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Abstract. With the 413 soil liquefaction records with cone penetration testing 
values collected after strong earthquakes, the Bayesian Regularization Back 
Propagation Neural Networks (BRBPNN) method was presented to evaluate the 

soil liquefaction potential in this paper. Cone resistance ( cq ), equivalent dy-

namic shear stress ( 0/στ ′ ), mean grain size ( 50D ), total stress ( 0σ ), the effec-

tive stress ( 0σ ′ ), earthquake magnitude ( M ) and the normalized acceleration 

horizontal at ground surface ( ga / ) are used as input parameters for networks. 
Four networks are constructed for different source of input data. The model M7 
seems more efficient for the given data, since it only contain 109 records. The 
model M5 contains 413 samples, and the correct ratio for training data and test-
ing data are 88.5% and 90% respectively. By compared with the square of the 
weight of the input layer for each network, the importance order of the input pa-

rameters should be cq , M , 0σ ′ , 0σ , ga / , 0/στ ′ and 50D . 

1   Introduction 

The devastating damage of liquefaction induced ground failures in the Alaska 1964 
and Niigata 1964 earthquakes serve as a clear reminder of such events. The liquefac-
tion potential evaluation of a given site under certain seismic forces is a big problem 
facing engineers. The soil liquefaction prediction methods can be divided into two 
categories. One is the method developed based on the liquefaction mechanism simula-
tion, such as nonlinear effective stress method, equivalent linear method and elastic-
plastic method, etc. The other procedure is constructed based on the liquefaction re-
cords collected strong earthquakes, the parameters like the Standard Penetration Test 
(SPT), the Cone Penetration Test (CPT) and the shear wave velocity of the site are 
used to predict the liquefaction potential of site [1, 2]. About 40 formulae were con-
structed to predict the soil liquefaction potential, although most of them were not 
efficient to use [1]. In the laboratory tests, reliability of the results depends on simula-
tion of idealized filed conditions. Unfortunately, in situ stress states generally cannot 
be reestablished in the laboratory, and specimens of granular soils retrieved with typi-
cal drilling and sampling techniques are too disturbed to yield meaningful results. To 
avoid the difficulties associated with sampling and laboratory testing, field tests have 
become the state-of-practice for routine liquefaction investigations. Several field tests 
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have gained common usage for evaluation of liquefaction resistance, including the 
standard penetration test (SPT), the cone penetration test (CPT), shear-wave velocity 
measurements (Vs), and the Becker penetration test (BPT).Since the neural network is 
a nonlinear method which can fit the nonlinear data with great efficiency, the artificial 
neural networks are employed to predict the soil liquefaction potential in recent years 
[3-11]. 

2   Neural Network Prediction for Soil Liquefaction Potential 

The main characteristics of neural networks are their ability to learn nonlinear func-
tional relationships from examples and to discover patterns or regularities in data 
through self-organization. The neural network learning process primarily involves the 
iterative modification of the connection weights until the error between the predicted 
and expected output values is minimized. It is through the presentation of examples, 
or training cases, and application of the learning rule that the neural network obtains 
the relationship embedded in the data. 

2.1   Back Propagation Neural Networks Design 

It is nature that the neural network designed for this problem should be accordance 
with the sample data. Thus, the input vector of the network contains 7 components. 
While for the output vector, it includes only one component. 

2.2   Theory on the Bayesian Regularization Back Propagation Neural Networks 

We divided the datasets into two parts: training and testing. In using multiply layer 
propagation network, the problem of over-fitting on noise data is of major concern in 
network design strategy. The initial results of using a standard BP algorithm showed 
poor generalization performance and slow speed of training. To overcome these short-
comings, we incorporated Bayesian learning to this work. In the Bayesian framework, 
a weight decay term is introduced to the cost function (or performance index) given by 

     ( ) DW EEwF βα += . (1) 

where WE  is the sum square of the networks weights, DE  is the sum square of the 

error between network outputs and targets, α and β are hyper-parameters for the 

target function. The relative value of α and β determined the emphasis on the net-

work training on minimization of the output errors or the volume of the network. As 
shown in Equation (1), the main problem with implementing regularization is to 
set/learn the correct values for the parameters in the cost function. Ref. [12, 13] has 
presented extensive works on the application of Bayesian rule to neural network train-
ing and to optimizing regularization.  

