


Lecture Notes in Computer Science 4109
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany



Dit-Yan Yeung James T. Kwok
Ana Fred Fabio Roli
Dick de Ridder (Eds.)

Structural, Syntactic,
and Statistical
Pattern Recognition

Joint IAPR International Workshops
SSPR 2006 and SPR 2006
Hong Kong, China, August 17-19, 2006
Proceedings

13



Volume Editors

Dit-Yan Yeung
James T. Kwok
Hong Kong University of Science and Technology
Department of Computer Science and Engineering
Clear Water Bay, Kowloon, Hong Kong, China
E-mail: {dyyeung, jamesk}@cse.ust.hk

Ana Fred
Technical University of Lisbon, Telecommunications Institute
Department of Electrical and Computer Engineering, Lisbon, Portugal
E-mail: afred@lx.it.pt

Fabio Roli
University of Cagliari, Department of Electrical and Electronic Engineering
Cagliari, Italy
E-mail: roli@diee.unica.it

Dick de Ridder
Delft University of Technology
Faculty of Electrical Engineering, Mathematics and Computer Science
Information and Communication Theory Group, Delft, The Netherlands
E-mail: d.deridder@tudelft.nl

Library of Congress Control Number: 2006930416

CR Subject Classification (1998): I.5, I.4, I.2.10, I.3.5, G.2-3

LNCS Sublibrary: SL 6 – Image Processing, Computer Vision, Pattern Recognition,
and Graphics

ISSN 0302-9743
ISBN-10 3-540-37236-9 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-37236-3 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11815921 06/3142 5 4 3 2 1 0



Preface

This volume in the Springer Lecture Notes in Computer Science (LNCS) series
contains 103 papers presented at S+SSPR 2006, which was the fifth time that
the SPR and SSPR workshops organized by Technical Committees TC1 and
TC2 of the International Association for Pattern Recognition (IAPR) were held
together as joint workshops. It was also the first time that the joint workshops
were held in the Far East, at the beautiful campus of the Hong Kong University
of Science and Technology (HKUST), on August 17–19, 2006, right before the
18th International Conference on Pattern Recognition (ICPR 2006), also held in
Hong Kong.

SPR 2006 and SSPR 2006 together received 217 paper submissions from 33
countries. This volume contains 99 accepted papers, with 38 for oral presenta-
tion and 61 for poster presentation. In addition to parallel oral sessions for SPR
and SSPR, there were also some joint oral sessions with papers of interest to
both the SPR and SSPR communities. A recent trend that has emerged in the
pattern recognition and machine learning research communities is the study of
graph-based methods that integrate statistical and structural approaches. For
this reason, a special joint session on graph-based methods was co-organized by
Technical Committee TC15 to explore new research issues in this topic. More-
over, invited talks were presented by four prominent speakers: Robert P.W. Duin
from Delft University of Technology, The Netherlands, winner of the 2006 Pierre
Devijver Award; Tin Kam Ho from Bell Laboratories of Lucent Technologies,
USA; Thorsten Joachims from Cornell University, USA; and B. John Oommen
from Carleton University, Canada.

We would like to take this opportunity to thank all members of the SPR
and SSPR Program Committees and the additional reviewers for their profes-
sional support in reviewing the submitted papers. We thank all the Advisory
Committee members, Shun-ichi Amari, Terry Caelli, Robert P.W. Duin, Anil K.
Jain, Erkki Oja, Harry Shum, and Tieniu Tan, for their invaluable advice on
organizing this event. We also thank all the authors, the invited speakers, the
Organizing Committee members, the sponsors, and the editorial staff of Springer
for helping to make this event a success and helping to produce this high-quality
publication in the LNCS series.

August 2006 Dit-Yan Yeung
James T. Kwok

Ana Fred
Fabio Roli

Dick de Ridder
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Application of a Two-Level Self Organizing Map for Korean Online
Game Market Segmentation

Sang-Chul Lee, Jae-Young Moon, Jae-Kyeong Kim, Yung-Ho Suh . . . . 808

Clustering Based on Compressed Data for Categorical and Mixed
Attributes

Erendira Rendón, José Salvador Sánchez . . . . . . . . . . . . . . . . . . . . . . . . . 817

Dimensionality

On Optimizing Kernel-Based Fisher Discriminant Analysis Using
Prototype Reduction Schemes

Sang-Woon Kim, B. John Oommen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 826



XX Table of Contents

Sparse Covariance Estimates for High Dimensional Classification Using
the Cholesky Decomposition

Asbjørn Berge, Anne Schistad Solberg . . . . . . . . . . . . . . . . . . . . . . . . . . . . 835

Generic Blind Source Separation Using Second-Order Local
Statistics

Marco Loog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 844

Hyperspectral Data Selection from Mutual Information Between Image
Bands
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Abstract. This abstract accompanying a presentation at S+SSPR 2006
explores the use of Support Vector Machines (SVMs) for predicting struc-
tured objects like trees, equivalence relations, or alignments. It is shown
that SVMs can be extended to these problems in a well-founded way,
still leading to a convex quadratic training problem and maintaining the
ability to use kernels. While the training problem has exponential size,
there is a simple algorithm that allows training in polynomial time. The
algorithm is implemented in the SVM-Struct software, and it is discussed
how the approach can be applied to problems ranging from natural lan-
guage parsing to supervised clustering.

1 Introduction

Over the last decade, much of the research on discriminative learning has focused
on problems like classification and regression, where the prediction is a single
univariate variable. But what if we need to predict complex objects like trees,
orderings, or alignments? Such problems arise, for example, when a natural lan-
guage parser needs to predict the correct parse tree for a given sentence, when
one needs to optimize a multivariate performance measure like the F1-score, or
when predicting the alignment between two proteins.

This abstract accompanies the presentation at S+SSPR 2006, discussing a
support vector approach and algorithm for predicting such complex objects. It
summarizes our recent work [10,20,21,11,12,9] on generalizing conventional clas-
sification SVMs to a large range of structured outputs and multivariate loss
functions, and connects these results to related work [4,3,5,1,16,19,13,23]. While
the generalized SVM training problems have exponential size, we show that there
is a simple algorithm that allows training in polynomial time. The algorithm is
implemented in the SVM-Struct software1, and it is discussed how the approach
can be applied to problems ranging from natural language parsing to supervised
clustering.

2 Problems That Require Structured Outputs

While many prediction problems can easily be broken into multiple binary clas-
sification problems, other problems require an inherently structured prediction.
1 Available at svmlight.joachims.org

D.-Y. Yeung et al. (Eds.): SSPR&SPR 2006, LNCS 4109, pp. 1–7, 2006.
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Fig. 1. Illustration of the NLP parsing problem

Consider, for example, the problem of natural language parsing. For a given sen-
tence x, the goal is to predict the correct parse tree y that reflects the phrase
structure of the sentence. This is illustrated on the left-hand side of Figure 1.
Training data of sentences that are labeled with the correct tree is available
(e.g. from the Penn Tree Bank), making this prediction problem accessible for
supervised learning.

Compared to binary classification, the problem of predicting complex and
structured outputs differs mainly by the choice of the outputs y. What are
common structures that we might want to predict?

Trees: We have already discussed the problem of natural language parsing (see
e.g. [14]), where a prediction y ∈ Y is a tree.

Sequences: A problem related to parsing is that of part-of-speech tagging (see
e.g. [14]). Given a sentence x represented as a sequence of words, the task is to
predict the correct part-of-speech tag (e.g. “noun” or “determiner”) for each
word. While this problem could be phrased as a multi-class classification
task, it is widely acknowledged that predicting the sequence of tags as a
whole allows exploiting dependencies between tags (e.g. it is unlikely to see
a verb after a determiner). Similar arguments also apply to tagging protein
or gene sequences.

Alignments: For comparative protein structure modelling, it is necessary to
predict how the sequence of a new protein with unknown structure aligns
against another sequence with know structure (see e.g. [8]). Given the cor-
rect alignment, it is possible to predict the structure of the new protein.
Therefore, one would like to predict the sequence alignment operations that
“best” aligns two sequences according to some cost model.

Equivalence Relation: Noun-phrase co-reference resolution (see e.g. [15]) is
the problem of clustering the noun phrases in one documents by whether
they refer to the same entity. This can be thought of as predicting an equiv-
alence relation, where training examples are the correct partitionings for
some documents. More generally, this problem can be thought of as super-
vised clustering [9] — training a clustering algorithm to produce the desired
kinds of clusters.
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While these application problems appear quite different, we will show that they
all can be approached in a similar way. In particular, the SVM algorithm we
describe in the following is able to address each of these problems.

3 An SVM Algorithm for Structured Outputs

Formally, we consider the problem of learning a function

h : X −→ Y

where X is the space of inputs, and Y is the space of (multivariate and structured)
outputs. In the parsing examples, X is the space of sentences, and Y is the space
of trees over a given set of non-terminal grammar symbols. To learn h, we assume
that a training sample of input-output pairs

S = ((x1,y1), . . . , (xn,yn)) ∈ (X × Y)n

is available and drawn i.i.d. from a distribution P (X, Y ). The goal is to find a
function h from some hypothesis space H that has low prediction error, or, more
generally, low risk

R�
P (h) =

∫
X×Y

�(y, h(x)) dP (x,y) .

�(y, ŷ) is a loss function that quantifies the loss associated with predicting ŷ
when y is the correct output value. Furthermore, we assume that �(y,y) =
0 and �(y,y′) ≥ 0 for y �= y′. We follow the Empirical Risk Minimization
Principle [22] to infer a function h from the training sample S. The learner
evaluates the quality of a function h ∈ H using the empirical risk R�

S (h) on the
training sample S.

R�
S (h) =

1
n

n∑
i=1

�(yi, h(xi))

Support Vector Machines select an h ∈ H that minimizes a regularized Empirical
Risk on S. For conventional binary classification where Y = {−1, +1}, SVM
training is typically formulated as the following convex quadratic optimization
problem [6,22].

OP 1 (Classification SVM (primal))

min
w,b,ξi≥0

1
2
wT w +

C

n

n∑
i=1

ξi

s.t. ∀i ∈ {1, ..., n} : yi(wT xi + b)≥1−ξi
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To generalize SVM training to structured outputs, we formulate an optimiza-
tion problem that is similar to multi-class SVMs [7] and generalizes the Per-
ceptron approach described in [4]. The idea is to learn a discriminant function
f : X × Y → R over input/output pairs from which we can derive a prediction
by maximizing f over all y ∈ Y for a specific given input x.

hw(x) = argmax
y∈Y

fw(x,y)

We assume that fw(x,y) takes the form of a linear function

fw(x,y) = wT Ψ(x,y)

where w ∈ �N is a parameter vector and Ψ(x,y) is a feature fector describing
the match between input x and output y. Intuitively, one can think of fw(x,y)
as a compatibility function that measures how well the output y matches the
given input x.

The specific form of Ψ depends on the nature of the problem and special cases
will be discussed subsequently. Using natural language parsing as an illustrative
example, fw can be chosen to be isomorphic to a Probabilistic Context Free
Grammar (PCFG) (see e.g. [14]). Each node in a parse tree y for a sentence x
corresponds to grammar rule gj , which in turn has a score wj . All valid parse
trees y (i.e. trees with a designated start symbol S as the root and the words
in the sentence x as the leaves) for a sentence x are scored by the sum of the
wj of their nodes. This score can thus be written in the form of Eq. 1, where
Ψ(x,y) denotes the histogram vector of how often each grammar rule gj occurs
in the tree y. This is illustrated on the right-hand side of Figure 1. hw(x) can
be efficiently computed by finding the structure y ∈ Y that maximizes fw(x,y)
via the CKY algorithm (see e.g. [14]).

For training the weights w of the linear discriminant function, we general-
ize the standard SVM optimization problem as follows [1,10,20,21]. A similar
formulation was independently proposed in [16].

OP 2 (Structural SVM (primal))

min
w,ξ

1
2
wTw +

C

n

n∑
i=1

ξi

s.t. ∀y ∈ Y : wT (Ψ(xi,yi)−Ψ(xi,y)) ≥ Δ(yi,y)−ξi

The objective is the conventional regularized risk used in SVMs. The con-
straints state that for each training example (xi,yi) the score wT Ψ(xi,yi) of
the correct yi must be greater than the score wT Ψ(xi,y) of all incorrect y by a
difference of Δ(yi,y). Δ is an application dependent loss function that measures
how different the two structures yi and y are. Intuitively, the larger the loss,
the further should the score be away from that of the correct training label yi.
ξi is a slack variable shared among constraints from the same example, since in
general the problem is often not separable. Note that

∑
ξi is an upper bound

on the training loss R�
S (h).
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Input: S = ((x1,y1), . . . , (xn,yn)), C > 0, ε > 0.
K = ∅, w = 0, ξ = 0
repeat

– Korg = K
– for i from 1 to n

• y=argmaxy∈Y Δ(yi,y)+wT Ψ(xi,y) # find most violated constraint
• if wT(Ψ(xi,yi) − Ψ(xi,y)) < Δ(yi,y)−ξi−ε # violated more than ε?

∗ K =K ∪ wT (Ψ(xi,yi)−Ψ(xi,y))≥Δ(yi,y)−ξi−ε

∗ (w, ξ) = argminw,ξ
1
2w

T w + C
n

n
i=1 ξi subject to K.

until (K = Korg)
Output: w

Fig. 2. Cutting plane algorithm for training Structural SVMs

While the training problem is obviously still convex and quadratic, it typically
has exponentially many constraints. For most choices of Y (e.g. sequences and
trees), the cardinality of Y is exponential in the maximum size of x — and so is
the number of constraints in OP2. This makes solving OP2 intractable using off-
the-shelf techniques. However, it has been shown that the cutting plane algorithm
in Figure 2 can be used to efficiently approximate the optimal solution of this
type of optimization problem [21,12]. The algorithm starts with an empty set
of constraints, adds the most violated constraint among the exponentially many
during each iteration, and repeats until the desired precision ε > 0 is reached. It
can be proved that only a polynomial number of constraints will be added before
convergence [21,12]. One crucial aspect of the algorithm, however, is the use of
an oracle that can find the most violated constraint among the exponentially
many possible constraints in polynomial time. That is, we need to compute

argmax
y∈Y

[Δ(yi,y) + wT Ψ(xi,y)]. (1)

For many Y, feature mappings Ψ , and the loss functions Δ, this problem can be
solved via dynamic programming. For trees, for example, the argmax in Eq. (1)
can be computed using the CKY algorithm, if Ψ follows from a context-free
grammar and Δ is any loss function that can be computed from the contingency
table [21]. The running time of the overall learning algorithm is then polynomial
in the number of training examples, the length of the sequences, and ε [21,12].

An alternative to the cutting plane algorithm is the algorithm proposed in
[19]. It applies when the loss function Δ decomposes linearly and the argmax in
Eq. (1) can be computed using a linear program that is guaranteed to have an
integer solution.

4 Application Examples and Related Work

It has been shown for a range of application problems and structures Y that
SVM training is feasible and benficial. The work in [20,21] shows how struc-
tural SVMs can be applied to natural language parsing, sequence alignment,
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taxonomic classification, and named-entity recognition. More work on highly ex-
pressive models for parsing is given in [17], and the use of structural SVMs for
protein threading is described in [10,12]. An alternative approach to alignment is
[18]. Work on sequence tagging for natural language problems and OCR is given
in [16,1]. Image segmentation is addressed in [2]. While traditional generative
training can and has been used for many structural prediction problems in the
past, the studies mentioned above have repeatedly shown that discriminative
training gives superior prediction performance.

Conditional Random Fields (CRFs) [13] are the most popular alternative
discriminative training methods for structured prediction problems. Like large-
margin approaches, they also have shown excellent performance on a variety of
problems. Instead of optimizing a regularized empirical risk for a user-defined
loss function like in the SVM approach, CRFs optimize a regularized conditional
likelihood. While they can be applied to many of the problems mentioned above,
there is little direct comparison between SVM and CRF training yet.

Other training approaches for structured models include the perceptron algo-
rithm and reranking approaches [4,3,5]. The structural SVM approach extends
these. A very different approach to structured prediction is proposed in [23], im-
plementing the structured prediction as a multivariate regression problem after
mapping the structures into Euclidian space.

5 Summary

This paper provides a short summary of methods for Support Vector Machine
training with structured outputs. In particular, it shows how a cutting-plane
method can be used to solve the training problem efficiently despite an expo-
nential number of constraints. Pointers towards applications and further reading
provide a starting point for further exploration of this area of research.
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Abstract. We re-visit the age-old problem of estimating the parameters
of a distribution from its observations. Traditionally, scientists and sta-
tisticians have attempted to obtain strong estimates by “extracting” the
information contained in the observations taken as a set. However, gen-
erally speaking, the information contained in the sequence in which the
observations have appeared, has been ignored - i.e., except to consider
dependence information as in the case of Markov models and n-gram
statistics. In this paper, we present results which, to the best of our
knowledge, are the first reported results, which consider how estimation
can be enhanced by utilizing both the information in the observations and
in their sequence of appearance. The strategy, known as Sequence Based
Estimation (SBE) works as follows. We first quickly allude to the results
pertaining to computing the Maximum Likelihood Estimates (MLE) of
the data when the samples are taken individually. We then derive the cor-
responding MLE results when the samples are taken two-at-a-time, and
then extend these for the cases when they are processed three-at-a-time,
four-at-a-time etc. In each case, we also experimentally demonstrate the
convergence of the corresponding estimates. We then suggest various av-
enues for future research, including those by which these estimates can
be fused to yield a superior overall cumulative estimate of the parameter
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of the distribution. We believe that our new estimates have great poten-
tial for practitioners, especially when the cardinality of the observation
set is small.

1 Introduction

Estimation is a fundamental issue that concerns every statistical problem. Typi-
cally, the practitioner is given a set of observations involving the random variable,
and his task is to estimate the parameters which govern the generation of these
observations. Since, by definition, the problem involves random variables, deci-
sions or predictions related to the problem are in some way dependent on the
practitioner obtaining reliable estimates on the parameters that characterize the
underlying random variable. Thus, if a problem can be modelled using a random
variable which is binomially (or multinomially) distributed, the underlying sta-
tistical problem involves estimating the binomial (or multinomial) parameter(s)
of the underlying distribution.

The theory of estimation has been studied for hundreds of years [1,3,8]. It
is also easy to see that the learning (training) phase of a statistical pattern
recognition system is, indeed, based on estimation theory [4,7,18]. Estimation
methods generally fall into various categories, including the Maximum Likelihood
Estimates (MLE) and the Bayesian family of estimates [1,3,4] which are well-
known for having good computational and statistical properties.

To explain the contribution of this paper, we consider the strategy used for
developing the MLE of the parameter of a distribution, fX(θ), whose parameter
to be estimated is θ. The input to the estimation process is the set of points X =
{x1, x2, . . . , xN}, which are assumed to be generated independently and identi-
cally as per the distribution, fX(θ). The process involves deriving the likelihood
function, i.e., the likelihood of the distribution, fX(θ), generating the sample
points X given θ, which is then maximized (by traditional optimization or cal-
culus methods) to yield the estimate, θ̂. The general characteristic sought for is
that the estimate θ̂MLE converges to the true (unknown) θ with probability one,
or in a mean square sense. Bayesian and MLE estimates generally possess this
desirable phenomenon.

Suppose now that the user received X as a sequence of data points as in
a typical real-life (or real-time) application such as those obtained in a data-
mining application involving sequences, or in data involving radio or television
news items1. The question which we have asked ourselves is the following: “Is
there any information in the fact that in X , xi specifically precedes xi+1 ?”.
Or in a more general case, “Is there any information in the fact that in X , the
sequence xixi+1 . . . xi+j occurs ni,i+1,...i+j times?”. Our position is that even
though X is generated by an i.i.d. process, there is information in these pieces
of sequential information, and we propose here a method by which these pieces

1 We are currently investigating how we can utilize SBEs to yield a superior classifi-
cation scheme for a real-life problem involving news files from the CBC.
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of information can be “maximally” utilized. The estimates that we propose are
referred to as the Sequence Based Estimators (SBE).

As far as we know, there are no available results which utilize sequential infor-
mation in obtaining such estimates2. Indeed, even the results we have here are
only for the case when the distribution is Binomial. Although some preliminary
results for the multinomial case are available, these are merely alluded to. The
paper also leads to a host of open problems.

Once we have obtained the SBE estimates based on the occurrence and se-
quential information, the next question is that of combining all these estimates
together to yield a single meaningful estimate. We propose to achieve this by
using techniques from the theory of fusion - excellent studies of which are found
in [9] and [10]. The paper also includes some specific applications of SBEs.

The paper is organized as follows. Section 2 lists the SBE estimation results
obtained when sequential information is used to estimate the parameter of the
Binomial distribution, and the sequences are processed two-at-a-time. This is
followed in Section 3 by cases when the data is analyzed in sequences three-at-
a-time, four-at-a-time respectively. Section 4 discusses the open problems that
are currently unsolved, namely those involving the fusing of the individual SBEs
and those which we have encountered in classifying artificial and real-life data.
Section 5 concludes the paper.

Contributions of the Paper: The contributions of this paper are:

1. This paper lists the first reported results for obtaining the maximum likeli-
hood estimates (called the Sequence Based Estimates (SBEs)) of the para-
meter of a binomial distribution when the data is processed both as a set of
observations and as a sequence by which the samples occur in the set.

2. The paper contains the formal results3 and verification for the cases when
the sequence is processed in pairs, and in subsequences of length 3 and 4.

3. The paper lists a few potential strategies by which SBE estimators can be
fused to yield a superior estimate utilizing the MLE and the SBEs.

4. The paper lists a few potential schemes by which the MLE and SBE estima-
tors can be used in pattern classification and other applications.

To the best of our knowledge, all of these are novel to the field of estimation,
learning and classification.

Throughout this paper we assume that we are estimating the parameters of
a binomial distribution. The binomial distribution is characterized by two para-
meters, namely, the number of Bernoulli trials, and the parameter characterizing

2 The question of utilizing and estimating sequential information is not entirely new. It
has long been used in syntactic pattern recognition, in estimating the bigram and n-
gram probabilities of streams of data and grammatical inference, and in the learning
problem associated with modelling channels using Hidden Markov Models [2,4]. But
all of these methods further emphasize the dependence between the occurrences. We
show that such information can be gleaned even if the occurrences are independent.

3 The paper lists at least 17 results. But as the proofs of many of the theorems are
quite similar, the details of the proofs are merely alluded to in the interest of brevity.



On the Theory and Applications of Sequence Based Estimation 11

each Bernoulli trial. In this regard, we assume that the number of observations
is the number of trials. Thus, all we have to do is to estimate the Bernoulli
parameter for each trial. Thus, in terms of notation, if X is a binomially distrib-
uted random variable, which takes on the value of either ‘1’ or ‘2’4, we assume
that X obeys the distribution S, where S = [s1, s2]T , where, s1 + s2 = 1, and

X = ‘1’ with probability s1
= ‘2’ with probability s2 ,

Then, the following elementary result about the MLE of S is given below.

Result 1. Let X be a binomially distributed random variable, obeying the
distribution S, where S = [s1, s2]T . If X = {x1, x2, . . . , xN} is a realization of a
sequence of occurrences of X , where each xi is either ‘1’ or ‘2’, the MLE of si is
ŝi = ni

N , where ni is the number of occurrences of ‘i’ in X . 	


Notation 1: To be consistent, we introduce the following notation.

– X is a binomially distributed random variable, obeying the distribution S.
– X = {x1, x2, . . . , xN} is a realization of a sequence of occurrences of X ,

where each xi is either ‘1’ or ‘2’.
– Let 〈j1j2 . . . , jk〉 be the sequence examined in the set X , where each jm, (1 ≤

m ≤ k), is either a ‘1’ or ‘2’. Then, the SBE for si obtained by examining
the sequence 〈j1j2 . . . , jk〉 will be given by ŝi |<j1j2...,jk> . 	


Example of Notation 1: The SBE of s1 obtained by examining all occur-
rences of the sequence ‘〈121〉’ will be be given by ŝ1 |<121> , and the SBE of s2
obtained by examining all occurrences of the sequence ‘〈2122〉’ will be be given
by ŝ2 |<2122> . Observe, trivially, that

ŝ2 |<j1j2...,jk> = 1 − ŝ1 |<j1j2...,jk> .
We shall now derive the explicit form of ŝi |<j1j2...,jk> for various instantia-

tions of sequences 〈j1j2 . . . , jk〉. It is well known that the MLE converges with
probability 1 and in the mean square sense to the true underlying parameter.
Thus, all the estimates given in the following Sections/subsections converge (w.
p. 1, and in the mean square sense) to the true underlying value of the parameter
as the number of samples increases.

2 SBEs Using Pair-Wise Sequential Information

In this Section, we consider (analytically and experimentally) the estimation
of the binomial parameter when we analyze the sequence of information by
processing it in pairs. All the proofs of the results in this paper are either merely
sketched or omitted in the interest of brevity, but can be found in [11].

Theorem 1. Using Notation 1, ŝ1 |<11> , the SBE of s1 obtained by examining
the occurrences of ‘〈11〉’ is:
4 We depart from the traditional notation of the random variable taking values of ‘0’

and ‘1’, so that the notation is consistent when we deal with vectors.
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ŝ1 |<11> =
√

n11

N − 1
(1)

where n11 is the number of occurrences of ‘< 11 >’ in X .

Proof. The number of sequences of length two5 in X is N − 1. Of these, we
observe n11 which have the value ‘〈11〉’. Consider now a random variable ξ11
which yields the outcome of either obtaining two consecutive 1’s or not. ξ11 is a
Bernoulli random variable whose distribution is :

ξ11 = ‘11’ with probability s2
1

�= ‘11’ with probability 1 − s2
1.

The MLE of the Bernoulli parameter of ξ11 is n11
N−1 , and thus,

ŝ2
1 = n11

N−1

whence ŝ1 |<11> =
√

n11
N−1 and the result follows. 	


Theorem 2. Using Notation 1, ŝ1 |<22> , the SBE of s1 obtained by examining
the occurrences of ‘〈22〉’ is:

ŝ1 |<22> = 1 −
√

n22

N − 1
(2)

where n22 is the number of occurrences of ‘< 22 >’ in X .

Proof. The proof is similar to the proof of Theorem 1, except that we first solve
for ŝ2 |<22> and then obtain ŝ1 |<22> . The details are omitted. 	

Theorem 3. Using Notation 1, ŝ1 |<12> and ŝ1 |<21> , the SBEs of s1 obtained
by examining the occurrences of ‘〈12〉’ and ‘〈21〉’, respectively, can be obtained
if and only if the roots of the quadratic equation given below are :

1. ŝ1 |<12> is the real root of λ2 − λ + n12
N−1 = 0 whose value is closest to ŝ1.

2. ŝ1 |<21> is the real root of λ2 − λ + n21
N−1 = 0 whose value is closest to ŝ1.

Proof. The proof of the result is found in [11]. 	

A simple study of the patterns6 that can occur will demonstrate that n21 differs
from n12 by at most unity. Thus, the corresponding estimates ŝ1 |<21> and
ŝ1 |<12> are almost the same. The ensemble estimates are, however, different.

Example: Let us suppose that X is the set
{1, 2, 1, 2, 1, 1, 1, 2, 2, 1, 1} where the elements occur in the specified order.
Then : n1 = 7, n11 = 3, n12 = 3, n21 = 3, and n22 = 1. Thus, the SBEs are:
ŝ1 |<1> = 7

11 = 0.6364.

5 The number of distinct sequences of length two is N
2 . But since the elements of X

are drawn independently and identically, there are N − 1 consecutive pairs (“drawn
with replacement”) to be considered. More details of this are found in [11].

6 The proverb “What goes up must come down !” is applicable here.
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ŝ1 |<11> =
√

3
10 = 0.5477.

ŝ1 |<12> = Root(λ2 − λ + 3
10 = 0). In this case, the roots of the quadratic

are complex. Hence the quantity n12 can provide us no information about s1.
Similarly, the quantity n12 also leads to complex roots and so can provide us no
information about s1.

Finally, ŝ2 |<22> =
√

1
10 = 0.3162, and hence, ŝ1 |<22> = 0.6838. 	


Experimental Results: We present the results of our simulations7 on synthetic
data for the case when the sequence is processed in pairs. The SBE process for
the estimation of the parameters for binomial random variables was extensively
tested for numerous distributions, but in the interest of brevity, we merely cite
one specific example. Also, to make the comparison meaningful, we have fol-
lowed the “traditional” MLE computation (i.e., the one which does not utilize
the sequential information) using the identical data stream. In each case, the
estimation algorithms were presented with random occurrences of the variables
for N = 1, 953, 125 (i.e, 59) time instances.

In the case of the SBE, the true underlying value of s1 was computed using
each of the estimates, ŝ1 |<11> , ŝ1 |<12> , ŝ1 |<21> and ŝ1 |<22> , and the results
are tabulated in Table 1. This table reports the values of the estimates as time
progresses. However, to demonstrate the true convergence properties of the esti-
mates, we have also reported the values of the ensemble averages of the estimates
in Table 1, taken over an ensemble of 100 experiments, which are given in the
second line of each row. The convergence of every single estimate is remarkable.

The reader should observe that the MLE and SBE taken for a single exper-
iment are much more sporadic. This can be observed from Table 1. It is here
that we believe that the SBE will find its niche, namely to enhance the MLE
estimate using the information gleaned from the various SBEs.

3 SBEs Using Subsequences of Length Three and Four

We first consider the case when subsequences of length 3 are processed. The
following results, whose proofs are found in [11], are true.

Theorem 4. Using Notation 1, ŝ1 |<111> , the SBE of s1 obtained by examining
the occurrences of ‘〈111〉’ is:

ŝ1 |<111> = 3

√
n111

N − 2
(3)

where n111 is the number of occurrences of ‘< 111 >’ in X . 	

Theorem 5. Using Notation 1, ŝ1 |<222> , the SBE of s1 obtained by examining
the occurrences of ‘〈222〉’ is:

7 In the tables, values of unity or zero represent the cases when the roots are complex
or when the number of occurrences of the event concerned are zero.
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Table 1. A table of the value of the MLE, s1, and the SBEs s1 |<11> , s1 |<22> , s1 |<12> ,
and s1 |<21> , at time ‘N ’, where the latter SBEs were estimated by using the results
of Theorems 1, 2, and 3 respectively. The values of the second line of each row are
the ensemble averages of the corresponding estimates, taken over an ensemble of 100
experiments.

N s1 s1 |<11> s1 |<22> s1 |<12> s1 |<21>

51 (5) 0.8000 0.8660 1.0000 1.0000 0.5000
0.7300 0.6686 0.8539 0.6000 0.6150

52 (25) 0.8000 0.8165 0.7959 0.8536 0.7887
0.7212 0.7240 0.7267 0.6744 0.6816

53 (125) 0.7920 0.8032 0.7800 0.8111 0.8111
0.7210 0.7215 0.7213 0.7121 0.7132

54 (625) 0.7456 0.7489 0.7375 0.7563 0.7532
0.7248 0.7237 0.7282 0.7205 0.7206

55 (3,125) 0.7200 0.7226 0.7143 0.7277 0.7277
0.7244 0.7240 0.7254 0.7231 0.7231

56 (15,625) 0.7199 0.7210 0.7171 0.7234 0.7233
0.7246 0.7245 0.7249 0.7243 0.7243

57 (78,125) 0.7245 0.7244 0.7248 0.7242 0.7241
0.7249 0.7248 0.7249 0.7248 0.7248

58 (390,625) 0.7252 0.7253 0.7250 0.7255 0.7255
0.7250 0.7250 0.7249 0.7250 0.7250

59 (1,953,125) 0.7244 0.7243 0.7245 0.7242 0.7242
0.7250 0.7250 0.7250 0.7250 0.7250

ŝ1 |<222> = 1 − 3

√
n222

N − 2
(4)

where n222 is the number of occurrences of ‘< 222 >’ in X . 	

Theorem 6. Using Notation 1, the SBEs of s1 obtained by examining the oc-
currences of subsequences which contain a single ‘2’ such as ‘〈211〉’, ‘〈121〉’, and
‘〈112〉’, can be obtained as the real root of the cubic equation given below :

1. ŝ1 |<211> is the real root of λ3 − λ2 + n211
N−2 = 0 whose value is closest to ŝ1.

2. ŝ1 |<121> is the real root of λ3 − λ2 + n121
N−2 = 0 whose value is closest to ŝ1.

3. ŝ1 |<112> is the real root of λ3 − λ2 + n112
N−2 = 0 whose value is closest to ŝ1.

	

Theorem 7. Using Notation 1, the SBEs of s1 obtained by examining the oc-
currences of subsequences which contain two ‘2’s such as ‘〈122〉’, ‘〈212〉’, and
‘〈221〉’, can be obtained as the real root of the cubic equation given below :

1. ŝ2 |<122> is the real root of λ3 − λ2 + n122
N−2 = 0 whose value is closest to ŝ2,

whence the estimate ŝ1 |<122> can be obtained as 1 − ŝ2 |<122> .
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2. ŝ2 |<212> is the real root of λ3 − λ2 + n212
N−2 = 0 whose value is closest to ŝ2,

whence the estimate ŝ1 |<212> can be obtained as 1 − ŝ2 |<212> .
3. ŝ2 |<221> is the real root of λ3 − λ2 + n221

N−2 = 0 whose value is closest to ŝ2,
whence the estimate ŝ1 |<221> can be obtained as 1 − ŝ2 |<221> . 	


Experimental Results: We now present the results of our simulations on
synthetic data for the cases studied in the previous sub-section, namely for the
case when the sequence is processed in subsequences of length three. To make
the comparison (with the pairwise computation) meaningful, we again report
the result when the true value of s1 is 0.725.

In the case of the SBE, the true underlying value of s1 was computed using
each of the estimates, SBEs ŝ1 |<111> , ŝ1 |<222> , ŝ1 |<211> , ŝ1 |<121> , ŝ1 |<112> ,
ŝ1 |<122> , ŝ1 |<212> , and ŝ1 |<221> , and the results are tabulated in Table 2 as
a function of the number of samples processed.

Again, the reader should observe that the MLE and SBE taken for a single
experiment are not as smooth - especially when the number of samples processed
is small. This can be observed from Table 2. In practice, this is augmented by
the fact that the SBEs sometimes lead to complex solutions or to unrealistic
solutions when the number of samples processed is small. But fortunately, things
“average” out as time proceeds.

Table 2. A table of the value of the MLE, s1, and the SBEs s1 |<111> , s1 |<222> ,
s1 |<211> , s1 |<121> , s1 |<112> , s1 |<122> , s1 |<212> , and s1 |<221> , at time ‘N ’, where
the latter SBEs were estimated by using the results of Theorems 4, 5, 6, and 7, respec-
tively. The values of the second line on each row mean the ensemble averages of the
corresponding estimates, taken over an ensemble of 100 experiments.

N s1 s1 |<111> s1 |<222> s1 |<211> s1 |<121> s1 |<112> s1 |<122> s1 |<212> s1 |<221>

51 0.8000 0.8736 1.0000 0 1.0000 1.0000 1.0000 1.0000 1.0000
0.7300 0.5154 0.9497 0.4700 0.5300 0.4900 0.9100 0.9100 0.9500

52 0.8000 0.8050 1.0000 0 0.8903 0.7921 0.7610 1.0000 0.7610
0.7212 0.7173 0.8359 0.4769 0.5724 0.4629 0.7237 0.8299 0.7189

53 0.7920 0.7958 0.7989 0.7083 0.8556 0.7083 0.7703 0.9052 0.7703
0.7210 0.7199 0.7530 0.4534 0.4906 0.4351 0.7161 0.7305 0.7158

54 0.7456 0.7521 0.7178 0.7697 0.7627 0.7697 0.7510 0.7459 0.7510
0.7248 0.7226 0.7316 0.4653 0.4474 0.4723 0.7273 0.7253 0.7271

55 0.7200 0.7229 0.7102 0.7260 0.7503 0.7260 0.7173 0.7282 0.7173
0.7244 0.7236 0.7251 0.5607 0.4780 0.5607 0.7258 0.7247 0.7258

56 0.7199 0.7231 0.7133 0.7443 0.7318 0.7447 0.7200 0.7137 0.7200
0.7246 0.7244 0.7247 0.7076 0.6717 0.7076 0.7251 0.7250 0.7251

57 0.7245 0.7253 0.7232 0.7341 0.7192 0.7342 0.7260 0.7199 0.7260
0.7249 0.7248 0.7245 0.7246 0.7234 0.7246 0.7251 0.7248 0.7251

58 0.7252 0.7256 0.7254 0.7296 0.7274 0.7296 0.7247 0.7238 0.7247
0.7250 0.7250 0.7249 0.7251 0.7250 0.7251 0.7250 0.7249 0.7250

59 0.7244 0.7243 0.7245 0.7239 0.7233 0.7239 0.7245 0.7243 0.7245
0.7250 0.7250 0.7249 0.7252 0.7249 0.7252 0.7250 0.7249 0.7250

We now extend the previous cases to consider the scenario when the sequential
information is processed in subsequences of length four.
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Theorem 8. Using Notation 1, ŝ1 |<1111> , the SBE of s1 obtained by examining
the occurrences of ‘〈1111〉’ is:

ŝ1 |<1111> = 4

√
n1111

N − 3
(5)

where n1111 is the number of occurrences of ‘< 1111 >’ in X . 	

Theorem 9. Using Notation 1, ŝ1 |<2222> , the SBE of s1 obtained by examining
the occurrences of ‘〈2222〉’ is:

ŝ1 |<2222> = 1 − 4

√
n2222

N − 2
(6)

where n2222 is the number of occurrences of ‘< 2222 >’ in X . 	

To simplify matters, we deal with the rest of the cases that involve four-at-a-
time subsequences, by sub-dividing them into the cases when the subsequences
contain one ‘2’, two ‘2’s, and three ‘2’s, respectively. In each case, we shall deal
with all the corresponding subsequence patterns in a single theorem.

Theorem 10. Using Notation 1, the SBEs of s1 obtained by examining the
occurrences of subsequences which contain a single ‘2’, can be obtained by the
real roots (if any) of the quartic equations given below :

1. ŝ1 |<2111> is the real root of λ4 −λ3 + n2111
N−3 = 0 whose value is closest to ŝ1.

2. ŝ1 |<1211> is the real root of λ4 −λ3 + n1211
N−3 = 0 whose value is closest to ŝ1.

3. ŝ1 |<1121> is the real root of λ4 −λ3 + n1121
N−3 = 0 whose value is closest to ŝ1.

4. ŝ1 |<1112> is the real root of λ4 −λ3 + n1112
N−3 = 0 whose value is closest to ŝ1.

	

Theorem 11. Using Notation 1, the SBEs of s1 obtained by examining the
occurrences of subsequences which contain two ‘2’s, can be obtained by the real
roots (if any) of the quadratic (not quartic !!!) equations given below :

1. ŝ1 |<1122> is the real root of λ2 − λ +
√

n1122
N−3 = 0 with value closest to ŝ1.

2. ŝ1 |<1212> is the real root of λ2 − λ +
√

n1212
N−3 = 0 with value closest to ŝ1.

3. ŝ1 |<1221> is the real root of λ2 − λ +
√

n1221
N−3 = 0 with value closest to ŝ1.

4. ŝ1 |<2112> is the real root of λ2 − λ +
√

n2112
N−3 = 0 with value closest to ŝ1.

5. ŝ1 |<2121> is the real root of λ2 − λ +
√

n2121
N−3 = 0 with value closest to ŝ1.

6. ŝ1 |<2211> is the real root of λ2 −λ+
√

n2211
N−3 = 0 with value closest to ŝ1. 	


Theorem 12. Using Notation 1, the SBEs of s1 obtained by examining the
occurrences of subsequences which contain three ‘2’s, can be obtained by de-
termining the real roots (if any) of the quartic equations given below and then
subtracting their value from unity as below:
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1. ŝ1 |<1222> is the quantity [1 - Root(λ4 − λ3 + n1222
N−3 = 0)]

2. ŝ1 |<2122> is the quantity [1 - Root(λ4 − λ3 + n2122
N−3 = 0)]

3. ŝ1 |<2212> is the quantity [1 - Root(λ4 − λ3 + n2212
N−3 = 0)]

4. ŝ1 |<2221> is the quantity [1 - Root(λ4 − λ3 + n2221
N−3 = 0)]

where each of the above estimates is the value closest to ŝ1. 	


Experimental Results: The simulation results for the the case when the se-
quence is processed in subsequences of length four is presented below. The ex-
perimental settings are identical to the ones used in the case of processing it
in pairs and in subsequences of length three, namely, when s1 is 0.725, and
N = 1, 953, 125 (i.e, 59) time instances.

Table 3 lists the values of the SBEs, computed using each of the estimates,
ŝ1 |<1111> , ŝ1 |<2222> , ŝ1 |<2111> , ŝ1 |<1122> , and ŝ1 |<1222> , and their ensemble
averages. The other cases when the subsequences with one ‘2’, two ‘2’s, and three
‘2’s (the other cases listed in Theorems 10, 11 and 12) are identical to the ones
reported and so omit them here for ease of readability.

Again, we observe that the convergence of every single estimate is remarkable.
For example, the traditional MLE, ŝ1, had the ensemble average of 0.7210 when
only N = 125 symbols were processed. This value became 0.7248 when N = 625
symbols were processed, which converged to 0.7250 when N = 59. By way of
comparison, for the same case, the SBE, ŝ1 |<1222> , had the ensemble average of
0.7444 when only N = 125 symbols were processed. It had the value 0.7319 after
N = 625 symbols were processed, and as in the case of ŝ1 became increasingly
closer to the true value as N increased. In this case, when N = 59, the value of
ŝ1 |<1222> , was also exactly 0.7250. This was also true for the other SBEs.

In this case, the solutions to the equations were often complex initially (i.e.,
for small values of ‘N’). But as time proceeded, the number of occurrences of the
outcomes was more reasonable, and the solution obtained converged as expected.

4 Open Issues and Potential Applications of SBEs

As mentioned earlier, we believe that there are a host of open problems which
concern the family of SBEs. We shall highlight them in the following subsections.

Higher Order SBEs: Till now, we have considered how we can obtain effective
SBEs by considering subsequences of lengths 2, 3 and 4 respectively. There is
no reason why we cannot consider subsequences of even longer length. Without
much ado, we list (without proof) the form the SBEs would take for a few simple
cases when subsequences of length 5 are analyzed. Indeed, using Notation 1, we
can state that:

1. ŝ1 |<11111> , the SBE of s1 obtained by examining the occurrences of ‘〈11111〉’
is : ŝ1 |<11111> = 5

√
n11111
N−4 . 	
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Table 3. A table of the values of the MLE, s1, and the SBEs s1 |<1111> , s1 |<2222> ,
s1 |<2111> , s1 |<1122> , and s1 |<1222> , at time ‘N ’, where the latter SBEs were esti-
mated by using the results of Theorems 8, 9, 10, 11 and 12 respectively. The other
cases when the subsequences with one ‘2’, two ‘2’s, and three ‘2’s (the other cases listed
in Theorems 10, 11 and 12) are identical.

N s1 s1 |<1111> s1 |<2222> s1 |<1222> s1 |<1122> s1 |<2111>

51 (5) 0.8000 0.8409 1.0000 1.0000 1.0000 1.0000
0.7300 0.3645 0.9916 0.8800 0.8100 0.6600

52 (25) 0.8000 0.7765 1.0000 1.0000 0.6918 0.6918
0.7212 0.6867 0.9428 0.8354 0.5944 0.4880

53 (125) 0.7920 0.7920 1.0000 0.7811 0.7625 0.7625
0.7210 0.7178 0.8832 0.7444 0.6577 0.3152

54 (625) 0.7456 0.7492 0.7619 0.6976 0.7402 0.7659
0.7248 0.7223 0.7468 0.7319 0.7255 0.3755

55 (3,125) 0.7200 0.7247 0.7412 0.6942 0.7069 0.7143
0.7244 0.7236 0.7249 0.7261 0.7250 0.4050

56 (15,625) 0.7199 0.7232 0.7090 0.7161 0.7221 0.7196
0.7246 0.7244 0.7244 0.7250 0.7246 0.4922

57 (78,125) 0.7245 0.7253 0.7205 0.7248 0.7285 0.7277
0.7249 0.7249 0.7245 0.7245 0.7251 0.6649

58 (390,625) 0.7252 0.7256 0.7257 0.7252 0.7250 0.7257
0.7250 0.7250 0.7247 0.7250 0.7250 0.7249

59 (1,953,125) 0.7244 0.7241 0.7244 0.7246 0.7250 0.7247
0.7250 0.7250 0.7248 0.7250 0.7251 0.7249

2. ŝ1 |<22222> , the SBE of s1 obtained by examining the occurrences of ‘〈22222〉’
is : ŝ1 |<22222> = 1 − 5

√
n22222
N−4 . 	


We believe that deriving the expressions for other higher order SBEs is not expe-
dient. Obtaining them would involve explicitly solving algebraic equations which
are higher than of a quintic order, and it is well known that this is intractable
(other than by resorting to numerical methods).

We conclude this section by stating that the question of how we can effectively
compute the SBEs for orders of 5 and higher is still effectively open.

Fusing the MLE and the SBEs to Yield a Superior Estimate: One of
the most interesting problems that still remains open involves the question of
how the MLE and the SBEs can be fused to yield a superior estimate. Rather
than discuss “specifics”, let us assume that we have obtained a set of estimates
Φ = [φ0, φ1, φ2, . . . φD]T , where, for simplicity, we use the notation that φ0 is
the traditional MLE, and the other φi’s are the SBEs. Thus, for example, an
instantiation of Φ could be the 7-component vector:

Φ = [ŝ1, ŝ1 |<11> , ŝ1 |<12> , ŝ1 |<111> , ŝ1 |<222> , ŝ1 |<1111> , ŝ1 |<1222> ]T .
The aim of the fusing exercise is to combine the information in the components

of Φ to obtain an even more superior estimate ̂̂s1.
The first question that needs to be answered is the following: If the traditional

MLE and all the SBEs converge to the same true value, what is the advantage
of such a fusing process? The answer lies simply in the fact that although the
traditional MLE and all the SBEs converge asymptotically to the same value,
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they all have completely different values8 when the number of samples examined
is “small”. Thus, for example, when the number of samples examined is only 125
and the true value of s1 is 0.7250, the value of Φ is:

Φ = [0.7920, 0.8032, 0.7800, 0.8111, 0.7958, 0.7989, 0.7920, 0.7811]T.
Observe that the traditional MLE is 0.7920 (quite distant from the true value

of 0.7250), while other SBEs are closer to the true value. Thus, it would be
advantageous to seek a scheme which uses these different “descriptors” of s1 to
lead to a more accurate estimate of s1. In all these estimates, we consciously
discard elements of Φ which are unity or zero, as these represent the cases when
the solution of the underlying equation don’t lead to a realistic estimate.

We have designed four different fusion methods that use the D components
of Φ. The details of the methods are omitted here in the interest of brevity, but
can be found in [11], but this entire avenue is open to further research.

Classification Using the MLE and the SBE: Another major possibility for
further research involves combining the classifier decisions obtained by the MLEs
and the various SBEs. In the study of pattern recognition, classifier combina-
tion has received considerable attention because of its potential to improve the
performance of individual classification systems. The basic idea is to solve each
classification problem by designing a specific classifier, and then to combine the
classifiers in some way to achieve reduced classification error rates. Indeed, the
choice of an appropriate fusion method can further improve on the performance
of the combination. Various Classifier Fusion Schemes (CFS) have been proposed
in the literature - excellent studies are found in [9,?]. We have designed a few
different fusion classification methods for SBEs (omitted here in the interest of
brevity, but included in [11]), but here too the ground is fertile, and we believe
that a lot of research remains to be accomplished.

Non Pattern Recognition Potential Applications of SBEs: Apart from
the obvious applications in Pattern Recognition (PR) (mentioned above), there
are numerous situations where data arrives in a sequence, and where it is possible
to assign a binary indicator variable to the arriving data. This section introduces
two such example applications that are representative for wide classes of use. We
note, in passing, that thse methods can be used for even broader application ar-
eas when we seek methods to obtain the sequence estimates so as to improve
the quality and convergence of lower order estimators. In particular, this may
allow the use of estimation in real-time control applications where the conver-
gence of MLEs are too slow compared to the time constant of the system being
controlled.

Network Transmission Quality: The Internet is omnipresent today, and the
Internet Protocol (IP) is the dominating protocol for long haul data communi-
cation. However, the IP itself does not provide any transmission guarantees, and

8 This is reminiscent of the fairy tale of the seven blind men who each described an
elephant with completely different descriptions. While each of the descriptors was,
in itself, inaccurate, the composite picture was accurate!
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packets may freely be delayed, delivered out of order, or even discarded in the
case of network congestion. To remedy this situation most Internet applications
requiring reliable and sequential delivery use the Transmission Control Protocol
(TCP) on top of the IP, namely, the TCP/IP [14]. For applications which cannot
accept neither long delays nor jitter (delay variation) nor out of order delivery
the TCP is not the solution, and various other protocols and mechanisms to
achieve the desired transmission quality in the Internet have been proposed [17].
Providing strict transmission quality guarantees per flow can be done, but this
requires intelligence installed in every router along the transmission path [15].
Further, if a flow crosses multiple ISPs it will mix with other traffic between
the ISPs, and the end-user’s SLA with its ISP will not extend to the ISPs fur-
ther down-stream. Currently, no end-to-end transmission guarantees for a flow
in the Internet can be given beyond that of the TCP; this is an active research
topic [5].

By categorizing a packet within the delay bound as a Success (say, with value
‘1’) and a dropped packet as a Failure (with value ‘2’), the situation fits the SBE
framework presented in this paper. The delay sensitive flow can be admitted if
the failure rate, ŝ2, estimated from the probing is below a certain limit. A side
effect of using the SBE instead of the MLE would be the advantage of being
able to gather statistics on the probability of a sequence of subsequent failures.
More details of this proposition are found in [11].

Arithmetic Coding: Arithmetic coding [6,12] has the ability to serve two pur-
poses: Lossless data compression [16] and the assignment of unique signatures
for sets and databases. The fundamental idea is to encode a sequence of symbols
taken from an alphabet as a sequence of bits, so that more frequently occur-
ring symbols are assigned a lesser number of bits, where the assignment can be
achieved either static or adaptive.

Given the encoded bit string the SBE is directly applicable. Using the SBE on
the bit stream the decoder might be able to predict the incoming symbol before
it has completely arrived. Such a look-ahead would be a result of combining the
relative frequencies of ‘0’ and ‘1’ in the stream with the relative occurrence of the
sub-sequences. The added benefit will be that the encoder can use the information
of the symbol it is set to decode immediately, i.e. update the frequency table of
the model before encoding the symbol. The details of this opportunity, including
rendering it less vulnerable to transmission errors (see [11] needs to be further
investigated, and is a topic for further research.

5 Conclusions

In this paper, we considered the age-old problem of estimating the parameters
of a distribution from its observations. Unlike the method that is customarily
employed, (which processes the information contained in the observations taken
as a set), we demonstrate how the estimation can be enhanced by utilizing both
the information in the observations and in their sequence of appearance. In this
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regard, we have derived the corresponding MLE results when the samples are
taken two-at-a-time, three-at-a-time, four-at-a-time etc. In each case, we also
experimentally demonstrated the convergence of the corresponding estimates.
We have visited the various strategies by which these estimates could be fused
to yield superior overall cumulative estimates. Our results demonstrate that the
strategy is very promising, and that it has potential applications in fused PR
systems, and in the domains of enhancing Internet protocols and data encoding.
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Abstract. Studies on ensemble methods for classification suffer from
the difficulty of modeling the complementary strengths of the compo-
nents. Kleinberg’s theory of stochastic discrimination (SD) addresses this
rigorously via mathematical notions of enrichment, uniformity, and pro-
jectability of a model ensemble. We explain these concepts via a very
simple numerical example that captures the basic principles of the SD
theory and method. We focus on a fundamental symmetry in point set
covering that is the key observation leading to the foundation of the the-
ory. We believe a better understanding of the SD method will lead to
developments of better tools for analyzing other ensemble methods.

1 Introduction

Methods for classifier combination, or ensemble learning, can be divided into
two categories: 1) decision optimization methods that try to obtain consensus
among a given set of classifiers to make the best decision; 2) coverage optimization
methods that try to create a set of classifiers that can do well for all possible
cases under a fixed decision combination function.

Decision optimization methods rely on the assumption that the given set of
classifiers, typically of a small size, contain sufficient expert knowledge about
the application domain, and each of them excels in a subset of all possible input.
A decision combination function is chosen or trained to exploit the individual
strengths while avoiding their weaknesses. Popular combination functions in-
clude majority/plurality votes[19], sum/product rules[14], rank/confidence score
combination[12], and probabilistic methods[13]. These methods are known to be
useful in many applications where reasonably good component classifiers can be
developed. However, the joint capability of the classifiers sets an intrinsic lim-
itation that a decision combination function cannot overcome. A challenge in
this approach is to find out the “blind spots” of the ensemble and to obtain an
additional classifier that covers them.

Coverage optimization methods use an automatic and systematic mechanism
to generate new classifiers with the hope of covering all possible cases. A fixed
function, typically simple in form, is used for decision combination. This can
be training set subsampling, such as stacking[22], bagging[2], and boosting[5],
feature subspace projection[10], superclass/subclass decomposition[4], or other
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methods for randomly perturbing the classifier training procedures[6]. Open
questions in these methods are 1) how many classifiers are enough? 2) what
kind of differences among the component classifiers yields the best combined
accuracy? 3) how much limitation is set by the form of the component classi-
fiers?

Apparently both categories of ensemble methods run into some dilemma.
Should the component classifiers be weakened in order to achieve a stronger
whole? Should some accuracy be sacrificed for the known samples to obtain bet-
ter generalization for the unseen cases? Do we seek agreement, or differences
among the component classifiers?

A central difficulty in studying the performance of these ensembles is how
to model the complementary strengths among the classifiers. Many proofs rely
on an assumption of statistical independence of component classifiers’ decisions.
But rarely is there any attempt to match this assumption with observations of
the decisions. Often, global estimates of the component classifiers’ accuracies
are used in their selection, while in an ensemble what matter more are the local
estimates, plus the relationship between the local accuracy estimates on samples
that are close neighbors in the feature space.1

Deeper investigation of these issues leads back to three major concerns in
choosing classifiers: discriminative power, use of complementary information, and
generalization power. A complete theory on ensembles must address these three
issues simultaneously. Many current theories rely, either explicitly or implicitly,
on ideal assumptions on one or two of these issues, or have them omitted entirely,
and are therefore incomplete.

Kleinberg’s theory and method of stochastic discrimination (SD)[15][16] is the
first attempt to explicitly address these issues simultaneously from a mathemat-
ical point of view. In this theory, rigorous notions are made for discriminative
power, complementary information, and generalization power of an ensemble. A
fundamental symmetry is observed between the probability of a fixed model cov-
ering a point in a given set and the probability of a fixed point being covered by
a model in a given ensemble. The theory establishes that, these three conditions
are sufficient for an ensemble to converge, with increases in its size, to the most
accurate classifier for the application.

Kleinberg’s analysis uses a set-theoretic abstraction to remove from consider-
ation algorithmic details of classifiers, feature extraction processes, and training
procedures. It considers only the classifiers’ decision regions in the form of point
sets, called weak models, in the feature space. A collection of classifiers is thus
just a sample from the power set of the feature space. If the sample satisfies a
uniformity condition, i.e., if its coverage is unbiased for any local region of the
feature space, then a symmetry is observed between two probabilities (w.r.t. the
feature space and w.r.t. the power set, respectively) of the same event that a
point of a particular class is covered by a component of the sample. Discrimina-
tion between classes is achieved by requiring some minimum difference in each
component’s inclusion of points of different classes, which is trivial to satisfy. By

1 There is more discussion on these difficulties in a recent review[8].
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way of this symmetry, it is shown that if the sample of weak models is large, the
discriminant function, defined on the coverage of the models on a single point
and the class-specific differences within each model, converges to poles distinct
by class with diminishing variance.

We believe that this symmetry is the key to the discussions on classifier com-
bination. However, since the theory was developed from a fresh, original, and
independent perspective on the problem of learning, there have not been many
direct links made to the existing theories. As the concepts are new, the claims
are high, the published algorithms appear simple, and the details of more sophis-
ticated implementations are not known, the method has been poorly understood
and is sometimes referred to as mysterious.

It is the goal of this lecture to illustrate the basic concepts in this theory and
remove the apparent mystery. We present the principles of stochastic discrim-
ination with a very simple numerical example. The example is so chosen that
all computations can be easily traced step-by-step by hand or with very simple
programs. We use Kleinberg’s notation wherever possible to make it easier for
the interested readers to follow up on the full theory in the original papers. Our
emphasis is on explaining the concepts of uniformity and enrichment, and the
behavior of the discriminant when both conditions are fulfilled. For the details
of the mathematical theory and outlines of practical algorithms, please refer to
Kleinberg’s original publications[15][16][17][18].

2 Symmetry of Probabilities Induced by Uniform Space
Covering

The SD method is based on a fundamental symmetry in point set covering. To
illustrate this symmetry, we begin with a simple observation. Consider a set
S = {a, b, c} and all the subsets with two elements s1 = {a, b}, s2 = {a, c}, and
s3 = {b, c}. By our choice, each of these subsets has captured 2/3 of the elements
of S. We call this ratio r. Let us now look at each member of S, and check how
many of these three subsets have included that member. For example, a is in
two of them, so we say a is captured by 2/3 of these subsets. We will obtain
the same value 2/3 for all elements of S. This value is the same as r. This is
a consequence of the fact that we have used all such 2-member subsets and we
have not biased this collection towards any element of S. With this observation,
we begin a larger example.

Consider a set of 10 points in a one-dimensional feature space F . Let this set
be called A. Assume that F contains only points in A and nothing else. Let each
point in A be identified as q0, q1, ..., q9 as follows.

. . . . . . . . . .
q0 q1 q2 q3 q4 q5 q6 q7 q8 q9

Now consider the subsets of F . Let the collection of all such subsets be M,
which is the power set of F . We call each member m of M a model, and we restrict
our consideration to only those models that contain 5 points in A, therefore each
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Table 1. Models mt in M0.5,A in the order of M = m1, m2, ..., m252. Each model
is shown with its elements denoted by the indices i of qi in A. For example, m1 =
{q3, q5, q6, q8, q9}.

mt elements mt elements mt elements mt elements mt elements mt elements
m1 35689 m43 12689 m85 24578 m127 01469 m169 02468 m211 02458
m2 01268 m44 04569 m86 23568 m128 03679 m170 35678 m212 13457
m3 04789 m45 01245 m87 01267 m129 04579 m171 03589 m213 24689
m4 25689 m46 01458 m88 01257 m130 01237 m172 34679 m214 03478
m5 02679 m47 15679 m89 05679 m131 24789 m173 12346 m215 23589
m6 34578 m48 12457 m90 24589 m132 45689 m174 12458 m216 24679
m7 13459 m49 02379 m91 04589 m133 16789 m175 35789 m217 02456
m8 01238 m50 02568 m92 12467 m134 13479 m176 02358 m218 05689
m9 12347 m51 12357 m93 13578 m135 02349 m177 35679 m219 12789
m10 01579 m52 14678 m94 02369 m136 13469 m178 13458 m220 02346
m11 34589 m53 12678 m95 12469 m137 03678 m179 01459 m221 23489
m12 03459 m54 23567 m96 04567 m138 23679 m180 03479 m222 23467
m13 23459 m55 02789 m97 14679 m139 46789 m181 14789 m223 12489
m14 02457 m56 24567 m98 13467 m140 01468 m182 23678 m224 14589
m15 02368 m57 13569 m99 45678 m141 03689 m183 03456 m225 25678
m16 02689 m58 01259 m100 03469 m142 02478 m184 13456 m226 12579
m17 01368 m59 23479 m101 34789 m143 23457 m185 01568 m227 03458
m18 13589 m60 03579 m102 45679 m144 02347 m186 01578 m228 01569
m19 14579 m61 12368 m103 01358 m145 01289 m187 01678 m229 45789
m20 23468 m62 23578 m104 01379 m146 01369 m188 12367 m230 12358
m21 26789 m63 02345 m105 01236 m147 01356 m189 12345 m231 02579
m22 15678 m64 01479 m106 01679 m148 12379 m190 25679 m232 01457
m23 04578 m65 03569 m107 13689 m149 02569 m191 02367 m233 05789
m24 04679 m66 01346 m108 12479 m150 34678 m192 01256 m234 01247
m25 02459 m67 24568 m109 14568 m151 24569 m193 13679 m235 03467
m26 12569 m68 01359 m110 15689 m152 03578 m194 04689 m236 12359
m27 01269 m69 12459 m111 01258 m153 02359 m195 04568 m237 02567
m28 06789 m70 01239 m112 12389 m154 01234 m196 12578 m238 12356
m29 01689 m71 24678 m113 03568 m155 01345 m197 12468 m239 02469
m30 01248 m72 01347 m114 23689 m156 02348 m198 03468 m240 13468
m31 12456 m73 01467 m115 23478 m157 03457 m199 34569 m241 02479
m32 13579 m74 04678 m116 34568 m158 02357 m200 12369 m242 36789
m33 34689 m75 12589 m117 23569 m159 01235 m201 13489 m243 13568
m34 12679 m76 01348 m118 14689 m160 01378 m202 12567 m244 02467
m35 12568 m77 14569 m119 23789 m161 14567 m203 02489 m245 01589
m36 34579 m78 01789 m120 01246 m162 23458 m204 02678 m246 01478
m37 01389 m79 01367 m121 23579 m163 56789 m205 13567 m247 15789
m38 23469 m80 12478 m122 01456 m164 34567 m206 01357 m248 01349
m39 24579 m81 25789 m123 23456 m165 01249 m207 01278 m249 02356
m40 02589 m82 01489 m124 03789 m166 03489 m208 02578 m250 14578
m41 01567 m83 03567 m125 05678 m167 02389 m209 12348 m251 13789
m42 13478 m84 12349 m126 13678 m168 12378 m210 01279 m252 02378

model has a size that is 0.5 of the size of A. Let this set of models be called M0.5,A.
Some members of M0.5,A are as follows.

{q0, q1, q2, q3, q4 }
{q0, q1, q2, q3, q5 }
{q0, q1, q2, q3, q6 }
...

There are C(10, 5) = 252 members in M0.5,A. Let M be a pseudo-random
permutation of members in M0.5,A as listed in Table 1. We identify models
in this sequence by a single subscript such that M = m1, m2, ..., m252. We
expand a collection Mt by including more and more members of M0.5,A in
the order of the sequence M as follows. M1 = {m1}, M2 = {m1, m2}, ...,
Mt = {m1, m2, ...mt}.

Since each model covers some points in A, for each member q in A, we can
count the number of models in Mt that include q, call this count N(q, Mt), and
calculate the ratio of this count over the size of Mt, call it Y (q, Mt). That is,
Y (q, Mt) = ProbM(q ∈ m|m ∈ Mt). As Mt expands, this ratio changes and we
show these changes for each q in Table 2. The values of Y (q, Mt) are plotted in
Figure 1. As is clearly visible in the Figure, the values of Y (q, Mt) converge to
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Table 2. Ratio of coverage of each point q by members of Mt as Mt expands

N(Mt, q) Y (Mt, q)
Mt q0 q1 q2 q3 q4 q5 q6 q7 q8 q9 q0 q1 q2 q3 q4 q5 q6 q7 q8 q9
M1 0 0 0 1 0 1 1 0 1 1 0.00 0.00 0.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00
M2 1 1 1 1 0 1 2 0 2 1 0.50 0.50 0.50 0.50 0.00 0.50 1.00 0.00 1.00 0.50
M3 2 1 1 1 1 1 2 1 3 2 0.67 0.33 0.33 0.33 0.33 0.33 0.67 0.33 1.00 0.67
M4 2 1 2 1 1 2 3 1 4 3 0.50 0.25 0.50 0.25 0.25 0.50 0.75 0.25 1.00 0.75
M5 3 1 3 1 1 2 4 2 4 4 0.60 0.20 0.60 0.20 0.20 0.40 0.80 0.40 0.80 0.80
M6 3 1 3 2 2 3 4 3 5 4 0.50 0.17 0.50 0.33 0.33 0.50 0.67 0.50 0.83 0.67
M7 3 2 3 3 3 4 4 3 5 5 0.43 0.29 0.43 0.43 0.43 0.57 0.57 0.43 0.71 0.71
M8 4 3 4 4 3 4 4 3 6 5 0.50 0.38 0.50 0.50 0.38 0.50 0.50 0.38 0.75 0.62
M9 4 4 5 5 4 4 4 4 6 5 0.44 0.44 0.56 0.56 0.44 0.44 0.44 0.44 0.67 0.56
M10 5 5 5 5 4 5 4 5 6 6 0.50 0.50 0.50 0.50 0.40 0.50 0.40 0.50 0.60 0.60
... ... ...
M159 81 80 79 79 79 77 82 78 74 86 0.51 0.50 0.50 0.50 0.50 0.48 0.52 0.49 0.47 0.54
M160 82 81 79 80 79 77 82 79 75 86 0.51 0.51 0.49 0.50 0.49 0.48 0.51 0.49 0.47 0.54
M161 82 82 79 80 80 78 83 80 75 86 0.51 0.51 0.49 0.50 0.50 0.48 0.52 0.50 0.47 0.53
M162 82 82 80 81 81 79 83 80 76 86 0.51 0.51 0.49 0.50 0.50 0.49 0.51 0.49 0.47 0.53
M163 82 82 80 81 81 80 84 81 77 87 0.50 0.50 0.49 0.50 0.50 0.49 0.52 0.50 0.47 0.53
M164 82 82 80 82 82 81 85 82 77 87 0.50 0.50 0.49 0.50 0.50 0.49 0.52 0.50 0.47 0.53
M165 83 83 81 82 83 81 85 82 77 88 0.50 0.50 0.49 0.50 0.50 0.49 0.52 0.50 0.47 0.53
M166 84 83 81 83 84 81 85 82 78 89 0.51 0.50 0.49 0.50 0.51 0.49 0.51 0.49 0.47 0.54
M167 85 83 82 84 84 81 85 82 79 90 0.51 0.50 0.49 0.50 0.50 0.49 0.51 0.49 0.47 0.54
M168 85 84 83 85 84 81 85 83 80 90 0.51 0.50 0.49 0.51 0.50 0.48 0.51 0.49 0.48 0.54
... ... ...
M243 120 120 123 122 122 122 124 120 120 122 0.49 0.49 0.51 0.50 0.50 0.50 0.51 0.49 0.49 0.50
M244 121 120 124 122 123 122 125 121 120 122 0.50 0.49 0.51 0.50 0.50 0.50 0.51 0.50 0.49 0.50
M245 122 121 124 122 123 123 125 121 121 123 0.50 0.49 0.51 0.50 0.50 0.50 0.51 0.49 0.49 0.50
M246 123 122 124 122 124 123 125 122 122 123 0.50 0.50 0.50 0.50 0.50 0.50 0.51 0.50 0.50 0.50
M247 123 123 124 122 124 124 125 123 123 124 0.50 0.50 0.50 0.49 0.50 0.50 0.51 0.50 0.50 0.50
M248 124 124 124 123 125 124 125 123 123 125 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50
M249 125 124 125 124 125 125 126 123 123 125 0.50 0.50 0.50 0.50 0.50 0.50 0.51 0.49 0.49 0.50
M250 125 125 125 124 126 126 126 124 124 125 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50
M251 125 126 125 125 126 126 126 125 125 126 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50
M252 126 126 126 126 126 126 126 126 126 126 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50
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Fig. 1. Plot of Y (q, Mt) versus t. Each line represents the trace of Y (q, Mt) for a
particular q as Mt expands.

0.5 for each q. Also notice that because of the randomization, we have expanded
Mt in a way that Mt is not biased towards any particular q, therefore the values
of Y (q, Mt) are similar after Mt has acquired a certain size (say, when t = 80).
When Mt=M0.5,A, every point q is covered by the same number of models in
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Mt, and their values of Y (q, Mt) are identical and is equal to 0.5, which is the
ratio of the size of each m relative to A (recall that we always include 5 points
from A in each m).

Formally, when t = 252, Mt = M0.5,A, from the perspective of a fixed q, the
probability of it being contained in a model m from Mt is

ProbM(q ∈ m|m ∈ M0.5,A) = 0.5.

We emphasize that this probability is a measure in the space M by writing the
probability as ProbM. On the other hand, by the way each m is constructed, we
know that from the perspective of a fixed m,

ProbF (q ∈ m|q ∈ A) = 0.5.

Note that this probability is a measure in the space F . We have shown that
these two probabilities, w.r.t. two different spaces, have identical values. In other
words, let the membership function of m be Cm(q), i.e., Cm(q) = 1 iff q ∈ m, the
random variables λqCm(q) and λmCm(q) have the same probability distribution,
when q is restricted to A and m is restricted to M0.5,A. This is because both
variables can have values that are either 1 or 0, and they have the value 1 with
the same probability (0.5 in this case). This symmetry arises from the fact that
the collection of models M0.5,A covers the set A uniformly, i.e., since we have
used all members of M0.5,A, each point q have the same chance to be included
in one of these models. If any two points in a set S have the same chance to
be included in a collection of models, we say that this collection is S-uniform.
It can be shown, by a simple counting argument, that uniformity leads to the
symmetry of ProbM(q ∈ m|m ∈ M0.5,A) and ProbF (q ∈ m|q ∈ A), and hence
distributions of λqCm(q) and λmCm(q).

The observation and utilization of this duality are central to the theory of
stochastic discrimination. A critical point of the SD method is to enforce such a
uniform cover on a set of points. That is, to construct a collection of models in
a balanced way so that the uniformity (hence the duality) is achieved without
exhausting all possible models from the space.

3 Two-Class Discrimination

Let us now label each point q in A by one of two classes c1 (marked by “x”) and
c2 (marked by “o”) as follows.

x x x o o o o x x o
q0 q1 q2 q3 q4 q5 q6 q7 q8 q9

This gives a training set TRi for each class ci. In particular,

TR1 = {q0, q1, q2, q7, q8},

and
TR2 = {q3, q4, q5, q6, q9}.
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How can we build a classifier for c1 and c2 using models from M0.5,A? First, we
evaluate each model m by how well it has captured the members of each class.
Define ratings ri (i = 1, 2) for each m as

ri(m) = ProbF (q ∈ m|q ∈ TRi).

For example, consider model m1 = {q3, q5, q6, q8, q9}, where q8 is in TR1 and the
rest are in TR2. TR1 has 5 members and 1 is in m1, therefore r1(m1) = 1/5 = 0.2.
TR2 has (incidentally, also) 5 members and 4 of them are in m1, therefore
r2(m1) = 4/5 = 0.8. Thus these ratings represent the quality of the models as a
description of each class. A model with a rating 1.0 for a class is a perfect model
for that class. We call the difference between r1 and r2 the degree of enrichment
of m with respect to classes (1, 2), i.e., d12 = r1 − r2. A model m is enriched if
d12 �= 0. Now we define, for all enriched models m,

X12(q, m) =
Cm(q) − r2(m)
r1(m) − r2(m)

,

and let X12(q, m) be 0 if d12(m) = 0. For a given m, r1 and r2 are fixed, and the
value of X(q, m) for each q in A can have one of two values depending on whether
q is in m. For example, for m1, r1 = 0.2 and r2 = 0.8, so X(q, m) = −1/3 for
points q3, q5, q6, q8, q9, and X(q, m) = 4/3 for points q0, q1, q2, q4, q7. Next, for
each set Mt = {m1, m2, ..., mt}, we define a discriminant

Y12(q, Mt) =
1
t

t∑
k=1

X12(q, mk).
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Fig. 2. Plot of Y12(q, Mt) versus t. Each line represents the trace of Y12(q, Mt) for a
particular q as Mt expands.
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Table 3. Changes of Y12(q, Mt) as Mt expands. For each t, we show the ratings for
each new member of Mt, the values X12 for this new member, and Y12 for the collection
Mt up to the inclusion of this new member.

X12(q, mt) if Y12(q, Mt)
Mt mt r1 r2 r1 − r2 q ∈ mt q �∈ mt q0 q1 q2 q3 q4 q5 q6 q7 q8 q9
M1 m1 0.20 0.80 -0.60 -0.33 1.33 1.33 1.33 1.33 -0.33 1.33 -0.33 -0.33 1.33 -0.33 -0.33
M2 m2 0.80 0.20 0.60 1.33 -0.33 1.33 1.33 1.33 -0.33 0.50 -0.33 0.50 0.50 0.50 -0.33
M3 m3 0.60 0.40 0.20 3.00 -2.00 1.89 0.22 0.22 -0.89 1.33 -0.89 -0.33 1.33 1.33 0.78
M4 m4 0.40 0.60 -0.20 -2.00 3.00 2.17 0.92 -0.33 0.08 1.75 -1.17 -0.75 1.75 0.50 0.08
M5 m5 0.60 0.40 0.20 3.00 -2.00 2.33 0.33 0.33 -0.33 1.00 -1.33 0.00 2.00 0.00 0.67
M6 m6 0.40 0.60 -0.20 -2.00 3.00 2.44 0.78 0.78 -0.61 0.50 -1.44 0.50 1.33 -0.33 1.06
M7 m7 0.20 0.80 -0.60 -0.33 1.33 2.28 0.62 0.86 -0.57 0.38 -1.28 0.62 1.33 -0.10 0.86
M8 m8 0.80 0.20 0.60 1.33 -0.33 2.17 0.71 0.92 -0.33 0.29 -1.17 0.50 1.12 0.08 0.71
M9 m9 0.60 0.40 0.20 3.00 -2.00 1.70 0.96 1.15 0.04 0.59 -1.26 0.22 1.33 -0.15 0.41

M10 m10 0.60 0.40 0.20 3.00 -2.00 1.83 1.17 0.83 -0.17 0.33 -0.83 0.00 1.50 -0.33 0.67
...

M159 m159 0.60 0.40 0.20 3.00 -2.00 1.02 1.05 0.89 0.18 -0.01 -0.18 0.07 0.95 1.09 -0.06
M160 m160 0.80 0.20 0.60 1.33 -0.33 1.02 1.05 0.89 0.19 -0.01 -0.18 0.06 0.95 1.09 -0.06
M161 m161 0.40 0.60 -0.20 -2.00 3.00 1.03 1.03 0.90 0.21 -0.02 -0.19 0.05 0.93 1.11 -0.04
M162 m162 0.40 0.60 -0.20 -2.00 3.00 1.04 1.04 0.88 0.19 -0.03 -0.20 0.07 0.94 1.09 -0.02
M163 m163 0.40 0.60 -0.20 -2.00 3.00 1.06 1.06 0.89 0.21 -0.02 -0.21 0.06 0.92 1.07 -0.04
M164 m164 0.20 0.80 -0.60 -0.33 1.33 1.06 1.06 0.90 0.21 -0.02 -0.21 0.05 0.92 1.07 -0.03
M165 m165 0.60 0.40 0.20 3.00 -2.00 1.07 1.07 0.91 0.19 0.00 -0.22 0.04 0.90 1.05 -0.01
M166 m166 0.40 0.60 -0.20 -2.00 3.00 1.05 1.08 0.92 0.18 -0.01 -0.20 0.06 0.91 1.03 -0.02
M167 m167 0.60 0.40 0.20 3.00 -2.00 1.06 1.06 0.93 0.20 -0.02 -0.21 0.05 0.89 1.04 0.00
M168 m168 0.80 0.20 0.60 1.33 -0.33 1.06 1.07 0.94 0.20 -0.03 -0.21 0.04 0.90 1.05 -0.01

...
M243 m243 0.40 0.60 -0.20 -2.00 3.00 1.04 0.99 1.05 0.03 -0.01 -0.02 0.02 0.96 0.96 -0.02
M244 m244 0.60 0.40 0.20 3.00 -2.00 1.05 0.98 1.06 0.03 0.00 -0.03 0.03 0.97 0.95 -0.03
M245 m245 0.60 0.40 0.20 3.00 -2.00 1.06 0.98 1.04 0.02 0.00 -0.02 0.02 0.96 0.96 -0.02
M246 m246 0.80 0.20 0.60 1.33 -0.33 1.06 0.98 1.04 0.02 0.00 -0.02 0.02 0.96 0.96 -0.02
M247 m247 0.60 0.40 0.20 3.00 -2.00 1.05 0.99 1.03 0.01 -0.01 -0.01 0.01 0.97 0.97 -0.01
M248 m248 0.40 0.60 -0.20 -2.00 3.00 1.03 0.98 1.03 0.00 -0.01 0.01 0.03 0.97 0.97 -0.01
M249 m249 0.40 0.60 -0.20 -2.00 3.00 1.02 0.99 1.02 -0.01 0.00 0.00 0.02 0.98 0.98 0.00
M250 m250 0.60 0.40 0.20 3.00 -2.00 1.01 1.00 1.01 -0.02 0.01 0.01 0.01 0.99 0.99 -0.01
M251 m251 0.60 0.40 0.20 3.00 -2.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 1.00 1.00 0.00
M252 m252 0.80 0.20 0.60 1.33 -0.33 1.00 1.00 1.00 0.00 0.00 0.00 0.00 1.00 1.00 0.00

As the set Mt expands, the value of Y12 changes for each q. We show, in
Table 3, the values of Y12 for each Mt and each q, and for each new member mt

of Mt, r1, r2, and the two values of X12. The values of Y12 for each q are plotted
in Figure 2.

In Figure 2 we see two separate trends. All those points that belong to class c1
have their Y12 values converging to 1.0, and all those in c2 converging to 0.0. Thus
Y12 can be used with a threshold to classify an arbitrary point q. We can assign
q to class c1 if Y12(q, Mt) > 0.5, and to class c2 if Y12(q, Mt) < 0.5, and remain
undecided when Y12(q, Mt) = 0.5. Observe that this classifier is fairly accurate
far before Mt has expanded to the full set M0.5,A. We can also change the two
poles of Y12 to 1.0 and -1.0 respectively by simply rescaling and shifting X12:

X12(q, m) = 2(
Cm(q) − r2(m)
r1(m) − r2(m)

) − 1.

How did this separation of trends happen? Let us now take a closer look at
the models in each Mt and see how many of them cover each point q. For a
given Mt, among its members, there can be different values of r1 and r2. But
because of our choices of the sizes of TR1, TR2, and m, we have only a small
set of distinct values that r1 and r2 can have. Namely, since each model has 5
points, there are only six possibilities as follows.

no. of points from TR1 0 1 2 3 4 5
no. of points from TR2 5 4 3 2 1 0
r1 0.0 0.2 0.4 0.6 0.8 1.0
r2 1.0 0.8 0.6 0.4 0.2 0.0



30 T.K. Ho

Note that in a general setting r1 and r2 do not have to sum up to 1. If we
included models of a larger size, say, one with 10 points, we can have both r1
and r2 equal to 1.0. We have simplified matters by using models of a fixed size
and training sets of the same size. According to the values of r1 and r2, in this
case we have only 6 different kinds of models.

Now we take a detailed look at the coverage of each point q by each kind
of models, i.e., models of a particular rating (quality) for each class. Let us
count how many of the models of each value of r1 and r2 cover each point q,
and call this NMt,r1,TR1(q) and NMt,r2,TR2(q) respectively. We can normalize
this count by the number of models having each value of r1 or r2, and obtain
a ratio fMt,r1,TR1(q) and fMt,r2,TR2(q) respectively. Thus, for each point q, we
have “a profile of coverage” by models of each value of ratings r1 and r2 that is
described by these ratios. For example, point q0 at t = 10 is only covered by 5
models (m2, m3, m5, m8, m10) in M10, and from Table 3 we know that M10 has
various numbers of models in each rating as summarized in the following table.

r1 0.0 0.2 0.4 0.6 0.8 1.0
no. of models in M10 with r1 0 2 2 4 2 0
NM10,r1,TR1(q0) 0 0 0 3 2 0
fM10,r1,TR1(q0) 0 0 0 0.75 1.0 0

r2 0.0 0.2 0.4 0.6 0.8 1.0
no. of models in M10 with r2 0 2 4 2 2 0
NM10,r2,TR2(q0) 0 2 3 0 0 0
fM10,r2,TR2(q0) 0 1.0 0.75 0 0 0

We show such profiles for each point q and each set Mt in Figure 3 (as a
function of r1) and Figure 4 (as a function of r2) respectively.

Observe that as t increases, the profiles of coverage for each point q converge
to two distinct patterns. In Figure 3, the profiles for points in TR1 converge
to a diagonal fMt,r1,TR1 = r1, and in Figure 4, those for points in TR2 also
converge to a diagonal fMt,r2,TR2 = r2. That is, when Mt = M0.5,A, we have
for all q in TR1 and for all r1, ProbM(q ∈ m|m ∈ Mr1,TR1) = r1, and for all
q in TR2 and for all r2, ProbM(q ∈ m|m ∈ Mr2,TR2) = r2. Thus we have the
symmetry in place for both TR1 and TR2. This is a consequence of Mt being
both TR1-uniform and TR2-uniform.

The discriminant Y12(q, Mt) is a summation over all models m in Mt, which
can be decomposed into the sums of terms corresponding to different ratings ri

for either i = 1 or i = 2. To understand what happens with the points in TR1,
we can decompose their Y12 by values of r1. Assume that there are tx models in
Mt that have r1 = x. Since we have only 6 distinct values for x, Mt is a union
of 6 disjoint sets, and Y12 can be decomposed as

Y12(q, Mt)= t0.0
t [ 1

t0.0

∑t0.0
k0.0=1 X12(q, mk0.0)] + t0.2

t [ 1
t0.2

∑t0.2
k0.2=1 X12(q, mk0.2 )] +

t0.4
t [ 1

t0.4

∑t0.4
k0.4=1 X12(q, mk0.4)] + t0.6

t [ 1
t0.6

∑t0.6
k0.6=1 X12(q, mk0.6 )] +

t0.8
t [ 1

t0.8

∑t0.8
k0.8=1 X12(q, mk0.8)] + t1.0

t [ 1
t1.0

∑t1.0
k1.0=1 X12(q, mk1.0 )].
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Fig. 3. fMt,r1,TR1(q) for each point q and set Mt. In each plot, the x axis is t that
ranges from 0 to 252, the y axis is r that ranges from 0 to 1, and the z axis is fMt,r1,TR1 .
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Fig. 4. fMt,r2,TR2(q) for each point q and set Mt. In each plot, the x axis is t that
ranges from 0 to 252, the y axis is r that ranges from 0 to 1, and the z axis is fMt,r2,TR2 .
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The factor in the square bracket of each term is the expectation of values of
X12 corresponding to that particular rating r1 = x. Since r1 is the same for all
m contributing to that term, by our choice of sizes of TR1, TR2, and the models,
r2 is also the same for all those m relevant to that term. Let that value of r2 be
y, we have, for each (fixed) q, each value of x and the associated value y,

E(X12(q, mx)) = E(
Cmx(q) − y

x − y
) =

E(Cmx(q)) − y

x − y
=

x − y

x − y
= 1.

The second to the last equality is a consequence of the uniformity of Mt:
because the collection Mt (when t = 252) covers TR1 uniformly, we have for
each value x, ProbM(q ∈ m|m ∈ Mx,TR1) = x, and since Cmx(q) has only two
values (0 or 1), and Cmx(q) = 1 iff q ∈ m, we have the expected value of Cmx(q)
equal to x. Therefore

Y12(q, Mt) =
t0.0 + t0.2 + t0.4 + t0.6 + t0.8 + t1.0

t
= 1.

In a more general case, the values of r2 are not necessarily equal for all models
with the same value for r1, so we cannot take y and x − y out as constants. But
then we can further split the term by the values of r2, and proceed with the
same argument.

A similar decomposition of Y12 into terms corresponding to different values of
r2 will show that Y12(q, Mt) = 0 for those points in TR2.

4 Projectability of Models

We have built a classifier and shown that it works for TR1 and TR2. How can
this classifier work for an arbitrary point that is not in TR1 or TR2? Suppose
that the feature space F contains other points p (marked by “,”), and that each
p is close to some training point q (marked by “.”) as follows.

., ., ., ., ., ., ., ., ., .,
q0, p0 q1, p1 q2, p2 q3, p3 q4, p4 q5, p5 q6, p6 q7, p7 q8, p8 q9, p9

We can take the models m as regions in the space that cover the points q in the
same manner as before. Say, if each point qi has a particular value of the feature
v (in our one-dimensional feature space) that is v(qi). We can define a model by
ranges of values for this feature, e.g., in our example m1 covers q3, q5, q6, q8, q9,
so we take

m1 = {q|v(q2)+v(q3)
2 < v(q) < v(q3)+v(q4)

2 }∪
{q|v(q4)+v(q5)

2 < v(q) < v(q6)+v(q7)
2 }∪

{q|v(q7)+v(q8)
2 < v(q)}.

Thus we can tell if an arbitrary point p with value v(p) for this feature is
inside or outside this model.
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We can calculate the model’s ratings in exactly the same way as before, using
only the points q. But now the same classifier works for the new points p, since we
can use the new definitions of models to determine if p is inside or outside each
model. Given the proximity relationship as above, those points will be assigned
to the same class as their closest neighboring q. If these are indeed the true classes
for the points p, the classifier is perfect for this new set. In the SD terminology,
if we call the two subsets of points p that should be labeled as two different
classes TE1 and TE2, i.e., TE1 = {p0, p1, p2, p7, p8}, TE2 = {p3, p4, p5, p6, p9},
we say that TR1 and TE1 are Mt-indiscernible, and similarly TR2 and TE2
are also Mt-indiscernible. This is to say, from the perspective of Mt, there is no
difference between TR1 and TE1, or TR2 and TE2, therefore all the properties
of Mt that are observed using TR1 and TR2 can be projected to TE1 and TE2.
The central challenge of an SD method is to maintain projectability, uniformity,
and enrichment of the collection of models at the same time.

5 Developments of SD Theory and Algorithms

5.1 Algorithmic Implementations

The method of stochastic discrimination constructs a classifier by combining a
large number of simple discriminators that are called weak models. A weak model
is simply a subset of the feature space. In summary, the classifier is constructed
by a three-step process: (1) weak model generation, (2) weak model evaluation,
and (3) weak model combination. The generator enumerates weak models in an
arbitrary order and passes them on to the evaluator. The evaluator has access
to the training set. It rates and filters the weak models according to their capa-
bility in capturing points of each class, and their contribution to satisfying the
uniformity condition. The combiner then produces a discriminant function that
depends on a point’s membership in each model, and the models’ ratings. At
classification, a point is assigned to the class for which this discriminant has the
highest value. Informally, the method captures the intuition of gaining wisdom
from random guesses with feedback.

Weak model generation. Two guidelines should be observed in generating
the weak models:

(1) projectability: A weak model should be able to capture enough points both
inside and outside the training set so that the solution can be projectable to
points not included in the training set. Geometrically, this means that a useful
model must be of certain minimum size, and it should be able to capture points
that are considered neighbors of one another. To guarantee similar accuracies
of the classifier (based on similar ratings of the weak models) on both training
and testing data, one also needs an assumption that the training data are rep-
resentative. Data representativeness and model projectability are two sides of
the same question. More discussions of this can be found in [1]. A weak model
defines a neighborhood in the space, and we need a training sample in a neighbor-
hood of every unseen sample. Otherwise, since our only knowledge of the class
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boundaries is derived from the given training set, there is no basis for inference
concerning regions of the feature space where no training samples are given.

(2) simplicity of representation: A weak model should have a simple representa-
tion. That means, the membership of an arbitrary point with respect to a model
must be cheaply computable. To illustrate this, consider representing a model as
a listing of all the points it contains. This is practically useless since the resultant
solution could be as expensive as an exhaustive template matching using all the
points in the feature space. An example of a model with a simple representation
is a half-plane in a two-dimensional feature space.

Conditions (1) and (2) restrict the type of weak models yet by no means reduce
the number of candidates to any tangible limit. To obtain an unbiased collection
of the candidates with minimum effort, random sampling with replacement is
useful. The training of the method thus relies on a stochastic process which, at
each iteration, generates a weak model that satisfies the above conditions.

A convenient way to generate weak models randomly is to use a type of models
that can be described by a small number of parameters. Then a stream of mod-
els can be created by pseudo-random choices on the values of the parameters.
Some example types of models that can be generated this way include (1) half-
spaces bounded by a threshold on a randomly selected feature dimension; (2)
half-spaces bounded by a hyperplane of equi-distance to two randomly selected
points; (3) regions bounded by two parallel hyperplanes perpendicular to a ran-
domly selected axis; (4) hypercubes centered at randomly selected points with
edges of varying lengths; and (5) balls (based on the city-block metric, Euclidean
distance, or other dissimilarity measures) centered at randomly selected points
with randomly selected radii. A model can also be a union or intersection of
several regions of these types. An implementation of SD using hyper-rectangular
boxes as weak models is described in [9].

A number of heuristics may be used in creating these models. These heuristics
specify the way random points are chosen from the space, or set limits on the
maximum and minimum sizes of the models. By this we mean restricting the
choices of random points to, for instance, points in the space whose coordinates
fall inside the range of those of the training samples, or restricting the radii
of the balls to, for instance, a fraction of the range of values in a particular
feature dimension. The purpose of these heuristics is to speed up the search for
acceptable models by confining the search within the most interesting regions,
or to guarantee a minimum model size.

Enrichment enforcement. The enrichment condition is relatively easy to en-
force, as models biased towards one class are most common. But since the strength
of the biases (|dij(m)|) determines the rate at which accuracy increases, we tend
to prefer to use models with an enrichment degree further away from zero.

One way to implement this is to use a threshold on the enrichment degree to
select weak models from the random stream so that they are of some minimum
quality. In this way, one will be able to use a smaller collection of models to yield
a classifier of the same level of accuracy. However, there are tradeoffs involved
in doing this. For one thing, models of higher rating are less likely to appear in
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the stream, therefore more random models have to be explored in order to find
a sufficient number of higher quality weak models. And once the type of model
is fixed and the value of the threshold is set, there is a risk that such models
may never be found.

Alternatively, one can use the most enriched model found in a pre-determined
number of trials. This also makes the time needed for training more predictable,
and it permits a tradeoff between training time and quality of the weak models.

In enriching the model stream, it is important to remember that if the quality
of weak models selected is allowed to get too high, there is a risk that they will
become training set specific, that is, less likely to be projectable to unseen sam-
ples. This could present a problem since the projectability of the final classifier
depends on the projectability of its component weak models.

Uniformity promotion. The uniformity condition is much more difficult to
satisfy. Strict uniformity requires that every point be covered by the same num-
ber of weak models of every combination of per-class ratings. This is rather
infeasible for continuous and unconstrained ratings.

One useful strategy is to use only weak models of a particular rating. In such
cases, the ratings ri(m) and rj(m) are the same for all models m enriched for the
discrimination between classes i and j, so we need only to make sure that each
point is included in the same number of models. To enforce this, models can be
created in groups such that each group partitions the entire space into a set of
non-overlapping regions. An example is to use the leaves of a fully-split decision
tree, where each leaf is perfectly enriched for one class, and each point is covered
by exactly one leaf of each tree. For any pairwise discrimination between classes
i and j, we can use only those leaves of the trees that contain only points of
class i. In other words, ri(m) is always 1 and rj(m) is always 0. Constraints are
put in the tree-construction process to guarantee some minimum projectability.

With other types of models, a first step to promote uniformity is to use mod-
els that are unions of small regions with simple boundaries. The component
regions may be scattered throughout the space. These models have simple rep-
resentations but can describe complicated class boundaries. They can have some
minimum size and hence good projectability. At the same time, the scattered
locations of component regions do not tend to cover large areas repeatedly.

A more sophisticated way to promote uniformity involves defining a measure
of the lack of uniformity and an algorithm to minimize such a measure. The goal
is to create or retain more models located in areas where the coverage is thinner.
An example of such a measure is the count of those points that are covered by a
less-than-average number of previously retained models. For each point x in the
class c0 to be positively enriched, we calculate, out of all previous models used
for that class, how many of them have covered x. If the coverage is less than
the average for class c0, we call x a weak point. When a new model is created,
we check how many such weak points are covered by the new model. The ratio
of the set of covered weak points to the set of all the weak points is used as
a merit score of how well this model improves uniformity. We can accept only
those models with a score over a pre-set threshold, or take the model with the
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best score found in a pre-set number of trials. One can go further to introduce
a bias to the model generator so that models covering the weak points are more
likely to be created. The later turns out to be a very effective strategy that led
to good results in our experiments.

5.2 Alternative Discriminants and Approximate Uniformity

The method outlined above allows for rich possibilities of variations in SD algo-
rithms. The variations may be in the design of the weak model generator, or in
ways to enforce the enrichment and uniformity conditions. It is also possible to
change the definition of the discriminant, or to use different kinds of ratings.

A variant of the discriminating function is studied in detail in [1]. In this
variant, the ratings are defined as

r′i(m) =
|m ∩ TRi|
|m ∩ TR| ,

for all i. It is an estimate of the posterior probability that a point belongs to
class i given the condition that it is included in model m. The discriminant for
class i is defined to be:

Wi(q) =

∑
k=1,...,pi

Cm(q)r′i(m)∑
k=1,...,pi

Cm(q)
.

where pi is the number of models accumulated for class i.
It turns out that, with this discriminant, the classifier also approaches perfec-

tion asymptotically provided that an additional symmetry condition is satisfied.
The symmetry condition requires that the ensemble includes the same num-
ber of models for all permutations of (r′1, r′2, ..., r′n). It prevents biases created
by using more (i, j)-enriched models than (j, i)-enriched models for all pairs
(i, j)[1]. Again, this condition may be enforced by using only certain particu-
lar permutations of the r′ ratings, which is the basis of the random decision
forest method[7][10]. This alternative discriminant is convenient for multi-class
discrimination problems.

The SD theory establishes the mathematical concepts of enrichment, uni-
formity, and projectability of a weak model ensemble. Bounds on classification
accuracy are developed based on strict requirements on these conditions, which
is a mathematical idealization. In practice, there are often difficult tradeoffs
among the three conditions. Thus it is important to understand how much of
the classification performance is affected when these conditions are weakened.
This is the subject of study in [3], where notions of near uniformity and weak
indiscernibility are introduced and their implications are studied.

5.3 Structured Collections of Weak Models

As a constructive procedure, the method of stochastic discrimination depends
on a detailed control of the uniformity of model coverage, which is outlined
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but not fully published in the literature[17]. The method of random subspaces
followed these ideas but attempted a different approach. Instead of obtaining
weak discrimination and projectability through simplicity of the model form,
and forcing uniformity by sophisticated algorithms, the method uses complete,
locally pure partitions given by fully split decision trees[7][10] or nearest neighbor
classifiers[11] to achieve strong discrimination and uniformity, and then explicitly
forces different generalization patterns on the component classifiers. This is done
by training large capacity component classifiers such as nearest neighbors and
decision trees to fully fit the data, but restricting the training of each classifier
to a coordinate subspace of the feature space where all the data points are
projected, so that classifications remain invariant in the complement subspace.
If there is no ambiguity in the subspaces, the individual classifiers maintain
maximum accuracy on the training data, with no cases deliberately chosen to
be sacrificed, and thus the method does not run into the paradox of sacrificing
some training points in the hope for better generalization accuracy. This is to
create a collection of weak models in a structured way.

However the tension among the three factors persists. There is another difficult
tradeoff in how much discriminating power to retain for the component classifiers.
Can every one use only a single feature dimension so as to maximize invariance
in the complement dimensions? Also, projection to coordinate subspaces sets
parts of the decision boundaries parallel to the coordinate axes. Augmenting
the raw features by simple transformations[10] introduces more flexibility, but it
may still be insufficient for an arbitrary problem. Optimization of generalization
performance will continue to depend on a detailed control of the projections to
suit a particular problem.

6 Conclusions

The theory of stochastic discrimination identifies three and only three sufficient
conditions for a classifier to achieve maximum accuracy for a problem. These
are just the three elements long believed to be important in pattern recognition:
discrimination power, complementary information, and generalization ability. It
sets a foundation for theories of ensemble learning. Many current questions on
classifier combination can have an answer in the arguments of the SD theory:
What is good about building the classifier on weak models instead of strong
models? Because weak models are easier to obtain, and their smaller capacity
renders them less sensitive to sampling errors in small training sets[20][21], thus
they are more likely to have similar coverage on the unseen points from the
same problem. Why are many models needed? Because the method relies on the
law of large numbers to reduce the variance of the discriminant on each single
point. How should these models complement each other? The uniformity con-
dition specifies exactly what kind of correlation is needed among the individual
models.

Finally, we emphasize that the accuracy of SD methods is not achieved by
intentionally limiting the VC dimension[20] of the complete system; the com-
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bination of many weak models can have a very large VC dimension. It is a
consequence of the symmetry relating probabilities in the two spaces, and the
law of large numbers. It is a structural property of the topological space given
by the points and their combinations. The observation of this symmetry and its
relationship to ensemble learning is a deep insight of Kleinberg’s that we believe
can lead to a better understanding of other ensemble methods.
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Abstract. Statistical inference of sensor-based measurements is inten-
sively studied in pattern recognition. It is usually based on feature repre-
sentations of the objects to be recognized. Such representations, however,
neglect the object structure. Structural pattern recognition, on the con-
trary, focusses on encoding the object structure. As general procedures
are still weakly developed, such object descriptions are often application
dependent. This hampers the usage of a general learning approach.

This paper aims to summarize the problems and possibilities of general
structural inference approaches for the family of sensor-based measure-
ments: images, spectra and time signals, assuming a continuity between
measurement samples. In particular it will be discussed when probabilis-
tic assumptions are needed, leading to a statistically-based inference of
the structure, and when a pure, non-probabilistic structural inference
scheme may be possible.

1 Introduction

Our ability to recognize patterns is based on the capacity to generalize. We
are able to judge new, yet unseen observations given our experience with the
previous ones that are similar in one way or another. Automatic pattern recog-
nition studies the ways which make this ability explicit. We thereby learn more
about it, which is of pure scientific interest, and we construct systems that may
partially take over our pattern recognition tasks in real life: reading documents,
judging microscope images for medical diagnosis, identifying people or inspecting
industrial production.

In this paper we will reconsider the basic principles of generalization, espe-
cially in relation with sensor measurements like images (e.g. taken from some
video or CCD camera), time signals (e.g. sound registered by a microphone), and
spectra and histograms (e.g. the infra-red spectrum of a point on earth measured
from a satellite). These classes of measurements are of particular interest since
they can very often replace the real object in case of human recognition: we can
read a document, identify a person, recognize an object presented on a monitor
screen as well as by a direct observation. So we deal here with registered signals
which contain sufficient information to enable human recognition in an almost
natural way. This is an entirely different approach to study the weather patterns
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from a set of temperature and air pressure measurements than taken by a farmer
who observes the clouds and the birds.

The interesting, common aspect of the above defined set of sensor measure-
ments is that they have an observable structure, emerging from a relation be-
tween neighboring pixels or samples. In fact we do not perceive the pixel intensity
values themselves, but we directly see a more global, meaningful structure. This
structure, the unsampled continuous observation in space and/or time consti-
tutes the basis of our recognition. Generalization is based on a direct observation
of the similarity between the new and the previously observed structures.

There is an essential difference between human and automatic pattern recogni-
tion, which will be neglected here, as almost everywhere else. If a human observes
a structure, he may directly relate this to a meaning (function or a concept). By
assigning a word to it, the perceived structure is named, hence recognized. The
word may be different in different languages. The meaning may be the same, but
is richer than just the name as it makes a relation to the context (or other frame
of reference) or the usage of the observed object. On the contrary, in automatic
recognition it is often attempted to map the observations directly to class labels
without recognizing the function or usage.

If we want to simulate or imitate the human ability of pattern recognition it
should be based on object structures and the generalization based on similarities.
This is entirely different from the most successful, mainline research in pattern
recognition, which heavily relies on a feature-based description of objects instead
of their structural representations. Moreover, generalization is also heavily based
on statistics instead of similarities.

We will elaborate on this paradoxical situation and discuss fundamentally the
possibilities of the structural approach to pattern recognition. This discussion is
certainly not the first on this topic. In general, the science of pattern recognition
has already been discussed for a long time, e.g. in a philosophical context by
Sayre [1] or by Watanabe on several occasions, most extensively in his book
on human and mechanical recognition [2]. The possibilities of a more structural
approach to pattern recognition was one of the main concerns of Fu [3], but it
was also clear that, thereby, the powerful tools of statistical approaches [4,5,6,7]
should not be forgotten; see [8,9,10].

Learning from structural observations is the key question of the challenging
and seminal research programme of Goldfarb [10,11,12]. He starts, however, from
a given structural measurement, the result of a ’structural sensor’ [13] and uses
this to construct a very general, hierarchial and abstract structural description
of objects and object classes in terms of primitives, the Evolving Transformation
System (ETS) [11]. Goldfarb emphasizes that a good structural representation
should be able to generate proper structures. We recognize that as a desirable,
but very ambitious direction. Learning structures from examples in the ETS
framework appears still to be very difficult, in spite of various attempts [14].

We think that starting from such a structural representation denies the quan-
titative character of the lowest level of senses and sensors. Thereby, we will again
face the question how to come to structure, how to learn it from examples given
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the numeric outcomes of a physical measurement process, that by its organiza-
tion in time and space respects this structure. This question will not be solved
here, as it is one of the most basic issues in science. However, we hope that
a contribution is made towards the solution by our a summary of problems and
possibilities in this area, presented from a specific point of view.

Our viewpoint, which will be explained in the next sections, is that the feature
vector representation directly reduces the object representation. This causes a
class overlap that can only be solved by a statistical approach. An indirectly
reducing approach based on similarities between objects and proximities of their
representations, may avoid, or at least postpone such a reduction. As a conse-
quence, classes do not overlap intrinsically, by which a statistical class descrip-
tion can be avoided. A topological- or domain-based description of classes may
become possible, in which the structural aspects of objects and object classes
might be preserved. This discussion partially summarizes our previous work on
the dissimilarity approach [15], proximities [16], open issues [17] and the science
of pattern recognition [18].

2 Generalization Principles

The goal of pattern recognition may be phrased as the derivation of a general
truth (e.g. the existence of a specified pattern) from a limited, not exhaustive set
of examples. We may say that we thereby generalize from this set of examples, as
the establishment of a general truth gives the possibility to derive non-observed
properties of objects, similar to those of observed examples.

Another way to phrase the meaning of generalization is to state that the truth
is inferred from the observations. Several types of inference can be distinguished:

Logical inference. This is the original meaning of inference: a truth is derived
from some facts, by logical reasoning, e.g.
1. Socrates is a man.
2. All man are mortal.
3. Consequently, Socrates is mortal.

It is essential that the conclusion was derived before the death of Socrates.
It was already known without having observed it.

Grammatical inference. This refers to the grammar of an artificial language
of symbols, which describes the ”sentences” that are permitted from a set of
observed sequences of such symbols. Such grammars may be inferred from
a set of examples.

Statistical inference. Like above, there are observations and a general, ac-
cepted or assumed, rule of a statistical (probabilistic) nature. When such
a rule is applied to the observations, more becomes known than just the
directly collected facts.

Structural inference. This is frequently used in the sense that structure is
derived from observations and some general law. E.g. in some economical
publications, ”structural inference” deals with finding the structure of a sta-
tistical model (such as the set of dependencies) by statistical means [19]. On
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the contrary, ”structural inference” can also be understood as using struc-
tural (instead of statistical) properties to infer unobserved object properties.

Empirical inference. This term is frequently used by Vapnik, e.g. in his re-
cent revised edition of the book on structural risk minimization [20]. It means
that unnecessary statistical models are avoided if some value, parameter, or
class membership has to be inferred from observational data. It is, however,
still based on a statistical approach, in the sense that probabilities and ex-
pectations play a role. The specific approach of empirical inference avoids
the estimation of statistical functions and models where possible: do not
estimate an entire probability density function if just a decision is needed.

It should be noted that in logical, statistical and empirical inferences object
properties are inferred by logical, statistical and empirical means, respectively.
In the terms of ”grammatical inference” and ”structural inference”, the adjective
does not refer to the means but to the goal: finding a grammar or a structure.
The means are in these cases usually either logical or statistical. Consequently,
the basic tools for inference are primarily logic and statistics. They correspond
to knowledge and observations. As logic cannot directly be applied to sensor
data, statistical inference is the main way for generalization in this case.

We will discuss whether in addition to logic and statistics, also structure can
be used as a basic means for inference. This would imply that given the structure
of a set of objects and, for instance, the corresponding class labels, the class label
of an unlabeled object can be inferred. As we want to learn from sensor data,
this structure should not be defined by an expert, but should directly be given
from the measurements, e.g. the chain code of an observed contour.

Consider the following example. A professor in archeology wants to teach
a group of students the differences in the styles of A and B of some classical
vases. He presents 20 examples for each style and asks the students to determine
a rule. The first student observes that the vases in group A have either ears or
are red, while those of group B may also have ears, but only if they are blue (a
color that never occurs for A). Moreover, there is a single red vase in group B
without ears, but with a sharp spout. In group A only some vases with ears have
a spout. The rule he presents is: if (ears ∧ not blue) ∨ (red ∧ no ears ∧
no spout) then A else B. The second student measures the sizes (weight and
height) of all vases, plots them on a 2D scatter plot and finds a straight line that
separates the vases with just two errors. The third student manually inspects
the vases from all sides and concludes that the lower part is ball-shaped in group
A and egg-shaped in group B. His rule is thereby: if ball-shaped then A, if
egg-shaped then B.

The professor asked the first student why he did not use characteristic paint-
ings on the vases for their discrimination. The student answered that they were
not needed as the groups could have perfectly been identified by the given prop-
erties. They may, however, be needed if more vases appear. So, this rule works
for the given set of examples, but does it generalize?

The second solution did not seem attractive to the professor as some mea-
surement equipment is needed and, moreover, two errors are made! The student
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responded that these two errors showed in fact that his statistical approach was
likely better than the logical approach of the first student, as it was more gen-
eral (less overtrained). This remark was not appreciated by the professor: very
strange to prove the quality of a solution by the fact that errors are made!

The third student seemed to have a suitable solution. Moreover, the shape
property was in line with other characteristics of the related cultures. Although
it was clear what was meant by the ball-ness and the egg-ness of the vase shapes,
the question remained whether this could be decided by an arbitrary assistant.
The student had a perfect answer. He drew the shapes of two vases, one from
each group, on a glass window in front of the table with vases. To classify a given
vase, he asked the professor to look through each of the two images to this vase
and to walk to and from the window to adjust the size until a match occurs.

We hope that this example makes clear that logic, statistics and structure can
be used to infer a property like a class label. Much more has to be explained
about how to derive the above decision rules by automatic means. In this paper,
we will skip the logical approach as it has little to do with the sensory data we
are interested in.

3 Feature Representation

We will first shortly summarize the feature representation and some of its ad-
vantages and drawbacks. In particular, it will be argued how this representation
necessarily demands a statistical approach. Hence, this has far reaching conse-
quences concerning how learning data should be collected. Features are object
properties that are suitable for their recognition. They are either directly mea-
sured or derived from the raw sensor data. The feature representation represents
objects as vectors in a (Euclidean) feature space. Usually, but not always, the
feature representation is based on a significant reduction. Real world objects
cannot usually be reconstructed from their features. Some examples are:
– Pieces of fruit represented by their color, maximum length and weight.
– Handwritten digits represented by a small set of moments.
– Handwritten digits represented by the pixels (in fact, their intensities) in

images showing the digits.
This last example is special. Using pixel values as features leads to pixel repre-
sentations of the original digits that are reductions: minor digit details may not
be captured by the given pixel resolution. If we treat, however, the digital picture
of a digit as an object, the pixel representation is complete: it represents the ob-
ject in its entirety. This is not strange as in handling mail and money transfers,
data typists often have to recognize text presented on monitor screens. So the
human recognition is based on the same data as used for the feature (pixels)
representation.

Note that different objects may have identical representations, if they are
mapped on the same vector in the feature space. This is possible if the fea-
ture representation reduces the information on objects, which is the main cause
for class overlap, in which objects belonging to different classes are identically
represented.
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The most common and most natural way to solve the problem of class overlap
is by using probability density functions. Objects in the overlap area are assigned
to the class that is the most probable (or likely) for the observed feature vector.
This not only leads to the fully Bayesian approaches, based on the estimation
of class densities and using or estimating class prior probabilities, but also to
procedures like decision trees, neural networks and support vector machines that
use geometrical means to determine a decision boundary between classes such
that some error criterion is minimized.

In order to find a probability density function in the feature space, or in order
to estimate the expected classification performance for any decision function that
is considered in the process of classifier design, a set of objects has to be available
that is representative for the distribution of the future objects to be classified
later by the final classifier. This last demand is very heavy. It requires that the
designer of a pattern recognition system knows exactly the circumstances under
which it will be applied. Moreover, he has to have the possibility to sample
the objects to be classified. There are, however, many applications in which
it is difficult or impossible. Even in the simple problem of handwritten digit
recognition it may happen that writing habits change over time or are location
dependent. In an application like the classification of geological data for mining
purposes, one likes to learn from existing mining sites how to detect new ones.
Class distributions, however, change heavily over the earth.

Another problem related to class overlap is that densities are difficult to es-
timate for more complete and, thereby, in some sense better representations,
as they tend to use more features. Consequently, they have to be determined in
high-dimensional vector spaces. Also the geometrical procedures suffer from this,
as the geometrical variability in such spaces is larger. This results in the paradox
of the feature representation: more complete feature representations need larger
training sets or will deteriorate in performance [21].

There is a fundamental question of how to handle the statistical problem of over-
lapping classes in case no prior information is available about the possible class dis-
tributions. If there is no preference, the No-Free-Lunch-Theorem [22] states that
all classifiers perform similarly to a random class assignment if we look over a set
of problems on average. It is necessary to restrict the set of problems significantly,
e.g. to compact problems in which similar objects have similar representations. It
is, however, still an open issue how to do this [23]. As long as the set of pattern
recognition problems is based on an unrealistic set, studies on the expected perfor-
mance of pattern recognition systems will yield unrealistic results. An example is
the Vapnik-Chervonenkis error bound based on the structural risk minimization
[20]. Although a beautiful theoretical result is obtained, the prescribed training
set sizes for obtaining a desired (test) performance are far from being realistic. The
support vector machine (SVM), which is based on structural risk minimization, is
a powerful classifier for relatively small training sets and classes that have a small
overlap. As a general solution for overlapping classes, as they arise in the feature
space, it is not suitable. We will point this out below.
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We will now introduce the idea of domain-based classifiers [24]. They construct
decision boundaries between classes that are described just by the domains they
cover in the feature space (or in any representation space) and do not depend
on (the estimates of) probability distributions. They are, thereby, insensitive to
ill-sampled training sets, which may even be selectively sampled by an expert.
Such classifiers may be beneficial for non-overlapping, or slightly overlapping
classes and are optimized for distances instead of densities. Consequently, they
are sensitive to outliers. Therefore, outliers should be removed in the firs step.
This is possible as the training set can be sampled in a selective way. Domain-
based classification may be characterized as taking care of the structure of the
classes in the feature space instead of their probability density functions.

If Vapnik’s concept of structural risk minimization [20] is used for optimizing
a separation function between two sets of vectors in a vector space, the resulting
classifier is the maximum margin classifier. In case no linear classifier exists to
make a perfect separation, a kernel approach may be used to construct a non-
linear separation function. Thanks to the reproducing property of kernels, the
SVM becomes then a maximum margin hyperplane in a Hilbert space induced
by the specified kernel [25]. The margin is only determined by support vectors.
These are the boundary objects, i.e. the objects closest to the decision boundary
f(x; θ) [26,25]. As such, the SVM is independent of class density models. Multiple
copies of the same object added to the training set do not contribute to the
construction of the SVM as they do for classifiers based on some probabilistic
model. Moreover, the SVM is also not affected by adding or removing objects of
the same class that lie further away from the decision boundary. This decision
function is, thereby, a truly domain-based classifier, as it optimizes the separation
of class domains and class density functions.

For nonlinear classifiers defined on nonlinear kernels, the SVM has, however, a
similar drawback as the nonlinear neural network. The distances to the decision
boundary are computed in the output Hilbert space defined by the kernel and
not in the input space. A second problem is that the soft-margin formulation [26],
the traditional solution to overlapping classes, is not domain-based. Consider a
two-class problem with the labels y∈{−1, +1}, where y(x) denotes the true label
of x. Assume a training set X = {xi, y(xi)}n

i=1. The optimization problem for
a linear classifier f(x) = wTx + w0 is rewritten into:

minw ||w||2 + C
∑

xi∈X ξ(xi),
s.t. y(xi)f(xi) ≥ 1 − ξ(xi),

ξ(xi) ≥ 0,

(1)

where ξ(xi) are slack variables accounting for possible errors and C is a trade-off
parameter.

∑
xi∈X ξ(xi) is an upper bound of the misclassification error on the

training set, hence it is responsible for minimizing a sum of error contributions.
Adding a copy of an erroneously assigned object will affect this sum and, thereby,
will influence the sought optimum w. The result is, thereby, based on a mixture
of approaches. It is dependent on the distribution of objects (hence statistics)
as well as on their domains (hence geometry).
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A proper domain-based solution should minimize the class overlap in terms of
distances and not in terms of probability densities. Hence, a suitable version of
the SVM should be derived for the case of overlapping domains, resulting in the
negative margin SVM [24]. This means that the distance of the furthest away
misclassified object should be minimized. As the signed distance is negative,
the negative margin is obtained. In the probabilistic approach, this classifier
is unpopular as it will be sensitive to outliers. As explained above, outliers are
neglected in domain-based classification, as they have to be removed beforehand.

Our conclusion is that the use of features yields a reduced representation.
This leads to class overlap for which a probabilistic approach is needed. It relies
on a heavy assumption that data are drawn independently from a fixed (but
unknown) probability distribution. As a result, one demands training sets that
are representative for the probability density functions. An approach based on
distances and class structures may be formulated, but conflicts with the use of
densities if classes overlap.

4 Proximity Representation

Similarity or dissimilarity measures can be used to represent objects by their
proximities to other examples instead of representing them by a preselected set
of features. If such measurements are derived from original objects, or from raw
sensor data describing the objects fully (e.g. images, time signals and spectra
that are as good as the real objects for the human observer), then the reduction in
representation, which causes class overlap in the case of features, is circumvented.
For example, we may demand that the dissimilarity of an object to itself is
zero and that it can only be zero if it is related to an identical object. If it
can be assumed that identical objects belong to the same class, classes do not
overlap. (This is not always the case, e.g. a handwritten ’7’ may be identical to
a handwritten ’1’).

In principle, such proximity representations may avoid class overlap. Hence,
they may offer a possibility to use the structure of the classes in the representa-
tion, i.e. their domains, for building classifiers. This needs a special, not yet well
studied variant of the proximity representation. Before a further explanation, we
will first summarize two variants that have been worked out well. This summary
is an adapted version of what has been published as [16]. See also [15].

Assume we are given a representation set R, i.e. a set of real-world objects that
can be used for building the representation. R={p1, p2, . . . , pn} is, thereby, a set
of prototype examples. We also consider a proximity measure d, which should
incorporate the necessary invariance (such as scale or rotation invariance) for the
given problem. Without loss of generality, let d denote dissimilarity. An object
x is then represented as a vector of dissimilarities computed between x and the
prototypes from R, i.e. d(x, R)= [d(x, p1), d(x, p2), . . . , d(x, pn)]T. If we are also
given an additional labeled training set T = {t1, t2, . . . , tN} of N real-world
objects, our proximity representation becomes an N × n dissimilarity matrix
D(T, R), where D(ti, R) is now a row vector. Usually R is selected out of T (by
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various prototype selection procedures) in a way to guarantee a good tradeoff
between the recognition accuracy and the computational complexity. R and T
may also be different sets.

The k-NN rule can directly be applied to such proximity data. Although it
has good asymptotic properties for metric distances, its performance deteriorates
for small training (here: representation) sets. Alternative learning strategies rep-
resent proximity information in suitable representation vector spaces, in which
traditional statistical algorithms can be defined. So, they become more beneficial.
Such vector spaces are usually determined by some local or global embedding
procedures. Two approaches to be discussed here rely on a linear isometric em-
bedding in a pseudo-Euclidean space (where necessarily R ⊆ T ) and the use of
proximity spaces; see [16,15].

Pseudo-Euclidean linear embedding. Given a symmetric dissimilarity ma-
trix D(R, R), a vectorial representation X can be found such that the distances
are preserved. It is usually not possible to determine such an isometric embed-
ding into a Euclidean space, but it is possible into a pseudo-Euclidean space E =
R

(p,q). It is a (p+q)-dimensional non-degenerate indefinite inner product space
such that the inner product 〈·, ·〉E is positive definite on Rp and negative definite
on R

q [10]. Then, 〈x,y〉E =xTJpqy, where Jpq =diag (Ip×p; −Iq×q) and I is the
identity matrix. Consequently, d2

E(x,y)== 〈x−y,x−y〉E =d2
Rp(x,y)−d2

Rq(x,y),
hence d2

E is a difference of square Euclidean distances found in the two subspaces,
Rp and Rq. Since E is a linear space, many properties related to inner products
can be extended from the Euclidean case [10,15].

The (indefinite) Gram matrix G of X can be expressed by the square dis-
tances D�2 = (d2

ij) as G = − 1
2JD�2J , where J = I − 1

n11T [10,27,15]. Hence,
X can be determined by the eigendecomposion of G, such that G = QΛQT =
Q|Λ|1/2diag(Jp′q′ ; 0) |Λ|1/2QT. |Λ| is a diagonal matrix of first decreasing p′ pos-
itive eigenvalues, then decreasing magnitudes of q′ negative eigenvalues, followed
by zeros. Q is a matrix of the corresponding eigenvectors. X is uncorrelated and
represented in R

k, k = p′+q′, as X = Qk|Λk|1/2 [10,27]. Since only some eigen-
values are significant (in magnitude), the remaining ones can be disregarded as
non-informative. The reduced representation Xr =Qm |Λm|1/2, m=p+q <k, is
determined by the largest p positive and the smallest q negative eigenvalues. New
objects D(Ttest, R) are orthogonally projected onto Rm; see [10,27,15]. Classi-
fiers based on inner products can appropriately be defined in E . A linear classifier
f(x)=vTJpqx+v0 is e.g. constructed by addressing it as f(x)=wTx+v0, where
w=Jpqv in the associated Euclidean space R(p+q) [10,27,15].

Proximity spaces. Here, the dissimilarity matrix D(X, R) is interpreted as
a data-dependent mapping D(·, R): X → Rn from some initial representation
X to a vector space defined by the set R. This is the dissimilarity space (or a
similarity space, if similarities are used), in which each dimension D(·, pi) corre-
sponds to a dissimilarity to a prototype pi ∈ R. The property that dissimilarities
should be small for similar objects (belonging to the same class) and large for
distinct objects, gives them a discriminative power. Hence, the vectors D(·, pi)
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can be interpreted as ’features’ and traditional statistical classifiers can be de-
fined [28,15]. Although the classifiers are trained on D(·, R), the weights are still
optimized on the complete set T . Thereby, they can outperform the k-NN rule
as they become more global in their decisions.

Normal density-based classifiers perform well in dissimilarity spaces [27,28,15].
This especially holds for summation-based dissimilarity measures, summing over
a number of components with similar variances. Such dissimilarities are approxi-
mately normally distributed thanks to the central limit theorem (or they approx-
imate the χ2 distribution if some variances are dominant) [15]. For instance, for a
two-class problem, a quadratic normal density based classifier is given by
f(D(x, R)) =

∑2
i=1

(−1)i

2 (D(x, R)−mi)TS−1
i (D(x, R)−mi) + log p1

p2
+ 1

2 log |S1|
|S2| ,

where mi are the mean vectors and Si are the class covariance matrices, all esti-
mated in the dissimilarity space D(·, R). pi are the class prior probabilities. By re-
placing S1 and S2 by the average covariance matrix, a linear classifier is obtained.

The two learning frameworks of pseudo-Euclidean embedding and dissimi-
larity spaces appear to be successful in many problems with various kinds of
dissimilarity measures. They can be more accurate and more efficient than the
nearest neighbor rule, traditionally applied to dissimilarity data. Thereby, they
provide beneficial approaches to learning from structural object descriptions for
which it is more easy to define dissimilarity measures between objects than to
find a good set of features. As long as these approaches are based on a fixed
representation set, however, class overlap may still arise as two different objects
may have the same set of distances to the representation set. Moreover, most
classifiers used in the representation spaces are determined based on the tradi-
tional principle of minimizing the overlap. They do not make a specific use of
principles related to object distances or class domains. So, what is still lacking
are procedures that use class distances to construct a structural description of
classes. The domain-based classifiers, introduced in Section 3, may offer that in
future provided that the representation set is so large that the class overlap is
(almost) avoided. A more fundamental approach is described below.

Topological spaces. The topological foundation of proximity representations
is discussed in [15]. It is argued that if the dissimilarity measure itself is un-
known, but the dissimilarity values are given, the topology cannot, as usual, be
based on the traditional idempotent closures. An attempt has been made to use
neighborhoods instead. This has not resulted yet in a useful generalization over
finite training sets.

Topological approaches will aim to describe the class structures from local
neighborhood relations between objects. The inherent difficulty is that many of
the dissimilarity measures used in structural pattern recognition, like the nor-
malized edit distance, are non-Euclidean, and even sometimes non-metric. It has
been shown in a number of studies that straightforward Euclidean corrections are
counter productive in some applications. This suggests that the non-Euclidean
aspects may be informative. Consequently, a non-Euclidean topology would be
needed. This area is still underdeveloped.
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A better approach may rely on two additional sources of information that are
additionally available. These are the definition of the dissimilarity measure and
the assumption of class compactness. They may together tell us what is really
local or how to handle the non-Euclidean phenomena of the data. This should
result in a topological specification of the class structure as learned from the
training set.

5 Structural Representation

In the previous section we arrived at a structure of a class (or a concept), i.e. the
structural or topological relation of the set of all objects belonging to a partic-
ular class. This structure is influenced by the chosen representation, but is in
fact determined by the class of objects. It reflects, for instance, the set of con-
tinuous transformations of the handwritten digits ’7’ that generate exclusively
all other forms that can be considered as variants of a handwritten ’7’. This
basically reflects the concept used by experts to assign the class label. Note,
however, that this rather abstract structure of the concept should be clearly dis-
tinguished from the structure of individual objects that are the manifestations
of that concept.

The structure of objects, as presented somewhere in sensory data of images,
such as time signals and spectra, is directly related to shape. The shape is a
one- or multi-dimensional set of connected boundary points that may be lo-
cally characterized by curvature and described more globally by morphology
and topology. Note that the object structure is related to an outside border
of objects, the place where the object ends. If the object is a black blob in a
two-dimensional image (e.g. a handwritten digit) then the structure is expressed
by the contour, a one-dimensional closed line. If the grey-value pixel intensities
inside the blob are relevant, then we deal with a three-dimensional blob on a
two-dimensional surface. (As caves cannot exist in this structure it is sometimes
referred to as a 2.5-dimensional object).

It is important to realize that the sensor measurements are characterized by a
sampling structure (units), such as pixels or time samples. This sampling struc-
ture, however, has nothing to do with the object structure. In fact, it disturbs
it. In principle, objects (patterns describing real objects) can lie anywhere in
an image or in a time frame. They can also be rotated in an image and appear
in various scales. Additionally, we may also vary the sampling frequency. If we
analyze the object structure for a given sampling, then the object is “nailed”
to some grid. Similar objects may be nailed in an entirely different way to this
grid. How to construct structural descriptions of objects that are independent of
the sampling grid on which the objects are originally presented is an important
topic of structural pattern recognition.

The problem of structural inference, however, is not the issue of representation
itself. It is the question how we can establish the membership of an object to a given
set of examples based on their structure. Why is it more likely that a new object X
belongs to a set A than a set B? A few possible answers are presented below.
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1. X is an example of A, because the object in A ∪ B that is most similar to
X belongs to A. This decision may depend on the accidental availability of
particular objects. Moreover, similarity should appropriately be defined.

2. X is an example of A, because the object from A ∪ B that is most easily
transformed to X belongs to A. In this case similarity relies on the effort
of transformation. This may be more appropriate if structures need to be
compared. The decision, however, still depends on a single object. The entire
sets or classes simply store examples that may be used when other objects
have to be classified.

3. X is an example of A, because it can more easily be generated by trans-
forming the prototype of set A than by transforming the prototype of set B.
The prototype of a set may be defined as the (hypothetical) object that can
most easily be transformed into any of the objects of the set. In this assign-
ment rule (as well as in the rule above) the definition of transformation is
universal, i.e. independent of the considered class.

4. X is an example of A, because it can more easily be transformed from a (hy-
pothetical) prototype object by the transformations TA that are used to
generate the set A than by the transformations TB that are used to gen-
erate the set B. Note that we now allow that the sets are generated from
possibly the same prototype, but by using different transformations. These
are derived (learnt) from the sets of examples. The transformations TA and
TB may be learnt from a training set.

There is a strong resemblance with the statistical class descriptions: classes may
differ by their means as well as by the shape of their distributions. A very
important difference, however, between structural and statistical inference is
that for an additional example that is identical to a previous one changes the
class distribution, but not the (minimal) set of necessary transformations.

This set of assignment rules can easily be modified or enlarged. We like to em-
phasize, however, that the natural way of comparing objects, i.e. by accounting for
their similarity, may be defined as the effort of transforming one structure into an-
other. Moreover, the set of possible transformations may differ from class to class.
In addition, classes may have the same or different prototypes. E.g. a sphere can
be considered as a basic prototype both for apples as well as for pears. In general,
classes may differ by their prototypes and/or by their set of transformations.

What has been called easiness in transformation can be captured by a measur-
able cost, which is an example of a similarity measure. It is, thereby, related to the
proximity approaches, described above. Proximity representations are naturally
suitable for structural inference. What is different, however, is the use of statis-
tical classifiers in embedded and proximity spaces. In particular, the embedding
approach has to be redefined for structural inference as it makes use of averages
and the minimization of an expected error, both statistical concepts. Also the use
of statistical classifiers in these spaces conflicts with structural inference. In fact,
they should be replaced by domain-based classifiers. The discussed topological ap-
proach, on the other hand, fits to the concept of structural inference.

The idea that transformations may be class-dependent has not been worked
out by us in the proximity-based approach. There is, however, not a fundamental
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objection against the possibility to attribute set of objects, or even individual
objects in the training set with their own proximity measure. This will very likely
lead to non-Euclidean data, but we have shown ways how to handle them. What
is not studied is how to optimize proximity measures (structure transformations)
over the training data. A possibility might be to normalize for differences in class
structure by adapting the proximity measures that determined these structures.

There is, however, an important aspect of learning from structures that cannot
currently be covered by domain-based classifiers built for a proximity represen-
tation. Structures can be considered as assemblies of more primitive structures,
similarly as a house is built from bricks. These primitives may have a finite
size, or may also be infinitesimally small. The corresponding transformations
from one structure into another become thereby continuous. In particular, we
are interested in such transformations as they may constitute the compactness
of classes on which a realistic set of pattern recognition problems can be defined.
It may be economical to allow for locally-defined functions in order to derive (or
learn) transformations between objects. For instance, while comparing dogs and
wolves, or while describing these groups separately, other transformations may
be of interest for the description of ears then for the tails. Such a decomposition
of transformations is not possible in the current proximity framework, as it starts
with relations between entire objects. A further research is needed.

The automatic detection of parts of objects where different transformations
may be useful for the discrimination (or a continuous varying transformation
over the object) seems very challenging, as the characteristics inside an object
are ill-defined as long as classes are not fully established during training. Some
attempts in this direction have been made by Pacĺık [29,30] when he tries to
learn the proximity measure from a training set.

In summary, we see three ways to link structural object descriptions to the
proximity representation:
– Finding or generating prototypical objects that can easily be transformed

into the given training set. They will be used in the representation set.
– Determining specific proximity measures for individual objects or for groups

of objects.
– Learning locally dependent (inside the object) proximity measures.

6 Discussion and Conclusions

In this paper, we presented a discussion of the possibilities of structural inference
as opposed to statistical inference. By using the structural properties of objects
and classes of a given set of examples, knowledge such as class labels is inferred
for new objects. Structural and statistical inference are based on different as-
sumptions with respect to the set of examples needed for training and for the
object representation. In a statistical approach, the training set has to be rep-
resentative for the class distributions as the classifiers have to assign objects to
the most probable class. In a structural approach, classes may be assumed to be
separable. As a consequence, domain-based classifiers may be used [18,24]. Such
classifiers, which are mainly still under development, do not need training sets
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that are representative for the class distributions, but which are representative
for the class domains. This is greatly advantageous as these domains are usually
stable with respect to changes in the context of application. Training sets may
thereby be collected by a selective, instead of unselective sampling.

The below table summarizes the main differences between representations
based on features (F), proximities (P) and structures (S) for the statistical and
structural inference.

Statistical inference Structural inference

F
Features reduce; statistical inference The structural information is lost by
is almost obligatory. representing the aspects of objects by

vectors and/or due to the reduction.

P

Proximity representations can be Transformations between the
derived by comparing pairs of objects structures of objects may be used to
(e.g. initially described by features build proximity representations.
or structures). Statistical classifiers Classes of objects should be separated
are built in proximity spaces or in by domain-based classifiers.
(pseudo-Euclidean) embedded spaces.

S

Statistical learning is only possible Transformations might be learnt by
if a representation vector space is built using a domain-based approach that
(by features or proximities), in which transforms one object into another
density functions can be defined. in an economical way.

This paper summarizes the possibilities of structural inference. In particular,
the possibilities of the proximity representation are emphasized, provided that
domain-based learning procedures follow. More advanced approaches, making
a better usage of the structure of individual objects have to be studied further.
They may be based on the generation of prototypes or on trained, possibly local
transformations, which will separate object classes better. Such transformations
can be used to define proximity measures, which will be further used to construct
a proximity representation. Representations may have to be directly built on
the topology derived from object neighborhoods. These neighborhoods are con-
structed by relating transformations to proximities. The corresponding dissimi-
larity measures will be non-Euclidean, in general. Consequently, non-Euclidean
topology has to be studied to proceed in this direction fundamentally.
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Abstract. This paper describes a new aerial images segmentation algorithm. 
The algorithm is based upon the knowledge of image multi-scale geometric 
analysis which can capture the image’s intrinsic geometrical structure effi-
ciently. The Contourlet transform is selected to represent the maximum infor-
mation of the image and obtain the rotation invariant features of the image. A 
modified Mumford-Shah model is built to segment the aerial image by a 
necessary level set evolution. To avoid possible local minima in the level set 
evolution, we control the value of weight numbers of features in different 
evolution periods in this algorithm, instead of using the classical technique 
which evolve in a multi-scale fashion. 

1   Introduction 

Nowadays, with the development of sensor technology, the resolution of remotely 
sensed images has become higher, with more information being contained than before. 
Consequently, many remotely sensed image processing algorithms have appeared. Most 
of them are focused on the segmentation or classification of man-made objects. 

The two main methods in the study of man-made object segmentation are: model-
based algorithms and feature-based algorithms.  

Model-based algorithms include the works of Jia Li[1] , A.L.Reno[2] , J.L.Solka[3] 
etc. These algorithms can segment man-made objects precisely. However, it is very 
difficult to build a precise estimation model due to the complexity of remotely sensed 
images. Moreover, the computation of the estimated parameters of the model is 
inevitably complex and time-consuming.  

Feature-based algorithms include the works of Mark.J Carlotto[4] , Stephen Levitt[5] 

etc. These initial studies consider the low level features of the image. Recent studies 
integrate high level analysis of the features of color, texture, height and so on. 

The remotely sensed images segmentation methodology proposed in this paper is 
based on the knowledge of image multi-scale geometric analysis, which can extract 
the features of the image efficiently. How to obtain the rotation invariant features is 
described in the paper. In order to classify the remotely sensed images, a modified 
Mumford-Shah model is introduced to integrate the rotation invariant features, while 
the level set method is responsible for the image evolution.   
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This paper is organized as follows: Section 2 introduces the Contourlet transform 
and the feature extraction method which is based on the knowledge of image multi-
scale geometric analysis. Section 3 introduces the modified Mumford-Shah model. 
Section 4 elaborates on the new aerial images segmentation algorithm. The outputs of 
experiments are presented and illuminated in Section 5 and the conclusions of the 
paper are listed in Section 6. 

2   Feature Extraction Based on Image Multiscale Geometric 
Analysis 

2.1   Image Multi-scale Geometric Analysis and Contourlet Transform 

The wavelet transform is widely used in many fields, but it still has some limitations. 
E.J.Cand s [6] indicates that wavelets provide a very sparse representation for 
piecewise smooth 1-D signals but fail to do so for multi-dimensioned signals. Minh 
N. Do[7] compared 2-D separable wavelet transform with multi-scale geometric 
analysis. As we find in the Fig.1: Multi-scale geometric analysis is more efficient than 
wavelet transform because of those elongated shapes and multiple directions along the 
contour. 

In 2003, Minh N.Do introduced the contourlet transform[8] which can be regarded 
as a discrete version of the curvelet transform.  It solved most of the problems that the 
curvelet transform had met with, but it still has a redundancy ratio of about 33%. 
Although the crisp-contourlets[9] were later generated to reduce the redundancy ratio, 
DFB[10] applications still exists in the low-frequency component. Truong T. Nguyen 
and Soontorn Oraintara[11] developed the theory of multi-resolution DFB which can 
be uniformly and maximally decimated. They introduced the uniform DFB(uDFB) 
and the non-uniform DFB(nuDFB) in their paper . 

In this paper, the contourlet transform is efficient enough to extract the features of 
the remotely sensed image since the features of aerial Images are mainly concentrated 
in the middle and high frequency component. The contourlet transform is briefly 
described as Fig.2. 

The contourlet transform consists of the Laplacian pyramid and the DFB. The 
union can be described as pyramidal DFB(PDFB). In each scale decomposition, the  
 

            

   Fig. 1. Wavelet transform versus the                             Fig. 2.The contoulet filter bank[7] 

   new scheme[7] 
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Laplacian pyramid separates the low-frequency component from the rest of the 
components, and then the DFB is applied to the rest. 

2.2   The Extraction of Rotation Invariant Features 

The features of aerial Images are mainly concentrated in the middle and high fre-
quency components, while the low-frequency components usually contain the gray 
scale information. So we only need extract the features of the middle and high 
frequency components which we are interested in. The contourlet transform can meet 
our needs and avoid the complexities of the DFB brought upon by the uDFB and 
nuDFB[11].  

Manesh Kokare[12] proposed a new rotationally invariant feature extraction method, 
in which the images are decomposed into different sub-bands by DT-CWT and DT-
RCWF, then the final rotation invariant wavelet features are obtained from those sub-
bands. Referring to Manesh Kokare’s method, the rotation invariant contourlet 
features can be extracted as follows: 

To calculate the features of a certain point in a remotely sensed image, we select a 
block with a size of 1616×  or 3232× , with a certain point in the center of the block. 
Then, we decompose this block into three levels by the contourlet transform. As to the 
first two levels of contourlet decompositions, we use a three levels DFB 
decomposition to get an eight-directional frequency partitioning for each level; as to 
the final contourlet decomposition, the wavelet transform is used to obtain 4 different 
sub-bands. In the end, the targeted block is decomposed into 20 sub-bands, just as 
Fig 3 shows. 

Then the rotation invariant contourlet features in each level can be calculated, 

supposing that j denotes jth level, the size of sub-band i
jw  is nm× , the feature of 

i
jw  is calculated as follows: 
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Where j
iE  is the energy of i

jw , j
iσ  is the standard deviation of i

jw , j
iμ is the mean 

of i
jw , ),( klx j

i  is the coefficients of i
jw  located in ),( kl . 

While the level j equal 1 or 2, the rotation invariant features is given by (4), while 
the level j equal 3, the rotation invariant features is given by (5). 
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Fig. 3. Frequency partition of the three levels decompositions 

The final six dimension rotation invariant features is given by 
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(6) 

Where 
61 ~ KK  are weight numbers. 

3   Mumford-Shah Model and the Modification 

The Mumford-Shah model[13] is a commonly used model in image segmentation, 
based on this Chan and Vese proposed a multi-phase level set framework[14] for image 
segmentation. In the piecewise constant case, n phases can be represented by m level 

set functions, where m= n2log . In this framework, there exist interactions between 

each level set function, which will reduce the speed of evolution.  
In order to speed up the aerial images segmentation algorithm, we still use n 

instead of n2log  level set functions to represent n phases. This method avoids the 

interaction between different level set functions. However, it has brought about new 
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problems, such as vacuum or overlapping points, which can be regarded as payment 
for pursuing fast segment algorithm. After finishing the evolution, we need to classify 
these points by a strategy that will be discussed in later chapters. 

The active contour evolving method can combine other features besides the grey 
level features. Jean-Francois Aujol, Gilles Aubert, and Laure Blanc-Féraud[15] 
presented a supervised classification model based upon a variational approach. The 
wavelet features are taken into consideration in this model. Cao Guo[16] proposed a 
simplified Mumford-Shah model in which the features of fractal error metric and the 
DCT coefficients of texture edges are considered. 

In the situation of supervised classification that the mean values of each region are 
pre-known, we can obtain the jth energy function as follows: 
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Where feature are the six dimension features of point ( )yx, , ojfeature  denotes the 

mean feature of the jth region, jbfeature  is a changing value decided by the 

position ( )yx, ,
jbfeature  is selected from one of the n pre-known mean values 

except 
ojfeature . 

Function(7) can be represented in another form as follows: 
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Where jφ  is the jth level set function. 

The associated Euler-Lagrange equations to (8) give the following expression: 
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, ( )xδ  is the Dirac function.  
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To avoid possible local minima in the level set evolution, one classical technique is 
to evolve in a multi-scale fashion[17]. The evolution result from the lower resolution is 
selected to be the initial contour of the next evolution in the higher resolution. Instead 
of using the classical technique referred to above, we control the value of 

61 ~ KK  

in different evolution periods in this algorithm. In the beginning stages of the 
resolution, the features of lower resolution are applied with bigger weight. When the 
level set evolves into the more constant stages, the value of 61 ~ KK  changes to 

ensure the features of higher resolution are applied with bigger weight. The changing 
weighting numbers will lead the geodesic flow to the correct position not only in the 
lower resolution but also in the higher resolution. 

4   Description of the Aerial Images Segment algorithm 

The aerial image segmentation algorithm proposed in this paper is a supervised 
method. The procedure of segmentation can be described as follows: 

Step 1: First of all, select the representative sections of different classes from the 
aerial image and save these sections into the list. 

Step 2: Set the weighting numbers 
61 ~ KK  to 1, then calculate the norm feature 

oifeature  of each section in the list. Calculate the feature ),( yxfeature of every 

point in the aerial image. Save oifeature  as savfeatureoi _  and save feature  

as savfeature _ . 

Step 3: Referring to  , initial closed curves in the aerial image 
are given in this algorithm, just as Fig 4(b) shows. 

Step 4: The parameters are initially set as: 2.141 == KK , 2.152 == KK , 

6.063 == KK .  Refresh the values of oifeature  and feature  according to 

savfeatureoi _  and savfeature_ . The curve begins to evolve as described in the 

equation (9). 
Step 5: When the difference between the two evolving steps is smaller than a pre-

defined threshold as 1T , set the parameters as 6.041 == KK , 2.152 == KK , 

2.163 == KK . Refresh the values of  oifeature  and feature  again. Keep on 

the evolution. 
Step 6: When the difference between two evolving steps is smaller than a pre-

defined threshold as 2T , set the parameters as 6.041 == KK , 152 == KK , 

4.163 == KK . Refresh the values of  oifeature  and feature  again. Keep on 

the evolution. 

Step 7: Update and evolve the level set function jφ  and check whether the criterion of 

termination is met or not. If the criterion of termination is met, the area inside the closed 

curves is the area of the jth class object. Start the 1+jφ  evolution, repeat the steps of 4~7.  
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Step 8: After all the level set functions evolution have finished, check the whole 
image to find the vacuum or overlapped points. Calculate the mean features of these 
points and their neighboring points. Classify these points to their nearest class in 

terms of the calculated mean feature oifeature .  

Step 9: According to the result of evolution, differentiate each region using 
different colors. 

5   Experiment Results and Discussion 

In these experiments, the criterion of termination is met when the difference between 
two evolving steps is smaller than a pre-defined threshold as 0.015 or the evolution 

reach 20 times. Set the parameters as 1T =0.45, 2T =0.15, 1λ = 2λ =0.2. 

The original aerial image with a size of 385495×  is shown in Fig 4(a), while the 
initial closed curves in the aerial image are shown in Fig 4(b). 

            
                   (a)                                        (b)                        (c)       (d)      (e)        (f)  

Fig. 4.  The aerial image to be classified. (a) The aerial image. (b) Initial conditions. (c) ~(f) 
Different represent regions, the positions of these regions are {(253,71),(307,167)}, 
{(353,252),(397,344)}, {(39,119),(83,167)} and {(111,44),(170,96)}, respectively, on rectangular 
coordinates of the aerial image.  

The supervised method is taken to segment this aerial image into four kinds of 
regions, for which the selected representative regions are shown in Fig 4(c)~(f). The 
segmentation results are shown in Fig 5.    

                             
(a)                                                                          (b) 

Fig. 5. Segmentation results. (a) Result of evolution. (b) Differentiate each region using  different 
colors. 
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The experiment results of segment aerial images with two and three classes are 
illustrated in Fig. 6 and Fig. 7, respectively. Satisfying experiment results are 
achieved by using the algorithm which is proposed in this paper. 

More experiment results are shown as below: 

                 
(a)                                                 (b)                                           (c) 

Fig. 6. Aerial image to be classified. The aerial image. (b) Result of evolution. (c) Differentiate 
each region by different colors. 

               
     (a)                                            (b)                                         (c) 

Fig. 7. Aerial image to be classified. (a) The aerial image. (b) Result of evolution. (c) Differentiate 
each region by different colors.      

6   Conclusion 

In this paper, a new supervised aerial images segmentation algorithm is presented. It 
is built on the basis of the multi-phase Mumford-Shah model. The rotation invariant 
contourlet features are obtained upon the knowledge of image multi-scale geometric 
analysis. In order to achieve a fast aerial images segmentation speed, several level set 
formulations are used to minimize the Mumford-Shah energy functions with contour-
let features constraints. The proposed method is proven to be effective by the results 
of experiments. 
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Abstract. A new approach to align an image of a textured object with
a given prototype under its monotone photometric and affine geomet-
ric transformations is experimentally compared to more conventional
registration algorithms. The approach is based on measuring similar-
ity between the image and prototype by Gibbs energy of characteristic
pairwise co-occurrences of the equalized image signals. After an initial
alignment, the affine transformation maximizing the energy is found by
gradient search. Experiments confirm that our approach results in more
robust registration than the search for the maximal mutual information
or similarity of scale-invariant local features.

1 Introduction

The goal of image registration is to co-align two or more images of the same or sim-
ilar objects acquired by different cameras, at different times, and from different
viewpoints. Thus the images have to be photometrically and geometrically trans-
formed in order to make them closely similar.Co-aligned images provide more com-
plete information about the object and allow for building adequate object models.

Registration is a must in many applications, e.g. medical imaging, automated
navigation, change detection in remote sensing, multichannel image restoration,
cartography, automatic quality control in industrial vision, and so on [1]. Feature
based registration relies on easily detectable local areal, linear, andpoint structures
in the images, e.g. water reservoirs and lakes [2], buildings [3], forests [4], urban ar-
eas [5], straight lines [6], specific contours [7], coast lines [8], rivers, or roads [9],
road crossings [10], centroids of water areas, or oil and gas pads [11]. In particular,
the scale invariant feature transform (SIFT) [12] can reliably determine a collec-
tion of point-wise correspondences between two images under the affine geometric
transformation and local contrast/offset photometric transformations. But these
methods work only with distinctive and non-repetitive local features.

Alternative area-based registration, e.g. the least square correlation obviates
the need for feature extraction due to direct matching of all image signals [13].

D.-Y. Yeung et al. (Eds.): SSPR&SPR 2006, LNCS 4109, pp. 65–73, 2006.
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However, the correlation assumes spatially uniform contrast/offset transforma-
tions and a central-symmetric pixel-wise noise with zero mean. As a result, it
frequently fails under non-uniformand spatially interdependent photometric trans-
formations caused by different sensors and varying illumination. Phase correlation
and spectral-domain (Fourier-Mellin transform based) methods [14] are less sensi-
tive to the correlatedand frequency dependent noise andnon-uniform time-variant
illumination but allow for only very limited geometric transformations.

Recent image registration by maximizing mutual information (MI) [15] pre-
sumes a most general type of photometric transformations, namely, any monotone
transformation of the corresponding signals in one of the images. The
similarity between two images is measured by the Kullback-Leibler divergence
of a joint empirical distribution of the corresponding signals from the joint
distribution of the independent signals. This approach performs the best with
multi-modal images [15] and thus is widely used in medical imaging. The joint
distribution is usually estimated using Parzen windows [16] or discrete his-
tograms [17]. But the MI is invariant also to some non-monotone photometric
transformations that change the images too much. The unduly extensive invari-
ance of the MI hinders the registration accuracy.

This paper considers one further area-based registration method assuming
that a textured object and its prototype have similar but not necessarily identical
visual appearance under affine geometric and monotone photometric transforma-
tions of the corresponding signals. The latter transformations are suppressed by
equializing both the prototype and the image area matched to it. The equalized
prototype is described with a characteristic set of Gibbs potentials estimated
from statistics of pairwise signal co-occurrences. The description implicitly con-
siders each image as a spatially homogeneous texture with the same statistics. In
contrast to more conventional area-based registration techniques, the similarities
between the statistics rather than pixel-to-pixel correspondences are involved.

2 MGRF Based Image Registration

Basic notation. Let Q = {0, . . . , Q − 1}; R = [(x, y) : x = 0, . . . , X − 1; y =
0, . . . , Y −1] be a finite set of scalar image signals (e.g. gray levels) and a rectangu-
lar arithmetic lattice, respectively. The latter supports digital images g : R → Q,
and its arbitrary-shaped part Rp ⊂ R supports a certain prototype of an object
of interest.

Let a finite set N = {(ξ1, η1), . . . , (ξn, ηn)} of (x, y)-coordinate offsets de-
fine neighbors {((x + ξ, y + η), (x − ξ, y − η)) : (ξ, η) ∈ N} ∧ Rp interacting
with each pixel (x, y) ∈ Rp. The set N produces a neighborhood graph on Rp

specifying translation invariant pairwise interactions. The latter are restricted
to n families Cξ,η of second order cliques cξ,η(x, y) = ((x, y), (x + ξ, y + η)) of
the graph. Interaction strength in each family is specified with the Gibbs po-
tential function VT

ξ,η =
[
Vξ,η(q, q′) : (q, q′) ∈ Q2

]
of the signal co-occurrences

in the clique. The total interaction strength is given by the potential vector
VT =

[
VT

ξ,η : (ξ, η) ∈ N
]

where T indicates the transposition.
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MGRF based appearance model. The monotone (order-preserving) trans-
formations of the image signals may occur due to different illumination or sen-
sor characteristics. To make the registration (almost) insensitive to these trans-
formations, both the prototype and conforming to it part of each image are
equalized using cumulative empirical probability distributions of their signals
on Rp. In line with a generic MGRF model with multiple pairwise interac-
tion [18], the probability P (g) ∝ exp(E(g)) of an object g aligned with the pro-
totype g◦ on Rp is proportional to the Gibbs energy E(g) = |Rp|VTF(g) where
FT(g) = [ρξ,ηFT

ξ,η(g) : (ξ, η) ∈ N ] is the vector of the scaled empirical proba-

bility distributions of signal co-occurrences over each clique family; ρξ,η = |Cξ,η|
|Rp|

is the relative size of the family; Fξ,η(g) = [fξ,η(q, q′|g) : (q, q′) ∈ Q2]T with
fξ,η(q, q′|g) = |Cξ,η;q,q′ (g)|

|Cξ,η| are the empirical probabilities of signal co-occurrences,
and Cξ,η;q,q′(g) ⊆ Cξ,η is a subfamily of the cliques cξ,η(x, y) supporting the same
co-occurrences (gx,y = q, gx+ξ,y+η = q′) in g.

The co-occurrence distributions and the Gibbs energy for the object are deter-
mined over Rp, i.e. within the prototype boundary after an object is geometrically
transformed to be aligned with the prototype. To account for the transformation,
the initial image is resampled to the back-projected Rp by interpolation.

The appearance model consists of the neighborhood N and the potential V
to be learned from the prototype. The approximate MLE of V is proportional to
the scaled centered empirical co-occurrence distributions for the prototype [18]:

Vξ,η = λρξ,η

(
Fξ,η(g◦) − 1

Q2 U
)

; (ξ, η) ∈ N

where U is the vector with unit components. The common scaling factor λ is also
computed analytically; it is approximately equal to Q2 if Q � 1 and ρξ,η ≈ 1
for all (ξ, η) ∈ N . In our case it can be set to λ = 1 because the registration
needs only relative potential values and energies.

Learning the characteristic neighbors. To find the characteristic neighbor-
hood set N , the top relative energies Eξ,η(g◦) = ρξ,ηVT

ξ,etaFξ,η(g◦) for the clique
families, i.e. the scaled variances of the corresponding empirical co-occurrence
distributions, have to be separated for a large number of low-energy candidates.

(a) (b)

Fig. 1. Zebra prototype (a) and the relative interaction energies (b) for the clique
families in function of the offsets (ξ, η)
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Figure 1 shows a zebra prototype and its Gibbs energies Eξ,η(g◦) for the 5,100
clique families with the inter-pixel offsets |ξ| ≤ 50; 0 ≤ η ≤ 50.

To automatically select the characteristic neighbors, let us consider an em-
pirical probability distribution of the energies as a mixture of a large “non-
characteristic” low-energy component and a considerably smaller characteristic
high-energy component: P (E) = πPlo(E) + (1 − π)Phi(E). Because both the
components Plo(E), Phi(E) can be of arbitrary shapes, we closely approximate
them with linear combinations of positive and negative Gaussians. For both the
approximation and the estimation of π, we use the efficient EM-based algorithms
introduced in [19].

The intersection of the approximated low- and high-energy distributions gives
an energy threshold θ for selecting the characteristic neighborhood N = {(ξ, η) :
Eξ,η(g◦) ≥ θ}, that is, the threshold solves the equation Phi(θ) = Plo(θ)π/(1−π).
The above example results in the threshold θ = 28 producing the 168 characteris-
tic neighbors shown in Fig. 2 together with the corresponding relative pixel-wise
energies ex,y(g◦) over the prototype:

ex,y(g◦) =
∑

(ξ,η)∈N
Vξ,η(g◦x,y, g

◦
x+ξ,y+η)

Appearance-based registration. Let ga denote a part of the object image
reduced to Rp by the affine transformation a = [a11, . . . , a23]: x′ = a11x+a12y+
a13; y′ = a21x + a22y + a23. To align with the prototype, the object g should be

(a) (b)

Fig. 2. Characteristic 168 neighbors among the 5100 candidates (a; in white) and the
gray-coded relative pixel-wise Gibbs energies (b) for the prototype under the estimated
neighborhood

(a) (b)

Fig. 3. Gibbs energies for the object’s translations (a) with respect to the prototype
and the resulting initial relative position of the object
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affinely transformed to (locally) maximize its relative energy E(ga) = VTF(ga)
under the learned appearance model [N ,V].

The initial transformation is a pure translation with a11 = a22 = 1; a12 =
a21 = 0, ensuring the most “energetic” overlap between the object and prototype.
The energy for the different translations (a13, a23) of the object relative to the
prototype and the chosen initial position (a∗

13, a
∗
23) maximizes this energy are

shown in Fig. 3.
Then thegradient search for the local energymaximumclosest to the initial point

in the affine parameter space selects the six parameters a. Figure 4 (a) illustrates
the final alignment by back-projecting the prototype’s contour to the object.

3 Experimental Results and Conclusions

Experiments have been conducted with several types of images. Below we discuss
results obtained for zebra images available on the Internet (they include both
artificial collages and natural photos) and for natural medical images such as
dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) of human
kidneys and low dose computed tomography (LDCT) images of human lungs.
These image types are commonly perceived as difficult for both the area- and
feature-based registration. The like results have been obtained for other images
of complex textured objects, e.g. starfish images available on the Internet and
MRI of human brain. In total, we used in these experiments 24 zebra, 40 starfish,
200 kidney, 200 lungs, and 150 brain images.

We compared our approach to three popular conventional techniques, namely,
to the area-based registration using the MI [15] or the normalized MI [17] and
to the feature-based registration by establishing inter-image correspondences
with the SIFT [12]. Results for the above zebra image are shown in Fig. 4.
The SIFT-based alignment fails because the SIFT could not establish accurate
correspondences between the similar zebra stripes (see Fig. 5).

Fig. 4. From left to right: our, MI-, NMI (normalized MI)-, and SIFT-based registration

Fig. 5. Corresponding points by SIFT
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Fig. 6. Gibbs energy, MI, and NMI values at the successive steps of the gradient search

The lower accuracy of the MI- and NMI-based alignment comparing to our ap-
proach can stem from a notably different behavior of the MI / NMI and the Gibbs
energy values in the space of the affine parameters. Figure 6 presents these values
for the affine parameters that appear at successive steps of the gradient search for
the maximum energy. Both the MI and NMI have many local maxima that poten-
tially hinder the search, whereas the energy is close to unimodal in this case.

In the above example the object aligned with the prototype differed mainly
by its orientation and scale. Figure 7 shows more diverse zebra objects and
results of their Markov-Gibbs appearance-based and MI-based alignment with
the prototype in Fig. 1(a). The results are illustrated by the back-projection of
the prototype contour onto the objects. Visually, these results suggest that our
approach has the better performance. To quantitatively evaluate the registration
accuracy, the manually segmented masks of the co-aligned objects are averaged
in Fig. 8. The common matching area for our approach (91.6%) is considerably
larger than for the MI-based registration (70.3%).

(a) (b) (c)

Fig. 7. Original zebras (a) aligned with our (b) and the MI-based (c) approach
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(a) (b)

Fig. 8. Overlap between the object masks aligned with our (a; 91.6%) and the MI-based
approaches (b; 70.3%)

(a) (b)

Fig. 9. Kidney image (a) and relative interaction energies (b) for the clique families in
function of the offsets (η, ξ)

(a) (b)

Fig. 10. (a) Most characteristic 76 neighbors among the 5,100 candidates (a; in white)
and the pixel-wise Gibbs energies (b) for the prototype under the estimated neighborhood

(a) (b) (c) (d)

Fig. 11. Initialization (a) and our (b), the MI- (c), and the SIFT-based (d) registration

Similar results obtained for the kidney images are shown in Figs. 9–13: the
common matching area 90.2% is for our approach vs. 62.6% for the MI-based one.
Therefore, image registration based on our Markov-Gibbs appearance model is
more robust and accurate than popular conventional algorithms. Due to reduced
variations between the co-aligned objects, it results in more accurate average
shape models that are useful, e.g. in image segmentation based on shape priors.
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(a) (b) (c)

Fig. 12. Original kidneys (a) aligned with our (b) and the MI-based (c) approach

(a) (b)

Fig. 13. Overlap between the object masks aligned with our (a; 90.2%) and the MI-
based (b; 62.6%) approach
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Abstract. In this paper a fully automatic method is presented for extracting 
blood vessel structures in poor quality coronary angiograms. The method ex-
tracts blood vessels by exploiting the spatial coherence in the image. Accurate 
sampling of a blood vessel requires a background elimination technique. A cir-
cular sampling technique is employed to exploit the coherence. This circular 
sampling technique is also applied to determine the distribution of intersection 
lengths between the circles and blood vessels at various threshold depths. After 
this sampling process, disconnected parts to the centered object are eliminated, 
and then the distribution of the intersection length is examined to make the  
decision about whether the point is on the blood vessel. To produce the final 
segmented image, mis-segmented noisy parts and discontinuous parts are elimi-
nated by using angle couples and circular filtering techniques. The performance 
of the method is examined on various poor quality X-ray angiogram images. 

1   Introduction 

To exploit blood vessels of human body, several medical imaging techniques such as 
X-ray, Computed Tomography (CT), and Magnetic Resonance (MR) are used. Ex-
traction of blood vessels in a medical image with lack of contrast pose, drift in image 
intensity and noisy signal is a significant challenge in medical imaging. Automated 
systems and high processing throughput are needed in computationally intensive tasks 
including visualization of coronary blood flow and three-dimensional reconstruction 
of vascular structure from biplane medical images [1], [2], [3], [4], [5]. Previously 
developed methods for blood vessel segmentation in medical images are limited by at 
least one of the following drawbacks. Firstly, these methods may be applicable for 
limited morphologies. Secondly, user involvement is needed to select the region of 
interest.  Thirdly, lack of adaptive capabilities may result in poor quality of segmenta-
tion under varying image condition. Lastly, blood vessel segmentation process  
requires a large computational effort [6], [7], [8], [9], [10]. These blood vessel seg-
mentation techniques may be classified under following titles; pattern recognition, 
model based, tracking and propagation, neural network, and artificial intelligent based 
techniques [11], [12], [13], [14], [15].  

In this paper, a method is presented to segment coronary artiograms in a medical 
image. This proposed method generates a complete segmentation of vessels in a medi-
cal image without user intervention. The method can handle complex structures such 
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as sharp curved, branched vessels, and vessels with varying length on a noisy and 
changing background. The method firstly fitters, and then extracts the background 
image of a medical image. Secondly, intersections between sampling circles and sam-
pled blood vessel are determined to calculate the intersection distribution. The domi-
nant intersections are checked to segment the vessel structure in the medical image. 
Finally, a circular filtering technique is used to remove small noisy fragments on the 
image. In Section 2, the proposed segmentation method is described. The perform-
ance of the method is examined on real images in various qualities. The results  
are given in Section 3 and finally the conclusions and future work are discussed in 
Section 4. 

2   Description of the Segmentation Method 

The proposed segmentation method exploits the spatial coherence existing in a medi-
cal image by considering neighboring pixels around the current one being processed. 
Therefore, the effect of local discontinuities and disorder are tolerated, and recogni-
tion of normal and distorted blood vessels in a noisy image is improved on fully  
automatic segmentation. The basic steps in automatic coronary segmentation are (1) 
filtering and extracting whole background image, (2) eliminating the pixel under the 
background threshold depth, applying the circular sampling to the pixels that are not 
eliminated in the previous step and applying proper Bezier spline to make more 
smoother samples along the scan-line in the circular sample, (3) eliminating the noisy 
and non-vessel parts by using angle couples at several levels over the threshold depth, 
(4) separating the disconnected parts from the sample, (5) determination of the blood 
vessel and circle intersections at several levels over the threshold depth, (6) calculat-
ing the intersection distributions and dominant intersection lengths, and then segment-
ing the image, and  (7) finally circular filtering of whole image.  

2.1   Eliminating the Background Effect 

The background in a medical image affects the segmentation of the blood vessel in 
the image negatively. If the background is not eliminated correctly, the circular sam-
pling technique will mis-sample the object. Therefore, a technique is needed to 
prevent this background effect. Here, the sampling circle gets larger so does the scan-
lines then, mis-sampling occurs as illustrated in Fig. 1.a and b. Elimination of this 
effect is very important to produce a correctly segmented image. The elimination 
process is shown in Fig. 1.c and d. The background effect elimination approach de-
scribed here uses an averaging technique that calculates the average intensity within 
the region of interests with a dimension of [(2N+1)x(2N+1)]. The centre point of this 

region is at current pixel point (m,n). The average X  is given by Equation (1). The 
standard deviation of pixels in the region is given by Equation (2). Finally, threshold 
depth is calculated by using equation (3).  
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Where T is the depth of background threshold and I(m,n) is the intensity value of the 
current pixel. The parameters υ  and α  in Equation (3) are experimentally deter-
mined as 0.25 and 0.75, respectively. 

Fig. 1. Sampling along the circular scan-line (a) without (c) with background effect elimination, 
and corresponding binary classifications (b) and (d) 

Accurate choice of the length of the averaging area is important. A large averaging 
area flattens the background whereas small averaging area does not cover enough 
background information. To eliminate most of the non-vessel-like structures, the 
background threshold depths are calculated at each pixel by Equation (3). This thresh-
old depth is not used to produce final segmented image. It is used to make a pre-
classification to eliminate the pixels, which are not a part of a blood vessel. 

2.2   Circular Sampling Technique and Eliminating Non-vessel and Nosily Areas 

The circular sampling technique samples a structure around a sampling point by ex-
tending the sampling circles spatially. Thus, it enables the segmentation process to 
 

Scan Line 

Intensity 

Binary Classi-
fication 

Intensity 

Binary Classi-
fication 

(d) Scan Line 

Scan Line 

Scan Line 

Non-connected Parts 

(a) 

(b) 

(c) 



 Fully Automatic Segmentation of Coronary Vessel Structures in Poor Quality X-ray 77 

Fig. 2. (a) Circular sampling, (b) the intensity along a scan line of a circle, (c) distribution of 
intersection lengths of a circle and blood vessel, (d) circular sampling at a certain background 
threshold depth on a flat background and (e) removing the disconnected parts 

exploit the spatial coherence that exists in the vessel structures on an angiogram. 
Here, the points around the sampling point on the image are sampled at a certain 
threshold depth related to the background level by using the circular sampler in Fig. 2. 
After the circular sampling, some noisy structures can be mis-segmented because 
random distribution of intersections could be concentrated at some lengths. Here, the 
Bezier spline is used to filter the samples along each scan line as illustrated in the Fig. 
2.b. In order to reduce the number of the mis-segmentations, a technique illustrated in 
the figure, is employed. Here, these noisy structures are removed by counting the 
angle couples. The angle couples along the sampling circle’s scan-line are calculated 
at the current pixel by accounting the several neighboring pixel intensities in the scan-
line. Slope of each line producing the angle couples must be over a threshold degree 
(for example 450). These angle couples are calculated on each circular scan lines for 
each pixel after the agiogram is sampled, as illustrated in Fig. 2.a. A typical circular 
scan line with the angle couples is illustrated in Fig. 2.b. The number of angle couples 
is used to eliminate the noisy pixels. A pixel may be considered as non-vessel when 
the number of the angle couples for the current pixel is less than 4. If the number of 
the angle couples is far more than expected (such as 50), the pixel is classified as 
noisy.  
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2.3   Separating the Disconnected Parts from the Sample of Interest  
and Calculating the Distribution of Intersection Lengths  

After a blood vessel on the image is sampled at various background depths, as illus-
trated in Fig. 2.d, the disconnected parts in the sampling scope are removed as shown 
in Fig. 2.e. Separating noisy or disconnected part from the sampled vessel slice is 
important because the parts may cause the generation of wrong segmentation results. 
The centre of each sampling point should be positioned on blood vessel so that 
enlarging sampling circles from the centre are used to eliminate the parts that are not a 
part of a blood vessel. Firstly each sample point along the scan-lines of the circles is 
pre-classified by using a binary classifier. If a sampling point along a scan-line of a 
circle is pre-classified as a part of a vessel that has no connection to the centre, the 
sample should be signed as background. This enables us to determine the circle 
 and blood vessel intersection length distribution correctly. Therefore, only the con-
sidered blood vessel is accounted and other misclassified parts in the focused area are 
eliminated.  

After the separation of the disconnected parts the circle blood vessel intersection 
lengths are accumulated according to the lengths. When a pixel is tested to determine 
whether it is on a blood vessel or not, it is expected that the accumulation distribution 
should be concentrated around a certain length. A sliding accumulation function is 
used to calculate this accumulation value. Width and weight parameters of the func-
tion vary according to the length of the blood vessels. If the blood vessel is narrow, 
the width of the function is narrow. When blood vessel’s length gets larger, the circle-
vessel intersection length distribution spreads as shown in Fig. 2.c. To produce 
 the distribution of intersection lengths, the intersection lengths are accumulated by 
Equation (4).   

),(}1)()({ nmIlDlD += . (4) 

were, )(lD  represents the circles and blood vessel intersection accumulation distribu-

tion array, and ),({} nmI  represents the current depth and pixel. This accumulation 

process is done at several background threshold values depending on the deviation of 
the intensity around the current pixel. 

This distribution function has also to be normalized according to the length of the 
intersection because more intersection occurs for narrow blood vessels than wide 
blood vessels. Finally, the measured length accumulation density value is over a cer-
tain threshold, the pixel is considered as blood vessel. 

2.4   Decision Criteria and Threshold  

The distribution of the intersection lengths, the peak values of the dominant intersec-
tions, and the relative values (to all intersections) of these dominant intersections are 
very important to determine a correct decision threshold value. Equation (5) is used to 
calculate the dominant or the maximum circle blood vessel intersections, 

where })({ ),( nmIk DM  represents the strength of the dominant intersection length 

along the intersection accumulation array, )(a  is the weighting array used to calcu-
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late the dominant intersections. Equation (6) is used to make decision about whether 
the current pixel is on a blood vessel or not. Then, the equation is used to segment the 

image and ),( nmIS  represents the segmentation result. If the density is less than  

the bottom threshold Tb, the pixel is considered as background. If the density is above 
the upper threshold Tu, the pixel signed as artery. If the density is in between these 
two thresholds, then second decision rule is applied for the correct segmentation. We 
experimentally found that choosing Tb and Tu as 8.5 and 12, respectfully, yields satis-
factory results. 
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The second decision rule checks the normalized second and third peak intersection 
in the distribution to make a more precise decision. If these peak intersections (rela-
tive to their intersection length) on the same branch of the vessel from the current 
centre are not evident and if the density is larger than a threshold value, the pixel 
signed as artery.  

2.4   Circular Filtering  

Generally, the vessels in a medical image are continuous and long structures. On the 
other hand, sometimes background and noisy structures could be detected as vessel 
structures even though they are more often discontinuous and short vessel like struc-
tures rather than long and continuous vessel structures. These mis-segmented parts are 
removed from the final image by using the circular filtering technique. Here, all pixels 
signed as blood at the previous stage are taken for further examination. The center of 
the circle is positioned at the current pixel to be examined, and then, the radius of the 
circle is increased to test whether the segmented structure is a small discontinuous 
part or not. If there was no pixel signed as a vessel along the enlarging circles’ scan 
line, the pixel is considered as a non-blood vessel and set to background.  

2.5   Fast Segmentation 

Full resolution segmentation produces a better quality segmented images but it is 
more expensive than the half, quarter or fast segmentation. To accelerate the segmen-
tation process, fewer pixels than full resolution calculation can be visited during the 
segmentation of images. Three approaches can be applied to speed-up the segmenta-
tion process. The first way (half segmentation) of doing this is that the image can be 
processed at every other pixel (or more) on vertical and horizontal lines. The second 
approach (quarter segmentation) processes every fourth pixel along the horizontal and 
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vertical scan lines. Then, neighboring pixels are signed by using a simple decision 
rule such as background threshold depth decision rule. Although this approach is quite 
fast, it produces poor quality segmentation results, especially for the thin blood ves-
sels. The third way (fast segmentation) of speeding-up the segmentation process is to 
apply the whole decision processes to the neighboring pixels of a pixel segmented as 
blood vessel by using half segmentation approach.  

3   Results 

The performance of the method is tested on several real images with several difficul-
ties. In the first experiment, the accuracy of the method on poor quality contrast  
angiogram image was evaluated. The Fig. 3.a show a low contrast image and  

 

 

Fig. 3. (a) A poor quality angiogram and its segmented image, and (b) an angiogram image 
with many branches and its segmented image 

 

Fig. 4. (a) Noise added complex angiogram images and their segmented images and (b) Two 
other noise added complex angiogram images and their segmented images 
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corresponding segmented image, respectively. The performance of this method at the 
side of the blood vessel is slightly low but whole blood vessel is successfully ex-
tracted and tracked.  

In the second experiment, the ability of the method was tested to extract branching 
arteries in a complex angiogram. Fig. 3.b shows an artery with many branches on 
varying background. The corresponding segmented images are also shown in Fig. 3.b. 
As seen from the result, the method successfully follows the branched arteries. The 
aim of the final experiment is to test accuracy of the method for several noise levels. 
For this purpose, two different images were selected. Fig. 4.a and Fig. 4.b (first and 
third images on the first and second lines) show noise added real images. Here, se-
lected noise levels are 5, 20, 5, and 30 grey levels, respectively. Fig. 4.a and Fig. 4.b 
(second and fourth images on the first and second lines) show the corresponding seg-
mented images. The method results in slightly noisy vessel edges but the whole blood 
vessel is successfully extracted and tracked. The results indicate that the proposed 
method yields accurate results even in complex and too noisy images. 

4   Conclusion and Discussion 

In this work a blood vessel segmentation technique is applied to extract the structure 
of the blood vessels in two-dimensional medical images. The technique exploits the 
spatial coherency that exists in two-dimensional medical image and works on each 
pixel on the image for extracting the structure of blood vessel. This fully automatic 
technique is robust to noise, low contrast and varying background, and able to extract 
vascular structures without human intervention. To eliminate small noisy parts and 
fragments at the final image, a circular filtering technique is used and quality of seg-
mentation is improved. An elliptical filter may be considered as a future work to get 
further improvement.  

When these segmentation results are compared to the results of the other methods 
such as the model based approach, this proposed method is quite successful in ex-
ploiting the whole vessel structure in a medical image except the branching areas and 
some long vessel like structures. Thus, the proposed method may not be very success-
ful around the branching vessel area where the intersection length distribution gets 
more complicated. On the other hand, long vessel like structure in medical image may 
easily be excluded in other user intervened methods but the proposed method may not 
be that successful.   

The segmentation method was run on P4-3.2 GHz PC. The segmentation durations 
for the poor quality image (300x220 pixels) is given in Fig. 3.a are about 73.2, 18.9, 
10.1, and 34.5 seconds for full, half, quarter, fast resolution segmentation respec-
tively. Typical durations for an image with dimension of 600x700 pixels (Fig. 3.b)  is 
about 169.6, 43.4, 22.1 and 78.7 seconds for full, half, quarter and fast resolution 
segmentation, respectively. The durations were computed for noise added real images.  
The segmentation durations of noisy images (550x330 pixels) shown in Fig. 4.b 
are162.0 and 51.6 seconds, respectively, whereas those of the corresponding original 
images are 148.3 and 45.3 seconds. 
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Abstract. This paper considers the feature space of DT-MRI as a differ-
ential manifold with an affine-invariant metric. We generalise Di Zenzo’s
structure tensor to tensor-valued images for edge detection. To improve
the quality of the edges, we develop a generalised Perona-Malik method
for smoothing tensor images. We demonstrate our algorithm on both
synthetic and real DT-MRI data.

1 Introduction

Diffusion tensor magnetic resonance imaging (DT-MRI) [1] endows each voxel
a 3 × 3 symmetric positive-definite matrix, which measures the anisotropic be-
haviour of water diffusion in the white matter of the brain. The feature space
of DT-MRI data is no longer a linear space, but a curved convex half-cone in
Rn2

. Thus edge or interface [2] detection, which is important for segmentation
and registration, is more complicated than in scalar-valued or vector-valued im-
ages. In an attempt to overcome these difficulties Feddern et al [3] generalise
Di Zenzo’s [4] concept of structure tensors to tensor-valued images for level-
set motions. Using the same structure tensor, O’Donnell, et al [2] introduced
a more sophisticated gradient estimation method for DT-MRI edge detection.
The structure tensor used simply considers diffusion tensors as vectors in Rn2

.
However, it neglects the constraints between components induced by symmetry
and positive-definiteness of the tensor.

In this paper we consider the space of diffusion tensors as a differential man-
ifold with an affine invariant metric. In this way we generalise the Di Zenzo’s
structure tensor to tensor-valued images. In order to reduce the influence of noise
and obtain a high quality edge detector, we show how to extend the Perona and
Malik [5] anisotropic diffusion method to tensor-valued images. To do this we
make use of the exponential map of the tensor data and use geodesic march-
ing. The idea of using a manifold of diffusion tensors, has been recently used
to analyse the principle geodesic modes [6] of tensor data and the segmenta-
tion of DT-MRI [7]. Pennec et al [8] has developed a framework for the analysis
of statistical data residing on manifolds, and has generalised the operations of
interpolation, isotropic and anisotropic regularisation for DT-MRI.
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2 Space of Diffusion Tensors

Let Σ(r) be the set of r×r real matrices and GL(r) be its subset of non-singular
matrices which is a Lie group. Recall that in Σ(r) the Euclidean inner product,
which is known as the Frobenius inner product, is defined as 〈A, B〉F = tr(AT B),
where tr(·) denotes the trace and superscript T denotes the transpose.

For a matrix A whose eigen-decomposition is A = UDUT , the exponential of
A is given by convergent series

exp A =
∞∑

k=0

1
k!

Ak = Uexp(D)UT , (1)

and the inverse logarithm of A is given by

log A = −
∞∑

k=1

(I − A)k

k
= U log(D)UT , (2)

where I is the identity matrix.
Let S(r) be the space of r × r symmetric matrices and S+(r) be the space of

symmetric positive-definite matrices. Thus, the feature space M of DT-MRI is
identified with S+(3). Through the identity mapping

ψ : P ∈ S+(r) → (σ11, ..., σij), i ≤ j, i, j = 1, ..., r, (3)

S+(r) is isomorphic with an open subset U of the Rm where m = 1
2r(r+1). Thus

we could consider S+(r) as a m-dimensional differential manifold with (U, ψ) as
the coordinate system. At each point P ∈ S+(r) the tangent space TP S+(r) is
equal to S(r). So a basis of TP S+(r) can be defined as

∂

∂σij
↔ Eij ∈ S(r), i ≤ j, i, j = 1, ..., r, (4)

and

Eij =

⎧⎨⎩
1ii if i = j

1ij + 1ji if i �= j,
(5)

where 1ij means the r × r matrix with a 1 at element (i, j) and 0 elsewhere.
We can turn S+(r) into a Riemannian manifold by introducing a Riemannian

metric g at P

g(
∂

∂σij
,

∂

∂σkl
) = g(Eij , Ekl) = tr(P−1EijP

−1Ekl). (6)

This is the same as the positive-definite inner product used by [6,9,8] , i.e.,
〈A, B〉P = tr(P−1AP−1B), A, B ∈ TP S+(r), which is invariant under group
actions of GL(r).



Smoothing Tensor-Valued Images Using Anisotropic Geodesic Diffusion 85

Thus, for a smooth curve C : [a, b] → S+(r) in S+(r), the length of C(t) can
be computed via the invariant metric

�(C) =
∫ b

a

‖C′(t)‖C(t) =
∫ b

a

√
tr(C(t)−1C′(t))2, (7)

which is also invariant under GL(r), i.e., C(t) �→ GC(t)GT , G ∈ GL(r). The
distance between two points A, B ∈ S+(r) is the infinum of lengths of curves
connecting them, i.e.,

d(x, y) := argmin
C

{�(C) | C(a) = A, C(b) = B} . (8)

The curve satisfying this infinum condition is a geodesic. In S+(r) the geodesic
with initial point at I and tangent vector W ∈ TIS

+(r) given by exp(tW ).
Using invariance under group action GL(r), an arbitrary geodesic Γ (t) such
that Γ (0) = P and Γ ′(0) = W is given by

Γ(P,W )(t) = P
1
2 exp(tP− 1

2 WP− 1
2 )P

1
2 . (9)

Thus, the geodesic distance between two points A and B in S+(r) is

d(A, B) =
∥∥log(A−1B)

∥∥
F

=

√√√√ n∑
i=1

(logλi)2, (10)

where λi are the eigenvalues of A−1B.
We can relate an open subset of the tangent space TP S+(r) to a local neigh-

bourhood of P in S+(r) using the exponential map Exp : Ω ⊂ TP S+(r) →
S+(r), which is defined as ExpP (W ) = γ(P,W )(1). Geometrically, ExpP (W ) is a
point of S+(r) obtained by marking out a length equal to |W | commencing from
P , along a geodesic which passes through P with velocity equal to W

|W | . From
Equation 9, it follows that

expP (W ) = P
1
2 exp(P− 1

2 WP− 1
2 )P

1
2 . (11)

Since expP is a local diffeomorphism, it has an inverse map, the so-called loga-
rithmic map LogP : S+(r) → Bε(0) ⊂ TP S+(r) where LogP (γ(P,W )(t)) = tW .
Thus, for a point A near P it also follows

logP (A) = P
1
2 log(P− 1

2 AP− 1
2 )P

1
2 . (12)

3 Generalised Structure Tensor

For tensor-valued images, the image features live on a m-dimensional manifold
M = S+(r), m = 1

2r(r + 1) (r=3 for DT-MRI), which we call the feature
space or feature manifold. An image is a map from a domain Ω to M , i.e.,
f : Ω ∈ Rn → M , where n = 2 for planar images and n = 3 for volume images.
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Drawing on ideas from Di Zenzo’s pioneering work [4], we can generalise the
structure tensor to tensor-valued images. At each point x = (x1, ..., xn) ∈ Ω
we wish to find the direction with maximal variations in the image. For two
points x = (x1, ..., xn) and x′ = (x′

1, ..., x
′
n), the difference of vector image values

is the f(x′) − f(x). As the distance between the two points ‖x′ − x‖ becomes
infinitesimal, the local variation df of the image values is given by

df =
n∑

i=1

∂f

∂xi
dxi. (13)

Then the square vector norm is

df2 =
n∑

i=1

n∑
j=1

(
∂f

∂xi
· ∂f

∂xj
)dxidxj , (14)

where ∂f
∂xi

is the directional derivative of f along xi. If we define h as hij :=
∂f
∂xi

· ∂f
∂xj

, i, j = 1, ..., n, we have the following quadratic form

df2 = dxT hdx, where dx = (dx1, ..., dxn)T . (15)

When m ≥ n, we can consider an image f as a n-dimensional manifold H
embedded in M , i.e., Φ : H → M . Then ∂f

∂xi
, i = 1, ..., n is a basis of the

tangent space TxH at x. Thus, the quadratic form in Equation 15 is the first
fundamental form of the manifold H [10,4]. It also follows that h is the metric
tensor of H , which is symmetric and semi-positive definite. The quantity h is
sometimes called the structure tensor in image processing. We note that a similar
idea of considering an image as a surface embedded in a space-feature space has
been used in [11] for scalar and color image smoothing.

For tensor-valued images, since the feature space is not Euclidean Rm but a
curved manifold M with Riemannian metric g, we can not calculate the metric
h of H directly. Since we have already investigated the space of M in Section 2
and introduced the metric g of M , we can overcome this problem by inducing
the metric tensor h of H from the embedding Φ : H → M . Let x1, ..., xn be the
local coordinates of H , than the embedding map is

(x1, ..., xn) → {Φ1 = σ11(x1, ..., xn), ..., Φk =
σij(x1, ..., xn), ..., Φm = σrr(x1, ..., xn)} ,

(16)

where i ≤ j. Since the metric tensor h measures the element length of arc dsH

in H as

ds2
H =

n∑
k=1

n∑
l=1

hkldxkdxl. (17)

Similarly, for the metric tensor g on the manifold M we have

ds2
M =

n∑
i=1

n∑
j=1

gijdΦidΦj . (18)
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The embedding Φ is isometric, which means that the element length appearing
in Equation 17 and 18 are equal. Using the rule of change of coordinates dΦi =
∂Φi

∂xk
dxk, the induced Riemannian metric tensor h on H is

hkl =
n∑

i=1

n∑
j=1

gij
∂Φi

∂xk

∂Φj

∂xl
. (19)

The metric tensor (or structure tensor) h of H characterises the local geom-
etry of images. The maximum (or minimum) change of f is in the direction v
= (dx1,...,dx2), ‖v‖ = 1 that maximizes or minimizes the quadratic form df2

in Equation 14. The maximum λ+ and minimum λ− eigenvalues of the struc-
ture tensor h give the maximum and mininum rate of changs of f at a given
point. Their corresponding eigenvectors θ+, θ− are the directions of maximum
and minimum changes.

For planar images where n = 2, λ±, θ± are given by

λ± = h11+h22±
√

(h11−h22)2+4h2
12

2

θ± = (2h12, h22 − h11 ±√(h11 − h22)2 + 4h2
12)

T .

(20)

When the image is scalar-valued, θ+ = ∇I
‖∇I‖ , θ− = ∇IT

‖∇I‖ , λ+ = ‖∇I‖2,
λ− = 0. Thus, the gradient is always perpendicular to the edges for scalar
images because λ− = 0. However, for multi-valued images, such as color images
and tensor-valued images, we also need to consider the minimum rate of change
λ−. It is the values of λ+ together with λ− that discriminate different local
geometries. If λ+ ≈ λ− ≈ 0, the image changes at an equal rate in all directions,
so the image surface is almost flat at this point. Thus there are no edges or
corners here. If λ+ ≈ λ− >> 0, there is a saddle point of the image surface,
and the corresponding point is a corner. If λ+ >> λ−, there is step and the
corresponding point is an edge. Let N be the gradient norm used to detect
edges and corners in images. Three different combinations exist in the literature
[12], i.e., N1 = λ+ [10], N2 =

√
λ+ − λ− [13], and N3 =

√
λ+ + λ− =

√
tr(h)

[14,15,16]. The combination N1 neglects λ−, and thus is the case in gray-scale
images. The combination N2 can not detect corners where λ+ ≈ λ− >> 0. The
combination N3 can be used to detect both edges and corners. For volume images
where n = 3, we could use either N1 or N3 for edge detection.

4 Anisotropic Diffusion

In order to obtain high quality edges, it is necessary to smooth noise before
performing edge detection. In [5], Perona and Malik reported an edge preserving
smoothing method using anisotropic diffusion. They use anisotropic diffusion
equation to evolve gray-scale images f(x, y) : Ω ⊂ R2 → R

∂f

∂t
= div(ρ(‖∇f‖)∇f), (21)
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where ρ = e−
‖∇f‖2

k or ρ = 1
1+ ‖∇f‖2

k

. Their idea is to halt the heat-flow process

at object boundaries. To do this they control the diffusivity using the magnitude
of the image gradient. When the gradient is large, which indicates the existence
of a likely edge, the value of diffusivity is small. When the gradient is small, on
the other hand, the value of diffusivity is large. This method has been improved
by using more sophisticated diffusion flows [17]. Here, we generalise the Perona-
Malik method to tensor-valued images.

The Perona-Malik method discretises Equation 21 on a square lattice and uses
the numerical scheme

f t+1
i,j = f t

i,j + λ [ ρx+(fi−1,j − fi,j) + ρx−(fi+1,j − fi,j)
+ρy+(fi,j−1 − fi,j) + ρy−(fi,j+1 − fi,j) ]ti,j .

(22)

(a1) (a2)

(b1) (b2)

(c1) (c2)

Fig. 1. (a1) and (a2): Synthetic tensor fields. (b1) and (b2): Corresponding noisy ten-
sor fields. (c1) and (c2): Filtered results using generalised Perona-Malik anisotropic
diffusion with λ = 0.25, k = 1, 5 iterations.
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For tensor-valued images, since the feature space M is curved, we should use the
intrinsic subtraction ⊕ and addition � operators on M [8] for the purposes of
numerical implementation. That is, we let the image values f(x, y) at the location
(x, y) diffuse by marching along the geodesics emanating from this location. For
two points A, B on M , we define A ⊕ B = ExpA(B) and A � B = LogA(B). For
tensor-valued images, we have the following numerical scheme

f t+1
i,j = Expft

i,j
{ λ [ ρx+Logfi,j

(fi−1,j)
+ρx−Logfi,j

(fi+1,j) + ρy+Logfi,j
(fi,j−1)

+ρy−Logfi,j
(fi,j+1) ]ti,j } ,

(23)

where ρx+ = exp(−
∥∥∥Logfi,j

(fi−1,j)
∥∥∥2

/k) and similar definition for others.

5 Experiments

We have applied our Riemannian edge detector and the generalised Perona-Malik
anisotropic diffusion to synthetic and real-world tensor-valued images.

a) A slice of DT-MRI b) Filtered result
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c) Riemannian structure tensor d) Euclidean structure tensor

Fig. 2. Real DT-MRI example
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Fig. 1 shows the results of the generalised anisotropic diffusion on two syn-
thetic noisy tenor fields. We first generate two noise-free tensor fields with dif-
ferent complexity. Field (a1) is fairly simple, while (a2) contains crossing fibers.
We corrupt the tensor fields by adding the same quantity of independent and
identically distributed (IID) additive noise to eigenvectors and eigenvalues of the
tensors respectively. We then apply our algorithm to regularise the noisy tensor
fields (b1) and (b2), and the results are shown in (c1) and (c2). The resulted
fields show that the generalised anisotropic diffusion well preserves the interfaces
between regions and recovers the fine details of the structures, whilst smoothing
out the noise.

We have also tested our method on a real-world DT-MRI volume. Fig.2 shows
the results of a sample slice. Subfigure (a) is the tensor image visualised using
ellipsoids. (b) is the filtered result after applying the anisotropic diffusion. (c)
and (d) are the trace of our Riemannian structure tensor and the Euclidean
structure tensor [3,2] of the filtered slice respectively. The results shows that the
Riemannian structure tensor is more sensitive for edge detection and can detect
the fibres inside the image.

6 Conclusions

In this paper we have introduced the structure tensor and the anisotropic diffu-
sion to tensor-valued images. We consider images as surfaces embedded in the
space of tensors, which is a differential manifold with an affine-invariant met-
ric. The structure tensor is then the same as the metric tensor of the image
surface. Anisotropic diffusion is generalised for tensor-valued images using the
exponential map and geodesic marching. Experiments shows that the generalised
anisotropic diffusion is efficient to eliminate noise, and our Riemannian structure
tensor is more sensitive for edge detection than the Euclidean one.
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for Surface Integration
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Abstract. A combinatorial method is used to reconstruct a surface by
integrating a field of surface normals. An affinity function is defined over
pairs of adjacent locations. This function is based on the surface’s prin-
cipal curvature directions, which are intrinsic and can be estimated from
the surface normals. The values of this locally supported function are
propagated over the field of surface normals using a diffusion process.
The surface normals are then regularised, by computing the weighted
sum of the affinity evolved over time. Finally, the surface is reconstructed
by integrating along integration paths that maximise the total affinity.
Preliminary experimental results are shown for different degrees of evo-
lution under the presence of noise.

1 Introduction

Directional information about surfaces, in the form of surface normals or gradi-
ents, is involved in several computer vision problems such as Shape-from-Shading
and Photogrammetric Stereo, or, more recently, diffusion tensor magnetic res-
onance (DT-MRI). Integration of a field of surface normals can be exact if the
vector field is integrable, that is, if the measured curl is zero. Since this is not the
case for most applications, due to measurement errors, it is necessary to develop
methods to estimate the most likely surface from which the surface normals have
been obtained. Figure 1 illustrates surface integration over facial data.

Most surface integration methods use a variational approach [1,2,3,4], which
consist of defining a suitable functional

J(S) =
∫ ∫

E(S, ∇S,n)

where S is the surface to be estimated, and n is the surface normal information
provided. Frankot-Chellappa [1] project the gradient field on integrable Fourier
basis functions, and variations of this method use other families of integrable
basis functions [4].

Alternatively, considering a discrete field of surface normals as a labelled grid
graph, surface height estimates can be obtained by integrating along paths of the
graph. Local information can be used to construct space-filling integration paths,
for example, an affinity function can be defined for graph edges corresponding
to affinity between the vertexes’ surface normals.

D.-Y. Yeung et al. (Eds.): SSPR&SPR 2006, LNCS 4109, pp. 92–99, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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The path integration approach is optimal under the assumption that at least
there is one path joining every pair of surface locations, over which the height
increments can be estimated. Graph-spectral methods are used to find those
paths within the set of all possible paths.

Robles-Kelly [5] and Klette [6] describe path integration methods. In [5] a path
is constructed using a graph-spectral analysis over the affinity matrix, defined
using estimates of the sectional curvature. Several non-overlapping paths are
used to cover the entire graph.
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Fig. 1. An example of surface integration from directional data

The algorithm presented in this paper uses an intrinsic geometric property as
affinity. This affinity function is used for regularisation of the surface normals.
and for making a choice of integration paths. The affinity function is based on
the surface’s principal curvature directions, which can be estimated from the
surface normals and are representation invariant. First, the affinity is propa-
gated according to a diffusion process; second, the surface normals are modified
according to those local reliability estimates; and third, the surface is integrated,
from the modified surface normals. The paths overlap, thus avoiding the need
for segmentation.

The values of this locally supported function are propagated over the field
of surface normals following a diffusion procedure described in [7,8]. A discrete
Laplacian operator is used to construct the heat kernel, which can then be eval-
uated at different times.

The surface normals are then regularised, by computing the weighted sum
of the affinity evolved over time. Integration paths that span the entire surface
and minimise the total affinity are computed using a Minimum Spanning Tree
algorithm. The surface is reconstructed applying the trapezium rule piecewise
along each integration path. In this approach the surface S is modelled by a
spanning tree T , and the following cost function is minimised:

J(T ) =
∑

(i,j)∈T

1
Aij

where Aij is the affinity of edge (i, j).
We now proceed by describing a combinatorial method for surface integration

given a local affinity function. In the following sections, the geometric affinity
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function is motivated, and the affinity is propagated to non-neighbouring sur-
face locations. The field of surface normals is updated according to this extended
affinity, and the combinatorial surface integration method is applied to the mod-
ified surface normals.

2 Surface Integration

In this section a combinatorial method to integrate a surface from a field of
surface normals is described. This method only requires a definition of affinity
between ajacent locations, and assumes that, for every two locations, the path
that minimises the affinity function also minimises the integration error.

Given two adjacent locations i and j, and their surface normals ni and nj ,
it is possible to estimate the height difference by applying the trapezium rule.
An affinity function assigns a number between 0 and 1 to each pair of adjacent
surface normals i and j, estimating the reliability of integration along the edge
joining i and j. Therefore an affinity matrix is defined A = {aij}i,j∈V .

Consider the graph G = (E, V ) whose vertexes V are the surface normal
locations, and whose edges E are all the pairs of adjacent locations (typically
the 4-neighbours). Let W be the array whose entries are inverse of the entries
in A. In this way we have assigned weights to the edges of the graph.

A first requirement for a path integration method is that every two locations
are connected by a path, so that the height can be estimated for all locations.
A second requirement is that there is only one path between every two points,
so that surface height estimates are unique. Therefore the paths will form a
spanning tree T over G. A spanning tree that minimises the total weights given
by W , or, equivalently, maximises the total affinity, can be obtained by using a
Minimum Spanning Tree algorithm [9].

The surface can then be reconstructed by integration along the edges of T ,
applying the trapezium rule to the surface normals. This optimisation procedure
is independent of the affinity function, and the problem of obtaining adecuate
height estimates is reduced to defining an appropriate affinity function. Figure 2
illustrates the notion of integration tree.

For this path-based integration method, it requires that minimising the affin-
ity function is equivalent to finding a path over which integration is valid. Note

◦ ◦ ◦ ◦
◦ ◦ ◦ ◦
◦ ◦ ◦ ◦
◦ ◦ ◦ ◦
(a) Locations

• • • •
• • • •
• • • •
• • • •

(b) Space-filling
path

• • • •
• • • •
• • • •
• • • •

(c) Tree

• • • ◦
• • • ◦
• ◦ ◦ ◦
• ◦ ◦ ◦
(d) Path in tree

Fig. 2. Paths defined over the set of locations. Each location is labeled with a 3D
surface normal vector. The surface is integrated over a path using the trapezium rule.
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that this method does not require the field of surface normals to have zero curl,
which would imply that every path joining every two locations provides correct
height estimates.

The practical use of such a path-based integration method is limited by the
extent to which the affinity function can capture global structure of the graph,
and also by the quality of the surface normals. The field of surface normals
contains redundant information because the trapezium rule only uses one of
the two components of the gradient. It seems therefore reasonable to integrate
over a modified field of surface normals in which the redundant information has
been propagated along the graph G. The proposed way of doing this involves a
local geometric affinity function, and a diffusion process to take into account the
global structure of the graph G.

3 Geometric Affinity: Principal Curvature Directions

The affinity function needs to be defined for each pair of adjacent locations.
In order to assign greater affinity to lower risk of integration errors, it should
be monotonic with any distance defined over the surface normals as Euclidean
vectors. It is also desirable that the affinity function does not depend on the way
the surface normals have been sampled from the surface.

The field of surface normals is sampled from a surface, it is therefore possible
to estimate intrinsic properties of the surface from the surface normals. One
such intrinsic property is the principal curvature and its directions. A measure
of geometric affinity between two surface locations is given by how close the
direction linking them is to the minor principal curvature direction. (In regions
where the principal curvature directions are not defined, the affinity can be
considered the same in all directions). Figure 3 illustrates the principal curvature
directions for a simple surface.
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Fig. 3. Principal curvature directions estimated from a field of surface normals

To estimate the principal curvature directions from the surface normals, con-
sider S, the surface function. The Hessian matrix, which can be used to calculate
the principal curvature directions, is constructed using the second derivatives at
each point.
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The Hessian matrix at each location,

H =
(

∂xx ∂xy

∂yx ∂yy

)
S

can be obtained by estimating the second partial derivatives of S at each point
using finite differences over the first partial derivatives.

The first derivatives ∂xS and ∂yS are obtained from the normal vector
(nx, ny, nz) ⎛⎝nx

ny

nz

⎞⎠ = −nz

⎛⎝∂xS
∂yS
−1

⎞⎠
The partial derivatives ∂xS and ∂yS are defined whenever nz is nonzero. This is
the case, for example, when data is available in shape-from-shading.

The second derivatives can be approximated using a finite difference operator.
Let vi be the coordinates of location i, and e a unit 2D vector.

∂ef(vi) � Δef(vi) =
f(vi + e) − f(vi − e)

2

The eigensystem of H consists of the principal curvatures and their direc-
tions. For most surfaces the eigenvectors hmin and hmax of H are not linearly
dependent, and form a basis of the 2D space.

The edge joining two adjacent locations l1 and l2, corresponds to a direction
vector e, which can be represented in the eigensystem of H :

e = αhmin + βhmax

Therefore an geometric measure of affinity α to each pair of adjacent locations l1
and l2. Greater geometric affinity corresponds to directions closer to the minor
principal curvature direction.

We have obtained an affinity function that can be used to calculate an affinity
matrix A, which is symmetric with size |V | × |V |. Without loss of generality, we
can assume that A is normalised so that each row adds up to 1. This measure of
affinity is only defined locally, we now proceed to propagate affinity across the
field of surface normals.

4 Propagating Affinity Using the Heat Kernel

The affinity matrix A embodies local information, in the form of geometric affin-
ity between adjacent locations. The matrix A can be considered as a transition
probability between locations in the graph of locations. A path joining two lo-
cations i and j is a subset or E and therefore has an probability induced by A.

We would like to calculate the affinity between every two locations, not only
those which are neighbouring in the graph. To do so, let us consider a random
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walk over G whose transition probability is given by A, and calculate the prob-
ability of the random walk joining locations i and j in t steps. This corresponds
to a diffusion process in which the conductivity is given by A [7,8].

Let L̂ be the normalised Laplacian associated to A, L̂ = D− 1
2 LD

1
2 , where

L = D − A and D is the diagonal matrix such that Dii =
∑

j Aij . The matrix
L̂ can be seen as a discrete approximation of the continuous Laplacian operator
in the following diffusion equation [7]

∂tH = −L̂H (1)

The solution H(t) can be calculated by matrix exponentiation

H(t) = e−tL̂

Each entry (i, j) of the matrix H(t) can be interpreted as the probability of a
random walk joining locations i and j, after t steps, given the transition proba-
bility A. Note that the size of both A and H(t) is |V | × |V |.

The presence of a path in G of high affinity between two nodes i and j increases
the probability H(t)ij . The matrix H(t) can now be used to modify the surface
normals.

5 Updating the Surface Normals

While the field of surface normals contains redundant information, integration
along paths, which effectively are subsets of E, discards all surface normal infor-
mation not in the direction of the edges that form the path. In order to make use of
redundant information before the integration step, let us modify the surface nor-
mals using the transition probability H(t) obtained in the previous section. This is
a generalisation of a simple average of neighbouring surface normals, and is similar
to subjecting the surface normals to a process of anisotropic diffusion [10].

The updated normals corresponding to a random walk of length t, N(t) =
{n(t)i}i∈V , are defined as a weighted sum of the surface normals:

n(t)i =
∑

j

H(t)ijnj (2)

where the indexes i and j visit all locations.
As a result, the field of surface normals N(t) is the weighted sum over all

locations, with weights given by the probability of a random walk of length t
joining those two locations. The transition probability for the random walks
was given by the geometric affinity matrix A. We will use the modified surface
normals N(t) to perform path integration.

6 Experiments

Experiments have been performed with surface normal data corresponding to a
human face. A field of surface normals was the input, and the output was the
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(i) t = 0.4, σ = 0.4

Fig. 4. Surface reconstruction for varying levels of Gaussian noise σ (columns) and
time t (rows)

reconstructed surfaces. The performance was assessed with Gaussian noise added
to the field of surface normals, in order to simulate a source of measurement
noise. The experiment parameters are therefore the standard deviation of the
Gaussian noise, and the time parameter t used to evaluate the heat kernel.
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Fig. 5. Reconstruction error for t = 0.4, measured in RMS as a function of σ. The
minimum corresponds to the bottom-right reconstruction in Figure 4.
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The diffusion parameter t produced a reasonable smoothing of the field of
surface normals for values below 1. For example, using diffusion parameter t =
0.4, the reconstruction is not affected by noise of parameter σ < 0.5. Figure 4
illustrates the reconstruction from a field of size 32 × 32, for varying noise and
time. (A raised chin usually corresponds to a lower reconstruction error, even
when detail is not recovered). Figure 5 shows the RMS error between the ground
truth and the reconstructed surface, for this value of t.

7 Conclusion

We have presented a method for path-based surface integration whose only pa-
rameters are a local affinity function and a time parameter t. We have also pre-
sented an affinity function based on an intrinsic geometric property of the surface
being reconstructed, namely the principal curvature directions. The affinity is
propagated over the graph of surface locations using a diffusion process. The
result is used to re-weight the field of surface normals in order to make use of
its spatial redundancy.

A future direction for this work is to interpret the diffusion process in the
anisotropic diffusion framework presented by [4], and to state explicitly the rela-
tionship between the affinity function and the error model for the field of surface
normals in a probabilistic setting.
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Abstract. We address the problem of determining if a given image
region contains people or not, when environmental conditions such as
viewpoint, illumination and distance of people from the camera are
changing. We develop three generic approaches to discriminate between
visual classes: ridge-based structural models, ridge-normalized gradient
histograms, and linear auto-associative memories. We then compare the
performance of these approaches on the problem of people detection for
26 video sequences taken from the CAVIAR database.

1 Introduction

Many video-surveillance systems require the ability to determine if an image
region contains people. This problem can be considered as a specific case of
object classification in which there are only two object classes: person and non-
person. Object classification in general is difficult because it has to face different
kinds of imaging conditions. People detection is even harder due to the high
variation of human appearance, gait, as well as the small size of human region
which prevents face or hand recognition. Numerous efficient appearance-based
approaches exist for object recognition [8,2]. However, such techniques tend to
be computationally expensive. Video-surveillance systems must run at video-rate
and thus require a trade-off between precision and computing time.

To speed up the classification, simpler methods have been proposed. In [4],
the authors only use compactness measure computed on the region of interest to
classify car, animal or person. This measure is simple but sensitive to scale and
affine transformations. Moreover, this method highly depends on segmentation,
which remains a primitive problem. In [1] and [12], the contour is used to mod-
elize deformable shapes of a person. However, the person must be represented
by a closed contour. These methods strongly depend on contour detection or
segmentation techniques.

This paper presents three methods for determining the presence of people in
an imagette. Two methods use ridges as structural features to model people:
the structural method uses a set of main human components like legs, torso, and
the statistical method describes humans by modified SIFT based descriptor. The
third method uses global appearance information of the detected region to dis-
criminate between person and non-person. This method inherits strong points of

D.-Y. Yeung et al. (Eds.): SSPR&SPR 2006, LNCS 4109, pp. 100–108, 2006.
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appearance based vision: simplicity and independance from the detection tech-
nique. In the following, we expose each method and compare their performance.
Our objective is to show the advantages as well as drawbacks of appearance-
based object classification approaches and structural feature based approaches,
experimented in case of people. This comparative study motivates the use of a
multi-layer object classifier to improve the detection rate.

2 Local Feature Extraction in Scale-Space

Everyday objects typically exhibit significant features at several different scales.
To describe such structures of different sizes, images must be analysed in scale
space. The scale-space representation of an image is a continuous space L(x, y, σ)
obtained by convolution of the image I(x, y), with a Gaussian G(x, y; σ):
L(x, y, σ) = G(x, y; σ) ∗ I(x, y) where G(x, y; σ) = 1

2πσ2 e−(x2+y2)/2σ2
.

