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Abstract. Predicate abstraction is a major abstraction technique for
the verification of software. Data is abstracted by means of Boolean
variables, which keep track of predicates over the data. In many cases, the
technique suffers from the fact that it requires at least one predicate for
each iteration of a loop construct in the program. We propose to extract
looping counterexamples from the abstract model, and to parameterize
the simulation instance in the number of loop iterations.

1 Introduction

Software Model Checking [1] promises an automatic way to discover flaws in large
computer programs. Despite of this promise, software model checking techniques
are applied rarely, as software verification tools lack scalability due to the state-
space explosion problem.

Abstraction techniques map the original, concrete set of states to a smaller set
of states in a way that preserves the property of interest. Predicate abstraction is
one of the most popular and widely applied methods for systematic state-space
reduction of programs [2]. This technique is promoted by the success of the Slam

project [3,4]. Slam is used to show lightweight properties of Windows device
drivers, and predicate abstraction enables Slam to scale to large instances.

In predicate abstraction, data is abstracted by keeping track of certain pred-
icates over the data. Each predicate is represented by a Boolean variable in the
abstract program, while the original data variables are eliminated. The resulting
Boolean program is an over-approximation of the original program. One starts
with a coarse abstraction, and if it is found that an error-trace reported by the
model checker is not realistic, the error trace is used to refine the abstract pro-
gram, and the process proceeds until no spurious error traces can be found [5].
The actual steps of the loop follow the abstract-verify-refine paradigm [6]. A
second well-known implementation of this method is the software model checker
Blast [7].

In many cases, the technique suffers from the fact that it requires at least one
predicate for each iteration of a loop construct in the program. This is due to the
fact that the simulation and refinement phases are ignorant of program loops.
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The existing simulation techniques exactly simulate as many loop iterations as
contained in the abstract trace. Most of the existing refinement techniques cor-
respond to performing one more unwinding of the loop.

The information about looping structures is actually contained within the
abstract model M̂ . However, the model checkers for M̂ never output error traces
with loops, as they aim at counterexamples that are as short as possible.

Contribution. We propose a novel predicate abstraction algorithm that makes
two contributions:

1. We extend the abstraction refinement framework with the concept of ab-
stract counterexamples that contain (possibly nested) loops. We add the ca-
pability to compute such counterexamples to Boppo [8], a symbolic model
checker for Boolean programs. The computation is done by means of a propo-
sitional SAT solver.

2. We describe a two-phase algorithm for simulating such a looping counterex-
ample on the concrete model. The first phase attempts to compute a number
n that corresponds to the number of loop iterations necessary to reach an
error state. It is built using closed form solutions of recurrences and over-
approximates the program. The second phase is a conventional simulation
with n unwindings of the loop, which rules out spurious counterexamples.
The predicates contained in the equation built for the first phase are used
to improve the refinement in case the trace is spurious.

We report experimental results, which demonstrate that that our algorithm
improves the performance significantly for benchmarks where a conventional
abstraction refinement implementation has to perform repeated refinement steps
to unroll the loop.

Related Work. The Newton tool is used by the Slam toolkit to decide the
feasibility of counterexamples and to generate new predicates in order to refine
the abstraction [9]. Newton is limited to finite counterexamples without loops.
Therefore, Slam suffers from the problem described above.

Path Slicing is an approach that shortens counterexamples by dropping state-
ments that have no impact on the reachability of the program location in ques-
tion [10]. The statements and branches that can be bypassed are eliminated by
backward slicing: For each program location, the set of relevant variables whose
valuations at that point determine whether or not the error location is reachable
is computed. The feasibility of a path slice implies the feasibility of the original
counterexample, but assumes termination of the omitted code sequences.

Path slicing eliminates loops during the symbolic simulation if and only if
they do not contribute to the reachability of the error location. Therefore, path
slicing is orthogonal to the approach that we present, since it prevents expensive
unrolling of loops that are not related to the error.

Linear programs have been proposed by Armando as an alternative, finer
grained formalism for abstractions of sequential programs [11]. Due to the higher
expressiveness of linear programs (in comparison to Boolean programs), this
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approach may yield a smaller number of spurious execution traces. However, the
abstraction algorithm is restricted to a pointer-less subset of the C programming
language that employs linear arithmetics and arrays [12].

