA based
on Labeled Transition System (LTS).

Definition 1 (Synchronized Semantics). The semantics of a CTA (A1, . . . ,
An, ci1,j1 , . . . , cim,jm) is a labeled transition system with initial state (q0

1 , ν0
1 , q0

2,
ν0
2 , . . . , q0

n, ν0
n, ε, ..., ε), where ν0

i (x) = 0 for all x ∈ Ci and two types of transitions
– time pass and discrete transition – defined as follows. Let s = (q1, ν1, . . . , qn, νn,
w1, . . . , wm) and s′ = (q′1, ν

′
1, . . . , q

′
n, ν′

n, w′
1, . . . , w

′
m).

– s
t−→ s′ if ν′

i = νi + t, q′i = qi and w′
j = wj for all 1 ≤ i ≤ n and 1 ≤ j ≤ m.

– s
(a,i,k,!)−→ s′ if qi

k!a,g,r−→ q′i, w′
l = a · wl, where wl is the content of ci,k, νi |= g,

ν′
i = r(νi), and q′j = qj , ν

′
j = νj , w

′
k = wk for all j �= i, k �= l,

– s
(a,i,k,?)−→ s′ if qi

k?a,g,r−→ q′i, a �= ε, w′
l · a = wl, where wl is the content of ck,i,

νi |= g, ν′
i = r(νi), and q′j = qj , ν

′
j = νj , w

′
k = wk for all j �= i, k �= l, and

– s
(ε,i)−→ s′ if qi

ε,g,r−→ q′i, νi |= g, ν′
i = r(νi), q′j = qj , ν

′
j = νj , w

′
k = wk for all

j �= i, k ∈ {1, . . . , m}, and there is no qi
k?a,ḡ,r̄−→ q′′i such that νi |= ḡ and

wl = w′′
l · a, where wl is the content of ck,i.

All automata move synchronously; time passes at the same pace for all of them.
The automata read from the channels in an urgent manner, an automaton is not
allowed to take an ε-transition if it can take a receiving a-transition and a is at
the head of the corresponding channel. Another possibility is to define reading as
non-urgent, i.e., there are no restrictions on taking ε transitions. In Section 3, we
show by an example that CTA’s even with non-urgent reading from the channels
have strictly more expressive power than CFSMs in the untimed setting.

Let S be a CTA and TS be its corresponding LTS. By ρ we denote a finite
path in TS , by [ρ] a sequence of labels occurring along ρ, and by [ρ]!i ([ρ]?i) a
sequence of letters from Act which is a projection of [ρ] to letters sent (received)
by an automaton Ai. If the location vector (q1, . . . , qn) of the last global state
of ρ is accepting (i.e., ∀i.qi ∈ Fi) then we say that the run is accepting, denoted
ρ � TS . A language accepted by a CTA S is a set LS(S) = {[ρ]!1 | ρ � TS}.

Note that we can model CFSMs by CTA. Therefore, all negative results proved
for CFSMs apply also to our model. In the following, we study the expressive
power of the model by identifying decidable and undecidable classes of CTA.

3 CTA with One Channel

Let us first consider a system (A1, A2, c1,2) schematically depicted in Figure 1.
It has been shown that CFSMs with such topology accept regular languages and
reachability and boundedness problems are decidable [Pac03, CF05]. We show

Communicating Timed Automata 253

that CTA of this form can accept also some non-regular context-free languages.
Moreover, we show that for such a CTA there is a one-counter machine which
accepts the same language. Therefore, state reachability and channel bounded-
ness problems are decidable, which follows from the decidability of emptiness
and infiniteness for context-free languages.

To establish the proof, we propose an alternative (desynchronized concrete)
semantics for CTA which resembles the reordering technique [Pac03] for CFSMs
and the local time semantics for timed systems [BJLY98]. However, states in
this semantics still contain concrete valuations of clocks. Therefore, we define a
(desynchronized symbolic) semantics where the continuous part of the state has
a finite symbolic representation. This symbolic semantics can be easily simu-
lated by a one-counter machine. We also show that instructions of a one-counter
machine can be simulated by a CTA of the form (A1, A2, c1,2) and thus the ex-
pressive power of CTA with this topology is equivalent to one-counter machine.