Natural interest points are local extrema in Laplacian scale space. Such points
correspond to the center of blob-like structures and are widely used as key-points
for scale invariant indexing and matching. Such a description provides a reliable
method for object detection and description. However, natural interest points
are well suited for compact objects, but tend to become unstable in the presence
of elongated objects.

We extend natural interest points to describe elongated objects with nat-
ural interest lines. In addition of providing a more reliable scale normalization,
natural interest lines also provide local orientation information and affine nor-
malization. As with natural interest points, the value of σ for the maximal scale
corresponds to the half-width of the object. At this scale, the amplitude of the
Laplacian exhibits a ridge. The mathematical definition of a ridge point on a
surface is as follows: given a scale space L(x, y, σ), a ridge point at scale σ is
a point at which the signal L(x, y, σ) has a local extremum in the direction of
the largest surface curvature. The ridge detection method used in this paper is
described in full detail in [9].

3 Human Recognition Based on Structural Model

To represent a person in a structural manner, some authors use silhouettes [1,4],
or skeletons [5] and study changes of the model (like head, hand, legs, ...) in the
time to analyse person movement. This representation strongly depends on the
segmentation algorithm which is a primitive problem in computer vision. Ridges
represent centerlines of an oblong structure. At an appropriate scale, it represents
a skeleton of the object. Ridges at several scales capture more information about
the object.

Figure 1 shows imagettes of a person extracted from a walking sequence of the
CAVIAR1 database. On these imagettes, we overlay ridges and blobs (extrema
of Laplacian in 3 dimensions) detected in the region of interest. It is interesting

1 http://homepages.inf.ed.ac.uk/rbf/CAVIAR/caviar.htm
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Fig. 1. Different configurations of a person represented by ridges (lines) and blobs
(circles) at scale σ = 4

√
2

to see that ridges not only represent torso, legs and other significant parts of a
person, but also changes in configuration of the person. We propose to model a
person by using ridges representing person parts, more precisely torso and legs.

3.1 Extracting Ridges in Region of Interest

Given a region of interest, we want to know at which scale ridges should be
detected. If the region perfectly fits the person, the scale to detect ridges corre-
sponding to torso is exactly equal to the half of the region width and the scale
to detect ridge corresponding to legs is quarter width. This is straightforward
for a rectangle. If the region is defined by a contour, the width and the height
of a region are deduced from its second moments.
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Fig. 2. (a) Ridges detected at scale related to the width of region. (b-c) Seleted ridges
corresponding to torso and legs of person. (d) 5 configuration possibilities for each
person.

Experimentation on ridge detection shows that with the use of the Laplacian,
some ridges representing the same structures of objects are repeated at several
scales. This also happens with persons: ridges detected at torso scale in the leg
part represent well the legs (as we see in figure 1). Therefore, we propose to
begin with ridges detected only at torso scale. In this manner, we only work at
the scale corresponding to the size of the person.

3.2 Determining Major Ridges Corresponding to Torsos and Legs

Knowing the orientation of a person, we cut the region into two parts by the
smaller main axis (figure 2b) and take for torso part the longest ridge, the second
longest for leg part (figure 2c). The detected ridges have to be significant in
energy and length. Only ridges having length and average Laplacian bigger than
a threshold are considered. There may be no ridge satisfying the above condition
in torso part or there is only zero/one ridge in leg part. This is the case of a
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person wearing a T-shirt or a trouser of same colour as the background or a
partially hidden person. It is not important because it makes the model robust
to partial occlusion. Using ridges, a person can be in one of the configurations
presented in figure 2d.

3.3 Constructing Descriptors

We represent a configuration of a person by a vector of 10 components deter-
mined from 3 ridges detected previously: (N, θ1, len1, dis1, θ2, len2, dis2, θ3,
len3, dis3). The first component is the number n of ridges we take from torso
part and leg part of the region of interest. n can be 0, 1, 2, 3. As n = 1 (torso
ridge or leg ridge) and n = 2 (torso ridge + leg ridge or 2 leg ridges) do not rep-
resent an unique configuration. We assign a weight to each ridge in the model in
function of its importance (for example 1 for leg ridge and 3 for torso ridge). n is
now converted into a sum of weighted ridge number. This means {0, 1, 2, 3, 4, 5}.

The nine following components are 3 triplets (angle between ridge and main
axis, ridge length normalized to scale, distance from ridge center to region center
normalized to scale). Among the ten components in the descriptor, the first
component is the most significant because it represents the configuration of a
person. For this reason, we give a strong weight to the first component (1000
in our experimentation), and normalize all other components by their maximal
values. These values are learnt from the groundtruth: θmax = 2π, lenmax =
35, dismax = 17.

4 Ridge Normalized Gradient Histograms

Based on observation that human silhouette can be represented by a long ridge,
we propose an another approach that describes human region by a SIFT based
descriptor. More precisely, we extract the main ridge to obtain a local reference
invariant to orientation and scale. A gradient histogram is computed in this
reference system.

4.1 Computing Ridge Properties

The first step consists in detecting and separating each ridge structure in scale
space. We begin to compute ridges at each scale level as seen in the previous
section. In order to obtain video-rate performance, a pyramidal algorithm de-
scribed in [2] is used to compute the Laplacian scale space. Ridge structures are
obtained by connected component analysis in this scale space.

We then obtain a set of ridge points Xn=1..N = (xnynsn)T where xn and yn

represent the position in the image and sn represent the scale. In order to obtain
a local reference of the ridge, we compute the first and second moments of these
feature points. For more robustness, each point is weighted by its Laplacian
value. As we work in a down-sampled pyramid, we weight each point by 2kn

where kn represents the stage in the pyramid. The result of ridge description is
a set of ridge lines, characterized by the position of the center of gravity of the
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ridge points, as well as the orientation of the ridge (x, y, σ, θ). In the following
section, we will see how to use such a representation to describe and to recognize
objects.

4.2 Statistical Description of Ridges

We experiment a statistical description of ridges inspired by the SIFT descriptor
[6] and Gaussian Receptive Field Histograms [7]. The descriptor is based on an
array of gradient histograms. Our original contribution is to normalize each gra-
dient measure using the intrinsic scale and the orientation of the most contrasted
ridge in the imagette (cf. fig.3). After building a local reference from ridge pa-
rameters, the gradient (Lx, Ly) is computed for each pixel in the imagette at a
scale σc = ασi where σi is the average scale of the ridge and α is a constant. A
typical value of α is 0.5. This scale is found empirically and corresponds to the
boundary information of the blob described by the ridge.

histograms of gradient
(e) Descriptor :

magnitutes and orientations

and principal components

R’

calculation

(d) Connexity analysis

(a) Imagette (c) Image gradient

(b) Ridge detection and
connexity analysis

Fig. 3. Calculation of the ridge descriptor : ridge extraction and connectivity analysis
are computed to obtain a set of ridge objects (b). The main ridge is selected and
the first and second order moments are computed to obtain a local reference (d).
The descriptors are then created by computing the image gradient (c), rotated by
the principal direction of the ridge. The gradient orientation and magnitude are then
accumulated into histograms (e).

Gradient magnitude is normalized by the average amplitude of the Laplacian
of the ridge in order to correct for variations in illumination. The gradient ori-
entation is rotated relatively to the orientation of R′. This normalized gradient
field of the imagette is divided into four regions, and the statistics of the gradient
magnitudes and orientations for each region is collected in a histogram (fig.3(e)).
A Gaussian weighting function γ is used to assign more importance to centered
points. The γ function is defined by the ridge properties :

γ(x, y) = e
− x2

R′
2σ2

1
− y2

R′
2σ2

2

Where (xR′ , yR′) are the position of the considering point in the reference R′ and
λ1 is the greatest eigenvalue of the ridge covariance matrix. When the histogram
is computed, a four-point linear interpolation is used to distribute the value of
the gradient in adjacent cells, in order to minimize boundary effects. Moreover,
to make comparisons, the gradient histogram is normalized into each region.
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5 Recognizing People Using Linear Auto-associative
Memories

As a global approach, auto-associative memories use the entire appearance of
the region of interest. The main advantage of this kind of approach is that no
landmarks or model has to be computed, only the objects has to be detected.
Global approaches can also handle very low resolutions. A popular method for
template matching is PCA [10], but this tends to be sensitive to alignment, and
the number of dimensions has to be specified. Neural nets also have been used.
However, the number of cells in hidden layers is chosen arbitrarily.

We adapt auto-associative memory neural networks by using the Widrow-Hoff
learning rule [11]. As in ridge extraction, the tracker detects bounding boxes and
main orientation for each object in the scene. We use these informations to create
grey value imagettes normalized in size and orientation as in [3]. This normaliza-
tion step provides robustness to size, chrominance, alignment and orientation.

5.1 Linear Auto-associative Memories

Linear auto-associative memories are a special case of one-layer linear neural
networks where input patterns are associated with each other. Each cell corre-
sponds to an input pattern [11]. Auto-associative memories aim to associate each
image with its respective class, and to recognize learned images when input im-
ages are degraded or partially occluded. We describe a grey-level input image by
a normalized vector x = x′

‖x′‖ . m images of n pixels of the same class are stored
into a n x m matrix X =

(
x1, . . . , xm

)
. The linear auto-associative memory of

the class k is represented by the connexion matrix Wk. The reconstructed image
yk is obtained by computing the product between the source image x and the
connexion weighted matrix Wk : yk = Wk ·x. We measure the similarity between
the source image and a class k of images by taking the cosine between x and yk

: cos(x, y) = x · yT . A score of 1 corresponds to a perfect match. The connexion
matrix W 0

k is initialized with the standard Hebbian learning rule W 0
k = Xk ·XT

k .
Reconstructed images with Hebbian learning are equal to the first eigenface of
image class. To improve recognition abilities of the neural network, we learn Wk

with the Widrow-Hoff rule.

5.2 Widrow-Hoff Correction Rule

The Widrow-Hoff correction rule is a classical local supervised learning rule. It
aims to minimize the difference between desired and given responses for each ell
of the memory. At each presentation of an image, each cell modifies its weights
from the others. Images X of the same class are presented iteratively with an
adaptation step η until all are classified correctly. This corresponds to a PCA
with equalized eigenvalues. As a result, the connexion matrix Wk becomes spher-
ically normalized. The Widrow-Hoff learning rule can be described by:

W t+1
k = W t

k + η · (x − W t
k · x) · xT
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In-class images are little degraded by multiplying with the connexion matrix.
In opposite, extra-class images are strongly degraded. Imagettes of the same
class are used for training an auto-associative memory using the Widrow-Hoff
correction rule. Prototypes of image classes can be recovered by exploring the
memory. In opposite, prototypes can not be recovered with non-linear memories.
Auto-associative classification of different class is obtained by comparing input
and reconstructed images. The class which obtains the highest score is selected.
We train two auto-associative memories for classes 0 and n ≥ 1 persons.

6 Comparative Performance Evaluation

We evaluate the three techniques in the context of video-surveillance by deter-
mining if an image region contains people or not. Our training database consists
of 12 video sequences which contain about 20000 people whose regions of interest
are labelled in CAVIAR database. The two ridge-based methods compute human
descriptors from imagettes in the training sequences and learn the descriptors
by using KMeans algorithm. 34 human descriptors have been learnt in the first
method and 30 in the second. The third method based on associative memories
needs to learn people examples as well as non-people examples. For this, we cre-
ated two sequences of the background and taken random imagettes from these
sequences. Two matrices have been learnt and they are considered as people
model and non-people model. For test, we use 14 sequences including 12 other
sequences in CAVIAR database and 2 background sequences. These sequences
contain 9452 people and 4990 non-people regions. Ridge-based methods measure
the similarity as the euclidian distance between two vectors of descriptors in the
first method and the χ2 distance in the second method. The third method com-
putes directly the cosine between the imagette with the recontructed imagettes.
The three similarity measures are normalized and thresholded to dertemine the
presence of people.

Table 1. Comparaison of recognition methods

People Others
Method Recall Precision Recall Precision

Ridge based Structual Model 0.80 0.90 0.80 0.70
Ridge based Normalized Histogram 0.90 0.93 0.80 0.73
Linear Auto-associatives Memories 0.99 0.96 0.70 0.90
Modified SIFT 0.77 0.90 0.75 0.51

Table 1 shows the perfomance of 4 human classification techniques: three
techniques presented in the previous sections and one technique using SIFT
descriptor computed at the most significative interest point detected in the im-
agette. This method uses the same technique for learning and testing than the
second method. We can observe that the technique based on associative memo-
ries performs best. The reason is that this method has learnt person examples
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as well as non-person examples as the two first methods based on ridge learnt
only person examples. If we do not train a non-people class, it gives the worst
result because this method used only one model to represent all variations in the
human classe. So it can not discriminate non-peolple from people. This method
is good for people identification and can help for split-merge detection.

The statistical descriptor computed on ridge region gives better results than
the structural descriptor. This is explained by the fact that the first method con-
siders also one ridge as human model. Consequently, all regions containing one
ridges are classified as people regions. This method requires more parameters
and human knowledge than ridge histograms, but can recover people configu-
ration. The second method gives good result in general case but presents some
drawbacks when human is partially occulted or affected by light or shadow. In
these cases, the detected ridge does not correspond to the global shape of the
human. Therefore, the descriptor is built on nearby region but not centered on
human region. Modified SIFT performs worst, because interest points are less
stable than ridges for representing elongated structure like human shape. Linear
auto-associative memories are disrupted when people walk through shadow ar-
eas, but can recognize configurations which do not exhibit ridges, such as people
crouching down.

7 Conclusion

We proposed 3 different approaches for entity recognition in video sequences.
Two approaches are based on local features: the ridge configuration model and
the ridge normalized gradient histograms. The third one, linear auto-associative
memories, is based on global appearance. Ridge normalized gradient histograms
are robust to illumination changes, whereas auto-associative memories are sensi-
tive to it. Ridge configuration models are robust to global illumination changes,
but are disrupted in case of local changes. Ridge normalized gradient histograms
also provide an estimation of the size and orientation of the object. As a global
approach, auto-associative memories do not need to compute a model for per-
sons and run at video-rate, but have to learn a 0 person class to be efficient.
Ridge-based approaches can be disrupted by neighboorhoods of pixels, whereas
auto-associoative memories are robust to partial changes in the imagette.

We believe all three approaches can be extended to other cognitive vision
problems. Ridge configuration models can be useful for gait and number of peo-
ple estimation. However, this method requires specific adaptation to other object
categories. Ridge normalized gradient histograms are well-suited to the discrim-
ination of other objects, provided that these objects exhibit a main ridge. We
can improve the recognition process by combining all three methods: Ridge-
based methods localize objects and detect their size and main orientation using
their main ridge. The image region can be normalized into a fixed size imagette
to be compared to appearance prototypes constructed by linear auto-associative
memories or ridge normalized gradient histograms. People configuration and gait
can be described by ridge structural model.
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Abstract. The ability to find the average of a set of contours has se-
veral applications in computer vision including prototype formation and
computational atlases. While contour averaging can be handled in an
informal manner, the formal formulation within the framework of gener-
alized median as an optimization problem is attractive. In this work we
will follow this line. A special class of contours is considered, which start
from the top, pass each image row exactly once, and end in the last row of
an image. Despite of the simplicity they frequently occur in many appli-
cations of image analysis. We propose a dynamic programming approach
to exactly compute the generalized median contour in this domain. Ex-
perimental results will be reported on two scenarios to demonstrate the
usefulness of the concept of generalized median contours. In the first
case we postulate a general approach to implicitly explore the parameter
space of a (segmentation) algorithm. It is shown that using the gener-
alized median contour, we are able to achieve contour detection results
comparable to those from explicitly training the parameters based on
known ground truth. As another application we apply the exact median
contour to verify the tightness of a lower bound for generalized median
problems in metric space.

1 Introduction

The ability to find the average of a set of contours has several applications in
computer vision including prototype formation and computational atlases. While
contour averaging can be handled in an informal manner as done in [1,11], the
formal formulation within the framework of generalized median as an optimiza-
tion problem is attractive. In this work we will follow this line.

Given a set of n patterns C1, C2, . . . , Cn in an arbitrary representation space
U , we assume a distance function d(p, q) to measure the dissimilarity between
any two patterns p, q ∈ U . Then, the generalized median C is defined by:

C = arg min
C∈U

n∑
i=1

d(C, Ci) (1)

This concept has been successfully applied to strings [7,9] and graphs [5] in
structured pattern recognition.

D.-Y. Yeung et al. (Eds.): SSPR&SPR 2006, LNCS 4109, pp. 109–117, 2006.
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If a contour is coded by a string, then the same procedure can be adapted to
averaging contours [7]. However, this general approach suffers from high compu-
tational complexity. It is proved in [4] that computing the generalized median
string is NP-hard. Sim and Park [12] proved that the problem is NP-hard for
finite alphabet and for a metric distance matrix. Another result comes from
computational biology. The optimal evolutionary tree problem there turns out
to be equivalent to the problem of computing generalized median strings if the
tree structure is a star (a tree with n + 1 nodes, n of them being leaves). In [13]
it is proved that in this particular case the optimal evolutionary tree problem is
NP-hard. The distance function used is problem dependent and does not even
satisfy the triangle inequality. All these theoretical results indicate the inher-
ent difficulty in finding generalized median strings, or equivalently the general-
ized median contours. Not surprisingly, researchers make use of domain-specific
knowledge to reduce the complexity [9] or resort to approximate approaches [7].

In this work we consider a special class of contours for which the generalized
median can be found by an efficient algorithm based on dynamic programming.
We first motivate our work by giving some background information about this
class of contours. Then, the algorithm for finding the exact solution is described
in Section 3. In Section 4 we describe two applications of generalized median
computation: exploring the parameter space of a contour detection algorithm
and tightness evaluation of a lower bound of generalized median problems in
metric space. Finally, some discussion conclude the paper.

2 Class of Contours

The class of contours considered in this work is defined as follows:

Definition 1. For a given M × N image a contour C = p1p2, . . . , pM is a
sequence of points drawn from the top to the bottom, where pi, i = 1, . . . , M ,
is a point in the i-th row. The points pi and pi+1, i = 1, . . . , M − 1, of two
successive rows are continuous.

These contours start from the top, pass each image row exactly once, and end
in the last row.

At the first glance the question may arise why such simple contours are of use
in practice. Some thoughts, however, reveal that there do exist several situations,
where we are directly or indirectly faced with this class of contours. In medical
imaging it is typical for the user to specify some region of interest (ROI) and
then to find some contours within the ROI. As an example, Figure 1 shows

Fig. 1. ROI in a CCA B-mode sonographic image (left) and detected layer of intima
and adventitia (right)
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(a) (b) (c) (d)

Fig. 2. Detection of closed contour: (a) input image; (b) removal of iris; (c) detection
of eye contour; (d) strabismus simulation

(a)

(b)

Fig. 3. Polar space for contour detection: (a) polar space; (b) optimal path.

a ROI in a CCA (Common Carotid Artery) B-mode sonographic image. The
task is to detect the layer of intima and adventitia for computing the intima-
media thickness which is an important index in modern medicine. Details of
this application and an algorithm for automatic layer detection can be found
in [2]. Essential to the current work is the fact that both the intimal layer and
the adventitial layer are examples of the contour class defined above (although
we have to rotate the image by 90 degrees). This application reflects a typical
situation in medical image analysis.

The same fundamental principle can be extended to deal with closed contours.
For this purpose we need a point p in the interior of the contour. Then, a polar
transformation with p being the central point brings the original image into
a matrix, in which a closed contour becomes a contour from top to bottom
afterwards. Note that this technique works well for all star-shaped contours
including convex contours as a special case. As an example, Figure 2 shows a
problem of eye contour detection taken from [8]. In the image after removal of iris,
the eye contour is detected as a closed contour based on the interior reflection
point. The polar space representation related to Figure 2(b) can be seen in
Figure 3(a) where the intensity is replaced by a measure of edge magnitude. In
this space we are faced with the same contour detection problem as in Figure 1.
The result is shown in Figure 3(b) and Figure 2(c) after projecting back into
the image space. The task in this application is then to simulate strabismus by
replacing the iris. The eye contour serves to restrict the region, within which
the newly positioned iris lies. For (almost) convex contours the selection of the
origin of polar space is not critical. In the general case of star-shaped contours,
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however, it must be chosen within the area, in which the complete contour can
be seen.

The two situations above and others appear in a variety of applications. They
indicate the broad applicability of the class of contours considered in this paper
and thus justify to investigate them in their own right.

The concept of generalized median in Eqn. (1) can be easily adapted to our
domain by specifying a distance function between two contours. Since each point
pi of a contour P = p1p2, . . . , pM has a constant y-coordinate i, we use pi to
represent its x-coordinate only in the following in order to simplify the notation.
Given this convention, the distance between two contours P and Q can be defined
by the k-th power of the Minkowski distance:

d(P, Q) =
M∑
i=1

(pi − qi)k (2)

In this case the representation space U contains all continuous contours from
top to bottom of an input M × N image.

3 Computation of Generalized Median Contours

Given n contours C1, C2, . . . , Cn, the task is to determine a contour C such
that the sum of distances between C and all input contours is minimized. It is
important to notice that we cannot solve this problem of generalized median
contours by computing the optimal value for each of the M rows independently,
which could be done, for instance, by enumerating all possibilities between the
leftmost and rightmost point in the row. Doing it this way, we encounter the
trouble of generating a discontinuous resultant contour.

Our proposed method is formulated as a problem of finding an optimal path
in a graph based on dynamic programming. We first generate a two-dimensional
M × N cost matrix of the same size as the image, in which every element cor-
responds to an image point. Each element is assigned a Local Goodness value,
which measures its suitability of being a candidate point on the generalized me-
dian contour we are looking for. According to the distance given in Eqn. (2) the
Local Goodness value is simply:

Local Goodness(i, j) =
n∑

l=1

(xli − j)k, 1 ≤ i ≤ M, 1 ≤ j ≤ N

where xli represents the x-coordinate of the l-th contour Cl in i-th row. Generally,
small Local Goodness values indicate better candidates. As a matter of fact, the
optimality of a candidate for C is measured by the sum of its Local Goodness
values over all image rows.

Dynamic programming is applied to search for an optimal path in a cumulative
cost matrix CC. The cumulative cost of a node (i, j) is computed as:

CC(i, j) = min
l=−1,0,1

{CC(i − 1, j + l)} + Local Goodness(i, j) (3)
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for 2 ≤ i ≤ M, 1 ≤ j ≤ N . This means that a contour point (i, j) has three
potential predecessors (i−1, j−1), (i−1, j), (i−1, j+1) in the previous row. In
addition, the choice of a transition from a point in i-th row to a predecessor in the
(i − 1)-th row is made based on the lowest cumulative cost of the predecessors.
The computation of CC starts by initializing the first row by:

CC(1, j) = Local Goodness(1, j), 1 ≤ j ≤ N

Then, the cumulative cost matrix CC is filled row by row from left to right by
using Eqn. (3).

The node in the last row of matrix CC with the lowest value gives us the
last point of the optimum path. To determine this path, a matrix of pointers
is created at the time of computing the matrix CC. The optimum path, which
corresponds to the generalized median contour, is determined by starting at the
last point and following the pointers back to the first row. Using this dynamic
programming technique, we are able to compute the generalized median contour
exactly.

The computational complexity of the algorithm amounts to O(MNn) while
O(MN) space is required. Note that the search space of dynamic programming
can be substantially reduced. For each row we only need to consider the range
bounded by the leftmost and rightmost point from all input contours in that
row. The size of this reduced search space depends on the variation of input
data. The less variation of the input data, the more the reduction effect. Most
likely, this reduction results in a computational complexity of O(Mn) only. The
proposed algorithm was implemented in Matlab on a Pentium IV 2.1 GHz PC.
As an example, the computation time for 250 input contours of 105 points each
with 0.00 standard deviation in the input data is 10 milliseconds. At an increased
level of data variation of 81.74 standard deviation, 90 milliseconds were recorded.
We can conclude that the dynamic programming approach delivers an efficient
way of exactly computing the generalized median of contours.

4 Experimental Results

We have conducted a series of experiments using both synthetic and real data. In
the following we report some results to illustrate two applications of the concept
of generalized median contours.

4.1 Test Images and Contour Data

Both studies are based on CCA B-mode sonographic images [2]. An image
dataset was established which consists of 23 such images of 105 columns each.
They are actually ROI cut out of larger images. Each image contains two con-
tours of interest: intima (y1) and adventitia (y2). Both contours run from left to
right of an image. If we turn the images by 90 degrees, then we are faced with
the problem of optimally masking the two contours of length 105 each from top
to bottom.
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Table 1. Performance measures of parameter training and generalized median (GM)
approaches on 5 test sets

y1 (intima) y2 (adventitia)
Test set Parameter training GM Parameter training GM

1 48.98 49.77 60.59 50.18
2 48.68 49.37 53.56 52.82
3 51.09 51.16 51.79 51.26
4 49.90 50.66 46.83 47.08
5 46.53 46.53 50.03 48.07

average 49.04 49.50 52.56 49.88

Each image has its ground truth contours manually specified by an experi-
enced physician. This information is used for an objective, quantitative com-
parison with automatic detection results. The similarity measure is simply the
distance function in Eqn. (2). In all our tests we have fixed k of the distance
function to k = 1.

4.2 Exploring Parameter Space Without Ground Truth

Segmentation algorithms mostly have some parameters and their optimal setting
is not a trivial task. In recent years automatic parameter training has become
popular. Typically, a training image set with (manual) ground truth segmen-
tation is assumed to be available. Then, a subspace of the parameter space is
explored to find out the best parameter setting. For each parameter setting can-
didate a performance measure is computed in the following way:

– Segment each image of the training set based on the parameter setting;
– Compute a performance measure by comparing the segmentation result and

the corresponding ground truth;
– Compute the average performance measure over all images of the training

set.

The optimal parameter setting is given by the one with the largest average
performance measure. Since fully exploring the subspace can be very costly,
space subsampling [10] or genetic search [3] has been proposed.

While this approach is reasonable and has been successfully practiced in sev-
eral applications, its fundamental disadvantage is the assumption of ground truth
segmentation. The manual generation of ground truth is always painful and thus
a main barrier of wide use in many situations.

We propose to apply the concept of generalized median for implicitly explor-
ing the parameter space without the need of ground truth segmentation. It is
assumed that we know a reasonable subspace of the parameter space (i.e. a lower
and upper bound for each parameter), which is sampled into a finite number M
of parameter settings. Then, we run the segmentation procedure for all the M
parameter settings and compute the generalized median of the M segmenta-
tion results. The rationale behind our approach is that the median segmentation
tends to be a good one within the explored parameter subspace.
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This idea has been verified on the database described above within the con-
tour detection algorithm [2]. It has two parameters and a reasonable parameter
subspace is divided into 250 samples. The database is partitioned into a training
set of 10 images and a test set of 13 images. The training set is then used to find
the optimal parameter setting among the 250 candidates, which is applied to the
test set. The average performance measure over the 13 test images is listed in Ta-
ble 1. Note that the testing procedure is repeated 5 times for different partitions
of the 23 images into training and test set. On the other hand, the generalized
median approach has no knowledge of the ground truth segmentation. It sim-
ply detects 250 contours and computes their generalized median. The average
performance measure of the 13 generalized median contours in the test set as
shown in Table 1 indicates that basically no real performance differences exist
between these two approaches. Without using any ground truth information, the
generalized median technique is able to produce contours of essentially identical
quality as the training approach.

5 Verification of Optimal Lower Bound for Generalized
Median Problems in Metric Space

The computation of generalized median patterns is typically an NP-complete
task. Therefore, research efforts are focused on approximate approaches. One
essential aspect in this context is the assessment of the quality of the computed
approximate solutions. Since the true optimum is unknown, the quality assess-
ment is not trivial in general. A recent work [6] presented the lower bound for
this purpose.

Referring to the notation in Eqn. (1), an approximate computation method
gives us a solution C̃ such that

SOD(C̃) =
n∑

i=1

d(C̃, Ci) ≥
n∑

i=1

d(C, Ci) = SOD(C)

where SOD stands for sum of distances and C represents the (unknown) true gen-
eralized median. The quality of C̃ can be measured by the difference SOD(C̃) −
SOD(C). Since C and thus SOD(C) are unknown in general, we resort to a lower
bound Γ ≤ SOD(C) and measure the quality of C̃ by SOD(C̃) − Γ . Note that
the relationship

0 ≤ Γ ≤ SOD(C) ≤ SOD(C̃)

holds. Obviously, Γ = 0 is a trivial, and also useless, lower bound. We require
Γ to be as close to SOD(C) as possible. This tightness can be quantified by
SOD(C) − Γ with a value zero for the ideal case.

In [6] the tightness of the lower bound has been tested in the domain of
strings and graphs. Since the computation of generalized strings and graphs is
exponential, only approximate solutions have been considered there.

Ideally, the tightness should be investigated in domains where we know the
true generalized median. The current work provides us a means of validating
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Fig. 4. Tightness of lower bound Γ for 50 y1 contours (intima, left) and 50 y2 contours
(adventitia, right) contours for all 23 images

the tightness under ideal conditions. For this purpose we sampled 50 parame-
ter settings of the parameter subspace1. For each image, we thus compute 50
contours and afterwards their exact generalized median C by the dynamic pro-
gramming technique proposed in this paper. In Figure 4 both the lower bound
Γ and SOD(C) for all 23 images are plotted. Obviously, these two values are
so similar that no difference is visible. This is clearly a sign of good tightness
of the lower bound Γ . Although this statement is made for the particular case
of contours, it builds a piece of the mosaic of validating the tightness in many
problem spaces.

6 Conclusions

In this paper we have considered a special class of contours which start from
the top, pass each image row exactly once, and end in the last row of an image.
Despite of the simplicity they frequently occur in many applications of image
analysis. We have proposed a dynamic programming approach to exactly com-
pute the generalized median contour in this domain.

Experimental results have been reported on two scenarios, in which the con-
cept of generalized median plays a very different role. In the first case we have
postulated a general approach to implicitly explore the parameter space of a
(segmentation) algorithm. It was shown that using the generalized median con-
tour, we are able to achieve contour detection results comparable to those from
explicitly training the parameters using a training set with known ground truth.
This performance is remarkable and should be further investigated in other con-
texts.

Having a generalized median problem with exact solution is interesting in its
own right for the specific problem domain. From a more general point of view,

1 The reason for selecting only 50 instead of 250 as in other experiments lies in the high
computation time and space requirement of the lower bound computation which is
based on linear programming.
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the exact solution gives us a means to verify the tightness of the lower bound for
generalized median computation under ideal conditions. We have performed the
verification which shows the high tightness. As part of our efforts in verifying
the tightness of the lower bound using a variety of generalized median problems
with exact solution, the current work represents a valuable contribution.
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Abstract. OCR technology of Latin scripts is well advanced in comparison to 
other scripts. However, the available results from Latin are not always sufficient 
to directly adopt them for other scripts such as the Ethiopic script. In this paper, 
we propose a novel approach that uses structural and syntactic techniques for 
recognition of Ethiopic characters. We reveal that primitive structures and their 
spatial relationships form a unique set of patterns for each character. The 
relationships of primitives are represented by a special tree structure, which is 
also used to generate a pattern. A knowledge base of the alphabet that stores 
possibly occurring patterns for each character is built. Recognition is then 
achieved by matching the generated pattern against each pattern in the 
knowledge base. Structural features are extracted using direction field tensor. 
Experimental results are reported, and the recognition system is insensitive to 
variations on font types, sizes and styles. 

1   Introduction 

Ethiopia is among the few countries in the world which have a unique alphabet of its 
several languages. The Ethiopic alphabet has been in use since the 5th century B.C.[5] 
and the present form of the alphabet is obtained after passing through many 
improvements. At present, the alphabet is widely used by Amharic which is the 
official language of Ethiopia, and a total of over 80 million people inside as well as 
outside Ethiopia are using this alphabet for writing.  

Research on Ethiopic OCR is a recent phenomenon and there are only few papers 
presented in conferences [3],[6]. Moreover, it has been difficult to develop a good 
recognition system for Ethiopic characters due to the complex composition of their 
basic graphical units. In this paper, we present a novel approach to recognize Ethiopic 
characters by employing structural and syntactic techniques in which each character is 
represented by a pattern of less complex structural features called primitives [2] and 
their spatial relationships. Each character forms a unique set of patterns which are 
generated from the relationships of primitives. The structural features and their 
relationships are extracted by using direction field tensor. The characters expressed in 
terms of primitives and their relationships remain similar under variations on the size, 
type and style of characters. Accordingly, the present results are novel contributions 
towards the development of a general Ethiopic OCR system that works independent 
of the appearance and characteristics of the text.  
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2   Ethiopic Alphabet 

The most common Ethiopic alphabet used by Amharic language has 34 basic 
characters and other six orders derived from the basic forms making a total of 238 
characters. The alphabet is conveniently written in tabular format of seven columns as 
shown in Table 1, where the first column represents the base character and the other 
columns represent modifications of the base character. 

Table 1. Part of the Ethiopic Alphabet 

 

2.1   Structural Analysis 

Ethiopic characters are considered to have the most attractive appearance when 
written with thick appendages, vertical and diagonal strokes, and thin horizontal lines. 
Most of the horizontal strokes in Ethiopic characters are only a few pixels wide and 
sometimes they do not exist, especially in degraded documents. Thus, prominent 
structural features in the alphabet are appendages, vertical and diagonal lines. These 
prominent features form a set of primitive structures. In this research, we reveal 7 
primitive structures which are interconnected in different ways to form a character. 
Primitives differ from one another in their structure type, relative length, orientation, 
and spatial position. The classes of primitives are given below. 

• Long Vertical Line (LVL). A vertical line that runs from the top to bottom level of 
the character. The primitive is found in characters like  , , and . 

• Medium Vertical Line (MVL). A vertical line that touches either the top or the 
bottom level (but not both) of a character.  , , and  are some of the characters 
that have these primitives. 

• Short Vertical Line (SVL). A vertical line that touches neither the top nor the 
bottom level of the character. It exists in characters like  , , and . 

• Long Forward Slash (LFS).  A forward slash primitive that runs from the top to 
the bottom level of a character. It is found in few characters like  , , and .  

• Medium Forward Slash (MFS). A forward slash primitive that touches either the 
top or the bottom level (but not both) of a character. This primitive is also found in 
few characters like  , , and .  

• Backslash. A line that deviates from the vertical line position to the right when 
followed from top to bottom. The characters  , , and  have such primitives. 

• Appendages. Structures which have almost the same width and height. These 
primitives are found in many characters. Examples are  , , and . 
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2.2   Spatial Relationships of Primitives  

The unique structure of characters is determined by primitives and their inter-
connection. The interconnection between primitives describes their spatial relation-
ship. A primitive structure can be connected to another at one or more of the 
following regions of the structure: top (t), middle (m), and bottom (b). The spatial 
relationship between two primitives  and  connected only once is represented by the 
pattern z , where z is an ordered pair (x,y) of the connection regions  t, m, or b.       
In this pattern,  is connected to  at region x of , and  is connected to  at region y 
of .  Moreover, the primitive  is also said to be spatially located to the left of . 
Thus, the spatial relationship is described by spatial position (left and right) and 
connection region (t, m, and b). 

There may also be two or three connections between two primitives. The first 
connection detected as one goes from top to bottom is considered as the principal 
connection. Other additional connections, if there exist, are considered as 
supplementary connections.  The principal connection between two primitives is an 
ordered pair formed by the possible combinations of the three connection regions. 
This will lead to nine principal connection types as represented by the set:  
{( t , t ) , ( t ,m),( t ,b) , (m, t) , (m,m) ,(m,b) , (b , t) , (b ,m),(b ,b)}.    

  The principal connection (t,t), i.e., two primitives both connected at the top, has five 
types of supplementary connections: {(m,b),(b,m),(b,b),(m,m)+(b,m),(m,m)+(b,b)}. 
The principal connection (t,m) has only one supplementary connection: {(b,m)}.    
The principal connection (m,t) has three types of supplementary connections: 
{(m,b),(b,m),(b,b)}. The rest principal connections do not have any supplementary 
connection. This makes up the possibility of two primitives to be connected in 18 
different ways: 9 principal connections alone and 9 principal with supplementary 
connections. This is shown in Table 2 with example characters in brackets. 

Table 2. Connection types between two primitive structures 
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2.3   Representation  

Primitives are connected to the left and right of another primitive at one of its three 
connection regions. To the right of a primitive, two different primitives can also be 
connected at the middle as in the case of . Therefore, a maximum of three primitives 
can be connected to the left of another primitive and up to four primitives can be 
connected to the right. To represent this relationship, a special tree structure having 
three left nodes and four right nodes is proposed as shown in Fig. 1. Each node in the 
tree stores data about the type of the primitive itself, the type of connections with its 
parent primitive, and the spatial positions of primitives connected to it. 

 

Fig. 1. General tree structure of characters 

A primitive is appended to its parent primitive at one of the seven child nodes in 
the tree based on the principal connection that exists between them. For 
implementation, primitives are represented by a two digit numerical code as shown in 
Table 3. The first digit represents their relative length, spatial position and/or 
structure, and the second digit represents their orientation.   

Table 3. Numerical codes assigned to primitive structures 

Primitive Types Numerical Codes 
LVL 98 
MVL 88 
SVL 78 
LFS 99 
MFS 89 
Backslash 87 
Appendages 68 

Each connection between two primitives is also assigned a two digit number which 
represents the left and right spatial positions. The three connection regions, i.e., top, 
middle, and bottom are represented by the numbers 1, 2, and 3 respectively. For 
example, using this approach, the connection (m,b) is represented by 23. Connection 
types with two or more connections between primitives are assigned a numerical code 
formed by the concatenation of the numerical codes of the respective connections. For 
example, the numerical code of the connection type (t,t)+(m,m)+(b,m) is 112232. When 
there is a primitive without being connected to any other primitive in the character, a 
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connection type of none (with code number 44) is used. In this case, the primitive is 
appended to one of other primitives based on the closeness in their spatial position. 
The connection type of the root primitive, which has no any parent, is also none. 

2.4   Building Primitive Tree and Pattern Generation 

The first step in building a primitive tree is identifying the root primitive. Variation in 
setting root primitive results in a different tree structure which will adversely affect 
the pattern generated for a character. To build a consistent primitive tree structure for 
each character, a primitive which is spatially located at the left top position of the 
character is used as the root primitive. The following recursive algorithm is developed 
to build primitive tree of characters. The function is initially invoked by passing the 
root primitive as a parameter.  

BuildPrimitiveTree (Primitive) 
{              
  BuildPrimitiveTree(LeftTopPrimitive)  
  BuildPrimitiveTree(LeftMidPrimitive)   
  BuildPrimitiveTree(LeftBotPrimitive)  
  BuildPrimitiveTree(RightBotPrimitive)   
  BuildPrimitiveTree(RightMid1Primitive)  
  BuildPrimitiveTree(RightMid2Primitive)  
  BuildPrimitiveTree(RightTopPrimitive)  
 } 

Examples of primitive trees built by the above algorithm are shown in Fig. 2. After 
building the primitive tree, a string pattern is generated by using in-order traversal of 
the tree (left{top, mid, bottom}, parent, right{bottom, middle1, middle2, top}). By 
starting on the root primitive, in-order traversal of the tree generates a unique set of 
patterns for each character. The algorithm is implemented using a recursive function 
in a similar way as building the primitive tree. 

 

Fig. 2. Examples showing primitive trees for (a) , (b) , (c)  
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2.5   Alphabet Knowledge Base 

The geometric structures of primitives and their spatial relationships remain the same 
under variations on fonts and their sizes. In Fig. 3a, all the different font types and 
sizes of the character  are described as two Long Vertical Lines both connected at 
the top. This is represented by the pattern {44,98,11,98}. As there is no structural 
difference between a Long Vertical Line and its bold version, Fig. 3b is also 
represented by the same pattern as in the case of Fig. 3a. In Fig. 3c, the character is 
described as two Long Forward Slashes both connected at the top and it is represented 
by the pattern {44,99,11,99}. Therefore, any form of the character  is represented as 
a set of patterns {{44,98,11,98},{44,99,11,99}}. Accordingly, the knowledge base of 
the alphabet consists of a set of possibly occurring patterns of primitives and their 
relationships for each character. This makes the proposed recognition technique 
tolerant of variations in the parameters of fonts.  

 

Fig. 3. (a) The Ethiopic character  with different font types and sizes of 12 and 18, (b) bold 
style of a, (c) italic style of a 

3   Extraction of Structural Features Using Direction Field Tensor  

A local neighborhood in an image where the gray value changes only in one direction, 
and remains constant in the orthogonal direction, is said to have Linear Symmetry 
(LS) property [1]. The LS property of an image can be estimated by analyzing the 
direction field tensor. The direction tensor, also called the structure tensor [4],[7], is a 
3D field tensor representing the local direction of pixels. For a local neighborhood 
f(x,y) of an image f, the direction tensor S is computed as a 2x2 symmetric matrix 
using Gaussian derivative operators Dx and Dy.  

=
dxdyf)(Df)dxdyf)(D(D

f)dxdyf)(D(Ddxdyf)(D
S

yyx

yxx
2

2  
(1) 

Linear symmetry exists at edges where there are gray level changes and it can be 
estimated by eigenvalue analysis of the direction tensor using complex moments of 
order two which are defined as follows. 

 (2) 

 (3) 

The complex partial derivative operator yx iDD +  is defined as: 

y
i

x
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The value of I20 is a complex number where the argument is the local direction of 
pixels in double angle representation and the magnitude is a measure of the local LS 
strength. The scalar I11 measures the amount of gray value changes in a local 
neighborhood of pixels. Direction field tensor, which is a 3D tensor field, can also be 
conveniently represented by the 2D complex I20 and 1D scalar I11. The complex image 
I20 can be displayed in color as shown in Fig. 4 where the hue represents direction of 
pixels in double angle representation.  

Due to the Gaussian filtering used in the computation of direction tensor, the LS 
strength (magnitude) at the orthogonal cross-section of edges in the image forms a 
Gaussian of the same window size. Therefore, the cross-section of lines in the I20 
image can be reduced to a skeletal form (one pixel size) by taking the point closest to 
the mean of the Gaussian formed by the LS strength in the orthogonal direction. The 
skeletal form of I20 image is then used for extraction of structural features.  

 

Fig. 4. (a) Scanned document, (b) I20 of a where hue represents direction, (c) skeletal form of b 
without direction information  

Before extracting structural features, characters are segmented into individual 
components. In the skeletal form of the I20 image, horizontal spaces that lack LS    
(LS strength <0.05 after normalization) are used to segment text lines, and vertical 
spaces that lack LS are used to segment characters in the text lines. Rectangular boxes 
in Fig. 5 show segmented characters of Ethiopic text. Since the direction of pixels is 
represented by double angle, the angle  obtained from the argument of I20 is in the 
range of 0 to 180 degree. The direction of pixels at the edges of primitives is close to 
0 and 180 degrees and can be converted to the range of 0 to 90 degrees by    

=abs(90- ) so that  for primitives is consistently close to 90 degree. In this study, 
pixels with >=30o and having strong LS property (LS strength >=0.05) are 
considered as parts of primitives, and those with <30o and having strong LS property 
are considered as parts of connectors. A primitive in the grayscale image will have 
 

 
Fig. 5. (a) Character segmentation mapped to the original image, (b) skeletal form of the I20 
image where the red and purple colors show the left and right edges of primitives respectively, 
and the green color shows connectors,  (c) extracted primitives shaded with blue color 
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two lines (left and right edges) in the skeletal form of the I20 image. Primitive 
structures are then constructed by the two matching lines. The group information 
about direction and spatial position of pixels in a primitive are finally used to classify 
the primitives. 

4   The Recognition Process 

A general recognition system of Ethiopic characters is proposed as shown in Fig. 6. 
Characters are segmented by making use of direction field tensor. Structural features 
are then extracted and a pattern of their spatial relationships is generated for each 
segmented character. A character is said to be recognized if the string pattern 
generated from primitive tree has a matching pattern in the knowledge base. Pattern 
matching is done by comparing the string pattern generated from the image against 
with each string pattern stored in the knowledge base. The similarity of each 
comparison is computed and the most similar pattern is considered to decide whether 
the string pattern is recognized or not. This is done by setting a threshold of similarity. 

 

Fig. 6. Flowchart of the recognition process 

5   Experiment 

The size of the Gaussian window used for filtering operations is determined by the 
size of fonts in the document. For example, a Gaussian window of pixel-size 3x3 was 
efficient for texts with font size of 12, and a window size of 5x5 was found to be 
better for font sizes of 18.  

There is no standard image database of Ethiopic text developed for testing 
character recognition systems. Thus, the experiment was done on images of about 
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thirty pages scanned from newspapers, books and clean printouts that contain 
characters of different fonts and sizes varying from 12 to 18. Images taken from clean 
printouts show better recognition due to their relatively better quality. A recognition 
rate of 92% was achieved for clean printouts and the recognition accuracy for 
newspaper and books was 86%. However, there was no difference in recognition 
accuracy due to variation in fonts, and larger font sizes tend to be recognized slightly 
better than their smaller versions.  

The structural and syntactic method used for recognition of Ethiopic characters is 
efficient to uniquely identify the characters. Recognition errors mainly come from poor 
quality of documents. Character segmentation errors also affect the overall character 
recognition accuracy. The other process that hampers the recognition process is extra-
ction of connectors. This is due to the fact that horizontal lines in Ethiopic characters are 
very thin and sometimes absent especially in degraded and low quality documents.  The 
algorithm used to extract primitives works well even in noisy documents.  

6   Conclusion and Future Work 

In this paper, a novel approach is proposed for Ethiopic character recognition. 
Structural and syntactic techniques are effectively used to uniquely represent the 
complex structure of characters by the relationships of less complex primitive 
structures. To this end, direction field tensor is used as a tool for extraction of 
structural features. The use of Gaussian separable filters to compute direction field 
tensor made the computation time minimal. The recognition accuracy can still be 
improved to a higher level by working more on character segmentation, extraction of 
structural features and pattern matching algorithms. Extraction of structural features 
can be further improved by applying statistical techniques. The process of pattern 
matching and classification is expected to perform better by using neural networks. In 
general, the recognition system is insensitive to variations on the size, type and other 
parameters of characters and therefore, the overall research activity will lead to the 
development of efficient OCR software for Ethiopic script.  
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Abstract. This paper presents a context driven segmentation and recog-
nition method for handwritten Chinese characters. We follow a split-
merge technique in character segmentation. In this process, a Chinese
text line is first pre-segmented into a sequence of radicals, which are
then merged according to a cost function combining both recognition
confidence and contextual cost. Two strategies are also proposed for im-
plementation: bi-gram based merging and lexicon driven merging. In the
former one, we generate a set of merging paths which are then evaluated
by Viterbi algorithm. The radicals’ best merging method is given by the
path with the highest score. In the latter strategy, a lexicon is preset
and compared with the radicals to determine both radicals’ merging and
candidate character selection. Experiments show that contextual infor-
mation plays a crucial role in Chinese character segmentation and could
obviously improve the segmentation and recognition results.

1 Introduction

Single character recognition has achieved impressive progress both in accuracy
and speed in the past 40 years. However, it could not remarkably benefit a doc-
ument reading system directly because some practical difficulties. For example,
it is hard to extract text lines from a complex layout document containing both
graphs and characters in different fonts and size. Though a text line is perfectly
extracted, character segmentation is another ineluctable and decisive step since
a general classifier could only recognized a single-character image at a time.

Recently, there many papers considering character segmentation of digits,
western and eastern languages. According to Casey ([1]), these methods are
categorized into three basic strategies: structural analysis, recognition based and
holistic tactic. In this paper, we suggest these methods are concluded into two
levels according to the information sources they are rested on (Fig.1). Low level
methods make use of information directly from image and high level methods
utilize contextual and grammatical constraints originated from prior knowledge.

Character segmentation is still an obstacle in Chinese OCR especially for off-
hand case, it should deal with diverse writing styles, a large character set and
complex character structures. Moreover, characters are written with touching
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and overlapping in scripts. According to the recent work, low-level methods are
effective to remove touching and overlapping by accurately locating the segmen-
tation points for touching and overlapping strokes. But it may come with another
problem that a character is wrongly separated into different parts.

In conventional methods, character segmentation contains two steps. The first
step is pre-segmentation, which decomposes a text line into a series of radicals.
Secondly, these radicals are reunited into characters. Previously, only low level
information is considered in the second step, which is shown to be unreliable in
practice. A Chinese character may be composed of some parts, each of them is
indeed a character itself. Low level methods perform inadequately and always
segment a character into more than one parts. Recent papers are considering to
involve contextual relationship in this process. In western languages, these con-
text methods are always based on a word dictionary ([5]). However, the methods
for oriental languages are quite different from that for western languages. Liu
([3]) proposes a lexicon driven way for Japanese address reading. Takahiro([7])
introduces bi-gram in his likelihood function for on-line Japanese handwriting
recognition. But related work has seldom been done for Chinese up to now.

In this paper, we introduce contextual restrictions by incorporating bi-gram
and lexicon-dictionary in character segmentation. According to the experiments,
we can see that both segmentation rate and recognition rate could get improved.

Fig. 1. Character segmentation strategies

2 Pre-segmentation

A Chinese character could be regarded as a composition of some primitive com-
ponents. In pre-segmentation, we cite Xue’s work([6]) to extract these compo-
nents (Fig.2(a)). He extracts connected components from a text line, which are
then merged into strokes (Fig.2(c)). These strokes are assembled to form radi-
cals. Each radical should be warranted as just one part of a character (Fig.2(d)).
A segmentation graph is accordingly established (Fig.2(e)), which is directed
and acyclic. An arc corresponds to a certain radical combination and a path
from the first node to the last represents a merging way for radicals. We as-
sign each arc a cost to evaluate the likeness for a merged image of being a real
character([6]).
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(a) Pre-segmentation procedure (b) A Chinese handwritten address image

(c) Strokes extraction for (b) (d) Extracted radicals for (b)

(e) Segmentation graph for (d)

Fig. 2. Pre-segmentation for Chinese handwritten texts

3 Bi-gram Based Segmentation

3.1 Introduction of Bi-gram Model

Let X = x1x2 . . . xT be a sequence of character images. A classifier commonly
gives some hypotheses for each image, for example, ct,1ct,2 . . . ct,M denote the
candidates for xt. Post-processing selects characters from each candidate set and
composes the most likely string c1,k1c2,k2 . . . cT,kT , where 1 ≤ kt ≤ M, 1 ≤ t ≤ T .

c1,k∗
1
, c2,k∗

2
, . . . , cT,k∗

T
= argmax

1≤kt≤M,1≤t≤T
P (c1,k1 , c2,k2 , . . . , cT,kT |x1, x2, . . . , xT ) (1)

By Bayesian formula, we have

P (c1,k1 , c2,k2 , . . . , cT,kT |x1, x2, . . . , xT )

=
P (x1, x2, . . . , xT |c1,k1 , c2,k2 , . . . , cT,kT )P (c1,k1 , c2,k2 , . . . , cT,kT )

P (x1, x2, . . . , xT )
(2)

Assuming that the classifier’s decision for the current image is independent of
the previous image ([9]), we have

P (x1, x2, . . . , xT |c1,k1 , c2,k2 , . . . , cT,kT ) =
T∏

i=1

P (xi) ×
T∏

i=1

P (ci,ki |xi)
P (ci,ki)

(3)

In natural language processing (NLP), N-gram model assumes that only the
n adjacent characters before the given character make sense. In bi-gram (n = 2),
P (c1,k1c2,k2 . . . cT,kT ) is simplified to P (c1,k1)

∏T
i=2 P (ci,ki |ci−1,ki−1). Instead of

Eq.(1), we turn to maximize P (c1,k1)
∏T

i=2 P (ci,ki |ci−1,ki−1)
∏T

i=1 P (ci,ki |xi) to
form the most likely string. The maximum of the above criteria could be regarded
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as a hybrid of context and recognition cost. In our method, given a merging path
in the segmentation graph, the maximum of H (Eq.(4)) is applied in evaluation.

H =
1
T

[log P (c1,k1) +
T∑

i=2

log P (ci,ki |ci−1,ki−1) +
T∑

i=1

log P (ci,ki |xi)] (4)

3.2 Confidence Estimation

A general character classifier outputs a set of sorted characters with ascending
distances. However, distance measure is not discriminating in judging whether
an input image is a real character or not. On the other hand, classifiers based
on different learning algorithm would output different types of distances, which
makes it inconceivable for further discussion. As shown above, distance measure
is required to be transformed into probability measure. We will briefly review
some basic transformation techniques. Suppose we have M candidate hypotheses
c1, c2, . . . , cM for image x with corresponding ascending distances d1 ≤ d2 ≤
. . . ≤ dM . (5) gives a set of experimental transformations for posterior probability
estimation ([8]). In [4], Liu proposes his method based on Gauss distribution
assumption (6), where variance parameter θ is estimated from training samples.

P (ci|x) =

⎧⎪⎨⎪⎩
1/di/

∑j=M
j=1 (1/dj) (5.1)

1/d2
i /
∑j=M

j=1 (1/d2
j) (5.2)

1/(di − d1 + 1)/
∑j=M

j=1 [1/(dj − d1 + 1)] (5.3)
(5)

P (ci|x) =
exp((di − d1)/θ)∑j=M

j=1 exp((dj − d1)/θ)
(6)

3.3 Implementations

In post-processing, character images are fixed prior to candidate selection. How-
ever, in radical merging step, we don’t know how radicals will be organized. The
number of possible ways of merging increases exponentially with respect to the
number of radicals. It is necessary to discuss some more applicable methods. In
this section, two implementations are provided for bi-gram driven way.

Beam search is an optimization of the best first search algorithm where only
a predetermined number of paths are kept as candidates. If more paths than a
threshold are generated, the worst paths are discarded.

Bi-gram Driven Beam Search (BDBS)
s1, s2, . . . , sN—the pre-segmented radicals
Si,j—radical combination of radical sisi+1 . . . sj

ch(Si,j)—the h-th candidate character for radical combination Si,j , 1 ≤ h ≤ M

Initialization step. For a predefined integer L, we test first L radical combina-
tions S1,1, S1,2,... S1,L and recognize them. If log P (ch(S1,j)|S1,j)+log P (ch(S1,j))
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is more than C, we add < 1, j, ch(S1,j), log P (ch(S1,j)|x1,j)+ log P (ch(S1,j)), 1 >
to the node list as a valid expansion, in which, the fifth element records the
number of characters up to current merging.

Expanding step. For each node < i, j, ch(Si,j), Q, n > in the list, we expand the
node list as follows. We recognize Sj+1,j+1, Sj+1,j+2,... Sj+1,j+L, if there exist
p, q that satisfy j + 1 ≤ p ≤ j + L, 1 ≤ q ≤ M and log P (cq(Sj+1,p)|Sj+1,p) +
log P (cq(Sj+1,p)|ch(Si,j)) > C, we update this node to < j +1, p, cq(Sj+1,p), Q+
log P (cq(Sj+1,p)|Sj+1,p)+ logP (cq(Sj+1,p)|ch(Si,j)), n+1 >. Meanwhile, if there
are multiple choices, all the valid expansions must be added too.

Pruning step. In beam search, only B0 nodes are allowed to be kept. If B,
the number of nodes, exceeds B0, we prune the redundant nodes for the sake
of efficiency. All the nodes in the list are reordered according to the descending
average scores. That is, node < i, j, c, Q, n > is ranked according to the average
score Q

n . The nodes with the smallest B − B0 average scores are removed.

In another implementation, We first apply K-shortest algorithm ([2]) to the
segmentation graph in order to generate a set of path hypotheses for evaluation.

If the character images, merged according to a certain path, are denoted by
x1, x2, . . . , xT and the recognized characters of the t-th image are ct,1, ct,2, . . . ,
ct,M , the maximum of H(see Eq.(4)) of this path is computed by Viterbi al-
gorithm. In following procedure, Q(p, q) denotes the accumulative total of the
logarithm of the probability value for the most likely string from the start char-
acter to cp,q.

Bi-gram Driven Viterbi Evaluation (BDVE)
Step 1. For 1 ≤ q ≤ M , we set Q(1, q) = log P (c1,q) + log P (c1,q|x1).
Step 2. For 2 ≤ p ≤ nk and 1 ≤ q ≤ M , we calculate Q(p, q) as follows:
Q(p, q) = max1≤j≤M {Q(p − 1, j) + log P (cp,q|cp−1,j)} + log P (cp,q|xp).
Step 3. We output max1≤q≤M Q(T,q)

T as the maximum of H .

The maximum number of radicals in a character is usually less than 6. For the
worst case, the complexity of REA is at most O(6N +KN log 6), the complexity
of Viterbi algorithm is O(M2T ). Accordingly, generating K-shortest paths is
very fast, however, the size of the candidate set M controls the total time.

In Fig.(3), we make a comparison between REA+BDVE method and the
minimal spatial cost method. The proposed method achieves a segmentation
rate of 100%, much better than the rate, 77%, given by the latter method. The
merging paths recommended by the two methods are also illustrated in Fig.2(e).

(a) Result of REA+BDVE (b) Result of minimal spatial cost path

Fig. 3. Segmentation results comparison
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4 Lexicon Based String Segmentation and Recognition

In the above, we try to promote the string recognition rate by improving seg-
mentation and recognition of characters. However, perfect character segmenta-
tion may not be necessary, fractional characters in a string could also help in
unique identification against a lexicon dictionary. The differences between west-
ern languages and oriental ones result in distinct strategies in holistic string
recognition. In English, a string image is divided into word images first and then
recognized by dictionary matching. However, there are no gaps between char-
acters in Chinese, that means a Chinese string must be dealt with at the same
time. Liu([3]) uses a trie structure to organize address lexicons for Japanese ad-
dress reading. He also adopts a split-merge strategy, determining merging path
for radicals, identifying characters for images and matching the text line with a
certain lexicon. This process is implemented by beam search from the left-most
radical to the end. More than 110,000 items are considered in his method and
each lexicon is limited within ten characters. Unlike the sequential characteristic
of Liu’s method, we propose a novel algorithm that could start from all the sub-
strings. By this adaption, we could hurdle the problem that one segmentation
error or one character mis-classification may potentially break down the whole
process.

Optimal Substring Alignment Algorithm (OSAA)
w1w2 . . . wm—a given Chinese string
R[p][q]—the set of all the substrings that start with wq and contain p characters

Step 1. For a predefined integer L, we recognize Si,i+j , where 0 ≤ j ≤ L − 1
and 1 ≤ i ≤ i + j ≤ n. If the candidate set of Si,i+j contains wk, we add
< i, j, k, k, c > to R[1][k], where c is the confidence score.
Step 2. After initializing R[1][k] for 1 ≤ k ≤ m, for 1 ≤ p ≤ m, 1 ≤ q ≤
m − p + 1, we compute R[p][q] as follows: if there exists < i1, j1, k1,1, k1,2, c1 >
in R[p−1][q] and < i2, j2, k2,1, k2,2, c2 > in R[1][p+q−1] that satisfy i2 = j1 +1,
we then add a new element < i1, j2, k1,1, k2,2,

c1×(p−1)+c2
p > to R[p][q].

Step 3.1. For a given threshold D, we select all the substrings < il, jl, kl,1, kl,2,
cl >, 1 ≤ l ≤ B from R[p][q], p ≥ D satisfying 1 ≤ i1 ≤ j1 < i2 ≤ j2 < . . . <
iB ≤ jB ≤ n and 1 ≤ k1,1 ≤ k1,2 < k2,1 ≤ k2,2 < . . . < kB,1 ≤ kB,2 ≤ m.
Step 3.2. For the selected substrings, we traverse all the characters and their
possible corresponding radical combinations which are not covered by the sub-
strings. By this means, each character in the given string could find its corre-
sponding radicals. Then we calculate the value of a certain cost function which
is designed to evaluate both dissimilarities between images and characters and
differences between characters and the given lexicon. In step 3.1 and 3.2, we
simply apply depth-first search to traverse all the possible cases.

Comparing with the bi-gram driven way, lexicon driven method is seen as a
more strict rule to control both radical merging and candidate selection
process.



Context Driven Chinese String Segmentation and Recognition 133

5 Experiments and Discussions

We collect 1141 handwritten Chinese address lines including 14,970 charac-
ters written by different people. In bi-gram based case, we test both BDBS
and REA+BDVE implementations. We found that BDBS may be attacked
by a intervened error and thus result in poorer performance comparing with
REA+BDVE (in Table 1, we adopt Eq.(6) for recognition confidence estima-
tion, K = 15N, M = 10). In the following, we will mainly discuss REA+BDVE.

Table 2 compares confidence estimation methods (Eq.(5)&Eq.(6))and selec-
tion strategies of K. Different ways of estimation don’t result in obvious distinc-
tions. We are inclined to select K according to the number of the radicals. For
a text line with fewer radicals, this adaption will save time, on the other hand,
more paths will be examined if a text line has more radicals. In the following
experiments, we use K = 15N and Eq.(4) without specification.

Table 1. Comparison of BDBS and REA+BDVE

BDBS (B0 = 40) REA+BDVE (K = 15N, M = 10)
Segmentation rate (%) 82.75 92.53

Time (s) 24.7 0.5

We then compare different factors in segmentation. In the columns of
Table 3, we test the minimal spatial cost path, the maximal recognition con-
fidence path, the minimal recognition distance path (i.e., we assign each arc the
confidence/distance of the best candidate given for the image associated with the
arc) and the best contextual ranked path (i.e., recognition confidence is omit-
ted) respectively. Noticing the results from different criteria, contextual relation
is most important.

Generally, we select 10 candidates for each character image in recognition
(i.e. M = 10), since the size greatly affects the computation time of Viterbi. As
shown in Table 4, extending the candidate set size will not improve the results
obviously, however, brings about a rapid increase in time consumption.

Table 2. REA+BDVE segmentation results

(5.1) (5.2) (5.3) (6)
K = 200, M = 10 91.34 91.73 92.62 92.20
K = 15N, M = 10 91.50 91.99 92.89 92.53

Table 3. Analysis of different factors in segmentation

Spatial Recognition Recognition Contextual
cost confidence distance relationship

segmentation segmentation segmentation segmentation
Correct rate (%) 81.94 53.46 3.13 90.61
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Table 4. Candidate set size for segmentation

M = 5 M = 10 M = 50
Average time for Viterbi per text line (ms) 37 137 3368

Character segmentation rate (%) 92.02 92.53 92.91

Table 5. Right path distribution in the K-shortest paths

K = 200 K = 400 K = 600 K = 800 K = 1000
81.69 86.25 88.17 89.48 90.27

Table 6. Correct rate for different numbers of candidate paths

K = 200 K = 500 K = 1000
Segmentation rate (%) 92.20 92.59 92.63

Total time (ms) 410 622 861

Table 7. Bi-gram driven segmentation results for a general document

Segmentation rate (%) Recognition rate (%)
92.9 84.9
88.2 79.0

We cannot assure that the right answer must be in the candidate set, though
K is very large. In Table 5, we give the rate of the correct merging path in
the first K paths. However, sub-optimal paths are always included in the K-
shortest paths, which are applicable to achieve a acceptable segmentation rate,
so enlarging K will not benefit the segmentation rate remarkably (Table 6).

In the proposed method, we use an averaged score considering different num-
ber of characters merged, otherwise, if we don’t take the difference into consid-
eration as in [7], we may encounter a little drop in the segmentation rate. For
example, if H is replaced by H̃ = log P (c1,k1) +

∑T
i=2 log P (ci,ki |ci−1,ki−1) +∑T

i=1 log P (ci,ki |xi), the segmentation rate drops from 92.5% to 90.0%.
The above experiments utilize the bi-gram training on the address lexicons

of Beijing. If we turn to a more general bi-gram, trained on ”People’s Daily”
of 2000 (covering politics, economics, science and etc.), we get a segmentation
rate of 84.59%. Comparing with the rate of 92.53%, the general bi-gram weakens
the contextual relationship of specific documents and degrades the performance,
however, the result exceeds the performance of minimal spatial cost path.

Furthermore, we extend our idea to a more general case. We collect some text
lines containing 238 characters from a technical document, by using the bi-gram of
”People’s daily”, both segmentation and recognition rates get improved (Table 7).

OSAA is designed for lexicon driven holistic string recognition. We use 500
handwritten address lines and a database containing more than 370,000 lexicons
in our experiments and achieve a string recognition rate of 86.8%.
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6 Conclusions and Discussions

This paper presents a context driven way for unconstrained off-line handwritten
Chinese characters segmentation. Unlike the previous techniques based on low
level information, we pay more attention to the application of contextual knowl-
edge in this process, which may be more useful as revealed by the experiments.

Contextual information could effectively determine how to merge the radicals,
however, low level information is essential to get these radicals. Noticing that
there have been many papers considering various techniques based on low level
pre-segmentation to remove touching and overlapping for Chinese scripts, our
method could be easily extended to the merging step of those methods.
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Abstract. Mathematical formulas challenge an OCR system with a
range of similar-looking characters whose bold, calligraphic, and italic
varieties must be recognized distinctly, though the fonts to be used in
an article are not known in advance. We describe the use of support
vector machines (SVM) to learn and predict about 300 classes of styled
characters and symbols.

1 Introduction

Optical character recognition problems were considered very early in the de-
velopment of support vector machines, with promising results [1]. However, the
problem of OCR for mathematical documents is substantially more difficult than
standard OCR problems for three principal reasons:

1. Although a variety of fonts is used in mathematical literature, when reading
any single paper, it is important to keep appearances of italic, bold, roman,
calligraphic, typewriter, and blackboard bold letters distinguished.

2. A rich set of symbols is used, and distinctions between letters may be more
subtle than within the character set of a typical human language.

3. The symbols are not arranged in a simple one–dimensional pattern. Sub-
scripts, superscripts, fractional relationships, and accents occur, and may be
nested [2].

The Infty Project[7] in the Suzuki Laboratory at Kyushu University is devel-
oping Infty Reader software [5] to perform OCR of scanned mathematical jour-
nal articles, and produce output in languages that allow symbol relationships
to be properly encoded, including TEX and MathML. Although Infty Reader
nominally achieved 99 percent accuracy of single–letter recognition before this
investigation (October 2005), its failure to distinguish certain common symbols
would be bothersome to any serious user.

The Infty Project defined entities for about 600 characters and symbols used
in mathematical research, and created a ground truth database identifying their
appearances in page–by–page scans of hundreds of journal articles. Many charac-
ter pairs could be distinguished in different styles by simple clustering techniques

D.-Y. Yeung et al. (Eds.): SSPR&SPR 2006, LNCS 4109, pp. 136–144, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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applied to directional features measured in a mesh grid. Runtime accuracy ex-
ceeded 99% , but hundreds of letter pairs remained consistently problematic. We
aim to improve the accuracy of single–character recognition through the use of
support vector machines.

2 Test Data

The Infty character set comprises 1,571 Roman and Greek letters, numbers, and
mathematical symbols, divided into 46 categories according to purpose and style.
Further details of these characters appear in [8].

The Infty Project has selected journal articles representing diverse fields of
higher mathematics, taken from a thirty year period. These articles were scanned
page by page at 600 dpi to produce bitmap image files. The Infty OCR engine
extracted the symbols from each page and recognized each symbol as a character

Big Symbol Calligraphic

Greek Upright Arrow

Latin Upright Latin Italic

Greek Italic Relational Operators

Binary Operators Other Symbols

German Upright Blackboard Bold

Accents Punctuation

Symbol Fragments Ligature Italic

Brackets Ligature Upright

Fig. 1. Symbols with 10 training, selection, and testing samples
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from the Infty character set. College and graduate mathematics students man-
ually inspected and corrected the results.

The results of this process appear in a “ground truth” database. Namely, for
each character on a scanned page, a bitmap framed by the bounding box of that
character is taken from the page. This bitmap is tagged with the correct identifi-
cation of the symbol. 1“Link information” describing the character’s relationship
to others on the page (subscripts, superscripts, limits, portions of a fraction, etc.)
is also available in the database, but it is not utilized in the present study.

In fact, the Infty project has produced two databases of this kind. One, called
InftyCDB-1, is freely available for research purposes upon request, and is sum-
marized in [8]. The other is used internally by the Infty Reader OCR engine.
We use the latter database in this experiment, because it has more data, and
because it makes it easier to compare our results with those of the actual Infty
Reader. Our data sample consists of 284,739 character symbols extracted from
363 journal articles. There are 608 different characters represented.

At random, we divide the 363 articles into three parts consisting of 121 ar-
ticles each. The data from the corresponding articles is marked as “training”,
“selection”, or “testing” accordingly. To make sure we had enough data to train
and evaluate our classifiers, we examined only the characters with at least ten
samples in training, selection, and testing portions of the database. This left 297
characters, pictured in Figure 1.

3 Directional Features

Given an instance of a symbol, let w be its width and h be its height. Our
feature vectors consist of the aspect ratio ( h

w ), followed by 160 floating–point
coordinates of mesh directional feature data.

This mesh data is divided into “tall”, “square”, and “short” blocks of 48, 64,
and 48 coordinates respectively. When the aspect ratio of a character exceeds
1.3, the tall block contains directional feature data computed from a 3×4 mesh;
otherwise it contains zero–valued entries. When the aspect ratio of a character
is between 1

1.7 and 1.7, the square block contains directional feature data from a
4×4 mesh; otherwise it contains zero–valued entries. When the aspect ratio of a
character is less than 1

1.3 , the short block contains directional features computed
from a 4 × 3 mesh; otherwise it contains zero–valued entries. Thus, for any
symbol, one or two (but never three) of the blocks are assigned nonzero entries.

We describe roughly the algorithm for associating directional feature data to
an m × n mesh block. Divide the original bitmap horizontally into m equally
sized lengths, and vertically into n equally sized lengths. Assign a “chunk” of four
coordinates of the block to each of the m×n grid positions; initially, their values
1 Some bitmaps would not be identifiable solely on the basis of this bitmap. For

example, a hyphen could not be distinguished from an underscore, without knowing
its relationship to the baseline on the page when it was scanned. The original position
on the page is part of the database, but this information was discarded prior to our
experiment.
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are zero. These four coordinates represent the horizontal and vertical directions,
and two diagonals.

The contribution of part of the outline’s direction to the mesh features is
determined from its position in the bitmap, using a partition of unity. Given a
positive integer r, our r–fold partition of unity consists of functions pr

i : [0, 1] →
[0, 1], i = 0, . . . , r − 1, with the property that pr

i is supported on [ i−1
r , i+2

r ].
Discard every isolated black pixel from the original bitmap. In the remaining

bitmap, trace every outline between white and black pixels, following its chain
code description. When visiting the pixel in location (x, y) during this trace,
identify the direction (horizontal, vertical, diagonal one, or diagonal two) where
the next pixel in the outline will be. For every i, 0 ≤ i < m, and every j,
0 ≤ j < n, add pm

i ( x
w ) · pn

j ( y
h) to the coordinate of the (i, j) chunk representing

that direction.
After completing the trace of each outline component, divide all the values by

the perimeter of the bounding box. This result gives the values to be entered in
the corresponding block of the feature vector.

4 Naive Classifier

Typically, a support vector machine learns a binary classification. There are
various techniques for putting SVM’s together to distinguish multiple classes; a
comparison of some popular methods (1–vs–1, 1–vs–all, and the Directed Acyclic
Graph) may be found in [4]. Except for the 1–vs–all method, these methods
require the construction of O(n2) classifiers to solve an n–class classification
problem. Because the Infty character set includes more than 1,500 entities, this
seemed unnecessarily burdensome. Therefore, we try to extract an easier part of
the classification problem that can be solved without SVM.

Taking the data assigned to the “training” portion of the database, we com-
pute the mean feature vectors for the instances of each symbol. We create a
naive classifier that assigns an input to the class whose mean feature vector is
nearest, by Euclidean distance.

We run this naive classifier on the “selection” portion of the database, to
produce a confusion matrix. The (i, j) entry of this matrix counts the number
of samples in which a character truly belonging to class i was assigned to class
j by this rule. The 297 by 297 confusion matrix we produced had 947 nonzero
off-diagonal entries, an average of 3.2 misrecognitions per character.

We consider some of the misrecognitions to be too difficult for any classifier to
resolve on the basis of our mesh of directional features. Particularly, we do not
expect bold and non–bold variants of the same character to be distinguishable.
Also, we do not expect upper and lower case variants of the letters C, O, P, S,
V, W, X, and Z to be distinguishable in the same style, or in styles that are
identical except for boldness. Disregarding misrecognitions of these two kinds,
896 other nonzero off–diagonal entries remain in the confusion matrix.

For 62 of the 297 characters with ten training, selection, and testing samples,
the naive classifier recognized less than half of the selection samples correctly.
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Fig. 2. The naive classifier: (a) Characters the naive classifier usually fails to recognize.
(b) Histogram of distinct misrecognitions of an input character by the naive classifier.

These characters are displayed in Figure 2 (a). In comparison, ninety percent
accuracy is achieved for 197 of the 297 symbols, 95 percent accuracy for 163
symbols, and 99 percent accuracy for 123 symbols.

Although the confusion matrix is relatively sparse, certain troublesome char-
acters have many misrecognition results, as can be seen in Figure 2 (b). For 95
of the 297 characters, at least four distinct characters occur as misrecognition
results. Eleven letters (plain ’1’, ’4’, ’E’, ’I’, ’l’, ’r’, ’s’, ’t’, ’ “ ’, and italic ’γ’ and
’ψ’) had ten or more distinct characters appear as misrecognition results.

At runtime, the naive classifier will be used to assign each letter to a cluster
of possible candidates, consisting of the recognition result and the other candi-
dates most likely to have produced that recognition result (as determined by our
confusion matrix). The harder problem of distinguishing between the letters in
each of these clusters will be assigned to support vector machines.

5 Linear SVM

Within each cluster, we will use the 1–to–1 approach to multiclass classification.
This requires first creating a binary SVM for each pair of classes in the cluster.

Because they are simple and can be computed quickly, we begin our experi-
ment with SVM’s that use the linear kernel:

K(x, y) = x · y. (1)

The naive classifier, when restricted to two classes, can be thought of as the
linear classifier determined by the hyperplane equidistant from the two cluster
centers. The support vector method enables us to search for hyperplanes in the
original feature space that perform better on the training data.

There are no kernel parameter choices needed to create a linear SVM, but
it is necessary to choose a value for the soft margin (C) in advance. Then,
given training data with feature vectors xi assigned to class yi ∈ {−1, 1} for
i = 1, . . . , l, the support vector machines solve
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min
w,b,ξ

1
2K(w, w) + C

∑l
i=1 ξi (2)

subject to yi(K(w, xi) + b) ≥ 1 − ξi

ξi ≥ 0

where ξ is an l–dimensional vector, and w is a vector in the same feature space as
the xi (see, e.g., [3]). The values w and b determine a hyperplane in the original
feature space, giving a linear classifier. A priori, one does not know which value
of soft margin will yield the classifier with the best generalization ability. We
optimize this choice for best performance on the selection portion of our data,
as follows.

Our basic parameter search method, here and in the following sections, is
a grid search method that generalizes to any number of dimensions. For each
candidate parameter assignment, we train an SVM with those parameters on the
training portion of our data. Then we measure its performance on the instances
of two classes that appear in the selection data. The score of the parameter is
the minimum of the accuracy on the first class’s input and the accuracy on the
second class’s input. Hereafter, “accuracy” by itself, in the context of a binary
classification problem, will refer to this score.

Often, grid searches require a search interval to be specified for each dimen-
sion. Our approach requires only an initial parameter choice, and then grows
the search region outward, until performance stops improving. Initial choices
may matter under this grid search algorithm, if the algorithm terminates before
reaching a selection of parameters that produces globally optimal results. This
possibility seems unlikely as long as the resulting SVM performs better than
random guessing in each case. The linear SVM problem has only the soft margin
C as a parameter, and we set it initially to be 1024.

Table 1 displays the accuracy achieved by the linear SVM selected, on the
testing data for pairs of symbols that the naive classifier sometimes confused.

We compared the chosen linear SVM classifier’s performance on the letters
where the naive classifier did not reach 100% accuracy, to the performance of
the naive classifier. The 896 misrecognitions of the naive classifier comprise 795
unordered pairs of symbols. For nine of these pairs, both the naive classifier
and the linear SVM always misassigned one of the two characters. Figure 3 (a)
compares the performance of the two methods on the remaining 786 pairs. Of

Table 1. Linear SVM performance

Accuracy > Number of pairs Accuracy > Number of pairs
Total 795 .9 750
0 783 .95 742
.5 774 .97 720
.6 770 .99 684
.7 767 .995 650
.8 759 .999 609
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Fig. 3. Linear SVM improvement compared to naive classifier: (a) Histogram. (b) Pairs
with two–fold improvement.

the 786 pairs, 34 did not perform as well under the linear SVM as with the
naive classifier. The exact same performance was achieved on 95 pairs, and im-
provement occurred on 657 pairs. The histogram does not report the 24 symbols
with more than a three–fold improvement in accuracy. Thirteen of these symbols
received zero accuracy from the naive classifier, for an infinite improvement in
performance.

Figure 3 (b) illustrates the cases where the linear SVM achieved double the
accuracy of the naive classifier.

6 Gaussian SVM

Just by using linear kernel support vector machines, our symbol recognition rates
dramatically improved, but the use of a linear kernel severely limits the potential
benefit of a support vector machine. The use of a Gaussian (radial) kernel

K(x, y) = e−γ‖x−y‖2
(3)

in the SVM problem (2) effectively transforms the input feature space into an
infinite–dimensional one, where the search for an optimal separating hyperplane
is carried out. Classifiers of this form may perform better on classes whose feature
data is not linearly separable in the original feature space. However, the addition
of the parameter γ in the kernel definition makes the parameter search two–
dimensional, adding computational expense to the selection of a classifier.
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Fig. 4. Comparison of linear and Gaussian SVM: (a) Accuracies. (b) Pairs with 10%
improvement from linear to Gaussian kernel.

Fig. 5. Pairs with under 80% accuracy by Gaussian SVM

According to a result of Keerthi and Lin [6], given a soft margin C, the
sequence of Gaussian SVM classifiers with kernel parameter γ and soft margin
C
2γ converges pointwise, as γ → 0, to the linear SVM classifier with soft margin C.
Thus, if our parameter search is wide enough, we should achieve higher accuracy
with the Gaussian kernel than with the linear one.

We constructed Gaussian–kernel SVM classifiers for the 75 pairs of letters that
the linear kernel failed to distinguish with 97% accuracy. A comparison of the
performance of the chosen classifiers for each kernel type is given in Figure 4 (a).
In Figure 4 (b), we display the eight pairs on which the Gaussian SVM performed
with at least 10% higher accuracy than the linear SVM. The 31 pairs where
Gaussian SVM accuracy falls below 80% are shown in Figure 5.

7 Conclusion

Even with the simplest kernel, the support vector method is strong enough to
achieve good generalization accuracy on an optical character recognition problem
that causes difficulty for simpler classification methods. We believe that our
SVM results may be the best classification possible on the basis of the mesh of
directional features we are using.

To distinguish the characters that confuse our SVM classifier, we plan to add
new features. For example, by counting the number of connected components in
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a symbol, we could distinguish many variants of the greater–than sign (>). We
also plan to record the convexity or concavity of a symbol as traced along its
outline, to distinguish various nearly vertical characters. These features will be
the topic for a future paper.

To our surprise, the SVM’s we constructed with the Gaussian kernel did not
show significantly stronger performance on the testing data. We attribute this
phenomenon to the simple nature of our mesh of directional features. We plan to
repeat this comparison after attaching a greater variety of features to our data.
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Abstract. A Bayesian multinet classifier allows a different set of independence 
assertions among variables in each of a set of local Bayesian networks composing 
the multinet. The structure of the local network is usually learned using a joint-
probability-based score that is less specific to classification, i.e., classifiers based 
on structures providing high scores are not necessarily accurate. Moreover, this 
score is less discriminative for learning multinet classifiers because generally it is 
computed using only the class patterns and avoiding patterns of the other classes. 
We propose the Bayesian class-matched multinet (BCM2) classifier to tackle both 
issues. The BCM2 learns each local network using a detection-rejection measure, 
i.e., the accuracy in simultaneously detecting class patterns while rejecting 
patterns of the other classes. This classifier demonstrates superior accuracy to 
other state-of-the-art Bayesian network and multinet classifiers on 32 real-world 
databases. 

1   Introduction 

Bayesian networks (BNs) excel in knowledge representation and reasoning under 
uncertainty [1]. Classification using a BN is accomplished by computing the posterior 
probability of the class variable conditioned on the non-class variables. One approach 
is using Bayesian multinets. Representation by a multinet explicitly encodes 
asymmetric independence assertions that cannot be represented in the topology of a 
single BN using a several local networks that each represents a set of assertions for a 
different state of the class variable [2]. Utilizing these different independence 
assertions, the multinet simplifies graphical representation and alleviates probabilistic 
inference in comparison to the BN [2]-[4]. However, although found accurate at least 
as other BNs [3], [4], the Bayesian multinet has two flaws when applied to 
classification. The first flaw is the usual construction of a local network using a joint-
probability-based score [4], [5] which is less specific to classification, i.e., classifiers 
based on structures providing high scores are not necessarily accurate in classification 
[4], [6]. The second flaw is that learning a local network is based on patterns of only 
the corresponding class. Although this may approximate the class data well, 
information discriminating between the class and other classes may be discarded, thus 
undermining the selection of the structure that is most appropriate for classification. 

We propose the Bayesian class-matched multinet (BCM2) classifier that tackles 
both flaws of the Bayesian multinet classifier (BMC) by learning each local network 
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using a detection-rejection score, which is the accuracy in simultaneously detecting 
and rejecting patterns of the corresponding class and other classes, respectively. We 
also introduce the tBCM2 which learns a structure based on a tree-augmented naïve 
Bayes (TAN) [4] using the SuperParent algorithm [7]. The contribution of the paper is 
three fold. First is the suggested discrimination-driven score for learning BMC local 
networks. Second is the use of the entire data, rather than only the class patterns for 
training each of the local networks. Third is the incorporation of these two notions 
into an efficient and accurate BMC (i.e., the tBCM2) that is found superior to other 
state-of-the-art Bayesian network classifiers (BNCs) and BMCs on 32 real-world 
databases. 

Section 2 of the paper describes BNs and BMCs. Section 3 presents the detection-
rejection score and BCM2 classifier, while Section 4 details experiments to compare 
the BCM2 to other BNCs and BMCs and their results. Section 5 concludes the work. 

2   Bayesian Networks and Multinet Classifiers 

A BN model B  for a set of n variables X={X1,…,Xn}, having each a finite set of 
mutually exclusive states, consists of two main components, B=(G,Θ). The first 
component G is the model structure that is a directed acyclic graph (DAG) since it 
contains no directed cycles. The second component is a set of parameters Θ that 
specify all of the conditional probability distributions (or densities) that quantify 
graph edges. The probability distribution of each Xi∈X conditioned on its parents in 
the graph Pai⊆X is P(Xi=xi| Pai)∈Θ  when we use Xi and Pai to denote the ith variable 
and its parents, respectively, as well as the corresponding nodes. 

The joint probability distribution over X given a structure G that is assumed to 
encode this probability distribution is given by [1] 

 

 
(1) 

where x is the assignment of states (values) to the variables in X, xi is the value taken 
by Xi, and the terms in the product compose the required set of local conditional 
probability distributions Θ quantifying the dependence relations. The computation of 
the joint probability distribution (as well as related probabilities such as the posterior) 
is conditioned on the graph. A common approach is to learn a structure from the data 
and then estimate its parameters based on the data frequency count. In this study, we 
are interested in structure learning for the local networks of a BMC. 

A BN entails that the relations among the domain variables be the same for all 
values of the class variable. In contrast, a Bayesian multinet allows different relations, 
i.e., (in)dependences for one value of the class variable are not necessarily those for 
other values. A BMC [2]-[5], [8], [9] is composed of a set of local BNs, {B1,…,B|C|}, 
each corresponds to a value of the |C| values of the class node C. The BMC can be 
viewed as generalization of any type of BNC when all local networks of the BMC 
have the same structure of the BNC [4]. Although a local network must be searched 
for each class, the BMC is generally less complex and more accurate than a BNC. 
This is because usually each local network has a lower number of nodes than the 
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BNC, as it is required to model a simpler problem. The computational complexity of 
the BMC is usually smaller and its accuracy higher than those of the BNC since both 
the complexity of structure learning and number of probabilities to estimate increase 
exponentially with the number of nodes in the structure [2]. 

A BMC is learned by partitioning the training set into sub-sets according to the 
values of the class variable and constructing a local network Bk for X for each class 
value C=Ck using the kth sub-set. This network models the kth local joint probability 
distribution ( )

kBP X . A multinet is the set of local BNs {B1,…,B|C|} that together with 

the prior P(C) on C classify a pattern x={x1,…,xn} by choosing the class 

[ ]1, KC K C∀ ∈ maximizing the posterior probability 

 

 
(2) 

where 

 
 

 

(3) 

In the Chow-Liu multinet (CL multinet) [4], the local network Bk is learned using 
the kth sub-set and based on the Chow-Liu (CL) tree [10]. This maximizes the log-
likelihood [4], which is identical to minimizing the KL divergence between the 
estimated joint probability distribution based on the network 

kBP and the empirical 

probability distribution for the sub-set k̂P [5], 

 

 
(4) 

Thus, the CL multinet induces a CL tree to model each local joint probability 
distribution and employs (2) to perform classification. Further elaborations to the 
construction of the CL tree may be found in [3]. Also we note that the CL multinet 
was found superior in accuracy to the naïve Bayes classifier (NBC) and comparable to 
the TAN [4]. Other common BMCs are the mixture of trees model [9], the recursive 
Bayesian multinet (RBMN) [8] and the discriminative CL tree (DCLT) BMC [5]. 

3   The Bayesian Class-Matched Multinet Classifier 

We suggest the Bayesian class-matched multinet (BCM2) that learns each local network 
using the search-and-score approach. The method searches for the structure maximizing 
a discrimination-driven score that is computed using training patterns of all classes. 
Learning a local network in a turn rather than both networks simultaneously has 
computational benefit regarding the number of structures that need to be considered. 
First we present the discrimination-driven score and then the tBCM2 that is a classifier 
based on the TAN [4] and searched using the SuperParent algorithm [7]. 
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The BCM2 Score. We first make two definitions: (a) a pattern x is native to class Ck  
if x∈Ck and (b) a pattern x is foreign to class Ck if x∈Cj where j∈[1,|C|] and j≠k. We 
partition the dataset D into test (Dts) and training (Dtr) sets, the latter is further divided 
into internal training set T used to learn candidate structures and a validation set V 
used to evaluate these structures. Each training pattern in Dtr is labeled for each local 
network Bk as either native or foreign to class Ck depending on whether it belongs to 
Ck or not, respectively. In each iteration of the search for the most accurate structure, 
the parameters of each candidate structure are learned using T in order to construct a 
classifier that can be evaluated using a discrimination-driven score on the validation 
set. After selecting a structure, we update its parameters using the entire training set 
(Dtr) and repeat the procedure for all other local networks. The derived BCM2 can be 
then tested using (2).  

The suggested score evaluates a structure using the ability of a classifier based on 
this structure in detecting native patterns and rejecting foreign patterns. The score Sx 
for a pattern x is determined based on the maximum a posteriori probability, i.e., 

 

 
(5) 

where k
nx and 

k
fx  are native and foreign patterns to Ck, respectively. The first line in 

(5) represents correct detection (classification of a native pattern to Ck) or correct 
rejection (classification of a foreign pattern to a class other than Ck), whereas the 
second line represents incorrect detection of a native pattern or incorrect rejection of a 
foreign pattern. By identifying TP (true positive) as the number of correct detections 
and TN (true negative) as the number of correct rejections made by a classifier on all 
the |V| validation patterns in V, we define the detection-rejection measure (DRM) 
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That is, for each local network and each search iteration, we select the structure that 
the trained classifier based on this structure simultaneously detects native patterns and 
rejects foreign patterns most accurately. Both correct detection and correct rejection 
contribute equally to the score although any other alternative is possible. 

TAN-Based BCM2. We propose a TAN-based BCM2 (tBCM2) that utilizes the DRM 
and SuperParent algorithm searching the TAN space. The SuperParent (SP) algorithm 
has reduced computational cost compared to hill-climbing search (HCS) and it 
expedites the search [7]. In each iteration, we determine the best edge to add to a 
structure by finding a good parent and then the best child for this parent. 

Following [7] we define: (a) an Orphan is a node without a parent other than the 
class node, (b) a SuperParent (SP) is a node extending edges to all orphans 
simultaneously (as long as no cycles are formed) and (c) a FavoriteChild (FC) of an 
SP is the orphan amongst all orphans that when connected to the SP provides a 
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structure having the highest value of the DRM. We initialize the search for each local 
network using the NBC structure and employ the value of DRM it provides as the 
current DRM value. Each iteration of the search comprises of two parts. First, we 
make each node an SP in turn and choose the SP that if added to the structure would 
provide the highest value of the DRM. Second, we find the FC for this SP and add the 
edge between them to the structure if this edge increases the current value of the 
DRM. We update the current value of the DRM and continue the search as long as the 
DRM value increases and more than one orphan remains unconnected to an SP. Since 
in each iteration we connect one variable at the most, the maximum number of 
iterations and edges that can be added to the initial structure is n-1 (yielding the TAN 
structure). We repeat this procedure for all |C| local networks terminating with the 
tBCM2, as is exemplified in the following pseudo code: 

 

Although both the CL multinet and tBCM2 learn a multinet based on the TAN, the 
two algorithms differ in a several main issues. First, the CL multinet is learned using a 
constraint-based approach [11] based on the CL tree algorithm [10] or an extended 
version of this algorithm [3], while the tBCM2 is learned by employing the search-
and-score approach [11]. Second, the former algorithm establishes for each class a CL 
tree that maximizes a joint-probability-based measure, whereas the latter algorithm 
employs a discrimination-driven score for structure learning. Third, the CL multinet 
utilizes only the class patterns for learning each local network, whereas the tBCM2 
utilizes all patterns. Fourth, the CL multinet always adds n-1 edges even when some 
variables are completely independent, while the tBCM2 stops adding edges when 
there is no improvement in the score of a local network. 

Finally we note that the worst case computational complexity of the tBCM2 
(excluding the cost of parameter learning) is O(3⋅|C|⋅|V|⋅n3/2), which incurs if the 
algorithm does not end before finding the maximum possible number of SPs [12]. 
As an example, Figure 1 demonstrates the four local networks learned by the 
tBCM2 for the UCI repository Car database [13] along with the corresponding DRM 
values. 

1. For k=1:|C|  // index of the local network Bk 
1.1 Start with the NBC structure as the current structure of the kth local network. In 

all stages, use T to learn the structure and V to calculate the structure DRM. 
1.2 For g=1:n-1  // index of iteration 
1.2.1 Find the SP yielding the structure having the highest DRM. 
1.2.2 Find the FC for this SP. 
1.2.3 If the edge SP FC→  improves the DRM value of the current structure, update 

the structure with this edge and employ the structure as the current structure.  
Else: Return the current structure as the kth local network and go to 1. 

1.3 Return the current structure as the kth local network and go to 1. 
2. Calculate the parameters of each local network using Dtr and return the tBCM2. 
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4   Experimental Results 

Between the DRM and Classification Accuracy. Since the DRM is measured for 
each local network separately and using the validation set and the classification 
accuracy is measured for the tBCM2 and the test set, we studied the relation between 
the two scores. We started the search for each local network with the NBC structure 
and identified an iteration by the addition of an edge between an SP and its FC. 
Whenever all the local networks had completed an iteration, we computed the values 
of DRM they achieve, the average DRM value and the test accuracy of the tBCM2 that 
used these networks. We repeated this procedure until all local networks completed 
learning (i.e., all final structures were found). Networks that completed learning 
before their counterpart networks, contributed their final DRM values to the 
calculation of the average DRM in each following iteration. Figure 2a presents the 
relation between the average DRM value of the local networks and the classification 
accuracy of the tBCM2 for increasing numbers of iterations of the SP algorithm and 
the UCI repository Nursery database [13]. This database is large (i.e., providing 
reliable results) and has relatively many variables that introduce numerous possible 
edge additions in each search iteration, thereby the database enables testing structure 
 

DRM=0.9297 DRM=0.9271 DRM =0.9531 DRM =0.9844

C1 C2 C3 C4

 

Fig. 1. The four local networks and associated DRM values of the tBCM2 for the Car database 

 

Fig. 2. (a) The relation between the average DRM and the tBCM2 classification accuracy for 
increasing numbers of iterations of the SP algorithm and the UCI Nursery database. (b) 
Learning curves for the tBCM2, CL multinet, TAN and NBC for the Waveform-21 database. 
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learning extensively. The figure shows that the classification accuracy increases 
monotonically with the average DRM value. 

Learning Curves. Figure 2b presents learning curves for the tBCM2, CL multinet, 
TAN and NBC for the large UCI repository Waveform-21 database [13]. Each of 
ten random replications of the database was partitioned into ten sets. One set was 
reserved for the test, and the other nine sets were added incrementally to the 
training set. Each classifier was trained using the increased-size training set and 
tested on the same test set following each increase. The accuracy was repeatedly 
measured for all data replications and averaged. Figure 2b demonstrates that the 
NBC and CL multinet have, respectively, the smallest and largest sensitivity to the 
sample size. The former classifier has lesser sensitivity since it needs to estimate 
only few parameters so even a small sample size provides the classifier its 
asymptotic accuracy. The tBCM2 is less sensitive than the CL multinet for two 
reasons. First, the tBCM2 may have fewer edges for each of its local networks than 
the CL multinet (Section 3) and therefore it needs to estimate less parameters. 
Second, the tBCM2 utilizes all the data whereas the CL multinet employs only the 
class data. In addition we note that except for a very small sample size, the tBCM2 
is superior to all other classifiers for this database. Similar conclusions are drawn 
for most of the other databases. 

Classification Accuracy. Table 1 demonstrates the superior classification accuracy of 
the tBCM2 in comparison to the NBC, TAN, CL multinet and RBMN for 32 
databases of the UCI repository. Out of the databases, the tBCM2 accomplishes higher 
accuracy than the CL multinet on 24 databases, identical accuracy on 3 databases and 
inferior accuracy on 5 databases. It achieves higher accuracy than the TAN on 28 
databases and inferior accuracy on 4 databases. The tBCM2 also outperforms the NBC 
on 90% of the databases. Twenty-two databases are tested using CV10 and the 
remaining (large) databases using holdout. On the former databases, the tBCM2 
reaches higher accuracy than the CL multinet classifier on 16 of the databases with 
statistical significance of 95% (t-test with α=0.05) on 12 of the databases and the CL 
multinet classifier achieves higher accuracy than the tBCM2 on 4 of the databases 
without statistical significance for none of them. Also for these 22 databases, the 
tBCM2 accomplishes higher accuracy than the TAN on 18 of the databases with 
statistical significance of 95% (α=0.05) for 13 of them and the TAN achieves higher 
accuracy than the tBCM2 on 4 of the databases with statistical significance of 95% 
(α=0.05) for 1 of the databases. 

In addition, Table 1 exemplifies the tBCM2 superiority to the RBMN [8] for 
those databases for which results are provided. Also, we compare the tBCM2 to the 
DCLT algorithm [5] for the only two databases for which results are given in [5]. 
We find for the Hepatitis database accuracies of 89.25% and 90.4% and for the 
Voting database accuracies of 92.18% and 93.97% for the DCLT and tBCM2 
classifiers, respectively. Finally, Table 1 presents also the average classification 
accuracies of the inspected methods over all 32 databases. The table shows that the 
tBCM2 (89.64%) is superior on average to the NBC (85.74%), TAN (87.41%) and 
CL multinet (87.45%). 
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Table 1. Classification accuracies of the tBCM2 and other classifiers on 32 databases from [13]. 
Bold font represents the highest accuracy for a database. 

Database NBC TAN CL multinet RBMN tBCM2 
Adult 83.61 85.83 85.11 NA 87.33 

Australian 85.36 (±2.14) 84.15 (±2.17) 85.22 (±2.09) 85.21 88.38 (±2.32) 
Balance 91.85 (±2.54) 85.44 (±2.07) 84.63 (±1.81) NA 90.88 (±1.03) 
Breast 97.51 (±0.94) 96.12 (±1.99) 96.34 (±1.00) 95.75 98.24 (±1.14) 

Car 85.71 (±2.33) 89.81 (±1.89) 94.10 (±0.98) 93.06 93.92 (±0.81) 
Cmc 51.66 (±2.97) 52.00 (±1.10) 50.85 (±1.82) NA 52.85 (±1.65) 

Corral 85.06 (±4.59) 96.06 (±2.44) 99.23 (±2.93) NA 100.0 (±0.00) 
Crx 85.98 (±1.85) 85.67 (±2.72) 86.14 (±2.79) 90.05 88.89 (±2.59) 

Cytogenetic 77.94 81.14 80.30 NA 82.87 
Flare 79.82 (±1.66) 82.54 (±1.17) 82.55 (±0.94) 86.87 83.35 (±1.21) 
Hayes 81.88 (±4.25) 75.00 (±3.27) 63.13 (±4.86) NA 80.63 (±3.13) 

Hepatitis 85.23 (±1.27) 86.01 (±1.78) 86.54 (±2.00) NA 90.40 (±1.52) 
Ionosphere 91.16 (±2.34) 91.44 (±2.57) 93.92 (±2.01) NA 93.03 (±2.69) 

Iris 93.67 (±2.99) 93.33 (±2.16) 93.33 (±2.16) NA 95.83 (±2.21) 
Krkp (Chess) 87.32 92.31 93.02 94.18 95.03 

Led-7 74.41 73.76 73.10 NA 75.89 
Lymphography 83.19 (±3.93) 84.57 (±5.47) 79.81 (±5.05) NA 85.57 (±5.16) 
Mofn-3-7-10 85.05 (±1.80) 91.06 (±2.01) 90.63 (±2.46) 90.53 94.43 (±2.30) 

Monks 96.39 (±1.68) 98.73 (±1.41) 98.92 (±1.09) NA 98.92 (±1.09) 
Mushroom 97.40 99.47 99.47 NA 100 

Nursery 89.17 91.09 93.89 91.06 96.03 
Pendigit 85.72 94.32 96.62 NA 96.04 
Segment 91.34 (±0.83) 94.09 (±1.04) 94.42 (±1.23) 89.35 96.13 (±1.23) 
Shuttle 98.45 99.61 99.92 97.21 99.92 

Splice (DNA) 96.33 89.65 96.74 87.52 97.98 
Tic Tac Toe 69.62 (±1.96) 75.07 (±2.64) 73.07 (±2.41) NA 72.65 (±1.45) 

Tokyo 91.45 (±1.82) 92.01 (±2.19) 92.39 (±1.55) NA 93.94 (±1.98) 
Vehicle 62.42 (±2.67) 70.82 (±2.51) 69.93 (±2.91) 73.64 68.54 (±2.65) 
Voting 90.96 (±2.62) 93.99 (±2.16) 93.97 (±2.46) 96.55 93.97 (±2.46) 

Waveform-21 78.60 78.94 79.69 77.79 83.82 
Wine 98.27 (±1.65) 98.03 (±1.55) 98.27 (±1.65) NA 98.98 (±1.21) 
Zoo 92.00 (±4.66) 95.08 (±4.25) 93.09 (±5.03) NA 94.08 (±4.17) 

Average 85.74 87.41 87.45 --- 89.64 

5   Summary and Concluding Remarks 

We propose the tBCM2 which is a multinet classifier that learns each local network 
based on a detection-rejection measure, i.e., the accuracy in simultaneously detecting 
and rejecting, respectively, the corresponding class and other class patterns. The 
tBCM2 uses the SuperParent algorithm to learn for each local network a TAN having 
only augmented edges that increase the classifier accuracy. Evaluated on 32 real-
world databases, the tBCM2 demonstrates on average superiority to the NBC, TAN, 
CL multinet and RBMN classifiers. The advantage of the tBCM2 to the TAN is 
related to the facts that the former classifier is a multinet that is learned using a 
discrimination-driven score, and the advantage of the tBCM2 to the CL multinet is 
attributed to the score of the former and the facts that it usually learns a smaller 
number of parameters and use the whole data for training. 
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In further work, we will make parameter learning discriminative rather than 
generative and apply the BCM2 to less restricted structure spaces, such as augmented 
naïve and general Bayesian networks. 
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Abstract. We propose the recursive autonomy identification (RAI) algorithm 
for constraint-based Bayesian network structure learning. The RAI algorithm 
learns the structure by sequential application of conditional independence (CI) 
tests, edge direction and structure decomposition into autonomous sub-
structures. The sequence of operations is performed recursively for each 
autonomous sub-structure while simultaneously increasing the order of the CI 
test. In comparison to other constraint-based algorithms d-separating structures 
and then directing the resulted undirected graph, the RAI algorithm combines 
the two processes from the outset and along the procedure. Thereby, learning a 
structure using the RAI algorithm requires a smaller number of high order CI 
tests. This reduces the complexity and run-time as well as increases structural 
and prediction accuracies as demonstrated in extensive experimentation. 

1   Introduction 

A Bayesian network (BN) is a graphical model that efficiently encodes the joint 
probability distribution for a set of variables [1]. Learning the model structure from 
data by considering all possible structures exhaustively is infeasible as the number 
of possible structures grows exponentially with the number of nodes [2]. Hence, 
structure learning requires either sub-optimal heuristic search algorithms or algo-
rithms which are efficient under certain assumptions. In the constraint-based (CB) 
approach [3], [4], a structure edge is learned if meeting a constraint, called condi-
tional independence (CI) test, derived from comparing the value of a statistical or 
information-theory-based test of conditional independence to a threshold. Meeting 
such constraints enables the formation of an undirected graph that is further directed 
based on causality inference rules [5]. Once the structure is learned, the model pa-
rameters are usually computed from the relative frequencies of variable states as 
represented in the data. 

Most of the CB algorithms, such as IC [5], PC [4] and TPDA [3], construct a BN in 
two stages. The first stage is learning associations between variables for constructing 
an undirected structure. This requires an exponentially growing number of CI tests 
with the number of nodes. The PC and TPDA algorithms reduce the number of CI 
tests using some assumptions to restrict the space of possible structures. The second 



 Bayesian Network Structure Learning by Recursive Autonomy Identification 155 

 

stage in most algorithms is directing edges using inferred causality performed in two 
steps: finding and directing V-structures and inductively directin additional edges [5]. 
Edge direction is unstable, i.e., small errors in the input to the stage yield large errors 
in its output [4]. To eliminate the instability, the algorithms separate the two stages 
trying to minimize in the first stage erroneous decisions about independence caused 
by large condition sets that are more likely to be incorrect and also lead to poorer 
estimation of dependences due to the curse-of-dimensionality. 

We propose the recursive autonomy identification (RAI) algorithm, which is a 
CB model that learns the structure of a BN by sequential application of CI tests, 
edge direction and structure decomposition into autonomous sub-structures. This 
sequence of operations is performed recursively for each autonomous sub-structure. 
In each recursive call, the order of the CI test is increased similarly to the PC algo-
rithm [4]. By performing CI tests of low order (i.e., tests employing small condi-
tions sets) before those of high order, the RAI algorithm performs more reliable 
tests that save performing less reliable tests. By considering directed rather than 
undirected edges, the RAI algorithm avoids unnecessary CI tests and performs tests 
using smaller condition sets. Smaller condition sets are represented more precisely 
than larger sets in the dataset, i.e., the RAI algorithm diminishes the curse-of-
dimensionality while testing using smaller condition sets and thereby it improves 
the prediction accuracy. Repeated recursively for autonomies decomposed from the 
graph, both mechanisms reduce computational and time complexities, database 
queries and structural errors. 

Section 2 provides preliminaries and Section 3 introduces the RAI algorithm. Sec-
tion 4 presents experimental evaluation of the RAI algorithm regarding structural 
correctness, complexity and prediction accuracy. Section 5 summarizes the study. 

2   Preliminaries 

A BN B(G,Θ) is a model for representing the joint probability distribution for a set of 

variables { }1,..., nX X=X . The structure G(V,E) is a directed acyclic graph (DAG) 

composed of V, a set of nodes representing the variables X, and E, a set of directed 
edges connecting the nodes. An edge manifests dependence between the nodes con-
nected by the edge while the absence of an edge demonstrates independence between 
the nodes. A directed edge Xi Xj connects a child node Xj to its parent Xi. Pa(X,G) is 
the set of X’s parents in G. The set of parameters Θ holds local conditional probabilities 
over X, ( )| ( ,G)  i iP X X i∀Pa  that quantify the edges. The joint probability distribu-

tion for X represented by a BN is ( )1
1

( ,... ) | ( , )
n

n i i
i

P X X P X X G
=

= ∏ Pa [1]. We also use 

the term partially directed graph (PDG), i.e., a graph which may have both directed and 
undirected edges and has at most one edge between any pair of nodes. We use this term 
in learning a graph starting from a complete undirected graph and eliminating and di-
recting edges until uncovering a graph representing a family of Markov equivalent 
structures (pattern) of the true BN (i.e., the graphs have the same sets of adjacencies and 
V-structures) [4], [5]. Pap(X,G), Adj(X,G) and Ch(X,G) are respectively the sets of po-
tential parents, adjacent nodes (two nodes connected by an edge) and children of X in a 
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PDG, Pap(X,G)=Adj(X,G)\Ch(X,G). We use X || Y|S to indicate that X and Y are inde-
pendent given a set of nodes S and employ also the notion of d-separation [5]. Next, we 
define d-separation resolution evaluating d-separation for different sizes of condition 
sets, an exogenous cause to a graph and an autonomous sub-structure. 

Definition 1 – d-separation resolution: The resolution of a d-separation relation 
between a pair of non-adjacent nodes in a graph is the size of the smallest condition 
set that d-separates the two nodes (see Figure 1 for an example). 

Definition 2 – d-separation resolution of a graph: The d-separation resolution of a 
graph is the highest d-separation resolution in the graph (see Figure 2). 

(a)

X Y

Z

 (b) 
X Y

Z

 (c) 

X

Y

W Z

 

Fig. 1. Examples of d-separation resolutions of (a) 0, (b) 1 and (c) 2 between nodes X and Y 
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 (c) 

X1 X2

X3

X4 X5

X6

 

Fig. 2. Examples of graph d-separation resolutions of (a) 2, (b) 1 and (c) 0 

Definition 3 – exogenous cause: Y is an exogenous cause to G(V,E) if Y∉V and 
∀X∈V, Y∈Pa(X) or Y∉Adj(X) [5].  

Definition 4 – autonomous sub-structure: A sub-structure GA(VA,EA) in G(V,E) s.t 
VA⊂V, EA⊂E is autonomous given a set Vex of exogenous nodes to GA if ∀X∈VA, 
Pa(X,G)⊂{VA∪Vex}. If Vex is empty, we say that the sub-structure is autonomous. 

An autonomous sub-structure GA holds the Markov property, i.e., two non-adjacent 
nodes in GA are d-separated given nodes in GA or exogenous causes to GA (Figure 3). 

 

Fig. 3. An autonomous sub-structure GA in G having exogenous nodes X1 and X2 
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3   Recursive Autonomy Identification 

Starting from a complete undirected graph and proceeding from low to high graph d-
separation resolution, the RAI algorithm uncovers the correct pattern of a structure by 
recursively performing the sequence: (1) test of CI between nodes followed by the 
removal of edges related to independences, (2) edge direction according to inferred 
causality rules, and (3) graph decomposition into autonomous sub-structures.  

CI testing of order n between nodes X and Y is performed by thresholding the 
value of a criterion measuring the dependence between the nodes conditioned on a 
set of n nodes (the condition set) from the parents of X or Y. The set is determined 
by the Markov property [5], i.e., if X is directed into Y then only Y's parents are 
included in the set. Commonly, this criterion is the χ2 goodness of fit test [4] or 

conditional mutual information [3]. Directing edges is conducted according to cau-
sality rules [5]. Given an undirected graph and a set of independences, the following 
two steps are performed consecutively. First, V-structures are identified and the 
corresponding edges are directed. A V-structure X Z Y is defined if 1) X and Y 
are unconnected neighbors of Z, 2) X and Y are marginally independent and 3) X 
and Y are dependent conditioned on Z. In the second step, also called the inductive 
stage, an edge Y—Z is directed as Y Z if: 1) there exists an edge X Y where X 
and Z are not adjacent and there is no arrowhead at Y, 2) there is a chain Y X Z, 
or 3) two chains Y—X Z and Y—W Z exist. This step is continued until no more 
edges can be directed complying with two restrictions: a) no V-structures in addi-
tion to those of the first step and b) no directed cycles are created. Finally, decom-
position into autonomous sub-structures reveals the structure hierarchy. It also  
allows the performance of fewer CI tests that are conditioned on a large number of 
potential parents, and hence reduces complexity. The RAI algorithm identifies an-
cestor and descendant sub-structures; the formers are autonomous and the latters are 
autonomous given nodes of the formers. 

An iteration of the RAI algorithm starts with knowledge produced in the previous it-
eration and the current d-separation resolution, n. Previous knowledge includes Gstart, a 
structure having d-separation resolution of n-1, and Gex, a set of structures having each 
possible exogenous causes to Gstart. In the first iteration, n = 0, Gstart(V,E) is the complete 
undirected graph and Gex=∅. Given a structure Gstart having d-separation resolution n-1, 
the RAI algorithm seeks independences between adjacent nodes conditioned on sets of 
size n, resulting in a structure having d-separation resolution of n. After applying causal-
ity rules in order to direct the edges, a partial topological ordering is obtained in which 
parent nodes precede their descendants. This ordering is partial as not all the edges can 
be directed, so nodes connected by undirected edges have equal topological order. Us-
ing this partial topological ordering, the algorithm decomposes the structure into ances-
tor and descendent autonomous sub-structures in order to reduce the complexity of the 
successive stages. A descendant sub-structure is established by identifying the lowest 
topological order nodes (either a single node or a several nodes having the same lowest 
order). We will refer to a single descendent sub-structure although it may consist of a 
several non-connected sub-structures. This structure is autonomous given nodes of 
higher topological order composing ancestor sub-structures. The algorithm first learns 
ancestor sub-structures and only then the descendant sub-structure in order to consider 
for each pair of nodes of the descendent sub-structure condition sets that (possibly) have 
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smaller numbers of parents. Each ancestor or descendent sub-structure is further learned 
by recursive calls to the algorithm. Figures 4 and 5 show respectively the RAI algorithm 
and a manifesting example. 

The RAI algorithm is composed of four stages (A to D in Figure 4) and an exit 
condition checked before the execution of each stage. The purpose of Stage A is to 
shrink the link between Gex and Gstart, the latter is having d-separation resolution of 
n-1, and direct the edges of Gstart. This is achieved by CI testing using condition sets 
of size n between nodes in Gex and nodes in Gstart, removing edges corresponding to 
independences and directing those remaining edges that can be directed. Stage B 
performs the same for edges in Gstart. In both stages, the condition set includes 
nodes of Gex and Gstart. Stage B also identifies the partial topological ordering of 
nodes and decomposes the current graph into ancestor and descendant sub-
structures. Stage C is a recursive call to the RAI algorithm for learning each ances-
tor sub-structure with order n+1. Similarly, Stage D of the algorithm is a recursive 
call to the RAI for learning the descendant sub-structure with order n+1 while as-
suming that the ancestor sub-structures have been fully learned (having the maximal 
d-separation resolution).  

Figure 5 sketches stages in learning an example graph. Figure 5a shows the true 
structure we wish to uncover. Initially, Gstart is the complete undirected graph, n=0 
and Gex is empty so Stage A is skipped. In Stage B1, pairs of nodes are CI tested 
given empty condition sets i.e., marginal independence, which yields the removal of 
the edges between node X1 and nodes X3, X4 and X5 (Figure 5b). The causal relations 
inferred in Stage B2 are shown in Figure 5c. The nodes having the lowest topologi-
cal order (X2, X6, X7) are grouped into a descendant sub-structure GD (Stage B3) 
while the remaining nodes form two unconnected ancestor sub- structures, 

A1
G and 

A2
G  (Stage B4) (Figure 5d). In Stage C, the algorithm is called recursively for each 

of the ancestor sub-structures with n=1, 
start Ai

G =G and Gex=∅. Since sub-structure 

A1
G contains a single node, the exit condition for the structure is satisfied. While 

calling 
start A2

G =G , Stage A is skipped and Stage B1 identifies that X4 || X5|X3 thus 

removes X4⎯X5. No causal relations are identified so the nodes have equal topo-
logical order and they are grouped to from a descendant sub-structure. The recur-
sive call for this sub-structure with n=2 is returned immediately since the exit  
condition is satisfied (Figure 5e). In Stage D, the RAI is called with n=1, Gstart=GD 
and { }ex A A1 2

= G ,GG . In Stage A1 relations X1 || {X6,X7}|X2, X4 || {X6,X7}|X2 and 

{X3,X5} || {X2,X6,X7}|X4 are identified and the corresponding edges are removed 
(Figure 5f). In Stage A2, X2 is identified as a parent of X6 and X7 (Figure 5g). Stage 
B1 identifies that X2 || X7|X6 and Stage B2 identifies X6 as a parent of X7 leading, 
respectively, to the removal of X2→X7 and direction of X6→X7 (Figure 5h). Then, in 
Stages B3 and B4, X7 and {X2, X6} are identified as a descendant and an ancestor 
sub-structures, respectively. Further recursive calls are returned immediately and 
the resulting PDG (Figure 5h) represents a family of Markov equivalent structures 
of the true structure (Figure 5a). 
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Main function Gout = RAI(n,Gstart(Vstart,Estart),Gex(Vex,Eex))
Exit condition 

If all nodes in Gstart have less than n+1 potential parents exit. 
A. Thinning the link between Gex and Gstart and directing Gstart

1. Y in Gstart and its parent X in Gex, if S {Pa(Y,Gex)\X Pap(Y,Gstart)} and |S|=n s.t
X || Y|S, then remove the edge between X and Y.

2. Direct the edges using causality inference rules. 
B. Thinning, directing and decomposing Gstart

1. Y and its potential parent X both in Gstart, if S {Pa(Y,Gex) Pap(Y,Gstart)\X} and
|S|=n s.t X || Y|S, then remove the edge between X and Y.

2. Direct the edges using causality inference rules. 
3. Group nodes having the lowest topological order into a descendant sub-structure GD.
4. Remove GD from Gstart temporarily and define the resulting unconnected structures as

ancestor sub-structures A A1 k
G ,...,G .

C. Ancestor sub-structure decomposition 
for i = 1 to k, call A exRAI( +1,G , )

i
n G

D. Descendant sub-structure decomposition 
1. Define 

D_ex A A ex1 k
= G ,...,G ,G G as the exogenous structure to GD.

2. Call D D_exRAI( +1,G , )n G

 

Fig. 4. The RAI algorithm 
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Fig. 5. Learning an example structure. a) The true structure and structures learned in Stages 
(see Figure 4) b) B1, c) B2, d) B3 and B4, e) C, f) D and A1, g) D and A2 and h) D, B1 and B2. 

4   Experiments and Results 

Synthetic data. The complexity of the RAI algorithm was compared to that of the PC 
algorithm by the number of CI tests required to learn synthetically generated 
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structures. We learned graphs of sizes (numbers of nodes) between 6 and 15. We used 
3,000 randomly generated graphs restricted by a maximal fan-in value of 3, i.e., every 
node has at most 3 parents and at least one node has 3 parents. The implementation 
was aided by the Bayes net toolbox (BNT) [6] and BNT structure learning package 
[7]. Figure 6a shows the percentage of CI tests saved using the RAI algorithm com-
pared to the PC algorithm as a function of the condition set size for different graph 
sizes. The figure shows that the percentage of CI tests saved using the RAI algorithm 
increases with both graph and condition set sizes. For example, the save in CI tests for 
a graph of size 15 and condition sets of size 4 is more than 70%. 

ALARM network. Correctness of the learned structure was evaluated using the 
ALARM network [8], which is a widely accepted structure learning benchmark since 
the true graph is known. The RAI algorithm was compared to the PC, TPDA and K2 
[2] algorithms using 10 databases of 10,000 randomly generated cases each. The node 
ordering required for the K2 algorithm was determined by learning a maximum 
weighted spanning tree (MWST) and selecting a root node [7]. We also evaluated the 
K2 algorithm with the true ordering, which is inferred from the known network. We 
identify these two versions as K2 (MWST) and K2 (true), respectively. Since the 
TPDA algorithm uses for CI testing the conditional mutual information (CMI) [3], we 
employ this test also for the RAI and PC algorithms and selected thresholds of 3.10-3, 
3.10-3 and 2.10-3 for the RAI, TPDA and PC algorithms, respectively. Structural cor-
rectness was evaluated by measuring the root mean square of extra and missing edges 
errors in the learned structure compared with the true structure (i.e., the total error). 
The smallest total error of 1.3% was achieved by the RAI algorithm compared to 
errors of 6.32%, 2.94%, 6.76% and 4.68% of the TPDA, PC, K2 (MWST) and K2 
(true) algorithms, respectively. This superiority of the RAI algorithm was validated 
using a t-test with 1% significance level. Complexity was measured by the total num-
ber of log operations (logarithms, multiplications and divisions) required for calculat-
ing CMI in CI testing. As Figure 6b shows, the PC and TPDA algorithms require 
respectively, 521% and 394% more log operations than the RAI algorithm. 

Real-world data. The RAI prediction accuracy was evaluated using databases of the 
UCI Repository [9]. Continuous variables were discretized and instances with missing 
values were removed. All databases were analyzed using a CV5 experiment except 
the large “chess”, “mofn 3-7-10”, “nursery” and “shuttle” databases which were ana-
lyzed using the holdout method. CI tests were carried out using the χ2 test, which is 
recommended for the PC algorithm [4], with thresholds chosen for each algorithm and 
database in order to maximize the prediction accuracy on a validation set. Parameter 
learning was performed assuming Dirichlet prior distribution having zero hyper-
parameters leading to the maximum likelihood solution [1]. Prediction accuracies of 
the RAI and PC algorithms as well as the run-time saved by using the RAI are sum-
marized in Table 1. The accuracy is also compared to those of the TPDA algorithm 
[10] and three classifiers reported in [11], namely, the naïve Bayesian classifier 
(NBC), tree augmented naïve (TAN) Bayes and a BN learned using the minimum 
description length (MDL) score. Databases in Table 1 for which accuracies are not 
reported in [10] or [11] are represented by empty entries. On thirteen of the nineteen 
databases, the RAI algorithm improves accuracy on the PC algorithm, on five it keeps 
accuracy intact and on the remaining “iris” database it deteriorates accuracy. Since  
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(a)     (b)  

Fig. 6. (a) Percentage of CI tests saved by using the RAI algorithm compared to the PC algo-
rithm as a function of the condition set size and number of nodes in the graph – 6, 9, 12 or 15 
(gray shades). (b) The numbers of log operations required by the PC, TPDA, and RAI algo-
rithms for learning the ALARM network. Gray shades represent different condition set sizes for 
the CI tests. Percentages on the tops of the bars are with reference to the RAI algorithm. 

Table 1. Mean prediction accuracy of classifiers based on the RAI, PC, TPDA, NBC, MDL and 
TAN. Bold font emphasizes the highest accuracy for a database. Also shown is the run-time cut 
due to the RAI compared to the PC algorithm. Standard deviationa are ommited. 

Database RAI 
(%) 

PC 
(%) 

TPDA 
(%) 

NBC 
(%) 

MDL 
(%) 

TAN 
(%) 

Run-time 
cut 
(%) 

australian 85.51 85.51  86.23 86.23 81.3 6.05 
breast 96.49 95.46  97.36 96.92 95.75 71.87 

car 92.94 85.07 86.11    91.10 
chess 93.53 93.15 94.65 87.15 95.59 92.40 80.65 
cleve 81.41 76.67  82.76 81.39 79.06 39.60 
cmc 51.12 50.92     14.22 

corral 98.52 84.53  85.88 97.60 95.32 87.94 
crx 86.38 86.38  86.22 85.60 83.77 25.25 

flare C 84.30 84.30 82.27 79.46 82.74 82.74 20.38 
iris 93.33 96.00  93.33 94.00 93.33 19.10 
led7 73.59 73.31     91.74 

mofn 3-7-10 93.16 81.45  86.43 85.94 91.70 67.70 
nursery 93.06 93.06 89.72    89.70 

shuttle (s) 99.22 98.40  98.34 99.17 98.86 38.94 
tic-tac-toe  75.57 74.74     36.52 

vehicle 70.22 63.93  58.28 61.00 67.86 13.15 
vote 95.87 95.64 95.17 90.34 94.94 89.20 46.06 
wine 87.07 85.44     29.11 
zoo 88.95 88.95     13.63 
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the accuracies for the TPDA, NBC, MDL-based and TAN classifiers are borrowed 
from the original papers, no examination of statistical significance of the results could 
have been performed. Therefore, any advantage of a classifier over another classifier 
for a specific database is not necessarily statistically significant. However, averaging 
the prediction accuracy over the twelve databases for which we have results for all but 
the TPDA algorithm shows that the RAI, PC, NBC, MDL-based and TAN classifiers 
achieve average accuracies of 89.8, 86.8, 86.0, 88.4 and 87.6%, respectively. 

5   Summary 

We demonstrate that the RAI algorithm requires less CI tests of high order than the 
PC algorithm, and the percentage of tests saved by the RAI algorithm increases with 
the sizes of the network and condition set for the CI test. The RAI algorithm recon-
structs the ALARM network with significantly less errors than the PC, TPDA and K2 
algorithms and has a considerably smaller computational complexity. In addition, the 
structure learned by the RAI algorithm yields a classifier that is mostly more accurate 
than those learned using the PC, TPDA, NBC, TAN and MDL-based algorithms. 
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Abstract. Graph edit distance is one of the most flexible mechanisms
for error-tolerant graph matching. Its key advantage is that edit distance
is applicable to unconstrained attributed graphs and can be tailored to
a wide variety of applications by means of specific edit cost functions.
Its computational complexity, however, is exponential in the number of
vertices, which means that edit distance is feasible for small graphs only.
In this paper, we propose two simple, but effective modifications of a
standard edit distance algorithm that allow us to suboptimally compute
edit distance in a faster way. In experiments on real data, we demon-
strate the resulting speedup and show that classification accuracy is
mostly not affected. The suboptimality of our methods mainly results in
larger inter-class distances, while intra-class distances remain low, which
makes the proposed methods very well applicable to distance-based graph
classification.

1 Introduction

Graph matching refers to the process of evaluating the structural similarity of
graphs. The main advantage of a description of patterns by graphs instead of
vectors is that graphs allow for a more powerful representation of structural re-
lations. In the most general case, vertices and edges are labeled with arbitrary
attributes. One of the most flexible error-tolerant graph matching methods ap-
plicable to unconstrained graphs is based on graph edit distance [1]. However, the
error-tolerant nature of edit distance — unlike exact graph matching methods
such as subgraph isomorphism or maximum common subgraph — potentially
allows every vertex of a graph to be mapped to every vertex of another graph.
The time and space complexity of edit distance computation is therefore very
high. Consequently, the edit distance can be computed for graphs of a rather
small size only.

In recent years, a number of methods addressing the high computational com-
plexity of graph edit distance computation have been proposed. A common way
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to make graph matching more efficient is to restrict considerations to special
classes of graphs. Examples include the classes of planar graphs [2], bounded-
valence graphs [3], trees [4], and graphs with unique vertex labels [5]. A number
of graph matching methods based on genetic algorithms have been proposed
[6]. Genetic algorithms offer an efficient way to cope with large search spaces,
but are non-deterministic and suboptimal. If the structural matching problem is
formulated as a vertex labeling problem, relaxation labeling techniques can be
used for graph matching [7]. While in some cases such graph matching methods
may perform efficiently, it seems to be rather difficult to apply them to strongly
distorted data. Recently, a suboptimal edit distance algorithm has been pro-
posed [8] that requires the vertices of graphs to be planarly embedded, which is
satisfied in many, but not all computer vision applications of graph matching. In
[9], the authors propose an edit distance method based on bipartite matching.
The main drawback of their method is that no edge information is used in the
bipartite matching step of the algorithm.

In this paper, we address the issue of efficient edit distance computation in
a different way. We exploit the fact that exact edit distance algorithms typi-
cally explore large areas of the search space that are not relevant for certain
classification tasks. We propose simple variants of a standard edit distance al-
gorithm that make the computation substantially faster, but keep the resulting
suboptimal distances sufficiently accurate.

2 Graph Edit Distance

The key idea of graph edit distance is to define the dissimilarity of two graphs
by the minimal amount of distortion that is needed to transform one graph into
the other. The distortion model is defined by a number of underlying vertex and
edge edit operations. The most common set of graph edit operations consists
of an insertion, a deletion, and a substitution operation on vertices and edges.
Given a source and a target graph, the idea is to remove some vertices and edges
from the source graph, relabel some of the remaining vertices and edges, and
possibly insert some vertices and edges such that eventually the target graph is
obtained. A sequence of edit operations that transform the source graph into the
target graph is called an edit path between source and target graph. Moreover,
cost functions are introduced measuring the strength of the distortion caused
by each edit operation. These cost functions are used to decide whether an edit
path represents weak modifications only or a significant amount of structural
distortion. If there exists an inexpensive edit path between two graphs, these
graphs are considered structurally similar in terms of the underlying edit oper-
ation model and edit cost functions; if no such edit path exists, the graphs are
considered dissimilar. Consequently, the edit distance of two graphs is defined
by the minimum cost edit path between the two graphs [1]. In the following,
we denote a graph by g = (V, E, μ, ν), where V denotes a finite set of vertices,
E ⊆ V ×V a set of directed edges, μ : V → L a vertex labeling function assigning
each vertex an attribute from L, and ν : E → L an edge labeling function. The
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substitution of a vertex u by a vertex v is denoted by u → v, the insertion of u
by ε → u, and the deletion of u by u → ε.

The computation of edit distance is usually carried out by means of a tree
search algorithm. Provided that a few weak conditions are satisfied in the defi-
nition of edit costs, it is sufficient to consider only a finite number of edit paths
to find one with minimum costs. The most widely used method for edit distance
computation is based on the A* algorithm [10]. The A* algorithm is a best-first
algorithm that attempts to retrieve an optimal path from a search tree based on
heuristic information. The idea is to use a search tree to represent the considered
optimization problem in a tree data structure, such that the root node represents
the starting point, inner nodes correspond to partial solutions, and leaf nodes
to complete solutions. A search tree is dynamically constructed at runtime by
iteratively creating successor nodes linked by edges to the currently considered
node. The A* search algorithm is characterized by a heuristic function that es-
timates the expected costs of the best route from the root through the current
node to a leaf node. At each step during tree traversal, the most promising node
— the one with the lowest heuristic cost value — from the set of nodes to be
processed is chosen. Formally, for a node of the search tree p, we use g(p) to
denote the costs of the optimal path from the root node to the current node p
found by A* so far and h(p) to denote the estimated costs from p to a leaf node.
The sum g(p) + h(p) gives the heuristic assessment of node p. If the estimated
costs h(p) are always lower than, or equal to, the real costs, the algorithm is
known to be admissible, that is, an optimal path from the root node to a leaf
node is guaranteed to be found by this procedure [10].

In graph edit distance, unlike exact graph matching algorithms, vertices of
the source graph can potentially be mapped to any vertex of the target graph.
Given two graphs, the A* search tree for edit distance is constructed by con-
sidering vertices of the first graph one after the other. An A* algorithm for the
computation of graph edit distance is given in Alg. 1. Let us assume that the
vertices of the first graph are processed in the order (u1, u2, . . .). All possible edit
operations are constructed simultaneously for each vertex, that is, the removal of
the vertex (line 12) or the substitution of the vertex by any unprocessed vertex
of the second graph (line 11), which produces a number of successor nodes in the
search tree. Note that edit operations on edges are implied by edit operations
on their adjacent vertices. If all vertices of the first graph have been processed,
the remaining vertices of the second graph can be inserted into the graph in a
single step (line 14). The set of partial edit paths OPEN consists of the search
tree nodes to be considered in the next step. The currently most promising node
p of the search tree, or partial edit path, is the one minimizing the A* search
costs g(p)+h(p) (line 5). When a complete edit path is obtained in this way, it is
guaranteed to be an optimal one and is returned as the solution (line 7). In cases
where the edit distance computation takes longer than a predefined threshold,
the corresponding distance is set to infinity.

The function g(p) measuring the costs from the root node to the current node
p is simply set equal to the cost of the partial edit path accumulated so far. In
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Algorithm 1. Computation of graph edit distance by A* algorithm
Input: Non-empty graphs g1 = (V1, E1, μ1, ν1) and g2 = (V2, E2, μ2, ν2),

where V1 = {u1, . . . , u|V1|} and V2 = {v1, . . . , v|V2|}
Output: A minimum-cost edit path from g1 to g2

e.g. pmin = {u1 → v3, u2 → ε, . . . , ε → v6}

1: Initialize OPEN to the empty set
2: For each vertex w ∈ V2, insert the substitution {u1 → w} into OPEN
3: Insert the deletion {u1 → ε} into OPEN
4: loop
5: Remove pmin = arg min

p∈OPEN {g(p) + h(p)} from OPEN
6: if pmin is a complete edit path then
7: Return pmin as the solution
8: else
9: Let pmin = {u1 → vi1 , . . . , uk → vik}

10: if k < |V1| then
11: For each w ∈ V2 \ {vi1 , . . . , vik}, insert pmin ∪ {uk+1 → w} into OPEN
12: Insert pmin ∪ {uk+1 → ε} into OPEN
13: else
14: Insert pmin ∪ w∈V2\{vi1 ,...,vik

}{ε → w} into OPEN
15: end if
16: end if
17: end loop

the simplest scenario, the estimated lower bound h(p) of the costs from p to a
leaf node is set to zero for all p. This means that no heuristic information of
the potentially best search direction is used at all, and one actually performs a
breadth-first search. In the remainder of this paper, this method will be referred
to as plain-A*. The other extreme would be to compute for a partial edit path
the actual optimal path to a leaf node, that is, perform a complete edit distance
computation for each node of the search tree. In this case, the function h(p)
is not a lower bound, but the exact value of the optimal costs. Of course, the
computation of such a perfect heuristic is both unreasonable and untractable.

Somewhere in between the two extremes, one can define a function h(p) eval-
uating how many edit operations have to be performed in a complete edit path
at the least [11]. The method we use in this paper is very intuitive and can
be computed efficiently. In the following, assume that a partial edit path at a
position in the search tree is given, and let the number of unprocessed vertices
of the first graph g1 and second graph g2 be n1 and n2, respectively. For an
efficient estimation of the optimal remaining edit operations, we first attempt to
perform as many vertex substitutions as possible, since a substitution is often
less expensive than a deletion followed by an insertion. To this end, we poten-
tially substitute each of the n1 vertices from g1 with any of the n2 vertices from
g2. To obtain a lower bound of the exact edit costs, we accumulate the costs
of the min{n1, n2} least expensive of these vertex substitutions and the costs of
max{0, n1 − n2} vertex deletions or max{0, n2 − n1} vertex insertions. Any of
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the selected substitutions that is more expensive than a deletion followed by an
insertion operation is replaced by the latter. This procedure only considers the
most optimistic way to edit the remaining part of g1 into the remaining part of
g2, and the estimated costs therefore constitute a lower bound of the exact cost.
In the following, we refer to this method as heuristic-A*.

3 Fast Suboptimal Edit Distance Algorithms

The methods described in the previous section find an optimal edit path between
two graphs. Unfortunately, the computational complexity of the edit distance
algorithm, whether or not heuristics are used to govern the tree traversal process,
is exponential in the number of vertices of involved graphs. This means that
the running time and space complexity may be huge even for reasonably small
graphs. In practice we are able to compute the edit distance of graphs typically
containing 12 vertices at most. In this paper, we therefore propose two edit
distance variants that are conceptually very simple, but lead to a significant
speedup of the computation. These methods do not generally return the optimal
edit path, but only a suboptimal one.

3.1 A*-Beamsearch

The first method is based on beam search. Instead of expanding all sucessor
nodes in the search tree, only a fixed number s of nodes to be processed are
kept in the OPEN set at all times. Whenever a new partial edit path is added
to the OPEN set in Alg. 1, only the s partial edit paths p with the lowest
costs g(p) + h(p) are kept, and the remaining partial edit paths in OPEN are
removed. This means that not the full search space is explored, but only those
nodes are expanded that belong to the most promising partial matches. For sim-
ilar graphs, it is clear that edit operations of an optimal path have low costs.
Therefore if only the partial edit paths with lowest costs are considered, we will
obtain an edit path that is nearly optimal, which will result in a suboptimal dis-
tance close to the exact distance. For dissimilar graphs, the suboptimal distance
will remain large. In the following, this method with parameter s is referred to
as plain-A*-beamsearch(s) or heuristic-A*-beamsearch(s), respectively,
depending on whether or not heuristic information is used in the tree search
procedure.

3.2 A*-Pathlength

In the second variant, we exploit an observation from edit distance systems in
practice. If graphs with a rather large number of vertices are given, it may very
well be that a considerable part of an optimal edit path is constructed in the
first few steps of the tree traversal, because most substitutions between similar
graphs have small costs. Whenever the first significantly more expensive edit
operation occurs (in the optimal edit path), this node will prevent the tree search
algorithm from quickly reaching a leaf node and unnecessarily make it expand
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a large part of the search tree. We therefore propose an additional weighting
factor favoring long partial edit paths over shorter ones. Formally, instead of
evaluating g(p) + h(p) in Alg. 1 (line 5), we use

g(p) + h(p)
t|p|

,

with parameter t > 1. The term |p| denotes the number of edit operations in
partial edit path p. We refer to this method as plain-A*-pathlength(t) or
heuristic-A*-pathlength(t), respectively.

4 Experimental Results

The methods we propose for speeding up the computation of graph edit distance
are suboptimal in the sense that only an approximate edit distance value is
obtained. In fact, from the description above it is clear that the approximate
distance value will be equal to, or larger than, the exact distance value, since
the suboptimal methods find an optimal solution in a subspace of the complete
search space. In this section, we measure the speedup of the suboptimal methods
and analyze the accuracy of the suboptimal distance.

To address the classification problems considered in this paper, we apply k-
nearest-neighbor classifiers in conjunction with edit distance. Given a labeled
set of training graphs, an unknown graph is assigned to the class that occurs
most frequently among the k closest graphs (in terms of edit distance) from the
training set. Hence, we assume that graphs belonging to the same class should
be similar. In the experiments, insertion and deletion costs are set to constant
values, and substitution costs are set proportional to the Euclidean distance of
involved labels. To optimize these edit cost parameters, we first determine a set
of parameters that is optimal on a validation set. The validated parameters are
then applied to the independent test set. Note that the parameters are optimized
once for the exact distance and then used throughout all optimal and suboptimal
computations.

We first evaluate the distances on a graph database representing distorted
letter drawings. In this experiment, we consider the 15 capital letters that consist
of straight lines only (A, E, F, . . . ). For each class, a prototype line drawing is
manually constructed. We then apply distortion operators to the prototype line
drawings, resulting in randomly shifted, removed, or added lines. Using this
procedure, we are able to generate arbitrarily large sample sets of drawings with
arbitrarily strong distortions. These drawings are then converted into graphs by
representing ending points of lines by vertices and lines by edges. Each vertex is
labeled with a two-dimensional attribute giving its position. The graph database
used in our experiments consists of a training set, a validation set, and a test
set, each of size 150. The letter graphs consist of 4.6 nodes and 4.4 edges on the
average.

To obtain a visual representation of the accuracy of the suboptimal meth-
ods, we plot for each pair of test and training pattern its exact (horizontal axis)
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Fig. 1. Distance accuracy of plain-A*-beamsearch(t) for t = 1000, 100, 10

and suboptimal (vertical axis) distance value. The respective illustrations are
shown in Fig. 1. For t = 1000, we find that the suboptimal method does not
differ considerably from the exact method in terms of distance. If the subop-
timal method is constrained to t = 100 or t = 10 items in the OPEN list,
however, it often results in larger distances. Additionally evaluating the run-
ning time of the edit distance computation, we observe that the suboptimal
methods (for t = 10, 100) are faster than the exact method by several orders of
magnitude.

The crucial question is whether the larger distances belong to graphs of the
same class or graphs from different classes. In the latter case, the increased inter-
class distance will not negatively affect the classification accuracy. In
Table 1 we give the classification accuracy of three nearest-neighbor classifiers
and the average time it takes to compute a single edit distance. The tradi-
tional edit distance algorithms are denoted by plain-A* and heuristic-A*,
and the suboptimal methods proposed in this paper are referred to as plain-
A*-beamsearch, plain-A*-pathlength, heuristic-A*-beamsearch, and
heuristic-A*-pathlength. It turns out that the speedup of the suboptimal
methods is significant, while the accuracy remains high for most configurations.
The speedup of plain-A*-beamsearch for decreasing parameter is clearly vis-
ible. Concerning the accuracy, suboptimal methods can even be observed to
outperform the two exact methods in some cases. This means that a suboptimal
algorithm may be able to correct misclassifications by assigning higher costs to
pairs of graphs from different classes than the exact algorithm. The suboptimal
method plain-A*-pathlength(1.05) achieves the best classification accuracy
of 86.7% among all methods and is more than 3 times, or 16 times, respec-
tively, faster than the exact methods. Note that the performance of the two
exact methods need not be identical, since in some cases the running time of the
faster heuristic-A* may be below and that of the slower plain-A* above the
predefined timeout threshold.

For a more thorough evaluation of the classification accuracy, we apply the
proposed methods to the problem of image classification. Images are converted
into attributed graphs by segmenting them into regions, eliminating regions that
are irrelevant for classification, and representing the remaining regions by ver-
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Table 1. Letter Database: Classification accuracy and average running time

Method 1-NN 3-NN 5-NN Time (ms)
plain-A* 82.0 80.7 81.3 2200
plain-A*-beamsearch(1000) 82.0 80.7 82.7 620
plain-A*-beamsearch(100) 81.3 79.3 81.3 40
plain-A*-beamsearch(10) 76.7 ◦ 74.7 ◦ 72.0 ◦ 13
plain-A*-pathlength(1.05) 79.3 80.0 86.7 132
plain-A*-pathlength(1.1) 77.3 79.3 82.7 2
heuristic-A* 82.0 80.7 82.7 468
heuristic-A*-beamsearch(100) 82.0 80.7 82.0 18
heuristic-A*-pathlength(1.1) 79.3 82.7 84.0 8

◦ Statistically significantly worse than plain-A* and heuristic-A* (α = 0.05)

Table 2. Image Database: Classification accuracy and average running time

Method 1-NN 3-NN 5-NN Time (ms)
plain-A* 46.3 48.2 44.4 10
plain-A*-beamsearch(10) 46.3 48.2 48.2 8
plain-A*-beamsearch(5) 48.2 50.0 44.4 6
plain-A*-pathlength(1.1) 48.2 50.0 46.3 5
heuristic-A* 46.3 48.2 44.4 20
heuristic-A*-beamsearch(10) 46.3 44.4 48.2 16
heuristic-A*-pathlength(1.1) 50.0 48.2 51.9 15

Table 3. Fingerprint Database: Classification accuracy and average running time

Method 1-NN 3-NN 5-NN Time (ms)
Approximate method [13] 82.6 83.8 84.4 11
plain-A* — — — — 1

plain-A*-beamsearch(50) 87.4 • 87.8 • 87.6 • 167
plain-A*-beamsearch(40) 85.6 • 88.2 • 88.0 • 74
plain-A*-beamsearch(10) 72.0 ◦ 72.8 ◦ 72.4 ◦ 9
plain-A*-pathlength(. . . ) — — — — 1

heuristic-A* — — — — 1

heuristic-A*-beamsearch(50) 87.4 • 87.8 • 87.6 • 218
heuristic-A*-pathlength(. . . ) — — — — 1

◦ Statistically significantly worse than reference method [13] (α = 0.05)
• Statistically significantly better than reference method [13] (α = 0.05)
1 Empty entries indicate computation failure due to lack of memory

tices and the adjacency of regions by edges [12]. Our image database consists of
5 classes (city, countryside, people, snowy, streets) and is split into a training
set, a validation set, and a test set of size 54. On the average, the graphs consist
of 2.8 nodes and 2.5 edges. The nearest-neighbor classification performance and
the running time of the edit distance computation using the exact algorithms
and the proposed suboptimal algorithms are given in Table 2. Note that in this
application heuristic-A* takes significantly longer for the edit distance com-
putation than plain-A*. This means that the computational overhead of the
heuristic evaluation of future costs in the search tree cannot be compensated
for by a faster tree traversal, mostly because the graphs under consideration,
and hence also the constructed search tree, are rather small. Generally, the de-
crease of the running time is not massive, but the accuracy of the suboptimal
methods is at least as high as that of the exact methods. Particularly plain-A*-
pathlength(1.1) outperforms the exact methods plain-A* and heuristic-A*
and is at least twice as fast.
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Finally, we apply the proposed methods to the difficult problem of fingerprint
classification. To this end, we construct graphs from fingerprint images of the
NIST-4 database by extracting characteristic regions in fingerprints and convert-
ing the result into attributed graphs [13]. We use a validation set of size 300 and a
training set and test set both of size 500. On the average, the fingerprint graphs
consist of 5.2 nodes and 8.6 edges. In our experiment, we address the 4-class
problem (classes arch, left loop, right loop, whorl). In Table 3, in addition to the
systems described in this paper, we also give the results of another method [13].
Note that for this dataset, the exact edit distance plain-A* and heuristic-
A* cannot be computed because the search tree grows too large. The results
clearly demonstrate that the classification accuracy of the suboptimal methods,
for moderate running times, is very high.

Summarizing we conclude that although the edit distance computed by the
proposed suboptimal methods is not always close to the exact edit distance, this
problem mainly pertains to pairs of graphs from different classes and therefore
does not negatively affect the classification performance. The suboptimal meth-
ods offer more flexibility in terms of tradeoff between speed and accuracy than
the exact edit distance.

5 Conclusions

One of the main problems of graph edit distance is its exponential computational
complexity, which makes its application feasible for small graphs only. In this
paper, we propose two simple variants of a standard tree search algorithm for
edit distance. The idea is to explore not the full search space, but only a subspace
of promising candidates. The two proposed methods are related to beam search
and to a re-weighting of edit operation costs. With these simple modifications,
it turns out that a significant speedup of the edit distance computation can
be achieved. At the same time, the classification accuracy of the suboptimal
methods remains high on all datasets — and is sometimes even higher than the
one of the exact method. This means that the suboptimality mainly leads to
an increase of inter-class distances, while intra-class distances, which are highly
relevant for classification, are not strongly affected. We provide an experimental
evaluation and demonstrate the usefulness of our methods on semi-artificial line
drawings, on scenery images, and fingerprints.
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Abstract. This paper shows how to construct a generative model for graph struc-
ture. We commence from a sample of graphs where the correspondences between
nodes are unknown ab initio. We also work with graphs where there may be struc-
tural differences present, i.e. variations in the number of nodes in each graph and
the edge-structure. The idea underpinning the method is to embed the nodes of the
graphs into a vector space by performing kernel PCA on the heat kernel. The co-
ordinates of the nodes are determined by the eigenvalues and eigenvectors of the
Laplacian matrix, together with a time parameter which can be used to scale the
embedding. Node correspondences are located by applying Scott and Longuet-
Higgins algorithm to the embedded nodes. We capture variations in graph struc-
ture using the covariance matrix for corresponding embedded point-positions. We
construct a point distribution model for the embedded node positions using the
eigenvalues and eigenvectors of the covariance matrix. We show how to use this
model to both project individual graphs into the eigenspace of the point-position
covariance matrix and how to fit the model to potentially noisy graphs to recon-
struct the Laplacian matrix. We illustrate the utility of the resulting method for
shape-analysis using data from the COIL database.

1 Introduction

The literature describes a number of attempts aimed at developing probabilistic models
for variations in graph-structure. Some of the earliest work was that of Wong, Constant
and You [4], who capture the variation in graph-structure using a discretely defined
probability distribution. Bagdanov and Worring [3] have overcome some of the compu-
tational difficulties associated with this method by using continuous Gaussian distrib-
utions. For problems of graph matching Christmas, Kittler and Petrou [1], and Wilson
and Hancock [2] have used simple probability distributions to measure the similarity
of graphs. There is a considerable body of related literature in the graphical models
community concerned with learning the structure of Bayesian networks from data [5].

Recently there has been some research aimed at applying central clustering tech-
niques to cluster graphs. However, rather than characterising them in a statistical man-
ner, a structural characterisation is adopted. For instance, both Lozano and Escolano
[7], and Bunke et al. [8] summarize the data using a supergraph. Each sample can be
obtained from the super-graph using edit operations. However, the way in which the
super-graph is learned or estimated is not statistical in nature. Jain and Wysotzki, adopt
a geometric approach which aims to embed graphs in a high dimensional space by
means of the Schur-Hadamard inner product [9]. Central clustering methods are then
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deployed to learn the class structure of the graphs. The embedding offers the advantage
that it is guaranteed to preserve structural information present. Unfortunately, the algo-
rithm does not provide a means of statistically characterising the modes of structural
variation encountered.

Hence, the methods described in the literature fall well short of constructing genuine
generative models from which explicit graph structures can be sampled. The aim in this
paper use ideas from the spectral analysis of graphs to construct a simple and explicit
generative model for graph-structure. To this end, we use the heat-kernel embedding
to construct a generative model for graph-structure. We use the heat-kernel to map the
nodes of a graph to positions in a vector space. Our aim is to construct a statistical model
that can account for the distribution of embedded point-positions for corresponding
nodes in a sample of graphs. A reference graph is selected, and the correspondences
between the nodes of each sample graph and the reference graph are established using
the point-matching method of Scott and Longuet-Higgins [6]. We capture variations
in graph structure using the covariance matrix for the corresponding embedded point-
positions. We construct a point distribution model for the embedded node positions
using the eigenvalues and eigenvectors of the covariance matrix. We show how to use
this model to both project individual graphs into the eigenspace of the point-position
covariance matrix and to fit the model to potentially noisy graphs to reconstruct the
Laplacian matrix. We illustrate the utility of the resulting method for shape-analysis.
Here we perform experiments on the COIL data-base, and show that the model can be
used to both construct pattern spaces for sets of graphs and to cluster graphs.

2 Heat Kernel Embedding

We are interested in using the heat-kernel to embed the nodes of a graph in a vector
space. To commence, suppose that the graph under study is denoted by G = (V, E)
where V is the set of nodes and E ⊆ V × V is the set of edges. Since we wish to adopt
a graph-spectral approach we introduce the adjacency matrix A for the graph where the
elements are

A(u, v) =
{

1 ifu, v ∈ E
0 otherwise

(1)

We also construct the diagonal degree matrix D,whose elements are given byD(u, u)
=
∑

v∈V A(u, v). From the degree matrix and the adjacency matrix we construct the
Laplacian matrix L = D − A, i.e. the degree matrix minus the adjacency matrix. The
normalised Laplacian is given by L̂ = D− 1

2 LD− 1
2 . The spectral decomposition of the

normalised Laplacian matrix is L̂ = ΦΛΦT , where Λ = diag(λ1, λ2, ..., λ|V |) is the
diagonal matrix with the ordered eigenvalues as elements and Φ = (φ1|φ2|....|φ|V |)
is the matrix with the ordered eigenvectors as columns. Since L̂ is symmetric and
positive semi-definite, the eigenvalues of the normalised Laplacian are all positive.
The eigenvector associated with the smallest non-zero eigenvector is referred to as
the Fiedler-vector. We are interested in the heat equation associated with the Lapla-
cian, i.e. ∂ht

∂t = −L̂ht, where ht is the heat kernel and t is time. The heat kernel can
hence be viewed as describing the flow of information across the edges of the graph
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with time. The rate of flow is determined by the Laplacian of the graph. The solu-
tion to the heat equation is found by exponentiating the Laplacian eigen-spectrum, i.e.
ht = Φ exp[−tΛ]ΦT .

We use the heat kernel to map the nodes of the graph into a vector-space. Let Y be the
|V |×|V | matrix with the vectors of co-ordinates as columns. The vector of co-ordinates
for the node indexed u is hence the uth column of Y . The co-ordinate matrix is found
by performing the Young-Householder decomposition ht = Y T Y on the heat-kernel.
Since ht = Φ exp[−Λt]ΦT , Y = exp[− 1

2Λt]ΦT . Hence, the co-ordinate vector for the
node indexed u is

yu = (exp[−1
2
λ1t]φ1(u), exp[−1

2
λ2t]φ2(u), ...., exp[−1

2
λ|V |t]φ|V |(u))T

The kernel mapping M : V → R|V |, embeds each node on the graph in a vector space
R|V |. The heat kernel ht = Y T Y can also be viewed as a Gram matrix, i.e. its elements
are scalar products of the embedding co-ordinates. Consequently, the kernel mapping
of the nodes of the graph is an isometry. The squared Euclidean distance between the
nodes u and v is given by

dE(u, v)2 = (yu − yv)T (yu − yv) =
|V |∑
i=1

exp[−λit](φi(u) − φi(v))2 (2)

3 Generative Model

Our aim is to construct a generative model that can be used to represent the statistical
variations in a sample of graphs. Let the sample be T = {G1, G2, ..., Gk, ....GK} where
the kth graph Gk = (Vk, Ek) has node-set Vk and edge-set Ek. The result of performing
heat-kernel embedding of the nodes of the kth graph is a matrix of co-ordinates Yk.

Our aim in this paper is to construct a generative model that can be used to de-
scribe the distribution of embedded node co-ordinates for the sample of graphs. Since
the graphs contain different numbers of nodes, we truncate the co-ordinate matrices to
remove the spatial dimensions corresponding to insignificant eigen-modes of the kernel
matrix. Hence, we retain just the first N rows of each co-ordinate matrix. For the graph
Gk the truncated node co-ordinate matrix is denoted by Ŷk.

3.1 Node Correspondences

To construct the generative model, we require correspondences between the nodes of
each sample graph and the nodes of a reference structure. Here we take the reference
graph to be the graph in the sample with the largest number of nodes. This graph has
index k∗ = argmaxGk∈T |Vk|.

To locate the correspondences between the nodes of each sample graph and those
of the reference graph, we use the Scott and Longuet-Higgins algorithm. The algorithm
uses the distances between the reference graph nodes and the nodes of the sample graph
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k to compute an affinity matrix. Let ŷi
k is the ith column vector of the truncated co-

ordinate matrix Ŷk, i.e. the co-ordinates of the node i ∈ Vk. For the node i of the
sample graph Gk and the node j the affinity matrix element is

Rk,k∗(i, j) = exp[− 1
σ2 (ŷi

k − ŷj
k∗)T (ŷi

k − ŷj
k∗)]

where σ is a scaling parameter.
According to Scott and Longuet-Higgins [10] if Rk,k∗ is a positive definite |Vk| ×

|Vk∗ | matrix, then the |Vk|× |Vk∗ | orthogonal matrix R∗
k,k∗ that maximises the quantity

Tr[Rk,k∗(R∗
k,k∗)T ] may be found by performing singular value decomposition. To do

this they perform the matrix factorisation Rk,k∗ = V ΔUT , where V is a |VD| × |VD|
orthogonal matrix, U is a |Vk∗ |× |Vk∗ | orthogonal matrix and Δ is a |Vk|× |Vk∗ | matrix
whose off-diagonal elements Δi,j = 0 if i �= j and whose “diagonal” elements Δi,i

are non-zero. Suppose that E is the matrix obtained from Δ by making the diagonal
elements Δi,i unity. The matrix R∗

k,k∗ which maximises Tr[Rk,k∗(R∗
k,k∗)T ] is R∗

k,k∗ =
V EUT . The element R∗

k,k∗(i, j) indicates the strength of association between the node
i ∈ Vk in the graph Gk and the node j ∈ Vk∗ in the reference graph. The rows of R∗

k,k∗ ,
index the nodes in the graph Gk, and the columns index the nodes of the reference graph
Gk∗ . If R∗

k,k∗(i, j) is both the largest element in row i and the largest element in column
j then we regard these nodes as being in one-to-one correspondence with one-another.
We record the state of correspondence using the matrix Ck,k∗ . If the pair of nodes (i, j)
satisfies the row and column correspondence condition, then we set Ck,k∗ (i, j) = 1,
otherwise Ck,k∗ (i, j) = 0 .

3.2 Embedded Point Distribution Model

Once we have correspondences to hand, then we can construct the generative model for
the set of graphs. To do this we model variations in the positions of the embedded points
using a point distribution model. We commence by computing the mean point positions.
The matrix of mean-position co-ordinates and the associated covariance matrix are

X̂ =
1
T

∑
k∈T

CT
k,k∗ Ŷk

Σ =
1
T

∑
k∈T

(CT
k,k∗ Ŷk − X̂)(CT

k,k∗ Ŷk − X̂)T

To construct the point-distribution model, we perform the eigendecomposition Σ =
ΨΓΨT where Γ = diag(γ1, γ2, ...., γK) is the diagonal matrix of ordered eigenvectors
and Ψ = (ψ1|.....|ψK) is the matrix with the correspondingly ordered eigenvectors as
columns.

We deform the mean-embedded node positions in the directions of the leading eigen-
vectors of the point-position covariance matrix Σ. Let Ψ̃ be the result of truncating
the matrix Ψ after S columns and let b be a parameter-vector of length S. We con-
vert the mean point position matrix with a long vector form. Let Coli(X̂) be the
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ith column of the mean-point position matrix X̂ . The long vector is given by Ẑ =
(ColT1 (X̂), ColT2 (X̂), ...). The long vector corresponding to deformed point set posi-
tion is Z̃ = Ẑ + Ψ̃ b. The matrix with deformed point position as column is X̂ .

An observed configuration of embedded nodes Ỹ may be fitted to the model. To do
this the best fit parameters estimated using the least squares procedure

b∗ = arg min
b

(Ỹ − X̂ − Ψ̃ b)T (Ỹ − X̂ − Ψ̃ b)

The best-fit parameter vector is b∗ = Ψ̃T (Ỹ −X̂) and the reconstructed set of embedded
point positions is Ỹ ∗ = X̂ + Ψ̃ Ψ̃T (Ỹ − X̂). From the reconstructed point-positions we
can recover the Laplacian matrix for the corresponding graph. The heat-kernel for the
reconstructed embedded graph is h∗

t = (Ỹ ∗)T (Ỹ ∗) = exp[−L̂∗t] and the Laplacian is
hence L̂∗ = − 1

t ln{(Ỹ ∗)T (Ỹ ∗)}. From the reconstructed Laplacian we can compute
the corresponding adjacency matrix

A∗ = D − D
1
2 L̂∗D

1
2 = D +

1
t
D

1
2 ln{(Ỹ ∗)T (Ỹ ∗)}D

1
2 .

Finally, the similarity of a pair of graphs can be measured using the difference in their
best-fit parameter vectors. Since the parameter-vector is just the projection of the cor-
responding graph into the eigenspace of the model, the difference is parameter vectors
is related to the distance between graphs in the eigenspace. Suppose that the graphs
Gk1 and Gk2 have best fit parameter vectors b∗k1

and b∗k2
respectively. The Euclidean

distance between the parameter vectors is

d2(k1, k2) = (b∗k1
− b∗k2

)T (b∗k1
− b∗k2

) = (Ŷk1 − Ŷk2 )
T Ψ̃ Ψ̃T (Ŷk1 − Ŷk2)

4 Experiments

In this section we provide some experimental evaluation of our generative model for
real-world data. We use the COIL data-base. The data-set contains multiple views of
the same object in different poses with respect to the camera. Example images from
the data-set are shown in Figures 1. We extract the feature points using the methods of
[11]. We have extracted graphs from the images by computing the Voronoi tessellations
of the feature-points, and constructing the region adjacency graph, i.e. the Delaunay
triangulation, of the Voronoi regions.
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Fig. 1. Three objects from the COIL data-base
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Fig. 2. Embedded point positions and fitted covariance ellipsoids with varying t(from left to right,
top to bottom t = 0.001, 0.01, 0.1, 1, 10, 100) for the heat kernel

In Figure 2 we show the result of projecting the nodes into the space spanned by the
leading two eigenvectors of the heat-kernel. The different panels in the figure are for
different values of t ,from left to right and top to bottom the t are 0.001, 0.01, 0.1, 1,
10, 100. For this experiment we have taken 15 images from the duck sequence. Each
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Fig. 3. Embedded point positions and fitted covariance ellipsoids for Laplacian matrix
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blue point in the embedding corresponds to a single node of one of the 15 sample
graphs. Superimposed on the node-positions as red-points are the locations of the mean
node positions. Around each mean node position we have drawn an ellipse. The ma-
jor and minor axes of the ellipse are in the principal directions of the eigenvectors
of the node-position covariance matrix and the lengths of the semi-major axes are
the corresponding eigenvalues. There are a number of features to note from this fig-
ure. First, for small values of t the embedded points form relatively compact clus-
ters. Second, there is a significant variation in the size and directions of the ellipses.
The compactness of the clusters supports the feasibility of our embedding approach
and the variation in the ellipses underpins the need for a relatively complex statis-
tical model to describe the distribution of embedded point positions. As the value
of t increases then so the overlap of the ellipses increases. For comparison Figure 3
shows the result of repeating the embedding by using the Laplacian spectrum. The
node-clusters are more overlapped than those obtained with the heat kernel for small
values of t.

To investigate the role of the number of Laplacian eigenmodes in the reconstruc-
tion of the graph-structure we have examined the value of the Froebenius norm F =
||A − A∗|| between the original graph adjacency matrix A and the reconstructed ad-
jacency matrix A∗ computed by fitting the generative model. In Figure 4 we show the
value of F as a function of the number of eigenmodes used. The different curves in the
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Fig. 4. Froebenius norm as a function of number of eigenmodes

Fig. 5. Eigen-projection of graphs from 15 images in duck sequence
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Fig. 6. Distance matrix for fitted parameter vectors

plot are for different values of t. The best reconstructions are obtained with small values
of t and an increasing number of eigenmodes.

In Figures 5 we show the result of projecting the embedded node vectors for the
graphs extracted from the duck sequence in the COIL data-base onto the eigenvectors of
the embedded node position covariance matrix Σ. We have placed a thumbnail image at
the location specified by the first three components of the parameter-vector b. The line
connecting the thumbnails corresponds to the sequence order of the original images.
The main feature to note is that neighboring images in the sequence are close together
in the eigenspace.

We have also experimented with the generative model as a means of clustering
graphs. In Figure 6 we show the matrix distances between the best fit parameter vectors.
The main feature to note is that there is a clear block structure emerges corresponding
to the different objects.

5 Conclusions

In this paper we have used the heat-kernel embedding of graphs to construct a genera-
tive model for graph structure. The mapping allows nodes of the graphs under study to
be embedded as points in a vector-space. The idea underpinning the generative model
is to construct a point-distribution model for the positions of the embedded nodes. The
required correspondences needed to construct this model are recovered using the Scott
and Longuet-Higgins algorithm. The method proves to be effective for computing dis-
tances between graphs and also for clustering graphs.

Our future plans revolve around the use of a mixture model to describe the positions
of the embedded nodes, and to assess uncertainty in the computation of correspondence.
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Abstract. The minimum spanning tree pyramid is a hierarchical image
segmentation method. We study it’s properties and the regions it pro-
duces. We show the similarity with the watershed transform and present
the method in a domain in which this is easy to understand. For this, a
short overview of both methods is given. Catchment basins are contracted
before their neighbouring local maximas. Smooth regions surrounded by
borders with maximal local variation are selected. The maximum re-
spectively minimum variation on the border of a region is larger than
the maximum respectively minimum variation inside the region.

1 Introduction

Image segmentation is the process of partitioning the image into salient parts, i.e.
partitioning the image into regions, such that each region is homogeneous with
respect to some criteria such as greyvalue, colour, or texture. A segmentation
method should have the folowing [1,2]: create a hierarchy, capture perceptually
important groupings, and run in linear time.

The presented work is motivated by the desire to further understand and
improve the results of one such segmentation method, the minimum spanning
tree pyramid (MST Pyramid) [3], and better fit it to the necessities of higher
level processing [4]. During the past years, we have had the chance to use and test
different implementations of the MST Pyramid method and even though random
selection mechanisms are used [5] and in most of the cases the neighbourhood
graph of an image does not have a unique minimum spanning tree, the most
important entities, like the lady in Fig. 1, could always be found in the produced
results.

After benchmarking the method using human made segmentations [6] the
necessity for a more analytical approach has risen, for which the results are
presented here. While looking in detail at the properties of the method, a certain
similarity with the watershed transfrom [7] has also been observed and is included
in this discussion.
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This paper is organised as follows: Sections 2 and 3 contain a short description
of the MST Pyramid and the Watershed transfrom, Section 4 presents the results
of our study, Section 5 contains the outlook, and we end with the conclusions in
Section 6.

2 The MST Pyramid Segmentation

Initially developed in the dual graph contraction and dual irregular pyramid
framework and recently adapted to 2D combinatorial maps and combinatorial
map pyramids [8], the MST Pyramid method [3] takes as input a weighted neigh-
bourhood graph (NG) and produces a hierarchy of partitions by using the mini-
mum spanning tree (MST) algorithm by Bor̊uvka [9] and region internal/external
contrast concepts [1].

Algorithm 1. MST Pyramid segmentation
Input: Attributed neighbourhood graph G0.
1: k = 0
2: repeat
3: MEk = smallest edge around each vertex of Gk

4: CEk = edges from MEk connecting two regions having larger internal contrast
than the external contrast between them {contrast test step}

5: Gk+1 = (Gk with the edges from CEk contracted)
6: k = k + 1
7: until Gk = Gk−1

Output: An attributed neighbourhood graph at each level of the pyramid
(G0, G1, ..., Gk).

a) |V0|= 30 276 b) |V40|=12 c) |V42|=3 d) |V37|=11 e) |V40|=2
Legend: number of components in the specified level of the pyramid

Fig. 1. Levels of the MST Pyramid segmentation of the image of a Woman: with (b,c)
and without (d,e) the contrast test step
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To apply this method for image segmentation, the input NG is obtained by
associating a vertex to each pixel and connecting two neighbouring vertices by
an edge weighted with the distance of the two pixel values in some featurespace
(we have experimented with difference in greyscale and RGB colour). Internal
contrast of a region is defined as the biggest weight of the edges of it’s MST.
External contrast between two neighbouring regions is defined as the smallest
weight of the edges connecting vertices from the two regions. Algorithm 1. shows
a description of the MST Pyramid method, and Fig. 1 shows some results. Step
4. of the Algorithm is called the contrast step. More details can be found in [10].

3 The Watershed Segmentation

A well known method used for segmentation but not only, the watershed trans-
form has it’s origins in mathematical morphology. An intuitive way to view it is
that of a landscape (topographic surface) being flooded by water (rain), and the
watersheds being the lines which separate the different domains of attraction of
rain over the relief [11]. Another way to imagine it, is to think of the landscape
with holes made in the local minima, being immersed in water. Starting at these
holes (local minima), catchment basins fill with water and the watersheds are
the dams build in the places where two such catchment basins would meet to
stop them from merging.

Fig. 2. Watershed segmentation of the image of a Woman’s head

As mentioned above, the method can be applied to any topographic surface,
and in the case of segmentation, it is most often applied to the gradient image of
the image to process. The resulting catchment basins define the segments of the
image. For a survey of existing methods that can be used to obtain the watershed
transfrom and a detailed description see [7]. Fig. 2 shows an example result.

4 Understanding Global Properties of the MST Pyramid

Local decisions taken when merging regions make the MST Pyramid method
well suited for parallel processing. On the other side, having global information
makes estimating, characterising, and influencing the results much easier.

After doing experiments, we have noticed that the majority of edges filtered
by step 4 (contrast test) of Algorithm 1. pass the test, and that removing the
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filter and just contracting all the proposed edges does not significantly change
the results in most of the levels of the pyramid (a discussion of this, follows at
the end of Section 4.2). Because of this, we have simplified the modell for the
current study and removed the contrast test (step 4 in Algorithm 1.) from it.

4.1 Case Study - A 1D Image

Let I be a 1D image, defined as I(p), p = 1, . . . , m. For a certain p, I(p) identifies
the pixel at position p in the image, I(p1) and I(p2) are neighbours if |p1−p2| = 1.
The neighbourhood graph NG=(V, E) of such an image is a chain of vertices
v ∈ V (one for each pixel in the original image), with the vertices associated
to each two neighbouring pixels joined by an edge e ∈ E, and it’s minimum
spanning tree is the graph itself (See Fig. 3a,b).

The edge graph EG=(V E, EE) of a graph is a graph where each vertex ve ∈
V E represents an edge in the original graph (in our case NG), and two vertices
are joined by an edge ee ∈ EE if their corresponding edges in the original graph
share a common vertex. (The EG will be used to show the similarity with the
watershed segmentation).

a)

b)

c)

d)

Fig. 3. MST based contraction of a 1D image: a) Image; b) associated NG; c) associ-
ated EG with survival levels specified (higher vertex position means larger weight); d)
associated EG of second pyramid level, with survival levels specified

In the rest of the section, the numbering of vertices and edges in both the NG
and the EG is done depending on the position of the associated element in the
image, i.e. in the NG, vi is associated to p(i) and ei is the edge connecting vi with
vi+1, and in the EG, vei is associated to ei respectively to the edge connecting
vi with vi+1 (See Fig. 3b,c).

A Step in the MST Pyramid. We recall that edges in the NG are attributed
with the difference in some featurespace of the two neighbouring pixels’ values.
The same value is used to attribute their associated vertices in the EG.
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When searching for edges to be contracted, the MST Pyramid method selects
the smallest edge connecting one vertex in the NG with it’s neighbours. In the
case of unequal values this results in a unique solution.

Because in our case, in one selection step any edge ei, i = 1, . . . , m − 1 con-
necting two vertices vi and vi+1 is part of two such tests, we conclude that ei is
selected if ei < ei+1 or ei < ei−1 or one of its bounding vertices is a leaf. Which,
in it’s associated EG, is equivalent to vei is not a local maximum or vei is a leaf
i.e. ¬(vei > max(vei+1, vei−1)) ∨ (i ∈ {1, m − 1}). This means, that in one such
step only local maxima survive (See Fig. 3b,c).

What Happens Further in the MST Pyramid? The selected edges are
contracted i.e. the new NG contains only the surviving (non-selected) edges and
each group of vertices connected by the selected (non-surviving) edges are merged
into one single vertex. In the EG this is equivalent with removing all the selected
vertices and connecting each two surviving vertices if they were connected by a
path of non-surviving vertices. (See Fig. 3c,d). The whole process of selection-
contraction is repeated until no more contraction is possible.

Characterising the Regions. The initial aim of the present study was to try
to characterise the regions produced by the method i.e. given an image and a con-
nected region in it (a cut), to be able to say what properties (internal/external)
must the edges inside, outside, and on the region-border have, such that the
region is produced as one segment in one of the levels of the hierarchy. In the
case of our 1D image, this is reduced to: given the image and 2 edges, how can
we best characterise the region between the two edges?

Recall that in one MST Pyramid step, from the level below only local maxima
survive, which is equivalent to applying the watershed transform, on the gradient
image of our 1D image (See Table 1).

Table 1. Domain similarity of the MST Pyramid and the Watershed segmentation

Bor̊uvka MST Pyramid Watershed segmentation
Domain edge graph / gradient image /

derivative along edge in the NG derivative in each pixel
Method local maxima survive

Each local maximum that survives to a certain level k, defines in each level
li, i = 1, . . . , k, on each side, an attraction area. (See Fig.4) These attraction
areas contain only values smaller than that of the local maximum and depend
on it and its neighbours (up to the local maxima that survived to level li). The
higher we go in the pyramid, the larger these attraction areas become, and two
such neighbouring regions, defined by 2 neighbouring local maxima, define a
catchment basin which will be merged in the next step. (See Fig.4)

Let vei(k) and vej(k) be the two neighbouring local maxima that define the
two attraction areas aa1 = {vei+1(k), vei+2(k), ..., veq(k)} and aa2 = {veq+1(k),
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a)

b)

c) d)

Fig. 4. Attraction areas in a catchment basin: a) NG, each vertex chooses it’s smallest
edge; b) associated EG; c) attraction area of edge 7 from the NG; d) attraction area
of edge 2 from the NG

veq+2(k), ..., vej−1(k)}, with i < q < j denoting vertex indices in our chain-like
edge graph and k denoting a level in our pyramid. From the above, we get:

max(vei(k), vej(k)) > max(vei+1(k), ..., vej−1(k))

min(vei(k), vej(k)) > min(vei+1(k), ..., vej−1(k))

for any level k with vei(k) and vej(k) being local maxima in level k (they survive
to level k+1) and vei+1(k), ..., vej−1(k) not being local maxima. If we recursively
follow the previous we get that:

max(vei(k1), vej(k1)) > max(vei+1(k2), ..., vej−1(k2))

min(vei(k1), vej(k1)) > min(vei+1(k2), ..., vej−1(k2))

for k1 > k2, i.e. the biggest of the values surrounding a certain region in level k1
is larger then biggest of all the values from any level k2 < k1 below. The previous
holds for the smallest also. So, the maximum edge weight on the border of any
region in any level, is larger than the maximum edge weight inside, i.e. maximum
variation on the border of a region is larger then maximum variation inside the
region, and the same holds for the minimum.

4.2 The 2D Case

To continue in the same line of ideas, we present the MST Pyramid edge selec-
tion mechanism for a 2D image, in a domain in which the presented similarities
with the watershed method remain valid. For this, we do not focus on finding
the minimum spanning tree (MST) itself, but on the way the MST Pyramid se-
lects edges for contraction and thus constructs the MST by creating increasingly
bigger parts from smaller ones.

For a given 2D Image and its associated NG. We determine the edge graph
(EG) of the MST of the NG (MST NG). Each vertex from the EG is attributed
with the weight of its associated edge from the MST NG. (See Fig. 5a,b)
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a)

b)
c)

d)

Fig. 5. MST based contraction, 2D case: a) image (thin continuous line) with associated
NG (dashed line), it’s MST (thick line) with its edge weights; b) EG of the MST NG
(vertices of the same component are white and in the same grey ellipse, local maxima
i.e. surviving vertices are black); c) EG - second level; d) EG - third level

According to Algorithm 1., in one MST Pyramid selection step each vertex
from the NG selects the smallest edge around it (which is guaranteed to be on
the MST of the NG). In the context of the EG of the MST NG of the image,
this can be described in a watershed like manner as follows:

1. Initial configuration: all the vertices in the EG have no labels and their
attribute is the weight of the their corresponding edges in the NG;

2. From minimum to maximum progressively threshold the values in the
vertices and each unlabelled vertex with a value below the threshold:
– gets a unique numeric label, if no neighbours are numerically labelled

yet (we found a new catchment basin/local minimum),
– gets the unique numeric label of its labelled neighbours, if no 2 neigh-

bours have different numeric labels (belong to different watersheds) and
at least one is numerically labelled (watershed increases),

– is labelled as “don’t contract/survive”, if none of the previous apply

At the end of each such step, the vertices labelled with the same numeric
value are joined and they define connected regions (their corresponding edges
in the MST NG are contracted). A new EG is obtained by keeping the vertices
with no numeric labels, the edges connecting them, and additionally connecting
any 2 such vertices if in the labelled graph from the current step, they could be
connected by paths made only of numerically labelled vertices. (See Fig. 5b,c,d).

As in the case of the 1D image, in each step local maxima from the previous
level survive, and the properties observed in the 1D image case study remain
valid for the MST NG of a 2D image. Let r be a connected region in a 2D image.
Let NG=(V, E) be its associated neighbourhood graph. Let Ec ⊂ E be the cut-
edges connecting the vertices Vr ⊂ V , associated to the pixels of r, to the rest of
NR (V \ Vr). Also let Er = {(vi, vj) ∈ E | vi, vj ∈ Vr}, MST NG=(Vmst, Emst)
the MST of NG, Ecmst = Ec

⋂
Emst, and Ermst = Er

⋂
Emst. If r is a region

produced by the MST Pyramid (without the contrast step) then:

max(Ermst) < max(Ecmst),
min(Ermst) < min(Ecmst),

Rmst = (Vr , Ermst) is a connected graph.
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The above also explains why most of the edges pass the contrast test (step 4 in
Algorithm 1.), and why this step does not significantly change the results. The
purpose of the contrast step is to ensure that the algorithm produces regions
with small variation surrounded by borders with large variation, but this is
allready achieved in most of the cases by the edge selection mechanism in step 3.
Where the results differ significantly is that without using the contrast step, the
pyramid always reaches an apex. The results when using the contrast step are
better if we are looking for a segmentation that spans just one pyramid level and
we have small regions. Here the additional condition stops these small regions
to be merged with the surrounding while the rest of the graph is contracted.

Because of the way edges from the NG are attributed (distance in some fea-
turespace), having the MST also gives us an upper bound on the weights of all
the other edges. The difference between the values of two neighbouring pixels is
less or equal to the sum of the weights of the edges along the path connecting
their associated vertices in the MST of the NG.

5 Outlook

The previous study should help in improving the method and using it as a basis
for reaching higher level abstraction. We plan to add the slope when calculating
the edge weights to prevent “leakage”. Knowing the properties of the method
allows us to easily controll it and insert a priory information from e.g. a suc-
cessfull previous segmentation, or a high level process. Knowing the properties
of the regions produced allows us to select a “best segmentation” that spans
multiple levels and which can be used by higher level processes that need only
one segmentation, or as a start seed for the ones that are able to use hierarchies
but use a single segmentation at some instance of time (e.g. object recognition).

6 Conclusion

We have presented a set of properties of the regions produced by the MST Pyra-
mid segmentation method and showed its similarity with the watershed trans-
form of an image. Attraction regions are contracted before their neighbouring
local maxima. Smooth parts of the image surrounded by borders with maximal
local variation are selected. Maximum and respectively minimum variation on
the border of a region is bigger then the maximum and respectively minimum
variation inside the region. Internal/external contrast conditions do not affect
too much the lower levels of the pyramid.
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Abstract. Random walk kernels in conjunction with Support Vector
Machines are powerful methods for error-tolerant graph matching. Be-
cause of their local definition, however, the applicability of random walk
kernels strongly depends on the characteristics of the underlying graph
representation. In this paper, we describe a simple extension to the stan-
dard random walk kernel based on graph edit distance. The idea is to
include global matching information in the local similarity evaluation of
random walks in graphs. The proposed extension allows us to improve
the performance of the random walk kernel significantly. We present an
experimental evaluation of our method on three difficult graph datasets.

1 Introduction

For more than thirty years, a huge variety of methods have been developed ad-
dressing the problem of graph matching [1]. In recent years, a novel class of
algorithms based on kernel machines has gained a significant amount of interest
in the pattern recognition community. The basic idea of kernel machines is to
map the classification problem from the pattern domain to a vector space implic-
itly defined in terms of a kernel function [2]. In the context of graph matching,
kernel machines allow us to apply vector space operations to graphs by embed-
ding the space of graphs in a vector space. Provided that the definition of a kernel
function that is suitable for the pattern matching problem under consideration
is given, a large number of algorithms for pattern analysis and recognition can
readily be applied, including principal component analysis, Fisher discrimination
analysis, and Support Vector Machines [2].

Various kernel functions have been proposed to solve the graph matching
problem as well as the related string matching problem. In a common approach,
the similarity of patterns is defined in terms of similar substructures they con-
tain [3,4]. Another approach employs the definition of a Schur-Hadamard inner
product on graphs [5]. Based on the notion of random walks in graphs, several
kernels have been developed [6,7]. While kernel methods provide a powerful way

� Supported by the Swiss National Science Foundation NCCR program Interactive
Multimodal Information Management (IM)2 in the Individual Project Multimedia
Information Access and Content Protection.

D.-Y. Yeung et al. (Eds.): SSPR&SPR 2006, LNCS 4109, pp. 191–199, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



192 M. Neuhaus and H. Bunke

to analyse and classify graphs, they are, in some cases, limited in terms of the
flexibility of their structural matching process.

In this paper we aim at enhancing a standard random walk kernel by in-
formation derived from the well-established error-tolerant graph edit distance
measure [8,9]. In the remainder of this paper, we will briefly introduce graph
edit distance and the random walk kernel, describe the extension we propose,
and demonstrate the usefulness of our method in classification experiments.

2 Graph Edit Distance

Graph edit distance is one of the most universal graph matching methods in the
sense that edit distance is not restricted to special classes of graphs, such as planar
graphs, bounded valence graphs, or graphs labeled with discrete attributes. The
key idea is to measure the structural dissimilarity of two graphs by the minimal
amount of distortion that is needed to transform one graph into the other [8,9].
The only requirement for graph edit distance to be applicable is that an under-
lying distortion model must be given such that the strength of distortions can be
measured. Hence, graph edit distance can be computed for graphs with arbitrary
node and edge relations and any kind of node and edge labels.

More formally, let g = (V, E, μ, ν) denote a graph g consisting of a finite
set of nodes V , a set of directed edges E ⊆ V × V , a node labeling function
μ : V → L assigning an attribute from L to each node, and an edge labeling
function ν : E → L. The label alphabet L is often defined as a finite set of
labels, L = {α, β, γ, . . .}, or a Euclidean vector space, L = n. We then define a
number of distortion, or edit, operations on graphs. A standard set of graph edit
operations consists of an insertion, a deletion, and a substitution operation of
nodes and edges. An edge deletion is equivalent to the removal of an edge from
a graph, and a node substitution results in the replacement of a node label by
another one. Further required is a cost function assigning each edit operation a
penalty cost value, such that weak edit operations have low costs and strong edit
operations have high costs. For instance, slightly changing a label should, in most
cases, result in lower costs than strongly changing the same label. The key idea
of graph edit distance is that for two structurally similar graphs only a few weak
edit operations are needed to convert one graph into the other. By contrast, for
two quite different graphs, a larger number of edit operations of greater strength
are needed to make the two graphs identical to each other. Consequently, the
edit distance of two graphs g and g′ is defined by the minimum cost sequence of
edit operations transforming g into g′,

d(g, g′) = min
(e1,...,ek)∈E(g,g′)

k∑
i=1

c(ei) . (1)

A sequence of edit operations transforming one graph into the other is also called
an edit path. Note that E(g, g′) denotes the set of edit paths from g to g′, and
c is a function assigning costs to edit operations.
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The edit distance of graphs is usually computed by means of a tree search
procedure [9]. As every node can potentially be substituted by any other node,
it can be shown that the computational complexity of edit distance is exponential
in terms of space and time. In practice, it turns out that the computation of exact
edit distance is limited to graphs with up to 12 nodes, typically. In this paper,
we therefore resort to an approximate edit distance algorithm [10] in those cases
where the exact distance cannot be computed.

The edit distance of graphs is normally used in conjunction with a k-nearest-
neighbor classifier. For an unknown input graph, we compute the edit distance
to a number of prototype graphs and assign the input graph to the most frequent
class among the k closest prototypes.

3 Random Walk Kernels

The objective in this section is to define error-tolerant graph similarity mea-
sures, or kernel functions, that can be used in conjunction with kernel machines
[2]. The main advantage of kernel based classifiers for structured data is that
the classification problem can be formulated in a vector space related to the
original pattern space solely by definition of a kernel function. Given a valid
kernel function, it can be proven that there exists a vector space with its inner
product being equal to the kernel function. This allows us to run a number of
algorithms for classification and pattern analysis in the implicitly existing vector
space without explicitly mapping the graphs to the elements of the vector space.
In our experiments, we apply the kernel functions in conjunction with one of the
most prominent and best performing kernel based classifiers, the Support Vector
Machine (SVM) [2].

We proceed by first describing a well-known random walk kernel for discretely
labeled graphs [6] and its extension to continuously labeled graphs [7]. Then we
suggest modifications to make the random walk kernel more robust.

3.1 Discretely Labeled Graphs

The original random walk kernel is defined by means of the direct product graph
[6]. The direct product of two graphs g = (V, E, μ, ν) and g′ = (V ′, E′, μ′, ν′) is
the graph (g × g′) = (V×, E×, μ×, ν×) given by

V× = {(v, v′) ∈ V × V ′ : μ(v) = μ′(v′)} and (2)
E× =

{
((u, u′), (v, v′)) ∈ V 2

× : (u, v) ∈ E ∧ (u′, v′) ∈ E′ ∧ ν(u, v) = ν′(u′, v′)
}

.

The labeling functions of the product graph are defined by μ×(v, v′) = μ(v) =
μ′(v′) and ν×((u, u′), (v, v′)) = ν(u, v) = ν′(u′, v′). In other words, in the direct
product graph (g × g′), we simply identify pairs of nodes of both graphs with
identical labels and pairs of edges with identical labels, constituting the nodes
and edges of the product graph. The adjacency matrix A× of (g × g′) is then
defined as

[A×](u,u′),(v,v′) =
{

1 if ((u, u′), (v, v′)) ∈ E× ,
0 otherwise .

(3)
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Note that the adjacency matrix is a |V×| · |V×|-matrix containing at position
(i, j) value 1 if node i is connected to node j by an edge in (g × g′), and
value 0 otherwise. From the adjacency matrix A× of the direct product, one can
then derive the graph kernel with weighting parameter λ ≥ 0 according to the
formula [6]

k×(g, g′) =
|V×|∑
i,j=1

[ ∞∑
n=0

λnAn
×

]
ij

. (4)

If λ < 1, it is sufficiently accurate to evaluate infinite sums by their first few
dominant addends only.

The kernel can be interpreted as a measure of the number of matching labeled
random walks in both graphs. That is, if the sequence of node and edge labels
encountered on a random walk in g matches the sequence of node and edge labels
of a random walk in g′, this contributes a certain amount to the overall similarity
k×(g, g′). The graph kernel reflects the intuitive understanding that two graphs
are similar if there are a large number of identical random walks in both graphs.

3.2 Continuously Labeled Graphs

The main limitation of the kernel defined above is that it is only applicable to
graphs with discretely labeled nodes and edges. If a random walk in g differs from
a random walk in g′ only in a single node label, the two walks are considered
completely different and are therefore not taken into account. Unfortunately,
most graphs extracted from real-world data contain a significant amount of noise,
and attributes with continuous values are mostly used to describe non-discrete
data. For these reasons, an extension of the original random walk kernel has been
proposed [7]. The idea is not to evaluate if two walks are identical, but rather if
they are similar. This modified kernel is applicable to graphs with continously
labeled nodes and edges.

To obtain the modified kernel, we leave out the label equality conditions in
Eq. 2, resulting in a modified direct product (g × g′), and define the adjacency
matrix of (g × g′) by

[A×](u,u′),(v,v′) =
{

k((u, u′), (v, v′)) if ((u, u′), (v, v′)) ∈ E× ,
0 otherwise ,

(5)

where the kernel function k measuring the similarity of pairs of nodes (u, u′) and
(v, v′) is given by

k((u, u′), (v, v′)) = knode(u, u′) · kedge((u, v), (u′, v′)) · knode(v, v′) . (6)

This function is defined with respect to underlying kernels knode evaluating the
similarity of two node labels and kedge evaluating the similarity of two edge labels.
In our experiments, we use standard RBF kernels for this purpose. Note that the
adjacency matrix defined in Eq. 5 can be interpreted as a fuzzy adjacency matrix,
where the adjacency value of two nodes of the product graph is high if the corre-
sponding pairs of nodes and pairs of edges have similar labels, and low otherwise.
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Plugging the adjacency matrix from Eq. 5 into the kernel function in Eq. 4, we
obtain the modified kernel that can be applied to continuously labeled graphs [7].

3.3 Edit Distance Enhancement

As will be shown in the next section, the random walk kernel defined above is
very powerful on certain datasets, but may perform poorly on other data com-
pared to a standard edit distance based nearest-neighbor classifier. In the case of
the random walk kernel, the similarity of graphs is defined by accumulating the
similarity of local parts of the graphs. For certain graph representations, how-
ever, there are global matching constraints that need to be taken into account.
In such a case it may be more appropriate to apply other graph matching meth-
ods, such as the one based on edit distance. Experiments confirm that random
walk kernels and edit distance methods address the graph matching problem in
complementary ways, and one approach usually performs significantly worse or
better than the other one.

The main objective in this paper is to bring together the best from both worlds:
The flexibility of graph edit distance and the power of random walk kernels. The
basic idea is to enhance the random walk kernel with an edit distance matching
at the global level. This allows us to integrate global information into the local
random walk matching process. To this end, let us assume that an optimal edit
path from g to g′ has been computed, and let S = {v1 → v′1, v2 → v′2, . . .} denote
the set of node substitutions present in the optimal path. We then proceed by
defining the adjacency matrix of the direct product graph (g × g′) by

[A×](u,u′),(v,v′) =

⎧⎨⎩
k((u, u′), (v, v′)) if ((u, u′), (v, v′)) ∈ E× and

u → u′ ∈ S and v → v′ ∈ S ,
0 otherwise .

(7)

In other words, we restrict the random walks to nodes that satisy the optimal
node-to-node correspondences identified by the edit distance computation. This
adjacency matrix is then used with the kernel function given in Eq. 4.

4 Experimental Results

In this section, we offer an evaluation of the proposed enhanced random walk
kernel in comparison to two baseline systems. In the first baseline system, the
edit distance of graphs is computed (see Sec. 2), and test graphs are classified
according to the k most similar graphs from a labeled training set. In the second
baseline system, the similarity of graphs is evaluated by means of the traditional
random walk kernel (see Sec. 3.2), and an SVM is used for classification. The
third system, our proposed method, is based on the enhanced random walk
kernel defined in Sec. 3.3.

The first database consists of line drawings representing capital letters. To
obtain a noisy sample set of letters, we iteratively apply distortions to clean
letter prototypes. The distorted line drawings are then converted into graphs by
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a) b)

Fig. 1. Illustration of a) three clean letters and b) three distorted letters A, E, F
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Fig. 2. Influence of insertion and deletion penalty cost on classification accuracy

representing end points of lines by nodes and lines by edges. Nodes are labeled
with the two-dimensional position of the corresponding end point. Following this
procedure, we construct a training set and validation set of size 150 each, and a
test set of size 750. The database consists of 15 classes of letters (A, E, F, H, I,
K, L, M, N, T, V, W, X, Y, Z ). An illustration is provided in Fig. 1.

In a first experiment, we focus on the influence of edit costs on the classifi-
cation accuracy. For this purpose we only consider the k-nearest-neighbor edit
distance based classifier and the SVM with the edit distance enhanced kernel.
The edit costs of node (or edge) insertions and deletions essentially determine
how likely a node (edge) is to be substituted by another node (edge). If insertion
and deletion costs are low, only a few inexpensive substitutions will occur in an
optimal edit path. Conversely, if insertion and deletion costs are high, the edit
distance algorithm will tend to substitute as many nodes (edges) as possible.
For an edit distance based nearest-neighbor classifier, the resulting cost of an
optimal edit path is crucial for the performance. It is therefore important to
carefully adjust insertion and deletion costs, as well as any other edit cost para-
meter. In the case of the random walk kernel proposed in this paper, on the other
hand, we are interested in promising node-to-node correspondences, rather than
a particular distance value. This means that in the case of the proposed method
there is no need for an extensive optimization of the edit cost parameters. This
issue can very well be observed in Fig. 2, where the classification accuracy of an
edit distance based nearest-neighbor classifier and an SVM based on the pro-
posed kernel function is shown for various insertion and deletion penalty costs. As
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a) b)

Fig. 3. Example images from the Lesaux database, a) city and b) countryside

Fig. 4. Example images from the Diatom database (four different classes)

expected, the accuracy of the traditional edit distance classifier strongly depends
on the actual edit costs, while the proposed method exhibits a roughly constant
behavior for penalty costs above a certain threshold. It should also be noted that
the proposed method clearly outperforms the nearest-neighbor classifier.

We next compare the classification accuracy of the two baseline classifiers
with the proposed method. To this end, we classify graphs from the Letter data-
base described above, from the Lesaux database, and the Diatom database. The
Lesaux database [11] consists of graphs representing images from five classes
(city, countryside, people, snowy, streets). Graphs are extracted from images by
running a region segmentation process and removing those segments that are
deemed irrelevant for classification. The remaining regions are then turned into
a region adjacency graph with labels describing the dominant colors of the re-
gion. We use a training set, validation set, and test set of size 54 each. For two
example images, see Fig. 3. The Diatom database [12] consists of 110 micro-
scopic images of diatoms, evenly split into training set, validation set, and test
set. The recognition task is to classify diatoms from the test set according to 22
classes. The images are represented by attributed region adjacency graphs. Four
example diatom images from different classes are shown in Fig. 4. The various
parameters of the classifiers (such as edit cost parameters and weighting factor
λ) are first optimized on the validation set and then applied to the independent
test set.

The classification accuracy of the three methods under consideration deter-
mined on the independent test set is given in Table 1. There are two entries in
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Table 1. Comparison of classification accuracy

Letter database Lesaux database Diatom database
Edit distance, kNN 69.3 48.2* 63.9*
Random walk, SVM 75.7* 33.3 44.4
Proposed, SVM 74.7* 51.9* 58.3*

* Marked classification rates do not differ significantly. Unmarked clas-
sification rates are significantly lower than marked ones (α = 0.05).

each column of this table marked with an asterisk. These two entries are, in each
column, not significantly different from each other (on a statistical significance
level of α = 0.05). However, the unmarked entry in each column is significantly
smaller than the two marked ones. It can clearly be observed that the two tradi-
tional methods — the edit distance based k-nearest-neighbor classifier and the
standard random walk kernel — perform quite different on all datasets. One of
the two methods is always significantly better than the other one. The proposed
random walk kernel enhanced by edit distance information, on the other hand,
performs as good as the better method throughout our experiments. That is,
while the traditional edit distance method and random walk kernel method em-
phasize a certain aspect of the graph matching problem, the proposed kernel
function combines the information in an advantageous manner. By applying the
method proposed in this paper, we obtain a robust classifier that succeeds well
on all tested datasets without recourse to the characteristics of the underlying
graphs. Our method can be regarded as an extension to the standard random
walk kernel that leads to a statistically significant improvement of the graph
matching performance on the Lesaux database and the Diatom database.

5 Conclusions

In this paper, we propose an extension of a standard random walk kernel for
graphs. It can be observed, on graphs extracted from real-world data, that ran-
dom walk kernels offer an interesting alternative to traditional edit distance
based graph classifiers in the sense that they address the graph matching prob-
lem in a different way. One some datasets, the edit distance measure is the most
suitable method for graph matching; on other datasets, edit distance is outper-
formed by random walk kernels and Support Vector Machines. The method we
propose is based on the idea that it is advantageous to include graph matching
information from the global level in the random walk kernel defined locally based
on the similarity of walks in graphs. By constraining the random walk kernel to
pairs of nodes that satisfy the global node-to-node correspondence, instead of
any pairs of nodes, we obtain a system that combines the flexibility of graph
edit distance with the classification power of the random walk kernel. The pro-
posed kernel offers a classification accuracy that is at least as good as the better
one of the two baseline methods — graph edit distance and standard random
walk kernels — and significantly better than the other one. The performance
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is evaluated on a semi-artificial line drawing dataset and two real-world image
datasets.
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Abstract. Digital contours in a binary image can be described as an
ordered vector set. In this paper an extension of the string edit distance is
defined for its computation between a pair of ordered sets of vectors. This
way, the differences between shapes can be computed in terms of editing
costs. In order to achieve efficency a dominant point detection algorithm
should be applied, removing redundant data before coding shapes into
vectors. This edit distance can be used in nearest neighbour classification
tasks. The advantages of this method applied to isolated handwritten
character classification are shown, compared to similar methods based
on string or tree representations of the binary image.

Topics: Dominant Points, Pattern Recognition, Structural Pattern
Recognition.

1 Introduction

The description of an object contour in a binary image as a string [1] using
Freeman codes [2] or using a tree representation structure [3,1] is widely used
in pattern recognition. For using these structures in a recognition task, the edit
distance is often used as a measure of the differences between two instances.
Both, string edit distances [4] and tree edit distances [5] are used, depending on
the data structures utilised for representing the problem data. In this paper, in
order to obtain a representation of the object contour from a binary image, an
ordered vector set is extracted, and an edit distance measure is defined between
pairs of instances of this representation. This measure is an extension of the
string edit distance, adding two new rules and changing vectors by symbols.

Freeman chain codes keep very fine details of the shapes since they code
the relations between every pair of adjacent pixels of the contours. To avoid
computation time and in order to remove irrelevant details, a dominant point
detection algorithm is needed. The goal is to reduce the features that represent a
binary image in order to remove redundant data to compute the distance faster,
keeping the final classification time low and good error rates.
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The remainder of this paper consists of four sections. In section 2, two differ-
ent representations of the same binary image are extracted. In section 3, a new
distance based in ordered vector set is defined. In section 4, the results of experi-
ments in a classification task, applying string and ordered vector set edit distances
are presented. Finally in section 5, the conclusions and future word are presented.

2 Feature Extraction from a Binary Image

The goal of the ordered vector set is to describe the contour of an object using
the least possible number of elements. The classical representation of a contour
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Fig. 2. General scheme. From the binary image, morphological filters are applied to
correct gaps and spurious points. Thus, contour and skeleton are obtained. From the
first, the chain code is obtained and from the second, the ordered vector set is extracted
using a dominant point selection algorithm.
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in a binary image links the contour pixels with their neighbors using 0 to 7 (see
Fig. 1) codes which represent a discrete number of 2D directions. This way, a
string that represents the contour is obtained (Fig. 2 top-right).

This kind of feature extraction assumes that all linked pixels are of equal
importance. If we select the most representative points of the contour and link
all these points, a compact representation of 2D figures is obtained, with less
features than using Freeman codes.

The idea is to select a set of dominant points in a contour [6,7], link those
points following the contour of the figure using 2D vectors, and then use these
ordered vector set to represent the image (Fig. 2 bottom-right).

In a particular application of handwritten character recognition, it is rec-
ommended to apply some filter operations to original image before extracting
and coding the contours [8] including an opening filter [9] and a thinning algo-
rithm [10] in order to remove noise and redundant information.

3 Ordered Vector Set Edit Distance

The string edit distance definition [4] is based on three edit operations: insertion,
deletion, and substitution. Let Σ the alphabet, A, B ∈ Σ∗ two finite strings of
characters, and Λ is a null character. A 〈i〉 is the ith character of the string A;
A 〈i : j〉 is the substring form the ith to jth characters of A, both inclusive.

An edit operation is a pair (a, b) ∈ (Σ ∪ {Λ})2 : (a, b) �= (Λ, Λ). So, the basic
edit operations are substitution a → b, insertion Λ → b and deletion a → Λ. If a
generic cost function is associated to each operation γs (a → b), the cost of the
sequence of edit operations that transforms a finite string A in B is defined as

ds (A, B) =

min

⎧⎪⎪⎨⎪⎪⎩
γs (Λ → B 〈1〉) + ds (A, B 〈2 : |B|〉) |B| ≥ 1
γs (A 〈1〉 → Λ) + ds (A 〈2 : |A|〉 , B) |A| ≥ 1

γs (A 〈1〉 → B 〈1〉) + ds (A 〈2 : |A|〉 , B 〈2 : |B|〉) |A| ≥ 1 ∧ |B| ≥ 1
0 |A| = 0 ∧ |B| = 0

The similar idea of an ordered string is extended to an ordered vector set.
Let V, W ∈ (R×[0, 2π])∗ a finite set of vectors and Λ is a null vector. V 〈i〉 is
the vector ith in the set V , VN 〈i〉 is the norm and Vα 〈i〉 is the angle of the
ith vector; V 〈i : j〉 is the subset from ith to jth component vectors of V , both
included.

Now, an edit operation is a pair (v, w) ∈ (R×[0, 2π]) , (v, w) �= (Λ, Λ) :
(v, w∗) ∪ (v∗, w). So, the basic edit operations are substitution (1 to 1) v → w,
substitution (1 to N) called fragmentation v → w+, substitution (N to 1) called
consolidation v+ → w, insertion Λ → w and deletion v → Λ. Here, we have
considered the case that one vector could be replaced by N , or vice versa.

When using dominant points, it is usual that a small change in the contour
generates a new dominant point, so when comparing two prototypes 1 vector
in the first prototype can be similar to N continuous vectors from the second
prototype.
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The cost of sequence of edit operations that transforms a finite ordered vector
set V into W , if we establish a cost function γv (v∗, w∗), is defined as

dv (V,W ) =

min

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

γv (Λ→W 〈1〉) + dv (V,W 〈2 : |W |〉) |W | ≥ 1
γv (V 〈1〉 → Λ) + dv (V 〈2 : |V |〉 ,W ) |V | ≥ 1

γv (V 〈1〉 →W 〈1〉) + dv (V 〈2 : |A|〉 ,W 〈2 : |B|〉) |V | ≥ 1 ∧ |W | ≥ 1
γv (V 〈1〉 →W 〈1 : j〉) + dv (V 〈2 : |V |〉 , B 〈j + 1 : |W |〉)
j∈[2,|W |] |W | > 2

γv (V 〈1 : i〉 →W 〈1〉) + dv (V 〈j + 1 : |V |〉 , B 〈2 : |W |〉)
i∈[2,|V |] |V | > 2

0 |V | = 0 ∧ |W | = 0

In a similar way to the efficient (dynamic programming technique) algorithm
proposed in [4] for computing the string edit distance, it can be extended to
compute the ordered vector set edit distance in the following way:

1. Function vectorEditDistance(V,W)
2. D[0, 0] := 0;
3. for i := 1 to |V | do D[i, 0] := D[i− 1, 0] + γv (V 〈i〉 → Λ);
4. for j := 1 to |W | do D[0, j] := D[0, j − 1] + γv (Λ → W 〈j〉);
5. for i := 1 to |V | do
6. for j := 1 to |W | do
7. m1 := D[i− 1, j − 1] + γv (V 〈i〉 → W 〈j〉);
8. m2 := D[i− 1, j] + γv (V 〈i〉 → Λ);
9. m3 := D[i, j − 1] + γv (Λ → W 〈j〉);
10. m := ∞;
11. for k := 1 to |V | do
12. if (i− k) ≥ 0 then
13. m := min {m, D[i− k, j − 1] + γv (V 〈i− k : i〉 → W 〈j〉)};
14. endfor
15. for k := 1 to |W | do
16. if (j − k) ≥ 0 then
17. m := min {m, D[i− 1, j − k] + γv (V 〈i〉 → W 〈j − k : j〉)};
18. endfor
19. D[i, j] := min(m, m1, m2, m3);
20. endfor
21. endfor
22. return D[i, j]

The complexity of the string edit distance algorithm is proportional to the
length of both strings, O(|A| |B|). In the case of the vectorEditDistance, it has
three nested loops and the complexity is O(|V | |W |max {|V | |W |}O(γv)), but if
we consider that a vector can be replaced by a fixed constant number of vectors
and the function γv defined bellow, the complexity is reduced to O(|V | |W |).
Thus, the cost is similar to that of the string edit distance.
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To compute the difference between one vector and a set of N vectors, used in
vectorEditDistance, the following function is utilised:

1. Function γv (V 〈k〉 → W 〈i : j〉)
2. float auxN := 0, aunAng := 0, r := 0, rSubs := 0, rLeft := 0
3. auxN := VN 〈k〉 //Norm single vector
4. auxAng := Vα 〈k〉 //Angle single vector
5. for l := i to j do
6. if auxN ≥ 0 then //Left norm single vector
7. rSubs := rSubs + auxN ∗ closest(auxAng, Wα 〈l〉)
8. auxAng := Wα 〈l〉
9. endif
10. auxN := auxN −WN 〈l〉
11. endfor
12. if auxN ≥ 0 then //Left norm single vector
13. rLeft := auxN ∗ kInsertion
14. else //Norms W vectors > V

15. rLeft := −auxN ∗ kDeletion
16. endif
17. return rSubs + rLeft

where closest(angle1, angle2) returns the smallest angle between both parame-
ters, resulting a value in [0,π]. The kInsertion = kDeletion =π/2 is the maximum
possible difference between two angles.

The functions γv (V 〈i.j〉 → W 〈k〉) and γv (V 〈i〉 → W 〈j〉) are similar. In the
first case, the parameters change the order and in the second case, both para-
meters are unitary vectors.

The insertion and deletion functions are defined as γv (Λ → W 〈j〉) = |W 〈j〉|∗
kInsertion and γv (V 〈i〉 → Λ) = |V 〈j〉| ∗ kDeletion.

4 Experiments

Three algorithms have been compared based on different contour descriptions:

1. Classical Freeman chain code extracted from the object contour in the binary
image. Any point reduction method is applied.

2. The ordered vector set extracted from the dominant points computed by the
algorithm described in [7], that will be referred as non collinear dominant
points (NCDP).

3. The new structure based in the ordered vector set extracted from dominant
points described in [6]. In this article, 1− curvature and k− curvature algo-
rithms are defined in order to select dominant points using these measures.
The authors showed that the obtained dominant points were similar for both
curvature measures, so we utilised the faster one: 1− curvature.



Edit Distance for Ordered Vector Sets: A Case of Study 205

In the preliminary trials tested, the algorithm 1 − curvature obtained lower
error rates than NCDP. Thus, the k parameter in the vectorEditDistance func-
tion was tuned when applied to 1− curvature. The k parameter is the maximum
number of continuous vectors that was set to k = 1.