Rybalchenko and Podelski present a complete method for detecting linear
ranking functions of unnested program loops [13]. The inferred ranking function
poses an upper bound for the iterations of the loop. This bound is not necessarily
tight. Combined with abstraction-refinement, this approach enables proofs of
program termination [14]. A proof of termination is insufficient to show the
feasibility of counterexamples with loops, since the violation of the property
usually depends on the number of iterations. Therefore, we utilize an incomplete
method that provides the exact number of loop iterations necessary to reach the
error state.

Linear algebra can be used for an inter-procedural program analysis that
computes all affine relations which are valid at a program point [15]. The anal-
ysis presented by Müller-Olm interprets all assignment statements with affine
expressions on the right hand side, while all other assignments are considered
to be non-deterministic. It infers all linear and polynomial relations (up to a
given degree). The approach is control-flow insensitive and cannot be used to
decide reachability. The relations over the induction variables of a loop could aid
the computation of the number of loop iterations that makes a counterexample
feasible.

Zhang provides a sufficient condition for infinite looping and uses constraint
solving techniques to detect infinite loops [16]. The method is sound, but not
complete, since it is based on deciding theorems that involve non-linear integer
arithmetic. The only goal of this approach is the detection of infinite loops.
Feasibility of terminating loops is not discussed. Furthermore, nested loops are
not considered.

Van Engelen presents an analysis method for dependence testing in the
presence of nonlinear and non-closed array index expressions and pointer
references [17]. His work is discussed in more detail in context with our loop
simulation algorithm in Section 4. Van Engelen’s approach targets compiler op-
timization, while our approach aims at feasibility checking and refinement.

Outline. The paper is organized as follows. Section 2 provides background on
predicate abstraction refinement for software programs. The contribution of this
paper is in Sections 3 to 4. Section 3 describes the syntax and semantics of loop-
ing abstract counterexamples. The simulation of such counterexamples on the
concrete program is illustrated in Section 4. Experimental results are provided
in Section 5.

2 Background

2.1 Predicate Abstraction and Refinement

Figure 1 shows an overview of counterexample-guided abstraction refinement.
We provide background on each of the four steps of the loop.
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Fig. 1. Counterexample-guided abstraction refinement with two-phase simulation

Abstraction. The concrete model M is mapped to an abstract model M̂ by
means of an abstraction function α. The abstraction function α maps concrete
states s ∈ S to abstract states ŝ ∈ Ŝ. We use γ to denote α−1, which maps
an abstract state back to a set of corresponding concrete states. Existential
abstraction [18] is a reachability preserving transformation that guarantees that
the abstract transition relation a→ is an over-approximation of c→, the transition
relation of the original program. For reasons of efficiency, most implementations
also over-approximate a→.

Given a set of predicates P , a predicate abstraction αP (ϕ) is the strongest
Boolean combination ϕ̂ of these predicates such that ϕ implies ϕ̂. The variables
of the abstract state ŝ ∈ Ŝ correspond to the predicates in P , and their valuation
is determined by ϕ̂.

Verifying M̂ . The model checker for M̂ searches the state space of M̂ for
states that violate a given specification. If no such state exists, the property
holds on M , and the algorithm terminates. If an error state ŝn exists, the model
checker reports a counterexample that is a sequence of states ŝ1, . . . , ŝn s.t. ŝ1
is an initial state, ŝi

a→ ŝi+1 for each i, 1 ≤ i < n, and ŝn is an error state.
Bebop is a symbolic model checker for Boolean programs that is used in

Slam to check the abstract model [19]. Boolean programs provide the same
control flow constructs (including function calls) as C programs. Bebop uses
BDDs as internal representation for states and features function summarization.

Moped is a BDD-based model checker for pushdown systems [20], which are
as expressive as Boolean programs. Zing [21], an explicit-state model checker for
concurrent programs, is used in an experimental version of Slam that provides
support for the verification of concurrent programs [8].

Bebop, Moped, and Zing produce counterexamples ŝ1, . . . , ŝn with the prop-
erty ŝi �= ŝj for all i �= j, since they aim at providing the shortest counterexample
possible.