Intuitively, we let the automata to desynchronize so that there is at most one
message in the channel during the first part of the computation and that only
the producing automaton runs during the second part of the computation. Local
time (time from the beginning of the computation) can be different in A1 and
A2. We keep track of the difference between local times of automata in a real
valued variable. The acceptance condition is extended by a requirement that the
system should be synchronized, i.e., the value of this variable is equal to 0.

In the following, we denote A1 as A and A2 as B. We also write !a instead of 2!a
and ?a instead of 1?a. Without loss of generality, we assume that there is a clock
ti in each Ai which is never reset. The reason is to simplify the notation later. A
state in the concrete desynchronized semantics is a tuple (qA, νA, qB, νB, w, T),
where qA ∈ QA, qB ∈ QB, w ∈ Act∗, valuations νA, νB are as in the original
semantics, and T ∈ R is the lag of B behind A (it is negative if B is ahead).
By (qA, νA) lab−→ (q′A, ν′

A) we mean that there is a transition from (qA, νA) to
(q′A, ν′

A) labeled by lab in the standard timed automata semantics LTS. We need
to take special care about reading – a letter should not be read before it has
been produced.

We let the automata to alternate in running as long as the size of the channel
content does not exceed 1. When it contains at least two letters then only A can
move. We assume a ∈ Act and w ∈ Act∗ in the following definition.

Definition 2 (Desynchronized Concrete Semantics). The desynchronized
concrete semantics of a CTA (A, B, qA,B) is a labeled transition system with
initial state (q0

A, ν0
A, q0

B, ν0
B, ε, 0) and transitions induced by the following rules:

– (qA, νA, qB , νB, w, T) t−→dc (qA, νA + t, qB , νB, w, T + t) if (qA, νA) t−→ (qA,
νA + t),

– (qA, νA, qB , νB, w, T)
(a,1,2,!)−→dc (q′A, ν′

A, qB, νB, a ·w, T) if (qA, νA) !a−→ (q′A, ν′
A),

– (qA, νA, qB , νB, w, T) t−→dc (qA, νA, qB, νB + t, w, T − t) if (qB , νB) t−→ (qB ,
νB + t) and |w| ≤ 1,

– (qA, νA, qB , νB, a, T)
(a,2,1,?)−→dc (qA, νA, q′B, ν′

B , ε, T) if (qB , νB) ?a−→ (q′B, ν′
B)

and T ≤ 0,

254 P. Krcal and W. Yi

– (qA, νA, qB , νB, w, T) ε−→dc (qA, νA, q′B , ν′
B, w, T) if (qB , νB) ε−→ (q′B , ν′

B),

|w| ≤ 1, if T ≥ 0 then (w = a ⇒ (qB , νB) ?a
�), and if T < 0 then (w =

a ∧ (qB , νB) ?a
�).

A run with the last state (qA, νA, qB, νB, w, T) is accepting if qA ∈ FA, qB ∈
FB, and T = 0. Definition of the accepted language LDC(S) for a given CTA
S is the same as for synchronized semantics. The set of reachable states of a
given CTA is equal to the set of states reachable in its desynchronized concrete
semantics where T = 0. Also, the language accepted by a CTA is the same in
both semantics.

Lemma 1. For a given CTA S of the form (A, B, cA,B), the reachability set
{(qA, νA, qB, νB, w) | (q0

A, ν0
A, q0

B, ν0
B, ε) →∗ (qA, νA, qB, νB, w)} is equal to the

set {(qA, νA, qB ,νB , w) | (q0
A, ν0

A, q0
B , ν0

B, ε, 0) −→dc
∗ (qA, νA, qB, νB, w, 0)}.

Moreover, LS(S) = LDC(S).

The basic idea of the proof of this lemma is the same as in [Pac03]. Desynchro-
nized concrete semantics cannot reach more states where T = 0 or accept more
words because the counter gives us a possibility to check the following conditions
on the transitions of B. A letter can be read only after it has been produced
and ε-transitions can be taken only when no enabled transition is labeled by the
head of the buffer.