A classification task using the NIST SPECIAL DATABASE 3 of the National
Institute of Standards and Technology was performed using the different contour
descriptions enumerated above to represent the characters. Only the 26 upper-
case handwritten characters were used. The increasing-size training samples for
the experiments were built by taking 500 writers and selecting the samples ran-
domly. The nearest neighbour (NN) technique was used for perform classification.
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Fig. 3. Results for NN classification of characters obtained with ordered vector set
(1− curvature), different training set (200 examples per class) and test set (50 samples
per class and 26 character classes) as a function of different number of vectors that can
be replaced in a substitution operation in the vector edit distance: (a) average error
rate ± standard deviation; (b) average classification time
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Figure 3 shows the comparison between the error rate in the vector classifica-
tion task evaluated for different sizes, k (vectorEditDistance). This experiment
shows that the error rate decreases linearly when the k grows to a limit. If
k grows the number of computations increases as well the classification time.
In this case, we found the lowest error rate with the lowest k, so the optimal
parameter value was k = 3.

The figure 4 shows the classification error rate and the time used in the clas-
sification of 50 examples per class as a function of different training set.

In all cases the use of Freeman chain codes generates a lower error rate (less
than 9%) in recognition than using ordered vector sets, although the classification
time is much higher. Thus, the ordered vector set description based on dominant
points 1− curvature [6] is a good trade-off choice. It obtains also a low error rate
(less than 11%) and it is 10 times faster than using the Freeman chain codes.

5 Conclusions and Future Work

The computation of the edit distance between ordered vector sets that represent
the contour of an object in a binary image (based on dominant point computation
using 1-curvature) is one order of magnitude faster than using Freeman chain
codes, and it has just a slightly higher error rate when using it for recognition.
The edit distance defined in this paper to compare ordered vector sets has similar
complexity than that of string edit distance. Since the size of the ordered vector
set is significatively lower than that of strings for representing the same object,
the time needed for computing the distance needed for classification is much
lower.

As it can be seen in the results section the error rate using ordered vector set
based on dominant points is similar to that of using the Freeman chain code.

As future work we planned to use some special labels for each vector to de-
scribe the curved shape of the original image in order to obtain a better descrip-
tion of the binary image contour and decrease the error rate in this classification
task. Another possible line of future work is to apply algorithms such as [11] in
order to optimise the cost functions for the ordered vector set edit distance.
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Abstract. The WARP system defines a dissimilarity measure between
shapes described by their contours which is based on Dynamic Time
Warping of Fourier Descriptors based signatures. These signatures are
invariant to translation, scaling, rotation, and selection of the starting
point. However, identical shapes present ambiguous signatures and sim-
ilar shapes may yield significantly different signatures. Differences affect
rotation and starting-point of the signatures, which may lead to poor
performance in classification and shape retrieval tasks. We propose a dif-
ferent signature method to provide true rotation invariance and a Cyclic
Dynamic Time Warping dissimilarity measure to achieve true starting-
point invariance in shape comparisons.

1 Introduction

Content-based image retrieval is being increasingly demanded in many applica-
tions: digital libraries, broadcast media selection, multimedia editing, etc. [7].
In order to be effective in classification an retrieval tasks, shape descriptions,
combined with (dis)similarity measures, must be robust to noise and invariant
to transformations such as translation, scaling, and rotation.

Recently, Bartolini et al. have proposed a new Discrete Fourier Transform
based approach to represent and compare shapes: the WARP System [1]. The
normalized, low-frequency Fourier Descriptors (FDs) (including phase informa-
tion) are used to reconstruct the original shape. We will refer to the reconstructed
shape with the term signature. The signature is a good approximation to the
original shape and contains a small number of points. Moreover, it is a sequence
of complex values with a canonical starting point, which makes it amenable to be
compared to other signatures by means of standard sequence comparison meth-
ods. The WARP system uses Dynamic Time Warping (DTW) in order to com-
pare sequences [6]. In [1], some experiments on the SQUID Demo and MPEG-7
CE-Shape-1 databases show that the WARP system outperforms other index-
able curvature-based shape descriptors and FDs-based signatures that do not
take into account phase information.
� This work has been supported by the Spanish Ministerio de Ciencia y Tecnoloǵıa

and FEDER under grant TIC2002-02684.
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The WARP system presents two drawbacks: (1) reconstructing the shape
contour from normalized FDs produces signatures with an ambiguity modulo
a rotation of π radians [2] (which also affects the starting-point selection); and
(2) perceptually similar shapes may have significantly different signatures (in
orientation and starting point selection), which leads to poor performance of
DTW-based comparisons. In order to solve these problems, we propose (1) a
different encoding of the shape contour (which is based on the derivative of the
reconstructed contour), and (2) to compare derivative-based signatures by means
of a Cyclic Dynamic Time Warping dissimilarity measure.

The paper is organized as follows: In Sect. 2, some notation is introduced. In
Sect. 3, the WARP system is reviewed and the observed drawbacks are pointed
out. A simple improvement to the WARP system which provides better rotation
invariance and a Cyclic Dynamic Time Warping procedure that provides starting
point invariance when comparing signatures are presented in Sect. 4. In Sect. 5,
experimental results on image retrievals tasks for the SQUID Demo and MPEG-7
CE-Shape-1 databases compare the different methods. Finally, some conclusions
are presented in Sect. 6.

2 Notation

Shapes can be coded as a cyclic sequence of points along the contour. A cyclic
sequence can be viewed as the set of sequences obtained by cyclically shifting a
representative sequence (i.e., by choosing different starting points).

Let C
∗ be the closure of C, the field of complex numbers, under a concatena-

tion operator and let a = a0a1 . . . am−1 ∈ C∗ be a sequence of m points (complex
values) describing a (counter-clockwise) contour1. A cyclic shift σ of a is a map-
ping σ : C∗ → C∗ defined as σ(a0a1 . . . am−1) = a1a2 . . . am−1a0. Let σk denote
the composition of k cyclic shifts and let σ0 denote the identity. Two sequences a
and â are cyclically equivalent if a = σk(â) for some integer k. A cyclic sequence
is an equivalence class [a] = {σk(a) : 0 ≤ k < m}. Any of its members is a
representative (non-cyclic) sequence.

3 The WARP System

Dynamic Time Warping (DTW) of sequences of 2D points describing shapes is
sensitive to changes in position, scale, orientation of contours and to selection
of their starting points. Therefore, DTW does not lead to good dissimilarity
measures when the original, cyclic sequences describing shapes are used. The
WARP images retrieval system [1] is based on the DTW-based comparison of
compact, normalized signatures of shapes. These signatures are obtained by
applying the Inverse Discrete Fourier Transform (IDFT) to the shape’s Fourier
Descriptors (FDs) after a normalization procedure.

1 Note that a0a1 . . . am−1 does not denote the product of m complex numbers, but
their concatenation to form a sequence.
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The Discrete Fourier Transform (DFT) of a sequence a = a0a1 . . . am−1 is an
ordered set of complex values A = (A−m/2, . . . , A−1, A0, A1, . . . , Am/2−1) where
Ai =

∑
0≤k<m ake

−j2πki/m and j =
√
−1. These coefficients are the FDs and

model the contour of a shape as a composition of ellipses revolving at different
frequencies [2]. The main ellipse is centered at the contour centroid, A0, and
translation of the contour only affects this descriptor. Scaling by a factor α
scales the FDs by α. Rotating the shape by an angle θ yields a phase shift of θ
in the FDs. The cyclic shift σk(a) produces a linear phase shift of 2πki/m to Ai.

The A0 descriptor can be set to 0 in order to provide invariance to translation.
Let us consider the polar representation of the descriptors: Ai = rie

jθi . The value
of A1 is the length of the main axis of the basic (low frequency) ellipse; therefore,
dividing all the descriptors by r1 provides invariance to scale. Invariance to
rotation can be obtained by substracting (θ−1 + θ1)/2 (the orientation of the
basic ellipse) to each θi. Invariance with respect to the starting point can be
achieved by adding i(θ−1 − θ1)/2 to each θi. In principle, the shape can be
reconstructed to a canonical form (invariant to translation, scaling, rotation, and
starting point) by computing the IDFT. Noise in the contour can be reduced
by taking only M � m low frequency components before computing the IDFT.
The WARP system only uses the M = 32 lower frequency FDs before computing
the IDFT. The resulting shape is a more compact, canonical representation of
the original one: a signature.

Let a = a0a1 . . . am−1 and b = b0b1 . . . , bn−1 be two sequences. An alignment
between a and b is a sequence of pairs (i0, j0), (i1, j1), . . . , (ik−1, jk−1) such
that (a) 0 ≤ i� < m and 0 ≤ j� < n for 0 ≤ � < k; (b) 0 ≤ i�+1 − i� ≤ 1 and
0 ≤ j�+1−j� ≤ 1 for 0 ≤ � < k−1; and (c) (i�, j�) = (i�+1, j�+1) for 0 ≤ � < k−1.
The pair (i�, j�) is said to align ai�

with bj�
. The weight of an alignment is defined

as
∑

0≤�<k δ(ai�
, bj�

), where δ is a “local dissimilarity” function that the WARP
system defines as δ(ai, bj) = |ai − bj |2. An optimal alignment is an alignment of
minimum weight.

The DTW dissimilarity measure D(a, b) is defined as
√

d(m− 1,n− 1), where
d(m− 1,n− 1) is the weight of an optimal alignment and is defined as2

d(i, j) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

δ(a0, b0), if i = j = 0;
d(i− 1, j) + δ(ai, b0), if i > 0 and j = 0;
d(i, j − 1) + δ(a0, bj), if i = 0 and j > 0;

min

⎧⎪⎨⎪⎩
d(i− 1, j − 1),
d(i− 1, j),
d(i, j − 1)

⎫⎪⎬⎪⎭+ δ(ai, bj), if i > 0 and j > 0.

(1)

This equation can be solved by Dynamic Programming in O(mn) time: the
problem is reduced to the computation of an optimal path in the warping graph,
a weighted, acyclic graph with O(mn) arcs. Fig. 1 depicts the complete WARP

2 The recursive equation in [1, page 144] contains a typo: the square root should be
applied only to d(m − 1, n − 1), and not to all d(i, j).
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DFT FD
normalization IDFT

DFT FD
normalization IDFT

DTW

Fig. 1. The WARP system: shapes are compared by means of DTW on the IDFT of
normalized FDs

(a) (b) (c)

Fig. 2. (a) Original shape and its normalized version. (b) The same shape compressed in
the X axis and its normalized version, which has a different rotation and starting point.
(c) A bit more compressed shape and its normalized version, which is also different.

comparison procedure. The DTW computation in the WARP system is O(M2),
where M � m,n, since comparisons are performed on signatures.

3.1 Drawbacks of the WARP System

It should be noted that subtracting (θ−1 + θ1)/2 to the orientation of all FDs
only provides rotation invariance modulo π radians [2]. The WARP system does
not consider this ambiguity. Anyway, let us consider that the rotation ambiguity
is not present. The basic idea of the WARP system is that, after normalization,
all shapes have a canonical version with a “standard” centroid, scale, rotation,
and starting point and thus, can be compared by means of the DTW dissim-
ilarity measure. But this is a flawed reasoning: invariance is only achieved for
different translations, scalings, rotations, and starting points of the same shape.
Different shapes (even similar ones) may differ substantially in their normalized
orientation and starting point. Fig. 2 shows three perceptually similar figures
(in fact, the second and third ones have been obtained from the first one by
slightly compressing the horizontal axis) whose normalized version are signifi-
cantly different in terms of orientation and starting point. This problem appears
frequently in shapes whose basic ellipse is almost a circle. Invariance to rotation
and starting point election should be provided by a different method.
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In the next section, we present an alternative signature which provides better
rotation invariance for similar shapes and a dissimilarity measure which is not
affected by the starting point of the signature.

4 Cyclic Dynamic Time Warping: A Rotation and
Starting-Point Invariance Comparison

We have seen that the signature of similar shapes may present different orienta-
tions (Fig. 2). True rotation invariance can be obtained by taking the derivative
of the normalized shape, i.e., replacing a′i by a′i − a′(i−1) mod M . We need this
derivative signature to use the dissimilarity measure that is detailed next.

When two signatures have “equivalent” starting points, DTW provides a good
dissimilarity measure. However, we have seen that similar shapes can present
very different starting points. It is useful to consider the problem under the
framework of cyclic alignments, i.e., alignments between cyclic sequences.

Let [a] = [a0a1 . . . am−1] and [b] = [b0b1 . . . bn−1] be two cyclic sequences.
A cyclic alignment between [a] and [b] is a sequence of pairs (i0, j0), (i1, j1),
. . . , (ik−1, jk−1) such that, for 0 ≤ � < k, (a) 0 ≤ i� < m and 0 ≤ j� < n;
(b) 0 ≤ i(�+1) mod m − i� ≤ 1 and 0 ≤ j(�+1) mod n − j� ≤ 1; and (c) (i�, j�) =
(i(�+1) mod m, j(�+1) mod n). The weight of a cyclic alignment (i0, j0), (i1, j1), . . . ,
(ik−1, jk−1) is defined as

∑
0≤�<k δ(ai�

, bj�
), where δ is the local dissimilarity

measure. An optimal cyclic alignment is a cyclic alignment of minimum weight.
The Cyclic Dynamic Time Warping (CDTW) dissimilarity measure D̂([a], [b])

is defined as the square root of the weight of the optimal cyclic alignment between
a and b. First, we are going to show that the optimal cyclic alignment can be
defined in terms of alignments between non-cyclic sequences, i.e., in terms of
D(·, ·); then, we will present an efficient procedure to compute it.

Lemma 1. If m,n > 1 and (i0, j0), (i1, j1), . . . , (ik−1, jk−1) is an optimal
alignment between two sequences a0a1 . . . am−1 and b0b1 . . . bn−1, there is at least
one � such that i� = i(�+1) mod m and j� = j(�+1) mod n.

Proof: Any alignment including (i�, j�), (i� + 1, j�), and (i� + 1, j� + 1) can be
“improved” by removing (i� + 1, j�), since δ(ai�+1, bj�

) ≥ 0. Analogously, any
alignment including (i�, j�), (i�, j� + 1), and (i� + 1, j� + 1) can be “improved”
by removing (i�, j� + 1). �

Lemma 2. The CDTW dissimilarity between [a] = [a0a1 . . . am−1] and [b] =
[b0b1 . . . bn−1], D̂([a], [b]), can be computed as min0≤k<m min0≤�<n D(σk(a),
σ�(b)).

Proof: Trivial when m = 1 or n = 1. Let us consider that m,n > 1 and let
(i0, j0), (i1, j1), . . . , (ik−1, jk−1) be an optimal alignment. Let � be an index
such that i� = i(�+1) mod m and j� = j(�+1) mod n (by Lemma 1). The weight of
this cyclic alignment is D(σ(i�+1) mod m(a),σ(j�+1) mod n(b)), which is considered
by the double minimization. �
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According to Lemma 2, the value of D̂([a], [b]) can be trivially computed in
O(m2n2) time by solving mn recurrences like equation (1). Maes showed in [4]
that the Cyclic Edit Distance (CED), a related dissimilarity measure, can be
computed in O(m2n) time by performing cyclic shifts only on one of the se-
quences. This observation finally led to a O(mn lgm) time algorithm. Is it pos-
sible to perform cyclic shifts on only one of the sequences when computing the
CDTW? The answer is no: in general, D̂([a], [b]) is neither min0≤k<m D(σk(a), b)
nor min0≤k<n D(a,σk(b)), as the following counter-example shows: let z and w

be two complex numbers such that δ(z,w) = 1; the value of D̂([zwz], [wzw])
is 0, since D(zzw, zww) = 0, but D(zwz,wzw) = 3 and D(wzz,wzw) =
D(zzw,wzw) = D(zwz, zww) = D(zwz,wwz) = 1. Therefore, an equivalent of
Maes’ algorithm for the CED computation cannot be directly applied to CDTW
dissimilarity computation.

Theorem 1. The CDTW dissimilarity between cyclic sequences [a] and [b] can
be computed as D̂([a], [b]) = min0≤k<m

(
min(D(σk(a), b),D(σk(a)ak, b))

)
.

Proof: Each alignment induces a segmentation on a and a segmentation on
b. All the values in a segment are aligned with the same value of the other
cyclic sequence (Lemma 1). There is a problem when bn−p−1, bn−p, . . . bn−1 and
b0, b1, . . . bq, for some p, q ≥ 0, should belong to the same segment of b. In that
case, the optimal path cannot be obtained by simply shifting a, since bn−1 must
be aligned with the last value of σk(a) and b0 must be aligned with its first value,
i.e., they cannot belong to the same segment. The sequence σk(a)ak allows to
align bn−pbn−p+1 . . . bn and b0b1 . . . bq with the first value of σk(a), since ak also
appears at the end of σk(a)ak. �
The value of D(σk(a), b) and D(σk(a)ak, b), for each k, can be obtained by
computing shortest paths in an extended warping graph similar to the extended
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Fig. 3. (a) Extended warping graph for a = wwzz and b = zzzw, where z and w
are complex numbers such that δ(z,w) = 1. Arcs ending at node (i, j) are weighted
δ(ai, bj). The optimal alignment for [a] and [b] is the minimum weight path starting
from any colored node in the lower row and ending at a node containing the same color
in the upper row (all path candidates are shown with thick lines). (b) Optimal crossing
paths can be avoided: if the weight of the subpath q is greater than the weight of the
subpath q′, the black path can be improved by traversing q′ instead of q.
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Fig. 4. Divide-and-Conquer procedure to compute the CDTW dissimilarity between
the sequences of Fig. 3. First, the optimal alignment (path) between a and b and
between σ0(a)a0 and b is computed. The first optimal path is used as a left and right
frontier in the extended graph: only the white region must be explored to compute
the optimal alignment between σ2(a) and b and between σ2(a)a2 and b. This idea is
applied recursively to the computation of the other optimal alignments, but using also
the optimal alignment between σ2(a) and b as a new left or right frontier.

edit graph defined by Maes [4] (see Fig. 3 (a)). Since the non-crossing property
of edit paths also holds for alignment paths (see Fig. 3 (b)), the Divide-and-
Conquer approach proposed by Maes can be applied to CDTW. The reader is
addressed to [4] to obtain a complete description of the Divide-and-Conquer
procedure, which is depicted in Fig. 4. It should be taken into account that,
unlike in Maes’ algorithm, the optimal path starting at (k, 0) can finish either
at node (k + m− 1,n− 1) or (k + m,n− 1).

When applied to signatures, the running time of the algorithm is
O(M2 logM): each recursive step divides the search space in two halves and
all recursive operations at the same recursion level require total O(M2) time.

5 Experiments

In [1], the WARP system was tested on a labeled version of the SQUID Demo
database and the MPEG-7 Core Experiment CE-Shape-1 (part B). We have
performed comparative experiments with the same test sets.

The SQUID Demo database consists of 1100 contours of marine species and
is used as a demonstration application of the Shape Queries Using Image Data-
bases system [5]. The original database does not divide the contours into classes.
Bartolini et al. manually classified 252 images into 10 semantic categories3. They
3 Seahorses (5 images), seamoths (6), sharks (58), soles (52), tonguefishes (19), crus-

taceans (4), eels (26), u-eels (25), pipefishes (16), and rays (41).
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conducted some precision (P) versus recall (R) shape retrieval experiments with
30 query images from the 10 semantic categories. For each query, images in the
same category were considered relevant and all the others were considered irrel-
evant. Since we do not know which query images were used, we have run queries
on the 252 labeled shapes.

Fig. 5 shows the precision/recall graph for 3 retrieval procedures: (i) WARP:
the standard WARP system; (ii) Derivative: derivative of the reconstructed con-
tour as a shape signature and DTW-based comparison; (iii) CDTW: derivative
of the reconstructed contour and comparison by means of the Cyclic Dynamic
Time Warping dissimilarity. It can be seen that the two methods proposed in
this work improve the WARP results. The signature based on the derivative
provides a better precision/recall curve, thus confirming that the WARP system
is sensitive to variation of orientation in the signatures of similar (but not iden-
tical) shapes. There is also a significant difference between CDTW-comparison
and the other methods.
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Fig. 5. Precision/Recall results on the SQUID Demo database

In [1], the WARP system was also compared to a Curvature Scale Space
(CSS) based image retrieval on the same MPEG-7 experiment presented in [3]. A
CSS-based query system obtained an average precision of 37.72% (the maximum
precision attainable in that experiment is 50%) and the WARP system obtained a
29.25% average precision. Bartolini et al. explain in [1] that the CSS system is an
approximate query processing algorithm that can easily lead to false dismissals
(filtering out best-matching images) by discarding shapes with an aspect ratio
greater than a user threshold. Other techniques with similar or slightly better
results are not suitable for efficient indexing and, thus, can only be used in
small-size databases. Using the derivative-based signature, the average precision
is 31.29%. The precision raises to 34.17% when the CDTW is used.

6 Conclusions

In this work, we have critically studied the WARP system, detected some draw-
backs, and presented several ways to improve its precision/recall behavior on
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shape-based image retrieval tasks: (a) using the original signatures derivative,
(b) using the signature derivative with a CDTW comparison. Proposal (a) pro-
vides better results than the WARP system and proposal (b) offers the best
precision/recall.

The CDTW dissimilarity has been defined and an algorithm to compute it in
O(M2 logM) for two signatures of length M has been presented. We have shown
that the Cyclic Edit Distance algorithm presented by Maes cannot be directly
extended to CDTW: two conventional DTW dissimilarities must be computed
for each cyclic shift of one sequence. Fortunately, one of these dissimilarities can
be obtained as a subproduct of the computation of the other.
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Abstract. Currently there has been much interested in developing the water-
marking for 3D graphic data of mesh model or NURBS. However, the water-
marking technique based on 3D CAD drawing leaves something to be desired. 
This paper proposes a watermarking technique for 3D design drawing using the 
components of Line, 3DFACE and ARC based on vertex that prevent the in-
fringement of copyright from unlawfulness reproductions and distribution. By 
experimental result, we confirmed the invisibility of embedded watermarks as 
well as the robustness in geometrical attacks and file conversion to DWG, DXF, 
DWT and DWS. 

Keywords: 3D CAD Drawing, Watermarking. 

1   Introduction 

With the rapid increase of the multimedia information in information-communication 
technology, the intellectual property and copyright protection has been made at issue. 
Generally there are two technologies for the intellectual property and copyright pro-
tection; cryptography and watermarking. The cryptography technology cut off the 
access of the unauthorized person after the multimedia information is encrypted. 
However, it cannot prevent the unlawful action of an authorized person and cannot 
solve the problem that some copyright owners assert their ownerships for one content. 
To solve the problems of the cryptography, there have been much researched in wa-
termarking technology, which is the end-step in information security and protects the 
copyright of owner by embedding the watermark into the multimedia information. 

A lot of research has been carried out to protect the copyright protection of image, 
video, and audio [1],[2]. Recently, 3D polygonal models, such as VRML, MPEG-4, 
have become very popular leading the development of 3D watermarking algorithms to 
protect the copyright of 3D graphic models with the extending technique of the image 
watermarking. 3D polygonal model are usually represented by a mesh defined by  

                                                           
* Corresponding author. 
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the coordinates and connectivity of vertices in a 3D Cartesian coordinate system. 
Ohbuchi et al. presented the watermarking for 3D polygonal model through geometric 
and topological modification [3]. Mao et al. presented the watermarking for 3D geo-
metric model through the triangle subdivision [4]. Beneden et al. also presented an 
algorithm that adds a watermark by modifying the normal distribution of the model 
geometry [5]. Kanai et al. presented the watermarking for 3D polygons using the 
multiresolution wavelet decomposition [6].  

Many design drawings in the industrial filed have been designed by 3D CAD tools. 
However, because of the unlawful reproduction of the architectural drawings, the 
construction industry has been financially damaged. Many researches have not been 
carried out to protect the copyright of 3D CAD compared with 3D polygonal model. 
Unlike 3D polygonal model, 3D CAD drawings can be designed by the basic compo-
nents; LINE, ARC, CIRCLE, and 3DFACE. 3DFACE is similar as polygon of 3D 
polygon model. We presented 2D CAD watermarking that the watermark is embed-
ded into the position of vertex in two components, LINE and Arc [7]. This algorithm 
needs to know the original vertices for watermark extracting.  

This paper proposed the watermarking for 3D CAD drawing based on 3D vector data, 
which is a public watermarking using Line, Arc, and 3DFACE components in 3D CAD 
drawing. The watermark is embedded into the length of Line component in the embed-
ding primitives, the circular radius of Arc component, and the length ratio of two sides 
in 3DFACE component. Thus, according to the distribution of three components in 3D 
CAD drawing, the embedding component can be determined. The results of experiment 
verify that the proposed algorithm is imperceptible and robust against file format con-
version, move, scaling, rotation, component cropping, and layer cropping. 

2   The Proposed 3D CAD Watermarking 

2.1   3D CAD Drawing 

The basic system of 3D CAD drawings consists of HEADER, TABLE, BLOCK, 
ENTITY, EOF sections. The shape of drawings is designed with the basic component 
of Line, Arc, Circle, and 3DFACE based on vector data in ENTITY section as shown 
in Fig. 1. The structure of each component is explained clearly in the following sec-
tions. 3D CAD drawings can be attacked intentionally or non-intentionally by CAD 
tools. The general attacks in CAD tools are followed as;                                              

1) File Format Conversion: CAD drawings are easily converted to the format in 
AutoCAD such as DXF, DWG, DWT, and DWS.                                                 

2) Geometrical attack: There are translation, scaling, rotation, and cropping.  
3) Layer cutting: The drawings in AutoCAD are composed of several layers. Users 

are able to cut some layers illegally.                                                                       

The watermark in CAD drawings must be robust against the above attacks.  

2.2   Watermark Embedding 

The proposed watermarking embeds the watermark into the components of Line, Arc, 
and 3DFACE respectively according to the structure of 3D CAD drawings, as shown  
in Fig. 2. Three  components  are  obtained  from  ENTITY  section  of  CAD  data.  The  
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Fig. 1. The Structure of 3D CAD data 

 

Fig. 2. Proposed 3D CAD watermark embedding system 

embedding primitives are the length in Line, the radius of curvature in Arc, and the length 
ratio of two sides in 3DFACE. They are stored to extract the watermark as the key. 
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2.1.1   Line Component 

A Line component consists of the start point ),,( ssss zyx=v  and the end point 

),,( eeee zyx=v  as shown in Fig. 1. Each point may be connected to the 

neighborhood points. If a point is varied by the watermark, the neighborhood points 
will be varied together. The set of embedding primitive that consists of an arbitrary 
point and the neighborhood points connected to a point is gathered to embed the 
watermark. A bit of binary watermark is embedded into one point of a center line in 
an embedding primitive. Thus, a n th watermark bit nw  is embedded into the length 

nl  of center line as follows; if 1=nw , then nn ll ≥ . Otherwise, nn ll < . nl  is an 

average length of the connected Lines. To change the length of line according to the 
watermark, the coordinate of the point must be changed imperceptibly considering the 
neighborhood points. Fig. 3 (a) shows a center line }{ 21vv=nL and 3 neighborhood 

lines in an embedding primitive. 0v  is connected to 1v  and 43 , vv  are connected to 

2v . The search regions of 21, vv  which can be changed invisibly are determined 

respectively to be below the coordinate values of the connected points. Thus, the 
search region of ),,( zyx=v  is ],[ vvvv Δ+Δ− , 

},,{),(||min5.0 zyxtC
t
k t

t ∈∈−×=Δ vvvv where )(vC represents the points that are 

connected to v . Two points 21, vv  are changed to α±= 1
'
1 vv , α±= 2

'
2 vv  alternatively 

within the search regions until satisfies the condition as follows; 

εθθθ <−Θ∈ ||min '
1111 kkk

, εθθθ <−Θ∈ ||min '
2222 kkk

 where )
||||||||

(cos
1121

11211
1

k

k
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⋅⋅
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(cos
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k
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= −θ   and )( 11 vv Ck ∈ , )( 22 vv Ck ∈ .  

 
(a)                                                         (b) 

Fig. 3. (a) An embedding primitive in Line components and (b) embedding the watermark into 
a embedding primitive 

2.1.2   Arc Component 

An Arc component consists of two points 10 , vv , a circle center point C, a circle radius 

R , a standard point of angle P, two angles 10 ,θθ  between points and P as shown in 
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Fig. 4 (a). The watermark bit is embedded into a circle radius R in the randomly 
selected Arc component. If a watermark bit nw  is 0, C is moved forward to 

2/)( 10 vvm += . Otherwise, C is moved backward to m . C must be moved within the 

limit region that the differential ratio of the curvature 'κκκ −=Δ = '/1/1 RR −  is below 
ε . 'R  is the circle radius of Arc with C’ which is moved according to the watermark bit. 

 
(a)                                                         (b) 

Fig. 4. (a) The structure of an Arc component and (b) the watermark embedding according to 
the center point C 

 
(a)                                                         (b) 

Fig. 5. (a) The structure of 3DFACE component with 4 faces and (b) the embedding using the 
ratio of two distances when 0=w  

2.1.3   3DFACE Component 

3DFACE represents 3D polygon surface that can be in general use for the surface 
modeling in 3D CAD drawing. In this paper, 3DFACE components over quadrilateral 
are used for the watermark embedding. In the randomly selected a 3DFACE compo-
nent, the set of the distance between two points is obtained; },,{ 10 nlllL = , 
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|| 1+= iiil vv . An arbitrary distance pair },{ ji ll , Lll ji ∈, , ji < , Δ<− || ji ll  without 

the shared point is randomly selected where || 1+= iiil vv  is a reference distance, 

|| 1+= jjjl vv  is the changeable distance.  

The watermark bit w  is embedded into the ratio ji ll /=α  of distance pair; 1≥α  if 

w =1 and 1<α  otherwise. To change the distance ratio according to the watermark 
bit, two points 1, +jj vv  in the changeable distance jl  must be changed to be parallel 

the reference distance il  within the invisible range as shown in Fig. 4. The invisible 

ranges of two points are Δ<− || '
jj θθ  and Δ<− ++ || '

11 jj θθ  respectively. kj+θ  and 
'

kj+θ  are the angles of two lines with the original intersection point, kj+v , or the 

changed point '
kj+v , 1,0=k ; )

||||||||
(cos

11

111

−++−++

−+++++−
+

⋅
=

kjkjkjkj

kjkjkjkj
kj

vvvv

vvvv
θ .  

2.3   Watermark Extracting 

The watermark is extracted from the watermarked drawing using two points of the 
embedded Line component, a circle radius of the embedded Arc component, and the 
embedding primitive of the embedded 3DFACE component on the same as the em-
bedding algorithm. But to extract the watermark in the watermarked drawing scaled to 

an arbitrary factor, the re-scaling process is performed by using *l , *R , *A , which are 
an average length, circle radius, area of all the embedded Line, Arc, 3DFACE. All 

components are re-scaled to dilated or shrinked until all ratios '/* ll , 

'/* RR , '/* AA are 1. 'l , 'R , 'A  are an average length, circle radius, area of Line, Arc, 
3DFACE in the attacked drawing. It takes long time to re-scale closely to original 
scale factor. 

3   Experimental Results 

To evaluate the performance of the proposed watermarking, we used 3D CAD drawings 
designed by AutoCAD 2002 software; Campus, Watch, and Office drawings as shown 
in Fig. 6. The watermark was used as bit stream generated by a Gaussian random se-
quence. The length of watermark can be determined by the component distribution of 
the 3D CAD drawing. There are a number of Line components in Campus1 drawing, 
Arc components in Watch drawing, 3DFACE components in Campus2, and Line, 
3DFACE components in Office as shown in Fig. 6. Among these components in each 
drawing, we selected 500 components for the embedding primitives. The 3D CAD 
drawings that are watermarked by the proposed algorithm are shown in Fig. 7. In this 
figure, a subjective evaluation was used to verify that the watermark was invisible. For 
the objective evaluation for visibility, we used SNR of each embedding components, 
which are SNR of points in Line, 3DFACE and radius in Arc. The SNR is defined as 

||)'var(||

||)var(||
log10 10 vv

Mv
−
−

=SNR              (1) 
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where )var(v  is a variance of random variable v  and M  is the center points in each 
components. Table 1 shows that SNRs of the watermarked drawings are about 39.89-
42.50dB according to the number of components. These values verify the good quality.  

To evaluate the robustness, the watermarked drawings were attacked by file format 
conversion, RST (translation, scaling, rotation), cropping, and layer cutting, compare 
with Jang’s algorithm [7]. Since Jang’s algorithm can apply to 2D CAD using Line 
 

 
(a)                                                         (b) 

 
(c)                                                         (d) 

Fig. 6. 3D CAD drawings in AutoCAD; (a) Campus1, (b) Watch, (c) Campus2, and (d) Office 

 
(a)                                                         (b) 

Fig. 7. The watermarked (a) Campus1 and (b) Watch drawings 

Table 1. SNR of the watermarked 3D CAD drawings 

Test drawing Campus Watch Campus Floor 
Embedding  
component 
(Number) 

Line 
(1,130) 

Arc 
(1,770) 

3DFACE 
(551) 

Line(8,738) 
3DFACE 
(3,927) 

SNR 40.12dB 41.05dB 39.89dB 
42.50dB, 
41.33dB 
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and Arc components, our experiment extends to 3D component and embeds the bi-
nary watermark for according to the condition of the proposed algorithm. In file for-
mat conversion, the watermarked drawings were converted to DXF, DWG, DWT, and 
DWS by using AutoCAD. But, the watermark can be extracted without bit error in 
any file format. For geometrical attacks, the watermarked drawings were translated to 
arbitrary point, dilated or shrinked to arbitrary scaling factor, rotated to arbitrary  
  
 

 
(a)                                                         (b) 

 
(c)                                                         (d) 

Fig. 8. (a) A cropped Campus1 to 30% of Line components, (b) a scaled Watch to 3 times, and 
(c) Watch, (d) Campus2 with layer cutting 

Table 2. BER of the extracted watermark 

Test drawing Attack Jang Proposed 
Format Conversion (DXF,DWG,DWT,DWS) - - 

RST 0.10 - 
30% cropping 0.37 0.13 

 
Campus1 

(Line) 
Layer cutting 0.30 0.24 

Format Conversion (DXF,DWG,DWT,DWS) - - 
RST - - 

30% cropping 0.29 0.08 
Watch 
(Arc) 

Layer cutting 0.23 0.15 
Format Conversion (DXF,DWG,DWT,DWS) x - 

RST x - 
30% cropping x 0.22 

Campus2 
(3DFACE) 

Layer cutting x 0.28 
Format Conversion (DXF,DWG,DWT,DWS) - - 

RST 0.08 - 
30% cropping 0.27 0.03 

Floor 
(Line, 

3DFACE) 
Layer cutting 0.21 0.07 
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angle, and cropped to 30% of the embedding components. Since the proposed algo-
rithm embeds the watermark into the length in Line, the radius of curvature in Arc, 
and the length ratio of two sides in 3DFACE, it has not effect on translation and rota-
tion. In scaled drawing, the watermark has to be extracted after performing re-scaling 
process. But the conventional algorithm has about 10% bit error in Line component. 
Table 2 verifies that all watermark bits can be extracted without bit error. But in crop-
ping, BER (bit error rate) is less about 0.18 than the conventional algorithm according to 
the cropping percentage of components. Furthermore, we cut an arbitrary layer in the 
watermarked drawings that similar as the cropping of all components in a layer. In this 
case, the bit error occurred less about 0.06-0.14 than the conventional algorithm, which 
effects on the number of the embedding components in a layer. Since Floor drawings 
were embedded the watermark into two components, BER is an average of BERs in two 
components. The above results verified that the watermark still alive above 78% in any 
attacks. BER represents the bit error rate of the extracted watermark.  

4   Conclusions 

This paper presented a watermarking for 3D CAD drawings using Line, Arc, and 
3DFACE components. The embedding components can be selected randomly or by 
the component distribution in drawing. The watermark is embedded into the length in 
Line component, the radius of curvature in Arc, and the length ratio of two sides in 
3DFACE. Experimental results verified that the proposed watermarking has the ro-
bustness against Format conversion, RST, cropping, and layer cutting as well as the 
invisibility in a view of component SNR.  
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Abstract. Video summarization is a significant scheme to organize mas-
sive video data, and implement a meaningful rapid navigation of video.
In this paper, we propose a hierarchical video summarization approach
based on video structure and highlight. We extract video structure unit,
and measure the unit (frame, shot and scene) importance rank based
on visual and audio attention models. According to the unit importance
rank, the skim ratio and key frame ratio are assigned to the different
video units. Thus we achieve a hierarchical video summary. Experimen-
tal results show the excellent performance of the approach.

1 Introduction

With recent advance in digital video technologies, the amount of video data
has grown enormously, so quick browsing a video and getting its main content
becomes a crucial problem. Video summarization is a significant scheme to orga-
nize massive video data, and implement a meaningful rapid navigation of video.
Video summarization technique has attracted attention of many researchers in
recent years. There are two fundamentally different approaches for video summa-
rization: static summary and dynamic skimming. Static summary is a collection
of key frames selected from video sequence, many approaches are proposed to
extract and organize key frames, such as video table of contents [1], storyboard
[2], and pictorial video summary [3]. Dynamic skimming consists of a collection
of video clips selected from video sequence. There are two main approaches for
video skimming extraction: one is the predefined event-based approach in which
the events are detected and ranked to create video skimming. For example, in
sport video [4,5], goal, foul, and touchdown are detected as important events and
composite video skimming. The other is a bottom-up approach, which employs
special features to analyze the video content [7,8,9]. In [7], authors use audio and
video tempo to simulate human’s emotion feeling and extract meaningful skim.
Literature [8] constructs a user attention curve based on visual, audio attention
model to abstract video skimming. In [9], each scene is modeled as a graph, and
its optimal skimming is created with graph dynamic programming.

As mentioned above, the static summary based on key frames covers the total
video content, but it cannot reflect video semantic content effectively because it
loses audio and temporal attributes. The dynamic skimming emphasizes video

D.-Y. Yeung et al. (Eds.): SSPR&SPR 2006, LNCS 4109, pp. 226–234, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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highlight and preserves audio and temporal attributes, but it sacrifices the con-
tent integrity. In this paper, we integrate the advantages of static summary and
dynamic skimming, and propose an effective approach for multilevel video sum-
marization based on video structure and highlight. First we extract the video
structure and measure the unit (frame, shot and scene) importance rank based
on visual and audio attention models. According to the unit importance rank,
the skim ratio and key frame number of video summary are assigned to dif-
ferent video units. Thus a hierarchical video summary is generated. The block
diagram of the video summarization approach is shown in Fig. 1, which gives a
3-level video summary that consists of scene level summary, shot level summary
and sub-shot level summary from bottom to up. The hierarchical video sum-
marization approach can provide viewers a multilevel summary with different
granularity. In the scene level summary, the viewers can obtain an overview of a
video, and can grasp the highlight plots rapidly. In the next level summary, the
viewers can further obtain more concise video highlight scenes. In general, our
approach not only maintains the content integrity but also emphasizes highlight
scenes that may attract viewers’ attention.

Fig. 1. Block diagram of the hierarchical video summarization approach

The organization of the paper is as follows. Section 2 gives an overview of video
structure analysis. We present, in Section 3, the unit importance rank computa-
tion based on attention models in detail. Then a hierarchical video summariza-
tion approach is proposed in Section 4. Section 5 and 6 give the experimental
results and draw the conclusions.

2 Video Structure Analysis

Shot and scene are usually two basic temporal units in video structure analysis.
A shot is defined as a single continuous recording made by a camera. A scene
consists of a series of related shots (in time, space, etc.), which is a higher-level
semantic unit and reflects the narrative structure of a film. We employ singu-
larity detection with wavelet to detect shot boundary [10]. Then we exploit the
cinematic rules as a guideline to identify the video scenes [11]. In this step, three
main scene categories are identified: dialogue scene, action scene and dialogue
with action scene. Thus, we achieve the hierarchical structure of video data.
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3 Unit Importance Rank Computation Based on
Attention Model

In this section, we compute video unit (frame, shot and scene) importance rank
based on visual and audio attention models. And the unit importance rank is
regarded as an effective measurement for the highlight of video unit.

3.1 Audio Attention Model

As loudness is a fundamental component of film sound, it plays an important
role in defining the overall sonic texture of film. A film usually startles the view-
ers by exploiting abrupt and extreme shifts in loudness, which is called changes
in dynamics [12]. A rough analysis of the loudness can be gained by the square
of signal amplitude. In order to stabilize the signal, a Gauss filtering of loud-
ness amplitudes is performed. The loudness amplitude is normalized to archive
comparability. Then we utilize the difference between loudness peak EA

peak and
loudness mean EA

mean to measure loudness dynamic change. Meanwhile, the loud-
ness mean is another important factor in loudness attention measurement. So
we define the loudness attention as

Mloud = EA
mean · (EA

peak − EA
mean) (1)

This metric is similar to the audio saliency attention model proposed by Ma
[8], but we more emphasize the dynamic change of loudness. In experiment,
the audio signal is sampled at 22.05KHz and each audio frame contains 512
samples shifted by 128 samples from the previous audio frame. The audio feature
extraction is based on the audio frame. Here one-second sliding window is used
to compute loudness attention Mloud.

From the viewpoint of human aural perception, various sounds usually play
different roles in attracting the audience attention. So we first classify the au-
dio stream into four classes of semantic segments: silence, speech, music, and
environment sound [13]. We assign a weight for each audio semantic segment
according to its semantic class.

Obviously, speech usually gives audience more meaningful narrative content,
but a long speech scene with low loudness may not attract viewers’ attention.
While an excellent action scene often accompanies the environment sound with
high loudness. Here we unify the sound events, such as explosion, whistle and col-
lision, into the environment sounds, and don’t identify them respectively. There
are two music effects: harmonic sound and inharmonic sound. Harmonic sounds
are perceived as more comfortable, and often are accompanied with mild scene
content. While inharmonic sounds often implicate that an unpredictable event
may happen, or a worrying event is happening, and can more arouse audience’s
attention. In the scene construction, the length of the harmonic sound is longer
than that of the inharmonic sound.

With above analysis, we define the weights of various audio semantic segments.
The weight of a speech segment at time t is defined as
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ws(t) =
{
−(t− tstart)/tTh + 2 if t− tstart < tTh
1 else

(2)

where tTh is a given threshold, and tstart is the start time of the speech segment.
The weight of a music segment at time t is defined as

wm(t) = exp(M inLM − Lmusic) + 1 (3)

where M inLM denotes the minimum length among all the music segments, and
Lmusic is the length of the current music segment.

The weight of a silence segment wz(t) is set as 1, and the weight of an envi-
ronment segment we(t) is set as 1.5.

Thus, the audio attention value at the tth second is computed as

Maudio(t) = w(t) ·Mloud(t) (4)

where Mloud(t) is the loudness attention value at the tth second, and w(t) is
the weight of the corresponding semantic segment. For example, if the audio
segment at the tth second is music, w(t) is set as wm(t).

3.2 Visual Attention Model

As motion is an intrinsic nature of video and implicates some semantic cues in
visual perception, we combine the camera motion and local motion to compute
visual attention value.

First, we employ a qualitative method to estimate the camera motion category,
which employs motion vectors mutual relationship to implement camera motion
classification [14]. As the camera motion continuity, we utilize a sliding window
to filter abnormal camera motion. Similar to camera attention weighted strategy
[8], we assign different weight wc for a given video frame according to its camera
motion category.

Then, the visual attention value of the ith frame is represented as

Mvisual(i) = wc(i) · EM(i) (5)

where EM(i) is the motion activity of the ith frame, which is defined as the
standard deviation of motion vector magnitudes because it can measure local
motion intensity effectively.

3.3 Unit Importance Rank Computation

Because the visual attention value is a metric based on video frame, and the audio
attention value is a metric based on second, we first unify the measurement units
to frame according to the video frame rate. Then the visual and audio attention
values are normalized by using Gauss normalization formula, and are denoted
as M̄visual(i) and M̄audio(i). The attention value at the ith frame is defined as a
linear combination of the audio and visual attention values.

IRframe(i) = α · M̄visual(i) + β · M̄audio(i) (6)
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where α and β are the preassigned weights and used to be a tradeoff between
the visual and audio attention values.

The shot importance rank of the shot j is defined as

IRshot(j) =
∑

i

IRframe(i)/Nframe(j) (7)

where Nframe(j) is the video frame number of the shot j.
We employ three main components to determine the scene importance rank,

namely, shot cut frequency, visual and audio attention values. In the film editing,
filmmaker often uses a series of short shots to create tense or strong atmosphere.
The shot cut frequency of shot j is defined as the inverse of shot length and is
normalized as SF (j). We define the scene importance rank of the scene k as

IRscene(k)=a·
∑

j

(IRshot(j) ·Nframe(j))/(
∑

j

Nframe(j))+b·
∑

j

SF (j)/Nshot (8)

where Nshot is the shot number of the scene. a and b are the weight values.

4 Hierarchical Video Summarization

4.1 Scene Level Summary

Once the skim ratio SR and the key frame ratio KFR are given, we may assign
them to each scene according to the scene importance rank. Before assigning
the key frame number, we set the minimum of the key frame number of the
various scene categories that are extracted in Section 2. For the dialogue scene,
dialogist number, which can be archived in scene analysis, is used to determine
the key frame number. The action scene should have three key frames at least to
represent the attack, sustain and release of action scene. Here we use M inKF (i)
to represent the minimum of key frame number of the scene i. So the key frame
number of the scene i is assigned as

KFNscene(i) = min(KFNvideo · IRscene(i)/
∑

j

IRscene(j),M inKF (i)) (9)

where IRscene(i) is the scene importance rank of scene i. KFNvideo is the total
number of key frames in the video sequence and is set as the nearest integer to
KFR · Lvideo. Lvideo is the total number of video frames in the video sequence.

For every scene, we utilize the C-mean clustering algorithm to locate the key
frames according to its key frame number KFNscene. Thus, we obtain the scene
level summary that consists of a group of key frames.

Then, we select the first K scenes with the greatest scene importance ranks as
skimming scenes according to the skim ratio. K is the maximum integer, which
satisfies the inequality:

∑K
k=1 Lscene(k)/Lvideo ≤ SR, k ∈ {skimming scenes}.

Lscene(k) is the total number of video frames in the scene k. The other scenes
with low scene importance ranks are regarded as common scenes. Thus we obtain
the scene level summary that consists of a group of skimming scenes.
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4.2 Shot/Sub-shot Level Summary

The approach for shot level summarization is similar to the approach for scene
level summarization. In this step, we need reset the minimum of the key frame
number for each shot according to its camera motion category. Here the minimum
of key frame number for still shot is set as 1, and other shot types are set as
2. We also need reassign the skim ratio for each scene, SRscene(i), according to
its scene importance rank as Eq. (10) depicted. If SRscene(i) is less than a given
threshold TSR, we will discard this scene. Thus we obtain the shot level summary
according to SRscene(i) and KFRscene(i). KFRscene(i) is the key frame ratio of
the scene i and is set as KFNscene(i)/Lscene(i).

SRscene(i) = min(
SR · Lvideo

Lscene(i)
· IRscene(i)∑

j IRscene(j)
, 1) (10)

Next, we construct the sub-shot level summary. For a given shot, we reassign
its key frame ratio and skim ratio as the same way. Then we extract its sub-
shot around the maximum of attention value curve IRframe(i). The length of the
sub-shot is determined by its skim ratio. The key frames are also extracted to
represent the skimming shot according to its key frame ratio.

Thus we get a hierarchical and scalable video summary that is composed
of static key frame sequence and dynamic skimming. As the video hierarchical
structure is the basic element for filmmaker to construct story plots, the sum-
mary based on the video structure and unit important rank can provide a good
tradeoff between the content integrity and content compactness. Additionally,
users may adjust the summary by tuning the key frame ratio and skim ratio.

5 Experimental Results

The video summary is the logical layer of representation based on subjective
semantics, and there are still no objective definition and evaluation criterion. So
how to evaluate video summary is a difficult issue. In experiment, we invite test
users including naive users and experienced users (engaged in video retrieval)
to assess the performance of the proposed video summarization approach. We
collect the test dataset from five various movie videos, namely, Rain man, Ghost
are dramas; Leon and The Shaolin Temple are action movies; and Shrek is a
cartoon movie. The total length of test dataset is about 75 minutes, which is
composed of 878 shots and 53 scenes. All the video data is in MPEG-1 format
with a frame rate of 30 fps, and the audio track was sampled at 22.05 KHz.

First, we carry out an experimental comparison to evaluate the performance
of the key frame sequence of video summary between our approach (denoted
as HVS) and storyboard technique (denoted as ST) [2]. Here we design two
evaluation criteria, content compactness and content integrity, to evaluate the
performance of these two approaches. For the content compactness, test users
give an assessment of being too much, much, good, few and too few to key frame
sequence, corresponding to quantitative scores: 0.1, 0.5, 1, 0.5 and 1. The content
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integrity means whether test users can capture the story plot from the key frame
sequence by answering the questions, such as, ”who”, ”where”, ”when”, and
”what”. According to the accuracy of answers, the score of the content integrity
is obtained. All the questions are selected from the user investigation report. For
example, for the static summary, users pay more attention to whether they can
get the information about the protagonists, location, and coarse events, which
is the reason that these questions are provided in our evaluation scheme.

Fig. 2 gives the performance curves of the content integrity and the con-
tent compactness. As Fig. 2 illustrates, our approach can maintain the content
integrity at different key frame ratio very well. When the key frame ratio is in-
creasing, the content compactness is decreasing. Our approach (sub-shot level
summary) got the best performance when the key frame ratio is set as 0.02.
Our proposed method can provide a meaningful representation of video content
because the key frames assignment and location are based on the semantic con-
tent of the video unit, while the storyboard based on the hierarchical clustering
method cannot ensure the extracted key frames have semantic structure.
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Fig. 2. Experimental comparison between our approach and storyboard method. Left:
content integrity curve; right: content compactness curve.

Next, we evaluate the quality of the video skimming from two criteria: com-
prehensibility and highlight degree. For a good video skimming, like the trailer
of a movie, the users more care whether its content is comprehended easily, and
whether the summary is composed of the most excellent video clips. Because it
is still a subjective problem to evaluate the video skimming, we only assess the
video skimming by analyzing test users’ answers to the test questions. Here we
carry out an experimental comparison between our approach and the method
(denoted as SAGO) proposed in [9]. Video skimming assessment is complex
process. We first let the test users look through the video skimming from low to
high skim ratio in turn. When the test users finished viewing the video skimming
with a certain skim ratio, they need assess the video skimming according to the
two criteria. Then the users continue their assessment with another skim ratio,
and so on. After they finished all the video skimming, they may reassess these
video skimming. The assessment is quantified to score from 0 to 1. Fig. 3 gives
the experimental results.

As the comparison results shown, our proposed approach has a good per-
formance. One important reason is that we extract video skimming under the
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Fig. 3. Experimental comparison between our approach and the SAGO [9]. Left: com-
prehensibility assessment score; right: highlight degree assessment score. Notes: HVS1
denotes scene level summary, HVS2 denotes shot level summary, HVS3 denotes sub-
shot level summary.

guideline of user attention value, which ensures the highlight degree of video
summary. Another reason is that the hierarchical structure of video skimming
keeps the integrity of semantic content. From Fig. 3 we can see, the video skim-
ming with skim rate of 0.3 has higher comprehensibility score, and the video
skimming with skim rate of 0.15 has higher highlight degree. In general, when
the skim rate is set as 0.15, sub-shot level summary can archive the best exper-
imental results.

6 Conclusions

We have addressed the main issues of the video summarization from the video
structure analysis, unit importance rank computation to video summarization.
As the video hierarchical structure is the basic element for filmmaker to con-
struct story plots, and the unit importance rank is an effective measurement
for the highlight of video unit, the approach for video summarization based on
video structure and highlight can give us a better tradeoff between the content
integrity, comprehensibility and the content compactness, highlight degree. Ad-
ditionally, users can also adjust video summary by tuning the key frame ratio
and skim ratio. In general, our proposed approach can provide us a multilevel
and flexible video summary with different granularity. Experimental results have
been reported in detail.
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Abstract. Curvature Scale Space (CSS) representation of planar curves
is considered to be a modern tool in image processing and shape analysis.
Direct Curvature Scale Space (DCSS) is defined as CSS that results
from convolving the curvature of a curve with a Gaussian kernel directly.
Recently a theory of DCSS in corner detection has been established. In
the present paper the DCSS theory is considered to transform the DCSS
image of a given curve into a tree organization, and then corners on the
curve are detected and located in a multiscale sense. Experiments are
conducted to show that the DCSS corner detector can work equally well
as the CSS corner detector does on curves with multiple-size features,
however, at much less computational cost.

1 Introduction

The scale space concept was introduced by Iijima [3] more than 40 years ago
and became popular later on by the works of Witkin [13] and Koenderink [4].
Scale space analysis of a signal f(x) is generally made by convolving it with
a Gaussian kernel, treating the quadratic variance σ of Gaussian as a para-
meter of scale. Extrema in the first derivative, or, zero-crossings in the second
derivative of the convolved signal are located at varying scales. The image on
the (x,σ) plane showing the extrema or zero-crossings is called a scale space
image.

Asada and Brady [1] extended the scale space concept to represent significant
changes in curvature along a planar curve. The curve is expressed as a function
ϕ(s) of the orientation of the tangent ϕ against arc length s. Then ϕ(s) is
convolved with a Gaussian. Local positive maxima and negative minima in the
first and second derivatives of the convolved function are located, resulting two
scale space images on the (s,σ) plane. A set of curvature changes were selected
as primitives. The scale space behavior of Corner and Smooth join was studied,
and the behavior of other curvature primitives was illustrated.

Mokhtarian and Mackworth [5,6] developed Curvature Scale Space (CSS)
by finding curvature zero-crossings of a curve at varying levels of detail. They

D.-Y. Yeung et al. (Eds.): SSPR&SPR 2006, LNCS 4109, pp. 235–242, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



236 B. Zhong and W. Liao

treated the curve as a 2-D signal. Considering a path length variable u, the curve
is expressed in terms of two functions: {x(u), y(u)}. Then the two functions are
convolved respectively. By encoding the curve with the curvature zero-crossings,
a multiscale shape representation was formulated. The CSS representation has
been selected as a shape contour descriptor for MPEG-7 [7].

Rattarangsi and Chin [10] employed CSS to detect corners on planar curves.
A CSS image consisting of the maxima of absolute curvature is constructed. The
scale space behavior of isolated single and double corner models was sketched1,
with which the CSS image is transformed into a tree organization and then cor-
ners are detected. Pei and Lin [9] also proposed a corner detector based on the
scale space concept. Similar to Asada and Brady’s representation, they treated
planar curves as 1-D signals. Extreme curvature points are located by convolv-
ing the curvature of a curve directly. Pei and Lin studied a procedure of corner
detection. However, no scale space analysis was provided.

During the last decade, scale space concept has attracted a wide interest in
the field of shape representation, feature extraction, and object recognition, see,
e.g. [2,8,11,12,14,15,16]. For distinguishing purpose, CSS resulting from direct
curvature convolution is referred to as Direct Curvature Scale Space (DCSS).
Note that since differentiation and convolution are commutative, Asada and
Brady’s representation relates to DCSS directly. Recently, the CSS theory in
corner detection is re-established, and a DCSS theory is established [18]. The
problem of how a planar curve shrinks in its scale space was also mathematically
studied in [18].

Compared to CSS, DCSS is much cheaper in terms of computational cost.
Based on the DCSS theory, we study a procedure of DCSS corner detection in
a multiscale sense. In Section 2 the DCSS theory is reviewed. In Section 3 the
procedure of DCSS corner detection is presented and experiments are conducted.
Finally, in Section 4 the paper is concluded.

2 A Theory of Direct Curvature Scale Space

Corners of a planar curve correspond to points of high curvature. Let κ(s) be the
curvature function. The DCSS representation describes the curve at increasing
levels of detail by convolving κ(s) with a Gaussian g(s,σ) directly. Denote by
⊗ the convolution operator. The convolved curvature function κ(s,σ) is given
by

κ(s,σ) = κ(s)⊗ g(s,σ).

It can be shown explicitly as

κ(s,σ) =
1

σ
√

2π

∫ +∞

−∞
κ(u)e−

(s−u)2

2σ2 du.

1 Rattarangsi and Chin presented a theoretical study of the CSS representation in
corner detection; however, due to a fundamental mistake in their work the CSS
theory was not established correctly.
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To determine corners at a given scale σ, we solve for all the locations that have
maxima absolute curvature, |κ(s,σ)|, which are the positive maxima and neg-
ative minima of the curvature. A DCSS image of corners is then constructed
by maxs,σ |κ(s,σ)|. To investigate the properties of the DCSS image, the single
corner Γ model and double corner END and STAIR models [1,10] are consid-
ered.

Figure 1 shows a Γ corner model and its DCSS image. The model properties
are summarized in Property 1.

s=0 s

(a) Γ model
s=0

(b) DCSS image

Fig. 1. Γ model produces a stationary and persistent scale space image

Property 1: A Γ corner model has a single stationary and persistent line pattern
in direct curvature scale space independent of the corner angle θ and the scale
parameter σ.

Consider an END corner model, which consists of two corner θl and θr with
the same concavity separated by a width of 2w, see Figure 2(a). Define

λ =
π − θr

π − θl
; sl =

λ− 1
λ + 1

w.

Let sr be implicitly given by

ln(λ
w − sr

w + sr
) +

2wsr

(w + sr)(w − sr)
= 0, sr ∈ (0,w),

and define
σ2

λ = (w + sr)(w − sr).

Properties of the END corner model are summarized in Property 2-4 and its
DCSS image is sketched in Figure 2(b).
Property 2: For an END model with 0 < θl < θr < π, the DCSS line pattern
of the strong corner θl is persistent and asymptotically stationary at s = sl.
Property 3: For an END model with 0 < θl < θr < π, the DCSS line pattern
of the weak corner θr terminates at (sr,σλ), and there it meets another kind of
line pattern which consists of a set of minima of absolute curvature.
Property 4: An END model, with a corner separation 2w and 0 < θl = θr < π,
has a DCSS image symmetric with respect to s = 0. When 0 < σ < w, the
two absolute maxima move towards each other as σ increases. When σ ≥ w,
the two absolute maxima merge, forming a single stationary and persistent line
pattern.
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l r

s=0s=-w s=w

(a) END model
s=-w s=sl s=0 s=sr s=w

=

(b) DCSS image

Fig. 2. END model and its DCSS image

Consider a STAIR corner model, which consists of two corner θl and θr of op-
posite concavity separated by a width of 2w, see Figure 3(a). Its model properties
are summarized in Property 5-7, and its DCSS image is sketched in Figure 3(b).
Property 5:For a STAIR model with 0 < θl < 2π−θr < π, the DCSS line pattern
of the strong corner θl is persistent and asymptotically stationary at s = sl.
Property 6: For a STAIR model with 0 < θl < 2π − θr < π, the DCSS line
pattern of the weak corner θl is persistent, and it is bounded by σ = μ

√
s as σ

increases, where μ is defined as μ = (− 2w
ln(−λ) )

1/2.
Property 7: A STAIR model with 0 < θl = 2π − θr < π produces a persistent
DCSS image, which is symmetric with respect to s = 0. The two line patterns
are bounded by σ = −s and σ = s respectively and they repel each other at a
same rate as σ increases.

s=-w s=ws=0

(a) STAIR model
s=-ws=sl s=w

= sqrt(s)

(b) DCSS image

Fig. 3. STAIR model and its DCSS image

To investigate the effect of corner separation of a double corner model on its
DCSS image, we fix θl and θr, and vary w. The following property is established.
Property 8: The DCSS image of an END or STAIR model with corner separa-
tion 2wi is linearly related to the DCSS image of another END or STAIR model
with corner separation 2wj by the ratio of the separations given by wi

wj
.
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3 DCSS Corner Detection

To detect corners on a planar curve, a tree organization similar to that in
[13,10,11] is constructed from its DCSS image. To filter out quantization noise,
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Fig. 4. DCSS corner detection and a comparison with CSS
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line patterns caused by extremely low absolute maxima (say, below 0.01) are re-
moved from the image at first. After this cleaning process, for each line pattern
a vertical line located at the finest scale location of the line pattern is drawn. If
two line patterns merge to become a single one, two vertical lines are drawn re-
spectively, and a single vertical line located at the merging scale location is also
drawn. The three vertical lines are joined by a horizontal line. For a non-survival
line pattern, the vertical line is joined by a horizontal line to the nearest more
persistent vertical line.

The model properties specified in Section 2 are then considered to parse the
tree organization. A tree consisting of a single root corresponds to a single corner
located at the finest scale location of the root. For a tree with offspring, the length
of its root is compared with the height of its offspring. If the root length exceeds
the height of the offspring, the root is declared stable, corresponding to a corner
located at the orthogonal projection of the root on x-axis. Otherwise the search
for corners proceeds to the offspring. If an offspring is a leaf whose length is
longer than that of its parent, it is stable, corresponding to a corner located at
the finest scale location of the leaf. If an offspring has its own offspring, the search
for corners is applied to its family. Each tree of the organization is evaluated in
the same manner.

A set of objects that have been commonly used in many previous studies
are chosen as test curves. They are the Semicircles, the Chromosome, and the
Leaf, see Figure 4(a) (Since DCSS is invariant under rotation, the start point
of each curve is selected randomly). Figure 4(b) shows their DCSS images, and
Figure 4(c) shows the corresponding tree organizations. The roots and leaves of
the trees which correspond to corner points are indicated by bold lines. Corner
detection results of DCSS are shown in Figure 4(d).

For comparison, Figure 4(e) shows the results of CSS corner detection. It can
be seen that the DCSS corner detector compares favorably with CSS. For the last
two curves, the two detectors have the same performance. For the first curve, we
believe the performance of the DCSS detector is more reasonable: the semicircles
with different radii have been distinguished by different corner patterns.

On the other hand, the DCSS corner detector outperforms the CSS corner
detector very clearly with respect to computational cost. Table 1 summarizes a
comparison between the CPU processing time of the two detectors spent on the
three curves. The programs were implemented on a Pentium IV-2.80G PC with
512M memory. It can be seen that the DCSS detector requires only about 1/3
CPU time of the CSS detector. As a result, the efficiency of corner detection is
improved significantly.

Table 1. Comparison of the CPU time of the CSS and DCSS detectors

semicircle curve chromosome curve leaf curve
CSS 166 ms 190 ms 186 ms

DCSS 57 ms 63 ms 62 ms
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4 Concluding Remarks

In this paper we have studied a procedure of applying DCSS to detect and locate
corners on planar curves. Numerical results show that the DCSS corner detector
can operate successfully on curves with multiple-size features, however, at much
less computational cost compared to the CSS corner detector.

To compute a scale space image, DCSS is much cheaper than CSS. This
can be appreciated by a glance at the computational complexity of the two
representations.

CSS: Compute {x(s,σ), y(s,σ)} and the curvature of the convolved curve at
each scale;

DCSS: Compute the curvature at scale σ = 0, and compute κ(s,σ) at each
scale.

Since DCSS computes only one scale space instead of two, and computes the
curvature of the curve (an expensive operation) only once, its computational
cost is significantly less than that of CSS.

For noisy curves, a small amount of Gaussian smoothing is suggested to be
a preprocessing step of DCSS [9]. In particular, during the smoothing process
absolute maxima in curvature can be located as a by-product, and then a small
part of the CSS image can be constructed. This brings to us a hybrid scheme to
apply CSS and DCSS [17], by which corners can be located at the finest scale.
The hybrid CSS/DCSS corner detector, including a switchover criterion between
CSS and DCSS, has be discussed in detail in [18].
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Abstract. There are plenty of different algorithms for aligning pairs of 2D-shapes 
and point-sets. They mainly concern the establishment of correspon-dences and 
the detection of outliers. All of them assume that the aligned shapes are quite 
similar and belonging to the same class of shapes. But special problems arise if 
we have to align shapes that are very different, for example aligning concave 
shapes to convex ones. In such cases it is indispensable to take into account the 
order of the point-sets and to enforce legal sets of correspondences; otherwise the 
calculated distances are incorrect. We present our novel shape alignment 
algorithm which can handle such cases also. The algorithm establishes legal 
one-to-one point correspondences between arbitrary shapes, represented as 
ordered sets of 2D-points and returns a distance measure which runs between 0 
and 1. 

Keywords: Shape Alignment, Correspondence Problem, Aligning Convex to 
Concave Shapes and vise-versa.  

1   Introduction 

The analysis of shapes and shape variation is of great importance in a wide variety of 
disciplines. It is especially interesting for biologists, since shape is one of the most 
concise features of an object class and may change over time due to growth or 
evolution. The problems of shape spaces and distances have been intensively studied 
by Kendall [1] and Bookstein [2] in a statistical theory of shape. In digital image 
processing the statistical analysis of shape is a fundamental task in object-recognition 
and classification [3] .  

In all these applications, shapes of the same class are aligned and compared. The 
mapping of convex to concave pieces of the shapes rather indicates that wrong 
correspondences between elements have been established or that there are outliers [4]. 
However, there is a number of applications where we have to study the similarity 
between shapes of different classes. In that case we are faced with the problem to 
determine the similarity between convex and concave shapes.  

We are describing our work on aligning arbitrary shape to each other and 
determining the similarity between them. It can happen that we have to compare 
convex to concave shapes. The natural shapes are acquired manually from real images 
[5]. The object shapes can appear with varying orientation, position, and scale in the 
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image. The shapes are arbitrary and there is nothing special about them. Our 
algorithm establishes symmetric and legal one-to-one point correspondences between 
arbitrary shapes, represented as ordered sets of 2D-points and returns a similarity 
value. 

The paper is organized as follows. We describe the problem of shape alignment in 
Sect. 2. The algorithm for pair-wise alignment of the shapes and calculation of 
distances is proposed in Sect. 3 and evaluated in Sect. 4. Finally we give conclusions 
in Sect. 5. 

2   The Problem of Alignment of 2-D Shapes 

Consider two shape instances P  and O  defined by the point-sets 2
i Rp ∈ , 

PN,,2,1i =  and 2
k Ro ∈ , ON,,2,1k =  respectively. The basic task of 

aligning two shapes consists of transforming one of them (say P ) so that it fits in 
some optimal way the other one (say O ) (see Fig 1 left). Generally the shape 
instance { }ipP =  is said to be aligned to the shape instance { }koO =  if a distance 

( )O,Pd  between the two shapes cannot be decreased by applying a transformation 

ψ  to P .  

The problems of shape spaces and distances have been intensively studied [1], [2] 
in a statistical theory of shape. The well-known Procrustes distance [6], [7] between 
two point-sets P  and O  is defined as the sum of squared distances between 
corresponding points: 

( ) ( ) ( ) ( ) 2N

1i O

Oi

P

Pi
PO o

R
p

O,Pd
=

−−−=
σ

μθ
σ

μ
 , (1) 

where ( )θR  is the rotation matrix, Pμ  and Oμ  are the centroids of the object P  and 

O  respectively, Pσ  and Oσ  are the standard deviations of the distance of a point to 

the centroid of the shapes and PON  is the number of point correspondences between 

the point-sets P  and O . This example shows that the knowledge of correspondences 
is an important prerequisite for calculation of shape distances. 

 

Fig. 1. Alignment of shape instances, superimposition, and calculation of correspondences 



 Aligning Concave and Convex Shapes 245 

Various alignment approaches are known [8][9]. They mainly differ in the kind of 
mapping (i.e. similarity, rigid, affine) and the chosen distance measure. A survey of 
different distance measures used in the field of shape matching can be found in [10]. 

For calculating a distance between two shape instances the knowledge of 
corresponding points is required. If the shapes are defined by sets of landmarks [11], 
the knowledge of point correspondences is implicit. However, at the beginning of 
many applications this condition does not hold and often it is hard or even impossible 
to assign landmarks to the acquired shapes. Then it is necessary to automatically 
determine point correspondences between the points of two aligned shapes P  and O , 
see (see Fig 1 right). 

There has been done a lot of work concerning the problem of automatically  
finding point correspondences between two unknown shapes. An extension of the 
classical Procrustes alignment to point-sets of differing point counts is known as the 
Softassign Procrustes Matching algorithm [6]. It alternates between solutions for the 
correspondence, the spatial mapping, and the Procrustes rescaling.  

Hill et al.[9] presented a greedy algorithm used as an iterative local optimization 
scheme to modify the correspondences, in order to minimize the distance between two 
polygon segments of  shapes. Another popular approach to solving the 
correspondence problem is called Iterative Closest Point (ICP) developed by Besl and 
McKay [12]. In the original version of the ICP  the complexity of finding for each 
point kp  in P  the closest point in the point-set O  is ( )OP NNO  in the worst case. 

Marte et al.[13] improved this complexity by applying a spatial subdivision of the 
points in the set O . Fitzgibbon [14] replaced the closed-form inner loop of the ICP by 
the Levenberg-Marquardt algorithm, a non-linear optimization scheme. Another 
solution of the correspondence problem was presented by Belongie et al.[15]. He 
added to each point in the set a descriptor called shape context. In our work we solved 
the correspondence problem by a nearest-neigbor search algorithm [5]. 

One of the most essential demands on these approaches is symmetry. Symmetry 
means obtaining the same correspondences when mapping instance P  to instance O  
and vise versa instance O  to instance P . This requirement is often bound with the 
condition to establish one-to-one correspondences. This means a point ko  in shape 

instance O  has exactly one corresponding point kp  in shape instance P . If we 

compare point sets with unequal point numbers under the condition of one-to-one 
mapping, it is clear that some points will not have a correspondence in the other point 
set. These points are called outliers. 

Special problems arise if we have to align shapes that are very different, for 
example aligning concave to convex shapes. In these cases it is indispensable to take 
into account the order of the point-sets and to enforce legal sets of correspondences 
by not allowing inverse mapping of the points. To demonstrate this, see points 2o  and 

4o  in Table 2(a). Suppose that a concave shape representing the letter C  is compared 

with the shape of the letter O  (see Table 1). If the pair-wise correspondences were 
established between nearest neighbored points by one-to-one mapping and by 
allowing inverse mapping, the resulting distance between both shape instances will be 
very small (Table 1 a).  
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Table 1. Illegal and legal sets of correspondences 

(a) Illegal correspondences 
inversions at 2o  and 4o  

(b) Legal correspondences 
without any inversions 

But intuitively we would say that these shapes are not very similar. Particularly in 
such cases it is necessary to regard the order of point correspondences and to remove 
correspondences if they produce inversions (see Table 1 b). Ultimately it can be seen 
that big distances are arising between corresponding points which leads to an 
increased distance measure. 

Table 2. Establishing correspondences while mapping a concave and convex shape 

   

(a) Illegal correspondences with
inversions 

(b) Enforced legal correspon-
dences 

(c) Range for finding potential 
correspondents for kp  

3   Our Algorithm 

The input into our algorithm (see table 3) is the rescaled shape P  and O  translated 
into its origin. This normalization ensures that the centroids are identical and that 
our similarity measure is running between 0 and 1. The Euclidean distance between 
the two shapes P  and O  is calculated. We are also calculating the maximum 
distance and a score based on the sum between the maximum distances and the 
mean distance.  

The algorithm is comprised of three main steps: (A) rotate shape, (B) calculate 
point correspondences, and (3) calculate the similarity score. The differences in 
rotation will be removed during our iterative alignment algorithm. In each iteration of 
this algorithm, the first shape is rotated stepwise by an angle ψ∇ , while the second  
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Table 3. Outline of our shape alignment algorithm 

 

shape is kept fixed. For every transformed point in the first shape we try to find a 
corresponding point on the second shape. For the establishment of point correspondences 
we demand the following facts: a. produce one-to-one point correspondences, remove 
illegal point-correspondences from the list of one-to-one point correspondences, c. 
determine points without a correspondence as outlier, and d. produce symmetric results, 
which is obtaining the same results when aligning instance P  to instance O  as when 
aligning instance O  to P . 

Based on the distance between these corresponding points the alignment score is 
calculated for this specific iteration step. When the first shape is rotated once around 
its centroid, finally that rotation is selected and applied where the minimum alignment 
score is calculated. 

In this respect the algorithm is similar to our nearest neighbor-search algorithm 
proposed in [5]. The main difference is the way we calculate point correspondences. It 
was shown in Sect. 2 that the establishment of legal sets of correspondences is an  
 

Initialize ψ   /* stepwise rotation angle */ 

SET 0i =ψ    /* actual rotation angle */ 

 

Input: Normalized Shape O and Shape P 
Output: ( ){ }iOPSCORE ,min  

REPEAT UNTIL πψ 2i ≥  or ( ) 0O,PSCORE i =  

 (A) Rotate O  with ψψψ += −1ii  

 (B) CalcCorrespondences( P , iO ) 

 (C) CalcScore ( )iO,PSCORE  

RETURN ( ) ( ){ }iO,PSCOREminO,PSCORE =  

 

SUB (B) CalcCorrespondences( P ,O ) BEGIN 

 Calculate devγ  

 FOR EACH point p  in P  DO 

  -Calculate orientation angle pγ of p  
  -Put into ( ){ }pCorrList  all points o  with angle oγ  

   where ( ) ( )devpodevp γγγγγ +≤≤−
 

  -IF ( ){ } EMPTYpCorrList =  THEN 

   Mark p  as Outlier 
  -ELSE 

   -QuickSort ( ){ }pCorrList  with ascending 

    distances in relation to p  
   -FOR EACH item k  in ( )pCorrList  

    -IF k  has no Correspondence on P  THEN 

     SET Correspondence between k  and p  
 If tixt <<+  THEN Remove ip  
END 
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Table 4. Evaluation of symmetric property 

(a) shape_12 (340 
points) align to 

shape_13 (340 points) 

2094.0=ψ  
0842.0=ε ;

1835.0max =ε  
1339.0Score =  

(b) shape_13 (340 
points) align to 

shape_12 (340 points)
 
2094.0−=ψ  

 
0842.0=ε ; 

1835.0max =ε  

1339.0Score =  

(c) rect_mid (116 
points) is aligned to 
circle (144 points) 

 
 

1848.0=ε ; 

2921.0max =ε  

2384.0Score =  

(d) circle (144 points) 
aligned to rect_mid 

(116 points) 
 

 
1887.0=ε ; 

2904.0max =ε  

2395.0Score =  
 

important fact to distinguish between concave and convex shapes. The drawback of 

this requirement is that the set P of contour points ip  of the acquired shapes have to 

be an ordered set ( )≤,P . 

Before the iterative algorithm starts we define a range where to search for potential 
correspondences. This range is defined by a maximum deviation of the orientation 
according to the centroid (see Table 2 c). This restriction will help us 
to produce legal sets of correspondences. The maximum permissible deviation of 
orientation devγ  will be calculated in dependence of the amount of contour points On  

of the shape O , which is the instance that has more points than the other 
one. Our investigations showed that the following formula leads to a well-sized range 

O
dev

n

4πγ ±=  . (2) 

Let xt +  be an upper bound in the search area for a subset I of P if for every 

Ii ∈ , we have  xti +≤ and similarly, a lower bound in the search area for a subset 
I is an element t such that for every itIi ≤∈ , . Now, if we find more the one 

mapping between the point o  and the points ip  within the search area, we remove 

the points { }ipo, having an ordering number i  larger than the considered interval 

{ }xtt +,  with 
π

γ
4

odev n
x

⋅
= .  

The complexity of the algorithm is ( )klogkONn 2O . By introducing Bucket Sort 

instead of QuickSort we can reduce the complexity to linear complexity ( ( )kONn O ). 
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4   Results 

Table 5 shows some results of the alignment process. A point aligned to a circle gives 
the expected maximum dissimilarity value of one (Table 5 a), since zero means 
identity. If we align an ellipse to the circle and let this ellipse converge to a line, we 
get an increasing dissimilarity value which reaches the value 0.5 in case of a line (see 
Table 5 b- e). It can be seen that the dissimilarity value between the line and the circle 
is not exactly 0.5 (see Table 5 e). This is a small approximation error of the algorithm 
 

Table 5. Exemplary results of our alignment process 

  
(a)  point aligned to circle 

1=ε ; 1max =ε  

1Score =  

Outlier included: 0 

(b) circle aligned to ellipse_1
1643.0=ε ; 2532.0max =ε  

2088.0Score =  

Outlier included: 0 

(c)  circle aligned to ellipse_2 
3165.0=ε ; 5016.0max =ε  

4090.0Score =  

Outlier included: 0 

   
(e)  circle aligned to diameter 

5112.0=ε ; 1max =ε  

7556.0Score =  

Outlier included: 0 

(f)  circle aligned to rect_mid
1924.0=ε ; 2907.0max =ε  

2415.0Score =  

Outlier included: 0 

(g)  circle al. to semicircle 
3642.0=ε ; 6509.0max =ε  

5076.0Score =  

Outlier included: 0 

(i)  concave3 al. to concave6 
0777.0=ε ; 1617.0max =ε  

1197.0Score =  

Outlier included: 0 

(j)  concave1 al. to concave1 
0=ε ; 0max =ε  

0Score =  

Outlier included: 0 

(k)  shape_2 al. to shape_1 
1015.0=ε ; 1557.0max =ε  

1286.0Score =  

Outlier included: 0 
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caused by the allowed search area for the correspondences. The alignment of other 
arbitrary shapes is shown in Table 5 f-p. The alignment of a concave object to the 
convex shape of a circle is shown in Table 5 h. The established correspondences are 
legal and a set of outliers was detected. Finally, this results in a high dissimilarity 
value. 

In case both shapes have the same number of points, the symmetry of the similarity 
is given (see Table 4 a and Table 4 b). But the symmetry property does not exactly 
hold if a shape that consists of m  points is aligned to a shape that consists of n  
points where nm >  (see Table 4 c and Table 4 d). The similarity value has a small 
deviation. This is because there are multiple choices to establish correspondences 
among the larger number of points of shape P to the smaller number of points of 
shape O. If the shape with the larger number of points has to be aligned to the shape 
with a lower number of points so that the symmetry criterion holds, some constraints 
are necessary that will be developed during further work. 

In our study we are interested in determining the pair-wise similarity for clustering 
the set of acquired shapes into groups of similar shapes. The main goal is to learn for 
each of the established groups a generalized, representative shape. Finally, the set of 
generalized shapes is used for object recognition. From this point of view we do not 
need to enforce symmetric results ad hoc. The requirement was to result in a proper 
dissimilarity measure which holds under a wide variety of different shapes. 

5   Conclusions 

We have proposed a method for the acquisition of shape instances and our novel 
algorithm for aligning arbitrary 2D-shapes, represented by ordered point-sets of varying 
size. Our algorithm aligns two shapes under similarity transformation; differences in 
rotation, scale, and translation are removed. It establishes one-to-one correspondences 
between pairs of shapes and ensures that the found correspondences are symmetric and 
legal. The method detects outlier points and can handle a certain amount of noise. We 
have evaluated that the algorithm also works well if the aligned shapes are very 
different, like i.e. the alignment of concave and convex shapes. A distance measure 
which runs between 0 and 1 is returned as a result. 

The methods are implemented in the program CACM (case acquisition and case 
mining)[16] which runs on a Windows PC. 
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Abstract. In order to provide underwater vehicle high-precision navigation in-
formation for long time, the coordinate properties of underwater terrain can be 
used to aid inertial navigation system (INS) by matching algorithm. Behzad and 
Behrooz (1999) introduce iterative closest contour point (ICCP) from image 
registration to underwater terrain matching and provide its exact form and prove 
its validity with an example. Bishop (2002) proves its validity systemically. 
However, their research considers that the matching origin is known exactly 
while it is seldom satisfied in practice. Simulation results show that ICCP is 
easy to diverge when the initial INS error is very large (such as 3km). To over-
come the drawback, two enhancements are put forward. (1) The matching ori-
gin is added into matching process; (2) The whole matching process is divided 
into two phases: the coarse and the accurate. The coarse matching rules include 
mean absolute difference (MAD) and mean square difference (MSD) which is 
usually applied in terrain contour matching (TERCOM). The accurate matching 
is the ICCP optimization. Simulation results show that the updated ICCP 
matches application conditions very well and it is convergent with very high 
precision. Especially, when INS precision is not high, the updated ICCP match-
ing process is more stable and its precision is higher than TERCOM’s.  

Keywords: ICCP, TERCOM, Pattern Recognition, Map Matching, Terrain-
Aided Navigation. 

1   Introduction 

To provide underwater vehicle high-precision navigation information for long time, 
the coordinate property of underwater terrain can be used to aid inertial navigation 
system (INS) by matching algorithm. It is called terrain-aided navigation (TAN). A 
TAN system shown in Fig.1 is mainly composed of INS, sonar, terrain map, and 
matching algorithm. The core of the system is matching algorithm. The important part 
of matching algorithm is map pattern recognition and the recognition correctness 
decides the matching precision. Different recognition methods lead to different 
matching algorithms, such as terrain contour matching (TERCOM), Bayes, and etc. 
Since sonar is a single-point sensor, the matching process is one dimension. In order 
to improve matching precision, a series of measured points rather than a point are 
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accumulated to match with map. It is a kind of correlation matching which depends 
on terrain fluctuation and structure. With the appearance of underwater sonar array 
and multi-beam sonar, it is also possible to develop two-dimension matching algo-
rithms. This article focuses on one-dimension matching algorithm. [1-8] 

 

Output Correctness 

INS

Sonar 

Map

 

Algorithm

 

Fig. 1. The Scheme of Underwater Terrain-Aided Navigation System 

Iterative closest contour point (ICCP) is a common image registration algorithm. 
Article [9] introduces ICCP to underwater TAN and provides its principle and proce-
dure and proves its validity with an example. Article [10] proves its validity with 
different application conditions further. The other articles are also based on and simi-
lar with the research of the article [9, 10]. However, it is assumed in the articles that 
the matching origin is exactly known while it is seldom happened in practice except 
that INS is accurately aligned initially. In fact, due to the difference of underwater 
terrain fluctuation, some regions are suitable for matching while the others are unsuit-
able, i.e. there are matchable and unmatchable regions. In an unmatchable region, INS 
alone provides underwater vehicle navigation information and its error is accumulated 
with running time. When vehicle has passed an unmatchable region and then enters a 
matchable one, it is unsuitable to consider that the matching origin is exactly known 
any more due to the accumulated INS error. Therefore, it is necessary to update ICCP 
so that it can also be applied when the initial INS error is large, such as 2~5 nautical 
miles. (1 nautical mile is about 1.852 kilometer.) 

As to the limitation of ICCP in principle when the initial INS error is very large, 
two enhancements are made firstly. Then, the updated ICCP is proved by simulation. 
In the end, the advantages of the updated ICCP are concluded by comparison with the 
existed ICCP and TERCOM. 

2   Principle 

2.1   The Existed ICCP (It Is Called ICCP-A in the Following)[9]  

The principle of ICCP-A is shown in Fig.2. There is an actual path (the heavy line shown 

in Fig.2) which is called ‘actual path’ and composed of the points 
i

P′  

( 1, 2, ,i M= ) and M  is the path length. INS provides a measured path (the fine 

line shown in Fig. 2) which is called ‘INS path’ and composed of the points iP   

( 1, 2, ,i M= ). At the same time, sonar provides the corresponding measured 
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water depth values ic  ( 1, 2, ,i M= ) and each depth value corresponds to a con-

tour. Due to INS error, there is difference between iP  and 
i

P′  inevitably. The thought of 

ICCP is that 
i

P′  should lie in ic -contour and then iP  should be moved to the estimated 

points iP′′  ( 1, 2, ,i M= ), which compose ‘estimated path’, and approached the 

contour with a certain rule. The approach process is realized by optimization.  

         c0            c1             c2               c3         c4 

                      P1 Actual Path P3 P4  

                              P2  

                    P1 P3 P4  

                           P2 Estimated Path 

    P0             P1 P2            P3              P4 

                  INS Path 
 

Fig. 2. The Sketch of the Current ICCP Algorithm 

2.2   The Enhancement I (It Is Called ICCP-B in the Following) 

The principle of ICCP-B is shown in Fig.3. The only difference between ICCP-B and 
ICCP-A is that the matching origin is also adjusted as a point of the matching path in 
ICCP-B while it is not adjusted in ICCP-A. Similar with ICCP-A, we can also estab-
lish the subject of optimization as follows: 

( ) ( ) ( )1 1 1 1
2 1

, , , ,
M M

i i i i i i
i i

E d d K d− −
= =

= + − − +x a x x a a x y  (1) 

in which E  is the subject or the total constrain error, ( ),d p q  the Euclidean distance 

between p  and q , ix  the estimated position of iP′′ , iy  the closest contour point or 

projection of ix  in ic -contour, ia  the INS measured position, and K  stiffness coef-

ficient. As shown in Eq.(1), the first two items of the right side is to restrict the 
 

         c1            c2             c3               c4         c5 

                 P2 Actual Path P4 P5  

        P1                   P3  

 P1            P2 P4 P5  

                           P3 Estimated Path 

       P1            P2 P3            P4              P5 

                  INS Path  

Fig. 3. The Sketch of ICCP-B 
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estimated path in the vicinity of the INS path and the third is to make the estimated 
path approach to the sonar measured value contour.  

Shown in Fig.4 is the influence of vehicle speed and heading errors on one-step 
running. iρ  and iθ  in Fig.4 are vehicle speed and heading errors respectively. 1i+b  is 

the unit vector along ( 1i i+ −a a ) and 1i+e  is the unit vector perpendicular to 1i+b  (i.e. 

1i+b  rotated 90° counter-clockwise). The following equations can be expressed ac-

cording to Fig.4. 

    ei+1 

 

                              i   Pi+1  

 

    Pi          i Pi  Pi+1- Pi  

 

 

 

 Pi                       Pi+1           bi+1 
 

Fig. 4. The Influence of Vehicle Speed and Heading Errors on One-step Running 

( )( )
( )

1 1

1 1 1 1 1 1 1

cos sin , 1;

cos sin , 1.

i i i i i i i i i i

i

ρ θ θ
ρ θ θ

− −= + − + + >

= + + =

x x a a b e

x a b e
 (2) 

If iρ  and iθ  are small and the second and higher order items are ignored, Eq.(2) can 

be approximated as follows. 

1 1

1 1 1 1 1 1

, 1;

, 1,
i i i i i i i i i

i

ρ ζ
ρ ζ

− −+ − + + >
+ + =

x x a a b e

x a b e
 (3) 

in which 1i i i iζ θ−= −a a  and 1 1 1ζ ρ θ= . Substitute Eq.(3) into (1) and obtain 

( ) 22 2

1 1

.
M M

i i i i
i i

E Kρ ζ
= =

= + + −x y  (4) 

If ia , iρ , and iθ  are known, ix  ( 1, 2, ,i M= ) can be calculated by Eq.(3). ia  

is the INS measured position and known, so ix  is the function of iρ  and iθ . More-

over, iy  can be decided by ix , so it is the implicit function of iρ  and iθ .  

It is a nonlinear optimization problem in { iρ , iθ }. The simplex method, which 

does not require the gradient, can be used to solve the minimization problem. 
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2.3   The Enhancement II (It Is Called ICCP-C in the Following) 

It is known by comparing Fig.1 with 2 that ICCP-B is more adjacent to the practice 
than ICCP-A. However, it can be deduced that ICCP-B is still based on the following 
two hypotheses. 

(1)  The vehicle actual position is in the vicinity of the INS measured position. 
(2)  The vehicle actual position is in the vicinity of the sonar measured contour. 

The hypothesis (2) is the basis of matching and can be satisfied if sonar’s error is 
low enough. However, the hypothesis (1) can not be satisfied if the initial INS error  
is much large, which may lead to the divergence of ICCP-B. If a coarse matching is 
implemented before ICCP is applied, a coarse matched path, which should be closer 
to the actual path than the INS path, will be obtained. In the following accurate 
matching, the INS path is substituted with the coarse matched path and the following 
procedure is same as ICCP-B.  

Mean square difference (MSD) and mean absolute difference (MAD), two of 
TERCOM matching rules, are applied here to construct the coarse matching. The two 
rules are expressed in Eq.(5) and (6). 

( ) ( ) ( ) ( )MAD
1

1
, ,

M

t m t m
i

J x y h i h i h h
M =

= − − −  (5) 

( ) ( ) ( ) ( ){ }2

MSD
1

1
, ,

M

t m t m
i

J x y h i h i h h
M =

= − − −  (6) 

in which ( )MAD ,J x y  and ( )MSD ,J x y  are the MAD and MSD values at the point 

( ),x y , ( )th i  the water depth of the i -th point in the estimated path in map, ( )mh i  

the water value of the i -th point in the sonar measured path, th  and mh  the mean 

value of the estimated and sonar measured paths respectively.  
If the point at which the minimum MAD value is obtained is same as the point at 

which the minimum MSD value is obtained, the path at the point in map is the coarse 
estimated path. Otherwise, the absolute differences between the paths at the minimum 
MAD and MSD value points and the sonar measured path are calculated. The path 
with a smaller difference is decided as the coarse estimated path. 

Up to now, the coarse matching is completed and the coarse estimated path, which 
substitutes for the INS measured path in the following accurate matching, is obtained. 
The accurate matching is same as ICCP-B. This is ICCP-C which is composed of the 
coarse and accurate matching phases. 

3   Simulations 

The main simulation conditions are listed in Table 1 and sonar error model is shown 
in Table 2.  The 3-D image of a map is shown in Fig.5. The map is a 473×473 square 
grid and the grid distance is 58 meters. Its origin is (0˚, 0˚). The simulation origin is 
(0.03976˚, 0.151599˚) and vehicle sails along longitude from west to east. The path 
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length M  is 10 points. The compared object is matching error. In Table 1, g is grav-
ity acceleration and 0.02˚ longitude (or latitude) error is about 3.149km. In Table 2, 
h  is water depth. 

Shown in Fig.6 are the simulation results of ICCP-A, ICCP-B, ICCP-C, and 
TERCOM.  

 
Fig. 5. The 3-D Image of the Map 

Table 1. The Main Simulation Conditions 

Initial Longitude and Latitude Errors (˚) 0.02 
Sample Step (s) 14 

Vehicle 

Speed (m/s) 4 
X-axis Bias (˚/h) 0.001 
Y-axis Bias (˚/h) 0.001 
Z-axis Bias (˚/h) 0.001 
X-axis Random Walk (˚/h1/2) 0.001 
Y-axis Random Walk (˚/h1/2) 0.001 

Gyroscope 

Z-axis Random Walk (˚/h1/2) 0.001 
X-axis Bias (g) 1×10-5 
Y-axis Bias (g) 1×10-5 
Z-axis Bias (g) 1×10-5 
X-axis Random Walk (g·s1/2) 1×10-5 
Y-axis Random Walk (g·s 1/2) 1×10-5 

Accelerator 

Z-axis Random Walk (g·s 1/2) 1×10-5 
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Table 2. Sonar Error Model 

Depth (m) Error 
0~10 0.1m 
10~100 0.4%× h  
100~300 0.6%× h  
300~1000 0.8%× h  
1000~8000 1%× h  
>8000 Not Workable 

 
(a) (b) 

 
(b) (d) 

(a) ICCP-A and ICCP-B; (b) ICCP-B and ICCP-C; (c) ICCP-C and TERCOM; (d) TERCOM 
and ICCP-C with low-precision INS 

Fig. 6. The Comparison of Simulation Results 

It is known from Fig.6 (a) that the ICCP-B matching error is smaller than the 
ICCP-A’s about 800m. The result proves that adjusting the matching origin with other 
points of the estimated path simultaneously in ICCP-B matches the condition that the 
initial INS error is very large (about 3.149km), but the optimization process is very 
difficult to converge. In programming, there is a threshold value for iterated times, 
i.e., when iterated times is larger than the threshold value, the optimization is termi-
nated and the current path is put out. The path is just a local suboptimum usually. In 
fact, the latter part of the ICCP-B simulation shown in Fig.6 (a) is divergent and the 
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INS path is put out. The result shows that ICCP-B is also easy to diverge and its 
matching error is still too large to be used. 

Shown in Fig. 6 (b) is that ICCP-C converges quickly and its matching error is re-
duced sharply and the convergent error is about as low as 200m. The result proves that 
the introduction of the coarse matching shrinks the searching window of the following 
accurate matching remarkably, which makes the accurate matching applied in the vicin-
ity of the actual path and easy to converge. The enhancement is more effective. 

Shown in Fig. 6 (c) is that the matching results of ICCP-C and TERCOM are simi-
lar except that ICCP-C’s precision is higher than TERCOM’s in some segments. The 
results show that the two algorithms’ results are very good under the conditions. 

Shown in Fig. 6 (d) are the matching results of ICCP-C and TERCOM under the 
other simulation conditions. The only differences between the conditions include all 
gyroscope bias and random walk values changing from 0.001 to 0.01 and all accelera-
tion bias and random walk values changing from 1×10-5 to 1×10-4. That is, the INS’ 
precision here is much lower than the former. The results show that ICCP-C’s match-
ing precision is higher than TERCOM’s. The main reason is that there is the optimiza-
tion further in ICCP-C after the coarse matching and the estimated path is moved 
closer to the actual path by the optimization. There is no such adjusting procedure in 
TERCOM so that its matching result is easy to be influenced by the shape of the INS 
path. Especially, when INS’ precision is low, there is much large difference between 
the INS path and the actual path, which will lead to much large miss-matching in 
TERCOM. The results prove that ICCP-C is more applicable than TERCOM due to 
the existence of optimization.  

The results show that ICCP-C is the effective fusion of ICCP-B and TERCOM. 
Firstly, the MAD and MSD rules in the coarse matching can reduce the following 
accurate matching scope and decrease the chance of miss-matching sharply, which 
benefits improving matching precision and increasing the convergence speed; sec-
ondly, the optimization in the accurate matching can promote matching precision 
further and the advantage of the existence of the optimization is more obvious espe-
cially when INS’ precision is low. 

4   Conclusions 

By analyzing the current ICCP, i.e. ICCP-A, and the application conditions, two en-
hancements are put forward. 

(1)  Add the matching origin into matching process and construct the updated algo-
rithm ICCP-B. 

(2) Construct the coarse matching by referring the MAD and MSD rules from 
TERCOM. The accurate matching is same as ICCP-B. The updated algorithm ICCP-
C has two matching phases: the coarse and the accurate. 

    The simulation results prove the following points. 

(1)  The two enhancements are effective and ICCP-C’s precision is highest under 
the same simulation conditions. 

(2)  The enhancement that adding the matching origin into matching process makes 
the updated ICCP, i.e. ICCP-B, is more coincident with the application conditions 
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than ICCP-A and is beneficial to improving matching precision, but ICCP-B is still 
easy to diverge due to the local suboptimal rather than the global optimal path is 
found when the initial INS error is large (such as 3km).  

(3) The convergence speed and matching precision of ICCP-C are improved 
sharply due to the introduction of the coarse matching. Compared with TERCOM, 
ICCP-C’s application scope is larger and its matching precision is higher especially 
when INS’ precision is low. The main reason is that the existence of the coarse 
matching makes the optimization applied in the vicinity of the actual path, which 
matches the application conditions, and the optimization can improve the matching 
precision further. When the shape of the estimated path is much different from the 
shape of the actual path due to the low INS precision, the advantage of the existence 
of the optimization in ICCP-C is more prominent. 
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Abstract. Position estimation is one of the most important functions for the 
mobile robot navigating in the unstructured environment. Most of previous  
localization schemes estimate current position and pose of a mobile robot by 
applying various localization algorithms with the information obtained from 
sensors which are set on the mobile robot, or by recognizing an artificial land-
mark attached on the wall or objects of the environment as natural landmarks. 
Several drawbacks about them have been brought up. To compensate the draw-
backs, a new localization method that estimates the absolute position of the mo-
bile robot by using a fixed camera on the ceiling in the corridor is proposed. 
And also, the proposed method can improve the success rate for position esti-
mation, since it calculates the real size of an object. This is not a relative local-
ization scheme which reduces the position error through algorithms with noisy 
sensor data, but a kind of absolute localization. The effectiveness of the pro-
posed localization scheme is demonstrated through the experiments. 

1   Introduction 

By the end of the 21st century, robots may not be strangers to us anymore. Com-
pared with in recent years, the useful range for robots has gradually spread to a 
wide variety of areas. Mobile robots are especially being used as a substitute for 
humans in unwelcoming environments or to do simple works those are either in or 
outside. In addition, they are used for investigating planets in space [1]. In such a 
mobile robot system, getting exact information on its current position is very impor-
tant. The mobile robot mainly calculates its position with the data acquired from  
a rotary encoder which is connected to the wheel, and from a gyroscope sensor. 
However it couldn’t perceive the correct position because of slippage, a rough sur-
face, and sensor error such as gyroscope drift. Many solutions have been proposed 
to overcome these unavoidable errors. For example some researchers presented a 
method that estimates the current position by applying information obtained by  
a rotary encoder and an ultrasonic sensor by applying an EKF (extended Kalman 
filter) [2,3]. And a researcher updated the positioning of mobile robots by fusing 
data from multi-sensors such as magnetic compasses, gyroscopes, rotary encoders 
with the EKF [4]. These methods need much calculation for a mobile robot to  
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perform a task, which results in a sharp drop in the total system efficiency. Another 
disadvantage is a great localization uncertainty which is the result of the statistical 
error accumulated from sensors and control over long distances. Contrary to the 
methods mentioned above, which intended to reduce the position error with relative 
positioning sensors, the following method provides an absolute position regardless 
of the distance moved and working time of a mobile robot. And some researchers 
presented a method that estimates the position of a robot through geometric calcula-
tion, after it recognizes a landmark [5-6]. Even though a CCD camera set on a robot 
is used for avoiding obstacles and tracking objects and so on, in these methods, the 
camera system was consumed unnecessarily for a robot to search and recognize the 
exact landmark. Another robot equipped with a CCD camera, estimates its position 
by recognizing a characteristic topography or an object, and compares it with the 
model image saved in advance [8]. In general, some feature points are utilized such 
as a wall or a corner as landmark in the workspace. However it has low confidence 
in recognition and requires much calculation. Therefore, the processing speed of the 
system is low.  

In this paper, to overcome these problems, a new localization method is proposed 
and illustrated in Fig. 1. A camera installed on the ceiling of the corridor is utilized 
for the localization of the mobile robot. The sequence of an absolute positioning sys-
tem can be summarized as follows: 

The height
of camera Client

Robot
Position

corridor

Server

 

Fig. 1. Absolute positioning system 

First, the system recognizes whether it is a moving robot or not, with a CCD 
camera. Secondly, if the object is a moving robot, the system obtains the position 
of the robot. Finally, the system transmits the position data to the robot for the 
localization. 
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2  Object Segmentation Through Image Process 

Moving objects are extracted using the difference image which is obtained as the 
difference between an input image, which is being inputted consecutively, and a ref-
erence image, which is captured and stored in advance. 

2.1   Image Pre-processing 

A Gaussian mask is applied with the nine pixels for removing illumination dependent 
image noises, and modular four images which have 160 X 120 pixels for an image are 
used for image pre-processing. 

2.2   Filtering and Labeling 

A filtering method that has been used widely, a morphological filtering method is 
adopted. Through the labeling, objects are distinguished and their features are 
searched using labels. 

2.3   Reference Image Modification 

In order to extract a moving object in a dynamic environment correctly, the reference 
image needs to be updated dynamically instead of keeping the initial reference image. 
In Fig. 2, rf

kI  is an updated reference image that will be used for the next frames. 

Also, a mask image  n
kM  is represented as follows: 
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This new reference image can be represented as (refer to Fig. 3.), 
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Fig. 2. Object segmentation model 
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Fig. 3. Update process of background image 

3   Transformation from Image Coordinates to Real Coordinates 

The distance between camera and object is obtained using a single camera so that, such 
distance can be represented as real coordinates [8]. As shown in Fig. 4, the solid square 
border in the center has a screen image for a mobile robot. This image is projection of 
the mobile robot on the corridor, which is in real three dimensions. Here, the image 
coordinates can be transformed to real coordinates to obtain the location of the robot. 
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Fig. 4. Modeling for the correspondence between 2D image and 3D coordinates 
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The screen image is described in detail as Fig. 5. 
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Fig. 5. Screen image 

The real coordinates of the robot center on the floor, ),( __ positionrobotpositionrobot yx , can 

be calculated as follows: 

)]()90tan[( ,

y

bottomy
lengthbottom screen

p
zy ×+−°×= γα  

(6) 

The y-axis center of the robot can be obtained as, 

)2/(_ Lyy bottompositionrobot +=  (7) 

where L is width of the robot. And, 

)
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positionrobotpositionrobot screen

p
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4   Feature Extraction 

4.1   Height and Width of an Object 

The height and width of the robot can be obtained using geometric analysis. 
As shown in Fig. 6, the distance 1y  from the lowest coordinates of the object to the 

origin is calculated using bottomy  in Eq. (6) as, 

Oyy bottom −=1  (9) 

where O represents the origin. 
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Fig. 6. Height measurement using a camera 

In the same manner, topy  can be calculated from Eq. (6) by replacing 
bottomy  as topy    

and 
bottomyP ,

 as 
topyP ,

. Therefore, the distance 2y  from the highest coordinates of the 

object to bottomy  is calculated as, 

bottomtop yyy −=2 . (10) 

When the coordinates, 
1y  and 

2y  are obtained, the height of the robot, heightOBJ  can 

be calculated as, 

)( 21

2

yy

yz
OBJ length

height +
×

=  (11) 

from the similarity properties of triangles. 
Following the same procedure, the width of the mobile robot can be obtained as 

follows:  
The real length pixellength  per pixel is calculated as follow: 

)/( ,, bottomytopyheightpixel PPOBJlength −= . (12) 

Then, the width, widthOBJ , of the object is calculated as 

)( ,, leftxrightxpixelwidth pplengthOBJ −×= . (13) 

4.2   Extraction of Color Information 

To recognize the mobile robot, the height, width and color information have been 
used for a neural network. Since most color cameras used for acquiring digital images 
utilize the RGB format, RGB values for the object image are obtained and represented 
as 8 bit data. 
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5   Experiments and Discussion 

5.1   Mobile Robot for Experiments  

Two mobile robots shown in Fig. 7 are used for experiments. 

  

Fig. 7. Experimental mobile robots 

5.2   Object Segmentation  

The images of robots are extracted, which are navigating in corridor. The experimen-
tal results are shown in Fig. 8. 

             
(a) Ref. Image              (b) Input Image             (c) Ext. Image 

Fig. 8. Extraction of mobile robot images 

5.3   Recognition of a Robot Through Neural Network  

First of all, it is necessary to recognize an object to estimate the exact position of the 
robot. For this, a neural network is utilized to decide whether an extracted object in 
the image is a robot or not.  

As shown in Table 1, with the size information, the success rate is improved a lot. 

Table 1. Success rate of recognition 

 recognition by using only color 
information 

recognition by using color infor-
mation and size information 

object 
Number of 

trials 
Number of 

success 
Number of 

trials 
Number of 

success 
IRL-2002 40 30 40 35 

Ziro3 40 32 40 38 
people 20 12 20 18 
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5.4   Acquisition of a Robot Position and Results of Experiments  

When a mobile robot is driven 10m forward, experimental results are shown in Fig. 9. 
Using only an encoder sensor and the kinematics of the mobile robot [7], there exists 
an approximately 40cm deflection along the x axis. However note that using the pro-
posed method, the robot trajectory is kept close to the center line of a driven corridor. 
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Fig. 9. Motion trajectory of a robot 

Table 2. Position error by the proposed method 

Distance 
from cam-

era 
Axis Maximum error

(cm) 
Minimum error 

(cm) 
Average error 

(cm) 

X axis error 0.573 0.201 0.420 
3m 

Y axis error 2.583 0.125 1.706 
X axis error 2.386 0.318 1.175 

4m 
Y axis error 4.833 0.364 3.073 

As shown in Table 2, the further the robot moved from the camera, the greater the 
error became in real coordinates. The error in the x axis is influenced by both the 
distance and angle from the camera. Consequently, in the limited camera view area, 
the robot position is precisely recognized without missing the robot. 

6   Conclusion 

In this paper, a new localization method with a fixed camera is proposed, which util-
izes the external monitoring camera information under the indoor environment. When 
a mobile robot is moving along the corridor, it helps the localization of robot by esti-
mating the current position through the geometric analysis of the mobile robot image. 
The exact position of the mobile robot was obtained and demonstrated to be correct 
by the real experiments. And through the experiments, the advantages and efficiency 
of the proposed method are demonstrated illustratively. 
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For a future research topic, an efficient image processing scheme is necessary to 
improve and reduce the absolute error. 
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Abstract. We have evaluated three computer approaches to 3-D recon-
struction - passive computational binocular stereo and active structured
lighting and photometric stereo - in regard to human face reconstruction
for modelling virtual humans. An integrated experimental environment
simultaneously acquired images for 3-D reconstruction and data from
a 3-D scanner which provided an accurate ground truth. Our goal was
to determine whether today’s computer vision approaches are accurate
and fast enough for practical 3-D facial reconstruction applications. We
showed that the combination of structured lighting with symmetric dy-
namic programming stereo has good prospects with reasonable process-
ing time and accuracy.

1 Introduction

Vision based 3-D facial reconstruction is appealing because it uses low-cost off-
the-shelf hardware. Our main objective was to assess the usability of three of
the most popular reconstruction techniques - computational binocular stereo,
structured lighting and photometric stereo - for creating realistic virtual humans.
Binocular stereo is of particular interest as it is a passive technique, whereas the
other two actively project light onto the scene. Determining whether a passive
approach can provide results competitive with active techniques is important.

Seeing and interacting with humans is commonplace in a person’s everyday
life. Indeed, most verbal and non-verbal communication uses part of the face.
Facial modelling has therefore become a major issue for the successful design
of human computer interfaces. The applications for facial modelling to create
virtual humans are wide and varied, including surveillance, entertainment and
medical visualisation [10]. Faces are highly emotive and consequently virtual
humans are a powerful tool, often a necessary one, in a variety of multimedia
applications.

Section 2 briefly surveys the state-of-the-art in face reconstruction techniques.
Accuracy criteria relevant to face reconstruction and vision based 3-D recon-
struction techniques are summarised in Section 3. The experimental setup is
described in Section 4, Sections 5 and 6 discuss experimental results.
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2 Previous Work

Facial reconstruction is a very specific task. Image based 3-D reconstructions ap-
pear most accurate when viewed under directions similar to those in which they
were acquired. Rotations to novel views of the 3-D data often reveal the most
prominent flaws in a reconstruction. However, performance analysis of vision
based reconstruction has focused on a collection of arbitrarily chosen scenes [9].
We focused on human face reconstruction because of its identified importance.
The techniques compared here have been described in detail [3,4,7,11,12].

Facial reconstruction from digital images reduces modelling time and allows
for a personalised result. Almost all vision based techniques use a generic face
model that is warped to the raw data.

Successful techniques [8] use data gathered from a 3-D scanner. Unfortunately
the cost of 3-D scanning equipment makes this impractical for many situations.

3 Tested Reconstruction Algorithms

In contrast to previous work, we focus on more stringent error analysis and cri-
teria for face reconstruction. The characteristic face feature areas - eyes, mouth,
nose, etc - are especially important for reconstruction.

Accuracy of surface normal reconstruction, which is often neglected in existing
analysis, is an important indicator of quality when a surface area exhibits an
overall shift in depth but retains a low comparative depth variance measure. We
included this measure to provide an extended reconstruction error analysis.

There are a large number of algorithms for 3-D reconstruction so we selected
some of the most popular techniques in each of the chosen approaches.

Binocular Stereo. After comparing a set of implemented dense two-frame stereo
algorithms, we chose the algorithms in Table 1 as they provide a cross-section
of local and global techniques. Global algorithms incorporate an optimisation
process over the entire domain and produce smoother results, but usually at the
sacrifice of speed. Tthe algorithms used are described elsewhere [7,9].

Table 1. Tested Binocular Stereo Techniques

’Winner Takes All’ Sum of Absolute Differences (SAD)1 - local algorithm
Dynamic Programming Method (DPM)1 - global algorithm
Symmetric Dynamic Programming Stereo (SDPS)2 - global algorithm
BVZ (Graph Cut based algorithm)1 - global algorithm
Belief–Propagation (BP)3 - global algorithm
Chen and Medioni (CM)2 - local algorithm

1 Scharstein and Szeliski, http://cat.middlebury.edu/stereo/code.html
2 Our own implementation
3 Felzenszwalb and Huttenlocher, http://people.cs.uchicago.edu/∼pff/bp/ [14]
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Structured Lighting. Structured lighting techniques use active illumination to
label visible 3-D surface points. Active illumination aims to simplify the surface
reconstruction problem. Reconstruction time depends on a compromise between
the number of images required (for complex coding strategies) and uniqueness
of pixel label and thus ability to resolve ambiguities. The Gray code algorithm
matches codes whereas both of the direct coding techniques project a light pat-
tern that aids the correspondence process in a standard binocular stereo algo-
rithm, cf. Table 2.

Table 2. Structured lighting techniques to test

Time-multiplexed structured lighting using Gray code
Direct Coding with a Colour Gradation Pattern
Direct Coding with a Colour Strip Pattern

We aim to determine whether a simpler single light projection coupled with a
traditional stereo algorithm is competitive with a more complex coding scheme
such as a Gray code constructed from multiple projections. An et al. give a more
detailed description of the structured lighting techniques used [4].

Photometric Stereo. An albedo independent approach [5] with three light sources
was used in this experiment. This technique assumes Lambertian scatterers, a
parallel projection model and light sources situated at infinity. However this is
a drastic simplification of reality. This paper focusses on assessing the gradient
field integration component of photometric stereo. The algorithms were chosen
to present both local and global techniques. Global algorithms incorporate an
optimisation process over the entire field and produce smoother results. The
presented gradient field integration techniques are described by Woodward and
Delmas [12].

Table 3. Tested photometric stereo techniques

Frankot-Chellappa Variant (FCV) - global algorithm
Four-Scan Method - local algorithm
Shapelets (9 scales) - local algorithm

4 Experimental Setup

A diagram of each sub-system is in Fig. 1. Images were taken automatically
through specifically designed software and all data was processed in a batch
manner. For each test subject, the facial region (about 800×700 pixels) was cut
from the images for comparison.
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Fig. 1. System geometries for all techniques

A Solutionix Rexcan 400 3-D scanner (depth accuracy ∼0.5 mm, planar reso-
lution 0.23 mm) was used to obtain ground truth data for each test subject (see
Figure 2).

a b c d

e f g

Fig. 2. Reconstruction examples: a) Ground truth, b) Gray code, c) FCV, d) SAD, e)
SDPS, f) BVZ, g) CM

4.1 Binocular Stereo

A pair of Canon EOS 10D 6.3 Mpixel cameras was used for high resolution image
acquisition. This allows for very dense disparity maps and accordingly a larger
disparity range. Each camera lens has a measured focal length of 52 mm. The
baseline separation between the two cameras was 175 mm. The cameras were
aligned with their optical axes parallel, allowing for simplified reconstruction
formulae. The test subject was placed approximately 1200 mm from the cameras.
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4.2 Structured Lighting

This system used the same cameras as in binocular stereo. The main concern
is the slow acquistion time that belies a potentially fast process when the ap-
propriate hardware is available. With these cameras, it is in the order of tens of
seconds.

An Acer LCD Projector, model PL111, was used to project light patterns into
the scene. The device is capable of projecting an image of 800× 600 pixels and
has a focal length of 21.5− 28 mm.

4.3 Photometric Stereo

A system with three 150W light sources was used [5]. A JVC KY-F55B camera
controlled automatically by a switching device connected to a computer captured
the images. As shown in Figure 1c, the lights are positioned so as to be non-
coplanar which is a requirement for the algorithm to work correctly.

4.4 System Calibration

A cubic calibration object with 63 circular calibration markings distributed
evenly over two of its sides was used. Tsai’s calibration technique was used [13].

A light calibration step must also be performed for the photometric stereo
system. This determines the direction to the lights from an arbitrary scene origin.
A calibration sphere was used for this process as directions can be determined
analytically. The sphere was placed in the same location as the subject will be
positioned during data acquisition.

a b

Fig. 3. (a) Test subject during acquisition with a projected colour pattern.
(b)Calibration object for camera calibration.

4.5 Image Rectification

Stereo images were rectified by converting them to a standard epipolar stereo
geometry. The rectification process transforms and resamples the images so that
the resultant image pairs will meet the epipolar constraint.

To satisfy this requirement, an intuitive rectification is to rotate both cameras
around their optical centres to a common orientation. The rotated cameras still
comply with the pinhole camera model and the baseline remains intact. Using
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a calibration result (see Section 4.4), one can compute the baseline and a new
common orientation from the pose of the two cameras. This method is similar to
the method of Ayache and Hansen [1] which insists on neither the extrinsic nor
the intrinsic parameters of a camera but the 3×4 perspective projection matrix.
Our method utilises the extrinsic and intrinsic parameters, which is simpler and
decouples the lens distortion from the aforementioned 3× 4 matrix.

4.6 Data Processing

Data from the several experiments was aligned using a semi-automatic process
involving 3-D object rigid transformations using the 3-D scanner software which
allows for data manipulation and registration. After alignment all data was sub-
sequently projected into disparity space and disparity maps were compared. Thus
our primary accuracy metric was disparity (depth) deviations from the ground
truth data. Throughout the experiment, it was found that 3-D data alignment is
a difficult process and much care is needed. A small number of correspondences
were entered manually to ensure correct registration.

5 Experimental Results

A Pentium 4 3.4 GHz machine with 2 Gbyte RAM computed the depth maps.
The resultant face reconstructions and a ground truth of the test subject were
compared. A set of 17 subjects were used.

The reconstruction accuracy metrics were: the percentage of pixels with ab-
solute depth errors less than two disparity units (P<2), the maximum (max)
absolute pixel depth error , the mean (emn) absolute pixel depth error, the
standard deviation (σe) of errors, and the mean cosine error (MCE). Central
differencing was used to estimate surface normals, and the MCE measures the
quality of reconstruction of surface normals:

MCE =

∣∣∣∣∣∣
⎛⎝ 1

M ×N

M∑
i=1

N∑
j=1

ni,j • n∗
i,j

⎞⎠− 1

∣∣∣∣∣∣ (1)

where M,N are the image dimensions, ni,j and n∗
i,j are the reconstructed surface

and ground truth normals, respectively, and “•” is the dot product operator. The
MCE measures how close the reconstructed surface normals are to the ground
truth, in particular, MCE = 0 if ni,j = n∗

i,j , 1 if ni,j ⊥ n∗
i,j , and 2 if ni,j and

n∗
i,j are collinear but with opposite directions.
The experimental results in Table 4 show that active reconstruction techniques

consistently perform better than purely passive ones. Passive binocular stereo is
greatly improved by supplementing the process with only a single light pattern
(indicated as Gradation and Strip in Table 4).

Photometric stereo, although active in nature, is unable to recover true depth
measurements due to the required gradient field integration step. None of the
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Table 4. Average reconstruction accuracy and running time

Method P<2, max emn σe MCE Time,
% sec

Gray code 97 8 0.6 0.6 0.01 4.0
SDPS 89 13 1.0 0.9 0.09 6.0
SDPS + Gradation 90 13 1.0 1.0 0.11 .
SDPS + Strip 93 9 0.8 0.7 0.09 .
DPM 79 19 1.4 1.6 0.24 6.0
DPM + Gradation 84 13 1.2 1.2 0.25 .
DPM + Strip 92 13 0.8 0.8 0.14 .
BVZ 77 42 1.8 3.4 0.12 3517
BVZ + Gradation 83 31 1.3 1.5 0.09 .
BVZ + Strip 92 40 0.9 1.6 0.09 .
SAD 80 42 1.8 3.4 0.17 1.7
SAD + Gradation 85 32 1.2 1.7 0.16 .
SAD + Strip 93 35 0.8 1.3 0.09 .
BP 73 27 2.1 3.0 0.18 180
BP + Gradation 77 21 1.8 2.3 0.16 .
BP + Strip 89 18 1.0 1.2 0.16 .
CM 88 20 1.0 1.1 0.09 30.0
CM + Gradation 89 22 1.2 1.4 0.13 .
CM + Strip 92 21 0.9 1.1 0.10 .
PSM FCV 69 14 1.7 1.7 0.09 4.0
PSM Four-path 54 13 2.4 2.0 0.05 37.0
PSM Shapelet 71 12 1.7 1.7 0.04 153

Gradation and Strip refer to active projection of a Colour Gradation or Colour
Strip pattern, respectively, on the object.

compared photometric stereo algorithms performed as well as the best offerings
found in the other two approaches.

The performance of a pure Gray code approach is clearly superior to other
techniques. It attains the lowest scores for all categories. Through effective for-
mulation, it can handle coding errors that can happen in problem areas having
low albedo or strong specularities, such as the eye regions [4] where PSM tech-
niques usually fail.

The tuning of parameters is a difficult task. They are usually set with respect
to the image size. It was found that global algorithms based on more complex
optimisation techniques such as Belief Propagation (BP) [14] and the Graph
Minimum Cut (BVZ) [2] did not perform as well as expected for human faces
and relatively large disparity ranges. Thus our results differ from Scharstein and
Szeliski’s ranking of stereo algorithms [9] and the Middlebury Stereo Vision web
page (www.middlebury.edu/stereo/). Our test has much higher resolution im-
ages and, in turn, much greater depth ranges. On facial images the accuracy
of dynamic programming based algorithms was similar or even better than for
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Fig. 4. Stereo (SAD) with and without a projected pattern. a) The colour strip pattern
used, b) SAD without projected pattern, c) SAD with projected pattern.

these much more computationally complex (and supposedly better performing)
BP and BVZ algorithms.

Colour projections that are similar to skin tones should be avoided in order to
provide maximal contrast over the facial surface. The spatial frequency of pro-
jected patterns is important and needs to be high enough to provide uniqueness
in matching. Thus a low frequency gradation pattern does not perform as well
as a strip pattern.

6 Conclusion and Future Work

We introduced a framework and test bench for passive and active 3-D acquisition
systems using three different approaches (binocular stereo, photometric stereo
and structured lighting) and sixteen algorithms. We compared the data acquired
to a benchmark with sub milli-metre depth accuracy using surface normal and
depth map information.

All tested algorithms showed reconstruction errors that exceed the require-
ment for direct presentation of virtual humans and this is currently only remedied
in postprocessing steps. Our experiments have shown that errors do not occur in
specific areas of the face. Masking out specific regions that are highly textured,
counter lowly textured, does not cause significant alterations in results.

Active methods such as structured lighting and photometric stereo have prob-
lems with specular, shadow and low albedo regions. Binocular stereo has prob-
lems dealing with texture-less regions of the face, the projection of a colour strip
pattern saw a marked improvement in reconstruction accuracy. This can be eas-
ily seen in the example presented in Figure 4. The FCV algorithm performs at
the forefront of the tested PSM algorithms when considering both accuracy and
time complexity. Overall, the Gray code approach provides the expected best
overall results. However, from these results it appears that the SDPS algorithm
coupled with just a single strip pattern is a strong choice in terms of accuracy
and time complexity.

We are currently assessing further algorithms, especially those for binocular
stereo. The combination of active illumination and stereo vision (using the SDPS
algorithms) shows the best potential for generating 3-D characters from a rig of
video-cameras.
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Abstract. In this paper, we propose a new hybrid optical flow computation with 
fourth order partial differential equations (PDEs). The integration of local and 
global optical flow methods exploits fourth order PDEs rather than second order 
for the purpose of the improvement of smoothness and accuracy of the estimated 
optical flow field. Furthermore, we describe the implementation of the method in 
detail. The experiments show that the employment of fourth order PDEs benefits 
the improvement of the two aspects of the resulting optical flow field. 

1   Introduction 

Optical flow is the term used to indicate the distribution of velocity generated by the 
relative motion between an object and the camera, over the points of an image se-
quence, and carries important information which is valuable for analyzing dynamic 
scenes or motion in video. Optical flow is determined by the velocity vector of each 
pixel in each frame. One of the most appealing features of optical flow computation 
methods is perhaps their generality, which provides a basis for their application in a 
broad spectrum of computer vision applications. Several schemes have been devised 
for calculating optical flow based on two or more frames of a sequence. These 
schemes can be classified into two general categories: local methods, which may 
optimize some local energy-like expression, and global strategies, which attempt to 
minimize a global energy functional. 

There exists a very large number of publications on optical flow computation 
[1][2]. Schnörr [3] sketched a framework for supplementing global energy functionals 
with multiple equations that provide local data constraints. He suggested to use the 
output of Gaussian filters shifted in frequency space [4] or local methods incorporat-
ing second-order derivatives [4][5], but did not consider methods of Lucas–Kanade 
type. 

While the noise sensitivity of local differential methods has been studied inten-
sively in recent years [6]-[11], the noise sensitivity of global differential methods has 
been analyzed to a significantly smaller extent. In this context, Galvin et al. [12] have 
compared a number of classical methods where small amounts of Gaussian noise had 
been added. Their conclusion was similar to the findings of Barron et al. [13]: the 
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global approach of Horn and Schunck is more sensitive to noise than the local Lucas–
Kanade method. 

This paper proposes a new hybrid optical flow computation, which incorporates 
global strategies into local methods. Different from other optical flow computations, 
our work uses fourth order partial differential equations (PDEs) instead of second 
order PDEs as a technique to avoid over-smooth effects while achieving good tradeoff 
between smoothness and faithfulness to the data. Because of the use of nonlinear 
penalty function, the optical flow computation can also achieves the goal of preserv-
ing discontinuity of optical flow field. In implementation, we adopt the method called 
successive overrelaxation (SOR) [17] to numerically approximate the optical flow 
equation with fourth order PDEs. The iterative method possesses good properties in 
both temporal and spatial computation complexity. The experimental results show the 
validity and applicability of the proposed method. 

The paper is organized as follows. Section 2 presents optical flow computation in-
cluding Lucas-Kanade and Horn-Schunck methods, and Section 3 proposes our 
method, involving basic ideas and model. We describe the implementation of the 
proposed method in Section 4. Experiments are presented in Section 5 and the paper 
is concluded in Section 6. 

2   Optical Flow Computation 

Consider an image sequence ( , , )g x y t , where ( , )x y  denotes the location within a 
rectangular image domain Ω, and [0, ]t T∈  denotes time. Many differential methods 
for optical flow are based on the assumption that the grey values of image objects in 
subsequent frames do not change over time: 

0
x y t

g u g v g+ + = , (1) 

where the displacement field ( , )u v  is called optical flow, and subscripts denote par-
tial derivatives. 

Evidently, this single equation is not sufficient to uniquely compute the two un-
knowns u and v (aperture problem): In order to cope with the aperture problem, Lucas 
et al. [14][15] proposed to assume that the unknown optical flow vector is constant 
within some neighborhood of size . In this case it is possible to determine the two 
constants u and v at some location ( , , )x y t  from a weighted least square fit by mini-
mizing the function 

( )( )2

( , )
LK x y t

E u v K g u g v gρ= ∗ + + , (2) 

where K ρ  is a Gaussian kernel with the standard deviation , and ∗ is a convolution 
operator. The method is robust against noise. However, it constitutes the most severe 
drawback of local gradient methods: its flow fields are nondense. 

In order to end up with dense flow estimates one may embed the optical flow con-
straint into a regularization framework. Horn et al. [16] have pioneered this class of 
global differential methods. They determine the unknown functions ( , , )u x y t and 

( , , )v x y t  as the minimizers of the global energy functional 
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( ) ( )( )2 2 2

( , )
HS x y t

E u v g u g v g u v dxdyα
Ω

= + + + ∇ + ∇ , (3) 

where the smoothness weight α > 0 serves as a regularization parameter, and ∇  is a 
gradient operator. The use of the regularizer results in dense flow fields and makes 
subsequent interpolation steps obsolete. This is a clear advantage over local methods. 
Unfortunately, the method is sensitive to noise. 

Since both local and global differential methods have complementary advantages 
and shortcomings, it would be interesting to construct a hybrid technique that consti-
tutes the beneficial factors of two methods: It should combine the robustness of local 
methods with the density of global approaches.  

An existing hybrid method employs the convolution kernel with standard deviation 
ρ for local methods and the optical flow constraint for global approaches. The esti-
mated optical flow field is the solution of the minimization problem, given by the 
following functional 

( ) ( ) ( ) ( )( )( )2

,
x y t

E u v K g u g v g u v dxdyρ α ψ ψ
Ω

= ∗ + + + ∇ + ∇ , (4) 

where ( )ψ ⋅  is called a potential function. When 20, ( ) ( )ρ ψ= ⋅ = ⋅ , the above equation 
will be reduced to Eq. (3). 

3   Smoothness Constraints Using Fourth Order PDEs 

Although these techniques using second order PDEs as smoothness constraints are 
able to achieve a good tradeoff between smoothness and optical flow constraints, they 
tend to cause over-smooth effect as a result of the fact that second order PDEs are 
strong constraints. This result is undesirable and is likely to cause a computer vision 
system to falsely recognize the motions of different object as ones belong to the same 
object. 

This over-smooth effect is, to a large extent, inherent in the nature of second order 
PDEs. Since second order derivatives are zero only if the optical flow field is linear-
monotonously changing, these PDEs for the two velocity components will evolve 
toward and settle down to an optical flow field with constant gradients if the field is 
infinite. For fields of limited support, however, symmetric boundary condition is 
usually employed in order to avoid motion distortion at the boundaries. Then these 
PDEs will evolve toward a constant field. Since these PDEs are usually designed such 
that optical flows in smooth areas evolve faster than those around rough areas in order 
to preserve discontinuity while removing noise, consistent flow areas will become flat 
faster than less consistent areas. Consequently, the optical flow field is likely to 
evolve at early stage into such a vector field that may be approximated by constant 
subfields. The boundaries of these subfields may coincide with true segmentations of 
the moving objects, but may result in incorrect motion estimations due to the over-
smooth effect. 

For this, we propose a novel smoothness constraints using fourth order PDEs for 
optical flow equations, forming a new hybrid method. First consider the following 
functional defined in the space of continuously varying vectors over a support of Ω: 
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( ) ( ) ( ) ( )( )( )2

,
x y t

E u v K g u g v g u v dxdyρ α ψ ψ
Ω

= ∗ + + + Δ + Δ , (5) 

where Δ  is a Laplacian operator. Different from Eq.(4), the smoothness term in Eq. 
(5) use Laplacian operators (| |) (| |)u vψ ψΔ + Δ  rather than gradient operators 

(| |) (| |)u vψ ψ∇ + ∇ . We require that the potential function ( ) 0ψ ⋅ ≥  and is an increas-
ing function: 

( ) 0ψ ′ ⋅ > , (6) 

so that the functional is an increasing function with respect to the smoothness of the 
field as measured by | |uΔ  and | |vΔ . Therefore, the minimization of the functional is 
equivalent to smoothing the optical flow field. The use of the potential function en-
ables the construction of nonlinear equations. For example, ( )ψ ⋅  can adopt a Huber 
function as a penalty function to control the discontinuity in the a priori model. The 
minimum of the functional may be found by solving the following Euler's equation 
for all ( , )x y ∈ Ω , 

( ) ( )1 0
x x x y x t

u u u K g g u g g v g gρψ α −′Δ Δ Δ Δ − ∗ + + = , (7) 

( ) ( )1 0
y x y y y t

v v v K g g u g g v g gρψ α −′Δ Δ Δ Δ − ∗ + + = . (8) 

An optical flow field whose velocity components both satisfy a plane equation re-
fers to a plane optical flow field. For its velocity components, their Laplacians are 
zero, so they satisfy Eq. (5). Therefore, a plane field is obviously a global minimum 
of the functional (5). 

Let , 1,2, ,
i

i nΩ =  be a partition of Ω . For an approximated optical flow com-
posed of plane subfields, we require that the plane subfields be such that the com-
bined field is continuous. Therefore, the velocity components in any two adjacent 
subfields must be on different planes; otherwise, we can combine them as one. Let us 
denote 

i
∂Ω  as the boundary of portion 

i
Ω , then 

i i
Ω − ∂Ω  is the interior of 

i
Ω . It is 

obvious that 

1 2
( , ) ( , ) ( , ) ( )

i i i i
u x y c v x y c x y∇ = ∇ = ∈ Ω − ∂Ω, , , (9) 

where 
1

c  and 
2

c  are both constant. So we have 

( , ) 0, ( , ) 0, ( , ) ( )
i i i i

u x y v x y x yΔ = Δ = ∈ Ω − ∂Ω , (10) 

for i = 1,2,. . . , n. Therefore, 

( , ) 0, ( , ) 0, ( , ) ( )u x y v x y x yΔ = Δ = ∈ Ω − ∂Ω , (11) 

where 
1

n

i i=∂Ω = ∪ ∂Ω . Since it is required that the velocity components in any two 
adjacent subfields be on different planes, we have 

,or 
i j i j

u u v v∇ ≠ ∇ ∇ ≠ ∇ , (12) 
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for any two adjacent portions 
i

Ω  and 
j

Ω . This indicates that the gradient for the 
components is not continuous at the boundary ∂Ω . So we have 

( , ) ,or ( , )u x y v x yΔ = ∞ Δ = ∞ . (13) 

If we require that 

( ) 0ψ ′ ∞ = , (14) 

we then have 

( ) ( )0, 0u u u v v vψ ψ′ ′Δ Δ Δ = Δ Δ Δ = , (15) 

for all ( , )x y ∈ Ω . Therefore, an optical flow field composed of plane subfields satis-
fies the Euler's equation. 

4   Implementation 

The differential equation (7) and (8) may be solved numerically using an iterative 
SOR method [17]. The SOR method is a good compromise between simplicity and 
efficiency. Assuming a space grid size of h, we discretize the space coordinates as 
follows: 

, , 1, 2, , , 1, 2, , ,x ih y jh i N j N= = = =  (16) 

where Nh Nh×  is the size of image support. We then employ a three-stage approach 
to calculate the constraint terms of Eq. (7) and (8). At the first stage, we calculate the 
Laplacians of the optical flow vector functions as 

( ) 2

, 1, 1, , 1 , 1 ,
4k k k k k k

i j i j i j i j i j i j
u u u u u u h+ − + −Δ = + + + − , (17) 

( ) 2

, 1, 1, , 1 , 1 ,
4k k k k k k

i j i j i j i j i j i j
v v v v v v h+ − + −Δ = + + + − , (18) 

with symmetric boundary conditions: 

, 1 ,0 , 1 , , 1 ,0 , 1 ,

1, 0, 1, , 1, 0, 1, ,

, , , , 1, 2, , ;

, , , , 1, 2, , .

k k k k k k k k

i i i J i J i i i J i J

k k k k k k k k

j j I j I j j j I j I j

u u u u v v v v i N

u u u u v v v v j N
− + − +

− + − +

= = = = =

= = = = =
 (19) 

At the second stage, we calculate the value of the following functions 

( ) ( ) ( ) ( ) and u u u u v v v vϕ ψ ϕ ψ′ ′Δ = Δ Δ Δ Δ = Δ Δ Δ . (20) 

For convenience, the above equations can be discretized as 

( , ) ( , ) ( , ) ( , )
( ) and ( )k k k k

u i j i j v i j i j
u vϕ ϕ ϕ ϕ= Δ = Δ . (21) 

Finally, the numerical approximation to the differential equation (7) and (8) is 
given as 
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2 2

1 1

( , ) ( , ) ( , ) ( , )( , ) ( , ) ( , ) ( , )

( , )

(1 )

( ( , ) ( , ) ( , ) ( , )) ( , ) ( , ) ( , ) ,

k k k k

i j u i j u p q u p qp q i j p q i j

kh h
x y i j x t x x

u

g i j g i j v g i j g i j i j g i j g i jα α

ω ϕ ω ϕ ϕ− +
+ +

∈ ∈
= − + +

− + +
 (22) 

2 2

1 1

( , ) ( , ) ( , ) ( , )( , ) ( , ) ( , ) ( , )

1

( , )

(1 )

( ( , ) ( , ) ( , ) ( , )) ( , ) ( , ) ( , ) ,

k k k k

i j v i j v p q v p qp q i j p q i j

kh h
y x i j y t y y

v

g i j g i j u g i j g i j i j g i j g i jα α

ω ϕ ω ϕ ϕ− +
+ +

∈ ∈

+

= − + +

− + +
 (23) 

with symmetric boundary conditions 

( , 1) ( ,0 ) ( , 1) ( , ) ( , 1) ( ,0) ( , 1) ( , )

( 1, ) (0, ) ( 1, ) ( , ) ( 1, ) (0, ) ( 1, ) ( , )

, , , , 1, 2, , ;

, , , , 1, 2, , ;

k k k k k k k k

u i u i u i J u i J v i v i v i J v i J

k k k k k k k k

u j u j u I j u I j v j v j v I j v I j

i N

j N

ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ
ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ

− + − +

− + − +

= = = = =

= = = = =
 (24) 

where | ( ) |i denotes the number of neighborhoods of pixel ( , )i j , and 

( , ) {( , ) ( , ) |  or , }i j p q i j q j q j p i− = ∈ < = <  (25) 

( , ) {( , ) ( , ) |  or , }i j p q i j q j q j p i+ = ∈ > = > . (26) 

5   Experiments 

We now demonstrate the performance of the proposed optical flow computation using 
fourth order PDE. We use our scheme to computer optical flow and compare the re-
sults with those processed using second order PDE. For both PDEs we use the follow-
ing function 

( )2( ) 1 ( / )s s sψ κ′ = + , (27) 

with 1κ = . Obviously, the above equation satisfies Eq. (6) and (14). Without its 
prototype function ( )sψ , we may directly use the iterative approach presented in 
Section 5. Besides, the experiment uses the following parameters α=950, ρ=4.55  
and h=1. 

We use two “Lena” images (Fig. 1 (a) and (b)) as original images between which 
the misalignment (2 degrees rotation) exists. Since the true optical flow field (Fig. 1 
(e)) is known, it is convenient to conduct the experiments for quantitative comparison. 
Fig. 1 (c) and (d) are the two original images contaminated by Gaussian noise with 
the deviation 2 0.006

n
σ = . Two different optical flow computations, using second and 

fourth order PDE, respectively, are operated on the two degraded images. The results 
are shown in Fig. 1 (f) and (g). From the results, we see that the estimated flow fields 
are consistent with the true one. 

In order to quantitatively compare the two schemes, we give for different noise 
levels the average angular errors, shown in Table 1, computed by 

( )( )2 2 2 2arccos 1 ( 1)( 1)
c e c e c c e e

u u v v u v u v+ + + + + + , (28) 

where ( , )c cu v  denotes the correct flow, and ( , )e eu v  is the estimated flow[13]. 
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(a) (b) (c) (d) 

 
(e) (f) (g) 

Fig. 1. Hybrid optical flow computations. (a) original image (frame 1); (b) original image 
(frame 2); (c) noisy image with Gaussian noise 2 0.006

n
σ =  (frame 1); (d) noisy image with 

Gaussian noise 2 0.006
n

σ =  (frame 2); (e) the true optical flow field; (f) the estimated optical 
flow field using 2nd order PDEs; (g) the estimated optical flow field using 4th order PDEs. 

Table 1. Average angular errors computed with varying standard deviations 2

n
σ  of Gaussian 

noise 

2

n
σ  2nd order PDEs 4th order PDEs 
0 2.632° 1.705° 

0.0015 3.387° 3.100° 
0.006 4.924° 4.609° 

For the hybrid methods, the influence of constraints using second and fourth order 
PDEs, respectively, on the resulting flow field is different. For low noise levels, the 
accuracy for the latter is higher than that for the former. This indicates the usefulness 
of filling-in effect. For high noise levels, on the other hand, the latter can rival the 
former for robustness. Moreover, the hybrid method using fourth order PDEs doesn’t 
reduce necessary smoothing. 

6   Conclusions 

In general, the optical flow computation with fourth order PDEs consider the two 
aspects: accuracy, which relies on the filling-in effect in flat areas, and robustness, 
which enhances the ability to resist noise. In addition, small angular errors show  
the ability to preserve the discontinuity of the flow field using fourth order PDEs. 
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Therefore, compared with the method with second order PDEs, the proposed method 
is superior to the former. 
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Abstract. A common way of expressing string similarity in structural
pattern recognition is the edit distance. It allows one to apply the kNN
rule in order to classify a set of strings. However, compared to the wide
range of elaborated classifiers known from statistical pattern recogni-
tion, this is only a very basic method. In the present paper we propose
a method for transforming strings into n-dimensional real vector spaces
based on prototype selection. This allows us to subsequently classify the
transformed strings with more sophisticated classifiers, such as support
vector machine and other kernel based methods. In a number of exper-
iments, we show that the recognition rate can be significantly improved
by means of this procedure.

1 Introduction

Strings are one of the fundamental representation formalisms in structural pat-
tern recognition [1]. Using a sequence of symbols rather than a vector of features
often has some advantages. For example, the number of symbols in a string is
variable and depends on the individual pattern under consideration, while in a
feature vector we are forced to always use the same number of features, no matter
how simple or complex a pattern is. In fact, strings have been successfully used
in a number of applications, including digit recognition [2], shape classification
[3,4], and bioinformatics [5].

In many tasks, one needs to measure distances between patterns. In case of
string representations the standard distance function is the edit distance. This
distance function is based on the minimum number of edit operations, such as
insertion, deletion and substitution of symbols, required to transform one of two
given strings into the other [6]. This distance can be computed in quadratic time
with respect to the lengths of the two strings under consideration. Based on the
edit distance one can easily implement classifiers of the nearest-neighbor type.
However, more sophisticated classifiers, such as Bayes classifier, neural net, or
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support vector machine, are not applicable in the domain of strings [7,8]. This
is a serious drawback and restriction of string based pattern representation.

In the present paper we propose a transformation that maps elements from
the domain of strings into real vector spaces. This transformation is intended
to maintain the convenience and representational power of strings, but makes
available, at the same time, the rich repository of classification tools developed
in statistical pattern recognition. A transformation of graphs into vector spaces
has been proposed recently [9]. In [10] general properties of embedding transfor-
mations have been discussed from various points of view. The method proposed
in this paper is closely related to the dissimilarity based approach to pattern
recognition proposed in [11,12]. However, while the main focus in [11,12] is on
the transformation of feature vectors into dissimilarity spaces, and the possi-
ble gain in recognition accuracy obtained from this transformation, the main
motivation of our approach is to build a bridge between structural and statisti-
cal pattern recognition by making the large spectrum of classifiers known from
statistical pattern recognition available to string representations.

In the next section, we will introduce our terminology. Then, in Section 3, we
will show how strings are transformed to n-dimensional real vector spaces, R

n,
based on various prototype selection procedures. Experimental results of the pro-
posed method, applied to handwritten digit recognition using nearest-neighbor
classifiers and support vector machines, are reported in Section 4. Finally, in
Section 5, we present concluding remarks.

2 Basic Notation

Let A be a finite alphabet of symbols and A∗ be the set of all strings over
A. Furthermore, let ε denote the empty symbol. We can replace a symbol a ∈
A ∪ {ε} by b ∈ A ∪ {ε} and call this action an edit operation. More precisely,
we refer to a → b as a substitution, a → ε a deletion and ε → a an insertion.
In order to measure the dissimilarity of strings, a cost c is assigned to these edit
operations: c(a → b), c(a → ε) and c(ε → a). Given a sequence S = e1, . . . , en of
edit operation, its cost is defined as c(S) =

∑n
i=1 c(ei). Considering two strings

x, y ∈ A∗ and all sequences of edit operations that transform x into y, the edit
distance, d(x, y), of x and y is the sequence with minimum cost. The edit distance
can be computed by dynamic programming in O(nm) time and space, where n
and m are the lengths of the two strings under consideration.

With the notation introduced above, the set median string and the set
marginal string of a given set of strings can be defined as follows. If we de-
note a set of strings by X , the set median string of X , median (X ), is defined
as the string xmdn ∈ X that satisfies xmdn = argminy∈X

∑
x∈X d(x, y). It is

a popular approximation of the generalized median string [13]. Similar to the
set median we define the set marginal string, marginal (X ), of X as the string
xmrg ∈ X for which the sum of the edit distances to the remaining elements in
X is maximal: xmrg = argmaxy∈X

∑
x∈X d(x, y). Obviously, set median and set
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marginal strings can be easily obtained by first computing all pairwise distances
and then selecting the string with the minimum and maximum average distance,
respectively.

3 Transforming Strings to Real Vector Spaces

The idea of our transformation approach is to select a number of prototypes out
of a given set of strings. By characterizing an arbitrary string in terms of its
edit distances to the prototypes, we obtain a vectorial description of the string.
More precisely, a string can be transformed into a vector by calculating the
edit distances to all the prototypes, where each distance represents one vector
component. Formally, if we denote a set of strings (over an alphabet A) by
X ⊆ A∗ and a set of prototypes by P = {p1, . . . , pn} ⊆ X , the transformation
tPn : X → Rn is defined as a (not necessarily injective) function, where tPn (x) =
(d(x, p1), . . . , d(x, pn)) and d(x, pi) is the edit distance between the strings x and
pi. Obviously, the dimension of the vector space equals the number of prototypes.

3.1 Prototype Selection Methods

In the previous paragraph, the basic idea of our transformation from the string
domain to a vector space has been described. However, no concrete prototype se-
lection strategies have been considered. In the current subsection we will discuss
possible algorithms for selecting prototypes from a given set of patterns.

Intuitively, a good selection strategy should satisfy the following three condi-
tions. First, if some prototypes are similar—that is, if they are close in the space
of strings—their distances to a sample string should vary only little. Hence, in
this case, some of the respective vector components are redundant. Consequently,
a selection algorithm should avoid redundancies. Secondly, to include as much
structural information as possible in the prototypes, they should be uniformly
distributed over the whole set of patterns. Thirdly, since outliers are likely to
introduce noise and distortions, a selection algorithm should disregard outliers.

In this paper we will focus on four different class-independent selection algo-
rithms, which we call center prototype selector, border prototype selector, span-
ning prototype selector and k-medians prototype selector . In the following, we
will describe these selection algorithms and discuss them in terms of the above
mentioned criteria.

Center Prototype Selector. As its name indicates, the center prototype se-
lector (c-ps) selects prototypes situated in the center of a given set of strings.
Considering the set median string to be the most central string, the set of i pro-
totypes Pi ⊆ X , i = 0, . . . , |X |, selected by the c-ps , is iteratively constructed
as:

Pi =

{
∅ if i = 0,

Pi−1 ∪ {pi} if 0 < i ≤ |X |, where pi = median (X \ Pi−1).



290 B. Spillmann et al.

For an intuitive illustration using points on the two-dimensional plane see Fig. 1a.
Due to their central position all prototypes are structurally similar. Hence, many
redundant prototypes occur. On the other hand, strings at the border are not
considered, and thus, the set of prototypes is not negatively influenced by out-
liers. Obviously, the property of uniform distribution is not satisfied.

Border Prototype Selector. The border prototype selector (b-ps) acts just
contrary to the c-ps. It selects prototypes from the border and is therefore based
on marginal strings. The set of i prototypes Pi ⊆ X , i = 0, . . . , |X |, selected by
the border prototype selector is defined as:

Pi =

{
∅ if i = 0,

Pi−1 ∪ {pi} if 0 < i ≤ |X |, where pi = marginal (X \ Pi−1).

An illustration is given in Fig. 1b. Obviously, only few redundant prototypes
are selected. However, there are no prototypes located in the center and the
condition of uniform distribution is only partially fulfilled. Furthermore, it is to
be expected that there are outliers among the prototypes selected by the b-ps.

Spanning Prototype Selector. A set of prototypes selected by the spanning
prototype selector (s-ps) is given by the following iterative procedure. The first
prototype is the set median string. Every further prototype is the string with the
largest distance to the set of previously selected prototypes. Analog algorithms
have been proposed for k-means initialization [14,15]. Formally, the set of i pro-
totypes Pi ⊆ X , i = 0, . . . , |X |, selected by the spanning prototype selector (s-ps)
is defined as

Pi =

⎧⎪⎪⎨⎪⎪⎩
∅ if i = 0,

median (X ) if i = 1,

Pi−1 ∪ {pi} if 1 < i ≤ |X |, where pi = argmax
x∈X\Pi−1

min
p∈Pi−1

d(x, p).

Each additional prototype selected by the s-ps is the string located the furthest
away from the already selected prototypes. Thus, the case that two prototypes
are very close is avoided and hence also redundant prototypes are prevented. It
is in the nature of this algorithm that new prototypes are selected from an area
which hasn’t been considered before. This leads to a good distribution of the
prototypes. However, since outliers have a large distance to the other patterns,
there is a certain chance for them to be selected. Fig. 1c illustrates the behavior
of the s-ps.

K-Medians Prototype Selector. The k-medians prototype selector (km-ps)
is based on the k-means clustering algorithm [16]. The idea is to find n clusters
in the given set of data and to declare each cluster center, i.e. the set median of
each cluster, to be a prototype. An illustration can be found in Fig. 1d.

The advantage of the prototypes selected by the km-ps is that they are evenly
spread over the whole set of data. Similar strings are represented by the same
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a) b) c) d)

Fig. 1. Illustration of the a) c-ps, b) b-ps, c) s-ps and d) km-ps algorithms. The larger
dots represent the selected prototypes.

prototype. Hence, redundant prototypes are mostly avoided. Furthermore, out-
liers usually aren’t positioned in the center of a k-medians cluster and thus the
chance for them to be selected as a prototype is small.

4 Experimental Results

This section provides experimental classification results using the transforma-
tion schema introduced in Section 3. The prototype selection algorithms are
tested on the Pendigits database described in [17] (original, unnormalized ver-
sion). The original version contains 10,992 instances of handwritten digits 0 to
9, where 7,494 are used for training and 3,498 for testing (see Fig. 2). Each digit
is originally given as a sequence of two-dimensional points. To obtain a suit-
able string representation, each digit curve is first approximated by a sequence
s = z1, . . . , zn of vectors of constant length |zi| = l, such that the start and end
points of all zi lie on the original curve.

A string can be generated by one of the following two methods. Either the
sequence s of vectors is directly regarded as a string. Then the costs of the edit
operations are defined as follows. A substitution has the costs c(zi → zj) =
‖zi − zj‖qv , where qv is a positive real value; for the costs of insertion and
deletion we take the arithmetic mean of the extremal values (0 and (2l)qv ) of the
substitution costs, which is 2qv−1lqv . This cost function is referred to as vector
cost function. Another way of generating a string is to consider the sequence
α1, . . . ,αn−1 of angles, where αi is the angle between vectors zi and zi+1. In that
case, the costs assigned to the edit operations are constantly set to 0 ≤ qa ≤ π

2
in case of angle insertions and deletions, and for substitutions the costs are given
by the absolute difference of the two involved angles αi and αj , c(αi → αj) =
|αi − αj |. We call this cost function angle cost function.

To find a suitable string representation, the values of parameters l, qv and
qa are optimized on a validation set, which consists of one fifth of the origi-
nal training set. For this purpose we generate string representations for various
combinations of parameter values and classify the validation set with a k-nea-
rest-neighbor classifier, using the original training set minus the validation set as
the set of labeled training items. Finally, we select the parameter combination of
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Fig. 2. Example patterns of the classes “1”, “2” and “3”

l, qv, qa and k, that leads to the highest recognition rate. The value of parameter
k is used at the same time to build a k-nearest-classifier in the string domain,
which we use as a reference classifier for vector space classifiers.

Once the dataset is prepared, i.e. all the elements are represented as strings,
the prototypes are selected from the training set that is made up of the remaining
four fifths of the original training set (i.e. the part of the training set that is
not used for validation). The prototypes are exclusively used for the purpose
of mapping the data from the string to the vector space. Once the prototypes
are selected, the complete dataset is mapped into the vector domain, without
losing the partitioning into training, validation and test set. That is, each set
still represents the same objects as in the string domain. After the dataset has
been mapped to the vector domain, any classifier known from statistical pattern
recognition can be trained by using the transformed validation and training sets,
as described in the following.

The number of prototypes, i.e. the dimensionality of the vector space, and
the prototype selection strategy as well as classifier parameters are determined
on the validation set. That is, a number of possible vector space dimensions
are considered for each selection strategy and one individual classifier is built
for each combination of possible dimensionality and selection strategy. Then the
validation set is classified with each of these classifiers. Finally, the parameter
values for the dimensionality, the selection strategy, and the classifier leading to
best performance on the validation set are selected. Then this classifier is taken
to classify the test set. An overview of the classifiers we used in our experiments
is given in the following.

First of all, we apply a kNN classifier not only in the string domain, but
also in the vector space. The distance measure we use is the Minkowski met-
ric Lp(x, y) = (

∑n
i=1 |xi − yi|p)

1
p , where x = (x1, . . . ,xn) ∈ Rn and y =

(y1, . . . , yn) ∈ Rn. In case of this classifier, both parameters k and p are op-
timized on the validation set and the training set (excluding the validation set)
is used for finding the nearest neighbors.
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Fig. 3. Comparison of the four prototype selection strategies c-ps, b-ps, s-ps and km-
ps: recognition rates of a 3NN classifier on the validation set depending on the number
of prototypes

Another possibility is to apply the kNN classifier in a higher-dimensional
feature space. This method uses kernel theory [18] which has become a pop-
ular subject in statistical pattern recognition. Instead of directly classifying
the transformed strings, the patterns are mapped by a non-linear function Φ :
Rn → Rm(m > n) to a higher-dimensional real vector space Rm, called fea-
ture space, in which the kNN classification is performed with the Euclidean
distance L2 as distance measure. In the feature space Rm an inner product
< x, y > exists and Rm is complete with respect to the norm ‖x‖ =

√
< x, x >,

defined by the inner product. This fact allows us to define kernel functions
kΦ(x, y) := 〈Φ(x),Φ(y)〉 , (x, y ∈ Rn). The kernel function kΦ(x, y) can then
be regarded as a similarity measure in the vector space Rn, and the Euclidean
distance in the feature space Rm can be derived from it. With the use of this
method, the explicit application of the mapping Φ can be avoided. In our ex-
periments we used the following standard kernel functions: radial basis function,
polynomial function, and sigmoid function [18].

Another classification method using kernel functions is the support vector ma-
chine (SVM) [8,19]. The key idea is to find a hyperplane that separates the data
into two classes with a maximal margin. Such a hyperplane can only be found
if the data are linearly separable. If linear separability is not fulfilled, a weaker
definition of the margin, the soft margin, can be used. In this case, the opti-
mal hyperplane is the one that minimizes the sum of errors and maximizes the
margin. This optimization problem is usually solved by quadratic programming.
In order to improve the classification of non-linearly separable data, an explicit
mapping to a higher-dimensional feature space can be performed, or instead, a
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the above mentioned kernel function can be applied. For our experiments we use
the LIBSVM library [20]. The kernel functions used in our experiments are the
linear kernel and the radial basis function.

Fig. 3 illustrates the performance of the four prototype selection methods
described in Section 3 with respect to the number of prototypes. It shows the
recognition rate of a 3NN classifier on the validation set, where the digit curves
are approximated by segments of length 20 and the angle cost function with
qa = 11

36π is used. (Note, the classifier parameter k is kept constant for this
plot.) The number of prototypes n ranges from 10 to 2000. Generally, it can
be observed that the recognition rate increases with an increasing number of
prototypes. Once the recognition rate has reached a certain value, however, it
roughly remains constant. For a small value of n, differences in the quality of
each method can be detected, but the recognition rates become incrementally
equal for larger n. That is, while the c-ps and the b-ps clearly perform worse than
the s-ps and km-ps for small n, the difference at n = 2000 almost disappears.
We observe that selection strategies which uniformly distribute the prototypes,
s-ps and km-ps, have a higher performance for smaller n.

In Tab. 1 the recognition rates on the test set with the above mentioned
classifiers are listed. The table shows the results for both angle (pen ang) and
vector cost function (pen vec). Three different partitions of the dataset into a
validation, training and test set have been used. The term pen1 refers to the
original partitioning into training and test set. The experiments pen2 and pen3
are further setups, where the size of each set is unchanged, but different partitions
have been performed. In order to show the performance of the transformation, we
use the recognition rate of the kNN classifier in the string space as a reference
value. Recognition rates printed in bold face refer to statistically significant
better results at a significance level of 0.95.

Table 1. Recognition rates on the Pendigits dataset

k k k k k
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First we observe that the application of the standard kNN classifier in the
vector space (column kNN Mink. metric) leads to an improvement of the recog-
nition rate over the kNN classifier in the string domain in four out of six cases.
For all other kernel based kNN classifiers (columns kNN RBF kernel, kNN poly.
kernel and kNN sig. kernel), an improvement is obtained in only one out of
six cases. However, both SVMs demonstrate superior performance. The SVM
with radial basis function kernel leads in all six cases to an improvement, five of
which are statistically significant, and even the linear kernel SVM shows a higher
recognition performance than the classifier in the string domain in all cases
but one.

In [21], classification based on two MLP approaches has been performed on
the same data. The recognition rates on the test set achieved in [21] are 95.26%
and 94.25%, respectively. We note that both recognition rates are already outper-
formed by our kNN classifier in the string domain using the vector cost function.
Nevertheless, a further improvement can be achieved by means of the proposed
embedding procedure in conjunction with both SVMs.

5 Conclusion

In this paper we study the representation and classification of strings in n-dim-
ensional real vector spaces. The transformation is accomplished with a proto-
type selection procedure, where each vector component of a transformed string
represents the edit distance to one prototype.

We evaluate the transformation on strings extracted from the Pendigits
database. The recognition rates of several kNN methods and support vector
machines for the transformed strings are compared to a kNN classifier in the
original string domain. We show that by means of SVM the recognition rate for
strings can significantly be improved. However, the improvement of the correct
classification rate in the considered task is just one contribution of this paper.
From the general point of view, the methodology proposed in the paper opens
new ways of embedding symbolic data structures, i.e. strings, into vector spaces
using edit distance and prototype selection. Based on such an embedding, a
large number of methods from statistical pattern recognition become available
to string representations. In our future work we will study additional classifiers,
such as Bayes classifier and neural net, as well as data dimensionality reduction
and clustering tasks.
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Abstract. In this paper, a novel algorithm for shape categorization is
proposed. This method is based on the detection of perceptual land-
marks, which are scale invariant. These landmarks and the parts be-
tween them are transformed into a symbolic representation. Shapes are
mapped into symbol sequences and a database of shapes is mapped into
a set of symbol sequences and therefore it is possible to use support
vector machines for categorization. The method here proposed has been
evaluated on silhouettes database and achieved the highest recognition
result reported with a score of 97.85% for the MPEG-7 shape database.

1 Introduction

The final goal of computer vision is to make machines as capable as humans
in terms of visual perception and understanding [23]. Object recognition and
classification has been extensively studied and analyzed in recent years, but cur-
rent techniques are far from needed. An even more difficult task for a machine
is to determine the category to which the object belongs, rather than to find
out whether or not that particular object has been seen before. There are sev-
eral reasons that make this problem so difficult. The first reason is related to
the uncertainty about the level of categorization in which recognition should be
done. Based on the research made by cognitive scientists [9], there are several
levels at which categorization is performed. Another reason is the natural vari-
ability within various classes. The generality of a class is directly proportional
to the within-class variation. Moreover, the characterization should be invariant
to rotation, scale, translation and to certain deformations. Objects have several
properties that can be used for recognition, like shape, color, texture, brightness.
Each of these cues can be used for classifying objects. Biederman [4] suggested
that edge-based representations mediate real-time object recognition. In his view,
surface characteristics such as color and texture can be used for defining edges
and can provide cues for visual search, but they play only a secondary role in
the real-time recognition. There are two major approaches for shape-based ob-
ject recognition: 1) boundary-based, that uses contour information [5], [20],
[16], [3], [1], and 2) holistic-based representation, requiring more general in-
formation about the shape [18], [17]. In this paper, a new representation for
categorization based on the extraction of the perceptually relevant landmarks is
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proposed. Each shape is transformed into a symbolic representation, where each
shape is mapped in a string of symbols. The present manuscript is organized as
follows: Localization and extraction of landmarks are investigated in Section 2.
The symbolic representation is presented in Section 3. Section 4 describes the
feature space composed by string kernels. In Section 5 geometrical invariants
features are described. The results are presented in Section 6.

2 Extraction and Localization of Landmarks

A database of black shapes over a white background (Silhouettes) was used [21]
(Figure 1). In this case the extraction of the contour is straightforward and it is
represented by the edge chain (x(j),y(j)) j=1,...,N where N is the chain or contour
length. The next step is finding the gradient of the contour at the optimal scale.
As suggested by Lindeberg [13], the local scale can be estimated considering
the normalized derivatives: Gλ = tλ/2

√
L2

x + L2
y.

Fig. 1. Some sample shapes from MPEG7 database and Kimia database used in our
experiments

Where Lx and Ly are the x and y derivatives of the original image convolved
with the Gaussian filter exp(−(x2+y2)/2t) with t = σ2. These normalized deriv-
atives Gλ(t) depend on the value of the parameter λ. As discussed by Lindeberg
[13] and Majer [15], the most convenient choice for the Gaussian step edges is
λ = 1/2. The best scale was extracted with the Lindeberg formula and the gra-
dient at this scale was computed by a simple 2-D gaussian filtering in X and Y
direction in the image plane, −→G = (Gx,Gy). As the tangent vector is orthogonal
to the gradient vector we obtain at the best scale, −→T = (Tx,Ty) = (Gy ,−Gx).
The curvature κ of a planar curve at a point P on the curve is defined as the
instantaneous rate of change of the tangent’s slope angle at point P with respect
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to arc length s: κ = ∂
−→
T

∂s . In order to calculate the derivative of each component
of the tangent vector we convolve them by the first derivative of one dimensional
Gaussian function:

∂Tx

∂s
=

∂[Tx ⊗ g(s,σ)]
∂s

= Tx ⊗ [
∂g(s,σ)

∂s
] (1)

so that: g(s,σ) = 1√
2πσ

exp (− s2

2σ2 ).
This will be done for the Y component of the tangent vector. Because different

shapes in our database have different length, it would be better to select a sigma
related to the length of a shape contour, to formulate this statement we choose
our sigma to be: σ1 = σ0

l
l0

, where l is the length of contour shape and, based
on our experiment, we select l0 = 200 and σ0 = 3. Now, the curvature value will

be calculated as follows: ‖κ‖ =
√

(∂Tx

∂s )2 + (∂Ty

∂s )2.
For having the complete calculation of the curvature we need to attribute a

sign to it. Direction of tangent vector is a good representation for calculating
the sign of curvature but it must be smoothed. We applied convolution to each
component of the tangent vector with a one dimensional Gaussian function with
σ = 3 for the small smoothing of the tangent vector to remove the noise. Now,
with the smoothed tangent vector we can calculate the sign of curvature as
follows: Sign(κ) = sign[(Tx,sm(s),Ty,sm(s), 0)× (Tx,sm(s− 1),Ty,sm(s− 1), 0)].

The complete definition of our curvature will be obtained by multiplying the
value of curvature with its sign. The obtained curvature is noisy and in order
to reduce it a non-linear filtering was used. The aim of the non-linear filtering
was to smooth regions of low curvature and to leave unaltered regions of high
curvature. We first compute the local square curvature as:

κ2(n) =
1

2σ1 + 1

σ1∑
i=−σ1

κ2(n + i) (2)

Non-linear filtering is performed by convolving the curvature with a one-
dimensional Gaussian function, where the scale of filter is:

σ2(n) = σmin +
κ̂

κ2(n)
(3)

In our experiment good results were obtained by using the values of σmin = 0
and κ̂ = 0.02. In this way a robust and perceptually relevant representation for
the curvature of the shapes was obtained. Now, the local maxima (negative and
positive peaks) of the curvature are detected and identified as landmarks in the
original 2-D contours(Figure 2).

3 Symbolic Representation

In this section we will transform each shape into symbolic representation to be
used for categorization. Firstly angles close to 180 degrees are removed. In what
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follows a ”dictionary” is presented, allowing the transformation of the curvature
representation into a string of symbols.

3.1 Labeling of Angles

Features detected as corners are quantized so that angles have either 45 or 90
or 135 degrees. These angles can have either a positive or a negative value of
curvature. A total of 6 different corners are obtained which can be labeled as
A1, A2 , ... up to A6.

3.2 Labeling of Curves

Curve parts have the average curvature between straight lines and sharp angles
that with setting a threshold can be found. Curves are labeled either as concave
(C1) or convex (C2), according to the sign of their average curvature.

3.3 Labeling Links Between Angles (and Curves)

Pieces of the contour of silhouettes linking two corners (or curves) are labeled
in three ways: L1 if it is a straight line, L2 if it is not a straight line (and it is
not a curve) but has an average positive curvature and L3 if, on average, has a
negative curvature.

Fig. 2. A) A contour of shape from our database with associated numbers based on
an arbitrary starting-point in the contour. B) Curvature profile and smoothed one in
order to have perceptually relevant peaks as described in the text. C) Angle represen-
tation based on the maxima and peaks information of the curvature representation. D)
Symbolic representation for the bird shape.
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4 Creating the Feature Space

In our approach, shape categorization becomes similar to text categorization,
where each string of symbols can be either a sentence or a separate document.
A standard approach [11] to text categorization uses the classical text represen-
tation [19], which maps each document into a high-dimensional feature vector,
where each entry of the vector represents the presence or the absence of a feature.
Our approach makes use of specific kernels [14]. This specific kernel named string
kernel, maps strings, i.e. the symbolic representation of the contour obtained in
the previous section, into a feature space. In this high dimensional feature space
all shapes have the same size. This transformation provides the desired rota-
tional invariance and therefore the categorization system is also invariant to the
initial symbol of the string describing the shape. The feature space in this case
is composed by the set of all substrings of maximum length L of k-symbols. In
agreement with a procedure used for text classification [14], the distance and
therefore the similarity between two shapes is obtained by computing the inner
product between their representations in the feature space. Their inner product
is computed by making use of kernel functions [14], which compute the inner
product by implicitly mapping shapes to the feature space. In essence, this inner
product measures the common substrings of the symbolic representations of the
two shapes: if their inner product is high the two shapes are similar. Substrings
do not need to be contiguous, and the degree of contiguity of one substring deter-
mines its weight in the inner product. Each substring is weighted according to its
frequency of appearance and on its degree of compactness, measured by a decay
factor, λ, between (0,1) [14]. To create the feature space we need to search all
possible substrings starting from each single-symbol to strings of length L com-
posed by k symbols, which in our case are the 11 symbols introduced in Section 3.
For each substring there is a weight in the feature space given by the sum of all
occurrences of that sub-string considering the decay factor for non-contiguity.
After creating the invariant feature space, we need to use a classifier to find
the best hyper-planes between the different classes. Support Vector Machines
(SVM) are a very successful class of statistical learning theory in high dimen-
sional space [24]. For classification, SVMs operate by finding a hyper-surface
in the space of possible inputs. In their simplest version they learn a separation
hyper plane between two sets of points, the positive examples from the negative
examples, in order to maximize the margin -distance between plane and closest
point. Intuitively, this makes the classification correct for testing data that is
near, but not identical to the training data. Further information can be found
anywhere such as [6], [8].

5 Geometric Invariant Features

Beside the high dimensional feature space described in the previous section, a
set of geometrical properties for each shape were measured. They consist of 16
different numbers that are normalized so to be invariant for rotation and size
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Table 1. Some of the Geometric Invariant Features

Geometric Feature Definition
Roughness Perimeter/Convex Perimeter
Compactness or Circularity (Perimeter2)/(4 ∗ π∗Area of the shape)
Solidity Number of pixels in the convex hull/the

number of shape points
Rectangularity Number of pixels in the bounding box/

the number of shape pixels
Normalized Major Axis Length The length of the major axis of the ellipse

that has the same second-moments as the shape
Normalized Minor Axis Length The length of the minor axis of the ellipse

that has the same second-moments as the shape
Elongation Major Axis Length/Minor Axis Length
Normalized Equivalent Diameter The diameter of a circle with the same

area as the shape
Eccentricity The ratio of the distance between the foci

of the ellipse and its major axis length

transformation. Table 1 illustrates some of these geometrical features. For further
information we refer readers to [7].

6 Experimental Results

In this section, some experiment results aiming at evaluating and comparing the
proposed algorithm for shape classification will be presented. Firstly, a database
extracted from Kimia’s silhouette database [21] was used. Three different cate-
gories were considered composed by the category of birds consisting of 51 shapes,
the category of mammals consisting of 178 shapes and the category of fish con-
sisting of 79 shapes. Some shapes of the database were rotated and resized. We
used LIBSVM [10] tools that support multi-class classification. To test the suc-
cess of our classification the cross-validation leave-one-out method was used. In
the first experiment the feature vector is created without inserting any infor-
mation about the distance from the 2-D image of each shape. Different kernel
functions with different parameters have been tested to reach the best result, but
a simple linear kernel was the best. As discussed in section 4 it is possible to con-
sider feature vectors with different maximum length of symbols and therefore we
compared results obtained with categorization based on substrings with a max-
imum length of 3 and 4 symbols. As shown in Table 2 successful categorization

Table 2. Comparison of different maximum lengths for searching substring based on
the classification rate(λ = 0.5)

Bird Mammal Fish
Substring with maximum length of 3 64.7% 87% 86%
Substring with maximum length of 4 66% 88.7% 84.8%
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Table 3. Classification rate for the best parameter of λ(0.3) after inserting the distance
information between landmarks

Bird Mammal Fish
93.61% 92.69% 86.07%

Table 4. Classification rate for combined-features

Bird Mammal Fish
96.8% 97.75% 96.2%

increases with longer substring, but not so much to justify a significantly heavier
computational load. As shown in Table 2, successful categorization for birds is
worse than for mammals and fish, as there was a higher inter-class variation for
birds with less number of samples. The database was enriched by creating new
shapes by re-scaling (up to 1.5) and rotating, flipping and mirroring some of
the bird shapes. After inserting new bird shapes, this category was consisting of
94 different bird images. The result was improved as shown in Table 3. In the
second set of experiments we introduced also information on the distance be-
tween landmarks and different decaying factor (λ) similar to that used for text
categorization [13] was tested. The best value for the parameter λ was equal
to 0.3 and we set it to this value for further experiments (Table 3). Features
obtained from the curvature do not catch important geometrical features of the
shape to be categorized and therefore categorization based on mixed features
was considered. Table 1 illustrates 17 different geometrical features which were
computed for every shape and were added to the vector feature. These geo-
metrical features consist of 17 different features such as roughness, elongation,
compactness, rectangularity, convex area,..., that has been normalized so to have
features invariant for size and rotation transformations. Table 4 illustrates re-
sults from cross-validation leave-one-out method combining geometric invariant
and feature vector derived by string kernel. Finally the proposed categoriza-
tion method was tested also on large shape database MPEG-7 CE-Shape-1 [12]
consisting of 70 types of objects each having 20 different shapes. Geometrical in-
variant features listed in Table 1 were combined with feature vectors derived by
string kernels. For the experiment one-against-one strategy, and cross-validation
leave-one-out method (for each two different categories) was used. Table 5 re-
produces a comparison of successful classification between the proposed methods
and those available in the literature. As shown in Table 5 the combination of
geometrical features (see Table 1) and landmarks extracted from the contour
makes the proposed categorization rather successful and better than all previ-
ously proposed methods [22] and [2]. Some authors report retrieval accuracy
over MPEG7 shape database, but as our method rely on learning module (SVM),
it is useful for recognition and categorization not retrieval, so we can not report
that accuracy here.
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Table 5. Classification accuracy for different methods for the MPEG7 shape database

Method Classification Accuracy
Chance probabilities [22] 97.1%
Normalized square distances [22] 96.9%
Racer [22] 96.8%
Polygonal representation and elastic matching [2] 97.79%
Proposed method in this paper 97.85%

7 Conclusion

In this paper an algorithm for object categorization based on shape information
is proposed. In this model, landmarks from the shape contours are first extracted
and then are transformed into a sequence of symbols. By using tools used for text
categorization [14] and combining the information extracted from the contour
with additional geometrical features a rather good categorization is achieved
(see Table 5). The feature space representation makes our system completely
invariant to affine transforms. The proposed method is expected to be robust
for the partial occlusions, because it is based on the similarity of substrings, i.e.
to local property of shapes.

References

1. K. Arbter, W.E. Snyder, H. Burkhardt, and G. Hirzinger. Application of affine-
invariant fourier descriptors to recognition of 3-d objects. IEEE PAMI, 12(7):640–
647, 1990.

2. E. Attalla and P. Siy. Robust shape similarity retrieval based on contour seg-
mentation polygonal multiresolution and elastic matching. Pattern Recognition,
38(12):2229–2241, 2005.

3. S. Belongie, J. Malik, and J. Puzicha. Shape matching and object recognition using
shape contexts. IEEE PAMI, 24:509–522, 2002.

4. I. Biederman and G. Ju. Surface versus edge-based determinants of visual recog-
nitions. Cognit. Psych., 20:38–64, 1988.

5. H. Blum. A transformation for extracting new descriptors of shape. In Weiant
Wathen-Dunn, editor, Models for the Perception of Speech and Visual Form, pages
362–380. MIT Press, Cambridge, 1967.

6. C.J.C. Burges. A tutorial on support vector machines for pattern recognition. Data
Mining and Knowledge Discovery, 2(2):121–167, 1998.

7. L.D.F. Costa and R.M.C. Junior. Shape Analysis and Classification: Theory and
Practice. CRC Press, 2000.

8. N. Cristianini and J. Shawe-Taylor. An Introduction to Support Vector Machines.
Cambridge University Press, 2000.

9. S. Edelman. Representation and Recognition in Vision. MIT Press, 1999.
10. R.E. Fan, P.H. Chen, and Lin C.J. Working set selection using the second order

information for training svm. Technical report, Department of Computer Science,
National Taiwan University, 2005.



Shape Categorization Using String Kernels 305

11. T. Joachims. Text categorization with support vector machines: Learning with
many relevant features. In Claire Nédellec and Céline Rouveirol, editors, Proceed-
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Abstract. In this paper, we explore how the trace of the heat kernel can be used to
characterise graphs for the purposes of measuring similarity and clustering. The
heat-kernel is the solution of the heat-equation and may be computed by expo-
nentiating the Laplacian eigensystem with time. To characterise the shape of the
heat-kernel trace we use the zeta-function, which is found by exponentiating and
summing the reciprocals of the Laplacian eigenvalues. From the Mellin trans-
form, it follows that the zeta-function is the moment generating function of the
heat-kernel trace. We explore the use of the heat-kernel moments as a means of
characterising graph structure for the purposes of clustering. Experiments with the
COIL and Oxford-Caltech databases reveal the effectiveness of the representation.

1 Introduction

The Laplacian spectrum of a graph has found widespread use in computer vision for a
number of applications including segmentation [2] and routing [3], graph clustering[10]
and graph indexing[4]. For instance, the Fiedler vector [1] [12] [13], i.e. the eigenvec-
tor associated with the smallest non-zero eigenvalue, can be used to perform pairwise
clustering of data. The Laplacian eigenvalues may be used to characterise graphs for
the purposes of clustering. Several authors have explored the use of the Laplacian and
related operators to map data to manifolds in a low dimensional space [9] [15] [16] [17]
[5]. These methods share the feature of using the spectrum of the Laplacian matrix to
map data specified in terms of a proximity matrix to a vector space. For instance in
the Laplacian eigenmap [15], the mapping is determined by the raw Laplacian spec-
trum. The diffusion map [5] of Lafon and Coifman constructs the mapping by raising
the Laplacian eigensystem to a negative integer power. This mapping is shown to pre-
serve the distances between nodes under a random walk, or diffusion, on the graph. In
the heat-kernel embedding of Lebanon and Lafferty [6], the embedding is based on the
heat-kernel and this is found by exponentiating the Laplacian eigensystem.

The aim in this paper is to explore whether the trace of the heat-kernel [7] can be used
for the purposes of characterising the properties of graphs. The trace of the heat kernel
is found by summing a series of terms, each of which is the result of exponentiating a
Laplacian eigenvalue with time. As a result the heat-kernel trace is a function whose
parameters are the Laplacian eigenvalues and whose argument is time. Our aim in this
paper is to explore whether the shape of this function can be used to characterise the
corresponding graph. There are several ways in which this can be done. In spectral
geometry, the heat kernel trace has been used to characterise the differential geometry
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of manifolds [7] [8]. Here the spectrum of the Laplace-Beltrami operator is used to
construct a trace-function. This function can be expanded as a polynomial series in
time, and the co-efficients of the series can be related to the Ricci curvature tensor of the
manifold. Unfortunately, the relationships between the elements of the Ricci curvature
tensor and the co-efficients are difficult to determine, and are only tabulated up to third
order [8]. For large graphs, the Laplacian can be viewed as a discrete approximation of
the Laplace-Beltrami operator and this analysis can be carried over from manifolds to
graphs [14].

However, in this paper we deal with rather small graphs and take a different ap-
proach. Our idea is to measure the shape of the heat-kernel trace by taking moments
with respect to time. Using the Mellin transform it is straightforward to show that the
moment generating function is related to the zeta function of the graph. The zeta func-
tion is a series found by exponentiating and summing the reciprocals of the non-zero
eigenvalues of the Laplacian. We construct a feature-vector whose components are the
values of the zeta-function with integer argument.

Experiments with real world data taken from the COIL and Caltech-Oxford
databases reveal that the zeta-function provides useful features for clustering graphs
and to outperform the Laplacian spectrum.

2 The Laplacian Eigensystem and the Heat-Kernel

To commence, suppose that the graph under study is denoted by G = (V,E) where
V is the set of nodes and E ⊆ V × V is the set of edges. Since we wish to adopt a
graph-spectral approach we introduce the adjacency matrix A for the graph where the
elements are

A(u, v) =
{

1 ifu, v ∈ E
0 otherwise

(1)

We also construct the diagonal degree matrix D, whose elements are given by
D(u,u) =

∑
v∈V A(u, v). From the degree matrix and the adjacency matrix we con-

struct the Laplacian matrix L = D − A, i.e. the degree matrix minus the adjacency
matrix. The normalised Laplacian is given by L̂ = D− 1

2LD− 1
2 . The spectral decom-

position of the normalised Laplacian matrix is L̂ = ΦΛΦT , where Λ = diag(λ1,λ2, ...,
λ|V |)(0 = λ1 < λ2 < ... < λ|V |)is the diagonal matrix with the ordered eigenvalues
as elements and Φ = (φ1|φ2|....|φ|V |) is the matrix with the ordered eigenvectors as

columns. Since L̂ is symmetric and positive semi-definite, the eigenvalues of the nor-
malised Laplacian are all positive. The eigenvector associated with the smallest non-
zero eigenvector is referred to as the Fiedler-vector.

We are interested in the heat equation associated with the Laplacian, i.e.

∂ht

∂t
= −L̂ht (2)

where ht is the heat kernel and t is time. The heat kernel can hence be viewed as describ-
ing diffusion across the edges of the graph with time. The rate of flow is determined by



308 B. Xiao and E.R. Hancock

the Laplacian of the graph. The solution to the heat equation is found by exponentiating
the Laplacian eigenspectrum, i.e.

ht =
|V |∑
i=1

exp[−λit]φiφ
T
i = Φ exp[−tΛ]ΦT (3)

The heat kernel is a |V | × |V | matrix, and for the nodes u and v of the graph G the
resulting element is

ht(u, v) =
|V |∑
i=1

exp[−λit]φi(u)φi(v) (4)

When t tends to zero, then ht � I − L̂t, i.e. the kernel depends on the local con-
nectivity structure or topology of the graph. If, on the other hand, t is large, then
ht � exp[−tλ2]φ2φ

T
2 , where λ2 is the smallest non-zero eigenvalue and φ2 is the as-

sociated eigenvector, i.e. the Fiedler vector. Hence, the large time behavior is governed
by the global structure of the graph.

The trace of the heat kernel is

Z(t) = Tr[ht] =
|V |∑
i=1

exp[−λit] (5)

To provide an illustration of the potential utility of the trace-formula, in Figure 1 we
show four small graphs with rather different topologies. Figure 2 shows the trace of
the heat kernel as a function of t for the different graphs. From the plot it is clear that
the curves have a distinct shape and could form the basis of a useful representation
to distinguish graphs. For instance, the more “dumbbell” shaped the graph the more
strongly peaked the trace of the heat-kernel at the origin. This is due to the fact the
spectral gap, i.e. the size of λ2, determines the rate of decay of the trace with time, and
this in turn is a measure of the degree of separation of the graph into strongly connected
subgraphs or “clusters”.

3 Zeta-Function and Heat-Kernel Trace Moments

The aim in this paper is to use the shape of the heat-kernel trace function as a means
of characterising graph-structure. Our characterisation is found by taking moments of
trace-function over time.

To commence our development, we consider the zeta function associated with the
Laplacian eigenvalues. The zeta function is given by

ζ(s) =
∑
λi �=0

λ−s
i (6)

In other words, it is the result of exponentiating and summing the reciprocal of the
non-zero Laplacian eigenvalues.
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Fig. 1. Four graphs used for heat-kernel trace analysis
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Fig. 2. Heat kernel trace as a function of t for four simple graphs

To establish the link between the zeta function and the trace of the heat-kernel we
make use of the Mellin transform

λ−s
i =

1
Γ (s)

∫ ∞

0
ts−1 exp[−λit]dt (7)

where

Γ (s) =
∫ ∞

0
ts−1 exp[−t]dt (8)

Hence, we can write the zeta function as a moment generating function

ζ(s) =
1

Γ (s)

∫ ∞

0
ts−1

∑
λi �=0

exp[−λit]dt (9)

The sum of exponentials inside the integral is clearly linked to the trace of the heat-
kernel. To show this we make use of the fact that

Tr[ht] = C +
∑
λi �=0

exp[−λit] (10)
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where C is the multiplicity of the zero eigenvalue of the Laplacian, or the number
of connected components of the graph. Substituting this result back into the Mellin
transform, we have

ζ(s) =
1

Γ (s)

∫ ∞

0
ts−1

{
Tr[ht]− C

}
dt (11)

As a result the zeta function is related to the moments of the heat-kernel trace. It is
hence a way of characterising the shape of the heat kernel trace.

4 Experiments

We have experimented with the zeta-function characterisation of the heat-kernel trace.
The data used for our study furnished by two data-bases used widely in the object recog-
nition literature, namely the COIL data-base and Oxford-Caltech data-base. For the Coil
data-base, we extract the feature points using the method of Harris and Stephens [18].
We have extracted graphs from the images by computing the Voronoi tessellations of the
feature-points, and constructing the region adjacency graph, i.e. the Delaunay triangu-
lation, of the Voronoi regions. Figure 3 shows some examples images with the extracted
Delaunay graph overlayed for each of the four objects studied. For the Caltech-Oxford
data-base, in Figure 4, we use Gestalt relation graphs between line-segments. For each
image we extract line-segments using the Canny edge detector and contour polygonali-
sation. We treat each line-segment as a node in the relation graph. The weights between
each pair of nodes are from the relative distance and relative angles attributes between
the line-segments. The weighted links between the line segments capture the regular
Gestalt-inspired relationships of proximity, parallelism, closure, and continuity [19].
The graphs used in our study are undirected and unattributed.

Both data-sets contain multiple images of either objects of the same class or views
of the same object in different poses with respect to the camera. Example images from
the data-sets are shown in Figures 3 and 4.

We commence by illustrating the behavior of the zeta-function for the images of ob-
jects from COIL data-base. From left-to-right and top-to-bottom in Figure 5 we show
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Fig. 3. Example images of four objects from the COIL data-base with their Delaunay graphs
overlayed
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Fig. 4. Example images from the Oxford-Caltech Database
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Fig. 5. Zeta function variation with view number

the values of ζ(1), ζ(2), ζ(3) and ζ(4) as a function of view-number for the four objects.
The different curves in the four plots correspond to the different objects. The main feature
to note is that the curves for the different objects are well separated, and that the indi-
vidual values of the zeta-function do not vary significantly with view number. Moreover
the fluctuations in the values are generally smaller than the differences between different
objects. This feature is shown more clearly in Figure 6. Here we show the average value
of the zeta-function moments as a function of the moment order. The different curves are
for different objects. The error-bars show the standard deviation of the moment over the
different views (instances) of the same object. The left-hand plot is for the COIL data
and the right-hand plot for the Oxford-Caltech data. The moments do not overlap for the
different objects, and the best separation is achieved for moments of intermediate order.
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Fig. 6. Zeta function moments as a function or order for the different objects (COIL left and
Oxford-Caltech right)
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Fig. 7. Zeta-function and Spectral Clustering for the COIL database
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Fig. 8. Zeta-function and Spectral Clustering for the Oxford-Caltech database

In the left-hand panel of Figure 7 we show the result of performing principal compo-
nents analysis on a feature-vector f = (ζ(1), ζ(2)....., ζ(10))T which has as its compo-
nents the zeta-function evaluated at the integers 1 to 10. Here we project the graphs onto
the eigenspace spanned by the first three eigenvectors of the feature-vector covariance
matrix. The different objects are denoted by points of a different color. The different
objects are well separated in the eigenspace. For comparison the right-hand panel in
Figure 7 we show the result of repeating this analysis on a vector of leading eigenval-
ues of the Laplacian matrix fΛ = (λ1,λ2....,λ10)T . In the eigenspace, the objects are
severely overlapped, and the clustering is poorer. In Figure 8 we repeat the analysis
of the zeta-function and Laplacian spectrum for the objects from the Caltech-Oxford
database. Again, the best clusters are obtained using the zeta-function moments.



Trace Formula Analysis of Graphs 313

5 Conclusions

In this paper we have explored the use of the zeta-function as a means of characterising
the shape of the heat-kernel trace for the purposes of graph-clustering. Using the Mellin
transform, we have shown that the zeta-function is linked to the moment generating
function of the heat-kernel trace. We have experimentally explored the use of the zeta-
function as a means of characterising graphs for the purposes of clustering. The method
works well on the COIL and Caltech-Oxford data-bases.
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Abstract. This paper describes a feature extraction method for real-
time surveillance. Eigenspace models are a convenient way to represent
set of images with widespread applications. In the traditional approach to
calculate these eigenspace models, known as batch PCA method, model
must capture all the images needed to build the internal representation.
This approach has some drawbacks. Since the entire set of images is
necessary, it is impossible to make the model build an internal represen-
tation while exploring a new person. Updating of the existing eigenspace
is only possible when all the images must be kept in order to update
the eigenspace, requiring a lot of storage capability. In this paper we
propose a method that allows for incremental eigenspace update method
by incremental kernel PCA for realtime surveillance. Experimental re-
sults indicate that accuracy of proposed method is comparable to batch
KPCA and outperforms than APEX. Furthermore proposed method has
efficiency in memory requirement compared to KPCA.

1 Introduction

Unsupervised surveillance gadgets aided by hi-tech visual information retrieval
and indexing systems use computerized face recognition techniques that can
recognizes faces from an image. There are two main approaches for face recogni-
tion[1]. The first approach is the feature based matching approach using the rela-
tionship between facial features[2]. The second approach is the template match-
ing approach using the holistic features of the face images[2]. Template based
techniques often follow the subspace method called eigenface originated by Turk
and Pentland[3]. This technique is based on the Karhunen-Loeve transformation,
which is also referred as PCA. It has gained great success and become a de facto
standard and a common performance benchmark in face recognition. One of the
attractive characteristics of PCA is that a high demension vector can be repre-
sented by a small number of orthogonal basis vectors. The conventional methods
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of PCA such as singular value decomposion(SVD) and eigen-decomposition, per-
form in batch-mode with a computational complexity of O(m3) when m is the
minimum value between the data dimension and the number of training exam-
ples. Undoubtedly these methods are computationally expensive when dealing
with large scale problems where both the dimension and the number of training
examples are large. To address this problem, many researchers have been work-
ing on incremental algorithms. Among them Chandrasekaran et al presented
an incremental eigenspace update method using SVD[4]. Hall et al derived an
eigen-decomposition based incremental algorithm and later extended their work
to merge and split eigenspace models[5]. Another problem of PCA is that it only
defines a linear projection of the data, the scope of its application is necessarily
somewhat limited. It has been shown that most of the data in the real world
are inherently non-symmetric and therefore contain higher-order correlation in-
formation that could be useful[6]. PCA is incapable of representing such data.
For such cases, nonlinear transforms is necessary. Recently kernel trick has been
applied to PCA and is based on a formulation of PCA in terms of the dot prod-
uct matrix instead of the covariance matrix[7]. Kernel PCA(KPCA), however,
requires storing and finding the eigenvectors of a N × N kernel matrix where
N is a number of patterns. It is infeasible method for when N is large. This
fact has motivated the development of incremental way of KPCA method which
does not store the kernel matrix. In this paper we propose a method that allows
for incremental eigenspace update method by incremental kernel PCA for vi-
sion learning and recognition. Paper is organized as follows. In Section 2 we will
briefly explain the incremental PCA method. In Section 3 KPCA is introduced
and to make KPCA incrementally, empirical kernel map method is explained.
Experimental results to evaluate the performance of proposed method is shown
in Section 4. Discussion of proposed method and future work is described in
Section 5.

2 Incremental PCA

In this section, we will give a brief introduction to the method of incremen-
tal PCA algorithm which overcomes the computational complexity of standard
PCA. Before continuing, a note on notation is in order. Vectors are columns, and
the size of a vector, or matrix, where it is important, is denoted with subscripts.
Particular column vectors within a matrix are denoted with a superscript, while
a superscript on a vector denotes a particular observation from a set of obser-
vations, so we treat observations as column vectors of a matrix. As an example,
Ai

mn is the ith column vector in an m×n matrix. We denote a column extension
to a matrix using square brackets. Thus [Amnb] is an (m× (n+1)) matrix, with
vector b appended to Amn as a last column.

To explain the incremental PCA, we assume that we have already built a
set of eigenvectors U = [uj ], j = 1, · · · , k after having trained the input images
xi, i = 1, · · · ,N . The corresponding eigenvalues are Λ and x̄ is the mean of input
image. Incremental building of eigenspace requires to update these eigenspace
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to take into account of a new input image. Here we give a brief summarization
of the method which is described in [5]. First, we update the mean:

x′ =
1

N + 1
(Nx + xN+1) (1)

We then update the set of eigenvectors to reflect the new input image and to
apply a rotational transformation to U . For doing this, it is necessary to compute
the orthogonal residual vector ĥ = (UaN+1 +x)−xN+1 where aN+1 is principal
component and normalize it to obtain hN+1 = hN+1

‖hN+1‖2
for ‖ hN+1 ‖2> 0 and

hN+1 = 0 otherwise. We obtain the new matrix of eigenvectors U
′
by appending

hN+1 to the eigenvectors U and rotating them :

U ′ = [U,hN+1]R (2)

where R ∈ R(k+1)×(k+1) is a rotation matrix. R is the solution of the eigenspace
of the following form:

DR = RΛ′ (3)

where Λ′ is a diagonal matrix of new eigenvalues. We compose D ∈ R(k+1)×(k+1)
as:

D =
N

N + 1

[
Λ 0
0T 0

]
+

N

(N + 1)2

[
aaT γa
γaT γ2

]
(4)

where γ = hT
N+1(xN+1− x̄) and a = UT (xN+1− x̄). Though there are other ways

to construct matrix D[4][5], the only method ,however, described in [6] allows
for the updating of mean.

2.1 Updating Image Representations

The incrementl PCA represents the input image with principal components ai(N)
and it can be approximated as follows:

x̂i(N) = Uai(N) + x̄ (5)

To update the principal components ai(N) for a new image xN+1 , computing
an auxiliary vector η is necessary. η is calculated as follows:

η =
[
UĥN+1

]T
(x− x′) (6)

then the computation of all principal components is

ai(N+1) = (R′)T
[
ai(N)

0

]
+ η, i = 1, · · · ,N + 1 (7)

The transformations described above yield a model that represents the input
images with the same accuracy as the previous one, therefore we can now dis-
card the old subspace and the coefficients that represent the image in it. xN+1
is represented accurately as well, so we can safely discard it. The representation
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of all N + 1 images is possible because the subspace is spanned by k + 1 eigen-
vector. Due to the increase of the dimensionality by one, however, more storage
is required to represent the data. If we try to keep a k-dimensional eigenspace,
we lose a certain amount of information. In order to balance the storage re-
quirements with the level of accuracy, it is needed for us to set the criterion on
retaining the number of eigenvectors. There is no explicit guideline for retaining
a number of eigenvectors.

In this paper we set our criterion on adding an eigenvector as λ
′
k+1 > 0.7λ̄

where λ̄ is a mean of the λ. Based on this rule, we decide whether adding u
′
k+1

or not.

3 Incremental KPCA

A prerequisite of the incremental eigenspace update method is that it has to
be applied on the data set. Furthermore incremental PCA builds the subspace
of eigenvectors incrementally, it is restricted to apply the linear data. But in
the case of KPCA this data set Φ(xN ) is high dimensional and most of the
time can not even be calculated explicitly. For the case of nonlinear data set,
applying feature mapping function method to incremental PCA may be one of
the solutions. This is performed by so-called kernel-trick, which means an im-
plicit embedding to an infinite dimensional Hilbert space[9](i.e. feature space) F .

K (x, y) = Φ(x) · Φ(y) (8)

Where K is a given kernel function in an input space. When K is semi positive
definite, the existence of Φ is proven[7]. Most of the case ,however, the mapping
Φ is high-dimensional and cannot be obtained explicitly. The vector in the fea-
ture space is not observable and only the inner product between vectors can be
observed via a kernel function. However, for a given data set, it is possible to ap-
proximate Φ by empirical kernel map proposed by Scholkopf[10] and Tsuda[11]
which is defined as ΨN : Rd → RN

ΨN (x) = [Φ(x1) · Φ(x), · · · ,Φ(xN ) · Φ(x)]T

= [K(x1,x), · · · ,K(xN ,x)]T
(9)

A performance evaluation of empirical kernel map was shown by Tsuda. He shows
that support vector machine with an empirical kernel map is identical with the
conventional kernel map[12]. The empirical kernel map ΨN(xN ) ,however, do
not form an orthonormal basis in RN , the dot product in this space is not the
ordinary dot product. In the case of KPCA ,however, we can be ignored as
the following argument. The idea is that we have to perform linear PCA on
the ΨN (xN ) from the empirical kernel map and thus diagonalize its covariance
matrix. Let the N × N matrix Ψ = [ΨN (x1),ΨN (x2), . . . ,ΨN (xN )], then from
equation (9) and definition of the kernel matrix we can construct Ψ = NK. The
covariance matrix of the empirically mapped data is:

CΨ =
1
N

ΨΨT = NKKT = NK2 (10)
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In case of empirical kernel map, we diagonalize NK2 instead of K as in KPCA.
Mika shows that the two matrices have the same eigenvectors {uk}[12]. The
eigenvalues {λk} of K are related to the eigenvalues {kk} of NK2 by

λk =

√
kk

N
(11)

and as before we can normalize the eigenvectors {vk} for the covariance matrix
CΨ of the data by dividing each {uk} by

√
λkN . Instead of actually diagonalize

the covariance matrix CΨ , the incremental KPCA is applied directly on the
mapped data Ψ = NK. This makes it easy for us to adapt the incremental
eigenspace update method to KPCA such that it is also correctly takes into
account the centering of the mapped data in an incremental way. By this result,
we only need to apply the empirical map to one data point at a time and do not
need to store the N ×N kernel matrix.

4 Experiment

To evaluate the performance of accuracy on eiegnspace update for incremental
data we take nonlinear data. The disadvantage of incremental method is their
accuracy compared to batch method even though it has the advantage of memory
efficiency. So we shall apply proposed method to a simple toy data which will
show the accuracy and memory efficiency of incremental KPCA compared to
APEX model proposed by Kung[13] and batch KPCA. Next we will use images
from the Columbia Object Image Library(COIL-20). The set is consisted of
images of 20 objects rotated about their vertical axis, resulting in 72 images per
objects. We used these images for testing the performance of incremental KPCA.

4.1 Toy Data

To evaluate the eigenspace update accuracy and memory efficiency of incre-
mental KPCA compared to APEX and KPCA we take nonlinear data used by
Scholkoff[8]. Totally 41 training data set is generated by:

y = x2 + 0.2ε : ε from N(0, 1),x = [−1, 1] (12)

First we compare feature extraction ability of incremental KPCA to APEX
model. APEX model is famous principal component extractor based on Hebbian
learning rule. Applying toy data to incremental KPCA we finally obtain 2 eigen-
vectors. To evaluate the performance of two methods on same condition, we set
2 output nodes to standard APEX model.

In table 1 we experimented APEX method on various conditions. Generally
neural network based learning model has difficulty in determining the parame-
ters; for example learning rate, initial weight value and optimal hidden layer
node. This makes us to conduct experiments on various conditions. ‖ w ‖ is
norm of weight vector in APEX and ‖ w ‖= 1 means that it converges stable
minimum. cosθ is angle between eigenvector of KPCA and APEX, incremental
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Table 1. Performance evaluation of incremental KPCA(IKPCA) and APEX

Method Iteration Learning Rate ‖ w1 ‖ ‖ w2 ‖ cosθ1 cosθ2 MSE
APEX 50 0.01 0.6827 1.4346 0.9993 0.7084 14.8589
APEX 50 0.05 do not converge
APEX 500 0.01 1.0068 1.0014 0.9995 0.9970 4.4403
APEX 500 0.05 1.0152 1.0470 0.9861 0.9432 4.6340
APEX 1000 0.01 1.0068 1.0014 0.9995 0.9970 4.4403
APEX 1000 0.05 1.0152 1.0470 0.9861 0.9432 4.6340
IKPCA 100 1 1 1 1 0.0223
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Fig. 1. Reconstruction error change by re-learning in incremental KPCA

KPCA respectively. cosθ of eigenvector can be a factor of evaluating accuracy
how much incremental KPCA and APEX is close to accuracy of KPCA. Table 1
nicely shows the two advantages of incremental KPCA compared to APEX: first,
performance of incremental KPCA is better than APEX; second, the perfor-
mance of incremental KPCA is easily improved by re-learning. Another factor
of evaluating accuracy is reconstruction error. Reconstruction error is defined
as the squared distance between the Ψ image of xN and reconstruction when
projected onto the first i principal components.

δ = |Ψ(xN )− PlΨ(xN )|2 (13)

In here Pl is the first i principal component. The MSE(Mean Square Error)
value of reconstruction error in APEX is 4.4403 whereas incremental KPCA
is 0.0223. This means that the accuracy of incremental KPCA is superior to
standard APEX and similar to that of batch KPCA. Figure 1 shows the MSE
value change for reconstruction error by re-learning in incremental KPCA. Re-
learning is similar meaning of epoch in neural network learning. We can see that
the performance of incremental KPCA is easily improved by re-learning. Above
results of simple toy problem indicate that incremental KPCA is comparable to
the batch way KPCA and superior in terms of accuracy.



320 B.-J. Kim, C.-B. Lee, and I.-K. Kim

Table 2. Memory efficiency of incremental KPCA compared to KPCA on toy data

KPCA IKPCA
Kernel matrix 41 X 41 none

R matrix none 3 X 3
D matrix none 3 X 3

Efficiency ratio 93.3889 1

Next we will compare the memory efficiency of incremental KPCA compared to
KPCA. In this experiments, incremental KPCA only needs D matrix and R ma-
trix whereas KPCA needs kernel matrix. Table 2 shows the memory requirement
of each method. Memory requirement of standard KPCA is 93 times more than in-
cremental KPCA. We can see that incremental KPCA is more efficient in memory
requirement than KPCA and has similar ability of eigenspace update accuracy. By
this simple toy problem we can show that incremental KPCA has similar accuracy
compare to KPCA and more efficient in memory requirement than KPCA.

4.2 Reconstruction Ability

To compare the reconstruction ability of incremental eigenspace update method
proposed by Hall to APEX model we conducted experiment on face data.
Applying this data to incremental eigenspace update method we finally obtain
30 Eigenvectors. As earlier experiment we set 30 output nodes to standard APEX

Original
image

Batch PCA IKPCA APEX

Fig. 2. Reconstructed image by incremental KPCA, APEX and batch PCA
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method. Figure 2 shows the original data and their reconstructed images by in-
cremental KPCA method, batch PCA and APEX respectively. The MSE(Mean
Square Error) value of reconstruction error in APEX is 10.159 whereas incremen-
tal KPCA is 0.26941 and KPCA is 0.15762. This means that the accuracy of incre-
mental KPCA is superior to standard APEX and similar to that of batch KPCA.
We can see that reconstructed images by incremental KPCA update method is
similar to original image and more clear compared to APEX method.

5 Conclusion and Remarks

A real time feature extraction for realtime surveillance system is proposed in
this paper. We use incremental KPCA method in order to represent images in
a low-dimensional subspace for realtime surveillance. Proposed method allows
discarding the acquired images immediately after the update. By experimental
results we can show that incremental KPCA has similar accuracy compare to
KPCA and more efficient in memory requirement than KPCA. This makes pro-
posed model is suitable for real time surveillance system. We will extend our
research to realtime face recognition based on this research.
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Abstract. We present the ubiquitous intelligent sensing system for a smart 
home in this paper. A smart home is intelligent space that studies patterns of 
home contexts that is acquired in a home, and provides automatic home services 
for the human. The ubiquitous intelligent sensing system acquires seven sensing 
contexts from four sensor devices. We utilize association rules of data mining 
and linear support machine to analyze context patterns of seven contexts. Also, 
we analyze stress rates of the human through the HRV pattern of the ECG. If 
the human is suffering from stress, the ubiquitous intelligent sensing system 
provides home service to reduce one’s stress. In this paper, we present the ar-
chitecture and algorithms of the ubiquitous intelligent sensing system. We pre-
sent the management toolkit to control the ubiquitous intelligent sensing sys-
tem, and show implementation results of the smart home using the ubiquitous 
intelligent sensing system. 

1   Introduction 

The computer industry has seen wonderful results in miniaturization and performance 
improvement of devices as a result of rapid technological development: central com-
puting with mainframes (1950s through the 1980s), personal computers (1980s to 
present), and computer networks (1990s to present) [1]. A fourth era is now emerging 
as computers became ubiquitous, a technology more noticeable by its absence than its 
presence [2, 3]. This paper addresses the architecture of a ubiquitous intelligent sensing 
system and algorithms of components that compose the system. A future home is an 
intelligent space that realizes ubiquitous computing that offer the human a more com-
fortable life. Ubiquitous computer aims to “enhance” computer use by making many 
computers available throughout the physical environment, but making them effectively 
invisible to the user [4]. A smart home helps to provide a more comfortable home life 
to humans through intelligent sensing that offers a human automated service in a ubiq-
uitous space. Studies of intelligent agents in a smart home have proceeded into many 
different a lot of directions. MS Easy Living provides a home service through location 
tracking of the human [5]. MavHome presented a prediction algorithm of home service 
in smart home, and applied data mining as its algorithm [6, 7].  

We implemented four sensor devices (ECG sensor, home temperature sensor,  
network camera for human location and motion and facial expression sensor) that 
acquire home contexts from human and home. The sensor devices provide seven 
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sensing contexts (ECG, pulse, body temperature, home temperature, human location, 
human motion and facial expression) to the ubiquitous intelligent sensing system. We 
apply LSVM (linear support vector machine) and association rules of data mining to 
analyze patterns of all contexts. 

Section 2 gives related research work on an intelligent sensing system. Section 3 
addresses architecture of the ubiquitous intelligent sensing system for the smart home. 
In section 4, we explain a detailed algorithm of the components that compose the 
intelligent sensing system. Section 5 presents implementation and experimental re-
sults. We conclude with section 6. 

2   Related Studies 

Perry and Dowdall documented the rationale and design of a multimodal interface to a 
pervasive/ubiquitous computing system that supports independent living by older 
people in their own homes [8]. The Smart-In-House project used a system of basic 
sensors to monitor a person’s in-home activity; a prototype of the system is being 
tested within a subject’s home [9]. They examined whether the system could be used 
to detect behavioral patterns and report the results. Alex and Brent discuss the use of 
computer vision in pervasive healthcare systems, specifically in the design of a sens-
ing agent for an intelligent environment that assists older adults with dementia during 
the activity of daily living [10]. The 1:1 pro system constructed personal profiles 
based on the customer’s transactional histories. The system used data mining tech-
niques to discover a set of rules describing customer’s behavior and supports human 
experts in validating the rules [11]. Kehagias and Petridis introduced the PREdictive 
MOdullar Fuzzy System (PREMOFS) to perform a time series classification. A 
PREMOFS consists of a bank of predictors and a fuzzy inference module. The 
PREMOFS is a fuzzy modular system that classifies the time series as one of a finite 
number of classes, using the full set of un-preprocessed past data to perform a recur-
sive, adaptive and competitive computation of membership function, based on predic-
tive power [12]. 

3   Architecture of Ubiquitous Intelligent Sensing System 

Figure 1 shows the architecture of the ubiquitous intelligent sensing system for a 
smart home. Figure 1 presents ten sensing contexts, and we provide the intelligent 
sensing system with seven sensing contexts and time for pattern prediction of the 
home service. Eye tracker and voice sensing are processed by a rule-based algorithm. 