Simulation. An abstract counterexample ŝ1, ŝ2, . . . , ŝn is feasible in M iff there
exists a corresponding sequence of concrete states s1, s2, . . . , sn such that si ∈
γ(ŝi) for 1 ≤ i ≤ n and there is a concrete transition si

c→ si+1 for 1 ≤ i < n.
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Since any feasible concrete path serves our purpose, it is sufficient to demand
that only the locations of corresponding states match. We give a formal definition
of feasibility of counterexamples in terms of their strongest postcondition [22].

Definition 1 (Strongest Postcondition). The strongest postcondition SP of
a statement is defined as

SP (x := e) = λf.∃x′.f [x′/x] ∧ (x = e[x′/x])
SP (e) = λf.f ∧ e

where e[x′/x] denotes the substitution of all free occurences of x in e by x′.

Let �(ŝi) denote the program location that is part of the abstract state ŝi, and let
σi denote the concrete statement corresponding to �(ŝi). The strongest postcon-
dition for the sequence of statements σ1, . . . , σn is SP (σ1, . . . , σn) := SP (σn) ◦
SP (σn−1)◦ . . .◦SP (σ1). The resulting quantifiers can be eliminated by means of
skolemization. Intuitively, this corresponds to a transformation of the path into
single static assignment form (SSA) [23]. The formula SP (σ1, . . . , σn)(true)
represents all states that are reachable by executing the statements on the path
s1, . . . , sn.

Definition 2 (Feasibility of Counterexamples). A counterexample is fea-
sible iff SP (σ̄)(true) is satisfiable for the corresponding sequence σ̄ of concrete
statements. A counterexample is spurious if it has an infeasible prefix.

Newton uses a general purpose Nelson-Oppen style theorem prover to deter-
mine the feasiblity of counterexamples. Our model checker SatAbs [24] trans-
lates the strongest postconditions into Boolean formulas and uses an incremental
SAT solver to decide the SAT instances that result from unwinding the path.

Refinement. If the simulation yields a spurious counterexample p, M̂ is refined
such that p is removed from M̂ . This is done by adding an appropriate set
of predicates. Newton uses heuristics to extract such predicates from SP (p).
McMillan observed that for each cut point of the path there exists a formula
ψ (called the Craig interpolant) that represents precisely the facts that need
to be known between σi to σi+1 to prove infeasibility [25]. This approach is
implemented in Blast. A preliminary analysis identifies a number of promising
cut points. The resulting interpolants are then used as new predicates. Both
Newton and Blast are unaware of loops and handle unrolled loops the same
way as counterexamples that do not contain iterations.

2.2 Abstracting Programs with Loops

The traditional abstraction-refinement scheme with predicate abstraction per-
forms poorly on programs that contain loops as shown in Figure 2. Slam, Blast,
and previous versions of SatAbs need at least 1000 refinement steps that succes-
sively add predicates over the loop counter (as indicated in Figure 3) to produce
a feasible counterexample. We present a detection algorithm for loops contained
in the abstract model in Section 3 and a novel two-phased simulation approach
in Section 4.
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int i, s = 0;
int a[1000];
for (i = 0; i ≤ 1000; i = i + 1) {

assert(i < 1000);
s = s + a[i]; }

Fig. 2. A simple program with a buffer overflow
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Fig. 3. Iterative abstraction refinement for the program in Figure 2

3 Abstract Counterexamples with Loops

Counterexamples with Loops. Consider the Boolean Program in Figure 4(a):
It is the abstraction of the program in Figure 2 with respect to the assertion
predicate (i < 1000) and the loop condition (i ≤ 1000). For this program, all
model checkers listed in Section 2 report the spurious counterexample 4(b). An
inspection of the abstract model reveals that M̂ contains a path with a potential
iteration that traverses the same program locations as the spurious counterex-
ample. Figure 4(c) shows a variant of the counterexample. The repetition signs
||: and :|| indicate that the sequence of enclosed states can be iterated arbitrarily
often. The sequence of states to the right of the loop denotes the path that can
be taken to reach the error state.

