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Abstract. Chaotic neural networks have been proved to be powerful tools for 
escaping from local minima. In this paper, we first retrospect Chen’s chaotic 
neural network and then propose a novel Gauss-Morlet-Sigmoid chaotic neural 
network model. Second, we make an analysis of the largest Lyapunov exponents 
of the neural units of Chen’s and the Gauss-Morlet-Sigmoid model. Third, 
10-city traveling salesman problem (TSP) is given to make a comparison 
between them. Finally we conclude that the novel chaotic neural network model 
is more effective. 

1   Introduction 

Many combinatorial optimization problems arising from science and technology are 
often difficult to solve entirely. Hopfield and Tank first applied the continuous-time, 
continuous-output Hopfield neural network (HNN) to solve TSP [1], thereby initiating a 
new approach to optimization problems [2, 3]. The Hopfield neural network, one of the 
well-known models of this type, converges to a stable equilibrium point due to its 
gradient decent dynamics; however, it causes sever local-minimum problems whenever 
it is applied to optimization problems. 

Chaotic neural networks have been proved to be powerful tools for escaping from 
local minima. M-SCNN has a more powerful performance than Chen’s in solving 
combinatorial optimization problems, especially in searching global minima of 
continuous nonlinear function and traveling salesman problems [4]. Now we do research 
on the activation function in detail. 

In this paper, we mainly make research on the effect of Gauss function on the 
performance of the network. We first review the Chen’s chaotic neural network. 
Second, we propose a novel chaotic neural network model. Third, the time evolution 
figures of their largest Lyapunov exponents of the neural units are given. At last, we 
apply them to 10-city traveling salesman problem (TSP) in order to make a comparison. 
Finally we conclude that the novel chaotic neural network model we proposed is more 
valid. Because the wavelet function is a kind of basic function, for any 
function )()( 2 RLxf ∈ and any wavelet Ψ , the known formula can be described as 

follows:  
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2   Chaotic Neural Network Models 

In this section, two chaotic neural network models are given. And the first is proposed 
by Chen, the second proposed by ourselves. 

2.1   Chaotic Simulated Annealing with Decaying Self-coupling 

Chen and Aihara’s transiently chaotic neural network [5] is described as follows:  
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where )(tix is output of neuron i ; )(tiy denotes internal state of neuron 

i ; ijW describes connection weight from neuron j  to neuron i , jiWijW = ; iI is input 

bias of neuron i , a a positive scaling parameter for neural inputs, k damping factor of 
nerve membrane, 0≤ k ≤1, )(tiz self-feedback connection weight (refractory strength) 

≥0, β damping factor of )(tiz , 0< β <1, 0I a positive parameter, ε  steepness 

parameter of the output function, ε >0. 

2.2   Gauss-Morlet-Sigmoid Chaotic Neural Network Model (G-M-SCNN) 

Gauss-Sigmoid chaotic neural network is a novel model proposed by ourselves, 
described as follows: 
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where )(tix , )(tiy  , ijW  ,α  , k  , iI  , )(tiz  , 0I  are the same with the above. And λ is a 

positive parameter which controls the speed of this annealing process; )0(ir  is an 

important parameter of activation function which should be varied with kinds of special 
optimization problems, 0＜ 1β ≤1, 0＜ 2β ＜1. A , 0μ , 1μ  are positive parameters of 

Morlet wavelet function and Sigmoid function. h , a , b , c are important parameters of 
Gauss  function. 

3   Research on Lyapunov Exponent of Neural Units 

In this section, we mainly make research on the effect of the parameter 2β of Gauss 

function on the largest Lyapunov exponents. We make an analysis of the time evolution 
figures of the neural units ( 0=α ) of Chen’s and G-M-SCNN in the same annealing 
speed of β = 1β =0.008.  

3.1   Chen’s Chaotic Neural Unit 

The parameters are set as follows: 

k =0.6, I0=0.1, ε =1/250 ,z (0)=0.1, y(0)=0.283. 