In the Bayesian framework, the weights of the network are considered the random 
variables. The weights in the network are adjusted to the most probable weight pa-
rameter, wMP, given the data D{(xm, tm)}, network configuration (Mi), and hyper-
parameters, i.e., α and β .  
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Set the α and β as stochastic variables, the Bayesian rule is used for evaluating 

the posterior probability ofα and β . This is given by 

     ( ) ( ) ( )( ) ( )iiii MDPMPMDPMDP |/|,,,|,|, βαβαβα = . (2) 

where ( )iMP |, βα  represents the prior probability of the hyper-parameters and are 

generally chosen to be uniformly distributed. Since ( )iMDP |  is independent 

ofα and β , maximum posterior values for hyper-parameters can be found by maxi-

mizing the likelihood term ( )iMDP ,,| βα .  

Using Bayesian rule, the posterior probability of the weight parameters is:   

     ( ) ( ) ( )( )
( )i

ii
i MDP

MawPMwDP
MDwP

,,|

,|,,|
,,,|

βα
ββα = . (3) 

Assume the error and the weight is distributed in Gaussian form,   

     ( ) ( ) ( )βββ DDi ZEMwDP /exp,,| −= . (4) 

    ( ) ( ) ( )ααα WWi ZEMwP /exp,| −= . (5) 

If the ( )iMDP ,,| βα in Equation (3) is regularized factor, ( )iMDwP ,,,| βα must 

equal to ( )( ) ( )βα ,/exp FZwF− . Take them into Equation (2), 

   ( ) ( ) ( ) ( )( )βαβαβα DWFi ZZZMDP /,,,| = . (6) 

where  

( ) ( ) 2//2 N
WZ απα = . (7) 

       ( ) ( ) 2//2 N
DZ βπβ = . (8) 

( ) ( )( )( ) 2/12/2exp,
−−≈ AwFZ N

MPF πβα
. (9) 

where WD EEA 22 ∇+∇= αβ is the Hessian matrix of the target function F. Further, 

the log the Equation (6), then differentiating it with respect toα and β , and setting it 

to zero, the optimal values of α and β can be obtained by 

( )( )MPWMP wE2/γα = . (10) 

( ) ( )( )MPDMP wEn 2/γβ −= . (11) 

( )MPMP AN -1traceαγ −= . (12) 

where n is the number of sample, N is the number of parameter in the network, γ is 

the number of effective parameters which may reduce the error function for the net-
work in training process. 
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2.3   Training and Testing for BRBPNN Model 

For the soil liquefaction evaluation problem, the influence parameters may be divided 
into three categories. The parameters can be earthquake intensity, the epicenter dis-
tance, peak ground acceleration for describing the earthquake ground motion charac-
teristics, and the depth of underground water, the depth of standard penetration test 
point (soil layer), the thickness of the covered non-liquefied soil layer, effectively 
overlaying pressure describing the embedding environment of soil layers, and stan-
dard penetration blow-count, mean diameter, non-uniformity coefficient, modified 
standard penetration blow-counts for denoting the sandy soil feature [2]. As in the 
case of CPT data, cone resistance ( cq ), equivalent dynamic shear stress ( 0/στ ′ ), 

mean grain size ( 50D ); total stress ( 0σ ); the effective stress ( 0σ ′ ); earthquake magni-

tude ( M ) and the normalized acceleration horizontal at ground surface ( ga / ) was 

used, and 109 samples were collected [15]. While in [4], only cq , 0σ , 0σ ′ , M and 

ga / are used, the 50D is missed; and 134 samples were recorded. In [5], 

only cq , 0σ , 0σ ′ , M and ga / are used, the 50D and 0/στ ′ is missed; and 170 samples 
were recorded.  Part of data is listed in Table 1. 