Figure 5 shows the structure of the counterexample 4(c). Each iteration of the
loop visits the same program locations. Due to the non-deterministic assignment
at location L5, the final iteration traverses a different sequence of states than
the previous iterations. The counterexample in Figure 5 represents an infinite
set of conventional counterexamples, one of which corresponds to the feasible
path that violates the assertion in Figure 2 after 1000 iterations.

We define the semantics of a counterexample with loops in terms of the in-
finite set of conventional counterexamples it represents (Figure 6). We use the
following notation: The double square brackets �path� denote the expansion of
a path. The state indicated by path[i] is the ith element of path. The function
length(path) returns the number of states in a path without loops. The expression
(pathr)∗path denotes all paths that contain an arbitrary number of repetitions
of pathr followed by the postfix path. The concatenation operation A�B denotes
all concatenations of each path pa in set A with each path pb in set B for which
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(a) Boolean program (b) Counterexample (c) Counterexample with loop
bool b1; /* i < 1000 */
bool b2; /* i ≤ 1000 */

L1: b1, b2:=1,1;
L2: if (!b2) goto L7;
L3: assert (b1);
L4: skip;
L5: b1, b2:=*,*;
L6: goto L2;
L7: skip;

L1: b1 b2

L2: b1 b2

L3: b1 b2

L4: b1 b2

L5: b1 b2

L6: b1 b2

L2: b1 b2

L3: b1 b2

L1: b1 b2
 �
||: L2: b1 b2 L2: b1 b2
L3: b1 b2 L3: b1 b2
L4: b1 b2 L4: b1 b2
L5: b1 b2 L5: b1 b2
L6: b1 b2 :|| L6: b1 b2

L2: b1 b2
L3: b1 b2


 �

� �

Fig. 4. Enriching counterexamples with information about loops
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Fig. 5. Counterexample with loop for Figure 4(a)

there is an abstract transition from the last state of pa to the first state of pb.
Note that the recursive syntax definition enables nested loops.

Definition 3 (Feasibility of counterexamples with loops). An abstract
counterexample p with loops is feasible iff �p� contains a path that is feasible
according to Definition 2.

Detection of Loops. A counterexample with loops can be constructed from a
conventional counterexample p = ŝ1, . . . , ŝn by performing a symbolic simulation
of the abstract model along the locations �(ŝ1), . . . , �(ŝn). At each location �(ŝi)
in p we search for a state ŝj , j < i that allows us to fork a path that traverses the
locations �(ŝj), . . . , �(ŝi) and then returns to ŝj . Figure 7 shows the pseudo code
for this algorithm. The number of decision problems generated by this algorithm
is quadratic in the length of the original path.

This loop detection algorithm obviously fails to compute all loops along p that
are contained in M̂ . It misses loops that do not repeatedly visit the same state at
the head of the loop. Furthermore, it (intentionally) does not detect loops that
traverse different locations (e.g., branches of a conditional statement) in each
iteration. Note that the latter kind of loop does not conform to the semantics
given in Figure 6.

In both cases, the abstraction-refinement scheme is still sound. Any feasible
counterexample that our loop detection misses is eventually found in a later
iteration. Refinement boils down to successive unrolling of loops that are not
detected. Thus, we either obtain a conventional counterexample, or the repetitive
concatenation of the loop body results in an abstract loop that matches the
criteria of the loop detection algorithm.
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Syntax Semantics

path → state
| ’||:’ path ’:||’
| path path

�||:path:||� = �(pathr)∗pathp�,
foreach pathp ∈ �path�
with pathr such that

length(pathr)=length(pathp)∧
∀i ∈ {1, . . . , length(pathr)}.

�(pathr[i]) = �(pathp[i])

�path1path2� = �path1�
��path2�,

where �A���B� denotes
{papb| pa ∈ �A� ∧pb ∈ �B� ∧

pa[length(pa)] a
→ pb[1]}

Fig. 6. Syntax and semantics of abstract counterexamples with loops

FindLoops(ŝ1, . . . , ŝn)
1 foreach i ∈ {1, . . . , n}, j < i:
2 if ∃ŝ′j , . . . , ŝ

′
i. ∀k ∈ {j, . . . , i}.�(ŝ′k) = �(ŝk)∧

3 ∀k ∈ {j, . . . , i − 1}.ŝ′k
a→ ŝ′k+1∧ ŝ′j = ŝj ∧ ŝ′i

a→ ŝ′j

4 then insert ||: ŝ′j , . . . , ŝ
′
i :||

5 return counterexample ŝ1, . . . , ŝn with loops

Fig. 7. Pseudo code for loop detection

Our approach does not necessarily benefit from a more agressive loop detection
algorithm. Our experiments indicate that it is advantageous to keep the number
of loops in a counterexample small, since the simulation of concrete loops is
expensive.