Five home appliances have been connected to the wireless network in the labora-
tory. The ubiquitous intelligent sensing system predicts a home service pattern of the 
human, and offers automatic home service for the human. We use the SAPR (super-
vised algorithm for pattern recognition: a linear support vector machine) and the data 
miner (association rules) to analyze the home service for the human. The ubiquitous 
intelligent sensing system studies the human’s home service pattern without providing 
a home service for the human during the learning phase. For example, when the hu-
man turns on the TV, the context extractor acquires the human’s home service com-
mand (TV-On) and sensing contexts from four sensor devices, and transmits all data 
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to the pattern recognition process. During the prediction phase of the home service, 
the ubiquitous intelligent sensing system acquires seven sensing contexts and the time 
from the sensor devices every three seconds, and it provides an automatic home ser-
vice to the human through pattern analysis of previous home services. The context 
extractor acquires all contexts from sensor devices, and manages them. The context 
extractor processes contexts in two steps to analyze the pattern of eight contexts ac-
quired from sensor devices. First, the context extractor normalizes eight contexts 
between 0.1 and 0.9 so that contexts are treated by input value (train input and test 
input) of the supervised algorithm for pattern recognition. Second, the context extrac-
tor stores all contexts in the database for creation of association rules. We applied the 
HHIML that is based on XML as the context’s management structure. This helped to 
easily approach all contexts in other components, and presents an efficient interface to 
the web [13, 14]. The home service provider executes home service that is predicted 
from the supervised algorithm for pattern recognition and association rules of data 
mining. 

 

Fig. 1. Architecture of the ubiquitous intelligent sensing system for a smart home 

4   Components of the Ubiquitous Intelligent Sensing System 

4.1   Context Extraction and Processing 

Figure 2 shows pictures of four sensor devices used to acquire seven contexts for the 
pattern recognition of home service. 
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Fig. 2. Four sensor devices for extraction of seven contexts 

 

Fig. 3. Structure of the context extractor that takes charge of the sensing context’s extraction 
and context processing 

The four sensor devices use a WiFi for network communication with the ubiqui-
tous intelligent sensing system. The facial expression sensor recognizes the human’s 
expression by comparing it with seven standard expressions (blank, surprise, fear, sad, 
angry, disgust and happy). They are categorized as described in [15]. The human 
location is decided from absolute coordinates through analysis of raw images. The 
human’s motion is recognize from six motions (lie, stand, sit, sit_gesture1, 
sit_gesture2 and sit_gesture3) using pattern recognition algorithms. 
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We acquire the ECG signal, pulse and temperature from the ECG sensor device. 
The pulse and the temperature are transmitted to the pattern recognition algorithm for 
pattern analysis of the home service: the ECG signal is used to predict human’s stress. 
Figure 3 shows the structure of the context extractor that takes charge of sensing con-
text’s extraction and context processing. 

The context extractor acquires contexts from the sensor devices that is presented in 
figure 2, and normalizes all contexts between 0.1 and 0.9. Then, it converts all con-
texts that are acquired in real-time into the HHIML’s tree that is based on XML to 
manage all contexts efficiently. 

4.2   Pattern Recognition of Human’s Home Service 

Figure 4 shows the structure of the pattern recognition algorithm that predicts the 
home service that the human wants. 

 

Fig. 4. Structure of the supervised algorithm-based pattern analyzer and the association rules 
based data mining 

We applied LSVM by hierarchal structure for pattern recognition of three home 
services (TV, audio and DVD). The ubiquitous intelligent sensing system measures 
stress of a human from analysis of the ECG. If the human is suffering from stress, the 
ubiquitous intelligent sensing system provides a home service (soft music and a faint 
light) to comfort the human and reduce stress. The ECG (electrocardiogram) is an 
electric signal, which reflects the hearts pulse rate that is measurable on the body’s 
surface. Figure 5 shows the ECG graph with P, Q, R, S and T values that were ex-
tracted from an ECG signal.  

The ubiquitous intelligent sensing system provides a home service that reduces 
the stress of a human using the HRV (Heart Rate Variability) of the ECG signal  
[16, 17]. 
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Fig. 5. Pulse rate of heart with P, Q, R, S, and T values extracted from the ECG 

4.3   Sensing Context and Home Service Management 

We handled all sensing contexts and control of home service using PDA and PC. 
Figure 6 shows management screen of all contexts and home service in the ubiquitous 
intelligent sensing system. (A) and (B) in figure 6 show the manager toolkit that con-
trols the intelligent sensing system by PDA.  

 

Fig. 6. The manager toolkit for management of the ubiquitous intelligent sensing system 

(D) in figure 6 expresses the home’s structure and sensing contexts in three dimen-
sions according to the HHIML’s structure, which was created from the ubiquitous 
intelligent sensing system. 

5   Experiments and Evaluations 

The ubiquitous intelligent sensing system provides an automatic home service that is 
predicted by the pattern recognition algorithm. All contexts were applied as LSVM’s 
features and association rule’s input data. The ubiquitous intelligent sensing system 
provides predicted home services if prediction results of two pattern recognition algo-
rithms (the SAPR and the data miner) are the same. Figure 7 shows a distribution 
chart of sensing contexts that is presented by the data miner. 
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Fig. 7. Distribution chart of sensing contexts that is presented by the data miner 

Table 1 shows the performance of the prediction component that is created by the 
LSVM and the association rules. 

Table. 1. The performance of the prediction component that is created by the LSVM and the 
association rules 

 Number of 
Service  
Prediction 
by the  
SAPA 

Number of 
Service  
Prediction  
by the  
Association 
Rules 

Number of  
Service  
Prediction  
by Integration 
Methods 

Number of 
Rejected  
Service by 
Human 

Precision 
on test set 

TV 123 148 76 21 72.3% 

DVD 156 111 90 24 73.3% 

Audio 211 154 107 31 71.0% 

Home service prediction of the ubiquitous intelligent sensing system showed an 
average 72.2%. We are progressing with experiments of additional sensing contexts to 
increase the system’s performance. Also, we are testing how the performance of the 
system change by changing the importance of different feature sets. 
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The ECG is a sensing context that is applied to measure the human’s stress. The 
ECG wave means a healthy state if it presents big oscillation within the standard 
scope. Otherwise, it means that the autonomic nervous system’s ability to adapt to 
stress decreases. (a) shows a normal human’s ECG wave, and (b) shows human’s 
ECG wave with stress. If a human is suffering from stress, the ubiquitous intelligent 
sensing system provides home service (soft music and a faint light) that comforts to 
human and reduces stress. 

 
(a) Normal human’s ECG wave 

 
(b) Human’s ECG wave with stress 

Fig. 8. ECG signals that is extracted from the ECG sensor device 

6   Conclusions 

We presented the ubiquitous intelligent sensing system for a smart home in this paper. 
A smart home is intelligent space that studies pattern of home contexts that is ac-
quired in a home, and provides an automatic home service for the human. We imple-
mented a smart home using the ubiquitous intelligent sensing system. The ubiquitous 
intelligent sensing system acquires seven sensing contexts from four sensor devices. 
This paper uses association rules of data mining and linear support machine to ana-
lyze context patterns of seven contexts. Also, we analyze stress rate of human through 
the HRV pattern of the ECG. If human is suffering from stress, the ubiquitous intelli-
gent sensing system provides home service that reduces human’s stress. In this paper, 
we present the architecture of ubiquitous intelligent sensing system, explains algo-
rithms of components that compose the ubiquitous intelligent sensing system. We 
present the management toolkit to control the ubiquitous intelligent sensing system, 
and shows pictures that is executed in the ubiquitous intelligent sensing system.  
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Abstract. This paper presents an object recognition method based on
recursive neural networks (RNNs) and multiresolution trees (MRTs).
MRTs are a novel hierarchical structure proposed to represent both the
set of homogeneous regions in which images can be divided and the evo-
lution of the segmentation process performed to determine such regions.
Moreover, knowing the optimal number of regions that should be ex-
tracted from the images is not critical for the construction of MRTs, that
are also invariant w.r.t. rotations and translations. A set of experiments
was performed on a subset of the Caltech benchmark database, com-
paring the performances of the MRT and directed acyclic graph (DAG)
representations. The results obtained by the proposed object detection
technique are also very promising in comparison with other state-of-the-
art approaches available in the literature.

1 Introduction

In graphical pattern recognition, data is represented as an arrangement of ele-
ments, that encodes both the properties of each element and the relations be-
tween them. Hence, patterns are modeled as labeled graphs where, in general,
labels can be attached to nodes and edges.

In the last few years, a new connectionist model, that exploits the above de-
finition of pattern, has been developed [1]. In fact, recursive neural networks
(RNNs) have been devised to face one of the most challenging task in pattern
recognition: realizing functions from graphs to vectors in an automatic and adap-
tive way. The original RNN model and its evolutions were recently applied to
image processing tasks [2,3], obtaining interesting results. However, in order to
exploit RNNs, a crucial role is played by the graphical representation of patterns,
i.e. the way in which each image is represented by a graph. This choice affects
the performances of the whole process.

In this paper we propose a new graphical representation of images based on
multiresolution trees (MRTs), that are hierarchical data structures, somehow
related to other representations used in the past to describe images. MRTs are
generated during the segmentation of the images, like, for instance, quad–trees
[4]. Other hierarchical structures, so as monotonic trees [5] or contour trees [6],
can be exploited to describe the set of regions obtained at the end of the seg-
mentation process, representing the inclusion relationship established among the
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region boundaries. However, MRTs represent both the result of the segmenta-
tion, and the sequence of steps that produces the final set of regions. Moreover,
the construction of MRTs does not depend on a priori knowledge on the number
of regions needed to represent the images. Finally, MRTs combined with RNNs
allow us to develop efficient object detection and object recognition systems.

This paper proposes an object recognition method and evaluates its perfor-
mances on the Caltech benchmark dataset [7]. Two comparisons are presented:
first, the images are represented by MRTs and directed acyclic graphs (DAGs)
to assess which kind of structure allows to achieve better results; then the object
recognition technique is compared against the state of the art methods based on
vectorial representation and classical pattern recognition approaches [7,8,9,10].

The paper is organized as follows. In the next section, the RNN model is
described, whereas in Section 3 the algorithm to extract MRTs is defined. Section
4 collects the experimental results and, finally, Section 5 draws some conclusions.

2 Recursive Neural Networks

Recursive neural networks were originally proposed to process directed positional
acyclic graphs (DPAGs) [1,11]. More recently, an extended model, able to map
rooted nonpositional graphs with labeled edges (DAGs-LE) into real vectors, was
described [12]. This last RNN model is implemented based on a state transition
function which has not a predefined number of arguments and which does not
depend on the argument position. The different contribution of each child to the
state of its parents depends on the label attached to the corresponding edges.
At each node v, the total contribution Xv ∈ IRn of the states of its children is
computed as

Xv =
od[v]∑
i=1

Φ(Xchi[v],L(v,chi[v]), θΦ),

where od[v] is the outdegree of the node v, i.e. the number of its children, Φ :
IR(n+k) → IRn is a function depending on a set of parameters θΦ, Xchi[v] ∈ IRn

is the state of i-the child of node v, and L(v,chi[v]) ∈ IRk is the label attached
to the edge (v, chi[v]). The state at the node v is then computed by another
function f : IR(n+m) → IRn that combines the contribution of Xv with the node
label Uv ∈ IRm:

Xv = f(Xv,Uv, θf ),

being f a parametric function depending on the parameters θf . Moreover, at the
root node s, also an output function g is computed by another function g as

Ys = g(Xs, θg).

The functions Φ, f and g can be implemented by feedforward neural networks,
in which the parameters θΦ, θf and θg are connection weights (see Figure 1(b)).
As shown in Figure 1(c), the processing of an input graph is obtained by apply-
ing the recursive neural network (Figure 1(b)) recursively on the graph nodes,
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starting from the leaves. This processing scheme yields an unfolding network
whose structure depends on the topology of the input graph. The state Xv at
each node encodes a representation of the subgraph rooted at v.

(a) Input graph

C

L

A

B

L
D

L

L

L

(C,D)(B,D)

(A,B)

(A,D)

(A,C)

+

n neurons

q neurons q’ neurons

o neurons

p neurons

g

vXUv

f

Xv
Yv

Xch [v]1

ΦΦ

ch  [v]X
od

L (v,ch  [v])odL(v,ch [v])1

(b) Recursive Neural Network

+

XA

f

UA AX

Φ

(A,B)L

Φ

(A,D)L

Φ

L(A,C)

+

XC

f

UC CX

Φ

L(C,D)

f

XD

UD X0

+
UB

f

XB

BX

Φ

L(B,D)

(c) RNN unfolding on the input graph

Fig. 1. The RNN processing scheme

RNNs can be trained to categorize images represented as graphs. Therefore
an object recognition system can be developed based on a pool of RNNs where
each network is specialized in recognizing a particular object class.

3 Multiresolution Trees

The neural network model proposed in Section 2 assumes to process structured
data. Therefore a preprocessing phase that allows to represent images by graphs
is needed, in order to exploit such model to perform any task on images (classifi-
cation, localization or detection of objects, etc.). In the last few years, some image
analysis systems based on RNNs and graph–based representation of images were
proposed [12,13,14]. In these approaches, images are segmented to obtain a set
of homogeneous regions that are subsequently represented by region adjacency
graphs (RAGs). Then, since RNNs can process only directed structures, while
RAGs are not, a further step is needed, to transform each RAG into a directed
acyclic graph (DAG) [14] or into a set of trees [2]. The transformation from
a RAG to a DAG can be obtained very efficiently, performing a breadth–first
visit of the RAG, until each node is visited once. However, during this process
each edge is transformed into a directed arc depending on arbitrary choices, in
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particular the starting node for the breadth–first visit. In fact, the assignment
of a direction to the adjacency relation changes the semantics of this relation,
that is naturally undirected. On the contrary, the mapping from a DAG to a set
of trees allows us to preserve the structural information, but it is particularly
time consuming. As a matter of fact, for each node belonging to the RAG, a
breadth–first visit must be performed to obtain a tree.

In this section, the representation of images based on MRTs is proposed. This
kind of structure presents two advantages: first MRTs can be processed directly
by RNNs without the need of any transformation; second they somehow reduce
the dependence of the representation from the choice of the number of regions
to be extracted in the segmentation process.

Nowadays, there is no a universal theory on image segmentation, and all the
existing methods are, by nature, ad hoc. Moreover, the determination of the
exact number of regions that should be extracted from a given image is a very
challenging task, and can affect the performances of the system that takes the
computed representation as input. MRTs allow us to ignore this information,
since they collect, at each level, a distinct segmentation of the input image,
obtained during a region growing procedure.

Since an MRT is generated during the segmentation, we need to describe how
a set of homogeneous regions is extracted from an input image. First, a K–means
clustering of the pixels belonging to the input image is performed. The clustering
algorithm minimizes the Euclidean distance (defined in the chosen color space) of
each pixel from its centroid. The number of clusters computed during this step
is determined considering the average texture of the input image, since such
a parameter provides useful information about the complexity of the depicted
scene. It is worth noting that the number of extracted regions is greater than the
number of clusters, since each cluster typically corresponds to several connected
components. At the end of the K–means, a region growing step is carried out to
reduce the number of regions, and, at the same time, to generate the MRT. The
region growing procedure is sketched in Algorithm 1.1. Actually, the proposed
method assumes to merge together groups of homogeneous regions, with the aim
of bounding the maximum outdegree of the MRT, and, consequently, its depth.
The algorithm takes as parameters the set of regions (Rset) obtained at the end
of the K–means, and maxGroupSize, the maximum number of regions that can
belong to a group. The goal of the algorithm is to reduce the number of regions,
and to compute the set of nodes V , and the set of edges E, that define the MRT.

Initially, the set V is updated exploiting the function createNode that creates
a new node and computes the node label (a set of visual and geometric features).
These nodes represent the leaves of the MRT. Then, for each region r belonging
to Rset, a region group g is created and stored in Gset, using the function cre-
ateGroup. The region r represents the seed of g. Moreover, each region adjacent
to r is added to the group that has r as its seed. When the number of adja-
cent regions is greater than maxGroupSize, the color distance between r and
its adjacent regions is computed, and only the maxGroupSize nearest adjacent
regions are added to g. Note that, after this step,

⋃|Gset|
i=1 gi = I, being I the
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whole image, but
⋂|Gset|

i=1 gi = ∅, and then Gset must be rearranged with the
aim of obtaining a partitioning of the image, such that

⋂|Gset|
i=1 gi = ∅.

Algorithm 1.1. CreateMRT(Rset,maxGroupSize)

{
V←E←Gset←∅;
for each r ∈ Rset

V←V {createNode(r)};
while(|Rset|≥ maxGroupSize) {

for each r ∈ Rset
Gset←Gset {createGroup(r)};

Gset←cleanGroups(Gset,H());
for each g ∈ Gset{

newr←mergeGroup(g);
Rset←Rset - members(g) {newr};
newn←createNode(newr);
V←V {newn};
for each r ∈ members(g)

E←E {(newn,getNodeAssociatedWith(r))};
}
Gset←∅;

}
root←createNode( |Rset|

i=1 ri);
V←V {root};
for each r ∈ Rset

E←E {(root,getNodeAssociatedWith(r))};
}

This phase is performed by the function cleangroups, that is described by Al-
gorithm 1.2. This function takes as input Gset and a homogeneity function H(),
that is used to compute the degree of similarity of the regions that belong to
a given group. The function H() is a parameter of the segmentation algorithm
and must be chosen such that a high value of H(g) corresponds to a high proba-
bility of merging g. First, the groups are sorted in descending order w.r.t. their
homogeneity. As a matter of fact, if a region r belongs to a group having high
homogeneity, the group that has r as its seed must be removed from Gset. Con-
sidering that adjacent(g) collects the set of regions that belong to g, except for
its seed, and the function getGroupBySeed(r) returns the group that has r as its
seed, the first iterative block of the algorithm performs the following steps. For
each group g, the set adjacent(g) is analyzed. For each region r in adjacent(g),
if r is the seed of a group that has lower homogeneity than g, then the group
is removed from Gset, otherwise r is removed from adjacent(g). However, the
goal of obtaining a partitioning of the original image is still not reached, because
the algorithm removed only whole groups, but some regions can belong to more
than one group. Then, the function cleanGroups scans again all the members of
the groups looking for regions that belong to two or more groups, and, if they
exist, removes them from the groups that have lower homogeneity.
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Algorithm 1.2. cleanGroups(Gset,H())
{

Gset←sort(Gset,H());
for each g ∈ Gset

for each r ∈ adjacent(g)
if (H(g) ≥ H(getGroupBySeed(r)))

Gset←Gset - getGroupBySeed(r);
else

adjacent(g)←adjacent(g)-r;
for each g1 ∈ Gset

for each g2 ∈ Gset and g1 = g2

for each r1 ∈ adjacent(g1)
for each r2 ∈ adjacent(g2)

if (r1 = r2)
if (H(g1) ≥ H(g2))

adjacent(g2)←adjacent(g2)-r2;
else

adjacent(g1)←adjacent(g1)-r1;
}

At the end of Algorithm 1.2, Gset collects a partitioning of the whole image
and Algorithm 1.1 merges together the regions that belong to the same groups.
The set of regions Rset is updated considering the new regions, and a new level
of the MRT is created. For each new region newr, a new node newn is created.
Finally, newn is linked to the nodes that are associated with the regions merged
to obtain newr.

The main loop of Algorithm 1.1 is repeated until the cardinality of Rset is
greater than maxgroupSize. At the end of the main loop, the root node is added
to the MRT and linked to all the nodes that correspond to the regions collected in
Rset. All the nodes in the MRT have a label that describes visual and geometric
properties of the associated regions, and also each edge has a label that collects
some features regarding the merging process.

The proposed technique presents some advantages. First, segmentation meth-
ods based on region growing generally produce results that depend on the order
in which the regions are selected during the merging process, and, as a side effect,
the final set of regions is not invariant w.r.t. rotations, translations, and other
transformations of the input image. Instead, the region growing method pro-
posed in Algorithm 1.1 is independent from rotations and translations, since the
regions are selected considering the order defined by the homogeneity function.

The main advantage of MRTs consists in being independent of the number of
regions needed to represent the image. Actually, a distinct segmentation, with
a different number of regions, is stored in each level of the tree. The key idea
consists in exploiting the capabilities of adaptive models, like RNNs, to discover
at which level the best segmentation is stored. Moreover, MRTs are invariant
w.r.t. rotations and translations of the images and do not describe directly the
topological arrangement of the regions, that however can be inferred consid-
ering both the geometric features associated to each node (for instance, the
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coordinates of the bounding box of each region can be stored in the node la-
bel) and the MRT structure. Finally, the region growing is performed merging
together groups of regions instead of pairs, to avoid the generation of binary
trees. As a matter of fact, the generation of binary trees implies the genera-
tion of deeper structures, and RNNs suffer in processing such structures, due to
the ”long-term dependency” phenomenon, that was originally investigated for
recurrent neural networks [15].

4 Experimental Results

In order to evaluate the capability of MRTs to represent the contents of images,
some experiments were carried out, addressing an object recognition problem.
The experiments were performed using the Caltech Database1, since it represents
a popular benchmark for object class recognition. The Caltech database collects
six classes of objects: motorbikes, airplanes, faces, cars (side view), cars (rear
view), and spotted cats. Our experiments were focused on a subset of the dataset,
that consists only of images from the motorbikes, airplanes, faces, and cars (rear
view) classes.

Fig. 2. Samples of images from the Caltech database

For each class, three datasets were created: training, test, and cross–validation
sets. The training and test sets collect 96 images each, while 48 images belong
to the cross–validation set. For each set, half images correspond to positive ex-
amples, while the other images are examples of the negative class (i.e. images
from the other classes). All the images were selected randomly from the Caltech
database and segmented in order to obtain both MRTs and DAGs.

MRTs were obtained using Algorithm 1.1 and a maximum group dimension
equal to 7. The homogeneity function, that affects directly the segmentation and
the MRT generation, was chosen to be H(g) = 1

σ2 , being σ2 the color variance
of the group g in the image color space. The node labels in the MRTs collect
geometric and visual information, like area, perimeter, barycenter coordinates,
momentum, etc., while color distance, barycenter distance, and the ratio ob-
tained dividing the area of the child region by the area of the parent region, are

1 The Caltech database is available at http://www.robots.ox.ac.uk/∼vgg/data3.html
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Table 1. Results obtained representing images by DAGs or MRTs. The second column
shows the number of state neurons of the recursive network. The results are reported
using the average ROC equal error rate, obtained performing ten learning runs.

State neurons Airplanes Motorbikes Faces Cars(rear)
M 5 100 97.91 100 92.7
R 7 95.83 92.7 100 90.6
T 10 94.79 92.7 100 92.7
D 5 75 69.79 73.54 76.04
A 7 75 70.83 70.41 77
G 10 75 68.75 71.67 78.12

Table 2. Best results obtained using MRTs compared against results available in the
literature. The results are reported using the average ROC equal error rate.

RNNs and MRTs Zhang [8] Fergus [7] Opelt [9] Thureson [10]
Motorbikes 97.91 99 92.5 92.2 93.2
Airplanes 100 98.3 90.2 88.9 83.8

Faces 100 99.7 96.4 93.5 83.1

used as edge labels. With respect to the generation of DAGs, a modified version
of Algorithm 1.1 was exploited. The instructions related to the MRT genera-
tion were removed, and the main loop was halted when the number of regions
become smaller than the parameter that was used to determine the number of
initial K–means clusters. Finally, at the end of the region growing phase, the
DAG was generated following the steps described in [14]. The generated MRTs
collect 400 nodes and are composed by 8 levels, on average, whereas DAGs con-
tain about 70 nodes. For each class, several RNN classifiers were trained, using
both MRTs and DAGs, in order to determine the best network architecture.
The transition function f is realized by an MLP with n + 1 hidden units (using
the hyperbolic tangent as output function) and n linear outputs, being n the
number of state neurons. The function Φ, that combines the state of each child
with the corresponding edge label, is implemented by an MLP with a layer of
n+1 sigmoid hidden units and n linear outputs. Finally, the output network g is
an MLP with n inputs, n−2 sigmoid hidden units and one sigmoid output. The
obtained results are reported in Table 1. Even if the main goal of the experiments
is the comparison between MRTs and DAGs, Table 2 collects also a comparison
between the presented object recognition system and other methods known in
the literature, that were evaluated using the same benchmark database. The
method based on MRTs definitely outperforms the DAG–based representation.
Moreover, the comparison with the other methods reported in Table 2 shows
very promising results, even if our experiments were performed considering only
a subset of the Caltech database.

5 Conclusions

In this paper, we proposed a new hierarchical representation of images, based
on multiresolution trees. An MRT represents, in a unique structure, the result
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of image segmentation, and the sequence of steps that produces the final set of
regions. The performances of the proposed representation technique were eval-
uated addressing an object recognition task. A method based on RNNs and
MRTs was proposed and evaluated on the Caltech benchmark dataset, showing
promising results.
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Abstract. Camera motion classification is an important issue in
content-based video retrieval. In this paper, a robust and hierarchical
camera motion classification approach is proposed. As the Support Vec-
tor Machine (SVM) has a very good learning capacity with limited sam-
ple set and does not require any heuristic parameter, the SVM is first
employed to classify camera motions into translation and non-translation
motions in preliminary classification. In this step, four features are ex-
tracted as input of the SVM. Then, zoom and rotation motions are fur-
ther classified by analyzing the motion vectors’ distribution. And the
directions of translation motions are also identified. The experimental
results show that the proposed approach achieves a good performance.

1 Introduction

Camera motion classification is an important issue in content-based video re-
trieval. Taking no account of scene depth variation, there are four basic camera
motion categories, namely, still, zoom (includes zoom in, zoom out), rotation
and translation (includes panning right, tilting down, panning left and tilting
up). Extracting camera motion will help understand higher-level semantic con-
tent, especially in some specific domains, such as sports video, movie video and
surveillance video. Usually, zoom-in motion will give the details about the char-
acters or objects do, or imply an important event may happen. Zoom-out motion
gives a distant framing, which shows the spatial relations among the important
figures, objects, and setting in a scene. Translation motion often indicates the
dominant motion direction of a scene or gives an overview of mise en scene. So
camera motion classification is essential to video structure analysis and higher
semantic information extraction.

There are a number of methods proposed to detect camera motion in recent
literatures [1,2,3,4]. Most of prior work is focused on parameter model estima-
tion, such as affine model, perspective model, etc [1,2,3]. But high computational
complexity and noise sensibility are still the main problems of parameter model
estimation approach, especially in massive video analysis and retrieval. In [2]
Huang et al. utilize feature points selection to improve performance of parame-
ter estimation. In [3], Kumar et al. utilize parameter-decomposition estimation
to reduce computational complexity. In fact, it is not necessary for video parsing
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and understanding to extract accurate motion parameters. Qualitative camera
motion classification helps improve computational performance and reduce noise
influence. Zhu et al. [4] propose a qualitative method, which employs motion vec-
tors mutual relationship to implement camera motion classification, and obtains
a satisfying results.

In this paper, we propose an effective and efficient camera motion classifica-
tion approach. First, cinematic rules are utilized to filter abnormal noise and
foreground motion noise in preprocessing step. Then, the SVM is employed to
classify camera motions into translation and non-translation motions in pre-
liminary classification of camera motion. Finally, we refine the camera motion
categories. In this step, the zoom and rotation motions are further distinguished,
and the translation direction is also identified by analyzing the motion vectors’
distribution. Experimental results validate the effectiveness of our proposed ap-
proach. The block diagram of our approach is shown in Fig. 1.

Fig. 1. Block diagram of the proposed approach

The organization of this paper is as follows. In Section 2, we represent the
preprocessing step of camera motion classification, which is used to reduce ab-
normal noise and foreground motion noise. A robust and hierarchical approach
for camera motion classification is proposed in Section 3. Section 4 and 5 give
the experimental results and draw the conclusions.

2 The Preprocessing of Motion Vector Field (MVF)

Before estimating camera motion categories, we need filter motion noises in MVF
because they might result in an error motion estimation. There are two different
motion noises. One is abnormal motion noise that is generated from motion
estimation by block-matching algorithm or optical flow equation. The other is
foreground noise that is generated from the foreground object motion.

First, we filter the abnormal motion noise. In data analysis, Interquartile
Range is an effective way to detect noise data in a given data set [5]. That is,
any data that is less than LQ−1.5IQR or greater than UQ+1.5IQR is regarded
as noise data, where LQ is the lower quartile, UQ is the upper quartile, and IQR
is the interquartile range which is defined as UQ− LQ.

For a given MVF, we suppose that the magnitudes of motion vectors satisfy
Gaussian distribution. We remove the abnormal motion vectors by computing
the Interquartile Range, and denote the valid motion vector set as V1.
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Then we further reduce the foreground noise. In mise en scene, filmmaker often
places the foreground object on the center region of screen, also called attention
region, to attract viewers’ attention [6]. The attention region is determined by
Golden Section spatial composition rule, which suggests dividing the screen into
3 × 3 regions in 3 : 5 : 3 proportion in both directions. We denote the center
region, that is attention region, as C, and the surrounding region as B. As the
foreground objects and background have conspicuously different motion vectors,
we compute the motion saliency map based on the valid motion vectors V1 as

S(i, j) = |E(i, j)− (ω1ĒB + ω2ĒC)| (1)

where E(i, j) is the motion energy of block (i, j). ω1, ω2 are the preassigned
weight values, and ω1 ≥ ω2, ω1+ω2 = 1. As the discussed above, the surrounding
region plays more important role in camera motion classification, so we assign a
greater value to ω1 than ω2. ĒB, ĒC are the average motion energies of region
B and C respectively.

Thus, we get the foreground motion region approximately by binarizing the
motion saliency map. The binarization threshold is estimated in an adaptive
method. We filter the foreground motion and achieve valid motion vector set,
which is denoted as V2. The camera motion classification is based on V2.

3 Hierarchical Camera Motion Classification

The hierarchical approach for camera motion classification is composed of two
steps as Section 3.1 and 3.2 depicted. Before camera motion classification, the
still camera motion is detected. We regard the camera motion as still category
if the average motion energy of the valid motion vectors is less than a given
threshold THstill. THstill is an empirical value, and is set as 2.

3.1 Camera Motion Preliminary Classification Based on SVM

As the translation motions have similar motion vector fields, which are different
from the ones for zoom and rotation motions. Namely, the MVF for translation is
composed of parallel motion vectors with uniform magnitudes; and the MVF for
zoom is composed of radial vectors whose magnitudes are proportional to their
distance from the center of focus (COF). The motion vectors for zoom-in/zoom-
out point inward to/outward from the COF. The vertical MVF for rotation has
the same characteristic as the MVF for zoom.

As the discussed above, we first classify camera motions into two categories:
translation and non-translation motion (includes rotation and zoom). Here, we
extract four features to characterize the camera motions as follows.

1) Motion Direction Feature. The motion vector direction is classified into
12 categories: (−15◦ + 30◦i, 15◦ + 30◦i), i = 0, 1, . . . , 11. Let HA(i) represent
the percentage of motion vectors at the ith direction. Then the motion direction
consistency is computed as

FAngEn = −
11∑

i=0

(HA(i) logHA(i)) (2)
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2) Motion Direction Relationship. To characterize motion direction re-
lationship, we first compute included angles among the valid motion vectors.
Then the included angles are classified into 8 categories: (22.5◦i, 22.5◦(i + 1)),
i = 0, 1, . . . , 7. Let HI(i) represent the percentage of included angles at the ith
direction. The motion direction relationship is characterized by the mean and
entropy of angular histogram HI(i).

F InAngMean =
7∑

i=0

(15× i×HI(i))/(N2(N2 − 1)/2) (3)

F InAngEn = −
7∑

i=0

(HI(i) logHI(i)) (4)

where N2 is the size of the valid motion vector set V2.
3) Motion Energy Feature. We compute the motion energy histogram of

valid motion vectors with 10 equally spaced bins, and denote it as HM(i). Then
the motion energy distribution is characterized as

FMagEn = −
9∑

i=0

(HM(i) logHM(i)) (5)

The four feature values can be taken as a feature vector, and each component
is normalized by the Gauss normalization formula. Thus, we denote the feature
vector as F = [F̄AngEn, F̄ InAngMean, F̄ InAngEn, F̄MagEn].

As the SVM has a very good learning capacity with limited sample set, and
does not require any heuristic parameter [7], we select the SVM as the classifier
in camera motion preliminary classification. We set F as the input vector of the
SVM. There are three common kernel functions: Radial Basis Function K(x, y) =
exp(−||x − y||2/2σ2), Polynomial Function K(x,y) = (x · y+b)d, and Sigmoid
Kernel function K(x,y) = tanh[b(x · y) − θ)]. So far, kernel function selection
still relays on the experimental method. In Section 4, we’ll discuss how to select
kernel functions and determine its parameters in detail.

After the preliminary classification, we classify the camera motion into trans-
lation and non-translation motions.

3.2 Refine the Camera Motion Categories

Translation Motion Classification. For the translation motion, we identify
its motion direction by computing the dominant motion direction histogram,
Hori(k), which represents the percentage of motion vectors at the kth direction,
(−45◦ + 90◦k, 45◦ + 90◦k).

Hori(k) =
1∑

j=−1

HA((3k + j) mod 12) k = 0, 1, 2, 3 (6)

We classify the translation motion into a specific direction whose bin value
has the maximum.
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Non-translation Motion Classification. For the non-translation motion,
we further classify them into zoom and rotation motion. As discussed in Section
3.1, the motion vectors for zoom-in/zoom-out point inward to/outward from the
COF, while the vertical motion vectors for rotation have same characteristic as
zoom. So we can identify the zoom and rotation motion categories by detecting
COF as follows.

Step 1. As the discussed in Section 2, the surrounding region B is composed of
8 subregions. We select one motion vector as key motion vector in each subregion
respectively. The key motion vector is the one whose motion direction consists
with the dominant motion direction of that subregion. If the number of the
motion vectors whose magnitudes are equal to zero is greater than two thirds of
the number of the total motion vectors in one subregion, we should not select
key motion vector in this subregion. Thus, we get the key motion vector set
{V(xi, yi)}, where V(xi, yi) represents the motion vector of macro block (xi, yi).

Step 2. As discussed in Section 3.1, the straight line Li through point (xi, yi)
in direction of V(xi, yi) should pass through the COF in the MVF for zoom, so we
compute the intersection points formed by pairwise intersection of straight lines
(if they intersect) that are determined by the key motion vector set {V(xi, yi)}.

Step 3. We calculate the centroid of the intersection points. A simply way is
to compute the mean for the intersection points’ position. We regard the centroid
as the COF, and denote it as (x0, y0).

Step 4. We calculate the average distance, dist((x0, y0),Li), from (x0, y0) to
straight line Li that is determined by the key motion vector V(xi, yi).

¯Dist =
1
N

N∑
i=1

dist((x0, y0),Li) (7)

where N is the size of key motion vector set {V(xi, yi)}. If the average distance
¯Dist is less than THzoom, the camera motion is identified as zoom motion. THzoom

is a given threshold and is set as one third of the MVF height.
Step 5. For each key motion vector V(xi, yi), we compute the inner-product

between V(xi, yi) and (xi − x0, yi − y0).

Ozoom =
∑

i

sgn(dot(V(xi, yi), (xi − x0, yi − y0))) (8)

where sgn() is a sign function, which returns 1 if the element is greater than
zero, 0 if it equals zero and -1 if it is less than zero. dot(, ) is a inner-product
function. If Ozoom > 0, the camera motion is zoom in, otherwise is zoom out.

As the vertical MVF for rotation has the same characteristic with the MVF
for zoom, we can identify the rotation motion as the same way.

4 Experimental Results

To evaluate the proposed approach for camera motion classification, we collect
various video data from MPEG-4 test set and www.open-video.com. The video
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data set consists of Apo13001, Bor10 009, Winn001002, Rotation, and Coast-
guard. We analyze the camera motion category every ten frames because there
is similar motion between consecutive frames. There are 2214 frames in total.

Fig. 2 gives several examples of motion noise reduction and feature vector
extraction. The figures in the first column are the original video frames, and
give the attention regions divided by Golden Section spatial composition rule.
The figures in the second column are the corresponding MVFs. The figures in
the third column give the experimental results of noise reduction, where the
white regions indicate the detected motion noises. As the figures shown, the
preprocessing step can filter most of abnormal and foreground motion noises
effectively. The figures in the fourth column depict the motion feature vectors
for various motion categories. The components of the motion feature vector for
translation motion are often less than 0.5 and tend to 0, while the components
of the motion feature vector for zoom or rotation motion, except for the second
component that always changes between 0.4 and 0.5, are often greater than 0.5
and tend to 1.

So far, the experimental method is still a main way to select kernel function
and its parameters. The optimal kernel function just corresponds to the specific
application. In this section, we utilize k -fold Cross Validation method (k = 5)

Video Frame Motion Vector Field Motion Noise
1 2 3 4

0

0.5

1

Motion Feature Vector F

(a) Translation motion extracted from the 84th frame of Coastguard

Video Frame Motion Vector Field Motion Noise
1 2 3 4

0

0.5

1

Motion Feature Vector F

(b) Zoom motion extracted from the 689th frame of Bor10 009

Video Frame Motion Vector Field Motion Noise
1 2 3 4

0

0.5

1

Motion Feature Vector F

(c) Rotation motion extracted from the 12th frame of Rotation

Fig. 2. Examples of motion noise reduction and feature vector extraction for various
camera motions
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to select kernel function, determine its parameters and restriction condition C.
Fig. 3 gives the experimental results of parameter selection for various kernel
function. In Fig. 3, each value of C corresponds with a curve, which represents
the Cross-Validation error along the parameter of kernel function. Different plot
symbols, namely, square, circle, star, triangle and diamond, respond with differ-
ent values of C, 0.1, 0.5, 1, 10 and 100, respectively. We observe the classification
performance does not improve obviously with changes in C, while training time
increases obviously when the parameter value increases. For polynomial kernel
function, parameters b and d have little effect on classification performance. For
radial basis function, we achieve better performance when σ changes between
0.1 and 1. For sigmoid kernel function, we achieve the best experimental result
when θ is set as -1 and b is set as 0.5. Taking account of the stability of the
classifier and classification performance, we select polynomial kernel function
(b = 1, d = 2 and C = 1). The experimental results verify the performance of
the classifier based on SVM.

2 3 4 5 6 7
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0.4
0.5
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E
rr

or

(a) Polynomial Kernel
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0.3
0.4
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σ

(b) Radial Basis Kernel

−3 −1 −0.5 0.5 1 2
0

0.1
0.2
0.3
0.4
0.5

θ  (b = 0.5)

(c) Sigmoid Kernel

Fig. 3. Kernel function and its parameters selection

Table 1 gives the experimental results. Here we only consider the number of
the correct classification (CC) against the ground truth (GT) for various camera
motion categories occurring in each video sequence. F. # is the abbreviation of
the number of video frames. P. is the abbreviation of classification precision.
The experimental results show that the proposed approach can deal with mo-
tion noise robustly and achieve satisfying performance. Although video sequence
Apo13001 and Winn001002 have poor quality, the proposed approach still gets
satisfying results. For video sequences Bor10 009, Rotation and Coastguard, our
approach achieves higher precision because these video sequences have stable
camera motion and high quality.

In experiment, we find that most of the false detections in the camera motion
classification are due to that the video frames have very slight camera motion,
and are falsely identified as still motion category. Smooth texture region detec-
tion is another problem because the smooth texture region often generates mass
abnormal motion noises in the motion vector estimation. For example, video
sequence Winn001002 has a low precision just because some scenes are shoot in
the sky. These are our further work.

Besides implementing the camera motion classification, the proposed approach
can detect the COF for zoom or rotation motions accurately. Several examples
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Table 1. Experimental results for camera motion classification (In the first row, cam-
era motion categories: still, zoom in, zoom out, rotation, panning right, tilting down,
panning left and tilting up are denoted as 1, 2, ..., 8. )

Video F. #
Correct Classification #

1 2 3 4 5 6 7 8
P.(%)

Apo13001

Bor10 009

Winn001002

Rotation

Coastguard

962

357

511

236

148

GT 665 172 60 15 21 16 0 13
CC 517 143 50 9 18 13 0 11
GT 83 48 97 0 129 0 0 0
CC 77 39 81 0 118 0 0 0
GT 309 72 50 0 56 18 6 0
CC 259 57 36 0 38 14 5 0
GT 31 0 0 74 30 41 27 33
CC 25 0 0 61 27 37 23 29
GT 5 0 0 0 106 0 32 5
CC 5 0 0 0 103 0 31 3

79.1

88.2

80

85.6

96

(a) Video Frame# 69 (b) Video Frame# 115

Fig. 4. Experimental results for COF detection

of original frames extracted from Bor10 009 and their corresponding detection
results are illustrated in Fig. 4. In figure, the star indicates the key motion vector
in each subregion, the diamond indicates the intersection point determined by
the key motion vectors, and the circle indicates the COF estimated by the key
motion vectors. As the Fig. 4(a) shown, the object motion (the grab) and smooth
texture region (the sky) are eliminated effectively by motion noise reduction, and
the COF is correctly identified. When the COF is not at the center of the screen,
as Fig. 4(b) shown, the proposed approach can also identify the motion category
and detect the COF correctly.

5 Conclusions

We proposed a robust and hierarchical camera motion classification approach in
the paper. First, the camera motions were classified into translation and non-
translation motions based on the SVM. Then, the rotation and zoom motions
were further distinguished, and the translation directions were also identified by
analyzing the motion vectors’ distribution. The experimental results shown that
the proposed approach achieved a good performance. As camera motion can pro-
vide an important clue in content-based video parsing and understanding, our
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future work is to further improve the performance of camera motion classifica-
tion, and to apply the camera motion classification into video semantic analysis.
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Abstract. Grey forecasting based on GM (1,1) has become an important meth-
odology in time series analysis. But due to the limitation of predicting non-
stationary time series, an improved grey forecasting GM (1,1) model with 
wavelet transform was proposed. The time series data was first decomposed to 
different scales by wavelet transform with à trous algorithm previous of Mallat 
algorithm in the parallel movement of time series, and then the decomposed 
time series were forecasted by GM (1,1) model to obtain forecasting results of 
the original time series. Time series prediction capability of GM (1,1) combined 
with wavelet transform was compared with that of traditional GM (1,1) model 
and autoregressive integrated moving average (ARIMA) model to energy 
source consumption and production forecasting in China. To effectiveness of 
these methods, eighteen years of time series records (1985 to 2002) for energy 
source consumption and production were used. The forecasting result from GM 
(1,1) model with wavelet transform for the data from 2000 to 2002 presented 
highest precision of three models. It shows that the GM (1,1) model with wave-
let transform is more accurate and performs better than traditional GM (1,1) and 
ARIMA model.   

1   Introduction 

Time series analysis was used to forecast the developing trend or changes in the fu-
ture according to a data set arranged by time, and it has been applied widely in many 
different fields such as economics, sociology and science. Traditional statistical mod-
els including autoregressive (AR), moving average (MA), exponential smoothing, 
autoregressive moving average (ARMA) and autoregressive integrated moving aver-
age (ARIMA) [1] are the most popular time series methodologies, but their forecast-
ing abilities are constrained by their assumption of a linear behavior and thus it is not 
very satisfactory. To improve forecasting non-linear time series events, alternative 
modeling approaches have been developed. Recently, non-statistical methods and 
techniques [2][3] have been applied to detect and predict the changes in the region of 
non-linear time series, like grey system, artificial neural network (ANN) and fuzzy 
logic systems that can find the characteristic of complex and random data and build 
accurate time series models, especially of grey system that is more effective for a data 
set with poor message [4]. 

Deng [5] first proposed the grey system to build a forecasting model according to 
real time series of controlling system. Grey system is used to study the object that 
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only presents a small part of information in the whole, and then deduce and obtain 
unknown or new information to develop the system.  All that can be done is to find 
out some regular patterns from the data of time series which is called grey forecasting. 
The grey forecasting based on GM (1,1) model [6] can try describing those uncertain 
parameters which are important but lack measurable messages by grey parameters and 
grey series. The solution to grey differential equation of the GM (1,1) is an exponen-
tial function which is appreciate for the fitting of more stationary data but not fit for 
the fitting of data with seriously random fluctuation. The precision for prediction will 
be decreasing when it is used to handle the data with great fluctuation which results in 
many limitations in some fields. Thus, many researchers proposed new methods to 
improve the GM (1,1) model. Tien [7] did the research on the prediction of machining 
accuracy by the deterministic grey dynamic model DGDM (1,1,1). He [8] used grey-
markov forecasting model for the electric power requirement in China. Liu [9] im-
proved the stability of grey discrete-time systems.  

Wavelet transform has been studied for many years by mathematicians and widely 
used in numerous applications. The wavelet transform is performed using translated 
and dilated versions of a single function, which is called a wavelet. It is a mathemati-
cal process that cut up data into different frequency components, and then study each 
component with a resolution matched to its scale. Because the signal becomes simpler 
in different frequency components, and is also smoothed by wavelet decomposition, 
the stationary of signals is better than that in non-decomposition. For the data with 
seriously random fluctuation, it is considered to use GM (1,1) model after it is proc-
essed by wavelet decomposition. Then the conventional grey forecasting can be used 
to predict these data series. 

In this study, a new time series forecasting model technique the GM (1,1) with 
wavelet transform was proposed, and the application of this forecasting model was 
also presented. In addition, the other two models including traditional GM (1,1) and 
ARIMA were evaluated on the basis of their efficiency to provide accurate fits and 
operational forecasts on the history data of energy source consumption and production 
in China.  

2   Research Methodologies  

2.1   The ARIMA Model 

Box and Jenkins [10] proposed an ARIMA (p,d,q) model which considers the last p-
known values of the series as well as q of the past modeling errors as follows: 

1 1t i t i j t j t

p q
y y e

i j
φ θ ε− −= + +

= =
 (1) 

First or second order differencing by d-times processes the problem of non-
stationary mean, and logarithmic or power transformation of original data processes 
non-stationary variance. 

To evaluate the appropriateness of the selected ARIMA model, the ‘portmanteau’ 
test Q, was also considered by calculating the statistical quantity Q as follows: 
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In the ARIMA (p,d,q) model, Q follows a 2 ( )m p qχ α − −  distribution. 

When 2 ( )Q m p qχ α≤ − − , the ARIMA (p,d,q) model is appreciate and acceptable, 

otherwise the model is not valid and needs reformulation.  

2.2   Wavelet Transform 

Theoretical Background. The decomposition of signals is an important procession in 
Wavelet transforms, especially for the analysis of non-stationary time series. There are 
many algorithms of wavelet decomposition, such as Mallat [11] algorithm, which has 
been proposed to compute the discrete wavelet transform (DWT) coefficients. It needs 
two extractions from signals and leads to the reduction of signal spots. It is very disad-
vantage to be used in prediction. However, Wickerhauser [12] considered if the input 
discrete f[n] has 2L (L N) nonzero samples. There are L different scales, and each 
scale sequence and wavelet sequence’s length are decimated by two with change of 
scale. Thus, this paper adopt a simple, quick algorithm called à trous algorithm without 
signal extraction [13]. By à trous algorithm, the sequence’s length of decomposed time 
series won’t change. What’s more, the length of decomposed series in scales is equal to 
the length of original series. This algorithm overcomes the problem from Mallat algo-
rithm. Besides, it is good for the reconstruction of decomposed series.  

The à Trous Wavelet Transform. It is supposed that there is a time series 
( )( 1, 2,..., )x t t N=  to be processed by wavelet decomposition, where N is the present 

time-point. It is arranged as
0

( ) ( )c t x t= . The decomposition with à trous algorithm is 

as followed: 

1( ) ( ) ( 2 )i
i i

k

c t h k c t k
+∞

−
=−∞

= + ( 1, 2, ...)i =  (4) 

1( ) ( ) ( )i i iw t c t c t−= − ( 1, 2, ...)i =  (5) 

In the formula, )(kh is a discrete low-pass filter. ci(t) and )(twi ),...,2,1( Ji = are the 

scaling coefficients and wavelet coefficients of scale i, and J is scale number. The 
number of different scales is under log(N) (N is the length of time series). 
{ }JJ cwww ,,...,, 21  is called wavelet decomposition or wavelet transform series under 

scale J. 
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Then, the decomposed wavelet was reconstructed with à trous algorithm as fol-
lows: 

0 ( ) ( ) ( )
1

iJ

J
c t c t w t

i
= +

=
 (6) 

The wavelet pass filter called Haar )
2
1

,
2
1

(=h was selected in à trous algorithm. 

Here is the derived formula for the decomposed series in corresponding space. 

1

1
( ) ( ( 2 ) ( ))

2

i
i i Jc t c t c t+ = − +  (7) 

1 1( ) ( ) ( )i i iw t c t c t+ += −  (8) 

From formula (7) and (8), it is easy to find that the wavelet coefficient for any time 
spot can be calculated without the information after the time of t. 

Besides, wavelet transform with à trous algorithm needs decomposed values out-
side signal boundaries. Although other strategies could be envisaged, we use a mirror 
approach x(N-K)=x(N+K).This is tantamount to redefine the discrete filter associated 
with the scale function in the signal boundary region and to redefine the associated 
wavelet function in this region. It is hypothesized that future data is based on values 
in the immediate past. Not surprisingly there is discrepancy in fit in the succession of 
scales, which grows with scale as larger numbers of immediately past values are taken 
into account. The first values of our time series, which also constitute a boundary, can 
cause difficulty, but this is of no practical consequence. 

2.3   GM (1,1) Grey Forecasting  Model 

It is supposed that (0)x is an original time series 

{ }(0) (0) (0) (0)
(1), (2), ..., ( )x x x x N=  (9) 

and a new series is given by the accumulated generating operation (AGO) 

{ }(1) (1) (1) (1)(1), (2),..., ( )x x x x N=  (10) 

where
(1) (0)( ) ( )

1

t
x t x i

i
=

=
, 1, 2, ...,t N= .  

According equation (10), the grey generated model, based on the series 

{ }(1) (1) (1) (1)(1), (2),..., ( )x x x x N=  is given by the first-order differential equation 

uax
dt

dx =+ )1(
)1(

 (11) 
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where the coefficient a and grey control parameter u are the model parameters to be 

estimated. Then the least squares solution of )0(x is as followed: 

(1) (0)ˆ ( 1) ( (1) ) atu u
x t x e

a a

−+ = − +  ( 1, 2, 3, ...)t =  (12) 

where 1ˆ ( )T Ta
b B B B Y

u
−= = , 

(1) (1)
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... ...
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1/ 2( (1) (2)) 1

1

1

x x

x N x N

x x

B − +

− − +

− +

= , 

(0) (0) (0)
( (2), (3), ..., ( ))Y x x x N= . 

According to the equation (12), )1(x  can be predicted. By inverse accumulated gen-

erated operation (IAGO) of )1(x̂ , the forecasting value can be reversed. 

(0) (1) (1)ˆ ˆ ˆ( 1) ( 1) ( )x t x t x t+ = + − ( 1, 2, 3, ...)t =  (13) 

where
(0)ˆ ( )( 1, 2, ..., )x t t N=  is the regression value of original data series 

(0)
( )( 1, 2, ..., )x t t N= , and 

(0)ˆ ( )( )x t t N>  is the predicting value of original data 

series.  

2.4    GM (1,1)  Grey Forecasting Model with Wavelet Transform  

There is a time series x(t) (1,2,…,N). It is processed by wavelet decomposition with à 
trous algorithm. And then the time series in every layer is reconstructed. It can be 
showed  

1 2 ... J Jx w w w c= + + + +  (14) 

In this equation, { })(),...,2(),1(: Nwwww iiii
 is detail signals in the decomposed layer 

i. { })(),...,2(),1(: Ncccc JJJJ
 is the approaching signals in the decomposed layer J. 

Thus, )()(...)()()( 21 tctwtwtwtx JJ ++++= , where )(tx  is known at the time of 

{ }Ntt < . The value next time can be obtained (equation (15)).  

1 2( 1) ( 1) ( 1) ... ( 1) ( 1)J Jx t w t w t w t c t+ = + + + + + + + +  (15) 

The steps of prediction for )1(),1(),...,1(),1( 21 ++++ tctwtwtw JJ
 are as followed. 

    First, move the difference of information parallel in time series for every layer of 

iw  and Jc . Then, the series moved is used to evaluate the parameters in GM (1,1). 

After moving, )1(),1(),...,1(),1( 21 ++++ tctwtwtw JJ
 is predicted by GM (1,1) 
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model. The value of forecasting is )1(ˆ),1(ˆ),...,1(ˆ),1(ˆ 21 ++++ tctwtwtw JJ
. Finally, the 

predicting value of original time series x is obtained, 

1 2
ˆ ˆ ˆ ˆ ˆ( 1) ( 1) ( 1) ... ( 1) ( 1)J Jx t w t w t w t c t+ = + + + + + + + +  (16) 

3   Examples 

A new forecasting model GM (1,1) with wavelet transform, traditional GM (1, 1) 
model and ARIMA model proposed in this paper were applied to  forecast energy 
source consumption and production in China. The duration considered in this study 
ranges from 1985 to 2002. These data shown in Table 1 were refereed from National 
Bureau of Statistic of China [14].   

Energy source consumption and production are influenced by many factors, includ-
ing the economy development, industry structure, weather, policy and so on. It was 
shown that the time series of energy source consumption and production in a country 
have serious random fluctuation. However, in order to harmonize the relationship 
between the high needs and reduction of energy source, it is more and more important 
to a country to make a prediction for energy source consumption and production in 
the future. From Table 1, it was found that the data were rising year by year, while 
fluctuating randomly.  

Table 1. Energy source consumption and production of China from 1985 to 2002 (unit: ten 
million kilogram standard coal)  

Year 
Energy source 
consumption 

Energy source 
production 

Year 
Energy source 
consumption 

Energy source 
production 

1985 76682 85546 1994 122737 118729 

1986 80850 88124 1995 131176 129034 

1987 86632 91266 1996 138948 132616 

1988 92997 95801 1997 137798 132410 

1989 96934 101639 1998 132214 124250 

1990 98703 103922 1999 130119 109126 

1991 103783 104844 2000 130297 106988 

1992 109170 107256 2001 134914 120900 

1993 115993 111059 2002 148222 138369 

To eliminate the fluctuation of these two data sets, wavelet transform with à trous 
algorithm was used to data processing before GM (1,1). Fig. 1 shows the decomposed 
signals of low and high frequency in two layers. The non-stationary time series data 
was smoothed and parallel shifted by wavelet decomposition, and the fluctuation was 
considered noises decomposed into high frequency. The detail signals and approach-
ing signals were used for wavelet reconstruction.  
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Fig. 1. Detail signals of (a) energy source consumption and (b) energy source production in low 
and high frequency of two layers with wavelet decomposition  

In this study, wavelet transform was performed in software Matlab 7.0, and GM 
(1,1) and ARIMA model were achieved in DPS, a software of data processing system 
for Practical Statistics [1].  

The forecasting results for energy source consumption and production from 2000 
to 2002 by GM (1,1) with wavelet transform were shown in Table 2. Meanwhile, the 
forecasting values from traditional GM (1,1) and ARIMA were also obtained. In these 
three models, GM (1,1) with wavelet transform displayed the highest precision except 
one year forecasting on energy source production. The data without any processing 
used in GM (1,1) gave the lowest precision, which revealed the default of GM (1,1) 
model for non-stationary series only using poor information to forecast. Although 
ARIMA model seems better than GM (1,1), it needs more history data. For practical 
application, most of the forecasting problems are described under poor information in 
a data set, or even a small data.  Thus, the improved GM (1,1) based on wavelet trans-
form is promising for non-stationary or lack information time series forecasting. 

Table 2. Forecasting results from three different models for the energy source consumption and 
production from 2000 to 2002 (unit: ten million kilogram standard coal)  

Wavelet-GM (1,1) GM (1,1) ARIMA 
Energy source consumption 

Prediction Precision Prediction Precision Prediction Precision 
136141 95.71% 149483 87.17% 140261 92.90% 
139278 96.87% 155455 86.79% 128887 95.53% 
143761 96.99% 161665 91.68% 135567 91.46% 

Energy source production 
114161 93.72% 133790 79.97% 103809 97.03% 
120226 99.44% 137300 88.06% 112351 92.93% 
126715 98.20% 126716 91.58% 113291 81.88% 
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4    Conclusions 

Grey forecasting model is a good method for the time series changed smoothly. How-
ever, the predicting precision will reduce when it is used to forecast time series with 
serious random fluctuation. The non-stationary time series are influenced by many 
factors, which make the prediction more complexly. The wavelet transform is an effec-
tive tool for time history dynamic analysis of structures. The problem in GM (1,1) 
model can be solved by wavelet analysis, which can decompose the time series into 
different layers according to the different scales. As the case study shows that the accu-
racy of GM (1,1) model with wavelet transform in forecasting energy source consump-
tion and production from 2000 to 2002 is higher than these in traditional GM (1,1) and 
ARIMA models. Thus, it is concluded that GM (1,1) model with wavelet transform is 
promising for time series analysis, especially for non-stationary time series.  

Besides, there is a problem in wavelet decomposition. The selection of algorithm in 
wavelet decomposition is very important for the result of wavelet analysis. In this 
paper, a simple and quick algorithm called à trous algorithm without signal extraction 
was used in wavelet decomposition. By à trous algorithm, the length of decomposed 
series in scales is equal to the length of original series. This algorithm overcame the 
problem from Mallat algorithm. However, wavelet transform with à trous algorithm 
need decomposed values outside signal boundaries. Although other strategies could 
be envisaged, we used a mirror approach. It is necessary to study further whether this 
method is popular for any time series. 
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Abstract. Fingerprint recognition systems are widely used in the field
of biometrics. Many existing fingerprint sensors acquire fingerprint im-
ages as the user’s fingerprint is contacted on a solid flat sensor. Because
of this contact, input images from the same finger can be quite differ-
ent and there are latent fingerprint issues that can lead to forgery and
hygienic problems. For these reasons, a touchless fingerprint recognition
system has been investigated, in which a fingerprint image can be cap-
tured without contact. While this system can solve the problems which
arise through contact of the user’s finger, other challenges emerge, for
example, low ridge-valley contrast, and 3D to 2D image mapping. In this
paper we discuss both the disadvantages and the advantages of touchless
fingerprint systems and introduce the hardware and algorithm approach
to solve the problems. We describe the structure of illuminator and the
wavelength of light to acquire a high contrast fingerprint images. To solve
the problem of 3D to 2D image mapping, we describe the method to re-
move the strong view difference fingerprint images. Experiments show
that the touchless fingerprint system has better performance than the
conventional touch based system.

1 Introduction

Many biometric features have been used to confirm the identity of a given hu-
man. Some of these recognition features have included iris, face, fingerprint,
voice, hand geometry, and the retinal pattern of eyes. Among all these features,
fingerprint recognition has been the most popular and reliable biometric feature
for automatic personal identification. Various types of sensors (including opti-
cal, thermal, and capacitive sensors) have been developed in order to acquire
good fingerprint images with appropriate characteristics. Also, a large variety
of algorithms have been proposed in order to achieve better authentication per-
formance. In spite of all these efforts to acquire good fingerprint images and
enhance performance, there are a number of problems which occur when using
conventional touch-based sensors.

1.1 Problems with Touch-Based Sensors

In order to acquire fingerprint images with conventional touch-based sensors,
the user must place his finger on the flat window of the sensor. Because the skin
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(a) (b) (c) (d) (e) (f)

Fig. 1. Distorted images from a touch-based sensor. (a) and (c) are gray-value images,
(b) and (c) are corresponding minutiae extracted images, and (e) and (f) show the
effects of different strengths of impression.

of the finger is not flat, the user must apply enough pressure on the window
to obtain sufficient size and achieve good image quality. However, this pressure
produces unavoidable physical distortion in arbitrary directions, which is rep-
resented differently throughout every area of the same fingerprint image. Also,
since the image varies with each impression, each fingerprint image from the
same finger can appear quite different. Fig. 1 shows the images from touch-
based sensor. Because of different pressure, the relative position and types of
corresponding minutiae are different (Fig. 1(a)-(d)). Also, the sizes of the fin-
gerprint areas and the quality of the fingerprint images are quite different (Fig.
1(e),(f)). These problems critically affect fingerprint recognition. There are also
latent fingerprint problems. A latent fingerprint refers to the trail of the fin-
gerprint on the window of the sensor. This can lead to hygienic problems as
well as fraudulent use, such as the faking of fingerprints [1]. The issue of pro-
tecting biometric information and privacy is paramount in biometric technology.
As mentioned above, previous touch-based sensor approaches can lead to several
problems. To solve these problems, [2] proposed the elastic minutiae matching al-
gorithm using the TPS (thin-plate spline) model. In this method, corresponding
points were detected using local minutiae information, and global transforma-
tion was determined with the TPS model. Although the method produced higher
matching scores when compared to the ridge-matching algorithm, it requires a
good minutiae extraction algorithm that extracts well in even distorted images.
However, if a fingerprint image is highly distorted, to extract usable minutiae
is very difficult. [3] proposed detection of artificial fingers. This method showed
that detection of a perspiration pattern in a time progression of fingerprint im-
ages can be used as an anti-spoofing measure. However, environmental factors
(such as temperature and humidity) and user-specific factors (such as skin hu-
midity and pressure) are not taken into account. In this paper, we investigate
a touchless fingerprint system that fundamentally overcomes the problems in-
volved in conventional touch-based sensors. This paper is organized as follows. In
section 2, we explain the advantages and disadvantages of touchless fingerprint
systems and introduce the hardware approach and the algorithm approach to
address the disadvantages. In section 3, a comparison between touch-based sen-
sors and touchless sensors is given in terms of recognition performance. Finally,
conclusions and suggestions for future works are discussed in section 4.
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2 Touchless Fingerprint System

In order to solve the innate problems of touch-based sensors, we studied a touch-
less fingerprint recognition system. [4] developed a touchless fingerprint sensor
using a camera. They used a polarizer filter and a band-pass filter in order to
acquire a good quality image. Unfortunately, there is no explanation between
the illuminator and filters which affected image quality. We also used a camera
to capture fingerprint images in our touchless fingerprint sensor. Advantages of
using a camera include: i) the fingerprint image can be acquired without plastic
distortion from contact pressure, ii) latent fingerprints do not appear on the sen-
sor, iii) hygienic problems are reduced, and iv) a large image area can be captured
quickly. The combination of distortion-free fingerprint images and large image
areas is desirable in order to acquire many minutiae in the same relative location
and direction at every instance. Therefore, this combination helps the authenti-
cation system to have low FAR and FRR. While there are strong advantages to
this system, there are also new disadvantages. These can be classified into two
areas: low contrast between the ridges and valleys, and 3D to 2D image mapping.
Low ridge-valley contrast is caused by the motion blur of hand tremble, camera
background noise, and a small Dof (Depth of field). Because the 3-dimensional
object finger is projected onto a 2-dimensional image plane, the difference of the
camera viewpoint caused by the 3-dimensional rotation of the finger can produce
a small common area between the enrolled and input images. This leads to an
increased false acceptance rate (FRR). Fig. 2 shows the sample images which
represent the above-mentioned problems. In this paper, we propose the hard-
ware approach in order to solve the low ridge-valley contrast and the algorithm
approach in order to solve the difference between the camera viewpoints.

2.1 The Hardware Approach: Low Ridge-Valley Contrast Issue

Structure of Device. Motion blur generally stems from the long capture
time relative to the slight motion of the finger. Although high-sensitivity sen-
sors can handle fast shutter speed, images normally contain increased electrical
background noise. Although a large aperture stop could be an alternative way
to retain rapid shutter speed, this method is an unsuitable way to guarantee
the required Dof, which is important to keep the variation range of the finger

(a) (b) (c)

Fig. 2. (a) Motion-blurred image, (b) partially defocusing, (c) images from rolled
fingers
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Fig. 3. The spectral sensitivities curve of the camera

position in focus. Hence, a small apparatus and appropriate lighting gadgetry
are necessary. For this reason, we adopt a finger support to decrease motion
blur and an appropriate illuminator to obtain uniform lighting and sufficient
brightness. There are several types of illuminator structures which can be used
to obtain good images in special applications [5]. For example, dark-field lights
illuminate objects from their sides with specific patterns to emphasize shadows
and enhance image quality. A ring-type illuminator, especially, is easy to build
up and produces uniform illumination on the object, and on-axis lights illumi-
nate the object relative to the camera axis. Among those types, the ring-type
and their modified types simply and stably obtain uniform light conditions.

Wavelengths of Illuminators. To acquire good quality fingerprint images
for fingerprint recognition, both the spectral sensitivities of the camera and the
skin reflectance of the finger must be considered. The method proposed in [6]
measured the light reflected from the skin using a high-resolution, high-accuracy
spectrograph under precisely calibrated illumination conditions. This showed
that the skin reflectance of humans is mainly influenced by both melanin and
hemoglobin. However, the skin reflectance of the palm (including the fingers) is
mainly influenced by oxygenated hemoglobin because of the scarcity of melanin
in the palm. In this paper, the hemoglobin absorption spectrum was founded.
The ratio of hemoglobin absorption is lower around 500nm and higher around
545nm and 575 nm. Because it is desirable to observe only the surface of the
finger and remove the effect of hemoglobin in order to obtain a high-contrast
fingerprint image, the wavelength at lower hemoglobin absorption must be cho-
sen on the wavelength of the illuminator of the touchless fingerprint sensor.
Fig. 3 shows the spectral sensitivities of the normal CCD. The sensitivities are
high around 500nm. Considering both the skin reflectance of the finger and the
spectral sensitivities of each camera, the wavelength of light on the touchless
fingerprint sensor can be determined.

2.2 Software Approach: 3D to 2D Image Mapping Issue

Since touchless fingerprint sensors acquire 2-dimensional fingerprint images from
3-dimensional finger skins, a significant view difference is generated when rolling
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the finger in the image acquisition step. We divided the view difference image
into a weak view difference image and a strong view difference image. The weak
view difference image usually has a small influence on the fingerprint and is
allowable through elastic matching by the tolerance parameters of the bounding
box [7]. When the strong view difference image appears, ridges on the slanted
skin are densified on the image (due to the 3D to 2D projections), they are apt
to have type-changed, missed or even false minutiae. Moreover, the foreground
becomes the near-boundary region and also becomes dark or out of focus. This
decreases the number of usable minutiae as well as the good quality foreground,
and also reduces the common area between the fingerprint impressions, which
results in bad system performance. Therefore, it is desirable to reject images with
strong view differences and instruct the user to retry the input. To determine the
strong view difference image, we measure the distance between the core and the
center axis of the finger. Fig. 4 shows the distance as determined by the rolled
finger. The larger the distance between the core and the center axis, the more
the image is rolled. Most fingerprints have at least one core (except fingerprints
of the arch type). Though these fingerprints have no core point, we can detect
one singular point that is invariant to rolling. We implemented the core point
detection algorithm using [8]. This method is an accumulating mechanism similar
to a Hough transform. Using a ridge orientation map, this algorithm follows a
path that is perpendicular to the ridge orientation and accumulates a histogram.
After finishing all searches, the location of the core point can be determined by

(a) (b) (c) (d)

Fig. 4. The distance between the core and center axis of rolled finger. (a) 0 degree, (b)
10 degrees, (c) 20 degrees, (d) 40 degrees.
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Fig. 5. The distance between the core and center axis of rolled finger
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detecting the maximum position on the histogram. This method is robust to noise
and can detect the maximum position for the specific arch type. The center axis
of the finger is determined as the KL(Karhunen and Loeve) transform with the
segmented image. The distance that determines the strong view difference image
can be defined as follows:

Distance = |axc+byc+c|√
a2+b2

(1)

where (xc, yc) is the location of the core point and a, b and c are the coefficients
of the center axis ax + by + c = 0. Fig. 5 shows the averaged distance of 50
fingers according to the sampled rolling angle. We can observe that the distance
can discriminate between the strong view difference image and the weak view
difference image.

3 Experimental Results

3.1 Comparison Between Touch-Based Sensors and Touchless
Sensors

For this comparison, we collected 1630 fingerprint images from 163 fingers us-
ing a touchless-sensor and also a touch-based optical sensor (Ditgen FD1000
[9]). To avoid strong rolled fingerprint images, we mentioned this to the users

Table 1. The specification of sensors

Touchless sensor Touch-based sensor
Size of input window 24mm×34mm 17mm×19mm

Resolution 450 dpi 500dpi
Size of image 480×640 pixels (Fingerprint 320×450 Pixels) 280×320 pixels

Touchless Fingerprint Sensor

Touch-based Fingerprint Sensor

FAR

G
A

R

Touchless Fingerprint Sensor

Touch-based Fingerprint Sensor

Touchless Fingerprint Sensor

Touch-based Fingerprint Sensor

FAR

G
A

R

Fig. 6. The ROC of touch-based fingerprint recognition and touchless fingerprint
recognition
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Fig. 7. Performance of the system (GAR at 2% FAR) and the false reject error rate

before acquiring the images. Table 1 shows the specifications of the two sensors.
After acquiring the images, we adopted the same fingerprint image processing
algorithm [10] and matching algorithm [11]. Fig. 6 shows the ROC of the two
results. From these experimental results, we can observe that the performance
of touchless fingerprint sensors is better than the performance of touch-based
fingerprint sensors.

3.2 Rejecting the Strong View Difference Image: An Evaluation of
the Method

1100 rolled finger images were collected from 50 fingers. Each finger was rolled
from -50 degrees to +50 degrees with an interval of 10 degrees. Fig 7 shows the
relationship between the performance of the system (GAR at 2% FAR) and the
false reject error rate. The false reject error is composed of two types of errors.
The type-I error is the number of reject images corresponding to the weak view
difference image. The type-II error is the number of acceptance image corre-
sponding to the strong view difference image. We defined the strong and weak
view difference images by matching the algorithms with the matching threshold
T. The matching threshold is defined by experiment 3.1.

4 Conclusions and Future Works

In fingerprint recognition, conventional touch-based sensors contain innate prob-
lems that are caused by the contact of the finger. Some examples of these problems
are distortions in the fingerprint images, latent fingerprints and hygienic problems.
To overcome these fundamental problems, we investigated a touchless fingerprint
recognition system. While we obtained a large distortion-free fingerprint image,
new problems needed to be dealt with, such as low contrast between ridges and
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valleys and 3D to 2D image mapping. To acquire good fingerprint images, we
introduced a hardware approach that used the structure of the device and the
wavelengths of light. Also, we proposed a strong view difference image rejection
method using the distance between the core and the center axis of the finger in
order to overcome the 3D to 2D image mapping problem. In the experiments, we
compared the touchless fingerprint sensor with the touch-based fingerprint sensor
in terms of performance and evaluated the proposed rejection method.

In future work, we will develop the matching algorithm that is invariant to 3D
camera viewpoint change and compare fingerprint recognition system in images
captured with touchless sensors and other touch-based sensors. In this comparison,
we will compare not only verification performance but also image quality, the
convenience ofusage, the size offingerprint image, and thenumber of trueminutiae.
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Abstract. In this paper, we propose a block-based real-time people
counting system that can be used in various environments including
shopping mall entrances, elevators and escalators. The main contribu-
tions of this paper are robust background subtraction, the block-based
decision method and real-time processing. For robust background sub-
traction obtained from a number of image sequences, we used a mixture
of K Gaussian. The block-based decision method was used to determine
the size of the given objects (moving people) in each block. We divided
the images into 72 blocks and trained the mean and variance values of
the specific objects in each block. This was done in order to provide
real-time processing for up to 4 channels. Finally, we analyzed various
actions that can occur with moving people in real world environments.

1 Introduction

People counting systems can be used to count or track people, for example at
the entrances of shopping malls and buildings. The information can then be
used for surveillance purposes, to gather marketing data or to facilitate building
management. The use of early automatic counting methods such as light beams,
turnstiles and rotary bars led to various problems. These conventional meth-
ods could not count people accurately when many individuals passed through
the sensors at the same time. To solve this problem, it is necessary for image
processing-based approaches to be hance motivated. Thou-Ho et al.[1] presented
a bi-directional counting rule, but this method failed in terms of measuring the
fixed sizes of objects in the image regions. Terada and Yamaguchi[2] utilized a
color camera to extract images of moving people, but the problem of direction-
orientation remained intractable. Yoshida et al.[3] used stereo cameras to capture
pairs of images, but this method still couldn’t solve the problems of counting
crowds and direction recognition. The above research[1]-[5] describes how image
processing has been used to provide image data that is based on motion analysis,
which assumes that the people are moving relative to a static background. In
order to focus on dynamic backgrounds, Qi Zang et al.[6] proposed a method of
robust background subtraction and maintenance.

D.-Y. Yeung et al. (Eds.): SSPR&SPR 2006, LNCS 4109, pp. 366–374, 2006.
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In this paper, we apply the proposed method to practical and complicated en-
vironments such as building gates, escalators, and elevators with a large number
of passing people. These practical environments present many problems when
compared to limited and simplified environments. To solve these problems, we
propose the following methods. First, for robust background subtraction from
image sequences, we used a mixture of K Gaussian. Second, we divided images
into 6 × 12 sub-blocks and calculated the mean and variance values of the ex-
tracted object size of each block. We then plotted these means and variances
into a table. Third, we did not use complicated image processing techniques to
recognize and track each person. We simply tracked masses of objects. We were
able to improve processing time and counting accuracy by using this method.
In this paper, we propose a people counting algorithm and present experimental
results to verify the effectiveness of the proposed method.

2 Theoretical Approach

2.1 System Configuration

While Figure 1 shows the configuration of our system, Figure 2 shows the overall
system block diagram. This is divided into two parts. The first part refers to
moving object extraction in image sequences. The second part refers to tracking
and counting decisions that are made using the extracted objects. The moving
object extraction process consists of four parts. First, we used only the LL part
of the Harr wavelet transformed images to remove noise from the input images
and down-sample the images (320 × 240 =⇒ 160 × 120) in order to improve
processing time. Second, we produced a reference background model by using a
mixture of K Gaussian distributions with N input images. Third, we extracted
moving objects by calculating the background subtraction and frame differences
between differing time (t − 2, t − 1, t) images. Last, we used a morphological
mask to remove noise from the images and to fill in the large and small holes
existing in the extracted objects. The object tracking and counting decision stage

Fig. 1. System configuration
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Fig. 2. System overall block diagram

consists of two parts. First, we analyzed the relationship between the extracted
objects by using binary images that were obtained from the object extracting
stage and compared them with previous ones in order to update correlations
among objects and create information when new objects were extracted. Last,
we decided to count when objects passed the ROI (region of interest).

2.2 Wavelet Transforms and Background Model

We used the Harr wavelet transform for two reasons; to remove noise from the
images by using only a low frequency component, and to down-sample the images
by using only the LL part. The first and most important step was to extract
the moving objects from the background. Each background pixel was modeled
by using a mixture of K Gaussian distributions. The K Gaussian distributions
were evaluated by using a simple heuristic method to hypothesize which was
most likely to be part of the background process. Each pixel was modeled by a
mixture of K Gaussian distributions as stated in the formula, where Wt, μi,t,
K and

∑
i,t are the input images, the mean value of the ith distribution, the

number of distributions and the ith covariance matrix, respectively.

P(Wt) =
K∑

i=1

wi,t ∗ η(Wt,μi,t,
∑

i,t) (1)

Previous studies used K = 3 for indoor scenes and K = 5 for outdoor scenes[6].
So, we made a reference background model by using a mixture of the K Gaussian
distributions with the N wavelet transform images. We also made a reference
background model with K = 3 empirically.

2.3 Shadow and Instant Change Detection

Shadow regions and instant changes of pixels intensity are the main reasons
for undesired parts, which affect the final counting results. Therefore, it was
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necessary to detect and remove these undesired parts. We detected the shadow
regions and instant change regions by using the formula below. Once we detected
these two regions, we were easily able to remove them to obtain only the desired
moving parts.

Wout(t) =
Rw + Gw + Bw

3
, Bout(t) =

RB + GB + BB

3
(2)

S(t) =
Wout(t)
Bout(t)

(3)

Where Wout(t) and Bout(t) are the mean values of the R, G, and B components
of the present input image and the reference background image, respectively. S(t)
is the ratio between Wout(t) and Bout(t). We were able to decide if a certain area
was a shadow region or an instantly changing region by using S(t). Generally,
0 < S(t) < 1 is defined as a shadow region and S(t) ≥ 1 is defined as an instantly
changing region[7].

2.4 Moving Region Extraction Using Frame Differences

Many errors occur when we extract moving objects only by using background
subtraction. To reduce these errors, we used the difference between the frames.
The formula below is the procedure used to save t − 2, t − 1 and t images in
memory and produce the difference images from them. First, we calculated F (t)
and F (t − 1) using two images. D(t) was calculated from F (t) and F (t − 1).
W (t) was the Harr wavelet transform image from the original image I(t).

F (t− 1) = W (t− 1)−W (t− 2),F (t) = W (t)−W (t− 1) (4)

D(t) = F (t) ∨ F (t− 1) (5)

In this result, we used the extracted moving object combined with the back-
ground subtraction result.

2.5 Morphological Process

A morphological process was used to remove noise from the images and fill in
small holes of the extracted objects. Practically, an extracted object usually
contains large holes that cannot be filled by morphological process. For this
problem, we used the masking method instead to fill both the large and small
holes effectively and remove noise from the images as well[4]. One disadvantage
of this method is the high computational expense. We proposed the modified
masking method to reduce the processing time as follows. We produced a proper
image to track by using a 5×5 main-mask, which can remove noise from images
and fill in holes of the extracted objects. Figure 3 shows this process. This
mask will change the pixel value from 1 to 0, if the pixel is determined as noise.
Otherwise, it leaves the pixel value as it is. This process sets pixels to the majority
pixel value of the mask by counting each pixel value. If a certain pixel value is
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Fig. 3. 5 × 5 main-mask and 3 × 3 sub-mask used for the morphological process

determined to be 0, we move the mask to the next pixel whose value is 1. This
process reduces the processing time. If a certain pixel value is determined to be
1, we use a 3× 3 sub-mask for the surrounding 8 pixels of the center of the 5× 5
main-mask and count each pixel value to change them 1 → 0, 1 → 1, 0 → 1,
0 → 0. After performing the above steps, we use the same 3 × 3 sub-mask for
the other surrounding 16 pixels in the same way. Using this method, we fill in
both the large and small holes of the extracted objects and remove the noise
from the images at the same time. This would be impossible when using only
the morphological process.

2.6 Block-Based Object Counting

The previous method used the same size for the extracted objects of any part
of the image and counted objects passing through the interesting area by using
this fixed size[1]. This is not an appropriate approach when working in real
environments because the size of the extracted objects depends on the position
in the image (with a camera at a height of 3.1∼3.3m). So we divided the images
into blocks and calculated the mean and variance values of the size of each
person for each block. This information was entered into a table. Figure 4 shows
the calculating process. The mean and variance values were calculated from the
trained images shown in Figure 5. People pass each block at least 10 times in
the training images. We trained the images and made a mean and variance table
in various environments, such as a 2.8mm lens with a camera at a height of
3.0m, a 2.8mm lens with a camera at a height of 3.1m, and so on. With this
table, we were able to conveniently use this system in a wide range of different
environments without training.

2.7 Counting Decision Rule

In tracking and counting procedures, it is necessary to analyze merging and
splitting relations among people. For example, in light traffic hours, it is simple
to count people because they often move independently of one another. However,
in busier hours, people frequently merge and split. Therefore, during these busier
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Fig. 4. Divided 6 × 12 blocks and calculation of mean and variance values

(a) (b)

Fig. 5. (a) Images for one-person training image, (b) Images for two-person training
images

Fig. 6. (a) Co-directional rule, (b) Bi-directional rule

times it is difficult to count the number of people passing through the ROI and
estimate the direction of their paths. To solve this problem, researchers have
used specific color information for each person. Although this method is helpful,
it requires more processing time, because the system has to store and update
all the color information for each person. Hence it is not suitable for real-time
systems. It was therefore decided to assign ’tag’ information to each moving
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person, in order to improve time efficiency. This tag information was maintained
in the ROI and updated to track the direction of the paths. In this way, no
additional image processing or information was needed. Figure 6 shows some
examples of the proposed tagging rule in co-directional and bi-directional cases.
In Figure 6-(a), when people stepped inside line 1 (the entrance counting line),
they were given a label of ’Tag 1’. Similarly, when people stepped outside line
2 (exit counting line), they were given a label of ’Tag 2’. Then, the counting
process could be easily performed according to changes of the value of the tag.
Also, as shown in Figure 6-(b), the directions of the paths sometimes differ. But
if we knew the entrance tag number of each person in advance, we could easily
count the passing people by using the alteration of their tag numbers.

3 Experimental Result

We experimented with a camera on the ceiling at a height of H assuming that
the height of an average person is h. H and h were measured at approximately
3.1∼3.3m and 150∼180cm, respectively. We used a general CCD camera and
a 2.8mm lens. We performed the experiment under practical conditions using
three different locations at three different times. Experiments were performed in
a corridor, on an escalator, and in an entrance. These locations represented var-
ious environments such as light, shadow and highlights caused by strong light.
These experimental environments are shown in Figure 7. We used about 20 000
sequential images for each environment. The first 100 frame images were pure
background images, which we used to make a reference background model. We
produced this model from the first 20 images in the experiments. Table 1 shows
the people counting error rates that were recorded for each environment. The
TPP (total passing people) parameter represents the counting of the number
of people through the ROI (region of interest). The ACE (add counting error)
parameter represents values that are higher than the correct count and the UCE
(under counting error) parameter represents values that are lower than the cor-
rect count (since they exclude children and overweight people). We only trained
people of average height and weight. The TCE (total counting error) parameter
represents the sum of the ACE and the UCE parameters. Figure 8 shows the
people extraction and tracking results in the various environments.

(a) (b) (c)

Fig. 7. Examples of the different environments: (a) Corridor, (b) Escalator, (c) En-
trance
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(a) (b) (c)

(d) (e)

Fig. 8. Results obtained from the different environments: (a) Corridor, (b) Escalator,
(c) Entrance, (d) Crowd image, (e) Segment of crowd image

Table 1. Error rates obtained in each environment

Environment Entrance Escalator Corridor
ACE/TPP 10/192(4.16%) 2/207(0.96%) 0/64(0.000%)
UCE/TPP 8/192(5.21%) 6/207(2.89%) 2/64(3.125%)
TCE/TPP 18/192(9.37%) 8/207(3.85%) 2/64(3.125%)

4 Conclusion

In this paper, we proposed a people counting system that can be used to count
and track people at entrances, elevators, or escalators where many people are
moving. This system is useful for surveillance, building management, and mar-
keting data. We proposed the block-based people counting system which divides
an image into 6×12 blocks and trains the size of each person for each block. This
proposed method does not detect each person but only tracks masses of objects
and counts them by using the trained size of the person. This method improves
both accuracy and processing time. We analyzed the time performance with a
Pentium 4 3.2 GHz using a video at 320×240 frames (24 bits per pixel) in which
our system obtained an average frame rate of 25 fps (performance obtained using
the video shown in Figure 8). The counting accuracy was 100% when used with
one or two moving people and about 90∼94% when used with three or more
moving people.
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Abstract. Stethoscopic auscultation is still one of the primary tools for the di-
agnosis of heart diseases due to its easy accessibility and relatively low cost. 
Recently, many research efforts have been done on the automatic classification 
of heart sound signals for supporting clinicians to make better heart sound diag-
nosis. Conventionally, automatic classification methods of the heart sound sig-
nals have been usually based on artificial neural networks (ANNs). But, in this 
paper, we propose to use hidden Markov models (HMMs) as the classification 
tool for the heart sound signal. In the experiments classifying 10 different kinds 
of heart sound signals, the proposed method has shown quite successful results 
compared with ANNs achieving average classification rate about 99%. 

1   Introduction 

Heart sound auscultation is still a very important method for the diagnosis of heart 
diseases with its easy accessibility and the relatively low cost. However, detecting 
symptoms of various heart diseases by auscultation requires a skill that takes years of 
experiences in the field. As the skill is not easy to acquire for junior clinicians, an 
automatic classification system of the heart sound signal would be very useful for 
assisting the clinicians to make better diagnosis of the heart disease [1][2].  

The dynamic spectral characteristic and non-stationary nature of the heart sound 
signal makes the automatic classification difficult. As the heart sound signal comes 
from the human body, it may be highly variable from cycle to cycle and even accord-
ing to the patient’s conditions. To overcome these problems, a classifier which can 
take into account the variability should be used in the automatic diagnosis of the heart 
sound signal. 

Artificial neural networks (ANNs) based approaches have been widely used in the 
classification of heart sound signals with some success [1],[2]. ANNs are known to be 
efficient in classifying complex patterns and have been traditionally used for prob-
lems in bio-medical and image pattern classification [3]. However, neural networks 
are not designed to be suitable for time sequential input patterns like heart sound 
signals. In fact, nearly all ANNs used for heart sound signals are just static pattern 
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classifiers. The heart sound signal should be segmented before use in training and the 
ANN can only recognize the segmented data. In real situation, it may not easy to 
segment the relevant parts of the heart sound signal because the automatic classifica-
tion system should accept the continuous input signal. Even if we can successfully 
segment one cycle of the heart sound signal, the non-stationary characteristics within 
the cycle makes it inappropriate to consider the whole samples in the cycle as an input 
to the ANNs, because we may fail to focus on the time-varying characteristics within 
the cycle. For the efficient signal classification, methods which can analyze separately 
the stationary parts in a cycle and later combine them would be desirable. But, neural 
networks have difficulty in integrating the time-varying statistical characters of the 
heart sound signal. 

In contrary, hidden Markov models (HMMs) have shown quite successful results 
in classifying time sequential patterns like speech signals [4]. HMMs with its Markov 
chain structure can inherently incorporate the time sequential character of the signal. 
By using the Gaussian mixture densities, the HMMs are also expected to faithfully 
represent the various spectral characteristics of the heart sound signal. The  
non-stationary nature of the heart sound signal may be well represented by the state 
transitions in HMMs. As will be shown later in this paper, we could find from the 
classification experiments that HMMs are very efficient for modeling the dynamic 
and non-stationary nature of the heart sound signal.  

In the next section, we will explain in detail methods how to construct a classifier 
using HMMs and, in section 3, we show experimental results which demonstrate the 
feasibility of using HMMs in classifying the heart sound signal. And finally, we make 
conclusion in section 4. 

2   Methods 

2.1   Hidden Markov Models  

The basic theory of HMMs has been published in a series of papers by Baum [5] in 
the late 1960s and early 1970s. The underlying assumption in the use of the HMM for 
signal modeling is that the signal can be well characterized as a parametric random 
process and the parameters of the random process can be estimated in a well-defined 
manner. The HMM has shown to provide a highly reliable way of recognizing time 
sequential patterns like speech. A simple three-state HMM is shown in Fig.1 [6]. 

S1 S2 S3

)(1b )(2b )(3b

22a 33a11a

12a 23a

 

Fig. 1. A 3-state hidden Markov model 



 A Classification Approach for the Heart Sound Signals Using Hidden Markov Models 377 

The transitions between states are controlled by the transition probability 

)|( ijij SSPa = . (1) 

And, the probability of generating an observation is determined by the output 
probability distributions in each state which are usually modeled by a mixture of mul-
tivariate Gaussian distributions. Given the observation )(ty , the output probability 

distribution in state 
jS  is given by 

=

Σ=
M

m
jmjmjmj tyNctyb

1

),);(())(( μ . (2) 

where ),);(( jmjmtyN Σμ  is a multi-variate Gaussian distribution, with mean vector  

jmμ  and covariance matrix 
jmΣ , each mixture component having an associated 

weight 
jmc .  

The HMM, as an acoustic model is required to determine the probability of the 
time sequential observation data )}(,),2(),1({ TyyyY = . This is done by computing 

the probability of the observation data ViMYP i ,,2,1,)|( = . Here 
iM  represents 

an HMM corresponding to a class in the classification problem and V  is the total 

number of classes. The classification is performed by finding the class k which gives 
the best likelihood score. 

)|(maxarg ,,2,1 iVi MYPk ==  (3) 

In practice, Viterbi decoding is employed to find the class with the best likelihood 
score. Meanwhile, the estimation of the parameters (

jmjmjm c,,Σμ ) of the HMM is an 

optimization problem based on some appropriate criterion. Maximum likelihood es-
timation (MLE) is the most popular one and it tries to match the HMM to the training 
data as closely as possible. For the efficient MLE training of the HMM, the Baum-
Welch algorithm based on Expectation-Maximization (EM) technique is commonly 
used [7].  

2.2   Classification of Heart Sound Signals Using HMMs 

A cycle of heart sound signals consists of four elements. The first one called S1 is 
heard when the mitral and tricuspid valve is closed. The second one S2 is related with 
the closure of the aortic and pulmonary valve. The systolic and diastolic phase refers 
to the intervals between S1 and S2 during which any sound is hardly heard in the 
normal case. We used a four-state HMM to model a cycle of the heart sound signal as 
shown in Fig. 2. The number of states in the HMM may be determined based on the 
nature of the signal being modeled. We assumed that each state of the HMM corre-
sponds to an element of the heart sound signal because the signal characteristics in 
each element are thought to be homogeneous. The spectral variability in each state is 
modeled using multiple mixture components. By trial and error, we determined the 
number of mixture components in each state to be 10. 

 



378 Y.-J. Chung 

 

Fig. 2. An HMM for a cycle of the heart sound signal 

In Fig. 3, we show the procedure of classifying the heart sound signal using the 
trained HMMs. The HMM parameters are estimated during the training procedure. 
For the initial parameter estimation, every cycle of the heart sound signal is manually 
segmented into 4 regions giving the statistical information corresponding to each 
element [7]. The feature vectors used are mel-frequency cepstral coefficients 
(MFCCs) and filter bank outputs both derived from the fast Fourier transform (FFT). 
MFCCs are popularly used for speech recognition [6] and the filter bank outputs have 
been usually employed for the spectral analysis of the heart sound signal.  

feature 
extraction 

initial 
parameter 
estimation 

Viterbi 
decoding 

parameter 
re-estimation

trained 
HMMs 

classification 
results 

training

classification

heart 
sound 

 

Fig. 3. The procedure of classifying the input heart sound signal using the trained HMMs 

3   Results and Discussion 

The heart sound data used for the experiments were obtained from the clinical training 
CDs for the physicians [9]. The original data were down sampled to 16 KHz and 
stored in a 16 bit resolution. The heart sound signal was already diagnosed and la-
beled as a specific heart condition. The classification experiments were done using 
159 heart sound examples corresponding to 10 different heart conditions: normal 
sound, innocent murmur, AR (Aortic Regurgitation), AS (Aortic Stenosis), CA 
(Coarctation of the Aorta), MR (Mitral Regurgitation), MS (Mitral Stenosis), MVP 
(Mitral Valve Prolapse), TR (Tricuspid Regurgitation) and VSD (Ventricular Septal 
Defect). 

An HMM was constructed for each type of heart condition using the corresponding 
data. To overcome the problem of small amount of data collected, the classification 
test was done by the Jack-Knifing method. In the process, the HMM is trained with all 

1 2 3 4

systole S2 diastoleS1�
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the available examples except the one which is used for the testing. This process is 
repeated so that all the examples can be used for the testing. The test results are then 
averaged to give the final classification rate.  

The feasibility of modeling the heart sound signal using HMMs can be checked by 
the segmentation results which can be obtained in the Viterbi decoding. Using the 
training data, we could verify that each state of the HMM matches quite closely with 
the respective components of the heart sound signal as we expected. In Fig. 4, we 
show the matching relations between the HMM states and the heart sound signal 
waveforms as the number of mixture components varies. In the figure, the vertical 
lines represent the boundaries between the states. 

 

Fig. 4. The matching relations between the HMM states and the heart sound signal waveforms 

Although the matching between them is poor when the number of mixtures is 1, it 
becomes quite accurate as we increase the number of mixture components to 10. With 
these segmentation results satisfying our expectation, we may conclude that the HMM 
is quite suitable for the stochastic modeling of the heart sound signal. 

Conventional approaches for the heart sound signal classification have been usu-
ally based on ANNs [8]. ANNs are known to be able to discriminate complex patterns 
by generating nonlinear functions of the input. While they have proved useful in rec-
ognizing static patterns like spelled characters, they may not be tailored for time se-
quential input patterns. To compare the performance of the proposed HMM-based 
classifier with ANNs, we constructed an ANN and tested its performance in recogniz-
ing the heart sound signals. The ANN consists of 3 layers (input layer, hidden layer 
and output layer) connected in sequence. The nodes in each layer process the outputs 
from the previous layer or directly take in the input features of the heart sound signal. 
The number of nodes in the input layer is 210 equal to the dimension of the input 
feature vector and the number of nodes in the hidden and output layer is 20 and 10, 
respectively [8]. The node in the output layer corresponds to each class of the heart 
sound signals to be discriminated. In the training, we used 10 different classes of heart 
sound signals including the normal one. 

We investigated the spectral characteristic of the heart sound signal by obtaining 
the normalized energy spectrum through the fast Fourier transform (FFT). In addition 
to the frame-level energy spectrum, the energy spectrum of the whole cycle of the 
heart sound signal was also obtained. The length of the cycle ranges from 500 ms to 1 
sec and the frame length was fixed at 2.5 ms. The heart sound signal is processed on a 
frame basis in the HMM while the whole cycle is fed into the ANN as an input. So, 
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Fig. 5. Normalized energy spectrum of a cycle of the heart sound signal 

we may expect that different input spectral characteristics will be modeled in the 
HMM and ANN, respectively. In Fig. 5, we show the normalized energy spectrum for 
the whole cycle of the heart sound signals. The heart sound signal seems to contain 
most of its energy between 0 and 300 Hz, although there are some energy for fre-
quencies up to 600 Hz. 

Contrary to the ANN, the input feature vector for the HMM is given on a frame ba-
sis. In Fig. 6, the frame-level energy spectrum is shown as time spans. In Fig. 6(a), we 
can find significant peaks in the energy spectrum at about 200 ms and 600 ms. They 
seem to correspond to S1 and S2, respectively and their frequency range is between 0 
and 300Hz. Meanwhile, for the heart sound signals related with some diseases, there 
is considerable energy in the diastole and systole phase. In particular, in Fig. 6(c) and 
(d), we can see some energy peaks between S1 and S2 and their frequency range goes 
up to 600 Hz. For the MVP case in Fig. 6(b), although the signal waveform looks 
similar to the normal case, the S2 is usually split as can be seen in the spectrum.   

In the experiments classifying heart sound signals, we used two different types of  
features. In Table 1, we show the classification results when using the MFCC and 
filterbank outputs. The frequency range for both types of features was relatively broad 
from 200 to 6400 Hz. The two kinds of features show similar results with marginal 
improvement obtained in the case of using filterbank outputs. Although the MFCC 
may be very adequate to speech signals, it was not quite successful to the heart sound 
signal. With these results, the filterbank outputs are used as the basic input features in 
the following experiments. 
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Fig. 6. Normalized frame-level energy spectrum variations with time  

As mentioned earlier, the effective frequency range in the spectrum of the heart 
sound signal is usually well below 600 Hz. So, we experimented by varying the fre-
quency ranges in the filterbank outputs. The frequency ranges considered are 0~900 
Hz, 0~210 Hz, 200~900 Hz, 200~300 Hz and 30-900 Hz. The classification results 
are shown in Table 2. The 0~900 Hz and 200~900Hz ranges performed better than 
others although there were not significant differences in the classification results with 
the various frequency ranges. Also, the results in Table 2 were better than the previ-
ous results in Table1 indicating that it is important to consider only the relevant fre-
quency ranges in obtaining the filterbank outputs. 

To compare the performance of the proposed method with the conventional 
aproaches, an ANN was trained and tested in the classification experiments. Its 
struture is as described in the above and two different frequency ranges were consid-
ered in the filterbank outputs. From the results in Table 3, we can see that the per-
formance of the ANN was quite inferior to the HMM. The HMM’s ability to model 
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efficiently the dynamic time sequential input patterns may be the reason for the supe-
rior performance over the ANN. 

Table 1. The classification results depending on input features 

MFCC Filterbank output  
 Accuracy(%) Correct /

Total 
Accuracy(%) Correct 

/Total 
Normal sound 100 15/15 100 15/15 

Innocent murmu
r 

92.86 13/14 92.86 13/14 

AR 100 14/14 100 14/14 

AS 100 18/18 100 18/18 

CA 100 20/20 95 19/20 

MR 100 21/21 100 21/21 

MS 100 14/14 100 14/14 

MVP 76.92 10/13 92.31 12/13 

TR 100 20/20 100 20/20 

VSD 100 10/10 100 10/10 

Average 97.48 155/159 98.11 156/159 

Table 2. The results with various frequency ranges in the filterbank outputs  

Range(Hz) Average(%) Correct/Total 

0~900 99.37 158/159 

0~210 98.74 157/159 

200~900 99.37 158/159 

200~300 98.11 156/159 

30~900 98.74 157/159 

Table 3. The classification results of the ANN  

Range(Hz) Average(%) Correct/Total 

0~210 93.08 148/159 

0~420 90.56 144/159 

4   Conclusion 

As a preliminary study of developing an automatic diagnosis system for heart dis-
eases, we proposed a statistical classifier using HMMs. Although the number of dis-
eases to be classified was fairly large compared with the previous works, it achieved a 
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satisfactory classification rate about 99%. In particular, the proposed method showed 
quite superior performances compared with the ANN. This seems to come from the 
HMM’s ability to cope with the dynamic time sequential input patterns. However, 
some of the heart signals were found to be difficult to discriminate. As the HMM is 
very flexible in modeling the signals, we may improve the discrimination between the 
models by careful investigation on the heart sound signal characteristics. For example, 
the number of states and mixture components can be varied depending on the signal 
types and the amount of the training data. Also features which can contribute more to 
discriminating between classes can be considered and various estimation criterions for 
the HMM parameters can be considered for the better modeling. 
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Abstract. Semi-automatic parking system is a driver convenience system 
automating steering control required during parking operation. This paper 
proposes novel monocular-vision based target parking-slot recognition by 
recognizing parking-slot markings when driver designates a seed-point inside 
the target parking-slot with touch screen. Proposed method compensates the 
distortion of fisheye lens and constructs a bird’s eye view image using 
homography. Because adjacent vehicles are projected along the outward 
direction from camera in the bird’s eye view image, if marking line-segment 
distinguishing parking-slots from roadway and front-ends of marking line-
segments dividing parking-slots are observed, proposed method successfully 
recognizes the target parking-slot marking. Directional intensity gradient, 
utilizing the width of marking line-segment and the direction of seed-point with 
respect to camera position as a prior knowledge, can detect marking line-
segments irrespective of noise and illumination variation. Making efficient use 
of the structure of parking-slot markings in the bird’s eye view image, proposed 
method simply recognizes the target parking-slot marking. It is validated by 
experiments that proposed method can successfully recognize target parking-
slot under various situations and illumination conditions. 

1   Introduction 

Semi-automatic parking system is a driver convenience system automating steering 
control required during parking operation. Because recently driver’s interest about 
parking assist system increases drastically, car manufacturers and component 
providers are developing various kinds of parking assist systems [1][2]. Fig. 1 shows 
the configuration of semi-automatic parking system currently being developed. The 
system consists of six components: EPS (Electric Power Steering) for active steering, 
vision sensor acquiring rear-view image, ultra-sonic sensors measuring distances to 
nearby side/rear obstacles, touch screen based HMI (Human Machine Interface) pro 
viding information to driver and receiving command from driver, EPB (Electric  
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Parking Braking) automatically activating parking brake, and processing computer. 
Algorithms running on the processing computer consist of three components: target 
parking position designation, path planning generating trajectory from current 
position to target position, and path tracker which continuously estimates current 
position and controls steering system to achieve the planned path. 

 

Fig. 1. System configuration of semi-automatic parking system 

There are many kinds of methods for the target parking position designation: laser-
scanner based method [3], SRR (Short Range Radar) network based method [1], 
computer vision based method, GPS/digital map based method [4], and driver’s 
manual designation based method. Prius IPAS (Intelligent Parking Assist System), 
mass-produced by Toyota and AISIN SEIKI in 2003, is the example of manual 
designation method [5]. Computer vision based method, which can provides 
monitoring view of ongoing parking procedure, attracts more and more interests. 
Computer vision based method can be categorized into three kinds: method 
recognizing adjacent vehicles, method recognizing parking-slot markings, and method 
recognizing both adjacent vehicles and parking-slot markings. Nico Kaempchen 
developed a system localizing free parking space by recognizing adjacent vehicles 
with stereo vision based method [6]. Jin Xu developed monocular vision based 
parking-slot marking recognition using neural network [7]. In previous research, we 
developed stereo vision based parking-slot marking recognition considering adjacent 
vehicles [8]. AISIN SEIKI’s next generation is expected to recognize adjacent 
vehicles three-dimensionally by motion stereo and provide rendered image from a 
virtual viewpoint suitable for the understanding of parking operation [9]. 

When driver designates a seed-point inside target parking-slot with touch screen as 
shown in Fig. 1, proposed method recognizes corresponding parking-slot marking as 
target parking position. Proposed method is designed not only to solve the discomfort 
of previous Prius’s fully manual designation method, but also to eliminate the 
overweighed requirements of stereo vision based method, i.e. high-performance 
hardware and enormous computing power. After the compensation of fisheye lens 
distortion and the construction of bird’s eye view image, marking line-segments 
crossed by the gaze from camera to seed-point are detected. Guideline, distinguishing 
parking-slots from roadway, can be easily detected by simply finding the nearest 
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among the detected line-segments. Consecutively, separating line-segments are detec- 
ted based on the detected guideline. Experimental results show that proposed method 
is simple and robust to noise and illumination change. 

2   Bird’s Eye View Construction 

Proposed system compensates the fisheye distortion of input image and constructs 
bird’s eye view image using homography. Installed rear view camera uses fisheye 
lens, or wide-angle lens, to cover wide FOV (Field Of View) during parking 
procedure. As shown in Fig. 2, input image through fisheye lens can capture wide 
range of rear scene but inevitably includes severe distortion. It is well known that the 
major factor of fisheye lens distortion is radial distortion, which is defined in terms of 
the distance from the image center [10]. Modeling the radial distortion in 5th order 
polynomial using Caltech calibration toolbox and approximating its inverse mapping 
by 5th order polynomial, proposed system acquires undistorted image as shown in 
Fig. 2 [11]. Homography, which defines one-to-one correspondence between 
coordinate in undistorted image and coordinate in bird’s eye view image, can be 
calculated from the height and angle of camera with respect to the ground surface [8]. 
Bird’s eye view is the virtual image taken from the sky assuming all objects are 
attached onto the ground surface. General pinhole camera model causes perspective 
distortion, by which the size of object image is changing according to the distance 
from camera. Contrarily, because bird’s eye view image eliminates the perspective 
distortion of objects attached onto the ground surface, it is suitable for the recognition 
of objects painted on the ground surface. Final image of Fig. 2 is the bird’s eye view 
image of the undistorted image. Hereafter, almost image processing is fulfilled in the 
bird’s eye view image and characters in lower case bold face, e.g. u, represent 
coordinate or vector in the bird’s eye view image. 

 

Fig. 2. Construction procedure of bird’s eye view image 

3   Guideline Recognition 

Parking-slot markings consist of one guideline and separating line-segments as shown in 
Fig. 3(a). To recognize the parking-slot markings, marking line-segment distinguishing 
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parking-slots from roadway should be recognized at first. Because the line-segment is 
the reference of remaining recognition procedures, it is called guideline. Each parking 
slot is distinguished by two line-segments perpendicular to the guideline, which is called 
separating line-segment. 

3.1   Marking Line-Segment Recognition by Directional Intensity Gradient 

Proposed system recognizes marking line-segments using directional intensity-
gradient on a line lying from seed-point to camera. As shown in Fig. 3(a), vector from 
seed-point to camera is represented by vseed point-camera and its unit vector is represented 
by useed point-camera. Fig. 3(b) shows the intensity profile of pixels on the line in the unit 
of pixel length s. If the start point ps and unit vector u are fixed, the intensity of a 
pixel which is distant by s in the direction of u from ps, i.e. I(ps+s u), is represented 
by simple notation I(s). Because the line crosses two line-segments, it can be observed 
that two intensity peaks with the width of ling-segment exist. 

                
(a) vseed point-camera                                             (b) Intensity profile 

                      
            (c) dI(s) and recognized edges                     (d) recognized marking line-segments 

Fig. 3. Procedure of marking line-segment recognition 

Equation (1) defines the directional intensity-gradient of a point p (x,y) with 
respect to vector u, dI(p,u). Because camera maintains a certain height and angle with 
respect to the ground surface, marking line-segment painted on the ground surface 
will appear with a fixed width W. Therefore, directional intensity-gradient using the 
average intensity of W/2 interval is robust to noise while detecting interesting edges. 

2 2

1 12 2

1 1
( , ) ( ) ( )

W W

W W
i i

dI I i I i
= =

= − ⋅ − + ⋅p u p u p u  (1) 
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Fig. 3(c) shows the profile of directional intensity-gradient of the line with respect 
to useed point-camera, i.e. dI(pseed point+s useed point-camera, useed point-camera), which is denoted 
by simple notation dI(s). Positive peaks correspond to the camera-side edges of 
marking line-segments and negative peaks correspond to the seed-point-side edges. 
Because camera-side edge is easy to follow, it is recognized as the position of 
marking line-segment. Threshold for positive peak detection, positive peak , is defined 
adaptively like equation (2). Fig. 3(c) shows established threshold and recognized 
positive peaks. Fig. 3 (d) shows the recognized marking line-segments in bird’s eye 
view image. 

1
( ) avg ( )

3 s

I s I sθ = −pos i t i ve peak s
max  (2) 

3.2   Recognition of Marking Line-Segment Direction 

Proposed system detects the direction of marking line-segments using the directional 
intensity-gradient of local window and edge following based refinement. Edge 
following results can eliminate falsely detected marking line-segments. 

The directional intensity-gradient of a point displaced by (dx,dy) from a center 
point pc (xc, yc) can be calculated by dI(pc+(dx,dy),u), which is denoted by simple 
notation dI(dx,dy) if pc and u are fixed. Proposed system calculates the directional 
intensity-gradient, dI(pcross+(dx,dy),useed point-camera), of (W+1)x(W+1) local window 
around the detected cross-points pcross. Here, dx and dy are in the range of –W/2~W/2. 
Fig. 4 shows the calculated dI(dx,dy) of local window around a cross-point. It can be 
observed that dI(dx,dy) array forms a ridge, of which direction is the same as the edge 
direction. 

 

Fig. 4. Directional intensity-gradient of local window around a cross-point 

To detect the direction of the ridge, proposed system introduces fitnessridge( ), 
which measures how well a line rotating by  around the cross-point is similar to the 
ridge direction like equation (3). As shown in Fig. 5(a), fitnessridge( ) is the 
difference between two line-sums in dI(dx,dy). These lines are orthogonal to each 
other. 

W W
2 2

W W
2 2

2 2
i=- i=-

( )= ( cos( ), sin( )) ( cos( ), sin( ))ridgefitness dI i i dI i iπ πφ φ φ φ φ⋅ ⋅ − ⋅ + ⋅ +  (3) 

Fig. 5(b) shows calculated fitnessridge( ) in the range of 0~180  and it can be 
approximated by a cosine function whose frequency f0 is 1/180  like equation (4). 
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To eliminate the effect of noise, estimated phase parameter is used to estimate the 
ridge direction like equation (5). In general, amplitude and phase parameter can be 
estimated by MLE (Maximum Likelihood Estimation) [12]. Estimated cosine function 
in Fig. 5(b) shows that the maximum value of fitnessridge( ) can be robustly detected. 
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          (a) dI(dx,dy) in 3D display                       (b) Estimated maximum value of fitnessridge( ) 

Fig. 5. Estimation of line-segment direction by model based fitness estimation 

Edge following, starting from the detected cross-point in the estimated edge 
direction, refines the edge direction and eliminates falsely detected cross-points. Edge 
position estimate of n+1 step can be calculated by cross-point pedge[0] and edge 
direction of n step uedge[n] like equation (6). Finding maximum of local directional 
intensity-gradient dI(t), defined like equation (7), updates the edge position of n+1 
step like equation (8). nedge[n] is the unit vector normal to uedge[n] and tmax[n] is the 
relative position maximizing dI(t) in nedge[n] direction as shown in Fig. 6(a). Iterating 
edge following terminates if new edge strength dI(tmax[n+1]) is definitely smaller than 
the edge strength of cross point dI(tmax[0]), e.g. 70%. Proposed system rejects detected 
cross-points of which successful edge following iteration is smaller than a certain 
threshold edge following to eliminate falsely detected marking line-segments. 
Consequently, refined edge direction uedge[n+1] is set to a unit vector from pedge[0] to 
pedge[n+1]. Fig. 6(b) shows the edge following results and refined direction. 

ˆ [ 1] [0] ( 1) [ ]n n ds n+ = + + ⋅ ⋅edge edge edgep p u  (6) 

2 2
ˆ( ) ( [ 1] [ ], [ ]),   where : ~W WdI t dI n t n n t= + + ⋅ −edge edge edgep n n  (7) 
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maxˆ[ 1] [ 1] [ 1] [ ]n n t n n+ = + + + ⋅edge edge edgep p n  (8) 

     
(a) Edge following method                       (b) Edge following results 

Fig. 6. Edge following refines the direction of detected marking line-segments 

3.3   Determination of Guideline 

If the seed-point designated by driver is locating in a valid parking-slot, gaze-line 
from seed-point to camera should meet marking line-segments more than once 
making corresponding cross-points. Among marking line-segments validated by the 
edge following, guideline is the marking line-segment of which cross-point is nearest 
to the camera position. In other words, guideline has smallest distance between cross-
point and camera, i.e. pcamera-pedge[0] . Fig. 7 shows recognized guideline. 

 

Fig. 7. Guideline recognized by structural relation between cross-points 

4   Recognition of Target Parking-Slot 

By searching separating line-segments bi-directionally from selection point pselection 
that is obtained by projecting the seed-point onto the guideline, proposed system 
recognizes the exact location of target parking-slot. pselection is calculated by cross-
point pcross and guideline unit vector uguideline like equation (9). 

( ) ( )= + ⋅ −selection cross guideline seed point cross guidelinep p u p p u  (9) 
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(a) Mask for Ion(s) and Ioff(s)           (b) in uguideline direction               (c) in –uguideline direction 

Fig. 8. Measuring Ion(s) and Ioff(s) bi-directionally to find both-side ‘T’-shape junctions 

Searching ‘T’ -shape junction between guideline and separating line-segment can 
detect the position of the separating line-segment. Average intensity on the guideline 
marking, Ion(s), is measured like equation (10) and the average intensity of 
neighboring region outward from camera, Ioff(s), is measured like equation (11). Here, 
usearching is either uguideline or – uguideline according to the search direction. Fig. 8(a) 
depicts the procedure of measuring Ion(s) and Ioff(s). Fig. 8(b) and (c) shows the 
measured Ion(s) and Ioff(s) in both directions. It can be observed that Ioff(s) is similar to 
Ion(s) only around ‘T’-shape junction. Therefore, the location of junction can be 
detected by thresholding the ratio of Ioff(s) to Ion(s), named Lseparating(s). Fig. 9(a) and 
(b) shows detected junction and Fig. 9(c) shows recognized target parking-slot. 

  
(a) in uguideline direction           (b) in –uguideline direction           (c) Recognized target 

Fig. 9. Lseparating(s) can find separating line-segments irrespective of local intensity variation 

5   Experimental Results and Conclusion 

In bird’s eye view image, objects above the ground surface are projected outward 
from camera. Therefore, only if guideline and the ‘T’-shape junctions of target 
parking-slot are observed, proposed method can successfully detect cross-points,  
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(a) Recognized target parking-slot          (b) Direction refinement by edge following 

Fig. 10. Case with adjacent vehicles and torn markings 

related marking line-segments and separating line-segments as shown in Fig. 10. Fig 
10(a) is captured against the light and markings are torn to be noisy. In Fig. 10(b), 
edge following based edge direction refinement overcomes the error of initial 
direction estimation. 

Separating line-segment detection method considering locally changing illumin- 
ation condition can successfully detect target parking-slot even if local intensities are 
different from each other. Fig. 11 shows that Lseparating(s) can compensate local 
intensity variation. 

   
(a) Recognized target parking-slot          (b) Ion(s) and Ioff(s)                     (c) Lseparating(s) 

Fig. 11. Case with strong sunshine causing locally changing intensity 

Major contribution of this paper is that because parked vehicles are projected 
outward from camera in bird’s eye view image, if guideline and ‘T’-shape junctions 
are observed, guideline can be detected simply by finding the cross-point nearest from 
camera. Because proposed method uses small portion of input image and fully utilizes 
structural characteristics of parking-slot markings in bird’s eye view image, it can 
achieve concise implementation and deterministic performance. 
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Abstract. The aim of this paper is to present a new method to compare modulo 
histograms. In these histograms, the type of elements are cyclic, for instance, 
the hue in colour images. The main advantage is that there is an important time-
complexity reduction respect the methods presented before. The distance 
between histograms that we present is defined on a structure called signature, 
which is a lossless representation of histograms. 

We show that the computational cost of our distance is O(z’2), being z’ the 
number of non-empty bins of the histograms. The computational cost of  
the algorithms presented in the literature depends on the number of bins of  
the histograms. In most of the applications, the obtained histograms are sparse, 
then considering only the non-empty bins makes the time consuming of the 
comparison drastically decrease. 

The distance and algorithms presented in this paper are experimentally 
validated on the comparison of images obtained from public databases. 

1   Introduction 

A histogram of a set with respect to a measurement represents the frequency of 
quantified values of that measurement among the samples. Finding the distance or 
similarity between histograms is an important issue in pattern classification or 
clustering and image retrieval. For this reason, a number of measures of similarity 
between histograms have been proposed and used in computer vision and pattern 
recognition. Protein classification is one of the common histogram applications [9]. 
Moreover, if the ordering of the elements in the sample is unimportant, the histogram 
obtained from this set is a lossless representation of it and can be reconstructed from 
its histogram. Then, we can compute the distance between sets in an efficient way by 
computing the distance between their histograms. 

The probabilistic approaches use histograms based on the fact that the histogram of 
a measurement provides the basis for an empirical estimate of the probability density 
function [1]. Computing the distance between probability density functions can be 
regarded as the same as computing the Bayes probability. This is equivalent to 
measuring the overlap between probability density functions as the distance. The B-
distance [2], proposed by Kailath, measures the distance between populations. It is a 
value between 0 and 1 and provides bounds on the Bayes misclassification 
probability. An approach closely related to the B-distance was proposed by Matusita 
[3]. Finally, Kullback generalised the concept of probabilistic uncertainty or 
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“entropy” and introduced the K-L-distance measure [1,4] that is the minimum cross 
entropy. 

Most of the distance measures presented in the literature (there is an interesting 
compilation in [5]) consider the overlap or intersection between two histograms as a 
function of the distance value but they do not take into account the similarity on the 
non-overlapping parts of the two histograms. For this reason, Rubner presented in [6] 
a new definition of the distance measure between histograms that overcomes this non-
overlapping parts problem. It was called Earth Mover’s Distance and it is defined as 
the minimum amount of work that must be performed to transform one histogram into 
the other one by moving distribution mass. They used the simplex algorithm [8] to 
compute the distance measure and the method presented in [7] to search a good 
initialisation. 

We consider three types of measurements called nominal, ordinal and modulo.  In 
a nominal measurement, each value of the measurement is a name an there is not any 
relation between them such as great than or lower than (e.g. the names of the 
students). In an ordinal measurement, the values are ordered (e.g. the age of the 
students). Finally, in the modulo measurement, measurement values are ordered but 
form a ring due to the arithmetic modulo operation (e.g. the angle in a circumference). 

Cha presented in [5] three new algorithms to obtain the distance between one-
dimensional histograms that use the Earth Mover’s Distance. These algorithms 
computed the distance between histograms when the type of measurements where 
nominal, ordinal and modulo in O(z), O(z) and O(z2) respectively, being z the number 
of levels or bins. 

Often, for specific set measurements, only a small fraction of the bins in a 
histogram contain significant information, that is, most of the bins are empty. This is 
more frequent when the dimensions of the element domain increase. In that cases, the 
methods that use histograms as fixed-sized structures obtain poor efficiency. For this 
reason, Rubner [6] presented the variable-size descriptions called signatures. In that 
representations, the empty bins where not explicitly considered. 

Another method used to reduce the dimensionality of the data in the case that the 
statistical properties of the data are a priori known was shown in [10]. The similarity 
measures are improved by the smoothing projections that are applicable for reduction 
of the dimensionality of the data and also to represent sparse data in a more tight form 
in the projection subspace. 

We presented in [12] the definition of the nominal, ordinal and modulo distances 
between histograms in which, only the non-empty bins where considered. In [11], the 
algorithms of these distances where shown, demonstrated and validated. 

In this paper, we present the algorithm to compute the modulo distance between 
histograms that the computational cost depends only on the non-empty bins instead of 
the number of bins as it is in the algorithms presented in [5,6]. The time saving of our 
modulo-distance algorithm is higher than our nominal-distance or ordinal-distance 
algorithms due to the computational cost is quadratic instead of lineal. 

The subsequent sections are constructed as follows. First, we define the histograms 
and signatures. Then in section 3 we define the modulo distance between signatures. 
In section 4, we depict the basic algorithm to compute the modulo distance between 
signatures. In section 5, we use our method to compare images obtained from 
databases. Finally, we conclude with emphasis of the advantage of using our distance 
between signatures and using the proposed algorithm. 
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2   Histograms and Signatures 

In this section, we formally give a definition of histograms and signatures. The 
section finishes with a simple example to show the representations of the histograms 
and signatures given a set of measurements. 

2.1   Histogram Definition 

Let x be a measurement which can have one of T values contained in the set 
X={x1,...xT}. Consider a set of n elements whose measurements of the value of x are 
A={a1,...an} where at∈X. 

The histogram of the set A along measurement x is H(x,A) which is an ordered list 
consisting of the number of occurrences of the discrete values of x among the at. As 
we are interested only in comparing the histograms and sets of the same measurement 
x, H(A) will be used instead of H(x,A) without loss of generality. If Hi(A), 1≤i≤T, 
denotes the number of elements of A that have value xi, then H(A)=[H1(A), …,HT(A)] 
where  
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The elements Hi(A) are usually called bins of the histogram. 

2.2   Signature Definition 

Let H(A)=[H1(A), …,HT(A)] and S(A)=[S1(A), …,Sz(A)] be the histogram and the 
signature of the set A, respectively. Each Sk(A), 1≤k≤z≤T is composed by a pair of 
terms, Sk(A)={wk ,mk}. The first term, wk, shows the relation between the signature 
S(A) and the histogram H(A). Thus, if the wk=i then the second term, mk,  is the 
number of elements of A that have value xi, that is, mk=Hi(A) where wk<wt ⇔ k<t and 
mk>0. 

The signature of a set is a lossless representation of its histogram in which the bins 
of the histogram that has value 0 are not expressed implicitly. From the signature 
definition, we obtain the following expression, 

                              ( ) zkwheremAH kwk
≤≤= 1                        (3)  

2.3   Extended Signature 

The extended signature is a signature in which the minimum number of empty bins 
has been added to assure that, given a pair of signatures to be compared, the number 
of bins is the same. Moreover, each bin in both signatures represents the same bin in 
the histograms. 
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2.4   Example 

In this section we show a pair of sets with their histogram and signature 
representations. This example is used to explain the distance measures in the next 
sections. Figure 1 shows the sets A and B and their histogram representations. Both 
sets have 10 elements and values are contained from 1 to 8. Horizontal axis in the 
histograms represents the values of the elements and the vertical axis represents the 
number of elements that have this value, that is mi. Empty bins are the ones that mi=0. 
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Fig. 1. Sets A and B and its histograms 

Figure 2 shows the signature representation of the sets A and B. The length of the 
signatures is 4 and 3, respectively. The vertical axis represents the number of 
elements of each bin and the horizontal axis represents the bins of the signature. The 
set A has 2 elements with value 6 since this value is represented by the bin 4 (W4

A=6 ) 
and the value of the vertical axis is 2 at bin 4. In the signature representation there is 
not any empty bin. 
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Fig. 2. Signature representation of the sets A and B 
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Fig. 3. Extended Signatures A’ and B’. The number of elements mi are represented graphically 
and the value of its elements is represented by wi. 
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Figure 3 shows the extended signatures of the sets A and B with 5 bins. Note that 
the value that the extended signatures represent for each bin, wi, is the same for both 
signatures. Moreover, in A’ and B’, one and two empty bins have been added, 
respectively. 

3   Modulo Distance Between Signatures 

The aim of this section is to present the new distance between signatures. To do so, 
we first show de definition of the distance between histograms and then we move on 
the new definition of the distance between signatures. The algorithms used to obtain 
the extended signatures and the distances are described in the algorithms section. 

For the following definition of the distance and also for the algorithms section, we 
assume that the extended signatures of S(A) and S(B) are S(A’) and S(B’), 

respectively, where ( ) { }'' ,' A
i

A
ii mwAS =  and ( ) { }'' ,' B
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B
ii mwBS = . The number of 

bins of S(A) and S(B) is zA and zB and the number of bins of both extended signatures 
is z’. 

The distance value between two modulo measurement values is the interior 
difference of each element (see [5] for the proofs the metric property). 
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The modulo distance between two histograms was presented in [6] as the minimum 
of work needed to transform one histogram to the other. Histogram H(A) can be 
transformed into histogram H(B) by moving elements to left or right and the total of 
all necessary minimum movements is the distance between them. There are two 
operations. Suppose an element a that belong to the bin i. One operation is move left 
(a). This operation results that the element a belong to bin i-1 and the cost to do so is 
1. Another operation is move right (a). Similarly, after the operation, a belongs to the 
bin i+1 and the cost is 1. These operations are graphically represented by right-to-left 
arrows and left-to-right arrows. 

In a modulo type histograms, the first bin and the last bin are considered to be 
adjacent to each other, and hence, it forms a closed circle, due to the nature of the data 
type. Transforming a modulo type histogram to another while computing their distance 
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Fig. 4. Arrow representation of the modulo distance using (a) histograms and (b) signatures 
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should allow cells to move from the first bin to the last one or vice versa at a cost of a 
single movement. Thus, cells or blocks of earth can move from the fist bin to the last 
bin with the operation move left (1). Similarly, blocks can move from the last bin to 
the first one with the operations move right (T). 

Figure 4 shows the arrows needed to transform (a) histogram H(A) to histogram 
H(B) and (b) the extended signature S(A’) to S(B’). 

The main difference between the histogram and signature case is that in the second 
one we have to take into consideration that the difference between bins is not 
constant. Our arrows have not a constant size (or constant cost) but they depend on 
the distance between bins. If element a belongs to the bin i, the operation move left (a) 

results that the element a belong to bin i-1 and the cost to do so is 1−− ii ww . 

Similarly, after the operation move right(a), the element a belongs to the bin i+1 and 

the cost is ii ww −+1 . 

The costs of the last and first movements are the addition of three terms. (a) The 
cost from the last bin of the signature, wz’, to the last bin of the histogram, T. (b) The 
cost from the last bin of the histogram, T, to the first bin of the histogram, 1. (c)  
The cost from the first bin of the histogram, 1,  to the first bin of the signature, w1. 
Then, the costs are calculated as the length of these terms. The cost of (a) is T-wz’, the 
cost of (b) is 1 (similarly to the cost between histograms) and the cost of (c) is w1-1. 
Therefore, the final cost from the last bin to the first one or vice versa between 
signatures is w1-wz’+T. 

Due to the modulo properties explained before, we can transform one signature or 
histogram into another one in several ways. Among these ways, there exists a 
minimum distance whose number of movements (or the cost of the arrows and the 
number of arrows) is the lowest. If there is a border line between bins that has both 
directional arrows, they are cancelled out. These movements are redundant and so the 
distance cannot be obtained through this configuration of arrows. To find the 
minimum configuration of arrows, we can add a complete chain in the histogram or 
signature of same directional arrows, then the opposite arrows on the same border 
between bins are cancelled out.  

The modulo distance between signatures is defined as follows, 
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1mod min,   (5)  

 
The cost of the movement of blocks from the first bin to the last one or viceversa is 

w1-wz’+T and the costs of the other movements is wA’
i+1-w A’

i. Moreover, c represents 
the chains of left arrows or right arrows added to the current arrow representation. 
The absolute value of c at the end of the expression is the number of chains added to 
the current representation. It is multiplied by the cost of the arrows from the last bin to 
the first one or vice versa. 

Example. Figure 5 shows five different transformations of signature S(A) to signature 
S(B) and their related costs. The cost is the number of arrows multiplied by the length 
of the arrows (shown under the arrows). In the first transformation, one chain of right 



400 F. Serratosa and A. Sanfeliu 

arrows are added (c=1). In the second one, no chains are added (c=0), thus the cost is 
the same than the ordinal distance. In the third to the last ones, 1, 2 and 3 chains of 
left arrows are added, respectively. We can see that the minimum cost is 6 and it is the 
case that c=-2, then the distance value is 6 for the modulo distance and 14 for the 
ordinal distance. 

1  2  3  4  5  

X1 X3 X1 X1 X2 

1  2  3  4  5  

  X3   X1  X1  X2  

1  2  3  4  5 

X1 X3 X1 X1 X2 

1  2  3  4  5 

X1 X3 X1 X1 X2 

1  2  3  4  5 

X1 X3 X1 X1 X2 

 
c=1               c=0             c=-1                 c=-2                     c=-3 

cost=22          cost=14        cost=10            cost=6                 cost=12 

Fig. 5. Five different transformations of signature S(A) to the signature S(B) with their related c 
and the obtained cost 

4   Algorithm 

The process Modulo_Distance obtains the modulo distance of two signatures. Given 
two signatures, the process Extended_Signature obtains two minimum extended 
signatures in O(z) (the algorithm was presented in [11]). 

 
Dmod = Modulo_Distance {S(A),S(B)} 
{S(A’),S(B’),z’} = Extended_Signature {S(A),S(B)} 
1.  Dmod = 0 p[0] = m0

A’ - m0
B’ 

2.  for (i = 2 to z’) p[i] = mi
A’ - mi

B’ + p[i-1]  
3.  for (i = 1 to z-1’) Dmod += (wi+1

A’ - wi
A’) * abs(p[i]) 

4.  do 
5.     D2=0 
6.     c = min positive {p[i] for 1≤i≤z’} 
7.     Temp[i]=p[i]-c for 1≤i≤z’ 
8.     for (i = 1 to z’-1) D2 += (wi+1

A’ - wi
A’) * abs(Temp[i]) 

9.     if (Dmod > D2) Dmod = D2 
10.    p[i]= Temp [i] for 1≤i≤z’ 
11. while(Dmod > D2) 
12. do 
13.    D2=0 
14.    c = max negative {p[i] for 1≤i≤z’} 
15.    Temp[i]=p[i]-c for 1≤i≤z’ 
16.    for (i = 1 to z’-1) D2 += (wi+1

A’ - wi
A’) * abs(Temp[i]) 

17.    if (Dmod > D2) Dmod = D2 
18.    p[i]= Temp [i] for 1≤i≤z’ 
19. while(Dmod > D2) 

 

Correctness of the Procedure 
The arrow representation of minimum distance can be achieved from any arbitrary 
valid arrow representation by combination of two basic operations: Increasing the 
chains of right arrows (when the value of c is positive) or increasing the chains of left 
arrows (when the value of c is negative). The distance value can increase infinitely 
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but there exists only one minimum among valid representations. In order to reach to 
the minima, first the algorithms tests for increasing positively c if whether it gives 
higher or lower distance value. If the distance reduces, keep applying the operations 
until no more reduction occurs. Then, the algorithms does the same operations but 
increasing negatively c. With these two actions, the algorithm guarantees that all 
possible combinations of correct representations of arrows are tested. 

The procedure runs in O(z’2) time. The lines 1 to 3 obtain the ordinal distance. In 
the lines 4 – 11 chains of right arrows are added to the current arrow representation 
until there is no more reduction to the total number of arrows. This increment is 
considered in the algorithm by the variable c. Next, chains of left arrows are added in 
the similar manner (lines 12 – 19). 

5   Validation of the Method and Algorithm 

The method and algorithms presented in this paper are applied on histograms, 
independently on the kind of the original set from which they have been obtained, i.e. 
images [13], discretized probability-density functions [14],… The only condition to 
use our method is to know the type of elements of the original set: ordinal, nominal or 
modulo. 

Table 1. Hue 28 bins. Modulo histogram Table 2. Hue 216 bins. Modulo histogram 

 Length Increase 
Speed 

Correct. Decrease 
Correct. 

Histo. 265 1 86% 1 
Signa. 215 1.23 86% 1 
Signa. 
100 

131 2.02 85% 0.98 

Signa. 
200 

95 2.78 73% 0.84 

Signa. 
300 

45 5.88 65% 0.75 

 

 Length Increase 
Speed 

Correct. Decrease  
Correct. 

Histo. 65,536 1 89% 1 
Signa. 205 319.68 89% 1 
Signa. 
1 

127 516.03 89% 1 

Signa. 
2 

99 661.97 78% 0.87 

Signa. 
3 

51 1285.01 69% 0.77 

 

To show the validity of our new method, we have tested the modulo distance 
between histograms and between signatures. We used 1000 images (640 x 480 pixels) 
obtained from public databases. To validate the modulo distance, the histograms 
represent the hue coordinate with 28 levels (table 1) and with 216 levels (table 2). Each 
of the tables below shows the results of 5 different tests. In the first and second files of 
the tables, the distance where computed between histograms and signatures, 
respectively. In the other three, the distance was computed between signatures but, 
with the aim of reducing the length of the signature (and so to increase the speed), the 
bins that had less elements than 100, 200 or 300 in table 1 and less elements than 1, 2 
or 3 in table 2 where removed. The first column is the number of bins of the histogram 
(first cell) or signatures (the other four cells). The second column represents the 
increase of speed if we use signatures respect histograms. It is calculated as the ratio 
between the run time of the histogram method and the signature method. The third 
column is the average correctness. The last column represents the decrease of 
correctness due to using the signatures with filtered histograms. It is obtained as the 
ratio of the correctness of the histogram by the correctness of each filter. 
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Tables 1 and 2 show us that our method is much useful when the number of bins 
increases since the number of empty bins tends to increase. Note that in the case of 
the first filter (third experiment in the tables), there is no decrease in the correctness 
although there is much increase in the speed respect the signature method (second 
experiment in the tables). 

6   Conclusions and Future Work 

We have presented the modulo distance between signatures and the algorithm used to 
compute it. We have shown that signatures are a lossless representation of histograms 
and that computing the distance between signatures is the same than between 
histograms but with a lower computational time. We have validated this new 
algorithm with a huge amount of real images and we have realised that there is an 
important time saving do to most of the histograms are sparse. Moreover, if we apply 
filtering techniques on the histograms, the number of bins of the signatures reduces 
and so the run time of their comparison. 
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Abstract. In order to achieve pattern recognition tasks, we aim at learning an
unbiased stochastic edit distance, in the form of a finite-state transducer, from a
corpus of (input,output) pairs of strings. Contrary to the state of the art methods,
we learn a transducer independently on the marginal probability distribution of
the input strings. Such an unbiased way to proceed requires to optimize the para-
meters of a conditional transducer instead of a joint one. This transducer can be
very useful in pattern recognition particularly in the presence of noisy data. Two
types of experiments are carried out in this article. The first one aims at showing
that our algorithm is able to correctly assess simulated theoretical target distri-
butions. The second one shows its practical interest in a handwritten character
recognition task, in comparison with a standard edit distance using a priori fixed
edit costs.

1 Introduction

Many applications dealing with sequences require to compute the similarity of a pair
(input,output) of strings. A widely-used similarity measure is the well known edit
distance, which corresponds to the minimum number of operations, i.e. insertions, dele-
tions, and substitutions, required to transform the input into the output. If this transfor-
mation is based on a random phenomenon and then on an underlying probability distri-
bution, edit operations become random variables. We call then the resulting similarity
measure, the stochastic edit distance.

An efficient way to model this distance consists in viewing it as a stochastic trans-
duction between the input and output alphabets [1]. Stochastic finite-state transducers
suffer from the lack of a training algorithm. To the best of our knowledge, the first pub-
lished algorithm to automatically learn the parameters of a stochastic transducer has
been proposed by Ristad and Yianilos [2,1]. They provide a stochastic model which al-
lows us to learn a stochastic edit distance, in the form of a memoryless transducer (i.e.
with only one state), from a corpus of similar examples, using the Expectation Maxi-
mization (EM) algorithm. During the last few years, the algorithm EM has also been
used for learning other transducer-based models [3,4,5].

� This work was supported in part by the IST Programme of the European Community, under the
PASCAL Network of Excellence, IST-2002-506778. This publication only reflects the authors’
views.
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Ristad and Yianilos define the stochastic edit distance between two strings x and y
as (the minus logarithm of) the joint probability of the pair (x, y). In this paper, we
claim that it would be much more relevant to express the stochastic edit distance from
a conditional probability.

First, in order to correctly compute the edit distance, we think that the probabilities
of edit operations over a symbol must be independent of those computed over another
symbol. In other words, if the transformation of a string x into another one y does
not require many edit operations, it is expected that the probability of the substitution
of a symbol by itself should be high. But, as the sum of the probabilities of all edit
operations is one, then the probability of the substitution of another symbol by itself
can not obviously be too large. Thus, by using a joint distribution (summing to 1), one
generates an awkward dependence between edit operations.

Moreover, we think that the primitive edit costs of the edit distance must be inde-
pendent of the a priori distribution p(x) of the input strings. However, p(x) can be
directly deduced from the joint distribution p(x, y), as follows: p(x) =

∑
y∈Y ∗ p(x, y),

where Y ∗ is the set of all finite strings over the output alphabet Y . This means that
this information is totally included in the joint distribution. By defining the stochastic
edit distance as a function of the joint probability, as done in [1], the edit costs are then
dependent of p(x). However, if we use a conditional distribution, this dependence is
removed, since it is impossible to obtain p(x) from p(y|x) alone.

Finally, although it is sensible and practical to model the stochastic edit distance
by a memoryless transducer, it is possible that the a priori distribution p(x) may not
be modeled by such a very simple structure. Thus, by learning a transducer defining
the joint distribution p(x, y), its parameters can converge to compromise values and
not to the true ones. This can have dramatic effects from an application standpoint.
Actually, a widely-used solution to find an optimal output string y according to an
input one x consists in first learning the joint distribution transducer and later deducing
the conditional transducer dividing by p(x) (more precisely by its estimates over the
learning set). Such a strategy is then irrelevant for the reason we mentioned above.

In this paper we have developed a way to learn directly the conditional transducer.
After some definitions and notations (Section 2), we introduce in Section 3 the learning
principle of the stochastic edit distance proposed by Ristad and Yianilos [2,1]. Then, by
simulating different theoretical joint distributions, we show that the unique way, using
their algorithm, to find them consists in sampling a learning set of (x, y) pairs according
to the marginal distribution (i.e. over the input strings) of the target joint distribution
itself. Moreover, we show that for any other a priori distribution, the difference between
the target and the learned model increases. To free the method from this bias, one must
directly learn at each iteration of the algorithm EM the conditional distribution p(y|x).
Achieving this task requires to modify Ristad and Yianilos’s framework. That is the goal
of Section 4. Then, we carry out experiments that show that it is possible to correctly
estimate a target distribution whatever the a priori distribution we use. Section 5 is
devoted to compare both models (along with two versions of the classic edit distance)
in a character recognition task.
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2 Notation

An alphabet X is a finite nonempty set of symbols. X∗ denotes the set of all finite
strings over X . Let x ∈ X∗ be an arbitrary string of length |x| over the alphabet X .
In the following, unless stated otherwise, symbols are indicated by a, b, . . . , strings by
u, v, . . . , z, and the empty string by λ. R

+ is the set of non negative reals. Let f(·) be a
function, from which [f(x)]π(x,... ) is equal to f(x) if the predicate π(x, . . . ) holds and
0 otherwise, where x is a (set of) dummy variable(s).

3 Stochastic Edit Distance and Memoryless Transducers

A joint memoryless transducer defines a joint probability distribution over the pairs of
strings. It is denoted by a tuple (X,Y, c, γ) where X is the input alphabet, Y is the
output alphabet, c is the primitive joint probability function, c : E → [0, 1] and γ is the
probability of the termination symbol of a string. As (λ,λ) ∈ E, in order to simplify
the notations, we are going to use c(λ,λ) and γ as synonyms.

Let us assume for the moment that we know the probability function c (in fact, we
will learn it later). We are then able to compute the joint probability p(x, y) of a pair of
strings (x, y). Actually, the joint probability p : X∗×Y ∗ → [0, 1] of the strings x, y can
be recursively computed by means of an auxiliary function (forward) α : X∗ × Y ∗ →
R

+ or, symmetrically, by means of an auxiliary function (backward) β : X∗ × Y ∗ →
R

+ as:

α(x, y) = [1]x=λ∧y=λ

+ [c(a, b) · α(x′, y′)]x=x′a∧y=y′b

+ [c(a,λ) · α(x′, y)]x=x′a

+ [c(λ, b) · α(x, y′)]y=y′b.

β(x, y) = [1]x=λ∧y=λ

+ [c(a, b) · β(x′, y′)]x=ax′∧y=by′

+ [c(a,λ) · β(x′, y)]x=ax′

+ [c(λ, b) · β(x, y′)]y=by′ .

And then, p(x, y) = α(x, y)γ or p(x, y) = β(x, y)γ.
Both functions (forward and backward) can be computed in O(|x| · |y|) time using

a dynamic programming technique. This model defines a probability distribution over
the pairs (x, y) of strings. More precisely,∑

x∈X∗

∑
y∈Y ∗

p(x, y) = 1,

that is achieved if the following conditions are fulfilled [1],

γ > 0, c(a, b), c(λ, b), c(a,λ) ≥ 0 ∀a ∈ X, b ∈ Y∑
a∈X∪{λ}
b∈Y ∪{λ}

c(a, b) = 1

Given p(x, y), we can then compute, as mentioned in [1], the stochastic edit distance
between x and y. Actually, the stochastic edit distance ds(x, y) is defined as being
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Table 1. Target joint distribution c∗(a, b) and its corresponding marginal distribution c∗(a)

c∗(a, b) λ a b c d c∗(a)
λ 0.00 0.05 0.08 0.02 0.02 0.17
a 0.01 0.04 0.01 0.01 0.01 0.08
b 0.02 0.01 0.16 0.04 0.01 0.24
c 0.01 0.02 0.01 0.15 0.00 0.19
d 0.01 0.01 0.01 0.01 0.28 0.32

the negative logarithm of the probability of the string pair p(x, y) according to the
memoryless stochastic transducer.

ds(x, y) = − log p(x, y), ∀x ∈ X∗, ∀y ∈ Y ∗

Let S be a finite set of (x, y) pairs of similar strings. Ristad and Yianilos [1] propose
to use the expectation-maximization (EM) algorithm to find an optimal joint stochastic
transducer. The EM algorithm consists in two steps (expectation and maximization) that
are repeated until a convergence criterion is achieved.

Given an auxiliary (|X | + 1) × (|Y | + 1) matrix δ, the expectation step can be
described as follows: ∀a ∈ X, b ∈ Y ,

δ(a, b)=
∑

(xax′,yby′)∈S

α(x, y)c(a, b)β(x′, y′)γ
p(xax′, yby′)

δ(λ, b)=
∑

(xx′,yby′)∈S

α(x, y)c(λ, b)β(x′, y′)γ
p(xx′, yby′)

δ(a,λ) =
∑

(xax′,yy′)∈S

α(x, y)c(a,λ)β(x′, y′)γ
p(xax′, yy′)

δ(λ,λ) =
∑

(x,y)∈S

α(x, y)γ
p(x, y)

= |S|,

and the maximization as:

c(a, b) =
δ(a, b)
N

∀a ∈ X ∪ {λ}, ∀b ∈ Y ∪ {λ} where N =
∑

a∈X∪{λ}
b∈Y ∪{λ}

δ(a, b).

To analyze the ability of Ristad and Yianilos’s algorithm to correctly estimate the pa-
rameters of a target joint memoryless transducer, we carried out a series of experiments.

We simulated a target joint memoryless transducer from the alphabets X = Y =
{a, b, c, d}, such as ∀a ∈ X ∪{λ}, ∀b ∈ Y ∪{λ}, the target model is able to return the
primitive theoretical joint probability c∗(a, b). The target joint distribution we used is
described in Table 11. The marginal distribution c∗(a) can be deduced from this target
such that: c∗(a) =

∑
b∈X∪{λ} c

∗(a, b).
Then, we sampled an increasing set of learning input strings (from 0 to 4000 se-

quences) of variable length generated from a given probability distribution p(a) over
the input alphabet X . In order to simplify, we modeled this distribution in the form of
an automaton with only one state2 and |X | output transitions with randomly chosen
probabilities.

1 Note that we carried out many series of experiments with various target joint distributions, and
all the results we obtained follow the same behavior as the one presented in this section.

2 Here also, we tested other configurations leading to the same results.
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We used different settings for this automaton to analyze the impact of the input distri-
bution p(a) on the learned joint model. Then, given an input sequencex (generated from
this automaton) and the target joint distribution c∗(a, b), we sampled a corresponding
output y. Finally, the set S of generated (x, y) pairs was used by Ristad and Yianilos’s
algorithm to learn an estimated primitive joint distribution c(a, b).

We compared the target and the learned distributions to analyze the behavior of the
algorithm to correctly assess the parameters of the target joint distribution. We com-
puted an average difference between the both, defined as follows:

d(c, c∗) =

∑
a∈X∪{λ}

∑
b∈Y ∪{λ} |c(a, b)− c∗(a, b)|

2

Normalized in this way, d(c, c∗) is a value in the range [0, 1]. Figure 1 shows the
behavior of this difference according to various configurations of the automaton. We
can note that the unique way to converge towards a difference near from 0 consists in
using the marginal distribution c∗(a) of the target for generating the input strings. For
all the other ways, the difference becomes very large.

As we said at the beginning of this article, we can easily explain this behavior. By
learning the primitive joint probability function c(a, b), Ristad and Yianilos learn at
the same time the marginal distribution c(a). The learned edit costs (and the stochastic
edit distance) are then dependent of the a priori distribution of the input strings, that
is obviously awkward. To free of this statistical bias, we have to learn the primitive
conditional probability function independently of the marginal distribution. That is the
goal of the next section.

4 Unbiased Learning of a Conditional Memoryless Transducer

A conditional memoryless transducer is denoted by a tuple (X,Y, c, γ) where X is
the input alphabet, Y is the output alphabet, c is the primitive conditional probability
function c : E → [0, 1] and γ is the probability of the termination symbol of a string.
As in the joint case, since (λ,λ) ∈ E, in order to simplify the notation we use γ and
c(λ|λ) as synonyms.

The probability p : X∗ × Y ∗ → [0, 1] of the string y assuming the input one was a
x (noted p(y|x)) can be recursively computed by means of an auxiliary function (for-
ward) α : X∗ × Y ∗ → R

+ or, in a symmetric way, by means of an auxiliary function
(backward) β : X∗ × Y ∗ → R

+ as:

α(y|x) = [1]x=λ∧y=λ

+ [c(b|a) · α(y′|x′)]x=x′a∧y=y′b

+ [c(λ|a) · α(y|x′)]x=x′a

+ [c(b|λ) · α(y′|x)]y=y′b.

β(y|x) = [1]x=λ∧y=λ

+ [c(b|a) · β(y′|x′)]x=ax′∧y=by′

+ [c(λ|a) · β(y|x′)]x=ax′

+ [c(b|λ) · β(y′|x)]y=by′ .

And then, p(y|x) = α(y|x)γ and p(y|x) = β(y|x)γ.
As in the joint case, both functions can be computed in O(|x| · |y|) time using a

dynamic programming technique. In this model a probability distribution is assigned
conditionally to each input string. Then
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y∈Y ∗

p(y|x) ∈ {1, 0} ∀x ∈ X∗.

The 0 is in the case the input string x is not in the domain of the function3. It can
be show that the normalization of each conditional distribution can be achieved if the
following conditions over the function c and the parameter γ are fulfilled,

γ > 0, c(b|a), c(b|λ), c(λ|a) ≥ 0 ∀a ∈ X, b ∈ Y (1)∑
b∈Y

c(b|λ) +
∑
b∈Y

c(b|a) + c(λ|a) = 1 ∀a ∈ X (2)∑
b∈Y

c(b|λ) + γ = 1 (3)

As in the joint case, the expectation-maximization algorithm can be used in order to
find the optimal parameters. The expectation step deals with the computation of the
matrix δ:

δ(b|a) =
∑

(xax′,yby′)∈S

α(y|x)c(b|a)β(y′|x′)γ
p(yby′|xax′)

δ(b|λ) =
∑

(xx′,yby′)∈S

α(y|x)c(b|λ)β(y′|x′)γ
p(yby′|xx′)

δ(λ|a) =
∑

(xax′,yy′)∈S

α(y|x)c(λ|a)β(y′|x′)γ
p(yy′|xax′)

δ(λ|λ) =
∑

(x,y)∈S

α(y|x)γ
p(y|x)

= |S|.

In order to do the maximization step, we begin by normalizing the insertion cost
because it appears in both normalization equations (eq. 2 and eq. 3). Then:

c(b|λ) =
δ(b|λ)
N

where N =
∑

a∈X∪{λ}
b∈Y ∪{λ}

δ(b|a)

The value of γ is now fixed by eq. 3 as:

γ =
N −N(λ)

N
where N(λ) =

∑
b∈Y

δ(b|λ)

and c(b|a) and c(λ|a) are obtained working out the values in eq. 2 and distributing the
probability proportionally to their respective expectations δ(b|a) and δ(λ|a). Then

c(b|a)= δ(b|a)
N(a)

N −N(λ)
N

c(λ|a) =
δ(λ|a)
N(a)

N −N(λ)
N

where N(a) =
∑

b∈Y ∪{λ}
δ(b|a).

We carried out experiments to assess the relevance of our new learning algorithm to
correctly estimate the parameters of target transducers. We followed exactly the same

3 If p(x) = 0 then p(x, y) = 0 and as p(y|x) = p(x,y)
p(x) we have a 0

0 indeterminism. We chose

to solve it taking 0
0 = 0, in order to maintain y∈Y ∗ p(y|x) finite.
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Fig. 1. Average difference between the target and the learned distributions according to various
generations of the input strings using a joint (a) and a conditional (b) memoryless transducer. The
tuples (pa, pb, pc, pd, p#) represents the probabilities of the symbols a, b, c, d and the probability
of ending in the stochastic automaton used to generate the input strings.

experimental setup as the one of the previous section, except to the definition of our dif-
ference d(c, c∗). Actually, our new framework estimates |X | conditional distributions.
So d(c, c∗) is defined as:

d(c, c∗) =
(A + B |X |)

2 |X |
where A =

∑
a∈X

∑
b∈Y ∪{λ} |c(b|a)−c∗(b|a)| and B =

∑
b∈Y ∪{λ} |c(b|λ)−c∗(b|λ)|.

The results are shown in Figure 1. We can make the two following remarks. First, the
different curves clearly show that the convergence toward the target distribution is inde-
pendent of the distribution of the input strings. Using different parameter configurations
of the automaton, the behavior of our algorithm remains the same, i.e the difference be-
tween the learned and the target conditional distributions tends to 0. Second, we can
note that d(c, c∗) rapidly decreases, i.e. the algorithm requires few learning examples
to learn the target.

5 Application to the Handwritten Character Recognition

In order to assess the relevance of our model in a pattern recognition task, we applied
it on the real world problem of handwritten digit classification. We used the NIST Spe-
cial Database 3 of the National Institute of Standards and Technology, already used
in several articles such as [6,7,8]. This database consists in 128 × 128 bitmap images
of handwritten digits and letters. In this series of experiments, we only focus on dig-
its written by 100 different writers. Each class of digit (from 0 to 9) has about 1,000
instances, then the whole database we used contains about 10,000 handwritten digits.
Since our model handles strings, we coded each digit as contour chain following the
feature extraction algorithm proposed in [6].

As presenting throughout this article, our method requires a set of (input,output)
pairs of strings for learning the probabilistic transducer. While it is rather clear that
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pairs in the form of (noisy,unnoisy) strings constitute the most relevant way to learn an
edit distance useful in a noise correction model, what must they represent in a pattern
recognition task, with various classes, such as in handwritten digit classification? As
already proposed in [1], a possible solution consists in building pairs of “similar” strings
that describe the possible variations or distortions between instances of each class. In
this series of experiments, we build pairs of (input,output) strings, where the input is
a learning string, and the output is the corresponding nearest-neighbor in the learning
set. The objective is then to learn a stochastic transducer that allows to optimize the
conditional probabilities p(output/input).

In the following series of experiments, we aim at comparing our approach (i) to
the one of Ristad and Yianilos, and (ii) to the classic edit distance. Note that for the
latter, we used two different matrices of edit costs. The first one is the most classic one,
i.e. each edit operation has the same cost (here, 1). According to [7], a more relevant
strategy would consist in taking costs proportionally to the relative angle between the
directions used for describing a digit.

In order to assess each algorithm, the number of learning strings varied from 200
(20 for each class of digits) to 6,000 (600 for each class), with a step of 20 strings per
class (resulting in 30 step iterations). The test accuracy was computed with a test set
containing always 2,000 strings. For each learning size, we run 5 times each algorithm
using 5 different randomly generated learning sets and we computed the average.

From Fig. 2, we can make the following remarks. First of all, learning an edit dis-
tance in the form of a conditional transducer is indisputably relevant to achieve a pat-
tern recognition task. Whatever the size of the learning set, the test accuracy obtained
using the stochastic edit distance is higher than the others. However, note that the dif-
ference decreases logically with the size of the learning set. Whatever the distance we
choose, when the number of examples increases, the nearest-neighbor of an example x
tends to be x itself. Interestingly, we can also note that for reaching approximately
the same accuracy rate, the standard edit distance (using proportional costs) needs
much more learning strings, and therefore requires a higher time complexity, than our
approach.
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Fig. 2. Evolution of the accuracy (a) and the variance (b) throughout the iterations in the character
recognition task



Using Learned Conditional Distributions as Edit Distance 411

Second, when the number of learning string pair is small, all the drawbacks with
Ristad and Yianilos’s method we already mentioned in the first part of this paper occur.
Actually, while a nearest-neighbor is always a string belonging to the learning set, many
learning strings are not present in the current (small) set of nearest-neighbors. There-
fore, while all these strings (inputs and outputs) come from the same set of
digits, the distribution over the outputs (the nearest-neighbors) is not the same as the
distribution over the inputs (the learning strings). Of course, this bias decreases with
the rise of the learning set size, but not sufficiently in this series of experiments for
improving the performances of the classic edit distance.

To assess the level of stability of the approaches, we have computed a measure of
dispersion on the results provided by the standard edit distance (with proportional costs)
and our learned distance. Fig. 2 shows the behavior of the variance of the test accuracy
throughout the iterations. Interestingly, we can note that in the large majority of the
cases, our method gives a smaller variance.

6 Conclusion

In this paper, we proposed a relevant approach for learning the stochastic edit distance
in the form of a memoryless transducer. While the standard techniques aim at learning a
joint distribution over the edit operations, we showed that such a strategy induces a bias
in the form of a statistical dependence on the input string distribution. We overcame
this drawback by directly learning a conditional distribution of the primitive edit costs.
The experimental results bring to the fore the interest of our approach. We think that
our model is particularly suited for dealing with noisy data.
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Abstract. The aim of this paper is to present an efficient distance between n-
dimensional histograms. Some image classification or image retrieval 
techniques use the distance between histograms as a first step of the 
classification process. For this reason, some algorithms that find the distance 
between histograms have been proposed in the literature. Nevertheless, most of 
this research has been applied on one-dimensional histograms due to the 
computation of a distance between multi-dimensional histograms is very 
expensive. In this paper, we present an efficient method to compare multi-
dimensional histograms in O(2z), where z represents the number of bins. 
Results show a huge reduction of the time consuming with no recognition-ratio 
reduction. 

1   Introduction 

Finding the distance or similarity between histograms is an important issue in image 
classification or image retrieval since a histogram represents the frequency of the 
values of the pixels among the images. For this reason, a number of measures of 
similarity between histograms have been proposed and used in computer vision and 
pattern recognition. Moreover, if the position of the pixels is unimportant while 
considering the distance measure, we can compute the distance between images in an 
efficient way by computing the distance between their histograms. 

Most of the distance measures presented in the literature (there is an interesting 
compilation in [1]) consider the overlap or intersection between two histograms as a 
function of the distance value but they do not take into account the similarity on the 
non-overlapping parts of the two histograms. For this reason, Rubner presented in [2] 
a new definition of the distance measure between n-dimensional histograms that 
overcomes this non-overlapping parts problem. It was called Earth Mover’s Distance 
and it is defined as the minimum amount of work that must be performed to transform 
one histogram into the other one by moving distribution mass. 

Often, for specific set measurements, only a small fraction of the bins in a 
histogram contain significant information, that is, most of the bins are empty. This is 
more frequent when the dimensions of the histograms increase. In that cases, the 
methods that use histograms as fixed-sized structures obtain poor efficiency. In the 
algorithm depicted by Rubner [2] to find the Earth Mover’s Distance the empty-bins 
where not explicitly considered. They used the simplex algorithm [3] to compute  
the distance measure and the method presented in [4] to search a good initialisation. 
The computational cost of the simplex iteration is O(z’2), where z’ is the number of 
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non-empty bins. The main drawback of this method is that the number of iterations is 
not bounded. Moreover, the initialisation cost is O(2z’). 

To reduce the computational cost, Cha presented in [1] three algorithms to obtain 
the Earth Mover’s Distance between one-dimensional histograms when the type of 
measurements where nominal, ordinal and modulo in O(z), O(z) and O(z2) 
respectively, being z the number of levels or bins. 

Finally, Serratosa reduced more the computational cost in [5]. They presented three 
new algorithms to compute the Earth Mover’s Distance between one-dimensional 
histograms when the type of measurements where nominal, ordinal and modulo. The 
computational cost were reduced to O(z’), O(z’) and O(z’2) respectively, being z’ the 
number of non-empty bins. 

It was presented in [6] an algorithm to compute the distance between histograms 
that the input was a built histogram (obtained from the target image) and another 
image. Then, it was not necessary to build the histogram of the image of the database 
to compute the distance between histograms. 

Really few have been done to compare n-dimensional histograms except in [2]. 
The main drawback of the method presented in [2] is the computational cost. In this 
paper, we present an efficient algorithm to compute the distance between n-
dimensional histograms with a computational cost of O(2z). Our algorithm does not 
depend on the type of measurements (nominal, ordinal or modulo). In the next 
section, we define the histograms and types of values. In section 3, we give the 
definitions of distances between histograms and between sets and in section 4 we 
show the algorithm to compute the distance between histograms. In sections 5 and 6 
we show the experimental validation of our algorithm and the conclusions. 

2   Sets and Histograms 

In this section, we formally give a definition of histograms. Moreover, we show a 
property obtained from the definition of the histograms that will be useful in the 
definitions of the distances given in the next section. Finally, we define the distance 
between pixel values. 

2.1   Histogram Definition 

Let x be a measurement which can have one of z values contained in the set 
X={x1,...xz}. Each value can be represented in a T-dimensional vector as xi=(xi

1, 
xi

2,…,xi
T). Consider a set of n elements whose measurements of the value of x are 

A={a1,...an} where at∈X being at=(at
1, at

2,…,at
T). 

The histogram of the set A along measurement x is H(x,A) which is an ordered list 
consisting of the number of occurrences of the discrete values of x among the at. As 
we are interested only in comparing the histograms and sets of the same measurement 
x, H(A) will be used instead of H(x,A) without loss of generality. If Hi(A), 1≤i≤z, 
denotes the number of elements of A that have value xi, then H(A)=[H1(A), …,Hz(A)] 
where  

                              ( )
=

=
n

t

A
iti CAH

1

                         (1)  
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and the individual costs are defined as 

                              =
=

otherwise

xaif
C itA

ti 0

1
,

                      (2)  

The elements Hi(A) are usually called bins of the histogram. Note that z is the 
number of bins of the histogram. In a T-dimensional histogram with m values per each 
dimension, the number of bins is z=mT. 

2.2   Property of the Individual Costs 

Given a value at, the addition of all the individual costs is 1. 

 ntC
z

i

A
ti ≤≤=

=

11
1

,                                           (3)  

Proof 
Given the t-element of the set A, this element has only one value at. Therefore, there is 

only one value of i such that 1, =A
tiC  (when it xa = ) and for all the other values of i, 

0, =A
tiC  (that is, it xa ≠ ). Then, the addition of all the values is one. 

2.3   Type of Measurements and Distance Between Them 

The distance between histograms presented in this paper is used as a fast method for 
comparing images and image retrieval. The most used colour representations are base 
on the R,G,B or H,S,I descriptors. The hue parameter (H) is a modulo-type 
measurement (measurement values are ordered but form a ring due to the arithmetic 
modulo operation) and the other parameters are ordinal-type measurements. 

Corresponding to these types of measurements mentioned before, we define a 
measure of difference between two measurement levels a=(a1, a2,…,aT) ∈ X and 
b=(b1, b2,…,bT) ∈ X as follows: 

( )
=

=
T

j

Sbad
1

, where 
−

∈≤−−−
=

otherwiseba

typeModulobaandmbaifbam
S

jj

jjjjjj ,2   (4)  

This measure satisfy the following necessary properties of a metric. Since they are 
straightforward facts, we omit the proofs. The proof of the triangle inequality for the 
modulo distance is depicted in [1] for the one-dimensional case (T=1). 

3   Distance Definitions 

In this section we present the distance between sets D(A,B) and the distance between 
their histograms D(H(A),H(B)). We proof that both satisfy the necessary properties of 
a metric and that the distance values are the same, D(A,B) = D(H(A),H(B)). To do so, 
we find a relation between the assignments between elements of the sets A and B 
while computing D(A,B) and the assignments between bins while computing 
D(H(A),H(B)). 
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This is an important result since the computational cost of D(A,B) is exponential 
respect the number of the set elements, n,  but the computational cost of 
D(H(A),H(B)) is only quadratic respect the number of bins of the histogram z. 
Moreover, in most of the applications, z is much smaller than n. Another advantage is 
that the time consuming of the comparison is constant and does not depend on each 
set. 

3.1   Distance Between Sets 

Given two sets of n elements, A and B, the distance measure is considered as the 
problem of finding the minimum difference of pair assignments between both sets. 
That is, to determine the best one-to-one assignment f (bijective function) between the 
sets such that the sum of all the differences between two individual elements in a pair 
ai∈A and bf(i)∈B is minimised. 

                              ( ) ( )( )=
=→∀

n

t
tft

BfA
badBAD

1

,min,                        (5)  

We are interested only in the D(A,B) value rather than the assignment f. 
Nevertheless, we call fopt as the assignment such that the distance is obtained, so we 
can redefine the distance as follows, 

                              ( ) ( )( )
=

=
n

t
tft opt

badBAD
1

,,                         (6)  

3.2   Distance Between Histograms 

The distance between histograms that we present here is a generalisation of the Earth 
Mover’s Distance presented in [2]. Intuitively, given two T-dimensional histograms, 
one can be seen as a mass of earth properly spread in space, the other as a collection 
of holes in that same space. Then, the distance measure is the least amount of work 
needed to fill the holes with earth. Here, a unit of work corresponds to transporting a 
unit of earth by a unit of ground distance.  

More formally, given two histograms H(A) and H(B), where measurements can 
have one of z values contained in the set X={x1,...xz}, the distance between the 
histograms D(H(A),H(B)) is defined as follows, 

                           ( ) ( )( ) ( ) ( )=
=→∀

jigxxdBHAHD f

z

ji
ji

BfA
,,min,

1,

            (7)  

The flow between the bins of both histograms is represented by gf(i,j), that is, the 
mass of earth that is moved as one unit from the bin i to the bin j. The product 
d(xi,xj)gf(i,j) represents the work needed to transport this mass of earth. Similarly to 
equation (5), we can redefine the distance using the optimal assignment fopt, 

                             ( ) ( )( ) ( ) ( )jigxxdBHAHD
optf

z

ji
ji ,,,

1, =

=                      (8)  
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3.2.1   New Definition of the Flow Between Bins 
In the definition of the distance between histograms presented in [2], the flow 
between histograms was shown to be a bi-dimensional matrix. The rows of the matrix 
represented the bins of one of the histograms and the columns represented the bins of 
the other histogram. Thus, each value of a matrix element was the flow between both 
bins. In that paper, there was no relation between the distance between the sets, 
D(A,B), and the distance between the histograms of these sets, D(H(A),H(B)). For this 
reason, in the definition of the flow between bins, some constraints were needed to be 
imposed to match the distance definition to the transportation problem. 

In our paper, we determine the flow between bins gf(i,j), as a function of the one-
to-one assignment f between the sets A and B used to compute the distance D(A,B) as 
follows, 

                           ( ) ( ) zjiCCjig
n

t

B
tfj

A
tif ≤≤=

=
,1,

1
,,                        (9)  

were the costs C are given in (2). 
With this new definition, we obtain two advantages; First, there is a relation 

between distances D(A,B) and D(H(A),H(B)) through their definition. Second, the 
constraints arbitrarily imposed to the flow between bins in [2], were converted in 
deducted properties that make possible to naturally match the distance between 
histograms to the transportation problem. 

3.2.2   Properties of the Flow gf(i,j) 
The flow between the bin i of the set A and the bin j of the set B through the 
assignment f fulfils the following three properties, 

Property a) ( ) zjijig f ≤≤≥ ,10,  
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Proofs 
Property (a) is a straightforward fact due to equations (2)   and (9). 

Property (b) Using equation (9), we obtain that 
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Property (c) Using equation (9), we obtain that ( ) ( )
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exchanging the sumatories and the order of the costs, we obtain that  
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3.3   Properties of the Distances 

We present in this section the metric properties of the distances between sets and 
histograms. Moreover, we show that the distance value of these distances is the same. 
To that aim, we first describe a lemma. We assume that there are two measurement 
sets A and B that have n elements contained in the set X={x1,...xz}. 

Lemma 
The distance between two elements of the sets A and B given an assignment f, can be 
obtained as the distance between bins as follows, 

                  ( )( ) ( ) ( ) bijectivefntxxdCCbad
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1,

,,
    (10)  

Proof 

By definition of the individual cost in equation (2), the only case that 1, =A
tiC  and 

( ) 1, =B
tfjC  is when it xa =  and ( ) jtf xb =  and so  ( )( ) ( )jitft xxdbad ,, = .  

Properties 
Property a) The distance measure D(A,B) between sets A and B satisfy the metric 
properties. 

Property b) The distance value of distances between sets and histograms of these 
sets is the same, D(A,B) = D(H(A),H(B)). 

Property c) The distance measure D(H(A),H(B)) between histograms H(A) and 
H(B) satisfy the metric properties. 

Proofs 
Property (a): The proof of this property was depicted in [5]. Although in that paper, 
the histograms were defined one-dimensional, the proof was based on the distance 
between elements d(a,b) independently on the dimension of the elements a and b. 

Property (b): If we apply equation (10) to substitute the distance between elements 

( )( )tft opt
bad ,  in the definition of the distance between sets (6), we obtain the formula 
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Finally, if we substitute the equation of the flow (9) we obtain the final expression, 

( ) ( ) ( ) ( )( )BHAHDjigxxd
optf

z

ji
ji ,,,

1,

=
=

. 

Property (c): The proof is simple since we have proved that the distance value is 
the same (property b) and that the distance measure between sets satisfy the metric 
property (property a).  

4   Algorithm 

In this section, we depict an efficient algorithm used to compute the distance between 
histograms based on a solution to the well-known transportation problem [3]. Suppose 
that several suppliers, each with a given amount of goods, are required to supply 
several consumers, each with a given limited capacity. For each pair of suppliers and 
consumers, the cost of transporting a single unit of goods is given. The transportation 
problem is then to find a least-expensive flow of goods from the suppliers to the 
consumers that satisfies the consumer’s demand. Our distance between histograms 
can be naturally cast as a transportation problem by defining one histogram as the 
supplier and the other one as the consumer. The cost of transporting a single unit of 
goods is set to the distance between the bin of one histogram and the bin of the other 
one, d(xi,xj). Intuitively, the solution of the transportation problem, gf(i,j), is then the 
minimum amount of “work” required to transform one histogram to the other one 
subjected to the constraints defined by the properties of the flow gf(i,j) (section 4.2.2). 

The computational cost of the transportation problem is exponential, respect the 
number of suppliers and consumers, that is, the number of bins of the histograms, z. 
Fortunately, efficient algorithms are available. One of the most common solutions is 
the simplex algorithm (), which is an iterative method that the cost of one simplex 
iteration is O(z2). The main drawback is that the number of iterations is not bounded 
and that this method needs a good initial solution. The Russell method [4] is the most 
common method used to find the first solution with a computational cost of O(2z-1). 

In this paper, we present an efficient and not iterative algorithm (figure 1) with a 
computational cost of O(2z-1). 

Given a pair of bins from both histograms, i and j, our algorithm finds the amount 
of goods that can be transported, gf(i,j), and computes the cost of this transportation, 
gf(i,j)*d(xi,xj). The algorithm finishes when all the goods have been transported, that 
is, all the elements of the sets, n, have been considered. In each iteration, a pair of 
bins is selected by the function next, in a given order and considering that the bins are 
not empty. The order of the bins is set by the following energy function, 

         ( ) ( ) ( )jDeviationPathiDeviationPathjiE ij __, +=             (11)  

The Path_Deviationj(i) is the difference between the maximum cost from the bin i 
to any bin of the histogram and the real cost from this bin to the bin j, 

         ( ) ( ) ( )jiij xxdxdistiDeviationPath ,max__ −=             (12)  

It represents the worst case that the good can be sent (supplier) or received 
(consumer) respect the best case. 
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Algorithm Histogram-Distance (H(A),H(B)) 
i,j = first() 
while n > 0 // n: the number of elements of both sets 
 gf(i,j) = min (Hi(A) , Hj(B)) 
 Hi(A) = Hi(A) - gf(i,j) 
 Hj(B) = Hj(B) - gf(i,j) 
 n = n - gf(i,j) 
 D = D + gf(i,j) * d(xi,xj) 
 i,j = next (i , j , H(A), H(B)) 
Return D  //distance between histograms 

Fig. 1. Algorithm that computes the distance between n-dimensional histograms 

Theorem. The worst computational cost of the algorithm is O(2z-1). 

Proof. The pair of bins i,j generated by the function next forms a z X z matrix. In each 
iteration, one column or file (or both) of the matrix (depending if Hi(A) = 0 or Hj(B) = 
0 is erased from the matrix (can not be used any more). Then, the worst case is the 
one that alternatively, one column is erased and after that one file is erased. Thus, the 
number of iterations is the number of columns plus the number of files less one. 

5   Experimental Validation 

We have used the coil image database [7] to validate our new algorithm and to show 
the usefulness of the histograms as the only information of the images. Only 20 
objects were selected (figure 2). The test set was composed by 100 images (5 images  
 

 

Fig. 2. Images taken at angle 5 of the 20 objects 
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of these 20 objects taken at the angles 5, 15, 25, 35 and 45). And the reference set was 
composed by other 100 images (5 images of the same objects taken at angles 0, 10, 
20, 30, 40 and 50). 

Table 1 (left) shows the number of correctly classified images (1-nearest 
neighbour) and (right) the average number of iterations of the inner loop of the 
algorithm in figure 1. The run time is proportional to the number of iterations. The 
first column is the number of bins (and bits) per each dimension. The number of 
colours is binsnD. In the other columns, we show the results for 3 different 3D-
histograms, 2 different 2D-histograms and 2 more 1D-histograms. The number of 
iterations underlined and in bold (right table) are the ones that all the images have 
been properly classified (99 or 100% in left table). If the recognition ratio is expected 
to be 99 or 100%, the best combination is HSV(2bits), CIELAB(3bits), HL(3bits) and 
HS(3bits). 

Table 1. (left) Number of objects properly classified and (right) average number of iterations 

Dimension 3D 2D 1D
Bins(bits) HSVRGB CIELAB HS HL HUEGREY

4 (2) 99 98 95 98 97 77 64
8 (3) 100 97 99 99 100 94 94

16 (4) 100 100 100 99 100 95 96
64 (6) -- -- -- 99 100 97 100

256 (8) -- -- -- -- -- 97 100

Dimension 3D 2D 1D 
Bins(bits) HSVRGBCIELAB HS HL HUE GREY

4 (2) 53 32 19 20 20 6 6
8 (3) 250 120 55 70 70 14 13

16 (4) 896 425 180 219 192 29 26
64 (6) -- -- -- 14311100 95 100

256 (8) -- -- -- -- -- 229 383
 

Table 2 shows the worst number of iterations obtained from the theoretical cost. 
We realise that there is a huge difference between the real number of iterations (table 1 
right) and the worst cases (table 2). 

Table 2. Worst number of iterations obtained from the theoretical cost 

  3D  2D 1D  
Bins (bits) X dimension HSV RGB CIELAB HS HL HUE GREY 
4 (2) 2*43-1 = 127  2*42-1 = 31 2*41-1 = 7 
8 (3) 2*83-1 = 1,023  2*82-1 = 127 2*81-1 = 15 
16 (4) 2*163-1 = 8,191  2*162-1 = 511 2*161-1 = 31 
64 (6) 2*643-1 = 524,287  2*642-1 = 8,191 2*641-1 = 127 
256 (8) 2*2563-1 = 33,554,431 2*2562-1 = 131,0712*2561-1 = 511 

6   Conclusions and Future Work 

We have presented a new distance between multi-dimensional histograms and an 
efficient algorithm to compute this distance. Our method is useful for comparing  
black&white or colour images and using H,S,I or R,G,B colour descriptors. The 
theoretical computational cost is O(2z), being z the number of levels of the pixels. The 
experimental validation demonstrates that it is worth increasing the number of 
dimensions and reducing the number of bins per each dimension, i.e. HSV (2bits). 
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Moreover, the real number of iterations (or run time) is really lower than the 
theoretical one. 
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Abstract. The Portable Document Format (PDF) is widely-used in the Web and 
searchable by search engines, but only for the text content. The goal of this 
work is the extraction and annotation of images in PDF-documents, to make 
them searchable and to perform semantic image annotation. The first step is the 
extraction and conversion of the images into a standard format like jpeg, and 
the recognition of corresponding image captions using the layout structure and 
geometric relationships. The second step uses linguistic-semantic analysis of 
the image caption text in the context of the document domain. The result on a 
PDF-document collection with about 3300 pages with 6500 images has a preci-
sion of 95.5% and a recall of 88.8% for the correct image captions. 

1   Introduction 

This work is motivated by the following five facts: (1) in the world wide web nearly 
all searchable documents are in HTML-format. The next important format is the PDF-
format (portable document format), with a proportion of about 3% of the searchable 
web (experimental result with Google and Yahoo). Since most PDF documents are 
larger than HTML-pages we estimate that about 10% of the searchable information is 
in PDF format [17]. The remaining document formats are below 1%. (2) PDF is a 
standard format for archiving all types of documents in libraries, government or com-
panies. PDF has an open published specification. PDF/A is an ISO standard for ar-
chiving. (3) PDF is popular for electronic publishing because it is a page description 
format which preserves even complex layouts consisting of text, graphics and images 
on all output devices. (4). The existing image search engines like Google, Yahoo, 
Picsearch etc. do not consider images in PDF-documents. (5) Present text based im-
age search engines use keywords and not semantic annotations of the images. 

From this we conclude that it is worthwhile to consider the PDF format for image 
search. Furthermore the image search quality can be improved by semantic annota-
tions of the image captions. This will allow image searching not only by keywords but 
using questions like "Show me the player who scored the goal 1:0 in the match Mex-
ico-Costa Rica on August 17th, 2005". The semantic annotation can be applied also to 
image captions in HTML-pages. An example will be presented below (Fig. 5). 

Semantic and index information for image understanding and searching may be ob-
tained from the image content using image processing methods [1], or from some text 
describing the image [2]. Some approaches use a combination of either information [3]. 
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This paper describes a new approach that does not use the image content analysis 
but relies on the recognition of existing image captions using layout analysis. We 
concentrate on the image caption recognition and do not go into details of the linguis-
tic-semantic methods. 

2   Related Work 

2.1   PDF-Document Analysis 

There exist many commercial and public domain programs for processing of PDF-
documents [4, 5]. But the result of our investigation for the purpose of image capture 
recognition was disappointing. We found some papers [6, 7] on PDF-document analy-
sis using the open source library xpdf and the programs pdftotext, pdfimages and 
pdf2html. These tools are helpful but we had to add considerable functions to the 
existing programs which is described in chapter 3. 

Lovegrove et.al.[8] analyze PDF files using Adobe SDK with the goal to perform 
logic labeling of the layout objects, which also contains image captions with only few 
examples and no quantitative evaluation.  

Chao and Lin [9] developed a proprietary system for PDF-layout analysis with a 
different purpose. 

2.2   Image Caption Recognition 

For HTML web pages there are many research and commercial systems available 
which use also image captions, e.g. Google image search: "Google analyzes the text on 
the page adjacent to the image, the image caption and dozens of other factors to determine the 
image content. Google also uses sophisticated algorithms to remove duplicates and ensures that 
the highest quality images are presented first in your results." [15]. 

Rohini Srihari [3] applied natural language processing to figure captions in news-
papers in combination with face detection in the corresponding image. This work does 
not locate but takes image captions as granted. Her focus is on natural language proc-
essing and segmentation of faces in the images to associate them with person names 
in captions. 

Rowe et.al. [10] stress the importance of captions for indexing of images. But they 
do not use layout (geometry) but only neighborhood in ASCII text representation. 
They determine statistically relevant presence or absence of particular keywords in 
the potential caption sentences. (MARIE-4 system). 

Paek et.al.[11] classify photographs with corresponding captions into indoors and 
outdoors. They compare text based and image content based methods for classifica-
tion. The text based method achieved 83% accuracy on a test set size of 1339.  

3   Approach 

The proposed approach consists of two steps: First Recognition of the image captions 
and second semantic annotation of the image based on the caption text (see Figure 1). 
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Fig. 1. Two step approach for image annotation in PDF documents: 1.Recognition of image 
captions and storage of extracted images in an image data base. 2. Interpretation of the captions 
and storage as semantic annotations of the extracted images in a knowledge server with refer-
ences to the image data base. 3. The results of layout and caption analysis may be visualized for 
evaluation using a standard HTML-browser. 

3.1   Recognition of the Image Captions  

In contrast to the methods mentioned above (chapter 2) this approach tries to locate 
the existing image captions using the layout structure of the document, i.e. positions 
and sizes of the images and text objects and their geometric arrangement on each page 
in complete PDF-documents.  

An image caption is defined as a text block which is intentionally placed (by the 
author resp. publisher) below or above the image to describe the semantics of the 
image. Left and right positions of captions are neglected currently because of their 
rare occurrence. A text block is defined as a visually separable unit of one or more 
text lines with homogeneous layout features. 

The generation of text blocks applies a bottom-up process starting from the glyphs 
to build words, text lines, text blocks, and columns. This is similar to document image 
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analysis methods [12, 13], but more accurate, because there are no distortions due to 
scanning noise or page skew. Instead of the pixel image we use the PDF objects and 
streams for text and image layout analysis. The images are located and saved in sepa-
rate files after conversion to jpg format if necessary.  

 

Fig. 2. Global resolution of Top-Bottom caption conflict using font attributes from the whole 
PDF-document. The bottom text block is recognized (cyan) as caption of image 1_11. The 
rectangles display the dimensions of the text lines and text blocks from the original PDF-page.  

The main problem is to decide which text block is an image caption resp. which 
image has a caption. This problem is solved as a constraint satisfaction problem using 
generic layout rules. The rules are derived from the standard publishing rules for 
allocating text blocks and image captions using font, line, and block attributes.  

The recognition process has three phases: (1) Neighborhood analysis starting from 
the images with local conflict resolution, (2) Neighborhood analysis starting from the 
text blocks and local conflict resolution, (3) Global resolution of the remaining ambi-
guities. The last step tries to determine dominant layout attributes in the whole docu-
ment, like font type, font size and font style to discriminate the captions from other 
text blocks (see an example in Fig. 2). 

3.2   Semantic Annotation of Caption Text  

The semantic annotation of the caption text is performed in cooperation with the 
DFKI (German Center for Artificial Intelligence). It is based on linguistic-semantic 
analysis of the caption text and the whole document text using the SPROUT tool. A 
detailed description is given in [14]. 
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4   Results and Discussion 

The first test set is a document collection (corpus) of 290 PDF documents down-
loaded from the FIFA web site http://fifaworldcup.yahoo.com/06/de/index.html con-
taining 3323 pages with a total of 6507 images. This corpus was chosen because this 
work is part of a larger project called SmartWeb [16], which has the goal to allow 
natural language questions to be answered automatically by semantic web technolo-
gies. A first use case is the soccer domain in the context of the FIFA WorldCup 2006 
in Germany. The results are summarized in Table 1 and Table 2. 

Table 1 shows the confusion matrix between the recognized image captions and the 
Ground Truth data of the test set. The diagonal entries show the correct results. For 
images without captions small images (below a size threshold) are separately shown, 
and all of them are correctly recognized (true negatives TN). From the remaining 
2716 images without captions 3+8=11 images erroneously got an image caption (false 
positives FP). This proves the intended high specificity (TN/(TN+FP) = 99.83%) of 
our approach.  

In total 76 image captions were not found (false negatives FN), from which 6 cap-
tions were left/right captions that are not yet considered in our approach.  

The majority of captions are located below the images (caption type Bottom). 
There are 9 + 6 = 15 captions associated with the wrong images (Top/Bottom confu-
sion), which we also count as false positives (FP) in Table 2. 

Table 1. Confusion matrix between recognized types of caption and the ground truth (GT) for 
the test set of 290 PDF documents with a total number of 3323 pages and 6507 images 

Ground-
Truth: 

Recog-
nized: 

Small 
images 

Without 
captions 

Top Bot-
tom 

Left Right Sum of 
GT images 

Small images (no caption) 3145 0 0 0 0 0 3145 
Img without caption 0 2705 3 8 0 0 2716 
Img with Top caption 0 49 135 9 0 0 193 
Img with Bottom caption 0 21 6 420 0 0 447 
Img with left caption 0 4 0 0 0 0 4 
Img with right caption 0 2 0 0 0 0 2 
Sum of images 3145 2781 144 437 0 0 6507 

In Table 2 the results for top and bottom captions are summarized. In terms of the 
common quality measures of precision and recall the result is as follows: 

Precision = TP / (TP + FP) = 555/(555+26) = 95.5% and Recall = TP / (TP + FN) = 
555/(555+70) = 88.8%, whereas FP consists of 3+8=11 non-captions and 9 + 6 = 15 
Top/Bottom confusion errors. The 5850 true negatives consist of 3145 small images 
and 2705 images recognized without caption. 

The average processing time per document is 0.74 sec and per page about 0.06 sec 
on a standard PC with a 2.7 GHz Pentium 4 processor. 
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Table 2. Recognition results for image captions over the whole test set of 290 documents with 
3323 pages and 6507 images. This results in a precision of 95.5% and recall of 88.8% for both 
top and bottom caption recognition. 

Caption type True positives False positives True negatives False negatives 
Top 135 9   (=6+3)  49 
Bottom 420 17 (=9+8)  21 
Both (sum) 555 26 5850 70 

 

Fig. 3. Result of image caption recognition on a complex PDF page with several background 
images and images without captions. The only image caption (no. 4) of image 1_4 (cyan) with 
the text "Prof. Wahlster; Ministerpräsident Müller; Prof. Seibert, FORGIS" was correctly rec-
ognized. 

In Figure 3 we show the result on a complex PDF-document with a lot of back-
ground images and many images without captions. 

The second test was performed with a small set of PDF-documents which were 
converted from HTML to PDF using Adobes PDFprinter. The purpose of this test was 
to check the quality of the resulting HTML-files (Fig. 1, No. 3) by comparing it with 
the original HTML. 

These PDF-documents may contain a large number of images per page consisting 
of small graphical objects in gif format because HTML does not support graphics 
format. The results were comparable to the first test set, but some new problems oc-
curred: Some image captions belonged to the text of buttons, which was sometimes 
misleading. Figure 4 shows an image caption which was correctly located but does 
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Fig. 4. The image caption containing the text "Foto vergrössern, Fotogalerie" was correctly 
recognized, but does not describe the image content. This PDF file was generated from an 
HTML page. In the original HTML format the "image caption" is a button that has to be clicked 
by the user to display the image together with the actual caption from data base. 

 

Fig. 5. The Semantic Annotation of the figure caption (middle) recognized the name "Jared 
Borgetti" of the player. Using the semantic annotation of the whole document further data of 
the soccer event can be determined (right).  

not describe the image content. We did not observe such image captions in original 
PDF documents. This weakness of the layout based caption recognition is obvious, 
but can be remedied by the following linguistic and semantic post processing. 

The semantic annotation is not in the main focus of this paper (see [14]). An exam-
ple of the results is given in Figure 5. Detailed results and discussion will be  
presented in a future paper. 

5   Conclusion 

This paper describes a new layout based approach to find image captions in PDF-
documents. The application of layout rules to discriminate image caption text blocks 
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from other text blocks is successful. This work complements existing systems for 
image indexing like Google image search, which do not support PDF-documents. 

The method was tested on a test set of 290 PDF-documents containing about 3000 
pages with about 6500 images. The precision and recall of correct image captions is 
95.5% resp. 88.8%. Only 0.17% of images without captions are erroneously associ-
ated with a caption. 

The subsequent semantic annotation of the image captions using the SPROUT tool 
is promising. This technique is applicable also to HTML-pages.  

Applications of this work are not limited to searching in the web but also suitable 
for analysis of existing electronic archives of legacy documents in PDF format.  
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Abstract. This study defines three models based on the stroke for handwritten 
Hangul recognition. Those are trainable and not sensitive to variation which is 
frequently founded in handwritten Hangul. The first is stroke model which 
consists of 32 stroke models. It is a stochastic model of stroke which is 
fundamental of character. The second is grapheme model that is a stochastic 
model using composition of stroke models and the last is character model that is 
a stochastic model using relative locations between the grapheme models. This 
study also suggests a new stroke extraction method from a grapheme. This 
method does not need to define location of stroke, but it is effective in terms of 
numbers and kinds of stroke models extracted from graphemes of similar shape. 
The suggested models can be adapted to hierarchical bottom-up matching, that 
is the matching from stroke model to character model. As a result of 
experiment, we obtain 88.7% recognition rate of accuracy that is better than 
those of existing studies. 

1   Introduction 

A character is composed by joint of several strokes. The union and location of each 
stroke become very important information in recognizing a character. Besides, the 
other existed information in a character can be aware as noises which are occurred 
through a user or an input device. As this view, recognizing a handwritten character 
by union and location of each stroke is very common process and this is considered as 
structural method. The structural method can be completed under the hypothesis 
which the position of each stroke becomes a most important information of 
recognizing an independent character [1, 2]. 

The most methods, which have used strokes in the past, have expressed strokes and 
their relation by heuristic. For relation between each stroke, they used slope between a 
strokes and surrounding strokes [5, 6]. There was an approach which used symbolic 
way between each stroke. The types of stroke are divided as horizontal, vertical, left 

* Corresponding author. 
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diagonal, and right diagonal and the relationship of stroke is divided as L form, T 
joint, parallel and the others [7, 8]. 

Yet, this heuristic method is insufficient for practical uses because it is very 
sensitive with noise of input character. Furthermore, there is a limit which is difficult 
to be trained. In these days, statistic method has been introduced which uses graph 
modeling; a stroke is presented by probability of stroke slope and its length and the 
relationship of each stroke is presented by their relative location [3]. There is another 
method which uses a systematic relation between each stroke. In this method the 
relative information of each stroke are presented through statistic dependence [4]. 

In this research, a new stroke model will be presented and the composition 
method of grapheme models and character models will be introduced. And also, 
matching method of each model with statistic way and recognizing method of 
handwritten Hangul character by using characteristic of our own class composition 
will be introduced. In chapter 2, the characteristics of Hangul characters will be 
explained. Three new proposed models (stroke model, grapheme model, character 
model) and their composition and matching method will be explained in chapter 3, 
and experiment result will be shown in chapter 4, and the conclusion will be in 
chapter 5. 

2   Characteristic of Hangul 

2.1   Composition of Hangul 

Hangul is a phonetic alphabet which one character has an independent sound, and it is 
constructed of consonant and vowel those are arranged on two dimensional spaces. 
Although there are only 24 vowels and consonants, the number of character which 
can be made through composing of them is 11,172. However, the practically being 
used characters are 2,350 and the commonly being used characters are only 520 of 
them. 

Table 1. Shape and position of graphemes of Hangul 
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Hangul has six important composition formats which consonant and vowel are 
arranged on 2 dimensional spaces. Every character is constructed by the six formats 
and there are rule which consonant and vowel are used for each format. Therefore, 
distinct recognition of formatting information will make us much easier to recognize a 
character.  

There are 14 of basic consonant, 5 of double consonant which makes strong 
sounds, and 11 of repeated consonant which is composed of two different basic 
consonant. The First Consonant (FC) decides early stage of pronunciation, and the 
Last Consonant (LC) does later stage of pronunciation. Vowel settles the middle parts 
of pronunciation. There are 10 basic vowel and 11 combined vowel. There are two 
types of vowel according to the shape, Horizontal Vowel (HV) and Vertical Vowel 
(VV). As above, each pronunciation and the meaning are decided by the composition 
of 2~4 of vowel and consonant, which is shown in table 1. 

2.2   Hierarchical Decomposition of Hangul 

Hangul shows hierarchical joint structure: several strokes joint together to make a 
form of grapheme and the grapheme joint each other to make an independent 
character on the 2 dimensional spaces. Therefore, we can divide a character using 
opposite way of jointing: a character is divided into vowel and consonant depending 
on the format type and those are divided again into strokes. In here, a stroke means 
basic stroke such as ‘ ’, ‘ ’ and composed stroke such as ‘ ’, ‘ ’ by Korean 
writing style. 

3   Proposed Models 

3.1   Stroke Model 

Stoke model is suggested for effective modeling of stokes of lower parts in a point of 
top-down decomposition. The most common strokes in Hangul are horizontal, 
vertical, left diagonal, right diagonal and circle such as in ‘ ’, ‘ ’. In this research, 
a model of jointed stroke rather than single one is proposed. Using four basic strokes, 
which are horizontal line, vertical line, left diagonal line and right diagonal line, we 
made 32 kinds of joint strokes which are shown in fig. 1. The circle stroke is excluded 
because those introduced strokes can make circle by jointing each other. 

Each stroke models has parameters of edges and nodes. Each edge’s probability 
distribution of directive angle is existed and the connect part node has probability 
distribution of connect angle of two edge. 

A matching of stroke models is the first stage of matching process. After we set the 
ending point, connecting point and the bending point as a fixed node of the graph, as 
well as a attributed graph by extracting an edge between nodes, we find out a stroke 
model which is the best matching with the part of attributed graph. For this, 
production of sub graph which matches with stroke model is needed. 
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Fig. 1. Shape of proposed Stroke models 

Fig. 2 shows an attributed graph decomposition method into sub graph for 
matching of stroke model with an example of grapheme ‘ ’. In the set of edges, if 
two edges share a node, sub graph which has two edges and a node is extracted to 
match with stroke models. This method is very successful way because there is no 
need to define the positional relation by heuristic, and there is only one stroke model 
combination with a grapheme. Strokes that are shown as a single stroke also have two 
strokes which are same directions. 

 

Fig. 2. Example of sub graph extraction from an attributed graph 

The matching of output sub graph and the stroke models is calculated from 
multiplication of parameter of stroke models of direction d  of sub graph’s edge, and 
multiplication of parameter of stroke models of joint angle a  of sub graph. The 
parameter of stroke models is probability distribution as explained above. Eq.(1) is 
the calculating the matching probability of stroke model. 

∏
∈∀∈

=
adkEx

kS xPXMP
,,

)()|(  (1) 
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X  is a sub graph of attributed graph, and SM  is stroke model. As it is shown, 

matching probability of stroke model can be calculated from multiplication of 

probability of input. 

3.2   Grapheme Model 

Grapheme consists of combinations of several strokes, so it is presented as relation-
ship of each stroke. As a result of using the extracting method, which is suggested 
previous, the kinds of stroke model and its frequency can be very good information. 
The result of extraction of stroke model from, ‘ ’ and ‘ ’ by using their matching 
method is shown at fig. 3. ‘ ’ seems it is added only two more lines to ‘ ’, but it’s 
added 6 different strokes when we decompose to stroke model. Using this character-
istic, grapheme model which has probability distribution of each stroke model 
frequency of occurrence is defined. 

Differences

Differences

 

Fig. 3. Comparison of stroke models extracted from two graphemes of similar shape 

noccurrencenoccurrencenoccurrencenoccurrence  

Fig. 4. Example of probability distribution of a grapheme model 

There are 51 graphemes existed in Hangul as it is shown at table 1. Therefore 51 
grapheme models are defined in this research.  

Fig. 4 is an example of parameter of grapheme model of grapheme ‘ ’. Because it 
is composed of horizontal stroke and vertical stroke, their probability of high 
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frequency is high, but the probability of high frequency of diagonal stroke’s 
occurrence is low. 

As shown in fig. 4, using probability distribution of occurrence frequency of 32 
stroke models, 51 grapheme models are defined, and matching probability is defined 
by the average of occurrence frequency of 32 stroke models. The equation is shown  
at (2). 

=

×=
n

i
nG SOP

n
XMP

1

))((
1

)|(  (2) 

X  is the set of stroke model, GM  is a grapheme model, n  is the number of model, 

and nS  is the n th stroke model, and )( nSO  is the number of occurrence of nS , 

and ))(( nSOP  is the probability of nS .  

3.3   Character Model 

Character is made through an arrangement of several graphemes on 2 dimensional 
spaces, and meaning and pronunciation are concluded by their location and 
variety. In this research, character model is defined by using this characteristic. 
Probability distribution of relative position of each grapheme is used to present 
the character model. The position of each grapheme is already defined according 
to the character type, but it is available only after we recognize a character, 
therefore the grapheme information of location cannot be used. Relative location 
of grapheme is defined as horizontal, vertical, right diagonal, and left diagonal 
relationship. The example of positional relationship is shown in Fig 5. The 
relation between ‘ ’ and ‘ ’ is horizontal relation, and the relation between ‘ ’ 
and ‘ ’ is left diagonal relation. 

HR   : Horizontal

VT : Vertical

RD : Right Diagonal

LD : Left Diagonal

HR

LD RD

 

Fig. 5. Positional relationship between grapheme models 

For probability matching with graphemes extracted from grapheme matching, 
character model has to constitute parameters. The parameters of character model are  
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P(r)

rRelation

HR

VT LD RD

P(r)

rRelation

HR
VT

LD

RD

P(r)

rRelation

HR

VT

LD

RD

Fig. 6. Example of probability distribution of a character model 

graphemes and probability distribution of their relative position. An example of the 
composition of character model is shown at Fig 6. 

As graphemes and its positional relation which are existed in a character are 
defined by probability and compose an independent character model, the 
compositions work out for each of 2350 complete characters in Hangul. 

By multiplication of parameters of every grapheme models extracted from 
grapheme matching stage in character model, matching probability of character is 
calculated. The formal equation is shown in Eq.(3). 

∏
∈

=
Xx

rC xNxPXMP ))(|()|( (3)

In above, X  means outputs of matching stage of grapheme model, )(xN  means 

neighbor graph of x  and ))(|( xNxPr  means the probability of relation of x  and 

the neighbor x .

3.4   Recognition 

Recognition in the statistic model means a process of deriving the maximum proba-
bility from a relation between data and a model.  In this research, every graph model 
and its node and edge are models which are presented the distribution of probability, 
therefore calculating the maximum probability between a model and input is a 
matching method. 

In this research, the method of calculating the recognition probability of character 
is shown in Eq.(4).. 

∏
⊂=

×=
n

Xxi
CG XMPxMPXMP

i
,1

)|()|()|( (4)
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In the above, )|( xMP G  means matching probability of model iG  to the set of 

input stroke x  and )|( XMP C  means matching probability of according character 

model. The character recognition probability is calculated when each grapheme 

multiplies )|( xMP G  and )|( XMP C . The character which produces the highest 

probability will be the matching character. 

3.5   Hierarchical Bottom-Up Matching 

In this research, the method of recognition through hierarchical bottom-up matching 
process using stroke, grapheme, and character model is proposed. First, stroke and its 
model need to be matched, and then, perform matching with grapheme’s model using 
the extracted stroke model. In this process, for every condition of possible stroke 
model’s set, we must perform the matching with grapheme’s model. At last, the set 
which can compose the character at grapheme model’s set has to be extracted and 
need to calculate the matching probability. The character model from the process and 
each grapheme that attends the matching are multiplied to get recognition probability 
and the character which has the highest probability can be the result of recognition. 

4   Experimental Results 

The experiment in this research used the database of common handwritten Hangul 
database PE92. PE92 consists of each 100 sets of character image to the total 2350 of 
Hangul character; 40 sets for training and 60 sets for test. 

The probability of recognition is being compared while the numbers of characters 
are being limited, in this experiment, the 520 of practical character and 2350 of 
character can be found at table 2. As it shown in the table, we could get 90.5% of 
accuracy about 520 of characters and 88.7% for 2350 of characters. Also, as a result 
of considering the 5th recognition candidates, we could get 95.5% of accuracy for the 
520 characters and 95.2% for the 2350 characters. In here, those are recognized as 
similar forms, but not often as different character. 

Table 2. Recognition result of proposed method 

When we compare the result of this research to the previous researches [3,4], we 
can claim that the method, which records the increasing 1% rate of accuracy with the 
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standard of perfect characters, is much more excellent than other methods. [3] 
composes three kinds of models, primitive stroke model, grapheme model and 
character model using random graph modeling, but the definition of the models is 
quite different to those of models suggested in this paper. There are some problems 
which the grapheme modeling use stroke model extracted from the other stroke 
groups and it takes more time to match all different strokes. Oppositely, the method 
which is suggested in this paper uses only the stroke models which are extracted from 
identical stroke group of grapheme model matching by decomposing the stroke group. 
Therefore, this method brings the solution to the previous problems. In the study [4], 
the condition of limitation about grapheme production prevent the production of it in 
unusual spaces, yet the way of establishing the condition rely too much on heuristic. 
However, in our research, by using the relative probability in decomposing and 
composing of stroke group, we can present every process in a correct range of 
calculation of probability. 

Table 3. Performance comparison to the previous works 

5   Conclusion 

In this paper, we proposed the new stroke based models and matching methods for an 
effective Hangul recognition system. The stroke model is defined using 3 probability 
distributions which two are direction of edges and one is angle between two edges. 32 
stroke models are defined based on the composition of 4 basic strokes. The grapheme 
model is defined based on the new stroke extraction method. The frequency of each 
stroke extracted from a grapheme is modeled as grapheme model. The character 
model is defined using relative position between each grapheme. Hierarchical bottom-
up matching can be adapted to these three models, because the concept of model 
definition is started from the structural characteristic of Hangul. As a result of 
experiment, we could get the high performance of recognition of 88.7% compare to 
previous research as well as better result in the periodic problems. 

The model introduced in this paper will be successful for not only for Hangul 
recognition, but also for the other characters such as Chinese which has also very 
complicated structure. 
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Graph Embedding Using Commute Time
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Abstract. This paper explores the use of commute-time preserving embedding
as means of data-clustering. Commute time is a measure of the time taken for a
random walk to set-out and return between a pair of nodes on a graph. It may be
computed from the spectrum of the Laplacian matrix. Since the commute time
is averaged over all potential paths between a pair of nodes, it is potentially ro-
bust to variations in graph structure due to edge insertions or deletions. Here we
demonstrate how nodes of a graph can be embedded in a vector space in a man-
ner that preserves commute time. We present a number of important properties of
the embedding. We experiment with the method for separating object motions in
image sequences.

1 Introduction

The embedding of the nodes of a graph in a vector-space is an important step in devel-
oping structural pattern analysis algorithms. For instance, node embeddings are key for
graph matching [17,5,4], graph-based clustering [18] and graph visualisation [9]. Al-
though the embedding can be effected using a number of different techniques including
those that are geometrically based [19] and those that are based on optimisation tech-
niques [14], one of the simplest approaches is to adopt a graph-spectral approach [11,1].
This involves embedding the nodes of the graph under study using the eigenvectors or
scaled eigenvectors of the Laplacian or adjacency matrix. For instance both Shapiro
and Brady [17], and Kosinov and Caelli [4] use spectral methods to embed nodes of
graphs in a vector space, and then use proximity to establish correspondences. Spectral
embeddings have also been used to visualise complex graphs.

However, one of the problems of spectral embedding is stability under noise. From
matrix perturbation it is well known that noise in an adjacency matrix causes the eigen-
vectors can rotate erratically under noise, and this means that the embedding co-
ordinates are also unstable under noise. The aim in this paper is to explore the use
of commute time as a means of stabilising the spectral embedding of graph nodes. The
commute time between a pair of nodes on a graph is the expected time taken for a ran-
dom walk to set-out and return. It is hence averaged over the set of all possible paths
between each pair of nodes. In fact, commute time is a metric that can be computed us-
ing the Green’s function or pseudo inverse of the graph Laplacian. In a recent series of
papers Qiu and Hancock [13] have shown how commute time can give improved graph
partitions and spectral clusterings.

The aim in this paper is to investigate whether the averaging of paths that is implicit
to the computation of commute time can lead to improved embeddings. The embed-
ding that preserves commute times is found the scaling the transpose of the Laplacian

D.-Y. Yeung et al. (Eds.): SSPR&SPR 2006, LNCS 4109, pp. 441–449, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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eigenvector matrix by the pseudo-inverse of the Laplacian eigenvalues. We commence
by performing a theoretical analysis that establishes the link between this embedding
and the Laplacian eigenmap and the diffusion map. We then present some experiments
that illustrate the practical utility of the embedding.

2 Commute Time and Commute Time Embedding

We denote a weighted graph by Γ = (V,E) where V is the set of nodes and E ⊆ V ×V
is the set of edges. Let Ω be the weighted adjacency matrix satisfying

Ω(u, v) =
{
w(u, v) if (u, v) ∈ E
0 otherwise

Further let T = diag(dv; v ∈ V ) be the diagonal weighted degree matrix with elements
du =

∑|V |
v=1 w(u, v). The un-normalized Laplacian matrix is given by L = T −Ω and

the normalized Laplacian matrix is defined to be L = T−1/2LT−1/2 , and has elements

LΓ (u, v) =

⎧⎨⎩
1 if u = v

−w(u,v)√
dudv

if u = v and (u, v) ∈ E

0 otherwise

The spectral decomposition of the normalized Laplacian is L = ΦΛΦT , where Λ =
diag(λ1,λ2, ...,λ|V |) is the diagonal matrix with the ordered eigenvalues as elements
satisfying: 0 = λ1 ≤ λ2 . . . ≤ λ|V | and Φ = (φ1|φ2|....|φ|V |) is the matrix with the
ordered eigenvectors as columns.

Let G be the pseudo-inverse of the normalized Laplacian matrix satisfying GL =
LG = I − φ1φ

T
1 . Then we have

G(u, v) =
|V |∑
i=2

1
λi

φi(u)φi(v) (1)

From Equation 1, the eigenvalues of L and G have the same sign and L is positive
semidefinite, and so G is also positive semidefinite. Since G is also symmetric (see [6]
page 4), it follows that G is a kernel.

We note that the commute time CT (u, v) is the expected time for the random walk
to travel from node u to reach node v and then return. It can be computed using the
Green’s function G by

CT (u, v) = volT−1/2 (G(u,u) + G(v, v)− 2G(u, v))T−1/2 (2)

As a result,

CT (u, v) =
|V |∑
i=2

(√
vol

λidu
φi(u)−

√
vol

λidv
φi(v)

)2

(3)

Hence, the embedding of the nodes of the graph into a vector space that preserves
commute time has the co-ordinate matrix

Θ =
√
volΛ−1/2ΦTT−1/2 (4)
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The columns of the matrix are vectors of embedding co-ordinates for the nodes of the
graph. The term T−1/2 arises from the normalisation of the Laplacian. The embedding
is nonlinear in the eigenvalues of the Laplacian. This distinguishes it from principle
components analysis (PCA) and locality preserving projection (LPP) [10] which are
both linear. As we will demonstrate in the next section, the commute time embedding is
just kernel PCA [16] on the Green’s function. Moreover, it can be viewed as Laplacian
eigenmap since they actually are minimizing the same objective function.