The desynchronization semantics shows how to avoid necessity to remember
the whole content of the buffer during the run of a CTA. Note that one does not
have to remember the content of the channel when its size exceeds 1, because
it will never be read. The price we have to pay is an additional real number
as a part of the state. In case of discrete time, T is an integer and therefore
one can replace such a system by a language equivalent (in fact, bisimilar) one-
counter machine. To be able to prove that there is a one-counter machine which
is language equivalent to such a system in the dense time, we need to handle real
valued clocks and T in a symbolic way, such that we get a finite state control
unit and one counter.

The first step is to use regions [AD94] instead of valuations for each automa-
ton. We denote regions by D, DA, DB. When D is a region over clocks of two au-
tomata A and B then by (νA, νB) ∈ D we mean that ν ∈ D where ν(x) = νA(x)
for all x ∈ CA and ν(y) = νB(y) for all y ∈ CB. We write D ⇒ DA if D is a
region over clocks of A, B, DA is a region over clocks of A, and for all (ν, ν′) ∈ D
it holds that ν ∈ DA.

Now we need to take care of T . There are two sources of infinity in T –
its integral part, which can grow arbitrarily large, and its fractional part. We
remember the integral part of T in a counter, denoted N . To remember the
fractional part of T , we use the extra local clocks tA and tB of A and B. We
observe that the difference of their fractional parts is equal to the fractional part
of T (we do not use their integral parts). More precisely, if (qA, νA, qB, νB, w, T)
is reachable and N =
T � then T = N + (fr(νA(tA)) − fr(νB(tB))) if νA(tA) ≥
νB(tB) and T = N + (1 − (fr(νB(tB)) − fr(νA(tA)))) if νA(tA) < νB(tB).

Communicating Timed Automata 255

The fractional parts of tA and tB are then symbolically represented by regions
and we remember their relative order as a constraint of the form tA �� tB, where
��∈ {<, =, >}. Assume that local regions DA, DB were reached during the stan-
dard reachability analysis. For two given local regions DA, DB, our goal is to
find a global region D which contains only valuations reachable in the desyn-
chronized concrete semantics. We can define D as an ordering of the fractional
parts of clocks which is consistent with DA, DB (D ⇒ DA, D ⇒ DB), and with
tA �� tB.

However, such constraints on global regions are not sufficient. There are CTA
for which symbolic analysis reaches DA, DB, tA �� tB, but there is a global region
D consistent with DA, DB, tA �� tB which contains unreachable valuations.

To eliminate such global regions, we will remember also relations between
clock differences. We use the fact that tA and tB are never reset and relate all
other clocks to them. The concept of clock difference relations has been used
before in [KP05] to characterize reachability relations. Here we give a slightly
modified definition which suits our purposes better. To differentiate this defini-
tion from the original one, we call it desynchronized clock difference relations
here, but later we will use only an abbreviation CDR or clock difference relation.

Definition 3. A desynchronized clock difference relation (CDR) is a set of
(in)equalities of the form exp �� exp or exp �� 1 − exp where exp is a clock
difference (over the clocks of either A or B) in the form: tA − x, x − tA, tB − y
or y − tB, x is a clock of A, y is a clock of B, and ��∈ {<, >, =}.
Definition 4. The semantics of a CDR is defined as follows. Assume C is a
CDR. We say that a pair of valuations (ν, ν′) satisfies C ((ν, ν′) � C) if:

– if x − y �� u − v ∈ C then fr(ν(x)) − fr(ν(y)) �� fr(ν′(u)) − fr(ν′(v)),
– if x−y �� 1−(u−v) ∈ C then fr(ν(x))− fr(ν(y)) �� 1−(fr(ν′(u))− fr(ν′(v))),

Additionally, we require that for each x− y (or u− v), fr(ν(x))− fr(ν(y)) > 0.

We will use clock difference relations to restrict possible merges of regions over
clocks of A and B. The merged regions represent only reachable concrete desyn-
chronized valuations now.

States of the desynchronized symbolic system (qA, DA, qB, DB, C, tA �� tB,
w, N) consist of locations and regions of A and B, respectively, clock difference
relations, relation of tA and tB, w ∈ Act∗ is a content of the buffer, and N is an
integer used to remember the difference between the integral parts of tA and tB.

We need some more technical definitions before the definition of the semantics.
By D |= C where D is a global region we mean that there exists (νA, νB) ∈ D
such that (νA, νB) |= C. We write e for a clock difference relation (a single
(in)equality). We define a predicate Consistent(DA, DB, C, tA �� tB) = ∃D.D(tA)
�� D(tB), D |= C, D ⇒ DA, D ⇒ DB.