We have implemented the algorithm of Figure 7 in Boppo. Boppo is a sym-
bolic model checker for asynchronous Boolean programs. The Boolean program
is translated to a propositional formula (function calls are inlined) and a SAT
solver is used to perform reachability checking. Each decision problem of the
loop detection algorithm corresponds to a SAT instance. The average overhead
of the loop detection compared to the model checking run itself is below one
percent1.

4 Simulation and Refinement with Loops

The strongest postcondition presented in Definition 2 gives us only a semi-
decision procedure for the feasibility of counterexamples with loops (namely,
successive enumeration of all corresponding conventional counterexamples). We
propose a new two-phase simulation semi-decision procedure for feasibility (see
1 This number is based on benchmarking 489 typical Boolean programs between 26

and 656 lines of code that were generated by Slam.
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i ← 0; s ← 0;

�
assume(i ≤ 1000);
assert(i < 1000);
s ← s + a[i];
i ← i + 1;

�

�

→ −→

i0 ← 0; s0 ← 0;

�
i1 ← φ(i0, i2); s1 ← . . . ;
assume(i1 ≤ 1000);
assert(i1 < 1000);
s2 ← s1+access(a0, i1);
i2 ← i1 + 1;

�

�

i〈0〉 = 0

i〈n〉 = i〈n−1〉 + 1

Fig. 8. Transforming a simple loop into a recurrent equation via SSA

Figure 1) of a counterexample p with loops. In the first phase, a heuristic is
applied to pick a promising conventional counterexample pc out of �p�. In the
second phase we check the feasibility of pc using the traditional approach.

Simulation. The symbolic loop analysis phase provides a candidate n for the
number of feasible iterations for each loop in the counterexample. The path is
infeasible if no such n exists. The converse does not hold. Starting with the
innermost loop, we parameterize each loop body with a fresh variable n using
following algorithm:

1. Transform the loop into SSA form.
2. Generate a recurrence equation for each variable that is updated by a φ

function.
3. Calculate the closed form of the recurrence equation (if possible). Substitute

its right-hand-side for the corresponding occurrences of the variable (this
step is known as induction variable substitution [17]). If unable to compute
the closed form, assign the variable non-deterministically.

4. Generate the strongest postcondition of the loop body and existentially
quantify n in the resulting formula.

Example 1. Consider once more the program in Figure 2. The loop in Figure 8
represents the set of concrete paths that corresponds to the looping counterex-
ample in Figure 4. We transform the loop into SSA and obtain the recurrent
equation in Figure 8. The closed form2 of this recurrence is i〈n〉 = i〈0〉 + 1 · n.

Therefore, SatAbs replaces every occurrence of i1 with i0 +1 ·n. By applying
SP and quantifying n we obtain

SP (loop) = λf.∃n.∃s′0 i′2.f [s′0/s0][i′2/i2]
∧ ((i0 + 1 · n) ≤ 1000) ∧ ¬((i0 + 1 · n) < 1000)
∧ (s0 = a0[(i0 + 1 · n)]) ∧ (i2 = (i0 + 1 · n) + 1)

2 The closed form for a recurrent equation i〈0〉 = α, i〈n〉 = i〈n−1〉 + β + γn, n > 0
(where α, β, γ are numeric constants or loop invariant symbolic expressions) is i〈n〉 =
α + βn + γ n·(n+1)

2 .
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Solving the SAT instance that corresponds to (SP (loop) ◦ SP (i0 = 0))(true)
yields n = 1000. Note that there is only one valid solution for n, since (i ≤ 1000)
is a sufficiently strong loop invariant. The weakest loop condition that does
not change the program semantics is (i �= 1001) and gives us the choice n ∈
{1000, 1002, 1003, . . .}. In our current implementation we have no influence on
the n that the SAT solver reports in such a case. We consider to use an optimizing
solver like PBS [26] in future versions of our tool to obtain the minimal values
of n.