2.1 The Commute Time Embedding and the Laplacian Eigenmap

In the Laplacian eigenmap [3,2] the aim is to embed a set of points with co-ordinate
matrix X̄ = {x̄1, x̄2, ..., x̄n} from a Rn space into a lower dimensional subspace Rm

with the co-ordinate matrix Z = {z1, z2, ..., zm}. The original data-points have a prox-
imity weight matrix Ω with elements Ω(j, j) = exp[−||x̄i − x̄j ||2]. The aim is to find
the embedding that minimises the objective function

ε =
∑
i,j

‖zi − zj‖2
Ω(i, j) = tr(ZTLZ) (5)

where Ω is the edge weight matrix of the original data X̄.
To remove the arbitrary scaling factor and to avoid the embedding undergoing di-

mensionality collapse, the constraint ZTTZ = I is applied. The embedding problem
becomes

Z = arg min
ZT T Z=I

tr(ZTLZ) (6)

The solution is given by the lowest eigenvectors of the generalized eigen-problem

LZ = ΛTZ (7)

and the value of the objective function corresponding to the solution is ε∗ = tr(Λ).
For the commute-time embedding the objective function minimised is

ε =

∑
i,j ‖zi − zj‖2 Ω(i, j)∑

i z2
i di

= tr(
ZTLZ

ZTTZ
) (8)

To show this, let Z = Y T = (
√
volΛ−1/2ΦTT−1/2)T , we have

ε = tr(

√
volΛ−1/2ΦTT−1/2LT−1/2ΦΛ−1/2

√
vol√

volΛ−1/2ΦTT−1/2TT−1/2ΦΛ−1/2
√
vol

)

= tr(
Λ−1/2ΦTLΦΛ−1/2

Λ−1/2ΦTΦΛ−1/2 )

= tr(
Λ−1/2ΛΛ−1/2

Λ−1 )

= tr(Λ) = ε∗

(9)

Hence, the commute time embedding not only aims to maintain proximity relation-
ships by minimizing

∑
u,v ‖zu − zv‖2

Ωu,v, but it also aims to assign large co-ordinate
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values to nodes (or points) with large degree (i.e. it maximizes
∑

u z2
udu). Nodes with

large degree are the most significant in a graph since they have the largest number or
total weight of connecting edges. In the commute time embedding, these nodes are
furthest away from the origin and are hence unlikely to be close to one-another.

Finally, we note that the objective function appearing in Equation (15) is identical to
that used in the normalized cut. To show this let θ be a dimensional indicator vector.
The minimum value obtained by the normalized cut [18] is

θ1 = arg min
θT T1=0

θT (T−Ω)θ
θT Tθ

(10)

Hence comparing with Equation (8) it is clear that the objective function minimised by
the commute time embedding is exactly the same as that minimized by the normalized
cut, provided that the eigenvectors are scaled by the inverse of the corresponding non-
zero eigenvalues. In the bipartition case, this does not make any difference since scaling
will not change the distribution of the eigenvector components. However, in the multi-
partition case, the scaling differentiates the importance of different eigenvectors. It is
clear that the eigenvector corresponding to the smallest non-zero eigenvalue contributes
the greatest amount to the commute time. Moreover, it is this eigenvector or Fiedler vec-
tor that is used in the normalized cut to bipartition the graphs recursively. In the case
of the commute time embedding, the scaled eigenvectors are used as projection axes
for the data. As a result if we project the data into the commute time embedding sub-
space, the normalized cut bipartition can be realized by simply dividing the projected
data into two along the axis spanned by the Fiedler vector. Further partitions can be
realized by projecting and dividing along the axes corresponding to the different scaled
eigenvectors.

In Figure 2 we compare the result of embedding using commute time and the Lapla-
cian eigenmap on a planar graph shown in Figure 1. The original graph is constructed
by connecting two randomly generated planar graphs. The graph is un-weighted. We
project the nodes of the graph onto the plane spanned by the two principle eigenvec-
tors of the mapping. ¿From the figure, it is clear that both embeddings maintain the
original graph structure, and that the two original graphs are well separated. However,
compared to the Laplacian embedding, the points in the two original graphs are more
densely distributed by the commute time embedding. Another significant advantage of
the commute time embedding is that it preserves variance in a maximal way. This is il-
lustrated in 2(b). Here two randomly generated graphs are embedded in two orthogonal
planes.

2.2 The Commute Time and the Diffusion Map

Finally, it is interesting to note the relationship with the diffusion map embedding of
Lafon et al [15]. The method commences from the random walk on a graph which has
transition probability matrix P = T−1A, where A is the adjacency matrix. Although P
is not symmetric, it does have a right eigenvector matrix Ψ , which satisfies the equation

PΨ = ΛPΨ (11)
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Fig. 1. Original planar graph
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Fig. 2. Graph embedding comparison

Since P = T−1A = T−1(T − L) = I − T−1L and as result

(I − T−1L)Ψ = ΛPΨ

T−1LΨ = (I − ΛP )Ψ
LΨ = (I − ΛP )TΨ

(12)

which is identical to Equation 7 if Z = Ψ and Λ = I −ΛP The embedding co-ordinate
matrix for the diffusion map is Y = ΛtΨT , where t is real. For the embedding the
diffusion distance between a pair of nodes is

D2
t (u, v) =

m∑
i=1

(λP )2t
i (ψi(u)− ψi(v))

2

Clearly if we take t = −1/2 the diffusion map is equivalent to the commute time
embedding and the diffusion time is equal to the commute time.

The diffusion map is designed to give a distance function that reflects the connectiv-
ity of the original graph or point-set. The distance should be small if a pair of points are
connected by many short paths, and this is also the behaviour of the commute time. The
advantage of the diffusion map or distance is that it has a free parameter t, and this may
be varied to alter the properties of the map. The disadvantage is that when t is small, the
diffusion distance is ill-posed. The reason for this is that according to the original defi-
nition of the diffusion distance for a random walk (D2

t (u, v) = ‖pt(u, ·)− pt(v, ·)‖2),
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and as a result the distance between a pair of nodes depends on the transition probabil-
ity between the nodes under consideration and all of the remaining nodes in the graph.
As a result if t is small, then the random walk will not have propagated significantly,
and the distance will depend only on very local information. There are also problems
when t is large. When this is the case the random walk converges to its stationary state
with P t = T/vol ( a diagonal matrix), and this gives zero diffusion distance for all
pairs of distinct nodes. So it is a critical to control t carefully in order to obtain useful
embeddings.

3 Multi-body Motion Tracking Using Commute Time

In this section, we will show how the multi-body motion tracking problem can be posed
as one of commute time embedding. Suppose there areN objects moving independently
in a scene and the movement is acquired by an affine camera asF frames. In each frame,
P feature points are tracked and the coordinate of the ith point in the f th frame is given
by (xf

i , yf
i ). Let X and Y denote two F × P matrices constructed from the image

coordinates of all the points across all of the frames:

X =

⎡⎢⎢⎢⎣
x1

1 x1
2 · · · x1

P

x2
1 x2

2 · · · x2
P

...
...

. . .
...

xF
1 xF

2 · · · xF
P

⎤⎥⎥⎥⎦ Y =

⎡⎢⎢⎢⎣
y1
1 y1

2 · · · y1
P

y2
1 y2

2 · · · y2
P

...
...

. . .
...

yF
1 yF

2 · · · yF
P

⎤⎥⎥⎥⎦
Each row in the two matrices above corresponds to a single frame and each column
corresponds to a single point. The two coordinate matrices can be stacked to form the
matrix

W =
[
X

Y

]
2F×P

The W matrix can be factorized into a motion matrix M and a shape matrix S thus,
W2F×P = M2F×r × Sr×P where r is the rank of W (r = 4 in the case of W with-
out noise and outliers). In order to solve the factorization problem, matrix W can be
decomposed by SVD:

W = UΣRT

If the features from the same object are grouped together, then U , Σ and R will have
a block-diagonal structure.

W = [U1 · · ·UN ]

⎡⎢⎣Σ1
. . .

ΣN

⎤⎥⎦
⎡⎢⎣R

T
1

. . .
RT

N

⎤⎥⎦
and the shape matrix for object k can be approximated by Sk = B−1ΣkR

T
k where B is

an invertible matrix that can be found from M .
In a real multi-body tracking problem, the coordinates of the different objects are

potentially permuted into a random order. As a result it is impossible to correctly re-
cover the shape matrix Sk without knowledge of the correspondence order. Since the
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eigenvector matrix V is related to the shape matrix, the shape interaction matrix was
introduced by Costeira and Kanade [8,7] to solve the multi-body separation problem.
The shape interaction matrix is

Q = RRT =

⎡⎢⎢⎢⎣
ST

1 Σ−1
1 S1 0 · · · 0
0 ST

2 Σ−1
2 S2 · · · 0

...
...

. . . 0
0 0 · · · ST

NΣ−1
N SN

⎤⎥⎥⎥⎦ (13)

¿From Equation 13, the shape interaction matrix Q has the convenient properties that
Q(u, v) = 0, if points u,v belong to different objects and Q(u, v) = 0, if points u,v
belong to the same object. The matrix Q is also invariant to both the object motion and
the selection of the object coordinate systems.

Our aim is to use commute time as a shape separation measure. Specifically, we use
the commute time to refine the block structure of the Q matrix and group the feature
points into objects.

Object Separation Steps
The algorithm we propose for this purpose has the following steps:

1. Use the shape interaction matrix Q as the weighted adjacency matrix Ω and con-
struct the corresponding graph Γ .

2. Compute the Laplacian matrix of graph Γ using L = T −Q.
3. Find the eigenvalue matrix Λ and eigenvector matrix Φ of L using L = ΦΛΦT .
4. Compute the commute time matrix CT using Λ and Φ from Equation (3).
5. Embed the commute time into a subspace of Rn using Equation (4).
6. Cluster the data points in the subspace using the k-means algorithm [12].

4 Experiments

We commence in Figure 3 by showing four synthetic examples of point-configurations
(left-hand panel) and the resulting commute time embeddings (right-hand panel). Here
we have computed the proximity weight matrix Ω by exponentiating the Euclidean dis-
tance between points. The main features to note are as follows. First, the embedded
points corresponding to the same point-clusters are cohesive, being scattered around
approximately straight lines in the subspace. Second, the clusters corresponding to dif-
ferent objects give rise to straight lines that are orthogonal.

Turning our attention to the multi-body tracking example, the top row of Figure 4
shows images from five real-world video sequences. In the second row of the figure,
we show the trajectories for the tracked points in each of the video sequences. Here
the outliers are successfully removed. The different sequences offer tasks of increasing
difficulty. The easiest sequence is the one labelled A, where background has a uniform
and almost linear relative movement, and the foreground car follows a curved trajectory.
There is a similar pattern in the sequence labelled B, but here the background move-
ment is more significant. In sequence C, there is both camera pan and abrupt object
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Fig. 3. Commute time embedding examples

movement. Sequence D has camera pan and three independently moving objects. In
sequence E there is background jitter (due to camera shake) and two objects exhibiting
independent overall movements together with articulations. Finally, in the third row of
the figure, we show the embeddings of the tracked points for the sequences. The feature
to note, is that the different moving objects form distinct clusters and are well separated
from the background. The colour coding scheme used in the plot is the same as that
used in the fifth column of Figure 4.
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Fig. 4. Real-world video sequences and successfully tracked feature points
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5 Conclusion

We have explored the theoretical properties of the commute time embedding, and have
established a link with a number of alternative methods in the manifold learning liter-
ature. Experiment results show that the embedding maps different point clusters into
approximately linear subspaces, that can be easily separated.

References

1. X. Bai, H. Yu, and E.R. Hancock. Graph matching using spectral embedding and alignment.
In ICPR, pages 398–401, 2004.

2. M. Belkin and P. Niyogi. Laplacian eigenmaps and spectral techniques for embedding and
clustering. In Advances in Neural Information Processing Systems, pages 585–591, 2001.

3. M. Belkin and P. Niyogi. Laplacian eigenmaps for dimensionality reduction and data repre-
sentation. Neural Computation, 15(6):1373–1396, 2003.

4. T. Caelli and S. Kosinov. An eigenspace projection clustering method for inexact graph
matching. IEEE Trans. Pattern Anal. Mach. Intell., 26(4):515–519, 2004.

5. M. Carcassoni and E.R. Hancock. Spectral correspondence for point pattern matching. Pat-
tern Recognition, 36(1):193–204, 2003.

6. F.R.K. Chung and S.-T. Yau. Discrete green’s functions. In J. Combin. Theory Ser., pages
191–214, 2000.

7. J. Costeira and T. Kanade. A multi-body factorization method for motion analysis. In ICCV,
pages 1071–1076, 1995.

8. J. Costeira and T. Kanade. A multibody factorization method for independently moving
objects. IJCV, 29(3):159 – 179, 1997.

9. D. Harel and Y. Koren. Graph drawing by high-dimensional embedding. In GD ’02: Revised
Papers from the 10th International Symposium on Graph Drawing, pages 207–219, 2002.

10. X. He and P. Niyogi. Locality preserving projections. In NIPS, pages 585–591, 2003.
11. B. Luo, R.C. Wilson, and E.R. Hancock. Spectral embedding of graphs. 2002 Winter Work-

shop on Computer Vision, 2002.
12. J. B. MacQueen. Some methods for classification and analysis of multivariate observations.

In Proceedings of the fifth Berkeley symposium on mathematical statistics and probability,
pages 281–297, 1967.

13. H. Qiu and E.R. Hancock. Image segmentation using commute times. In BMVC, pages
929–938, 2005.

14. S. Roweis and L. Saul. Nonlinear dimensionality reduction by locally linear embedding.
Science, 290(5500):2323–2326, 2000.

15. R.R.Coifman, S. Lafon, A.B. Lee, M. Maggioni, B. Nadler, F. Warner, and S.W. Zucker. Geo-
metric diffusions as a tool for harmonic analysis and structure definition of data: Diffusion
maps. National Academy of Sciences, 102(21):7426–7431, 2005.

16. B. Sch, A. Smola, and K. Muller. Nonlinear component analysis as a kernel eigenvalue
problem. Neural Computation, 10:1299–1319, 1998.

17. L. Shapiro and J. Brady. Feature-based correspondence: an eigenvector approach. Image and
Vision Computing, 10(2):283–288, June 1992.

18. J. Shi and J. Malik. Normalized cuts and image segmentation. IEEE PAMI, 22(8):888–905,
2000.

19. J. B. Tenenbaum, V. de Silva, and J. C. Langford. A global geometric framework for nonlin-
ear dimensionality reduction. Science, 290(5500):2319–2323, 2000.



Graph Based Multi-class Semi-supervised
Learning Using Gaussian Process

Yangqiu Song, Changshui Zhang, and Jianguo Lee

State Key Laboratory of Intelligent Technology and Systems,
Department of Automation, Tsinghua University, Beijing, China, 100084

{songyq99, lijg01}@mails.tsinghua.edu.cn, zcs@mail.tsinghua.edu.cn

Abstract. This paper proposes a multi-class semi-supervised learning
algorithm of the graph based method. We make use of the Bayesian
framework of Gaussian process to solve this problem. We propose the
prior based on the normalized graph Laplacian, and introduce a new
likelihood based on softmax function model. Both the transductive and
inductive problems are regarded as MAP (Maximum A Posterior) prob-
lems. Experimental results show that our method is competitive with the
existing semi-supervised transductive and inductive methods.

1 Introduction

Graph based semi-supervised learning is an interesting problem in machine learn-
ing and pattern recognition fields [15,21]. The idea of using the unlabeled data
for training will bring the geometric and manifold information to the algorithm,
which may be effective to increase the recognition rate [1,2,8,18,19]. These graph
based methods are either transducitve [1,18,19] or inductive [2,8]. For multi-class
classification, it is easy to use the one-against-one or the one-against-the-rest
method to construct a classifier based on a set of binary classification algorithms.
Most of the existing graph based methods solve this as a one-against-the-rest
problem. This is reasonable because it is only required to change the form of the
labels of the data points, and do not need to modify the algorithm framework.

An alternative method to solve the multi-class problem is using the softmax
function [16]. Softmax function is naturally derives from the log-linear model,
and is convenient to describe the probabilitiy of each class. Therefore, it is use-
ful to model this conditional probability rather than impose a Gaussian noise
in the Bayesian classification framework. Gaussian process is an efficient non-
parametric method which uses this softmax function model [16]. Lawrence and
Jordan [10] developed a semi-supervised learning algorithm using fast sparse
Gaussian Process: Informative Vector Machine (IVM). It is not a graph based
algorithm. Zhu and Ghahramani [20] develope a semi-supervised binary classi-
fication framework of Gaussian process which is based on Gaussian fields, and
they make use of a 1-NN approximation extending to the unseen points.

In this paper, we propose a novel algorithm to solve the multi-class semi-
supervised learning problem. Similar to Gaussian process [16], both the training

D.-Y. Yeung et al. (Eds.): SSPR&SPR 2006, LNCS 4109, pp. 450–458, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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and prediction phases can be regarded as MAP (Maximum A Posterior) es-
timation problems. The difference is that, a prior based on normalized graph
Laplacian [5] is used, and a new conditional probability generalized from soft-
max function is proposed. Using this kind of Gaussian process, we can solve both
the transductive and inductive problems.

This paper is organized as follows. Section 2 will present the details of multi-
class semi-supervised learning algorithm. Experimental results will be given in
section 3. Conclusion is given in section 4.

2 Semi-supervised Gaussian Process

First, we introduce some notations. We denote the input data point as a feature
vector xn (n = 1, 2, ...,N), and XN

Δ= {xi}N
i=1 is the observed data set include

both labeled and unlabeled data. The label of the input data point is given
by ti. The label set of all the observed training data is TN = (t1, t2, ..., tN )T .
For transductive problem, we need to re-estimate the label of the unlabeled
data. For inductive problem, we want to estimate the label tN+1 of a new point
xN+1. Instead of using the direct process x → t, we adopt a latent variable
y to generate a process as x → y → t. We define the latent variable vector
yi = y(xi) as functions of xi, and YN = (y1,y2, ...,yN )T is the latent variable
matrix of the input data. Then, some noisy function on the process y → t could
be imposed. P (YN ) is the prior, and the conditional probability is P (TN |YN ).

2.1 The Likelihood

For a C classes problem, the softmax function model [16] sets the label as ti =
[0, ..., 0, tj

i = 1, 0, ..., 0], if xi is belonged to class j (j = 1, 2, ...,C). We extend
the labels to the unlabeled data, which is set to a zero vector ti = 0 initially.
Thus, the conditional probability P (ti|yi) (i = 1, 2, ...,N) of a C classes problem
is given by:

P (ti|yi) =
1

C + 1

C∏
j=1

(
C expyj

i∑C
j=1 expyj

i

)tj
i

(1)

We call this model as an extended softmax function model (ESFM), and we
have

∑
ti∈(C+1) classes P (ti|yi) ≡ 1. The essence of ESFM is it modifies a C

classes problem to be a C +1 classes problem. However, there has the difference
between a traditional C+1 classes problem and our model. When ti = 0, we have
P (ti|yi) ≡ 1/(C+1). One of the softmax function C

C+1 (expyj
i /
∑C

j=1 expyj
i ) will

be determinately more than 1/(C + 1). Therefore, this model will never classify
a point to be unlabeled. By applying to a semi-supervised learning problem, this
model will classify all the unlabeled data to the existent C classes. Then, the
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Log-likelihood of the conditional probability is given by:

L = − logP (TN |YN ) =
N∑

i=1
Li =

N∑
i=1

− logP (ti|yi)

=
N∑

i=1
−
[
log 1

C+1 +
C∑

j=1
tj
i

(
logC + yj

i − log
C∑

m=1
expym

i

)] (2)

For computational simplicity, we rewrite the form of matrix YN and TN as
vectors: (y1

1,y
1
2, ...,y

1
N , ...,yC

1 ,yC
2 , ...,yC

N )T and (t1
1, t

1
2, ..., t

1
N , ..., tC

1 , tC
2 , ..., tC

N )T .
Thus, by differentiating the logarithm of the likelihood probability we have:

aj
i =

C∑
m=1

tm
i

expyj
i

C

m=1
expym

i

, bj
i = expyj

i
C

m=1
expym

i

, cj
i = aj

i − tj
i

Π1 = diag
(
a1
1, a

1
2, ..., a

1
N , ..., aC

1 , aC
2 , ..., aC

N

)
Π2 =

(
diag

(
a1
1, a

1
2, ..., a

1
N

)
, ..., diag

(
aC
1 , aC

2 , ..., aC
N

))
Π3 =

(
diag

(
b11, b

1
2, ..., b

1
N

)
, ..., diag

(
bC
1 , bC

2 , ..., bC
N

))
αN = ∇YN (− logP (TN |YN )) =

(
c11, c

1
2, ..., c

1
N , ..., cC

1 , cC
2 , ..., cC

N

)T
ΠN = ∇∇YN (− logP (TN |YN )) = Π1 −ΠT

2 Π3

(3)

where αN and ΠN are the gradient vector and the Hessian matrix of
− logP (TN |YN ) respectively.

2.2 The Prior

In Gaussian process, we take P (YN ) as the prior. Many choices of the covariance
functions for Gaussian process prior have been reviewed in [11], and covariance
will affect the final classification significantly. We adopt the graph or manifold
regularization based prior, which is also used for many other graph based meth-
ods [2,18]. In our framework, with the defination of YN above, we define:

P (YN ) =
1
Z

exp{−YT
NK−1

N YN

2
} (4)

KN is an NC × NC block diagonal matrix, which has the Kronecker product
form:

K−1
N = ∇∇YN (− logP (YN )) = IC ⊗Δ (5)

where IC is a C × C identity matrix, and the matrix:

Δ = I− S (6)

is called normalized graph Laplacian 1 in spectral graph theory [5], and the prior
P (YN ) defines a Gaussian random field (GRF) [19] on the graph. S=D−1

2 WD−1
2 ,

(W)ij = Wij and D = diag(D11, ...,DNN). Dii =
∑

j Wij , and Wij is called

1 We also introduce an extra regularization, since the normalized graph Laplacian is
a semi definite positive matrix [5]. In particular, we set Δ ← (Δ + δI), and fix the
parameter in the experiments.
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the weight function associated with the edges on graph, which satisfies: Wij >
0 and Wij = Wji. It can be viewed as a symmetric similarity measure between
xi and xj .

The covariance matrix KN is relative to the inverse matrix of the normalized
graph Laplacian, so the covariance between two points is depend on all the other
training data including both labeled and unlabeled [20]. In contrast, most of the
traditional Gaussian processes adopt the Gram matrix based on “local” distance
information to construct the covariance [11,20].

2.3 Transduction and Induction

In Gaussian process, both the training phase and the prediction phase can be
regarded as MAP (Maximum A Posterior) estimation problems [16] . In the
training phase, we estimate the latent variables YN from the training data. By
computing the mode of posterior probability P (YN |TN ) as the estimate of YN ,
which is the negative logarithm of P (YN |TN ) = P (YN,TN )/P (TN ), we define:

Ψ(YN ) = − logP (TN |YN )− logP (YN ) (7)

P (TN ) is omitted for it is a constant unrelated to YN . P (YN) is the prior, which
is based on graph regularization. P (TN |YN ) is the new conditional probability:
extended softmax function model (ESFM). Therefore, Laplace approximation
method [16] can be used for estimating YN from the posterior. To find the
minimum of Ψ in equation (7), the Newton-Raphson iteration [16] is adopted:

YN
new = YN − (∇∇Ψ)−1∇Ψ (8)

Where:
∇Ψ = αN + K−1

N YN , ∇∇Ψ = ΠN + K−1
N (9)

Since ∇∇Ψ is always positive definite, (7) is a convex problem. When it con-
verges to an optimal ŶN , ∇Ψ will be zero vector. The posterior probability
P (YN |TN ) can be approximated as Gaussian, being centered at the estimated
ŶN . The covariance of the posterior is ∇∇Ψ . After the Laplace approximation,
the latent variable vector ŶN will depend on all the training data, and the
corresponding T̂N could be updated.

In the prediction phase, the objective function is:

Ψ(YN ,yN+1) = − logP (TN+1|YN+1)− logP (YN+1) (10)

which is minimized only with respect to yN+1. This leads to:

ŷN+1 = KN+1
TKN

−1ŶN (11)

where KN+1 = IC ⊗ k, and ki = WN+1,i = exp(−||xN+1 − xi||2/2σ2) is the
covariance of a new given point and the ith training point. Note that, in the
training phase, we have: ∇Ψ = α̂N + KN

−1ŶN = 0. Thus, equation (11) is
given by:

ŷN+1 = −KN+1
T α̂N (12)
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We substitute the estimated ŶN and T̂N to equation (3) to realize the prediction.
The form of predictive function (12) has a relationship with the RKHS [14].
Other semi-supervised inductive methods (such as [2]) also show how to find an
appropriate RKHS using the Representor Theorem.

The training phase has the same framework as the transductive learning algo-
rithm [18]. [18] imposes a Gaussian noise model and uses the one-against-the-rest
way to deal with the multi-class problem. We generalize the softmax function
to directly add the unlabeled data to the formulation. Our ESFM will reduce
to the one-against-the-rest problem if the off-diagonal blocks of matrix ΠN are
zeros. This means yj

i and yk
i (k = j) are decoupled. yj

i is larger than the other
yk

i (k = j) if a point xi belongs to class j, and yj
i is smaller when xi is other

classes. Although we have modeled the probability of a point belonging to each
class, the training phase scales to O(C3N3) computational complexity. In [16],
the authors point that this could be reduce to O(CN3) by using Woodbury
formula. Further more, the inverse of matrix could be approximated by using
Nyström method [17]. Thus, the training phase will reduce to O(CNM2) com-
putational complexity, where M is the number of a small subset of the training
points. On the contrary, the prediction phase has decoupled. We could calculate
yj

i for each class respectively. The prediction phase is O(CNNtest) computa-
tional complexity.

2.4 Hyper-parameter Estimation

This section mainly follows [16,20]. The hyper-parameter is the standard devi-
ation σ of the RBF kernel. We estimate the hyper-parameter which minimizes
the negative logarithmic likelihood:

J(σ) = log(−P (TN |σ)) (13)

≈
N∑

i=1

C∑
j=1

tj
i (log

C∑
m=1

expym
i − yj

i ) +
1
2

log |KNΠN + I|+ 1
2
YT

NK−1
N YN

The derivation of the objective function (13) is:

∂J(σ)
∂σ

= αT
N

∂YN

∂σ
+

1
2
tr

[
(I + KNΠN)−1 ∂KNΠN

∂σ

]
(14)

+
1
2

[
2
(
K−1

N YN

)T ∂YN

∂σ
+ yT

N

∂K−1
N

∂σ
YN

]

3 Experiments

3.1 Toy Data

We test the multi-class problem with a toy data. The training data set contains 7
classes. There are three Gaussian, two moon and two round shapes in the figure.
As Fig.1 (a) shows, each of the Gaussian distribution has 25 points, and each
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(d) Test data result

Fig. 1. A multi-class toy problem. The object value is plotted in (b) as blue line, and
the derivation is the red dot line.

class of moon and round shape data has 50 points. Only 9 points are labeled.
The hyper-parameter estimation result is shown in Fig.1 (b). Fig.1 (c) shows the
mash result of the sum of estimated function

∑
j expyj on the 2-D space. We

can see that, the corresponding estimated expyj be very large if the nearby has
training points. The labeled points can also affect the estimated result. See the
round shape in figure. The round shape in Fig.1 (a) is not closed, so the estimated
function is smaller when the point is far (measured by geodesic distance) from
the labeled point on the manifold. Finally, the classification result of the test set
are shown in Fig.1 (d).

3.2 Real Data

In this experiment, we test some state-of-the-art algorithms and ours on the real
data sets. Some of the images are resized, and all the vectors in these data sets
are normalized to the range from 0 to 1. The data sets are (More details of the
settings are shown in Table 1):

1. USPS Data [9]: We choose digits “1”-“4”, and there are 1269, 929, 824, and
852 examples for each class.

2. 20-Newsgroups Data [18]: There are four topics: “autos”, “motorcycles”,
“baseball” and “hockey”. The documents have been normalized in 3970
TFIDF vectors in 8014 dimensional space.

3. COIL-20 Data [12]: We pick the first 5 of the 20 objects to test the algorithms.
Each object has 72 images, which were taken at pose intervals of 5 degrees.
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4. ORL Face Data [13]: There are 10 different images of each of 40 distinct
subjects in the ORL data set. We choose the 15th-30th subjects.

5. Yale Face Data [6]: This data set contains 165 images of 15 individuals.
6. UMIST Face Data [7]: This set consists of 564 images of 20 people. Each

covering a range of poses from profile to frontal views. The first 10 subjects
are selected.

7. UCI Image Segmentation data [3]: The instances of this set were drawn
randomly from a database of 7 outdoor images. We choose 4 classes, and
each class has tolally 330 samples including both training and test data.

8. UCI Optical Recognition of Handwritten Digits [3]: We also choose the digits
“1”-“4”, and there are 571, 557, 572 and 568 examples for each class.

We test several algorithms for comparison: the supervised methods SVM (Sup-
port Vector Machine) [4] and RLS (Regularized Least Squares) [2]; transductive
method TOG (Transduction On Graphs) [18]; the inductive method LapRLS
(Laplacian Regularized Least Squares) [2]; and our method SSGP (Semi-
Supervised Gaussian Process). SVM uses the one-against-one scheme, while RLS,
LapRLS and TOG use the one-against-the-rest scheme. Each test accuracy of
the results is an average of 50 random trials. For each trial, we randomly choose
a subset of the data. The selected data are dealt as a splitting seen (include
labeled and unlabeled data) and unseen data sets. For supervised methods, we
only use the labeled points in the seen data for training. For semi-supervised
inductive methods, we use all the seen data to classify the unseen. For TOG, we
run two times for each iteration. First, we run it on the seen set, and evaluate
the accuracy again on the seen set. Second, we use both the seen and unseen
to train another TOG algorithm, and evaluate the accuracy on the unseen set.
Moreover, we use the weight Wij = exp(− 1

2σ2 ||xi−xj||2) to construct the graph.
Unlike the other data sets, to deal with the 20-Newsgroups data, we construct
a 10-NN weighted graph instead of a fully connected graph. The weight on the
graph is changed to be Wij = exp(− 1

2σ2 (1− 〈xi,xj〉
||xi||·||xj||)). The empirically selected

parameters are also shown in Table 1.
Fig.2 shows the results. We can see that, for data distributed on a manifold

(Fig.2 (a) (c) (f) (g) (h)), the test accuracy of TOG is the best. This is because it

Table 1. Experimental Settings and Empirically Selected Parameters

Data Set Class Dim Nsubset Seen Unseen σGraph σSV M CSV M

USPS 4 256 1000 50% 50% 1.25 5 1
20-Newsgroups 4 8014 1000 50% 50% 0.15 10 1
COIL-20 5 4096 360 80% 20% 1.25 10 1
ORL 15 2576 150 80% 20% 1 10 1
YALE 15 4002 165 70% 30% 2.5 12 3
UMIST 15 2576 265 60% 40% 1 6 5
UCI Image 4 19 800 50% 50% 0.1 1.5 3
UCI Digits 4 64 800 50% 50% 0.15 1.5 1
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Fig. 2. Real Data

uses both the seen and unseen data, and the unseen data provide more geometric
information. For the data do not show explicit manifold information (Fig.2 (b)
(d) (e)), the transductive metheds on seen set give the best result. The results
of SSGP on the seen set is competetive with TOG on the seen set. Moreover,
SSGP is also competetive with the semi-supervised inductive method LapRLS.
For most data sets, SSGP and LapRLS do better than the supervised methods
SVM and RLS, since semi-supervised methods use the information provided by
the unlabeled data. However, see the Yale data set for example, semi-supervised
methods only do litter better than the supervised methods, even TOG training
based on the whole set could not give much better result.

4 Conclusion

This paper proposes a novel graph based multi-class semi-supervised algorithm.
It can work on both seen and unseen data. The accuracy rate is competetive with
the existing transducitve and inductive methods. If the data present explicit
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structure of a manifold, the graph based semi-supervised learning algorithms
work efficiently for both transducitve and inductive problems. In the future, we
would like to do some research on the methods to speed up the algorithm.
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Abstract. In this paper, we describe the use of Riemannian geometry, and in
particular the relationship between the Laplace-Beltrami operator and the graph
Laplacian, for the purposes of embedding a graph onto a Riemannian manifold.
Using the properties of Jacobi fields, we show how to compute an edge-weight
matrix in which the elements reflect the sectional curvatures associated with the
geodesic paths between nodes on the manifold. We use the resulting edge-weight
matrix to embed the nodes of the graph onto a Riemannian manifold of constant
sectional curvature. With the set of embedding coordinates at hand, the graph
matching problem is cast as that of aligning pairs of manifolds subject to a geo-
metric transformation. We illustrate the utility of the method on image matching
using the COIL database.

1 Introduction

The problem of embedding relational structures onto manifolds is an important one in
computer science. Furthermore, in the pattern analysis community, there has recently
been renewed interest in the use of embedding methods motivated by graph theory.
One of the best known of these is ISOMAP [14]. Related algorithms include locally
linear embedding which is a variant of PCA that restricts the complexity of the input
data using a nearest neighbor graph [11] and the Laplacian eigenmap that constructs
an adjacency weight matrix for the data-points and projects the data onto the principal
eigenvectors of the associated Laplacian matrix [1]. Lafferty and Lebanon [8] have
proposed a number of kernels for statistical learning which are based upon the heat
equation on a Riemannian manifold.

Embedding methods can also be used to transform the graph-matching problem into
one of point-pattern alignment. The problem is to find matches between pairs of point
sets when there is noise, geometric distortion and structural corruption. There is a con-
siderable literature on the problem and many contrasting approaches, including relax-
ation [4] and optimisation [6], have been attempted. However, the main challenge in
graph matching is how to deal with differences in node and edge structure. One of the
most elegant recent approaches to the graph matching problem has been to use graph-
spectral methods [5], and exploit information conveyed by the eigenvalues and eigen-
vectors of the adjacency matrix. For instance, Umeyama [16] has developed a method
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for finding the permutation matrix which best matches pairs of weighted graphs of the
same size, by using a singular value decomposition of the adjacency matrices. Scott and
Longuet-Higgins [12], on the other hand, align point-sets by performing singular value
decomposition on a point association weight matrix. Shapiro and Brady [13] have re-
ported a correspondence method which relies on measuring the similarity of the eigen-
vectors of a Gaussian point-proximity matrix. Kosinov and Caelli [2] have improved
this method by allowing for scaling in the eigenspace.

Our aim in this paper is to seek an embedding of the nodes of a graph which allows
matching to be effected using simple point-pattern matching methods. In particular, we
aim to draw on the field of mathematics known as spectral geometry, which aims to
characterise the properties of operators on Riemannian manifolds using the eigenvalues
and eigenvectors of the Laplacian matrix [3]. This approach has a number of advan-
tages. Firstly, our definition of the edge weight is linked directly to the geometry of the
underlying manifold. Secondly, the relationship between the Laplace-Beltrami opera-
tor and the graph Laplacian provides a clear link between Riemannian geometry and
graph-spectral theory [5]. Furthermore, by making use of the Laplace-Beltrami opera-
tor to relate the apparatus of graph-spectral theory to Riemannian geometry, the results
presented here allow a better understanding of these methods. Finally, the recovery of
the embedding coordinates and the geometric transformation via linear algebra yields
an analytical solution which is devoid of free parameters.

2 Riemannian Geometry

In this section, we provide the theoretical basis for our graph embedding method. Our
aim is to embed the graph nodes as points on a Riemannian manifold. We do this by
viewing pairs of adjacent nodes in a graph as points connected by a geodesic on a man-
ifold. In this way, we can make use of Riemannian invariants to recover the embedding
of the point pattern on the manifold. With this characterisation at hand, we show how
the properties of the Laplace-Beltrami operator can be used to recover a matrix of em-
bedding coordinates. We do this by establishing a link between the Laplace-Beltrami
operator and the graph Laplacian. This treatment allows us to relate the graph Laplacian
to a Gram matrix of scalar products, whose entries are, in turn, related to the squared
distances between pairs of points on the Riemannian manifold.

2.1 Riemannian Manifolds

In this section, we aim to provide a means of characterising the edges of a graph using
a geodesic on a Riemannian manifold. The weight of the edge is the cost or energy
associated with the geodesic. To commence, let G = (V,E, W ) denote a weighted
graph with index-set V , edge-set E = {(u, v)|(u, v) ∈ V × V,u = v} and the edge-
weight function is W : E → [0, 1]. If the nodes in the graph are viewed as points on the
manifold, then the weight Wu,v associated with the edge connecting the pair of nodes u
and v can be computed using the the energy Epu,pv over the geodesic connecting the pair
of points pu and pv on the manifold. To do this, we employ concepts from differential
geometry [3, 10]. In this way, we establish a relationship with the curvature tensor,
which, in turn, allows us to characterise the sectional curvature of the manifold. The
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reasons for using the curvature tensor are twofold. Firstly, the curvature tensor is natural,
i.e. it is invariant under isometries (that is bijective mappings that preserve distance).
Secondly, the curvature tensor can be defined intrinsically through coordinate changes.
Hence, the curvature tensor is one of the main invariants in Riemannian geometry.

To commence our development, we require some formalism. Let the vector fields Y ,
X and Z be the extensions over a neighbourhood of the point p ∈ M of the vectors
η, ξ, ζ ∈ Mp. The curvature tensor, which is quadrilinear in nature [3], is denoted by
R(ξ, η). To obtain a bilinear form, i.e. the sectional curvature, from the curvature tensor
we use two linearly independent vectors η, ξ ∈Mp and write

K(ξ, η) =
〈R(ξ, η)ξ, η〉

| ξ |2| η |2 −〈ξ, η〉 (1)

Further, consider the parametric geodesic curve γ : t ∈ [α,β] �→ M . We define the
Jacobi field along γ as the differentiable vector field Y ∈ Mp, orthogonal to γ, satis-
fying Jacobi’s equation ∇2

tY + R(γ′,Y )γ′ = 0, where ∇ is said to be a Levi-Civita
connection [3].

With these ingredients, we model the edges in the graph as geodesics in a manifold
by substituting the shorthands for the derivative of the parametric geodesic curve γ :
t ∈ [α,β] with respect to the time parameter t, i.e. γ′, and the Jacobi field Y into the
expression for the sectional curvature introduced in Equation 1. We get

K(γ′,Y ) =
〈R(γ′,Y )γ′,Y 〉

| γ′ |2| Y |2 −〈γ′,Y 〉 (2)

To simplify the expression for the sectional curvature further, we make use of the
fact that, since Y is a Jacobi field, it must satisfy the condition ∇2

tY = −R(γ′,Y )γ′.
Hence, we can write

K(γ′,Y ) =
〈R(γ′,Y )γ′,Y 〉
| γ′ |2| Y |2 =

〈−∇2
tY,Y 〉

〈Y,Y 〉 (3)

where we have used the fact that Y is orthogonal to γ′, substituted | Y |2 with 〈Y,Y 〉
and set | γ′ |= 1. As a result, it follows that∇2

tY = −K(γ′,Y )Y . Hence, the Laplacian
operator∇2

tY is determined by the sectional curvature of the manifold.
This suggests a way of formulating the energy over the geodesic γ ∈ M connecting

the pair of points corresponding to the nodes indexed u and v. Consider the geodesic γ
subject to the Jacobi field Y . The energy over the geodesic γ can be expressed making
use of the equations above as

Epu,pv =
∫

γ

| γ′ +∇2
tY |2 dt =

∫
γ

| γ′ −K(γ′,Y )Y |2 dt (4)

We can provide a physical intepretation of the above result. It can be viewed as the
energy associated with the geodesic from the point indexed u to the point indexed v,
which is the sum of the kinetic energy and the potential energy contributed by the Jacobi
field over γ. Hence, the edge-weight is small if a pair of points are close to one another
or the curvature along the geodesic between them is small.
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In practice, we will confine our attention to the problem of embedding the nodes
on a constant sectional curvature surface. For such a surface, the sectional curvature is
constant i.e. K(γ′,Y ) ≡ κ. Under this restriction the Jacobi field equation becomes
∇2

tY = −κY . With the boundary conditions Y (0) = 0 and | ∇tY (0) |= 1, the
solution is

Y (t) =

⎧⎪⎪⎨⎪⎪⎩
sin(

√
κt)√

κ
η if κ > 0

tη if κ = 0
− sinh(

√−κt)√−κ
η if κ < 0

(5)

where the vector η is in the tangent space of M at pu and is orthogonal to γ′ at the point
indexed u, i.e. η ∈Mpu and 〈η, γ′ |pu〉 = 0.

With these ingredients, and by rescaling the parameter t so that | γ′ |= a(u, v), we
can express the weight of the edge connecting the nodes indexed u and v as follows

W (u, v) =

1
0 a(u, v)2 + κ sin(

√
κa(u, v)t)

2

dt if κ > 0
1
0 a(u, v)2dt if κ = 0
1
0 a(u, v)2 − κ sinh(

√−κa(u, v)t)
2

dt if κ < 0

(6)

where a(u, v) is the Euclidean distance between each pair of points in the manifold, i.e.
a(u, v) =|| pu − pv ||.

2.2 Recovery of the Embedding Coordinates

To construct a set of embedding coordinates for the nodes of the graph, we use multidi-
mensional scaling with double centering [15]. We depart from a matrix of embedding
coordinates J obtained from the centred Laplacian using the factorisation H = JJT .
The double centering procedure introduces a linear dependency over the columns of the
matrix. The double-centered graph Laplacian H is, in fact, a Gram matrix and, thus, we
can recover the node-coordinates making use of a matrix decomposition approach. We
construct the centering matrix as follows

H = −1
2
BLBT (7)

where B = I− 1
|V |ee

T is the centering matrix, I is the identity matrix, e is the all-ones

vector and L = D− 1
2 (D−W )D− 1

2 is the normalised graph Laplacian. In the expression
above, D is a diagonal matrix such that D = diag(deg(1), deg(2), . . . , deg(|V |)) and
deg(i) is the degree of the node indexed i.

It is also worth noting that the double centering operation on the graph Laplacian
also has the effect of translating the coordinate system for the embedding to the origin.
This allows us to pose the problem of matching as an alignment one that involves only
rotation.

To perform this factorisation of the matrix H, we make use of Young-Householder
theorem [17]. Let Λ = diag(λ1,λ2, ..,λ|V |) be the diagonal matrix with the ordered
eigenvalues of H as elements and Φ = (φ1|, |φ2|, . . . , |φ|V |) be the matrix with the
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corresponding ordered eigenvectors as columns. Here the ordered eigenvalues and cor-
responding eigenvectors of the matrix H satisfy the condition | λ1 |≥| λ2 |≥ · · · ≥|
λ|V | |> 0. As a result, we can write H = ΦΛΦT = JJT , where J =

√
ΛΦ. The

matrix which has the embedding coordinates of the nodes as columns is D = JT .
Hence, H = JJT = DTD is a Gram matrix, i.e. its elements are scalar products of the
embedding coordinates. Consequently, the embedding of the points is an isometry.

3 Graph Matching by Point Set Alignment

In this section, we show how the graph matching process can be posed as one of man-
ifold alignment. This can be effected by finding the geometric transformation which
minimises a quadratic error measure, i.e. least squares distance, between pairs of em-
bedded points. To commence, we require some formalism. Suppose that HD =
ΦDΛDΦT

D is the centred Laplacian matrix for the set of | V D | “data” points whose
embedded co-ordinates are given by the matrix D =

√
ΛDΦT

D. Similarly, HM =
ΦMΛMΦT

M is the centred Laplacian matrix for the set | V M | of “model” points whose
embedded co-ordinates are given by the matrix M =

√
ΛMΦT

M . In practice, the sets of
points to be matched may not be of the same size. To accommodate this feature of the
data, we assume that the model point set is the larger of the two, i.e. |V M| ≥ |V D|. As
a result of the Young-Householder factorisation theorem used in the previous section,
the embeddings of the data and model point patterns onto the manifolds MD ∈ �|V D |

and MM ∈ �|V D|, respectively, will be assumed to have a dimensionality which is
equal to the number of points in the corresponding point-set. Hence, in order to be con-
sistent with our geometric characterisation of the point pattern matching problem, we
consider the manifold MD ∈ �|V D | to be a covering map, or projection, of the mani-
fold MM ∈ �|V M|. Here, in order to avoid ambiguities, we are interested in coverings
of multiplicity one and, therefore, as an alternative to the matrix D, we work with the
matrix of coordinates D̃ = [D | n|V D |+1 | n|V D |+2 | . . . | n|V M|], where ni is a vector
of length | V D | whose entries are null.

With these ingredients, the problem of finding a transformation which can be used to
map the data points onto their counterparts in the model point-set can be viewed as that
of finding the rotation matrix R and the point-correspondence matrix P̃ = [P | O],
where P is a permutation matrix of order | V D | and O is a null matrix of size | V D |
× | V M − V D |, which minimise the quadratic error function

ε =‖ M− P̃RD̃ ‖2 (8)

To solve the problem, we divide it in to two parts. First, we find the rotation matrix R
by assuming the point-correspondence matrix P̃ is known. Second, with the optimum
rotation matrix at hand, we recover the point-correspondence matrix P̃.

To recover the rotation matrix R, we make use of the fact that both matrices, R and
P̃, are orthogonal and write

ε = Tr[MMT ] + Tr[(P̃RD̃)(P̃RD̃)T ]− 2Tr[M(RD̃)T P̃] (9)

From the equation above, it is clear that maximising Tr[M(RD̃)T P̃] is equivalent to
minimising ε. Further, assuming that the optimum correspondence matrix P̃ is known,
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we can view the matrix P̃ as an augmented permutation matrix, and, hence maximising
Tr[MD̃T R] is the same as maximising Tr[M(RD̃)T P̃]. This observation is important,
because it implies that the rotation matrix R is the solution to a Procrustean transforma-
tion over the embedding coordinates for the set of data-points. Recall that a Procrustes
transformation is of the form Q = RD̃ which minimises ‖ M−Q ‖2. It is known that
minimising ‖ M−Q ‖2 is equivalent to maximising Tr[D̃MTR]. This is effected by
using Kristof’s inequality, which states that, if S is a diagonal matrix with non-negative
entries and T is orthogonal, we have Tr[TS] ≥ Tr[S].

Let the singular value decomposition (SVD) of D̃MT be USVT . Using the invari-
ance of the trace function over cyclic permutation, and drawing on Kristof’s inequal-
ity, we can write Tr[D̃MTR] = Tr[USVT R] = Tr[VT RUS] ≥ Tr[S]. It can be
shown that VT RU is orthogonal since R is orthogonal. Furthermore, the maximum of
Tr[M(RD̃)T P̃] is achieved when VT RU = I. As a result, the optimal rotation matrix
R is given by R = VUT .

With the rotation matrix at hand, the correspondence matrix P̃ can be recovered
by noting that the product M(RD̃)T = MQT is the matrix of pairwise inner products
between the embedding coordinates for the data and model point-sets. Since the rotation
of D̃ over R is optimum, the normalised inner product between pairs of matching points
is, in the ideal case, equal to unity, i.e. the angle between normalised coordinate vectors
is zero. To take advantage of this, we construct the matrix of normalised pairwise inner
products and then use it to recover P̃. Hence, consider the matrix Z of order | V D |
× | V M | whose element indexed i, j is given by the normalised inner product of the
respective embedding coordinate vectors, after being aligned by rotation, for the data-
point indexed i and jth model-point. The elements of the matrix Z are hence given by

Z(i, j) =
∑|V M|

k=1 Q(i, k)M(j, k)√∑|V M|
k=1 Q(i, k)2

√∑|V M|
k=1 M(j, k)2

(10)

Since the correspondence matrix P̃ can be viewed as a matrix which slots over the
matrix Z of normalised pairwise inner products and selects its largest values, we can
recover P̃ from Z in the following way. We commence by clearing P̃ and, recursively,
do

1.- P̃(i, j) = 1, where {i, j | Z(i, j) = maxZ(i,j) �=0(Z)}.
2.- Z(i, k) = 0 ∀ k ∈| V M | and Z(l, j) = 0 ∀ l ∈| V D |.

until Z ≡ 0. The data-point indexed i is then a match to the jth model-point if and only
if P̃(i, j) = 1. It is important to note that Z is the equivalent to the correlation, in a
scalar-product sense, between the rows of M and the columns of QT . It can be shown
that the matrix P̃ maximises the trace of P̃T MQT and, hence, minimises the quadratic
error function ε.

This geometric treatment of the node-correspondence problem and its relationship to
the correlation, as captured by the entries of Z, between the rows of M and the columns
of QT lends itself naturally to further refinement via statistical approaches such as EM
algorithm [9] or relaxation labelling [4].
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4 Experiments

The experimental evaluation of our method is divided into two parts. In Section 4.1,
we illustrate the effect of the embedding on a sample point-set. In Section 4.2, we
experiment with real world data provided by the COIL data-base.

4.1 Point-Set Deformation

In this section, we illustrate the utility of our method for the purposes of embedding
a set of data points in a Riemannian manifold of constant sectional curvature. For this
purpose, we have used a set of 25 points sampled regularly from a two-dimensional
lattice.

Fig. 1. From left-to-right: embedding results with κ = −10, 0 and 10 for a point-lattice

In Figure 1 we show, the results obtained by our algorithm for increasing values of
κ. From the Figure 1, it is clear that the sectional curvature κ has an important effect in
the recovery of the embedding coordinates. For κ = 0, the embedding is just a rotated
version of the original distribution of the points in the plane. When κ is non-zero, then
different patterns of behaviour emerge. In the case of negative sectional curvature (i.e.
hyperbolic geometry), the embedding “collapses” the distribution of points towards the
origin. For positive sectional curvature (i.e. elliptic geometry) the effect is to push the
points away from the origin, and the point distribution forms an annulus. This behaviour
is consistent with the fact that, for hyperbolic surfaces (κ < 0) parallel lines diverge.
For spherical manifolds (κ > 0), parallel lines intersect.

4.2 Feature Point Matching

In this section, we aim at assessing the quality of the matching results delivered by
our algorithm. As an experimental vehicle, we use the Columbia University COIL-20

Obj. 1 Obj. 2 Obj. 3 Obj. 4 Obj. 5 Obj. 6 Obj. 7 Obj. 8 Obj. 9 Obj. 10

Obj. 11 Obj. 12 Obj. 13 Obj. 14 Obj. 15 Obj. 16 Obj. 17 Obj. 18 Obj. 19 Obj. 20

Fig. 2. Sample views for the objects in the Columbia University COIL database
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Table 1. Normalised average ratio ε as a function of the sectional curvature κ

Object Normalised average ratio ε of Object Normalised average ratio ε of
Index incorrect to correct correspondences Index incorrect to correct correspondences

κ = −15 κ = 0 κ = 15 κ = −15 κ = 0 κ = 15

1 0.063 0.068 0.071 11 0.064 0.065 0.068
2 0.066 0.071 0.078 12 0.061 0.066 0.069
3 0.064 0.068 0.075 13 0.059 0.067 0.073
4 0.063 0.067 0.071 14 0.062 0.066 0.071
5 0.062 0.066 0.068 15 0.063 0.068 0.072
6 0.064 0.068 0.069 16 0.061 0.067 0.073
7 0.062 0.067 0.071 17 0.062 0.067 0.074
8 0.063 0.068 0.072 18 0.061 0.064 0.072
9 0.065 0.067 0.069 19 0.063 0.069 0.071
10 0.061 0.068 0.071 20 0.063 0.066 0.069

database. The COIL-20 database contains 72 views for 20 objects acquired by rotating
the object under study about a vertical axis. In Figure 2, we show sample views for each
of the objects in the database. For each of the views, our point patterns are comprised
of feature points detected using the Harris corner detector [7].

To evaluate the results of matching pairs of views in the database, we have adopted
the following procedure. For each object, we have used the first 15 views, 4 of these
are “model” views and the remaining 12 are “data” views. We have then matched, by
setting κ to −15, 0 and 15, the feature points for the selected “model” views with those
corresponding to the two previous and two subsequent views in the database, i.e. we
have matched the feature points for the ith view with those corresponding to the views
indexed i−2, i−1, i+1 and i+2. To provide more qualitative results, we have ground-
truthed the correspondences between the “model” and “data” views and computed the
normalised average ratio ε of incorrect to correct correspondences μ(k, j) between the
“model” view indexed k and the corresponding “data” view indexed j. The quantity ε
is then given by

ε =
1

4 | Π |
∑
k∈Π

j=k+2∑
j=k−2,j �=k

μ(k, j)
ρ(k, j)

(11)

where Π = {3, 6, 9, 12} is the set of indices for the “model” views and ρ(k, j) is the
maximum number of correspondences between the “model” and the “data” view. In
Table 1, we show the values of ε as a function of object index for the three values of
κ used in our experiments. Note that, in the table, we have used the object indexes in
Figure 2.

From the quantitative results shown in Table 1, we conclude that the value of the
sectional curvature κ has an important effect in the results delivered by the method. The
method performs consistently better for negative values of κ. This is the case in which
the alignment, is performed between manifolds that are hyperbolic in nature.
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5 Conclusions

In this paper, we have shown how the nodes of a graph can be embedded on a constant
sectional curvature manifold. The procedure can be viewed as a transformation to the
edge-weights of the graph, which modifies the edge-weights using the sectional cur-
vature. When the sectional curvature is positive, then the effect is to emphasise local
or short-distance relationships. When the sectional curvature is negative on the other
hand, then the effect is to emphasise long-distance relationships. Using the embedded
coordinates corresponding to the nodes of the graph, we show how the problem of
graph-matching can be transformed into one of Procrustean point-set alignment.

References

[1] M. Belkin and P. Niyogi. Laplacian eigenmaps and spectral techniques for embedding and
clustering. In Neural Information Processing Systems, number 14, pages 634–640, 2002.

[2] T.M. Caelli and S. Kosinov. An eigenspace projection clustering method for inexact graph
matching. PAMI, 26(4):515–519, April 2004.

[3] I. Chavel. Riemannian Geometry: A Modern Introduction. Cambridge University Press,
1995.

[4] W. J. Christmas, J. Kittler, and M. Petrou. Structural matching in computer vision using
probabilistic relaxation. IEEE Transactions on Pattern Analysis and Machine Intelligence,
17(8):749–764, 1995.

[5] Fan R. K. Chung. Spectral Graph Theory. American Mathematical Society, 1997.
[6] S. Gold and A. Rangarajan. A graduated assignment algorithm for graph matching. PAMI,

18(4):377–388, April 1996.
[7] C. J. Harris and M. Stephens. A combined corner and edge detector. In Proc. 4th Alvey

Vision Conference, pages 147–151, 1988.
[8] J. Lafferty and G. Lebanon. Diffusion kernels on statistical manifolds. Journal of Machine

Learning Research, 6:129–163, 2005.
[9] Bin Luo and E. Hancock. Iterative procrustes alignment with the em algorithm. Image and

Vision Computing, 20:377–396, 2002.
[10] B. O’Neill. Elementary Differential Geometry. Academic Press, 1997.
[11] S. T. Roweis and L. K. Saul. Nonlinear dimensionality reduction by locally linear embed-

ding. Science, 290:2323–2326, 2000.
[12] G. Scott and H. Longuet-Higgins. An algorithm for associating the features of two images.

In Proceedings of the Royal Society of London, number 244 in B, pages 21–26, 1991.
[13] L. Shapiro and J. M. Brady. Feature-based correspondance - an eigenvector approach.

Image and Vision Computing, 10:283–288, 1992.
[14] J. B. Tenenbaum, V. de Silva, and J. C. Langford. A global geometric framework for non-

linear dimensionality reduction. Science, 290(5500):2319–2323, 2000.
[15] W. S. Torgerson. Multidimensional scaling I: Theory and method. Psychometrika, 17:401–

419, 1952.
[16] S. Umeyama. An eigen decomposition approach to weighted graph matching problems.

PAMI, 10(5):695–703, September 1988.
[17] G. Young and A. S. Householder. Discussion of a set of points in terms of their mutual

distances. Psychometrika, 3:19–22, 1938.



D.-Y. Yeung et al. (Eds.): SSPR&SPR 2006, LNCS 4109, pp. 468 – 474, 2006. 
© Springer-Verlag Berlin Heidelberg 2006 

Graph-Based Fast Image Segmentation∗ 

Dongfeng Han, Wenhui Li, Xiaosuo Lu, Lin Li, and Yi Wang 

College of Computer Science and Technology, Key Laboratory of Symbol Computation and 
Knowledge Engineering of the Ministry of Education, Jilin University, Changchun, 130012, 

P.R. China 
jlu_hdf@126.com 

Abstract. In this paper, we describe a fast semi-automatic segmentation algo-
rithm. A nodes aggregation method is proposed for improving the running time 
and a Graph-Cuts method is used to model the segmentation problem. The 
whole process is interactive. Once the users specify the interest regions by 
drawing a few lines, the segmentation process is reliably computed automati-
cally no additional users’ efforts are required. It is convenient and efficient in 
practical applications. Experiments are given and outputs are encouraging. 

1   Introduction 

Image segmentation is a process of grouping together neighboring pixel whose prop-
erties are coherent. It is an integral part of image processing applications like medical 
images analysis and photo editing. Many researchers are focus on this subject [1], [2], 
[3], [4], [5], [6], [7], [8], [9] and [10]. However, even to this day, many of the compu-
tational issues of perceptual grouping have remained unresolved. Semi-automatic 
segmentation techniques that allow solving moderate and hard segmentation tasks by 
modest effort on the part of the user are becoming more and more popular. In the 
analysis of the objects in images it is essential that we can distinguish between the 
objects of interest and the rest. This latter group is also referred to as the background. 
The techniques that are used to find the objects of interest are usually referred to as 
segmentation techniques: segmenting the foreground from background. 

In this paper, we present an efficient method for semi-automated image segmenta-
tion for common images. Our method can exactly extract the interest objects such as 
people, animals and so on. This paper’s contribution is twofold.  

First, we introduce the nodes aggregation method to the image segmentation. It is a 
powerful tool for reducing running time. 

Second, we propose a novel semi-automation segmentation scheme based on nodes 
aggregation and Graph-Cuts, which has several favorable properties: 

1. Capable of solving interactive segmentation problem. 
2. Performs multi-label image segmentation (the computation time does not depend 

on the number of labels). 
3. Fast enough for practical application using nodes aggregation. 

                                                           
∗ This work has been supported by NSFC Project 60573182, 69883004 and 50338030. 



 Graph-Based Fast Image Segmentation 469 

4. It is extensible and allows constructing new families of segmentation algorithms 
with specific properties. 

In section 2 describes our method in detail. Section 3 presents the experiments. 
Conclusions and future work are given in section 4. 

2   Our Method 

2.1   Overview 

Just as mentioned in [7], the segmentation problems focus on two basic questions:  

1. What is the criterion that one wants to segment? 
2. Is there an efficient technique to carry out the segmentation? 

In this paper, our goal is to give an answer about the two questions. There are two 
main contributions of our segmentation algorithm. We will introduce each of these 
ideas briefly below and then describe them in detail in subsequent sections. The first 
contribution of this paper is a new coarse image representation called nodes aggrega-
tion that allows for very fast completing segmentation. The second contribution of 
this paper is combining nodes aggregation with Graph-Cuts that can produce an 
elaborate segmentation result. 

2.2   Graph-Cuts Based Image Segmentation 

Inspired by [3], we use Graph-Cuts as energy minimization technique for the interac-
tive segmentation. Furthermore, at the object marking step, we propose an efficient 
interactive segmentation algorithm by employing multi-scale nodes aggregation and 
Graph-Cuts.  

We briefly introduce some of the basic terminology used throughout the paper. An 
image that contains N n n= × pixels, we construct a graph ( ), ,G V E W= in 
which each node i V∈ represents a pixel and every two nodes i, j representing 
neighboring pixels are connected by an edge ,i je E∈ . Each edge has a weight 

,i jw W∈ reflecting the contrast in the corresponding location in the image. We can 
connect each node to the four or eight neighbors of the respective pixel, producing a 
graph. The graph can be partitioned into two disjoint sets, “O”, “B” 
where O B V= , O B φ= . These tasks can be viewed as labeling problems 
with label 1 representing object and 0 otherwise. Finding the most likely labeling 
translates to optimizing an energy function. In vision and image processing, these 
labels often tend to vary smoothly within the image, except at boundaries. Because a 
pixel always has the similar value with its neighbors, we can model the optimization 
problem as a MRF. In [3], the authors find the most likely labeling for some given 
data is equivalent to seeking the MAP (maximum a posteriori) estimate. A graph is 
constructed and the Potts Energy Model (1) is used as the minimization target. 

{ },

( ) ( ) ( , )
i

data smooth
i V i j N

H G H i H i j
∈ ∈

= +  (1) 
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The graph G contains two kinds of vertices: p-vertices (pixels which are the sites in 
the associated MRF) and l-vertices (which coincide with the labels and will be termi-
nals in the graph cut problem). All the edges present in the neighborhood system N 
are edges in G. These edges are called n-links. Edges between the p-vertices and the l-
vertices called t-links are added to the graph. t-links are assigned weights based on the 
data term (first term in Equations 1 reflecting individual label-preferences of pixels 
based on observed intensity and pre-specified likelihood function) while n-links are 
assigned weights based on the interaction term (second term in Equation 1 encourag-
ing spatial coherence by penalizing discontinuities between neighboring pixels). 
While n-links are bi-directional, t-links are un-directional, leaving the source and 
entering the sink. A cut segment the graph. 

The object of segmentation is to minimize the energy function (1). The first term 
reflects individual label-preferences of pixels based on observed intensity and pre-
specified likelihood function. The second term encourages spatial coherence by penal-
izing discontinuities between neighboring pixels. So our goal is minimize the energy 
function and make it adapt to human vision system. In [3] authors give the construc-
tion of the graph in detail. A different way is used to construct the graph in this paper 
because its construction way is so complex that in practice it will be inconvenient and 
it will influence the running time. 

First a k-Means clustering method is applied on the seed region including “O” and 
“B”.  We use the algorithm described in [11] which performs well in practice. (A C 
code can be found on his homepage) Then, for each node i, the minimum distance 
from its color ( )color i  to foreground clusters is computed as: 

( )O
i j

j O
d Min color i kMeans

∈
= −  (2) 

( )B
i j

j B
d Min color i kMeans

∈
= −  (3) 

So the energy of the first term is: 

         

0                    

 ( 0)
 1  0

0                      

( 1)            

   1  0

B
data i

B O
i i

data

O
i

B O
i i

CONST if i B

if i O

H i d
if i or

d d

if i B

H i CONST if i O

d
if i or

d d

ε

ε

∈
∈
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≠
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∈
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(4) 

Where 1  0i or= means that this node belongs to Object or Background. 
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The second term
{ },

( , )smooth
i j N

H i j
∈

, which is define as follow: 

{ }

2 2

,

( ) ( ) ( ) ( )
( , ) exp( ) exp( )smooth

i j N

I i I j L i L j
H i j

I Lσ σ∈

− − − −
= ×  (5) 

Where I(i) is the color of the node i, L(i) is the location of the i. So this term not only 
reflects the neighbor smoothness but also reflects the influence of two nodes due to 
distance. 

So once a user specifies the seeds of object and background then a graph can be 
constructed as described above. Then using the Max-Flow algorithm (a more efficient 
implementation is described in [12]), we can efficient minimize the energy. The out-
put is divided into two parts: one is object the other is background. 

2.3   Nodes Aggregation 

For a 512×512 pixel image, it will be slow to segment the whole graph straightly. We 
introduce a multi-scale nodes aggregation method to construct a pyramid structure 
over the image. Each procedure produces a coarser graph with about half size, and 
such that Graph-Cuts segmentation in the coarse graph can be used to compute preci-
sion segmentation in the fine graph. The coarsening procedure proceeds recursively as 

follows. The finest graph is denoted by ( )0 0 0 0, ,G V W E= and a state vec-

tor { }1 2, ,..., Nd d d d= , where N V= is defined: 

1

0

if i O
d

if i B

∈
=

∈
 (6) 

1id =  means pixel i belonging to object, otherwise belonging to background. 
Supposing ( ), ,s s s sG V W E= and sd is defined at scale s. A set of coarse repre-
sentative nodes { }1,2,3,...,sC V n⊆ = and sV N≤  is chosen, so that every 
node in 1 \sV C−  is strongly connected to C. A node is strongly connected to C if the 
sum of its weights to node in C is significant proportion of its weights to nodes out-
sides C. The principle can be found in [9]. Each node in C can be considered as repre-
senting an aggregation node. Thus we decompose the image into many aggregates. 
Then a coarse graph ( )1 1 1 1, ,s s s sG V W E− − − −=  and a state vector 

{ }1
1 1 1 1

1 2, ,..., s

s s s s

N
d d d d −

− − − −= at scale   s-1 are defined. The relationship between sW  and 
1sW − , sd  and 1sd − are: 

[ 1, ] 1 [ 1, ]
, , , ,

s s s s s s
k l i k i j j lw p w p− − −=  (7) 

It can be written as the matrix formulation: 

[ 1, ] 1 [ 1, ]s s s T s s sW P W P− − −=  (8) 
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So relationship between sd  and 1sd − are: 

1 [ 1, ]s s s sd P d− −=  (9) 

A more detail description can be found in [9]. So we should find P which is called 
the inter-scale interpolation matrix in [10]. Once P is found, the pyramid structure can 
be constructed recursively. The selection of P can be found in [8]. In the end a full 
pyramid has been constructed. The graph cuts method can be used to segment the 
coarse graph, then applying a top-down sharpening of the boundaries. In the end each 
represent node at coarser level is assigned to low level, which produces a nodes reas-
sembling procedure. That means a node i originally belonging to a represent node j 
can reassembling to a different represent node k due to the weight change. So a node i 
change its original state value from background to object (supposing it originally 
belongs to background). 

 
(a) 

 
(b) 

  
(c)                                                               (d) 

Fig. 1. Some test images and the segmentation results 
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3   Experiments 

We first give the running time for aggregation segmentation and non-aggregation 
segmentation in Table 1. The test images are shown in Fig. 1 from (a) to (e). The time 
is the total running time from beginning to end. Because we use nodes aggregation to 
reduce the number of nodes, the speed can meet the real-time demands. There are 
some methods for nodes aggregation. We use a simply but efficient method. For more 
accurate result we can develop new methods for nodes aggregation. Also the ratio of 
running time is about 20 times faster than non-aggregation. In Fig. 1, some segmenta-
tion results are shown. For some hard border images such as Fig. 1 (a) (c), our method 
can exactly segment the images. For some soft border images such as Fig. 1 (b) (d), 
our method can also give satisfying results. The outputs are encouraging. We also 
apply nodes aggregation segmentation method to interest region-based image retrieval 
system and get a satisfying performance.  

Table 1. The comparisons of running time between non-aggregation and aggregation 

Images Non-aggregation Aggregation 
(a) 20s 1.0s 
(b) 29s 1.5s 
(c) 35s 2.2s 
(d) 32s 1.9s 

4   Conclusions and Future Work 

In this paper an efficient semi-automatic segmentation method is proposed. The main 
contribution of this paper is introducing nodes aggregation for improving running 
time which is very important in practical applications. In the future, automatic seg-
mentation algorithm based on nodes aggregation and Graph-Cuts will be developed. 
We believe it will be a powerful tool in practical applications.  
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Abstract. Automatic content modeling and retrieval in remote sens-
ing image databases are important and challenging problems. Statis-
tical pattern recognition and computer vision algorithms concentrate
on feature-based analysis and representations in pixel or region levels
whereas syntactic and structural techniques focus on modeling symbolic
representations for interpreting scenes. We describe a hybrid hierarchi-
cal approach for image content modeling and retrieval. First, scenes
are decomposed into regions using pixel-based classifiers and an itera-
tive split-and-merge algorithm. Next, spatial relationships of regions are
computed using boundary, distance and orientation information based
on different region representations. Finally, scenes are modeled using
attributed relational graphs that combine region class information and
spatial arrangements. We demonstrate the effectiveness of this approach
in query scenarios that cannot be expressed by traditional approaches
but where the proposed models can capture both feature and spatial
characteristics of scenes and can retrieve similar areas according to their
high-level semantic content.

1 Introduction

The constant increase in the amount of data received from satellites has made
automatic content extraction and retrieval highly desired goals for effective and
efficient processing of remotely sensed imagery. Most of the existing systems
support building supervised or unsupervised statistical models for pixel level
analysis. Even though these models improve the processing time compared to
manual digitization, complete interpretation of a scene still requires a remote
sensing analyst to manually interpret the pixel-based results to find high-level
structures. In other words, there is still a large semantic gap between the outputs
of commonly used models and high-level user expectations.

The limitations of pixel-based models and their inability in modeling spatial
content motivated the research on developing algorithms for region-based analy-
sis. Conventional region level image analysis algorithms assume that the regions
� This work was supported in part by the TUBITAK CAREER Grant 104E074

and European Commission Sixth Framework Programme Marie Curie International
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consist of relatively uniform pixel feature distributions. However, complex image
scenes and land structures of interest usually contain many pixels and regions
that have different feature characteristics. Furthermore, two scenes with similar
regions can have very different interpretations if the regions have different spatial
arrangements. Even when pixels and regions can be identified correctly, manual
interpretation is often necessary for many applications of remote sensing image
analysis like land cover/use classification, urban mapping and monitoring, and
ecological analysis in public health studies.

Symbolic representation of scenes and retrieval of images based on these rep-
resentations are very challenging and popular topics in structural and syntactic
pattern recognition. Previous work on symbolic representation attempted to de-
velop languages and data structures to model the attributes and relationships
of symbols/icons, and work on symbolic retrieval concentrated on finding exact
or partial (inexact) matches between these representations [1,2].

Most applications of syntactic and structural techniques to remote sensing
image analysis assumed that object detection and recognition problems were
solved. Using structures such as strings, graphs, semantic networks and produc-
tion rules, they concentrated on the problem of interpreting the scene given the
objects. Other related work in the computer vision literature used grid-based
representations [3], centroids and minimum bounding rectangles [4]. Centroids
and minimum bounding rectangles are useful when regions have circular or rec-
tangular shapes but regions in natural scenes often do not follow these assump-
tions. Similar work can also be found in the medical imaging literature where
rule-based models [5], grid-based layouts [6], and attributed relational graphs
[7] were used to represent objects and their relationships given manually con-
structed rules or delineation of objects by experts. Most of these models are not
usable due to the infeasibility of manual annotation in large volumes of images.
Different structures in remote sensing images have different sizes so fixed sized
grids cannot capture all structures either.

We propose a hybrid hierarchical approach for image content modeling and
content-based retrieval. The analysis starts from raw data. First, pixels are la-
beled using Bayesian classifiers. Then, scenes are decomposed into regions us-
ing pixel-based classification results and an iterative split-and-merge algorithm.
Next, resulting regions are modeled at multiple levels of complexity, and pair-
wise spatial relationships are computed using boundary, distance and orienta-
tion information. Finally, scenes are modeled using attributed relational graphs
that combine region class information and spatial arrangements. Our work dif-
fers from other approaches in that recognition of regions and decomposition of
scenes are done automatically after the system learns region models with only a
small amount of supervision in terms of examples for classes of interest.

The rest of the paper is organized as follows. Decomposition of scenes into
regions is described in Section 2. Modeling of regions and their spatial relation-
ships are presented in Section 3. Scene modeling with graphs is discussed in
Section 4. Using these graphs in content-based retrieval is described in Section 5
and conclusions are given in Section 6.
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2 Scene Decomposition

The first step in scene modeling is to find meaningful and representative regions
in the image. An important requirement is the delineation of each individual
structure as an individual region. Automatic extraction and recognition of these
regions are also required to handle large amounts of data.

In previous work [8], we used an automatic segmentation algorithm based on
energy minimization, and used k-means and Gaussian mixture-based clustering
algorithms to group and label the resulting regions according to their features.
Our newer experiments showed that some popular density-based and graph-
theoretic segmentation algorithms were not successful on our data sets because
of the large amount of data and the detailed structure in multi-spectral images.

The segmentation approach we have used in this work consists of pixel-based
classification and an iterative split-and-merge algorithm [9]. Bayesian classifiers
that fuse information from multiple features are used to assign each pixel to one
of these classes. Since pixel-based classification ignores spatial correlations, the
initial segmentation may contain isolated pixels with labels different from those
of their neighbors. We use an iterative algorithm that merges pixels and pixel
groups using constraints on probabilities (confidence of pixel classification) and
splits existing regions based on constraints on connectivity and compactness.

The algorithms proposed in this paper are evaluated using a LANDSAT scene
of southern British Columbia in Canada. The false color representation of this
1, 536×1, 536 scene with 6 multi-spectral bands and 30 m/pixel ground resolution
is shown in Fig. 1(a), and the region decomposition consisting of 1,946 regions
is shown in Fig. 1(b). Spectral, textural and elevation information were used to
train the Bayesian classifiers.

(a) LANDSAT scene (b) Region decomposition

Fig. 1. False color representation of a LANDSAT scene and the region decomposition
obtained after applying the split-and-merge algorithm to the results of a pixel-based
Bayesian classifier. White pixels in (b) represent region boundaries.
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3 Spatial Relationships

3.1 Region Modeling

A straightforward way of representing regions of an image is by using a member-
ship array where each pixel stores the id of the region that it belongs. Hierarchical
structures such as quad trees can be used to encode this membership information
for faster access. Regions can also be represented using contour-based approaches
such as chain codes that exploit the boundary information.

Operations on complex regions with a large number of pixels on the boundary
may be computationally infeasible so regions are often modeled using approxi-
mations [10,11]. The simplest approximation is the minimum bounding rectangle
that can be useful for representing compact regions. Another simple but finer
approximation is the grid representation. More detailed approximations such
as polygonal representations, B-splines, or scale space representations are often
necessary when operations include multiple regions.

In this work, we represent each region using its boundary chain code, polyg-
onal representations at different smoothing levels, grid representation and min-
imum bounding rectangle. Regions with holes have additional lists for chain
codes and polygonal approximations of their inner boundaries. Grid representa-
tion, that consists of a low-resolution grid overlaid on the region, stores all grid
cells that overlap with the given region and contain at least one more region.
In addition, each region has an id (unique within an image) and a label that
is propagated from its pixel’s class labels as described in the previous section.
Example representations are given in Fig. 2. These representations at different
levels of complexity are used to simplify the computation of spatial relationships
between regions as described in the next section.

Fig. 2. Region representation examples. Rows show representations for two different
regions. Columns represent, from left to right: original boundary, smoothed polygon,
convex hull, grid representation, and minimum bounding rectangle.

3.2 Pairwise Relationships

After the images are segmented and the regions are modeled at multiple levels
of detail, the next step is the modeling of their spatial relationships. Regions
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Fig. 3. Spatial relationships of region pairs: disjoined, bordering, invaded by, sur-
rounded by, near, far, right, left, above and below.

can appear in an image in many possible ways. However, regions of interest are
usually the ones that are close to each other. The relationships we compute for
each region pair can be grouped as boundary-class relationships (disjoined, bor-
dering, invaded by, surrounded by), distance-class relationships (near, far), and
orientation-class relationships (right, left, above, below) as illustrated in Fig. 3.
Boundary-class relationships are based on overlaps between region boundaries.
Distance-class relationships are based on distances between region boundaries.
Orientation-class relationships are based on centroids of regions.

Since large scenes can easily contain thousands of regions with thousands of
boundary pixels, pixel-to-pixel comparison of all possible region pairs to compute
their overlaps and distances is not feasible. These computations can be signif-
icantly simplified by applying a coarse-to-fine search to find region pairs that
have a potential overlap or are very close to each other. In previous work [8,9],
we used brute force comparisons of region pairs within smaller tiles obtained
by dividing the original scene into manageable sized images. However, regions
that occupy multiple tiles may not be handled correctly after that division. The
coarse-to-fine search strategy that compares different region approximations in
increasing order of complexity enables us to perform exact computations only
for very close regions whereas relationships between the remaining ones are ap-
proximated using different levels of simpler boundary representations.

Since the relations between two regions can be described with multiple re-
lationships at the same time (e.g., invaded by from left, bordering from above,
near and right), the degree of a region pair having a particular relationship is
modeled using fuzzy membership functions. These relationships are based on:

– ratio of the common boundary (overlap) between two regions to the perime-
ter (total boundary length) of the first region,

– distance between two regions,
– angle between the horizontal (column) axis and the line joining the centroids

of the regions.

Details of the membership functions are not included here due to space restric-
tions but more information can be found in [8].
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4 Scene Modeling Using Graphs

At the end of the previous section, each region pair is assigned a degree for each
relationship class. In previous work [8], we modeled higher-order relationships
(of region groups) by decomposing them into

(
k
2

)
second-order relationships (of

region pairs) combined using the fuzzy “min” operator that corresponds to the
Boolean “and” operator. In this work, we model higher-order relationships us-
ing attributed relational graph (ARG) structures. ARGs are very general and
powerful representations of image content. Petrakis et al. [7] used ARGs to rep-
resent objects and their relationships in medical images. They assumed that the
regions were segmented and labeled manually, and concentrated on developing
fast matching algorithms for these manually constructed graphs. However, ap-
plications of ARGs for representing contents of natural scenes have been quite
limited because of inaccurate object recognition and the computational com-
plexity of finding associations between objects in different images. Automatic
decomposition of regions in Section 2 and automatic modeling of their spatial
relationships in Section 3 gives us an important advantage over the existing
methods that require manual segmentation and labeling of the regions.

The ARG can be adapted to model the scenes by representing regions by the
graph nodes and their spatial relationships by the edges between such nodes.
Nodes are labeled with the class (land cover/use) names and the corresponding
confidence values (posterior probabilities) for these class assignments. Edges are
labeled with the spatial relationship classes (pairwise relationship names) and
the corresponding degrees (fuzzy membership values) for these relationships. The
ARG for the LANDSAT scene of Fig. 1 is given in Fig. 4.

(a) Region decomposition (b) Relationship graph

Fig. 4. Attributed relational graph of the LANDSAT scene given in Fig. 1. Region
boundaries are shown here again for easy reference. Nodes are located at the centroids
of the corresponding regions. Edges are drawn only for pairs that are within 10 pixels
of each other to keep the graph simple.



Modeling of Remote Sensing Image Content 481

5 Scene Retrieval

When the scenes are represented using ARGs, image retrieval can be modeled as
a relational matching [12] and subgraph isomorphism [13] problem. Relational
matching has been extensively studied for structural pattern recognition. We use
the “editing distance” [7,14] as the (dis)similarity measure. The editing distance
between two ARGs is defined as the minimum cost taken over all sequences
of operations (error corrections) that transform one ARG to the other. These
operations are defined as substitution, insertion and deletion. The computation
of the distance between two ARGs involves not only finding a sequence of error
corrections that transforms one ARG to the other, but also finding the one that
yields the minimum total cost.

The retrieval scenario starts with the user’s selecting of an area of interest (i.e.,
a set of regions) in an image. The system automatically constructs the graph for
that area. Then, this graph is used to query the system to automatically find
other areas (i.e., sets of regions) with similar structures in the database. In some
cases, some of the relationships (e.g., above, right) can be too restrictive. Our
implementation includes a relationship value named don’t care that allows users
to constrain the searches where insertion or deletion of graph edges corresponding
to relationship classes set as don’t care do not contribute any cost in the editing
distance. Finally, resulting areas are presented to the user in increasing order of
the editing distance between the subgraphs of these areas and the subgraph of
the query.

Example queries are given in Figs. 5–71. Traditionally, queries that consist of
multiple regions are handled by averaging the features of all regions. However,
this averaging causes a significant information loss because it ignores relative
spatial organization and distorts the multimodal feature characteristics of the
query. On the other hand, our experiments using the scene in Fig. 1 showed that
the proposed ARG structure can capture both feature and spatial characteristics
of region groups and can retrieve similar areas according to their high-level
semantic content.

Experiments also showed that the coarse-to-fine search strategy of Section 3.2
significantly improves the performance. For the example scene with 1,946 regions
shown in Fig. 1, computation of all individual region properties (boundary chain
code, centroid, perimeter) took 10.56 minutes, and computation of all pairwise
spatial relationships took 33.47 minutes using brute force comparisons of re-
gions. On the other hand, computation of all additional region representations
(smoothed polygon, grid representation, minimum bounding rectangle) took 2.57
seconds, and computation of all pairwise relationships took 1.7 minutes using
coarse-to-fine comparisons. As for the graph search examples, the queries in
Figs. 5–7 took 5.52, 7.13 and 15.96 seconds, respectively, using an unoptimized
C++-based implementation on a Pentium 4, 3.0 GHz computer running Linux.

1 Since no ground truth exists for this semantic level of analysis, we provide only
qualitative examples in this paper.
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Fig. 5. Searching for a scene where a residential area is bordering a city center that is
bordering water. Orientation-class is set to don’t care. Identified regions are marked as
cyan, magenta and yellow for city, residential and water, respectively. Scenes are shown
in increasing order of their editing distance to the query given on top-left.

Fig. 6. Searching for a scene where a residential area is bordering a field and both
are bordering water. Identified regions are marked as cyan, magenta and yellow for
residential, field and water, respectively.

Fig. 7. Searching for a scene where a park is invaded by water and a city center is
bordering the same water. Identified regions are marked as cyan, magenta and yellow
for city, park and water, respectively.

6 Conclusions

We described a hybrid hierarchical approach for image content modeling that
involves supervised classification of pixels, automatic grouping of pixels into con-
tiguous regions, representing these regions at different levels of complexity, mod-
eling their spatial relationships using fuzzy membership classes, and encoding
scene content using attributed relational graph structures. We demonstrated the
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effectiveness of this approach for content-based retrieval using queries that pro-
vide a challenge where a mixture of spectral and textural features as well as spa-
tial information are required for correct identification of the scenes. The results
showed that the proposed models can capture both feature and spatial character-
istics of region groups and can retrieve similar areas according to their high-level
semantic content. Regarding future work, we believe that improving pairwise re-
lationship models (such as orientation-class relationships where centroids are not
always very meaningful for large and non-compact regions) will make the overall
representation more powerful and will prove further useful toward bridging the
gap between low-level features, representations and semantic interpretation.
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Abstract. In this paper we propose a method based on a graph-theoretical 
cluster analysis for automatically finding and classifying clusters of 
microcalcifications in mammographic images, starting from the output of a 
microcalcification detection phase. This method does not require the user to 
provide either the expected number of clusters or any threshold values, often 
with no clear physical meaning, as other algorithms do. 

The proposed approach has been tested on a standard database of 40 
mammographic images and has demonstrated to be very effective, even when 
the detection phase gives rise to several false positives. 

1   Introduction 

Calcifications can be expression of many kinds of pathologies. Microcalcifications 
found in the breast hold a major diagnostic interest, because they are effective 
indicators of benign or malignant pathologic modifications [1]. Namely, micro-
calcifications found in the mammographic images represent the only symptom of 
neoplasiae in 30-50% of carcinomas that are not recognized in the breast [2]. 

Physicians agree that the presence of three or more microcalcifications grouped in 
a cubic centimeter of mammary tissue defines a cluster. In general, the higher the 
number of microcalcifications grouped in a cluster, the higher the probability that a 
neoplastic pathology is present. Despite the diagnostic relevance, the detection and 
characterization of single microcalcifications in a mammogram is often a hard task 
also for expert radiologists. It is not unusual that two radiologists (or even the same 
radiologist at different times) provide different diagnoses on the same case. This is 
due to the intrinsic complexity of the problem: the low injection of radiation produces 
a mammographic image poorly contrasted, making the microcalcifications not easily 
distinguishable from the mammal tissue in the background. 

The availability of an automated tool for detecting clusters could allow the 
radiologists to concentrate their attention to suspicious areas during the review of a 
mammogram and to determine more reliably whether further examinations (with 
additional imaging tests or biopsy) are needed. This approach can improve the 
radiologists’ diagnostic performance, in terms of sensitivity or specificity. These 
considerations highlight the usefulness of Computer-Aided Detection (CAD) 
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techniques [3] for automatically detecting the presence of clusters in mammograms. 
As a consequence, in the last ten years a large interest with respect to this problem in 
the field of Pattern Recognition has been registered. Many authors tried to solve this 
problem (see [4,5] for an in-depth review of the state of the art in this field) so that 
today some commercial tools are available on the market.  

Nevertheless, most research efforts have addressed the problem of the detection of 
the microcalcifications; however, this aspect is only a part of the whole picture. In 
fact, the final goal to pursue is the detection of clusters of microcalcifications and the 
discrimination among benign and malignant ones, but, to the best of our knowledge, 
just few authors have proposed algorithms which face both these problems. 

The typical approach for cluster detection first individuates the microcalcifications 
within the image and then aggregates them into clusters on the basis of some spatial 
and morphological features. The main drawback of most algorithms using this 
approach is that their performance is very often affected by the shape and the size of 
the cluster, sometimes requiring some a priori knowledge of the presumed number of 
clusters to be detected. Furthermore, in order to obtain an adequate cluster detection 
the user is often required to set some thresholds without any clear physical meaning.  

In this paper, we propose a method for detecting clusters of microcalcifications 
which is able to overcome all the above limitations. This result has been obtained 
through a careful design of the algorithm for grouping the microcalcifications. In the 
field of Pattern Recognition there is a huge number of clustering approaches. Most 
algorithms aggregate the points in the feature space on the basis of the average 
distance of the points within the cluster. Unfortunately, this type of algorithms are not 
well suited to handle clusters of various shapes and sizes. A particular family of 
clustering algorithms are those based on graph theory. The algorithms of this family 
represent the clusters through undirected graphs. Each node is associated to a point in 
the feature space, while to each edge it is associated the distance of the connected 
nodes calculated in the feature space. Note that this definition of cluster does not 
impose any restriction with respect to the size and the shape. Furthermore, when the 
distance is calculated as the Euclidean distance in the image plane the method 
resembles the way the radiologists group the microcalcifications. For the above 
motivations, we decided to adopt the method described in [6], probably the most 
important graph based clustering method. This method requires to set only a single 
threshold, i.e. the maximum allowed value associated to an edge. In order to derive 
automatically the optimal value of this threshold, in this paper we propose an 
innovative method based on the use of the fuzzy c-means algorithm. 

Once a cluster of microcalcifications has been detected, we also provide the 
information about its malignancy. The classification is carried out by a neural network 
on the basis of a set of features, which take into account both information computed 
on the whole cluster and on the single microcalcifications. We also propose and use 
some new features that are directly computed on the graph-based representation of the 
cluster. 

The proposed cluster detection and classification approach has been tested on a 
standard database of 40 mammographic images and has shown to be very effective. 

The organization of the paper is as follows: in Section 2 and Section 3 the 
proposed cluster detection and classification approaches are presented respectively. In 
Section 4 the database used is described together with the tests carried out in order to 
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assess the performance of the proposed method. A comparison with the results 
obtained by other techniques presented in the literature is also reported. Finally, some 
conclusions are drawn in Section 5. 

2   Cluster Detection 

As anticipated in the introduction, a cluster is a group of at least three micro-
calcifications in a limited area (usually 1 cm2) of the mammogram. From this 
definition it derives that the Euclidean distance is the most important feature for 
clustering microcalcifications. As a consequence, the proposed algorithm first assigns 
the microcalcifications to candidate clusters on the basis of their relative distances; 
then, it eliminates clusters composed by less than three microcalcifications. It is clear 
that the detection of the candidate clusters constitutes the most critical phase of the 
whole process, especially in presence of falsely detected microcalcifications, and 
represents also the major innovative contribution provided by this paper. 

The proposed clustering method is based on graph theoretical cluster (GTC) 
analysis. This family of clustering algorithms is capable of detecting clusters of 
various shapes, at least for the case in which they are well separated. This feature is 
shared only by few other clustering algorithms. This aspect is very important for the 
problem at hand since clusters of microcalcifications typically assume various shapes 
depending on the pathology and are spatially quite well separated. 

In order to understand how GTC analysis is used for automatic microcalcifications 
clustering it is worth to review some basic terminology on the graph theory. 

Graph: a graph G can be defined as a set X of nodes connected by a set E of edges: 
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Path: a path P of length L through a graph is a sequence of connected nodes:  
P = x1, x2, …, xL+1 , where ∀i ∈ (1, L), (xi, xi+1) is in E. A graph is connected if for 
any two nodes there is at least a path connecting them. 

Cycle: a graph contains a cycle if there is a path of nonzero length through the 
graph P = x1, x2, …, xl+1 , such that x1 = xl+1. 

Spanning Tree: a spanning tree of a graph G is a set of n-1 edges that connect all 
nodes of the graph. A tree is a connected graph [X,T] with no cycles. The graph [X,T] 
is a tree if and only if exists one and only one path between any pair of vertices. 

Minimum Spanning Tree (MST): in general, it is possible to construct multiple 
spanning trees [X,Ti] with i > 1 for a graph G. If a weight w(e) is associated with each 
edge e, then the minimum spanning tree is the set of edges forming a spanning tree 
such that  

( ) ( )=
∈ iTe

i
eww minMST  

The MST of a graph may be derived with Prim’s algorithm or Kruskal’s algorithm 
[7]. In this paper we used the Prim’s algorithm. 
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Forest: a graph without cycles and not connected is called a forest. Each connected 
component of the forest is a tree. 

The proposed method starts by describing with a graph all the microcalcifications 
detected by an automatic algorithm: graph nodes correspond to microcalcifications, 
while the edges of the graph encode the spatial relationships between 
microcalcifications. Each microcalcification is linked by an edge to all the other ones. 
The weight of each edge is the Euclidean distance in the 2D space between the nodes 
connected by that edge. After such a graph is obtained, the GTC analysis is employed. 
It takes the microcalcifications as vertices in the 2D space and constructs the MST on 
them. By removing all the edges in the tree with weights greater than a threshold λ, 
we arrive at a forest containing a certain number of subtrees (clusters). In this way, 
the GTC method automatically groups vertices (microcalcifications) into clusters. 
Successively, clusters with less than three nodes are eliminated according to the above 
described rule. 

It is worth noting that the optimal value of λ typically depends on the specific 
mammogram. As a consequence, it is not possible to use a fixed value of λ for every 
mammogram. Our proposal is then to determine the optimal value of λ by 
reformulating the problem as the one of partitioning the whole set of edges into two 
clusters, according to their weights. The cluster of the edges of the MST with small 
weights will contain edges to be preserved, while the edges belonging to the other 
cluster will be removed from the MST. In order to solve this problem we employ the 
Fuzzy C-Means (FCM) clustering algorithm. In particular, FCM is used to separate all 
the edges of the MST into two clusters. Then, we remove from the MST all the edges 
belonging to the cluster s whose center exhibits the largest value. 

3   Cluster Classification 

Cluster classification is aimed at evaluating the benignancy or malignancy of a 
detected cluster. In order to discriminate between benign and malignant clusters, we 
have defined a set of features which try to capture their differences. 

Malignant clusters are usually characterized by microcalcifications with low 
brightness and hazy contour so that they can be easily confused with the background, 
while the microcalcifications of benign clusters show a high contrast with respect to 
the background; sometime it is possible to find regions affected by noise that are 
characterized by a high level of brightness. Furthermore, the typical shape of 
malignant clusters is elliptical, with a noticeable density of microcalcifications. For 
this reason, we defined a set of features which capture the brightness, density and 
shape characteristics of the cluster. It is worth noting that since we used a graph 
structure to represent the cluster the definition of some features exploits some 
properties of this structure. The defined features are the following: 

• Brightness mean: the mean of microcalcifications brightness normalized  
with respect to the brightness of the area covered by the graph 
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where mpix is the number of microcalcification pixels in the cluster, bmi is the 
brightness of a single pixel of a microcalcification, nmicro is the number of 
microcalcifications in the cluster, apix is the number of pixel in the area covered 
by the graph and bai is the brightness of a single pixel of the area. 

• Brightness variance: variance of microcalcification brightness normalized  
with respect to the brightness of the area covered by the graph 
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where mpixi is the number of pixels of the microcalcification i and bmij is the 
brightness of a single pixel of microcalcification i; 

• Graph density: ratio between the number of nodes of the graph and the number 
of pixel of the image covered by the graph  

apix
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where X* is the number of nodes of the graph; 
• Diameter/nodes ratio: ratio between the square of cluster diameter and the 

number of graph nodes, where the cluster diameter is the maximum distance 
between two graph nodes. 

• Cluster compactness: mean distance among graph edges 
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where E* is the number of edge of graph; 
• Aspect ratio: it is the ratio between the sides of the bounding box including the 

graph, where the bounding box is the smaller  rectangle that circumscribe the 
graph in the image 
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where w_box is the length of horizontal side expressed in pixel and h_box is the 
length of vertical side expressed in pixel. 

• Graph valence: mean valence of graph nodes, where the valence of a node is the 
number of edges incident to the node. 

Cluster classification is performed by an artificial neural network: in particular, we 
used a Multi Layer Perceptron (MLP) network with a hidden layer. 
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4   Experimental Results 

In order to evaluate the performance of the proposed method, tests were performed by 
using a standard database publicly available. It is made of 40 mammographic images, 
containing in the whole 105 clusters (76 malignant and 29 benign). Images were 
provided by courtesy of the National Expert and Training Centre for Breast Cancer 
Screening and the Department of Radiology at the University of Nijmegen, the 
Netherlands. 

The proposed method assumes that microcalcifications have been already detected 
by a suitable method. To this aim, we chose and implemented the microcalcifications 
detection algorithm in [9], which uses a hierarchical pyramid neural network (HPNN) 
that exploits image structure at multiple resolutions for detecting clinically significant 
features in mammograms. Note that the latter method simply determines if a pixel of 
the image belongs to a microcalcification, but does not reconstruct the whole 
microcalcification, as required by our cluster detection and classification method. The 
contour of the microcalcifications is obtained by using a connected components 
algorithm. 

4.1   Cluster Detection 

In order to assess the performance of our method, we referred to the definitions given 
in [8], where a detected cluster is considered a true positive (TP) if it contains two or 
more microcalcifications within the distance of 1 cm, and is considered a false 
positive (FP) if none of the microcalcifications found in the cluster are inside the 
ground truth circle; a false negative (FN) is counted if a cluster present in the ground 
truth is not detected.  

The performance of the proposed clustering method on the Nijmegen database was 
measured in terms of True Positives and False Positives per image rates and is 
reported in Table 1. Note that the proposed detection method does not need any 
specific learning procedure as it needs only to set the parameters of the FCM 
algorithm. In particular, we used typical values for both the fuzziness coefficient m=2 
and the termination criterion threshold ε = 0.05. 

The results reported in Table 1 shows that the proposed method is able to 
automatically reduce falsely detected clusters, yielding a very low FP per image rate. 

In order to have a qualitative evaluation of the behavior of the proposed cluster 
detection method, in Fig. 1 are depicted the outputs of the method on two 
mammograms of the database. Fig. 1.a is particularly interesting since it includes 
clusters of different shapes and sizes. Note how the proposed system is able to 
correctly detect all the clusters within the image. On the other hand, in Fig. 2.b it is 
possible to appreciate how the system is very effective even when the 
microcalcification detection gives rise to several false positives. 

Table 1. Performance obtained on the Nijmegen database by the proposed cluster detection 
method 

TP rate FP per image rate 
82.83% 0.08% 
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(a) 
 

(b) 

Fig. 1. (a) Light gray rectangles represent the cluster detected by the proposed method; dark 
rectangles account for the ground truth. (b) The white points and the white rectangle represent 
the microcalcification and the cluster detected by the proposed system. 

4.2   Cluster Classification 

Cluster malignancy is assessed through a neural classifier which requires an adequate 
training procedure. Unfortunately, the used dataset is quite small; thus, in order to 
have a more realistic estimate of the recognition capability of the proposed system, a 
k-fold cross validation was performed. According to this experimental procedure, the 
whole data set is divided into k disjoint subsets of approximately equal size. Then the 
classifier is trained k times, each time leaving one of the subsets out of the training 
and  then using the omitted subset to compute the recognition rate. In our case, we 
performed a ten-fold cross-validation; at each iteration, six parts of the database were 
used as a training set in each experiment, three parts as a validation set and the 
remaining one for testing. The validation set was used to avoid to overtrain the neural 
classifier. Finally, the overall performance has been calculated as the average 
performance over the ten iterations. 

We repeated the above procedure for different number of neurons in the hidden 
layer of the MLP network. The best performance, reported in Table 2, was obtained 
when 45 neurons were used. 

Data reported in table 2 show that the performance is biased toward the correct 
classification of the malignant clusters. This is mainly due to the fact that the 
composition of the dataset is unbalanced; in fact, malignant cases outnumber benign 
cases. 

Table 2. Performance obtained on the Nijmegen database by the proposed cluster classification 
method; rows represent the true class, while columns the response of the classifier 

 BENIGN MALIGNANT 
BENIGN 52.2% 47.8% 

MALIGNANT 0% 100% 
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4.3   Comparison with Other Methods 

We have compared our results with those reported in [8, 10-15], since in these papers 
the same database was used. In particular, in [8, 10-13] cluster detection methods are 
reported, while in [14] and [15] cluster classification techniques are described. 

Among the above cited cluster detection methods, [10] and [8] both employ a 
Markov Random Field model, but in [10] a Support Vector Machine is used for 
reducing false positives. Methods presented in [11] and [12] are instead based on a 
scale-space approach; in [11] a fuzzy-based enhancement of the mammogram is also 
introduced as a pre-processing step. Finally, in [13] the use of wavelet coefficients 
together with features extracted from microcalcifications and the co-occurrence 
matrix is proposed. 

Table 1 shows the comparison of the cluster detection results obtained by each 
method in terms of true positives and false positives. We have denoted our method 
with GTC, while DEL, CHE, KAR, NET and YU respectively referred to the results 
obtained in [10], [11], [8], [12] and [13]. From this table, it can be noted that the 
proposed method is outperformed by four methods in the detection of true clusters, 
but gives the best results in terms of false positives. The high specificity of our 
methods makes it particularly appealing for its use as a second-look by radiologists. 
Almost all the times our system detects a cluster, in fact, it is really present in the 
mammographic image. Therefore, a radiologist can use the detection of our system 
for eliminating any doubt about a particular cluster he visually found in the image 
without a CAD system. More in detail, the comparison with the other MRF-based 
methods shows that our method provides better or comparable results in terms of true 
positive rate and performs better in terms of false positives. Slightly worse results are 
obtained by our method, in terms of true positive rate, with respect to the wavelet-
based approach proposed in [13], while significantly better results are reached in 
terms of false positive. On the other hand, scale-space approaches [11, 12] perform 
better than our method in terms of true positives, but this is paid with a higher number 
of false positives. This is especially true for the method presented in [12]. Finally, it 
must be outlined that in [11] (where the best results in terms of true positive are 
reported) tests have been performed in selected areas containing all the clusters of the 
image, while in all our tests the whole mammografic images were used. 

Table 3. Comparison of the cluster detection results obtained on the 40 images of the Nijmegen 
database. Best results are reported in bold. 

Method TP rate FP per image 
GTC 82.86% 0.08 
CHE 90.48% 0.35 
DEL 79.05% 0.30 
KAR 83.81% 1.05 
NET 88.57% 0.98 
YU 85.71% 0.53 

As regards cluster classification techniques, it is worth noting that some papers 
report results obtained only on a limited set of images (in [16], for example, only 18 
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clusters out of 105 are considered as test set). So, we considered for comparison the 
methods presented in [14] and [15] whose results refer to all the 40 mammografic 
images of the database. In particular, in [14] a SVM using a Gaussian kernel is 
proposed, while MLP classifiers are employed in [15], where a multi-expert approach 
is also proposed in order to improve the performance of single classifiers. As regards 
the features for malignancy analysis, both microcalcification features and cluster 
features are used in [14] and [15]. Table 4 shows the comparison of the cluster 
classification results obtained by each method in terms of overall accuracy. We have 
denoted our method with Graph-based, while DES and PAP respectively referred to 
the results obtained in [15] and [14]. As it is evident, our method exhibits the best 
performance. 

Table 4. Comparison of the cluster classification results obtained on the 40 images of the 
Nijmegen database. The best result is reported in bold. 

Method Overall accuracy 
Graph-based 84.2 % 
DES 75.2 % 
PAP 81.0 % 

5   Conclusions 

Mammography is a powerful tool for early diagnosis of breast cancers. A diagnosis is 
usually obtained by using human expertise in recognizing the presence of given 
patterns and types of microcalcifications. So, there are significant motivations for 
developing computer based support tools able to complement the radiologists work. 

In this framework, we proposed a new method based on a graph-theoretical cluster 
analysis for automatically finding and classifying clusters of microcalcifications in 
mammograms. The proposed approach was tested on a standard database of 
mammograms and revealed to be very effective even when the microcalcification 
detection phase gives rise to several false positives. 
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Abstract. In this paper, we proposed a method to speed up the test phase of 
SVM based on Feature Vector Selection method (FVS). In the method, the 
support vectors (SVs) appeared in the decision function of SVM are replaced 
with some feature vectors (FVs) which are selected from support vectors by 
FVS method. Since it is a subset of SVs set, the size of FVs set is normally 
smaller than that of the SVs set, therefore the decision process of SVM is 
speeded up. Experiments on 12 datasets of IDA show that the number of SVs 
can be reduced from 20% to 99% with only a slight increase on the error rate of 
SVM by the proposed method. The trade-off between the generalization ability 
of obtained SVM and the speedup ability of the proposed method can be easily 
controlled by one parameter. 

1   Introduction 

Support Vector Machines (SVM) is a new type learning machine introduced by V.N. 
Vapnik and et.al.[1], and was broadly studied and applied in many fields for the 
comparable classification ability to traditional learning machines and good theoretical 
bases. However, SVM is slower in test phase than other learning machines such as 
neural network and decision trees [2-4]. 

To tackle this problem, several methods were introduced. The decision function of 
SVM is a weighted linear combination of support vectors (SVs) in feature space[1], 
therefore the decision speed of SVM is proportional to the number of support vectors 
and most proposed methods try to accelerate the test phase of SVM by reducing the 
number of support vectors. The methods can be separated into two types. The first 
type is pre-processing method, in which some special procedures are adopted before 
or during training SVM, such as processing the training samples[5], reformulating the 
training problems of SVM [6,7], as well as adoption of special  training strategies 
during training SVM[8,9]; the second type is post-processing method in which the 
SVM is firstly trained in the normal way, and some additional process are directly 
applied to the support vector set after training to reduce the number of SVs. This type 
method is represented typically by the Reduced Set method [2,4,10], as well as 
methods reported in [11-13]. Although it can also speeds up the training phase in 
some degree[8,9], pre-processing methods always deal with the entire training sample 
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set in most cases; while post-processing methods just operates on the SVs set, so it is 
easier in implementation and more practical than pre-processing methods. On the 
other hand, since post-processing methods directly reduces the size of  SVs set, it is 
more “natural”.    

In this paper, a new post-processing method is proposed to simplify support vector 
solutions. In the method, the support vectors(SVs) used by the decision function of 
SVM are replaced by  a subset(named feature vectors, FVs) of SVs set which is 
selected with Feature Vector Selection Method(FVS)[14]. Experimental results on 
several standard datasets show that the proposed method can speed up SVM from 
20% to 99% with small loss on generalization ability of SVM, and the trade-off 
between the speedup ability and the performance can be easily controlled by one 
parameter.  

The rest of the present paper is organized as follows. In the second section, the 
FVS method is briefly described, the decision function of SVM expressed with FVs is 
also included in this section. Experiments and discussions are described in section 3 
and section 4 separately. In section 5, we conclude the paper. 

2   Feature Vector Selection Method 

2.1   Feature Vector Selection Method 

Feature Vector Selection Mehtod(FVS) only involves the operation on the kernel 
matrix[1] which is defined as: 

1 ,( )ij i j Mk ≤ ≤=K
 

(1) 

where M  is the number of samples , 1, ,i i M=x , ( ) ( )t
ij i jk = x x , 

: , ( )→ →X F x x  is a mapping operation from the input space X  into a feature 

space F . The aim of FVS is to find a basis of ( ), 1, ,i i M=x so that each sample 

can be expressed in F with the basis. 
Let L  be the number of selected vectors (named feature vectors in [14], FVs), note 
( ) , 1, ,i i i M= =x  and the FVs by , 1, ,

js j L=x , note the corresponding  

images of FVs in F  by ( ), 1, ,
js j L=x , where L M≤ . Then for the set of FVs 

{ }
1 2
, , ,

Ls s s=S x x x , we can estimate the mapping of any sample as a linear 

combination of the images of S  in F . That is, the estimation ˆ
i  for i  can be 

formulated as a dot product:  

ˆ
i S i=  (2) 

In which { }
1 2

( ), ( ), , ( )
LS s s s= x x x  is a matrix composed with the images of FVs 

in F ;  1{ , , }i i iLα α=  is the corresponding coefficient vector to i . 
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As mentioned above, our aim is to find a suitable set S  so that all the images of 

samples in F can be approximated as accurately as possible by Eq.(2). If the 
normalized Euclidean distance is used as evaluation criterion of difference between 
ˆ

i  and i , the problem of finding S is finally transformed to find a set of samples 

S from the entire sample set which maximizes the fitness function sJ [14]:  

1

x

1
 max  ( )

i

t
Si SS Si

s
ii

J
M k

−

∈
=

S X

K K K
 (3) 

where ssK  is kernel matrix formed by FVs. 1, , ; 1, ,( )
pSi s i p L i Mk = ==K  is the kernel 

matrix calculated with , 1, ,i i M=x  and FVs. Eq. (3) is an optimization problem, 

whose solution could be obtained iteratively[14]. In each step, the support vector 
which is most orthogonal to the already-selected FVs set is chosen as a new feature 

vector. The iteration continues until an upper limitation value max max,0 1s sJ J≤ ≤  of 

sJ  (or an upper limitation of ratio between number of FVs and SVs) is achieved. 

When max 1sJ = , a complete basis of samples will be found; when max 1sJ < , some 

unimportant FVs will be ignored and an approximated basis of samples will be found 
in F . Interestingly, in previous experiments, we found ignoring unimportant FVs 
leads to the increase of the classification accuracy on the noised data by the obtained 
SVM[5]. The details about the implementation of FVS algorithm please refers to [14].  

2.2   Speedup of SVM Decision   

Next, let’s turn our attention to the calculation of coefficient i appeared in Eq. (2). 

By left production of   t
S  to Eq.(2), one easily gets: 

ˆt t
S i S S i Si SS i= ⇔ =K K  (4) 

As mentioned above, ˆ
i is a well approximation to i , so SiK can also be 

considered as a well approximation to SiK and we denote SiK as SiK , and ˆ
i  as i  

hereafter. Since SSK is positively definite as a kernel matrix[1], 1
SS
−K , the inverse 

matrix of SSK exists, so i  is obtained from Eq.(4) as: 

1
i SS Si

−= K K  (5) 

then  i is formulated with S  as: 

1
i S SS Si

−= K K  (6) 

    Finally, let’s try to express the decision function of SVM with FVs. The descision 
function of SVM is given as follows: 
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( )sgn
SV

T
j j x j

j

y y bβ
∈

= +
I

 (7) 

where 
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=

− <
is the signal function, SVI is the index set of SVs, jβ  is 

the corresponding Lagrange multiplier of SVs jx , jy  is the class labels of jx , b is 

the corresponding bias, and ( )x = x  is the image of the test sample x  in F . 

Substituting Eq. (6) into Eq. (7), one get: 
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(8) 

After applying FVS method to the SVs set, both the SVs set and the FVs set 

S are available, so t
SjK and 1

SS
−K can be calculated prior to the test. Let’s 

denote 1

SV

t

j j Sj SS
j

yβ −

∈

=
I

A K K , then A  can also be calculated prior to the test and the 

Eq.(8) is simplified as: 

{ }sgn Sxy b= +AK  (9) 

It is obvious from Eq.(9) that to classify a new sample x , the evaluation of kernel 
matrix of the new sample and the SVs is replaced by evaluation of kernel matrix of 
the sample x  and FVs. As a subset of SVs set, the size of FVs set is always smaller 
than that of SVs, the test phase of the SVM can be speeded up by using Eq.(9). 

3   Experiments 

To clarify the speedup efficiency of the proposed method, the artificial and real world 
datasets from the IDA repository [15] are experimented. Every dataset was randomly 
separated into training and testing samples according to the predefined number ratio, 
each such a splits form a realization, and every dataset contains several realizations. 
The experiments are carried out on each realization and the averaged results are 
reported in this section. Experiments are completed on L2SVM with the commonly 
used RBF kernel, as more SVs are required by this type of SVM than the regular 
SVM (L1SVM) in the most situations [9], the reduction of SVs for L2SVM should be 
more necessary. The penalty coefficient C and the width σ of RBF function were 
chosen for the first 10 realizations of each dataset with “SVR+UD” method 
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introduced in [16], and then the averaged C and σ over these 10 times choices are 
applied to each realization. 

The method presented in this paper is very similar to that proposed by Downs T., 
Gates K.E. and Masters A.[12], the only difference is that in their method, a complete 
basis of SVs in feature space F  is found and used to speed up the test phase of SVM 
while an approximated basis is used in present method. To clarify the difference of 
speedup performance between using complete and approximated basis, we first test 
the method of [12] with four datasets (Thyroid, Banana, Heart, Breast Cancer); the 
results are given in Table 1.  The reduction rate of SVs corresponding to bases is 
defined as: 

# #
. 100

#

SVs Bases
Red

SVs

−= ×  (10) 

Table 1. Optimized parameters ( ,C σ ), the averaged test error rate ( Re ), the averaged number 
of SVs (#SVs), the averaged number of bases (#bases) and the number reduction rate of SVs 
respect to bases ( Red.) for four datasets 

It is shown by table 1 that in most cases, the size of the complete basis of SVs in 
F is very close to that of SVs set, so the test phase of SVM just can be speeded up 

very slightly. This suggests that in present method, we should use max 1sJ <  (or set the 

upper limitation of the ratio between #FVs and #SVs smaller than 1) to find an 
incomplete basis so that the decision of SVM can be speeded up. In the next 

experiment, we tried various max
sJ  on the above four datasets to find out its influence 

on the speedup efficiency and the classification performance; the results are listed in 
Table 2, where “#FVs” is the averaged number of FVs over all realizations, 
“ Re Incr.” is the increase of the test error rate with respect to Table 1. The results 
show that the presented method can reduce the number of SVs obviously (about 40% 
~ 80% for different dataset) with only a minor loss in classification performance when 

max 0.98sJ =  ; if the loss on classification is acceptable,  more 20% reduction of SVs 

can be achieved by setting max 0.90sJ = for most datasets. In addition, Appendix A 

lists the best speedup ability of the proposed method on all 12 datasets of IDA on the 
premise of no obvious increase on the test error rate (the result of dataset “Titanic” is 
not presented here since the optimized parameters for this dataset can not be obtained 
by method of [16]).  

Parameters 
Dataset 

C  σ  
Re  /  % #SVs  #Bases .Red  / % 

Thyroid 0.89 1.14 3.47 1.87±  91.2 91.2 0 
Banana 0.35 0.46 10.42 0.44±  339.59 302.73 10.85 
Heart 0.42 4.39 16.00 3.18±  156.54 156.54 0 

BreastCancer 7.6 2.1 22.92 4.48±  170.75 166.79 2.32 
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Table 2. Experimental results on various 
max

sJ  

Dataset 
max
sJ  Re  /% Re Incr.  /% #FVs Red.  /% 

0.98 3.49 1.83±  0.02 53.27 41.59 

0.96 3.49 1.83±  0.02 53.27 41.59 
0.94 3.52 1.70±  0.05 43.19 52.64 
0.92 3.67 1.87±  0.20 40.54 55.55 

Thyroid 

0.90 3.88 1.90±  0.41 38.07 58.26 
0.98 10.41 0.44±  -0.01 63.18 81.40 
0.96 10.46 0.46±  0.04 53.85 84.14 
0.94 10.52 0.46±  0.10 48.46 85.73 
0.92 10.54 0.49±  0.12 44.50 86.90 

Banana 

0.90 10.61 0.49±  0.19 41.29 87.84 
0.98 16.03 3.19±  0.03 80.23 48.75 
0.96 15.97 3.14±  -0.03 61.27 60.86 
0.94 15.81 3.09±  -0.19 50.09 68.00 
0.92 16.08 3.15±  0.08 42.18 73.05 

Heart 

0.90 16.23 3.08±  0.23 36.31 76.80 
0.98 24.06 4.00±  1.14 103.12 39.61 
0.96 24.19 3.93±  1.27 88.26 48.31 
0.94 24.99 4.27±  2.07 78.71 53.90 
0.92 25.45 4.24±  2.53 71.68 58.02 

Breast 
Cancer 

0.90 25.38 4.19±  2.46 65.93 61.39 

4   Discussions  

A method which uses FVS method to reduce the number of SVs therefore the 
computaional complexity of SVM was described in this paper. Compared to the other 
post-processing speedup methods such as RS method [2,10], our method has several 
advantages. Firstly, the founded FVs more “meaningful”, they are a best 
approximated basis of SVs set in feature spaces. Secondly, since the FVS method try 
to find a minimum subset of SVs set to approximate each SVs, theoretically, the 
proposed method should reduce the complexity of SVM decision furthest among all 
methods based on the same idea (such as the method proposed in[12]). The third 
advantage of the proposed method is the potential denoise ability.  We have proved in 

[5] that by ignore the “unimportant” FVs through setting max 1sJ <  , the classification 

accuracy on noisy data can be improved. The denosie ability of FVS method is proved 
again in the present experiments, for Heart and Banana dataset, we can find in table 2 

that for some given max
sJ , the classification error rate is also decreased. 

Since the proposed method is a post-processing method and only operates on the 
SVs set,  it is applicable for other type of kernels such as polynomial and sigmoid, 
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and also applicable for other type of SVMs such as L1SVM, LS-SVM and so on; and 
also, it is applicable for both support vector classification and support vector 
regression. For the further speedup and better performance on claiification or 

regression, the optimized choice method for  max
sJ , e.g. goden search method, and 

retraining SVM with the obtained FVs[13], can be applied together with the present 
method.   

Though the proposed methods possess above advantages, the FVS method is still a 
little expensive in calculation. In future, we plan to improve the present algorithm to 
make the method more practical in dealing with the large-scale classification 
problems. Another interesting phenomenon presented by the experiment results is that 
the dependency of the speedup ability of the present method on the dataset. For 
instance, the method can reduce number of FVs to 1 for dataset “Flare-solar” without 
any loss on the generalization ability of SVM while can only reduce 20.02% SVs for 
dataset “Image” with 0.25% increase on the test error rate. However, the reason for 
this phenomenon is still under investigation. 

5   Conclusions  

A new speedup method for SVM decision have been proposed in present paper. The 
method uses a subset which was chosen from SVs set by FVS algorithm to 
approximate the decision function of SVM. The trade-off between the speedup ability 
of the method  and the final generaliation abiltiy of  SVM can be easily controled by 
one parameter. As a post-processing method, the proposed method is applicalbe to any 
kind of SVM with various kernels. Experiments on IDA benchamrk datasets show that 
the number of SVs can be reduced 20% up to 99% with very slight loss in accuracy, 
and for some datasets, the reduction on SVs can lead to better classification accuracy. 
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Appendix A.  

The experimental results on IDA datasets, where column “L2SVM” gives the 
averaged test error rate of L2SVM without speedup; column “L2SVM+FVs” gives 
the averaged test error rate of L2SVM speeded up with the proposed method. “#SVs”  
is the averaged number of SVs and   “#FVs” is the averaged number of FVs, “ Red.” 
is the  number reduction rate of FVs respect to SVs. 

Test Error Rate  ( % ) Number of SVs (FVs) 
Dataset 

L2SVM L2SVM+FVS #SVs #FVs Red.  (%) 

Banana 10.42 0.44±  10.61 0.49±  339.59 41.29 87.84 

Breast Cancer 22.92 4.48±  24.06 4.00± 170.75 103.12 39.61 

Diabetis 23.56 1.84± 23.75 1.84±  407.79 40.88 89.98 

Flare-solar 34.75 2.74±  34.69 2.82±  109.23 1.00 99.08 

German 23.73 2.21±  24.14 2.19± 599.95 150.11 74.98 

Heart 16.00 3.18±  16.23 3.08±  156.54 36.31 76.80 

Image 2.98 0.63±  3.23 0.67±  358.60 286.80 20.02 

Ringnorm 2.03 0.27±  1.91 0.27±  141.72 58.91 58.43 

Splice 11.58 0.72±  12.39 0.74±  553.70 387.7 29.98 

Thyroid 3.47 1.87±  3.88 1.90±  91.2 38.07 58.26 

Twonorm 2.52 0.15±  2.99 0.63±  113.32 20.33 82.06 

Waveform 10.05 0.42±  10.99 0.74±  190.76 26.20 86.27 

 



D.-Y. Yeung et al. (Eds.): SSPR&SPR 2006, LNCS 4109, pp. 502 – 511, 2006. 
© Springer-Verlag Berlin Heidelberg 2006 

Generalization Error of Multinomial Classifier 

Sarunas Raudys 

Vilnius Gediminas Technical University 
Sauletekio 11, Vilnius LT-10223, Lithuania  

raudys@ktl.mii.lt 

Abstract. Equation for generalization error of Multinomial classifier is derived 
and tested. Particular attention is paid to imbalanced training sets. It is shown 
that artificial growth of training vectors of less probable class could be harmful. 
Use of predictive Bayes approach to estimate cell probabilities of the classifier 
reduces both the generalization error and effect of unequal training sample sizes.  

Keywords:ZBKS rule, Complexity, Generalization error, Learning, Imbalan-
ced training sets, Multinomial classifier, Sample size. 

1   Introduction 

In many pattern recognition tasks, the features are discrete: each measurement can 
assume one of several possible values, such as, the type of an engine, a sex, 
profession, a presence of certain disease, etc.  Then, asymptotically (as the sample 
size is increasing) optimal classification rule is the Multinomial one [1, 2]. 
Theoretical analysis of this method is very important for practice since popular 
decision tree classifiers are in fact pruned and tailored versions of the Multinomial 
classifier. In multiple classifiers system design, we are faced with Multinomial 
classifier if local (expert) classifiers produce crisp outputs (class labels) and one uses 
Behavior knowledge space (BKS) method to fuse expert decisions.  

Hughes [3] investigated the two class pattern recognition task with categorical 
valued features. He converted the analysis to investigation of single categorical 
feature that can assume one of m possible values characterized by m cell probabilities,  

                                  P1
( )i , P 2

( )i , ... , P ( )
-1

i
m , P ( )i

m  ( ( )

1

m
i

s
s

P
=

= 1,  i =1, 2).                    (1) 

Hughes used Bayes predictive approach to estimate probabilities (1) assuming that 
prior distribution of these probabilities is uniform. He derived a mean averaged 

generalization error, 
M
NP . It is an error averaged over immense variety of potentially 

possible classification problems defined by uniform prior distribution of probabilities 

(1). In finite training sample situations, theoretical graphs 
M
NP = f(m) exhibited clear 

minima. This results initiated in a number of subsequent small learning sample size 
investigations (see e.g. [4-8] and references therein). 

Characteristic property of many pattern recognition problems is a fact that prior 
probabilities of pattern classes are different. Available number of training vectors of 
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the less probable category is very small often. In order to compensate a shortage of 
training vectors of this pattern class, sometimes designers make significant efforts in 
order to collect more training vectors of the minority category. In order to investigate 
usefulness of this strategy we derive equations for mean generalization error of 
Multinomial classifier for two category case with unequal prior class probabilities, q1, 
q2, and unequal training sample sizes, N1, N2. We show that artificial growth of 
training vectors of less probable class could be harmful. Use of diverse modifications 
of predictive Bayes approach to estimate cell probabilities of the Multinomial 
classifier reduces both the generalization error and effects of imbalanced training  
sets.  

2   Generalization Error of Standard Multinomial Classifier 

2.1   The Theory 

Let we have E crisp (categorical) valued features, where the e-th feature takes one of 

me states. In two category case, there exist m =
1

E

e
e

m
=

∏  potential combinations (cells, 

states) of E features, x1, x2
, ... , xE. Denote vs, us, (s =1, 2, … , m) the first and second 

class cell probabilities. To create the Multinomial classification rule we have to know 
prior probabilities of the classes, q1, q2, and 2(m-1) probabilities of the cells. The 

Bayes decision rule allocates vector X = (x1, x2
, ... , xE)T, falling into the s-th state, 

according to a maximum of products q1P
(1)
s , q2P

(2)
s . If both products are equal among 

themselves, we make arbitrary decision. The Bayes probability of error is expressed as  

  PB =
=

m

s
uqvq

1
s2  ,s1 .}{ min        (2) 

In practice, we estimate probabilities (1) from training data. In standard sample based 
Multinomial and BKS fusion rules, one utilizes maximum likelihood (ML) estimates:  

  ˆsv = (1)
1/s Nn , ˆsu = (2)

2/s Nn ,        (3) 

where ( )i
sn  is a number of training vectors of i-th pattern class in the s-th cell.   

Utilization of Eq. (2) results in the plug-in rule. If q2≠q1, N2≠N1, expected 
generalization error 

M

1
[N

m

s
P

=
= q1vsP{q1 ˆsv < q2

ˆsu }+q2us P{q1
ˆsv >q2 ˆsu }+0.5(q1vs+q2us)P{q1

ˆsv =q2 }].ˆ su (4) 

To analyze finite training sample size behavior, we assume that numbers of training 

vectors in each single cell, ( )i
sn , are Multinomial random variables. After some 

algebraic manipulation utilizing properties of multinomial distribution, following 
expression for the mean of the generalization error is obtained 
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We see that generalization error depends on 2m probabilities, ts  and us (s = 1, …, m), 
and sample sizes, N1 and N2. If both sample sizes, N1, N2, are increasing without 

bound, expected error, 
M
NP , approaches the Bayes error,  i.e.  

  
∞→∞→

=
21 ,
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M
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If only one of the sample sizes, e.g.  N2, is increasing without bound, expected error, 
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2.2   Numerical Example: Case N2 = N1 

Calculation of generalization error (Eq. (5)) requires to know the 2(m-1) probabilities, 
v1, v2, ... , vm-1, u1, ... , um-1. If  m is very large, it could turn out to be serious difficulty 
for a practitioner. Therefore, in [8, Section 3.8] for tabulation purposes a simplifying 
model, MU, of distribution of values v1, v2, ... , vm, u1, ... , um, has been proposed. It 
was assumed that in two category case, the probabilities of m/2 cells of the i-th pattern 
class are equal among themselves and equal to probabilities of other m/2 cells of 
opposite, the (3-i)-th, class. Thus, in model MU, one deals only with two values of the 
cells’ probabilities, 2PB /m, and 2(1− PB)/m. We present a few critical comments below. 
 

 Let the training sample size be very small. Then in recognition (test) phase, the 

class label of the s-th cell having probability ( )i
sP = 2PB/m can be easily “confused” 

with class label of the cell of opposite category having probability (3- )i
sP = 2(1− PB)/m. 

In model MU, the probabilities of each half of the cells are artificially equalized. It 
means that in very small training sample cases, model MU “confuses” class labels 
more often and overestimates generalization error.  

Consider now a situation where learning sample size is large. Then in recognition 
phase, it will be more difficult to confuse the s-th cell of one class having small 

probability ( )i
sP = 2PB/m with the cell of another class having much higher probability, 
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Table 1. Expected classification error of Multinomial classifier for “standard” model MU (six 
columns for m = 26, 38, … , 144) and real world data based model with 128 cells (two very right 
columns, theory and experimental evaluation). In both data models, the Bayes error PB = 0.06. 

N\m
 26 36 46 62 106 144 128RWM 128experim 

35  0.1120 0.1507 0.1954 0.2309 0.3103 0.3495 0.1134 0.1138 (73) 
50 0.0837 0.1100 0.1374 0.1778 0.2590 0.3037 0.1080 0.1087 (72) 
70 0.0688 0.0837 0.1022 0.1336 0.2082 0.2549 0.1026 0.1031 (70) 

100 0.0621 0.0603 0.0779 0.0978 0.1571 0.2011 0.0968 0.0976 (65) 
200 0.0600 0.0600 0.0613 0.0650 0.0868 0.1121 0.0863 0.0873 (51) 
300 0.0600 0.0600 0.0601 0.0607 0.0682 0.0809 0.0808 0.0820 (43) 
400 0.0600 0.0600 0.0600 0.0601 0.0627 0.0688 0.0773 0.0887 (37) 
500 0.0600 0.0600 0.0600 0.0600 0.0609 0.0638 0.0748 0.0862 (32) 

1000 0.0600 0.0600 0.0600 0.0600 0.0600 0.0601 0.0689 0.0705 (21) 

(3- )i
sP = 2(1− PB)/m. In such case, confusions of the class labels will be rare, i.e. model 

MU begins to underestimate generalization error. In six left columns of Table 1 we 
tabulated generalization errors for model MU if q2= q1=0.5, N2=N1=N. 

For comparison of model MU with “reality” we have chosen a real-world data 
obtained in problem of classifying two category eight-dimensional spectral Satellite 
data by means of multiple classifiers system. Seven multilayer perceptron based 
classifiers served as seven base experts that produced crisp outputs, 0 (first class) or 1 
(the second class). So, E=7, m= 27 = 128. In Fig. 1 we have a scatter diagrams of 126 
bi-variate vectors (vs, us) (s = 2, 3, … ,127), the cell probabilities. Totally, 15,787 
vectors from two pattern classes were used to estimate the probabilities. Probabilities 
of the first (the expert answers are: 0 0 0 0 0 0 0) and the last cells (the expert answers 
are: 1 1 1 1 1 1 1) differ from remaining ones basically:  v1 = 0.0247,  u1= 0.7735 and 
v128 = 0.7291,    u128 = 0.0114. All 128 experimentally evaluated values, v1, v2, ... , u128, 
have non-zero probabilities. In majority of the cells, however, the probabilities vs, us 
are very small. The Bayes error PB = 0.06.  
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Fig. 1. Scatter diagrams of 126 bi-variate vectors (vs, us) in two scales 

vs  vs 

us    us 

10-3 

10-3



506 S. Raudys 

    We specify this real world data model with diverse 128 cell probabilities as RWM. 
In column “128RWM” of Table 1 we present generalization errors calculated 
according to Equation (5). In the very right column, “128experim”, we present 
generalization error evaluated experimentally (averages of 5000 independent 
experiments where N  randomly selected 7D binary vectors  of each category were 
used for training of the Multinomial classifier and the test was performed on 
remaining 15,787 -2N vectors). In brackets we present standard deviations multiplied 
by 10000. The last two columns show very good agreement between theoretical and 
experimental evaluations. Comparison of column “128experim” with six columns 
calculated for standardized model MU does not show any god agreement: 
generalization errors calculated for the RWM data model (marked in bold) coincide 
with that calculated for different MU models characterized by diverse number off 
cells, m (marked also in bold).  

In real world problems usually we have small number of cells with high 
probabilities vs, us and a large number of ones with small probabilities vs, us. The cells 
having large probabilities vs, us likely will be classified correctly even in small sample 
situations. In model MU, however, large probabilities vs, us will be present only in 
situations where number of cells, m, is small. For that reason, model MU with m 
comparable with that of real world data overestimates the generalization error in small 
sample situations (see Table 1). 

In large training sample size cases, the cells with moderate differences between 
probabilities vs and us are not confused any more. For that reason, these cells do not 
influence an increase in generalization error. There exist, however, large number of 
cells with small and, therefore, with close probabilities, vs and us. Class labels of these 
cells can be confused even in large training set situation. For that reason, in large 
sample case, most important become the cells with small probabilities. When the 
sample size N = N1 = N2= 300, calculation according to Eq. (5) for RWM model gives 

generalization error
M
NP = 0.0808. For the standardized data model, MU, this error rate 

can be obtained if m=144 cells (
M
NP =0.0809). It means that almost empty cells are 

affecting an increase in the expected generalization error.  At this time, one can say 
that “an effective number of cells” is higher: meffective =144. Thus, in small sample 
cases (if expected error exceeds the Bayes error 1.5 times and more), standard data 
model MU overestimates the generalization can, and underestimates it if the sample 
size is large. Thus, tabulated values for model MU (Table 3.7 in [8] can serve only as 
a guide of sufficiency of sample size necessary to design BKS fusion rule. In most 
important pattern recognition problems, one cannot utilize standard data models like 
MU. One must find a way to evaluate character of distribution of 2(m-1) cells’ 
probabilities and use Equation (5).   

 2.3   Numerical Example: Case N2  N1 

As a rule, in neural network and pattern recognition literature, however, a sum 
number of vectors, n = N1 + N2, has been considered as a single measure of training 
set size (see e.g. [9 - 11]). Equation (5) points out that for the Multinomial 
classification rule, the generalization error depends on training set sizes of both 
pattern classes, N1 and N2. The Multinomial classifier and BKS fusion rules are 
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heuristically based plug-in classification rules. Here unknown probabilities of the 
cells are substituted by their maximum likelihood sample estimates. Consequently, it 
is not optimal sample based decision rule. If the number of training vectors of the less 
probable category is very small, some researchers compensate a shortage of training 
vectors of this category by additional collection of more training vectors of the 
minority pattern class. 

In Fig. 2 we present theoretical and experimental graphs “the generalization error, 
M
NP , as function of N2, the number of training vectors of second pattern class”, in 

experiments with above mentioned 7D binary data. The number of training vectors of 
the first class was kept constant: N1 = 25. The number of vectors of the second class, 
N2, varied between 3 and 1800. Prior probability of the first class, q1, was set equal to 
0.9. Graph 1 in Fig. 1 corresponds to theoretical calculations according to Equation 
(5). Due to small sample size of the first pattern class, we had large oscillations 
among different random formations of the training sets. Therefore, 50000 independent 
experiments with randomly formed learning sets where performed in situations where 
N2 50 and 5000 experiments when N2  100. In Fig. 2 we present mean values.  

Both graphs indicate that in situations where prior probabilities of the pattern 
classes are unequal, artificial increase in training set of smaller category can become 
harmful: with an increase in N2, the generalization error increases from its minimum, 
0.107, up to 0.173. Important conclusion follows: an increase in the number of 
training vectors of one pattern class not always leads to success. To obtain best 
generalization results one needs to pay attention to correct balance between numbers 
of vectors in different pattern classes. Thus, conventional practice where the designer 
collects extra training vectors of one pattern class not always is a good policy.  
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Fig. 2. Generalization error, Pgen, as a function of a number of training vectors, N2: 1 – theore-

tical values, 2 – experimental evaluations, 3 – asymptotic error 
M

2NP →∞ ; N1 = 25  

Specific application of Eq. (5) arises in analysis of decision tree classifier. 
Decision tree is a useful strategy to tackle small sample problems. In small sample 
cases, the number of final leaves must be reduced substantially. Formula (5) can be 
utilized for provisional evaluation of the generalization error of full decision tree as 
well as for calculation of partial generalization errors corresponding to distinct 
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branches of the tree. In separate branches, the training sample sizes from opposite 
categories can differ substantially. It is obvious that formal reduction in a number of 
the leaves without changing authentic decision rule does not change the classifier’s 
small sample properties. More deep investigation of decision tree classifier suggests 
that while simplifying the decision making scheme the number of training errors 
should increase. 

3   Generalization of the Bayes Predictive Rule 

3.1   The Theory: Regularized Multinomial Classifier 

To get Bayes predictive rule of Multinomial classifier, one has to know prior 
distribution of vs, us, (s = 1, 2, … , m). Let prior distribution of the probabilities follow 
a Dirichlet (polynomial) distribution. To be short, we write formulae for one class only: 
  

        Pprior(v1, v2
, ... , vm) = βmi (v1)

γ1-1
(v2)

 γ2-1
... (v2)

γm-1-1
(vm)

γm-1
,  (8) 

 

where βmi is a normalizing constant and γ1, γ2, … , γm are parameters of the prior 

distribution.  Then the Bayes estimate of  vj  is 
 

            jv̂ = ( )1(
jn + γ

j
)/( N1 + = γm

j j1 ),   (9) 
 

If we do not give preference to any particular bin, then γ1 = γ2 = ... γm = γ. Assume 

that the prior distribution of probabilities v1, v2
, ... , vm follow uniform distribution, i.e. 

γ=1. Then the Bayes predictive estimate of  vj  and uj  are  
 

 jv̂ = ( )1(
jn + 1)/(N1 + m),  jû = ( )2(

jn + 1)/(N2 + m). (10) 
 

Then, in Equations (5) and (7) one has to use new, index j dependent β value: 
 

        β = 
mN

mN

q

q

+

+

1

2

2

1
+

j

1
 (

mN

mN

q

q

+

+

1

2

2

1 -1).    (11) 

Calculations show that Bayes approach with uniform prior distribution of 
parameters vj  and uj could reduce generalization error substantially if N2  
N1.Uniform prior distribution contains extremely vague information about the 
parameters of the model. In order to introduce certain prior information a couple of 
possibilities will be discussed below. Assume at first that there exist an independent 

prior data set of      Npi = =
m
j ijr1 vectors to be used to determine prior distribution of 

v1, v2
, ... , um, where ris is a number of prior data set vectors of i-th class in the s-th 

cell. Then 
 

                    Papost (v1, v2
, ... , vm) =  βri (v1)

ri1+1
 (v2)

  ri2+1
... (vm)

 rim+1
 , (12) 
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which could be utilized as new prior distribution. Subsequently, new Bayes estimates 

         *ˆ jv = ( )1(
jn +r1j)/(N1 + =

m
j jr1 1 + m),  

*ˆ ju = ( )2(
jn +r2j)/(N2 + =

m
j jr1 2 + m).      (13) 

In spite of theoretical simplicity utilization of estimate (13) is problematic since 
researchers do not have “the independent prior data set” in typical situations. If such 
set would be available, it would be merged with training set. At times, one could form 
such set artificially. One of examples could be a situation where one solves several 
similar, however, to some extent different pattern recognition tasks. Then specially 
merged training sets of all tasks could compose “the independent prior data set”.  

If additional set of vectors is unavailable, one can try using training vectors and 
some additional information to construct “synthetic prior distribution”. For example, 
one can use k - nearest neighbors directed noise injection [12, 13] originally suggested 
by R. Duin. A noise injection, in fact, introduces additional non-formal information: 
it declares in an inexplicit way that a space between nearest vectors of one pattern 
class could be filled with vectors of the same category. One can make an assumption 
(a guess) that L components, x1, x2

, ... , xE  of feature vector  X are statistically 

independent. Then parameters γ1, γ2, … , γm in Eq. (8) could be evaluated as a scaled 

by λ (0<λ<1) product of E estimates ˆ
ie

P = nie / Ni (e=1, …, E). Here nie stands for a 

number i-th class training vectors where e-th component takes zero value. Similar to 
the conventional regularized discriminant analysis (RDA) [2, 8], parameter λ plays a 
smoothing role. Resembling the RDA, optimal value of λ should decrease with an 
increase in training sample size and with an increase in complexity of distribution of 
the cell probabilities v1, v2, … , um. Thus, it has to be determined in experimental way. 

3.2   Experiments 

For illustration of usefulness of “shaky prior information” incorporated into Bayes 
predictive approach in small learning sample situations, we considered two category 
7D binary data set already discussed in Sections 2.2 and 2.3.  In Fig. 3a, similarly 
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to the graphs in Fig. 2, we have theoretically and experimentally evaluated 
dependence of generalization error, Pgen, on a number of training vectors, N2 when  
N1 = 25.  

We assumed that q1=0.9 and used this q1 value both in theoretical and experimental 
evaluations of generalization error.  Comparison of graphs in Figures 2 and 3a shows 
that even in case of uniform (almost uninformative) prior distribution Bayes 
predictive approach allows to reduce generalization error. No increase in 
generalization error is observed when training set size N2  . Small difference 
between theoretical experimental graphs observed for large N2 is caused by the fact 
that theoretical values are calculated for an entity of situations defined by uniform 
prior distribution. In the experiment, however, we considered one particular selection 
of values v1, v2, … , um.  

In Fig. 3b we have dependence of generalization error on λ, the “regularization” 
constant when synthetic prior distribution was obtained from training data, and the 
feature independence assumption was used. The experiments were performed 5000 
times with randomly chosen training sets. A presence of minima indicates that, in 
principle, the performance of standard Multinomial classifier could be improved by 
introducing techniques similar to regularized discriminant analysis.  

4   Concluding Remarks 

We derived equations for generalization error of Multinomial classifier for situations 
when prior probabilities of the pattern classes are different. It was shown that artificial 
growth of training vectors of less probable class could be harmful if maximal 
likelihood estimates were used to design the classifier. Use of predictive Bayes 
approach to estimate cell probabilities of the Multinomial classifier reduces both the 
generalization error and negative effect of imbalanced training sets. High accuracy of 
theoretical formulae was confirmed by experiments with real world data set. A few 
variants of Bayes predictive approach were considered. It was shown that utilization 
of certain prior assumptions about the data suggests new ways how to regularize the 
Multinomial classifier and to reduce the generalization error. 
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Abstract. Considering the classification problem in which class priors
or misallocation costs are not known precisely, receiver operator charac-
teristic (ROC) analysis has become a standard tool in pattern recognition
for obtaining integrated performance measures to cope with the uncer-
tainty. Similarly, in situations in which priors may vary in application,
the ROC can be used to inspect performance over the expected range of
variation. In this paper we argue that even though measures such as the
area under the ROC (AUC) are useful in obtaining an integrated per-
formance measure independent of the priors, it may also be important
to incorporate the sensitivity across the expected prior-range. We show
that a classifier may result in a good AUC score, but a poor (large) prior
sensitivity, which may be undesirable. A methodology is proposed that
combines both accuracy and sensitivity, providing a new model selection
criterion that is relevant to certain problems. Experiments show that
incorporating sensitivity is very important in some realistic scenarios,
leading to better model selection in some cases.

1 Introduction

In pattern recognition, a typical assumption made is that class priors and mis-
allocation costs are known precisely, and hence performance measures such as
classification error-rate and classifier loss are typically used in evaluation. A topic
that has received a lot of attention recently is the imprecise scenario in which
these assumptions do not hold (see for example [9], [2], [1] and [10]), resulting
in a number of tools and evaluations suited to this problem. In particular, re-
ceiver operator characteristic (ROC) curves [6] have become very popular due to
their invariance to both class priors and costs, and are thus used as a basis for
performance evaluation and classifier decision threshold optimisation in these im-
precise environments. The Area Under the ROC (AUC) measure has thus been
proposed, providing a performance evaluation that is independent of priors.

In this paper we argue (and show) that considering the integrated performance
(AUC) alone may not be the optimal strategy for model selection in these situ-
ations. This is because the AUC measure discounts an important characteristic,
namely the performance sensitivity across the prior range (we distinguish prior
sensitivity from the sensitivity measure often used in medical decision making,
which is equivalent to true positive rate). In fact, we show that in some cases, two

D.-Y. Yeung et al. (Eds.): SSPR&SPR 2006, LNCS 4109, pp. 512–521, 2006.
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classifiers may compete in terms of AUC, but have significantly different sensitiv-
ities over the same prior range i.e. one of the classifiers may have a performance
that varies rapidly from low to high values, whereas the other may be more
stable. In some problems e.g. medical decision making, the former scenario may
be unacceptable, emphasising the fact that this sensitivity should also be con-
sidered. A simple criterion is proposed that combines both AUC and sensitivity,
called AccSens, allowing for a more appropriate criterion for some problems1.

The paper is organised as follows: Section 2 introduces the notation in the well-
defined case, restricted to two-class problems for simplicity, and derives the ROC.
In Section 3, the problem of uncertain/varying class priors is considered, discussing
the AUC measure, which is invariant of priors. Section 4 discusses the importance
of considering prior-dependent sensitivity in conjunction with integrated error, il-
lustrated via a case study, and Section 5 subsequently introduces a new criterion,
AccSens. A number of real experiments are presented in Section 6 that show some
cases in which competing classifiers (using AUC) have significantly different sen-
sitivities (and vice versa). Conclusions are presented in Section 7.

2 Problem Formulation and ROC Analysis

Consider a 2-class classification task between classes ω1 and ω2, with prior prob-
abilities P (ω1) and P (ω2) respectively, and class-conditional probabilities de-
noted p(x|ω1) and p(x|ω2). Each object is represented by a feature vector x,
with dimensionality d. Figure 1 presents an example of a 1-dimensional, two-
class example (means at −1.6 and 1.6 respectively, and equal variances of 2),
and θd represents an equal prior, equal cost operating point.

Two types of of classification errors exist in the two-class case, namely the
false positive rate (FPr), and the false negative rate (FNr), derived as follows,
where θw is the classification weight, determining the operating point:

FPr(θw) = (1− θw)P (ω2)
∫
p(x|ω2)I1(x|θw)dx

I1(x|θw) =

{
1 if θwP (ω1)p(x|ω1) > (1− θw)P (ω2)p(x|ω2)
0 otherwise

FNr(θw) = θwP (ω1)
∫
p(x|ω1)I2(x|θw)dx

I2(x|θw) =

{
1 if (1− θw)P (ω2)p(x|ω2) ≥ θwP (ω1)p(x|ω1)
0 otherwise

(1)

In the (realistic) case that distributions are not known, but are estimated
from data (that is assumed representative), class conditional density estimates
are denoted p̂(x|ω1) and p̂(x|ω2), and population prior estimates are denoted
π1 and π2. These are typically estimated from an independent training set that

1 Even though we emphasise a varying/uncertain class prior, the theory and analysis
in this paper extends also to the related problem of varying misallocation costs [1],
since these both have a similar impact from an ROC perspective in that a variation
in either prior or cost results in a varying performance, strictly along the ROC [9].
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Fig. 1. One-dimensional example illustrating two overlapping Gaussian distributions,
and the two error-types associated with an equal error, equal cost operating point θd.

is assumed drawn representatively from the true distribution. Equation 1 can
then be extended to this case. The classifier weight θw allows for FPr to be
traded off against FNr (and vice-versa) to suit a given application. A particular
setting of θw results in a single operating point, with a corresponding FNr

and FPr combination. Varying θw (where 0 ≤ θw ≤ 1) allows for specification
of any desired operating point. An ROC plot [6] consists of a trade-off curve
between FNr and FPr (as a function of θw). As such, the ROC is a useful tool
in optimising and evaluating classifiers.
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In the well-defined case that the priors can be estimated sufficiently well, and
remain constant (e.g. estimated from training data, and generalising to an ap-
plication scenario), the classification problem can be optimised (and evaluated)
directly using the ROC. Strategies vary, but the most popular ones are as fol-
lows (also demonstrated on the ROC plot in Figure 2, which is the ROC plot
generated from the example in Figure 1):

– Equal error optimisation: In this case, FPr errors have the same conse-
quences as FNr errors, and the objective of the optimisation is to select a
θw such that FPr = FNr. In Figure 2, point A shows this operating point.

– Cost-sensitive optimisation: In some applications e.g. medical decision
making, different errors have different misclassification costs (denoted c1 for
FNr errors, and c2 for FPr errors). In this case θw should be chosen such that
the overall system loss is minimised, where the loss L can be computed as
L = θwc1π1FNr+(1−θw)c2π2FPr (profits are ignored here i.e. consequences
of correct classifications). In Figure 2, point B illustrates an operating point
for the equal prior case, with c1 = 0.2 and c2 = 0.8.

3 Varying Priors, Uncertain Environments

The previous discussion assumed that the priors can be well estimated, and
remain fixed in application. However, in many real applications this is not the
case (see [9], [2]), confounding the problem of optimising the operating point and
model selection (fairly comparing classifiers). In these cases, priors may not be
known beforehand, or priors in an independent training set are not representa-
tive, or the priors may in fact vary in application. In these cases, even though an
immediate optimisation and comparison is not appropriate, several techniques
have been proposed for classifier design e.g. [9]. These typically use the ROC
plot, since it has the desirable property of being independent of priors/costs (i.e.
the same ROC results irrespectively), allowing classifier performance to be in-
spected for a range of priors (or costs). In particular, the Area Under the ROC
(AUC) measure [2] has been derived to give an integrated performance measure,
allowing for model comparison independent of the prior. The AUC measure is
defined as:

AUC = 1−
∫

(FNr)dFPr (2)

This performance measure results in a normalised score between 0 and 1,
with 1 corresponding to perfect classification, 0.5 to random classification, and
below 0.5 as worse than random (i.e. swap classifier labels). The AUC measure
can also be computed over a range of priors/operating points, accounting for
knowledge of the degree of uncertainty/variation. Thus, even though priors may
be uncertain/varying, the best overall classifier can be chosen based on the most
favourable integrated performance2.
2 For threshold optimisation, the best strategy may be to use a θw corresponding to

the centre of the known range, or to apply the minimax criterion [3].
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4 The Importance of Incorporating Sensitivity

In this paper we demonstrate that comparing classifiers in uncertain environ-
ments on the basis of integrated error (AUC) only may not necessarily be the
best strategy to take. This argument arose based on comparison of ROC plots
for a number of competing classifiers (the experiments will show some realistic
scenarios). It was observed that in some cases, two competing classifiers resulted
in a similar AUC score, but inspection of the ROC made it clear that in one
case, the performance range was small, but in another, much larger. This implies
that for the problem in which priors may vary, the latter classifier may result in
very poor performance at one extreme, and very good performance at the other.
Depending on the problem, it may be much better to select the former model
that is generally more stable over the expected prior range. Next a case study is
presented to demonstrate such a scenario.

4.1 Case Study

Figure 3 depicts a demonstration of a model-selection scenario, comparing two
different classifiers, denoted A and B respectively. Each classifier is trained on
the distribution shown in the left plot, consisting of a two-class problem between
ω1 and ω2 respectively, where ω1 objects are drawn from N(μ = 3.0, 2;ω =
1) + 1

32N(μ = −2.0, 5.0;σ = 1) (N is the normal distribution with mean μ
and variance σ), and ω2 is one class from the banana distribution [4]. In this
synthetic problem, 1500 objects are drawn from the true distribution to create
a training set, and a further 1500 objects are drawn independently to result in
an independent test set3. The two classifiers A and B are then trained on the
training set, resulting in the decision boundaries at a single operating point as
depicted in the left plot. A is a mixture of Gaussians classifier, with two mixtures
chosen for ω1, and one for ω2. Classifier B is a support vector classifier with a
second order polynomial kernel.

In this problem, it is assumed that the priors may vary (in application) such
that 0.05 ≤ π1 ≤ 0.9, i.e. the abundance of ω1 varies between 5% and 90%,
and the costs are assumed equal (priors at the low and high extremes for ω1
are denoted πlo

1 and πhi
1 respectively, computed by analysing where on the ROC

the performance drifts to for the new prior, relative to the original operating
point). The scatter-plot shows the resultant classifier decision boundaries of the
two classifiers at the equal error point (i.e. equal priors). The ROC plot on the
right depicts classifier performance for a range of operating points. For the first
extreme, i.e. π1 = 0.05, Alo and Blo show the respective operating points for
the two classifiers. For the second extreme, i.e. at π1 = 0.9, Ahi and Bhi again
demonstrate how the operating point shifts. Ae and Be show the positions of
the equal-error points.

It can immediately be observed that the two classifiers have a distinct per-
formance characteristic as a function of the prior values, even though the equal
error points are rather similar. Table 1 compares some performance measures
3 Cross-validation is ignored here as this example is for demonstration purposes only.
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Fig. 3. Case study illustrating performance of two competing classifier models A and B.
The left plot shows the data distribution, as well as the respective decision boundaries
at a single operating point. The right plot is an ROC-plot for the two models across a
range of priors. Alo and Blo are operating points at π1 = 0.05, and similarly Ae and
Be are equal-error points, and Ahi and Bhi correspond to π1 = 0.9.

between classifiers A and B. Firstly the error rate shows that both classifiers
result in a similar performance for the equal prior case. The AUC measure in-
tegrates the classification error over the range of priors (between Alo and Ahi),
and again this measure shows that both classifiers have similar performance
across the prior range as a whole. However, when investigating the sensitivity
with respect to the priors, it can be seen that classifier A is much more sensitive
than B across the range, with the FNr varying by up to 47.3%. Prior sensitivity
(denoted Sens) is computed as the Euclidean distance between the upper and
lower prior range, from a πlo

1 situation, to πhi
1 . This is performed by considering

the applicable ranges of FNr and FPr:

Sens =
1√
2

√
((FNr(πlo

1 )− FNr(πhi
1 ))2 + (FPr(πhi

1 )− FPr(πlo
1 ))2 (3)

This measure scales between 0 and 1, where a low score indicates the favourable
condition of low sensitivity, whereas a high score indicates a large sensitivity to
prior variation. Note that Sens is a simple measure in that it subtracts only the
extreme values, justified by the fact that an ROC increases monotonically.

In this type of problem, classifier B is clearly more appropriate since it is
far less sensitive to a perturbation in prior. It is also clear that the error-rate
measure and AUC are not sufficient on their own in this case to choose the
best models, and that the prior sensitivity across the range of interest should be
included to aid in the model selection process.

5 Combining Accuracy and Sensitivity

The case study made it clear that in the uncertain prior situation, classifier sen-
sitivity should be considered in conjunction with integrated error over the prior
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Table 1. Performance measures for the synthetic example. Error-rate is denoted ε,
AUC is the integrated error measure across the prior range, and the sensitivity Sens
shows how much the performance varies ( %

100 ) across the prior range.

Model ε AUC Sens

A 0.057 0.942 0.340
B 0.052 0.945 0.131

range. The next step is to develop a criterion that combines these two perfor-
mance measures, that is useful for evaluation/model selection in this domain.
It is conceivable that some problems may have different consequences for accu-
racy and sensitivity performances e.g. in some cases a low overall error (i.e. high
AUC) may be more important than a low sensitivity, in which case Sens could
be weighted lower than AUC. In another case, e.g. medical decision making, a
high sensitivity to priors may be more unacceptable than a slightly lower AUC.
Thus, for generality, we introduce a weighting corresponding to each term, that
can be used to penalise either according to the problem (analogous to misallo-
cation costs). The AUC weight is denoted we, and the Sens weight is denoted
ws. We then define the combined measure, called AccSens, consisting of the
geometric mean of the weighted sum of AUC and Sens, as defined in Equation
4. This is appropriate because both measures are scaled between 0 and 1. In
the case that we and ws are both set to unity (equal importance), the AccSens
error measure also scales between 0 and 1, where a low score is favourable (the
1√
2

normalises the measure to this range).

AccSens =
1√
2

√
we((1 −AUC)2) + ws(Sens2) (4)

For the case study example (assuming unit weighting), the AccSens errors
are 0.244 for model A, and 0.100 for model B, indicating that B is superior.

6 Experiments

A number of experiments on realistic datasets have been undertaken. The ob-
jective is to select the most competitive model, considering the problem of vary-
ing/uncertain priors, with a known π1 range: 0.1 ≤ π1 ≤ 0.9. Additionally, we
assume AUC and Sens are weighted equally. For each model, we investigate
an integrated error over the prior range (AUC), the Sens (sensitivity) across
the range (Equation 3), the AccSens measure to combine the two, and finally
the equal error rate ε for comparison purposes. In each experiment, a 10-fold
randomised hold-out procedure is performed, effectively resulting in 10 ROC
plots upon which the aforementioned statistics are computed. Significance be-
tween models is assessed using ANOVA (99.5% significance level). The following
datasets are used:

– Road sign: A road sign classification dataset [8] consisting of various sign
and non-sign examples represented by images (793 pixels). All signs have
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Table 2. Results of real experiments, comparing AUC, Sens, AccSens, and ε (equal-
error point) for a number of models per dataset. Standard deviations are shown.

Model AUC Sens AccSens ε

Road sign
1) pca8 mogc 4 4 0.881(0.026) 0.272(0.039) 0.211(0.029) 0.127(0.022)
2) pca12 mogc 2 2 0.886(0.058) 0.180(0.029) 0.154(0.028) 0.093(0.021)
3) sc svc r 16 0.951(0.016) 0.149(0.028) 0.111(0.021) 0.052(0.014)
4) pca17 mogc 2 4 0.876(0.100) 0.080(0.026) 0.112(0.056) 0.043(0.017)
5) sc svc r 22 0.952(0.016) 0.128(0.019) 0.100(0.015) 0.049(0.013)
6) pca14 mogc 2 4 0.907(0.061) 0.109(0.021) 0.106(0.033) 0.055(0.016)
Phoneme
1) sc knnc3 0.905(0.013) 0.271(0.049) 0.204(0.028) 0.140(0.011)
2) sc knnc1 0.913(0.009) 0.248(0.013) 0.186(0.010) 0.107(0.008)
3) sc parzenc 0.891(0.014) 0.294(0.023) 0.222(0.018) 0.128(0.015)
Sonar
1) sc knnc3 0.887(0.027) 0.310(0.107) 0.235(0.073) 0.147(0.039)
2) sc knnc1 0.892(0.036) 0.280(0.054) 0.213(0.043) 0.122(0.050)
3) pca6 parzenc 0.850(0.050) 0.405(0.069) 0.308(0.046) 0.167(0.054)
4) sc svc p4 0.829(0.056) 0.533(0.141) 0.398(0.100) 0.218(0.066)
Ionosphere
1) pca0.999 ldc 0.855(0.039) 0.385(0.118) 0.292(0.084) 0.145(0.043)
2) fisherm qdc 0.855(0.037) 0.337(0.053) 0.260(0.041) 0.140(0.036)
3) fisherm mogc 3 3 0.834(0.035) 0.365(0.093) 0.285(0.063) 0.160(0.040)
4) sc svc r 1.0 0.853(0.171) 0.545(0.231) 0.434(0.095) 0.128(0.044)

been grouped together into a single class (381 objects), to be discriminated
from non-signs (888 objects).

– Phoneme: This dataset is sourced from the ELENA project [5], in which
the task is to distinguish between oral and nasal sounds, based on five co-
efficients (harmonics) of cochlear spectra. In this problem, the “nasal” class
(3818 objects) is to be discriminated from the “oral” class (1586 objects).

– Sonar and Ionosphere are two well-known datasets from the UCI machine
learning database [7].

Results are presented in Table 2. Various representation and classification algo-
rithms have been used. Preprocessing/representation: sc denotes unit variance
scaling, pca is a principle component mapping followed by the number of com-
ponents used, or the fraction of variance retained, and f isherm is a Fisher
mapping. Classifiers: knnc denotes the k-nearest neighbour classifier followed by
the number of neighbours considered, parzenc is a Parzen-window classifier, ldc
and qdc are Bayes linear and quadratic classifiers respectively, mogc is a mixture
of Gaussians classifier followed by the number of mixtures per class, and svc is
a support vector classifier, with p denoting a polynomial kernel followed by the
order, and r denoting a Gaussian kernel, followed by the variance parameter.

Results show that there are many cases in which incorporation of sensitiv-
ity is important for this problem. In the Road sign case, an example of this is
demonstrated by comparing models 1) and 2). Both show a similar AUC score,
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but 2) is much less sensitive to prior variation. The AccSens measure is sensitive
to this difference, showing significance (based on an ANOVA hypothesis test).
Another interesting comparison is between 3) and 4), in which case model 3)
has a significantly higher AUC, but 4) has a significantly better Sens. Both
result in the same AccSens score. Models 3), 4), 5), and 6) all compete from
an AccSens perspective (significantly better than 1) and 2)). In the Phoneme
dataset, model 3) competes with 1) and 2) in terms of AUC, but 2) results in
a better Sens, and thus results in a superior AccSens score (significant). This
clearly illustrates the point of the paper once again - without considering sensi-
tivity, model 3) could have been chosen instead of 1) or 2). In the Sonar dataset,
model 2) appears superior in terms of both AUC and Sens, and thus there was
no benefit of the new measure in this case. Finally, in the Ionosphere dataset,
models 1), 2) and 4) result in similar AUC scores, but 2) appears less sensitive
than 4) (not very significant). Using the AccSens measure, 1), 2) and 3) are sig-
nificantly better than 4). As a final general comment on experimental results, it
is apparent that there are cases in which a model selection based on AUC only is
not the optimal procedure. Thus, we argue that in the prior uncertain/unstable
environment, prior sensitivity should also be considered, using for example the
AccSens measure.

7 Conclusions

In this paper the problem of varying/uncertain priors was investigated. ROC
analysis has become a standard tool in this domain, with the Area Under the
ROC (AUC) a popular model selection criterion. We argued that even though
this integrated measure can be used to compare classifiers independent of priors,
it may also be important to consider how stable a model is over the relevant
range. A case study and some realistic experiments were presented that demon-
strated how classifiers that compete in terms of AUC may differ significantly in
terms of sensitivity (and vice-versa). It may thus be more sensible for the given
problem to consider both. A simple measure, called AccSens was proposed, that
combines the (weighted) geometric means of AUC and sensitivity, allowing for
model comparison that considers both integrated accuracy (AUC), and prior
sensitivity. A few real experiments demonstrated that this methodology is supe-
rior in some situations.
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Abstract. Multiple classifier systems have been originally proposed for 
supervised classification tasks, and few works have dealt with semi-supervised 
multiple classifiers. However, there are important pattern recognition 
applications, such as multi-sensor remote sensing and multi-modal biometrics, 
which demand semi-supervised multiple classifier systems able to exploit both 
labelled and unlabelled data. In this paper, the use, in multiple classifier 
systems, of two well known semi-supervised learning methods, namely, co-
training and self-training, is investigated by experiments. Reported results on 
benchmarking data sets show that co-training and self-training allow exploiting 
unlabelled data in different types of multiple classifiers systems. 

1   Introduction 

The most of research on semi-supervised learning and classification focused on single 
classifiers, and few works have dealt with semi-supervised multiple classifier systems 
(MCS) [1-5]. A survey of semi-supervised learning methods for single classifiers can 
be found in [6]. The few works on semi-supervised MCS have proposed methods 
tailored to a specific MCS model which cannot be applied easily to a generic MCS, 
with the exception of [4] which uses a modified version of the self-training method. 
On the other hand, there are important pattern recognition applications, such as multi-
sensor remote sensing and multi-modal biometrics, which demand semi-supervised 
multiple classifier systems able to exploit both labelled and unlabelled data. In this 
paper, the use, in MCS, of two well known semi-supervised learning methods, 
namely, co-training and self-training, is investigated by experiments. In particular, we 
extend the single-classifier versions of these algorithms to MCS, and assess the 
performances achievable for two widely used kinds of MCS. Section 2 first 
summarizes the co-training and self training methods, then two algorithms for their 
use in MCS are proposed. In Section 3, experiments with some benchmarking data 
sets are reported, and results are discussed. Section 4 draws some conclusions. 

2   Co-training and Self-training in Semi-supervised Multiple 
Classifiers 

In this section, we briefly describe two techniques for semi-supervised learning, 
namely, co-training an self-training, and propose their use to design semi-supervised 
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MCS. In the following, let us assume to have a set L (usually, small) of labelled data, 
and a set U (usually, large) of unlabelled data. 

2.1   Co-training and Self-training 

A co-training approach to semi-supervised learning and classification was proposed 
by Blum and Mitchell in 1998 [7]. Co-training was proposed for two classifiers and 
assumes that input features are naturally subdivided into two sets, and each feature 
subset is sufficient to train an optimal classifier, supposed that enough labelled data 
are available. Two separate classifiers, one for each feature subset, are trained on the 
initial, small, labelled data set L. It is assumed that the classifiers will exhibit a low, 
but better than random, accuracy. Each classifier is then applied to the unlabelled 
examples in U. For each classifier, the unlabelled examples classified with the highest 
confidence are added to the labelled data set L, so that the two classifiers can 
contribute to increase the data set L. Both classifiers are re-trained on this augmented 
data set, and the process is repeated a given number of times. The rationale behind co-
training is that a classifier may assign correct labels to certain examples while it may 
be difficult for the other classifier to do so. Therefore, each classifier can increase the 
training set with examples which are very informative for the other classifier.  
It is worth pointing out two fundamental assumptions of the co-training method: 

1) patterns must be represented with two distinct “views”, namely, with two distinct 
feature sets, and either feature subsets must be sufficient to design an optimal 
classifier if we have enough labelled data. We need the feature subsets to be 
conditionally independent so that the examples which are classified with high 
confidence by one of the two classifiers are i.i.d. samples for the other classifier. 

2) the classifiers must be “compatible”. Compatibility implies that, if we have 
enough labelled data in the training set, the classifiers C1 and C2 provide the same 
classification labels for all the possible test patterns. A relaxed form of this 
hypothesis (“partial compatibility”) can be also accepted. 

In self-training a classifier is initially trained using the labelled data set L. This 
classifier is then used to assign pseudo-class labels to a subset of the unlabelled 
examples in U, and such pseudo-labelled data are added to L. Usually, the unlabelled 
data classified with the highest confidence are selected to increase L. Then the 
classifier is re-trained using the increased data set L. As the convergence of this 
simple algorithm can not be guaranteed in general, the last two steps are usually 
repeated for a given number of times or until some heuristic convergence criterion is 
satisfied. 

2.2   Semi-supervised Multiple Classifiers Using Co-training and Self-training 

Co-training of Multiple Classifiers. As pointed out above, the co-training method 
was introduced under the assumptions of patterns represented with two distinct 
“views” and “compatible” classifiers. Therefore, co-training can be naturally applied 
to classifier ensembles made up of compatible classifiers which have distinct feature 
sets as input. However, such assumptions are not satisfied in many practical cases. On 
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the other hand, Goldman and Zhou showed that co-training also works with two 
classifiers using the same features [5]. Here we propose to investigate the use of co-
training for a generic MCS whose classifiers can be created with different methods 
(e.g., using different classification algorithms or the bootstrap technique). Figure 1 
shows the main step of our extended co-training algorithm applied to multiple 
classifiers. It should be noted that a similar algorithm is described in [11]. 

Co-training of Multiple Classifiers  
• Given: 
- a set L of  labelled  training examples 
- a set U of unlabelled  examples 
- the jP  prior probabilities of the underlying class distributions 

• Create a set U’ of examples by choosing u examples at random from U 
• Loop for k iterations: 
       - Build N classifiers Ci, i=1…N,  using L  
       - Run C1, … CN on  U' 
       - For each classifier Ci, for each class j,  
                select the 

jj Pn ∝  examples assigned to the class j by the classifier Ci   

                with the highest classification confidence.  

        - Add these ×
j jnN  self-labelled examples to L 

        - Randomly choose ×
j jnN  examples from U to replenish U’ 

• Return a MCS using {Ci} as base classifiers 

Fig. 1. The extended co-training algorithm applied to multiple classifier systems 

Given a set L (usually, small) of labelled data, and a set U (usually, large) of 
unlabelled data, a set U’ is created by choosing u examples at random from U. The 
following steps are executed for a fixed number of iterations. N classifiers are trained 
on the initial, small, labelled data set L. In order to create different classifiers several 
methods are possible. For example, different classification algorithms or the bootstrap 
technique can be used. Each classifier is then applied to the u unlabelled examples in 
U’. For each classifier Ci and for each class j, nj examples assigned to the class j by 
the classifier Ci with the highest classification confidence are selected and they are 
added to the labelled data set L. The number nj of selected examples assigned to the 
class j is proportional to the prior probability of the class j. Accordingly, if there are 
no classification errors in the selected examples, the set of the selected examples has 
the same prior probabilities of the underlying distributions, and the prior probabilities 
of L remain unchanged. Each classifier selects 

j jn  patterns, so that 
×=

j jnNn  patterns are moved from U’ to L. An equal number n of patterns are 
randomly chosen from U to replenish U’. For the next iterations, all the classifiers are 
re-trained on the augmented data set L, and the process is repeated a given number of 
times. At the end of this iterative process, an MCS using {Ci} as base classifiers is 
created. In this work only MCS based on fixed rules [8] (mean, product and majority 
voting rule) are used. 
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Ensemble-Driven Self-training. In order to extend the use of the self-training 
method to MCS, we propose to use the concept of “ensemble-driven” self-training. 
Each classifier is not self-trained, but it is trained with the examples which are 
labelled by the MCS. In other words, the MCS is used to assign pseudo-class labels to 
a subset of the unlabelled examples in U, and such pseudo-labelled data are added to 
L. Then each classifier of the ensemble is re-trained using the increased data set L. It 
is worth noting that the self-supervised classifier ensemble proposed by El Gayar 
exploits the same concept [4], and also the extension of co-training, called 
“democratic” co-training, proposed by Zhou and Goldman can be regarded as a type 
of ensemble-driven self-training [5]. Figure 2 shows the main step of our “ensemble-
driven” self-training algorithm applied to multiple classifiers.  

Ensemble-driven Self -training of Multiple Classifiers 
• Given: 
- a set L of  labelled  training examples 
- a set U of unlabelled  examples 
- the jP  prior probabilities of the underlying class distributions 

• Create a set U’ of examples by  choosing u examples at random from U 
• Loop for k iterations: 
       - Build N classifiers Ci, i=1…N,  using L  
       - Create a MCS using {Ci} as base classifiers 
       - Run the MCS on U’ 
       - For each class j,  
                 select the jnN × examples assigned to the class j  

                 by the MCS with the highest classification confidence ; 
jj Pn ∝  

       - Add these  ×
j jnN  self-labelled examples to L 

       - Randomly choose ×
j jnN  examples from U to replenish U’ 

• Return the MCS 

Fig. 2. The extended, ensemble-driven, self-training algorithm applied to multiple classifier 
systems 

The MCS is applied to the u unlabelled examples in U’. For each class j, jnN ×  

examples assigned to the class j by the MCS with the highest classification confidence 
are selected and they are added to the labelled data set L. As in the co-training 
algorithm, the number jnN ×  of selected examples assigned to the class j is 

proportional to the prior probability of the class j, in order to do not change the prior 

probabilities of L. For each step ×=
j jnNn  patterns are moved from U’ to L. An 

equal number n of patterns are randomly chosen from U to replenish U’. For the next 
iterations, all the classifiers are re-trained on the augmented data set L, and the 
process is repeated a given number of times. At the end of the iterative process the 
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‘self-trained’ MCS is returned. It is worth noting that in the co-training algorithm 
each of the N classifiers selected and labelled nj patterns per class, so that the number 

of patterns labelled at each step was ×=
j jnNn . As in the ensemble-driven self-

training algorithm patterns are selected and labelled directly by the MCS,  jnN ×  

pattern per class are selected for each step of the algorithm. 

3   Experimental Results 

3.1   Data Sets and Experimental Protocol 

The performances of the algorithms described in Figures 1 and 2 clearly depend on 
the classifier ensemble used. The goal of our experiments was to assess such 
performances using two widely used methods for creating a MCS, and with different 
data sets. In particular, we assessed performances with classifier ensembles generated 
by the bootstrap method and using different type of classification algorithms. Table 1 
describes the main characteristics of the data sets used, and reports the size of L 
expressed as percentage of the available training set and as number of patterns. The 
datasets Letter, BCW and Optdigits come from the UCI Machine Learning repository 
(http://www.ics.uci.edu/~mlearn/MLRepository.html). 

Table 1. Main characteristics of the data sets in terms of the number of classes, features, 
patterns, and size of the training set L as percentage (%L) of the available training set (the 
number of patterns in L is given in brackets) 

Data set Classes Features Patterns %L Reference 
Gaussian 2 15 1000  5% (35) Gaussian data set proposed in [9]  
Letter 26 16 20000 15%  (2100) Letter Image Recognition  
BCW 2 9 683 5% (23) Wisconsin Breast Cancer  
Optdigits 2 15 3823 5% (190) Optical Recognition of Handwritten Digits  
Feltwell 5 15 10944  2% (100) Feltwell [10] 

Each data set was subdivided randomly into a training set (30% of the patterns) and 
a test set (70% of the patterns). For the Feltwell data set we maintained the original 
subdivision in training and test sets, because a random subdivision is known to create 
an artificial, almost trivial, classification task [10]. Each training set was subdivided 
randomly into a set L (the labelled data set) and a set U (the unlabelled data set). Each 
experiment was repeated 10 times, with different random choices of the labelled data 
set L. For each data set, Table 2 shows the classifier ensembles used. In the case of 
ensembles generated by bootstrap Table 2 gives the base classifier used. Five different 
bootstrap replicas of L, that is, ensembles made up of five classifiers, were used. The 
terms “linearG” and “quadratic” indicate the linear and quadratic Gaussian classifiers. 
The term “linearLog” indicates the linear classifier that maximize the likelihood 
criterion using the logistic function. For each step of the algorithms in Figures 1 and 2, 
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×=
j jnNn  patterns are selected. The value of nj is 

jj Pn ⋅= α  where Pj is the 

 prior probability of the class j and α  is an integer value between 3 and 6. The size u 
of the set U’ was chosen as nu ×= β  where β is 4 or 5. In other words, the set U’ is 

β  times greater than the number of patterns selected from U’. The number of 

iterations k is chosen as following: for large datasets (Feltwell, Letter) k is chosen as 
2/3 of the maximum of the possible iterations, that is, as 2/3 of the number of 
iterations that emptied the set U of unlabelled patterns. For small datasets, the 
algorithm goes on until there are no more patterns in U. 

Table 2. Classifier ensembles and base classifiers used for each data set 

Dataset Classifier ensemble Base classifier used for bootstrap 

Gaussian 
1)[ perceptron, linearG, quadratic] 
2)[ perceptron, perceptron, quadratic] 

linearG 

Letter [k-nn (k=1); k-nn(k=5); parzen] k-nn 
BCW [linearG, linearLog, parzen] linearG; Parzen 
Optdigits [k-nn; MLP; parzen] k-nn; MLP; Parzen 
Feltwell [k-nn, MLP, quadratic] Quadratic; k-nn 

For each data set, the classifiers were chosen so that the classification error 
obtained using base classifiers trained on L data set was substantially higher than the 
error obtained using base classifiers trained on the full training set UL ∪ . In other 
words, we selected classifiers for which we expect to obtain a decrease of the error if 
the semi-supervised mechanism correctly labelled all the patterns of U. For the 
experiments with co-training, in order to fulfil the compatibility hypothesis, we 
choose classifiers that agree in their decisions at least for the 90% of the pattern of U 
when they are trained on the full training set UL ∪ . 

3.2   Results 

Tables 3 and 4 report the results of the experiments with the algorithms of Figures 1 
and 2. In particular, Table 3 refers to the experiments with classifier ensembles 
generated by bootstrap, while Table 4 reports the results obtained with ensembles 
made up of different classifiers (second column of Table 2). The reported values are 
the test-set error values averaged over ten runs, with different random choices of the 
initial labelled data set L. Results obtained with different rules for classifier 
combination are reported. 

The ‘start’ column reports the percentage value of the error before the exploitation 
of the unlabelled data, that is, using classifiers trained only on the labelled data set L. 
The  column represents the variation of the error dues to the exploitation of the 
unlabelled data. Positive values of  indicate a reduction of the error. As the trend of 
the error can be non monotonic, we report the value of  after a fixed number of 
iterations of the semi-supervised process ( (end) ) and the maxim reduction of the 
error during the semi-supervised process ( (best) ). Results where (best) >> (end), 
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that is, results for which after a first reduction of the error the error increased, are 
reported in bold. This non-monotonic trend of the error was observed for the Feltwell 
dataset (Table 3), and for Gaussian dataset (Table 4). In particular, for the Feltwell 
dataset, after a first reduction of the error, the co-training and self-training algorithms 
sometimes provided an error greater than the initial test error (negative values of ). 

Table 3. Experiments with classifier ensembles generated by bootstrap 

Co-training Self-training  
 

start  (best) (end) start (best) (end) 
bcw, linearG 12.21 7.65 7.35 11.27 8.24 7.65 
bcw, parzen 11.76 7.30 7.06 5.59 3.09 2.65 
feltwell, quadratic 18.81 4.43 -3.37 18.86 4.05 1.83 
feltwell, k-nn 18.83 3.28 -1.79 16.54 2.39 1.10 
letter 14.33 1.49 1.31 15.84 1.77 1.58 
optdigits, k-nn 7.05 3.43 3.29 7.14 3.77 3.76 
optdigits, MLP 10.53 4.02 3.92 9.71 3.27 3.27 
optdigit, parzen 7.92 3.66 3.39 8.68 5.12 5.02 

Mean rule 

gaussian 18.83 7.67 7.07 18.83 7.10 6.47 
bcw, linearG 14.51 9.85 9.66 13.38 10.00 9.26 
bcw, parzen 14.17 9.80 9.51 4.90 2.45 1.67 
feltwell, quadratic 18.98 4.67 -3.25 16.63 2.53 -4.63 
feltwell, k-nn 19.50 3.34 -1.50 18.30 3.32 2.72 
letter 14.12 0.97 0.68 15.97 1.56 1.31 
optdigits, k-nn 7.32 3.38 3.16 8.21 4.99 4.80 
optdigits, MLP 11.27 4.58 4.40 10.61 4.23 4.10 
optdigit, parzen 8.16 3.90 3.64 6.86 2.82 2.31 

Majority voting 
 rule 

gaussian 18.88 7.62 7.08 19.80 9.37 9.00 
bcw, linearG 12.25 7.75 7.40 9.02 5.78 5.39 
bcw, parzen 12.99 8.53 8.28 3.04 0.69 0.05 
feltwell, quadratic 20.69 6.37 -1.53 19.70 6.01 5.12 
feltwell, k-nn 18.82 3.31 -1.79 14.07 1.34 -0.17 
letter 14.36 1.50 1.34 16.59 1.30 1.02 
optdigits, k-nn 7.05 3.43 3.29 6.94 3.90 3.90 
optdigits, MLP 13.77 7.18 7.11 10.18 4.16 4.02 
optdigit, parzen 7.15 3.33 3.12 7.67 2.50 2.48 

Product rule 

gaussian 19.55 8.42 7.78 19.67 8.27 7.33 

In order to show the typical trend of the test-set error during the semi-supervised 
process, in Figure 3 we report the error on Letter and Optdigits data sets as a function 
of the number of iterations of the self-training algorithm applied to classifier 
ensembles generated using different base classifiers. Similar trends were obtained 
with the co-training algorithm and for the other data sets. 
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Table 4. Experiments with ensembles made up of different classifiers (second column of  
Table 2) 

  

Fig. 3. Examples of the test-set percentage error as function of the number of iterations of the 
self-training algorithm applied to classifier ensembles generated using different base classifiers 

4   Conclusions 

This paper’s goal was to investigate by experiments the use, in MCS, of two well 
known semi-supervised learning methods, namely, co-training and self-training. 
Although final conclusions cannot be drawn on the basis of the limited set of reported 

Co-training Self-training   

start  (best) (end) start (best) (end) 
bcw 7.94 4.36 3.97 6.13 3.63 3.14 
feltwell 15.63 2.99 2.26 13.01 2.12 1.42 
letter 14.24 1.47 1.33 14.39 1.21 1.06 
optdigits 7.48 3.52 3.49 7.80 4.62 4.60 
Gaussian 1) 15.83 5.30 2.93 17.53 8.57 6.60 

Mean rule 

Gaussian 2) 18.83 6.00 4.50 18.93 4.43 2.00 
bcw 8.09 4.56 4.22 7.45 4.31 4.02 
feltwell 14.99 3.59 2.46 13.05 2.83 2.46 
letter 14.29 1.54 1.44 14.30 0.95 0.87 
optdigits 7.51 3.56 3.53 7.63 4.18 4.05 
Gaussian 1) 15.80 5.33 3.33 16.70 6.57 6.10 

Majority voting rule 

Gaussian 2) 18.87 5.73 3.13 17.93 2.33 0.30 
bcw 6.96 3.04 2.30 6.37 3.24 2.55 
feltwell 17.57 4.96 4.38 16.34 4.04 2.64 
letter 14.27 1.51 1.39 14.09 1.46 1.41 
optdigits 7.47 3.54 3.48 7.27 3.85 3.75 
Gaussian 1) 27.73 16.47 14.77 33.17 18.23 16.57 

Product rule 

Gaussian 2) 31.80 18.60 17.67 23.90 7.03 5.93 
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experiments, we believe that this work made a first step toward the systematic use of 
co-training and self-training to design semi-supervised MCS. Reported results show 
that the extended versions of the co-training and self-training we proposed allow 
exploiting unlabelled data in two different types of multiple classifiers systems. In 
addition, our results confirmed a claim of other researchers [5], that is, co-training 
algorithm can be used even if different feature subsets are not available for the task at 
hand. As a future work we will continue our experimental investigation and will 
investigate the trade-off between the “complementarity” of classifiers, useful for 
MCS, and  the request of  “compatibility” of the co-training algorithm. 
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Abstract. Hyperspectral imagery (HSI) unmixing is a process that de-
composes pixel spectra into a collection of constituent spectra (endmem-
bers) and their correspondent abundance fractions. Without knowing
any knowledge of HSI data, the unmixing problem is transformed into
a blind source separation (BSS) problem. Several methods have been
proposed to deal with the problem, like independent component anal-
ysis (ICA). In this paper, we introduce spatial complexity that applies
Markov random field (MRF) to characterize the spatial correlation in-
formation of abundance fractions. Compared to previous BSS techniques
for HSI unmixing, the major advantage of our approach is that it totally
considers HSI spatial structure. Additionally, a proof is given that spatial
complexity is suitable for HSI unmixing. Encouraging results have been
obtained in terms of unmixing accuracy, suggesting the effectiveness of
our approach.

1 Introduction

Hyperspectral imagery (HSI) records data in hundreds of narrow contiguous
spectral bands, which provides the opportunity to identify the ground materials-
of-interest. Owing to the spatial resolution of the sensor, disparate materials may
contribute to the spectrum measured from a single pixel, causing it a “mixed”
pixel and making HSI unmixing a challenging problem in HSI applications. It is
a process that decomposes pixel spectra into a collection of constituent spectra
(endmembers) and their correspondent abundance fractions [1,2].

At first, to make the problem simple, some methods unmix the HSI data under
the circumstances that the knowledge of endmembers, including the spectral
signatures and the number of endmembers, is known. And HSI unmixing is
converted into a linear problem, which is easy to solve, such as spectral angle
mapper [3]. But in most cases, the information of endmembers is not known,
and the unmixing problem is transformed into a blind source separation (BSS)
problem [4]. Several methods have been proposed to deal with the problem, like
independent component analysis (ICA) [5,6]. However, the unmixing results of
ICA are not satisfactory. That is, in any case, there are always endmembers
incorrectly unmixed [7].

Recently, a temporal complexity based BSS approach was proposed by Stone
[8] which has shown success in separating linear mixtures of one-dimensional

D.-Y. Yeung et al. (Eds.): SSPR&SPR 2006, LNCS 4109, pp. 531–540, 2006.
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independent signals. It is to seek a weight vector that provides an orthogonal
projection of mixtures such that each extracted signal is minimally complex. In
this paper, for the sake of utilizing the spatial correlation information of abun-
dance fractions, we extend the algorithm to two-dimensional spatial domain by
Markov random field (MRF), named spatial complexity. Different from previous
BSS techniques for HSI unmixing [9], our approach totally considers HSI spa-
tial structure. In addition, we prove a theorem, which shows spatial complexity
applicable for HSI unmixing.

The paper is organized as follows. First, the MRF based spatial complexity is
presented. In Section 3, the corresponding gradient ascent algorithm is described;
meanwhile, the pre- and post-processing are discussed. Section 4 presents exper-
imental results of applying our approach to HSI data. Finally, some concluding
remarks are given in Section 5.

2 Spatial Complexity Based HSI Unmixing

HSI is a three-dimensional array with the width and length corresponding to
spatial dimensions and the spectral bands as the third dimension, which are
denoted by I, J and L in sequence. Let R be the image cube with each spectrum
Rij being an L×1 pixel vector where the boldface is used for vectors. Let M be
an L × P spectral signature matrix that each column vector corresponds to an
endmember spectrum and P is the number of endmembers in the image. Let S
be the abundance cube (the length of each dimension is I, J and P respectively)
and every column Sij be a P × 1 abundance vector associated with Rij , with
each element denoting the abundance fraction of relevant endmember present in
Rij . Hence, the linear mixing model can be represented as follows:

Rij = MSij + n (1)

where n is noise. The unmixing problem is to find a P × L matrix W for every
pixel vector Rij Yij = WRij (2)

where Y is the estimated abundance cube of S and vector Yij expresses the
fractional abundances of P endmembers associated with Rij . Figure 1 gives the
sketch map of HSI unmixing.

Fig. 1. The HSI unmixing sketch map
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(a) (b)

Fig. 2. (a) The five order neighborhood system. (b) The weight matrix for λ
(t)
C .

In order to incorporate the spatial information of HSI data, we extend the
method in [8], using spatial predictability to formulate complexity. The maximal
predictability corresponds to minimal complexity, and vice versa. For Y, its
spatial predictability is defined as

F (Y) =
∑P

k=1
ln

∑I,J

i,j=1
(Yijk −Yijk)2∑I,J

i,j=1
(Ỹijk −Yijk)2

=
∑P

k=1
ln

Vk

Uk
(3)

where Vk and Uk reflect the overall and local predictability degree of the kth
abundance image, respectively. Taking every pixel Yijk into account, Yijk and
Ỹijk reflect its overall and local spatial variability. Their definitions are

Yijk =
1

I × J − 1

∑
t=1

Y(t)
ijk

Ỹijk =
∑NC

t=1
λ

(t)
C Y(t)

ijk

(4)

where Y(t)
ijk,NC and λ

(t)
C are taken from the neighborhood system of MRF model.

MRF models are mainly used in feature extraction and image segmentation
[10]. For any pixel Yijk (for brevity’s sake, y is used to express Yijk), its nth-
order neighborhood system is Nn

y = {y+r|y+r ∈ Ny, |r|2 ≤ D[n]}, where Ny are
the neighbors of Yijk (the adjacent pixels except itself; for details, see [10]), |r|
denotes the Euclidian distance between sites y and y + r, and D[n] is a member
of the set of all possible integers defined as D = {D[n]|D[n] = p2 + q2, p, q ∈
Z,D[k] > D[l] if k > l}. Figure 2(a) displays the five order neighborhood system.
It labels first-order spatial neighbors of site Yijk as “1”, second-order neighbors
as “2”, and so on. Concerning above three parameters, Y(t)

ijk denotes the tth-
order neighbors of Yijk , NC is set to 2 for Ỹijk, and the corresponding weight
matrix of λ(t)

C is shown in Figure 2(b). Here, Yijk and Ỹijk can be regarded as
the energy functions of Yijk in different range.

However, some conditions must be satisfied for spatial complexity. That is, the
number of mixtures is much greater than that of sources, which can be derived
from the following theorem.

Theorem 1. As the number of mixtures increases relative to a fixed number of
sources, the difference between the extreme values (both minimum and
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maximum) of mixtures’ and sources’ spatial complexity decreases, which offers
more possibilities to extract all sources.

The proof of the theorem is in the appendix. It explains why the sources could
not be totally separated out when the number of mixtures is close to that of
sources, leading to the unsuitability of spatial complexity for multispectral im-
agery (MSI, only containing several spectral bands). For HSI data, because the
number of bands (mixtures number) is much larger than that of endmembers
(sources number, L� P ), spatial complexity is a suitable approach for HSI un-
mixing. In addition, it should be noted that the correlation among neighboring
abundance fractions of endmember guarantees its validity.

3 The Gradient Ascent Algorithm and
Pre- & Post-processing

To extract the abundance cube in parallel, gradient ascent algorithm is employed.
Given Wk being a 1× L row vector of W, equation (3) can be rewritten as

F (Y) = F (W) =
∑P

k=1
ln

WkCWT
k

WkC̃WT
k

(5)

where C and C̃ are both L×L matrixes of overall and local covariances between
mixtures respectively. They can be defined as

C =
∑I,J

i,j=1
(Rij −Rij)(Rij −Rij)T

C̃ =
∑I,J

i,j=1
(R̃ij −Rij)(R̃ij −Rij)T

(6)

C and C̃ only need to be computed once, which greatly alleviate the compu-
tational load. Rij = [Rij1,Rij2, . . . ,RijL]T,R̃ij = [R̃ij1, R̃ij2, . . . , R̃ijL]T, and
the definitions of Rijk and R̃ijk are similar to equation (4). The derivative of F
with respect to W is

∇WF = 2WC./V − 2WC̃./U (7)

The sign ./ means “point division”, namely, each element of numerator matrix
divides the corresponding element of denominator matrix. V is a P × L matrix
with the kth row vector acquired by replicating Vk. Likewise, the kth row vector
of U is the replication of Uk. The gradient ascent rule is

Wnew = Wold + η∇WF (8)

where η is the learning rate. To speed up the convergence of W, a scheme is
used on η. In the experiments conducted in Section 4, 0.1 is assigned as its initial
value, then 0.9 is multiplied every other twenty steps.

Some methods should be applied to process the HSI data before and after the
unmixing algorithm to make the results more accurate. Preprocessing (centering
and whitening) through principle component analysis (PCA) [4] is adopted as
a means to reduce the relevance of first and second statistics, and to speed
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up the convergence process. Postprocessing step is to identify the position of
the endmembers, and the method in [11,12] is employed. Briefly speaking, the
histogram and the skewness of every abundance image are computed first, and
the sign of skewness indicates the direction to be searched for the threshold
(Positive to the right of the center, otherwise to the left). Then the pixel value
where the histogram firstly takes zero is selected as the threshold. Finally, the
threshold is used to filter corresponding abundance image. Readers are referred
to [11] for details.

At last, the pseudo-code of spatial complexity for HSI unmixing is specified.

PCA(R);
compute C and C̃;
W is randomized and Fold is initialized to zero;
while F (W)− Fold > σ

Fold = F (W);
compute V and U;
∇WF = 2WC./V − 2WC̃./U;
W = W + η∇WF;
orthogonalize W [13] and update η;

end while
every pixel vector r in R is multiplied by W to obtain Y;
threshold every abundance image of Y using the skewness and
histogram;

4 Experimental Results

In this section, two sets of real hyperspectral image data, HYDICE (HYperspec-
tral Digital Imagery Collection Experiment) [14] and PHI (Pushbroom Hyper-
spectral technique Imager) are applied to evaluate the performance of spatial
complexity. Some methods have been proposed to estimate the number of end-
members P, such as virtual dimensionality [15]. In this paper, we assume that it
is known in advance to maximize the efficiency of spatial complexity. In addition,
the unmixing results of undercomplete ICA (UICA) algorithm [16] are given for
comparative analysis.

4.1 HYDICE Data

Figure 3 shows an urban scene of size 307 × 307 extracted from HYDICE data.
It is composed of 210 spectral channels with spectral resolution 10nm acquired in
the 400nm and 2.5 micron region. After low signal-to-noise ratio (SNR) bands are
removed, only 166 bands remain (i.e.,L=166). According to the ground truth, this
data contain four materials: vegetation, asphalt, soil and roof. So P is set to 4.

Firstly, the UICA algorithm is applied to the dataset. Figure 4 presents the
unmixing results. Except that the asphalt and soil are classified in Figure 4(b)
and 4(c), the other two images are mixtures, which verify the conclusion of [7]:
In any case, there are always endmembers incorrectly unmixed. Then spatial



536 S. Jia and Y. Qian

Fig. 3. The urban scene extracted from HYDICE HSI

(a) mixture (b) asphalt (c) soil (d) mixture

Fig. 4. Unmixing results produced by UICA

(a) vegetation (b) asphalt (c) soil (d) roof

Fig. 5. Unmixing results produced by spatial complexity

complexity is utilized, and the results are displayed in Figure 5. Different from
Figure 4, all the four materials: vegetation, asphalt, soil and roof are successfully
extracted. For convenience, we let white stand for the separated materials and
black for the background in the unmixing results. Comparing the abundance
distribution of asphalt and soil which are both unmixed by the two methods, it
is clear that the results of spatial complexity are much better than those of UICA.
Concretely speaking, Figure 4(b) misclassifies some vegetation pixels as asphalt,
and 4(c) only classifies large pieces of soil but ignores small ones. Contrarily,
Figure 5(b) and 5(c) totally extract the two materials. It is worth noting that
the unmixing results in Figure 5 have been filtered by the postprocessing method,
so they are more distinct. Hence, we can conclude that spatial complexity is more
efficient than UICA.

4.2 PHI Data

The PHI data used in the following experiment were directly extracted from the
PHI image scene of size 400× 331 shown in Figure 6. The image data were ac-
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Fig. 6. The subscene of Shanghai World Expo Garden extracted from PHI HSI

(a) water (b) road (c) mixture (d) mixture (e) mixture

Fig. 7. Unmixing results produced by UICA

(a) water (b) road (c) roof (d) soil (e) sparse grass

Fig. 8. Unmixing results produced by spatial complexity

quired from the subscene of Shanghai World Expo Garden in October 2003 with
the ground sampling distance approximately 1.2m. It has 124 spectral channels
ranging from 400nm to 990nm with spectral resolution 5nm. And no spectral
bands are removed in the experiments (i.e., L=124). According to the ground
truth, this data contain five materials: water, road, roof, soil and sparse grass.
So P is assigned to 5.

Same as the above experiment, the UICA algorithm is firstly applied. Figure
7 shows the unmixing results. Except that the water and road are extracted out
in Figure 7(a) and 7(b), all the other three images are mixtures, which verify the
conclusion of [7] again. The unmixing results generated by spatial complexity are
illustrated in Figure 8. All the five materials: water, road, roof, soil and sparse
grass, are displayed in sequence. Comparing images (a) and (b) between Figure 7
and 8, it is easy to find that the abundance of water extracted in Figure 7(a)
is just a small part of Figure 8(a). So UICA actually separated out only one
material: road. And the same conclusion as the above subsection can be drawn.
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5 Summary and Conclusions

We have presented a spatial complexity based algorithm for hyperspectral im-
agery unmixing. The algorithm extends the temporal complexity; the major
improvement is the better representation of spatial correlation of abundance im-
age. A proof is presented that spatial complexity is suitable for HSI unmixing.
Its effectiveness has been tested by comparison to UICA with data from HY-
DICE and PHI HSI. The experimental results show that our approach provides
a promising method for HSI unmixing.

The reason that ICA could not totally separate out the sources (the abundance
cube) ascribes to the dependence among the abundance fractions (i.e., the sum of
them associated to each pixel is constant due to physical constraints in the data
acquisition process) [7]. Spatial complexity is actually a second order statistics
algorithm, which does not use explicitly or implicitly any criterion of statistical
independence [4]. Hence, it is reasonable to introduce the method to unmix HSI
data, and the experimental results confirm it. However, the conjecture in [8] is
proved based on sources independence; so in future work, we will attempt to find
out the connection between spatial complexity and sources independence.
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Appendix: Proof of Theorem 1

The conjecture used in [8] has been modified and proved by Xie et al. [17].
Namely, any mixture has a complexity lying between its least and most complex
source signals. Although it aims at one-dimensional signal, it also holds for two-
dimensional image (The proof is similar to Xie’s, so it is not given), which can
be described that the spatial complexity of every mixture lies between its least
and most complex sources.

Let C(X) denote the spatial complexity of X, X↑ denote the augment of X,
X→Y denote that X approaches to Y, and X⇒Y denote that X implies Y. First,
the Xie’s conjecture can be formalized as

min(C(sources)) ≤ C (mixtures) ≤ max(C (sources)) (9)

Equation (2) indicates that the estimated sources are the “mixing” of mixtures.
According to the Xie’s conjecture, it is clear that

min(C(mixtures)) ≤ C (estimated sources) ≤ max(C (mixtures)) (10)

Second, without loss of generality, due to the randomness of the mixing process
[6], the following formulas can be obtained

min (C(mixtures))
mixture number ↑

→ min(C(sources))

max (C(mixtures))
mixture number ↑

→ max(C(sources))
(11)
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which means
R (mixtures) ↑

mixture number ↑
→ R(sources) (12)

where R(X) is defined as

R(X) = max(C (X)) −min(C (X)) (13)

Correspondingly, from (10),

R (mixtures) ↑
mixture number ↑

⇒ R(estimated sources) ↑ (14)

Considering (12) and (14) simultaneously,

R (estimated sources)
mixture number ↑

→ R(sources) (15)

which can derive the following formula

(estimated sources)
mixture number ↑

→ sources (16)

Consequently, the conclusion can be drawn.  !
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Abstract. In the past few years a variety of successful algorithms to 
select/extract discriminative spectral bands was introduced. By exploiting the 
connectivity of neighbouring spectral bins, these techniques may be more 
beneficial than the standard feature selection/extraction methods applied for 
spectral classification. The goal of this paper is to study the effect of the 
training sample size on the performance of different strategies to select/extract 
informative spectral regions. We also consider the success of these methods 
compared to Principal Component Analysis (PCA) for different numbers of 
extracted components/groups of spectral bands.  

1   Introduction 

Densely sampled spectral measurements became a standard tool in many applications 
such as medical diagnostics or industrial quality control. The amount of data to be 
dealt with has increased even further due to widespread adoption of hyperspectral 
imaging sensors capturing spectral readings in spatial raster. The acquired spectral 
information is, however, largely redundant due to low intrinsic dimensionality of the 
studied phenomena. Therefore, raw spectral measurements are usually reduced for the 
sake of data transmission, visualization or data analysis. In this paper, we discuss a 
specific type of data reduction techniques targeting supervised pattern classification. 

The examples of successful methods to find discriminative spectral regions are an 
Optimal Region Selector (ORS) [1] guided by a genetic algorithm, a top-down and 
bottom-up multiresolution feature extraction algorithms proposed by Kumar et al. [2], 
Recursive Band Selection (RBE) [3] etc. The advantage of these techniques is that they 
make use of the connectivity between neighbouring spectral bins when finding 
discriminative groups of spectral bands, while the standard feature reduction 
approaches (such as forward/backward feature selection or PCA [4]) neglect the apriori 
available information on the ordering of spectral wavelengths. Spectral band selection 
techniques are also preferred to standard feature reduction techniques, because they 
allow us to find discriminative regions in spectra instead of single bands or 
“generalized” features (like in PCA). By this, specialists can make the relation between 
the informative group of spectral bands found and the physical background of a studied 
phenomenon. It also implies the possibility to design cheap devices to perform 
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measurements only for few spectral regions that make sense for discrimination instead 
of measuring spectra for a wide range of all possible emission wavelengths. 

Sometimes it is not possible to find clear discriminative spectral regions especially 
for spectral data representing mixtures of materials. The information useful for 
discrimination might be spread over all (or over the majority) spectral features. 
However, in the case of highly dimensional data with a relatively small amount of 
available measurements, it is needed to reduce the data dimensionality in order to 
construct a reliable classification rule [5]. Then PCA may be used, as it insures that all 
information contained in original features is preserved in extracted principal 
components. But the first few components (describing the largest variance in the data) 
do not guarantee the best discrimination between data classes, because PCA is an 
unsupervised feature extraction technique that does not make use of data class 
information. For a better classification performance, one may need a larger number of 
principal components.  

Both, the spectral band selection techniques and PCA, have benefits and drawbacks 
that may depend on the training sample size, the number of desirable 
components/regions, and on the type of the spectral data they are applied to. What 
concerns the spectral band selection methods, their success depends on many factors: 
the exact strategy to find spectral regions, the criterion to select best regions, a merging 
function to produce a singe value introducing the group of spectral bands and finally 
the classification rule used to evaluate the success of feature extraction. We can expect 
that for PCA and the spectral band extraction methods, small training sample sizes may 
cause problems to find good discriminative components/regions. The PCA may be 
imperfect when a too small number of principal components is considered. The 
spectral band extraction methods may tend to select single bands (representing noise in 
the data) when they are forced to find a large number of spectral regions.  

The goal of this paper is to compare the classification performances of different 
spectral band selection strategies (that extend standard feature selection techniques by 
using the spectral ordering information) mutually and to PCA for different training 
sample sizes and different numbers of extracted components/regions. Two real data 
sets representing two-class problems are used in our study. They are described in 
section 2. Different feature selection/extraction strategies used to find discriminative 
spectral regions are introduced in section 3. The results of our experimental study are 
discussed in section 4. Conclusions are summarized in section 5.  

2   Data 

Our study is performed on two real-world datasets representing two-class problems. 
The first dataset consists of the autofluorescence spectra acquired from healthy and 

diseased mucosa in the oral cavity. The measurements were performed at the 
Department of Oral and Maxillofacial Surgery of the University Hospital of Groningen 
[6]. The spectra were collected from 97 volunteers with no clinically observable 
lesions of the oral mucosa and 137 patients having lesions in oral cavity. The 
measurements were taken at 11 anatomical locations with excitation wavelength 365 
nm. After preprocessing [6] each spectrum consists of 199 bins. In total, 581 spectra 
representing healthy tissue and 123 spectra representing diseased tissue were obtained 
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Fig. 1. Normalized autofluorescence spectra for healthy and diseased mucosa in oral cavity 

after a thorough inspection of the database and removing all doubtful measurements. In 
order to reduce a large deviation in a spectral intensity within each data class, spectra 
were normalized by the unit area. Normalized autofluorescence spectra of healthy and 
diseased tissues and their median spectra are illustrated in Fig. 1.  

The second dataset represents histograms of DNA content of tumour cells in a 
breast tissue [7]. The data are provided by the Pathology Department of De Wever 
Hospital of Heerlen. The DNA of all cells in a breast tissue sample is stained with a 
fluorchrome that emits red light after irradiation with a laser beam. The emitted light 
photons are collected in a photo multiplier tube in the flowcytometer and converted to 
electrical pulses that are proportional to the amount of DNA in the cells. After 
counting 20000 cells, a histogram is made of the DNA content of these cells. Each 
histogram is described by 256 wavelength channels of flowcytometer. After removing 
the first two and the last two histogram bins (which contain only noise), each 
histogram consists of 252 bins. The dataset contains 448 histograms of DNA content 
representing aneuploid breast tumour cells and 199 histograms describing DNA 
content of diploid breast tumour cells. The histograms are normalized by the unit area. 
The examples of these histograms and the median histograms are presented in Fig. 2. 

For our experiments, training data sets with 10, 50 and 100 objects per class are 
considered for both datasets studied. Each time the training objects are chosen 
randomly from the total set. The remaining data are used for testing. The prior class 
probabilities are set to be equal as the data are very unbalanced and the real prior class 
probabilities are unknown. To evaluate the performance of diseased tissue 
diagnostics when different feature selection/extraction methods are used, we have 
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Fig. 2. The median histograms and selected examples of normalized histograms of the DNA 
content of 20000 cells obtained for aneuploid and diploid breast tumours 
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chosen the Regularized Linear Classifier (RLC) [8] which constructs a linear 
discriminant function assuming normal class distributions and using a joint class 
covariance matrix for both data classes. The value of the regularization parameter 
used is equal to 10-8. All experiments are repeated 20 times on independent training 
sets. In all figures the averaged results over 20 trials are presented. The standard 
deviation of the reported mean generalization errors (the mean per two data classes) is 
about 0.01 for each considered case. 

3   Strategies for Spectral Band Selection 

As a rule, each of spectral band selection techniques proposed in the literature uses 
another criterion to find the discriminative spectral regions and a different function to 
merge a group of spectral bands into a single value representation. The choice of such 
a criterion or a merging function can seriously affect the performance of a spectral 
band selection technique. In order to eliminate the influence of these two factors on 
the classification performance of the studied spectral band selection strategies, we use 
the same criterion and the same merging function for all of them. 

As a discriminant measure (criterion) to evaluate a discriminative capacity of 
extracted spectral regions, we use the Mahalanobis Distance (MD) between data 
classes: 

MD μA μB–( )′ pΣA 1 p–( )ΣB+( ) 1– μA μB–( )= , (1) 

where μA, μB and ΣA, ΣB are the means and the covariance matrices of data classes A 
and B, respectively; p is the prior probability of the data class A. The larger 
Mahalanobis distance, the larger discriminative capacity between data classes.  

A merging function used by us to reduce the dimensionality of each considered 
spectral region to a single value representation is the mean function which simply 
takes the average of spectral intensities in the region.  

In our study we consider the following spectral band extraction strategies. 

Approach 1. GLDB-TD. A top-down multiresolution feature extraction algorithm 
proposed by Kumar et al. [2], partitions the original p-dimensional spectra into 
smaller subspaces by using a top-down recursive algorithm. First, the best place to 
split spectra into two parts is found by computing a discriminant measure between 
data classes. The criterion value obtained on the parent space is compared with the 
criterion values calculated on the children subspaces. If the child subspace has a 
higher discrimination than the parent space, then it is partitioned further. We stop the 
partitioning, when no child subspace shows an improvement in its discrimination 
capacity compared to the parent space. The GLDB-TD algorithm is fast, but the final 
set of spectral regions found is suboptimal, because the optimization is performed 
only in one-dimensional way: a discrimination capacity is evaluated for each spectral 
region separately but not for a total set of selected spectral regions.  

Approach 2. GLDB-BU. A bottom-up generalized local discriminant bases algorithm 
proposed by Kumar et al. [2], merges p original bands in larger subspaces by using a 
bottom-up recursive algorithm. First, the best pair to merge among all possible pairs 
of neighbouring single bands is found by computing a discriminant measure between 
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data classes. The criterion value obtained on the best merged band is compared with 
the criterion values calculated on its component subspaces. If the merged space has a 
higher discrimination than the component subspaces, the merge is accepted and we 
move to the next level. Elsewise, the merge is denied and we consider the second best 
pair to merge on this level. If no merge is found that gives the better discrimination 
than component subspaces, then the merging procedure stops. This strategy has the 
same limitation as GLDB-TD: the optimization is performed only for one spectral 
group. 