Definition 5 (Desynchronized Symbolic Semantics). The desynchronized
symbolic semantics of a CTA (A, B, qA,B) is a labeled transition system with ini-
tial state (q0

A, D0
A, q0

B, D0
B, ∅, tA = tB , ε, 0), transition rules are given in Table 1,

Table 2, and Table 3.

256 P. Krcal and W. Yi

Table 1. Rules for symbolic transitions induced by the region graph of A. For clarity,
we omit locations in the rules for time pass.

Time Pass:
DA → D′

A, ∃x ∈ integral (DA)
(DA, DB , C, tA < tB, w, N) −→ds (D′

A, DB , C, tA < tB, w, N)
(DA, DB , C, tA = tB, w, N) −→ds (D′

A, DB , C, tA > tB, w, N)
(DA, DB , C, tA > tB, w, N) −→ds (D′

A, DB , C, tA > tB, w, N)
DA, �x ∈ integral (DA)

(DA, DB , C, tA < tB, w, N) −→ds (DA, DB , C, tA = tB , w, N + 1)
if Consistent(DA, DB , C, tA = tB)

(DA, DB , C, tA = tB, w, N) −→ds (DA, DB , C, tA > tB, w, N)
DA → D′

A, ∃x ∈ integral (D′
A)

(DA, DB , C, tA < tB, w, N) −→ds (D′
A, DB , C′, tA = tB, w, N + 1)

if Consistent(D′
A, DB , C′, tA = tB)

(DA, DB , C, tA < tB, w, N) −→ds (D′
A, DB , C′, tA < tB, w, N)

if Consistent(D′
A, DB , C′, tA < tB)

(DA, DB , C, tA > tB, w, N) −→ds (D′
A, DB , C′, tA < tB, w, N)

if tA ∈ integral (D′
A), tB /∈ integral(DB)

(DA, DB , C, tA > tB, w, N) −→ds (D′
A, DB , C′, tA = tB, w, N + 1)

if tA ∈ integral (D′
A), tB ∈ integral(DB)

Discrete Transition:
(qA, DA) → (q′

A, D′
A), x is reset

(qA, DA, qB , DB , C, tA �� tB, w, N)
(a,1,2,!)−→ds (q′

A, D′
A, qB , DB , C′, tA �� tB, a · w, N)

if a ∈ Act ∪ {ε} is the label on the corresponding
edge of A

(qA, DA) → (q′
A, DA), no clock is reset

(qA, DA, qB , DB , C, tA �� tB, w, N)
(a,1,2,!)−→ds (q′

A, DA, qB , DB , C, tA �� tB, a · w, N)
if a ∈ Act ∪ {ε} is the label on the corresponding
edge of A

A run with the last state (qA, DA, qB, DB, C, tA �� tB, w, N) is accepting if
qA ∈ FA, qB ∈ FB, N = 0, and tA = tB. Definition of the accepted language
LDS(S) for a given CTA S is the same as for synchronized semantics. Now we
state that the desynchronized symbolic semantics is language equivalent to the
desynchronized concrete one.

Lemma 2. For a given CTA S, LDS(S) = LDC(S).

Proof. Proof is given in the full version of this paper [KY06].
Obviously, this system can be replaced by a one-counter machine accepting

the same language (actually, a bisimilar one-counter machine).

Theorem 1. State reachability and channel boundedness problems are decidable
for CTA of the form (A1, A2, c1,2).

Communicating Timed Automata 257

Table 2. Rules for symbolic transitions induced by the region graph of B. All tran-
sitions are constrained by |w| ≤ 1. Transitions for time pass are the same as for A
except for that N is never incremented, but it is decremented when tA = tB changes
to tA < tB and inequality signs in tA �� tB are inverted. Complete table is given in the
full version of this paper [KY06].