As for data listed in [4], the equivalent dynamic shear stress 0/στ ′ can be calculated 

by an expression suggested by Tokimatsu and Yoshini [16]. As per the proposed 
relation, the value of equivalent dynamic shear stress at a depth z will be 

( ) ( )zM
g

a
015.0111.0

0

0

0

−
′

−=
′ σ

σ
σ
τ

. (13) 

Table 1. Parts of training and testing records samples 

M  0σ (kPa) 0σ ′ (kPa) cq (MPa) ga /
0/στ ′  50D (mm) Remark 

7.5 53 36 3.2 0.16 0.15 0.33 liquefaction 
7.5 99 58 7.2 0.16 0.17 0.33 liquefaction 
7.5 152 83 5.6 0.16 0.17 0.33 liquefaction 
7.5 86 46 8 0.16 0.19 0.3 no 
7.5 95 50 14.55 0.16 0.18 0.3 no 
7.7 58 48 10 0.23 0.18 0.32 no 
7.7 73 54 16 0.23 0.2 0.32 no 
7.7 54 46 1.79 0.23 0.17 0.32 liquefaction 
7.7 64 52 4.1 0.23 0.19 0.32 liquefaction 
7.8 114 69 9.4 0.4 0.41 0.25 liquefaction 
7.8 148 85 5.7 0.4 0.42 0.25 liquefaction 
7.7 96 65 15.38 0.23 0.21 0.32 no 
7.5 87 52 1.6 0.16 0.16 0.33 liquefaction 

Four BRBPNN models are constructed for the problem. The M7 include all 
the parameters metioned above and only 109 records are used. The M6a include all the 
parameters metioned above but 50D and 243 records are used. The M6b include all 

the parameters metioned above but 0/στ ′ and 279 records are used. The M5 include  
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all the parameters metioned above except 0/στ ′ and 50D , and all the 413 records are 
used. Different types of networks are listed in Table 2 with its sumary of the square of 
the weight of the input layer, along with the correct ratio for training data and testing 
data. Figure 1- 4 showed the training and testing errors for the giving data for different 
neural network models. The errors out of 0.5 can be taken as wrong prediction. 
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Fig. 1. The errors of original data with network simulating data (109 samples) [15] 

Table 2. The summaration of the square of weight for the input layer and the correct ratio for 
trainging data and testing data 

Model M  0σ  0σ ′
 cq  

ga /  0/στ ′
 50D  

Correct Ratio 

  (kPa) (kPa) (MPa)   (mm) Train Test 
M7 1.12 0.15 0.44 2.25 0.01 0.02 0.09 93.2% 91.6% 
M6a 6.40 0.54 0.81 8.19 0.19 0.97  96.7% 87.1% 
M6b 0.33 2.44 2.42 3.32 0.11  0.12 94.4% 71.6% 
M5 0.40 0.013 0.014 0.29 0.0007   88.5% 90% 

From the square of the weight in the first layer, the importance order of these factors 
is cq , M , 0σ ′ , 0σ , ga / , 0/στ ′ and 50D . 
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Fig. 2. The errors of original data with network simulating data (243 samples) [5, 15] 
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Fig. 3. The errors of original data with network simulating data (279 samples) [4, 15] 

The model can predict the soil liquefaction with good satisfaction since it cover 
small samples in M7 (only 109 samples, correct ratio is 91.6% for testing data). When 
the records increase as for model M5 (413 samples included), the ratio dropped to 
89%. Maybe this ratio is the average value for all records for this neural network 
method. 
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Fig. 4. The errors of original data with network simulating data (413 samples) [4, 5, 15] 
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3   Conclusions and Suggestions 

413 soil liquefaction records with cone penetration testing values are collected in this 
paper. After presenting a Bayesian Regularization Back Propagation Neural Networks 
(BRBPNN) method to evaluate the soil liquefaction potential, the M7, M6a, M6b and 
M5 model are used according to the sample data. The M7 used 109 samples; the M6a 
used 243 samples; the M6b used 279 samples and the M5 used 413 samples. The M7 
model seems more efficient for the given data since it contains the least records than 
other models. The M5 contains the all the records discussed in this paper, and the 
correct ratio for the training and testing are 88.5% and 89% respectively. After check-
ing the square of the weight of the input layer for each network, the importance order 
of the input parameters should be cq , M , 0σ ′ , 0σ , ga / , 0/στ ′  and 50D . 

The training and testing of network seems less efficient when the records increase, 
which demonstrated again the complex nature of the soil liquefaction problem. Of 
course, the neural network is quite good than the traditional regression equations, 
which was proved in many literature. Further research of this problem should include 
more parameters to describe the nature of this phenomenon, and the regression should 
focus on data collected in certain region. 
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