Approach 3. Recursive Band Elimination (RBE). The RBE technique proposed by 
Verzakov at al. [3] is a modification of the SVM shaving technique. We apply RBE 
using the Regularized Linear Classifier (RLC) instead of SVM in order to compare 
this strategy with other spectral band selection techniques in even conditions. First, 
the linear classifier is trained on the original p-dimensional spectral data. The absolute 
values of RLC coefficients wi , i 1 p,= , are used to split spectra into an initial set of 

spectral regions. Namely, minima of wi  are the splitting points to obtain groups of 

spectral bands. Then each of S obtained spectral regions is merged into a single 
feature and the Recursive Feature Elimination (RFE) [9] is applied to perform a 
backward elimination of spectral regions. At each step of RFE, we train the RLC on 
the features representing groups of spectral bands and remove the spectral region 
corresponding to the smallest absolute value of the RLC coefficients.  

Both, RBE and GLDB-BU, recursively reduce the number of spectral regions. 
GLDB-BU starts from p single band regions and merges them iteratively (no spectral 
band is omitted) until the discrimination cannot be improved anymore by merging the 
spectral regions. The RBE starts from S p<  spectral regions defined by the 

coefficients of RLC and eliminates them one by one till one last spectral region 
remains. The RBE performs multivariate optimization for the spectral region 
selection. The absolute values of RLC coefficients (instead of Mahalanobis Distance) 
are used as a criterion to select discriminative groups of spectral bands. 

Approach 4. Sequential Partitioning (SP) [10]. It also performs multidimensional 
optimization for the spectral region selection. First, spectra are partitioned into two 
parts by finding the best split (with the optimal criterion value over all possible 
partitions) in the space of two features extracted from the two spectral regions. When 
the first split location is anchored, we look for the second optimal split in such a way 
that the criterion value in a three-dimensional space (on three features extracted from 
the three spectral regions) is the largest over all possible locations for the second split. 
We fix the second split location and repeat the procedure until the desired number of 
spectral regions S is found. In this approach, all spectral bands are used in the 
partitioning of spectra. However, some of them may be uninformative - introducing 
only noise. It is good to remove them, as they may deteriorate the classification when 
they are included in the extracted spectral regions. One way to do this is described 
below. 

Approach 5. Sequential Partitioning and Elimination of uninformative spectral 
bands (SPE) [10]. After a desired number of spectral regions S is found by the 
previous approach, we shrink the spectral regions removing uninformative bands. We 
proceed in a sequential way (region by region) moving from the most left region to 
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the most right one. In order to shrink the spectral region, we consider all possible 
subregions of the reduced size in the region and find the subregion with the largest 
criterion value in S-dimensional space (where one feature represents a shrunk 
subregion of the spectral region under consideration and the rest S-1 features are 
extracted from the other S-1 spectral regions which definitions are fixed for a 
moment). After shrinking the first spectral region, we anchor its new definition and 
move to the next spectral region in order to exclude uninformative spectral bands. 
This method does not guarantee the optimal shrinking for all regions in general, 
because it is highly dependent on the proceeding order of spectral regions. 

Approach 6. Sequential Selection (SS) [10]. The discriminative spectral regions are 
selected sequentially one by one. At each step s (s 1 S,= ) we consider all possible 
region definitions (of arbitrary size) in spectra. For each definition we calculate the 
discriminant measure in s dimensions: one feature represents a current potential pre-
tender for the most discriminative spectral region and other s-1 features are extracted 
from the previously selected spectral regions. The region (a potential pretender) with 
the largest criterion value in s-dimensional space is picked as the most discriminative 
spectral region (in combination with the s-1 previously found optimal regions). In this 
approach the overlapping and non-overlapping spectral regions may be selected. 
Some spectral bands might be not selected at all to participate in spectral regions. 

Approach 7. Sequential Selection of Non-overlapping discriminative spectral regions 
(SSN) [10]. This approach is identical to SS but the overlapping spectral regions are 
not allowed to be selected.  

Approach 8. Floating Partition (FP) [11]. First, spectra are uniformly partitioned to a 
predefined number of spectral regions S. At each step, we allow the borders between 
spectral regions to float one spectral bin aside from the current position. Among 3S 
possible mutations we select the partition that provides the highest discrimination 
according to the selected criterion. We repeat the procedure until no improvement in 
discrimination capacity can be found. This method performs multivariate optimization 
by simultaneously adjusting all spectral regions. However, it is still a suboptimal 
procedure because the drifting step for region borders is limited to one spectral bin. 
The efficacy of this method can be improved by enlarging the drifting step d. But this 
leads to computational burdens because one has to rank (2d+1)S cases at each step of 
the procedure. We could apply this approach upto 10 spectral regions (with d=1)  
at most. 

4   Experiments and Discussion 

Before studying the benefits of extracting/selecting the discriminative spectral regions 
in the comparison with the PCA approach for different training sample sizes N and for 
different numbers of extracted components/regions B, let us make few remarks on the 
datasets used. When measuring autofluorescence spectra of healthy and diseased 
tissues in oral cavity, in reality the autofluorescence spectra of the mixture of materials 
(skin, tissue under skin, bone and saliva) are obtained. The useful information for 
lesion diagnostics is hidden in overlapping peculiarities of different materials. The 
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clear-cut discriminative spectral regions do not exist. The useful information for lesion 
diagnostics is spread over the whole spectrum. What concerns the histograms of the 
DNA content, the main information is concentrated around the two largest peaks in the 
left part of the histogram and in the region between them (see Fig. 2). The peaks and 
the region in between describe different phases of the cell division cycle. The amount 
of the DNA in these phases characterizes different types of tumour cells. So, all useful 
discriminative information is concentrated in spectral bands around these peaks of the 
histogram. Thus, our two datasets represent two extreme cases: when no separate 
discriminative regions exist (in autofluorescence spectra) and when we have a few 
well-defined discriminative regions (in histograms). For the first dataset, we can expect 
that the PCA may be very effective because the principal components aggregate the 
information represented in all spectral bands. For the second dataset, the spectral band 
selection techniques, that select regions around the histogram peaks, will be the most 
beneficial.  

When considering results obtained for the autofluorescence spectra (see left plots in 
Fig.3), we see that for small training sample sizes (N=10+10), all techniques perform 
similarly with a slight preference for RBE, SSN and FS (the last one only for two 
extracted spectral regions). The training data are not enough representative to find 
correctly the discriminative spectral regions. Due to a limited number of training 
objects, only 19 principal components can be extracted by PCA. When increasing the 
training sample size, all techniques perform better, but the relative advantages of their 
generalization errors do not change much. The exceptions are the SP and SPE 
strategies, which become the best among the studied spectral band selection techniques 
for large numbers of extracted spectral regions when the training sample size is large 
(N=100+100). In agreement with our prior knowledge on the dataset, the more 
regions/components are selected, the better all methods perform. The most successful 
technique is PCA with a large number of principal components that accumulate useful 
information spread over the whole spectrum. The PCA is followed by the SP strategy 
which uses all spectral bands in spectral partitions. Excluding some spectral bands (in 
SPE) deteriorates the classification performance. However, in order to get a medical 
insight of the studied phenomenon, for data compression (in remote sensing) or for 
building filters in the sensor, we are interested in finding few discriminative spectral 
regions rather than many of them. The PCA is unsupervised feature extraction 
technique that finds directions in a feature space with the largest variance that are not 
necessarily discriminative. The spectral band selection methods are supervised 
techniques that take advantage of data class information. By this, they outperform PCA 
for small numbers of extracted components/regions. Interestingly, the RBE strategy 
was the best when 8-15 spectral regions are selected. Usually RBE converges to its 
best solution for a relatively large number of spectral regions. However, for this 
dataset, the clear preference for particular discriminative regions does not exist. 
Probably, RBE outperforms all other strategies due to the superior discriminant 
measure used (the absolute values of RLC weights are used instead of MD).  
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Fig. 3. The mean generalization error (GE) of LDA for training sample sizes 10, 50, and 100 
objects per class, when different methods are used to select discriminative spectral regions for 
autofluorescence spectra measured in oral cavity (left plots) and for histograms of DNA content 
in tumour cells (right plots). Because the GLDB-TD and GLDB-BU algorithms terminate 
automatically using a data-driven criterion, only a single point is given in each plot. The 
standard deviation of the mean GE is around 0.01. 



 Effectiveness of Spectral Band Selection/Extraction Techniques for Spectral Data 549 

For histogram data (see right plots in Fig. 3), the performance of all strategies is 
improved by increasing the training sample size. But the general mutual behaviour 
of the generalization errors for all methods remains the same. The performance of 
all techniques worsen when the number of extracted regions/components grows 
after 8-10 regions. It is logical because mainly the spectral regions around and 
between the peaks (which are related to the cell division cycle) provide useful 
information for the classification of tumour cells. Adding more regions is 
equivalent to adding noise and cannot improve the classification. Indeed, the best 
results are found by the spectral band selection techniques when less than five 
spectral regions are retrieved. The spectral band selection strategies SPE, SS, SSN 
and GLDB-TD perform equally nice and the best among all studied techniques. The 
first three techniques select the spectral regions around the DNA content peaks, 
finding the most discriminative parts of spectra. GLDB-TD algorithm can also 
make a successful split of spectra converging at five-six spectral regions on 
average. However, the sequential partitioning (SP) completely fails for small 
numbers of extracted spectral regions. It happens by two reasons. First, all bands 
(also uninformative) are kept in spectral regions (when uninformative spectral 
bands are eliminated in SPE, the performance is drastically improved). Second, the 
partitioning in SP is done in a sequential way. Once the split is found, it cannot be 
adjusted anymore. The best split found for partitioning into two regions might be 
very far from the optimal one for partitioning into more regions than two. The FP 
strategy overcomes this problem by simultaneously adjusting all spectral regions. It 
competes with other spectral band selection techniques when spectra are split into 
four-five spectral regions. As the first five principal components extracted by PCA 
are not discriminative, its performance is poor. Since both, RBE and GLDB-BU, are 
bottom-up recursive procedures for finding informative spectral regions, they 
usually converge to the suboptimal solution at a relatively large number of spectral 
regions (around 45 for RBE and around 95 for GLDB-BU). Hence for this problem 
(with three-four discriminative spectral regions by definition) the performance of 
RBE and GLDB-BU is worse than the performance of other feature selection 
techniques (with exception of SP).  

5   Conclusions 

The success of spectral band extraction techniques varies over the potential of the spe-
ctral data depending on how information useful for classification is introduced: 
locally (in a few clear-cut discriminative spectral regions) or globally (spread over the 
majority of spectral wavelengths). The supervised spectral band selection techniques 
which make use of the connectivity of spectral wavelengths in spectral data (one-
dimensional ordering) are more beneficial than unsupervised PCA when one needs to 
find a small number of discriminative spectral regions/components. However, which 
spectral band selection technique is preferred seems to be defined by the problem and 
the criterion used to select the best regions. These issues need more study in the 
future. 
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Abstract. Edge detection is well developed area of image analysis. Many
various kinds of techniques were designed for one-channel images. Also, a
considerable attention was paid to edge detection in color, multispectral,
and hyperspectral images. However, there are still many open issues in
edge detection in multichannel images. For example, even the definition
of multichannel edge is rather empirical and is not well established. In
this paper statistical pattern recognition methodology is used to approach
the problem of edge detection by considering image pixels as points in a
multidimensional feature space. Appropriate multivariate techniques are
used to retrieve information which can be useful for edge detection. The
proposed approaches were tested on the real-world data.

1 Introduction

The recent development of sensors makes multichannel images usual objects for
analysis. One of the important tools for working with multichannel images is edge
detection: finding the places where the properties of image undergo considerable
changes. First, detected edges allow the visualization of otherwise difficult to
represent multichannel image. Second, it allows to localize objects.

The task of edge detection is connected to the segmentation problem which
looks for homogeneous image regions (connected or disconnected). Actually, seg-
mentation answers the question whether the pixel belongs to some segment (clus-
ter, class) and with which confidence. In this sense the results of a segmentation
can be used for edge detection: e.g. the pixels with ambiguous confidences can
be considered as edges. Another way to employ segmentation for edge detection
is to mark pixels as edges whenever the order of confidences (or memberships)
are changed [1]. So, the solution of the segmentation task can be easily used for
edge detection. On the contrary, having solved the edge detection problem, it
is not so straightforward to obtain the segmentation. One can state that two
close pixels on the the same side (different sides) of edge belong to the same
segment (different segments) but it is much more complicated if possible at all
to state this for two arbitrary pixels. So, generally speaking, the task of edge
detection provides us with less information but this information is more specific.

D.-Y. Yeung et al. (Eds.): SSPR&SPR 2006, LNCS 4109, pp. 551–559, 2006.
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For example, in segmentation we need to estimate or get as a prior knowledge
the number of segments. This is not needed for the edge detection. One should
note that edge detection can be used together with segmentation in order to
sharpen edge borders.

The task of detecting edges in gray valued images is very well known. It has a
long history and has been thoroughly studied [2,3,4,5]. A review can be found in
[6,7]. The same problem for three color, or more general, multichannel images is
much less well defined. One of the difficulties in edge detection in multichannel
images is the formulation of what is an edge. Indeed, in a gray valued image we
can specify the type of intensity profile which we are looking for, i.e. we need
to specify a scalar valued function of a scalar argument. (The last statement is
not valid for detection of edges in textured images. This task can be converted
to edge detection in multichannel images after application of a set of texture
detectors.) In a multichannel image we have many more possibilities and it is
not always obvious (or it is application dependent) which changes have to be
taken into account. The problem of consistent edge definition in multichannel
images has not been entirely solved. There are proposals to consider as an overall
edge all edges in the separate channels. Hence, possible interaction between
channels is neglected. Another approach is to reduce a multichannel image to
a gray valued one, e.g., by intensity calculation. It was reported that 90% of
the edges detected by this simple approach coincide with edges given by more
sophisticated multivariate techniques [8]. However, by this approach we cannot
find a change in the color of image which does not involve a change in the
intensity level. It implies that channels have to be combined in a non-trivial way:
added with different signs or be fused non-linearly [1,9]. But these approaches
return again a number of gray valued images. So, the problem of combining is
not solved. Very often the question of what is an edge in a multichannel image
is not addressed directly but instead gradients of all channels are combined in
some way[8,10,11,12].

Other approaches make estimations of the statistical properties of the image
in the feature space and learn what can be an edge in this image. Like in [13]
where authors proposed to use the ”change point” theory for edge detection in
gray valued images. The methods employing clustering to extract new channels
which are more suitable for the task of edge detection [1,9] can also be con-
sidered as such methods, but not completely. They still need to combine the
results obtained for different channels. We propose to use the estimation of a
joint probability density function (PDF) of two neighbouring pixels. The main
idea behind this approach is that pixel combinations typical for edges are rare.
So they can be considered as outliers and after learning the joint PDF the edges
will be represented by low density regions. One can also think of a modification
of this approach which estimates a conditional PDF of the difference between
neighbouring pixels. Similar approach was studied in [14], where a complimen-
tary cumulative distribution function was used. However, the authors used a
distribution modeling technique (cumulative histograms) relevant only for the
small number of channels and small number of possible of gray values. We will
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use a Parzen density estimation or a mixture of Gaussians. Another important
difference between [14] and our work is that we take into account the dependence
of distribution on the current pixels location in feature space.

The paper is organized as follows. In the next section we describe some preex-
isting techniques. Section 3 is devoted to the newly proposed approaches. Then
in the section 4 we describe datasets and numerical experiments. The paper is
concluded by discussion and conclusions.

2 Preexisting Multichannel Edge Detection Techniques

As we have already mentioned in the introduction, many approaches to edge
detection in multichannel images are available. We will review only the most
generic ones. All techniques can be split into two large groups. The algorithms
of the first type perform image analysis on individual channels and then combine
the results (before or after thresholding) without using multivariate statistics in
the feature space. However, univariate statistics of gray valued images can still be
used for the adaptive selection of the threshold or the size of the filter. We will
call this group ”Non-statistical or univariate statistical approaches”. Another
group of algorithms uses multivariate statistics from the beginning and will be
referred as ”Multivariate statistical approaches”. This group can be split into
two subgroups. The methods from the first subgroup result again in multichannel
images where channels are memberships, confidences, or other types of extracted
features. So, combining of the channels is still needed. We will call the methods in
this subgroup ”Incomplete multivariate statistical approaches”. The algorithms
from the other subgroup return gray valued images and explicit channel combi-
nation is avoided. They are ”Complete multivariate statistical approaches”.

2.1 Non-statistical or Univariate Statistical Approaches

One of the most popular ways to detect edges in gray valued images is to compute
(smoothed) derivatives and then mark as edges all pixels for which the absolute
value of the derivative exceeds some threshold and is maximal in some neighbour-
hood. There are two general ways how to extend this approach to multivariate
images. In the first one, spatial partial derivatives are calculated for all channels
and combined in some way. For example, 1−norm, 2−norm, or ∞−norm (max-
norm) can be used. In [8] the combination of the gradient magnitudes (instead
of its components) is advocated and reported that ∞−norm combination gives
the best results. More sophisticated approach [10,11] suggests to use the largest
eigenvalue of the covariance matrix of the set of partial derivatives as an edge
magnitude (LEV combination). The result of this combination is the gray valued
images of gradient magnitudes. The standard methods of thresholding and edge
thinning can be applied to it. Another type of extension performs edge detec-
tion for each channel and then combines binary images by, say, the logical OR
operation.

Keeping in mind that we are interested in hyperspectral images mostly, we
can state that many channels are highly correlated. Thus a very broad spectral



554 S. Verzakov, P. Pacĺık, and R.P.W. Duin

band can obscure more narrow ones during 1−norm, 2−norm, or LEV combina-
tions. The ∞−norm does not suffer from this. However, it also does not make
subband averaging which can lead to a better signal to noise ratio. Another
problem, which is encountered by all gradient combination techniques, is that
derivatives taken at different channels are scaled differently. So, proper scaling
and decorrelation have to be applied to hyperspectral images in order to get
combinable gradients.

Another popular method of edge detection in gray valued images employs
Laplace of Gaussian (LoG) filters in order to compute smoothed second deriva-
tives. Edges now are defined as zero-crossing points. This approach can be ex-
tended to multichannel images in two ways. In the first one LoG is applied to all
channels, then the results are summed (maybe with some weights) and thresh-
olding takes place on this image. Note, that this approach is equivalent to the
conversion of the image in gray valued image and application of the standard
univariate LoG edge detection. Also, it is possible to apply edge detection in
each channel and combine the binary results by the OR operator.

The hybrid of the two described ways (maximum of the first derivative and
the zero-crossings of the second derivatives) is described in [11,12]. At first,
edge magnitudes (contrasts) are calculated as LEV combination of the partial
derivatives. Then the zeros of directional derivatives of contrasts are taken as
edges.

2.2 Incomplete Multivariate Statistical Approaches

In the multivariate statistical approaches to edge detection one typically employs
unsupervised pattern recognition techniques (clustering or density estimation)
to use feature space information. Having multichannel images, we may consider
each pixel as a point in some feature space. This gives us the possibility to look at
the data from the statistical point of view. That is, we can base our algorithm on
multidimensional distributions. A few approaches, which use channel statistics
were proposed in the past.

The first one [1] consists of fuzzy segmentation of the image and considering
zero-crossings of memberships differences: Δx(i, j) = αx(i)−αx(j). Here, x is a
pixel position, i, j are cluster indices, and α is a membership. It depends on the
task which pairs i, j should be considered: only pair with the largest α or pairs
for which αx(i) and αx(j) are significant.

The second approach [9] suggests to perform channel extraction based on
clustering. Namely,

Jx(i, j) =
(μi − μj)T

||μi − μj ||
Ix

Here μi is the centroid of i-th cluster. Thus, we get N(N − 1)/2 new channels.
Authors suggest to combine edge magnitudes of these channels by ∞−norm and
then apply thresholding. The computational cost can be decreased by taking
into account only a few neighbouring clusters at each pixel position.
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2.3 Complete Multivariate Statistical Approaches

The technique proposed in [14] involves computation of cumulative multidimen-
sional histogram of pixel differences. In that way, a new distance between pixels
is introduced. This approach is appropriate only for images with a small number
of channels and not a large number of gray levels. In the next section we propose
to use density estimators which are more suitable for high dimensional data.

3 Proposed Statistical Techniques

3.1 Joint Probability Density Functions of Neighbouring Pixels

The main hypothesis which will be used for developing the technique is that
edges are pretty rare events. This is a natural assumption for many real-world
images. Thus, one can conclude that a pair of neighbouring pixels positioned on
different sides of an edge (or pair in which one of the pixels is pure and another
is the transitional one, or both are transitional) should be also rare compared to
pixel pairs in the interior regions.

Let us define by Ix a d-dimensional vector of channel intensities of a multi-
channel image I at some pixel position x ∈ R

2. Further, suppose that a N ⊂ R
2

is a set of local shifts. Then the pixel y = x + r is the neighbouring pixel of the
pixel x. The joint PDF ρ(Ix, Ix+r) has to be small if x is situated at an edge
orthogonal (or at least not collinear) to r.

The proposed approach consists of the estimation of ρ(Ix, Ix+r), r ∈ N by an
appropriate technique like Parzen or Mixture of Gaussians density estimation.
An estimated PDF can be used for edge detection. For the edge direction (i.e.
direction along which the edge is locally extended) perpendicular to the shift r
it gives a gray valued image of edge magnitudes mx,r which is calculated as

mx,r = 1− ρ(Ix, Ix+r)/Rr

Rr = max
x

ρ(Ix, Ix+r)

To detect edges independently of their directions one may combine directional
magnitudes as mx = maxr∈N mx,r.

The binarization of this image can be done by putting threshold at some
suitable percentile. To get more thin edges one can consider non-maximum sup-
pression techniques similar to the ones used in gray valued case [7]. One can also
think about smoothing obtained edge magnitudes. This is expected to be useful
in noisy images.

Another problem is caused by the large dimensionality of the data. We need to
estimate a PDF in the doubled feature space (2d). A proper dimensionality reduc-
tion technique, like PCA, can be used to solve this issue. It seems more reasonable
to perform dimensionality reduction in doubled (not original) feature spaces.

3.2 Conditional Probability Density Functions of Neighbouring
Pixels Difference

Having defined by δIx,r = Ix+r − Ix the difference between neighbouring pix-
els, the joint distribution can be rewritten as ρ(Ix, Ix+r) ≡ ρ(Ix, δIx,r). So, it is
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possible to reconsider the above described method as a search for rare combi-
nations of a pixel and a difference. But one can argue that some types of pixels
are represented much less often than others. Because of this their pairs are also
rare, although they do not represent any edge. To rule out such an unwanted
situation, we propose to use conditional PDFs: ρ(δIx,r|Ix) = ρ(Ix, Ix+r)/ρ(Ix)
Then edge magnitudes are defined as

mc
x,r = 1− ρ(δIx,r|Ix)/Rc

r

Rc
r = max

x
ρ(δIx,r|Ix)

mc
x = max

r∈N
mc

x,r

Consequently, only differences δIx,r which are rare for the pixel values Ix will
be considered as edges. Note, that to make a consistent conditional density
estimation, the dimensionality reduction has to be done in original feature space.

4 Experimental Study

4.1 Datasets

To make a comparison between the discussed techniques a number of datasets
have been used. The first one is the hyperspectral image of Washington DC Mall
from [15]. This is a 191-channel airborne hyperspectral image of size 1280-by-
307. The sensor system used in this case measured a response in 0.4 to 2.4 μm
region of the visible and infrared spectrum. The task of edge detection can be
formulated as a contour detection of homogeneous areas (roofs, roads, paths,
trees, grass, water and shadows). The image itself is too large to be handled
at once and we split it into 20 smaller 128-by-153 images. We have used only
the upper left one (DC1,1). This is a ”busy” image with many details and large
number of channels. It is expected that the multivariate statistical approach will
be more suitable for reliable edge detection than adapted gray valued image
analysis techniques.

Another image from [15] is a 12-channel (0.4 to 1 μm) 949-by-220 airborne
image. We have split this image into 3 images of sizes 316-by-220 and used the
middle one (FLC12). This image contains much simpler scene and has moderate
number of channels. Thus, the usage of adapted image analysis techniques is
expected to be enough.

The third collection of images contains 5 microscopic SEM/EDX 8-channel
128-by-128 images of chemical substances [16] from which only CHM2 has been
used . Image is extremely noisy both in the spectral and spatial domains.

4.2 Experiments

We have conducted a set of experiments on the above described images. The
results are presented on Fig. 1-3. The first subfigure of each figure shows four
typical channel images of multichannel image. The second subfigure represents
the edges detected by non-statistical approach. Actually, for all datasets we
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(a) Dataset (b) Sobel method (c) propsed technique

Fig. 1. DC1,1

(a) Dataset (b) Sobel method (c) propsed technique

Fig. 2. FLC12

(a) Dataset (b) Sobel method (c) propsed technique

Fig. 3. CHM2
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computed channel gradients with the help of Sobel operator and combined them
by ∞−norm. Binarization and non-maxima suppression were performed as it is
suggested in [7]. Zero-crossing methods or other channel gradients combination
rules give similar or worse results. The rightmost subfigures show the results of
the proposed technique. On all images the PCA dimensionality reduction was
performed with preserving 95% of total variance. EM-algorithm was used to
estimate PDFs as Mixture of Gaussians with 10 components. This number of
components proved to be reasonable for all images. The the results obtained
by Parzen density estimator are similar to the presented ones. Only the CHM2
edge magnitudes were smoothed by Gaussian filter with window size 17-by-17
and σ = 2.67, because other images did not benefit from smoothing.

5 Discussion and Conclusions

In this paper the task of edge detection in multichannel and especially in hy-
perspectral images was studied. The goal was not to propose a fast real-time
algorithm but to try to develop a consistent approach to edge detection for mul-
tichannel images. The new approach based on the statistical pattern recognition
was proposed. Instead of explicit definition of the edge we try to learn it by look-
ing for improbable pixel combinations. The comparison of the results of conven-
tional methods and proposed one shows that for high-dimensional complicated
images detected edges are very similar (Fig. 1). For simpler images the image
processing approach gives the better result (Fig. 2). For noisy chemical data
our approach allows to obtain closed thin contours. The proposed approach is
computationally expensive. So, it is necessary to develop faster density approxi-
mation algorithms. Another possible topic for the future research is incorporation
spatial relations of pixels into the density estimation.
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Abstract. Performances of face recognition systems based on principal 
component analysis can degrade quickly when input images exhibit substantial 
variations, due for example to changes in illumination or pose, compared to the 
templates collected during the enrolment stage. On the other hand, a lot of new 
unlabelled face images, which could be potentially used to update the templates 
and re-train the system, are made available during the system operation. In this 
paper a semi-supervised version, based on the self-training method, of the 
classical PCA-based face recognition algorithm is proposed to exploit 
unlabelled data for off-line updating of the eigenspace and the templates. 
Reported results show that the exploitation of unlabelled data by self-training 
can substantially improve the performances achieved with a small set of 
labelled training examples. 

1   Introduction 

Face recognition based on Principal Component Analysis (PCA) operates in two 
distinct stages: the enrolment stage and the recognition, or authentication, stage [1]. In 
the enrolment stage, a set of face images is acquired for each user. Then PCA is 
applied to the enrolled face images to compute the eigenspace associated to the 
selected eigenvalues. For each user, the enrolled images are projected to the 
eigenspace and a face template, often computed as the mean of the projected faces, is 
stored in a gallery. In order to account for variations in the appearance of a user, 
multiple templates, associated, for example, to different poses, can be stored in the 
user’s gallery. In the recognition stage the input image is projected to the above 
eigenspace and the system associates the identity of the nearest template to this 
image. As Uludag et al. pointed out [2], the large intra-class variability of face 
images, due for example to changes in illumination or pose, can make the templates 
acquired during the enrolment stage poorly representative of the images to be 
recognized, so resulting in poor recognition performances. Increasing the size of the 
galleries of users’ templates does not necessarily solve the problem, as the intra-class 
variability of face images is often due to aging, appearance, expression, and 
illumination changes which cannot be captured during a single enrolment stage over a 
short period of time [3]. On the other hand, a lot of new unlabelled face images are 
made available during the system operation over the time. These new data may be 
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exploited to update the templates and re-train the system. It is reasonable to 
hypothesize that exploiting unlabelled test data to update the eigenspace and the 
templates may improve the performances on new test data. Liu et al. showed that, in 
PCA-based face recognition, unlabelled test data can be exploited to update the 
eigenspace and improve the system’s performance [3]. The potential benefits of the 
automatic, or semi-automatic, updating of the galleries of the users’ templates using 
labelled and unlabelled data have been pointed out in [4-6].  

The design of a face recognition system using a small set of labelled faces, 
collected during the initial enrolment stage, and a large batch of unlabelled face 
images, collected during the system operation, can be naturally regarded as a problem 
of semi-supervised learning. In fact, semi-supervised learning deals with the design of 
recognition systems using both labelled (possibly few) and unlabelled training 
examples [7]. However, the use of semi-supervised learning methods for face 
recognition has been poorly investigated so far, the only exception being the work of 
Balcan et al. [8].  

The goal of this paper is to give a contribution to the development of semi-
supervised face recognition systems. To this end, the use of a well known semi-
supervised learning method, namely, the self-training method, is proposed to develop 
a semi-supervised version of the standard PCA-based face recognition algorithm. 
Reported experimental results show that the exploitation of a batch of unlabelled test 
images by self-training can substantially improve the performance of a PCA-based 
face recognition system on new test data in comparison with the ones achievable with 
a small set of labelled training examples. 

2   Self-training for Semi-supervised PCA-Based Face Recognition 

In this section, first the main steps of the classical supervised PCA-based face 
recognition method are summarized. Then a semi-supervised version of this method, 
based on the self-training technique, is proposed. 

2.1   Supervised PCA-Based Face Recognition 

Enrolment Stage 
For each user, a set, usually small, of reference images is acquired. These images 
constitutes the training set Dl=(x1, x2,…, xnl) containing nl labelled data, where each 
vector xi, i=1… nl, represents a face image. An identity label Ik, k=1… K,  is 
associated to each vector. Then PCA is applied to the enrolled face images by the 
following steps: 

Principal components computation 
The covariance matrix is computed for the data set Dl. The eigenvalues and 
eigenvectors of the covariance matrix are computed. A set of eigenvalues with the 
highest variance is selected. The eigenvectors associated to the selected 
eigenvalues are named  “eigenfaces” and define the matrix W of the “principal 
components”.  
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Data transformation 
The data in Dl are projected to the above eigenspace using the principal components 

matrix W:  yi=Wt (xi - μ) , i=1… nl, where 
nl

i
i=1l

1
= x

n
is the mean vector of data in Dl. 

Template creation 
For each user, a face template, often computed as the mean of the projected faces, is 
stored in a gallery.  

Recognition Stage 
In the so called “closed set” scenario, the input image is projected to the above 
eigenspace by the matrix W and the system associates the identity of the nearest 
template to this image. 

2.2   Semi-supervised PCA-Based Face Recognition 

Given a set Dl (usually, small) of labeled data, and a set Du (usually, large) of 
unlabelled data, semi-supervised methods aim to design recognition systems using 
both sets. Several semi-supervised methods have been proposed so far, based on 
expectation-maximization algorithms, self-training, co-training, active learning, 
transductive learning, and graph-based techniques. We refer the reader to [7] for an 
overview on semi-supervised learning methods. For the purposes of this work, we 
summarize here the so called self-training method. In self-training a classifier is 
initially trained using the labeled data set Dl. This classifier is then used to assign 
pseudo-class labels to a subset of the unlabelled examples in Du, and such pseudo-
labeled data are added to Dl. Usually, the unlabelled data classified with the highest 
confidence are selected to increase Dl. Then the classifier is re-trained using the 
increased data set Dl. As the convergence of this simple algorithm can not be 
guaranteed in general, the last two steps are usually repeated for a given number of 
times or until some heuristic convergence criterion is satisfied. 

Due to its easy use, we chose self-training as technique to develop a semi-
supervised version of the classical PCA-based face recognition algorithm. The main 
steps of the algorithm developed are summarized in Figure 1. In the enrolment stage 
a set Dl of labelled images is collected and used to compute the matrix W of the 
principal components. Data are then projected to the eigenspace defined by W, and, 
for each user, a face template is computed as mean of the projected faces. During the 
on-line recognition stage an unlabelled batch of data Du, to be used in the semi-
supervised stage, is collected over a given period of time; to this end, recognition 
labels obtained as system’s outputs are obviously disregarded. It should be noted that 
the designer should select a period of time that allows collecting a representative 
batch of data. In our experiments, the data set Du contains the same identity classes, 
with the same priors, of the set Dl. The semi-supervised stage is then performed off-
line. It is assumed that the recognition system carries out this stage either when it is 
not operating (e.g., during the night) or using a separate processing unit which allows 
carrying out it in parallel with the recognition stage. The semi-supervised stage starts 
by projecting the unlabelled data to the eigenspace defined by the matrix W 
computed in the enrolment stage. Then the semi-supervised cycle goes through N 
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iterations. For each iteration, a pseudo-label is assigned to each data in Du. The 
pseudo-label coincides with the label of the nearest template. For each identity class, 
a set Pk  is defined which contains all the data pseudo-labelled as belonging to 
the class Ik. Then, for each identity class, the face image pseudo-labelled with the 
highest confidence, that is, the one nearest to the class template, is selected from the 
set Pk, and this image is added to the training set Dl and removed from the set Du. 
Therefore, only one pseudo-labelled image per class, the most confident one, is 
added to the user’s gallery during every iteration of the semi-supervision cycle. It is 
worth noting that the use of a less conservative confidence threshold, which allows 
adding more than one class example per iteration, could be investigated with the goal 
to speed up the learning.  The increased training set is then used to update the 
eigenspace by re-computing the principal components matrix W. The labelled and 
unlabelled data are projected to the updated eigenspace. Finally, the class templates 
are updated using the augmented training set. In our algorithm the templates are 
simply the “mean” faces, but more sophisticated methods, based, for example, on 
clustering, could be used for template update [2]. In our experiments we performed 
ten iterations of the semi-supervised algorithm. Other stopping criteria could be 
investigated and used. For example, the iterations could be stopped when no 
unlabelled data can be added to the users’ galleries. To sum up, after the initial 
enrolment stage, the system goes through on-line recognition phases, with collection 
of unlabelled data, and off-line semi-supervised phases to update the eigenspace and 
the templates. Performances on new test data are expected to improve after each 
semi-supervised stage in comparison with the ones achievable using the previous, 
non-updated, eigenspace and templates. 

3   Experimental Results 

3.1   Data Set and Goal of Experiments 

The goal of our experiments was to evaluate the capability of the developed semi-
supervised algorithm to exploit a batch of unlabelled test images, collected during a 
given session of the system operation, in order to improve the performance on novel 
test data in comparison with the ones achievable using the initial training data. To this 
end, we carried out experiments with the AR data set [9]. This data set contains 
frontal view faces with different facial expressions, illumination conditions, and 
occlusions (sun glasses and scarf). Each person participated in two acquisition 
sessions, separated by two weeks time. Each session is made up of seven images per 
person. We selected 100 subjects (50 males and 50 females), and manually cropped 
face images and, after histogram stretching and equalization, resized them at 40x40 
pixels. Various subsets of first session images were used for the enrolment stage and 
the collection of unlabelled data set Du. Second session images were always used as 
separate test set.  

This experimental setting simulates well the acquisition of unlabelled data during a 
given session of system’s operation, and the performance evaluation, after the semi-
supervised stage, on new test data belonging to a separate acquisition session. 
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Off-line enrolment stage 
A set Dl=(x1, x2,…, xnl) containing nl labelled images of the users is collected. 
Principal components computation 
The data set Dl is used to compute the matrix W of the principal components. 
Data transformation 
The data in Dl are projected to the eigenspace using the principal 

components matrix W:  yi=Wt (xi - μ) , i=1… nl, where 
nl

i
l i=1

1
= x

n
. 

Template creation 
Set the vector T=(t1, t2,…,t K) of the mean templates of the K identities. 
 
On-line recognition stage 
Input images are projected to the above eigenspace by the matrix W and the system 
associates the identity of the nearest template to each input image.  
Creation of the unlabelled data set 
A set Du=(x1, x2,…,xnu) containing nu unlabeled data is collected over the time. 
 
Off-line semi-supervised stage 
Initialization – PCA transform of the unlabeled data in Du: zi=Wt (xi - μl),  

i= nl+1…nl+u, where 
nl

l i
l i=1

1
= x

n
. 

Loop for N iterations: 
 

Assign pseudo-labels to the unlabeled data in Du 
For each data in Du compute the distances from the templates. 
Assign the label of the nearest template to each data in Du. 
Assign all the data with pseudo-label Ik to the set Pk  (k=1… K). 
 
Increase the set of labelled data with pseudo-labelled data 
For each identity class (k=1…K), select from the set Pk  the pseudo-labelled data zi 
nearest to the identity template tk  
For each selected zi, increase the set Dl by setting Dl = Dl + zi, and remove zi 
from Du (Du = Du - zi). 
 
Update of PCA transform using the augmented set Dl 
 
PCA transform of data in Dl and Du using the updated eigenface matrix W 
 
Template updating  
Update the vector T=(t1, t2,…,t K) of the mean templates of the K identities 
using the augmented set Dl. 

Fig. 1. The semi-supervised PCA-based algorithm using self-training 

3.2   Results 

We assessed performances for different numbers of templates created during the 
enrolment stage. Reported performances are averaged on five different trials. For each 
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trial, we randomly selected one, two or three images of the first session as templates. 
The remaining images of the first session were used as unlabelled data set Du. Second 
session images were always used as separate test set. Figure 2 shows the percentage 
accuracy on the test set and the unlabelled data set Du averaged on five trials. For this 
experiment, only one face template per person was used. The remaining first-session 
images (six per person) were used as unlabelled data set Du. Performances are shown 
as function of the number of unlabelled data added to the training set during the ten 
iterations of the semi-supervised stage. Around one-hundred pseudo-labeled data 
were added during every iteration. Figure 2 shows that the accuracy on second-
session images used as test set is very low, around 18%, when unlabelled data are not 
used. The average accuracy increases substantially with the number of unlabelled data 
exploited by self-training. The maximum accuracy obtained for test data, around 62%, 
is anyway low due to the use of a single template per person and the large differences 
between first and second session images. But the increase of accuracy from 18% to 
62% shows the benefits of the exploitation of unlabelled data. The accuracy is much 
higher for the unlabelled data, as the set Du contains images of the first session which 
are more similar to the initial templates. It should be noted the practical interest of 
results obtained on the unlabelled data set. Unlabelled data are input data collected 
during a given period of time of the system’s operation. Figure 2 shows that the initial 
accuracy on such batch of data is low, around 50%. After the semi-supervised phase 
based on self-training the accuracy increases to 89%. This results points out that the 
semi-supervision process can allow to improve the recognition results previously 
achieved on a batch of input data. For example, in a video surveillance scenario such 
a system re-training could allow improving the identification results stored in the data 
base the day before.  

 

Fig. 2. Average accuracy on the test and unlabelled data sets as function of the number of 
unlabelled data used in the semi-supervised algorithm of Figure 1 
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Fig. 3. Rank-order curves for the test data set. Each curve refers to an iteration of the semi-
supervised cycle and is labeled with the number of unlabelled data which were pseudo-labeled 
and added to the training set. 
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Fig. 4. Average accuracy on the test set as function of the number of iterations of the semi-
supervised phase and the number of templates 

We also assessed performances in terms of the so called rank-order curves, that is, 
we assessed the percentage accuracy, averaged on five trials, achieved by considering 
the fifteen template faces nearest to the input face (Figure 3). Figure 3 clearly shows 
the improvement of accuracy with the increase of the number of unlabelled data 
added to the training set during the ten iterations of the semi-supervised cycle. 

To investigate how the performance of the semi-supervised algorithm depends on 
the number of templates collected during the enrolment stage, we performed 
experiments with one, two and three images of the first session as templates. Figure 4 
depicts the three accuracy curves related to the different numbers of templates. Each 
curve provides the percentage average accuracy as function of the number of iterations 
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of the semi-supervised phase. Around one hundred unlabelled data are added to the 
training set during every iteration. As one could expect, the greatest benefit of the use 
of unlabelled data is obtained when only one template per class is used. 

Finally, we analyzed how the galleries of users’ templates were updated and 
increased by our semi-supervised algorithm. Figure 5 depicts four examples of the 
update of users’ galleries. For each gallery, the first image on the left is the initial 
training image used as face template. The remaining images are the unlabelled images 
which were pseudo-labeled and added to the gallery during the ten iterations of our 
semi-supervised algorithm. Due to the strict confidence threshold used in our algorithm 
(i.e., only one pseudo-labelled image per class, the most confident one, is added to the 
user’s gallery during every iteration), images very similar to the template are initially 
added to the galleries. Then images which exhibit variations of expressions are added, 
and, in some cases, this causes wrong images to be added to the gallery. It is worth 
noting that different number of images can be added to different users’ galleries.  

Incremental update of some users’ galleries 

 

 

 

 

Fig. 5. Examples of the incremental update of users’ galleries during the ten iterations of the 
semi-supervised algorithm. The first image on the left is the initial training image used as face 
template. 

4   Conclusions 

Performances of face recognition systems based on principal component analysis 
strongly depends on how much the face images collected during the enrolment stage 
are representative of face images to be recognized. Unfortunately, representative face 
images are difficult to be captured during a single enrolment stage over a short period 
of time. More representative images might be collected during the system operation 
over the time. The exploitation of such unlabelled data naturally demands for semi-
supervised face recognition systems. Accordingly, we developed and assessed by 
experiments a semi-supervised version, based on self-training, of the classical PCA-
based face recognition algorithm. Reported results show that the exploitation of a 
batch of unlabelled images by self-training can substantially improve the performance 
of a PCA-based face recognition system on new test data in comparison with the ones 
achievable with a small set of labelled training examples. Although final conclusions 
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cannot be drawn on the basis of this work, we believe that a first step towards the 
development of semi-supervised face recognition systems has been done. As 
directions for our future work, the use of other semi-supervised learning methods will 
be investigated. In addition, as the good performances of the proposed system, based 
on a simple self-training mechanism, are, in a sense, surprising, the conditions under 
which it can be expected to work well will be analysed further by experiments and, if 
possible, theoretically. 
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Abstract. In this paper we demonstrate how to recover surface shape
from single images of faces using shape-from-shading when shadows are
present. We make use of a statistical representation of the distribution of
surface normal directions based on the equidistant azimuthal projection.
This is allows us to develop a statistical model of the variations in facial
shape in the surface normal domain. We show how ideas from robust
statistics can be used to fit the model to facial images in which there
is significant self-shadowing. The method is evaluated on both synthetic
and real-world images. It is demonstrated to effectively fill-in the facial
surface when more than 30% of the area is subject to self-shadowing.

1 Introduction

The problem of reconstructing the surface height function of a face from a single
image is a challenging one that has eluded efforts in shape-from-shading for
several decades [1,2]. The goal is to use the image irradiance equation to recover
estimates of local surface orientation, and then to recover surface height by
integrating the field of surface normals. Unfortunately, there are a number of well
documented problems that frustrate this task [1]. The first of these is that the
recovered field of surface normals is subject to concave-convex shape ambiguities,
and this can lead to the implosion of facial features. This effect can lead to facial
features becoming inverted (such as the nose), and the exageration of the relief
of others (for instance the cheeks). The second problem is that of self shadowing.
This occurs when the light source is at an oblique angle to the face, and the nose
casts a shadow and the eye-sockets are also in shadow.

It is for these reasons that the problem of facial shape-from-shading is ad-
dressed either using domain specific constraints or using a face-specific shape-
model. For instance Zhao and Chellappa [1] have shown how improved shape
recovery can be achieved using a symmetric shape-from-shading method. Atick
et al [3] have used a model based method constructed from range-data. Smith
and Hancock [4] have developed a statistical model of surface orientation dis-
tribution trained on gradient data from range images. The model is fitted to
intensity data using geometric constraints on the surface normal direction pro-
vided by Lambert’s law. In related work, Vetter and Blanz have shown how
recognition can be performed by fitting a surface model to brightness data, and
how the fitted model can be used for realistic view synthesis [2]. Finally, it is
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worth noting that if multiple images from a fixed viewing direction and vari-
able light source direction are available, then photometric stereo can be used for
accurate facial surface recovery [5].

Although the methods listed above lead to realistic shape recovery, they do
not work well when there is significant self shadowing. Our aim in this paper
is therefore to overcome the problem of self-shadowing by fitting a statistical
model to image brightness data using robust statistics. The model has been de-
scribed in our previous work. It captures variations in facial shape using ideas
from cartography. Here the distribution of surface normal directions at different
locations on the face is captured on a unit sphere. We convert this distribution
of surface normal directions into a distribution of points using the azimuthal
equidistant projection. The modes of facial variation are captured by applying
principal components analysis to the point-distributions. We demonstrate how
the statistical model may be fitted to image brightness data using robust statis-
tics, so as to satisfy constraints provided by Lambert’s law. Here the robust
statistics treat the shadow regions as outliers. We use the difference between
measured and fitted brightness values to compute a shadow-weight. The weights
are used to exclude shadow regions in the shape-parameter estimation process.
The parameter update scheme is based on M-estimators.

We experiment with the resulting shape-recovery method on both synthetic
images with known ground truth and real-world images from the Yale-B data-
base. The results indicate that the method works well even when the angle
between the light source and the image-normal exceeds 60 degrees. Moreover,
the fitting method is able to reliably fill-in shadowed regions of the face.

2 A Statistical Surface Normal Model

Constructing a statistical model that captures the statistical distribution of di-
rectional data is not a straightforward task. To overcome the problem, we draw
on ideas from cartography. Our starting point is the azimuthal equidistant pro-
jection [6]. This projection has the important property that it preserves the
distances between locations on the sphere. Another useful property of this pro-
jection is that straight lines on the projected plane through the centre of pro-
jection correspond to great circles on the sphere. We exploit these properties
to generate a local representation of the field of surface normals. We commence
with a set of needle-maps, i.e. fields of surface normals which in practice are
obtained either from range images or shape-from-shading. We begin by com-
puting the mean field of surface normals. The surface normals are represented
using elevation and azimuth angles on a unit sphere. At each image location the
mean-surface normal defines a reference direction which we use to construct an
azimuthal equidistant projection for the distribution of surface normals at this
point. The distribution of points on the projection plane preserves the distances
of the surfaces normals on the unit sphere with respect to the mean surface nor-
mal, or reference direction. We then construct a deformable model over the set of
surface normals by applying the Cootes and Taylor [7] point distribution model
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to the co-ordinates that result from transforming the surface normals from the
unit sphere to the tangent plane under azimuthal equidistant projection. More
details of this model are given in [4].

3 Fitting the Model to an Image

We may exploit the statistical constraint provided by the model in the process
of fitting the model to an intensity image and thus help resolve the ambiguity in
the shape-from-shading process. We do this using an iterative approach which
is posed as that of recovering the best-fit field of normals from the statistical
model, subject to constraints provided by the image irradiance equation.

If I(i, j) is the measured image brightness at location (i, j), then I(i, j) =
ω(i, j) [n(i, j).s] according to Lambert’s law, where s is the light source direc-
tion and ω is the albedo. We begin by assuming constant and unit albedo (the
Lambertian remapping process [8] normalises the brightest point to unity) and
return to this later. In general, the surface normal n can not be recovered from
a single brightness measurement since it has two degrees of freedom correspond-
ing to the elevation and azimuth angles on the unit sphere. In the Worthington
and Hancock [9] iterative shape-from-shading framework, data-closeness is en-
sured by constraining the recovered surface normal to lie on the reflectance cone
whose axis is aligned with the light-source vector s and whose opening angle is
α = arccos I. At each iteration the surface normal is free to move to an off-cone
position subject to smoothness or curvature consistency constraints. However,
the hard irradiance constraint is re-imposed by rotating each surface normal back
to its closest on-cone position. This process ensures that the recovered field of
normals satisfies the image irradiance equation after every iteration. The frame-
work is initialised by placing the surface normals on their reflectance cones in
the direction opposite to that of the local image gradient.

Our approach to fitting the model to intensity images uses the fields of surface
normals estimated using the geometric shape-from-shading method described
above. This is an iterative process in which we interleave the process of fitting
the statistical model to the current field of estimated surface normals, and then
re-enforcing the data-closeness constraint provided by Lambert’s law by mapping
the surface normals back onto their reflectance cones. If the data is of dimen-
sions M ×N , the surface normal model is encapsulated in the 2MN ×K matrix
P = (e1|e2| . . . |eK) formed from the leading K principal eigenvectors of the co-
variance matrix of the training samples under azimuthal equidistant projection.
In other words, they are the modes of variation of the statistical surface normal
model. The fitting algorithm can therefore be summarised as follows:

1. Initialise the field of surface normals n.
2. Each normal in the estimated field n undergoes an azimuthal equidistant

projection to give a vector of transformed coordinates v.
3. The vector of best fit model parameters is b = PT v.
4. The corresponding vector of transformed coordinates is v′ = PPTv.
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5. Using the inverse azimuthal equidistant projection find n′ from v′.
6. Find n′′ by rotating each normal in n′ back to their closest on-cone position.
7. Stop if the difference between n and n′′ indicates convergence.
8. Make n = n′′ and return to step 2.

The method hence combines a strict global constraint (projection onto the sta-
tistical model) with a hard local constraint (satisfaction of the image irradiance
equation). We find the algorithm converges rapidly and offers stable performance
on real world images. However, a number of obstacles are encountered when this
simple approach is applied to real images. The simple reflectance model given
Lambert’s law assumes constant albedo and ignores the effect of cast shadows
(regions in which the light source is intercepted by another part of the surface).
The result is that the fit to the statistical model is subject to a systematic error
and becomes increasingly inaccurate when regions of low albedo dominate (for
instance in the presence of facial hair) or when cast shadows become significant
(as the light source direction is more extreme). In this case, a significant portion
of the face may be in shadow and fitting the statistical model globally results in
erroneous shape parameter estimates.

4 Robust Statistics

It is therefore clear that we require a more robust means to fit our statistical
model to a potentially noisy observed field of normals, n. The quality of this
fit can be measured by calculating the distance between the observed and fitted
normals on the projection plane. If b is the estimated parameter vector, the
vector of residuals is given by R = ‖v−(Pb)‖ and the residual at point p is ηp =√

R(2p− 1)2 + R(2p)2. The standard least squares fit given above, minimises the
quantity:

b∗ = arg min
b

N∑
i=1

η2
i .

This approach is unstable in the presence of outlying data, such as normals
erroneously estimated from regions of low albedo or in cast shadow. In particular,
the effect of outliers is to severelly distort the estimated facial shape.

In this paper, we turn to the apparatus of robust statistics to help overcome
this problem. M-estimators (maximum likelihood type estimators) aim to reduce
the effect of outliers by replacing the squared residuals η2

i by a kernel function
that limits the effects large residuals:

b∗ = arg min
b

N∑
i=1

ρσ(ηi) (1)

where ρ is a robust kernel with width parameter σ.
The influence of a residual on the parameter estimate under a given M-

estimator can be studied by examining its influence function, ψσ. This is the
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wσ(η) =
1
σ

|η|
ρσ(η) =

η2

2σ|η| − σ2 ψσ(η) =
2η

2σSign(η)

Fig. 1. Huber’s M-estimator

derivative of the error kernel: ψσ(ηp) = ∂ρσ(ηp)
∂ηp

. Hence, in the least squares case
where ρσ(η) = η2, the influence of a datum is ψσ(η) = 2η and therefore increases
linearly with the size the error. This is the source of the lack of robustness in
least-squares estimation.

We propose a robust solution to (1) using a simple one-step weighted least
squares approximation. To do so, we make use of the weight function, wσ, which
is related to the influence function by: wσ(ηp) = ψσ(ηp)

ηp
. The standard least-

squares estimator applies a constant weight to each datum. On the other hand,
an error kernel such as Huber’s estimator [10] down-weights a datum once its
residual exceeds σ:

ρσ(η) =

{
η2 if |η| < σ

2σ|η| − σ2 otherwise
wσ(η) =

{
1 if |η| < σ
σ
|η| otherwise

(2)

We show the weight function, error kernel and influence function for Huber’s M-
estimator in Fig 1. This is the M-estimator we use in the remainder of this paper.

We can incorporate the Huber weights into the least squares fit by constructing
a diagonal matrix of weights: W = diag (wσ(η1), . . . ,wσ(ηN )). Our one-step
weighted least squares approximation of b is given by:

b(t) = CPT Wv(t) (3)

where C is a constant which compensates for the overall scaling effect of W on
b: C = NTr(W−1).

Computing (3) requires an initial estimate of W and hence the residuals.
We therefore commence by calculating a least squares fit from which we can
calculate the residuals ηp. This is equivalent to calculating (3) with an identity
weight matrix, i.e. W = IN . For a subsequent iteration t of the algorithm, we
can use the weights calculated from the residuals at iteration (t− 1).

Implicit in the discussion above is that we have a means to estimate the
standard deviation of the residual errors σ, which acts as the width parameter of
the function ρ. A robust estimate of σ is required in order to distinguish outliers
from inliers. For this reason, we use the median absolute deviation (MAD):

MAD = median (|ηp −median(ηp)|) , p = 1 . . .N

which is related to the standard deviation by σ = 1.4826×MAD.
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4.1 Combining and Classifying

Upon convergence, if a pixel p has weight wfinal
p ≈ 1, this indicates a high

confidence that the on-cone normal n
′′
p is reliable. However, as the weight tends

to 0, the on-cone normal n
′′
p is likely to be erroneous due to violation of the

assumptions of Lambert’s law, e.g. non-constant albedo or lying in a cast shadow
region. In this case, a more accurate estimate of nfinal

p is given by the robust fit
of the model to the global field of normals.

For this reason, our best estimate of the underlying shape of the face is a
weighted combination, in which pixels with a low weight are given a higher
proportion of the normal from the model fit n

′
p and a lower proportion of the on-

cone normal n
′′
p , vice-versa for pixels with a high weight. This gives: ncombined

p =
np

‖np‖ , where np = wfinal
p n

′′
p +

(
1− wfinal

p

)
n

′
p.

With the estimated facial shape to hand, we may now go further and distin-
guish between pixels of low albedo and those in cast shadow regions. We may
recover the surface height zp by applying a standard surface integration method
[11] on the field of normals ncombined. Using a simple ray-tracing algorithm, we
can assign a binary cast-shadow map:

shadow(zp, s) =

{
0 if pixel p is in cast shadow
1 otherwise

(4)

For non-shadow regions, the albedo ωp can be estimated by rearranging the
image irradiance equation: ωp = Ip

ncombined
p .s .

5 Experimental Results

In this section we present experiments using the technique described above.
We begin by applying the method to known ground truth data allowing us to
quantitatively asses the performance of the approach. We then apply the method
to real world images, demonstrating the robustness of the approach under real
world conditions.

We train our statistical model on a sample of 100 facial needle-maps. The data
is acquired from the 3DFS dataset [12] which consists of 100 high resolution scans
of subjects in a neutral expression. The scans were collected using a CyberwareTM

3030PS laser scanner. The database is pre-aligned, registration being performed
using the optical flow correspondence algorithm of Blanz and Vetter [2]. For
ground truth, we use a leave-one-out strategy in which we train the model with
99 sets of data, leaving the remaining needle-map as out-of-sample ground truth.

For real world images, we show reconstructions and reilluminations of images
from the Yale-B database [5]. These contain albedo variation and cast shadows.

5.1 Ground Truth Data

In Fig. 2 we demonstrate the performance of our method on ground truth data.
We apply our algorithm to a selection of images of rendered ground truth
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Fig. 2. Fitting to images of ground truth needle-maps rendered with Lambertian re-
flectance and cast shadows

needle-maps including cast shadows. In column 1 we show the input images.
The needle-maps of the out-of-sample subjects are rendered with Lambertian
reflectance and a point light source with direction s = (−1, 0, 1), i.e. 45◦ from the
viewing direction. We also simulate the effect of cast shadows using the shadow
map shown in column 2. shadow(z, s) is calculated from ground truth depth
data. In column 3 we show the weight function wσ(ηp) for each pixel. It is clear
that regions in cast shadow have been successfully down-weighted. In column
4 we show the needle-map ncombined calculated from the input image, rendered
with frontal illumination. For comparison, in column 5 we show the ground truth
needle-map similarly illuminated. There is a good agreement between the two,
even in areas in which no information was present in the input image (i.e. those
in cast shadows). This suggests that the robust fit of the model has recovered
globally accurate shape information, and has filled-in the shadowed areas of the
face. The mean surface normal error was typically < 8◦ across the whole needle-
map. Finally in column 6 we show the shadow map shadow(zcombined, s), where
zcombined is the height map integrated from ncombined. Again, there is a good
agreement between columns 2 and 6, suggesting that this represents a viable
means to estimate regions which are in cast shadow.

5.2 Real World Data

In Fig. 3, we demonstrate the quality of the shape information our method can
recover from real world images. From the input images in the top row, we use
our method to estimate the needle-map ncombined and use the surface recovery
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Fig. 3. Novel viewpoint of the surface recovered from the input image in the top row
rotated 45◦ about the vertical axis

Fig. 4. Novel viewpoint of the surface recovered from the input image in the top row
rotated 45◦ about the vertical axis

method of Frankot and Chellappa [11] to integrate the normals into a surface.
We show these surfaces rendered with the estimated albedo and Lambertian
reflectance, rotated 45◦ about the vertical axis. The images show considerable
stability under large change in viewpoint.

In Fig. 4, we demonstrate the method on real images which contain cast
shadows as well as albedo variations. The first row shows the input images of a
single subject under varying illumination. The subject is a challenging choice due
to the large albedo variations caused by facial hair. The light source is moved
in an arc along the horizontal axis to subtend an angle of −50◦, −25◦, 0◦, 25◦

and 50◦ with the viewing direction. We use our method to estimate the normals,
albedo and shadow map. We use facial symmetry to fill-in the missing albedo
values for the shadow regions. In the second row we show the estimated cast
shadow map. Here, the cast shadows caused by the nose seem to correspond
well with the input images. Finally in the third row, we show the recovered
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needle-maps rendered with the estimated albedo and frontal lighting, effectively
correcting for variation in input lighting. These synthesised images are of a good
quality, even under large changes in illumination and manage to remove much
of the effect of the cast shadows.

6 Conclusions

We have shown how a statistical model of facial shape, couched in terms of
distributions of surface normal directions, can be fitted to images of shadowed
faces using robust statistics. We fit the statistical model globally, but use robust
statistics to ensure that regions of low albedo or which fall into a cast shadow
have little or no impact on the parameter estimate. The technique is capable
of recovering a useful estimate of facial shape, even when significant portions of
the face are entirely in shadow.
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Abstract. This paper proposes a Sequential Monte Carlo (SMC) learn-
ing algorithm for Bayesian probability distributions that describe model
parameters in a video face recognition system based on deformable tem-
plate matching. The new algorithm achieves significantly improved ro-
bustness of recognition against facial expressions and speech movements
by comparison with a baseline batch MCMC (Markov Chain Monte
Carlo) algorithm, at no additional computational cost. Experimental re-
sults demonstrate the effectiveness and computational efficiency of the
new algorithm.

1 Introduction

Human faces in broadcast video exhibit substantial variation in position, size,
head pose, facial expression and so on, forcing face recognition systems for video
indexing to incorporate flexibility in the database and/or matching algorithms
used. The authors have introduced a prototype recognition system[1][2] which
uses deformable template matching and is based on the Elastic Graph Matching
method[3]. Although this sytem can absorb a certain amount of facial deforma-
tion due to expressions and speech movements, recognition errors can occur for
larger deformations, and additionally there are a number of system hyperparam-
eters which are set in a heuristic fashion.

In this work, we introduce an online learning algorithm for Bayesian posterior
probabilities describing faces in video input sequences, which uses a Sequential
Monte Carlo (SMC) method [4][5] to perform integrations over a sequence of
combined spaces of face model parameters and system hyperparameters. We
show that this SMC approach successfully adapts the parameters associated with
deformations of each face model, and significantly reduces recognition errors on
a video test set showing individuals talking, relative to a baseline batch MCMC
(Markov Chain Monte Carlo) algorithm[6][7]. However, it does so at increased
computational cost. We then introduce a modification at the resampling stage of
the algorithm that restores computational efficiency (to somewhat better than
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that of the baseline MCMC algorithm) without sacrificing the gain in recognition
performance achieved by the SMC algorithm.

In section 2 we briefly review the deformable template matching procedure
and similarity function used in our original system. In section 3 we introduce the
online learning approach where a new likelihood function is proposed, defined
in terms of a mixture of von Mises-Fisher distributions, and show how the most
probable model can be estimated together with distributions of system parame-
ters. In section 4 we describe the details of the SMC algorithm with experimental
results, and introduce the modification of the resampling stage that boosts com-
putational efficiency. The paper concludes with a discussion of the results and
possible directions for further work.

2 Deformable Template Matching

The deformable templates used in our original system[1][2] are constructed from
face images of target individuals at multiple poses, labeled with feature point
positions. Each template consists of the normalized coordinates of M = 9 feature
points, xA = {xA

1 , ...,xA
M}, together with features cA computed by convolutions

with Gabor wavelets at each of the feature points. The Gabor wavelet at res-
olution r and orientation n is a complex exponential grating patch with a 2-D
Gaussian envelope:

gr
n(x) =

k2
r

σ2 e
− k2

r‖x‖2

2σ2 ×
[
ei(kr

n)Tx − e−
σ2
2

]
, kr

n = kr

(
cos( nπ

Norn
)

sin( nπ
Norn

)

)
, (1)

for Norn = 8 orientations and R = 5 resolutions. This data representation is
similar to that used in the Elastic Graph Matching system[3] for face recognition
in static images, but the chosen feature points differ, as do the parameters of
the Gabor wavelets. The original scheme[1][2] applies templates to input video
frames and deforms them by shifting the feature points so as to maximize the
similarity to the Gabor features in the template. It then computes an overall
match score for each deformed template, incorporating a feature similarity term
and a penalty related to the deformation as follows:

Sr
A,B = 1− αf

(
1− 〈cA

r , cB
r 〉

|cA
r ||cB

r |

)
− αs

√
EA,B

λr
, (2)

where A denotes the undeformed template and B the deformed feature points on
the image; cA and cB are feature vectors of Gabor wavelet coefficients, respec-
tively from the template and measured at the deformed feature point positions
xB on the image; EA,B is the deformation energy between the feature points
xA in the template and the deformed feature points xB on the image, up to
a dilation, rotation and shift; αf and αs are weights for the feature similarity
and spatial deformation terms respectively; and λr = 2π/kr is the modulation
wavelength of the Gabor wavelet at resolution r. In the sequel we will often omit
the A and B superscripts where the meaning is clear.
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3 Online Bayesian Learning

Optimizing a target function with penalty terms can be considered as maximizing
the Bayesian posterior probabilities of parameters[9]. From the same viewpoint,
the most probable model describing faces in input video is defined by the mode of
posterior distributions of face models. Though the optimum set of parameters in
some case may yield satisfactory performance in other cases, problems can arise
if the target probability distribution takes on a more complex form. In general,
finding the global maximum of a target function is difficult, and prone to falling
into local maxima. Moreover, the optimal parameter set obviously depends on
unknown input data.

In this paper, instead of searching for the mode, we introduce an online learn-
ing algorithm to estimate both the peak and tails of probability distributions of
parameters.

3.1 Likelihood Function

Consider the situation where data is given as a video sequence. Let yn be image
data at the nth frame and let y1:n = {y1, y2.., yn} be the image data set up to the
current frame. Recall that the feature similarity term in equation (2) depends
on an innner product between two normalized feature vectors. Therefore it is
natural to consider as a likelihood function for this directional data a mixture
of von Mises-Fisher distributions[8]:

P (yn|xn,βn,1:R,Hj) =
1
R

R∑
r=1

1
Zb(βn,r)

exp
(
βn,r

〈cA
r , cB

r 〉
|cA

n,r||cB
n,r|

)
, (3)

Zb(β) =
(2π)

k
2 I k

2−1(β)

β
k
2−1

. (4)

where xn represents a set of feature points at the nth frame, βn,r is a hyper-
parameter for resolution r, and Hj is a face model (hypothesis or template) with
identity number j. Ip(β) is the modified Bessel function, and k = 2M ×Norn.

3.2 Parameter/Hyperparameter Dynamics

Suppose that we are provided with a set of feature point locations for the jth
template, xA

j . We assume a Gaussian predictive distribution for xn:

P (xn|αn,Tn,Hj) =
1

Za(αn)
exp

(
−αn

2
(T−1

n (xn)− xA
j )T Λ−1

j (T−1
n (xn)− xA

j )
)

,

(5)
where αn is a hyperparameter, Λj is the covariance matrix of feature point
positions for face model Hj , and Za(αn) = (2π)M

√
detΛj/αn is a normalizing

factor.
Tn is a rigid linear transformation of the feature point set, consisting of a

dilation by a factor rn, rotation through an angle θn, and translation (un, vn)T .
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It expresses the rigid component of the mapping from the template feature point
set xA onto the deformed feature point set xB on the input image plane, leaving
the nonrigid deformation.

Tn(xA) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

rn cos θn −rn sin θn 0 . . . 0

rn sin θn rn cos θn

...

0
. . . 0

... rn cos θn −rn sin θn

0 . . . 0 rn sin θn rn cos θn

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
xA

1
yA
1

...
xA

M

yA
M

⎤⎥⎥⎥⎥⎥⎦+

⎡⎢⎢⎢⎢⎢⎣
un

vn

...
un

vn

⎤⎥⎥⎥⎥⎥⎦ . (6)

For simplicity we will use the symbolic notation Tn to denote the set of map-
ping parameters (rn, θn,un, vn), and Θn to denote the set of model parameters
(xn,αn,βn,1:R). The parameters of Tn determine the size, position, and in-plane
rotation angle of a face region. In this paper, we describe a sequential learn-
ing algorithm to estimate probability distributions of these parameters given a
sequence of input images.

One way of performing online learning is to consider stochastic updates of the
parameters in question. Assuming smooth motion of the target face region, we
consider as a recursive update P (Tn|Tn−1) described by

rn = rn−1 + νr, νr ∼ N (0,σ2
r),

θn = θn−1 + νθ, νθ ∼ N (0,σ2
θ),

un = un−1 + νx, νx ∼ N (0,σ2
x),

vn = vn−1 + νy, νy ∼ N (0,σ2
y). (7)

Similarly, we adopt a transition model for P (αn,βn,1:R|αn−1,βn−1,1:R):

logαn = logαn−1 + να, να ∼ N (0,σ2
α),

log βn,r = log βn−1,r + νβ, νβ ∼ N (0,σ2
β), (8)

where the log-normal distribution guarantees positivity of the hyperparameters.

3.3 Posterior Distribution

Using Bayes’ theorem we obtain straightforwardly a recursive formula for
P (Hj |y1:n), the posterior distribution of the model Hj given the data:

P (Hj |y1:n) =
P (yn|y1:n−1,Hj)P (Hj |y1:n−1)

P (yn|y1:n−1)
, (9)

where the one-step model marginal likelihood P (yn|y1:n−1,Hj) is given by the
following integrals:

P (yn|y1:n−1,Hj) =
∫

P (yn|Θn,Hj)P (Θn,Tn|y1:n−1,Hj)d(Θn,Tn), (10)



582 A. Matsui, S. Clippingdale, and T. Matsumoto

P (Θn,Tn | y1:n−1,Hj) =
∫

P (Θn,Tn|Θn−1,Tn−1,Hj)

P (Θn−1,Tn−1|y1:n−1,Hj)d(Θn−1,Tn−1). (11)

At each frame, the system outputs the most probable face model, H(n)
MP , which

attains the maximum value of the posterior distribution of the model given the
sequence of input images: H(n)

MP = arg maxj P (Hj |y1:n).

4 Sequential Monte Carlo Algorithm

4.1 Sequential Importance Sampling

We cannot typically compute the recursive posterior distribution analytically,
because it requires evaluation of the complex high-dimensional integrals in (10)
and (11). Instead we apply a Monte Carlo method to estimate the integral nu-
merically. Sequential Monte Carlo requires proposal distributions from which
one can draw samples {Θ(i)

n ,T
(i)
n }Nj

i=1 for each model Hj by standard methods.
The proposal distribution in this paper will be given by

π(Θn,Tn|Hj)
= P (xn|αn,Tn,Hj)P (αn|αn−1,σα)P (βn,1:R|βn−1,1:R,σβ)P (Tn|Tn−1) (12)

from which one obtains the following approximations:

P (Θn,Tn|y1:n−1,Hj) ∼=
Nj∑
i=1

w̃
(i)
n−1|Hj × δ

(
||(Θn,Tn)− (Θ(i)

n ,T (i)
n )||

)
, (13)

P (yn|y1:n−1,Hj) =
∫

P (yn|Θn,Hj)P (Θn,Tn|y1:n−1,Hj)d(Θn,Tn)

∼=
Nj∑
i=1

P (yn|Θ(i)
n ,Hj)× w̃

(i)
n−1|Hj , (14)

where the normalized importance weights w̃
(i)
n are equal to:

w̃(i)
n |Hj =

w
(i)
n |Hj∑Npersons

k=1
∑Nk

m w
(m)
n |Hk

, (15)

w(i)
n |Hj =

P (yn|Θ(i)
n ,T

(i)
n , y1:n−1,Hj)P (Θ(i)

n ,T
(i)
n |Θ(i)

n−1,Tn−1)

π(Θ(i)
n ,T

(i)
n |Hj)

× w(i)
n |Hj

= P (yn|Θ(i)
n ,T (i)

n ,Hj)× w
(i)
n−1|Hj . (16)

In the same way, one can evaluate the sequential model posterior distribution by

P (Hj |y1:n) =
P (yn|y1:n−1,Hj)P (Hj |y1:n−1)∑Npersons

k=1 P (yn|y1:n−1,Hk)P (Hk|y1:n−1)

∼=
P (Hj |y1:n−1)

∑Nj

i=1 w̃
(i)
n |Hj∑Npersons

k=1 P (Hk|y1:n−1)
∑Nk

i=1 w̃
(i)
n |Hk

. (17)
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Unless there are reasons to do otherwise, we set the initial model probabilities
uniformly: P (Hj |y0) = 1/Npersons .

4.2 Experimental Results

Table 1 shows recognition results for the new online learning algorithm (Bayesian
SMC), compared with a batch learning algorithm (Bayesian MCMC), with which
we estimated the predictive distribution of parameters using a Markov Chain
Monte Carlo method[7]. Template images and test sequences showed 7 Japanese
actors and 3 Japanese actresses in frontal pose against a blue background. For
the template images, each individual shows a neutral facial expression, while for
the test sequences, subjects were encouraged to show expressions and to talk
freely. For the Bayesian SMC system, we used 18 sample images showing six
fundamental expressions (happiness, sadness, fear, anger, disgust and surprise) to
estimate the covariance matrix Λj . For the Bayesian MCMC system, we used the
same data to draw Nj samples of parameters. We set the number of Monte Carlo
samples for each face model to Nj = 3600 for both systems. We assumed that
initial face regions were pre-detected so that the center position and radius of
the face region were already available. Table 1 shows that the proposed approach
reduced the ID error rate from 11.0 % to 2.3 %, but that the total processing
time was roughly double that of the original batch algorithm.

Table 1. Face recognition results (ID error rate)

Model Bayesian MCMC Bayesian SMC
ID error rate 11.0 % 2.3 %

Processing time 1155 sec. 2329 sec.

Fig. 1. Examples of SMC sample feature points at frame n = 0 (left) and frame n = 8
(right). The top 100 samples in order of the importance weights are shown.

Figure 1 shows examples of SMC particles (i.e. sets of feature point param-
eters) with the top 100 normalized importance weights out of a total of 36,000
particles. It is apparent that the proposed algorithm updates the posterior dis-
tribution of feature points more or less successfully despite facial deformations
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(reference feature points are located at the six eye and mouth corners plus the
three locations on the mid-sagittal line).

4.3 Pruned Resampling

Figure 2 shows the evolution of the number of particles Nj drawn by the Bayesian
SMC model given a test video sequence of person jtrue = 10. The number of
particles for j = 10 grows steadily with time (frame number) while the others
are either static or gradually decrease. The tendency for a particular model to
accumulate ever larger numbers of particles at the expense of the other models
reflects the increasing confidence of the system, with increasing volumes of data,
that the given model is correct and the others incorrect.

However, much of the associated computation is unnecessary; we do not re-
quire so many particles to verify a well-supported hypothesis. Thus we introduce
a further normalization into the resampling process such that the number of par-
ticles for the most likely model ĵ = argmaxk Nk = arg maxk P (yn|y1:n−1,Hk),
rather than the total number Ntotal =

∑
j Nj, remains approximately constant.

Since the resampling process shares out the total mass of normalized importance
weights at the previous step, it is natural to set the new total number of particles
Ntotal as follows:

Ntotal =Nj×
∑Npersons

k=1
∑Nk

i=1 w̃
(i)
n |Hk∑Nĵ

i=1 w̃
(i)
n |Hĵ

=Nj×
∑Npersons

k=1 P (yn|y1:n−1,Hk)
P (yn|y1:n−1,Hĵ)

.(18)

This “pruned resampling” maintains nearly constant the number of particles
(and hence the volume of computation) at each step associated with the most
likely model. In so doing, it reduces the amount of attention paid to increasingly
unlikely models faster than does the original resampling scheme.

Table 2 shows recognition results with the pruned resampling scheme. Also
shown is the total number of particles in existence N̄total , averaged over the
10 input video test sequences and 30 frames per sequence. Figure 3 shows the
evolution of the number of particles Nj using the pruned resampling scheme,
given the same test data used in Figure 2 (jtrue = 10). Table 2 and Figure 3
show that the new resampling approach successfully prunes redundant particles
and computation without introducing any new identification errors. Total pro-
cessing time is comparable to that of batch MCMC, but the significantly better
recognition performance of SMC is not sacrificed.

Table 2. Face recognition results (ID error rate) with and without pruned resampling

Model Bayesian MCMC Bayesian SMC
Pruned resampling? n/a no yes

ID error rate 11.0 % 2.3 % 2.3 %
Processing time 1155 sec. 2329 sec. 1135 sec.

N̄total 36000 36000 17488
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Fig. 2. Evolution of the number of SMC particles Nj with ordinary resampling
(jtrue = 10, Ntotal = N1 + N2 + . . . + N10 = 36, 000)

Fig. 3. Evolution of the number of SMC particles Nj with pruned resampling
(jtrue = 10, Nj = N10 ∼= 3, 600)
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5 Conclusions

We introduced a new Sequential Monte Carlo (SMC) algorithm for online
Bayesian learning in the context of a face recognition system based on deformable
template matching. The proposed algorithm achieves markedly superior robust-
ness of recognition against facial deformations by comparison to a baseline batch
MCMC algorithm. A modification to the resampling stage of the new algorithm
restores its computational cost to less than that of the baseline MCMC algorithm
without sacrificing any of the gain in recognition performance.

Topics remaining for further work include the automation of the face detection
stage and its combination with the SMC algorithm, and extensions to deal with
larger image motions and changes in face pose and lighting conditions. The SMC
based change detection algorithm described in [10] may be useful in this regard.
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Abstract. Sometimes novel or outlier data has to be detected. The
outliers may indicate some interesting rare event, or they should be dis-
regarded because they cannot be reliably processed further. In the ideal
case that the objects are represented by very good features, the genuine
data forms a compact cluster and a good outlier measure is the distance
to the cluster center. This paper proposes three new formulations to find
a good cluster center together with an optimized �p-distance measure.
Experiments show that for some real world datasets very good classifi-
cation results are obtained and that, more specifically, the �1-distance is
particularly suited for datasets containing discrete feature values.

Keywords: one-class classification, outlier detection, robustness, �p-ball.

1 Introduction

In this paper we consider a special classification problem in which one of the
classes is sampled well, but in which the other class cannot be sampled reliably
[1,2]. An example is machine condition monitoring, where failure of a machine
should be detected. It is possible to sample from all normal operation conditions
(called the target class), but to sample from the failure class (the outlier class)
is very hard. Furthermore it is also very expensive. Therefore a classifier should
be constructed that mainly relies on examples of healthy machines and that can
cope with a poorly sampled class of failing machines.

In the most ideal case the target class forms a tight, spherical cluster and
all outliers are scattered around this cluster. To identify outliers one has to
measure the distance from an object to the cluster center and threshold this
distance. Clearly, when the threshold on the distance (or radius of the ball) is
increased, the error on the target class decreases but at the cost of the outlier
data that is accepted. The optimal ball has a minimum volume while it still
encloses a large fraction of the target data.

According to the central limit theorem the target class has a Gaussian dis-
tribution when the target objects are noisy instantiations of one prototype dis-
turbed by a large number of small noise contributions. The Mahalanobis distance

D.-Y. Yeung et al. (Eds.): SSPR&SPR 2006, LNCS 4109, pp. 587–595, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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to the cluster center has to be used to detect outliers. But one should take care
that a robust estimate of the class shape is used, because outliers in the train-
ing set severely deteriorate the maximum likelihood estimates for the Gaussian
distribution [3]. The Minimum Determinant Covariance estimator is a practical
implementation of a robust mean and covariance estimator [4].

When the assumption of many small noise contributions does not hold, other
distance measures can be used. One flexible parameterization of a distance is
the �p-distance. This distance has one free parameter p that rescales distances
non-linearly along individual axis before adding the contributions to the final
distance. Thresholding this distance defines a �p-ball as the decision boundary
around the target class. The advantage of the ball description is that only few
parameters have to be fitted to get a good description of the target class. This
is particularly useful when the outlier detector is applied in high dimensional
feature spaces and with small training set sizes. A second advantage is that
it is possible to compute the volume captured by the ball analytically (see for
instance, [5] pg. 11). This allows for an estimate of the error on the outlier class
[6] and therefore for model evaluation between outlier detection methods.

In this paper we propose the use of the �p-distance measure to a center for
the description of a class, resulting in a ball-shaped decision boundary. Three
models are formulated in section 2. In the first formulation the volume of the �p

distance ball is minimized by weighing the features, while the parameter p and
the center of the ball are fixed. In the second we fix the p and the weights of the
features, but optimize the center to minimize the volume. In the last formulation
we optimize both the center as the p. In section 3 the methods are compared on
real world datasets and we end with a conclusion in 4.

2 Theory

We start with a training set X tr = {xi, i = 1, ..., l} containing l target objects,
represented in an n dimensional feature space: x ∈ Rn. This dataset may contain
some outliers, but they are not labeled as such. The �p-distance is defined as:

‖x− z‖p = p

√√√√ n∑
j=1

|xj − zj |p, p > 0. (1)

To detect outliers with respect to the training set X tr, we threshold the distance
to some center a. This defines the classifier fp:

fp(x; a) =

{
target ‖x− a‖p

p ≤ w0,

outlier otherwise.
(2)

A well performing classifier fp minimizes both the error on the target class (i.e.
the ball encloses almost all the target objects) as the error on the outlier class
(i.e. the ball covers a minimum volume in the feature space). By a suitable
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placing of a, by minimizing the threshold (or radius) w0, weighting of features
and optimizing p the two errors are minimized. In the next three sections we
propose three formulations to optimize �p-balls.

2.1 w-Ball: The Weighted-Feature �p-Ball

In the first formulation, the feature axis are weighted such that the ball has
minimum radius w0. The center a and the parameter p are fixed beforehand.
The w0 is minimized by varying the weight wj on each individual feature. To
avoid the trivial solution of zero weights for all the features, the sum of the
weights is fixed to one and all zero-variance directions are removed. 1 To make
the solution less sensitive to outliers in the training data, the constraints are
weakened by introducing slack variables ξi:

min
w,ξ

w0 + C

l∑
i=1

ξi (3a)

s.t.
∑

j

wj |xij − aj |p ≤ w0 + ξi, ξi ≥ 0 ∀i (3b)

∑
j

wj = 1, wj ≥ 0, ∀j (3c)

A reweighted �p-distance is used for the evaluation of a new object. That means
that each term in the sum in equation (1) is multiplied by wj . This formulation
is called the ‘weighted-features’ �p-ball, or w-ball.

In the experiments center a is set to the mean vector of dataset X tr. This
formulation is a linear programming problem that can be solved efficiently us-
ing standard optimization toolboxes, even for high dimensional feature spaces.
Parameter C determines the tradeoff between w0 and ξi. A large C indicates
that ξi should remain small in comparison to w0 (see (3a)), resulting in a very
large ball. When C is small, the slack ξi is allowed to grow and the radius w0
stays reasonably small. In practice the w-ball is still not robust against outliers
[7]. This is caused by the fact that an outlier influences the location a of the
ball. Varying C has just a minor effect on the final solution. To get a robust ball
description, the center of the ball has to be optimized such that outliers do not
have any influence on the solution, even when they are located far away. This is
achieved with a formulation given in the next section.

In the left subplot of figure 1 the decision boundaries for the w-ball are shown
for p = 1, 2 and 6. The optimization reweighs the features such that the balls fit
the data best. Depending on p, the shape becomes more diamond-like (p = 1)
or more box-like (p = 6). The two objects on the far right still influence the
solution, although they are outside the decision boundary. When the outliers on
the right side are moved much further to the right, the weight for this feature
is decreased (to satisfy constraint (3b)). When this weight w1 decreased to zero,
1 When the k-th feature does not show a variance, the optimal solution is wk = 1 and

all other wi = 0, i �= k.
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Fig. 1. The decision boundaries of the w-ball (left) and the c-ball (right) on the same
dataset, and varying p, p = 1, 2, 6. The diamond-shaped boundary is obtained for p = 1.
For increasing p the boundary becomes more square. For the w-ball C = 10 and for
the c-ball f = 0.9 (see text for explanation of f).

the ball degenerates to a ‘strip’, effectively performing a feature reduction by
removing this feature from the solution.

2.2 c-Ball: The �p-Ball with Variable Center

For a robust formulation a quantile function is defined. Denote ỹ = (y(1), y(2), ...,
y(l)) the sorted version of y, with y(1) < y(2) < ... < y(l). The quantile function
is defined as:

Qf (y) = y([fl]), (4)

where [c] returns the nearest integer value of c. Thus, Q0(y) is the minimum
element of y, Q1(y) the maximum and Q0.5(y) the median.

The center a is optimized such that the object furthest away is as near as
possible to this center. To be robust against outlier objects in the training set,
we only consider a fraction f of the objects. When we define yi =

∑
j |xij − aj |p

the following optimization problem can be formulated:

min
a
Qf ((y1, y2, ..., yl)) (5)

This formulation is called the the ‘centered’ �p-ball, or c-ball. Due to the very
non-linear quantile function this optimization cannot be solved very efficiently.
In this paper we use a general purpose multivariate non-linear optimizer (based
on the Nelder-Mead minimization[8]). It should be noted that this optimization
becomes very slow for high dimensional feature spaces (say, n > 100). In these
cases a standard gradient descent method is applied 2. On the other hand, the
2 Note that the gradient and the Hessian of (5) is very simple to compute when the

f% quantile y([fl]) has been found. Define k = [fl], then the gradient becomes ∂yk
∂aj

=

p·sign(aj−xkj)|aj−xkj |p−1 and the Hessian ∂2yk
∂2aj

= p(p−1)sign(aj−xkj)|aj−xkj |p−2

and ∂2yk
∂ai∂aj

= 0 for i �= j.
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solution is insensitive to the most remote (1− f)× 100% of the data, making it
an estimator with a breakdown value of #(1− f)l$ [9].

In the right subplot of figure 1 the decision boundaries for the c-ball’s are
shown for p = 1, p = 2 and p = 6. The models do not take the difference in
variance of the different features into account, resulting in a wider data descrip-
tion than the w-ball. On the other hand, the c-ball is robust against the outlier
objects on the right side (the centers are optimized to reject 10% of the data, i.e.
f = 0.9). Moving these objects even further away will not change the solution
as it is shown in the figure. Also notice that the locations of the centers of the
balls vary, depending on the p.

2.3 p-Ball: The �p-Ball with Variable Center and Metric p

In the last formulation also the p in the �p-distance is optimized, together with
the ball center, while fixing the weight per feature. Because p changes, the met-
ric changes and it is not possible to compare solutions in different spaces by
just comparing the radii of the balls. To compare balls in different spaces, the
volumes of the balls have to be compared. The unit ball of �p is defined as
Bn

p = {x ∈ R
n; ‖x‖p ≤ 1}. The volume of the unit ball is given by [5]:

vol(Bn
p ) =

(2Γ (1 + 1/p))n

Γ (1 + n/p)
(6)

The volume of a ball with radius r is vol(Bn
p )rn. Using this, the following opti-

mization problem can now be formulated:

min
a,p,r

vol(Bn
p )rn (7a)

s.t. Qf ((‖xi − a‖n
p )) ≤ rn, p > 0 (7b)

where r is the ball radius. This is called the p-optimized �p-ball, or p-ball. Again,
the optimization is made more robust by considering the f -fraction quantile.

Notice that in this formulation both the degree p and the center of the ball
are optimized, resulting in an even more complex optimization problem. Again
a general multivariate nonlinear optimizer has to be used 3. To avoid problems
with the constrained variable p (p > 0), a variable substitution is applied and a
new unconstrained variable q = log(p) is introduced. This makes it possible to
use an unconstrained optimization procedure.

In figure 2 the decision boundaries for the p-ball are shown for the same
data as used in figure 1. The fraction f is set to f = 0.9, f = 0.8, f = 0.5.
Both the location as the shape of the balls is adapted to capture 90%, 80%
or 50% of the data. The resulting optimized values for p are 1.26, 2.21 and 5.39
respectively. Objects outside the decision boundary are completely ignored in the
minimization of the ball volume, and can therefore be randomly moved around
without affecting the solution.
3 Here also the gradient and Hessian can be computed, but this is considerably more

complicated than in section 2.2.
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3 Experiments

The three methods, the w-ball, c-ball and p-ball, are compared with some stan-
dard classifiers on datasets, mainly taken from the UCI repository [10]. These
datasets are standard multiclass problems and to convert them into an outlier
detection problem, we use one of the classes as target class, and all other classes
are considered outlier. Furthermore, we consider datasets for which the target
class is reasonably clustered: it does not contain several clusters, and is not dis-
tributed in a subspace. The datasets are preprocessed to have unit variance for
all features (where the scaling factors are obtained from the training set).

Table 1. Characteristics of the datasets: the number of objects in the target class and
the outlier class, and the dimensionality of the data

nr dataset tar/out dim.
1 Iris virginica 50/100 4
2 Breast malignant 458/241 9
3 Breast benign 241/458 9
4 Heart diseased 139/164 13
5 Heart healthy 164/139 13
6 Biomed diseased 67/127 5
7 Arrhythmia normal 237/183 278
8 Ecoli periplasm 52/284 7

nr dataset tar/out dim.
9 Concordia16 digit 3 400/3600 256
10 Colon 2 40/22 1908
11 Thyriod normal 93/3679 21
12 Waveform 1 300/600 21
13 Pageblocks text 4913/560 10
14 Satellite, cotton crop 479/3956 36
15 Satellite, damp grey soil 415/4020 36

In table 1 the list of datasets with their characteristics is shown. For the two-
class Breast and Heart datasets, each of the two classes is used as the target
class once. This is to show that for each class separately, different optimal so-
lutions are found. On the datasets some standard classifiers are fitted. First a
simple Gaussian distribution is applied, using the maximum likelihood estimates
for the mean and covariance matrix. The second method uses the Minimum Co-
variance Determinant algorithm to estimate a robust covariance matrix [4]. The
third method is the Parzen density estimator, that optimizes its width parameter
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Table 2. AUC performances of the one-class classifiers on 15 real world datasets. The
best performances (and the ones that are not significantly worse according to a t-test,
at a 5% confidence level) are indicated in bold. The experiments are done using five
times ten-fold stratified cross-validation. The standard deviations are given between
brackets.

datasets
classifiers 1 2 3 4 5

Gauss 97.8 (0.5) 98.5 (0.1) 82.2 (0.2) 63.8 (0.7) 80.0 (0.7)
Min.Cov.Determinant 97.6 (0.2) NaN (0.0) 73.5 (0.1) 66.7 (1.8) NaN (0.0)

Parzen 96.8 (0.9) 99.1 (0.1) 68.1 (0.5) 65.6 (0.6) 79.3 (0.4)
k-center 96.0 (0.9) 98.4 (0.2) 72.6 (13.6) 67.3 (2.6) 79.3 (2.3)

Support vector DD 97.3 (0.4) NaN (0.0) 69.8 (1.0) 64.4 (0.5) 78.4 (0.6)
w-ball p = 1 98.3 (0.4) 98.0 (0.1) 97.4 (0.2) 78.9 (0.8) 73.3 (1.7)
w-ball p = 2 98.0 (0.5) 97.7 (0.2) 97.7 (0.1) 71.3 (3.2) 45.9 (1.3)
w-ball p = 6 97.0 (0.4) 97.5 (0.4) 91.1 (0.5) 70.9 (2.7) 40.2 (6.5)
c-ball p = 1 96.4 (0.9) 99.3 (0.1) 97.5 (0.1) 77.4 (0.4) 83.9 (0.6)
c-ball p = 2 96.5 (0.5) 99.0 (0.1) 97.3 (0.1) 73.0 (0.3) 82.6 (0.9)
c-ball p = 6 96.0 (0.6) 98.5 (0.2) 91.6 (0.2) 63.3 (0.4) 79.5 (0.7)

p-ball 96.0 (0.6) 99.3 (0.1) 96.6 (0.3) 72.9 (0.8) 82.6 (0.7)
classifiers 6 7 8 9 10

Gauss 60.8 (0.8) 76.8 (0.4) 92.9 (0.3) 91.3 (0.0) 68.4 (3.6)
Min.Cov.Determinant 53.5 (1.2) NaN (0.0) NaN (0.0) NaN (0.0) NaN (0.0)

Parzen 48.3 (0.5) 77.3 (0.5) 92.9 (0.5) 92.4 (0.0) 63.6 (22.4)
k-center 46.9 (5.2) 77.8 (1.1) 87.0 (2.3) 91.0 (0.6) 68.1 (2.1)

Support vector DD 53.0 (2.1) 52.7 (9.4) 92.2 (1.0) 36.7 (0.5) 63.6 (22.4)
w-ball p = 1 71.8 (1.2) 70.4 (0.8) 91.6 (0.7) 84.4 (0.0) 57.1 (3.6)
w-ball p = 2 69.0 (1.1) 80.9 (0.5) 91.5 (0.5) 82.9 (0.0) 56.8 (3.0)
w-ball p = 6 62.3 (1.1) 70.3 (1.9) 90.1 (0.4) 65.0 (1.1) 56.2 (4.0)
w-ball p = 1 72.7 (0.6) 78.4 (0.4) 95.3 (0.4) 92.6 (0.0) 66.9 (2.1)
w-ball p = 2 67.9 (0.4) 78.2 (0.3) 94.6 (0.5) 90.5 (0.0) 71.1 (1.5)
w-ball p = 6 61.1 (1.0) 76.2 (0.3) 93.3 (0.4) 85.2 (0.2) 77.2 (0.9)

p-ball 66.0 (0.5) 76.5 (0.4) 93.3 (0.4) 92.6 (0.0) 70.2 (1.1)
classifiers 11 12 13 14 15

Gauss 84.3 (0.0) 89.9 (0.0) 59.9 (5.9) 88.0 (0.0) 83.0 (0.0)
Min.Cov.Determinant NaN (0.0) 89.9 (0.0) 93.5 (0.0) 89.6 (0.2) 78.6 (0.1)

Parzen 90.6 (0.0) 90.0 (0.0) 50.6 (5.1) 99.0 (0.0) 39.9 (0.0)
k-center 53.3 (3.0) 87.8 (1.8) 55.9 (3.7) 97.5 (1.5) 85.0 (1.5)

Support vector DD 56.0 (0.0) 41.7 (0.0) 50.1 (5.6) 37.6 (0.0) 21.1 (0.0)
w-ball p = 1 96.9 (0.0) 91.2 (0.0) 91.7 (0.1) 99.1 (0.0) 91.2 (0.0)
w-ball p = 2 99.0 (0.0) 91.6 (0.0) 91.8 (0.1) 98.8 (0.0) 92.3 (0.0)
w-ball p = 6 99.1 (0.0) 90.5 (0.0) 91.0 (0.1) 98.4 (0.0) 92.4 (0.0)
c-ball p = 1 93.1 (0.0) 92.1 (0.0) 92.2 (0.0) 98.7 (0.0) 92.6 (0.0)
c-ball p = 2 88.5 (0.0) 93.0 (0.0) 93.0 (0.0) 98.5 (0.0) 92.7 (0.0)
c-ball p = 6 83.4 (0.0) 91.6 (0.0) 93.8 (0.0) 96.9 (0.0) 91.4 (0.0)

p-ball 93.6 (0.0) 93.0 (0.0) 93.0 (0.1) 98.5 (0.0) 92.6 (0.0)

using leave-one-out on the training set [11]. The fourth method uses the k-
centroid method that places several centers and minimizes the largest distance
from any training object to its nearest center. Finally, the support vector data
description [12] is used, that is fitting a ball in a Gaussian kernel space. The
features are rescaled to unit variance, and therefore the width parameter σ in
the RBF kernel was fixed to σ = 1 which gave acceptable results in most cases.

These standard methods are compared to the w-ball, c-ball and p-ball with
varying values for p (when applicable). Five times ten-fold stratified cross-
validation is applied, and the average Area Under the ROC curve [13] is re-
ported. The results are shown in table 2. In some cases the classifier could not
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be trained (for instance, the minimum covariance determinant classifier has a
constraint that it cannot be estimated on datasets with more than 50 features).
For these cases NaN outputs are shown.

The first observation that can be made is that for many datasets, datasets 1,
2, 4, 5, 6 and 8, the �1-metric outperforms all the others, even when a different
formulation is used (i.e. c-ball instead of w-ball). It appears that all these classes
have discrete features, suggesting that the �1 (city-block) distance is indeed
very suited for the description of discrete data. This is tested by discretizing
the features of dataset 15 (where the w-ball performs better for higher p) and
training an w-ball with p = 1, 2, 6. The AUC performances are shown in figure 3.
It shows that by reducing the number of bins, the relative performance of the �1
metric improves while that of the �2 and �6 significantly decreases.

Secondly, for high dimensional data, like datasets 7, 10 and 11, the ball-shaped
models appear to be simple enough (and therefore stable enough) to outperform
more complex models. Often the performance is not that significantly better than
that, for instance, of the Gaussian model, but in some cases it can be significant
(see dataset 11). The difference in performance between w-ball and c-ball can
often be traced to the number of outliers (or the noise) present in the training
set. When the ball center can be represented well by the mean of the training
set, like in datasets 1, 3, 4, 7, and 14, the w-ball is to be preferred. In other
datasets, like 2 and 8, the target class shows a long tail with remote outliers,
shifting the mean of the target class out of the main cluster. In these cases the
more robust center estimate has to be used.

Finally, the most flexible approach, the p-ball, rarely shows the very best
performance, models with a fixed p perform on average slightly better. The
p-ball slightly overfits, but fortunately, the optimized value for p is always close
to the p of the best performing ball. Clearly, a validation set has to be used to
finally judge the best value for p in the w-ball or c-ball. When this validation
data is not available, the p-ball is to be preferred.

4 Conclusions

For many outlier detection problems for which the target data is characterized
by good features, outliers can be detected well by measuring the distance to a
suitable cluster center and thresholding this distance. This paper proposes three
new approaches to optimize the cluster center and the distance measure, such
that the genuine data is described well by an �p ball. In the first formulation
the feature weights are optimized, by solving a linear programming problem.
The second formulation optimizes the cluster center in a robust gradient descent
approach. In the last formulation not only the center but also the parameter p
is optimized, using a general multivariate nonlinear optimizer.

The results on real world data show that datasets with discretized feature
values benefit from the use of the �1 metric. On the other hand, the optimization
of the p in the �p metric appears to be sensitive to overtraining. When one
considers relatively outlier-free data, it is advantageous to fix the center of �p ball
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and optimize the scaling of the features. When significant outliers are present,
or the target class distribution is significantly asymmetric, the �p ball has to
optimized using a robust procedure.

Obviously, the single ball solution can be extended to a set of balls by us-
ing the standard k-means clustering algorithm. In k-means clustering often the
Euclidean distance to cluster prototypes is used. This can be replaced by the
�p-distance to cluster centers resulting in a generalized Lloyds algorithm [14].
The cluster centers, the feature weights and possibly the p can be optimized
using one of the three ball fitting approaches as they are presented in this paper.
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Abstract. Recently human gait has been considered as a useful biometric sup-
porting high performance human identification systems. We propose a view-
based pedestrian identification method using the dynamic silhouettes of a human 
body modeled with the hidden Markov model (HMM). Two types of gait mod-
els have been developed both with a cyclic architecture: one is a discrete HMM 
method using a self-organizing map-based VQ codebook and the other is a con-
tinuous HMM method using feature vectors transformed into a PCA space. Ex-
perimental results showed a consistent performance trend over a range of 
model’s parameters and the recognition rate up to 88.1%. Compared with other 
methods, the proposed models and techniques are believed to have a sufficient 
potential for a successful application to gait recognition. 

1   Introduction 

Recognizing people by their gait, the style of walking of an individual, can be per-
formed without asking them to take any specific actions and even without making 
them be aware whether they are being watched or not. From Johansson’s studies in 
psychophysics with moving light displays (MLD) attached to body parts, it appeared 
that humans have the capability of recognizing their acquaintance only through their 
gait [1].  

Recently human motion analysis has been receiving increasing attention from 
computer vision researchers and it is well explained in the review papers by J. K. 
Aggarwal et al. [2], C. Cedras et al. [3], and D. M. Gavrila et al. [4]. According to 
these papers two distinct methods for human motion analysis are distinguished: 
‘model-based method’ using a priori shape models, and the other, called ‘appearance-
based’ or ‘view-based’, without using explicit shape models. Both methods take a 
common sequential process of (1) feature extraction, (2) feature correspondence, and 
(3) high-level processing. The difference between them lies in the way of processing 
feature correspondence. ‘Model-based’ methods compare the input features taken 
from an input image with the parameters of the 2D or 3D body models prepared in 
advance, and make feature correspondence automatically. On the contrary, the ‘ap-
pearance-based’ methods carry out the feature correspondence by varying the values 
of position, velocity, shape, color, and so on from consecutive frames. 

A brief review is in order. In the works of A. Kale et al. [5, 6], they used the width of 
the pedestrian’s silhouette of the binarized images as the feature vector and developed 
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five basic stances from k-means clustering. Then a new feature vector composed of 
the Euclidean distance between an input feature vector and each of the 5 basic stances 
was the final feature vector for training HMM and recognizing people. On the other 
hand, J. J. Little et al. [7] extracted the frequency and phase of the gait derived from 
optical flow as the feature vector. In [8], C. BenAbdelkader et al. encoded the planar 
dynamics of a walking person in a 2D plot consisting of the pairwise image similari-
ties of the sequence of images of the person and proposed a recognition method using 
k-nearest neighbor after reducing the dimension of the feature vector. Whereas R. 
Collins et al. [9] introduced a view-dependent method using template matching of 
body silhouettes. The key frames from a test sequence were extracted by performing 
cyclic gait analysis and those frames were compared to training frames using normal-
ized correlation. The recognition was performed by nearest neighbor matching among 
correlation scores.  

In this paper, we use people’s silhouette as a profile vector and represent the char-
acteristics of the gait with the sequences of the profile vectors. Since body shape 
alone is not enough for gait recognition, we need to take account of the gait dynamics 
which can be modeled by a ‘Markov chain’. A hidden Markov model or HMM is a 
Markov chain variant that is very powerful for modeling highly variable and noisy 
patterns. We have chosen this model for gait recognition. In this work, the profile 
vector used for the recognition is composed of a fixed number of horizontal distance 
measurements of the left, right boundary of a person from the center and then normal-
ized with respect to the height of the person. This feature can be directly compared 
with the features of A. Kale et al. [5, 6] and it has turned out that the features used in 
our work showed better performance. We have designed two separate recognizers, 
each using discrete hidden Markov models (DHMM) and continuous hidden Markov 
models (CHMM) respectively. For the training of DHMMs, each feature vector is 
quantized to a codeword by a self-organization map (SOM). For the training of 
CHMMs, feature vector is mapped to a point in the PCA space to reduce the dimen-
sion. In this way we kept the models from being overfitted due to the lack of training 
data. 

The contribution of this paper is found in the way of representing the structural 
characteristics and the modeling dynamic characteristics of the human gait. The struc-
tural characteristics are represented by the left and right boundaries of the person and 
the dynamical characteristics are well models by an HMM. The HMM has one-way 
directed circular ring topology fitted to recognizing a person in a video sequence 
without external segmentation into a single gait cycle. This type of an HMM does not 
require a specific starting point in a gait cycle. Another benefit of this model we be-
lieve is that the longer the input sequences are, the better the recognition rate is. 

2   Profile Extraction 

One of the simplest and most direct ways to represent the shape of a pedestrian is the 
silhouette against the background. The silhouette can be described as an ordered  
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sequence of boundary points and we define it as a profile vector that represents the 
shape characteristics of the person. A profile vector is composed of the horizontal 
distances from the horizontal center to the left and right boundary of the human blob 
B (Fig.1). The horizontal center of the person is calculated as 

 

( , )x y B
c

x

X
B
∈=          (1) 

 
where, B is a set of foreground image pixels, cX  is the horizontal center of B, B  is 

the number of pixels and (x, y) is the coordinate of the pixel in the image. If we con-
sider all the boundary pixels of the silhouette in composing a profile vector, its di-
mension of the vector will be too high and variable from one frame to another. So, we 
choose only 40 pixels of the silhouette of the human blob, 20 pixels from the left and 
20 pixels from the right sampled at a fixed vertical interval from the bottom. The 
elements of the vector are then normalized with respect to the height of the human 
blob. 
 

 

Fig. 1. Composition of a profile vector 

3   Model of Human Gait 

In this paper, we create two kinds of gait models using the discrete hidden Markov 
model (DHMM), and the continuous hidden Markov model (CHMM), to represent the 
dynamic characteristics of a human gait. The input data for the DHMM are the code-
word sequences quantized from the profile vector sequences by a self-organization 
map (SOM) and those for the CHMM are the sequence vector transformed into a 
subspace of PCA. We first explain the vector quantization for the DHMM and then 
the PCA for the CHMM. 

3.1   SOM 

SOM is a topology preserving feature map. It being simple, we chose this for a vector 
quantizer of the feature vectors. Taking account of the fact that a human gait is com-
posed of a cyclic sequence of stereotypic stances, we designed the output layer of the 
SOM to have a ring topology with each state corresponding to a typical stance in the 
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sequence. The SOM is trained with the profile vectors extracted from the input image 
sequences. The set of trained weight vectors are considered as a codebook for the gait 
pattern space. With this SOM we quantize each input profile vector into a codeword. 

 
arg min k

k
codeword = −x w .         (2) 

 
Here ⋅  is the Euclidean norm of the difference between the input profile vector and 

the code vector, x  is an input vector and kw  is the codeword vector. We choose the 

codeword whose code vector has the minimum Euclidean distance from the input 
profile vector. 

3.2   Principal Component Analysis 

The principal component analysis is the method that can be used to reduce the dimen-
sion of any vectors by considering the variance of and the relationship among vari-
ables, while minimizing the loss of the information. It reduces the dimension of a 
vector by transforming it into the direction that has a large variance. This is originated 
from the fact that there is more information in the direction having a large variance 
compared to the direction having the small variance. We use this method to reduce the 
dimension of the profile vectors for the training of the CHMM. 

It is known that the sum of the eigenvalues of the covariance matrix is equal to the 
total variance of the original variables. We can consider a mapping to a reduced di-
mension by specifying that the new components must account for at least a fraction of 
d of the total variance. Choosing a value of d, which is a fraction of the total variance, 
between 70% and 90% preserves most of the information in x [10]. We then choose k 
so that 

1

1 1 1
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i i i
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−
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≥ ≥          (3) 

where, iλ  denotes the eigenvalues and p is the rank of the covariance matrix. 

3.3   Gait Model 

Recognizing people using structural features of body silhouette is not easy since sim-
ple structural characteristic can be shared by many individuals. We can exploit the 
observation that people have their own dynamic characteristics or temporal features, 
even though they have similar structural characteristics. These dynamic characteris-
tics can be represented by the Markov chain in an HMM. 

The transition of the states in an HMM is modeled by the ‘Markov process’. The 
sequence of the transition of the states is not observable, i.e. hidden, and it is possible 
to estimate it through an observable data. 

In this paper, we design the topology of an HMM as a circular ring (Fig. 2) consid-
ering that human gait is periodic. The parameters of the DHMM are trained using  
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Fig. 2. Topology of a gait HMM 

the codeword sequences quantized by the SOM and those of the CHMM are trained 
using the reduced vectors transformed into a PCA space. 

Since the HMMs are trained for each person in the data set, it can be used as a way 
to represent the characteristics of the specific person’s gait. In other words, when 
there is an input vector sequence taken from the video sequences of a person’s gait, 
the HMM which best represents the characteristics of the person’s gait will produce 
the highest likelihood for the input vector sequence. The likelihood of each HMM is 
computed by the forward algorithm. 

 
( )ˆ arg max | i

i

i P λ= X .         (3) 
      
Here, X  is the input vector sequence, iλ  is the HMM model for the ith person. 

4   Experiment and Analysis 

The proposed method was tested on a video database consisting of seven sequences 
for each of the six subjects, taken from the web site of the University of Calgary in 
Canada [11]. Those video sequences were captured at 15 frame rate, 24 bit colors and 
an image size of 320×160. Each sequence includes 85 frames and 6 gait cycles on 
average. 

4.1   Data Coding 

Fig. 3 shows the example of the vector quantization for a half cycle of a person’s gait 
using an SOM with seven output nodes. The quantized vector sequences are used for 
the DHMM training. 

A profile vector contains the 40 boundary points as marked in Fig. 4(a). Each of 
the elements is the horizontal distance from the vertical center to the left and right 
boundary of a human blob and is numbered in clockwise starting from the left bottom 
(Fig. 4(a)). The covariance matrix of all the profile vectors used for training motivates 
us to reduce the dimension. As shown in Fig. 4(b), only a small fraction of elements 
(covariances) are significant implying great variation and correlation. Those numbers 
in each axis indicate the nth element of a profile vector. It is conjectured that these 
bright colored parts correspond to key features to be used to recognize people. Those 
components are feet/legs (1-5, 35-40) and hands/arms (11-15) regions. 
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Fig. 3. Vector quantization example for half cycle 

   
     (a)               (b) 

Fig. 4. (a) The elements of the profile vector (b) Visualization of the covariance matrix of the 
profile vectors 

4.2   Recognition 

Due to the lack of the test data, cross validation was used. In the DHMM test by vary-
ing the number of codeword and states, it showed the highest performance, 88.10%, 
with seven states and seven code vectors. The detailed results over a number of states 
with fixed codebook size are shown in Table 1. 

Table 1. Results of DHMM (codebook size = 7) 

DHMM test 

# States 5 6 7 8 9 

Hits(%) 40.48 47.30 88.10 69.05 0.0 

For the test of the CHMM, we varied the reduced-dimension of each profile vec-
tors. The highest performance was obtained with seven states and eight dimensions. 
The result with seven states is shown over a number of dimensions in Table 2. 
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Table 2. Results of CHMM (# of states = 7) 

CHMM test 

Dimension 5 6 7 8 9 

Hits(%) 76.19 73.81 69.05 88.10 76.19 

4.3    Performance 

In the third experiment, we compared the performance with those of the two other 
methods by J. J. Little et al. [7] and A. Kale et al. [5] using the same data. In the J. J. 
Little et al. research, they achieved a recognition rate of 90.5% by composing feature 
vectors with the frequency and phase taken from optical flow using the video se-
quences of twice as big as the frame size and the frame rate of our data. Direct com-
parison shows that J. J. Little et al reported higher performance than ours, but it was 
on different (or more detailed) data set. On the other hand, A. Kale et al’s method 
achieved 64.3% on our data set with five HMM states. The comparison between our 
method and that of A. Kale et al. is shown in Fig. 5. Although we can not strongly 
argue for the statistical significance of the result, our system’s performance was 
higher in all cases with a single candidate. 

 

Fig. 5. Performance comparison with Kale’s 

5   Conclusion 

We proposed an improved gait recognition method using HMMs. It added new fea-
tures including SOM-based codebook and a profile vector representation for each 
frame, and the cyclic HMM topology for the gait dynamics. When tested on the video 
data from the web site of the University of Calgary in Canada by varying the number 
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of states, codebook sizes and the number of dimensions, we achieved the highest 
recognition rates with seven states in both the DHMM and the CHMM. 

In this work, we used a background subtraction technique to extract a silhouette 
without considering clothes, illumination, camera angle and walking angle. And we 
used a small data set for test. These are the direction of immediate future work. One 
advantage of the model-based approach is that we can estimate the inner structure of 
the pedestrian from the SOM and HMM as shown in Fig. 6. This result can be used to 
confirm the silhouette shape and/or to enable further understanding of human motion 
of activity. 

 

Fig. 6. Pre-estimated stick figure 
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Abstract. The normal distribution in Euclidean space is used widely for
statistical models. However, for pattern recognition, since pattern vec-
tors are often normalized by their norm, they are on a hyper-spherical
surface. Therefore, we have to study a normal distribution in a non-
Euclidean space. Here, we provide the new concept of geometrically lo-
cal isotropic independence and define the Maxwell normal distribution
in a manifold. We also define the Mahalanobis metric, which is an ex-
tension of the Mahalanobis distance in Euclidean space. We provide the
Mahalanobis metric equation, which is covariant with coordinate trans-
formation. Furthermore, we show its experimental results.

1 Introduction

In many fields, such as pattern recognition and data analysis, a normal distri-
bution in Euclidean space is used for a statistical model. However, for pattern
recognition, pattern vectors are often normalized by their norm and they are
not in Euclidean space but on a hyper-spherical surface. Therefore, we have to
study a normal distribution in a non-Euclidean space.

The normal distribution is characterized by the equality between sample
mean and maximum likelihood, isotropic independence, maximum entropy or
maximum number of cases, and limits such as those provided by the central
limit theorem. In this paper, we extend the second characterization. We propose
the concept of geometrically local isotropic independence (GLII) and define the
Maxwell normal distribution in a manifold (MNDM). From the definition, we
give MNDM on the n-dimensional hyper-spherical surface Sn and show that in
the case of S2, it coincides with the Fisher distribution [1].

The Mahalanobis distance [2], which is a distance normalized by a variance-
covariance matrix, is also used for pattern recognition and data analysis. By
using it, we can know that a distance between two vectors that is not large
in terms of Euclidean distance may be large from the viewpoint of probability
(Fig. 1(a)).

In the n-dimensional Euclidean space En, the normal distribution with aver-
age μ and variance-covariance matrix Σ is expressed by the following probability
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(a) (b) (c)

Fig. 1. Mahalanobis metric

distribution function (p.d.f.):

p(x) =
1√

(2π)n det(Σ)
exp(−〈Σ−1(x− μ),x − μ〉/2), (1)

where 〈 · , · 〉 denotes the inner product and Σ is assumed to be nonsingular.
When x is mapped to y by a linear transformation y = Σ−1/2x, p is transformed
to the p.d.f. of the standard normal distribution of y. The inner product that
expresses the Mahalanobis distance is given as the pull back of the inner product
as 〈y, y′〉 = 〈Σ−1x,x′〉.

Suppose that the counter of a p.d.f. is given as in Fig. 1(b). It is natural that
the distance is evaluated not by a straight edge but by a curve. By extending the
linear transform to a diffeomorphism, we obtain the Mahalanobis metric. It is
very interesting that its differential equation does not depend on the coordinate
system or the original metric. Furthermore, the diffeomorphism will disappear
in it.

Information geometry [3] uses a manifold for probability distributions. How-
ever, since it uses a manifold as the set of distributions, there is no direct rela-
tionship to our theorem.

In Section 2, we describe the characterization of the normal distribution in
Euclidean space. In Section 3, we define GLII and provide its differential equa-
tion. In Section 4, we define MNDM as a solution of the equation and provide
a solution on Sn. In Section 5, we define the Mahalanobis distance and pro-
vide its differential equation. In Section 6, we present experimental results of a
simulation.

In this paper, we restrict manifolds to the Riemannian manifold and use the
Levi-Chivita connection. We assume that every probability distribution function
(p.d.f.) is infinitely continuously differentiable and does not become 0.

2 Characterization of Normal Distribution

We explain the characterization of a normal distribution in Euclidean space. In
some of the following characterizations we assume that the ensemble average is
zero without loss of generality.
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The normal distribution is often called the Gaussian distribution. The fol-
lowing characterization in E1 was given by C.F. Gauss [4]. Let μ and x be the
true and observed values, respectively. Assume that the p.d.f. depends only on
the absolute error |x − μ| and the samples xi (i = 1, 2, · · · ,m) are extracted
independently. If the maximum likelihood estimator of μ is always given by
the sample mean (

∑m
i=1 xi)/n, the distribution should be a normal distribution

whose average is μ.
The velocity distribution of the ideal gas is given as a 3-dimensional normal

distribution (Maxwell distribution) [5]. Below, we briefly describe its characteri-
zation in E2. Let (x1,x2) and (y1, y2) be two 2-dimensional stochastic variables
such that x1 and x2 are independent of each other and so are y1 and y2. We
have {

y1 = x1 cosω + x2 sinω,
y2 = −x1 sinω + x2 cosω (2)

for some ω = nπ/2, where n = 0,±1,±2, · · ·. Then, the distribution of (x1,x2) is
a 2-dimensional normal distribution whose variance-covariance matrix is given
by σ2I, where σ is a positive number and I is a unit matrix.

The characterization by the entropy in E1 is given as follows. Let p(x) be a
p.d.f. defined in (−∞,∞). We assume that p(x) maximizes the entropy

−
∫ ∞

−∞
p(x) log p(x)dx (3)

under the condition that ∫ ∞

−∞
x2p(x)dx = σ2. (4)

Thus, p(x) is given by the normal distribution whose average and variance are
0 and σ2, respectively. Similarly we can derive the normal distribution from the
Maxwell-Boltzmann distribution [6], [7].

The central limit theorem is given as follows [5]. For simplicity, we neglect sev-
eral conditions for convergence. Let xi (i = 1, . . . ,m) be independently extracted
samples of the same arbitrary distribution. Then,

∑m
i=1 xi/

√
n converges to a

normal distribution whose average and variance coincide with those of the orig-
inal distribution, respectively. From the viewpoint of convergence, the normal
distribution is also characterized as the limit of the Poisson distribution.

In a manifold, it is very difficult to define average, variance, and dilation
uniquely. The facts show the difficulty of defining a normal distribution in a
manifold by extending the characterization by Gauss or entropy or the central
limit theorem. Furthermore, in physics, since the variance, which is given by
a square term, means the energy, the condition of its preservation is justified.
However, in general, the reason why we fix the variance is not clear.

Therefore, in this paper, we extend the characterization by Maxwell. It is
based on the independence. The assumption of independence of a distribution
with respect to orthogonal coordinates is reasonable in many cases. In the
following discussion, we assume that the dimension of manifolds is not less
than 2.
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3 Geometrically Local Isotropic Independence (GLII)

In E2, we can describe the independence as p(x, y) = p(x)p(y). However, in a
manifold we cannot construct a global orthogonal coordinate system based on
geodesics that correspond to the orthogonal coordinate system in En. Thus,
we cannot use the characterization by Maxwell in En directly. We propose the
concept of geometrically local independence (GLI). Since we cannot define the
global direction in a manifold either and only the isotropic independence is
necessary to extend the characterization by Maxwell, we define the geometrically
local isotropic independence (GLII).

Let {xμ} be a local coordinate system in a manifold. Let gμν be a metric
tensor on the coordinate system {xμ}. Let g = det(gμν). Let p be a p.d.f. on
the coordinate system {xμ}. Let q be its p.d.f. normalized by

√
g (We call it the

normalized p.d.f. for short), which is written as

q =
p
√
g
. (5)

This q is a scaler and it is invariant for the coordinate transformation. We define
δμν as

δμν =
{

1 (μ = ν)
0 (else) . (6)

Here, let {xμ} be a normal coordinate system [8]. There exists a normal co-
ordinate system at every point in a Riemannian manifold. At the origin (xα =
0, α = 1, 2, · · · ,n) of the normal coordinate system, we have gμν = δμν and all
Levi-Chivita connections Γμ

νγ vanish. Now, we define GLI.

Definition 1. (Geometrically local independence, GLI) Let {xμ}n
μ=1 be a nor-

mal coordinate system. We define a normalized p.d.f. q as being geometrically
locally independent (GLI) with respect to xμ and xν (μ = ν) at the origin
(xα = 0, α = 1, 2, · · · ,n) if and only if 1

q
∂q

∂xμ (the changing rate of q nor-
malized by q with respect to xμ) does not depend on xν at the origin with the
approximation of the first order of coordinates.

Theorem 1. Let q be a normalized p.d.f. At the origin of the normal coordinate
system, the probability distribution is GLI with respect to xμ and xν (μ = ν) if
and only if at the origin we have

∂2

∂xν∂xμ
log q = 0. (7)

The proof of this theorem is clear. Theorem 1 yields that xμ and xν are com-
mutative in Definition 1. Thus, we can say ’GLI with respect to xμ and xν ’.

GLI is an extension of the independence since in E2 GLI for any parallel
translation of a coordinate system is equivalent to the independence.

Theorem 2. Let {x1,x2} be the orthogonal coordinate system of E2. Let
{y1, y2} be an orthogonal coordinate system, which is given by its parallel trans-
lation. A p.d.f. is GLI with {y1, y2} for every parallel translation if and only if
x1 and x2 are independent.
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The proof of this theorem is also clear since every coordinate system in E2 is a
normal coordinate system. Now, we define GLII.

Definition 2. (Geometrically local isotropic independence, GLII) Let {xμ} be
a normal coordinate system. Let {x′μ} be a normal coordinate system given by
a rotation at the origin. A p.d.f. is said to be geometrical isotropically locally
independent (GLII) at the origin if and only if the normalized p.d.f. is GLI with
respect to any pair of coordinates yμ and yν (μ = ν) of a system which is given
by an arbitrary rotation of {xμ} whose center is the origin.

Theorem 3. Let q be a normalized p.d.f. At the origin, q is GLII if and only if

∂2

∂xμ∂xν
log q = 0,

∂2

∂(xμ)2
log q =

∂2

∂(xν)2
log q (8)

for any pair of xμ and xν (μ = ν).

This theorem can be proved by the transformation of partial derivatives. We
extend Theorem 3 from a normal coordinate system to a general coordinate
system in the following Theorem 4. We denote the covariant differential by ∇μ.

Theorem 4. A normalised p.d.f. q is GLII if and only if

∇μ∇ν log q = fgμν (9)

with a scalar f .

By reducing eq. (9) with gμν , we can get f . Then, eq. (9) is equivalent to(
∇μ∇ν −

1
n
gμνΔ

)
log q = 0, (10)

where Δ = gαβ∇α∇β and n is the dimension of the manifold.
Since ∇ν log q is a covariant differential of a scalar, it is equivalent to a partial

differential, that is, eq. (9) is equivalent to ∇μ∂ν log q = fgμν . However, we
describe it by a covariant differential in order to see the symmetry easily.

Proof. First, let {xμ} be a normal coordinate system. From equations in (8),
the distribution is GLII if and only if

∂2

∂xμ∂xν
log q = fδμν . (11)

Since xμ is a normal coordinate and log q is a scalar, ∂2

∂xμxν log q and δμν are
equal to ∇μ∇ν log q and gμν , respectively. Then, eq. (11) can be described as

∇μ∇ν log q = fgμν . (12)

We can let f be a scalar since f is the same for any normal coordinate system
at the point. Then, both sides of eq. (12) are transformed as 2nd order covariant
tensors so that eq. (12) holds for any coordinate system.

Conversely, if eq. (12) holds for a scalar f in a coordinate system, then eq. (11)
holds in the normal coordinate system. This completes the proof.
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4 Maxwell Normal Distribution in a Manifold (MNDM)

For the GLII probability distribution in En, we have the following theorem.

Theorem 5. If a probability distribution is GLII at every point in En, it is an
uncorrelated normal distribution whose variables have the same variance.

This theorem can be proved since the variables of the partial differential equation
can be separated. From Theorem 5, we propose the following definition.

Definition 3. (Maxwell normal distribution in a manifold (MNDM)) A prob-
ability distribution is MNDM if and only if it is GLII at every point.

As an example of MNDM in a manifold, we provide it in Sn.

Theorem 6. The normalized p.d.f. of MNDM on Sn depends only on the angle
x1 from some point on Sn, and for a constant κ it is given by and for a constant
κ it is given by

q = C exp(κ cosx1), (13)

where C is a constant given by

C =
κ(n−1)/2

(2π)(n+1)/2I(n−1)/2(κ)
, (14)

where Ip(κ) is the deformed Bessel function.

The proof of this theorem is so long we provide it in another opportunity.

Remark. MNDM in S2 coincides with the Fisher distribution, which was orig-
inally given as a Maxwell-Boltzmann distribution of a magnetic dipole in a
magnetic field, since its energy is proportional to cosx1, where x1 is the angle
between the magnetic dipole and the magnetic field. When x1 is small, we have
cosx1 � 1−(x1)2/2, so it is approximated by a normal distribution in Euclidean
space. Although the Fisher distribution has similar characterizations by Gauss
and by entropy, the distance used for the definition of the average or variance is
not the ordinary distance on Sn but the distance in En+1 embedding Sn. One
of the advantages of the characterization by GLII is that such embedding is not
needed. Another advantage is that it can provide the Mahalanobis metric, which
we discuss in the next section.

5 Mahalanobis Metric

First, we describe how a p.d.f is transformed with a diffeomorphism (Fig. 1
(c)). Let M and M ′ be manifolds. Let {xμ} and {yμ} be the coordinate sys-
tems, and let gμν and g′μν be the metric tensors in M and M ′, respectively.
Let g = det(gμν) and g′ = det(g′μν). Let T : M → M ′ be a diffeomorphism.
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Let q′ be a normalized p.d.f. in M ′. Since we can unify elements in M ′ and M ,
we can consider a normalized p.d.f. q in M as corresponding to q′. We define
detT as

detT =

√
g′

g
det
(
∂yμ

∂xν

)
. (15)

Note that detT is invariant with coordinate transformations in both M and M ′.
Then, we have

q(x) = detT q′(T (x)). (16)

We propose the following definition of the Mahalanobis metric.

Definition 4. (Mahalanobis metric) We assume that there exists a transforma-
tion T : M → M ′ and the normalized p.d.f. q′ of MNDM in M ′ such that a p.d.f
p is given by transforming q′ by T. The Mahalanobis metric g̃μν with respect to
p in M is given as the pull back of g′μν .

From the assumption, we have

∇′
μ∇′

ν log q′ = fg′μν (17)

where ∇′
μ is the covariant differential defined by the metric tensor g′μν in M ′.

Let g̃ = det(g̃μν). Since we have

det
(
∂yμ

∂xν

)
=

√
g̃

g′
, (18)

eq. (15) and p(x) =
√
g q(x) yield that

q′(T (x)) = p(x)/
√

g̃. (19)

Furthermore, the transformation from (x, g̃μν) to (y, g′μν) by T is equivalent to
the coordinate transformation. Then, we get the following theorem by rewriting
g̃μν as gμν and calculating ∇μ∇ν log g.

Theorem 7. A metric gμν is a Mahalanobis metric with respect to p if and only
if

∇μ∇ν log p− ∂

∂xν
Γα

αμ + Γ η
νμΓ

α
αη = fgμν . (20)

with a scalar f .

Remarks. Eq.(20) is covariant with the coordinate transformation. Since
eq. (20) does not include a term that depends on the original metric of M ,
the Mahalanobis metric does not depend on the original metric either. That is
an extension of Mahalanobis distance not depending on the original inner prod-
uct [9]. Although we introduced a diffeomorphism T for its definition, terms with
respect to T and M ′ disappear in eq. (20).
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6 Experiment on Mahalanobis Metric

It may be difficult to solve eq. (20) directly since it includes an arbitrary scalar
f . When we assume that M ′ = En and the variance of the normal distribution
in M ′ is one, we have f = −1. (For another example, if M ′ = Sn, we have
f = − log q.) Then, the equation can be solved. Since this Mahalanobis metric
gμν is given as a metric transformed from En, we have Rμ

ναβ = 0. We add this
equation to the criterion.

For the experiment, we let M ′ = E2 and a diffeomorphism be

y1 = αx1, (21)
y2 = α(x2 + βh(x1)h(x2)), (22)

where α = 3, β = 0.3, and

h(x) =

{
e
4 1− 1

1−x2 (−1 < x < 1)
0 (else)

. (23)

From this diffeomorphism we can calculate p as shown in Fig. 2(a). We transform
the differential equation (20) and Rμ

ναβ to difference equations on a 51×51 mesh.
We let the differentials of gμν on the boundary be zero. Let F be the squared
sum of errors of the difference equations. We calculate the Mahalanobis metric
by the steepest descent method.
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Figures 2(c) and (d) illustrate the calculated Mahalanobis metric tensor com-
ponents g22 and g11. Since we know the diffeomorphism here, we know the ideal
Mahalanobis metric shown by dashed lines in the figures. From these figures, we
can see that the calculated metric can approximate the ideal Mahalanobis met-
ric. Figure 2(b) illustrates ∂2∂2 log p. From gμν = −∇μ∇ν log p, the connection
terms correspond to the difference between Figs. 2(b) and (c), which are very
large. Figure 2(e) and its rescaled version (f) illustrate the convergence of F and
the square error of the Mahalanobis metric denoted by G. From this figure, we
can see it takes a long time to calculate it. We have to develop a more efficient
method.

7 Conclusions

In this paper, we defined GLI, GLII, and MNDM. We clarified that they are
extensions of independence, isotropic independence, and Maxwell distribution in
Euclidean space, respectively. We provided MNDM on a hyper-spherical surface.
We gave a definition of the Mahalanobis metric, which is an extension of the
Mahalanobis distance. In future work, we will obtain MNDM in other manifolds,
develop a method of obtaining the Mahalanobis metric from samples, and apply
it to nonlinear dimensional reduction.
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Abstract. Pairwise proximities describe the properties of objects in
terms of their similarities. By using different distance-based functions
one may encode different characteristics of a given problem. However, to
use the framework of statistical pattern recognition some vector repre-
sentation should be constructed. One of the simplest ways to do that is
to define an isometric embedding to some vector space. In this work, we
will focus on a linear embedding into a (pseudo-)Euclidean space.

This is usually well defined for training data. Some inadequacy, how-
ever, appears when projecting new or test objects due to the resulting
projection errors. In this paper we propose an augmented embedding
algorithm that enlarges the dimensionality of the space such that the
resulting projection error vanishes. Our preliminary results show that it
may lead to a better classification accuracy, especially for data with high
intrinsic dimensionality.

1 Introduction

Pattern recognition relies on the description of regularities in observations of
classes of objects. How this knowledge is extracted and represented is of im-
portance for learning. Representations which are alternative to feature-based
descriptions should be studied as they may capture different characteristics of a
problem we want to analyze [1,4].

An example of such a representation is a proximity representation, where
every object is described by some continuous nonnegative symmetric function
of two variables. Learning from such representations relies on embedding of the
proximity data into some vector space. It is usually desirable to find a mapping
such that the initial topology is preserved as much as possible. The simplest
way to do that is to construct an isometric mapping, which preserves all given
distances.

However the broad range of proximity functions, satisfying only the conditions
described above, may not allow one to construct an isometric embedding into
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Euclidean space. In that case one needs to look for a more general space, with
smaller number of restrictions. The solutions might be to design a mapping into
pseudo-Euclidean space.

Embedding algorithms are usually defined on the basis of some representation
objects, called prototypes. The projection accuracy for new data is proportional
to the number of dominated intrinsic dimensions, described by them. If one has
sufficient amount of prototypes, the projection error is of a little significance.
But, if the cost to get more data for a space representation is very high, aug-
mented embedding might be a good solution. It reconstructs given proximity
information by means of one (Euclidean) or two (pseudo-Euclidean) extra di-
mensions. Nevertheless, it does not help much in cases when data has large
intrinsic nonlinearities, since it is based on a global linear projection.

The paper is organized as follows. In section 2, a linear embedding of distance
data into a pseudo-Euclidean space is presented. In section 3 augmented embed-
ding for proximity data is presented. Data sets with experiments are described
in Section 4. Conclusions are presented in Section 5.

2 Linear Embedding in (pseudo-) Euclidean Spaces

In this section we focus on linear isometric embedding of distance-based infor-
mation into pseudo-Euclidean spaces. The results also hold for Euclidean cases,
i.e. when the Gram operator derived from distances is positive definite, and co-
incide with the classical scaling [7,8]. The technique described in this chapter is
standard and can be found in [1,4].

The formalism is as follows. Suppose we have a pair (X, d), where X is a finite
set of n elements equipped with a pairwise continuous non-negative symmetric
distance functions dij . These distance functions define a matrix D of size n×n.

Having these properties of proximity functions, the whole finite representation
D can be embedded into pseudo-Euclidean space.

By definition, a pseudo-Euclidean space R(p+q) [4] of signature (p, q) is a pair
(V,Φ), where V is a vector space under the field of real numbers of dimension
(p + q) and Φ is a non-degenerate symmetric bilinear form, which represents
the generalized inner product in V . Given an orthonormal (w.r.t Φ) basis e =
(e1, e2, · · · , en), the generalized inner product between two vectors in x,y ∈ V
is expressed as

〈x,y〉pq =
p∑

i=1

x(i)y(i) −
p+q∑

j=p+1

x(j)y(j). (1)

Any pseudo-Euclidean space admits a decomposition into a direct orthogonal
sum of two non-commensurate Euclidean subspaces of dimensions p and q re-
spectively, i.e. R

(p+q) = Rp �Rq. The inner product is positive definite in Rp and
negative definite in Rq. The pseudo-Euclidean space corresponds to a Euclidean
space in case of q = 0.

From the definition it is clear that the notion of inner product in pseudo-
Euclidean spaces is relative, since its is not necessary positive definite and the
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square-distance, defined as ‖x− y‖2 = 〈x− y,x − y〉 = (x− y)TJpq(x− y) can

be negative. Here, Jpq =
(
Ip×p 0

0 −Iq×q

)
is the canonical matrix of the symmetric

bilinear form, corresponding to the orthogonal (w.r.t Φ) basis e = (e1, e2, · · · , en)
of V and I represents an identity matrix.

Based on linear relations between square pseudo-Euclidean distances D2 =
(d2

ij) and inner products in R(p+q) space [4], one can write:

D2 = diag(G)1T + 1diag(G)T − 2G, (2)

where 1 is a column vector of ones and G is a Gram operator, defined as:

G = XJpqXT . (3)

Here, X is a matrix of object coordinates in that space.
Assuming that only distances between a set of objects are given, the sought

coordinates can be determined based on the relations between distances and in-
ner products, as presented above. Note that having found one set of coordinates,
another one can be created by a rotation and(or) a translation.

The mapping is constructed such that the origin coincides with the mean of
X. It is done by using a centering matrix J = I− 1

n11T . So, G = − 1
2JD2J. The

underlying configuration X can be found as an eigendecomposition:

G = Q|Λ|1/2 ( Jpq

0

)
|Λ|1/2QT , (4)

where Λ is a diagonal matrix of the first decreasing p positive and q negative
eigenvalues (k = p + q), followed by zero(s). Q is a matrix of the corresponding
eigenvectors. Consequently,

X = QkΛ
1
2
k PT , k ≤ n, (5)

where only k eigenvectors are taken into account. Here, P is some matrix, which
brings the unique solution by fixing the rotation and satisfying the constraint:

PJpqPT = Jpq. (6)

X in a k-dimensional space is determined from the matrix D. If k � n then a
smaller D could be used to determine this k-dimensional space. The projections
of new objects, represented by the distances to objects from X can be done by
linear operations.

3 Augmented Embedding

Suppose we have selected k prototype patterns xi ∈ X . We may construct (k−1)
dimensional pseudo-Euclidean space based on them, where each object from
this set of selected objects has coordinates xi = (x(1)

i ,x
(2)
i , . . . ,x

(p)
i ,x

(p+1)
i , . . . ,
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x
(p+q)
i )T , p + q = (k − 1) and i = 1, . . . , k. Let us now assume that our con-

figuration lives in a (k+1)-dimensional space such that we add one dimension
to represent the positive subspace p and one dimension to represent the neg-
ative subspace q. The configuration (5) stays the same, except that the coor-
dinates for these two extra dimensions are zeros. Objects from some new set
X̃ may be projected on this space by given their distances to xi. For every
xs ∈ X̃ (s = 1, . . . ,m) it can be done as follows:

d2
si =

p∑
l=1

(
x(l)

s − x
(l)
i

)2
−

k−1∑
l=p+1

(
x(l)

s − x
(l)
i

)2
+ ε2, (7)

where ε2 = ε2
p − ε2

q stands for the projection error and might be negative. We
also assume that the center of mass lies in the origin:

∑k+1
i=1 xi = 0, remembering

that the last coordinates for each prototype in our space are x
(k)
i = x

(k+1)
i = 0.

Summing up among all k prototypes we receive the following equation:
k∑

i=1

d2
si =

k∑
i=1

p∑
l=1

(
x(l)

s − x
(l)
i

)2
−

k∑
i=1

k−1∑
l=p+1

(
x(l)

s − x
(l)
i

)2
+ kε2 (8)

Opening brackets and recalling that the norm of any vector xs can be expressed
as:

‖xs‖2 =
p∑

l=1

(
x(l)

s

)2
−

k−1∑
l=p+1

(
x(l)

s

)2
+ ε2 (9)

we receive:

‖xs‖2 =
1
k

k−1∑
i=1

(
d2

si − ‖xi‖2) (10)

Substituting this result into equations (7) and after some computations we re-
ceive the following solution for the projected object xs into (k − 1)-dimensional
space as xs

′
:

x
′
s =

1
2
|Λ|−1JpqX

′
i

T (
diag(Gi)− d2

s

)
, (11)

Here X
′
i is a matrix of prototype coordinates, Gi is a Gram matrix for objects

from X
′
i and d2

s is a vector of distances from an object xs to all prototypes xi.
One should remember that the solution for x

′
s is unique within the fixed

rotation: x
′
s = Q|Λ|1/2PT , that satisfies the constraint (6). Finally, the sought

vector of coordinates for the projected object can be derived as follows:

‖xs‖2 = ‖x′
s‖2 + ε2 (12)

On the other hand, recalling (10) and rewriting it in the matrix form:

‖xs‖2 = −1T

k
(diag(Gi)− d2

s), (13)

we can derive ε2.
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However,
ε2 = ε2

p − ε2
q. (14)

It means, that the all possible solutions for εp and εq, lie on a hyperbola (14) in
the augmented subspace.

Our task is to optimize both positive and negative parts simultaneously to get
a unique solution. It can be done in different ways. First, in a non-regularized
version, one may just check the sign of ε2 and depending on that assume the

existence of only one εp or εq of the variable, calculating it as sign(ε2)
√
|ε2|. It

means that the only one εp or εq encodes the projection error while the other
is zero. As a result the objects will be projected directly on the axes of the
augmented 2D subspace.

More advanced techniques, taking some assumptions about possible solutions,
could also be constructed, assuming the simultaneous existence of both εp and εq

variables. We will focus on looking for the so-called regularized normal solutions
(solutions near the origin) that take the history into account, i.e. values close to
the positive and negative class means, averaged among all axis in the space of
dimension (p + q). For this we will minimize the following functional:

F (εp, εq) = (εp − μ̂p)2 + (εq − μ̂q)2 �→ min, (15)

where

μ̂p =
| μp |
p

μ̂q =
| μq |
q

(16)

expresses the averaged absolute values of positive and negative distribution
means for each class in the (k − 1)-dimensional space. This functional by the
construction is convex and has a unique solution. It should be noted that the
overall positive and negative means of the representation set is at the origin due
to the centering procedure we have done. But, once the projection is made for
the training set, the mean values μp and μq shift.

Moreover, in our regularization algorithm we choose to optimize the position
of the test objects taking into account the class means from the training set.
For each test object, the closest class mean is determined based on the pseudo-
Euclidean distances. It means that μ̂p and μ̂q constitute now the mean vector of
that class.

So, for every new object to project, the task (15) can be solved by the standard
method of Lagrangian multipliers, taking into account the restriction (14).

L = F (εp, εq) + λ
(
ε2 − ε2

p + ε2
q

)
, (17)

where λ is some constant. Constructing Euler equations we receive:

∂L

∂εp
: ε2

p =
μ̂p

2

(1− λ)2

∂L

∂εq
: ε2

q =
μ̂q

2

(1 + λ)2

(18)
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Substituting ε2
p and ε2

q we receive the following equations with respect to λ:

ε2 =
μ̂p

2

(1− λ)2
− μ̂q

2

(1 + λ)2
(19)

Solving this fourth-order equation, we get four solutions. Two of them we reject
since they are imaginary. Among remaining two we select the one that brings
the minimum to our functional (15).

4 Experimental Setup

Ionosphere data set. The data set describes radar returns from the ionosphere
and is obtained from the UCI repository [5]. The targets are free electrons in
the ionosphere. “Good” radar returns are those showing evidence of some type
of structure in the ionosphere. “Bad” returns are those that do not; their signals
pass through the ionosphere.

Received signals were processed using an autocorrelation function whose ar-
guments are the time of a pulse and the pulse number. There were 17 pulse
numbers for the used system. Instances in this database are described by 2 at-
tributes per pulse number, corresponding to the complex values returned by the
function resulting from the complex electromagnetic signal.

The number of instances is 351, the number of attributes is 34 plus the class
attribute. All 34 predictor attributes are continuous; the 35th attribute is either
“good” or “bad”. This is a binary classification task with no missing values.

The dissimilarity matrix computed on the Ionosphere data set and used in
our experiments is Euclidean. Moreover, distances in the matrix are scaled to be
in [0, 1].

Chicken pieces data set. This data set consists of 446 images of chicken pieces
[2]. Each piece belongs to one of five categories, which represents specific parts
of the chicken: wing (117 samples), back (76), drumstick (96), thigh and back
(61), and breast (96). Each image is in binary format containing the silhouette
of a particular piece. Pieces were placed in a natural way without considering
orientation.

To extract string representations, some preprocessing had been done and pro-
vided to us by the group of prof. Bunke [6]. First, edge detection was performed.
Secondly, the edges were approximated by straight line segments of fixed length.
The sequence of angles between the segments were chosen as the string repre-
sentation. Such string representations are then compared by edited distances.
The cost of substitution is the absolute difference between the angles, while the
costs of insertion and deletions are fixed. In our experiments we have used the
segments of length 25 and the insertion and deletion costs 60. Final dissimilarity
matrix computed on a data set appears to be non-Euclidean. Again, distances
are rescaled to be in [0, 1].

In all our experiments we use the classification error of the 1-NN classifier
averaged over 20 repetitions as a performance criterion for our embedding tech-
niques. For both data sets we set uniform prior probabilities for each of the
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(a) Ionosphere data set
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(b) Chicken pieces data set

Fig. 1. Averaged classification error (over 20 repetitions) for 1-NN classifier. Euclidean
distance matrix is computed on Ionosphere data set, while pseudo-Euclidean distances
are computed for Chicken pieces data set.

classes. Training data is divided into two parts. The first part is used for the
representation, randomly chosen from the training set, and defining the pseudo-
Euclidean embedding described in section 2. The remaining part is projected in
this space. In such an augmented space the complete training data is used for
the performance evaluation of the 1-NN rule. The test data are also projected to
this augmented space and the distances to the training objects are recomputed
according to the pseudo-Euclidean distance of that space. The obtained results
are averaged out.

The choice of the 1-NN is justified since all high level classifiers require the
construction of probabilistic models in pseudo-Euclidean spaces, which are not
defined yet in pattern recognition literature, while the 1-NN rule operates di-
rectly with distances obtained via an embedding algorithm. However, the whole
idea described in this paper should be seen as a first step towards the con-
struction of advanced classification methods which are left for our future re-
search.

In figure 1 we use the following notation. “ES” and “PES” denote the usage
of Euclidean or pseudo-Euclidean spaces. The entire training data is denoted
as “DTR”, while for the selected representation set as “DR”. The regularized
or not regularized versions of the augmented embedding are denoted either as
“AR” or “ANR”.

In figure 1 for both different data sets the idea of augmentation helps, es-
pecially when one wants to operate with sufficiently small-dimensional spaces.
However, in pseudo-Euclidean spaces the projection of the training set does
not lead to better classification accuracy, like traditionally in Euclidean spaces.
Moreover, it decreases drastically. Our opinion is that the data is linearly pro-
jected on a very nonlinear space, possibly equipped with curvature and torsion.
In cases the representation set is small to describe all nonlinearities present in
data, the classification possibilities are weak.
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Standard deviations for the Ionosphere data set are less than 0.0251, while
for the Chicken data set are less 0.0182.

Figures 2(a) and 2(b) illustrate the regularized vs. non-regularized versions of
the augmented embedding in pseudo-Euclidean spaces, and bring an intuition
behind them for future high-level pseudo-Euclidean classifiers, despite the fact
that for the 1-NN rule the difference is of little significance. Here, the axes
represent two augmented dimensions, the positive and the negative ones. These
plots visualize how objects from the chicken pieces data are projected into this
2D augmented subspace in both cases: on the axes themselves (non-regularized
version) or when their positions are optimized (regularized version).

Of course, other regularization of the augmented embedding may be con-
structed within this framework. For example, the position on the augmented
subspace may be found in such a way, that some trained distortion function for
projected training objects is minimal and applied to test data. However, this
is only feasible when one has small number of prototypes (to make use of the
whole idea of augmentation) but sufficiently large number of projected training
objects (to train distortion parameters).
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(b) With regularization

Fig. 2. Chicken pieces data set. Projection of test objects in a space, spanned by
10 prototypes. Two pictures represent augmented subspaces, constructed either with
and without regularization. The use of regularization helps to prevent object overlap.

5 Conclusion

In this paper we have presented an idea of an augmented embedding which can be
seen as a first step towards statistical learning in pseudo-Euclidean spaces. The
method helps to reconstruct projection errors made by existing linear embedding
algorithms. It may bring higher level of topology preservation than the standard
methods, especially in cases of small amount of prototypes to construct a proper
space. We have showed that by adding one (in a Euclidean case) or two (in a
pseudo-Euclidean case) extra dimensions it becomes possible to retrieve projec-
tion errors back made by existing linear embedding methods, leading to better
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classification. Our experiments support this statement. However, we should ac-
cept that the projection distortion may take high values, especially in spaces
with large initial non-linearities between objects.
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Abstract. We propose probabilistic framework for analysis of inaccuracies due 
to feature selection (FS) when flawed estimates of performance of feature 
subsets are utilized. The approach is based on analysis of random search FS 
procedure and postulation that joint distribution of true and estimated 
classification errors is known a priori.  We derive expected values for the FS 
bias, a difference between actual classification error after FS and classification 
error if ideal FS is performed according to exact estimates. The increase in true 
classification error due to inaccurate FS is comparable or even exceeds a 
training bias, a difference between generalization and Bayes errors. We have 
shown that there exists overfitting phenomenon in feature selection, entitled in 
this paper as feature over-selection. The effects of feature over-selection could 
be reduced if FS would be performed on basis of positional statistics. 
Theoretical results are supported by experiments carried out on simulated 
Gaussian data, as well as on high dimensional microarray gene expression data. 

1   Introduction 

Well known peaking (over-fitting) phenomenon relates generalization error of pattern 
recognition algorithm and a number of features in finite learning sample situations: 
the generalization error decreases at first with an increase in feature dimensionality. 
Then it saturates and starts increasing afterwards. After discovery [1], this 
phenomenon was transferred to proper selection of the complexity of a classifier: in 
small training-set cases, often it is preferable to use simple structured classification 
rules than the complex ones, and, vice versa, in large training-set cases, complex 
classifiers can be used more efficiently (the scissors’ effect, [2, 3], see also [4], 
Section 1.5]). In neural network training, this effect is known under a name of 
overtraining (overfitting) [5]: with an increase in the number of training iterations the 
generalization error decreases at first, saturates and starts increasing afterwards. Like 
in the problem with input feature dimensionality, here we face an increase in 
complexity of the classifier with a progress of learning procedure. If before training 
the single layer perceptron based classifier, a data mean is shifted to a centre of 
coordinates, one starts training from initial weight vector with zero components and  
training sample sizes  in two pattern classes N2= N1=N/2, then after the first iteration 
performed in a batch mode, one obtains simple Euclidean distance classifier. Next, 
iterative training process gradually moves the perceptron to six more complex 
classifiers [4] (for an introduction into statistical pattern recognition, see e.g. [6]).  
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Peaking phenomenon requires adjusting the dimensionality of input features to 
training sample size and the complexity of the classification algorithm. To reduce the 
number of features,  FS procedures are utilized usually.  There are four examples: 
a) evaluate the quality of p original features independently and select r best ones, 
b) forward selection, c) backward selections and d) random search where from p 
original features one generates a group of m random feature subsets composed of r 
features (r < p). Then one evaluates the quality of all m subsets and selects the best.  

From point of view of a complexity, the algorithm “a” is the simplest. An answer 
which algorithm is more complex, “b” or “c”, depends on p, r and the data. The 
complexity of random search feature selection algorithm is determined by number m. 
In spite of algorithmic simplicity, often random search is comparable in performance 
with more sophisticated FS algorithms. Therefore, algorithm “d” could be utilized as 
an undemanding model to study the complexity of FS problem.  

If the features are selected incorrectly, generalization error of the classification 
system increases. Main factors that are affecting FS success in finite sample size 
situations are: 1) correctness of determination of the number of final features, r, in 
dependence on complexity of the classifier and training set size, 2) the accuracy of the 
criterion and validations sample size utilized to evaluate the quality of feature subset 
and 3) an excellence of the feature selection algorithm. 

Determination of optimal dimensionality was considered in [1, 4, 6, 7]. Accuracy 
of the criteria (a bias, a variance) was considered while comparing methods to 
estimate the classification error [4, 6]. Comparative complexities of various FS 
schema have been studied in [8, 9] and references therein. Very often inaccuracies of 
feature quality determination were ignored. Exceptions are few, papers [10-16]. 

In order to separate effects of FS from that of training, we do not study training 
sample size and complexity relations. We assume there that a variety of already 
trained classifiers exist. Each of them is based on individual feature subset of the same 
dimensionality. On a basis of independent validation set one needs to select the best 
feature subset (classifier). We investigate both the accuracy of performance estimate 
(variance) and the complexity of the FS schema. We use probabilistic framework 
suggested in [10, 11], improve computer simulation tools, derive equations for an 
increase in expected classification error due inexact FS and show that with an increase 
in complexity of the feature subset selection schema, classification error rate exhibits 
peaking behavior. Theoretical and experimental analysis show that while applying 
random search FS schema, in order to obtain better result, one needs consider smaller 
amount of feature subsets and do not select apparently the best subset of features. Ng 
[13] gave reasons for not selecting the hypothesis with the lowest validation error. He 
demonstrated this by analyzing very artificial schema. Presently, we demonstrate such 
effect both analytically and experimentally for realistic feature selection tasks. 

2   Statement of the Problem 

In this section we will elucidate the factors influencing FS accuracy by considering as 
simple pattern recognition problem as possible. Consider two class problem with 
multivariate p-dimensional Gaussian classes with different means, μ1, μ2, and sharing 
common covariance matrix Σ. In this demonstrative example, p=150; only several 
features were “really good”: μ1 - μ2 = [1.45 1.15 0.95  0.80  0.70  0.60  0.55 0.50 0.45 
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0.42 0.40 0.375 0.370 0.3679 0.3657  0.3635   ….   0.0776 0.0755]T. All variances 
were equal to 1.0 and correlations between all pairs of features, ρ=0.667. The 
designer needs to create standard linear Fisher classifier based on a best r-dimensional 
feature subset (r = 8 << p). Note, that in this example with equal correlations, a subset 
of eight individually best features is not the best: this subset results Bayes error 
PB=0.1830, while one of randomly formed subset composed of 1, 2, 3, 54, 95, 113, 
127, and 113th features gives much better, PB=0.0983. 

In our analysis we assume that there exists a variety of already trained classifiers. 
The classes are Gaussian. Therefore, the Bayes errors, Φ(-½δ) are known to me (δ 
stands for Mahalanobis distance). The designer does not know performances of 
feature subsets, however, he/she has independent validation set. On a basis of his 

information the designer needs to select a best subset (classifier) from r
pC  5.26×1012 

potentially possible ones. We consider in this section that the designer uses the 

sample based Mahalanobis distance, δ̂ , as a measure of feature subset’s quality (the 

classification error, errorP̂ = Φ(-½ δ̂ ). 

In Figure 1a we present a histogram of Bayes errors obtained in M=50,000 random 
generations of 8-dimensional feature subsets. Such multimodal density is rather 
typical for many real-world pattern recognition problems where one has a small 
number of relatively good features. In this example we used a single 150D validation 
set composed of N = 10+10 vectors. Very small validation set size (N=20 vectors), is 
specially tailored to to-day’s microarray gene expression data experiments to be 
discussed later. In Figure 1b we present a scatter diagram of m=5,000 2-dimensional 

(2D) vectors ( BiP , error
ˆ iP ), i = 1, 2, … , m selected uniformly out of M subsets 

(having M=50,000 subsets, it is possible to do this in 5000
50000C  9.68×1032 different ways).  
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Fig. 1. a – a histogram of 50,000 values of PB, b – a scatter diagram of vectors (PB, errorP̂ ) 

Scatter diagram 1b shows that a great number of subsets with practically zero 

estimate errorP̂ of classification error exist. True classification error for these subsets 

varies between 0.12 and 0.40.  In mimicking random search FS strategy performed by 
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classifier designer, we formed 50000
mC virtual groups composed of m feature subsets   

(m = 1, 3, 6, 10, …, 10000). In each group we found a subset (say s-th subset) with 

smallest estimate error
ˆ sP  and this subset’s true error, BsP . An average of 50000

mC values 

of BsP  we call “a mean of the true classification error after feature selection”. The 

average was calculated by specially combinatory algorithm developed by Pikelis (see 
Appendix A.4 in [4]). In Figure 2a we have a graph, True1, of dependence of the 
mean of the true error in feature selection on m, the group size, the number of feature 

subsets in the group. At the same time we calculated average of 50000
mC values of 

error
ˆ sP which is called “a mean of an apparent classification error after feature 

selection”, graph Apparent in Figure 2a. In similar way, we can find average of “ideal 
classification error after feature selection” where we seek for subset with smallest 

B gP  in the group (graph Ideal in Figure 2a). We see, a bias between True1 and Ideal is 

rather wide. The bias increases with an increase in m, the size of the group.   
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Fig. 2. Dynamics of true, ideal and apparent errors in feature selection: a - experiments with 
artificial Gaussian data; b – theoretical graphs 

Graph True1 in Fig. 2a demonstrates peaking behavior: with an increase in the 
group size, true classification error after FS decreases at first, saturate and then starts 
increasing - we fit to validation set too much. We name this effect feature over-
selection. In order to obtain better result, one need to consider smaller amount of 
feature subsets and/or do not select apparently the best subset of features. While 
inspecting 2D vectors in each group, we select the j-th positional statistics, i.e. the j-th 

feature subset according to estimates error
ˆ sP . In order to find averages from virtually 

formed 1

150000
m j

jC +
+

−
−  groups of feature subsets, a new combinatory algorithm was 

developed. The FS performed according to positional statistics helped in many pattern 
recognition tasks. Graph True10 in Figure 2a shows a mean value of true error after 
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FS if the j-th positional statistics (j=10) was used to select best feature subset. We see 
“not choosing the best” strategy allowed to reduce classification error substantially. 
This selection strategy firstly was analyzed by Ng in [13], for rather simplified 
artificial model of the hypotheses selection. Now we demonstrate its usefulness for 
standard pattern recognition task with dependent variables. In next section, we will 
suggest probabilistic framework to analyze feature over-selection theoretically. 

3   Probabilistic Framework to Analyze Feature Selection Bias  

A main declaration utilized in our analysis, is consideration of random search feature 

selection procedure. Then we may assume that m  2D vectors  ( BiP , error
ˆ iP ) utilized to 

select certain subset of features are random vectors extracted from 2D population. 
Following a standard probability theory, probability density function of random vector 

( BP , errorP̂ ) may be expressed as a product of conditional and unconditional densities 

 f1( BP , errorP̂ ) =  f2( errorP̂ | BP ) f3( BP ) =  f4( BP | errorP̂ ) f5( errorP̂ ).             (1) 

In derivation of expected value of true classification error after FS we postulate that 

conditional density, f2( errorP̂ | BP ), and unconditional one, f3( BP ), are known a priori. 

As a result, final conclusions are conditioned by f1( BP , errorP̂ ). Standard theory gives 

 f5( errorP̂ ) =  2 error B 3 B B
ˆ( | ) ( )P P P dPf f  and (2) 

 f4( BP | errorP̂ ) =  f2( errorP̂ | BP ) f3( BP ) / f5( errorP̂ ),   (3) 

where integration is performed over all interval of varying PB. If one defines the 
distribution of PB over a set of discrete values, integration is substituted by 
summation. 

Equation (3) could be used in order to evaluate a mean of true classification error if 

certain estimate, error
ˆ kP , is already picked out of a pool of values, 1errorP̂ , 2errorP̂ , … , 

error
ˆ mP . In original paper [11], a situation with extreme (minimal) value of the error 

estimate errorP̂ was considered. Inspired by the author’s multiple experimental 

observations that utilization of positional statistics sometimes outperforms usage of 
minimal values (one of them is presented in previous section) and Ng [13] 
considerations, in this paper we will move from analysis  of minimal value to the k-th 

positional statistics, error
ˆ kP , the k-th value in a ranged sequence 1error

ˆ kP 2error
ˆ kP  … , 

1error
ˆ k mP . Statistical theory of extreme value distributions gives 

f6( error
ˆ kP ) = 

( 1)
( ) ( 1)

m

k m k

Γ +
Γ Γ − +

 [F5( errorP̂ )]
k-1 

[1- F5( errorP̂ )]
m-k

 f5( errorP̂ ), (4) 

where F5( errorP̂ ) is cumulative distribution of random variable errorP̂ . 
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Use of distribution density of the k-th positional statistics (4) results expected value 
of true classification after feature selection and that of average of apparent error 

 E Ptruek  = 4 B error 6 error error B
ˆ ˆ ˆ( | ) ( )k k kf P P f P dP dP  and (5) 

c 

 E P̂ apparentk  = error 6 error error
ˆ ˆ ˆ( )k k kP P dPf . (6) 

The integrations (or summations) in Eq. (5) are performed along intervals of 

variations of error estimate, errorP̂ , and true error, PB. Both expected values are 

conditioned by serial number of positional statistics. If k=1, we deal with extreme 
(minimal) value. Hypothetical characteristics, an expectation of ideal classification 
error, we have in case where from m randomly formed subsets of features we select 
the best one according to true classification error values, PB1, PB1, … , PBm. 
Probability density function of extreme value is given by equation 
 

 F7( BP ) = m 
 
[1- F3(PB)]

m-1
 f3(PB),  (7) 

 
 

where F3(PB) is cumulative distribution function of random variable PB. 
Then the expectation of ideal classification error could be found as 

 

  E Pideal  = B B B7 ( )P P dPf .       (8) 
 

Above equations allow to investigate behavior of expected values of true, apparent 
and ideal classification errors after feature selection, We remind that the conditional 

density,  f2( errorP̂ | BP ), and unconditional density, f3( BP ), should be known a priori. 

Due to complexity of the problem with extreme values and positional statistics we do 
not have explicit expressions. So, further analysis should be performed by numerical 
integration.  In Fig. 2b we depict dependence of expected values of true classification 
errors when feature selections were performed according to extreme value (graph 1) 
and the 3th, 10th, 20th, 100th and 2000th positional statistics. Moreover, it was 

postulated that distribution density of 2D vectors ( BP , errorP̂ ) was a mixture of two 

Gaussian densities  
 

f3( BP , errorP̂ ) = q1×fN(( BP , errorP̂ ), M1, S1)+ (1- q2)×fN(( BP , errorP̂ ), M2, S2), 
 

where fN((x1, x1), M, S) denotes Gaussian probability density function  of 2D vector, 

(x1, x1), having mean M and covariance matrix S. Note that density f3( BP , errorP̂ )  

depends on random validation set critically. After analysis of two dozens of very left 
parts of distributions similar to that depicted in Fig. 1a,b, in a variety of situations 
with single validation sets of size (N=20), we selected for this illustration: q1=0.1, 
  

M1 = 
0.03 

0.01
, S1 = 

2

2

0.0002  0.0

0.0     0.005
, M2 = 

0.05 

0.013
, S2 = 

2
 

2

0.00025 0.0

0.0      0.009
. 

 

We pay readers attention to a fact that for single validation set, the variances of hold 
out error counting error estimates (right bottom elements of matrices S1, S2) are much 
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smaller as variance, s2, predicted by theory for diverse independent validation sets,    

s2 = BP (1- BP )/N. In Figure 2b we also depict the very left part of graph “Ideal”, the 

ideal error after feature selection, which decreased rapidly until 0.03 (for m 30) and 
saturated at this level. Apparent classification error after feature selection started to 
decrease from 0.013 level, and for m 200 it became practically zero. Experimentation 
with artificially generated feature selection problems revealed that a character of 

distribution f1( B,P errorP̂ ) greatly depends on a way how dependencies between 

original variables of the data are generated, individual qualities of the features and, 
most important, on particular randomly chosen  p-dimensional validation set.   

4   Analysis of Over-Selection Phenomenon in Real World Task  

We performed experiments with 7129-dimensional two class leukaemia data set [16, 
17].  In order to select r = 8 features we employed standard linear Fisher classifier. 
From 72 examples we used 35 samples for training. Remaining 37 vectors 
constituted the validation set. Such large dimensionality / sample size ratio is frequent 
in many biomedical investigations, especially in to-day’s analysis of microarray gene 
expression data. Three millions random feature subsets were generated. We 
examined the accuracy problem in a situation where training set (re-substitution) 
error estimates with certain correction of “training bias” were used as evaluations of 
“true” error. The validation set estimates were used to pick up “the best” feature 
subsets.  

Re-substitution error estimates are optimistically biased. For Fisher classifier, 
asymptotically as training sample size, N, and dimensionality, r, are large, expected 
value of classification error can be found from simple, however, exact asymptotic 

formula  EPN     Φ(-½δ  /Tbias), where Tbias =
2

( ) / / )(1 4 / /N p N p N− + δ  [4, 7]. 

We are also interested in the bias of re-substitution error, which can be expressed 

as E ˆ
R

P  Φ(-½δ  ×Tbias). Double use of one-dimensional interpolation for ˆ
R

P value 

allows to obtain, approximate (restored) value of generalization error, 
g

P̂ . 

The histograms of “restored” generalization,
g

P̂ , and validation, ˆ
V

P , error 

estimates are presented in Figure 3ab. We see that in spite of simplicity of 
asymptotic formulae, training bias elimination was performed quite correctly: left 
and middle parts of both histograms are almost identical. Fig. 3c shows a scatter 

diagram of distribution of 2000 vectors ( ˆ
R

P , ˆ
V

P ). Due to very small sample size, 

many subsets have the same ˆ
R

P  and  ˆ
V

P  values. For better data visualization, a small 

uniform noise was added to each component. Two dimensional distribution of 
10,474 vectors with smallest re-substitution and validation errors is detailed by 2D 
scatter diagram in Fig. 3d. We see that FS strategies based on the validation set and 
the modified training set estimates pick different feature subsets. This conclusion 

follows also from conditional mean of ˆ
V

P  presented in Fig. 3e: the smallest 

generalization error values could be obtained if subsets with two validation errors 
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would be selected!  We plot mean values of restored generalization error rates 
conditioned on 17 distinct validation error values. In Figure 3f we present dynamics 
of true error after feature selection performed according to the smallest validation 
error (True1) and that performed according to 30th and 300th positional statistics. We 
also present ”Ideal” and ”Apparent” classification errors in the same way as it was 
done in the experiments with artificial Gaussian data (Section 2, Figure 2a).  
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Fig. 3. The histograms of 3,0000,000 values of validation error estimates (a) and restored 
generalization error (b); c, d - scatter diagrams of  distribution of the number of 
misclassification errors in training and validation sets; e – average “restored” generalization 
error as a function of  estimated error, errorP̂ , f – dynamics of true, ideal and apparent errors 

5   Concluding Remarks 

While designing the classifiers from training set we obtain training bias, a difference 
between generalization and Bayes errors, EPN   - PB, In present paper we consider 
feature selection bias (the difference between True1 and Ideal)) which arise when size 
of validation set is finite. We present further development of probabilistic framework 
started in [10, 11]. This approach is based on analysis of random search FS procedure 
and postulation that joint distribution of true and estimated classification errors is 
known a priori.  Theoretical and experimental results advocate that feature selection 
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bias can be very large if the size of feature subset group is very large. Calculation of 
expected generalization error of Fisher classifier according to EPN  Φ(-½δ / Tbias)  for 
N=20 and p=8 gives that for PB=0.2 (for m 5, inspect Fig. 2a), EPN 0.3 and for PB=0.1 
(m 10,000), EPN 0.19. Similar estimates we obtained for gene expression data. It 
means that FS bias is comparable with training bias provided the training set size is 
equal to that of validation set and linear Fisher discriminant is utilized as the classifier. 
 We also showed that there exists overfitting phenomenon in feature selection, 
named in this paper as feature over-selection. This effect is validation set dependent. 
It was observed when validation set size was very small. The feature over-selection 
phenomenon could be diminished if FS would be performed on basis of positional 
statistics. Development of practical recommendations is a problem of future research. 
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Canada (NATO Expert Visit Grant SST.EAP.EV 980950). The author is thankful to 
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Abstract. Among recent topics studied in context of feature selection
the hybrid algorithms seem to receive particular attention. In this paper
we propose a new hybrid algorithm, the flexible hybrid floating sequen-
tial search algorithm, that combines both the filter and wrapper search
principles. The main benefit of the proposed algorithm is its ability to
deal flexibly with the quality-of-result versus computational time trade-
off and to enable wrapper based feature selection in problems of higher
dimensionality than before. We show that it is possible to trade signifi-
cant reduction of search time for negligible decrease of the classification
accuracy. Experimental results are reported on two data sets, WAVE-
FORM data from the UCI repository and SPEECH data from British
Telecom.

1 Introduction

Feature selection, as a pre-processing step to machine learning and pattern recog-
nition applications, has been effective in reducing dimensionality. It is sometimes
the case that such tasks as classification or approximation of the data represented
by so called feature vectors, can be carried out in the reduced space more ac-
curately than in the original space. Liu and Yu [1] provide a comprehensive
overview of various aspects of feature selection. Their paper surveys existing
feature selection algorithms for classification and clustering, evaluation criteria
and data mining tasks and outlines some trends in research and development of
feature selection.

Many existing feature selection algorithms designed with different evaluation
criteria can be categorized into Filter [2], [3] Wrapper [4] and Hybrid [5], [6].
Filter methods rely on general characteristics of the training data to select some
features independently of the subsequent learning algorithm. Therefore they do
not inherit any bias of a learning algorithm. The wrapper methods require one
predetermined learning algorithm in feature selection and use its performance to

D.-Y. Yeung et al. (Eds.): SSPR&SPR 2006, LNCS 4109, pp. 632–639, 2006.
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evaluate and determine which features are selected. These methods tend to give
superior performance as they find features better suited to the predetermined
learning algorithm, but they also tend to be more computationally expensive.
When the number of features becomes very large, the filter methods are usually
to be chosen due to computational efficiency. To combine the advantages of both
methods, algorithms in a hybrid approach have recently been proposed to deal
with high dimensional data.

In this paper we introduce a flexible hybrid version of the floating search,
the hybrid sequential forward floating selection (hSFFS) as well as its backward
counterpart (hSBFS) that cross the boundary between filters and wrappers. We
show that it is possible to trade significant reduction of search time for negligible
decrease of the classification accuracy.

2 Motivation for Hybrid Algorithms

Filter methods for feature selection are general preprocessing algorithms that
do not rely on any knowledge of the learning algorithm to be used. They are
distinguished by specific evaluation criteria including distance, information, de-
pendency. Since the filter methods apply independent evaluation criteria with-
out involving any learning algorithm they are computationally efficient. Wrapper
methods require a predetermined learning algorithm instead of an independent
criterion for subset evaluation. They search through the space of feature subsets
using a learning algorithm, calculate the estimated accuracy of the learning al-
gorithm for each feature before it can be added to or removed from the feature
subset. It means, that learning algorithms are used to control the selection of
feature subsets which are consequently better suited to the predetermined learn-
ing algorithm. Due to the necessity to train and evaluate the learning algorithm
within the feature selection process, the wrapper methods are more computa-
tionally expensive than the filter methods.

The main advantage of filter methods is their speed and ability to scale to
large data sets. A good argument for wrapper methods is that they tend to give
superior performance. Because of the success of the sequential floating search
methods of filter type introduced by Pudil et al. [7] on many datasets and our
focus on real-world datasets with potentially large number of features and small
training sets, we have developed a hybrid floating selection algorithm that crosses
the boundary between filter and wrapper methods and emphasizes some of the
advantages of wrapper methods.

3 Hybrid Floating Sequential Search

Floating search methods [7], [8], sequential forward floating selection (SFFS) and
sequential backward floating selection (SBFS), are now considered to be standard
feature selection tools, providing good performance and close-to-optimum or
optimum results in most tasks [9], [10]. In the following we will focus on the
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sequential forward floating selection because it has proven appropriate for most
real-world datasets. The definition of the backward algorithm is analogous.

Starting from empty feature set, the SFFS procedure consists of applying af-
ter each forward (feature adding) step a number of backward (feature removing)
steps as long as the resulting subsets are better than previously evaluated ones
at that level. Consequently, there are no backward steps at all if the performance
cannot be improved. The algorithm allows a ’self-controlled backtracking’ so it
can eventually find good solutions by adjusting the trade-off between forward
and backward steps dynamically. It is possible to say that, in a certain way, it
computes only what it needs without any parameter setting. In this way it over-
comes effectively the so-called nesting problem inherent to older methods [11].

The same scheme can be used both in filter and wrapper context, as the float-
ing algorithms put no restrictions on the behavior of criterion functions (unlike,
e.g., Branch & Bound, which requires monotonic criteria). Here we introduce a
flexible hybrid version of the floating search, hybrid sequential forward floating
selection (hSFFS) that crosses the boundary between filters and wrappers. We
show, that only a fraction of full wrapper computational time is sufficient to
obtain results not too different from the full wrapper ones. This is accomplished
by taking use of filter criteria to avoid less promising subsets in wrapper com-
putation. The proportion of subsets to be passed to wrapper-based evaluation
can be specified by the user. In this way one can decide the trade-off between
the length of computation and criterion maximization effectiveness.

3.1 Formal Description of hSFFS

For the purpose of formal hSFFS description we use the following notion and
abbreviations: Let the number of all features be D and the full feature set be
XD = {xi, i = 1, . . . ,D}. Due to the hybrid nature of the algorithm to be defined
we will distinguish two criterion functions. JF (.) denotes the faster but possibly
less appropriate filter criterion, JW (.) denotes the slower wrapper criterion. The
hybridization coefficient, defining the proportion of feature subset evaluations
to be verified by wrapper means, is denoted by λ ∈ 〈0, 1〉. Here #·$ denotes
value rounding. Let SFS, SBS denote sequential forward selection and sequential
backward selection [11], respectively.

It is required that at each stage k all the so-far best subsets Xi and corre-
sponding criterion values Ji = J(Xi) are known for i = 1, . . . , k̃ with k̃ denoting
the largest subset size tested so-far (k < k̃ while backtracking).

Hybrid SFFS Algorithm
Initialization: The algorithm is initialized by setting k = 0 and X0 = ∅. Then,
Step 1 is called twice to obtain feature sets X1 and X2; to conclude the initial-
ization let J1 = JW (X1), J2 = JW (X2) and k = 2.
STEP 1: (Adding) By analogy to the SFS method, select from the set of
available features, XD \Xk the best feature with respect to the set Xk, say x+,
and add it to the current set Xk to form new feature set Xk+1; to achieve this,
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first pre-select c+k most promising candidate features by maximizing JF (·), then
decide according to the best JW (·) value, i.e.:

c+k = max{1, #λ(D − k)$} (1)

C+
k = {xit , t = 1, . . . , c+k : JF (Xk ∪ {xit}) ≥ JF (Xk ∪ {xj}) ∀j = it} (2)

x+ = arg max
x∈C+

k

JW (Xk ∪ {x}), Xk+1 = Xk ∪ {x+}. (3)

STEP 2: (Inferior search path cancellation) If Jk+1 is known from before and
J(Xk+1) < Jk+1, set k = k + 1 and go to Step 1.
STEP 3: (Conditional removal) By analogy to the SBS method find the worst
feature in the set Xk+1, say x−; to achieve this, first pre-select c−k most promising
candidate features by maximizing JF (·), then decide according to the best JW (·)
value, i.e.:

c−k = max{1, #λk$} (4)

C−
k = {xit , t = 1, . . . , c−k : JF (Xk \ {xit}) ≥ JF (Xk \ {xj}) ∀j = it} (5)

x− = arg max
x∈C−

k

JW (Xk+1 \ {x}). (6)

If JW (Xk+1 \ {x−}) = Jk, i.e., no better solution has been found, set Jk+1 =
J(Xk+1), k = k + 1 and go to Step 1; otherwise remove this feature from the
set Xk+1 to form a new feature set X

′
k, i.e.

X
′
k = Xk+1 \ {x−}. (7)

Note that now J(X
′
k) > J(Xk) = Jk. If k = 2, then set Xk = X

′
k and Jk = J(X

′
k)

and go to Step 1, otherwise set k = k − 1 and repeat Step 3.

Remark 1: Definitions (1) and (4) ensure that for any λ ∈ 〈0, 1〉 at least one
evaluation of JW (·) is done in each algorithm step for each tested subset size.
Remark 2: Algorithm Step 2 can be considered optional. It is defined to prevent
possible criterion decrease that may occur when the algorithm returns to higher
dimensionality after backtracking. Keeping intermediate criterion values as high
as possible is certainly desirable, yet as such cannot guarantee a better result.

3.2 Simplified Flowchart of the hSFFS

A simplified flowchart of the hSFFS algorithm is given in Fig. 1. The alternative
terminating condition k = d + δ in the flowchart allows premature termination
of the search process, should there be no reason to evaluate cardinalities greater
than d. In such a case it is good to let the algorithm reach a little higher di-
mensionality (d + δ) to allow possible find of a better solution for d by means of
backtracking. The value of δ can be selected arbitrarily, or estimated heuristi-
cally, e.g., as the longest backtracking sequence performed so-far. Nevertheless,
letting the algorithm finish (reach dimensionality D) is to be recommended. The
fact that floating search finds solutions for all cardinalities in one run is one of
its key advantages.
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Fig. 1. Simplified diagram of the hybrid SFFS

4 Experiments

4.1 Datasets

The performance of the proposed algorithm is illustrated on two datasets. We
used WAVEFORM data (40 features, 1692 samples from class 1 and 1653 sam-
ples from class 2) obtained via the UCI repository [12] and SPEECH data orig-
inating from British Telecom (15 features, 682 word “yes” and 736 word “no”
samples), obtained from the Centre for Vision, Speech, and Signal Processing of
the University of Surrey, UK.

4.2 Feature Subset Selection Criteria

We suppose, that the class-conditional densities are multivariate Gaussian, but
the parameters of the densities (i.e. mean vectors and covariance matrices) are
unknown and are replaced by their maximum likelihood estimates.

In the case of the filter model we used estimation of Bhattacharyya distance
as the independent criterion JF (·). A dependent criterion JW (·) used in the
wrapper model is the classification rate of the Bayes Gaussian plug-in classifier.
All classification rates have been verified by a 25-fold cross-validation.

4.3 Experimental Results

For each dataset the results are presented in two graphs. The first graph
(Figures 2 and 3) shows the Gaussian classifier correct classification rate on
best feature subsets selected by the hybrid SFFS for different values of the hy-
bridization coefficient λ as well as results of the filter SFFS and the wrapper
SFFS. The second graph (Figure 4) shows the times of complete hSFFS(λ) runs
for each λ. Note that floating search yields all subsets in one run, thus the graph
of time contains just a single line.
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It can be observed that especially for lower subset sizes the increase of λ
quickly improves the classification rate. The improvement of the classification
rate does not depend linearly on increased computational time. For the values
of λ less than roughly 0.5 the classification rate tends to increase considerably
faster than the time (an exception being, e.g., the 11 features case in Fig. 2).
This is quite important. It suggests that investing some additional time into
hybrid search with λ ≤ 0.5 brings relatively more benefit than investing all the
time needed for full wrapper based feature selection. The results for λ ≈ 0.5
tend to be closer to those of wrappers than those of filters. This positive effect
can be understood as an illustration of the ability of Bhattacharyya distance
to pre-select reasonable feature candidates for further evaluation in the Gaus-
sian wrapper. However, it also shows the limits of this Bhattacharyya ability.
A hypothetically perfect filter criterion would cause the hSFFS yield for each λ
the same best solution. The lack of such perfect criteria is the reason for using
wrapper based search.

Remark: This is not to say that the time complexity of the proposed hybrid
search is negligible. Obviously, it is to be expected considerably slower than the
time complexity of filter search, yet only a fraction of the time complexity of
wrapper search.

Fig. 2. SPEECH dataset: Comparison of classifier performance on feature subsets se-
lected by the hSFFS for different λ, the filter SFFS and the wrapper SFFS



638 P. Somol, J. Novovičová, and P. Pudil

Fig. 3. WAVEFORM dataset: Comparison of classifier performance on feature subsets
selected by the hSFFS for different λ, the filter SFFS and the wrapper SFFS

Fig. 4. SPEECH and WAVEFORM datasets: Time complexity of the filter SFFS, the
hSFFS as a function of λ and the wrapper SFFS

5 Conclusions and Future Work

We have defined a flexible hybrid version of floating search methods for feature se-
lection. The main benefit of the proposed floating search hybridization is the pos-
sibility to deal flexibly with the quality-of-result vs. computational time trade-off
and to enable wrapper based feature selection in problems of higher dimensional-
ity than before. We have shown that it is possible to trade significant reduction of
search time for often negligible decrease of the classification accuracy.
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In the future we intend to ”hybridize” other search methods in a similar way
as presented here and to investigate in detail the hybrid behavior of different
combinations of various probabilistic measures and learning methods.
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Abstract. Distribution mixtures with product components have been
applied repeatedly to determine clusters in multivariate data. Unfortu-
nately, for categorical variables the mixture parameters are not uniquely
identifiable and therefore the result of cluster analysis may become ques-
tionable. We give a simple proof that any non-degenerate discrete pro-
duct mixture can be equivalently described by infinitely many different
parameter sets. Nevertheless a unique result of cluster analysis can be
guaranteed by additional constraints. We propose a heuristic method of
sequential estimation of components to guarantee a unique identification
of clusters by means of EM algorithm. The application of the method is
illustrated by a numerical example.

1 Introduction

The cluster analysis of categorical data is well known to be a difficult problem.
Let us recall that arithmetical operations and therefore means and variances are
undefined for categorical variables. Generally, the values of categorical variables
are neither ordered nor there is any reasonable and commonly acceptable way
to define a distance or similarity measure. Binary variables as a special case
may appear to be naturally ordered but often there is no reliable argument to
prefer one of the two possibilities to assign the values 0 and 1. For these and
other reasons the standard clustering algorithms are not directly applicable to
multivariate categorical data.

One of the first statistical methods of cluster analysis of categorical data is
due to Lazarsfeld [14]. Motivated by sociological research he proposed fitting of
multivariate Bernoulli mixtures to binary data to identify possible latent classes
of respondents by means of mixture components. Wide application of the latent
class (latent structure) analysis was enabled by the computationally efficient EM
algorithm [4]. Discussion of latent class analysis from a statistical point of view
can be found in Fielding [5]. Other approaches to clustering and latent variable
models are discussed e.g. by Vermunt et al. [18], (see also [1], [6], [15]).
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Multivariate Bernoulli mixture is only a special case of the general conditional
independence model which can be defined for general discrete variables (cate-
gorical, qualitative or nominal) as a finite mixture of product components. The
application of discrete product mixtures to cluster analysis corresponds with the
original approach of Lazarsfeld, however, in both cases there is a problem to jus-
tify the obtained solutions. The conditional independence model is not uniquely
identifiable in case of categorical variables and therefore the result of cluster
analysis becomes questionable.

In the present paper we first introduce the conditional independence model for
unordered categorical variables and briefly describe the corresponding version of
EM algorithm for estimation of mixtures (Sec. 2). Then we discuss the problem
of identifiability of distribution mixtures with product components (Sec. 3) in
connection with the recently considered concept of “practical identifiability” of
multivariate Bernoulli mixtures [3]. In Sec. 4 we propose the method of sequential
identification of mixture components as a tool to obtain unique clusters. The
application of the method is illustrated by a numerical example. Finally we
summarize the main results in the Conclusion.

2 Conditional Independence Models

Let ξ1, . . . , ξN be a finite number of general discrete random variables. In parti-
cular, we assume that each variable ξn ∈ Xn takes on some categorical (nominal,
qualitative) values from a finite set Xn without any type of ordering. Simulta-
neously, let μ be a discrete random variable taking on values from a finite set of
integers M

P{μ = m} = wm, m ∈M,
∑

m∈M
wm = 1, M = {1, . . . ,M}. (1)

We suppose that the random variables ξn are conditionally independent given
the value of μ. In other words we assume that the conditional probability distri-
butions F (x|m),m ∈M of the random vector

ξ = (ξ1, . . . , ξN ) ∈ X , X = X 1 × . . .×XN , N = {1, . . . ,N}

can be expressed as a product of univariate conditional distributions fn(xn|m):

P{ξ = x|μ = m} = F (x|m) =
∏

n∈N
fn(xn|m), x ∈ X , m ∈M. (2)

In view of Eqs. (1), (2) the unconditional joint probability distribution of the
random vector ξ can be expressed in the form of a finite distribution mixture of
product components:

P (x) =
∑

m∈M
wmF (x|m) =

∑
m∈M

wm

∏
n∈N

fn(xn|m), x ∈ X , (wm > 0). (3)
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Here the probability wm is usually called the weight of m-th component and
fn(xn|m) are the conditional (component specific) univariate distributions of
the variables ξn respectively. In this sense the distribution mixture (3) is defined
by the parameter set Θ = {M,wm, fn(·|m),m ∈ M}. 1

In case of dichotomous variables ξn ∈ {0, 1} the probability distribution (3)
becomes the well known multivariate Bernoulli mixture

P (x) =
∑

m∈M
wm

∏
n∈N

ϑxn
nm(1− ϑnm)1−xn , x ∈ {0, 1}N , 0 < ϑnm < 1 (4)

which is a special case of the general conditional independence model (3).
The standard way to estimate the conditional independence models from data

is to compute maximum-likelihood estimates of mixture parameters by means of
the iterative EM algorithm [4],[13]. In particular, let S be a set of independent
observations of the random vector ξ:

S = {x(1), x(2), . . . , x(K)}, x(k) ∈ X (5)

which are identically distributed with some unknown distribution mixture of the
form (3). To compute the m.-l. estimates of the unknown parameters wm, fn(·|m)
we maximize the likelihood function

L =
1
|S|
∑
x∈S

log P (x) =
1
|S|
∑
x∈S

log

[ ∑
m∈M

wmF (x|m)

]
(6)

by means of the basic EM iteration equations

q(m|x) =
wmF (x|m)∑
j∈M wjF (x|j) , w

′
m =

1
|S|
∑
x∈S

q(m|x), m ∈ M, (7)

f
′
n(ξ|m) =

1∑
x∈S q(m|x)

∑
x∈S

δ(ξ,xn)q(m|x), ξ ∈ X n, n ∈ N , (8)

where w
′
m, f

′
n(·|m) are the new parameter values and δ(ξ,xn) denotes the usual

delta-function, i.e. δ(ξ,xn) = 1 for ξ = xn and otherwise δ(ξ,xn) = 0.
The EM algorithm generates a nondecreasing sequence {L(t)}∞0 . As the crite-

rion (6) is bounded above (L < 0) the monotonic property implies convergence
of the sequence {L(t)}∞0 to a possibly local maximum of the function (6) in the
parameter space (for more details cf. e.g. [13]). Obviously, a local maximum may
be starting-point dependent.

Given the estimated distribution mixture (3) we can characterize any data
vector x ∈ X by its affinity with the mixture components in terms of the con-
ditional probabilities. The conditional posterior weights q(m|x) are particularly
useful if there is some interpretation of the mixture components, e.g. if the
components correspond to some “latent classes” [14], “hidden causes” [15] or
1 Here and in the following we assume that the parameter sets differing only by the

order of components are identical.
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“clusters” having a specific meaning. This idea is closely related to the original
latent structure analysis of Lazarsfeld.

There are also some other theoretical arguments justifying the finite distribu-
tion mixture (3) as a “latent class” model. It should be emphasized that the sta-
tistical relations among the random variables ξ1, . . . , ξN are wholly explained by
their dependence on the variable μ which is sometimes called the latent variable.
Given the value of the latent variable μ, the random variables ξn are statistically
independent, i.e. their interdependence is removed. In this sense the values of the
variable μ can be viewed as “hidden causes” which cannot be observed directly
but remove the statistical interaction between the observed variables ξ1, . . . , ξN .
Once specified, the hidden cause μ would permit us to treat the visible variables
ξn in a simple way as if they were mutually independent [15]. In view of these
arguments the conditional independence model (3) is assumed to be “the most
universal and distinctive characteristics featured by the notion of causality” (cf.
[15], [16]).

Remark 1. It is easily verified that the conditional independence model (3) is
not restrictive in the sense that any discrete probability distribution P (x) on
X can be expressed as a mixture (3) provided that the number of components
may be chosen sufficiently large. In particular, let P (x) be a general discrete
probability distribution on X defined by a table of probabilities. Considering a
numbering of the points of X , we can write

X = ∪K
k=1{x(k)}, P{ξ = x(k)} = P (x(k)) = p(k), x(k) ∈ X , k = 1, . . . ,K

where p(k) is the table probability attached to x(k) ∈ X and K = |X |. Then the
distribution mixture of the form (3) equivalent to the given table of values is
obtained by setting

wm = p(m), F (x|m) =
∏

n∈N
δ(xn,x(m)

n ), m = 1, . . . ,K. (9)

In other words, the components F (x|m) in (9) are reduced to Dirac distributions
δ(x, x(m)) positioned at the points x(m) ∈ X while the component weights wm

are equal to the respective table probabilities p(m).

3 Problem of Identifiability

The conditional independence model has been used by many authors in different
areas as a tool of cluster analysis [18]. One of the most popular application fields
appears to be the bacterial taxonomy. Gyllenberg et al. [12] recall about thirty
references relating to a widely used method of classification of bacteria known
as probabilistic numerical identification. The method is based on estimating
parameters of the multivariate Bernoulli mixtures (4) from the observed data.
The resulting components of the Bernoulli mixture are then used to identify the
individual classes of bacteria (so called taxons). The posterior probability q(m|x)
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(cf. (7)) is known in bacterial identification as the Willcox probability that the
observed bacteria strain x belongs to the m-th class (taxon). In this sense the
estimated Bernoulli mixture (4) defines the taxonomic structure of bacteria.

It is obvious that, before estimating the mixture (4), we should verify that
it can be estimated uniquely, since otherwise we could obtain several different
taxonomic structures for a given set of bacterial data. If the distribution mix-
ture (3) or (4) is not defined uniquely then the corresponding interpretation of
data in terms of clusters or latent classes becomes questionable (cf. [14], [12]).
Unfortunately, multivariate Bernoulli mixtures are not identifiable, i.e. different
parameter sets Θ = {M,wm, fn(·|m),m ∈ M} can correspond to exactly the
same Bernoulli mixture.

Essentially, the proof of this assertion follows from the early papers of Teicher
[17] and Blischke [2]. More recently Gyllenberg et al. [12] alternatively repeated
the proof of Teicher for the specific case of discrete distributions by showing that
the conditional independence model (3) is identifiable if and only if the mixtures
of univariate discrete distributions fn(xn|m) are identifiable. Then, by using a
theorem of Blischke (cf. [2]), they show the mixtures of univariate Bernoulli dis-
tributions to be non-identifiable as a special case of the non-identifiable binomial
distributions and therefore multivariate Bernoulli mixtures are non-identifiable,
too. In the following we give a simple and intuitive proof of this property for a
more general class of discrete mixtures with product components (cf. [9]).

Lemma 1. Any discrete distribution mixture of the form

P (x) =
∑

m∈M
wmF (x|m), F (x|m) =

∏
n∈N

fn(xn|m), x ∈ X , (wm > 0). (10)

can be equivalently described by infinitely many non-trivially different parameter
sets Θ

′
= {M ′

,w
′
m, f

′
n(·|m),m ∈M′} if at least one of the univariate conditional

distributions fn(·|m) is non-singular in the sense that

fn(xn|m) < 1, for all xn ∈ Xn. (11)

Proof. One can easily verify that any univariate discrete distribution fn(·|m)
which is non-degenerate in the sense of the inequality (11) can be expressed as
a convex combination of two different distributions in infinitely many ways, e.g.
(0 < α < 1, β = 1− α):

fn(·|m) = αf (α)
n (·|m) + βf (β)

n (·|m), f (α)
n (·|m) = f (β)

n (·|m). (12)

Now, by means of the substitution (12), we can express the component
wmF (x|m) as a weighted sum of two different components F (α)(x|m),F (β)(x|m)

wmF (x|m) = w(α)
m F (α)(x|m) + w(β)

m F (β)(x|m), x ∈ X (13)

where
w(α)

m = αwm, F (α)(x|m) = f (α)
n (xn|m)

∏
i∈N ,i�=n

fi(xi|m),
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Table 1. Example of the 16-dimensional Bernoulli mixture from the paper [3]

wm ϑ1 ϑ2 ϑ3 ϑ4 ϑ5 ϑ6 ϑ7 ϑ8 ϑ9 ϑ10 ϑ11 ϑ12 ϑ13 ϑ14 ϑ15 ϑ16

0.2222̇ 0.80 0.80 0.80 0.80 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20
0.1944̇ 0.20 0.20 0.20 0.20 0.80 0.80 0.80 0.80 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20
0.1666̇ 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.80 0.80 0.80 0.80 0.20 0.20 0.20 0.20
0.1388̇ 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.80 0.80 0.80 0.80
0.1111̇ 0.80 0.20 0.20 0.20 0.80 0.20 0.20 0.20 0.80 0.20 0.20 0.20 0.80 0.20 0.20 0.20
0.0833̇ 0.20 0.80 0.20 0.20 0.20 0.80 0.20 0.20 0.20 0.80 0.20 0.20 0.20 0.80 0.20 0.20
0.0555̇ 0.20 0.20 0.80 0.20 0.20 0.20 0.80 0.20 0.20 0.20 0.80 0.20 0.20 0.20 0.80 0.20
0.0277̇ 0.20 0.20 0.20 0.80 0.20 0.20 0.20 0.80 0.20 0.20 0.20 0.80 0.20 0.20 0.20 0.80

w(β)
m = βwm, F (β)(x|m) = f (β)

n (xn|m)
∏

i∈N ,i�=n

fi(xi|m)

and therefore, after substitution (13) in (10), we obtain two formally different
mixtures defined by different parameter sets Θ = Θ

′
which describe exactly the

same probability distribution P (x). •

It can be seen that the non-identifiability of any non-degenerate Bernoulli mix-
ture (4) directly follows from Lemma 1. It appears that the question of unique-
ness has been neglected in the literature on numerical taxonomy (cf. discussion
in [12]) but, surprisingly, this circumstance does not seem to have any serious
practical consequences. Moreover, it has been observed that in numerical expe-
riments the mixture parameters can often be uniquely identified from sufficiently
large randomly generated samples of data vectors.

Thus e.g. Carreira-Perpinan et al. [3] in a re-identification experiment gene-
rated randomly a set of 10000 of 16 dimensional binary vectors from a specific
Bernoulli mixture of M = 8 components (cf. Tab. 1). Using this data they es-
timated repeatedly Bernoulli mixtures of different number of components by
means of EM algorithm. For M = 8 the original parameters were re-identified
9 out of 10 times. When using fewer components (M = 4) the EM algorithm
reproduced some of the original components and linear combinations of the re-
maining ones. A more complex mixture model (M = 10) always reproduced the
eight original components with the last two being their slight modifications or
linear combinations. We have observed similar results in our early paper [7]. It
appears that “well separated” components in high-dimensional spaces are “prac-
tically identifiable” (cf. [3]) if the data set S is large enough.

4 Sequential Identification of Components

For obvious reasons the theoretically possible ambiguity in estimating discrete
models of conditional independence is a serious disadvantage from the point
of view of practical applications. Nevertheless, we can achieve a unique result
of cluster analysis e.g. by introducing additional constraints. One intuitively



646 J. Grim

Table 2. Parameters of the 16-dimensional Bernoulli mixture obtained by re-estimating
the mixture parameters from Tab.1 by using sequential adding of components

wm ϑ1 ϑ2 ϑ3 ϑ4 ϑ5 ϑ6 ϑ7 ϑ8 ϑ9 ϑ10 ϑ11 ϑ12 ϑ13 ϑ14 ϑ15 ϑ16

.2220 .800 .800 .800 .800 .200 .200 .200 .200 .200 .200 .200 .200 .200 .200 .200 .200

.1943 .200 .200 .200 .200 .800 .800 .800 .800 .200 .200 .200 .200 .200 .200 .200 .200

.1666 .200 .200 .200 .200 .200 .200 .200 .200 .800 .800 .800 .800 .200 .200 .200 .200

.1388 .200 .200 .200 .200 .200 .200 .200 .200 .200 .200 .200 .200 .800 .800 .800 .800

.1109 .800 .200 .200 .200 .800 .200 .200 .200 .800 .200 .200 .200 .800 .200 .200 .200

.0832 .200 .800 .200 .200 .200 .800 .200 .200 .200 .800 .200 .200 .200 .800 .200 .200

.0555 .200 .200 .800 .200 .200 .200 .800 .200 .200 .200 .800 .200 .200 .200 .800 .200

.0277 .200 .200 .200 .800 .200 .200 .200 .800 .200 .200 .200 .800 .200 .200 .200 .800

.0008 .442 .392 .371 .355 .395 .348 .327 .312 .373 .327 .307 .292 .359 .314 .294 .280

acceptable and easy to apply method is a sequential adding of new components
to the estimated mixture.

In particular, applying EM algorithm, we start with a mixture having a single
component and arbitrary (e.g. randomly chosen) initial parameters. In this case
the EM algorithm converges in one iteration to a component defined as a product
of univariate marginal distributions. In the next phase a new component is added,
initialized as a product of univariate uniform distributions with equal initial
weight, i.e. w1 = w2 = 0.5. Then the EM iterations are continued until sufficient
convergence. When the relative increase of the likelihood function is less then
some small positive threshold ε, a new uniform component is added again and the
component weights are normed to obtain w3 = w2 and w1+w2+w3 = 1. The EM
iterations are then started again with the new initial parameters. In this way the
new component defined as a product of uniform marginals is added repeatedly
as long as it is “accepted” by the previous mixture model. The computation is
stopped when the weight of the new added component is less than a suitably
chosen low threshold after the convergence is achieved.

There is no theoretical support of the proposed method to guarantee some
qualitative properties of the resulting mixture. Nevertheless, it can be heuristi-
cally justified by some computational properties. Let us note first that, from the
computational point of view, the resulting mixture model is defined uniquely.
In practice, the only source of uncertainty may be the limited parameter accu-
racy at the end of each convergence phase. Moreover, the method avoids random
influences of initial values and represents a reasonable mechanism to choose a
proper number of components. Note that the newly added uniform component
tends to “fit” to data points insufficiently “covered” by the previous model and
for this reason the weight of the added component is usually decreasing in final
stages of computation when the number of components is sufficiently large.

It shouldbe emphasized thatby including anew(uniform) component to thepre-
viously adjusted model we may violate the monotonic property of EM algorithm in
the following iteration.Moreover the new component interfereswith the previously
estimated parameters and partly devaluates the preceding convergence phase.
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We illustrate the proposed sequential identification method by considering the
re-identification problem from the paper [3]. In order to avoid random influences
of a given finite sample S we re-estimated the original multivariate Bernoulli
mixture (cf. Tab.1) in a way which is equivalent to an infinite sample size. Note
that for the sample size |S| approaching infinity we can write

L∗ = lim
|S|→∞

1
|S|

x∈S
log

m∈M
wmF (x|m) =

x∈X
P ∗(x) log

m∈M
wmF (x|m) ,

(14)

i.e. the sum over the infinite sample S can be equivalently replaced by summing
over all x ∈ X whereby P ∗(x) denotes the asymptotic relative frequency of x.

In order to maximize the asymptotic likelihood function L∗ we have modified
the basic EM iteration Eqs. (7), (8) in analogy with Eq. (14):

w
′
m =

∑
x∈X

P ∗(x)q(m|x), m ∈M, (15)

ϑ
′
nm =

1∑
x∈X P ∗(x)q(m|x)

∑
x∈X

xnP
∗(x)q(m|x), n ∈ N . (16)

Instead of generating a given number of pseudo-random binary vectors we have
computed and stored the values P ∗(x) for all the 65536 binary vectors x from
the 16-dimensional binary cube. By using the “asymptotic” likelihood function
L∗ and the corresponding version of EM algorithm we have the possibility to
avoid any random small sample fluctuations. In other words we can verify the
properties of the proposed method in the extreme case of infinite sample size.

The method of sequential adding of components based on the asymptotically
modified EM iteration equations (15), (16) has been applied repeatedly to re-
estimate the mixture parameters from Tab.1. A new component has been added
whenever the relative increase of the maximized criterion L∗ was less than a
chosen threshold ε = 10−12. The estimated parameters from Tab.2 have been
obtained after 3000 iterations. The threshold ε has been varied between 10−9

and 10−12 with very similar results. In all computational experiments we have
observed a clear tendency to suppress the weight of superfluous components. The
10th component was not added and the weight of the last added 9th component
was by two or three orders less than w8, i.e. w9 ≈ 10−4 − 10−5 (cf. Tab. 2).

5 Conclusion

The models of conditional independence have been proposed repeatedly as a tool
of cluster analysis of multivariate categorical data since the standard approaches
are usually not directly applicable. A serious drawback of the conditional inde-
pendence models follows from the fact that they are not uniquely identifiable. We
give a simple and intuitive proof that any non-degenerate discrete mixture with
product components can be equivalently described by infinitely many different
parameter sets and therefore it is non-identifiable. We propose to guarantee a
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unique result of cluster analysis by introducing additional constraints, in parti-
cular by sequential adding of components in EM algorithm.

Let us recall finally that there are numerous application possibilities of the
conditional independence models based on approximating unknown probability
distributions (cf. e.g. [7], [8], [10], [11]). In application to practical problems of
pattern recognition and statistical modelling the approximation accuracy is of
primary importance. The non-identifiability of estimated mixtures is less relevant
and may be even useful in view of increased flexibility of mixture models.
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Abstract. In this paper we address the problem of estimating the pa-
rameters of a Gaussian mixture model. Although the EM (Expectation-
Maximization) algorithm yields the maximum-likelihood solution it
requires a careful initialization of the parameters and the optimal num-
ber of kernels in the mixture may be unknown beforehand. We propose
a criterion based on the entropy of the pdf (probability density func-
tion) associated to each kernel to measure the quality of a given mix-
ture model. Two different methods for estimating Shannon entropy are
proposed and a modification of the classical EM algorithm to find the
optimal number of kernels in the mixture is presented. We test our al-
gorithm in probability density estimation, pattern recognition and color
image segmentation.

1 Introduction

Gaussian Mixture models have been widely used for density estimation, pattern
recognition and function approximation. One of the most common methods for
fitting mixtures to data is the EM algorithm [6]. However, this algorithm is prone
to initialization errors and it may converge to local maxima of the log-likelihood
function. In addition, the algorithm requires that the number of elements (ker-
nels) in the mixture is known beforehand (model-selection).

A d-dimensional random variable y follows a finite-mixture distribution when
its pdf p(y|Θ) can be described by a weighted sum of known pdf’s named kernels.
When all these kernels are Gaussian, the mixture is named in the same way:

p(y|Θ) =
K∑

i=1

πip(y|Θi) (1)

where 0 ≤ πi ≤ 1, i = 1, ...,K, and
∑K

i=1 πi = 1, being K the number of
kernels, π1, ...,πk the a priori probabilities of each kernel, and Θi the parameters
describing the kernel. In Gaussian mixtures, Θi = {μi,Σi}, that is, the average
vector and the covariance matrix. The set of parameters of a given mixture is Θ ≡
{Θ1, ...,Θk,π1, ...,πk}. Obtaining the optimal set of parameters Θ∗ is usually
posed in terms of maximizing the log-likelihood of the pdf to be estimated:
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�(Y |Θ) = log p(Y |Θ) = log
N∏

n=1

p(yn|Θ) =
N∑

n=1

log
K∑

k=1

πkp(yk|Θk). (2)

With Θ∗ = arg maxΘ �(Θ) and Y = {y1, ...yN} is a set of N i.i.d. samples of the
variable Y . The EM (Expectation-Maximization) algorithm [6][12] generates a
sequence of estimations of the set of parameters {Θ∗(t), t = 1, 2, ...} by alter-
nating an expectation step and the maximization one until convergence. The
equations are:

p(k|yn) =
πkp(y(n)|k)

ΣK
j=1πjp(y(n)|k)

(3)

πk = 1
N

∑N
n=1 p(k|yn), μk =

N
n=1 p(k|y

n
)y

n
N
n=1 p(k|yn)

,

Σk =
N
n=1 p(k|yn)(yn−μk)(yn−μk)T

N
n=1 p(k|y

n
) ,

(4)

A detailed description of this classic algorithm is given in [12]. Here we focus
on the fact that if K is unknown beforehand it cannot be estimated through
maximizing the log-likelihood because �(Θ) grows with K.

In a classical EM algorithm with a fixed number of kernels density can be un-
derestimated giving a poor description of the data. The so called model-selection
problem has been addressed in many ways [16][17][8][7][14]. In this paper we pro-
pose a method that starting with only one kernel, finds the maximum-likelihood
solution. In order to do so, it tests whether the underlying pdf of each kernel
is Gaussian and otherwise it replaces that kernel with two kernels adequately
separated from each other. In order to detect non-Gaussianity we compare the
entropy of the underlying pdf with the theoretical entropy of a Gaussian. After
the kernel with worse degree of Gaussianity has been splited in two, new EM
steps are performed in order to obtain a new maximum-likelihood solution. In
the next sections we describe two different entropy estimation techniques to test
whether a given kernel describes properly the underlying data.

2 Entropy Estimation

Entropy is a basic concept in information theory [4]. For a discrete variable Y
with y1, ..., yN a the set of values, we have:

H(Y ) = −Ey[log(P (Y ))] = −
N∑

i=1

P (Y = yi) logP (Y = yi). (5)

A fundamental result of information theory is that Gaussian variables have the
maximum entropy among all the variables with equal variance. Consequently the
entropy of the underlying distribution of a kernel should reach a maximum when
such a distribution is Gaussian. This theoretical maximum entropy is given by:

Hmax(Y ) =
1
2

log[(2πe)d|Σ|]. (6)
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Then, in order to decide whether a given kernel is truly Gaussian or must be re-
placed by two other kernels, we compare the estimated entropy of the underlying
data with the entropy of a Gaussian.

The estimation of the Shannon entropy of a probability density given a set of
samples has been studied widely in the past [1]. In this paper we present results
with two different methods: “plug-in” and “non plug-in”.