Discrete Transition:
(qB , DB) → (q′

B , D′
B), x is reset

(qA, DA, qB , DB , C, tA �� tB, a, N)
(a,2,1,?)−→ds (qA, DA, q′

B , D′
B , C′, tA �� tB, ε, N)

if ?a, a ∈ Act is the label on the corresponding
edge of B, and N < 0 ∨ (N = 0 ∧ tA = tB)

(qA, DA, qB , DB , C, tA �� tB, w, N) ε−→ds (qA, DA, q′
B , D′

B , C′, tA �� tB, w, N)
if ε is the label on the corresponding edge of B,
if N ≥ 0 then (w = a ⇒ (qB, νB) ?a

�) and
if N < 0 then (w = a ∧ (qB , νB) ?a

�)
Similarly when no clock is reset.

Proof. Follows from Lemma 1, Lemma 2, and basic language theory.
Now we show that the instructions of a one-counter machine can be encoded

in a CTA with one channel. The counter is encoded as the number of a’s in
the channel. Figure 3 shows how to encode incrementation of the counter qi:
C:=C+1; goto qj and conditional decrementation of the counter qi: if C=0 then
goto qj else C:=C-1; goto qk. Each transition takes exactly one time unit. We
omit clocks and guards on all other edges (they are labeled by x = 1, x := 0).
Test for zero is performed by a nondeterministic choice for A. To check that the
choice was correct, A produces b. If it was wrong then b is not consumed by the
corresponding transition of B, stays in the channel and eventually blocks the
computation of B. At the end of the computation, B has to check whether there
is any b in the channel. If it is the case then it moves to an error location.

To illustrate the expressive power of CTA, Figure 4 shows a (schematic de-
scription of a) CTA which accepts a non-regular context-free language anbanb.
Again, each transition takes exactly one time unit and we omit x = 1, x := 0
from all edges. The number of a’s is remembered in the size of the channel
content and we use different speed of production/consumption to maintain the
correct number of a’s in the channel. At the beginning, A produces twice faster
than B reads. There are n/2 a’s in the channel when B reads the first b and
from this moment B reads twice faster then A produces.

From the point of view of the desynchronized semantics, the number of a’s in
the channel corresponds to the level of desynchronization. After reading the first
n letters a the lag of B is 2n time units. Then it reads a dividing letter b and
reads a’s again. If there are n letters a then A and B get synchronized again and
the accepting configuration is reachable after two more steps. If there are more
a’s then B gets stuck reading them, because it reads faster than A produces. If
there are less a’s then B can read b immediately and it has to go down to the
error state. All locations of A are accepting, but the only accepting location of
B is the next to the last one.

258 P. Krcal and W. Yi

Table 3. Updates of the clock difference relations according to the type of the transition
of the desynchronized symbolic system. We write e for a clock difference relation (a
single (in)equality). We write exp for an expression of the form x − y or 1 − (x − y)
where x, y are clock from the automaton given by the context.

C’ Condition, A moves
DA → D′

A, ∃x ∈ integral (D′
A)

e e ∈ C, e does not contain any x ∈ integral (D′
A)

y − x ��−1 1 − (exp) x − y �� exp ∈ C, x ∈ integral(D′
A)

DA → D′
A, x is reset
e e ∈ C, e does not contain x

tA − x > exp tA − y ≥ exp ∈ C
tA − x < 1 − exp z − tA ≥ exp ∈ C

tA − x < tB − y tA < tB , y ∈ integral (DB)
tA − x < 1 − (y − tB) tA < tB, DB(y) > DB(tB)

tA − x = tB − y tA = tB , y ∈ integral (DB)
tA − x > tB − y tA = tB, y /∈ integral (DB), DB(y) < DB(tB)

tA − x < 1 − (y − tB) tA = tB, DB(y) > DB(tB)

tA − x > tB − y tA > tB, DB(y) < DB(tB)

C’ Condition, B moves
DB → D′

B , ∃x ∈ integral (D′
B)

e e ∈ C, e does not contain any x ∈ integral(D′
B)

exp �� y − x exp �� 1 − (x − y) ∈ C, x ∈ integral (D′
B)

exp �� 1 − (y − x) exp �� x − y ∈ C, x ∈ integral (D′
B)

DB → D′
B , x is reset
e e ∈ C, e does not contain x

exp < tB − x exp ≤ tB − y ∈ C
exp < 1 − (tB − x) exp ≤ z − tB ∈ C

tA − y > tB − x tA > tB, y ∈ integral (DA)
y − tA < 1 − (tB − x) tA > tB, DA(y) > DA(tA)

tA − y = tB − x tA = tB, y ∈ integral (DA)
tA − y < tB − x tA = tB, y /∈ integral (DA), DA(y) < DA(tA)

y − tA < 1 − (tB − x) tA = tB, DA(y) > DA(tA)

tA − y < tB − x tA < tB, DA(y) < DA(tA)

This automaton accepts the same language also in discrete time. It also shows
the expressive power of CTA with one channel without urgency in the semantics,
i.e., ε-transitions of B are not restricted. The language accepted by the CTA in
Figure 4 remains the same even for non-urgent semantics when the only accepting
location of A is the location m.