Our approach is not restricted to simple loop counters. Van Engelen provides
a framework for handling affine, polynomial, and geometric index expressions
composed over linear and non-linear induction variables [17]. These analysis
methods and our simulation algorithm also cope with pointer arithmetic and
arrays. However, our current implementation supports only a fixed simple recur-
rence scheme (namely the one presented in Example 1). We treat recurrences
that have no closed form equivalent (e.g., k〈n〉 = i · k〈n−1〉 + 1, where i is a
linear induction variable) conservatively by introducing non-determinism (as ex-
plained in step 3 of our algorithm). The subsequent traditional simulation of the
potentially spurious counterexample (see below) preserves soundness.

Example 2. Consider a function (e.g., as part of a library of combinatorial func-
tions) that calculates the factorial m of a variable k by iterating over i =
{0, . . . , k}, m = m · (i + 1). Assume that the program contains a user-supplied
assertion that the computation does not overflow. By substituting the right hand
side of the closed form i〈n〉 = i〈0〉+n for i one obtains m〈n〉 = m〈n−1〉·(i〈0〉+n+1).
The resulting recurrence is m〈n〉 = m〈0〉 · i〈0〉+n!

i〈0〉! .
On a 32 bit architecture, the overflow occurs at k = 13. This number is suf-

ficiently small to use a bounded model checker (like CBMC [27]) to simulate
the counterexample. For this reason, our current implementation ignores recur-
rence equations with a closed form that is a fast-growing monotonic function of
n (e.g., n! as in our example, or exponentiation with positive integer exponent
or base). In this case, SatAbs uses the standard abstraction-refinement algo-
rithm instead of computing a solution for n. The bit-level accurate simulation
algorithm of SatAbs guarantees that an eventual overflow will be detected.

Generating Concrete Counterexamples. The symbolic loop analysis is fol-
lowed by a traditional feasibility analysis (see Figure 1). Each loop of the coun-
terexample is unrolled according to the results of the previous step. As usual,
feasible counterexamples are reported to the user. The fact that they are anno-
tated with information about loops makes them more readable. Spurious coun-
terexamples are subject to refinement.

Refinement. We distinguish two causes of infeasibility of the spurious coun-
terexample p:

– There is no such n that satisfies the recurrence, i.e., phase I reports the
corresponding SAT instance to be unsatisfiable. Then we can refine M̂ using
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a set of predicates that remove all paths �p� from M̂ . The unsatisfiability
of formula ϕ1 ∧ ϕ

〈n〉
2 ∧ ϕ3 (where ϕ1 corresponds to the prefix, ϕ

〈n〉
2 to the

parameterized loop body, and ϕ3 to the tail of p) is an explanation for the
infeasibility of p. Since no n satisfies the formula, setting n to 0 yields an
infeasible counterexample from which we can extract a set of refinement
predicates using the traditional methods presented in Section 2.

– The traditional feasibility analysis (phase II) refutes ϕ1 ∧ ϕ
〈c〉
2 ∧ ϕ3 for the

particular constant n = c obtained from phase I. That means that the recur-
rences ϕ

〈n〉
2 are not sufficiently strong to show the infeasibility of all paths

�p�. Therefore, we compute a set of refinement predicates from the unrolled
path that corresponds to ϕ1 ∧ ϕ

〈c〉
2 ∧ ϕ3. This guarantees that the execution

of c iterations of the loop is infeasible in M̂ and that the same loop is not
detected again. We expect that the recurrences are loop invariants that make
spurious counterexamples other than p abstractly infeasible, too. Therefore,
we consider adding the corresponding predicates even if they have no effect
on the feasibility of p.

5 Experimental Results

As expected, our implementation detects the buffer overflow in Figure 2 after
only one iteration. The attempt to run Blast and SatAbs without loop de-
tection on the same problem did not yield any results in reasonable time, but
exposed an exponential increase of the runtime in every refinement step.