2.1 Entropy Estimation with Parzen’s Windows

The Parzen’s windows approach [11] is a non-parametric method for estimating
pdf’s for a finite set of patterns. The general form of these pdf’s using a Gaussian
kernel and assuming diagonal covariance matrix ψ = Diag(σ2

1 , ...σ
2
Na

) is:

P ∗(Y, a) ≡ 1
Na

∑
ya∈a

Kψ(y − ya), (7)

where Kψ(y−ya) is a gaussian kernel centered y ya, a is a sample of the variable
Y and Na is the size of the sample. In [15] a method for adjusting the widths
of the kernels using maximum likelihood is proposed. Given the definition of
entropy in Equation 5, we have:

Hb(Y ) ≡ −Eb[log(P (Y ))] = − 1
Nb

∑
yb∈b

log(P (yb)) (8)

where b is a sample of the variable Y and Nb is the size of the sample. If expression
in Equation 7 is plugged into Equation 8 then the entropy is estimated by:

H∗(Y ) =
1
Nb

∑
yb∈b

log

(
1
Na

∑
ya∈a

Kψ(yb − ya))

)
(9)

2.2 Renyi’s Entropy and Entropic Spanning Graphs

Entropic Spanning Graphs obtained from data to estimate Renyi’s α-entropy[10]
belong to the “non plug-in” methods of entropy estimation. Renyi’s α-entropy
of a probability density function f is defined as:

Hα(f) =
1

1− α
ln
∫

z

fα(z)dz (10)

for α ∈ (0, 1). The α entropy converges to the Shannon entropy−
∫
f(z) ln f(z)dz

as α → 1, so it is possible to obtain the second one from the first one.
A graph G consists of a set of vertices Xn = {x1, ...,xn}, with xn ∈ Rd and

edges {e} that connect vertices in graph: eij = (xi,xj). If we denote by M(Xn)
the possible sets of edges in the class of acyclic graphs spanning Xn (spanning
trees), the total edge length functional of the Euclidean power weighted Minimal
Spanning Tree is:

LMST
γ (Xn) = min

M(Xn)

∑
e∈M(Xn)

| e |γ (11)

with γ∈ (0, d) y | e | the euclidean distance between graph vertices.
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The MST has been used as a way to test for randomness of a set of points.
In [9] it was showed that in d-dimensional feature space, with d ≥ 2:

Hα(Xn) =
d

γ

[
ln

Lγ(Xn)
nα

− lnβLγ ,d

]
(12)

is an asymptotically unbiased, and almost surely consistent, estimator of the
α-entropy of f where α = (d − γ) and βLγ ,d is a constant bias correction de-
pending on the graph minimization criterion, but independent of f . Closed form
expressions are not available for βLγ ,d, only known approximations and bounds:
(i) Monte Carlo simulation of uniform random samples on unit cube [0, 1]d; (ii)
Large d approximation: (γ/2) ln(d/(2πe)) in [2].

We can estimate Hα(f) for different values of α = (d− γ)/d by changing the
edge weight exponent γ. As γ modifies the edge weights monotonically, the graph
is the same for different values of γ, and only the total length in expression 12
needs to be recomputed.

Entropic spanning graphs are suitable for estimating α-entropy with α ∈ [0, 1[,
so Shannon entropy can not be directly estimated with this method. Figure 1
on the left hand shows that the shape of the function does not depend neither
on the nature of data nor on their size.

Fig. 1. Left: Hα for gaussian distributions with different covariance matrices. Right:
α∗ for dimensions between 2 and 5 and different number of samples.

We will approximate the value of Hα for α = 1 by means of a continuous
function that captures the tendency of Hα in the environment of 1. From a
value of α ∈ [0, 1[, we can calculate the tangent line y = mx + b to Hα in this
point, using m = H

′
α, x = α and y = Hα. In any case, this line will be continuous

and we will be able to calculate its value for x = 1.
From now on, we will call α∗ to the α value that generates the correct entropy

value in α = 1, following the described procedure.
As Hα is a monotonous decreasing function, we can estimate α∗ value in

the Gaussian case by means of a dichotomic search between two well separated
α values for a constant number of samples, problem dimension and different
covariance matrices. Experimentally, we have verified that α∗ is almost constant
for diagonal covariance matrices with variance value greater than 0.5.
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In order to appreciate the effects of the dimension and the number of samples
on the problem, we calculated α∗ for a set of 1000 distributions with random
2 ≤ d ≤ 5 and number of samples. Experimentally we have verified that the
shape of the underlying curve adjusts suitably to a function of the type: α∗ =
1− a+b expcD

N , where N is the number of samples, D is the problem dimension and
a, b, c are three constants to estimate. In order to estimate these values, we used
Monte Carlo Simulation, minimizing the mean square error between expression
and data. We obtained a = 1.271, b = 1.3912 and c = −0.2488. Figure 1 on the
right hand shows α∗ for different dimension an number of samples.

3 Entropy-Based EM Algorithm

Comparing the estimations given for Equations 6 with 9 and 12, we have a way
of quantifying the degree of Gaussianity of a given kernel. Given a set of kernels
for the mixture (initially one kernel) we evaluate the real global entropy H(y)
and the theoretical maximum entropy Hmax(y) of the mixture by considering
the individual pairs of entropies for each kernel, and their prior probabilities:

H(Y ) =
K∑

k=1

πkHk(Y ) and Hmax(Y ) =
K∑

k=1

πkHmaxk
(Y ) . (13)

If the ratio H(y)/Hmax(y) is above a given threshold we consider that all ker-
nels are well fitted. Otherwise, we select the kernel with the lowest individual
ratio and it is replaced by two other kernels that are conveniently placed and
initialized. Then, a new EM with K + 1 kernels starts.

A low H(y)/Hmax(y) local ratio indicates that multi-modality arises and thus
the kernel must be replaced by two other kernels. In the split step the original
covariance matrix needs to generate two new matrices with two restrictions:
overall dispersion must remain almost constant and the new matrices must be
positive definite. This is an ill-posed problem because the number of equations
is less than the number of unknowns [13][18].

From definition of mixture in equation 1, considering that the K∗ component
is the one with lowest Gaussianity threshold, it must be decomposed into the K1
and K2 components with parameters Θk1 = (μk1 ,Σk1) and Θk2 = (μk2 ,Σk2).
The corresponding priors, the mean vectors and the covariance matrices should
satisfy the following split equations:

π∗ = π1 + π2
π∗μ∗ = π1μ1 + π2μ2

π∗(Σ∗ + μ∗μT∗ ) = π1(Σ1 + μ1μ
T
1 ) + π2(Σ2 + μ2μ

T
2 )

(14)

Recently, in [5] a spectral decomposition of the actual covariance matrix is
performed and the original problem is replaced by estimating the new eigenvalues
and eigenvectors of new covariance matrices.

Let
∑

∗ = V∗Λ∗V T
∗ be the spectral decomposition of the covariance matrix∑

∗, with Λ∗ = diag(λj∗1, ...,λj∗d) a diagonal matrix containing the eigenval-
ues of

∑
∗ with increasing order, ∗ the component with the lowest entropy ratio,
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π∗,π1,π2 the priors of both original and new components, μ∗,μ1,μ2 the means
and

∑
∗,
∑

1,
∑

2 the covariance matrices. Let also be D a dxd rotation ma-
trix with columns orthonormal unit vectors. D is constructed by generating its
lower triangular matrix independently from d(d− 1)/2 different uniform U(0, 1)
densities. The proposed split operation is given by:

π1 = u1π∗, π2 = (1 − u1)π∗
μ1 = μ∗ − (

∑d
i=1 u

i
2

√
λi∗V

i
∗ )
√

π2
π1

, μ2 = μ∗ − (
∑d

i=1 u
i
2

√
λi∗V

i
∗ )
√

π1
π2

Λ1 = diag(u3)diag(ι− u2)diag(ι + u2)Λ∗ π∗
π1

Λ2 = diag(ι− u3)diag(ι− u2)diag(ι + u2)Λ∗ π∗
π2

V1 = DV∗, V2 = DT V∗

(15)

where, ι is a d x 1 vector of ones, u1,u2 = (u1
2,u

2
2, ...,u

d
2)T and u3 = (u1

3,u
2
3, ...,

ud
3)

T are 2d + 1 random variables needed to construct priors, means and eigen-
values for the new component in the mixture. They are calculated as

u1 ∼ be(2, 2),u1
2 ∼ be(1, 2d),

uj
2 ∼ U(−1, 1),u1

3 ∼ be(1, d),uj
3 ∼ U(0, 1) and j = 2, ..., d

(16)

Fig. 2. 2-D Example of splitting one kernel into two new kernels

A graphical description of the splitting process in the 2-D case is showed
in Fig.2. Directions and magnitudes of variability are defined by eigenvectors
and eigenvalues of the covariance matrix. Otherwise, a completed algorithmic
description of the process is showed in Fig. 3.

4 Experiments and Discussion

In order to test our approach we have performed several experiments with syn-
thetic, real and image data. In the first one we have generated 2500 samples
from 5 bi-dimensional Gaussians with different prior probabilities, averages and
covariance matrices. We have used a Gaussianity threshold of 0.95, and a con-
vergence threshold of 0.001 for the EM algorithm. In both, “plug-in” and “non
plug-in” entropy estimation approaches our algorithm converges after 30 itera-
tions finding correctly k = 5. In Figure 4 we show the evolution of the algorithm.
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Entropy Based EM algorithm
Initialization: Start with a unique kernel.
K ← 1. Θ1 ← {μ1, Σ1} with μ1 = data average and Σ1 = data covariance.
repeat: //Main loop

repeat: //E, M Steps
Estimate log-likelihood in iteration i: �i

until: |�i − �i−1| < convergence th
Evaluate H(Y ) and Hmax(Y ) globally
if (H(Y )/Hmax < entropy th)

Select kernel K∗ with the lowest ratio and decompose into K1 and K2

Initialize parameters Θ1 and Θ2(Eq.15)
Initialize new averages: μ1 and μ2

Initialize new eigenvalues and eigenvector matrices: Λ1, Λ2, V1 and V2

Set new priors: π1 and π2

else Final ← True
until: Final = True

Fig. 3. Entropy Based EM algorithm

Fig. 4. Evolution of our algorithm from 1 to 5 final kernels

We have also tested our algorithm in unsupervised color image segmentation.
At each pixel i in the image we compute a 3-dimensional feature vector xi with
the components in the RGB color space. We obtain the number of components
(classes) M and yi ∈ [1, 2, ...,M ] to indicate from which class the pixel ith
came. Therefore our image model sets that each pixel is generated by one of
the Gaussian densities in the Gaussian mixture model. We have used different
entropy thresholds and a convergence threshold of 0.1 for the EM algorithm. In
Fig. 5 we show some results obtained from three different images. The greater it
is the demanded threshold the higher is the number of kernels (colors) generated.
In the “non plug-in” approach, a random selection of 1000 points has been made
to estimate the MST due to memory problems. The results obtained with both
methods are identical.

Finally, we have applied the proposed method to the well known Iris [3] data
set, that contains 3 classes of 50 (4-dimensional) instances referred to a type
of iris plant: Versicolor, Virginica and Setosa. 50 samples are insufficient to
construct the pdf using Parzen. In order to test our method, we have generated
300 training samples from the averages and covariances of the original classes
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Fig. 5. Color image segmentation with increasing gaussianity thresholds

and we have checked the performance in a classification problem with the original
150 samples. Starting with K = 1, the method correctly selected K = 3. Then, a
maximum a posteriori classifier was built, with classification performance of 98%.
With the MST approach, with no pdf estimation required, the algorithm can be
executed with the original data set with the same classification performance.

5 Conclusions and Future Work

In this paper we propose a method for finding the optimal number of kernels
in a Gaussian mixture based on maximum entropy. The algorithm starts with
only one kernel overcoming the local convergence of the usual EM algorithm.
The “plug-in” entropy estimation approach is suitable for low-dimensional prob-
lems with large data, while the “non plug-in” approach is appropriate for high-
dimensional settings with a reduced data set. The algorithm is efficient for den-
sity estimation, pattern recognition and unsupervised color image segmentation.
We are currently exploring methods to remove noisy features from data.
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Abstract. Object detection in real images has attracted much attention during
the last decade. Using machine learning and large databases it is possible to de-
velop detectors for visual categories that have a very high hit-rate, with low false
positive rates. In this paper we investigate a general probabilistic framework for
context based scene interpretation using multiple detectors. Methods for finding
maximum likelihood estimates of scenes given detection results are presented.
Although we have investigated how the method works for a specific case, namely
for face detection, it is a general method. We show how to combine the results of
a number of detectors i.e. face, eye, nose and mouth detectors. The methods have
been tested using detectors trained on real images, with promising results.

1 Introduction

During the last decade much interest in the computer vision community has been put
into the areas of object detection, recognition and classification. Using machine learning
and large databases it is possible to develop detectors for visual categories such as faces,
eyes, cars, bicycles, animals etc.

Many of these detectors work in the following semantic way. A binary classifier is
obtained for objects at a predefined scale and position using a large database of positive
and negative examples, and machine learning. This classifier is then applied to different
parts of the image, i.e. at different positions and different scales. A typical result is
shown in Figure 1. Some kind of clustering algorithm is then applied in order to reduce
the number of detections that originate from the same object.

In this paper, we discuss (i) how this clustering method can be improved using scene
models and (ii) how multiple detectors can be used in conjunction in order to improve
the results.

Geometric constraints have been used to improve detection in a number of publi-
cations. The constraints can be more or less explicit. In [3] the concept of body plans
was used to detect humans and horses. The geometric relationship between parts was
explicitly given in the model. In [6] a hierarchical model of components of humans
was used in a SVM-framework to detect humans in still images. In [10] probabilities
for walking humans were learned with good results. In [5] they use a number of detec-
tors to improve face-detection. Here they optimize over a weighted sum of individual
likelihoods from each detector. Context in the form of appearance around object was
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exploited in [4]. In [8] statistics of spatial relationships were learned to improve object
detection. For surveys on context and face detection see e.g. [2,13].

In our work we are interested in how one can use scene models and context to, on the
one hand, get better detection rates. But another goal is to get higher level information
about the detected objects, how they are related to each other geometrically and their
properties such as appearance and pose. As will be seen in the experiments on face
detection in section 3 one of the biggest gains in combining detectors in a contextual
manner is in the precision of detection. We achieve this not by starting with the detec-
tions and combine them in some manner, but instead formulate a hypothetical scene
and calculate how likely this scene is given the detection result. The problem is then
to search the scene space for the most probable scene. By the most probable scene we
mean the scene with the highest likelihood given the detections.

Fig. 1. Typical detection result. Each circle represents a face detected at the center of the circle
and the radius corresponds to at which scale the detection was made. At most positions and scales
there are no detections.

2 Scene Modeling and Model Estimation

2.1 Scene Modeling

We assume that the scene contains a number of objects of different types, Ωi, and that
for each such object there is a corresponding pose parameter p. In the examples below
pose includes position in the image and scale. However, depending on the structure of
the detector, the pose parameter could include more or fewer parameters. One might,
for instance, have a detector that is trained on faces with a given position, distance and
orientation relative to the camera. Or the pose parameter could contain shape variational
parameters of deforming objects.

For simplicity we assume that the object types form a hierarchy (or a directed acyclic
graph). In the simplest case there is only one type of object, e.g. eyes. In the slightly
more advanced case there is an hierarchy, e.g. faces are modeled in the scene and then
on the next level mouth, nose and eyes pose are conditioned on the pose of the face.

Using images with ground truth position we estimate the probability P (#Ωi = ni),
of a scene containing ni objects of type Ωi at the top level. We then estimate the joint
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probability density function f(pi,1, . . . , pi,ni) of the pose parameters (pi,1, . . . , pi,ni)
for these ni objects of type Ωi at the top level.

We then go on estimating the probability P (#Ωij = nij) for object type Ωij at the
next level of hierarchy and the corresponding pose parameter joint probability density
function conditioned on the pose parameter of the ascendent pi.

The resulting scene model x is a collection of objects, {Ω}, of different types, where
each object has a different pose p.

Simulation of such models x can be made by sampling the number of objects and
their pose parameters at the top level, followed by sampling of objects and poses of
objects on lower level in the hierarchy.

Furthermore, for each scene model x, the likelihood can be determined as

L(x) = Πn
i=1(P (#Ωi = ni)f(pi,1, . . . , pi,ni) · . . .

. . . ·Πmi

j=1(P (#Ωij = nij)f(pij,1, . . . , pij,nij ))). (1)

2.2 Detection Modeling

As was described in the previous section, we have developed a number of detectors
for different types of objects. Each such detector is evaluated at a discrete number of
positions,Y = p1, p2, . . . , pN , in the corresponding pose space. We assume that the
probability of obtaining a detection at pose p, given a scene with an object at true pose
p̄ close to p, is only dependent on this true object. This implies that we believe that each
object has limited reach, i.e. a detection of an object is plausible only at close distances
from the object. At larger distances there is still a possibility of ’false’ detections, which
we assume to be constant in the pose space.

In the experiments we have furthermore assumed a kind of stationarity in this re-
spect. We have used pose spaces such as (position+scale) and have assumed that the
probability depends on relative position and relative scale between the detected pose p
and the actual pose p̄. This probability

Pdetect(detection at pose p|closest pose is p̄)

is estimated from databases with objects of known pose.
Each studied image is analyzed by running all of the detectors of type Ωij at all

sampled positions Yij . The result y is typically a small number of positive detections of
different types and a large number of non-detections of different types. Such a result y
is shown in Figure 1, where each circle represents a face detected at the center of the
circle and the radius corresponds to at which scale the detection was made. One may
view y as a large boolean vector of length N =

∑
ij Nij .

For each such detection result it is possible to determine the likelihood of the detec-
tion given a scene model x,

P (y|x) = ΠN
k Pdetect(yi|x). (2)
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2.3 Scene Model Estimation from Ensemble Detections

Assume that we have an image, on which we have run multiple detectors and have
obtained a detection result y. The scene model estimation is then given by maximum
aposteriori estimation

x̃ = arg max
x

P (y|x)f(x). (3)

One problem with this approach is that the prior f(x) for different scene models
vary in magnitude with different number of degrees of freedom for the scene model
observation space, i.e. scene models containing many objects have probability density
function values several magnitudes lower than those of few objects.

For an example of scene modeling see section 3.2.
Finding the optimum over all possible scene models x is a large optimization prob-

lem. The idea here is not that the scene model estimation should be performed by ex-
haustive search of this space. The main point is that the likelihood serves as a basis for
comparing and choosing between different results obtained by heuristics, e.g. cluster-
ing of detection results. Using this model we hope to obtain better results than ad hoc
methods which are used today, e.g. [3,5].

3 Experiments on Face Detection

3.1 Detection Probabilities

In these experiments we have used four detectors for faces, eyes, noses and mouths.
Each detector has been trained on different positions and scales, i.e. the pose space is
three dimensional (x, y, s). The detectors are based on boosting as described in [12]
with cascades.

Typically the detection pose set, as illustrated in Figure 2, has coarser sampling in
space (x, y) for coarser (larger) scales.

Position (x)

S
c

a
le

Position (y)

Fig. 2. Object detection is performed at a discrete set of pose points as illustrated in the figure

A typical detection (before clustering) is shown in Figure 1.
As can be expected when detecting an object at pose pm, the detector will return

true for many tested poses close to that position. By studying 697 images containing
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995 faces with known poses, we estimate the probability of detecting an object at pose
pd when the true pose is pm. Here only the relative pose is used

prel =

⎛⎝(pd,x − pm,x)/pm,s

(pd,y − pm,y)/pm,s

log(pd,s/pm,s)

⎞⎠ . (4)

Notice that the relative pose prel is invariant under a common translation and scale.
Notice also that pd = pm implies that prel = 0. For each type of object, (face, eyes,
nose and mouth), the probability of detection

Pdet(prel) = P (detect at relative pose prel)

is estimated using a three-dimensional histogram. The result is shown in Figure 3.

Fig. 3. Estimated detection probability densities as a function of relative pose for (a) faces, (b)
eyes, (c) noses and (d) mouths. Here the position are on the x- and y-axes and the scale is on
the z-axis. Notice the bias in nose position. This is due to a difference in nose center definition
between the training of the detector and the ground truth modeling made here.

We approximate these detection probabilities as scaled Gaussian functions, i.e.

Pdet = a
1

(2π)3/2
√
|Σ|

e(prel−m)T Σ−1(prel−m)/2, (5)

with different parameters (a,m,Σ) for each detector. Notice that there might be a trade-
off here between having a very specific detector with high detection probability only in
a small region, or a very unspecific detector with a broad detector response and perhaps
not so high detection probability. As can be seen in the examples the detectors are quite
specific in position, but not so specific in terms of relative scale.

3.2 Scene Modeling

In this experiments we modeled the scene as having a number of faces, each of which
contained two eyes, one nose and one mouth. We estimated model probabilities from
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Fig. 4. (a) Estimated probability density function for faces in pose space. Notice that the y-
coordinate is typically higher for smaller faces (lower scales) and that there is larger variations in
position (both x and y) for smaller faces. Larger faces tend to be more centrally positioned and
with smaller variance in position. (b) The distribution of eyes, noses and mouths relative to the
face poses in the database.

2268 images. These contained different number of faces. In total there were 2551 faces
in these images. Images come in different sizes and shapes. We adopted a scene coor-
dinate model with origin in the middle of the image and base scale equal to the square
root of the image area in pixels. We represented image pose in this space with scale
coordinate equal to the logarithm of the face width divided by the base scale. Figure 4
illustrates the estimated probability density function of a random face in this pose space.

In the experiment the following approximations were made. The positions of faces in
a random image were assumed to be independently distributed according to Figure 4a
with the addition that no two faces were allowed to spatially overlap more than 30
percent. This is not entirely realistic, since an image with many faces will probably be
biased towards smaller scales.

Furthermore we assume that the relative pose of the two eyes, the nose and the mouth
can be approximated by Gaussian distributions. Figure 4b shows the distribution of such
facial positions relative to the face in the 2551 faces in the database.

3.3 Optimizing Likelihood

A two step maximization of the Likelihood was made:

max
scene

logP (detection|scene). (6)

Initial guesses for scenes were found from detected faces, noses, and mouths. From
each detected feature a face with two eyes, a nose and a mouth was estimated using
estimated relative mean positions. The procedure works in the following way,

1. Randomly select a feature from all detected features.
2. From this feature estimate a whole face. Add this to the current scene.
3. Calculate the likelihood for the new test-scene, and if this is greater than the current

maximum, this is the new optimum.
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The procedure starts with an empty scene and is repeated for a number of iterations. The
best scene is then kept and the whole procedure is done all over again but starting with
the current best scene instead of an empty scene. This procedure is repeated for a number
of iterations, i.e. as many times as the maximum number of faces to be expected. This
means that the number of faces is chosen automatically, the only restriction being that
the maximum number of faces that can be found is limited by the number of iterations.

Given an initial scene we can then optimize the scene by moving each individual
feature in the scene, i.e. the faces, eyes, noses and mouths, in position and scale. This
is done by a simple neighborhood search.

3.4 Results

Using the estimated image and detector probabilities, we have tested the detection sys-
tem on a number of images. For these images we obtained ground truth by manually
marking positions in the images. A typical detection result can be seen in Figure 5. The
database used for testing consisted of color images of groups of people collected from
the Internet, with one to fifteen fronto-parallel faces. In total we used 300 images with
a total of 1437 faces. This database is completely different from the database used for
estimating all the detection and model probabilities, and can be acquired from the au-
thors upon request. The results from the four detectors were collected and the maximum
likelihood estimate of the scene was calculated according to section 3.3. The recall and
precision were calculated for the face, nose and mouth detectors as well as for the com-
bined result. The recall or hit-rate is defined as the total number of correct detections
divided by the total number of faces in the images. The precision is defined as the num-
ber of correct detections divided by the total number of detections. The result can be
seen in Table 1. Notice that only a single precision-recall (P/R) value is given. As our
method is based on finding a maximum likelihood estimate, the result is based on the
detection results from the different detectors, and the estimated detector statistics. This
means that it is not straight-forward to to get a P/R curve by tuning a detection rate. By
tuning the different detectors in different ways one would probably get different P/R
curves depending on which detector one changed. One way to get a P/R curve might be
to change the detector statistics, but as there is no detection threshold there are many
parameters which one can vary. Also since these parameters are estimated and hope-
fully close to the true parameters, changing them would change the model, and the final
detection would then not be the maximum likelihood estimate of the scene. As can be
seen, the precision of the mouth and nose detectors aren’t very high. The eye detector
is not included in the table, but its precision is even lower. The precision of the face
detector is quite high, but the recall is not very high. The missed faces are in most cases

Table 1. Recall and precision for the different detectors as well as for the maximum likelihood
estimate

Nose Mouth Face Combined
Precision 0.45 0.50 0.97 1.00

Recall 0.81 0.79 0.75 0.84
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Fig. 5. On the left hand side images the initial unclustered detection results on a number of images
is shown. The face detections are indicated by blue circles, the eyes by magenta stars, the mouths
by red horizontal lines and the noses by yellow vertical lines. The sizes indicate the scale of the
detections. On the right hand side the maximum likelihood estimates of the scenes are shown.
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children or older people which were scarce in the training database for the detectors.
One can see that the precision of the combined detector is very high; there were only
three false positive faces in all the tested images.

4 Conclusions

In this paper we have investigated a probabilistic framework for context based scene
interpretation using multiple detectors. Methods for finding maximum likelihood es-
timates of scenes given detection results were presented. The benefits of optimizing a
scene model given a detection result is manifold. Firstly we get a clustering method that
gives valid results in the sense that they adhere to a given real world model. Secondly
we get higher recall rates than just using the individual detectors. But the most impor-
tant gain is that we get a better understanding of the detected scene and the objects in
it. This leads to both higher precision detections and the possibility to infer properties
of the imaged object such as e.g. pose. One draw-back is of course that we need to use
more computational effort compared to just using one specific mid-level detector.
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Abstract. We address the problem of fusing experts employing diverse
similarity measures in LDA face space. The gradient direction measure is
reviewed and experimentally compared with the normalised correlation
in two different conditions, when the face images are well registered and
when the registration process is performed automatically. We show that
by combining the gradient direction measure and normalised correlation
using a confidence based gating, the resulting decision making scheme
consistently outperforms the best method. The gating is based on a novel
decision confidence measure proposed in the paper.

1 Introduction

In certain pattern recognition applications the training sets are notoriously small.
A typical example is biometric person recognition where only a few training data
points are available for each individual. An extreme case of the small sample
set situation arises in image and video database retrieval, where only a single
exemplar is available to define the class of objects of interest.

The usual approach to such problems is to base the decision making on some
form of similarity measure, or scoring function, which relates unknown patterns
to the query object template. If the degree of similarity exceeds a prespecified
threshold, the unknown pattern is accepted to be the same as the query object.
Otherwise it is rejected. The similarity concept can also be used in recognition
scenarios where the unknown pattern would be associated with that class, the
template of which is the most similar to the observed data.

The similarity score is computed in a suitable feature space. Commonly, sim-
ilarity would be quantised in terms of a distance function, on the grounds that
similar patterns will lie physically close to each other. Thus smaller the distance,
the greater the similarity of two entities. The role of the feature space in sim-
ilarity measurement is multifold. First of all the feature space is selected so as
to maximise the discriminatory information content of the data projected into
the feature space and to remove any redundancy. However, additional benefits
sought after from mapping the original pattern data into a feature space is to
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simplify the similarity measure deployed for decision making. A classical exam-
ple of this is the use of the Euclidean distance metric in Linear Discriminant
Analysis (LDA) feature spaces as the within class covariance matrix in the LDA
space becomes an identity matrix and such metric becomes theoretically opti-
mal. LDA was introduced to the face verification area by Belhumeur in 1996 [1].
Despite the theoretical optimality of Euclidean metric in the LDA space, in [3] ,
it has been demonstrated that it is outperformed by the Normalised Correlation
(NC).

However, in [3] it has been further demonstrated that the Gradient Direction
(GD) scoring function is even more effective. In this method the distance be-
tween a probe image and a model is measured in the gradient direction of the
aposteriori probability of the hypothesised client identity. A mixture of Gaussian
distributions with Identity covariance matrix has been assumed as the density
function of the possible impostors. In [5] the GD metric was further generalised
by considering a general covariance matrix for the components of the Gaussian
mixture model(GGD metric). The main problem with the Gradient Direction
metric is its computational complexity. In [4], an approximation to the Gradient
Direction metric (AGD) was developed. The AGD metric is defined as the differ-
ence between the mean (template) of the claimed identity and the local mean of
other identities representing the anti-class (impostors). Although not as powerful
as the Gradient Direction method, we showed that this approximate Gradient
Direction metric gives good performance, in comparison with normalised cor-
relation and is significantly simpler to implement than the Gradient Direction
metric method.

The previous studies were performed on the BANCA database 1 using an
internationally agreed experimental protocols by applying a geometric face reg-
istration method based on manually annotated eyes positions. One of the main
issues for assessing the performance of a similarity measure in an automatic
face authentication system is how robust the approach is to miss-registration
errors. In this paper, the performance of the NC scoring function is compared
with the GD metric and its extensions in experiments involving automatically
registered faces. Our experimental studies show that overall the NC function
is less sensitive to miss-registration error but in certain conditions GD metric
performs better. In order to gain maximum benefit from the complementary
merits of these scoring functions , we propose a combined strategy which fuses
the scores using a confidence function based weighting. In the proposed method,
in the training stage the statistical distribution of the miss-classified scores is
estimated for both NC and GD metrics. Then in the test stage, the confidence
of the resulting scores are measured. The score value with the higher confidence
level is finally adopted for decision making.

The paper is organised as follows. In the next section the Normalised Cor-
relation and Gradient Direction metrics are reviewed. The proposed method of
score fusion is then introduced in Section 3. A description of the experimental
design including the face database used in the study, the experimental protocols

1 http://www.ee.surrey.ac.uk/banca/
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and the experimental setup is given in Section 4. The experimental results using
different scoring functions and the fusion results are presented and discussed in
Section 5. Finally a summary of the main findings and conclusions can be found
in Section 6.

2 Similarity Score Functions

In a face verification system, a matching scheme measures the similarity or dis-
tance of the test sample, x to the template of the claimed identity, μi. Note that
x and μi are the projections of the test sample and class mean into the feature
space respectively. The simplest similarity measure, s, for matching the probe
and the ith client mean is the Euclidean Distance between the vectors x and
μi, i.e.

sE =
√

(x− μi)T (x− μi) (1)

In [3], it has been demonstrated that a matching score based on Normalised
Correlation (NC) scoring function, defined by Equation 2, is more efficient.

sN =
||xT μi||√
xTxμT

i μi

(2)

In [3] an innovate metric called the Gradient Direction (GD) metric has been
proposed. In this method the distance between a probe image and a model is
measured in the gradient direction of the aposteriori probability of the hypothe-
sised client identity. A mixture of Gaussian distributions with Identity covariance
matrix has been assumed as the density function of the possible classes of iden-
tity. In [5], we revisited the theory of the Gradient Direction metric and extended
it to a Generalised Gradient Direction metric. We demonstrated that applying
GD metric using either a general covariance matrix derived from the training
data or an isotropic covariance matrix with a variance of the order of the vari-
ation of the image data in the feature space is even more efficient than the NC
function. The proposed optimal matching score is defined as

sO =
||(x− μi)

T∇OP (i|x)||
||∇OP (i|x)|| (3)

where ∇OP (i|x) refers to the gradient direction. In the generalised form of the
GD metric, the optimal direction would be

∇GP (i|x) = Σ−1
m∑

j = 1
j = i

p(x|j)(μj − μi) (4)
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where p(x|j) is the j-th client measurement distribution. Considering an isotropic
structure for the covariance matrix, i.e. Σ = σI, equation 4 could be simplified
as:

∇IP (i|x) =
m∑

j = 1
j = i

p(x|j)(μj − μi) (5)

Note that the magnitude of the σ will affect the direction through the values of
p(x|j).

3 Selecting Similarity Functions

One of the most exciting research directions in the field of pattern recognition
and computer vision is classifier fusion. It has been recognised that the classical
approach to designing a pattern recognition system which focuses on finding
the best classifier has a serious drawback. Any complementary discriminatory
information that other classifiers may capture is not tapped. Multiple expert
fusion aims to make use of many different designs to improve the classification
performance. In the case considered here, as different metrics span the feature
space in different ways, it seems reasonable to expect that a better performance
could be obtained by combining the resulting classifiers. Our experimental study
(reported in section 5) demonstrates that in most of the cases just one of the NC
and GD metrics fails to make the correct decision. Therefore, we expect that by
dynamically selecting the experts using the respective metrics the performance
of the verification system can be improved. In this study, a simple method for
combining the NC based classifier and the GD metric one is proposed.

Suppose that sN and sO refer to the NC and GD scores for a test sample, x.
Let pe(s) denote probability of error. Then, if pe(sN ) < pe(sO), the NC metric
should be used, otherwise the GD metric will give a better result. Now,

pe(s) = pe(s|C)pe(C) + pe(s|I)pe(I) (6)

where pe(s|C)/pe(s|I) refers to the probability of error if x is classified as
client/impostor and pe(C) and pe(I) refer to the probability of client and im-
postor errors respectively.

In the evaluation step, in addition to the threshold(s), the probability density
functions of the distances corresponding to the miss-classified samples ,Pe(s|C)
and Pe(s|I), can be estimated. These functions are determined for both NC and
GD metrics. In this study a simple unimodal Gaussian function was used for
modelling the density functions. pe(C) and pe(I) are in fact the False Rejection
and False Acceptance error in the evaluation step. Then, in the test step, the
error probabilities of the measured distances are calculated using Equation 6
for both metrics. These values are considered as the confidence levels of the
measurements made. The value with the higher confidence level (lower error
probability) is used finally to make the decision.
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4 Experimental Design

In this section the face verification experiments carried out on images of the
BANCA database are described. The BANCA database is briefly introduced
first. The main specifications of the experimental setup are then presented.

4.1 BANCA Database

The BANCA database has been designed in order to test multi-modal iden-
tity verification systems deploying different cameras in different scenarios (Con-
trolled, Degraded and Adverse). The database has been recorded in several
languages in different countries. Our experiments were performed on the En-
glish section of the database. Each section contains 52 subjects (26 males and
26 females). Experiments can be performed on each group separately.

Each subject participated to 12 recording sessions in different conditions and
with different cameras. Sessions 1-4 contain data under Controlled conditions
whereas sessions 5-8 and 9-12 contain Degraded and Adverse scenarios respec-
tively. Each session contains two recordings per subject, a true client access and
an informed impostor attack. For the face image database, 5 frontal face images
have been extracted from each video recording, which are supposed to be used as
client images and 5 impostor ones. In order to create more independent experi-
ments, images in each session have been divided into two groups of 26 subjects
(13 males and 13 females). Thus, considering the subjects’ gender, each session
can be divided into 4 groups. The decision function can be trained using only
5 client images per person from the same group and all client images from the
other groups.

In the BANCA protocol, 7 different distinct experimental configurations have
been specified, namely, Matched Controlled (MC), Matched Degraded (MD),
Matched Adverse (MA), Unmatched Degraded (UD), Unmatched Adverse (UA),
Pooled test (P) and Grand test (G).

4.2 Experimental Setup

The performance of different decision making methods based on the Normalised
Correlation (sN ) and the Gradient Direction (sI) metrics are experimentally
evaluated on the BANCA database using the configurations discussed in the
previous section. The evaluation is performed in the LDA space. The original
resolution of the image data is 720× 576. The experiments were performed with
a relatively low resolution face images, namely 64 × 49. The results reported
in this article have been obtained by applying a geometric face normalisation
based on the eyes positions. The eyes positions were localised either manually
or automatically. A fast method of face detection and eyes localisation was used
for the automatic localisation of eyes centre [2]. The XM2VTS database 2 was
used for calculating the LDA projection matrix.

2 http://www.ee.surrey.ac.uk/Research/VSSP/xm2vtsdb/
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The thresholds in the decision making system have been determined based on
the Equal Error Rate criterion, i.e. by the operating point where the false rejec-
tion rate (FRR) is equal to the false acceptance rate (FAR). The thresholds are
set either globally (GT) or using the client specific thresholding (CST) technique
[5]. As we mentioned earlier, in the training sessions of the BANCA database 5
client images per person are available. In the case of global thresholding method,
all these images are used for training the clients template. The other group data
is then used to set the threshold. In the case of the client specific thresholding
strategy, only two images are used for the template training and the other three
along with the other group data are used to determine the thresholds. Moreover,
in order to increase the number of data used for training and to take the errors
of the geometric normalisation into account, 24 additional face images per each
image were generated by perturbing the location of the eyes position around the
annotated positions.

In the previous studies [5] [4], it was demonstrated that the Client Specific
Thresholding (CST) technique was superior in the matched scenario (Mc, Md,
Ma and G) whereas the Global Thresholding (GT) method gives a better per-
formance on the unmatched protocols. The results reported in the next section
were acquired using this criterion.

5 Experimental Results and Discussion

Tables 1 contains a summary of the results obtained on the test set when man-
ually annotated eyes position were used for the face geometric normalisation.
The values in the table indicate the FAR, FRR and Total Error Rates (TER),
i.e. the sum of false rejection and false acceptance rates. In the GD metric the
impostor distributions have been approximated by isotropic Gaussian functions
with a standard deviation, σ, of the order of 104 . The order of σ is related to
the order of the standard deviation of the input data (gray level values). This
order is the consequence of normalising the length of the LDA axes to unity.

Table 1. ID verification results using the Normalised Correlation and Gradient Direc-
tion methods with Global and Client Specific Thresholding techniques for unmatched
and matched protocols respectively. FAR: False Acceptance Rate, FRR: False Rejection
Rate and TER: Total Error Rate.

NC GD
FAR FRR TER FAR FRR TER

MC 2.98 5.77 8.75 1.25 3.97 5.22
MD 4.14 8.20 12.34 1.25 7.05 8.30
MA 5.96 10.00 15.96 1.35 6.53 7.88
UD 13.65 13.72 27.37 13.94 15.26 29.2
UA 20.19 21.92 42.12 16.06 16.15 32.21
P 14.01 14.23 28.24 11.57 10.64 22.21
G 8.20 3.33 11.54 2.02 1.58 3.60
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Table 2. ID verification results using the Normalised Correlation and Gradient Direc-
tion methods with Global and Client Specific Thresholding techniques for unmatched
and matched protocols respectively. Eyes were localised automatically for the face reg-
istration purpose.

NC GD
FAR FRR TER FAR FRR TER

MC 5.096 10.9 16.00 8.558 8.333 16.89
MD 10.38 14.1 24.49 12.98 14.1 27.08
MA 10.67 10.9 21.57 11.92 9.103 21.03
UD 18.85 24.62 43.46 23.65 23.59 47.24
UA 24.13 24.49 48.62 23.08 21.41 44.49
P 19.36 20.09 39.44 19.33 19.1 38.43
G 16.47 10.3 26.77 14.87 9.316 24.19

A comparison of the NC results against the results using the GD metric in
Table 1 clearly demonstrates that the GD metric outperforms the NC metric.

As we mentioned earlier one of the most important criteria for adopting a sim-
ilarity measure is the robustness of the method against miss-registration errors.
In spite of the significant advances in face detection and localisation algorithms,
the success of the methods in systems operating in realistic, dynamic scenarios
is still very limited. The face pose variation, illumination changes and the size of
the face images can degrade the performance of the face localisation algorithms.
Table 2 contains the results of similar experiments when the face registration
step was performed based on automatically localised eyes position[2].

These results demonstrate that unlike the results using manually localised
eyes position, the GD method is not the outright winner in the automatic face
verification system. In most of the cases, the NC metric gives a better or compa-
rable verification rate i.e. overall the NC metric seems slightly less sensitive to
errors in face registration. In the next section, it is demonstrated that by com-
bining the NC and GD based classifiers, the performance of the face verification
system can be improved.

Figure 1 shows a summary of a statistical study of the False Acceptance and
False Rejection errors using the NC and GD metrics. In these plots BF and OF,
respectively, stand for Both metrics Fail and One (and only one) metric Fail.
These results demonstrate that, in most of the cases just one of the metrics fails
to make the correct decision. Therefore, we expect that by combining the NC-
based and GD-based classifiers the performance of the verification system can
be improved.

We adopted the decision level fusion strategy proposed in section 3 in order
to combine the NC and GD metrics. Tables 3 and 4 contain the combined ver-
ification results using manually and automatically registered data respectively.
These results demonstrate that, overall, a better performance is achieved using
the combined method especially on the unmatched scenarios. The main reason
that not much better results are obtained for the matched protocols is that as
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Fig. 1. Percentage of the False Acceptance and False Rejection errors when only One
(OF) or Both (BF) metrics fail to make the correct decision

Table 3. ID verification results on BANCA protocols using CST method for matched
and GT method for unmatched protocols, manual registration, combining NC and GD
scores

Evaluation Test
FAR FRR TER FAR FRR TER

Mc 0.2811 0.2821 0.5631 1.538 4.231 5.769
Md 1.739 1.128 2.867 1.827 7.436 9.263
Ma 1.317 0.5641 1.881 2.5 6.667 9.167
Ud 12.69 12.56 25.26 9.423 14.1 23.53
Ua 19.23 19.74 38.97 14.81 17.44 32.24
P 14.01 13.89 27.9 8.365 12.22 20.59
G 2.387 1.111 3.498 3.59 1.41 5

we mentioned earlier we adopted the CST technique for these protocols. We only
have a few clients per subject and in some cases in the evaluation stage all the
clients for each subject are successfully classified. So, there is not enough data
available for estimating the distribution of the miss-classified client distance
values, Pe(s|C). Therefore, in the CST method, although the thresholds are
client specific, only two global models were estimated as Pe(s|C) and Pe(s|I)
using the miss-classified samples in the evaluation stage. These models are not
as representative as required.
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Table 4. ID verification results on BANCA protocols using CST method for matched
and GT method for unmatched protocols, automatic registration, combining NC and
GD metrics

Evaluation Test
FAR FRR TER FAR FRR TER

Mc 0.391 0.7436 1.135 4.808 10.38 15.19
Md 1.154 2.077 3.231 7.885 14.62 22.5
Ma 1.513 1.846 3.359 10.87 10.64 21.51
Ud 19.04 19.62 38.65 18.37 23.97 42.34
Ua 25 25 50 20.87 23.21 44.07
P 20.13 19.74 39.87 17.44 19.4 36.84
G 2.302 3.077 5.379 14.23 11.03 25.26

6 Conclusions

The problem of measuring similarity in LDA face space has been considered.
First, recently proposed gradient direction measures were reviewed and exper-
imentally compared with normalised correlation. The experiments were con-
ducted on the Banca database, using the standard Banca face verification pro-
tocols. Although the gradient direction measures were shown to be significantly
more discriminative than normalised correlation when probe face images were
well registered, in poor registration conditions normalised correlation performed
better. As the extent of misregistration was largely a function of the imaging
conditions in which the probe data was acquired, the best performing method
was effectively scenario dependent.

We showed that by combining the gradient direction measure and normalised
correlation using a confidence based gating, the resulting decision making scheme
consistently outperformed the best method. The gating is based on a novel de-
cision confidence measure proposed in the paper. The measure, developed in the
Bayesian framework, involves estimating the probability distribution of errors
for each similarity measure on the evaluation set. The proposed scheme has the
advantage that it renders the verification process fully scenario independent.
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Abstract. In this paper we propose a general framework for analysing
the diversity of ensembles of word sequence recognition systems. The goal
of the framework is to enable the application of any diversity measure
developed for standard multi-class classification problems to ensembles of
word sequence recognisers. Experiments with several diversity measures
are conducted on artificial as well as on real world data and show the
effectiveness of the proposed approach.

1 Introduction

Ensemble methods have been applied to many different fields of pattern recogni-
tion [1]. In handwriting recognition, improvements have been reported in isolated
character [2] as well as in single word recognition [3,4]. Only recently work has
been published on ensemble methods for word sequence recognition [5,6,7], which
is still a field with many challenges.

The goal of ensembles methods is to correct the errors of one ensemble mem-
ber with the output of the other ensemble members. To achieve this goal we
need a certain diversity among the ensemble members. Intuitively speaking, the
members should make no coincident errors, i.e. the errors of one classifier should
be independent of the errors of the other classifiers. A high diversity of a classifier
ensemble is considered to be a strong hint to good performance. Hence, mea-
suring diversity allows one to predict the performance of an ensemble without
the need of conducting computationally expensive experiments. Several diversity
measures have been proposed in the literature for multi-class problems. Surveys
can be found in [8,9,10].

Two different groups of diversity measures for ensembles of classifiers can be
distinguished: pairwise measures and nonpairwise measures. Pairwise measures
derive the final diversity of an ensemble of N classifiers from the N(N − 1)
pairwise diversity values. Usually the mean of these values is used as ensemble
diversity. Popular members of this group of diversity measures are correlation,
disagreement, and double fault. On the other hand, nonpairwise measures con-
sider all the classifier of an ensemble together and calculate one diversity value
directly. Popular nonpairwise diversity measures are entropy and Sharkey-Level
based measures.

D.-Y. Yeung et al. (Eds.): SSPR&SPR 2006, LNCS 4109, pp. 677–686, 2006.
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All diversity measures currently known have been developed for conventional
multi-class classification problems. To the knowledge of the authors, no diversity
measures for word sequence recognition have been proposed until know.

The aim of the current paper is to provide a generic framework to apply di-
versity measures, developed for conventional multi-class classification problems,
to the task of word sequence recognition. Word sequence recognition is a diffi-
cult problem because not only a single class, but a sequence of word classes of
unknown length has to be returned by the recogniser. Even though appropriate
diversity measures for word sequence recognition are potentially useful in the
ensemble generation process, no such measures have been published yet. The
contribution of this paper is to make classical diversity measures available for
word sequence recognisers.

The remaining part of the paper is organised as follows. Section 2 introduces
the diversity analysis framework and provides an example in detail. Experiments
conducted on artificial as well as on real world data are described in Sect. 3.
Finally, conclusions are drawn in the last section of the paper.

2 Methodology

Assume we have an ensemble where each of the n recognisers outputs a word
sequence Wi = (wi1 , . . . ,wimi

) ; i = 1, . . . ,n. The number of words mi in these
sequences may differ and therefore a synchronisation process is required first.
The synchronised results of the ensemble members are stored in a Word Tran-
sition Network (WTN) [11]. Because the class labels are used to calculate the
diversity measures, the segments of the WTN have to be labelled with the ground
truth. Any diversity measure available for multi-class problems can then be ap-
plied to the segments and based on these measures the final ensemble diversity
is derived. Next, we describe various aspects of the proposed diversity analy-
sis framework in greater detail. An extensive example of the entire process is
provided in Section 2.3.

2.1 Synchronisation of the Word Sequences

Let the n ensemble members have recognised their individual word sequences
(W1, . . . , Wn). Each of these sequences might contain a different amount of
words and therefore an alignment procedure is necessary to synchronise the n
word sequences. Any possible string alignment procedure can be used for this
purpose. However, because the optimal alignment of multiple strings is an NP-
complete problem [12], we suggest to use a heuristic approach (e.g. incremental)
for the alignment. For details see [11]. The result of the alignment is a WTN
which consists of m segments. Each arc in the WTN is labelled with a word
out of (W1, . . . , Wn). Null transition arcs ε occur when the number of words in
(W1, . . . , Wn) is not equal for each Wi (i = 1, . . . ,n).

Next, the ensemble result is derived applying some decision rule to each seg-
ment of the WTN. Any kind of decision strategy can be used, but for the sake
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Table 1. Probabilities of coincident errors between classifier Ci and Cj

Ci correct Ci wrong
Cj correct a b
Cj wrong c d

of simplicity we just use a voting procedure. The resulting sequence of decision
results constitute the combination result Ŵ . Note that if the decision result of
a segment is a null transition, this segment does not contribute any word to Ŵ .

Once we have the combination result Ŵ and the ground truth, we can label
the segments of the WTN. Therefore, we first align Ŵ with the ground truth.
Using the alignment we can map the words in the ground truth to the WTN
segments.

2.2 Application of Diversity Measures

Existing diversity measures can then be applied to the labelled segments of the
WTN, similarly to conventional multi-class classification problems. The average
of these measures gives the final ensemble diversity.

In the present work we apply pairwise as well as Sharkey-Level based diversity
measures to word sequence recognition. Pairwise diversity measures consider only
a pair of recognisers at a time. Any possible pair of ensemble members produces
a diversity value. The average across all pairs gives the final diversity. Based on
the probabilities of coincident errors between two recognisers Ci and Cj (Tab. 1)
several measures have been proposed.

Correlation. Because the output of two recognisers can be considered as nu-
merical values (1 for correct and 0 for wrong), we can calculate the correlation
coefficients.

ρi,j =
ad− bc√

(a + b)(c + d)(a + c)(b + d)
(1)

Disagreement. The disagreement measure is a very intuitive measure of diver-
sity. It is the probability that the two considered recognisers will disagree on
their decision.

Di,j = b + c (2)

Double Fault. Another quite intuitive measure is the double fault measure
which is the probability that both recognisers make a wrong decision.

DFi,j = d (3)

The second kind of diversity measures are derived from the Sharkey-Levels
introduced in [13]. Each segment of the WTN can be assigned to one of the
following levels:

Level 1. No coincident errors. Each ensemble member produces the correct
result.
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Level 2. Some coincident errors, but the majority of the ensemble members
provide the correct result.

Level 3. Majority is not correct but some of the members produce the correct
result.

Level 4. The correct result is not output by any of ensemble members.

The frequencies of the different levels are then used as diversity measures.
Thus, Li is the frequency that a segment of the WTN belongs to Level i, where
i = 1, . . . , 4.

2.3 Example

Next, we will provide an example of the entire process of calculating diversity
measures for ensembles of handwritten text line recognisers. The input is the
handwritten text line They will be asked to comment shown in Fig 1. Features
are extracted and each ensemble member performs the recognition step. The
recognised word sequences (W1, . . . , W9) are shown in Fig. 2.

Next, the word sequences (W1, . . . , W9) are synchronised. An iterative align-
ment is used for this purpose [11]. The result of this alignment step is shown
in Fig. 3. Note that null transition arcs have to be inserted at the beginning of
some text lines to align the additional word in W1 and W7.

Once the alignment is performed, we can calculate the combination result for
each alignment segment. We apply a majority voting and get the word sequence
they will be asked to council. To label the alignment segments we first have to
align the combination result (Ŵ ) with the ground truth (T) as shown in Fig. 4.

Based on this information we label the segments of the aligned word sequences
of Fig. 3. The result of the labelling process is shown in Fig. 5.

Now we are able to apply any of the described diversity measures, originally
developed for conventional multi-class classification problems, to our sequence
recognition problem. E.g. the Level 1 diversity measure yields 4/7, whereas the
Level 3 diversity measure is equal to 1/7.

3 Experiments and Results

One of the main motivations for computing ensemble diversity is to predict the
performance of an ensemble of recognisers without the need to to run compu-
tationally expensive experiments. Hence, the aim of the experiments is to show
relationships between the recognition accuracy and the different diversity mea-
sures. Experimental evaluation of the proposed framework is conducted on a
synthetic and a real world data set.

3.1 Synthetic Word Sequences

To be able to test our framework, we generate artificial ensemble results. First
the ground truth is created and then the ensemble results are generated.
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Fig. 1. Handwritten input text

W1: if they will be asked to council
W2: they will be asked to comment
W3: it will be asked to comment
W4: they will be asked to council
W5: they will be asked to council
W6: they will be asked to comment
W7: if it will be asked to comment
W8: they will be asked to council
W9: they will be asked to council

Fig. 2. Results from the different ensemble members

W1: if they will be asked to council
W2: ε they will be asked to comment
W3: ε it will be asked to comment
W4: ε they will be asked to council
W5: ε they will be asked to council
W6: ε they will be asked to comment
W7: if it will be asked to comment
W8: ε they will be asked to council
W9: ε they will be asked to council

Fig. 3. Alignment of the ensemble results in a WTN

Ŵ : they will be asked to council
T: They will be asked to comment

Fig. 4. Alignment of the combination result and the ground truth

W1: if they will be asked to council
W2: ε they will be asked to comment
W3: ε it will be asked to comment
W4: ε they will be asked to council
W5: ε they will be asked to council
W6: ε they will be asked to comment
W7: if it will be asked to comment
W8: ε they will be asked to council
W9: ε they will be asked to council
T: ε They will be asked to comment

Fig. 5. Labelling the segments

To build the ground truth for a word sequence, the number of words n is
first defined by a random number in a given range. Next, n words are randomly
chosen from the underlying lexicon and then used as the ground truth word
sequence.
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Next, the ensemble results are generated iteratively. Given the ground truth
word sequence, the first ensemble member’s result sequence is created randomly
with a given accuracy. The next member’s result sequence is then generated with
respect to a defined correlation to the previously generated word sequence. This
process is continued until the desired number of results has been obtained.

We generated ensembles with five, ten, fifteen, and twenty members with a
lexicon of 10, 000 word classes. In our experiments we also varied the correlation
between two successive members to obtain ensembles with different diversities.

The advantage of the artificial data is that we can control the correlation
between the ensemble members. Also the number of classes can be chosen.
Therefore, we are able to simulate different application domains, e.g. charac-
ter sequences (∼ 80 classes) or word sequences (∼ 10, 000 classes). Further-
more, an arbitrarily large amount of data can be produced relatively fast. On
the other hand, it may happen that the generated ensemble member results
do not sufficiently well model the results produced by real word ensemble
members.

3.2 Ensembles of Handwritten Text Line Recognisers

In the second part of the experimental evaluation we use real word data from
offline handwritten text line recognition. The data originate from [14] where
three different ensemble member selection strategies have been validated. For
this purpose, many different ensembles of various sizes have been built and tested
which we now use to evaluate the proposed diversity framework.

The ensemble members were derived from specific integration of a statistical
language model in the hidden Markov model based recognition system. The
handwritten text lines that were used originate from the IAM1 database [15].
For further details about the experimental setup of the recognition and ensemble
generation step we refer to [14].

3.3 Diversity Analysis Results

In the experiments described in this section we investigate which of the proposed
diversity measures, applied in our framework, is a better indicator of the accu-
racy of the combined ensemble results. Furthermore, we analyse the differences
between the artificial and the real world data results.

The results for the pairwise measures Correlation, Disagreement, and Double
Fault are shown in Fig. 6. While clear tendencies can be seen in the outcomes
of the artificial ensemble, only the Double Fault measure seems to be a useful
indicator for the accuracy of the ensemble performance on the real world data.
The four different lines that can be observed in the artificial data plots originate
from the four different sizes of the analysed ensembles.

Figure 7 shows the results of the level based diversity measures. On the real
world data set, the best indicator of a good performance is Level 4. This means
1 The IAM database is publicly available for download at http://www.iam.unibe.ch/

∼fki/iamDB
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Fig. 6. Evaluation of pairwise diversity measures. The x-axis shows the values of the
diversity measure whereas the ensemble accuracy is displayed on the y-axis. The results
with artificial data are shown in left column, whereas the outcome on the real world
data is shown on the right.

that if we are able to decrease the number of segments where the target word
does not even occur a single time, we can expect that the overall performance
of the ensemble increases.

The correlation coefficients between the different diversity measures and the
recognition accuracy are listed in Tab 2. These values support the optical im-
pression of Fig. 6 and Fig. 7.
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Fig. 7. Evaluation of level based diversity measures. The x-axis shows the values of
the diversity measure whereas the ensemble accuracy is displayed on the y-axis. The
results with artificial data are shown in left column, whereas the outcome on the real
world data is shown on the right.
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Table 2. Correlation coefficients of the different diversity measures

Artificial Data Real Data
Correlation -0.8 -0.45
Disagreement 0.77 0.42
Double Fault -0.45 -0.81
Level 1 -0.92 -0.66
Level 2 0.3 0.7
Level 3 0.9 -0.15
Level 4 -0.95 -0.83

4 Conclusions

We have proposed a framework for diversity analysis of ensembles of word se-
quence recognition systems. The framework allows one to apply any diversity
measure available for conventional multi-class classification problems to ensem-
bles of word sequence recognisers.

In the proposed framework, the word sequences of the individual ensemble
members are synchronised in a sequence of segments first. Next, these segments
are labelled with the ground truth. Once each segment is labelled, diversity
measures for multi-class problems can be applied to the segments. The average
of these values gives then the final diversity of the ensemble.

Experiments have been conducted with artificial as well as with real world data
from offline handwritten text line recognition. Several pairwise and nonpairwise
diversity measures have been applied to both tasks to show the effectiveness of
the different measures within the proposed framework. Some of these diversity
measures seem to be useful indicators of good ensemble performance.

In the current paper we have exclusively considered the task of word sequence
recognition. However, the proposed framework is applicable to continuous speech
recognition and other domains as well, where an individual classifier outputs a
sequence of classes, rather than just a single class.
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Abstract. Recently, the importance of incremental learning in changing envi-
ronments has been acknowledged. This paper proposes a new ensemble learn-
ing method based on two level hypothesis tests for incremental learning in con-
cept changing environments. We analyze the classification error as a stochastic 
variable, and introduce hypothesis test as mechanism for adaptively selecting 
classifiers. Hypothesis tests are used to distinguish between useful and useless 
individual classifiers and to identify classifier to be updated. Classifiers deemed 
as useful by the hypothesis test are integrated to form the final prediction. Ex-
periments with simulated concept changing scenarios show that the proposed 
method could adaptively choose proper classifiers and adapt quickly to different 
concept changes to maintain its performance level.  

1   Introduction 

Most supervised learning algorithms assume stationary target concept over time, re-
quire a larger number of training examples beforehand and learn the target concept in 
batch mode. In real-world applications, however, data are always collected over an 
extended period of time, and the target concept underlying the data is changing. Thus 
incremental learning of a classification system must have specially designed mecha-
nism for dealing with drifting concepts. 

Methods dealing with concept drift can be classified into two categories: the in-
stance based approaches and the ensemble based approaches. The former one tries to 
select instances most relevant to the current concept to keep up with the drifting con-
cepts. The FLORA family algorithms [1] and the AQ series algorithms [2] are typical 
examples of this approach. Problem with those approaches is that information learned 
from historical data is discarded in order to adapt to the current concept. This is called 
catastrophic forgetting in literature [3]. The ensemble approaches settle down this 
problem by storing knowledge learned from historical data. To adapt to the conflict-
ing concepts, they should dynamically delete, reactivate or create new ensemble 
members based on the base classifiers’ consistency with the current data. The first 
concept drift handling system STAGGER falls into this category [4].  

The ensemble based incremental learning approaches can be further divided into 
two categories: the boosting style method and the bagging style method. Examples of 
the former one include the Learn++ series algorithms [5] and Adaptive Boosting [6]. 
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In those methods, a new classifier is generated from a skewed distribution adjusted 
according to the joint performance of former classifiers. There is a strong dependent 
relationship between those classifiers,  and it is problematic to select only partial of 
those classifiers to reflect drifting concepts. So, it is more beneficial to use bagging 
style method in concept drifting environments. 

Street et al. [7] uses a simple majority vote of classifiers on sequential chunks and 
responds to concept drift by replacing an unnecessary classifier with a new classifier. 
Wang et al. [8] uses weight inversely proportional to the error of the classifier on the 
current chunk to combine their outputs. A few best classifiers are selected to reflect 
concept drifting. However, in those methods the classifier selection process is man-
aged by some predefined parameters and can’t adapt well to the concept change rate. 
When the concept change rate is low, we hope to keep more classifiers in the system 
to reduce the classification variance and to make full exploitation of former knowl-
edge. However, when the concept change rate is high, or a conflicting concept ap-
pears, we hope to discard those unnecessary former classifiers as soon as possible. So 
a more flexible classifier evaluation mechanism is needed which can adaptively select 
base classifiers for integration according to the concept change rate and degree. Chu 
et al. [9] views the setting of weights for base classifiers as an optimization problem. 
They use EM algorithm to find outliers and used logistic regression to calculate 
weights that fit best to the data set excluding those deemed outliers. Computational 
cost for EM algorithm is high and the validity of model assumption is hardly hold in 
concept changing environments. Furthermore, for classification systems, fine tuning 
of the parameters is always a main cause of overfitting and should be avoided. 

In this paper, we present a method to incremental Learning in concept drifting en-
vironments by explicitly detecting and adapting to drifting concepts. The method is 
based on two level hypothesis tests. At the first level, the hypothesis test is used to 
identify the classifiers to be updated on-line. New classifier is built only when no 
classifiers are updated. So the increase of the ensemble size is controlled. At the sec-
ond level, the hypothesis test is used to distinguish between useful and useless indi-
vidual classifiers so as to avoid the interference of conflicting classifiers and make 
full use of the useful ones. The method belongs to the bagging style ensemble learn-
ing method. Compared to the former mentioned approaches, it explicitly monitors the 
concept changes and can select classifiers accordingly. There have been many work 
related to explicit detection of concept drift. Methods based on comparison between 
current performance and a confidence interval adaptively derived from former data 
batches have been recently proposed [10] [11] [12] [13]. However, since the perform-
ance is a random variable, it is difficult to distinguish between a concrete concept drift 
and a random fluctuation, especially when the environments are noisy and the concept 
change rate varies too. Chu and Zaniolo [6] viewed the drift detection as a choice 
between two candidate distributions. Performance probability conditioned on those 
two distributions are calculated and compared. However, the comparison is based on 
only one performance observation. So it is highly biased. Furthermore, the compari-
son threshold is difficult to set. Our method is statistically well-grounded and no 
complex parameter tuning is necessary.  

The rest of this paper is organized as follows. We give a detailed explanation of the 
principle of the proposed method in Section 2. Experimental results are given in Sec-
tion 3, followed by conclusion in Section 4. 
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2   Incremental Learning Based on Two Level Hypothesis Tests for 
Changing Concepts 

In the concept changing environments, the problem of incremental learning boils 
down to decide how to detect the change of the target concept and how to adapt to 
these changes. 

2.1   Detection of Concept Change 

Take the prediction of the classifier h as a stochastic event which has two possible 
outcomes δ  for an example: 0δ =  for correct prediction and 1δ =  for wrong. Let R 
be the proportion of 1δ =  in experiments with n test examples. Then R follows a 
Binomial distribution with parameters n and p: 

( )Pr( ) (1 ) , 0,1,...,nr n nrnR r p p nr nnr
−= = − = . (1) 

Where p is the expected error rate of classifier h with respect to target concept f and 
distribution D : ( ) Pr[ ( ) ( )]

x
p error h f x h x

∈
= ≡ ≠D D

. Moreover if the sample size are 
large ( 30n ≥ ), the distribution of R is approximately Normal (a well-known result 
derived by the Central Limit Theorem). For a sequence 1 ,..., kr r  with k observations of 
R, statistic ( ) /t k r p s= − can be used for a t test to check if its expectation p has 
changed (alternative hypothesis) or not (null hypothesis). Where r  is the mean value 
of the sequence, s is the standard deviation of the sequence.  

The expected error rate p of a classifier is composed of three parts: Bayes error de-
termined by the distribution underlying the target concept, bias imposed by the learn-
ing algorithm and variance caused by finite training examples[14]. For a classifier, 
bias imposed by the learning algorithm is fixed. For fixed batch size, variance caused 
by the finite training examples is stable. Thus, the change of the expected error rate is 
mainly caused by the change of the distribution. Therefore, the change of the expected 
error rate of a classifier on different data batches with the same size is a good indica-
tor of the change of the target concept.   

However, the expected error rate of a classifier on its target concept is unavail-
able. We can only estimate it from the training data set used to induce the classi-
fier. In our implementation, we sample with stratified sampling method n 
( 30n ≥ for justification of the normal distribution approximation) examples from 
the training dataset for a performance test. The process repeated k times. And the 
expected error rate is estimated as the average of those tests. Given a classifier h 
and a new data set D, the pseudo code for hypotheses test is shown in Fig. 1. First, 
k test data sets are generated using the sampling method mentioned before, and 
base classifiers are tested on those data set. L-1 sequences, each with k observa-
tions and for each classifier, are generated. Then, the t statistic for each sequence 
is calculated and is compared to / 2 ( 1)t kα − , where α is the significant level. If 

/ 2| | ( 1)it t kα≥ − , i=1,…, L-1, then concept change is suspected. Otherwise, the con-
cept is deemed as stationary. 
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function HypothesisTest(h,D,k,n,α ){ 
  [SD(1),...,SD(k)]=SampleDataset(D,k,n);  
  for(i=1;i<=k;i++){ 
    err(i)=Error(h, SD(i));  
  } 
  t=Statistic(err,h);  
  if( abs(t)>= / 2 ( 1)t kα − ){  
    return FALSE; 
  } 
  return TRUE; 
} 

Fig. 1. Pseudo code for hypothesis test of concept change 

2.2   Update of the Classification System 

We have developed a general algorithm for handling changing concepts based on two 
level hypothesis tests. The pseudo code is presented in Fig. 2. Let H be the classifiers 
ensemble to be updated, H={hl}. :lh X Y→ is a base classifier in the classification 

system, l=1,…,L. L is the number of base classifiers in the ensemble. Let D(t) be the 
data batch used to update the classification system at time t. In each time step, the 
algorithm begins by running through the current classification system to find the type 
of concept change for each base classifier. If the concept is stationary, then the classi-
fier is updated online using D(t) and is denoted as useful. If the concept is suspected 
to drift( change gradually), then the classifier is denoted as useful. If the concept is 
suspected to shift( change abruptly), the classifier is denoted as useless. After a pass 
through the ensemble, if no classifier is updated, then a new classifier will be induced 
from scratch using D(t) as training data. To give the final predication of a new exam-
ple, all the classifiers denoted as useful are integrated by weights inversely propor-
tional to the error of the classifier on the current chunk for the final prediction. 

Fig.3 gives an illustration of the effect of 1 2,α α  in determining the types of con-

cept changes. These two parameters divide the t distribution into three regions: D1 is 
denoted as the blank region under the probability curve, D2 is denoted as the bright 
gray region under the probability curve, and D3 is denoted as the dark gray region 
under the probability curve. If the tested statistic value falls in D3, then the hypothesis 
that the underlying concept is stationary is hold. In this case, we can update the base 
classifier by online learning algorithm. It should be noted that, in addition to update 
the classification model, the sample error rate p should also be updated. If the tested 
statistic value falls in D2, this is unlikely under the null hypothesis, and the target 
concept should be deemed as changed. But from a stricter perspective, the change is 
not so serious, and the tested classifier can also provide useful information for classi-
fication of the current data set. So the classifier is tagged as useful but not updated to 
avoid interference of different concepts. If the tested statistic value falls in D3, we 
suppose that a completely different concept or even a conflicting one appears, and the 
classifier for the historical data is eliminated from integration, because it may be con-
flictive with the current one. 
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function SystemUpdate(D(t)){ 
  S=0; // usefulness flag vector for each classifier 
  bUpdate=FALSE; 
  for(i=0;i<L;i++){ 
if(HypothesisTest(H(i),D(t),k,n, 1α )==TRUE){//stationary 
  OnLineLearning(H(i),D(t)); 
  S(i)=1; // the classifier is useful 
  bUpdate=TRUE; 
}elseif(HypothesisTest(H(i),D(t),k,n, 2α )==TRUE){//drift 
  S(i)=1;  
}else{ // shift 
  S(i)=0; 
} 
  } 
  if(bUpdate == FLASE){ 
    BatchLearning(h,D(t)); // train a new classifier 
    AddNewClassifier(H,h); // Add it to the ensemble 
    AddElement(S,1); // turn on its useful flag 
  } 
} 

Fig. 2. Pseudo code for updating the classification system with new data batch 

 

Fig. 3. Illustration of the three kinds of concept changes 

3   Experiments 

In the experiments, we compare the performance of the proposed algorithm, abbrevi-
ated as NBE, to other three algorithms: batch learning using all available training data 
(abbreviated as BAT), sliding window trained with data only in the current batch 
(abbreviated as WIN), and ensemble learning with weights proportional to their  
accuracy on the most recent data block as suggested in Ref. [8] (abbreviated as ENS). 
At most 10 base classifiers are kept in ENS. Parameters for NBE are: n 30, k



692 H. Chen, S. Yuan, and K. Jiang 

10, 1 20.05, 0.01α α= = . We set n for reason addressed above, set k based on pilot 

experimental study, and set 1 2,α α  following a general suggestion from statistics. 

Naïve Bayes [15] are used as base classifiers because it is a stable and robust classifi-
cation algorithm with little bias and we could focus our attention on detecting and 
adapting mechanisms of the ensemble but not on fine tuning of the base classifiers.  

We use two groups of concepts generally used in literature to simulate different 
types of concept drifts. The use of artificial datasets allow us to control the points 
where the concept drifts and recurs, and the degree to which the concept drifts. The 
first data set is to simulate sudden changes in target concepts and is generated from a 
group of concepts that is first introduced by Schlimmer and Granger in STAGGER 
[4]. The concepts are defined on three attributes: color ∈  {green,blue,red} , 

{triangle,circle,rectangle}shape ∈ , {small,medium,large}size ∈ . We define the target 

concepts as: concept1 ⇔ color red ∧ size small, concept2 ⇔ color
green ∨ shape circle, concept3 ⇔ size medium ∨ size large, concept4 ⇔  con-
cept1. Concept2 and concept3 are conflicting with concept1, so behaviors of ap-
proaches dealing with conflictive concepts could be observed. Concept4 is identical 
with concept1. This is designed to investigate the behavior of those approaches when 
they encounter with recurring concept. For every target concept, ten data chunks, each 
with 300 examples, are generated sequentially. In each chunk 100 examples are used 
for training and the other 200 examples for testing.  

The second data set is proposed to simulate gradual changes in target concepts with 
a hyperplane in a d-dimensional space: 

0
1

d

i i
i

a x a
=

= . (2) 

Where xi is the coordinate of the ith dimension/feature, {0,1}ix ∈ , and ai is the weight 

for the feature, [0,1]ia ∈ . If 01

d

i ii
a x a

=
≥ , the example is classified as positive. 

Otherwise it is labeled as negative. By adjusting the weight of each feature, the target 
concept could change smoothly [16]. We set d=30, and initialized ai randomly. To 
simulate a smoothing concept drift, a concept is formed by randomly choosing a fea-
ture and increasing its weight by 0.1. The weight is subtracted by 1 if it surpassed 1. 
In this way, a sudden concept change is inserted in. 40 data batches are generated, 
each for a new concept. 300 examples are generated in all data batches, among which 
100 examples are used for training and the other 200 examples for testing. For each 
new concept, a data chunk with 300 examples are generated randomly, among which 
100 examples are used for training and the other 200 examples for testing. 

Fig. 4 compares the results of BAT, WIN, ENS and NBE on the first data set repre-
senting four concepts averaged over 30 runs. In general, NBE performs better than the 
other three compared approaches, especially when concept drifts. BAT performs well 
for stationary concept (time from 1 to 10) as it learns from all cumulated data. How-
ever, when concept drifts (time from 11 to 40), historical data becomes a burden for 
learning new concepts, and its performance degenerates seriously with more different 
concepts appear. WIN retains its performance for all time steps, even when the target 
concept drifts. However, it couldn’t use all available examples when the target concept 
is stationary or when the same concept reappear. Both of the ensemble learning method 
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are better than the above two methods, because they could retain former knowledge in 
different base classifiers and adapt to new concept by discarding unnecessary ones. But 
NBE outperforms ENS especially when conflicting concepts appears (time from 11 to 
30) or the same concept recurs (time from 31 to 40). We think this is because that 
number of base classifiers in ENS is a predefined parameter, so the algorithm could not 
adapt quickly to the sudden change of target concept. When concept changes suddenly, 
though those unnecessary former classifiers are assigned with relatively low weights, 
they still work for a period. And they are dominating in quantity. However, NBE find a 
better compromise between adaptation to drift and waste of knowledge. As it could 
detect concept drift explicitly, classifiers build for conflicting targets couldn’t interfere 
with the prediction of the current one, and classifiers generated from the same concept 
could be used jointly with the current one for a better performance.  
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Fig. 4. Performance comparisons between BAT, WIN, ENS and NBE for the first data set. (a) 
accuracy; (b) number of base classifiers. 
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Fig. 5. Performance comparisons between BAT, WIN, ENS and NBE for the second data set. 
(a) accuracy; (b) number of base classifiers. 
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Fig. 5 compares the results of BAT, WIN, ENS and NBE on the second data set 
representing forty concepts averaged over 30 runs. It is noted that NBE performs the 
best and maintain its performance at a relatively stable level. Although ENS performs 
better than the other two algorithms in most cases, its performance degenerated seri-
ously sometimes. Fig. 5(b) clearly shows that NBE don’t create NB for each data 
batch and don’t use all classifiers in the ensemble for integration. The number of 
classifiers in ensemble increases sublinearly with the time steps. 

4   Conclusion 

Nothing remains static. The world around us is evolving all the time. As a mirror of 
the real world, the classification system should also adapt to the changing target con-
cepts. This paper studies the incremental learning of classification system in concept 
changing environments. A new ensemble learning method based on two level hy-
pothesis tests is proposed. Different kinds of concept changes are detected by the two 
level hypothesis tests and treated accordingly. Experiments show that the proposed 
algorithm could adapt quickly to different kinds of concept changes and achieve bet-
ter performance by adaptively selecting and integrating individual classifiers. In addi-
tion, the number of individual classifiers produced in the learning process is fewer 
than the other ensemble learning method.  
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Abstract. In this paper, we propose an approach to image content recognition
that exploits the benefits of different image representations to associate mean-
ing with images. We choose classifiers based on global appearance, scene struc-
ture and region type occurrence, and define confidence measures on their output.
The resulting posterior probabilities of the classifiers are combined in a Bayesian
framework. We show that this method leads to a robust and efficient system that
contributes to reducing the semantic gap between low level image features and
higher level image descriptions.

1 Introduction

In recent years, many approaches to image classification and scene recognition have
been proposed. They usually utilize binary classifiers that learn from a set of indexed
images to recognize a given concept (such as an image with people, an outdoor image,
etc.) and strongly depend on the image representation they use. Such programs satisfy
needs in image retrieval and computer vision, and could possibly be applied to a wide
range of areas including robotics, digital libraries, and web searching.

Image classification has been performed by using support vector machines (SVM)
on image histograms [1] or more recently hidden Markov models on multi-resolution
features that capture more information [2]. These methods do not take into account
that human description of an image content is rarely global but often specific to an
image part. Several approaches use flexible models to localize objects in the image
and perform object class recognition [3]. For scene recognition, both background and
foreground objects are important, and thus image segmentation has usually been the
basis to include local information in the image representation. The resulting indexes
were more and more meaning-oriented: from image blocks [4] and attributed relational
graphs [5] to presence vectors that check the occurrence of given region types [6].

Simple models for image representation are efficient when they fit salient features of
the class of scenes to recognize. But they can be totally useless in other cases. Thus more
and more complex image representations were proposed. These methods rely on the
capacity of powerful classifiers to separate different image categories. Unfortunately,
these classifiers are prone to overfitting if not enough training data are available, as is
often the case in practice. We show in this paper that a system of classifiers that use

D.-Y. Yeung et al. (Eds.): SSPR&SPR 2006, LNCS 4109, pp. 696–704, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Combining SVM and Graph Matching in a Bayesian Multiple Classifier System 697

simple image representations related to different semantic levels, from global features
to region type, and finally to region relationship information, is more suitable to learn
and recognize a concept. These classifiers can be combined efficiently using a Bayesian
framework.

This paper is organized as follows. Section 2 presents the various classifiers we use
and shows their respective advantages. Section 3 introduces the Bayesian framework
that allows us to combine these classifiers. In Section 4, posterior probabilities are de-
fined for the classifiers. We present experiments and discuss their results in Section 5.
Finally, conclusions are drawn in Section 6.

2 Image Classifiers

In this section we present the different classifiers and the scene features they charac-
terize. For every class we build a binary classifier on each of the three representations.
In the recognition task, images are tested with classifiers corresponding to different
concepts. As a result, every image can be assigned to no, one or more than one concept.

SVM on Color Histograms. In [1], images are represented by simple 16-bin his-
tograms of the color distribution in the Luv color space. A SVM with a Gaussian kernel
is used to learn a decision rule in this feature space. This classifier, however, is inap-
propriate as soon as the distinction between the classes depends on local image regions.
In this case it tends to overfit on the zones of the images that have no discriminative
power, like the background. However, when a type of scene has a strong density peak
on some colors or is visually consistent over all images of a class, the simplicity of this
model insures that it is particularly efficient.

k-NN on Image Graphs. While the image representation described in Section 2 con-
veys only low-level and global information about the image, our second representation
gives insight about the structure of the image and thus provides semantic information at
the medium level. In [7], images are represented as graphs of regions; nodes of the graph
are region histograms and an edge exists between two nodes if the corresponding re-
gions are adjacent. A graph-edit distance based on the A∗ algorithm [8] is used to match
image representations. In this approach, one needs to define a set of possible graph-edit
operations and assign a cost to each of them. We use the distance between the color his-
tograms that represent the regions as the vertex substitution cost. To make vertex dele-
tion easier on large graphs, we define its cost as the inverse of the number of vertices.
To have comparable costs, this is extended to all deletion and insertion costs. Based on
the graph-edit distance, a k-Nearest-Neighbor (k-NN) procedure classifies the images.

The semantic information provided by this classifier is twofold: first, it encodes the
proximity of the regions in the image and second, the use of a graph-edit distance allows
one to implicitly build a model of the class to learn by selecting the more similar regions
between two images.

SVM on Presence Vectors. In this approach, images are indexed by boolean vectors
that indicate the presence of particular region types, such as greenery, sky, or skin,
chosen from a 50-region lexicon [6]. This lexicon is built by unsupervised clustering
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of a set of regions based on color. The same training set is used to build the lexicon
and train the classifiers and thus no manual intervention is needed to index regions nor
images. A decision rule based on the resulting presence vectors is then evaluated by
means of a SVM with a polynomial kernel. In the linear case, this approach checks the
co-occurrence of region types. This image classifier is efficient when some region types
are particularly salient, eg. skin regions to recognize images with people. But it depends
on the quality of the region lexicon and might suffer from region types that have been
badly estimated.

This kind of classifier offers even more semantic information than the previous ones
since the learned decision rules make the composition of image classes explicit. For
example, a “street” picture usually contains “building” and “road” region types, but no
“field” or “snow” ones.

3 Bayesian Combination

Multiple Classifier Systems (MCS) have successfully been used to solve difficult clas-
sification problems [9]. In this paper we present a MCS based on the three classifiers
described in Section 2. This section presents various combination rules based on a
Bayesian framework [10,11].

Let I denote the set of images, and X a random variable on I standing for the
distribution of images. We denote by Y a boolean random variable for the class to
predict, i.e. the type of scene to associate with the image. Let us assume that we have R
image representations denoted as x1, . . . ,xR, that are modeled as functions f : I → Fk

where Fk is the feature space associated with xi. These representations correspond to
the input of each classifier. We denote by X1 = x1(X), . . . ,XR = xR(X) the random
variables associated with these representations.

From a Bayesian point of view, an image x should be assigned to the class with the
maximum probability according to all classifiers, i.e x belongs to the class to predict if:

P (Y = 1|x1, . . . ,xR) ≥ P (Y = 0|x1, . . . ,xR) (1)

Practically, we can have only some estimates of the individual posterior probabilities
P (Y = 1|xi) of each classifier i. Combination rules combine these estimates to ap-
proximate P (Y = 1|x1, . . . ,xR) in the best possible way.

3.1 Mean Rule

If we use individual classifiers that are good enough, we can assume that they are wrong
on a few data samples only and that their answer differs from the overall answer by a
small classifier error with no bias. All estimates can be used to obtain a better overall
estimate by computing their average. From (1), we get the mean rule:

1
R

R∑
i=1

P (Y = 1|xi) ≥
1
R

R∑
i=1

P (Y = 0|xi) (2)

If there are outliers among the posterior probabilities, a robust estimate of the average
like the median can be used to prevent them from affecting the final decision. The
median rule is:
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medR
i=1P (Y = 1|xi) ≥ medR

i=1P (Y = 0|xi) (3)

3.2 Product Rule

Using Bayes rule, (1) is equivalent to:

P (x1, . . . ,xR|Y = 1)P (Y = 1) ≥
P (x1, . . . ,xR|Y = 0)P (Y = 0) (4)

If the features are different, we can assume that the feature spaces F1, . . . ,FR are
conditionally statistically independent: P (x1, . . . ,xR|Y = y) =

∏R
i=1 P (xi|Y = y).

We obtain that:

P (Y = 1)
R∏

i=1

P (xi|Y = 1) ≥ P (Y = 0)
R∏

i=1

P (xi|Y = 0) (5)

or, by using once more Bayes rule, in terms of posterior probabilities:

(P (Y = 1))−(R−1)
R∏

i=1

P (Y = 1|xi) ≥

(P (Y = 0))−(R−1)
R∏

i=1

P (Y = 0|xi) (6)

Eq. (6) is known as the product rule. It is critical in the sense that a single classifier with
an output close to 0 can heavily influence the result of the whole ensemble.

3.3 Sum Rule

If we assume that P (Y = 1|xi) = P (Y = 1)(1+δi), i.e that the posterior probabilities
do not differ too much from the prior probabilities, then, by substituting it in the left
term of (6) and keeping only the first-order terms, we obtain:

(P (Y = 1))
R∏

i=1

(1 + δi) = P (Y = 1) +
R∑

i=1

δi (7)

And finally by expressing δi according to the probabilities, we find the sum rule, that
outputs the class label if:

(1−R)P (Y = 1) +
R∑

i=1

P (Y = 1|xi) ≥

(1 −R)P (Y = 0) +
R∑

i=1

P (Y = 0|xi) (8)
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3.4 Other Combination Strategies

For comparison purpose, we present here other rules that are commonly used to com-
bine classifiers. The first two ones also use the posterior probabilities. The max rule
checks if:

(1−R)P (Y = 1) + R
R

max
i=1

P (Y = 1|xi) ≥

(1 −R)P (Y = 0) + R
R

max
i=1

P (Y = 0|xi) (9)

The min rule is:

(P (Y = 1))−(R−1)
R

min
i=1

P (Y = 1|xi) ≥

(P (Y = 0))−(R−1)
R

min
i=1

P (Y = 0|xi) (10)

By using the majority voting rule, the MCS simply takes the same decision as the
majority of classifiers. Only their binary outputs Δy

i , y ∈ [0, 1] are considered:

R∑
i=1

Δ1
i ≥

R∑
i=1

Δ0
i (11)

4 Classifier Outputs

Since the three classifiers we use have a simple binary output, we need to define how
to estimate their posterior probabilities to assign a class in order to combine them in a
system more accurately than the simple voting rule.

4.1 SVM Case

SVM methods used for classification [12] project input data to a space of large (or
infinite) dimension and use a linear decision boundary to separate different classes.
Data xi are classified by using the signed normalized distance dxi to the separating
hyperplane.

In our application, only data with positive value are classified as belonging to the
considered category. Data xi with the signed distance dxi in the ] − 1; 1[ interval fall
within the margin and are considered ambiguous. We define an estimate of the posterior
probability of the SVM-based classifiers from the output value dxi by the following
linear mapping, which approximates the real unknown distribution:

P (Y = 1|xi) =

⎧⎨⎩1 if dxi ≥ 1
(dxi + 1)/2 if −1 < dxi < 1
0 if dxi ≤ −1
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4.2 k-NN Case

For classifiers based on the k-NN procedure, the posterior probabilities can be esti-
mated simply by counting the number of positive neighbors k+ among all the consid-
ered neighbors k:

P (Y = 1|xi) =
k+

k
(12)

We use k = 15 in the graph-based classifier. This ensures that the probability estimates
have enough different values.

5 Experiments

5.1 Data Set

The data set is composed of 200 images collected from the web. Four classes, consist-
ing of 40 images each, contain instances of a particular scene type: snow landscape,
countryside, streets and people. A fifth one consists of various generic images aimed

True Positives False Positives or Negatives

(1)

(a) (b) (c)

(2)

(a) (b)

(3)

(a) (b) (c)

Fig. 1. Typical results of the histogram classifier (1), image graph classifier (2) and the presence
vector classifier (3). Left-hand side shows images that are correctly retrieved by the considered
classifier and only by this one. Right-hand side shows images that are typically misclassified by
using this image representation.
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to cover the whole spectrum of possible real scenes and thus used as negative samples
for the classifiers. In the experiments, a training set of 150 instances (30 per category)
is extracted randomly from the data set. The remaining instances are used as a test set.
Error rates are averaged on 25 runs of holdout cross-validation. Some examples of each
class are shown in Figure 1.

5.2 Strong and Weak Points of the Classifiers

Figure 1 shows images that illustrate the particular behavior of each classifier. The left-
hand side of this figure shows the true positives that are recognized only by this kind of
classifier and not by the other two, while the right-hand side shows images that are not
recognized, i.e. either false positives of false negatives.

The histogram classifier recognizes the image [1-a] on the basis of the color only,
while the other classifiers do not find the structure of the mountain landscapes they
have learned on other images of the category. Due to the global and continuous im-
age representation, this classifier also has a better tolerance to luminosity shifts than
individual region matching (cf. image [1-b]). On the contrary, it hardly learns concepts
characterized by images that have flat histograms, so there are many false negatives for
concepts like streets (cf. image [1-c]) or people.

The image graph classifier allows to retrieve the highly structured image [2-a] al-
though colors are almost lost completely in shadow. This can turn into a drawback when
the image segmentation into regions is not reliable: in the close-up portrait of image [2-
b], the face was segmented into several artificial regions, resulting in a meaningless
graph representation for which the classifier is not able to find a good match.

Previous classifiers fail on images [3-a] and [3-b], which are partly overexposed (and
so have density peaks on white colors), contain some heterogeneous elements (like the
house in the country image) and have unusual structures. The presence vector classifier
that tests the occurrence of some meaningful region types proves to be better suited to
recognize these images. But it can also fail to find a good balance between two opposite
clues, like the grass area and the face regions of image [3-c].

5.3 Comparison of Different Combination Schemes

The first round of experiments intends to test the complementarity of the various clas-
sifiers. The use of a MCS is promising if for one classifier that misclassifies some data,
there is another one that can correctly recognize it. The oracle rule checks if for each
test data there is at least one classifier that has the right answer. Table 1 shows the test
errors of the individual classifiers and the oracle answer. We conclude that, for all con-
cepts, all images can be recognized by at least one classifier, depending of the features

Table 1. Individual classifier errors and oracle prediction

presence-vectors region-graphs histograms oracle
snow landscape 15.15% 11.15% 3.52% 0.0%
country 6.30% 13.45% 7.64% 0.0%
people 10.30% 12.24% 11.88% 0.0%
streets 9.70% 17.94% 13.45% 0.0%
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Table 2. Various combinations for the multi classifier system

product sum max min mean median voting
snow landscape 7.15% 7.15% 8.24% 7.63% 5.58% 5.82% 6.67%
country 4.73% 6.55% 6.67% 6.79% 4.61% 4.61% 5.09%
people 8.48% 11.03% 12.73% 9.45% 6.18% 7.03% 6.91%
streets 7.88% 10.06% 11.15% 8.97% 6.42% 6.75% 7.39%

Table 3. Overall performances

presence-vectors region-graphs histograms mean-rule MCS
mean error 10.36% 13.70% 9.13% 5.70%
standard deviation 6.31% 5.16% 7.74% 1.40%

the image representation focuses on. This is an indication that the individual classifiers
have a high degree of complementarity.

In Table 2, we test various schemes for classifier combination. The sum, max and
min rules give the worst results and do not perform better than the individual classifiers.
The sum rule relies on the assumption that the posterior probabilities do not differ too
much from the prior. This is true when the classifier outputs are ambiguous, due to noisy
image representations for example, but all the classifiers we use are not weak learners
and give good results, different from the prior. The max and min rules might be con-
sidered as rough approximations of the sum rule that emphasizes one of the classifiers.
Performance of the max rule is below the sum rule, while the min rule performs slightly
better on classes streets and people.

Among the other combining schemes, both the median and voting rules can be con-
sidered as variations of the mean rule. The median is another estimate of the mean, but
here it gives slightly less good results due to the small number of classifiers. The voting
procedure is equivalent to a mean rule applied to the binary outputs of the classifiers:
the better results of the mean rule validate the estimates of the posterior probabilities
that we have defined.

Both the product rule and the mean rule (and its derivates) can be considered as
successful since they globally improve the classification rates. The product rule corre-
sponds to the true Bayes formula under conditional independence assumption and thus
should lead to more precise results. However by multiplying the posterior probabilities,
it gives too much importance to the classifier that assigns low probabilities to a class. By
contrast, the role of the mean rule is to reduce the effect of the errors of the individual
classifiers. In this case it acts on both the classifier uncertainties and the error from the
probability estimation, and thus achieves the best results.

5.4 Comparison of the MCS vs. the Individual Classifiers

The comparison of error rates shows that the MCS with the mean rule outperforms all
the individual classifiers (cf. Tables 1 and 2). The histogram-based classifier does better
for one class only, the snow landscape one. This is due to the fact that images from this
category do not have much variance in their color distribution (it corresponds mainly to
ice and snow regions).
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Table 3 shows the error rates of the individual classifiers and of the MCS on average
over different image categories. The MCS allows to reduce error rates by more than 3
percent. It does not suffer from the inadequacy of a particular image representation and
thus is more robust. Moreover, the standard deviation is highly reduced, which means
that the MCS is more general-purpose and able to deal with different kinds of visual
concepts that can meet the needs of various users.

6 Conclusion

We have presented in this article a novel approach to scene recognition based on a
multiple classifier system. It uses image classifiers that characterize different semantic
features: global appearance, image structure and presence of meaningful region types.
We define posterior probability estimates of the classifier outputs and combine them in
order to maximize the posterior probability of the whole system.

This approach achieves very good performance without using a classification method
that requires a fine tuning or complex image representation like multi-resolution fea-
tures. On the contrary, we use simple individual classifiers and rely on their combination
to arrive at the best decision. This makes it really robust and suitable for recognizing
various kinds of scenes. Thus the combination of multiple classifiers, as proposed in
this paper, can bring great benefits to image indexing and search in image databases.
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Abstract. This work presents a comparison of current research in the
use of voting ensembles of classifiers in order to improve the accuracy
of single classifiers and make the performance more robust against the
difficulties that each individual classifier may have. Also, a number of
combination rules are proposed. Different voting schemes are discussed
and compared in order to study the performance of the ensemble in each
task. The ensembles have been trained on real data available for bench-
marking and also applied to a case study related to statistical description
models of melodies for music genre recognition.

1 Introduction

Combining classifiers is one of the most widely explored methods in pattern
recognition in the recent years. These techniques have been shown to reduce the
error rate in classification tasks in opossite to single classifiers. Also, the com-
bination of different techniques to make a final decision makes the performance
of the system more robust against the difficulties that each individual classifier
may have on each particular data set. Different reasons have been argued for
this behaviour, amongst others, statistical, computational or representational
reasons [1].

Several different approaches have been used to obtain classifier ensembles.
As stated in a recent work by Duin [2], base classifiers should be different, but
they should be comparable as well. Also, works on this subject point out the
importance of the concept of diversity in classifier ensembles, with respect to
both classifier outputs and structure [3,4,5,6]. This points out that a trade-
off between comparability and diversity is desirable when combining different
classifiers.

Classifiers for an ensemble can be generated using different initializations (like
in neural networks), different parameter choices (like the number of neighbors in
the k-NN rule), different classification schemes or, for example, different training
sets from the same target problem. A set of classifiers generated in one of these
ways is called to be consistent.

D.-Y. Yeung et al. (Eds.): SSPR&SPR 2006, LNCS 4109, pp. 705–713, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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In this work, the base classifiers used to combine are comparable in terms
that they are applied to the same data sets and using the same partitioning,
and are diverse since they come from different pattern recognition paradigms:
a k-nearest-neighbor (k-NN), a multi-layer perceptron (MLP), a support vector
machine (SVM), a decision tree (DT), and a näıve Bayes classifier (NB). All the
base classifiers have been trained in the same feature spaces and with the same
training set.

Current research and new proposals on the decision combination of the base
classifiers is presented in this paper. First, the classification techniques based
on them are described, along with the different ensemble schemes for combining
classifier decisions. Following this, the results for the ensembles are presented
and compared with single classifier results for data sets from the UCI/Statlog
project [7], and for a data set based on the classification of music styles using
MIDI files. Finally, the conclusions drawn from the results are discussed, pointing
the research to further work lines.

2 Base Classifiers

Five conceptually different classification techniques have been used in this work:
the k-nearest-neighbour classifier (k-NN), the naive Bayesian classifier (NB), a
support vector machine (SVM), a multi-layer perceptron (MLP), and a decision
tree (DT). For the first case, given a sample xi, the distances to the prototypes in
the training set are computed, and the class labels of the closest k are taken into
account to classify the sample into the most frequent class among them. After
some initial testing on the performance of this particular classifier on some of
the utilized datasets, a single value k = 3 was established for this classifier in
all the experiments for simplicity. The rest of the classifiers have been applied
using the default parameters established for them in the open source software
project WEKA, using the Explorer interface [8]. The decision tree is the J48.

Each base classifier has been trained using the same training set, and its
accuracy has been estimated using the same test set. Two methods have been
used to train the classifiers, and the ensembles: first, for the UCI/Statlog project
data sets, a total of 50 pairs of train/test sets were generated, using 10 random
seeds for generating 5 cross-validation pairs (with approximately an 80% of the
data for training, and the rest for testing). The base classifiers have been run 50
times with different train and test sets from the same data (each data sample
has been classified 10 times). The error rate of the classifier has been estimated
by counting the total number of errors over the 50 experiments, divided by the
total number of samples classified (that is 10 times the size of the data set).

Once the ensembles have been trained with the UCI/Statlog project data sets,
a validation experiment has been run, using a new random seed for generating
another 5 pairs of train/test sets. The base classifiers have also been run with
the validation data, in order to obtain a reference. Obviously, the validation data
is not unseen data for the classifiers, as it should be, but the results can be a
reference for future experiments on completely unseen data.
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The training of the base classifiers in the music genre classification task was
made under a more realistic approach: each data set has been divided into 5
subsets with approximately the same size. The division has been made at the
level of MIDI files. Given the 5 subsets, 3 of them have been used to train
the classifier, 1 for test (and for training the ensembles), and the last one for
validation. The partitions have been rotated 5 times, in order to obtain more
significant results.

3 Ensemble Design: Voting Schemes

Designing a suitable method of decision combinations is a key point for the
ensemble’s performance. In this paper, different possibilities have been explored
and compared. In particular, several weighted voting methods, along with the
unweighted plurality vote (the most frequent class is the winner class). In the
discussion that follows, N stands for the number of samples, contained in the
training set X = {x}N

i=1, M is the number of classes in a set C = {cj}M
j=1, and

K classifiers, Ck, are utilized.

ek ek ek

ak ak ak

0 N(1−1/M)

1 1 1

eWeB eWeB

0

Fig. 1. Different models for giving the authority (ak) to each classifier in the ensemble
as a function of the number of errors (ek) made on the training set

3.1 Unweighted Methods

1. Plurality vote (PV). Is the simplest method. Just count the number of deci-
sions for each class and assign the sample xi to the class cj that obtained the
highest number of votes. The problem here is that all the classifiers have the
same ‘authority’ regardless of their respective abilities to classify properly. In
terms of weights it can be considered that wk = 1/K ∀k.

3.2 Weighted Methods

2. Simple weighted vote (SWV). The decision of each classifier, Ck, is weighted
according to its estimated accuracy (the proportion of successful classifications,
αk) on the training set [9]. This way, the authority for Ck is just ak = αk. Then,
its weight wk is:

wk =
ak∑
l al

(1)
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Also for the rest of weighting schemes presented here (except the last one),
the weights are the normalized values for ak, as shown in this equation.

The weak point of this scheme is that an accuracy of 0.5 in a two-class problem
still has a fair weight although the classifier is actually unable to predict anything
useful. This scheme has been used in other works [10] where the number of classes
is rather high. In those conditions this drawback may not be evident.

3. Re-scaled weighted vote (RSWV). The idea is to assign a zero weight to clas-
sifiers that only give N/M or less correct decisions on the training set, and scale
the weight values proportionally. As a consequence, classifiers with an estimated
accuracy αk ≤ 1/M are actually removed from the ensemble. The values for the
authority are computed according to the line displayed in figure 1-left. Thus, if
ek is the number of errors made by Ck, then

ak = max{0, 1− M · ek

N · (M − 1)
}

4. Best-worst weighted vote (BWWV). In this ensemble, the best and the worst
classifiers in the ensemble are identified using their estimated accuracy. A max-
imum authority, ak = 1, is assigned to the former and a null one, ak = 0, to the
latter, being equivalent to remove this classifier from the ensemble. The rest of
classifiers are rated linearly between these extremes (see figure 1-center). The
values for ak are calculated as follows:

ak = 1− ek − eB

eW − eB
,

where
eB = min

k
{ek} and eW = max

k
{ek}

5. Quadratic best-worst weighted vote (QBWWV). In order to give more author-
ity to the opinions given by the most accurate classifiers, the values obtained by
the former approach are squared (see figure 1-right). This way,

ak = (
eW − ek

eW − eB
)2 .

6. Weighted majority vote (WMV). The theorem 4.1 of Kuncheva’s book [11, p.
124] states that accuracy of the ensemble is maximized by assigning weights

wk ∝ log
αk

1− αk

where αk is the individual accuracy of the classifier. In order to use a voting
method of this type as a reference for the previously proposed methods (numbers
3 to 5), in this case the weight of each classifier is computed as:

wk = log
αk

1− αk
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Classification by the Weighted Methods. Once the weights for each clas-
sifier decision have been computed, the class receiving the highest score in the
voting is the final class prediction. If ĉk(xi) is the prediction of Ck for the sample
xi, then the prediction of the ensemble can be computed as

ĉ(x) = arg max
cj∈C

∑
k

wkδ(ĉk(xi), cj) , (2)

being δ(a, b) = 1 if a = b and 0 otherwise.
Since the weights represent the normalized authority of each classifier, it fol-

lows that
∑M

k=1 wk = 1. This makes it possible to interpret the sum in Eq. 2 as
P (xi|cj), the probability that xi is classified into cj .

4 Experiments

Two different experiments have been carried out in order to compare the voting
schemes proposed (numbers 3 to 5) with those of reference (1, 2 and 6). The first
experiment tries to study the performance of the voting schemes when used with
benchmarking data. For that, 19 data sets from the public available UCI/Statlog
projects have been utilized. Each data set has been partitioned as explained in
section 2. In total, 50 pairs of train/test sets were generated, so a total number
of 50 experiments for each data set have been run in order to train the weights of
the ensembles. The error rates of each base classifier were computed as the total
number of errors made (on the 50 experiments) divided by the total number
of samples classified. Finally, in order to test the ensembles, another 5 pairs
of train/test sets were generated for validation. Recall from section 2 that the
validation data are not unseen data.

The table 1 presents the error rates of the validation experiments for the
datasets, with the best results for each data set emphasized in boldface. Note
that the result for the best single classifier classifier is showed as a reference.

To summarize the results, the ensembles outperform the best classifier in 8
out of 19 data sets, the best classifier wins in 5 data sets, and in the remaining
6 data sets they obtain the same error rate. Specially significant is the result for
the glass database, where the ensembles obtain an error rate which is almost 4%
below the error rate of the best classifier. Note that the quadratic best-worst
has performed the best, being 8 times one of the winner schemes. Note that the
best single classifier was not always the same (1 NB, 1 SVM, and 3 MLP) and
there are not analytic methods to decide which is the best classifier to be used
according to the data. Thus, the ensembles seem a better option for designing a
classification system.

A Case Study. In order to test on a real new problem the experiences we
have learned from the first study, the same approach is now applied to a real
problem related to music information retrieval. The goal is to classify a digital
music score into a set of genres. In this case, jazz and classical music have been
consider due to a general agreement among the experts about their definitions
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Table 1. Error rates (in %) of the different ensembles with the UCI/Statlog data sets,
together with the result of the best individual classifier (Best) column. The winning
classifications schemes in terms of accuracy for each data set have been highlighted.

Data set PV SWV RSWV BWWV QBWWV WMV Best
australian 13.04 13.04 13.04 13.62 14.64 13.04 14.64 (SVM)
balance 12.64 11.36 11.36 10.56 10.56 11.20 8.80 (MLP)
cancer 3.37 3.37 3.37 3.37 3.37 3.37 3.22 (SVM)
diabetes 23.18 23.18 23.18 23.44 22.66 23.18 22.66 (SVM)
german 24.30 24.30 24.30 23.5 23.70 24.30 23.70 (SVM)
glass 32.71 30.84 30.84 28.51 29.91 28.51 32.24 (MLP)
heart 15.93 15.93 15.93 15.19 15.19 15.93 14.07 (NB)
ionosphere 9.12 9.12 9.12 11.11 11.11 9.12 9.40 (MLP)
liver 36.81 36.81 35.36 33.62 31.88 35.36 31.88 (MLP)
monkey1 3.60 3.60 0 0 0 0 0 (MLP)
phoneme 16.78 16.78 16.78 13.53 12.31 16.78 12.31 (3-NN)
segmen 3.51 3.07 3.07 2.55 2.55 3.07 3.77 (DT)
sonar 24.04 24.04 24.04 23.08 23.08 24.04 22.12 (MLP)
vehicle 21.75 21.04 21.04 20.33 20.33 20.33 18.91 (MLP)
vote 4.37 4.37 4.37 3.69 4.14 4.37 4.14 (DT)
vowel 14.02 11.74 11.74 5.87 4.92 5.68 4.92 (3-NN)
waveform21 14.74 14.70 14.70 13.36 13.3 14.70 13.30 (SVM)
waveform40 14.50 14.50 14.50 13.96 13.74 14.50 13.74 (SVM)
wine 1.69 1.69 1.69 2.25 2.25 1.69 1.69 (NB)

and taxonomy. The JvC (Jazz vs. Classical) corpus is made up of samples ex-
tracted from standard MIDI files1 files from jazz and classical music and it has
been already utilized in former works2 [12,13].

MIDI files contain music in symbolic format (a sort of digital score). The
files used here contain a melody track from which descriptors are extracted. All
melodies are monophonic sequences of notes (at most one note is playing at any
time). The corpus is composed of a total of 150 MIDI files, 65 of them being
classical music and 85 being jazz. This dataset represents more than 8 hours of
music.

Each sample is a vector of musical descriptors for a number of feature catego-
ries that assess melodic, harmonic and rhythmic properties of a melody. These
descriptors are mainly descriptive statistics like, for example, average note pitch,
standard deviation of note durations, pitch interval range, etc. A total of 28 de-
scriptors are available.

From the set of MIDI files two datasets have been built. The first one composed
of 150 samples, one sample per melody track. The second one is made up of 7125
samples. For this second dataset, each sample corresponds to a fragment of a
melody, extracted applying a 50-bar wide sliding window on each melody track.

1 http://www.midi.org
2 This dataset is available for research purposes on request to the authors.
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The window is shifted one bar at each time along the track, until the end of the
track is reached. Each time the window is shifted, a new sample is extracted.
Being ω the size of the window, the first dataset corresponds to a value ω = ∞,
and the second dataset for ω = 50.

The experiments with the JvC data sets have been carried out using a train,
test, and validation scheme. Random partitions are not advisable since for ω = 50
attention has to be paid to samples belonging to the same melody do not ap-
pear in both training and test or validation. This fact would underestimate the
error estimation. Each data set has been splitted into 5 partitions (keeping in
the same partition those samples belonging to the same MIDI file). 3 of them
have been used for training, 1 for test, and the remaining one for validation.
The experiment has been repeated 5 times, rotating the partitions. The re-
sults of the validation presented in table 2 are average error rates from the 5
experiments.

Table 2. Average error rates (in %) of the different ensembles with the JvC data sets,
together with the results of the base classifiers

Ensemble/classifier Data set
JvC, ω = ∞ JvC, ω = 50

Plurality 7.33 9.28
SWV 7.33 9.28
RSWV 7.33 9.16
BWWV 6.00 6.31
QBWWV 6.00 8.29
WMV 6.00 9.46
3-NN 6.00 11.80
DT 13.33 15.66
MLP 8.00 13.30
NB 16.00 15.56
SVM 10.67 11.08

The results for ω = ∞ show that even when the best single classifier (the
3-NN classifier) is much better than all the other single classifiers, the ensembles
still perform adequately. For the ω = 50 data set, the ensembles perform much
better than any base classifier, specially the BWWV, which obtains an error rate
4.5% below the rate of the best classifier (SVM). The results shown in table 2
confirm that the ensembles performance is better in the general case (although
in some cases may be slightly worse than a single particular classifier).

5 Conclusions

We have proposed three weighted voting methods (RSWV, BWWV, and QB-
WWV) for classifier ensembles, and we have tested their performance with the
UCI/Statlog project data sets (a widely known repository of real data sets), and
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also with a case study of music genre classification. In both cases the proposed
ensembles have shown a more robust performance in general than individual
classifiers, and with some data sets the results of the best ensemble is much
better than that of a classifier.

Among all the voting schemes tested, the approaches based on scaling the
weights to a range established by the best and the worst classifiers have shown
the best classification accuracy in most of the data sets.

Future work includes a more adequate validation scheme for the UCI/Statlog
project data sets, and using more base classifiers for testing the ensembles. Also,
we plan to study more carefully the results of each ensemble on the data sets
to find out the reasons of the (good or bad) performance of the ensemble, and
develop new voting methods to improve these results.

Acknowledgments

The authors wish to thank Roberto Paredes from the Politechnical University
of Valencia for providing us with the UCI/Statlog data sets, and the program
for generating the partitions. The authors are also in debt with Miguel Sánchez
Molina from University of Alicante, for his valuable help with the WEKA tool.
This work was supported by the Spanish project CICyT TIC2003–08496–C04,
the project GV06/166 from Generalitat Valenciana, and the IST Programme of
the European Community, undes the Pascal Network of Excellence, IST-2002-
506778.

References

1. Dietterich, T.G.: Ensemble methods in machine learning. Lecture Notes in Com-
puter Science 1857 (2000) 1–15

2. Duin, R.: The combining classifier: to train or not to train? In: Proceedings of the
International Conference on Pattern Recognition ICPR’2002. Volume II., Quebec
(Canada) (2002) 765–770

3. Dietterich, T.: Ensemble methods in machine learning. In: First Internacional
Workshop on Multiple Classifier Systems. (2000) 1–15

4. Kuncheva, L.I.: That elusive diversity in classifier ensembles. In: Proc. 1st Iberian
Conf. on Pattern Recognition and Image Analysis (IbPRIA’03). Volume 2652 of
Lecture Notes in Computer Science. (2003) 1126–1138

5. Kuncheva, L.I., Whitaker, C.J.: Measures of diversity in classifier ensembles. Ma-
chine Learning 51 (2003) 181–207

6. Partridge, D., Griffith, N.: Multiple classifier systems: Software engineered, auto-
matically modular leading to a taxonomic overview. Pattern Analysis and Appli-
cations 5 (2002) 180–188

7. Blake, C., Merz, C.: UCI repository of machine learning databases (1998)
8. Witten, I., Frank, E.: Data Mining: Practical machine learning tools and tech-

niques. 2nd edn. Morgan Kaufmann, San Francisco (USA) (2005)
9. Opitz, D., Shavlik, J.: Generating accurate and diverse members of a neural-

network ensemble. In Touretzky, D., Mozer, M., Hasselmo, M., eds.: Advances in
Neural Information Processing Systems. Volume 8. (1996) 535–541



Comparison of Classifier Fusion Methods 713

10. Stamatatos, E., Widmer, G.: Music performer recognition using an ensemble of
simple classifiers. In: Proceedings of the European Conference on Artificial Intel-
ligence (ECAI). (2002) 335–339

11. Kuncheva, L.: Combining Pattern Classifiers: methods and algorithms. Wiley
(2004)
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Abstract. The combination of classifiers is an established technique to improve 
the classification performance. The combination rules proposed up to now gen-
erally try to decrease the classification error rate, which is a performance meas-
ure not suitable in many real situations and particularly when dealing with two 
class problems. In this case, a good alternative is given by the Area under the 
Receiver Operating Characteristic curve (AUC). This paper presents a method 
for the linear combination of two-class classifiers aimed at maximizing the 
AUC. The effectiveness of the approach has been confirmed by the tests per-
formed on standard datasets. 

1   Introduction 

Linear combination is a widely diffused technique for combining multiple classifiers. 
The main reasons are both its simplicity and effectiveness [1]. This can be particularly 
useful in two-class problems that require highly discriminating classifiers. To this 
aim, linear combiners are generally built with the aim of minimizing the classification 
error. However, the considered applications frequently involve cost matrices and class 
distributions both strongly asymmetric and dynamic and in such cases the overall 
error rate, usually employed as a reference performance measure in classification 
problems, is not a suitable metric to evaluate the quality of the classifier [2]. An im-
portant tool to correctly analyse the performance of the classifier under different class 
and cost distributions is given by the Receiver Operating Characteristic (ROC) curve 
that provides a description of the performance of the dichotomizer at different operat-
ing points independently of the prior probabilities of the two classes. Moreover, the 
geometrical properties of the ROC curve can be profitably used to optimise the per-
formance of a dichotomizer with reference to various metrics and classification re-
quirements. In this case, to compare different dichotomizers it could be useful to em-
ploy a single value measure that describes the quality of the classifier. To this aim, the 
most widely used single measure is the Area Under the ROC Curve (AUC) that repre-
sents a more effective and discriminating performance measure than the accuracy to 
evaluate the quality of dichotomizers [3]. 

In this paper, focusing on the simplest and most widely used implementation of lin-
ear combiners, which consists of assigning a nonnegative weight to each individual 
classifier, we propose a method to directly optimise the AUC. In fact, we consider the 
linear combination of several classifiers and propose a method to achieve the optimal 
weight vector of the combination. To this aim, an analysis of the dependence of the 
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AUC of the linear combiner on the weighting is presented for two classifiers and a 
greedy approach to extend the combination rule to several classifiers is proposed 
together with the results of experiments performed on standard datasets that con-
firmed the effectiveness of the approach. 

The rest of the paper is organized as follows: in the next section we present a short 
description of the AUC measure while section 3 shows the proposed method for two 
and N>2 classifiers. Then the obtained experimental results are reported and in the 
last section some conclusions and possible future developments are drawn. 

2   AUC of a Dichotomizer 

In two-class classification problems, the goal is to build a dichotomizer f(z) (i.e. a 
two-class classifier) which assigns a pattern z coming from an instance space S to one 
of two mutually exclusive classes that can be generically called Positive (P) class and 
Negative (N) class. Without loss of generality, let us assume that f(x) is in the range 
( )+∞∞− ,  and provides a confidence degree that the sample belongs to one of the two 

classes, e.g. the class P. The sample should be consequently assigned to the class N if 
−∞→)(xf  and to the class P if +∞→)(xf ; actually the output of the dichotomizer 

is compared with a threshold t to decide which is the class the sample should be as-
signed to. In order to evaluate performance of f(.), we can consider the outputs 
provided by the trained classifier on a set S containing n+ positive samples and n- 
negative samples { } { }−+ =∈=∈= njNniPS ji 1,n1,p  and build the empirical 

ROC curve [4], whose points ( ))(),( tTPRtFPR  are given by: 
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where t is in the range ( )+∞∞− ,  and Π(.) is a predicate which is 1 when the argument 
is true and 0 otherwise. Based on the ROC curve, a widely used single measure is the 
Area Under the ROC Curve (AUC), which intuitively provides an estimate of the 
quality of the dichotomizer (AUC=0.5 for a non discriminating dichotomizer, AUC=1 
for a perfectly discriminating dichotomizer). The AUC of the dichotomizer f(.) could 
be easily evaluated by numerically integrating the corresponding ROC. However, 
there is a useful equivalence [5] between the AUC of a dichotomizer and the Wil-
coxon-Mann-Whitney (WMW) statistic which is defined as:  
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where I(x,y) returns 1 if x>y, 0.5 if x=y and 0 if x<y. In this way, it is possible to 
evaluate the AUC of f directly through (1) without explicitly plotting the ROC curve 
and estimating the area with a numerical integration.  

Thanks to this equivalence, the AUC has a useful physical meaning: if we consider 
the outputs f(xP) and f(xN) provided by the dichotomizer on two samples zP and zN 
randomly extracted from P and N, it can be demonstrated [6] that the WMW statistic 
in (1), and thus the AUC, provides an unbiased estimate of the probability 
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( ) ( )( )NP zfzfP > . In other words, the AUC of a dichotomizer measures the probabil-

ity of correct pair-wise ranking [7] and thus evaluates the performance of the classi-
fier considered as a ranker.  

3   AUC-Based Linear Combination of Dichotomizers 

The purpose of the method we are going to introduce is to construct a linear combina-
tion of dichotomizers aimed at maximizing the AUC of the resulting classification 
system. We focus first on the combination of two dichotomizers and then extend to 
N>2 dichotomizers. 

3.1   Linear Combination of Two Dichotomizers 

Let S be a set of samples defined as above. Let us consider two dichotomizers f0 and f1 
whose outputs on positive and negative samples are:  
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The AUC’s for the two dichotomizers evaluated according to the WMW statistic are: 
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Let us now consider a linear combination of f0 and f1. Without any loss of general-
ity, the resulting classifier can be represented by: 

10 ffflc ⋅+= α  (5) 

where α is the relative weight of f1 with respect to f0. The outputs of flc to pi and nj will 
be consequently: 

10)p( iiilci xxf ⋅+== αξ         10)n( jjjlcj yyf ⋅+== αη  (6) 

According to the WMW statistic, the AUC of flc is given by: 
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and depends on the value of α. Therefore the optimal choice for the weight is the 
value maximizing AUClc. To this aim, let us analyze the term ),( jiI ηξ  and study how 

it depends on the values of ),( 00
ji yxI  and ),( 11

ji yxI ; for the following analysis we 

consider a tie as an error and thus we group together the cases I(x,y) = 0.5 and 
I(x,y) = 0. With this assumption, the set of all the pairs on which AUClc is evaluated 
can be split in four subsets S00, S11, S01, S10, where Suv is defined as: 

{ }vyxIuyxIjiS jijiuv === ),(and),(),( 1100  (8) 
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Moreover, let Cuv denote the number of pairs container in the set Suv: it can be simply 
verified that the expression for AUClc can be written as: 
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In other words, while the pairs on which both dichotomizers are wrong do not con-
tribute to AUClc and the pairs correctly ranked by both the dichotomizers give a con-
tribution independent of the value of α, the dependence of AUClc on α is limited to 
the set of pairs on which the dichotomizers disagree. Therefore, the larger the set 
S10∪S01 (i.e., the higher the disagreement between f0 and f1), the higher the value of 
AUClc which, in principle, can be obtained. Taking into account eq. (9), the optimal 
value for α can be defined as )(maxarg ανα =opt

. In order to find such value let us 

make explicit the dependence of ),( jiI ηξ  on α; to this aim, recall that the indicator 

function is not null only if 
ji ηξ > , i.e. if: 

( ) ( ) 01100 >−⋅+− jiji yxyx α  (10) 

To simplify the following calculations, let us call Score Difference Ratio (SDR) the 

quantity 
11

00

ji

ji

yx

yx

−
−

−  and denote it with ( )ji,0
1Δ ; for pairs (i,j) belonging to S01 or S10 this 

value is positive because in both cases the differences have opposite signs. The condi-
tion (10) leads to different constraints on α depending on which of the two sets S01, 
S10 we consider. In particular we obtain: 

( )ji,0
1Δ<α  if (i,j) ∈ S10                     ( )ji,0

1Δ>α  if (i,j) ∈ S01 (11) 

If such conditions were verified for each pair (i,j) ∈ S10∪S01, we would obtain the 
max value allowable for )(αν , i.e. C10+C01, but in general this cannot be obtained 

since the distributions of the SDRs coming from the sets S10 and S01 are not separated. 
In any case, αopt has to be found by maximizing the number of the pairs satisfying 
eq. (10). To this aim, let us evaluate how many pairs of each set are correctly ranked 
for a given value  for the weight of the linear combination. In order to simplify the 
notation in the following analysis, let us disregard the dependence on the particular 
samples in the SDRs and denote with 01

hδ  with h = 1,…,C01 the SDR value of the h-th 

pair contained in S01; in a similar way, let 10
kδ  with k = 1,…,C10 indicate the SDR 

value of the k-th pair contained in S10. With this notation, we define the Correctly 
Ranked Rate on S01, CRR01( ), and the Wrongly Ranked Rate on S01, WRR01( ), as:  
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Both indices are in the range [0,1] and are not independent since they sum up to 1. In 
a similar way, it is possible to evaluate the same indices on the set S10: 
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Since for each set the indices are dependent on each other, it is sufficient to know 
only one index for each set in order to have the corresponding value for )(αν . A 

possible choice could be to consider only WRR01 and CRR10 and to represent them as 
coordinates in a plane: in this way, the values produced by a particular  individuate a 
point in the unit square whose corners are the points (0,0), (1,0), (0,1) and (1,1). 
When the value of the weight  varies between 0 and  the quantities WRR01 and 
CRR10 vary accordingly, thus drawing a curve running from (1,1) to (0,0). We call it 
Difference Ratio Operating Characteristic curve (DROC curve). 
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Fig. 1. A DROC curve together with the related convex hull 

The DROC can be profitably used also for selecting the optimal value of the 
weight αopt. To this aim, let us point out that the quantity to be maximized in eq. (9) 
can be written as: 

( ))(1)()( 01011010 αααν WRRCCRRC −⋅+⋅=  (14) 

In the case the DROC curve is defined by means of a finite number of experimen-
tal points connected with straight lines (similar to the curve shown in fig. 1), it can be 
demonstrated that αopt can be determined by locating the point where a line with slope 

10

01

C

C
m = , moving down from above, touches the DROC curve and taking the corre-

sponding value of . In particular, such point lies on the DROC Convex Hull, i.e. the 
smallest convex set containing the points of the DROC curve. 

3.2   Linear Combination of N>2 Dichotomizers 

Let us now consider the linear combination of several (say N) classifiers:  

1N1N1100 −−+++= fffflc
 (15) 
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In order to find the optimal weight vector αopt = (α0 α1 ⋅⋅⋅ αN-1) that maximizes the 
AUC associated with flc, we should extend the algorithm proposed in the previous 
section. Unfortunately, eq. (11) cannot be generalized to N>2 dichotomizers in such a 
way that the maximization of the resulting AUC is computationally feasible. For this 
reason, we adopted a suboptimal algorithm that approximates the solution using a 
greedy approach. Hence, rather than considering every possible combination in its 
entirety, we iteratively find the optimal weight of the linear combination of two di-
chotomizers so as to evaluate all the combination weights in N-1 steps. In this context 
an important role is played by the order of combination, i.e. which pair of classifiers 
should be combined first. Since we know from previous sections that the greater is the 
diversity among the classifiers to be combined the greater is the improvement to the 
performance of the base classifiers which could be gained, we choose the pair that 
exhibits the maximum disagreement coefficient. Once the weight has been computed, 
the two dichotomizers are replaced by their combination and thus the dichotomizers to 
be combined decrease from N to N-1. At this point, we have to evaluate the disagree-
ment between the new classifier and the other classifiers. It is worth noting that, for 
this step, it is not necessary to compute the output of the new classifier, since its score 
differences can be directly evaluated as the weighted sum (with the same weight esti-
mated for the combination) of the score differences of the combined classifiers. These 
steps are repeated until all the dichotomizers have been combined: in each iteration it is 
chosen the pair of dichotomizers with the highest disagreement coefficient. At the end, 
we obtain the weight vector αopt. It is worth noting that also in this case one of the 
weights of the vector will be equal to 1, but this will not imply any loss of generality.  

4   Experimental Results 

In order to evaluate the performance of the proposed method, it has been tested on 
three datasets publicly available at the UCI Machine Learning Repository [8]. All of 
them have two classes and a variable number of numerical input features. The fea-
tures were previously rescaled so as to have zero mean and unit standard deviation. 
To avoid any bias in the comparison, 10 runs of a multiple hold out procedure have 
been performed on all data sets. In each run, the dataset has been parted into three 
sets: a training set to train the classifier, a validation set to estimate the optimal weight 
vector and a test set to assess the reliability of the proposed method. More details for 
each dataset are given in table 1.  

Table 1. 

Datasets # 
Features 

# 
Samples % Pos. % Neg. Train. 

Set 
Valid. 
Set 

Test 
Set 

Australian Credit 
Approval 

14 690 44.5 55.5 483 103 104 

Contraceptive 
Method Choice 9 1473 57.3 42.7 1031 221 221 

Pima Indian 
Diabetes 

8 768 34.9 65.1 538 115 115 
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The employed dichotomizers are Support Vector Machines (SVM) and Multi 
Layer Perceptrons (MLP). The SV-based classifiers have been implemented by means 
of SVMlight tool [9] while for the MLPs we have used the NODElib library [10]. Six 
different kernels have been used for the SVMs (linear, polynomial of degree 2 and 3, 
gaussian with σ2=5,2,1) while for the MLPs we have considered three classifiers with 
different numbers of units (2,4,6) in the hidden layer, all trained for 10000 epochs 
using the back propagation algorithm with a learning rate of 0.01. 

For the sake of comparison, we have also considered another method which evalu-
ates the weight vector maximizing the AUC by employing a bound constrained global 
optimization algorithm, called Multilevel Coordinate Search (MCS) [11]. It is based 
on a multilevel coordinate search that balances global and local search; the local 
search is done via sequential quadratic programming and it is not exhaustive. Of 
course, the aim here is not to provide another algorithm to construct the optimal com-
bination, but to obtain a reliable estimate of the weight vector maximizing the AUC 
on the validation set (even though with a computationally expensive algorithm) with 
which to compare the results provided by our method. 

In order to choose a set of combinations of dichotomizers significant for the com-
parison, we have preliminarily ordered the single classifiers according to their mean 
AUC evaluated on the validation set and then we have built 7 different groups by 
putting together the K best classifiers (with K ranging from 2 to 8) and other 7 groups 
collecting the K worst classifiers. For each of these groups we have built two linear 
combinations, the first obtained with our DROC-based method while the second em-
ploys the weight vector estimated by means of the MCS algorithm. 

2 3 4 5 6 7 8
0.82

0.84

0.86

0.88

0.9

0.92

0.94

Best Classifiers

Number of Classifiers

A
U

C

2 3 4 5 6 7 8
0.82

0.84

0.86

0.88

0.9

0.92

0.94

Worst Classifiers

Number of Classifiers

A
U

C

DROC
MCS

 
Fig. 2. The results on the Australian data set 

In figures 1-3 we report the results in terms of AUC obtained on the test set for 
each data set. In particular, we show the mean value and the error bars relative to each 
method together with the performances of the best single classifier of the group 
(dashed line). From these results we can see that the DROC based method is actually 
able to determine the best weight vector: in fact the two methods provide quite the 
same performance (both in terms of average AUC and standard deviation) in all the 
examined cases. Obviously, they are both more proficient when working with the 
weaker classifiers. 
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Fig. 3. The results on the Contraceptive data set 
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Fig. 4. The results on the Pima data set 

5   Conclusions 

In this paper we have introduced a method for the linear combination of dichotomiz-
ers with the aim of maximizing the AUC of the resulting classification system. The 
method is based on an analysis of the dependence of the AUC of the linear combiner 
on the weight  in the case of two dichotomizers and is extended to the general case 
through a greedy approach. The experiments have demonstrated that the algorithm 
actually allows the optimal value of the weight vector to be found. The future re-
searches on this topic will consider the comparison with other linear combination 
methods (simple and weighted average) as well as a more thorough analysis of the 
direct relation found between the performance improvement attainable with the com-
bination and the measure of the disagreement existing between the dichotomizers. 
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Abstract. This paper presents a novel approach of distinguishing in-vocabulary 
(IV) words and out-of-vocabulary (OOV) words by using confidence score-
based unsupervised incremental adaptation. The unsupervised adaptation uses 
Viterbi decode results which have high confidence scores to adjust new acoustic 
models. The adjusted acoustic models can award IV words and punish OOV 
words in confidence score, thus obtain the goal of separating IV and OOV 
words. Our Automatic Speech Recognition Laboratory has developed a Speech 
Recognition Developer Kit (SRDK) which serves as a baseline system for 
different speech recognition tasks. Experiments conducted on the SRDK system 
have proved that this method can achieve a rise over 41% in OOV words 
detection rate (from 68% to 96%) at the same cost of a false alarm (taken IV 
words as OOV words) rate of 10%. This method also obtains a rise over 11% in 
correct acceptance rate (from 88% to 98%) at the same cost of a false 
acceptance rate of 20%. 

1   Introduction 

Nowadays speech recognition system can perform quite well on isolated words 
recognition if only providing IV word utterances as input and a vocabulary which is 
not very large. But the situation gets worse as the appearance of OOV words. In real 
world, OOV words input problem should not be overlooked, because the recognizer is 
faced with the OOV words spoken by users all the time. 

Confidence score is utilized to evaluate the reliability of recognition results by S. 
Cox [1]. Later on, many approaches of calculating confidence score are introduced. T. 
J. Hazen has done prominent work in summarizing and devising confidence scores in 
word-level and utterance-level [2]. But for our practical short isolated words 
recognition, it is hard to distinguish IV words from OOV words in confidence score 
domain. 

One major reason is that the acoustic models used in SRDK can not generate 
confidence scores which are separable for IV and OOV words. In this paper, a 
confidence score-based unsupervised incremental adaptation method is used to adjust 
the acoustic models used in SRDK system. 

During the adaptation, we first send adaptation data including IV and OOV words 
into SRDK system, then use the Viterbi decode results of the recognizer which have 
high confidence scores to guide the model adaptation. A Threshold for confidence 
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score is set in order to ensure that almost all the words used for adaptation are 
correctly recognized IV words. 

Because the adaptation data are limited, we adopt maximum likelihood linear 
regression (MLLR) + maximum a posteriori (MAP) adaptation method. Our 
experiments have proved this unsupervised adaptation procedure can greatly improve 
the later performance of OOV words detection. 

2   Word Confidence Scoring 

In this OOV words detection task, two classical but proved to be efficient confidence 
scores are employed. For computational reasons, we adopt a two-pass search strategy 
in which a semi-syllable based confidence score [3] is calculated in the first-pass, and 
a filler model based confidence score [4] is calculated in the second-pass. Finally, we 
combine the two confidence scores into a single dimensional confidence score 
through a simple linear discrimination method. 

2.1   Semi-syllable Based Likelihood Ratio 

0( , )ssC X W  is the semi-syllable based confidence score of the best hypothesis 
0W  

when the observed vector sequence is X  which focuses on likelihood ratio: 

0
0

( )
( , ) .

( )ss

P X W
C X W

P X
=  (1) 

Consider the states alignment of the observed vectors, we can express )( 0WXP  as: 

0 1 2 1 2( ) ( , , , , , , ),m mP X W P X X X h h h=  (2) 

where 
ih  is the semi-syllable alignment of the observed vector sequence 

iX , The 

corresponding relationship between 
ih  and 

iX  is determined during Viterbi match. 

Assuming the observed vectors 
iX  are independent of each other, we have:  

1

( ) ( ).
m

i
i

P X P X
=

= ∏  (3) 

Furthermore, we assume that semi-syllables 
ih  are independent of each other. We 

represent the conditional probability 
0

( )P X W  as: 

1 2 1 20
1

( ) ( , , , , , , ) ( ).
m

m m i i
i

P X W P X X X h h h P X h
=

= = ∏  (4) 

So, we get 

0
1

( )
( , ) .

( )

m
i i

ss
i i

P X h
CS X W

P X=

= ∏  (5) 
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For each segmented observed vector 
iX ,  

1

( ) ( ).
M

i i j
j

P X P X h
=

=  (6) 

In our system based on semi-syllable, if 
jh  is matched as a consonant (or vowel), 

M  represents the amount of all the consonants (or vowels). Consequently, 

0( , )log_ssCS X W  in the log domain can be described as: 

0 0
1 1

( , ) log ( ) [log ( ) log ( )].
m M

log_ss i i i j
i j

CS X W P W X P X h P X h
= =

= = −  (7) 

2.2   Filler Model Based Likelihood Ratio 

0( , )flCS X W  is the filler model based confidence score of the best hypothesis 
0W  

when the observed vector sequence is X .  

0
0

( )
( , ) .

( )fl
Filler

P X W
CS X W

P X H
=  (8) 

In our system, online garbage model 
_Online GarbageH  is considered to work as filler 

model 
FillerH . 

In the back-end, N -best hypotheses are listed out. Besides the best hypothesis 
0W , 

the left 1−N  hypotheses are called online garbage. 
_( )Online GarbageP X H  is as follows: 

1

_
1

1
( ) ( ).

1

N

Online Garbage i
i

P X H P X W
N

−

=

=
−

 (9) 

So the normalized confidence score 
0( , )log_flCS X W  in the log domain is expressed 

as follows: 

0 0
1

1 1
( , ) log ( | ) log ( | ) ,

1

N

log_fl i
iX

CS X W P X W P X W
n N =

= −
−

 (10) 

where 
Xn represents the frame numbers of word 

0W , and makes words with different 

frame numbers comparable in confidence score domain. 

2.3   Confidence Score Combination 

Since the two confidence scores are of different information, better performance will 
be achieved while combining them together.  

For computational reasons, Fisher linear discrimination is used to find the 
projection vector Tp , and generate a linear discriminating plane between the IV and 

OOV words. Now we obtain a single dimensional confidence score 
0( , )singleCS X W : 

[ ] TT
0 _ 0 _ 0( , ) ( ) ( ) .single multi log ss log flCS X W CS W CS Wα β= 0p CS (X, W ) =  (11) 
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3   Unsupervised Incremental Adaptation 

After finishing calculating confidence score, we find that IV and OOV words can not be 
separated easily in confidence score domain. It is hard for us to detect OOV words by 
confidence score. The main reason for this phenomenon is that the initial acoustic models 
are trained with generic speech data. This initial acoustic models can perform speaker-
independent speech recognition tasks quite well when providing only IV word utterances 
as input. But when adding OOV word utterances into the input sequence, these acoustic 
models can not generate separable confidence scores for IV and OOV words. For this 
reason, we have an idea that we can use specific IV word utterances to adjust suitable 
acoustic models. The acoustic model is a specific context-dependent phoneme HMM to 
our OOV word detect task. D. Wang has used this confidence score-based unsupervised 
adaptation method to improve the performance of speech recognition [5]. Our 
experiments have proved that these acoustic models after adaptation can also award IV 
words and punish OOV words in confidence score domain. 

Because we use IV word utterances to perform unsupervised incremental 
adaptation, it is possible that wrongly recognized results will degrade the model 
parameters accuracy. Our strategy is to select only correctly recognized IV word 
utterances with high confidence scores for the adaptation.  

3.1   MAP Adaptation 

In MAP adaptation, the following formulas are used in each step of re-estimation, for 
each Gaussian pdf [6]: 

( )

,
( )

prior
i j j

i Init j AdaptInit

prior j
j Adapt

N
x w x x

N

N w x
μ ∈ ∈

∈

+
=

+
 (12) 

2 2

2 2

( )

,
( )

prior
i j j

i Init j AdaptInit

prior j
j Adapt

N
x w x x

N

N w x
σ μ∈ ∈

∈

+
= −

+
 (13) 

where 
priorN  is a control parameter of the adaptation process. The fewer 

priorN  is, the 

more adaptation utterances are taken into account with respect to prior data. ( )jw x  is 

a weighting factor to determine in what way the utterances should be used in the 
adaptation process. In our system, We adopt a strict strategy for ( )jw x : 

0

0

( ) 1  if  ( , )
.

( ) 0  if  ( , )
j single j

j single j

w x CS x W Th

w x CS x W Th

= >
= ≤

 
(14) 
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In our experiment we find that when the confidence scores of recognition results 
exceed a certain threshold, all the Viterbi decoder output is right. Only utterances with 
confidence score above Th  can be used for adaptation in order to ensure that wrong 
Viterbi decode results will not perform negative effect on model parameters. 

3.2   MLLR Adaptation 

MLLR adaptation [7] is suitable when the amount of adaptation data is small or 
limited. MLLR adaptation performs faster than MAP adaptation when given the same 
amount of adaptation data. For each Gaussian pdf, 

ikμ  is transformed by using the 

following formula: 

,
cik ik cA bμ μ= +  (15) 

where 
c

A  is a regression matrix and 
cb  is an additive bias vector associated with 

some broad class c , which can be either a broad phone class or a set of tied Markov 
states. We also only utilize those utterances with confidence scores over Th  in MLLR 
adaptation, just as in our MAP adaptation. 

4   Experiment Results 

To show the effectiveness of the proposed method, we conduct experiments on our 
SRDK system. The initial acoustic models of the SRDK system are trained from 
approximately 100 hour speech data.  

The vocabulary size of IV words is 200. Because our OOV words detection is 
expected to perform well in adverse situation, it is assumed that OOV word utterances 
occupy 50% of the total utterances. 3000 IV words and 3000 OOV word utterances 
are prepared as input utterances.  

We use one third of the total input utterances for MLLR+MAP unsupervised 
incremental adaptation. Left 4000 utterances including IV and OOV word utterances 
are taken as OOV words detection test set.  

In MLLR+MAP adaptation, to find an optimum value for Th , we compare OOV 
words detection performance under different Th . The results are depicted in Figure 1. 
The work point refers to the OOV words detection rate at the point where OOV words 
detection rate + false alarm rate = 1. Given a Th , each work point represents the best 
work condition under this Th . We want to mention that all our following experiments 
are conducted under this optimum Th ( 54 10× ). 

The original OOV words detection point is 82.5% before our unsupervised 
adaptation. When the Th  is higher than the optimum Th  ( 54 10× ), the amount of 
utterances which used in adaptation decreases, and the work point falls, but always 
over the initial work point. When the Th  is lower than the optimum Th , the 
performance of OOV words detection falls greatly. It is mainly because the incorrectly 
recognized words have performed negative effects on the unsupervised adaptation. We 
observed that when the input data used in adaptation contain a few OOV word 
utterances, the work point after adaptation is still higher than the initial work point. 
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Fig. 1. Change in work points of OOV words detection depending on the changes in threshold 
of confidence score after MLLR+MAP adaptation 

Figure 2 and Figure 3 below illustrate that IV and OOV words become easier to 
separate in confidence score domain after adaptation. During the incremental 
adaptation procedure, the acoustic model parameters are gradually adjusted according 
formulas (12), (13) and (14), thus can generate higher confidence scores for the later 
coming utterances used in adaptation. So it is also feasible to gradually lower Th  as 
the adaptation procedure goes gradually. But we want to perform a robust 
unsupervised incremental adaptation, thus a fixed Th  is used during the adaptation 
procedure to prevent the possible underlying instabilities which may perform negative 
effects on OOV word detection. 

In Figure 4, false alarm rate in Figure 4 refers to the rate of false acceptance of IV 
word as OOV words. Figure 4 shows that the proposed method has achieved a rise 
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Fig. 2. Confidence score distribution of IV and OOV words before adaptation 
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Fig. 3. Confidence score distribution of IV and OOV words after adaptation. Under Th 54 10= ×  
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Fig. 4. OOV words detection performance before adaptation and after adaptation. Under 
Th 54 10= × . 

over 41% in OOV words detection rate (from 68% to 96%) at the same cost of a false 
alarm rate of 10%.   

In Figure 5, false acceptance rate refers to the percentage of wrongly recognized 
words which are accepted. The correct acceptance rate refers to the percentage of 
correctly recognized words which are accepted. It is essential for us to examine the 
recognition performance of the adapted models. Figure 5 depicted that we can achieve 
a rise in correct acceptance rate (from 88% to 98%) at a false acceptance rate of 20%, 
when the input data are composed of 50% IV word utterances and 50% OOV word 
utterances. But when the input data are all IV word utterances, we observe 
degradation in correct acceptance rate (from 88% to 68%) at a false acceptance rate of 
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20%. The main reason is that the adjusted acoustic models is task-oriented (best fit for 
50% IV + 50% OOV), and its performance relies greatly on the proportions of IV and 
OOV word utterances in the input data.  
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Fig. 5. ROC curve of recognition with rejection before adaptation and after adaptation. Under 
Th 54 10= × . 

5   Conclusions 

This paper presented a new method for improving the OOV word detection rate by 
using unsupervised incremental adaptation based on confidence score. The 
effectiveness of this method has been proved by experiments on our SRDK system. 
Our future work will include applying this idea not only to the acoustic models, but 
also to the language model of a real-time human-machine interactive system in which 
input utterances are composed of isolated words and sentences. It is important to find 
a balance point between OOV words detection rate and recognition rate in practical 
usage according to the real feelings of the users. 
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Abstract. The polynomial neural network, or called polynomial net-
work classifier (PNC), is a powerful nonlinear classifier that can separate
classes of complicated distributions. A method that expands polynomial
terms on principal subspace has yielded superior performance. In this pa-
per, we aim to further improve the performance of the subspace-feature-
based PNC. In the framework of discriminative feature extraction (DFE),
we adjust the subspace parameters together with the network weights in
supervised learning. Under the objective of minimum squared error, the
parameters can be efficiently updated by stochastic gradient descent. In
experiments on 13 datasets from the UCI Machine Learning Repository,
we show that DFE can either improve the classification accuracy or re-
duce the network complexity. On seven datasets, the accuracy of PNC
is competitive with support vector classifiers.

1 Introduction

Artificial neural networks (ANNs) with supervised learning have shown superior
classification performance in many experiments [1]. Frequently used neural clas-
sifiers include the multi-layer Perceptron (MLP), radial basis function (RBF)
network, polynomial network, etc. The polynomial network is also known as
higher-order neural network (HONN), functional link network, polynomial re-
gression [2], or generalized linear discriminant function [3]. In this paper, we
call this classifier structure as polynomial network classifier (PNC). Since the
outputs of PNC are the weighted combinations of higher-order nonlinear func-
tions of input features, it is powerful to separate pattern classes of complicated
distributions.

The PNC can be viewed as a single-layer neural network with the input fea-
tures and their polynomial terms as the network inputs. For d features, the total
number of polynomial terms up to r-th order is [4]

D =
r∑

i=0

(
d + i− 1

i

)
=
(

d + r

r

)
. (1)

With large d, the polynomial network will suffer from high computation com-
plexity and will give degraded generalization performance. The complexity can

D.-Y. Yeung et al. (Eds.): SSPR&SPR 2006, LNCS 4109, pp. 732–740, 2006.
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be reduced by either reducing the number of input features or selecting expanded
polynomial terms [2]. The former way is more computationally efficient and per-
forms fairly well in practice. A PNC with dimensionality reduction by principal
component analysis (PCA) has shown superior performance to multilayer neural
networks in previous experiments [5,6].

On the other hand, constrained polynomial structures with moderate com-
plexity have been proposed, like the pi-sigma network (PSN) [7], the ridge
polynomial network (RPN) [4], and the reduced multivariate polynomial model
(RMPM) [8]. The general HONN is a sigma-pi network in that it combines the
products of features. Rather, the output of a PSN is the product of weighted
combinations of features. Its number of weights is thus linear with the num-
ber of summation units (the order of polynomials). The output of RPN is the
summation of pi-sigma units of different orders, and the order can be increased
incrementally. The RMPM combines the univariate polynomials, the polyno-
mial of sum of features and its product with the weighted sum of features. These
networks actually involve all the polynomial terms of input features up to cer-
tain order, but the weights of polynomials are highly constrained. They hence
need polynomials of fairly high order (say, 5 or 6) to approximate complicated
functions, and cannot guarantee the precision of approximation in difficult cases.

The PNC with full polynomials on reduced features still have higher complex-
ity than the above constrained networks, but usually, a low order (say, 2 or 3)
can achieve a reasonable precision of function approximation. The behavior of a
lower-order network on feature subspace is easy to explain and to control. Never-
theless, its performance largely depends on the technique of feature selection or
dimensionality reduction. Supervised subspace learning methods, like the Fisher
linear discriminant analysis (LDA) [3] and heteroscedastic discriminant analysis
[9,10], may lead to better separability than the unsupervised PCA. These meth-
ods, nevertheless, are based on parametric density assumptions and the learning
criterion is only loosely connected to classification error.

In this paper, we propose a subspace-feature-based PNC with discriminative
feature extraction (DFE). With any classifier structure, DFE optimizes the sub-
space parameters together with the classifier parameters under a classification-
related objective on a training sample set [11]. The subspace thus learned is
totally classification-oriented and the subspace learning and classifier learning
are best fitted. Overfitting can be overcome by adjusting the dimensionality
of subspace and the order of classifier. DFE is mostly based on the minimum
classification error (MCE) criterion of Juang and Katagiri [12], and has been
successfully applied to many pattern recognition problems [13,14]. It has not
been combined with polynomial networks, however. Despite that the MCE cri-
terion is applicable to any classifier structures, for neural networks with sigmoid
outputs, the minimum squared error (MSE) criterion works well and is easy to
optimize by stochastic gradient descent [15].

We have evaluated the classification performance of PNC on 13 datasets from
the UCI Machine Learning Repository [16]. The results show that compared with
the PNC with PCA, DFE either improves the classification accuracy or reduces
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the network complexity. The complexity of PNC is much lower than support
vector classifiers (SVCs) [17], and on seven of the 13 datasets, the PNC with
DFE competes with SVCs in accuracy.

2 Subspace-Feature-Based PNC

We consider second-order (binomial) and third-order polynomial networks, and
to save space, we only give the details of binomial networks. The structure and
the learning algorithm of third-order networks are similar to binomial ones.

For M -class classification, the PNC has M output units. On a d-dimensional
feature vector x = [x1, . . . ,xd]T , the output of binomial network for class ωk is
computed by

yk(x) = σ
[ d∑

i=1

d∑
j=i

w
(2)
kijxixj +

d∑
i=1

w
(1)
ki xi + wk0

]
, (2)

where σ(a) is the sigmoid activation function:

σ(a) =
1

1 + e−a
.

In classification, the input pattern (feature vector) is classified to the class of
maximum output. The sigmoid function is used in training, and is not necessary
in classification. Without the sigmoid function, the network weights can also
be estimated by (non-iterative) pseudo inverse [2]. Since the sigmoid function
makes the network outputs approximate posterior class probabilities, the trained
weights with it are more suitable for classification than for regression.

By principal component analysis (PCA), the feature vector is projected onto
an m-dimensional principal subspace (m < d):

z = ΦT x = [φT
1 x, . . . ,φT

mx]T = [z1, . . . , zm]T , (3)

where Φ = [φ1, . . . ,φm] is the transformation matrix (subspace basis) composed
of the eigenvectors of covariance matrix E[xxT ] corresponding to the m largest
eigenvalues. We assume that the origin of the feature space has been shifted
to the mean of samples. On the subspace features, the network outputs are
computed by

yk(x) = σ
[ m∑

i=1

m∑
j=i

w
(2)
kijzizj +

m∑
i=1

w
(1)
ki zi + wk0

]
. (4)

On a training set of N samples (xn, cn), n = 1, . . . ,N (cn is the class label
of xn), the connecting weights of PNC are adjusted to minimize the regularized
squared error:

E =
1

2N

{ N∑
n=1

M∑
k=1

[
yk(xn)− tnk

]2 + β
∑

w∈W

w2
}
, (5)



Polynomial Network Classifier with Discriminative Feature Extraction 735

where β is a coefficient of weight decay (excluding the biases); tnk is the target
value of class k, with value 1 for the genuine class and 0 otherwise. The weights
and biases are initialized to small random values, and by stochastic gradient
descent, they are iteratively updated on the training samples until the squared
error approaches the minimum. In training, the subspace basis Φ remains un-
changed, and the polynomials of projected features can be viewed as the inputs
of a single-layer network, for which the training process converges fast.

3 PNC with Discriminative Feature Extraction

A problem with the subspace-feature-based PNC is that the subspace does not
necessarily lead to optimal classification because it is learned independently of
the network weights. The subspace learned by PCA does not even consider the
class information of training samples. Supervised subspace learning techniques,
like LDA and heteroscedastic discriminant analysis, are expected to give better
separability than PCA, but do not guarantee the optimality. We aim to learn a
better subspace for PNC using discriminative feature extraction (DFE) [11].

By DFE, we adjust not only the network weights in supervised learning, but
also the subspace basis simultaneously. Consider that zi = φT

i x, i = 1, . . . ,m,
let us re-write the network outputs of (4) as

yk(x) = σ
[ m∑

i=1

m∑
j=i

w
(2)
kijφ

T
i xφT

j x +
m∑

i=1

w
(1)
ki φT

i x + wk0

]
= σ(sk(x)), (6)

where sk(x) denotes the weighted sum of output unit k.
In the PNC with DFE, since the projected feature zi = φT

i x =
∑d

j=1 φijxj is a
weighted combination of original features and the weights (subspace parameters
φij , j = 1, . . . , d) are now adjustable, an m-th order polynomial as

∏m
i=1(φ

T
i x)

is actually a pi-sigma unit of the ridge polynomial network (RPN). However,
our network has more polynomial terms and needs a lower order than the RPN.
Interpreting φi, i = 1, . . . ,m, as subspace basis vectors or feature extractors, a
lower-order polynomial network on this feature subspace has decision boundaries
of moderate complexity.

The network weights and the subspace basis parameters are adjusted to min-
imize the regularized square error (5) on a training sample set. The subspace
parameters can be initialized to small random values as the network weights. Al-
ternatively, the subspace learned by PCA or LDA is a good start of parameter
search. The weights and subspace parameters are then adjusted by stochastic
gradient descent on training samples. At time t, the parameters are adjusted on
a training sample x by

w
(2)
kij(t + 1) = w

(2)
kij(t)− ε(t)

[
(yk − tk)yk(1− yk)zizj + β

N w
(2)
kij(t)

]
,

w
(1)
ki (t + 1) = w

(1)
ki (t)− ε(t)

[
(yk − tk)yk(1 − yk)zi + β

N w
(1)
ki (t)

]
,

wk0(t + 1) = wk0(t)− ε(t)(yk − tk)yk(1− yk),
φi(t + 1) = φi(t)− ε(t)

∑M
k=1(yk − tk)yk(1 − yk)∂sk

∂φi
,

k = 1, . . . ,M, i = 1, . . . ,m, j = i, . . . ,m,

(7)
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where ε(t) is the learning step, which is set to a small value initially and decreases
gradually in the training process. The partial derivative of φi is specified as

∂sk

∂φi
=
(
2w(2)

kiizi +
∑
j<i

w
(2)
kjizj +

∑
j>i

w
(2)
kijzj + w

(1)
ki

)
x. (8)

In discriminative learning, we keep the unit norm of basis vectors but not the
orthogonality. On adjusting the basis vectors on a training sample, each vector
is normalized to unit norm (‖φi‖ = 1).

By stochastic gradient descent, the training samples are fed to the PNC for a
number (40 or more in our experiments) of cycles. The learning step decreases
linearly until it vanishes at the end of training. On every input sample, the
network weights and subspace parameters are updated according to (7). The
network weights and the subspace vectors have remarkably different magnitudes
of derivatives. To accelerate the convergence of training, they are set two different
learning steps, ε1 for weights and ε2 for subspace vectors, and ε1 � ε2 holds.

Another factor affecting training convergence and classification performance
is the scale of projected features. We normalize the scale with the square root of
the largest eigenvalue λ1 of E[xxT ] (estimated on training samples and fixed):

zi =
φT

i x√
λ1

. (9)

All the feature vectors are subtracted from the mean of the training samples.
For datasets that have significantly different scales among feature dimensions,
it is helpful to uniform the standard deviation of all dimensions of training data
(and test data accordingly). This is done before subspace projection.

4 Experiments

We evaluated the classification performance of subspace-feature-based PNC on
13 datasets from the UCI Machine Learning Repository [16], as summarized
in Table 1. We selected the multi-class datasets that have at least 10 features.
Some data sets have been partitioned into standard training and test subsets.
For the others, we arrange the samples in random order and evaluate in 5-fold
cross-validation.

Some datasets have appreciable variability of scale among different dimen-
sions. We normalized them by dividing each dimension with (0.9σ2

i + 0.1σ2
0)

1/2,
where σ2

i is the dimension-wise variance and σ2
0 is the average variance, both

estimated on training data.
We compare the PNC-DFE (PNC combined with DFE) with PNC-PCA, one-

versus-all support vector classifiers with polynomial and RBF kernels (SVC-poly
and SVC-rbf), and the k-nearest neighbor (k-NN) classifier. For the SVC-poly,
the feature vectors are uniformly scaled such that the average self-inner product
of training vectors is one, and so, the kernel k(x1,x2) = (1 + κx1 · x2)r with
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Table 1. Summary of 12 datasets from UCI Repository. The right two columns shows
the selected polynomial order and subspace dimensionality (multiple of m1).

Name #class #feature #train #test Normal. Order m1

Waveform 3 21 50,000 5-fold No 2 1
Wine 3 13 178 5-fold Yes 2 2

Soybean-small 4 35 47 5-fold Yes 2 1
Vehicle 4 18 846 5-fold Yes 2 2

Dermatology 6 34 358 5-fold Yes 2 2
Segment 7 19 2,310 5-fold Yes 3 3
Thyroid 3 21 3,772 3,428 Yes 2 4
Satimage 6 36 4,435 2,000 No 2 5
Optdigit 10 64 3,823 1,797 No 2 10
Pendigit 10 16 7,494 3,498 No 3 3
Vowel 11 10 528 462 No 2 2
Isolet 26 617 6,238 1,559 No 2 25
Letter 26 16 16,000 4,000 No 3 3

κ = 2i performs fairly well. For the SVC-rbf, the average within-class variance
is scaled to one, such that in the kernel function k(x1,x2) = exp(− ‖x1−x2‖2

2σ2 ), a
parameter value of σ2 = 0.5 × 2i performs fairly well. For both, i is an integer
selected from -4 to 4.

For the k-NN classifier, SVC-poly, and SVC-rbf, we tried several values of k,
polynomial order and κ, or σ2 such that the classification accuracy on each test
set is maximized.

For PNC-PCA and PNC-DFE, we set the number of subspace features
m = l · m1, l = 1, . . . , 5. m1 is dependent on the dataset. The selected val-
ues of polynomial order and m1 are listed in the right columns of Table 1. As
seen, three datasets (Segment, Pendigit and Letter) are used 2nd-order and the
others are used 3rd-order.

The test accuracies (%) of PNC (with full polynomials and dimensionality
reduction by PCA and DFE) on the 13 datasets are shown in Table 2. For the
“Vowel” dataset, there is no dimensionality reduction when m = 10. For each
dataset, the accuracy of full PNC is shown below the title of dataset, and the
accuracies of PNC-PCA and PNC-DFE with variable subspace dimensionality
are listed in two rows. For the “Isolet” dataset, we do not give the accuracy of
full PNC because the number of features is too large.

We can see that on four datasets (Vehicle, Segment, Satimage, and Letter), the
full PNC gives the highest accuracy. This can be explained that the four datasets
have small number of features and are difficult to classify, so dimensionality
reduction by either PCA or DFE cannot improve the classification accuracy. For
the other datasets, except for “Soybean-small” and “Isolet”, subspace-feature-
based PNC performs significantly better than the full PNC.

Comparing the accuracies of PNC-PCA and PNC-DFE, it is evident that
except for two datasets (Waveform and Satimage), PNC-DFE mostly give higher
accuracies than PNC-PCA, especially on subspaces of lower dimensionality. On
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Table 2. Test accuracies (%) of PNC (full and PCA) and PNC-DFE on 12 datasets

Dataset PCA=m1 PCA=2m1 PCA=3m1 PCA=4m1 PCA=5m1

Full PNC DFE=m1 DFE=2m1 DFE=3m1 DFE=4m1 DFE=5m1

Waveform 63.78 87.02 87.22 87.12 86.98
84.92 60.64 86.90 86.96 86.72 86.64
Wine 77.53 90.45 92.13 92.70 92.70
92.13 79.79 92.13 93.82 93.82 93.82

Soybean-small 74.47 100 100 100 100
100 91.49 100 100 100 100

Vehicle 53.19 67.38 71.75 77.30 78.37
84.16 71.51 77.42 78.72 79.67 80.02

Dermatology 77.65 89.94 96.37 96.37 96.37
96.37 93.30 96.93 96.93 96.65 96.37

Segment 61.08 84.16 92.21 92.38 92.25
96.41 92.90 94.33 94.89 95.50 95.80

Thyroid 92.65 93.49 93.17 93.49 95.51
94.78 96.06 97.32 97.67 97.72 97.87

Satimage 86.75 87.10 87.75 88.00 87.95
88.65 86.45 87.45 87.90 88.15 88.05

Optdigit 95.72 98.05 98.61 98.61 98.55
98.50 97.16 98.50 98.72 98.50 98.66

Pendigit 85.11 95.77 97.68 98.03 98.37
98.23 89.57 97.17 97.91 98.17 98.37
Vowel 43.72 50.09 58.01 60.39
59.52 57.14 60.17 64.72 61.47
Isolet 93.33 95.19 95.51 96.28 96.28

95.57 95.96 95.96 96.28 96.09
Letter 32.35 73.17 85.38 91.47 94.03
94.70 57.00 80.88 89.47 92.70 94.40

some datasets (Waveform, Soybean-small, Dermatology, Optdigit, Isolet), the
PNC-DFE achieves the best or nearly best accuracy on a very low-dimensional
subspace as m = 2m1.

The highest accuracies of PNC (full and PNC-PCA), PNC-DFE, SVC-poly,
SVC-rbf, and k-NN classifier on the 13 datasets are compared in Table 3. On
the “Soybean-small” dataset, all these classifiers achieves perfect classification.
Among the other datasets, SVC-poly or SVC-rbf gives the highest accuracies on
seven datasets, and PNC or PNC-DFE performs best on five datasets. Expect
for four datasets (Soybean-small, Segment, Satimage, and Letter), PNC or PNC
performs significantly better than the k-NN classifier. The accuracy of PNC
or PNC-DFE is comparable or higher than SVC on seven datasets (Waveform,
Wine, Soybean-small, Vehicle, Thyroid, Optdigit, Vowel).

We did not implement the reduced multivariate polynomial model (RMPM)
[8], but results on 10 of our 13 datasets were reported in the literature. Though
the datasets were partitioned in different ways, nine of the 10 best accuracies of
RMPM (Waveform 83.3%, Soybean-small 95.0%, Vehicle 82.3%, Segment 94.1%,
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Table 3. Highest accuracies of PNC (full and PCA), PNC-DFE, SVCs and k-NN
classifier

PNC PNC-DFE SVC-poly SVC-rbf k-NN
Waveform 87.22 86.96 87.14 87.08 85.24

Wine 92.70 93.82 92.13 93.26 87.08
Soybean-small 100 100 100 100 100

Vehicle 84.16 80.02 81.56 81.21 71.99
Dermatology 96.37 96.93 97.77 97.21 96.09

Segment 96.41 95.80 96.62 96.88 96.71
Thyroid 95.51 97.87 96.70 95.36 94.28
Satimage 88.65 88.15 90.70 91.40 90.35
Optdigit 98.61 98.72 98.66 98.89 98.00
Pendigit 98.37 98.37 98.77 98.74 97.80
Vowel 60.39 64.72 56.06 64.50 59.52
Isolet 96.28 96.28 96.92 96.86 92.69
Letter 94.70 94.40 96.78 97.65 95.83

Thyroid 94.0%, Satimage 88.2%, Optdigit 95.3%, Pendigit 95.7%, Letter 74.1%)
are lower than our best accuracies of PNC or PNC-DFE. The complexity of
PNC mainly depends on the number of features, and is much lower than SVC
and k-NN classifier. The k-NN classifier stores all training samples and compares
them with each test pattern. The SVC has a large number of support vectors,
ranging from 10% to 70% of all training samples. Due to the limited space, we
do not discuss the computational complexity in details.

5 Conclusion

We proposed to improve the performance of subspace-feature-based polynomial
network classifier (PNC) using discriminative feature extraction (DFE), which
optimizes the subspace parameters together with the network weights on train-
ing samples. Under a regularized squared error criterion, the parameters are
efficiently adjusted by stochastic gradient descent. In our experiments on 13
datasets of UCI Machine Learning Repository, DFE mostly improves the accu-
racy of subspace-feature-based PNC. At moderate complexity, the PNC (full or
subspace-feature-based) outperforms the k-NN classifier on nine datasets and
competes with support vector classifiers on seven datasets.
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2. J. Shürmann, Pattern Classification: A Unified View of Statistical and Neural Ap-
proaches, Wiley Interscience, 1996.

3. K. Fukunaga, Introduction to Statistical Pattern Recognition, 2nd edition, Aca-
demic Press, 1990.

4. Y. Shin, J. Ghosh, Ridge polynomial networks, IEEE Trans. Neural Networks, 6(3):
610-622, 1995.
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Abstract. Labeled samples are crucial in semi-supervised classification, but 
which samples should we choose to be the labeled samples? In other words, 
which samples, if labeled, would provide the most information? We propose a 
method to solve this problem. First, we give each unlabeled examples an initial 
class label using unsupervised learning. Then, by maximizing the mutual in-
formation, we choose the samples with most information to be user-specified 
labeled samples. After that, we run semi-supervised algorithm with the user-
specified labeled samples to get the final classification. Experimental results on 
synthetic data show that our algorithm can get a satisfying classification results 
with active query selection.  

1   Introduction 

Recently, there has been great interest in Semi-supervised classification. The goal of 
semi-supervised learning is to use unlabeled data to improve the performance of stan-
dard supervised learning algorithms. Since in many fields, obtaining labeled data is 
hard or expensive, semi-supervised learning methods with small labeled sample size 
is of great use. 

In case the unsupervised learning methods can separate the points well (see e.g. 
Fig.1a), there is no need for semi-supervised methods. However, in case of noise (see 
e.g. Fig.1b), or in case of two modes which belong to two different classes overlap 
(see e.g. Fig.1c), semi-supervised learning with a few labeled points in each class can 
improve the performance significantly. 

A number of algorithms have been proposed for semi-supervised learning, includ-
ing EM [8], Co-training [1, 14], Tri-training [15], random field models [9, 12], graph 
based approaches [2, 6, 13]. Different methods have different assumptions, and can be 
used in different situation. Especially, when data resides on a low-dimensional mani-
fold within a high-dimensional representation space, semi-supervised learning meth-
ods should be adjusted to work on manifold. Belkin gives a solution to this problem 
with manifold Regularization methods in [4]. 

Query selection is extensively studied in the supervised framework. In [10], the que-
ries are selected to minimize the version space size for support vector machine. In [7], 
a committee of classifiers is employed, and a point is queried whenever the committee 
members disagree. Many other methods are proposed to actively choose the samples in 
supervised learning, but few are done to choose samples in semi-supervised learning. 
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The labeled samples play an important role in semi-supervised learning. Then a 
question rises: which samples should be the labeled samples? Among the existing 
semi-supervised learning methods, some choose the labeled samples manually[6], to 
do this, one has to have some domain knowledge of which samples need most to be 
labeled; some choose the labeled samples randomly, which may not contain the 
“right” samples; and in [11], Zhu et al. choose the samples actively by greedily select-
ing queries from the unlabeled data to minimize the estimated expected classification 
error, but Zhu’s active learning method can only be used together with his semi-
supervised learning method. 

In this paper, we give a more general and automatic query selection method in the 
semi-supervised framework. Our method can be applied to most of the existing semi-
supervised learning methods. It is the pre-process of the existing semi-supervised 
methods. The main idea is to consider which samples, if labeled, would give more 

information. Following this idea, we use the mutual information );( ∗yYI ( ∗y  repre-

sents one sample’s class label and Y represents the whole sample’s class labels) as a 
measure of active query selection. By maximizing the mutual information, we get the 
sample which needs most to be labeled. Using this method, we can choose the samples 
to be labeled actively and automatically, and it does not need any domain knowledge. 

In this paper, in order to explain our method, we work with the Laplacian Eigen-
maps [3] and manifold Regularization [4] of Belkin to show the entire process. We can 
see how the active query selection method works on manifold. We do not claim that 
this method can only use on manifold, and indeed we aim to illuminate that applying 
our method, to any semi-supervised method, would always yield satisfying results. 

This paper is organized as follows: In section 2, we introduce our algorithm in a 
brief way. Section 3 gives details of every part of our algorithm. Experimental results 
on synthetic data are shown in section 4, followed by conclusions in section 5. 

 

Fig. 1. (a) Example of situation in which unsupervised learning methods (here we use Lapla-
cian Eigenmaps) can work well. (b)(c) Examples of situations in which unsupervised learning 
can not give satisfying results, and they need some labeled samples to help. 

2   Our Algorithm 

To explain the entire process of our active query selection method, we work with the 
Laplacian Eigenmaps [3] and manifold Regularization [4] of Belkin. The steps are as 
follow: 
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Step 1. Give each sample (unlabeled) an initial class label using unsupervised learn-
ing. Here, we use Laplacian Eigenmaps to map the sample to a real value 
function f. 

Step 2. By maximizing the mutual information );( ∗yYI ( ∗y  represents one sample’s 

class label and Y represents the whole sample’s class labels), we actively 
choose the samples with most uncertain class labels to be user-specified la-
beled samples.  

Step 3. Give the chosen samples their class label. 
Step 4. Run the semi-supervised algorithm (here, we use the manifold Regularization 

algorithm) with the user-specified labeled samples to get the final classification. 

3   Details of Our Method 

3.1   Using Laplacian Eigenmaps to Get Initial Class Label 

Given a sample set m
n Rxx ∈,...,1 . Construct its neighborhood graph ),( EVG = , 

whose vertices are sample points },,{ 1 nxxV = , and whose edge weights 
n

jiijw 1,}{ =  represent appropriate pairwise similarity relationships between samples. 

For example, ijw  can be the radial basis function: 

))(
1

exp(
1

2
2

=

−−=
m

d
jdidij xxw

σ
                                     (1) 

where σ  is a scale parameter. The radial basis function of ijw ensure that nearby 

points are assigned large edge weights. 
We first consider two-class situation. Assume that f  is a real value function 

whose value is bounded from 0 to 1 (0 and 1 each represents a class label). 

)( ii xfy = , T
nyyyY ),...,,( 21= . Laplacian Eigenmaps try to minimize the fol-

lowing objective function 

−
ij

ijji Wyy 2)(                                                    (2) 

By minimizing this objective function, we get nyyy ,...,, 21 , the initial class label 

of each sample, with ]1,0[∈iy . 

3.2   Using Mutual Information to Choose the Samples with Most Uncertain 
Class Labels 

This is our active query selection step. And we use the mutual information 

);( ∗yYI ( ∗y  represents one sample’s class label and Y represents the whole 

sample’s class labels) as a measure of query selection. By maximizing the mutual 
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information, we get the sample which would give most information, that is, which 
needs most to be labeled. 

In order to calculate );( ∗yYI , inspired by the work of [5], we define a Gaussian 

random field on the vertices of V  

{ }2/exp)( yyyp T Δ−∝ λ                                             (3) 

where WD −=Δ , and D is a diagonal matrix given by 
=

=
n

ijii WD
1j

. 

The mutual information between Y and *y  is the expected decrease in entropy of 

Y when *y  is observed: 
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where ))(log(2 YpH −∇=  , and 2∇ is the Hessian matix. 

The best sample to label is the one that maximizes );( ∗yYI . And the mutual in-

formation is largest when 5.0)( ≈∗yp , i.e., for samples with most information.  

3.3   Using the User-Specified Labeled Samples to Get the Final Classification 

After we actively choose the sample to give label, we can run the semi-supervised 
classification methods to get the final result. In Manifold Regularization methods of 
Belkin, the author minimizes the following cost function 

==∈
−++−=

n
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ii
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Where l  is the number of labeled samples. Aγ , Iγ  are regularization parameters. 
2

K
f  is some form of constraint to ensure the smoothness of the learned manifold. 

Here, the l  samples in the above cost function are not chosen randomly or manu-
ally as in the original work of Belkin. But rather, they are chosen with the active 
query selection methods discussed in 3.2. 

4   Experimental Results 

As we point out at the beginning of this paper, unsupervised learning can not work well 
in case of noise, and in case of two modes which belong to two different classes over-
lapped. In these situations, semi-supervised learning with a few labeled samples can help.  

Using some synthetic data, we show that our active query selection method can 
choose the most informative samples to give labels. Fig.2 (a) is a noise case of fig.1 
(a), and without labeled samples, the Laplacian Eigenmaps can not find a satisfying 
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classification (the yellow curve). Using our active query selection method, the algo-
rithm chooses some samples to be labeled, these samples are shown in (b) with purple 
color. After that, user give the class label of these chosen samples (the red and blue 
samples in (c), each color represents a class), then, with these user-specified labeled 
samples, manifold regularization method find the more satisfying classification as 
shown in (c) (the yellow curve). 

 

Fig. 2. (a) Laplacian Eigenmaps can not find a satisfying classification without labeled samples. 
(b) The samples automatically chosen to be labeled. (c) The manifold regularization results 
with the labeled samples. 

5   Conclusions 

A key problem of semi-supervised learning is to choose the most informative samples 
to be labeled at the very beginning of semi-supervised algorithms. Using mutual in-
formation, we give a solution to this problem. Our method of samples chosen can 
apply to most of the existing semi-supervised learning methods, and in this paper, we 
combine it with manifold regularization to show how it works. 

We also do experiments on some synthetic data, and yield satisfying results. In future 
works, we will try this method on some real world experiments. Another problem of 
semi-supervised learning is how many labeled sample are suitable, for example, should 
we choose five samples to give label, or, should we choose ten? In future work, we will 
consider this problem in the framework of the active query selection of this paper. 
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Abstract. Editing allows the selection of a representative subset of pro-
totypes among the training sample to improve the performance of a clas-
sification task. The Wilson’s editing algorithm was the first proposal and
then a great variety of new editing techniques have been proposed based
on it. This algorithm consists on the elimination of prototypes in the
training set that are misclassified using the k-NN rule. From such edit-
ing scheme, a general editing procedure can be straightforward derived,
where any classifier beyond k-NN can be used. In this paper, we analyze
the behavior of this general editing procedure combined with 3 different
neighborhood-based classification rules, including k-NN. The results re-
veal better performances of the 2 other techniques with respect to k-NN
in most of cases.

Keywords: Pattern recognition, classification, nearest neighbor, pro-
totype selection, editing.

1 Introduction

The k-Nearest Neighbor (k-NN) rule is a well known non-parametric classifica-
tion approach. This rule classifies an unknown sample into the class most repre-
sented among its k nearest neighbors according to some metric [5]. Although it
is mainly used for classification, the k-NN rule is widely used also for edition.

Given a set T of prototypes, an editing technique consists on the selection of
a subset, S ⊆ T where the overlapping among different classes has been reduced.
The removed prototypes can be either those which belongs to overlapping re-
gions, those erroneously labeled or atypical prototypes (outliers). The use of this
technique improves the performance of the 1-NN classifier.

The Wilson’s editing algorithm [2] was the first proposal related with the
elimination of misleading prototypes from the training set T . This technique
retains in T only the correctly classified samples by a leaving one out strategy
with a k-NN classifier. However, a more general editing scheme can be derived
from Wilson’s, by considering the error estimation strategy and the classification
rule as editing scheme parameters.
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In this work, an exhaustive evaluation of such general editing scheme based on
three different neighborhood-based classification rules has been done. The main
purpose is to compare the performances of these three classifiers in an editing
task over a wide variety of known datasets. The three neighborhood-based rules
are the well-known k-NN rule [3,7], the k-NCN rule [4] and the new k-NSN
rule [9].

The k-NN rule classifies a sample into the majority class among its k nearest
neighbors in T . The k-NCN rule classifies a sample in the class most represented
among the k neighbors whose centroid is the closest to the sample. These k
neighbors are not usually the k nearest neighbors. The results achieved by the
k-NCN rule are very interesting, outperforming the k-NN rule in many cases,
specially with small training sets (which is what usually happens in practice).
Finally, the k-NSN rule considers the k best neighbors selected by fast NN search
algorithms when looking for the NN.

The structure of the paper is as follows. Section 2 presents the general editing
scheme. In section 3 we shall briefly describe the distance-based rules that have
been considered, and some details of their uses for edition. Section 4 consists of
exhaustive experiments with 12 datasets and a discussion of results. Finally, we
will conclude and outline some future work in section 5.

2 A General Editing Scheme

The classification accuracy of the NN rule can be improve by eliminating outliers
and cleaning possible overlapping among classes in the original training set. This
is the main goal of any editing technique.

A general editing procedure can be straightforward derived from Wilson’s
scheme. Given a training set T , an error estimation strategy ξ, and a classifica-
tion rule δ, let R ⊆ T be the subset of samples incorrectly classified by δ using
ξ. The edited subset S is obtained by removing from T those samples in R.
This process can be repeated until a certain condition η is satisfied. Figure 1
illustrates an schematic description of such procedure. Once the training set has
been edited, the 1-NN rule is used to classify new samples.

In the experiments, this editing procedure is combined with 3 neighborhood-
based classification rules, that is, rules which take into account the distances to
a number of close neighbors and their classes to decide the class of a new sample.
These classifiers are the plain k-NN rule [3], and two other related decision rules
named the k-NCN rule [4] and the new k-NSN rule [9], respectively. Next section
describes in details these techniques.

3 Neighborhood-Based Classification Rules

3.1 The k-NN Rule

One of the most widely studied non-parametric classification approaches cor-
responds to the k-NN rule. Given a set of n previously labeled prototypes or
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Input: a training set of labeled samples T = {(xi, ci)}
a classification rule δ

an error estimation strategy ξ

an ending condition η

Output: a final edited subset S
Method:

repeat
let R ⊆ T be the subset of samples incorrectly classified by ξ, δ

S ←− T − R
T ←− S

until η is true

Fig. 1. A general editing scheme

training set (TS), the k-NN classifier [7] consists of assigning an input sample
to the class most frequently represented among the k closest prototypes in the
TS, according to a certain dissimilarity measure. A particular case of this rule
is when k = 1, in which each input sample is assigned to the class indicated by
its closest neighbor.

The asymptotic classification error of the k-NN rule (that is, when n grows
to infinity) tends to the optimal Bayes error rate as k → ∞ and k/n → 0. More-
over, if k = 1, the error is bounded by approximately twice the Bayes error [8].
This behavior in asymptotic classification performance combines with a concep-
tual and implementational simplicity, which makes it a powerful classification
technique capable of dealing with arbitrarily complex problems, provided there
is a large enough TS available.

However, in many practical settings, this theoretical behavior can hardly be
achieved because of certain inherent weaknesses that significantly reduce the
applicability of k-NN classifiers in real-world tasks. For example, the performance
of these rules, as with any non-parametric approach, is extremely sensitive to
incorrectness or imperfections in the TS.

That is the reason why a considerable amount of works have been devoted
to improve the NN classification accuracy by eliminating outliers from the orig-
inal TS and also cleaning possible overlapping among classes. This strategy has
generally been referred as to editing [8], whereas the corresponding classifier has
been called edited NN rule.

3.2 The k-NCN Rule

The nearest centroid neighborhood [6] refers to a concept in which neighborhood
is defined taking into account not only the proximity of prototypes to a given
input sample but also their symmetrical distribution around it. From this general
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idea, the corresponding classification rule, the k-nearest centroid neighbors (k-
NCN) [4], has been proven to overcome the traditional k-NN classifier in many
practical situations.

Now the editing approach presented here corresponds to a slight modification
of the original work of Wilson and basically consists of using the leaving one out
error estimate with the k-NCN classification rule.

3.3 The k-NSN Rule

Recently, a new distance-based classification rule, the k nearest selected neighbor
rule (k-NSN) has been proposed. The k-NSN rule is based on a class of fast NN
search algorithms, those who search iteratively for the nearest neighbor: in each
step, these algorithms select a candidate to nearest neighbor, then compute its
distance to the sample, update the current nearest neighbor, prune the training
set, and look for a new candidate. This process is repeated until no new candi-
dates may be found. The k-NSN rule classifies the sample using the k nearest
candidates selected while looking for the nearest neighbor, the so called k nearest
selected neighbors. Of course, the performance of the k-NSN rule depends highly
on the underlying fast NN search algorithms, and usually the fastest algorithm
is the one with which the k-NSN results are the poorest, and vice versa. When
the training set is large and/or the dimensionality of the data is high, the k-NSN
rule obtains results that are similar to those of the k-NN rule (in fact, the k-NSN
rule uses in these cases almost all of the k-NN for classification), but without
the extra computational effort of finding exactly the k-NN.

Wilson’s Editing with k-NSN. The fast NN search algorithms in which is
based the k-NSN rule all require a certain data structure (usually a tree) to
be built during the training phase, prior to classification. When using a leaving
one out scheme for error estimation or for Wilson editing, these algorithms may
need to rebuild its data structures many times, and this is usually a very time
consuming step. In this work the k-NSN rule has been used only with one fast NN
algorithm, the LAESA [10] algorithm, which is one of the simplest algorithms
with which the k-NSN rule has been tested.

The LAESA algorithm uses a reduced matrix of distances between a subset of
base prototypes and the rest of the prototypes in the training set. As the number
of base prototypes required depends on the dimensionality of the data and not
on the size of the training set, the spatial complexity is lineal on that size. The
base prototypes are selected in the training phase as those that are maximally
separated, and then the reduced matrix is computed.

In a leaving one out procedure, the algorithm should recompute the base pro-
totypes and the reduced matrix each time the training set changes (i.e. each time
a prototype is left out). However, in many cases the base prototypes would be
the same as for the whole training set, so the matrix would be (almost) the same.
Only in a few cases the result would differ. The set of base prototypes affects
the number of distances computed, and thus the number of selected neighbors,
so the performance of the k-NSN rule may be slightly different, but not too
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much. The simplest way to avoid recomputing each time the base prototypes
set and the reduced matrix is to compute the set and the matrix for the whole
training set, and then, if the prototype left out is one of the base prototypes,
simply ignore the row corresponding to that prototype in the matrix for further
computations.1

4 Experiments and Discussions

Experiments involved 12 datasets from the UCI Machine Learning Repository
(http://www.ics.uci.edu/$\sim$mlearn). Table 1 summarizes the main char-
acteristics of each data set: number of classes, attributes, and prototypes.

Table 1. A brief summary of the UCI databases

Data set No. No. Size
Classes Features

Cancer 2 9 685
Clouds 2 2 5002
Concentric 2 2 2501
Diabetes 2 8 770
Gauss 2 2 5002
German 2 24 1002
Glass 6 9 216
Heart 2 13 272
Liver 2 6 347
Phoneme 2 5 5406
Sonar 2 60 210
Waveform21 3 21 5001

To guarantee the statistical significance of results, all classification tasks were
designed following a 5-fold cross validation. The 5 training partitions derived
from each dataset were edited with the 3 editing techniques resulting from the
combination of the general procedure of section 2 with the 3 distance-based
classification rules (k-NN, k-NCN, k-NSN) described in section 3. In the case of
k-NSN, the LAESA algorithm [10,9] was used as the fast NN search algorithm.
Only the parameter k = 3 was used for all editing.

Then, resulting edited partitions were used to classify with the 1-NN rule
their corresponding test partitions for each dataset. An additional baseline 1-NN
clasification task was performed with the original training partitions (without
any edition) and their corresponding test partitions (called nedit).

For each pair of dataset and editing technique, the average size of edited
partitions and the average 1-NN classification accuracy on test partitions were
collected. Table 2 provides a summary of these results.
1 The matrix is used to compute a lower bound of the distance of each prototype to

the sample, so the candidate to nearest neighbor is selected as that whose lower
bound is the lowest.
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Table 2. Average size of the edited sets and average 1-NN classification accuracies on
test partitions (standard deviations are in brackets). Values in bold type indicate the
highest accuracy for each database.

Cancer Clouds
scheme edit accuracy edit accuracy
NOEDIT 547 95.17(2.38) 4000 84.66(0.96)
k-NSN 530(2.94) 96.19(2.08) 3391(18.43) 87.66(0.66)
k-NN 528(3.83) 96.34(1.90) 3498(12.09) 88.26(0.55)
k-NCN 528(2.64) 95.61(2.44) 3504(13.00) 88.26(0.44)

Concentric Diabetes
scheme edit accuracy edit accuracy
NOEDIT 1999 81.59(1.26) 614 67.32(4.15)
k-NSN 1978(4.71) 81.59(1.26) 428(3.31) 70.83(3.62)
k-NN 1976(2.79) 81.59(1.26) 425(4.17) 71.75(2.22)
k-NCN 1984(3.49) 81.59(1.26) 436(8.95) 72.01(2.12)

Gauss German
scheme edit accuracy edit accuracy
NOEDIT 4000 64.94(0.90) 800 65.61(2.22)
k-NSN 2592(24.58) 68.32(0.90) 544(8.47) 68.41(1.79)
k-NN 2688(17.98) 64.72(0.48) 543(10.09) 69.30(1.02)
k-NCN 2708(16.13) 64.72(0.48) 563(7.47) 70.61(1.69)

Glass Heart
scheme edit accuracy edit accuracy
NOEDIT 171 65.21(14.95) 216 58.17(5.31)
k-NSN 110(7.86) 60.61(12.59) 131(2.53) 65.91(1.25)
k-NN 109(7.24) 59.66(10.08) 139(1.33) 63.68(1.27)
k-NCN 111(8.26) 67.11(11.41) 139(2.58) 66.25(3.78)

Liver Phoneme
scheme edit accuracy edit accuracy
NOEDIT 216 65.21(7.36) 4323 69.72(7.28)
k-NSN 115(5.38) 63.21(6.32) 3936(44.91) 72.24(6.44)
k-NN 116(7.73) 66.95(6.68) 3898(51.08) 72.83(6.29)
k-NCN 120(4.17) 70.54(6.26) 3937(52.62) 72.33(6.25)

Sonar Waveform21
scheme edit accuracy edit accuracy
NOEDIT 166 52.11(10.75) 3999 77.96(2.58)
k-NSN 136(4.83) 56.49(12.73) 3249(19.81) 80.70(2.05)
k-NN 137(4.82) 56.97(13.03) 3250(19.63) 80.70(2.05)
k-NCN 140(4.49) 55.55(13.58) 3245(22.52) 80.74(2.00)

In all datasets, edited partitions improve the 1-NN classification results of
the corresponding original partitions (NOEDIT). Note that in all those cases
the number of prototypes of edited partitions is lower than the size of original
training partitions. These relations between classification accuracies and sizes
are really common, but do not necessarily occur for all datasets. Their presence
denote that there is some overlapping that can be removed by edition. Therefore,
these datasets can better illustrate the behavior of editing techniques.



On the Use of Different Classification Rules in an Editing Task 753

With respect to the comparison among the three different editions, it can be
observed that they produce similar results both in the number of prototypes
removed and in 1-NN classification accuracies. But, in most of cases, the editing
scheme derived from k-NCN leads to better accuracies than the other 2 rules and,
specifically, than the k-NN. These differences are more notable in the datasets
with small number of prototypes (Glass, Heart, Liver). The importance of this
observation is that small size datasets are very frequent in real world problems
and they are usually a challenge for researchers. In addition, the use of the k-NSN
rule also produces good edited partitions, with the lowest number of prototypes
in many cases and with a similar accuracy in most of situations. These results
confirm the applicability of this new rule for editing tasks.

5 Conclusions, Discussions, and Future Work

An editing process consists basically of removing from a training set those sam-
ples which may disorient a classifier training (samples in overlapping regions and
outliers). This paper focuses on the comparison of 3 editing methods, which are
particular instances of a general editing procedure directly derived from Wilson’s
scheme. Given that this general procedure allows a classifier as a parameter,
each specific editing method is defined by a neighborhood-based classification
rule. The 3 classifiers considered are the plain k-NN [3,7] (the original clas-
sifier of the Wilson’s scheme), the k-NCN [4] and a more recent k-NSN [9].
The k-NCN searches those k neighbors whose centroid is closest to a given
sample, while k-NSN uses a fast NN search algorithm to find the k reference
neighbors.

Exhaustive experiments were conducted over 12 datasets to compare the per-
formances of these rules when used in editing tasks. A 5-fold cross validation
strategy was defined for classifier evaluation. Editing methods were applied on
training partitions and resulting edited partitions were used for 1-NN classifica-
tion of their corresponding test partitions. Although average results were similar
among editing methods, the k-NCN was better than k-NN in most of cases, con-
sidering the 1-NN classification accuracy. The differences were more significant
in datasets with a small number of samples, which is a very frequent situation.
Finally, and in spite of its approximated strategy, the k-NSN produces good
results both in sizes of edited subsets and in classification accuracies on test
partitions.

The main conclusion of this paper is the appropriateness of k-NCN in classifi-
cation tasks on small size problems with respect to k-NN. An interesting question
arises from this fact. How related is this conclusion with samples density? This
feature is probably the most important condition in the behavior of k-NN tech-
niques, but depends not only on the number of samples but also on the volume
where samples are distributed. So, small size datasets are not necessarily those
with low density. Future analysis should involve some measure to evaluate den-
sity, and a methodology for relating density, size, and dimensionality with the
use of each neighborhood-based classification rule.
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Abstract. This paper presents a system to recognise cursive Arabic
typewritten text. The system is built using the Hidden Markov Model
Toolkit (HTK) which is a portable toolkit for speech recognition system.
The proposed system decomposes the page into its text lines and then ex-
tracts a set of simple statistical features from small overlapped windows
running through each text line. The feature vector sequence is injected
to the global model for training and recognition purposes. A data corpus
which includes Arabic text of more than 100 A4−size sheets typewritten
in Tahoma font is used to assess the performance of the proposed system.

1 Introduction

Among the branches of pattern recognition is the automatic reading of a text,
namely, text recognition. The objective is to imitate the human ability to read
printed text with human accuracy, but at a higher speed.

Most optical character recognition methods assume that individual characters
can be isolated, and such techniques, although successful when presented with
Latin typewritten or typeset text, cannot be applied reliably to cursive script,
such as Arabic. Previous research on Arabic script recognition has confirmed the
difficulties in attempting to segment Arabic words into individual characters [1].

Hidden Markov Models (HMMs) [2] are among other classification systems
that are used to recognise character, word or text. They are statistical models
which have been found extremely efficient for a wide spectrum of applications,
especially speech processing. This success has motivated recent attempts to im-
plement HMMs in character recognition whether on-line [3] or off-line [4]. The
HMM provides an explicit representation for time-varying patterns and proba-
bilistic interpretations that can tolerate variations in these patterns. In off-line
recognition systems, the general idea is to transform the word image into a
sequence of observations. The observations produced by the training samples
are used to tune the model parameters whereas those produced by the testing
samples are used to investigate the system performance.

HMMs have been also used to Arabic word recognition. Following are the ap-
proaches introduced in twofold: the global approach and the analytical approach.
The global approach treats the word as a whole. Features are extracted from the

D.-Y. Yeung et al. (Eds.): SSPR&SPR 2006, LNCS 4109, pp. 755–763, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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unsegmented word and compared to a model [5]. The analytical approach de-
composes the word into smaller units, which may correspond to a character or
part of a character [6]. Another research [7] proposed a system which depends
on the estimation of character models, a lexicon, and grammar from training
samples. The training phase takes scanned lines of text coupled with the ground
truth, the text equivalent of the text image, as input. Then, each line is di-
vided into narrow overlapping vertical windows from which feature vectors are
extracted. The character modelling component takes the feature vectors and the
corresponding ground truth and estimates the character models. The recognition
phase follows the same step to extract the feature vectors which are used with
different knowledge sources estimated in the training phase to find the character
sequence with the highest likelihood P (O|λ).

This paper presents a HMM–based system to recognise cursive Arabic script
offline. Statistical features are extracted from the text line image and fed to the
recogniser. The system is built on the Hidden Markov Models Toolkit (HTK) [8].
This is primarily designed for building HMM-based speech processing tools in
particular recognisers. The proposed system is lexicon free and it depends on
the technique of character models and grammar from training samples.

2 System Overview

Fig 1 shows the block diagram of the proposed system. The global model is a
network of interconnected character models. Each character-model represents a
letter in the alphabet. The system may be divided into stages. The first stage
is performed prior to HTK, and includes: image acquisition, preprocessing and
feature extraction. The objective is to acquire the document image, preprocess
it and then decompose it into text line images. Each line image is transfered into
a sequence of feature vectors. Those features are extracted from overlapping
vertical windows along the line image, then clustered into discrete symbols.

Stage two is performed within HTK. It couples the feature vectors with the
corresponding ground truth to estimate the character model parameters. The

Fig. 1. A block diagram of the HTK-based Arabic recognition system
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final output of this stage is a lexicon–free system to recognize cursive Arabic
script. During recognition, an input pattern of discrete symbols representing the
line image is injected to the global model which outputs a stream of characters
matching the text line.

2.1 Feature Extraction

This research implements HMMs to recognise the input pattern. This implies
that the feature vector, extracted from the text, is computed as a function of
independent variable. In speech, the cepstral features are extracted from the
speech signal with respect to time. Similarly, in on–line handwritten recognition
a feature vector is computed as a function of time also. In off–line recognition
system the case is different; there is no independent variable. Moreover, the
whole page image needs to be recognised. In this research, the text line has been
chosen as the unit for training and recognition purposes.

Now, assuming that the horizontal position along the text line is the indepen-
dent variable, a sliding window is scanning the line from right to left. A set of
simple features is extracted from pixels falling within that window. The result-
ing feature vector is mapped against predefined codebook vectors, and replaced
with the symbol representing the nearest codebook vector. This step transfers
the text line image into a sequence of discrete symbols.

Each line image is divided into overlapped narrow windows, see Fig 2. These
windows are then vertically divided into cells where each cell includes a prede-
fined number of pixels. Those cells are used for feature extraction.

Features extracted from the text could be structural [9], spectral [10] or as per
here statistical. Statistical features are easy to compute and script independent.
They avoid any segmentation at word or character level. These features are:

Fig. 2. Dividing the line into windows and cells
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(a)

(b)

(c)

Fig. 3. Feature extraction: a)original line image. b)vertical derivative of (a).
c)horizontal derivative of (a).

intensity, intensity of horizontal derivative and intensity of vertical derivative,
see Fig 3.

The intensity feature represents the number of ones in each cell. The intensity
of horizontal derivative detects the edge through X–axis, then computes the
number of ones in the resulting cell. The intensity of vertical derivative detects
the edge through Y–axis, then computes the number of ones in the resulting cell.
The feature vector of one narrow window is built by stacking features extracted
from each cell in that window.

Fig. 4. HMM structure of the word Makkah “¡mkT¿”, sp denotes space character

2.2 HTK Inference Engine

The hidden Markov model toolkit (HTK) [8] is a portable toolkit for building
and manipulating hidden Markov models. It is primarily designed for building
HMM–based speech recognition systems. HTK was originally developed at the
Speech Vision and Robitics Group of the Cambridge University Engineering
Department (CUED).

Much of the functionality of HTK is built into the library modules available in
C source code. These modules are designed to run with the traditional command
line style interface, so it is simple to write scripts to control HTK tools execution.
The HTK tools are categorized into four phases: data preparation, training,
testing and result analysis tools.

The data preparation tools are designed to obtain the speech data from data
bases, CD ROM or record the speech manually. These tools parametrize the
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speech data and generate the associated speech labels. For the current work, the
task of those tools is performed prior to the HTK, as previously explained, then
the result is converted to HTK data format.

HTK allows HMMs to be built with any desired topology using simple text
files. The training tools adjusts HMM parameters using the prepared training
data, representing text lines, coupled with the data transcription. These tools
apply the Baum–Welch re–estimation procedure [2] to maximise the likelihood
probabilities of the training data given the model.

HTK provides a recognition tool to decode the sequence of observations and
output the associated state sequence. The recognition tool requires a network to
describe the transition probabilities from one model to another. The dictionary
and language model can be input to the tool to help the recogniser to output
the correct state sequence.

The result analysis tool evaluates the performance of the recognition system
by matching the recogniser output data with the original reference transcription.
This comparison is performed using dynamic programming to align the two
transcriptions, the output and the ground truth, and then count the number of:
substitution (S) and deletion (D).

The optimal string match calculates a score for matching the output sample
with respect to the reference line. The procedure works such that identical labels
match with score 0, a substitution carries a score of 10 and a deletion carries a
score of 7. The optimal string match is the label alignment which has the lowest
possible score. Once the optimal alignment has been found, the correction rate
(CR) is then:

CR =
N −D − S

N
× 100% (1)

where N is the total number of labels in the recogniser output sequence.

Fig. 5. Optimal string matching. The upper line is the reference line.

Fig 5 illustrates an Arabic reference line and a possible system output. The
sentence includes 30 lables. The system output includes one subtitution, one
deletion and two insertions. The correction rate equals:

CR =
30− 1− 1

30
× 100 = 93.33%

The example showes how the HTK analysis tool measures the performance of
the recognition system.
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3 Recognition Results

The performance of the proposed system was assessed using a corpus which
includes more than 100 pages of Arabic text in Tahoma font, see Fig 5. Tahoma
is a simple font with no overlap or ligature. The data corpus includes 18413
words and 100724 letters, not including spaces.

Fig. 6. The impact of the number of states per model on system performance

After noise elimination and deskewing, the 100 pages were decomposed into
more than 2500 line images. A set of experiments were performed using 1500
line images for training and 1000 line images for testing. All character models
had the same number of states; 8 states. There is no mathematical method to
calculate the optimal number of states per model. Alternatively, various values
were examined to select the best number of states per model, see Fig 6.

Text line height is proportional to the font size. The line image is measured
in pixels. For the corpus under consideration the line image height varies from
35 pixels to 95 pixels depending on the font type and size. To eleminate this
dependency, all line images were resized to a single height value; 60 pixels. This

(a)

(b)

(c)

Fig. 7. Text lines with different line heights: (a) 43 pixels, (b) 60 pixels and (c) line
image in (a) resized to 60 pixel size
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value equals the mean of image heights of all text lines in the data corpus, see
Fig 7.

3.1 Cell Size

At any horizontal position, the sliding window is divided into a number of cells,
as shown in Fig 2. These cells may or may not overlap. The overlap can be
vertical or horizontal and it increases the amount of features generated from a
single line and hence increases the processing time.

Table 1. Cell size categories

Category Cell Horizontal Vertical
Size Overlap Overlap

CS1 3 × 3 - -
CS2 3 × 3 1 pixel -
CS3 3 × 3 2 pixels -
CS4 5 × 5 2 pixels -
CS5 5 × 5 2 pixels 2 pixels

(a) All categories (b) CS2

Fig. 8. System performance for the Tahoma font

The first set of experiments studied the cell size parameter. Variuos combina-
tions of cell sizes and overlaps were tested, see Table 1.

Fig 8−a shows the correction rate, CR, of the five categories for the Tahoma
font. The codebook here includes 64 clusters. The results illustrates that HTK
was more efficiently tuned for Tahoma font rather than for Thuluth font. This
is sensible due to decorative curves found at the end of some letters in Thuluth
font which overlap with succeeding letters.

3.2 Codebook Size

After extracting features from a line image, the feature vector dimensionality is
reduced from 2D to 1D using K-means clustering algorithm [2]. Mapping the 2D
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feature vector to the nearest cluster is based on the minimum Euclidean distance
measure.

This set of expriments studied the codebook size parameter. Five different
codebook size values were examined for each font for each category: 8, 16, 32, 64
and 128. A total number of 50 codebooks were created for this purpose. Fig 8−b
shows the correction rates of CS2. It illustrates the improvement in the system
performance as the codebook size increases. This conclusion is also applicable to
other cell size categories.

3.3 Tri–HMMs

Character models implemented so far are independent; isolated from preceding
and succeeding character models. This type is referred to as a mono–model. It
has two main advantages: (1) it is easy to train since the total number of models
is small; 60 models, (2) the labelling procedure is simple and straightforward. A
more efficient type, though more complex, is referred to as a tri–model. Here,
each HMM represents a character, its predecessor and its successor. The total
number of HMMs jumps to 9393 models. Training and recognition procedures are
the same for both types. However, the labelling procedure is more complex with
tri-models. The context-dependant tri–HMMs increases the system performance
from 84% to 92%.

4 Conclusion

A new system to recognise cursive Arabic text has been presented. The proposed
system is based on HMM Toolkit basically designed for speech recognition pur-
pose. Various model parameters have been studied using a corpus that includes
data typewritten in a computer–generated font; Tahoma. The system was capa-
ble to learn complex ligatures and ovelaps. The system performance has been
improved when implementing the tri–model scheme. Future work will concen-
trate on enlarging the data corpus to include more fonts.
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Abstract. Similarity based classification methods use positive semi-
definite (PSD) similarity matrices. When several data representations
(or metrics) are available, they should be combined to build a single
similarity matrix. Often the resulting combination is an indefinite ma-
trix and can not be used to train the classifier. In this paper we intro-
duce new methods to build a PSD matrix from an indefinite matrix. The
obtained matrices are used as input kernels to train Support Vector Ma-
chines (SVMs) for classification tasks. Experimental results on artificial
and real data sets are reported.

1 Introduction

Classification methods generally rely on the use of a (symmetric) similarity ma-
trix. In many situations it is convenient to consider more than one similarity
measure. For instance, in Web Mining problems we have an asymmetric link
matrix among Web pages, A. Aij is 1 when there is a link between page i and
page j and it is 0 when there is not a link. Two different matrices are defined from
A: the co-citations (AT A) and co-references (AAT ) matrices. Another matrix is
defined from the terms by documents (or web pages) matrix, D. Dij = 1 if term
i appears in web page j and it is 0 when it does not appear. The ‘document
by document’ matrix is defined by DTD. The co-citations, co-references and
‘document by document’ matrices correspond to different similarity representa-
tions focusing on different data aspects. Several methods have been proposed to
combine similarity matrices [11,8,10] in order to create a new single represen-
tation for which a classifier is trained. If the similarity representations are not
equivalent, a better classification performance should be expected if we are able
to combine them. Often, the resulting combination matrix is not positive semi-
definite (PSD), that is, it has one or more positive eigenvalues and one or more
negative eigenvalues. Then, it is not possible to embed the data into a Euclidean
space. The combination matrix is not appropriate to train most used classifiers,
and thus it must be modified.

In this paper we afford a deep review of the existing techniques to obtain a
PSD matrix from an indefinite one, and propose new methods specially useful
for classification tasks. The process of obtaining a PSD matrix from an indefinite
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matrix will be called Euclideanization in the following. We will use the resulting
matrix as kernel to train a Support Vector Machine (SVM) classifier.

The rest of the paper is organized as follows. In Section 2, we review the exist-
ing Euclideanization methods. In Section 3 we propose several Euclideanization
methods, adapting them to the classification context. The experimental setup
and results on artificial and real classification problems are described in Section
4. Section 5 concludes.

2 Classical Methods

Let K be a real n×n symmetric indefinite matrix. By the spectral decomposition
theorem K can be written as K = UnΛnU

T
n =

∑n
i=1 λiuiu

T
i , where Λn is a

diagonal matrix of eigenvalues of K (first, p positive eigenvalues with decreasing
values, next q negative ones with decreasing magnitude, and finally, zero values),
and Un is an orthogonal matrix whose columns ui are standarized eigenvectors.

2.1 Multidimensional Scaling

The first Euclideanization method considers the matrix Z = UrΛ
1
2
r , where r ≤ p

[2]. The new matrix is defined as follows:

K∗
MDS = ZZT = UrΛrU

T
r . (1)

This is equivalent to consider only those eigenvalues larger than a positive con-
stant ε, (if ε = 0, then r = p). In the case of indefinite matrices, the magnitudes
of negative eigenvalues suggest the deviation from Euclideaness [13]:

rmm = 100
|λmin|
λmax

, rneg = 100

∑
λi<0 |λi|∑n
i=1 |λi|

. (2)

Now, consider a classification problem involving a sample x1, . . . ,xn and an
indefinite kernel matrix K, where Kij = K(xi,xj). In order to use the kernel
matrix K∗

MDS with an SVM classifier, we should be able to calculate K∗(x,xi)
for a new point x, given that the SVM classifier takes the form f(x) = b +∑

i αiK
∗
MDS(x,xi). Let K(x, ·) ∈ IR1×n be the vector of original kernel values

for the new point, then:

K∗
MDS(x, ·) = K(x, ·)UrΛ

− 1
2

r Λ
1
2
r U

T
r = K(x, ·)UrU

T
r . (3)

2.2 Pseudo-euclidean Space

An alternative solution to MDS is to use both positive and negative eigenvalues
of K to represent the data set in a Pseudo-Euclidean space [3], Z = Uk|Λk|

1
2 ,

where k = p + q. The new matrix is defined as follows:

K∗
Pseudo = ZZT = Uk|Λk|UT

k . (4)
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In this case, the kernel expression for new points is given by [12]:

K∗
Pseudo(x, ·) = K(x, ·)Uk|Λk|−

1
2M |Λk|

1
2UT

k = K(x, ·)UkMUT
k , (5)

where M =
[
Ip 0
0 −Iq

]
. An alternative method is to consider a positive constant

ε and only those eigenvalues such that |λi| ≥ ε.

2.3 Adding a Quantity to the Diagonal of the Matrix

In this method, a positive constant λ is added to the diagonal of the original
matrix, large enough to make positive all the eigenvalues of the kernel matrix
(λ > |λmin| will do):

K∗
Add = K + λI = U(Λ + λI)UT . (6)

3 Alternative Methods

3.1 Square Transformation

First, we propose a very intuitive, computationally cheap and free parameter
method to build a kernel matrix from a symmetric indefinite matrix K as follows:

K∗
ST = K2 = KK = UΛUTUΛUT = UΛ2UT . (7)

For the new points the kernel values can be calculated by: K∗
ST (x, ·) = K(x, ·)K.

3.2 Bending

Hayes and Hill propose in [4] a method termed ‘bending’ for the modification of
estimates of covariance matrices in the construction of genetic selection indices.
Bending is an iterative process of updating a matrix when a weighting matrix is
given to control the relative importance of the elements of the original matrix
[6]. Let K be a symmetric indefinite matrix and let W be a weighting matrix
for the elements of K. The Bending process is resumed in Algorithm 1.

Let n = 0, K0 = K, ε a positive constant and 	 denotes the Hadamard product.
while Kn is indefinite do

Calculate the decomposition: Kn = UnΛnUT
n .

Replace Λn with Λ∗
n, where λ∗

i = g(λi, ε).
Calculate a new matrix: Kn+1 = Kn − Kn − UnΛ∗

nUT
n 	 W .

n = n + 1.
end while

Algorithm 1. Bending
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In the original Bending algorithm, g(λi, ε) = max(λi, ε). Alternatively, we pro-
pose to use g(λi, ε) = max(|λi|, ε) as in Pseudo method, g(λi, ε) = λi + λ as in
the method of adding a constant to the eigenvalues, or g(λi, ε) = λ2

i as in the
Square Transformation (ST) method. If the weighting matrix W is such that
all its elements are equal, then the Bending method is equivalent to the MDS
method. If Wij = 0 then the value in Kij does not change at this step. We
propose to calculate K∗(x, ·) for a new point x in a similar way to the MDS
method. Then, to modify K∗(x, ·), a weighting matrix for the new points should
be known in advance:

Kn+1(x, ·) = Kn(x, ·) − (Kn(x, ·)−K∗
MDS(x, ·)) &W (x, ·)

= Kn(x, ·) −
(
Kn(x, ·) −Kn(x, ·)UUT

)
&W (x, ·)

= Kn(x, ·) −Kn(x, ·)
(
I − UUT

)
&W (x, ·) . (8)

The Bending method can be used when we are dealing with a distance matrix
but the matrix under consideration is an indefinite matrix, to guarantee that the
diagonal elements of the PSD final matrix become 0.

3.3 Alternating Projections

Alternating Projections [14] is a theoretically powerful method for computing
best approximations from a closed convex set K that is the intersection of a
finite number of closed convex sets, K = ∩M

m=1Km. We will use this method to
find the nearest matrix at the intersection of the sets of PSD matrices and the
matrices which diagonal elements are fixed to a given value. This method works
as an iterative algorithm that reduces the problem to find best approximations
from the individual sets.

Consider the following problem:

minA ‖K −A‖W

s.t. A = AT ,
A ( 0 ,
diag(A) = c ,

(9)

where ‖X‖W = ‖W 1/2XW 1/2‖F , ‖ · ‖F denotes the Frobenius norm, W is a
symmetric PSD matrix, and c is a vector in IRn. This problem appears in the
finance industry when given a symmetric matrix K (for example correlations
between stocks), the nearest symmetric PSD matrix K∗ with unit diagonal (the
nearest correlation matrix) is required.

The solution to (9) is a matrix in the intersection of the set of symmetric
PSD matrices (S) and the set of symmetric matrices with diagonal equals to
the vector c (U), that is closest to K using a weighted Frobenius norm. Since S
and U are both closed convex sets, it can be shown that the minimun in (9) is
achieved and the solution is unique [7].

Let PS and PU be the projections onto S and U respectively. To find the
nearest matrix in the intersection of the sets S and U we can iteratively project
by repetating the operation:
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A ← PU (PS(A)) . (10)

It can be shown [5] that:

PS(A) = W−1/2
(
(W 1/2AW 1/2)∗MDS

)
W−1/2 . (11)

In practice, we suggest to use a diagonal matrix W . Then, it it easy to show that:

PU (A) = A− (diag(A)− c) . (12)

For a new point x, a matrix of weights W (x, ·) is needed. We propose to calculate
PS(K(x, ·)) as in the MDS method in (11), and to obtain PU (PS(K(x, ·))), only
the values of c for the new point are needed.

Next, we present two new Euclideanization methods. In the first one, a kernel
matrix is modified to be as similar as possible to the indefinite matrix, without
losing the PSD property. In the second method, a linear combination of kernels
as similar as possible to the original indefinite matrix is built.

3.4 Conformal Transformation

Let A be a given PSD matrix similar to an indefinite matrix K. In our context
A could be the average of several kernel matrices (see Section 4 for details). Let
W be a diagonal matrix in IRn×n. Consider the problem:

minW ‖K −WAW‖2
F . (13)

Note that if A is PSD, so is WAW . Given a PSD matrix A and an indefinite
matrix K, we look for a Conformal Transformation (CT) of A such that the
resulting matrix K∗ is the closest to the input matrix K.