Communicating Timed Automata 259

(a)

(b)

error

!aA:
qi qj

A:
ε

!b
qi ε

qj

qk

εB:
qi qj

ε

?b

?b
qi qj

qk?a

B:

Fig. 3. A CTA encoding instructions of a one-counter machine. (a) encodes incremen-
tation of the counter and (b) encodes conditional decrementation of the counter.

error

B:

A: ε

ε

?b

!b
ε

ε

!a

ε

?a

ε

?b ε ?b

ε!b

ε

ε

ε

?a

ε

ε

ε
ε

m

!a

ε

Fig. 4. A CTA accepting the language anbanb

4 CTA with Two Channels

Now we consider systems of the form (A1, A2, A3, c1,2, c2,3) shown in Figure 2.
We show that such CTA have the Turing power. This contrasts with the CFSMs,
where systems of this form can accept only regular languages. The notion of the
global time changes substantially the expressive power.

We cannot encode counters in the number of a’s as we did it for one-counter
machine, because there is no way how to verify nondeterministic choice of A1
when deciding whether c2,3 is empty. We will build on the construction from
Figure 4. Again, we use different speed of production/consumption to maintain
number of a’s in the channels.

To show the simulation of a two-counter machine by a CTA with two channels
we first notice that there is a system which accepts a language an(anbanb)∗.
Therefore, there is a system which can keep the number of a’s at the same level

260 P. Krcal and W. Yi

during the whole computation. It works on the same principle as the system
from Figure 4. Using the first channel (c1,2) and the desynchronization of the
automata we check that 2i-th and 2i+1-th sequence of a’s have the same length
and, at the same time, send the 2i + 1-th sequence to the second channel (c2,3).
Then the same construction is used to check that 2i + 1-th sequence has the
same length as the 2i + 2-th sequence. A schematic description of this CTA is
given in the full version of this paper [KY06].

The CTA simulating a two-counter machine accepts a language corresponding
to the sequence of the encoded values of the counters during the computation
of this machine. The values m, n of the two counters C1, C2 are encoded by the
length of the sequence of a’s – the corresponding sequence is a2n3m

. Therefore,
incrementation of the counter C1 corresponds to doubling of the length of the
sequence, decrementation of C1 to halving, incrementation of C2 to multiplying
by 3, and decrementation of C2 to dividing by 3. To test a counter for zero, we
need to check whether the length of the sequence is divisible by 2 or 3. We use
the same trick as for the language anb(anbanb)∗. Just the consecutive sequences
can be of the form anba2n, anba3n, a2nban, or a3nban. This can be easily done,
since each of these pairs are context-free languages, and the correct overlapping
is secured by using both channels in an alternating manner.

Figure 5 depicts a fragment for doubling of the length of the sequence of a’s,
which corresponds to the incrementation of C1. The relative speed of production
and consumption is set so that A2 does not end in the error sink only if the second

?b

?b?b

εε

?a

!a !a ε

?a

?a
!b

?a

?b?b ?b

ε
ε?b ?b ?b

!b

ε ?a
ε

ε

ε
ε

!b

ε

ε

?a ε

ε

ε !b ε ε
ε!a

!b ε
ε

!b
!a !a ε

A1:

A2:

A3:

Fig. 5. A widget for doubling of the number of a’s – incrementation of C1

Communicating Timed Automata 261

sequence is twice as long as the first one. The third sequence is as long as the
second one (otherwise, A3 ends up in the error sink), but A2 gets desynchronized
at the same time. This is a preparation for the next operation. Therefore, the
simulation of the next instruction does not start with the first loop, but it goes
directly to the second loop (behind the dashed line). This is to ensure overlapping
of the length checking. Each transition takes one time unit, we omit guards and
resets (x = 1, x := 0). All these constructions also work in the discrete time, but
they do not work for non-urgent semantics. The encodings for halving and test
for zero are given in the full version of this paper [KY06].