Figure 9 shows a buffer overflow in the Linux mail transfer agent Aeon 0.02a.
This bug allows local users to gain administrator privileges by executing mali-
cious byte code with help of an overly long HOME environment variable (US-CERT
CVE-2005-1019). The function getConfig is called immediately after the pro-
gram is started and copies the string returned by getenv to a buffer of (fixed)

/* reading rc file, handling missing options */

1 int getConfig(char settings[MAX SETTINGS][MAX LEN]) {
2 char home[MAX LEN];

3 FILE *fp; /* .rc file handler */

4 int numSet = 0; /* number of settings */

5 strcpy(home, getenv("HOME")); /* get home path */

6 strcat(home, "/.aeonrc"); /* full path to rc file */

1 char* strcpy (char *t, const char* s) {
2 for (i = 0 ;; i++) { assert (!(t == &home)||!(i>=MAX LEN));

3 t[i] = s[i]; if (s[i] == ’\0’) break; }}

Fig. 9. Buffer overflow in Aeon 0.2a
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�
SatAbs

Blast

Slam

MAX LEN Blast Slam SatAbs +loops
25 161.1 44.0 57.7 25.0
50 1477.4 294.9 182.9 28.0
75 - 993.6 402.9 32.8
100 - 2446.0 765.0 34.1
150 - 9130.2 2241.9 50.3
200 - 23803.5 5402.9 55.8
300 - - 18702.4 97.6
512 - - - 254.5

Total runtime (in sec)
Runtime per iteration (Aeon) for given MAX LEN

Fig. 10. Runtime of Blast, Slam, SatAbs and SatAbs with loop detection (Aeon)

size MAX LEN without checking its bound (see line 5). This error is representative
for many buffer overflows and is detected by SatAbs with loop detection in one
iteration.

The automatic verification condition generator of SatAbs adds the assertion
!(t == &home)||!(i>=MAX LEN) to the loop body of strcpy (see line 2 in Fig-
ure 9). Note that SatAbs does not specifically target buffer overflows, but aims
at verifying arbitrary assertions in C programs. We manually added a corre-
sponding assertion to the Aeon sources to make a comparison with Blast and
Slam possible. Our attempts to detect the bug with Blast, Slam and SatAbs

without loop detection failed despite a generous timeout of 25000 seconds. There-
fore, we reduced the value of MAX LEN (which is 512 in the original program) and
compared the performance of Blast, Slam, SatAbs without loop detection,
and SatAbs with loop detection. The results of this benchmark3 are given in
Figure 10. The table gives the runtime of all four tools for various values of
MAX LEN. As expected, the runtime of Slam grows exponentially with the size
of the buffer. Blast crashes for MAX LEN= 75. We did not further investigate
this problem. SatAbs performs slightly better than Slam

4, but the runtime still
increases exponentially with the number of iterations. The diagram in Figure 10
illustrates the exponential increase of the runtime in each abstraction-refinement
iteration. We compared the runtime of all iterations that took less than 100
seconds.

SatAbs with loop detection spends most of the time in the simulation of the
unrolled counterexample. This is because SatAbs performs SAT-based bit-level
accurate simulation (unlike Slam and Blast, which model integer variables
as unbounded integers). We listed the results for all four tools in the table in
Figure 10.

3 All our experiments were done on an Intel Pentium 4 with 3 GHz and 2 GB RAM.
4 We adapted the refinement strategy of SatAbs (with respect to spurious paths and

spurious transitions [28]) to match the behaviour of Slam and Blast.



164 D. Kroening and G. Weissenbacher

We refrain from presenting other benchmarks in favor of the in depth descrip-
tion of the Aeon example. The SatAbs executable and more examples can be
downloaded from http://www.inf.ethz.ch/personal/daniekro/satabs/.

6 Conclusion

This paper presents a novel approach that enables predicate abstraction to find
bugs that emerge as a result of a high number of iterations of loops. We propose
an algorithm to detect loops in abstract models and explain how the traditional
simulation and refinement algorithms can be extended to cope with loops. Our
implementation outperforms the abstraction-refinement based verification tools
Blast and Slam on typical buffer overflow examples.

Currently, our implementation recognizes only basic recurrences that are suf-
ficient to find the most common bugs. An integration of the recurrence solving
algorithms of van Engelen [17] can lift this limitation.
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