The time evolution figure of the largest Lyapunov exponent is shown as Fig.1: 

 

Fig. 1. Lyapunov exponent time evolution figure 

3.2   Gauss-Morlet-Sigmoid Chaotic Neural Unit 

We make an analysis of the time evolution figures of the neural unit G-M-SCNN with 
the change of 2β . 

(1)  The parameters are set as follows: 

2β =0.1, k =0.092, 0I =0.8, )0(y =0.283, )0(z =0.8,λ= 0.008, 1β =0.008, 0μ =0.8,  

1μ =20, B =10, )0(r =200.5, )0(η =0.8, h =0.2, a =-2.1, b =5.0, c =5.0. 
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The time evolution figure of the largest Lyapunov exponent is shown as Fig.2. 

 

Fig. 2. Lyapunov exponent time evolution figure 

(2)  The parameters are set as follows: 

2β =0.5, k =0.092, 0I =0.8, )0(y =0.283, )0(z =0.8,λ= 0.008, 1β =0.008, 0μ =0.8, 

1μ =20, B =10, )0(r =200.5, )0(η =0.8, h =0.2, a =-2.1, b =5.0, c =5.0. 

The time evolution figure of the largest Lyapunov exponent is shown as Fig.3. 

 

Fig. 3. Lyapunov exponent time evolution figure 

(3)  The parameters are set as follows: 

2β =0.9, k =0.092, 0I =0.8, )0(y =0.283, )0(z =0.8,λ= 0.008, 1β =0.008, 0μ =0.8, 

1μ =20, B =10, )0(r =200.5, )0(η =0.8, h =0.2, a =-2.1, b =5.0, c =5.0. 
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The time evolution figure of the largest Lyapunov exponent is shown as Fig.4. 

 

Fig. 4. Lyapunov exponent time evolution figure 

Seen from the above analysis, we can conclude that the change of 2β  does have a 

profound effect on the time evolution of Lyapunov exponent. So, in this paper we will 
only make analysis of the performance of the network with different 2β in solving 

traveling salesman problem (TSP) 

4   Application to Traveling Salesman Problem 

A solution of TSP with N cities is represented by N×N-permutation matrix, where 
each entry corresponds to output of a neuron in a network with N×N lattice structure. 
Assume xiv  to be the neuron output which represents city x in visiting order i . A 

computational energy function which is to minimize the total tour length while 
simultaneously satisfying all constrains takes the follow form [7]: 
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where ini vv =0 and 11, ini vv =+ . A and D are the coupling parameters corresponding to 

the constraint function and the cost function of the tour length, respectively. xyd  is the 

distance between city x  and city y . 

The coordinates of 10-city is as follows: 

(0.4, 0.4439),(0.2439, 0.1463),(0.1707, 0.2293),(0.2293, 0.716),(0.5171, 0.9414), 
(0.8732, 0.6536),(0.6878, 0.5219),(0.8488, 0.3609),(0.6683, 0.2536), (0.6195, 0.2634). 
The shortest distance of the 10-city is 2.6776. 

Here are the results of the test about Chen’s and G-M-SCNN. 
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The coupling parameters corresponding to the constraint function and the cost 
function of the tour length we adopt are set as follows: A =2.5, D =1. 

(1)  The parameters of Chen’s are set as follows : 

α =0.2, k =1, I0=0.5, ε =1/20 ,z (0)=[0.5,0.5]. 

200 different initial conditions are generated randomly in the region [0, 1] 
when β =0.008, as are shown in table1. (VN= valid number; GN= global number; VP= 

valid percent; GP=global percent.) 

Table 1. Simulation result of Chen’s chaotic neural network 

Model VN GN VP GP 
188 188 94% 94% 
185 185 92.5% 92.5% 
183 183 91.5% 91.5% 
184 184 92% 92% 
181 180 90.5% 90% 
175 175 87.5% 87.5% 
180 179 90% 89.5% 
189 189 94.5% 94.5% 
187 186 93.5% 93% 

Chen’s 

178 178 89% 89% 
average 183 182.7 91.5% 91.35% 

In order to gain insight into the effect of 2β on the proposed model, the tests are 

shown as follows: 

(2)  The parameters of G-M-SCNN are set as follows: 

k =1, 0I =0.5, )0(z =0.1,λ= 0.008, 1β =0.008, 0μ =0.8, 1μ =20, B =10, )0(r =200.5, 

)0(η =0.8, h =0.2, a =-2.1, b =5.0, c =5.0. 