Theorem 2. Reachability for networks of communicating timed automata of the
form (A1, A2, A3, c1,2, c2,3) is undecidable.

5 Conclusions

To the best of our knowledge, this is the first attempt to study channel systems in
the timed setting. We have proposed CTA as a general framework for modeling
of channel systems in which the relative speeds of message production and con-
sumption by local components must meet given timing constraints. Our goal is
to mark the basic ground by identifying decidable and undecidable problems for
such systems and raise relevant questions for future work. Our technical results
can be summarized as follows: (1) CTA with one channel without sharing states
in the form (A1, A2, c1,2) (as shown in Figure 1) is equivalent to one-counter
machine and therefore questions such as state reachability and channel bound-
edness are decidable for such systems, and (2) CTA with two channels without
sharing states in the form (A1, A2, A3, c1,2, c2,3) (as shown in Figure 2) has the
power of Turing machines.

An interesting question related to the timed setting is whether one can synthe-
size the clock constraints of a CTA (or a controller for a CTA in general) under
given liveness requirements such that the channel content remains bounded. As
future work, we will also study and develop abstraction techniques for efficient
analysis of timed channel systems.

References

[AD94] Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical
Computer Science, 126(2):183–235, 1994.

[AJ96a] Parosh Aziz Abdulla and Bengt Jonsson. Undecidable verification prob-
lems for programs with unreliable channels. Information and Computa-
tion, 130(1):71–90, 1996.

[AJ96b] Parosh Aziz Abdulla and Bengt Jonsson. Verifying programs with unre-
liable channels. Information and Computation, 127(2):91–101, 1996.

[BJLY98] Johan Bengtsson, Bengt Jonsson, Johan Lilius, and Wang Yi. Partial
order reductions for timed systems. In Proc. of CONCUR’98, volume
1466 of LNCS, pages 485–500. Springer, 1998.

262 P. Krcal and W. Yi

[BZ83] Daniel Brand and Pitro Zafiropulo. On communicating finite-state ma-
chines. J. ACM, 30(2):323–342, 1983.

[CF05] Gérard Cécé and Alain Finkel. Verification of programs with half-duplex
communication. Information and Computation, 202(2):166–190, 2005.

[CFP96] Gérard Cécé, Alain Finkel, and S. Purushothaman Iyer. Unreliable chan-
nels are easier to verify than perfect channels. Information and Compu-
tation, 124(1):20–31, 1996.

[FM97] Alain Finkel and Pierre McKenzie. Verifying identical communicating
processes is undecidable. Theoretical Computer Science, 174(1-2):217–
230, 1997.

[FPS03] Alain Finkel, S. Purushothaman Iyer, and Grégoire Sutre. Well-abstracted
transition systems: Application to FIFO automata. Information and
Computation, 181(1):1–31, 2003.

[GMK04] Blaise Genest, Anca Muscholl, and Dietrich Kuske. A Kleene theorem for
a class of communicating automata with effective algorithms. In Proc. of
DTL’04, volume 3340 of LNCS, pages 30–48. Springer, 2004.

[KP05] Pavel Krčál and Radek Pelánek. On sampled semantics of timed systems.
In Proc. of FSTTCS’05, volume 3821 of LNCS, pages 310–321. Springer,
2005.

[KY06] Pavel Krcal and Wang Yi. Communicating timed automata. Technical
Report 2006-008, Uppsala University, 2006.

[Pac82] Jan K. Pachl. Reachability problems for communicating finite state ma-
chines. Technical Report CS-82-12, Department of Computer Science,
University of Waterloo, 1982.

[Pac03] Jan K. Pachl. Reachability problems for communicating finite state ma-
chines. ArXiv Computer Science e-prints, arXiv:cs/0306121, 2003.

[PP92] Wuxu Peng and S. Purushothaman Iyer. Analysis of a class of communi-
cating finite state machines. Acta Informatica, 29(6/7):422–499, 1992.

	Introduction
	Communicating Timed Automata
	CTA with One Channel
	CTA with Two Channels
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