Let 2β =0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9, we can get Table2~10. 

Table 2. Simulation result of G-M-SCNN( 2β =0.1) 

Model VN GN VP GP 
187 178 93.5% 89% 
193 188 96.5% 94% 
194 187 97% 93.5% 
188 183 94% 91.5% 
190 176 95% 88% 
193 183 96.5% 91.5% 
190 184 95% 92% 
192 181 96% 90.5% 
188 183 94% 91.5% 

G-M-SCNN 
( B =10, 

2β =0. 1) 

189 182 94.5% 91% 
Average 190.4 182.5 95.2% 91.25% 
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Table 3. Simulation result of G-M-SCNN( 2β =0.2) 

Model VN GN VP GP 
187 180 93.5% 90% 
187 175 93.5% 87.5% 
191 184 95.5% 92% 
187 180 93.5% 90% 
193 188 96.5% 94% 
194 187 97% 93.5% 
188 183 94% 91.5% 
190 176 95% 88% 
192 182 96% 91% 

G-M-SCNN 
( B =10, 

2β =0. 2) 

190 184 95% 92% 
average 189.9 181.9 94.95% 90.95% 

Table 4. Simulation Result of G-M-SCNN( 2β =0.3) 

Model VN GN VP GP 
190 183 95% 91.5% 
192 181 96% 90.5% 
187 182 93.5% 91% 
189 183 94.5% 91.5% 
189 175 94.5% 87.5% 
190 183 95% 91.5% 
187 180 93.5% 90% 
187 178 93.5% 89% 
188 175 94% 87.5% 

G-M-SCNN 
( B =10, 

2β =0. 3) 

190 181 95% 90.5% 
average 188.9 180.1 94.45% 90.05% 

Table 5. Simulation result of G-M-SCNN( 2β =0.4) 

Model VN GN VP GP 
193 183 96.5% 91.5% 
188 179 94% 89.5% 
182 171 91% 85.5% 
191 187 95.5% 93.5% 
191 180 95.5% 90% 
194 186 97% 93% 
193 188 96.5% 94% 
194 187 97% 93.5% 
187 181 93.5% 90.5% 

G-M-SCNN 
( B =10, 

2β =0. 4) 

188 178 94% 89% 
average 190.1 182 95.05% 91% 
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Table 6. Simulation result of G-M-SCNN( 2β =0.5) 

Model VN GN VP GP 
193 183 96.5% 91.5% 
191 179 90.5% 89.5% 
193 183 96.5% 91.5% 
193 183 96.5% 91.5% 
193 181 96.5% 90.5% 
187 182 93.5% 91% 
189 183 94.5% 91.5% 
188 175 94% 87.5% 
189 183 94.5% 91.5% 

G-M-SCNN 
( B =10, 

2β =0. 5) 

188 181 94% 90.5% 
average 190.4 181.5 95.2% 90.75% 

Table 7. Simulation result of G-M-SCNN( 2β =0.6) 

Model VN GN VP GP 
188 180 94% 90% 
185 171 92.5% 85.5% 
189 180 94.5% 90% 
193 183 96.5% 91.5% 
181 171 90.5% 85.5% 
188 177 94% 88.5% 
188 182 94% 91% 
190 183 95% 91.5% 
193 186 96.5% 93% 

G-M-SCNN 
( B =10, 

2β =0. 6) 

187 179 93.5% 89.5% 
average 188.2 178.2 94.1% 89.1% 

Table 8. Simulation result of G-M-SCNN( 2β =0.7) 

Model VN GN VP GP 
190 182 95% 91% 
181 173 90.5% 86.5% 
193 181 96.5% 90.5% 
189 180 94.5% 90% 
190 185 95% 92.5% 
194 187 97% 93.5% 
191 189 95.5% 94.5% 
191 183 95.5% 91.5% 
189 185 94.5% 92.5% 

G-M-SCNN 
( B =10, 

2β =0. 7) 

184 170 92% 85% 
average 189.2 181.5 94.6% 90.75% 
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Table 9. Simulation result of G-M-SCNN( 2β =0.8) 

Model VN GN VP GP 
193 185 96.5% 92.5% 
192 180 96% 90% 
192 185 96% 92.5% 
190 180 95% 90% 
185 175 92.5% 87.5% 
193 183 96.5% 91.5% 
191 181 95.5% 90.5% 
192 178 96% 89% 
193 180 96.5% 90% 

G-M-SCNN 
( B =10, 

2β =0. 8) 

183 174 91.5% 87% 
average 190.4 180.1 95.2% 90.05% 

Table 10. Simulation result of G-M-SCNN( 2β =0.9) 

Model VN GN VP GP 
188 180 94% 90% 
192 182 96% 91% 
189 180 94.5% 90% 
194 183 97% 91.5% 
187 175 93.5% 87.5% 
186 173 93% 86.5% 
192 177 96% 88.5% 
190 179 95% 89.5% 
190 181 95% 90.5% 

G-M-SCNN 
( B =10, 

2β =0.9) 

190 182 95% 91% 
average 189.8 179.2 94.9% 89.6% 

An examination of Table2~10 yields the following Table 11. 

Table 11. Simulation result of G-M-SCNN 

Model AVP AGP 
Chen’s 91.5% 91.35% 

2β =0.1 95.2% 91.25% 

2β =0.2 94.95% 90.95% 

2β =0.3 94.45% 90.05% 
G-M- 
SCNN 

2β =0.4 95.05% 91% 

2β =0.5 95.2% 90.75% 

2β =0.6 94.1% 89.1% 

2β =0.7 94.6% 90.75% 

2β =0.8 95.2% 90.05% 
 

2β =0.9 94.9% 89.6% 
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(AVP=average valid path percent, AGP=average global path percent) 

Seen from the Table11, the proposed model can solve the TSP with a higher valid 
minimum-path percent and a little lower valid-path percent under all the values of 2β . 

This means that the proposed model is more valid in only solving TSP than Chen’s.  
The time evolution figures of the energy function of G-M-SCNN and Chen’s in 

solving TSP are respectively given in Fig.5 and Fig.6. 

 

Fig. 5. Energy time evolution figure of G-M-SCNN 

 

Fig. 6. Energy time evolution figure of Chen’s 

By comparison, it is concluded that M-SCNN is superior to Chen’s model. From the 
Fig.5, Fig.6, one can see that the velocity of convergence of G-M-SCNN is faster than 
that of Chen’s in solving TSP. Because, the state of Fig.5 become stable in 60 iterations 
while that of Fig.6 become stable in 1500 iterations. 

The superiority of G-M-SCNN contributes to several factors: First, because of the 
higher nonlinear nature of Gauss function, the activation function of G-M-SCNN has a 
further performance in solving combinatorial optimization problems than Chen’s. 
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Second, it is easier to produce chaotic phenomenon [8] in that the activation function is 
non-monotonic. Third, the activation function of G-M-SCNN is varied with time. 
Third, the wavelet function is a kind of basic function. 

5   Conclusions 

We have introduced two models of chaotic neural networks. To verify the effectiveness 
of it, we have made comparison with Chen’s model in optimization problems. By 
comparison, one can conclude that G-M-SCNN is superior to Chen’s in searching 
global minima of continuous nonlinear function.  

Different from Chen’s model, the activation function of G-M-SCNN is composed by 
Gauss, Morlet wavelet and Sigmoid. So, besides it has the quality of sigmoid activation, 
the activation function of G-M-SCNN has a higher nonlinear nature than Sigmoid, 
which is easier to produce chaotic phenomenon [7] because of its non-monotonic. Due to 
these factors, G-M-SCNN is superior to Chen’s in solving TSP.  
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