We propose an iterative method to solve problem (13). W is initialized as the
identity matrix of order n. The elements of W are modified iteratively (adding
or subtracting a fix constant), while a better approximation between matrices
WAW and K (a lower Frobenius norm value) is being obtained. The w value
for a new point x is:

wx =
∑n

i=1 wiK(i,x)A(i,x)∑n
i=1(wiA(i,x))2

, (14)

where w = diag(W ) ∈ IRn×1.
Instead of a diagonal matrix, a more complicated expression for W could be

used in (13). Note that WAW = A&w ∗wT . Instead of using a matrix defined
by a single column w, we extend our method by considering a matrix V ∈ IRn×r

of r columns of weights. The expression for the new matrix is A& V ∗ V T .

3.5 Conformal Linear Combination

Let K an indefinite matrix and let K1, . . . ,KM a set of M PSD matrices (ker-
nels). Consider the problem of finding the PSD linear combination of those
matrices, closest to K:
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minλm ‖K −
∑M

m=1 λmKm‖2
F

s.t.
∑M

m=1 λm = 1 ,
λm ≥ 0 ∀m = 1, . . . ,M .

(15)

It is easy to show that this problem is equivalent to a simple quadratic pro-
gramming problem. We will label this method as ‘conformal linear combination’
(CLC). In the particular case of M = 2 kernels, the solution is:

λ1 =
〈K1 −K2,K −K2〉

‖K1 −K2‖2
F

, λ2 = 1− λ1 . (16)

4 Experiments

To test the performance of the proposed methods, SVMs have been trained
on artificial and real data sets using the kernel matrices K∗ previously con-
structed. To evaluate the accuracy of the classifiers, the classification error, the
sensitivity: (True ‘+’ recovered/Total true ‘+’) and the specificity: (True ‘-’ re-
covered)/(Total true ‘-’) measures are used. In all cases, the results have been
averaged over 10 runs.

4.1 Artificial Data Set

This data set consists of 400 two-dimensional points (200 per class). Each group
corresponds to a normal cloud with mean vector μi and diagonal covariance
matrix σ2

i I. Here μ1 = (3, 3), μ2 = (5, 5), σ1 = 0.7 and σ2 = −0.9. We have
defined two kernels from the projections of the data set onto the coordinate axes.
We have used 75% of the data for training and 25% for testing. The interest of
this example lies in the fact that, separately, both kernels achieve a poor result
(a test error higher than 15%).

We have used the pick-out method [11] to combine the two kernels involved.
For a pair of elements in the sample, the pick-out method chooses the maximun
of the kernels involved if the two elements belong to the same class and the
minimun of the kernels under consideration if the two elements belong to different
classes. The output matrix obtained is not necessarily PSD. The eigenvalues
of the output matrix for the artificial data set are represented on Figure 1.
Although the first three eigenvalues are clearly higher than the rest, half of
the eigenvalues are negative. The deviation from Euclideaness can be measured
using (2): rmm = 1.6± 0.3 and rneg = 2.8± 0.6 (mean± s.d.), which suggests a
moderate deviation from Euclideaness.

Table 1 shows the classification results. The MDS and Pseudo subscripts rep-
resent the value of the positive constant ε. The MDS, Bending and AP methods
achieve the lowest test error. The support vectors obtained with the MDS method
were used to define the weighting matrices needed in the Bending and AP meth-
ods. The MDS and Pseudo classification results strongly depend on the value of
the parameter ε. The best results were achieved using ε = 5, which implies the
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Fig. 1. Eigenvalues of the pick-out output matrix for the artificial data set

Table 1. Percentage of misclassified data, sensitivity (Sens.), specificity (Spec.) and
percentage of support vectors (S.V.) for the kernels with complementary information

Method Train Test Sens. Spec. S.V.
MDS0 3.0 10.0 0.956 0.845 19.4
MDS1 3.2 7.1 0.952 0.911 19.7
MDS5 4.4 4.3 0.935 0.978 21.5
Pseudo0 5.3 10.8 0.966 0.821 19.4
Pseudo1 3.6 7.5 0.939 0.913 18.8
Adding λI 5.2 5.2 0.899 0.996 60.1
ST 5.2 7.0 0.951 0.911 3.9
Bending 4.4 4.3 0.935 0.978 21.5
AP 4.4 4.3 0.935 0.978 21.5
AKM 6.4 6.5 0.868 1.000 35.4
CTAKM 6.3 6.1 0.876 1.000 35.1
CLCAKM 6.4 6.7 0.864 1.000 35.9

selection of the two highest eigenvalues. The ST method involves significantly
less support vectors than the other methods. On the other hand, adding a quan-
tity to the diagonal of the eigenvalue matrix increases the percentage of support
vectors. The conformal transformation method outperforms the average of the
kernels method (AKM [10]) when the AKM method was used to initialize the
transformation. The starting matrices of the CLC method are the two original
kernels. The classification results were similar to that obtained from the AKM.
Both kernels, individually, achieve poor classification results, and thus, given the
definition of the kernel, it is not possible to define a linear combination of the
kernels able to significantly improve the AKM results.

4.2 A Real Data Set Classification Problem

In this section we have dealt with a database from the UCI Machine Learning
Repository: the Johns Hopkins University Ionosphere database [1]. The data
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Table 2. Percentage of misclassified data, sensitivity (Sens.), specificity (Spec.) and
percentage of support vectors (S.V.) for the ionosphere data set

Method Train Test Sens. Spec. S.V.
MDS0 1.9 6.4 0.973 0.874 43.0
MDS1 3.3 6.5 0.969 0.878 34.4
MDS5 5.4 7.7 0.964 0.851 34.1
Pseudo0 1.9 6.7 0.952 0.901 44.7
Pseudo1 3.3 6.5 0.969 0.878 34.4
Adding λI 1.6 6.4 0.983 0.855 65.9
ST 2.1 5.9 0.965 0.901 21.5
Bending 2.0 6.0 0.966 0.895 44.5
AP 1.7 5.9 0.977 0.881 43.5
CTRBF 4.0 6.0 0.987 0.859 53.0
AKM 2.3 6.7 0.982 0.851 45.0
CLCAKM 2.2 5.9 0.980 0.875 45.5

set consists of 351 observations with 34 continous predictor attributes variables
each. We have used 60% of the data for training and 40% for testing.

For this data set we have combined several RBF kernels Km(x,z)=e−||x−z||2/cm

with cm = 10 + 5 ∗ (m − 1) and m = 1, . . . , 10. We have used a linear ker-
nel K(x, z) = xT z, and a polynomial kernel K(x, z) = (1 + xT z)2 as well. We
have considered the following transformation: K(x, z) = K(x,z)√

K(x,x)
√

K(z,z)
to make

comparable the different kernels values. The KWS method [9] (Kernel Weighting
Scheme) has been used to combine these kernels. In this method we use the ker-
nel value, the neighbourhood of the elements and the label information to assign
different weights to each element into the kernel matrix. The output matrix is
not necessarily PSD. The percentage of negative eigenvalues is 19.0%, and their
relative importance is significant: rmm = 3.2± 0.3 and rneg = 4.6± 0.4.

The classification results are shown on Table 2. The ST, AP and CLC methods
achieve the best results. Similar results were obtained with the CT method
which improves the a priori kernel matrix used (RBF with parameter c = 55:
7.0% in test error). The CLC method clearly outperforms the AKM method.
The performance of MDS and Pseudo methods is related to the choice of the
parameter ε. The support vectors obtained with the MDS method with ε = 0
were used to define the weighting matrices needed in the Bending method. When
the diagonal elements of the output matrix were fix to be 1, the AP method
outperforms the MDS method.

5 Conclusions

In this paper, we propose new techniques to build a PSD matrix from an in-
definite one. The obtained PSD matrix is used as input kernel to train a SVM
classifier. The classification results strongly depend on the method used to build
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the kernel. The Square Transformation method implies the lowest number of
support vectors. The Alternating Projections and Bending methods have been
shown to be good alternatives to the classical techniques. The Conformal Trans-
formation method clearly improves the results obtained from an a priori kernel.
The Conformal Linear Combination method has been shown to be an alternative
to the average of the kernels method.
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Abstract. In this paper we present a novel algorithm for anchor shot detection 
(ASD). ASD is a fundamental step for segmenting news video into stories that 
is among key issues for achieving efficient treatment of news-based digital li-
braries.  

The proposed algorithm creates a set of audio/video templates of anchorperson 
shots in an unsupervised way, then classifies shots by comparing them to the tem-
plates. Audio similarity is evaluated by means of a new index and helps to achieve 
better performance than a pure video approach. The method has been tested on a 
wide database and compared with other state-of-the-art algorithms, demonstrating 
its effectiveness with respect to them.  

1   Introduction 

Story segmentation is a basic step towards effective news video indexing. All the 
solutions to this problem proposed in the literature may be ascribed to one of the two 
following approaches. According to the first, segmentation is accomplished by 
directly finding the story boundaries. Such boundaries are typically obtained by 
looking for the occurrences of some specific event (a sequence of black frames, the 
co-occurrence of a silence in the audio track and a shot boundary in the video track, 
etc.), or an abrupt change of some features at a high semantic level, as a topic switch. 
The main limitation of this approach relies on the fact that the overall performance 
depends in the first case to the validity of the hypothesis that a story boundary is 
associated to a specific event in the audio or the video stream, while in the second 
case to the possibility of reliably deriving high semantic level features. 

The other approach performs story segmentation according to the following news 
program model assumption: given that each shot of the news video can be classified 
as an anchor shot or a news report shot, then a story is obtained by linking each 
anchor shot with all successive shots until another anchor shot, or the end of the news 
video, occurs. Using this model for the stories, news boundaries correspond to a 
transition from a news report shot to an anchor shot, or from an anchor shot to 
another. According to the above news story model, automatic anchor shot detection 
(ASD) becomes the most challenging problem to partition a news video into stories. It 
has to be noted that the main limitation of this approach relies on the validity of the 
above described news story model. However, some papers [1,2] have shown that such 
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a model is valid for most TV networks. Consequently, we preferred to follow this 
approach, directing our efforts to provide a solution to the ASD problem. 

In the scientific literature there are many papers that propose ASD algorithms: the 
majority exploits only video information. They can be roughly grouped into two 
categories. First approaches rely on the definition of a set of models of anchor shots, 
so that ASD is done by matching news video shots with the models [3,4,5]. Typically, 
a distinctive frame, called key-frame, is extracted for each shot and used for detection 
purposes. In [3] color classification and template matching are used. In [4] a unique 
anchor shot model is defined, while in [5] an anchor shot is modeled as a sequence of 
frame models. All these approaches strongly depend on the specific video program 
model. This is a severe limitation, since it is difficult to construct a general model able 
to represent all the different kind of news and since the style of a particular news 
program can change over the time. 

In order to overcome this limitation, some authors [6] proposed to build a 
key-frame model in an unsupervised way. However, since a single model is chosen 
for each news video, the authors implicitly assume that different anchorperson models 
share the same background. This is not true for most news stations: because of 
different camera angles, different models can have different backgrounds. Other 
authors [2,7] propose unsupervised methods that look for shots with similar visual 
contents that repeatedly occur during the whole news video. In particular, in [2] a 
graph-theoretical cluster analysis method is employed to classify video shots. As 
pointed out by the authors, this approach fails when identical news report shots appear 
in different stories of the same news program, or when an anchor shot model is 
present once in a program (for example, the case in which the anchorperson appears 
for most times in the right or left part of the screen and only once at the center). In [7] 
shot classification is also performed on the basis of the motion features of the anchor 
shot. For the authors, it is reasonable to assume that in an anchorperson shot both the 
camera and the anchorperson are almost motionless. In some TV news, however, 
zooming effects can be used also in an anchor shot; if motion is contained also in the 
background, the anchor shot can be missed. 

In the last years the use of audio as a good additional source of information for 
video segmentation has been rapidly raised up. There is, in fact, a number of systems 
that integrate audio and video features in the context of news segmentation by per-
forming multi-modal analysis [8]. However, the majority of the presented proposals 
use audio features for directly individuating news boundaries, by means of a silence 
or a speaker change detector, in order to strengthen or to weaken the boundaries 
provided by the analysis based on video techniques. 

Among the approaches that use the audio track for ASD, in [9] the authors propose 
a Hidden Markov Model (HMM) to classify frames on the basis of the statistics of the 
frames present in a news video. The features used are the difference image between 
frames, the average frame color and also the audio signal. The HMM parameters are 
evaluated during a training phase by using the ground truth of a given news program, 
and then are dependent on the style of the specific news video edition. In [10] it is 
proposed a technique that performs segmentation and clustering of portions of video 
with similar audio and video contents and tries to find temporal synchronization 
between pairs of clusters. In particular, ASD is performed by separately clustering and 
then comparing audio clips and video key-frames. When sufficient overlap is found 
between an audio and a video cluster then an anchor shot is detected. Unfortunately, 
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parallel audio and video clustering often lead to dissimilar grouping solutions, e. g. 
when a news report is commented by the anchorperson, or when there is a speaker 
change within a shot.  

All summarizing, the major drawbacks of former approaches are the following: 
i) supervised model-based techniques are not general enough, as they require a priori 
definition and construction of an anchor shot model; ii) the definition of a unique 
anchor shot model for a news edition is restrictive and gives rise to missed detections 
when different backgrounds are present in a news video edition; finally, iii) indis-
criminate use of audio information is not effective due to its incoherence with video 
and then yields to a misleading shot classification. 

In this paper, we propose a two stage audio/video ASD method that is able to over-
come all the above limitations. In the first stage the method builds in an unsupervised 
way a set of templates, each one representing a different anchor shot model within a 
video. The second stage uses a video similarity metric to retrieve a set of candidate 
anchor shots, which might have been missed by the first stage, and classify them by 
evaluating the audio similarity with respect to the templates. Note that, differently 
from the formerly described approaches, we do not use audio information as-it-is, but 
we perform audio-based classification only on the set of candidate shots and by 
employing a suitably defined similarity metric. 

We tested our method on a significant database made up of several video news 
editions from the two main Italian broadcasters (RAI 1 and CANALE 5), obtaining a 
very good performance. Moreover, we also compared our algorithm with other three 
state-of-the-art unsupervised ASD algorithms achieving significant performance 
improvements. 

The organization of the paper is as follows: in Section 2, the proposed algorithm is 
described; in Section 3, the database used is reported together with the tests carried 
out in order to assess the performance of the proposed algorithm; finally, in Section 4, 
some conclusions are drawn. 

2   The Proposed Approach 

As stated in the introduction, we propose a two stage analysis which is able to achieve 
ASD in an unsupervised way. The first stage extracts a set of audio/video templates 
from the news video under analysis, so avoiding any training procedure or manual 
definition of the templates. The second stage selects a set of candidate anchor shots by 
means of a video similarity metric with respect to the templates, then validates them 
by exploiting both audio similarity and the presence of faces. Details about template 
nature and similarity metrics used for shot classification will be given in next subsec-
tions. 

2.1   First Stage: Anchor Shot Template Extraction 

The preliminary task is to define and build a set of templates as audio/video touch-
stones for all the shots in the TV news program. The main difference with the previ-
ous papers in the literature is the definition of several anchor shot templates: in fact, 
during a news program there are typically several kinds of anchor shot camera 
settings, due to different angle, background and distance with respect to anchor 
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person. A single anchor shot template would not match all these situations and would 
introduce many missed items in the anchor shot detection task. In our approach each 
template practically corresponds, from the video point of view, to a single frame of 
the considered shot (i.e., its key-frame), while, from the audio point of view, to the 
audio shot characterization in a given feature space. 

After shot segmentation, all video shots are processed in order to build the tem-
plates. As anchor shots are mainly identifiable from their high visual similarity, we 
preliminarily need a clustering technique in order to group similar shots and find 
candidate anchor shot clusters. Then, several heuristics can be used to discard false 
detected clusters: anchor shots occur at least two times with the same angle, have a 
large temporal spanning along the news program and are characterized by the pres-
ence of a face. All these features are taken into account in the extraction of the anchor 
shot templates. 

A first clustering task groups together shots with same visual appearance. We used 
a graph-theoretical clustering (GTC) analysis, which considers shot key-frames as 
nodes of a complete graph in a given feature space. Each edge of the graph is assigned 
a weight corresponding to a distance between pairs of nodes, then the minimum 
spanning tree (MST) is built on the graph. The distance between nodes is defined in 
this way: each key-frame is divided into 16 rectangular regions of the same size, then 
color histograms of corresponding regions of the two nodes are compared; the eight 
regions with the most similar histograms are individuated and finally the sum of their 
histograms differences is considered as the distance between nodes. After construct-
ing the MST and removing all the edges in the tree with weights greater than a 
threshold λ, a forest containing a certain number of subtrees (clusters) is obtained. 
Each cluster correspond to a group of visually homogeneous shots. As anchor shots 
occur repeatedly during a news edition, clusters with less than 2 nodes are discarded. 
For determining the optimal value of λ, we used a Fuzzy C-Means clustering algo-
rithm [11]. This algorithm builds a list of all edges, sorted by their weights, and finds 
the best separation threshold which partitions the list in two parts. Edges belonging to 
the sub-list with the highest weights are pruned. 

The second step discards the clusters with low lifetime, i.e. the time interval that 
includes all the shots of the cluster. Anchor shot occurrences are typically temporally 
sparse, so clusters with lifetime lower than a threshold δ are removed. Threshold 
setting can be performed in a straightforward way, on the basis of the length of the 
specific news program: some details about this point are provided in the next section. 
In addition, it is worth noting that this setting is not critical, since anchor shots missed 
because of a non optimal setting of the threshold, can be recovered by the successive 
stage. Lifetime analysis is very effective in managing interviews during news reports, 
where recurrent camera shots on the interviewed person may generate large clusters; 
checking the lifetime allows to classify the shots within such clusters as news reports 
since their lifetime is typically very small. 

The last step discards the shots without faces. We introduced a robust face detec-
tion method which requires presence of a face all along a shot. To this aim we extract 
three frames from each shot (the first, the middle and the last frames) and apply the 
face detection algorithm [12] on them. If there are more than one frame without faces 
then the shot is removed. 
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After this step, we can again eliminate clusters with less than 2 shots, since they 
violate the assumption that an anchorperson occurs at least twice in the video. More-
over, some clusters may have changed their lifetime, so we apply again the lifetime 
control. This procedure gives rise to the final set of anchor shot clusters. 

Finally, for each remained cluster we build a set NAs containing all the shots be-
longing to that cluster and extract a unique key-frame from each NAs: these key frames 
represent our anchor shot templates from a video point of view. Moreover, from an 
audio point of view, we assume that the visual presence of the anchorperson corre-
sponds to his/her speech. Consequently, we assume as audio template the union of the 
audio portions relating to all the shots belonging to the set NAs, represented in an 
adequate feature space. Figure 1 summarizes the complete template extraction 
algorithm. 

1) Construct a complete graph G such that: 
a) its nodes Kfi correspond to the key-frames of each shot; 
b) each of its edges eij=(Kfi, Kfj) is characterized by a weight 

wij=d(Kfi, Kfj), where d(Kfi, Kfj) is calculated on the basis of 
the color histogram differences between Kfi and Kfj; 

2) determine the minimum spanning tree (MST) of G; 
3) remove from the MST those edges with large weights by using the 

Fuzzy C-Means algorithm, in order to create shot clusters; 
4) remove clusters with only one node; 
5) remove all clusters with lifetime lower than a threshold δ; 
6) extract 3 frames from each shot Sj belonging to the set of remaining 

clusters; 
7) remove from clusters those shots which have less than 2 frames 

which contain a face; 
8) apply steps 4) and 5) to remaining clusters; 
9) for each remained cluster build the set NAs by extracting all anchor 

shots from that cluster. 
10) extract a unique key-frame from each cluster and the whole audio 

track from the set NAs, giving rise to the set of audio/video anchor 
shot templates. 

Fig. 1. The proposed template extraction algorithm 

2.2   Second Stage: Shot Classification 

Classification must be performed on all the shots outside the final set of clusters, as 
the first stage might have missed those anchor shots occurring only once along the 
news program or which have low lifetime. These shots can be seen as missed tem-
plates of anchor shots which correspond to special camera settings, due to lighting, 
angle or special background with respect to the anchorperson. However, we observed 
that during a news edition there are only few of such special kinds of anchor shot, so 
we expect that only few candidate shots need to be recovered. Consequently, we 
perform a preselection of these candidates on the basis of the video similarity with 
respect to the already found templates. Finally, the candidates are classified by both 
audio and face detection. This framework prevents us from performing audio classifi-
cation on the whole set of shots, as audio processing is highly time-consuming. 
Furthermore, audio classification would also bring to false detected anchor shots, due 
to cases where the anchorperson directly comments a news report. 

During the candidate selection step, we consider one template at a time and com-
pare it to the key-frame of each of the discarded shots: then, we select only the three 
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candidate shots with the highest similarity with respect to any of the templates. To 
define similarity we use the metric presented in [13], which is computationally 
efficient and sensible to global features such as the general studio setting. The need 
for a more global metric lies in the fact that if we used the same technique as in the 
clustering step, we would discard the same shots as in the first phase; moreover, a 
more global similarity metric is more permissive and let us take into account, for the 
classification task, also those shots which are not so strictly related to the templates. 

Audio classification requires shot characterization in an adequate feature space. By 
using the results reported in [14], a set of 48 features (20 MFCC, 14 LPCC, 14 PF, see 
[14] for further details) is extracted from each frame in the audio track of the shots. In 
this case, a frame is a segment of 1024 audio samples. 

After feature extraction, each shot is filtered in order to remove non-voiced and 
silence portions by means of an appropriate masking module. This is a useful step 
because voiced segments correspond to vocal cords movement, so they characterize a 
speaker from an acoustic point of view. Moreover, filtering out audio portions helps 
in speeding-up the shot classification process. Our masking module is based on the 
analysis of Energy and ZCR (Zero Crossing Rate) and segments audio into three 
classes of clips: voiced, non-voiced and pause. Our method is an improvement of the 
method presented in [15], obtained by discarding frequent audio class transitions and 
by merging those voiced clips which are separated by a single pause segment. 

Audio shot classification is carried out by computing for each shot to be classified 
the value of an adequate similarity index, namely D-index, which expresses similarity 
between a shot and a template from an audio point of view.  

Each shot Si is considered as a cluster of audio feature vectors, so it can be repre-
sented by its centroid, namely Ci. For a generic pair of shots (Sm, Sk) belonging to NAs 
we assume: 

( )
max

,

,
1

d

CCd
D km

km −=  (1) 

where d(Cm,Ck) is the Euclidean distance between Cm and Ck, while dmax is the diame-
ter of the cluster of centroids of the shots belonging to NAs. 

Candidate selection 
1) Select a template; 
2) compare all the discarded shots with the template; 
3) build the candidates list Lc of the three most similar shots (accord-

ing to a suitably defined similarity metric), sorted in descending 
order; 

4) repeat steps 1), 2) and 3) for every template and refresh Lc; 
Classification 
5) Extract audio feature vectors for all shots in NAs and Lc; 
6) remove unvoiced and silent segments by means of a masking module; 
7) calculate Di for each candidate shot Si, by comparison with the audio 

templates and make audio classification decision for Si; 
8) apply face detection to candidates; 
9) apply AND rule between face detection and audio classification to 

reach the final decision. 

Fig. 2. The shot classification algorithm 
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Consequently, we can consider dmax as the diameter of the set of templates. Given a 
generic shot Si to be classified, we calculate its D-index, namely Di, as the average of 
all the Di,k obtained by considering all the shots Sk in the set NAs. If Di >0 then Si is 
classified as anchor shot. The case Di > 0 implies that the average distance between 
the shot Si and the set of templates is lower than the diameter dmax of the set of 
templates. Consequently, we classify Si as an anchor shot. On the contrary, if Di < 0 
then the shot Si is sufficiently far away from the cluster of templates, so it is discarded 
as a news report shot. 

Finally, a further face detection module helps to validate the classification, so that 
only those candidates which are classified as anchor shots by both audio similarity 
and face detection are stated as anchor shots. 

A scheme of the classification stage is provided in Figure 2. 

3   Experimental Results 

In order to assess the performance of our approach, we have collected a database 
composed by several videos from the two main Italian broadcasters, namely, RAI 1 
and CANALE 5. Our database includes the main news editions from each broad-
caster. A similar dataset, developed by the Linguistic Data Consortium for the TREC 
Video Retrieval Evaluation contest and composed of 70 hours of news video from 
ABC and CNN, was unfortunately not publicly available. Table 1 shows some details 
of the considered database. 

Table 1. The video database used in this paper 

Broadcaster No. editions Total length No. anchor shots No. news reports 
RAI 1 26 7:32:19 377 4602 

CANALE 5 16 9:21:12 250 4269 
TOTAL 42 16:53:31 627 8871 

The performance of our system is expressed in terms of Precision and Recall [16]. 
The F-measure has also been used, since it combines the former indexes in a single 
figure of merit according to the following formula:  

F = (2 * Precision * Recall) / (Precision + Recall). 

In Table 2 the performance of the first stage alone, considered as a preliminary 
classification stage, are reported. 

Table 2. Performance after the first stage of the proposed method 

 Precision Recall F 
RAI 1 0.994 0.924 0.957 

CANALE 5 0.967 0.891 0.927 
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The second stage classifies the set of three candidates, so recovery is effective only 
if missed (or “recoverable”) anchor shots are selected as candidates. The performance 
of the second stage is shown in Table 3. In order to evaluate the effectiveness of the 
audio similarity method proposed in this paper, in Table 3 we have reported also the 
highest achievable performance, calculated as that obtained if the second stage 
introduced no further false item and recovered all missed anchor shots. Note that 
almost all anchor shot are recovered, while only few new falsely detected anchor 
shots were introduced. 

Table 3. Performance of the second stage of the proposed method 

 
Recovered / 
Recoverable 
anchor shots 

Falses / 
Introducible

falses 

Precision / 
Max Precision 

Recall /  
Max Recall

F / Max F 

RAI 1 19/19 5/29 0.968/0.994 0.979/0.979 0.974/0.987 
CANALE 5 14/15 7/63 0.940/0.969 0.952/0.956 0.946/0.963 

During experimental phase we had to tune the threshold δ on the lifetime value. 
We verified that δ can change in a wide range with almost no effect on performance, 
and that its optimal value depends only on the length of the news edition. We fixed 
δ=2’ for news editions shorter than fifteen minutes and δ=4’ otherwise. In this sense, 
our algorithm can be really considered as unsupervised. 

The proposed method has also been compared with three state-of-the-art unsuper-
vised ASD algorithms [2, 6, 7]. Each of these algorithms is characterized by several 
thresholds, so different operating points can be obtained in a Precision-Recall plane 
[16]. We decided to choose the values of the thresholds that maximize F over the 
whole set of videos. This has been done separately for each of the two TV-networks. 
Obviously, this is an overestimation of the real performance of the algorithms, since 
such maximization should be done on a different set of news videos. It is also worth 
noting that, as experimentally demonstrated in [17], the choice of the operating point 
is crucial for the algorithms, as their performance dramatically depends on the choice 
of the thresholds. 

Table 4. Performance comparison of our algorithm with respect to the algorithms in [2, 6, 7] 

 RAI 1 CANALE 5 
 Precision Recall F Precision Recall F 

Our algorithm  0.968 0.979 0.974 0.940 0.952 0.946 
Gao and Tang [2] 0.827 0.928 0.875 0.810 0.889 0.848 
Hanjalic et al. [6] 0.681 0.617 0.647 0.889 0.533 0.667 
Bertini et al. [7] 0.987 0.822 0.897 0.867 0.796 0.830 

In Table 4 the performance of our algorithm is compared with those obtained by 
the methods in [2, 6, 7] on our dataset, so demonstrating its effectiveness with respect 
to them. 
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4   Conclusions 

In this paper a novel algorithm for anchor shot detection is presented. An effective 
audio/video anchor shot template matching algorithm is introduced, in order to gain 
effectiveness against unavoidably missed items left out by pure video analysis. 
Moreover, a new audio similarity index is discussed, which allows the definition of a 
synthetic and unique value to quantify resemblance of a generic shot to the template 
from an audio point of view. The method has been tested on a news video database 
consisting of about 20 hours, providing significant improvements with respect to 
other state-of-the-art algorithms. 

Future work will include a refinement in the anchor shot audio recognition module, 
which will be able to detect whether there is one or two anchor persons, so to conse-
quently define a single or a pair of values for the similarity index for each shot. 
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Abstract. A novel fuzzy clustering algorithm, called kernel improved possi-
bilistic c-means (KIPCM) algorithm, is presented based on kernel methods. 
KIPCM is an extension of the improved possibilistic c-means (IPCM) algo-
rithm. Different from IPCM which is applied in Euclidean space, KIPCM can 
make data clustering in kernel feature space. With kernel methods the input data 
can be implicitly mapped into a high-dimensional feature space where the 
nonlinear pattern now appears linear. It is unnecessary to calculate in this high-
dimensional feature space because we directly calculate inner products from the 
input data by kernel function. KIPCM can identify clusters of complex shapes 
and solve nonlinear separable problems better than IPCM and FCM (fuzzy c-
means). Our experiments show that the proposed algorithm compares favorably 
with FCM and IPCM. 

1   Introduction 

Fuzzy clustering is one of the important unsupervised learning algorithms and fuzzy 
clustering always has significant advantages over traditional clustering. The well-
known fuzzy clustering is the fuzzy c-means (FCM) algorithm [1]. FCM algorithm 
makes the memberships of a data point across classes sum to 1 by the probabilistic 
constraint. And FCM is appropriate to interpret memberships as probabilities of shar-
ing. However, the memberships of FCM do not always correspond to the intuitive 
concept of degree of belong or compatibility. Furthermore, the FCM is sensitive to 
noises or outliers [2]. To overcome these disadvantages Krishnapuram and Keller 
have presented the possibilistic c-means (PCM) algorithm [2] by abandoning the 
constraint of FCM and constructing a novel objective function. The PCM can cluster 
noisy data and noisy data have low degrees of compatibility in all clusters, so their 
effects on the clustering can be neglected.  But PCM is very sensitive to good initiali-
zation and it has an undesirable tendency to produce coincident clusters [3] that be-
cause the columns and rows of the typicality matrix are independent of each other. 
PCM attaches importance to the notion of typicality that alleviates the undesirable 
effect of noises but neglects the membership that makes the class centroid close to 
data points. To overcome the shortcoming of PCM, Zhang and Leung have proposed 
improved possibilistic c-means (IPCM) algorithm [4]. IPCM solves the noise sensitiv-
ity defect of FCM, and also overcomes the coincident clusters problem of PCM. 
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However, FCM, PCM and IPCM have the same drawback that they use point proto-
types and a norm-induced distance, as a consequence, they obtain good clustering 
results only when the data set contains clusters of roughly the same size and shape. To 
identify clusters of various shapes which are complex topological structures in the 
same data set, kernel methods [5] has been introduced into fuzzy c-means clustering 
[6]. In this paper we propose kernel improved possibilistic c-means (KIPCM) algo-
rithm based on kernel methods. With kernel methods the input data samples can be 
mapped implicitly into a high-dimensional feature space where the nonlinear pattern 
now appears linear and IPCM algorithm is carried out. We need not calculate in high-
dimensional feature space because the kernel function can do it just in input space.  

The rest of this paper is organized as follows: in section 2 the IPCM algorithm is 
introduced, and in section 3 the KIPCM algorithm is presented. Some tests and con-
clusions are given in later section.  

2   Improved Possibilistic C-Means Algorithm 

Given an unlabeled data set X={x1,x2,…,xn} ⊂ pℜ , find the partition of X into 
1<c<n fuzzy subsets by minimizing the following objective function 
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Where i  is the cluster center or prototype of u i . iη  in PCM is described as 
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Here, K is always chosen to be 1 in equation (3) and (4).  
If 

ikD >0 for all i  and k, m>1, and X contains c<n distinct data points, then the al-

gorithm described below is called IPCM-AO algorithm: 
 

Initialization 
1) Fix c,m and w , 1<c<n, 1<m, w <+ ; Set iteration counter r=1 and  maximum 

iteration rmax; 
2) Run FCM until termination to get initial membership U(0) and initial cluster cen-

ters V(0). Then use equation (3) to get iη . 

Repeat  
Step 1 Update typicality matrix Tr  by equation (2b) ; 
Step 2 Update membership matrix Ur by equation (2a); 
Step 3 Update V r by equation (2c); 
Step 4 Increment r; 

Until   ( 1U Ur r ε−− < )  or r> rmax 

3   Kernel Improved Possibilistic C-Means Algorithm 

With the theory of Mercer kernel [7], the input space X is mapped into a novel high 
dimensional feature space F: 

1 1( , ..., ) ( ) ( ( ), ..., ( ))M Nx x φ φΧ ΧΧ = → Φ Χ =  (4) 

Kernel function K satisfies: 

( , ) ( ) ( )i j i jK x x x xφ φ= < ⋅ >  (5) 

Scalar product calculation in input space is transformed into kernel function calcula-
tion by nonlinear mapping: 
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( ) ( ) ( , )i j i j i jx x x x K x xφ φ< ⋅ > → < ⋅ > =  (6) 

Then the objective function (1) is transformed as follows 

2

,
1 1

1 1

( , , ) (x ) ( )

( log 1)

c n
m

m w ik ik k i
i k

c n
m

i ik ik ik ik
i k

J u t

u t t t

φ φ

η

= =

= =

= −

+ − +

U T V

 (7) 

2
(x ) ( ) [ (x ) ( )] [ (x ) ( )]k i k i k iφ φ φ φ φ φ− =< − ⋅ − >  

                                       = (x , x ) ( , ) 2 (x , )k k i i k iK K K+ −  

(8) 

In this paper, we use Gaussian kernel function: 

2

2
( , ) exp( )

2

x y
K x y

σ
−

= −  (9) 

So the equation (8) can be written as 

2
(x ) ( ) 2 2 (x , )k i k iKφ φ− = −  

(10) 

To minimize equation (7), subject to the constraints m>1 0 , 1ik iku t≤ ≤  and 

1

1 ,
c

ik
i

u k
=

= ∀ ,  we obtain the following equations 

12

1

1

2 2 (x , )
(1 exp( ))

, ,
2 2 (x , )

(1 exp( ))

m
k i

ic
i

ik
k jj

j
j

K

u i k
K

η
η

η
η

−

−

=

−− −
= ∀−

− −
 (11a) 

2 2 (x , )
exp( ), ,k i

ik
i

K
t i k

η
−= − ∀  (11b) 

1

1

( )
( ) , ,

n
m
ik ik k

k
i n

m
ik ik

k

u t
i j

u t

φ
φ =

=

= ∀
x

 (11c) 
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Here, equation (11c) can not be calculated directly, and by multiplying (x )T
jφ on the 

left sides of equation (11c), the following equation is obtained 

1

1

( , )
( , ) , ,

n
m
ik ik k j

k
j i n

m
ik ik

k

u t K
K i j

u t

=

=

= ∀
x x

x  (11d) 

In kernel fuzzy c-means (KFCM) algorithm [6], ( , )j iK x  is calculated as 

1

1

( , )
( , ) , ,

n
m
ik k j

k
j i n

m
ik

k

u K
K i j

u

=

=

= ∀
x x

x  (12) 

Using kernel methods to equation (3), they are transformed into equation (13)  

1

1

(2 2 (x , ))
, 0

n
m
ik k i

k
i n

m
ik

k

u K
K K

u
η =

=

−
= >  (13) 

If (x ) ( )ik k iD φ φ= − >0 for all i  and k 1, and X contains c<n distinct data 

points, then the algorithm described below is called KIPCM-AO algorithm: 
 
1. Initialization 

1)  Fix c m and η , 1<c<n, 1<m, w <+ . Set iteration counter r=1 and  maximum 

iteration rmax. 
2) Run FCM until termination to get initial membership U(0) and initial cluster cen-

ters V(0). Then use Eq. (13) to get iη . 

    3)  Calculate the kernel matrix (0)
vxK  with V(0) by equation (12); 

2. Repeat  

    Step 1 Update T(r) with equation (11b) , (r-1)
vxK  and iη ; 

Step 2 Update membership U(r)  with equation (11a) , (r-1)
vxK and T(r); 

    Step 3 Update (r)
vxK  with equation (11d), U(r) and T(r); 

    Step 5  Increment r; 

    Until   ( ( ) ( 1)U Ur r ε−− < ) or r> rmax      
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4   Experiments 

We first do experiment with X12 which is a two dimensional data set with 11 points 
whose coordinates are given in Table 1. The data set X12 comes from N. R. Pal [8] 
and Figure 1 shows its distribution in coordinates.  There are ten points (except x6 and 
x12) form two diamond shaped clusters with five points each on the left and right sides 
of the y axis. We can see x6 and x12 as noisy points and each has the same distance 
from the two clusters.  The initialization of cluster centers  

0

0.08 0.36

0.41 0.99
V =  (14) 

Computational condition: ε =0.00001, maximum number of iterations=100. m=2.0, 
w =2.0, the width σ  of Gaussian kernel function is 10. 

 
Fig. 1. Data set X12 

Table 1 shows the terminal membership values of FCM by applying FCM-AO 
and Table 2 shows the terminal membership values and typicality values of IPCM by 
applying IPCM-AO to X12. The memberships of x6 and x12 in both FCM and IPCM 
are 0.500 in each cluster. From Table 2 IPCM provides both membership and typical-
ity information but FCM provides only membership information. For example, the 
typicality values of x 6 and x 12 are 0.27 and 0.00, that is to say, x 12 is more atypical 
than x 6 for either cluster. So IPCM can distinguish between x 6 and x 12 and distin-
guish them from other data. FCM considers x 6 identical with x 12 but it is not the fact. 
So FCM can not distinguish noises from input data. In conclusion FCM is more sensi-
tive to noises than IPCM. 

Table 3 shows the terminal membership values and typicality values of KIPCM 
by applying KIPCM-AO to X12. Both KIPCM and IPCM can avoid the influence of  
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Table 1. Data set X12 and terminal U from FCM for X12 

 Data set X12 FCM 
Pt. x y T

1U  T
2U  

1 -5.00 0.00 0.94 0.06 
2 -3.34 1.67 0.97 0.03 
3 -3.34 0.00 0.99 0.01 
4 -3.34 -1.67 0.90 0.10 
5 -1.67 0.00 0.92 0.08 
6 0.00 0.00 0.50 0.50 
7 1.67 0.00 0.08 0.92 
8 3.34 1.67 0.03 0.97 
9 3.34 0.00 0.01 0.99 

10 3.34 -1.67 0.10 0.90 
11 5.00 0.00 0.06 0.94 
12 0.00 10.00 0.50 0.50 

Table 2. Terminal U and T from IPCM for X12 

Pt. T
1U  T

2U  T
1T  T

2T  
1 0.90 0.10 0.67 0.00 
2 0.92 0.08 0.70 0.00 
3 1.00 0.00 1.00 0.00 
4 0.92 0.08 0.70 0.00 
5 0.93 0.07 0.73 0.05 
6 0.50 0.5 0.27 0.27 
7 0.07 0.93 0.05 0.73 
8 0.08 0.92 0.00 0.70 
9 0.00 1.00 0.00 1.00 

10 0.08 0.92 0.00 0.70 
11 0.10 0.90 0.00 0.67 
12 0.50 0.50 0.00 0.00 

noises or outlier .In Table 2 the typicality values of x 6 and x 12 from KIPCM are 
smaller than that from IPCM. So KIPCM is more insensitive to noises than IPCM. 

The other example is that we perform experiments on IRIS data set [9]. The com-
putational condition is ε =0.00001, maximum number of iterations=100, m=2.0, 
w =2.0, the width σ  of Gaussian kernel function is 3. The clustering accuracy 
from FCM, IPCM and KIPCM on IRIS data set is illustrated in Table 4. The 
KIPCM algorithm has better clustering accuracy than the other two algorithms  
evidently.  
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Table 3. Terminal U and T from KIPCM for X12 

Pt. T
1U  T

2U  T
1T  T

2T  
1 0.78 0.22 0.47 0.00 
2 0.80 0.20 0.50 0.00 
3 0.94 0.06 0.74 0.00 
4 0.80 0.20 0.50 0.00 
5 0.81 0.19 0.53 0.03 
6 0.50 0.50 0.17 0.17 
7 0.19 0.81 0.03 0.53 
8 0.20 0.80 0.00 0.50 
9 0.06 0.94 0.00 0.74 

10 0.20 0.80 0.00 0.50 
11 0.22 0.78 0.00 0.47 
12 0.50 0.50 0.00 0.00 

Table 4. Clustering accuracy from FCM, IPCM and KIPCM for IRIS data set 

Data set FCM IPCM KIPCM 
IRIS 89.3% 92.0% 93.3% 

5   Conclusions 

Based on kernel methods we propose kernel improved possibilistic c-means (KIPCM) 
algorithm as an extension of improved possibilistic c-means (IPCM) algorithm. The 
KIPCM computes both membership and typicality values the same as IPCM. How-
ever, KIPCM can map input data points to a high-dimensional feature space where 
clustering unlabeled data is carried out.  By using kernel method the KIPCM can deal 
with noises or outliers better than IPCM. Furthermore KIPCM can deal with linear 
non-separable problem better than FCM and IPCM. Experiments show the better 
performance of KIPCM. 
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Identifiability and Estimation of Probabilities
from Multiple Databases with Incomplete Data

and Sampling Selection
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Abstract. For an application problem, there may be multiple databases,
and each database may not contain complete variables or attributes, that
is, some variables are observed but some others are missing. Further, data
of a database may be collected conditionally on some designed variables.
In this paper, we discuss problems related to data mining from such
multiple databases. We propose an approach for detecting identifiability
of a joint distribution from multiple databases. For an identifiable joint
distribution, we further present the expectation-maximization (EM) al-
gorithm for calculating the maximum likelihood estimates (MLEs) of the
joint distribution.

1 Introduction

With development and popularity of computers, various databases have been
built, which contain different variables or attributes, and whose data are col-
lected in different conditions. For example, in medical research, some researchers
collect data of these variables, but other researchers may collect data of other
variables; On the other hand, some data are from follow-up studies, but other
data may be from case-control studies. Distributions of diseases and associations
among variables should be evaluated by combining all databases from differ-
ent researches. There are several statistical approaches for combining multiple
databases, such as file-matching for large databases and split questionnaire sur-
vey sampling [5, 6]. Multiple databases are depicted as a hypergraph in [1, 4].
In these approaches, a database involving a subset of variables is treated as a
sample from a marginal distribution of these variables. In this paper, we con-
sider that a database involving a subset of variables may be a sample drawn
conditionally on some other variables, called designed variables.

Identifiability and estimation of a joint distribution of variables are two impor-
tant problems for data mining from multiple databases. In this paper, we show
conditions for identifiability of a joint distribution from marginal and conditional
distributions of observed variables, and we propose an approach for detecting
identifiability. For an identifiable joint distribution, we present the expectation-
maximization (EM) algorithm for calculating the maximum likelihood estimates
(MLEs) of the joint distribution [3, 4]. In the partial imputation EM algorithm
[4], there must be a database containing all variables and other databases are

D.-Y. Yeung et al. (Eds.): SSPR&SPR 2006, LNCS 4109, pp. 792–798, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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drawn from marginal distributions. In this paper, we show that the database
containing all variables may be unnecessary for identifying the joint distribution
of all variables, and our algorithm for finding MLEs also deals with databases
drawn from conditional distributions.

Section 2 gives notation and definitions. In Section 3, we show conditions for
identifiability of a joint distribution from multiple databases. In Section 4, we
apply the EM algorithm to calculate MLEs of the joint distribution. Section 5
gives a numerical example to illustrate our approach. Finally, Section 6 presents
a simulation to evaluate the estimates.

2 Notation and Definitions

Let V = {x1, . . . ,xp} denote the set of all variables included in an interested
system, and assume that all variables in V are discrete. Let p(V = v) denote the
distribution of variables in V . Suppose that there are K databases, D1, . . . ,DK .
For the database Dk, let Ak denote the set of designed variables which is used
to stratify the population into subpopulations with different values of Ak, let
Bk denote the set of observed variables, and let Vk = Ak ∪Bk represent the set
of variables involved in the database Dk. Denote the database Dk as [Bk|Ak],
which means that variables in Bk are observed conditionally on variables in Ak.
For the database Dk, let nk(bk|ak) denote the frequency of observed individuals
with value Bk = bk in the subpopulation of Ak = ak. Below we first give a
general definition of identifiability [2].

Definition 1. Consider a vector Y of random variables having a distribution
F (y; θ) that depends on an unknown parameter vector θ. θ is identifiable by
observation of Y if distinct values for θ yield distinct distributions of Y, that is,
θ1 = θ2 ⇒ F (y; θ1) = F (y; θ2).

Informally, identifiability means that these databases contain sufficient informa-
tion such that the joint distribution can be uniquely determined. In the case
of multiple databases, we say that the joint distribution P (V ) is identifiable by
databases [B1|A1] . . . , [BK |AK ] if distinct values for P (V ) yield distinct values
for vector (P (B1|A1),P (B2|A1), · · · , P (BK |AK)).

3 Conditions for Identifiability from Multiple Databases

In this section, we show a condition for identifiability of the joint distribution of
V from multiple databases [B1|A1], . . . , [BK |AK ]. We first show several lemmas
which are used to prove the condition for identifiability.

Lemma 1. Suppose that there are only two databases D1 = [B|A] and D2 =
[A|B] where A ∪ B = V . Then the joint distribution P (V ) of variables in V is
identifiable.

Proof. Since P (B|A)/P (A|B) = P (B)/P (A), we have
∑

B[P (B|A)/P (A|B)]=∑
B[P (B)/P (A)] = 1/P (A). Thus we can find P (A, B) = P (B|A)P (A) =
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P (B|A)/[
∑

B P (B|A)/P (A|B)]. Since P (A, B) is a function of P (A|B) and
P (B|A) and since they are identifiable by the databases [A|B] and [B|A] re-
spectively. So we get that P (A, B) is identifiable by the databases [B|A] and
[A|B].

Lemma 2. Suppose that there are only two databases D1 = [B1|A1] and D2 =
[B2|A2] and that Ai∪Bi = V for i = 1 and 2. Define A = A1∩A2 and B = V \A.
Then the conditional probability P (B|A) is identifiable by the databases, where
the conditional probability P (B|∅) is defined as the marginal probability P (B).

Proof. If A = ∅, then the result can be obtained immediately from Lemma 1.
Below we consider the case of A = ∅. Define C1 = A1 \A and C2 = A2 \A. Then
A1 = C1 ∪A, A2 = C2 ∪A, C1 ∩ C2 = ∅ and Ci ∩A = ∅ for i = 1, 2. We have

P (B1|A1)
P (B2|A2)

=
P (A2)
P (A1)

=
P (C2, A)
P (C1, A)

.

Thus, ∑
C2

P (B1|A1)
P (B2|A2)

=
∑
C2

P (C2, A)
P (C1, A)

=
P (A)

P (C1, A)
=

1
P (C1|A)

.

Further, we have

P (B1|A1)P (C1|A) = P (B1|C1, A)P (C1|A) = P (B1,C1|A) = P (B|A).

We get that P (B|A) is a function of P (B1|A1) and P (A1|B1) and thus P (B|A)
is identifiable by [B1|A1] and [B2|A2].

Lemma 3. Suppose that there are K databases, [B1|A1], . . . , [BK |AK ], and Ak∪
Bk = V for all k. The joint distribution P (V ) is identifiable if

⋂n
i=1 Ai = ∅.

Proof. This result can be obtained immediately by applying Lemma 2 repeatedly
to each pair of databases.

Now we propose an algorithm for detecting identifiability of the joint distribu-
tion P (V ) from K databases, [B1|A1], . . . , [BK |AK ], where Ak ∪Bk ⊆ V .

Algorithm: Detect identifiability of P (V ) from the K databases.

1. Initialize t = 0, [B(0)
k |A(0)

k ] = [Bk|Ak] for all k, and V (0) = V . Below we
repeatedly check whether P (V (t)) is identifiable by databases [B(t)

k |A(t)
k ] for

all k.
2. Find a database [B(t)

i |A(t)
i ] such that B

(t)
i ∪ A

(t)
i = V (t). If there is no such

a database, then P (V ) is not identifiable and stop the algorithm.
3. Let V (t+1) = A

(t)
i , [B(t+1)

k |A(t+1)
k ] = [B(t)

k \ B
(t)
i |A(t)

k \ B
(t)
i ] for all k, and

t = t + 1.
4. Repeat Steps 2 and 3 until V (t) = ∅.
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If the algorithm returns an empty set V (t), then the probability P (V ) is
identifiable. Below we first give an example to illustrate the algorithm, and then
we show the correctness of the algorithm.

Example 1. Consider that there are seven variables V = {1, 2, 3, 4, 5, 6, 7} and
five databases [456|1237], [147|23], [45|6], [2|1347], [3|45]. We apply the above
algorithm to the databases to detect identifiability of P (V ).

For the first iteration, at Step 2, we find [B1|A1] = [456|1237] with A1 ∪B1 =
V . At Step 3, we reset the set to be identified as V (1) = A1 = [1237], remove
variables 4, 5 and 6 in B1 from all databases and obtain databases for the next
iteration as [17|23], [2|137] and [3]. For the second iteration, at Step 2, we find
A

(1)
1 ∪B

(1)
1 = V (1) = [1237]. At Step 3, set V (2) = A

(1)
1 = [23], remove variables

1 and 7 in B
(1)
1 and obtain databases [2|3], [3]. For the third iteration, we get

V (3) = [3] and database [3]. For the fourth iteration, we get V (4) = ∅ and thus
we say that P(V) is identifiable.

Lemma 4. Suppose that there are two databases [B1|A1] and [B2|A2]. Define
Vi = Ai ∪Bi for i = 1 and 2, V0 = V1 ∩ V2 and A = A1 ∩A2. Then P (V0 \A|A)
is identifiable by the two databases if V1 \ V2 ⊆ B1 and V2 \ V1 ⊆ B2.

Proof. From [B1|A1] we can get P (B1|A1), and in turn we can obtain P (B1 \
(V1 \V 2)|A1). Similarly we can obtain P (B2 \(V2 \V 1)|A2). From the conditions
V1 \ V 2 ⊆ B1 and V2 \ V1 ⊆ B2, we have A1 ⊆ V2 and A2 ⊆ V1 respectively.
Thus we get B1 \ (V1 \V2)∪A1 = V1 ∩ V2 and B2 \ (V2 \V 1)∪A2 = V1 ∩ V2. By
Lemma 2, we know that P (V0 \A|A) can be obtained.

Corollary 1. Suppose that V2 ⊆ V1 and A1 can be partitioned into two sets A
and B (that is, A1 = A ∪ B and A ∩ B = ∅) such that A ⊆ A2 and B ⊆ B2.
Then P (B|A) is identifiable and thus P (V1 \A|A) is identified.

Proof. Since A1 = A ∪ B, we get V2 = A2 ∪ B2 ⊇ A ∪ B = A1. Thus we have
V1 \ V2 ⊆ B1. From supposition we have V2 \ V1 = ∅ ⊆ B2. From Lemma 4, we
obtain that P (B|A) is identifiable. We have

P (B1|A1)× P (B|A) =
P (V1)
P (A1)

× P (A1)
P (A)

= P (V1 \A|A).

Thus we showed that P (V1 \A|A) is identifiable.

Example 2. Suppose that V = {1, 2, 3, 4, 5, 6, 7} = V1 and V2 = {1, 2, 4, 5, 7}
and that we have two databases [B1|A1] = [1236|457] and [B2|A2] = [24|157].
Partition A1 as A = {5, 7} and B = {4}. Since A ⊆ A2 and B ⊆ B2, we get
from Corollary 1 that P (4|57) and P (1, 2, 3, 4, 6|57) are identifiable.

Theorem 1. The probability P (V ) is identifiable by databases [B1|A1], . . . ,
[BK |AK ] if the algorithm returns an empty set V (t).
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Proof. We first show the result following the iterations of the algorithm. At
the first iteration, we have immediately that P (B(0)

i |A(0)
i ) is identifiable by the

database [B(0)
i |A(0)

i ] where A
(0)
i ∪B

(0)
i = V . At the second iteration, we partition

V (1) = A
(0)
i into two sets A

(1)
i and B

(1)
i , which must be contained by Ak and

Bk of some original database [Bk|Ak] respectively. By Corollary 1, we have that
P (V \ A

(1)
i |A(1)

i ) is identifiable. Following the iterations, we can obtain that
P (V \A

(t)
i |A(t)

i ) is identifiable. If A
(t)
i = ∅ is obtained at the t-th iteration, then

P (V ) is identifiable.

4 Maximization Likelihood Estimation of Probabilities

For a joint probability P (V ) which is identifiable, we propose the EM algo-
rithm for calculating MLEs from databases [B1|A1], . . . , [BK |AK ]. Data in each
database, say Dk = [Bk|Ak], may be incomplete (i.e. Ak is a pure subset of V ),
and they may be obtained conditionally on designed variables Bk. For simplic-
ity, we show only a simple case of two variables V = {X,Y } and two databases
[X |Y ] and [Y |X ]. The algorithm can be easily extended to a general case.

Let n1(x|y) denote the observed frequency of individuals with X = x condi-
tional on Y = y in the first database for x = 1, . . . , I; and let n2(y|x) denote that
with Y = y conditional on X = x in the second database for y = 1, . . . , J . Below
we present the EM algorithm for calculating MLEs {p̂xy} of the joint probabil-
ities P (X = x,Y = y) for all x and y. We treat the frequencies {n1(x|y), ∀x}
as the y-th column of an I × J contingency table {n(y)

1 (i, j)∀i, j}. Similarly,
{n2(y|x), ∀y} as the x-th row of an I × J contingency table {n(x)

2 (i, j), ∀i, j}.
Assume that the total frequency n

(m)
k =

∑
i,j n

(m)
k (i, j) follows a Poisson distri-

bution with parameter λk(m) and that {n(m)
k (i, j), ∀i, j} follows a multinomial

distribution with parameters {pij} given a total frequency n
(m)
k .

At the E-step of the EM algorithm, we find the expected frequencies of
{n(y)

1 (i, j), ∀i,j} and {n(x)
2 (i, j), ∀i,j}. At the M-step, we find the MLEs {p̂ij , ∀i, j}

and {λk(m), ∀k,m}. The EM algorithm for calculating MLEs is given below.

1. E-step:

n̂
(m)
k (i, j) = E[n(m)

k (i, j)|{n1(x|y)}, {n2(y|x)}, {λ(t)
k (m)}, {p(t)

ij }]

= λ
(t)
k (m)× p

(t)
ij ,

for i, j, k and m.
2. M-step:

λ̂
(t+1)
k (m) =

∑
i,j

n̂
(m)
k (i, j),

p̂
(t+1)
ij =

1
N

∑
k,m

n̂
(m)
k (i, j),
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where the total frequency N equals
∑

k,m,i,j n̂
(m)
k (i, j).

3. Repeat the E-step and M-step until some convergence criterion is achieved.

5 A Numerical Example

In this section, we use an artificial data to illustrate our approach. Suppose
that we have a case-control study and a follow-up study on association between
smoking and lung cancer, as shown in Tab. 1. In the case-control study with
databases [X |Y ], we have 709 cases and 709 controls, and then ask their smoking
history. In the follow-up study with databases [Y |X ], we have a smoker group
of 2000 individuals and a non-smoker group of 2000 individuals, and follow their
states for years. Combining these databases, we can identify the joint distribution
of X and Y and the marginal distributions of X and Y (see Tab. 1), any of which
is not identifiable by using only one of [X |Y ] and [Y |X ]. Especially, the MLE
of the relative risk, P̂ (Y = 1|X = 1)/P̂ (Y = 1|X = 0) = 3.1160, can be found
by combining all data in these databases. It is more efficient than the MLE of
the relative risk (8/2000)/(2/2000) = 4 obtained by using data only from the
follow-up study since there are a few of cancer cases in the follow-up study.

Table 1. A case-control study and a follow-up study on smoking and lung cancer

Case-control study Follow-up study MLEs of probabilities
Smoker Non-smoker Total Smoker Non-smoker Smoker Non-smoker
X = 1 X = 0 X = 1 X = 0 X = 1 X = 0

Cancer (Y = 1) 688 21 709 8 2 0.0067 0.0002
Control (Y = 0) 650 59 709 1992 1998 0.9082 0.0849

Total 2000 2000

6 Simulation

Consider two binary variables V = {X1,X2} with values 0 and 1. Suppose
that there are two databases [X1|X2] and [X2|X1]. From the results in Sec-
tion 3, we know that the joint probabilities of X1 and X2 are identifiable from
these databases. Below we give a numerical simulation to illustrate estimation
of the joint probability P (x1,x2). From the true distribution given in Tab. 2,

Table 2. True probabilities and their estimates

Estimates
True value Mean Standard error

p00 0.1000 0.0993 0.0230
p01 0.2000 0.2004 0.0372
p10 0.3000 0.3007 0.0499
p11 0.4000 0.3994 0.0507
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we generate each of databases [X1 = i|X2 = j] and [X2 = j|X1 = i] for all
i and j from a binomial distribution with sample size 50. Then we apply the
EM algorithm to calculate MLEs p̂ij with the initial values (p00, p01, p10, p11) =
(0.25, 0.25, 0.25, 0.25) and λ = 100. The desired convergence accuracy is 10−6.
We repeat the simulation 1000 times. The results of means and standard errors
are given in Tab. 2. It can be seen that estimates are very close to their true
probabilities.
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Abstract. In this paper we present an unsupervised algorithm to select the most
adequate grouping of regions in an image using a hierarchical clustering scheme.
Then, we introduce an optimisation approach for the whole process. The group-
ing method presented is based on the maximisation of a measure that represents
the perceptual decision. The whole strategy takes profit from a hierarchical clus-
tering to find a maximum of the proposed criterion. The algorithm has been used
to segment real images as well as multispectral images achieving very accurate
results on this task.

1 Introduction

Image segmentation has been a very focused topic in the literature. Looking for the main
regions that perceptually compose an image has been the target for many researchers
[10,3,5,8]. This task has been used as an aim in itself or as a preprocessing step. In both
cases, the difficulties involved in this process are very well-known [4].

The main motivation of this work has been to obtain a robust and completely un-
supervised segmentation criterion based on perceptual similarities among the image
regions and the contour information. Thus, on one hand, the method will be guided
by a merging process using an agglomerative hierarchical clustering and, on the other
hand, the method will satisfactorily select the optimal, or sub-optimal, partition in this
hierarchical structure combining region and boundary information.

Thus, the method presented is based on two basic steps which define our segmenta-
tion strategy:

– A hierarchical clustering, in order to create a structure of non-overlapping par-
titions from an oversegmented representation until the stage with just one region
(cluster). The hierarchical structure will serve as the guide to an optimisation strat-
egy. It is supposed that the hierarchical structure will contain the optimal (or close
to optimal) segmentation.

– A global similarity measure as a criterion function to be optimised, which is ap-
plied through the above named structure looking for a partition that optimises the
criterion function. This partition will represent the final segmentation result.
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We apply our algorithm not only to classical real images from the literature, which
is useful to test the performance of the method, but especially to multispectral images
with more than three bands as well. For instance, in some applications, like fruit quality
inspection tasks, there exist some types of defects that can only be detected in certain
bands of the spectrum, and most of the defects have a specific range of bands where they
can be better discriminated. Therefore, for some inspection tools, multispectral images
are becoming useful to achieve better recognition and classification results. These re-
sults regard to an application in which we are working on as a part of a quality fruit
estimation project on oranges.

The whole segmentation process is summarised in the following algorithm. It is par-
ticularly interesting to emphasise the two final steps of the algorithm where the most
relevant contribution of this work is.

1. Preliminary steps on cluster initialisation (Sect. 2).
2. The method compares clusters and iteratively merges neighbouring regions to cre-

ate a structure that constitutes a hierarchical family of derived clusters (Sect. 3).
3. One of those previous partitions will maximise a criterion function used to choose

the right clusters, being the chosen partition the final segmentation result (Sect. 4).

Finally, many segmentation techniques have high computational requirements, es-
pecially the iterative ones. These requirements become higher when the image size in-
creases. Thus, a study of the evolution of the distances among the image regions is also
presented (see Sect. 5). This study will allow us to introduce an important optimisation
in the process without making worse the final segmentation results.

2 Preliminary Steps for Clustering Initialisation

This phase of the algorithm identifies the main homogeneous regions in the image.
This initialisation uses a quadtree structure (QT ) to represent the image, which is a
multiresolution representation commonly used to split or decompose a given image
into similar square regions. The QT also serves to represent the spatial relationships
among regions.

First merging, while the QT is growing up: The hierarchical structure developed by
a QT has several levels of resolution made by nodes and leaves. Every time a level
is developed, the algorithm checks if any two of the current leaves can be merged.
Because of the spatial information contained in the QT representation, neighbourhood
operations are completely defined from the QT structure [12].
Second merging, look for high gradient magnitudes: Every region formed in the
previous step starts growing up while the gradient magnitude increases at the region
border. Thus, each region border grows towards the high gradient magnitude values.
The gradient magnitude considered for each pixel is the maximum gradient value found
in all bands.

This behaviour is usually formulated as an active contour functional [9], whose in-
ternal energy has the discrete form Ei = −

∑
x∈βi

|∇g(x)|, where, βi represents the
set of boundary pixels in region i and the value |∇g(x)| returns the gradient magnitude



Unsupervised Image Segmentation 801

at pixel x. Regions previously formed are used as the active contours initialisation. Of
course, on this functional, the energy E in each contour region has to be minimised. It
is important to note that if two regions compete for a third region, which is neighbour
of both of them, the algorithm computes the average of the gradient magnitudes of each
region border, and merges the regions with the highest difference.
Smoothing regions: After the previous steps, regions very often present isolated small
holes inside of them, that is, many times there is a gradient magnitude peak due to
impulsive or other type of noise. Thus, this step looks for these kind of isolated regions
and merges them with the larger regions which contain the isolated ones.

3 Hierarchical Clustering in the Image Domain

Some relevant recent works for image segmentation are based on clustering or grouping
processes [6,7]. These methods are designed to discover and extract hidden structures
in data sets [2]. Regarding to the procedure we use, it starts with as many clusters as
the initialisation step provides. From these initial clusters, the method forces a merging
operation in each iteration, that is, the algorithm always eliminates a cluster in each
step. This means that each iteration compares every pair of spatially connected clusters
and calculates the distance (D) between them. The two clusters, that is, image regions,
with more similar values are forced to merge. Distance D is defined as follows:

Dij = dij(1 + δij) (1)

where,

dij = (μi − μj)
T (

Σ−1
i + Σ−1

j

)
(μi − μj) δij =

∑
x∈βij

|∇g(x)|2

‖βij‖
(2)

Mean values on the intensity of clusters i and j are represented by μi, μj whereas
their covariance matrices are represented by

∑
i,
∑

j . In δij function, βij is the set of
pixels that belong to the boundary between regions i and j. Function ‖ · ‖ returns the
cardinality of a set.

Note that the proposed measure Dij can be evaluated analytically as a mixture of
two expressions. Under the assumption of considering normally distributed clusters, dij

value is a Mahalanobis distance between two distributions, defined in the pixel domain
(gray level, colour, multispectral, ...). This term in the distance expression D accounts
for the similarity in pixel values of the distribution of pixel values in both regions con-
sidered to be merged. On the other hand, δij averages the gradient magnitude values
on the boundary between these two connected clusters. Thus, this term accounts for the
strength of the discontinuity between the distributions of pixel values between the con-
sidered clusters, including a spatial measure of discontinuity in the distance function.

4 Clustering Assessment

While the algorithm completes the process described in the previous section, a non-
parametric estimation of the goodness of the data partition is performed. That is, the



802 A. Martı́nez-Usó, F. Pla, and P. Garcı́a-Sevilla

final result is selected without any a priori information about the final number of clusters
or the shape of the resulting regions. An example of this type of approach can be found
in [11] which is very similar to ours. However, their method suffers from problems on
images where the boundary information has special relevance.

The criteria to select an optimal clustering from the previous hierarchical structure
is completely independent of the way in which the hierarchical tree structure is con-
structed using the distance measure introduced in the previous section.

The algorithm has been formulated as the maximisation of a criterion function S
that represents, given an image partition, how well the pixels fit to the corresponding
regions. In such a way, it maximises the following expression:

S = Si · Se (3)

being Si a inner measure and Se a external measure of each partition in the hierarchical
tree structure. Si can be considered as an average measure that a pixel in the image
belongs to the region it has been assigned to, and Se an average measure that a pixel
does not belong to its neighbouring regions. Therefore, the criterion function S takes
into account that the pixels in the image belong to the assigned regions in the partition
and, simultaneously, that the pixels do not belong to neighbouring regions in the image
domain. This can be considered as a perceptual measure of the grouping, in such a way
that it estimates how ”well” the pixels are grouped and they are consistent internally
and, at the same time, different enough from spatially nearby clusters.

Given a particular partition, the inner and external average pixel measures, Si and Se

respectively, are defined as follows:

Si =
1
N

∑
R

∑
x∈R

S(x,R) =
1
N

∑
R

∑
x∈R

e
−(x−μR)2

2σ2 (4)

Se =
1
N

∑
R

∑
x∈R

S(x,NR(R)) =
1
N

∑
R

∑
x∈R

NR(R)∏
R′

S(x,R′) =

=
1
N

∑
R

∑
x∈R

NR(R)∏
R′

(1− S(x,R′)) =
1
N

∑
R

∑
x∈R

NR(R)∏
R′

(
1− e

−(x−μ
R′ )2

2σ2

)
(5)

In these equations, N represents the total number of pixels in the image. R, R′ are
regions and NR(R) is the set of neighbouring regions of region R. The pixel value is
represented by x whereas μR is the average value of the pixels in the region R. S(x,R)
is a similarity measure between pixel x and region R.

Equation (4) represents the sum of the inner values for each cluster. That is, it ex-
presses a measure that image pixels belong to its current assigned cluster. This is esti-
mated assuming a Gaussian distribution of region pixel values, characterised by a mean
and an expected variance. The expected variance is fixed and it is a smoothing parameter
of the expected segmentation.

On the other hand, equation (5) provides the external values. It expresses a measure
that image pixels do not belong to its current neighbouring clusters. This is also esti-
mated assuming a Gaussian distribution of the pixel values of the neighbouring clusters.
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The way this value is expressed is the complementary of the measure that a pixel be-
longs to the neighbouring regions S(x,NR(R)), which is defined as the measure that
a pixel does not belong to any of the neighbouring regions, that is, S(x,NR(R)) =∏NR(R)

R′ (1− S(x,R′)).
In these equations σ is always a fixed value representing the variance threshold we

permit on the density-estimation. This variance represents a smoothing parameter of the
expected segmentation. The lower σ, the more clusters will have the chosen partition
using function (3). Nevertheless, in the method here described, once the σ was selected
experimentally, it was fixed to the same for all the experiments.

5 Optimising the Merging Process

It is a well-known fact that the main drawback of iterative methods is how much
time/resources the algorithm needs to perform these iterations. The problem becomes
worse when the algorithm has to deal with complex structures and the process advances
bit by bit due to the need to check the clustering robustness. In this sense, we can try to
optimise the process of merging regions.

Graphs in Fig.1 show the distance values between any pair of neighbouring regions
arranged by this value for two different images at three different stages of the process.
That is, distances calculated as described in section 3 are arranged from lower to higher
value. Each time two regions are merged, the algorithm has to recalculate the affected
distances. Fig. 1 shows the number of regions NR to merge under each graph. The
x-axis corresponds to the initial number of distances computed for the corresponding
image and the y-axis represents the distance value.
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Fig. 1. Distance evolution examples. First row, toys RGB image. Second row, orange multispec-
tral image. Coordinate axes: number of distances (x) and distance values (y). NR gives the initial
number of regions considered.
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As we can see from the graphical results shown on this figure, the distance evolution
presents a very regular behaviour and, therefore, a very predictable evolution. In such
cases, it is clearly desirable to reduce as much as possible this phase in order to take
profit of the particular nature of this evolution. In this sense, instead of merging only
two clusters at each iteration, we start from the pair of clusters with the minimum value
of D and move to the pair of clusters which provided the next smallest distance value
if both clusters has not been previously merged at this iteration. We keep merging pairs
of clusters according to their distance value until the distance value reaches a threshold
which is established depending on the maximum distance value.

6 Results

Maximising the inner and external average measures product for all partitions consid-
ered gives us the final segmentation result. Fig. 2 shows two graphical results1 drawing
the behaviour of criterion function (3). The graph axes represent the number of clusters
(x-axis) and the corresponding S value of the partition (y-axis). First graph in Fig. 2
has been obtained for the toys image, where the maximum value is reached at 25 clus-
ters. Next graph, obtained from the multispectral image of an orange (the one on the
first row in Fig. 4), has its maximum value at 8 clusters. The segmentation results for
these images can be seen in figures 3 and 4. In figure 3, other three results are shown
for classical images as peppers, tree and beans. As we can see, the results in all the
images are consistent with a perceptual interpretation, with well defined contours and
all important regions detected. Note that the results are presented using an edge image
where the darker the edge, the greater difference between mean values of neighbouring
regions.
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Fig. 2. Maximum likelihood estimation. On the left a real image (toys), on the right a multispectral
image of an orange.

Although this algorithm has achieved satisfactory results on gray level and RGB
colour images, it is expected that with more complex images, like multispectral images,
it may also provide consistent results. In this sense, a collection of multispectral images

1 In all the graphical results, we have marked on the x-axis the position which provided the
maximum value of S.
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Fig. 3. Examples of results on classical images. From left to right, toys, peppers, tree and beans.

Fig. 4. Multispectral images of oranges. Two first columns show two example bands from each
orange (420/640 nm and 680/1000 nm). The following columns show the segmentation results
with random colours and the edges for the same results.

of oranges obtained by an imaging spectrograph (RetigaEx, Opto-knowledged Systems
Inc., Canada) has been used. The spectral range is extended from 400 to 1050 nm with
a spectral resolution of 10 nm for each band. The database used includes several kinds
of orange defects. Fig.4 shows the result of applying the algorithm on two of these
images. The orange on the top presents overripe and scratch defects, whereas the orange
on the bottom suffers from a rotten defect. Note that it has correctly segmented the
orange parts, labelling defect skin and healthy skin as different regions. We can also
see the graph (Fig.2) obtained for the first orange image where, according with the
results shown in Fig.4, the maximum value is at 8 regions. The average values Si and
Se can also indicate the accuracy of the segmentation results. That is, low values in
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Table 1. The ”/” character separates values for original segmentation / values for optimised seg-
mentation. NR column presents the final number of regions. S is the final value considered.
Finally, last column gives the Borsotti value for each segmentation.

image NR S Borsotti value
beans 38/38 0.2662/0.2661 11886.23/11884.31
toys 25/25 0.5258/0.5258 719.18/721.27

peppers 88/90 0.2931/0.2674 3155.00/4510.90
tree 100/95 0.2861/0.2633 7797.52/7425.97

orange (top) 8/6 0.5698/0.5802 1795.00/1578.76
orange (bottom) 3/3 0.4122/0.4125 2689.28/2689.28

these parameters may result on poor segmentation images, probably, because the input
images are corrupted or affected by noise. Empirically, results where Si · Se ≤ 0.2 are
discarded. As we can see on graphs from Fig. 2, the S value is noticeable bigger than
this value, indicating the reliability of the resulting segmentations.

In addition, we also present the improved results derived from the use of the opti-
misation proposed in section 5. For our experimental evaluation purposes, and due to
the fact that differences between the original segmentation results and the optimised
ones are not clearly visible (they seem identical), quantitative results for the images
used on this paper are given in table 1, demonstrating the performance of the proposed
optimisation. In [1], Borsotti et al. proposed a measure to estimate the quality of the seg-
mentation results. This value measures the intra-region uniformity and the inter-region
contrast. It also has a penalisation factor inversely proportional to the number of regions
in segmented images [13]. Thus, we also present this well-known value on table 1 as an
indicator of how close the two segmentation results are2.

Finally, it is important to stress that the final number of regions (based on the number
of clusters) is determined by the algorithm with no prior knowledge about the image.
The σ value used is the same in all the experiments carried out for this work. In this
case, σ =

√
10.

7 Conclusions

An unsupervised image segmentation algorithm has been presented. It performs the
clustering in the image domain, using spatial information to build a hierarchical cluster-
ing structure. The hierarchical clustering is performed using a proposed distance func-
tion that tries to integrate the similarity in the distribution of pixel values, and the edge
information, in order to adapt region borders to image edges. In our experiments, this
process has been improved by a significant optimisation in terms of speed and without
affecting the solution quality. Moreover, a criterion function based on the maximisation
of a similarity measure has been introduced. This function estimates the right number
of clusters in the hierarchical structure, in such a way that it is in accordance with a
perceptual decision about the grouping.

2 Note that we had to develop an extension of Borsotti quality estimation equation to multispec-
tral values.
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The proposed method has been tested in gray level, colour and multispectral im-
ages, providing satisfactory results in the chosen groupings and the segmentation re-
sults, where regions are well defined by contour edges.

Although the criterion function used behaves as expected, further work is directed
to achieve a smoother criterion function that can avoid local oscillations and, therefore,
trying not to get stuck in local maxima around the global maximum, in order to achieve
a more accurate decision about the final grouping representing the segmentation.
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Abstract. Online game industry has encountered higher competition in global 
market. To survive successfully in today’s competitive online game markets, 
they need to determine who the target customers are and what motivates them. 
The purpose of our research is to identify the critical variables and to implement 
a new methodology for online game market segmentation using self organizing 
map. Our research tested the model with Korean online game users.  

1   Introduction 

A new revolutionary period of e-commerce has begun since the early 2000’s [21, 22]. 
Recently, the global online game industry has been grown rapidly and has been devel-
oped into the core of the world cultural industries. With the rapid growth, many online 
game companies hoped that the first mover would be successful and recklessly entered 
into online game markets without understanding the core needs of those audiences. 
However, the lack of consideration has forced many online game companies to fail to 
survive in game market [16]. To survive in today’s competitive markets, online game 
companies need to determine who the target customers are and what motivates them. 
This process is called market segmentation, by which companies are able to understand 
their loyal customers and concentrate their limited resources into them [20].  

However, previous research had problems of both methodologies and variables. 
First, the traditional methodology for market segmentation was based mainly on sta-
tistical clustering techniques; hierarchical and partitive approaches. However, hierar-
chical method can not provide a unique clustering because a partitioning to cut the 
dendrogram at certain level is not precise. This method ignores the fact that the 
within-cluster distance may be different for different clusters [6, 29]. Partitive method 
predefines the number of clusters, before performing it. It can be part of the error 
function and can not identity the precise number of clusters [7, 25, 29]. Additionally, 
these algorithms are known to be sensitive to noise and outliers [4, 5, 29].  

To settle these problems, we segment Korean online game market using a  
two-level Self-Organizing Map (SOM): SOM training and clustering [29]. Instead of 
clustering the data directly, a large set of prototypes is formed using the SOM. The 
prototypes can be interpreted as proto-cluster, which are combined in the next phase 
from the actual clusters. The benefit of using this method is to effectively reduce the 
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complexity of the reconstruction task and to reduce the noise. Our research imple-
ments this method into marketing research field.  

Secondly, variables of previous studies could not be accepted since they have been 
conducted mainly from the technological and psychological perspective. The main 
concern of technological research on online game is to design and develop a more 
attractive and effective online game environment [1, 26, 31]. However, no matter how 
sophisticated the technologies applied, users would not revisit the game site if it failed 
to reflect their needs. Our research identifies the primary factors for online game from 
a business perspective.  

The purpose of our research is to identify the critical variables and to implement a 
new methodology for online game market segmentation. Our research approach is 
categorized into two phases. The first phase is using a statistical approach (Structural 
Equation Model: SEM) to find the critical segmentation factors. The second phase is 
conducted by a two-level Self Organizing Map (SOM) to indicate the actual clusters. 
To implement our methodology, Korean online game data was analyzed because 
Korean online game market was located in the center of those trends. Therefore, re-
search about Korean online game markets will be helpful for other countries to under-
stand the change of global game markets.  

2   Theoretical Background 

2.1   Determinant Variables 

In online game, more emphasis is being placed on the impact of a flow using a busi-
ness perspective [2, 9, 10, 15, 18, 23, 28]. Through the review of the relevant litera-
ture, we identify the primary factors for online game from a business perspective as 
follows: the convenience of operator, the suitability of feedback, the reality of design, 
the precision of information and the involvement of virtual community. Our research 
hypothesizes that these determinants have a positive effect on flow.  

The convenience of the operator was defined as the manipulatability of operators to 
play games [27]. Operator is an important determinant of influencing interaction be-
tween users and games [2, 12, 30]. Feedback is the reaction from online games [3, 
10]. For example, when players kill a monster within NCsoft's Lineage, they receive 
feedback upgrading their level. The reality of design is defined as the design of inter-
face making gamers feel online games as part of the real world [1, 26, 32]. Informa-
tion is the contents from online game to achieve the stated goals. Gamers who re-
ceived more precise information about how to play the games tended to achieve 
online game goals and experience flow easier [10, 24]. Virtual community is defined 
as computer-mediated spaces with potential for integration of member-generated 
content and communication [14]. Online game users should solve problems together 
interacting with other users in virtual communities [10].  

2.2   A Two-Level SOM 

Vesanto and Alhoniemi proposed a two-level SOM: SOM training and clustering. A 
two-level SOM was combined SOM, K-means and DB Index [29]. In the first level 
(SOM training), the data were clustered directly in original SOM to form a large set 
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of prototypes. SOM was developed by Kohonen, which was very suitable for cluster-
ing in that it implemented an ordered dimensionality-reducing mapping of the training 
data and has prominent visualization properties [19].  

In the second level (SOM clustering), the prototypes of SOM are clustered using k-
means and the validity of clusters is evaluated using DB index. K-means clustering is 
to partition a data set into a set of group, minimizing distances within and maximizing 
distances between clusters. To select the best one among different partitioning, each 
of these can be evaluate using some kind of validity index. Generally, there are four 
validity indices; DB (Davies-Bouldin) index [11], Dunn’s index [13], CH (Calinski-
Harabasz) index [8] and index I [25]. DB index is suitable for evaluation of k-means 
partitioning because it gives low values, indicating good clustering results for spheri-
cal cluster [29]. Our research used DB index.  

DB index is a function of the ratio of the sum of within-cluster scatter to between-
cluster separation. The DB index is defined as equation (1). 
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Conclusively, the proper clustering is achieved by minimizing the DB index. 

3   Research Methods 

3.1   Research Framework 

To segment the online game market and develop marketing strategies, our research 
approach is categorized into two phases. Firstly, the confirmatory factor analysis 
(CFA) and structural equation model (SEM) are used to identify the critical segmenta-
tion variables for clustering. Secondly, a two-level SOM is used to segment online 
game market. The first level develops the prototypes from large data set and the actual 
clusters are developed from the prototypes in the second level.  

After segmentation of the markets, we use ANOVA to recognize the characteristics 
of sub-divided clusters. Finally, we target a segment market with the highest customer 
loyalty, and used those results as the starting point for the marketing strategies.  

3.2   Data and Measurement 

To test the model, a Web-based survey was employed. We developed the web-
questionnaire page using a common gateway interface (CGI). We sent a mail to  
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customer within OZ intermedia in Korea, which explained the objectives of the re-
search and contained the link to the Web-Survey. Conclusively, the 1704 complete 
data is available for analysis, after elimination of missing data. 

Our research developed multi-item measures for each construct. Twenty-one items 
for five determinants are selected. We asked respondents to indicate on a five point 
Likert scale to what extent the determinants influence on flow in online game. We 
used CFA to evaluate convergent validity for five constructs and 15 items remained 
within our model. All the fit statistics of the measurement model were acceptable.  

4   Results 

4.1   Identification of Critical Factors 

To find the critical factors for segmentation, we used AMOS 4.0 in structural equation 
modeling (SEM). The structural model was well converged. The results indicated that 
the chi-square of the model was 295.82 with d.f. of 104, the ratio of chi-square to d.f. 
was 2.844, GFI was 0.982, AGFI was 0.973, RMSR was 0.031 and NFI was 0.975; all 
the fit statistics were acceptable. Additionally, the squared multiple correlations (R2) 
indicated that the present model explains 51 % of the variance in flow.  

Table 1. The results of Stuctural Equeation Model 

Path Estimate S.E. t p 
O --> 0.037 0.024 1.456 0.145 
FB --> 0.108** 0.032 3.482 0.000 
IF --> 0.081* 0.035 2.499 0.012 
D --> 0.274** 0.036 8.798 0.000 
C --> 

F 

0.437** 0.031 14.794 0.000 
* p<0.05, ** p<0.01 
O: The convenience of operator,                       FB:The suitability of feedback 
IF: The precision of information,                      D: Reality of Design 
C: The involvement of virtual community,       F: Flow,  

Four of the five paths were statistically significant and the path from the conven-
ience of operator to flow was insignificant, as shown in Table 1. The critical variables 
for marketing segmentation are the suitability of feedback, the reality of design, the 
precision of information and the involvement of virtual community. 

4.2   Market Segmentation 

To segment the Korean online game market, our research was conducted using a two-
level SOM. In the experiments, the first level was SOM training. 1704 data samples 
of the Korean were collected using the test variables: the suitability of feedback, the 
precision of information, the reality of design and virtual community except the con-
venience of operator. A SOM was trained using the sequential training algorithm for 
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Korean data samples. A neighborhood width decreased linearly 5 to 1 using the Gaus-
sian function. A map was used by 19*11 matrix and 209 prototypes were developed.  

The second level was SOM clustering. The partitive clustering of 209 SOM’s pro-
totypes was carried out using batch K-means algorithm. The K-means ran multiple 
times for each k. The DB index was used to select the best clustering in Fig. 2. The 
analysis of the DB index resulted in the development of ten market segments. 

 

 

Fig. 2. DB Index and visualization of clusters 

4.3   Determination of Target Market 

After segmenting the markets, we used ANOVA to recognize the variable characteris-
tics of each cluster. According to results of ANOVA, all variables (components) were 
significant; F=154.34 to 588.19 and p=0.00. To precisely recognize the variable char-
acteristics of clusters, we categorized the effectiveness of the variables into 3 levels; 
high, middle and low. The middle level ranged between 3 2.5 because our research 
measurement was used on a five point Likert scale. The high score suggested that the 
cluster was influenced by the variables positively, the middle score was normal, the 
low score was negative.  

Additionally, to identify the structure of the clusters, we conducted on the analysis 
of the demographic and behavioral variables: gender, age, income level, i_year (how 
long did gamers use the Internet), i_day (how many hours did gamer use the Internet 
per day), and g_day (how many hours did gamer play online games per day). The 
characteristics and structure of clusters are summarized in Table 2.  

The analysis of customer loyalty indicated that the ranks of clusters are as follows: 
cluster 6 (4.02 for average) > cluster 5 (3.94) > cluster 3 (3.76) > cluster 4 (3.69) > 
cluster 9 (3.54) > cluster 7 (3.48) > cluster 10 (3.28) > cluster 1 (3.24) > cluster 2 
(3.07) > cluster 8 (2.86) in Table 2. The other analysis of the intention of revisit and 
WOM (Word of Mouth) indicated the same results. As a result, cluster 6 was indi-
cated as the primary target market. 
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Table 2. Profiles of clusters 

 C 1 
(n=116)

C 2 
(n=204) 

C 3 
(n=130) 

C 4 
(n=130)

C 5 
(n=176)

C 6  
(n=224)

C 7 
(n=103)

C 8 
(n=196)

C9 
(n=161) 

C 10 
(n=264) 

FB 
2.72 
(L*) 

1.52 
(L) 

2.26 
(L) 

3.10 
(M) 

3.72 
(H) 

2.72 
(L) 

2.44 
(L) 

1.91 
(L) 

1.80 
(L) 

3.03 
(M) 

IF 
2.69 
(L) 

2.50 
(L) 

3.17 
(M) 

3.22 
(M) 

3.76 
(H) 

3.63 
(H) 

2.72 
(L) 

2.18 
(L) 

3.01 
(M) 

2.92 
(M) 

D 
2.77 
(M) 

2.47 
(L) 

3.56 
(H) 

3.25 
(M) 

3.60 
(H) 

3.80 
(H) 

2.97 
(M) 

2.55 
(L) 

3.22 
(M) 

3.08 
(M) 

C 
2.68 
(L) 

3.45 
(H) 

3.59 
(H) 

3.49 
(H) 

3.67 
(H) 

4.00 
(H) 

3.35 
(H) 

2.38 
(L) 

3.56 
(H) 

3.05 
(M) 

Gender male male female female male female both male female female 
Age 26-30 21-25 21-25 26-30 21-25 26-30 21-30 26-30 26-30 26-30 

Income 
($) 

1,001-
2,000 

- 500 
1,001-
2,000 

1,001-
2,000 

501-
1,000 

501-
1,000 

- 500 - 500 
1,001-
2,000 

501-
1,000 

i_year 3 3 2-4 3 3 2-4 3 4 2-5 2-3 
i_day 2 5 3-5 3-5 5 5, 10 5 3 5 3 
G_day 1 2 3 1-2 1 2 1 1 1 1 
Revisit 3.29 3.15 3.77 3.72 3.94 4.02 3.51 2.96 3.61 3.33 
WOM 3.18 3.00 3.75 3.67 3.93 4.02 3.45 2.75 3.47 3.22 

Loyalty** 3.24 3.07 3.76 3.69 3.94 4.02 3.48 2.86 3.54 3.28 
Rank 8 9 3 4 2 1 6 10 5 7 

* L=Low, M=Middle, H=High 
** Loyalty is estimated by average of revisit and WOM 

O: The convenience of operator,                       FB:The suitability of feedback 
IF: The precision of information,                      D: Reality of Design 
C: The involvement of virtual community,       F: Flow,  

5   Implication 

The results of our research have the following implications for Korean online game 
companies. To attract the primary target audiences, companies should develop strate-
gies depending on the effectiveness of the variables and the demographic and behav-
ioral characteristics of cluster 6.  

The characteristics of target audiences indicate that the members are positively in-
fluenced by the suitability of feedback, the reality of design and the involvement of 
virtual community. The strategies of the reality of the suitability of feedback proposed 
that companies should provide gamers with a higher level faster, items and more 
cybermoney, when gamers completed their mission. The strategies of the reality of 
design proposed that companies should make an interface where the game site looks 
real. For example, the interface of recent games changed 2D such ‘Lineage’ into 3D 
such as ‘MU’, ‘Lagnarok’ and ‘Laghaim’. For virtual community, companies need to 
provide a Role Playing Game (RPG) where the gamer cooperates with each other 
rather than shooting games where the gamer compete with each other. Furthermore, 
the different villages and guilds which were harmonized with customer needs were 
provided. For example, ‘Lineage’ provided 15 villages to satisfy the different gamers’ 
needs. 

As to the demographic information, there are more female members in the target 
group than male members are. Popular ages range from 26 to 30 in the group. 
Monthly income level of the members of the group ranges from $500 to $ 1,000. They 
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have used the Internet for over 2-4 years, use the Internet for 5 or 10 hours per day, 
and play online games for more than 2 hours per day.  

The result indicated that online game companies should develop diverse types of 
online games considering the extension of the age of online game users. The number 
of female users is growing fast and the needs of online game users become diversified 
[21, 33]. To better satisfy their needs, online game companies should cluster similar 
customers into specific market segments with different demands and then develop 
marketing strategy based on their properties. Especially, our research shows that the 
middle-aged and female users are classified as target customers as well as adoles-
cents. This finding is consistent with the statistics in the Korean Game White Paper, 
which indicates that female users increased from 31% of the game population in 2001 
to 47% in 2003 and the middle-aged users increased from 2% in 2001 to 21% in 2003.  

These implications were proven to be true through NCsoft’s example, which is the 
primary Korean online game company. They recognized that online game customers’ 
needs have been changed and encountered higher competition with foreign online 
game competitors. To survive in this changing environment, they developed the 
games for male and female separately. For instances, the background of the recent 
game ‘Lineage’ was medieval, the type was combatable, and their target audiences 
were adolescents and younger male, while ‘Shining Lore’ is developed to target fe-
male customers who might be more interested in sweet and exciting stories [16]. 

6   Conclusion and Limitation 

The results of our study have several contributions to academia and business world. Our 
research identifies the new primary factors for online game markets which may not be 
found in the previous researches from the technological perspectives. Additionally, our 
research proposes a new methodology for market segmentation using a two-level SOM 
and marketing strategies for the survival in competitive online game market.  

Even though our research is conducted on Korean online game market, these impli-
cations are able to be applied into those of other countries because Korean online game 
market is the frontiers of global online game market. And the research about Korean 
online game market is thought to be helpful for other countries to understand the 
change of their own online game markets. However, other countries are able to develop 
their own marketing strategies more exactly using our methods with considering and 
adjusting their market environment, instead of accepting the results of our research.  

For further study, more demographic and behavioral variables might be necessary to 
segment the markets more precisely. Secondly, a cross-national analysis can be added 
to our research in order to better understand the loyal customers in different countries. 
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Abstract. Clustering in data mining is a discovery process that groups a set of
data so as to maximize the intra-cluster similarity and to minimize the inter-
cluster similarity. Clustering becomes more challenging when data are categori-
cal and the amount of available memory is less than the size of the data set. In
this paper, we introduce CBC (Clustering Based on Compressed Data), an ex-
tension of the Birch algorithm whose main characteristics refer to the fact that
it can be especially suitable for very large databases and it can work both with
categorical attributes and mixed features. Effectiveness and performance of the
CBC procedure were compared with those of the well-known K-modes cluster-
ing algorithm, demonstrating that the CBC summary process does not affect the
final clustering, while execution times can be drastically lessened.

1 Introduction

Clustering constitutes a very effective technique for exploratory data analysis and has
been widely studied for several years. It has found applications in a broad variety of
areas such as pattern recognition, statistical data analysis and modelling, data and web
mining, image analysis, marketing and many other business applications. The basic
clustering problem consists of grouping a data set into subsets (typically called clus-
ters) such that items in the same subset are similar to each other, whereas items in
different subsets are as dissimilar as possible. The general idea is to discover a structure
that is already present in the data. Most of the existing clustering algorithms can be
classified into two main categories, namely hierarchical (agglomerative or divisive) and
partitioning algorithms [8].

Pattern recognition and data mining practical applications frequently require dealing
with high volumes of data (thousands or millions of records with tens or hundreds of
attributes). This characteristic excludes the possibility of using many of the traditional
clustering algorithms. Furthermore, this type of application is often done with data con-
taining categorical attributes, thus becoming more difficult.

It has to be noted that much of the data in the databases are categorical, that is, fields
in tables whose attributes cannot naturally be ordered as numerical values. The problem
of clustering categorical data involves complexity not encountered in the corresponding
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problem for numerical data. While considerable research has been done on clustering
numerical data, there has been much less work on the important problem of clustering
categorical data.

The present paper focuses on clustering databases with categorical and/or mixed
(both categorical and numerical) attributes. To this end, a new clustering algorithm is
here introduced, which is based on summarizing the data by using a balanced tree struc-
ture. The resulting tree is then utilized to group the data into clusters, which will be
finally labelled by means of a nearest neighbor rule. Moreover, it is worth noting that
this algorithm allows its application to very large databases (data sets of size greater
than the size of available memory).

2 Related Algorithms

Clustering numerical data has been the focus of substantial research in various domains
for decades, but there has been much less work on clustering categorical data. Recently,
the important problem of clustering categorical data started receiving interest. In this
section, we briefly review a number of algorithms belonging to the area of clustering
categorical records.

The Rock algorithm [5] is an adaptation of an agglomerative hierarchical algorithm.
The procedure attempts to maximize a goodness measure that favors merging pairs with
a large number of ”links”. Two objects are called neighbors if their similarity exceeds
a certain threshold given by the user. The number of links between two objects is the
number of common neighbors. The Rock algorithm selects a random sample from the
databases after a clustering algorithm that employs links is applied to the sample. Fi-
nally, the obtained clusters are used to assign the remaining objects on the disk to the
appropriate clusters. Huang proposes the K-modes algorithm [6], which is an extension
of the K-means procedure for categorical data. The way to compute the centroid is sub-
stituted by a vector of modes. It also proposes two measures of similarity for categorical
data. The final clustering of the K-modes algorithm depends on the initial selection of
the vector of modes, very much the same as with its predecessor K-means.

The Coolcat algorithm proposed by Barbará et al. [2] is an incremental algorithm
that aims to minimize the expected entropy of the clusters. Given a set of clusters,
the algorithm will place the next point in the cluster where it minimizes the overall
expected entropy. Similar to this proposal is the Limbo technique [1], which constitutes
a scalable hierarchical categorical clustering algorithm that builds on the Information
Bottleneck (IB) framework for quantifying the relevant information preserved when
clustering. As a hierarchical algorithm, Limbo has the advantage that it can produce
clusters of different sizes in a single execution. Moreover, Limbo handles large data
sets by producing a memory bounded summary model for the data.

Cactus [3] represents an agglomerative hierarchical algorithm that employs data
summarization to achieve linear scaling in the number of rows. It requires only two
scans of the data. This scheme is based on the idea of co-occurrence for pairs of
attributes-values. The Birch algorithm [10] constructs a balanced tree structure (the
CF-tree), which is designed for a multi-phase clustering method. First, the database is
scanned to build an initial in-memory CF-tree which can be seen as a multi-level com-
pression of the data that tries to preserve the inherent clustering structure of the data.
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Second, an arbitrary clustering algorithm can be used to cluster the leaf nodes of the
CF-tree.

3 The CBC Algorithm

The new CBC clustering algorithm here introduced consists of three main stages: (1)
summary, (2) clustering, and (3) labelling. In the first stage, the data are summarized
in a balanced tree structure. The summary obtained in the first step is then grouped by
means of a clustering procedure. Finally, in the the third stage we perform a scan over
the database and assign each object to the representative (that is, the composite object)
closest to the clusters obtained in the previous phase.

Next, we provide the definition of several concepts that will be importantly used by
the CBC algorithm.

Definition 1. An event is a pair relating features and values. It can be denoted by
[Xi = Ei], indicating that the feature Xi takes the values of Ei and Ei ⊂ Ui. Ei is
the subset of values that the feature Xi takes, Ui is the representation domain of Xi. An
example of event is e1 = [color = green, blue, red].

Definition 2. A categorical object is a logical join of events, relating values and fea-
tures, where features may take one or more values [4]. It is denoted by X = [X1 =
E1]∧. . .∧[Xd = Ed]. A categorical object can be represented by the Cartesian product
set E = E1 × . . .× Ed. The domain of categorical object X is represented by U (d) =
U1 × . . . × Ud, that is, the d-dimensional feature space. For example, the categorical
object represented by X = [HairColor = black, brown] ∧ [BloodType = B+, A+]
has the following features: HairColor is black or brown; BloodType is B+ or A+.

The intersection of two categorical objects Ei = Ei1 × . . .× Eid and Ej = Ej1 ×
. . . × Ejd is defined as Ei

⊗
Ej = (Ei1

⊗
Ej1) × . . . × (Eid

⊗
Ejd). Analogously,

the union of Ei and Ej is Ei

⊕
Ej = (Ei1

⊕
Ej1)× . . .× (Eid

⊕
Ejd).

Definition 3. Let Ei = Ei1 × . . . × Eid and Ej = Ej1 × . . . × Ejd be two ob-
jects defined in U (d), then a composite object is the result of combining Ei and Ej

as Ei

⊕
Ej = (Ei1

⊕
Ej1) × . . . × (Eid

⊕
Ejd). For example, consider two ob-

jects A = {green, B+,high} and B = {black,O+,high}, then the composite object
formed from these is A

⊕
B = {{green, black}, {B+,O+},high}.

3.1 A Similarity Metric for Categorical Objects

In the present work, we have used a distance metric similar to that proposed by Ichino
and Yaguchi [7]. The distance between objects Xi = [Xi1 = Ei1] ∧ . . . ∧ [Xid = Eid]
and Xj = [Xj1 = Ej1] ∧ . . . ∧ [Xjd = Ejd] in U (d) is computed by:

dp(Xi,Xj) = [
d∑

k=1

Ckψ(Eik,Ejk)p]1/p p ≥ 1 (1)

where Ck > 0 (k = 1, . . . , d) is a weighting factor to control the relative importance of
the event Ek or Ck = 1/d when all the events have the same relevance, and
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ψ(Eik,Ejk) =
φ(Eik,Ejk)

|Uk|
(2)

being |Uk| the number of possible values in the domain Uk, and φ(Eik ,Ejk) = |Eik ∪
Ejk| − |Eik ∩ Ejk|

Now we can transform the distance measure in Eq. 1 into a similarity metric [8],
such as S(Xi,Xj) = 1− dp(Xi,Xj).

3.2 Summary of the Database

The central task of the first stage of CBC is the construction of a tree structure to com-
press the data. It uses a weight-balanced tree, called CO-tree, which needs three para-
meters: the number of entries for non-leaf nodes B, the number of entries for leaf nodes
L, and an absorbtion threshold T . Each non-leaf node contains at most B entries, each
one with a pointer to its child node, and the composite object represented by this child.
A leaf node contains at most L entries with composite objects. Moreover, all entries in
a leaf node must satisfy a condition with respect to the absorbtion threshold T . Fig. 1
illustrates an example of the CO-tree structure.

Fig. 1. An example of the CO-tree structure (B = 3, L = 3)

Insertion into a CO-Tree. Here we present the algorithm for inserting a new entry,
say ent, into a given CO-tree.

1. Identifying the appropriate leaf: starting from the root, it recursively descends the
CO-tree by choosing the closest child node according to the similarity metric given
in Sect. 3.1.

2. Updating the leaf: when reached a leaf node, it finds the closest leaf entry, say Li,
and then tests whether Li can absorb ent without violating the threshold condition.
If so, the new entry is absorbed by Li. If not, it tests whether there is space for this
new entry on the leaf. If so, a new entry for ent is added to the leaf. Otherwise, we
must split the leaf node. Splitting is done by choosing the farthest pair of entries as
seeds, and redistributing the remaining entries based on the closest criteria.



Clustering Based on Compressed Data for Categorical and Mixed Attributes 821

3. Updating the path to the leaf: after inserting ent into a leaf, we must update the
information for each non-leaf entry on the path from the root to the leaf. If no split-
ting was done, this simply involves the leaf entry that absorbed ent. Conversely,
a leaf split means that a new non-leaf entry has to be inserted into the parent. If
the parent has space for this new entry, at all higher levels, we only need to update
the corresponding entries to reflect the addition of ent. However, we may have to
split the parent as well, and so on up to the root. If the soot is split, the tree height
increases by one.

The first stage of CBC starts with an initial threshold value T = 0, scans the data,
and inserts entries into the CO-tree. In this phase, it is possible to carry out an additional
step of the summary by using a reconstruction algorithm. This reconstruction algorithm
is applied when a more compact CO-tree is required or when the memory is depleted
and some objects in the database have not been inserted yet. When rebuilding the CO-
tree (smaller than the initial one), the same insertion algorithm is used, but increasing
the threshold value T = T +0.2. It reinserts the leaf entries of the old tree and then, the
scanning of the data is resumed from the point at which it was interrupted. This process
continues until all objects in the database have been scanned. The leafs of the resulting
CO-tree contain a summary of the database in the manner of composite objects.

3.3 Clustering the Leaf Nodes

The second stage of the algorithm basically consists of going through the leaf nodes of
the resulting CO-tree in order to obtain composite objects that will be representatives
of the clusters.

After the construction of the CO-tree, that is, when the entire database has been
summarized, we cluster the composite objects present in the leaf nodes, thus producing
groups of composite objects. In this phase, any clustering algorithm could be applied.
However, we propose a new clustering algorithm called EA. The EA clustering algo-
rithm is described in detail below.

Definition 4. Let B = {X1,X2, . . . ,Xn} be a set of composite objects in U (d) ob-
tained from the final CO-tree. Then C ⊆ B, C = ∅ will be a cluster if and only if the
following conditions are satisfied:

a) ∀Xj ∈ B [Xi ∈ C∧maxXt∈B,Xt �=Xi {S(Xi,Xt)} = S(Xi,Xj) ≥ β] ⇒ Xj ∈ C
b) [Xt ∈ C ∧maxXp∈B,Xp �=Xi {S(Xi,Xp)} = S(Xp,Xt) · β] ⇒ Xp ∈ C
c) |C| is minimum

where 0 ≤ β ≤ 1 is a similarity threshold.

EA Clustering

1. Scan all leaf entries (composite objects) present in the final CO-tree.
2. Compute the similarity matrix using Eq. 1.
3. Compute β as an average of the values in the similarity matrix. It can also be given

by a human expert.
4. Compute the clusters C.
5. Compute the composite objects of each cluster formed in Step 4.
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4 Experimental Analysis

In this section, we evaluate the performance of CBC and compare its effectiveness for
clustering with that of the classical K-modes algorithm. We performed two groups of
experiments: in the first one, we ran the CBC algorithm with respect to parameters L, B
and memory size. In the second one, we compared CBC with the K-modes algorithm in
terms of misclassified objects and running times. We consider an object as misclassified
when the original tag was different from that assigned by CBC.

4.1 Description of the Data Sets

The present experimental study was carried out by using three well-known bench-
mark databases taken from the UCI Machine Learning Database Repository (http://
www.ics.uci.edu/ Mlear/MLRepository.html ).

– Mushroom: each data record contains information that describes the physical char-
acteristics (e.g., color, odor, size, shape) of a single mushroom. The mushroom
database has a total of 8124 records belonging to two classes: 4208 edible mush-
rooms and 3916 poisonous mushrooms.

– Connect-4: it consists of 67557 records, each one described by 42 characteristics.
The three classes are win with 44473 records, loss with 16635, and draw with 6449
records.

– Kr-vs-kp: Chess and -Game-King+Rook versus King+Pawn contains 3196 records,
each one described by 36 attributes. The two classes are white-can-win with 1669
and white-cannot-win with 1527 records.

4.2 Results

The first experiment pursues to analyze the effect of memory size on running times and
percentage of misclassified objects. To this end, we have tested the CBC algorithm when
varying the memory size and keeping constant the values of parametersL and B. For the
Mushroom database, L = 5 and B = 3. For the Kr-vs-kp data set, L = 6 and B = 3.
For the Connect-4 database,L = 4 and B = 3. Table 1 reports the results corresponding
to these experiments. The third column provides the running times for the summary
stage, that is, the construction of the CO-tree to summarize the data. Columns 4, 5,
and 6 correspond to the percentage of misclassified objects for different values of the
parameter β in the second stage of the algorithm. Finally, the seventh column shows the
average running times (the time required for the summary along with the time for the
clustering stage).

From the results in Table 1, one can see that the time for the summary stage is close
to linear with respect to the memory size. On the other hand, the parameter β used in
the clustering stage of CBC significantly affects to the quality of the clusters obtained.
In general, it seems that the lower the values of β, the lower the percentage of misclas-
sified objects. Finally, the size of the memory does not affect to the result of the CBC
clustering algorithm in terms of percentage of misclassified objects.

The second experiment tries to study the effect of the parameter L. Correspondingly,
Table 2 provides the results when varying the value of parameter L, while keeping
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Table 1. Effect of memory size (Kbytes) on running times (seconds) and percentage of misclas-
sified objects

Memory size Summary time β = 0.2 β = 0.1 β = 0.05 Average time
Mushroom 5 1.34 12.81 7.03 6.08 2.48

10 1.33 12.81 7.03 6.08
20 2.50 12.81 7.03 6.08
25 3.00 12.81 7.03 6.08

Kr-vs-kp 2 1.69 40.47 14.29 10.43 1.42
3 1.88 46.38 16.05 10.66
4 2.19 47.88 20.19 12.58
5 2.18 47.88 19.19 12.31

Connect-4 40 51.21 34.16 35.82 34.16 45.00
60 50.11 34.16 34.16 34.16
80 68.62 34.16 36.14 34.38

100 69.17 34.16 36.14 29.58

Table 2. Effect of parameter L

L Summary time β = 0.2 β = 0.1 β = 0.05 Average time
Mushroom 3 2.50 15.12 6.94 4.55 2.50

5 2.50 12.81 7.03 6.08
7 2.80 18.52 9.56 11.38
9 3.38 16.37 13.90 12.83

11 3.54 18.63 10.56 10.56
Kr-vs-kp 4 1.49 38.27 42.25 26.48 1.64

5 1.83 26.55 16.59 11.53
6 1.69 40.57 14.29 10.43
7 2.00 47.20 14.03 11.33

Connect-4 2 50.29 33.56 31.53 31.53 48.09
3 57.74 30.98 30.98 30.98
4 64.94 34.22 34.22 34.22
5 60.86 34.16 29.99 30.98

constant the memory size and the value of B. The memory size is 20, 2, and 20 for
Mushroom, Kr-vs-kp, and Connect-4 databases, respectively. For the three data sets we
have used B = 3. Most comments drawn for the first experiments become valid for
the present analysis. In this sense, one can observe that the time for the summary stage
is close to linear with respect to the value of L. Also, it seems that the percentage of
misclassified objects does not depend on the parameter L.

Analogously, the third group of experiments are devoted to study the effect of the
parameter B. Table 3 reports the running times and percentage of misclassified objects
when varying the value of the parameter B. The size of available memory is 20, 2, and
20 for Mushroom, Kr-vs-kp, and Connect-4 databases, respectively. For the three data
sets we have used L = 3. Like in the previous experiments, the value of the parameter
B does not affect to the quality of the clusters given by the CBC algorithm.
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Table 3. Effect of parameter B

B Summary time β = 0.2 β = 0.1 β = 0.05 Average time
Mushroom 3 2.50 15.12 6.94 4.55 2.52

5 2.10 18.17 7.88 5.93
7 2.56 22.44 12.51 8.34
9 2.51 18.66 10.06 6.35

11 2.58 16.84 7.33 7.11
Kr-vs-kp 4 1.53 38.27 35.42 30.03 1.63

5 1.52 38.27 28.16 22.51
6 1.62 40.06 19.90 11.85
7 1.51 39.55 17.29 12.26

Connect-4 3 57.74 30.98 30.98 30.98 49.98
4 61.21 32.36 32.36 32.36
5 58.07 34.16 40.23 40.23
6 63.61 34.15 34.15 34.15

Table 4. Comparison of CBC and K-modes in percentage of misclassified objects

CBC K-modes
Worst Best

Mushroom 22.44 4.55 7.42
Kr-vs-kp 47.88 10.43 34.01
Connect-4 40.23 29.99 45.03

Finally, Table 4 allows to compare the percentage of misclassified objects by means
of the CBC procedure with that of the well-known K-modes clustering algorithm. As
can be seen, in all domains the CBC approach has shown a better behavior than the
K-modes algorithm. The most important differences are with the Kr-vs-kp database, in
which the CBC algorithm obtains a 10.43% of error rate, while that of the K-modes is
34.01%. On the other hand, it has to be noted that in the case of Connect-4, even the
worst cluster given by CBC (40.23%) outperforms the result of K-modes (45.03%).

5 Concluding Remarks

This paper introduces the CBC algorithm, Clustering Algorithm Based on Compressed
Data, which builds a summary of the database in the main memory using a balanced
tree structure called CO-tree. The CBC algorithm works with categorical features, and
also with mixed data. Another important characteristic of the new algorithm refers to
the fact that it can handle large data sets.

The CBC clustering algorithm consists of tree main stages: (1) summary, (2) clus-
tering, and (3) labelling. Although the databases have to be summarized, the results of
our experimental study with three benchmark databases are very encouraging because
it clearly outperforms the K-modes in terms of percentage of misclassified objects.

Possible extensions to this work are in the direction of testing the CBC algorithm
with other similarity measures. Also, the possibility of using a different clustering
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approach in the second stage becomes especially important in order for improving the
quality of the resulting clusters. Finally, a more exhaustive empirical analysis is neces-
sary to corroborate the conclusions given in the present paper.
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Abstract. Fisher’s Linear Discriminant Analysis (LDA) is a traditional
dimensionality reduction method that has been proven to be successful
for decades. Numerous variants, such as the Kernel-based Fisher Dis-
criminant Analysis (KFDA) have been proposed to enhance the LDA’s
power for nonlinear discriminants. Though effective, the KFDA is com-
putationally expensive, since the complexity increases with the size of
the data set. In this paper, we suggest a novel strategy to enhance the
computation for an entire family of KFDA’s. Rather than invoke the
KFDA for the entire data set, we advocate that the data be first re-
duced into a smaller representative subset using a Prototype Reduction
Scheme (PRS), and that dimensionality reduction be achieved by invok-
ing a KFDA on this reduced data set. In this way data points which
are ineffective in the dimension reduction and classification can be elim-
inated to obtain a significantly reduced kernel matrix, K, without de-
grading the performance. Our experimental results demonstrate that the
proposed mechanism dramatically reduces the computation time without
sacrificing the classification accuracy for artificial and real-life data sets.

1 Introduction

The “Curse of Dimensionality”: Even from the infancy of the field of sta-
tistical Pattern Recognition (PR), researchers and practitioners have had to
wrestle with the so-called “curse of dimensionality”. The situation is actually
quite ironic : If the patterns to be recognized are represented in a feature space
of small dimensions, it is likely that many crucial discriminating characteristics
of the classes are ignored. However, if on the other hand, the dimensions of the
feature space are large, we encounter this “curse”, which brings along the excess
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baggage of all the related problems associated with learning, training, represen-
tation, computation and classification [1], [2]. The “dimensionality reduction”
problem involves reducing the dimension of the input patterns and yields the
advantages clearly explained in [1] and [2].

The literature reports numerous strategies that have been used to tackle this
problem. The most well-known of these is the Principal Components Analysis
(PCA) (the details of which are omitted here) to compute the basis (eigen) vec-
tors by which the class subspaces are spanned, thus retaining the most significant
aspects of the structure in the data [1]. While the PCA finds components that
are efficient for representation, the class of Linear Discriminant Analysis (LDA)
strategies seek features that are efficient for discrimination [1]. LDA methods ef-
fectively use the concept of a within-class scatter matrix, Sw, and a between-class
scatter matrix, Sb, to maximize a separation criterion, such as J = tr(S−1

w Sb).
The advantage of an LDA is that it is non-recursive. Being essentially linear
algorithms, neither the PCA nor LDA can effectively classify data which is in-
herently nonlinear. Consequently, a vast body of research has gone into resolving
this limitation, and a detailed review of this is found in [2]. This is exactly the
focus of this paper. In this paper, we suggest a novel strategy to enhance the
computation for an entire family of KFDA’s. Rather than invoke the KFDA for
the entire data set, we advocate that the data be first reduced into a smaller
representative subset using a Prototype Reduction Scheme (PRS) (explained
and briefly surveyed presently), and that dimensionality reduction be achieved
by invoking a KFDA on this reduced data set.

The state-of-the-art in dealing with nonlinear methods include an adaptive
method utilizing a rigorous Gaussian distribution assumption [3], a complete
PCA plus LDA algorithm [4], two variations on Fisher’s linear discriminant [5],
Kernel-based PCA (KPCA) [6], Kernel-based FDA (KFDA) (for two classes by
Mika et al. [7] and for multi-classes by Baudat and Anouar in [8]), Kernel-based
PCA plus Fisher LDA (KPCA+LDA) [9], and LDA extensions which use the
Weighted Pairwise Fisher Criteria and the Chernoff Criterion [10].

Methods for Handling Nonlinearity: The KPCA (or KFDA) provides an
elegant way of dealing with nonlinear problems in an input spaceRd by mapping
them to linear ones in a feature space, F . That is, a dot product in space Rd

corresponds to mapping the data into a possibly high-dimensional dot product
space F by a nonlinear map Φ : Rd → F , and taking the dot product in the
latter space [6]. All of them utilize the kernel trick to obtain the kernel PCA
components by solving a linear eigenvalue problem similar to that done for the
linear PCA. The only difference is that the size of the problem is decided by the
number of data points, and not by the dimension. In both the KPCA and KFDA,
to map the data set {x1, x2, · · · , xn}, (where each xi ∈ Rd) into a feature space
F , we have to define an n×n matrix, K, the so-called kernel matrix, (of dimension
n) which is analogous to the d×d covariance matrix of the linear PCA (or LDA).

To solve the KPCA-associated computational problem, a number of meth-
ods, such as the techniques proposed by Achlioptas and his co-authors [11],
[12], the power method with deflation [6], the method of estimating K with a
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subset of the data [6], the Sparse Greedy matrix Approximation (SGA) [13], the
Nystom method [14], and the sparse kernel PCA method based on the proba-
bilistic feature-space PCA concept [15], have been proposed. In [6], a method of
estimating the matrix K from a subset of n′(< n) data points, while still ex-
tracting principal components from all the n data points, was considered. Also,
in [13], an approximation technique to construct a compressed kernel matrix K ′

such that the norm of the residual matrix K −K ′ is minimized, was proposed.
Indeed, pioneering to the area of reducing the complexity of kernel-based PCA
methods are the works of Achlioptas [12] and his co-authors. Their first category
includes the strategy of artificially introducing sparseness into the kernel matrix,
which, in turn, is achieved by physically setting some randomly-chosen values to
zero. The other alternative, as suggested in [11], proposes the elimination of the
underlying data points themselves. This is the spirit of the strategy we advocate.

Optimizing KFDA: To solve the computational problem for KFDA methods,
a number of schemes, such as the efficient leave-one-out cross-validation method
[16], the techniques proposed by Xu and his co-authors [17], [18], and the method
of using a minimum squared-error cost function and the orthogonal least squares
algorithm [19], have been proposed. They are briefly (for space limitations) de-
scribed below, but the details can be found in [26].

Cawley and Talbot [16] showed that the leave-one-out cross-validation of
kernel Fisher discriminant classifiers, namely, f(xi) = w · Φ(xi) + b, (where
w =

∑n
i=1 αiΦ(xi)), can be implemented with a computational complexity of

only O(n3) operations rather than the O(n4) complexity of a naive implementa-
tion, where n is the number of training samples. Xu and his co-authors [17], [18]
proposed a reformative kernel Fisher discriminant method (for two and multiple
classes respectively) which only computes the kernel matrix, K, between the
test pattern and a part of the training samples, called the “significant nodes”
(assuming that the eigenvectors for larger nonzero eigenvalues led to superior
discriminant vectors) which are a few training samples selected from the entire
data set. In [19], Billings and Lee suggested that after selecting ns important
terms, {x′

i}ns

i=1, from all the training patterns, {xj}n
i=1, using the orthogonal

least squared (OLS) algorithm when one has to test the sample z, the authors
classified it as class ω1 if

∑ns

i=1 α
′
ik(z, x′

i) > c, where α′
i are the estimated coef-

ficients; Otherwise it is classified as belonging to class ω2.
Unlike the results mentioned above in [16], [17], [18] and [19], we propose

an alternate strategy, akin to the one suggested in [11] for the KPCA family
of algorithms – which is a fairly straightforward concept, yielding a significant
computational advantage. Quite simply put, we propose to solve the computa-
tional problem in KFDA by reducing the size of the design set without sacrificing
the performance, where the latter is achieved by using a Prototype Reduction
Scheme (PRS). Thus, the contribution of this paper is that we show that the
computational burden of a KFDA can be reduced significantly by not consider-
ing the “original” kernel matrix at all. Instead, we rather define a reduced-kernel
matrix by first preprocessing the training points with a PRS scheme. Further,
the PRS scheme does not necessarily have to select a reduced set of data points.
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Indeed, it can rather create a reduced set of prototypes from which, in turn,
the reduced-kernel matrix is determined. All of these concepts are novel to the
field of designing Kernel-based FDA methods and have been rigorously tested
for artificial and real-life data sets.

Prototype Reduction Schemes: Various PRSs1, which are useful in nearest-
neighbour-like classification, have been reported in the literature - two excel-
lent surveys are found in [20], [21]. Bezdek et al [20], who composed the sec-
ond and more recent survey of the field, reported that there are “zillions!” of
methods for finding prototypes (see page 1459 of [20]). One of the first of its
kind, was a method that led to a smaller prototype set, the Condensed Nearest
Neighbor (CNN) rule [22]. Since the development of the CNN, other methods
[23] - [25] have been proposed successively, such as the Prototypes for Nearest
Neighbor (PNN) classifiers [23] (including a modified Chang’s method proposed
by Bezdek), Vector Quantization etc. Apart from the above methods, we men-
tion the following: Support Vector Machines (SVM) [24] can also be used as
a means of selecting prototype vectors. Observe that these new vectors can be
subsequently adjusted by means of an LVQ3-type algorithm. Based on this idea,
a new PRS (referred to here as HYB) of hybridizing the SVM and the LVQ3
was introduced in [25]. Based on the philosophy that points near the separat-
ing boundary between the classes play more important roles than those which
are more interior in the feature space, and that of selecting and adjusting the
reduced prototypes, a new hybrid approach that involved two distinct phases
was proposed in [25]. Due to space limitations, the details of other schemes are
omitted, but can be found in [26].

2 Optimizing the KFDA with PRSs

The fundamental problem that we encounter when optimizing any KFDA is that
of reducing the dimensionality of the training samples. This, in turn, involves
four essential phases, namely that of computing the kernel matrix, computing its
eigenvalues and eigenvectors, extracting the principal components of the kernel
matrix from among these eigenvectors, and finally, projecting the samples to be
processed onto the reduced basis vectors. We observe, first of all, that all of these
phases depend on the size of the data set. In particular, the most time consuming
phase involves computing the eigenvalues and eigenvectors of the kernel matrix.

There are a few ways by which the computational burden of the kernel method
can be reduced. Most of the reported schemes [11], [12], [13], [14], [15] resort to
using the specific properties of the underlying kernel matrix, for example, its
sparseness. Our technique is different. The method we propose is by reducing
the size of the training set. However, we do this, by not significantly reducing
the accuracy of the resultant training samples. This is achieved by using a PRS.

The rationale for the proposed method can be conceptually explained using
Fig. 1. Fig. 1(a) represents the original training samples presented to the clas-

1 Our overview is necessarily brief, but additional details can be found in [26].
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Fig. 1. The rationale for the proposed method. (a) The training samples, where n and
d are the number of samples and the dimensionality, respectively. (b) The condensed
prototypes extracted from the training samples using a PRS, where n′ 
 n. (c) The
prototype vectors whose dimensionality has been reduced with a KFDA, where d′ 
 d.

sifier system, where n and d are the number of samples and the dimensionality,
respectively. Fig. 1(b) represents the condensed prototypes which are extracted
from the training samples using a PRS, where n′ � n. Using the latter data,
Fig. 1(c) represents the resultant prototype vectors in which the dimensionality
has been reduced by invoking a KFDA, where d′ � d. Observe that since the
fundamental problem with any kernel-based scheme is that it increases the time
complexity from O(d3) to O(n3), we can see that the time complexity for the
dimensionality reduction from d to d′ is sharply decreased from O(n3) to O(n′3).

The question now is essentially one of determining which of the training points
we should retain. Rather than deciding to discard or retain the training points,
we permit the user the choice of either selecting some of the training samples
using methods such as the CNN, or creating a smaller set of samples using the
methods such as those advocated in the PNN, VQ, and HYB. This reduced set
effectively represents the new “training” set. Additionally, we also permit the
user to migrate the resultant set by an LVQ3-type method to further enhance
the quality of the reduced samples.

The PRS serves as a preprocessor to the n d-dimensional training samples to
yield a subset of n′ potentially new points, where n′ << n. The “kernel” is now
computed using this reduced set of points to yield the so-called reduced-kernel
matrix. The eigenvalues and eigenvectors of this matrix are now computed, and
the principal components of the kernel matrix are extracted from among these
eigenvectors of smaller dimension. Notice now that the samples to be tested are
projected onto the reduced basis directions represented by these vectors.

To investigate the computational advantage gained by resorting to such a
PRS preprocessing phase, we observe, first of all, that the time used in deter-
mining the reduced prototypes is fractional compared to the time required for
the expensive matrix-related operations. Once the reduced prototypes are ob-
tained, the eigenvalue/eigenvector computations are significantly smaller since
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these computations are now done for a much smaller set, and thus for an n′×n′

matrix. The net result of these two reductions is reflected in the time savings we
report in a later section in which we discuss the experimental results obtained
for artificial and real-life data sets.

3 Experimental Results: Artificial/Real-Life Data Sets

Experimental Data: The proposed method has been rigorously tested and
compared with many conventional ones. This was done by performing experi-
ments on both “artificial” and “real-life” data sets.

The data set described as “Random”is generated randomly with a uniform
distribution but with irregular decision boundaries. In this case, the points are
generated uniformly, and the assignment of the points to the respective classes is
achieved by artificially assigning them to the region they fall into, as per the man-
ually created “irregular decision boundary”. The data set named “Non normal
2”, which has also been employed as a benchmark experimental data set [1],
and [25] for numerous experimental set-ups was generated from a mixture of
four 8-dimensional Gaussian distributions. The data sets “Iris2”, “Ionosphere”
(in short, “Iono”), “Sonar”, “Arrhythmia” (in short, “Arrhy”) and “Adult4”,
which are real benchmark data sets, are cited from the UCI Machine Learning
Repository2. Their details can be found in the latter site, and also in [26] and
omitted here in the interest of compactness. In the above data sets, the data
set for class ωj was randomly split into two subsets, Tj ,T and Tj ,V , of equal
size. One of them was used for choosing the initial prototypes and training the
classifiers, and the other one was used in their validation (or testing). Later, the
role of these sets were interchanged.

As in all learning algorithms, choosing the parameters of the PRS and KFDA
play an important role in determining the quality of the solution. The parameters
for the PRS, the KPCA and the KFDA, are summarized as follows:

1. The kernel function employed is the polynomial k(xi,xj) = (1 + x′
ixj)2.

2. The number of features to be selected is 2 for all the KFDAs.
3. The constant μ is chosen as μ = 0.001 for regularization in KFD, and the

fusion coefficient θ in CKFDA is chosen as θ = 1.4.

Selecting Prototype Vectors: In order to evaluate the proposed dimension-
ality reduction mechanisms, we first selected the prototype vectors from the
experimental data sets using the CNN, the PNN and the HYB algorithms. In
the HYB, we selected initial prototypes using a SVM algorithm. After this se-
lection, we invoked a phase in which the optimal positions (i.e., with regard to
classification) were learned with an LVQ3-type scheme [25]. For the SVM and
LVQ3 programs, we utilized two publicly-available software packages3.

2 http://www.ics.uci.edu/mlearn/MLRepository.html
3 These packages can be available from http://www-ai.cs.uni-dortmund.de/

SOFTWARE/SVM LIGHT/svm light.eng.html and http://cochlea.hut.fi/research/
som lvq pak.shtml, respectively.
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Table 1. The classification accuracies of the proposed computational mechanisms for
the artificial and real-life data sets. The details of the entries and how the values were
obtained are explained in the text.

Type Dataset PRSs WHL KPCA KFD GDA KPCA+LDA CKFDA
WHL 96.50 79.50 88.50 88.50 88.50 91.75

Rand CNN 96.25 59.75 80.50 80.50 80.50 85.25
Artificial PNN 95.75 61.25 83.00 83.00 83.00 89.25

Data HYB 89.50 70.50 85.75 85.75 85.75 85.75
WHL 92.50 92.50 92.50 92.50 92.50 92.50

Non n2 CNN 91.90 91.90 91.90 91.90 91.90 91.90
PNN 92.10 92.10 92.10 92.10 92.10 92.20
HYB 94.00 94.00 94.00 94.00 94.00 94.10
WHL 92.00 71.00 94.00 94.00 94.00 92.00

Iris2 CNN 89.00 63.00 93.00 93.00 93.00 95.00
PNN 94.00 56.00 89.00 91.00 91.00 89.00
HYB 94.00 72.00 95.00 92.00 92.00 93.00
WHL 78.65 75.85 76.14 88.64 88.64 83.52

Ionos CNN 81.82 45.17 69.89 88.07 88.07 75.85
Real-life PNN 82.68 43.19 80.11 84.09 84.09 84.94

Data HYB 83.24 48.01 80.68 84.94 84.94 83.24
WHL 82.22 52.89 84.14 83.18 83.18 82.21

Sonar CNN 79.81 53.37 77.89 79.81 79.81 77.41
PNN 82.69 48.56 79.33 81.73 81.73 82.69
HYB 80.77 50.97 82.21 79.81 79.81 81.73
WHL 97.57 79.87 99.78 99.78 99.78 99.78

Arrhy CNN 96.47 49.78 99.12 99.78 99.99 99.78
PNN 99.12 53.54 97.57 99.78 99.78 99.33
HYB 99.12 84.07 99.78 99.33 99.33 99.11
WHL 93.40 91.85 92.97 92.07 92.07 92.73

Adult4 CNN 91.58 81.85 83.67 84.40 84.40 85.87
PNN 89.36 79.35 80.82 81.04 81.04 83.58
HYB 92.78 59.41 86.41 82.39 82.39 87.32

From the experiments, we can see that the kernel matrix dimensions to be
processed in the KFDA computations can be reduced significantly by first em-
ploying a PRS. Thus, for the artificial data set “Non n2” data set, the dimen-
sionality reduced from 500 × 500 to 63 × 63 when the HYB method was used
as the PRS, and for the real data set “Arrhy”, the dimensionality reduced from
226× 226 to 8× 8 when the PNN method was used as the PRS. Both of these4

are truly significant by any metric of measurement. It should also be mentioned
that the reduction rate increased dramatically when the size of the data sets was
increased. The reduction in the resultant KFDA processing time follows as a
natural consequence!

Experimental Results: Table 1 shows the classification accuracies of the pro-
posed computational mechanisms for the data sets. In WHL, the test data sets

4 The results of the other data sets are omitted here, but can be found in [26].
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were classified with the NN rule by utilizing the entire training sets as the code-
book vectors. On the other hand, for KPCA, KFD, GDA, KPCA+LDA, and
CKFDA classifications, we first chose prototype samples from the training data
sets with the CNN, PNN and HYB methods respectively. After selecting the pro-
totype vectors, we reduced their dimensionality using the KPCA, KFD, GDA,
KPCA+LDA, and CKFDA methods. Finally, the test data sets were classified
with the respective decision rules, where the prototype vectors of reduced dimen-
sionality were utilized as the code-book vectors. The experiments were repeated
by exchanging the roles of the data sets, and the two results were then averaged.

Consider the processing times for the “Non n2” data set. If the entire set of size
500 was processed, the times taken for the KPCA, KFD, GDA, KPCA+LDA and
CKFDA are 32.02, 78.44, 138.21, 30.20 and 30.36 seconds, respectively. However,
if the same sets were first preprocessed by the CNN, to yield the CNN-KPCA,
CNN-KFD, CNN-GDA, CNN-KPCA+LDA and CNN-CKFDA procedures5, the
processing times are 2.54, 3.28, 7.51, 2.53 and 2.55 seconds respectively - which
represent a 10-fold to 20-fold reduction ! Notice that the classification accuracies
of the method are almost the same as shown in Table 1. Identical comments can
also be made about the PNN and HYB schemes6. The results of the other data
sets are omitted here in the interest of brevity, but is in [26].

4 Conclusions

In this paper, we suggest a computationally superior mechanism to solve the
computational problem for KFDA methods. Rather than define the kernel matrix
and compute the principal components using the entire data set, we propose
that the size of the data be reduced into a smaller prototype subset using a PRS
Since the PRS yields a smaller subset of data points that effectively samples
the entire space to yield subsets of prototypes, this alleviates the computational
burden significantly. The experimental results demonstrate that the proposed
schemes can improve the extracting speed of the proposed methods by an order
of magnitude, while yielding almost the same classification accuracy.
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Abstract. Results in time series analysis literature state that through
the Cholesky decomposition, covariance estimates can be stated as a
sequence of regressions. Furthermore, these results imply that the in-
verse of the covariance matrix can be estimated directly. This leads to
a novel approach for approximating covariance matrices in high dimen-
sional classification problems based on the Cholesky decomposition. By
assuming that some of the targets in these regressions can be set to zero,
simpler estimates for class-wise covariance matrices can be found. By
reducing the number of parameters to estimate in the classifier, good
generalization performance is obtained. Experiments on three different
feature sets from a dataset of images of handwritten numerals show that
simplified covariance estimates from the proposed method is compet-
itive with results from conventional classifiers such as support vector
machines.

1 Introduction

Many modern pattern recognition problems face the researchers with the prob-
lem of feature spaces of high dimensionality coupled with a sparsity of available
labeled samples to be used for training. Further compounding the problem in
many cases is that features are highly correlated, this adding a redundancy to
the data that in some cases may obscure the information important for clas-
sification. When using parametric methods, such as the Gaussian Maximum
Likelihood (GML) classifier, the parameter estimates, most importantly the co-
variance matrix estimate, will become increasingly unstable when the number
of labeled samples is low compared to the dimensionality of the feature space.
A wealth of approaches for dealing with the curse of dimensionality have been
proposed in the literature, ranging from dimensionality reduction of the feature
space to regularization of parameter estimates by biasing them toward simpler
and more stable estimates. Still, many of these methods have slight weaknesses
which would be gainful to try to resolve. Among these is the need for inversion
of covariance matrices when evaluating the classifier, and estimation of redun-
dant parameters in the full dimensional feature space. Especially when matrices
are near-singular, which they tend to be if the ratio between labeled samples
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and dimensionality is ill posed, inversion is plagued with numerical instabili-
ties. Therefore, a direct estimation of the inverse covariance matrix would be
useful.

Direct estimation of the inverse covariance matrix was suggested mainly for
computational convenience in [1]. In that paper it was furthermore noted that
for many statistical problems the inverse covariance matrix has many zero or
near-zero values, and a direct feature selection approach was applied to choose
which elements could be set to zero. Obviously this approach is computationally
infeasible for high dimensional data with covariance matrices with thousands or
tens of thousands of elements. We propose an approach that relies on the fact
that a modified Cholesky decomposition of an inverse covariance matrix defines
coefficients in a regression. By choosing targets in this regression to be zero,
we can find simpler models for the covariance matrix with fewer parameters to
estimate. A heuristic is suggested for searching for these parameters, guided by
measuring classification performance on a ten-fold cross-validation, with the goal
of finding sparse inverse covariance matrices where only the elements useful for
classification are estimated. By reducing the number of parameters to estimate,
variability in these covariance estimates is reduced. The results suggest that clas-
sifiers based on these sparse covariance matrices have improved generalization
performance.

The main contribution of this paper is a novel approach for expressing and
estimating sparse covariance approximations for high dimensional classification
problems. We propose a heuristic for only estimating the necessary parts of the
class-wise covariance matrices based on a simple search algorithm. The reduction
in the number of parameters to estimate reduces the variability in the remain-
ing parameters, while we still are using the full dimensional feature space for
classification, gaining increased class separability.

2 Sparse Class Conditional Covariance Matrices

Consider a classification problem with k classes, assuming class conditional dis-
tributions to be Gaussian with mean μk and class-wise covariance matrices Σk.
It is well known that this reduces to comparing the k quadratic discriminant
functions gk(x) = − 1

2 log|Σk| − 1
2 (x− μk)′Σ−1

k (x− μk) + logπk, where πk is the
a priori probability for class k. Noting that −log|Σk| = log|Σ−1

k |, it is clear that
there is no need for matrix inversion when classifying data, if we have a method
for estimating the inverse covariance matrices directly.

2.1 Parametrization of the Inverse Covariance by the Modified
Cholesky Decomposition

We decompose the inverse covariance matrix as a modified Cholesky decompo-
sition [2]

Σ−1 = LDLT ,

where Li is a lower triangular matrix with ones on the diagonal
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L =

⎡⎢⎢⎢⎢⎢⎣
1

−α2,1 1
−α3,1 −α3,2 1

...
. . .

−αp,1 −αp,2 −αp,p−1 1

⎤⎥⎥⎥⎥⎥⎦
and D a diagonal matrix. If we were to consider the features of each sample as
a time-series, the elements in L can be seen row-wise as parameters in autore-
gressive processes of the same order as the row r. Several authors in the time
series literature have noted this [3], [4], [5]. We will use this fact to transform
the task of approximating covariance matrices into a sequence of regressions.
For each row, r, one could then ”predict” the next feature based on the r − 1
preceding features. Keeping with the earlier notation, and assuming zero mean
for readability, this can be expressed as:

xr =
r−1∑
j=1

αr,jxj + εr (1)

where the rth diagonal entry of Dr,r = var(εr) This parametrization has the
effect is that the resulting covariance matrix will still be positive definite, as
long as the diagonal elements of D are positive.

2.2 Search for a Sparse Representation of the Class-Wise
Covariance Matrices

As pointed out earlier, [1] proposed to choose the sparsity of the inverse co-
variance matrices using a sequential forward feature selection. Clearly this is
infeasible for high dimensional data where the number of unique elements in the
covariance matrix is in the thousands or tens of thousands, thus we have to resort
to a heuristic. The general idea of the proposed method is to find a sufficiently
complex covariance matrix to solve our classification problem, by evaluating a
search space that is small enough to handle.

Search Algorithm. From the regression formulation in equation 1 we can
argue that a zero αr,j indicates that when predicting xr, xj does not carry
much interesting information. For all rows, if we were to zero the coefficient of a
preceding feature, we could, using time-series terminology, argue that we ignore
a specific lag when predicting the next feature. If we ignore a specific lag for all
rows in our sequence of regressions, all elements in an off-diagonal in L can be
set to zero. Consider the illustration of a sparse L in figure 1, where the sparse
L matrix has only two off-diagonals where we estimate parameters.

We can also observe that zeros in the inverse covariance matrix means condi-
tional independence. It is well known that when there is a zero in position (i, j)
of the inverse covariance matrix, xi and xj are independent, conditioned on the
rest of the features [6]. Informally this means that given all other features, xi

does not carry information regarding xj and vice versa. For data that has some
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specific order, for example discretized curves, the intuition that the correlation
between neighboring features does not carry information useful for discrimina-
tion between classes, and in some cases is even detrimental to classifier results,
was established in [7]. Our proposed heuristic for reducing the search space for
a sparse representation of the inverse covariance matrix is based on the same in-
tuition, that some of the correlations between features do not help in separating
the classes, and thus can be dropped.

The general idea is to start by approximating the covariance matrices with
the simplest possible models, i.e. diagonal matrices, and add parameters to the
approximation until the classification performance of the model does no longer
improve. With regard to our proposed heuristic, we search for which off-diagonals
in the covariance matrices that needs to be estimated in order to improve classi-
fication performance on the training data. The search, guided by ten-fold cross-
validation (10-CV) as a performance measure, can be described by the following
steps:

1. Initialization - Estimate diagonal inverse covariances for all classes k, Σ−1
k

and calculate 10-CV performance. The parameters to estimate is the vari-
ances in Dk.
No parameters in Lk are estimated.

2. Search - Select off-diagonals in Lk to be nonzero in a sequential forward
manner
(a) Find the 10-CV performance gain when adding each individual off-

diagonal to the pool of parameters to estimate
(b) Add the one off-diagonal that gives the largest improvement in 10-CV
(c) Loop from a) until 10-CV performance does not improve further.

3 Maximum Likelihood Inverse Covariance Estimates

In regard to our motivation in the previous sections, we can develop Maximum
Likelihood estimates for the inverse covariance matrix. By the modified Cholesky
decomposition Σ−1

k = LkDkL
T
k [2], the log-likelihood function for the class-wise

inverse covariance for class k can be expressed

l(Σ−1
k ) =

Nk∑
l=1

[−1
2
log(|Σk|)−

1
2
(xl − μk)TLkDkL

T
k (xl − μk)]

where Nk is the number of samples in class k. Express Lk = I−Bk, where Bk is a
lower triangular matrix with zeros on the diagonal. It is clear that the parameters
we need to estimate are the diagonal elements of Dk and the lower triangular
elements of Bk. We adopt the following notation: Let xl,r be the r’th feature of
the l’th sample xl = xl,1:p, where p is the dimensionality of the feature space. Let
Bk,r,1:(r−1) be the nonzero elements of row r of Bk, i.e. lower triangular elements
of the matrix in the given row. See the illustration in figure 1 for an illustration
of which matrix elements in Bk that are estimated for row r. Likewise, xl,1:(r−1)
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is the r − 1 first features of sample l in the dataset. To simplify the expression,
we write vl,k = xl −μk, which gives the further expressions vl,k,r and vl,k,1:(r−1)
using the same notation as before. We can rewrite the likelihood using these
definitions, letting r index diagonal elements σ2

k,r of Dk and observing that the
log-determinant of Σk can be written as the sum of the diagonal elements of
D, since the determinant of a matrix product can be written as a product of
determinants, and further that |Lk| = 1 by definition. The likelihood becomes

l(·) =
1
2

Nk∑
l=1

log(|Dk|)− ((I −Bk)T vl,k)TDk((I −Bk)T vl,k)

=
1
2

Nk∑
l=1

p∑
r=1

logσ2
k,r −

p∑
r=1

[(I −BT
k,r,1:(r−1))vl,k]2σ2

k,r

=
1
2

Nk∑
l=1

p∑
r=1

logσ2
k,r −

p∑
r=1

[vl,k,r −BT
k,r,1:(r−1)vl,k,1:(r−1)]2σ2

k,r

To estimate the elements of the diagonal matrix Dk, differentiate by σ2
r,k, and

set to zero
σ2

r,k =
Nk∑Nk

l=1[vl,k,r −BT
k,r,1:(r−1)vl,k,1:(r−1)]2

Furthermore, we find the estimate of Bk row-wise by differentiating the log-
likelihood by Bk,r,1:(r−1) and set to zero. This gives

Nk∑
l=1

[σ2
r,k(vl,k,r −BT

k,r,1:(r−1)vl,k,1:(r−1))vT
l,k,1:(r−1)] = 0,

which after some rearranging leads to

Bk,r,1:(r−1) = [
Nk∑
l=1

vl,k,1:(r−1)v
T
l,k,1:(r−1)]

−1[
Nk∑
l=1

vl,k,rv
T
l,k,1:(r−1)],

which is the result of regression of vl,k,r onto all previous elements in vl,k , i.e.
vl,k,1:(r−1).

Sparse Regressions of Bk,r,1:(r−1). The sequence of regressions can be sim-
plified if we assume that some elements of Bk,r,1:(r−1) are always zero. This way
we can simply remove the corresponding predictors, vl,k,1:(r−1), and thus only
estimate the nonzero parameters. Consider figure 1 where it can be seen that
for row r of Bk has only two targets in the regression not defined to be nonzero.
The implicit sparsity in the representation of the inverse covariance matrix can
be considered a feature selection in each regression. This reduces the size of the
matrix to be inverted in the regressions, which might give a classifier that is more
resilient to low sample counts, since the number of samples needed to make this
matrix inversion ill-conditioned might be much lower than in the conventional
case.
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Fig. 1. Illustration of a matrix of correlations, L, for the inverse covariance matrix .
The matrix is lower triangular, with 1 on the diagonal, the elements to estimate is
below-diagonal and is represented with B in the text. The sparsity in the covariance
estimate is obtained by only estimating the matrix elements in some off-diagonals. The
matrix is estimated by a sequence of regressions, one for each row in the matrix B. Thus
for row r, we estimate the elements Bk,r,1:(r−1). These regressions can be simplified if
we define that all elements not in the chosen off-diagonals are zero.

4 Experiments

In our experiments we used the mfeat dataset [8], which is a set of images of
handwritten numerals. The data consists of 10 classes, each having 200 samples,
and the dataset was split randomly in half to generate training and test data.
Performance when training was measured using ten-fold cross-validation. From
the images, three different feature sets were considered, 47 Zernike moments,
64 Karhunen-Loève coefficients, and 76 Fourier coefficients. The classifier used
in our proposed method is a Gaussian Maximum Likelihood classifier, assuming
class-wise covariance matrices (GML-quadratic). All covariance matrices are ap-
proximated with the same off-diagonals according to the results from the search
strategy. In table 1, results of some comparable classifiers on these data are
given. The results from the proposed method is included for reference. The clas-
sifiers are Gaussian ML classifiers assuming common covariance (GML-linear)
and class-wise covariances (GML-quadratic), support vector machines with lin-
ear (SVM-linear) and quadratic (SVM-quadratic) kernels, and Parzen density
estimation. Note that Zernike moments and Fourier are rotation invariant fea-
tures, so much of the error in the classification is actually confusion between 6
and 9.

In figures 2(a), 2(b) and 2(c), the error rate by cross-validation and on test
data is given as a function of the fraction of covariance elements compared to
a full model. A full model estimates the entire covariance matrix for each class,
just as a GML-quadratic classifier, but still avoids inverting the covariance ma-
trix. Interestingly, avoiding matrix inversion in the classifier seems to make the
classifier slightly more stable than the conventional GML classifier. Figure 2(a)
considers the Zernike moment feature set. The classification performance by
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(c) Fourier coefficients

Fig. 2. Error rates for the proposed method by cross-validation and on test data com-
pared to the fraction of covariance parameters of a full model for (a) 47 dimensional
Zernike moments feature set, (b) 64 dimensional Karhunen-Loève feature set and (c)
76 dimensional Fourier feature set. For the Zernike and PCA feature sets, around 30%
of the parameters of a full model seems sufficient for good generalization performance.
For the Fourier feature set the number of parameters sufficient for a good classifier
is around 25%. These choices is clearly suggested by the cross-validation classification
error.

cross-validation has a minimum at 36.8% of the covariance parameters, and the
mean result on the test data for that fraction of parameters is 17.4%. The same
results for the Karhunen-Loève feature set are given in figure 2(b). The minimum
by crosss-validation is here at 29.6% of the parameters, and the mean classifica-
tion result for this experiment is 3.7%. For the Fourier coefficient feature set the
results are shown in figure 2(c). This feature set had a minimum classification
error by cross-validation at 25.1% of the parameters, and the classification result
on the test set was 18.2%. Note the far right on the figures, since the number
of samples available for training is nearing the dimensionality of the dataset, a
full covariance model will be near singular and even the proposed model col-
lapses. However, the decline is very graceful, and does not start until 80% of the
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Table 1. Error rates (in percent) for classifiers on test data (100 samples per class for
training), and on simplified models found by the proposed method on the three feature
sets, Zernike moments, Fourier coefficients and Karhunen-Loève coefficients.

Classifier Zernike Fourier K-L
GML-quadratic 19.8 23.9 6.8
GML-linear 18.2 18.5 4.5
SVM-linear 18.3 19.6 6.4
SVM-quadratic 15.7 15.9 2.1
Parzen 18.5 17.0 3.0
Proposed method 17.4 18.2 3.7

parameters of the model is used. These results are summarized in table 1, and
compared with results for other classifiers.

All experiments indicated a gradual decline in performance as the number of
features estimated increased, however, at the same time the performance curves
in figures 2(a), 2(a) and 2(c) indicate that for three different feature sets, there
is a fairly wide area where the classification performance on the test set is good.
In all the experiments, the minimum classification error by cross-validation oc-
curred in this area.

Considering the results presented in table 1, we observe that the proposed
method is certainly competitive with conventional methods.

5 Conclusion and Future Work

Using results from time series analysis, we have proposed a novel approach
for estimating sparse covariance matrices in full dimensional feature spaces for
Gaussian ML classifiers. Experiments on different feature sets of a handwritten
numeral classification problem indicates that it performs equally, or better than
conventional classifiers. The results from these initial experiments are encourag-
ing, and suggests the usefulness of further research in this direction.

We envision that this approach will be useful for reducing the number of para-
meters to estimate in a mixture of Gaussians classifier, where the motivation for
using the sparsest possible model for component distributions is even stronger.

Future work with this method will focus on improving the selection heuristic.
The present heuristic of choosing off-diagonals in L to estimate is intuitive when
there is some clear correlation structure in the data that is present in the entire
feature set. An example of this is the strong correlation between neighboring
features when using discretized curves as input. Another improvement would be
to consider selecting different off-diagonals to estimate for each class.
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Abstract. Exploiting the fact that one is dealing with time signals, it is possible
to formulate certain blind source (or signal) separation tasks in terms of a simple
generalized eigenvalue decomposition based on two matrices. Many of the tech-
niques determine these two matrices using second-order statistics, e.g., variance,
covariance, autocorrelation, etc.

In this work, we present a second-order, covariance-based method to deter-
mine the independent components of a linear mixture of sources. This is ac-
complished without the use of a possible temporal variable on which the data
may depend, i.e., we explicitly avoid the use of autocorrelations, time delay, etc.
in our formulation. The latter makes it possible to apply the simple eigenvalue
decomposition-based technique to general pattern recognition methods and as
such to find possible independent components of generic point clouds.

1 Introduction

Blind source or signal separation (BSS) and independent component analysis (ICA)
are—often linear; the case we consider—unsupervised learning methods that attempt
to decompose a (set of) random vector, e.g. feature vectors, into components which are
independent, or at least as independent as possible in a certain sense. As such, these
techniques improve upon well-known principal component analysis which does not go
beyond the decorrelation of the respective input signals.

Although many of the approaches to and variations on BSS and ICA are generally
applicable [7,17], most of them are specifically designed to solve source separation
problems for time-series. Under certain assumptions (see below), exploiting character-
istics of time-dependent signals, some of the source separation problem can be solved
particularly easy. These approaches merely involve the determination of two matrices
and a generalized eigenvalue decomposition using these matrices, i.e., performing a
simultaneous diagonalization of them. Typical assumptions are related for example to
the presence of autocorrelation within the sources or stronger assumptions such as pe-
riodicity of the individual components. Often, the first one of the two matrices to be
determined is simply the covariance matrix of the total data, i.e., it uses second-order
information. The entries of the second matrix may be determined using time-delayed
observations, higher-order statistics, frequency components, etc.

In this paper, we formulate a BSS method that only exploits second-order moments,
i.e. variances and covariances and is eigenvalue decomposition-based, but which does
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not need any kind of temporal assumptions. This implies that the method is also easily
and generally applicable to common pattern recognition data: A collection of feature
vectors in n-dimensions that are independently and identically distributed.

The idea for our approach comes in part from the work of Holland and Wang [14,15]
in which regional or local dependencies of a probability density function are defined.
These local dependencies can be directly related to localized versions of Pearson’s cor-
relation coefficient [19] or, more generally, to local moments of a probability density
function [21]. In Section 3, it is explained in what way specifically local covariances
are of use to our approach. This is done right after, in Section 2, we introduced the BSS
problem we consider and the general joint diagonalization approach pursued by several
authors. First however, we give a, necessarily, brief overview of related approaches.

Related Methods. [23] provides a nice introduction to BSS using the technique of joint
diagonalization. Some further remarks and references to BSS based on eigendecompo-
sitions can be found in [25] and, more generally, in [4]. [8] discussed more broadly the
current state of BSS and ICA.

A classic work, based on second-order moments, uses a time-delayed approach to
signal separation into independent components [20]. The main assumption here is that
the signal is non-stationary, or better, that sources do not have a constant power pro-
file over time. Another well-known work is [26], which exploits the cross-correlation
present in non-white signals also using time-delays for this. A third paper [5] uses yet
another possible characteristic and assumes non-Gaussianity of the sources. Like the
first two, its solution is based on a generalized eigendecomposition, however here both
second- and fourth-order moments are used to determine the two matrices involved.
Non-stationarity also plays a role in [24] and [2], while [16] exploits the non-stationarity
of the variance of the signal, employing a fixed-point algorithm to optimize the separa-
tion criterion. An approach in which the sources may be temporally white but spatially
colored is presented in [10].

A different approach utilizes a cyclostationarity assumption [11,12]. A similar ap-
proach is pursued in [1], but here a more involved iterative algorithm is needed. [18]
makes the very strong assumption of periodic sources.

[22] using temporal dependence between the sources and presents an approach which
works in the Fourier domain like [3]. Both methods again use that one is dealing with
time signal. [9] uses time-lags and higher-order statistics. Similar work is presented
in [6], in which non-stationarity, the temporal structure of sources, and time-delayed
correlation matrices are exploited.

Contrary to all previously mentioned works, in this work, we solve the BSS task
based on second-order moments only without the need to make assumptions about,
e.g., temporal dependencies in the sources.

2 Eigenvalue Decomposition-Based BSS

In the BSS problem, we are given T n-dimensional vectors x(t). Typically, t is the time
instance at which the n (random) observations, stored in x(t), took place. (However,
as already indicated, a main point in this work, is that t can be considered merely an
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index to the several xs.) Now, in addition, we assume that the observations x(t) are
obtained by linearly mixing n statistically independent source signals1. Denoting the
n-dimensional vector of sources as s(t), we more precisely assume that there exists an
invertiblen×n mixing matrix A for which x(t) = As(t) for all t. (We assume, through-
out the paper and without loss of generality, that all signals have zero expectation.) The
actual BSS problem is to determine a good estimate for an inverse transformation A−1,
the so-called unmixing matrix.

Now, to start with, we note that various cross-statistics of the observations x(t)
are obtained by the matrix A and the diagonal cross-statistics of the sources s(t)
[23]. As an example, for the t-averaged covariance matrices, we have the following
equivalence:

Cx :=
∑

t

E[x(t)x′(t)] =
∑

t

AE[s(t)s′(t)]A′ =: ACsA
′ .

Assuming independent sources, Cs is diagonal. Similar relations can be deduced based
on more specific assumption, like the ones mentioned in the introduction. As an exam-
ple: For non-white sources, one can use time-lagged second-order statistics [23,26]:

Cx(τ) :=
∑

t

E[x(t)x′(t + τ)] =
∑

t

AE[s(t)s′(t + τ)]A′ =: ACs(τ)A′ ,

in which τ is the time lag and where again the source matrix is diagonal if the sources
are independent.

Such two conditions, or similar ones, are sufficient for source separation and the
inverse transformation matrix A−1 can be recovered, up to permutations and scaling,
as the matrix V fulfilling the generalized eigenvalue equation CxV = Cx(τ)V Λ in
which Λ is a diagonal matrix with all eigenvalues on its diagonal (in many articles
cited in the introduction, one can find the derivation for this). Another way to solve
it, which will later on be our actual method of choice, is as follows (see e.g. [13]).
Firstly, whiten the data x(t) by transforming it with C

−1/2
x . Secondly, determine Cx(τ)

for the transformed data and the eigenmatrix E of this matrix, i.e., the matrix with all
eigenvectors of Cx(τ) as columns. Finally, set A−1 = E′C−1/2

x .
Now, in order to make such simple technique applicable to data not necessarily sub-

ject to temporal or any other kind of ordering, we need to come up with a second matrix
that does not assume such ordering. Note that for the first matrix we can simply take
the data’s global covariance matrix.

3 Local and Global Covariance

Consider the covariance localized by a kernel K in the n dimensional signal space

CK = EK [(x(t)− EK(x(t))][x(t) − EK(x(t))]′ .

1 We do not consider the overdetermined and underdetermined cases here. We only consider the
exactly determined case, i.e., the number of sources is equal to the number of observed signals.
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EK indicates that the kernel weighted expectation is taken.
It is not hard to demonstrate that if K is separable, i.e.,

K(x(t)) =
n∏

i=1

Ki(xi(t)) ,

and all n variables are independent of each other, that CK becomes diagonal; for inde-
pendent, variables the covariance splits out in two terms that both integrate to zero—just
as in the calculation for a global covariance matrix with independent variables—and the
off-diagonals all become zero.

Shrinking the kernel size to zero, one can define point-local (co)variances [21]. These
local second-order moments are directly related to the localized version of Pearson’s
correlation coefficient [19], which in turn can be simply derived from the so-called local
dependence function proposed by Holland and Wang [14,15]. An interesting property
of these measures is that they are zero everywhere if and only if all n variables are
mutually independent.

In the light of these results, we can state that CK can be non-diagonal for certain
K if and only if the variables, i.e., the observed signals, are dependent. This means
that if we have such kernel, we can use the resulting local covariance matrix CK as the
second matrix in the generalized eigenvalue decomposition to solve the BSS problem.
Of course, this definition of the second matrix leaves quite some room for choices. For
the experiments, we stick to one particular choice, which is given in the next paragraph
together with a brief recapitulation of the whole approach.

Specific Approach used in the Experiments. The specific approach, which we use in the
next section to demonstrate the methodology, is based on a very simple block kernel

K(x(t)) =
n∏

i=1

1[−r,r](xi(t)) ,

i.e., the product of n indicator functions on the interval [−r, r] around the origin, i.e., a
(hyper)cube centered at the origin and with sides of length 2r.

In more detail the specific source separation approach used in the next section to
demonstrate the possible performance is as follows (recall the end of Section 2).

1. Centralize the data and calculate the data’s global (or total) covariance matrix Cx.
2. Whiten the centralized data: x(t) �→ C

−1/2
x x(t).

3. Determine on the transformed data the localized covariance matrix CK , where r is
set to two2. Equivalently, determine all data points that are within the (hyper)cube
induced by K and determine the sample covariance matrix of these points.

4. Eigendecompose CK : CK = EΛE′.
2 r = 2 is a bit of an arbitrary choice. Generally, with too large an r, all data will lay in the

(hyper)cube and therefore CK will be equivalent to Cx and so the eigenvalue problem is still
underdetermined. For r to small, estimating CK might be based on too few data points, possi-
bly leading to instable results. The current choice ensures that about 80% of the observations
are used in the estimation process.
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5. Let the estimate Â−1 of the inverse of the mixing matrix A equal E′C−1/2
x .

6. Transform the original centralized data to obtain the estimated source outputs:
x(t) �→ Â−1x(t).

4 Some Illustrative Experiments

To demonstrate the performance of our method, we generated two rather different 3-
dimensional data sets consisting of 10,000 points on which we tested it. Figures 1 and 2
give a pictorial overview of both data sets, their mixed versions, and the source separa-
tion obtained with the new approach. The mixing matrix A is given by

A =

⎛⎝ .86 .31 .41
.88 .67 .47
.37 .97 .94

⎞⎠ ,

which introduces a lot of dependency between the observed signals.
In the four rows of the figures, we see, from top to bottom: The histograms of the

three sources; the three pairwise 2D projections of the three sources; the three projec-
tions of the mixed data along the axes; the three pairwise 2D projections of the unmixed
data, i.e., the source estimates. We note again that sources can only be reconstructed up
to permutations of the sources and scaling of them. This is also visible in the resulting
unmixed signals.

As is clear from the figures, the method is capable of finding the independent com-
ponents with a reasonable precision although some seems not to have been recovered
entirely satisfactory, which also can be seen from the slight tilting of the distribution in
the 2D projections.

An additional check of how good the performance of the method is, is to look at the
matrix Â−1A which should be a permutation matrix of a perfectly diagonal matrix—in
our case this diagonal should only consist of −1s and +1s—if the BSS would work
flawlessly. For the data displayed in Figure 1, we have

Â−1A =

⎛⎝ 1.000 −0.016 0.014
−0.028 −0.014 1.000
0.004 1.000 0.028

⎞⎠ .

For the data displayed in Figure 2, we have

Â−1A =

⎛⎝0.013 0.021 −1.000
0.013 1.000 0.032
1.000 −0.004 0.005

⎞⎠ .

Both these matrices are quite close to a permuted (−1, +1)-diagonal matrix, however
several “off-diagonal” entries are possibly not entirely negligible.
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Fig. 1. Results on first artificial data set. From top to bottom row: Histograms of three independent
sources (from left to right: exponential, uniform, and normal distribution), 2D pairwise scatter
plots of three sources, 2D projections along axes of mixed data, 2D pairwise scatter plots of three
estimated, unmixed sources.
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Fig. 2. Results on second artificial data set. From top to bottom row: Histograms of three inde-
pendent sources (from left to right: ‘double’ uniform, normal, and normal ‘to the power of three’
distribution), 2D pairwise scatter plots of three sources, 2D projections along axes of mixed data,
2D pairwise scatter plots of three estimated, unmixed sources.
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5 Discussion and Conclusion

A novel generalized eigendecomposition-based approach to the blind source separation
problem is presented, which only exploits second-order covariance structures and does
not build on any assumptions coming from the presence of any kind of intrinsic ordering
of the data, e.g. no time dependence is assumed. An important consequence is that this
makes it possible to use these type of simple source separation techniques within the
general pattern recognition setting.

The approach presented here is built upon determining the global covariance matrix
of the data and a notion of local covariance matrix. Having these two matrices leads to
a fully determined generalized eigenvalue problem based on which the BSS problem
can in principle be solved. The notion of local (co)variances is inspired by the work on
local dependence functions and moments [14,15,19,21].

The experiments on two artificial data sets showed that reasonable performance can
be obtained based on a very simple choice of local covariance.

One way to possibly improve this, is by designing the local covariance matrix (i.e.,
the kernel K) more carefully. A better approach, is to estimate several local covariance
matrices and perform a joint (approximate) diagonalization of these matrices. This is
the approach often pursued in the eigendecomposition-based BSS techniques discussed
in the Introduction (see [23] and, for example, [24]). Often these techniques also have
to base their analysis on more than two matrices because of their sensitivity to outliers,
noise, small samples, etc. Carrying out such additional experiments is part of future
research.

Possibly more interesting is the question how the technique relates to supervised
dimensionality reduction approaches. The generalized eigendecomposition approach to
BSS is, for example, very reminiscent of the calculations performed in Fishers’s linear
discriminant analysis (LDA) [13], where the second local covariance matrix is replaced
by an estimate of the average within-class scatter. Relating such techniques, one may
gain deeper insight in their behavior.

In conclusion we presented a promising framework, based on which interesting fur-
ther research may be conducted. The method proposed is generally applicable, easy to
use, and able to perform BSS on generic n-dimensional data vectors.
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Abstract. This work presents a band selection method for multi and
hyperspectral images using correlation among bands based on mutual
information measures. The relationship among bands are represented by
means of the transinformation matrix. A process based on a Determinis-
tic Annealing optimization is applied to the transinformation matrix in
order to obtain a reduction of this matrix looking for the image bands as
less uncorrelated as possible between them. Some experiments are pre-
sented to show the effectiveness of the bands selected from the point of
view of pixel classification.

Keywords: Multispectral images, mutual information, deterministic an-
nealing, unsupervised feature selection.

1 Introduction

Hyperspectral sensors acquire information in large quantities of spectral bands,
which generate hyperspectral data in high dimensional spaces. These systems use
multispectral image representations in order to estimate and analyze the presence
of vegetation pathologies, substances or chemical compounds, pathologies, and
so on, providing a qualitative and quantitative evaluation of those features.

When having available hyperspectral data, a common question to be solved
is how to select the right spectral bands to characterize the problem. The main
objective of band selection in multispectral imaging is to avoid redundant infor-
mation and reduce the amount of data to be processed. Therefore, from the point
of view of remote sensing, we would be interested in feature selection [3] rather
than in feature extraction [7]. For instance, obtaining a new set of reduced im-
age representations from a linear combination of the whole set of original image
bands is not desirable, since we would need the total amount of information to
obtain the new features. On the other hand, selecting a subset of relevant bands
from the original set, allows the process of image acquisition to be reduced to
a certain number of bands instead of dealing with the whole amount of data,
making simpler the image acquisition and analysis.

In the framework of multispectral imaging, another possible answer to the
problem of feature selection would be using an unsupervised approach [4][2].
In this work, a Deterministic Annealing (DA) approach is used to analyze the

D.-Y. Yeung et al. (Eds.): SSPR&SPR 2006, LNCS 4109, pp. 853–861, 2006.
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amount of information contained in the mutual information matrix, which repre-
sents the relations of information between pairs of spectral bands. The proposed
algorithm uses a Deterministic Annealing (DA) approach to look for groups
of bands as less correlated as possible, representing correlation between image
bands by means of mutual information. Selected bands are further used in pixel
classification tasks to assess the performance of proposed technique.

2 Deterministic Annealing for Rank Reduction

Let us consider a pair of random variables Ai and Aj , representing the image
bands i and j. The amount of information contained in both images can be ex-
pressed as the joint entropy H(Ai, Aj) =

∑
p(ai, aj) log2

1
p(ai,aj)

, where p(ai, aj)
represents a joint probability distribution.

For two images i and j, the joint probability distribution p(ai, aj) of both
images can be estimated as p(ai, aj) = h(ai,aj)

MN , where h(ai, aj) is the joint gray
level histogram, and the normalizing factor, MN (M columns and N rows) is
the image size.

Mutual information H(Ai:Aj) is a basic concept in information theory [1].
It measures the interdependence between random variables. In the case of two
images, the mutual information is defined as:

H(Ai : Aj) = H(Ai) + H(Aj)−H(Ai, Aj) (1)

where H(Ai), H(Aj) are the entropy of images i and j, and H(Ai, Aj) is the
joint entropy.

One way to establish the interdependence between a set of features is defining
the transinformation matrix. In our framework, this is a square matrix represent-
ing the mutual information between pairs of image bands. The diagonal terms
represent the entropy of single bands, and contiguous bands in the spectrum
tend to be highly correlated (brighter values in Fig 1).

The technique here proposed is aimed at reducing the rank of the transin-
formation matrix by selecting a given number of features that minimize the
correlation among them. Therefore, we look for a global minimum without car-
rying out a search of subsets of features in the feature space. The process must
be capable of picking up a subset of bands, in order to obtain as better per-
formance as possible from the classification point of view reducing the feature
space.

Discretizing the mutual information and representing the transinformation
matrix as an ”image” with gray levels (see Fig 1), defines a spreading measure
of the information in the gray level distribution of the matrix. This measure
will estimate the information contained about the appearance of the different
regions of the spectrum in the matrix. Thus, we can analyze the probability that
the event (value associated with each position of the matrix) takes place. This
probability nij can be calculated as nij = hij/D

2, where hij is the value in the
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(a)

Fig. 1. Transinformation matrix for a multispectral image with 128 wavebands. Darker
values represent less correlation.

histogram for the gray level at i and j. Including the probability nij in each
position in the matrix, we define the following function of information as:

Iij = nijH(Ai : Aj). (2)

From the function Iij , we are interested in associating a probability of sig-
nificance p(Iij |ij) for each position i and j in the matrix. This probability will
mean how relevant is the interaction of band i and j for the problem. Therefore,
a probabilistic model is applied over each position of the matrix p(Iij |ij). It is,
thus, possible to utilize DA to obtain the image bands that contain higher values
of significance in the matrix. To apply DA in such a framework, the following
requirements must be fullfiled:

– The entropy S of the distribution of probabilities p(Iij |ij) associated to this
representation of ”level of uncertainty” must be maximum.

– The sum of probabilities are normalized to one.
– The product of p(Iij |ij) per the value of Iij between pairs of bands, provides

a value about the amount of information I associated to the ensemble.

Therefore, we can establish the the following relation:

S = −
D∑

i=1

D∑
j=1

p(Iij |ij) log
p(Iij |ij)

pij
(3)

subject to

D∑
i=1

D∑
j=1

p(Iij |ij) = 1 and
D∑

i=1

D∑
j=1

p(Iij |ij)Iij = I (4)
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where pij is proportional to the prior contribution of each relation between pairs
of bands. Thus, S is the entropy relative to some “measures” pij that has to be
maximized [5]. To maximize S subject to the constraint Eq 4, we can introduce
Lagrangian multipliers α and β,

S − α

⎛⎝ D∑
i=1

D∑
j=1

p(Iij |ij)− 1

⎞⎠− β

⎛⎝ D∑
i=1

D∑
j=1

p(Iij |ij)Iij − I

⎞⎠ (5)

Setting the partial derivative of Eq 5 with respect p(Iij |ij) to zero, we obtain
the following expression,

− log p(Iij |ij)− 1 + log pij − α− βIij = 0 (6)

where
p(Iij |ij) = pije

−α−1−βIij (7)

Taking into account that the sum of probabilities are normalized to one, then

D∑
i=1

D∑
j=1

pije
−βIij = e1+α = Z (8)

where Z is the so-called partition function and

p(Iij |ij) =
pije

−βIij

Z
(9)

Taking β = 1
T , our probability function is expressed as

p(Iij |ij) =
pije

−Iij/T∑D
i=1
∑D

j=1 pije−Iij/T

and
pij = Iijp(Iij |ij)

The result is the Bayes’ Theorem, where we can obtain the posterior probabil-
ity distribution for each position through the exponential function of the values
observed in the matrix multiplied by the prior probability pij .

The initialization of DA starts with large enough values of T , and a uniform
distribution of probabilities p(Iij |ij) = 1/D2. The initial set of features X to
choose is empty. As T → 0 a reduction of the amount of information I is carried
out. In practice, the system is annealed to a low temperature, such the amount
of information I (“level of dependence” of the matrix) is sufficiently small.

On the other hand, we express the probability contributions of each band Ai

accumulating for each row or column i (the matrix is symmetrical) as:

Bi =
D∑

j=1

p(Iij |ij) (10)
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While T decreases, the difference between the values of p(Iij |ij) grow up. As
T goes down, the probability contributions of some bands Bi → 0, but it is
possible that further in the annealing, with lower T , previous low values of Bi

grow up for the new circumstances. Only if Bi
∼= 0, we can almost assure that

the corresponding band will not contribute in the probability distribution in the
next iterations.

Summarizing, a brief sketch of the algorithm is as follows:

1. Initialize: T = T0, p(Iij |ij) = 1/D2 and |X | = 0
2. Minimize: F = I − TS
3. Calculate: Bi =

∑D
j=1 p(Iij |ij)

4. If Bi
∼= 0 then: X ← (X ∪Ai)

5. Count the number of image bands R such: Bi > 1/D
6. Lower Temperature: T ← q(T )
7. Go to step 2 while R ≥ 2

In our experiments, we used an exponential schedule to reduce T , q(T ) = αT ,
where α < 1, but other annealing schedules are possible. At the end of the
algorithm, the probability contributions Bi are concentrated in the two best
bands with values about � 0.5.

3 Empirical Results

To test the proposed approach, different databases of multispectral images are
used in the experiments:

1. Multispectral images of oranges obtained by an imaging spectrograph
(Retiga-Ex, Opto-knowledge System Inc. Canada). This database was cap-
tured in to spectrum range, VIS collection (400-720 nm in the visible) and
NIR collection (650-1050 nm in the near infrared). In both cases, the camera
has a spectral resolution of 10 nanometers. The database includes several
kinds of defects. It has eight classes, obtaining 1463346 labelled pixels from
VIS and 1491888 labelled pixels from NIR.

2. Spectral image (700 X 670 pixels) acquired with the 128-bands HyMap spec-
trometer during the DAISEX-99 campaign (http:/io.uv.es/projects/daisex/),
and six different classes were considered in the area (see Fig 2 (b))

3. Spectral image (145 X 145 pixels) acquired with the AVIRIS data set with
220 bands collected in June 1992 over the Indian Pine Test site in North-
western Indiana (see Fig 2 (c)). The data set is designated as 92AV3C, and
it has seventeen classes.(http:/dynamo.ecn.purdue.edu /∼biehl/MultiSpec)

In order to assess the performance of the method, a Nearest Neighbor (NN)
classifier was used to classify pixels into the different classes. The performance
of the NN classifier was considered as the validation criterion to compare the
significance of the subsets of selected image bands obtained by the proposed ap-
proach and other methods (two supervised and one unsupervised approaches) in
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(a) (b) (c)

Fig. 2. (a) Example of RGB composition for an orange image in the Visible spec-
trum. (b) HyMap RGB composition, Barrax, Spain. (c) RGB composition of AVIRIS
(92AV3C: NW Indiana’s Indian Pine test site).

the experiment carried out. To increase the statistical significance of the results,
the average values over five random partitions were estimated.

In the case of supervised approaches, the main motivation is that the labelled
data contains information about the distribution of classes exiting in the hyper-
spectral data, and they allow the search for relevant feature subsets. Comparing
the performance with those approaches, we can measure the capability to ob-
tain subsets of relevant features (image bands) by the introduced DA approach
without a prior knowledge of the class distributions in the multispectral image.

The first method is the well-known ReliefF algorithm [6] based on pattern dis-
tances. The second technique is related to divergence measures between classes.
One of the best-known distance measures utilized for feature selection in multi-
class problems is the average Jeffries-Matusita (JM) distance. To obtain subopti-
mal subsets of features, we have applied a search strategy based on a Sequential
Forward Selection applying this distance ((SFS) JM distance) [3].

Moreover, we evaluated an unsupervised method presented in a previous work
based in information measures between image bands [8]. This approach called
”Minimization of the Dependent Information” (MDI) measures the region of
dependence given a number bands for a multispectral image, and obtains a
minimum interdependence.

3.1 Performance Evaluation

During the image labelling process, there are always pixels in an image that are
not assigned to any class of interest, mainly because they are pixels that either
do not clearly belong to some of the predefined classes or they are assigned to
a complementary class. The pixels that have not been assigned to any class are
labelled as “unknown” class.

The experimental results shown in this section about the classification rates
correspond to the average classification accuracy obtained by the NN classi-
fier over the five random partitions described previously. The samples in each
partition were randomly assigned to the training and test set with equal sizes
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as follows: VIS = 43902 pixels, NIR = 44758 pixels, HyMap = 37520 pixels,
92AV3C = 2102 pixels.

On the other hand, given the huge size of the data sets and the trouble in
computational cost to apply the supervised approaches, particularly in the case
of VIS, NIR and HyMap, the following independent partitions with respect to
the data sets were randomly extracted maintaining the prior probability of the
classes: VIS = 87805 pixels, NIR = 89516 pixels, HyMap = 93804 pixels and
92AV3C = 10512 pixels. Using these databases, the proposed DA and the others
methods were applied in order to obtain a ranking of relevance of the features,
that is, of bands.
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Fig. 3. (a) Results over oranges in VIS. (b) Results over oranges in NIR. (c) Results over
spectral image with HyMap spectrometer. (d) Results over 92AV3C spectral image. In
all cases, it is shown the performance of the NN classifier with respect to the number
of features obtained by DA, (SFS) JM distance and ReliefF .

Fig 3 represents the classification rate with respect to the subset of N bands
selected by each method. Note that the proposed DA method obtained better
performance with respect to the rest of methods in the case of database of VIS,
and similar accuracy for the best of the other approaches for NIR, HyMap and
92AV3C. It is worthwhile mentioning that the DA approach has a good behavior
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Table 1. Computational cost in minutes (m) when selecting all features except for
(SFS) JM distance, where it is shown for 30 features (VIS and NIR) and 50 features
(HyMap and 92AV3C)

Criteria Time (m)
VIS NIR HyMap 92AV3C

ReliefF 198 m 237 m 423 m 20 m
(SFS)JM distance 17 m 49 m 152 m 151 m
MDI 349 m 407 m 2337 m 2446m
DA 4 m 8 m 130 m 102 m

in all cases when choosing the smaller sets of bands (first one to ten), where the
decision is more critical.

ReliefF performs poorer with respect to the other approaches except with
HyMap image, where the performance of (SFS) JM distance is worse. ReliefF
obtains a ranking of relevance for each single feature and the computational cost
grows exponentially with respect to the number of samples in the data set.

(SFS) JM distance provides a high classification accuracy, but the compu-
tational cost grows exponentially with respect to the number of dimensions.
Table 1 shows the computational time in minutes for the tested methods.

MDI provides similar classification accuracy respect to ReliefF but its nature
is completely unsupervised. Moreover, it is not efficient from the computational
point of view to obtain subsets in spaces with high dimensionality. This is mainly
due to the cost of computing the joint probability distributions for each combi-
nation of bands.

In the case of DA, the principal problem arises when the transinformation
matrix is built. Thus, the different co-occurrences of pixels in each pair of image
bands are calculated [8], which represents an quadratic cost in time. On the other
hand, when the matrix is built, the proposed DA method obtain the selected
features very quickly.

Therefore, for the band selection problem, where there exists high correlation
among different features (image bands), the principle of looking for non corre-
lated bands from the different regions of the spectrum, by reducing the mutual
information in the ensemble of image bands, has proven to be an effective ap-
proach to obtain subsets of selected image bands that also provide satisfactory
results from the classification accuracy point of view.

4 Concluding Remarks

In this work, correlation among image bands in multispectral images has been
established in terms of mutual information. The relationships between bands
can be represented by the transinformation matrix. Using this representation,
an approach to rank reduction of the transinformation matrix using Determin-
istic Annealing has been proposed to look for a given number of bands as less
correlated as possible among them.
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Although the proposed method has not been established in terms of class
separability for supervised training sets, it has been shown in the experimental
results that the image bands selected by DA provide very satisfactory results
with respect to classification accuracy when using the selected bands. This effect
is more noticeable when choosing small sets of features, when the decision is
more critical. These two advantages, its unsupervised nature and the ability
to choose relevant bands in the case of small sets, represent the more relevant
characteristics of the proposed approach.
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Abstract. Learning based on kernel machines is widely known as a pow-
erful tool for various fields of information science such as pattern recogni-
tion and regression estimation. The efficacy of the model in kernel
machines depends on the distance between the unknown true function and
the linear subspace, specified by the training data set, of the reproducing
kernel Hilbert space corresponding to an adopted kernel. In this paper,
we propose a framework for the model selection of kernel-based learning
machines, incorporating a class of kernels with an invariant metric.

1 Introduction

Learning based on kernel machines[1] is widely known as a powerful tool for
various fields of information science such as pattern recognition and regression
estimation. Many kernel machines, represented by the support vector machines[2]
and the kernel ridge regression[3,4], are proposed. In these methods, kernels are
recognized as useful tools to calculate the inner product in high-dimensional
feature spaces[3,4].

On the other hand, according to the theory of reproducing kernel Hilbert
spaces[5,6], the essence of using kernels in learning problems is that the unknown
target (classifiers in pattern recognition problems, unknown true functions in
regression estimation problems, and so on) belongs to the reproducing kernel
Hilbert space corresponding to the adopted kernel. On the basis of this essence,
Ogawa formulated a learning problem as an inversion problem of a linear op-
erator from the reproducing kernel Hilbert space corresponding to the adopted
kernel onto a certain vector space concerned with the given training data set
and constructed a series of learning machines, named “(parametric) projection
learning”, that gives a good approximation of the orthogonal projector of the
unknown true function onto the linear subspace, specified by the given training
data set, of the reproducing kernel Hilbert space corresponding to the adopted
kernel[7].
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In the field of machine learning based on kernel machines, the model selection,
that is, the selection of a kernel (or its parameters) is one of the most important
problems. In this paper, we construct a framework of the kernel selection on
the basis of the projection-learning-based interpretation of learning problems,
incorporating a class of kernels with an invariant metric.

2 Mathematical Preliminaries for the Theory of
Reproducing Kernel Hilbert Spaces

In this section, we prepare some mathematical tools concerned with the theory
of reproducing kernel Hilbert spaces.

Definition 1. [5] Let Rn be an n-dimensional real vector space and let H be
a class of functions defined on D ⊂ Rn, forming a Hilbert space of real-valued
functions. The function K(x, x̃), (x, x̃ ∈ D) is called a reproducing kernel of
H, if

1. For every x̃ ∈ D, K(x, x̃) is a function of x belonging to H.
2. For every x̃ ∈ D and every f ∈ H,

f(x̃) = 〈f(x),K(x, x̃)〉H, (1)

where 〈·, ·〉H denotes the inner product of the Hilbert space H.

The Hilbert space H that has a reproducing kernel is called a reproducing kernel
Hilbert space (RKHS). The reproducing property Eq.(1) enables us to treat a
value of a function at a point in D. Note that reproducing kernels are positive
definite [5]:

N∑
i,j=1

cicjK(xi, xj) ≥ 0, (2)

for any N , c1, . . . , cN ∈ R, and x1, . . . , xN ∈ D. In addition, K(x, x̃) = K(x̃, x)
for any x, x̃ ∈ D is followed[5]. If a reproducing kernel K(x, x̃) exists, it is
unique[5]. Conversely, every positive definite function K(x, x̃) has the unique
corresponding RKHS [5].

Next, we introduce the Schatten product [8] that is a convenient tool to reveal
the reproducing property of kernels.

Definition 2. [8] Let H1 and H2 be Hilbert spaces. The Schatten product of
g ∈ H2 and h ∈ H1 is defined by

(g ⊗ h)f = 〈f,h〉H1g, f ∈ H1. (3)

Note that (g ⊗ h) is a linear operator from H1 onto H2. It is easy to show that
the following relations hold for h, v ∈ H1, g,u ∈ H2.

(h⊗ g)∗ = (g ⊗ h), (h⊗ g)(u⊗ v) = 〈u, g〉H2(h⊗ v), (4)

where the super script ∗ denotes the adjoint operator.
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3 Formulation of Learning as Linear Inverse Problems

Let {(yi, xi)|i = 1, . . . , �} be a given training data set with yi ∈ R, xi ∈ Rn,
satisfying

yi = f(xi) + ni, (5)

where f denotes the unknown true function and ni denotes a zero-mean additive
noise. The aim of machine learning is to estimate the unknown function f by
using the given training data set and statistical properties of noise.

In this paper, we assume that the unknown function f belongs to the RKHS
HK corresponding to a certain kernel function K. If f ∈ HK , then Eq.(5) is
rewritten by

yi = 〈f(x),K(x, xi)〉HK + ni, (6)

on the basis of the reproducing property of kernels. Let y = [y1, . . . , y�]′ and
n = [n1, . . . ,n�]′ with the super script ′ denoting the transposed matrix (or
vector), then applying the Schatten product to Eq.(6) yields

y =

(
�∑

k=1

[e(�)
k ⊗K(x, xk)]

)
f(x) + n, (7)

where e
(�)
k denotes the k-th vector of the canonical basis of R�. For a convenience

of description, we write

AK =

(
�∑

k=1

[e(�)
k ⊗K(x, xk)]

)
. (8)

The operator AK is linear one that maps an element of HK onto R� and Eq.(7)
can be written by

y = AKf + n, (9)

which represents the relation between the unknown true function f and an out-
put vector y. The information of input vectors is integrated in the operator
AK . Therefore, a machine learning problem can be interpreted as an inversion
problem of Eq.(9) [7].

Based on the model Eq.(9), a novel learning framework named “(paramet-
ric) projection learning” was proposed[7,9,10,11]. The projection learning gives
the minimum variance unbiased estimator of the orthogonal projection of the
unknown true function f onto R(A∗

K) (the range of A∗
K), and the parametric

projection learning gives its improvement, incorporating a relaxation of the unbi-
asedness of the projection learning. The parametric projection learning includes
the projection learning as a special case. The parametric projection learning is
defined as follows:

Definition 3. [10,11] The parametric projection learning BPPL is defined by

BPPL(γ) = argminB[tr[(BAK − PR(A∗
K))(BAK − PR(A∗

K))∗]
+ γEn||Bn||2], (10)
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where PR(A∗
K) and γ denote the orthogonal projector onto R(A∗

K) and a real
positive parameter that controls the trade-off of the two terms, which works as a
relaxation of the unbiasedness, respectively.

One of the solutions of the parametric projection learning is given by

BPPL(γ) = A∗
K(AKA∗

K + γQ)+ (11)

as shown in [10,11], where the super script + denotes the Moore-Penrose gener-
alized inverse [12] and Q denotes the noise correlation matrix defined by

Q = En[nn′].

Finally, the solution of the parametric projection learning is given by

f̂(x) = BPPLy,

and the concrete form of it is written by

f̂(x) =

(
�∑

i=1

[
K(x, xi)⊗ e

(�)
i

])
(G + γQ)+y

=
�∑

i=1

y′(G + γQ)+e
(�)
i K(x, xi), (12)

where G = AKA∗
K is the Gram’s matrix of K written by G = (gij), gij =

K(xi, xj), which is easily confirmed by using the properties Eq.(4) of the Schat-
ten product. Note that the assumption Q = O yields the solution based on the
Moore-Penrose generalized inverse of AK .

4 Model Selection Using a Class of Kernels with an
Invariant Metric

In general, the solution of kernel-based learning machines is given by a linear
combination of K(x, xi) that spans R(A∗

K). Thus, the validity of the model
depends on ||f − PR(A∗

K)f ||2HK
. However, we can not directly evaluate it, since

f in unknown. In this section, we construct a framework of selection of a good
kernel that minimizes ||f−PR(A∗

K)f ||2HK
by incorporating a class of kernels with

an invariant metric.
Let K0 be a specific kernel and let K be a class of kernels satisfying

HK ⊂ HK0 (13)

and
〈f, g〉HK = 〈f, g〉HK0

, (14)

for any K ∈ K and any functions f, g ∈ HK . Let

SK = {f |f ∈ HK for all K ∈ K}. (15)
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We assume that SK = φ. Thus, 〈f, g〉HK is invariant for any K ∈ K and any
f, g ∈ SK, which means that K ∈ K has the invariant metric that is the same
with that of HK0 for any f ∈ SK. Note that ||f ||2HK

is also invariant for any
K ∈ K and any f ∈ SK.

We assume that f ∈ SK and let

f = PR(A∗
K)f + (I − PR(A∗

K))f (16)

be a decomposition of f with K ∈ K, then

||f ||2HK
= ||PR(A∗

K)f ||2HK
+ ||(I − PR(A∗

K))f ||2HK

= ||PR(A∗
K)f ||2HK0

+ ||(I − PR(A∗
K))f ||2HK0

(17)

holds and it immediately follows that

||f ||2HK
≥ ||PR(A∗

K)f ||2HK0
. (18)

Thus, it is guaranteed that ||(I − PR(A∗
K))f ||2HK

(= ||(I − PR(A∗
K))f ||2HK0

) is
minimized by

Kopt = argmaxK∈K||PR(A∗
K)f ||2HK0

, (19)

which means that the selection of the best kernel from K is achieved.
As is mentioned in the previous section, a minimum variance unbiased esti-

mator of PR(A∗
K)f is given by the projection learning. However, its variance may

be too large to use the solution as an approximation of PR(A∗
K)f . Thus, we may

have to use an another solution, such as that based on a regularization scheme,
as an approximation of PR(A∗

K)f , for instance.

5 Numerical Examples

In this section, we show a numerical example of a regression estimation of a
one-dimensional function in order to investigate the properties of the proposed
framework of a kernel selection.

We adopt L2 as HK0 and the sinc kernel defined by

Kα
S (x, x̃) =

sinα(x − x̃)
π(x− x̃)

, α ∈ [αs,αe], 0 < αs < αe. (20)

as a class of kernels with an invariant metric. In fact, the sinc kernel has the
same metric with L2 as shown in [13]. Moreover,

HK
α1
S
⊂ HK

α2
S

(21)

holds for any α1 ≤ α2, since the RKHS corresponding to Kα
S is the space of band-

limited functions in [−α,α] in the Fourier domain. According to the monotonicity
of the RKHSs corresponding to the sinc kernels,

SK = {f |f ∈ HKα
S

for all α ∈ [αs,αe]} = {f |f ∈ HKαs
S
}. (22)
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Fig. 1. The relation of the training data set and the unknown true function

Thus, the unknown true function f must belong to HKαs
S

to make our framework
to be consistent for any α ∈ [αs,αe].

We use
f(x) =

sin 2x
πx

(23)

as the unknown true function f and

{(f(xi),xi)|xi ∈ {−10,−8, . . . ,−2, 0, 2, . . . , 8, 10}} (24)

as the given training data set. Figure 1 shows the relation of the training data
set and the unknown true function. We adopt A+

K as a learning machine, since
Q = O in this case.

We dare to adopt [1.5, 2.5] for the interval of the parameter searching. Note
that when α ∈ [1.5, 2), the condition f ∈ HKα

S
is broken, that is, the estimated

function obtained by A+
K is no longer the orthogonal projection of f . The result

with the condition α ∈ [1.5, 2) could reveal the importance of the condition
f ∈ HK in machine learning problem. On the other hand, when α ∈ [2, 2.5],
the consistency of our framework is guaranteed and the result based on it could
reveal the validity of our framework. Figure 2 shows the transitions of ||f̂ ||2L2 ,
||f − f̂ ||2L2 , and the sum of them with respect to α. Figures 3 ∼ 5 show the
learning results with the parameters α = 1.5, 2.0, 2.5, respectively.

According to the result shown in Fig.2 with α ∈ [1.5, 2), it is confirmed that
f = HKα

S
causes the fail of estimation of the orthogonal projection of f . In fact,

the norm of f̂ is larger than that of f . Thus, it is concluded that adopting the
kernel whose RKHS does not include f makes no sense for learning.

On the other hand, when α ∈ [2, 2.5] is satisfied, that is, f ∈ HKα
S

holds, it is
confirmed that f̂ is the orthogonal projection of f , since the sum of ||f̂ ||2L2 and
||f− f̂ ||2L2 is nearly equal to ||f ||2L2 . Moreover, it is confirmed that the maximizer
of ||f̂ ||2L2 , satisfying f ∈ HKα

S
, actually catches the best parameter α = 2, which

supports the validity of our framework.
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Remarks
We used a noise-free case in the numerical example. However, it is inevitable to
consider the noise in practical cases.

As mentioned in the previous section, when the noise exists, the solution based
on the projection learning is not robust in general. Thus, we may have to use a
regularization scheme such as parametric projection learning with the optimal
parameter chosen by a parameter selection criterion such as the SIC[14].

Although we adopted the sinc kernel as a class of kernels with an invariant
metric in the numerical example, the sinc kernel is not so useful, since the inter-
section of the corresponding RKHSs is reduced to the RKHS corresponding to
the minimum parameter of the interval for the parameter searching due to the
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monotonicity of the corresponding RKHSs, which means that we can not adopt
the interval that includes the unknown true parameter. Therefore, it is one of
very important problems to construct a wide class of kernels with an invariant
metric whose intersection includes a wide class of functions.

6 Conclusion

In this paper, we constructed a framework of a kernel selection on the basis of
the projection-learning-based interpretation of learning problems, incorporating
a class of kernels with an invariant metric. Coping with the noise and construc-
tion of a class of kernels with an invariant metric that is suitable for practical
problems are future works.
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Abstract. Statistical learning algorithms often rely on the Euclidean
distance. In practice, non-Euclidean or non-metric dissimilarity measures
may arise when contours, spectra or shapes are compared by edit dis-
tances or as a consequence of robust object matching [1,2]. It is an open
issue whether such measures are advantageous for statistical learning or
whether they should be constrained to obey the metric axioms.

The k-nearest neighbor (NN) rule is widely applied to general dissimi-
larity data as the most natural approach. Alternative methods exist that
embed such data into suitable representation spaces in which statistical
classifiers are constructed [3]. In this paper, we investigate the relation
between non-Euclidean aspects of dissimilarity data and the classifica-
tion performance of the direct NN rule and some classifiers trained in
representation spaces. This is evaluated on a parameterized family of
edit distances, in which parameter values control the strength of non-
Euclidean behavior. Our finding is that the discriminative power of this
measure increases with increasing non-Euclidean and non-metric aspects
until a certain optimum is reached. The conclusion is that statistical clas-
sifiers perform well and the optimal values of the parameters characterize
a non-Euclidean and somewhat non-metric measure.

1 Introduction

Many currently available data are non-vectorial by origin. Although some ways
exists to represent particular information in a vectorial form, these may be unnat-
ural, of poor quality for the final prediction or very difficult to obtain. Vectorial
representations are convenient since there exists a plethora of powerful learning
techniques [4]. These are developed in inner product spaces or normed spaces, in
which the inner product or norm defines the corresponding metric. On the other
hand, if objects contain an inherent, identifiable structure or organization such
as contours, shapes, spectra, images or texts, then structural descriptions are ad-
visable. Objects can then be compared by suitable (min-max or edit) distances.

D.-Y. Yeung et al. (Eds.): SSPR&SPR 2006, LNCS 4109, pp. 871–880, 2006.
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In other words, a collection of objects can be represented in a relative way, by
a vector of dissimilarities (proximities) to a given set of representative examples.
This is the so-called dissimilarity (proximity) representation [5,3]. Since prox-
imity can be defined in both quantitative and qualitative contexts, it becomes
a natural bridge between structural and statistical pattern recognition.

Kernel methods offer also an alternative to vectorial representations [6]. A ker-
nel K is a (conditionally) positive definite (cpd) function of two variables, in-
terpreted as a generalized inner product, hence similarity, in a Hilbert space H
induced by K. Thanks to the reproducing property of K, the support vector ma-
chine (SVM) is built inH as a linear combination of kernel values to the so-called
support vectors. The class of admissible kernels is, however, very limited due to
the strong requirement of their being cpd. This is equivalent to stating that the
corresponding distance d(x, y) =

√
K(x,x)+K(y, y)−2K(x, y) is Euclidean for

finite kernels [3]. In our terminology, kernels are an example of general proximity
representations for which other learning strategies can successfully be applied.

Although proximity measures are widely used for matching and object com-
parison [1,2,7], classification often relies on assigning a new object to the class
of its nearest neighbor. Alternative generalization frameworks exist that handle
general proximity measures. They represent dissimilarity information in suitable
representation vector spaces [5,8,9,3] or deal with indefinite kernels [10,3]. In case
of non-Euclidean or non-metric dissimilarity data, researches usually either rely
on the nearest neighbor distances, or choose to constrain/correct the measure to
make it obey the metric axioms, e.g. by adding an appropriate constant or using
a suitable transformation. In kernel methods, this is equivalent to regularizing
the kernel by adding a proper constant to the diagonal.

If a highly non-metric/non-Euclidean measure describes the problem well (as
judged by experts), corrections will likely lead to a significant loss of information
[11,10,8]. If such deviations are small, they may be neglected as noise. Under-
standing is, therefore, necessary to identify under which circumstances and to
what extent non-metric or non-Euclidean measures are advantageous in statis-
tical learning. We contribute to this issue by presenting an empirical study in
which the performance of dissimilarity-based statistical classifiers is related to
indices measuring their departure from the Euclidean or metric behavior.

2 Representation Spaces and Classifiers

Assume a training set T = {t1, . . . , tN} of N objects and a representation set
R = {p1, p2, . . . , pn} ⊆ T of n prototypes. Given a dissimilarity measure d,
a dissimilarity representation is an N × n matrix D(T ,R) with the elements
d(ti, pj). An object ti ∈ T is represented by an n-element vector of dissimilarities
D(ti,R). The k-NN rule can directly be applied to such data. While it has
good asymptotic properties for metric data, its performance deteriorates for
small training (representation) sets. In such cases, alternative learning strategies
can be more advantageous. They determine a suitable vector space equipped
with the algebraic structure of either an inner product or norm in which the
proximity information is represented. In such a vector space, the traditional
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learning algorithms can appropriately be adapted. Two simplest approaches are
a linear isometric embedding into a pseudo-Euclidean space or the use of the
so-called dissimilarity spaces [12,5,3].

In this paper, D(·,R) is interpreted as a data-dependent mapping D(·,R) :
X → Rn from some initial representation X (such as a vector space, images,
strings or graphs) to a vector space defined by R. This is the dissimilarity space,
in which each dimension D(·, pi) corresponds to a dissimilarity to a prototype
pi ∈ R. The property that dissimilarities should be small for similar objects (be-
longing to the same class) and large for distinct objects, gives them a discrim-
inative power. Hence, D(·, pi) can be interpreted as ’features’ and traditional
classifiers built in vector spaces can be adapted [9,3]. The simplest are linear
and quadratic classifiers, which are weighted combinations of the dissimilarities
d(x, pi) between an object x and the prototypes pi. The classifiers are optimized
on D(T ,R), hence on the complete set T , even if only R is used for their rep-
resentation. They can outperform the k-NN rule since they become more global
in their decisions (suppressing the influence of individual noisy examples).

Classifiers. Normal density based (Bayesian) classifiers [4] tend to perform well
in dissimilarity spaces [3,5,9]. This especially holds for summation-based dissim-
ilarity measures, summing over a number of components with similar variances.
The reason is that such dissimilarities will be approximately normally distrib-
uted thanks to the central limit theorem (if one or few variances are dominant,
then they will approximate the χ2 distribution) [3].

For a two-class problem, a quadratic normal density based classifier (NQC),
is given by f(D(x,R)) =

∑2
i=1

(−1)i

2 (D(x,R)−mi)TS−1
i (D(x,R)−mi)+log p1

p2
+

1
2 log |S1|

|S2| , where mi are the mean vectors and Si are the class covariance ma-
trices, all estimated in the dissimilarity space D(·,R). p1 and p2 are the class
prior probabilities. If S1 and SS2 are replaced by the average covariance matrix,
then a linear classifier is obtained. If the covariance matrices become singu-
lar, they need to be regularized. Here, we choose the following regularization
Sκ

i = (1−κ)Si + κpi diag(Si), κ∈ [0, 1], which leads to the RNQC, i.e. the regu-
larized NQC. In our implementation, the normal-density functions are estimated
per class and the final decision relies on the maximum a posteriori probability.

Another useful strategy for dissimilarity data is offered by sparse linear pro-
gramming machines (LPM), which construct hyperplanes in the corresponding
dissimilarity spaces. They are able to automatically determine a prototype set
R (or if trained on D(T ,R), they may reduce the set R further on) which defines
the final classifier. Two variants are here considered: the μ-LPM and the auc-
LPM. The μ-LPM is a form of the �1-SVM with μ ∈ [0, 1), where μ is related
to the expected classification error [13,9]. The auc-LPM is defined to maximize
the area under the ROC curve, as recently proposed in [14].

We also define a new linear classifier, which is a nonnegative least square
classifier (NLSQC). Let D denote D(T ,R), R ⊆ T , |T | = N and |R| = n.
Consider a two-class problem with the corresponding labels yi = +1/−1. Let YT =
diag(yT ) and YR = diag(yR), where yT and yR are the label vectors for the sets
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T and R, respectively. We define our classifier as f(D(x,R) = sign(h(D(x,R))),
where h(D(x,R)) = −wTYRD(x,R) + w0, wi ≥ 0, i = 0, 1, . . . ,n. (Since wi are
multiplied by yR

i , so wiy
R
i can be of any sign.) The classifier will assign 1 to

x if h(D(x,R)) = a > 0 and −1 if h(D(x,R)) = a < 0. By fixing a = 1, it
yields yT

i h(D(ti,R)) > 1 for the training objects ti. The weights are now sought
to minimize the sum of square differences (yT

i h(D(ti,R)) − 1)2 for all ti. We
formulate the following problem:

Minw ||DY Y

[w
w0

]
− 1||22, subject to wi ≥ 0, i = 0, 1, . . . ,n (1)

where DY Y = [YT (−D)YR −yT ] and 1 is a vector of all ones. This can be solved
by a standard nonnegative least square method that gives a sparse solution in
terms of R. The non-zero weights correspond to the selected subset R′ of R.
In our case, the sparsity will not be large because of the choice of −D in DY Y

(or, equivalently, because of non-positive weights −w in the function h). In this
quadratic criterion, −D acts as a similarity (large values in −D, hence small
distances, indicate large similarity) and requires many objects of R to support
the decision boundary. On the contrary, if we choose D instead−D in h(D(x,R)),
i.e. DY Y = [YTDYR yT ], this will lead to a very sparse solution determined by
dominating, possibly outlier distances only, hence to a poor discrimination. Non-
positive weights−wi diminish the influence of large distances and shift the ’focus’
towards the objects with small distances to the other class.

Equation (1) can be extended to wT(YRD
TDYR)wT + 2wTYTDYR1 +

21TyTw0+N(w2
0+1)+1, in which the first term is the same as in the formulation

of a linear SVM defined in a ’feature space’ X = D. (There, in the dual problem,
one would minimize 1

2w
T(YRD

TDYR)wT−wT1 given that wTyR = 0 and wi ≥ 0
[6].) Such an SVM would work in a entire dissimilarity space as it selects the
support vectors in the form of D(tj ,R) from T (and not from R)! Hence, a linear
SVM in a dissimilarity space is not sparse. The advantage of the NLSQC is that
it is a linear function with no additional parameters, which optimizes a square
error and is, thereby, competitive to a quadratic classifier. Although it cannot
outperform the SVM, it may compete with other LPMs applied to dissimilarity
data. These LPMs are usually trained on a complete representation D(T ,T ) and
determine both R and the weights of the classifiers. These representation sets R
may be used to train the NLSQC on D(T ,R) to enhance the sparsity.

3 Indices Characterizing Data

Assume K classes, ω1,ω2, . . . ,ωK such that |ωi| = ni and N =
∑

i ni. Two
indices are defined to reflect the class separability. The first one is J1

sep =
K
i=1 niAii

K
i=1 ni/(N−ni) j �=i njAij

∈ (0, 1), where Aij is the average dissimilarity between

the i-th and j-th classes (hence Aii is the between-class average dissimilarity).
The second index focusses on the nearest neighbor distances. J2

sep = 1
K

∑K
i=1 Bi,

where Bi = 1
ni

∑ni

k=1
minx∈ωi

dNN(tk,x)
minz �∈ωi

dNN(tk,z) is the average ratio of the nearest neighbor
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within-class to between-class distances. The smaller the values, the better sepa-
rability. Note that if J2

sep ≈ 1 or larger, than (on average) the nearest neighbor
distances to objects from other classes are similar or smaller than the nearest
neighbor distances within the class, hence the 1-NN rule cannot perform well.

Concerning the departure from the Euclidean behavior, it is known that a sym-
metric N ×N dissimilarity matrix D = D(T ,T ) has a Euclidean behavior iff the
corresponding Gram matrix G=− 1

2JD
�2J , where D�2 =(d2

ij) and J=I− 1
N 11T,

is positive semidefinite [12,5,3]. It means that all eigenvalues λi of G are non-
negative. Hence, the magnitudes of negative eigenvalues manifest the amount
of deviation from the Euclidean behavior. An indication of such a deviation is
given by JeigM = |λmin|/λmax, i.e. the ratio of the absolute value of the small-
est negative eigenvalue to the largest positive one. The overall contribution of
negative eigenvalues is estimated by JeigS =

∑
λi<0 |λi|/

∑N
j=1 |λj |.

Concerning non-metric aspects, any symmetric D can be made metric by
adding a suitable constant γ to all off-diagonal elements of D. In a first attempt,
such a constant can be found as γ0 =maxp,q,t |dpq+dpt−dqt| [3]. This estimation
is however largely overpessimistic. Starting from this initial γ0, we find a better
estimation of γ ∈ (0, γ0) by an iterative bisection method. Our index is therefore
Jγ = γ ≥ 0 and it should be judged wrt the actual dissimilarity values. Another
way to characterize the deviation from the metric behavior is by Jineq equal to
the total number of disobeyed triangle inequalities.

4 Data, Experiments and Results

In our study we use the Chicken Pieces Silhouettes data [15], available from
http://algoval.essex.ac.uk/data/sequence/chicken. This set consists of
446 binary images from chicken pieces, labeled to one of the five classes,which
represent specific parts of the chicken: wing (117 examples), back (76), drumstick
(96), thigh and back (61), and breast (96). After edge detection applied to these
silhouettes, the edges were approximated by straight line segments of a fixed
length L, taking values between 5 and 40 pixels. Since chicken pieces are placed
in arbitrary position in an image and mirror symmetry occurs, the line segments
may not be the most appropriate. Instead, the sequence of angles between the
neighboring segments was chosen as the initial string representation. Addition-
ally, the approximate algorithm of Bunke and Bühler [16] was applied to handle
the rotation invariance and axis symmetry. Given such string representations a
family of edit distances [17] is considered with fixed insertion and deletion costs
equal to some C and a substitution cost of the absolute difference between the an-
gles. Consequently, we deal with an (L,C)-family of edit distance measures para-
meterized by L and C. In our case, we set L = 5, 7, 10, 15, 20, 25, 29, 30, 31, 35, 40
pixels and C = 45, 60, 90, 120 (angle degrees), which give rise to 44 different
dissimilarity data, in total. The distances were originally asymmetric and are
made symmetric by averaging, dij = dij+dji

2 .
In our classification experiments we perform 50 runs of 2-fold cross-validation.

In each run, all objects are first randomly split into the training set T and test
set S. Then, classifiers are trained on DL,C(T ,T ) and tested on DL,C(S,T ).
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Fig. 1. Indices characterizing dissimilarity data. Legend values refer to C. Markers
describing the same value of C are connected by lines to enhance the visibility.

Next, in the second fold, the classifiers are trained on DL,C(S,S) and tested
on DL,C(T ,S). Finally, the errors, weighted by prior probabilities, are de-
termined. This is repeated 50 times and the results are averaged out. To
avoid too large distance values, all dissimilarities are scaled by 1√

N
, where

N = |T |. The following classifiers are used: the 1-NN and k-NN rules directly
applied to the dissimilarity representation D(T ,T ) (k is optimized in a LOO
approach), edited-and-condensed nearest neighbor (CNN) [18], μ-LPM, with
μ = max{0.01, 1.3 ·LOO-NN-error}, the auc-LPM (with the trade-off parameter
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set to 20) [14], the NSQLC and the RNQC with κ = 0.05. Additionally, the
NSQLC is trained on the representation sets determined by the μ-LPM and
auc-LPM, and denoted as the NSQLC(μ) and the NSQLC(auc), respectively.
Remember that the LPMs and the NSQLC determine R ⊂ T and that all (multi-
class) linear classifiers are derived in an one-against-all strategy.

The properties of dissimilarity data are characterized by the indices intro-
duced in Sect. 2. These will reflect the character of the dissimilarities, the class
separability and the deviation from both Euclidean and metric behaviors. The
indices are derived in the same setup as above. Their values are first averaged
over two folds in a cross-validation scheme, and then over 50 runs.

Results. The indices defined in Sec. 2 were evaluated on 44 dissimilarity data
with varying parameters L and C of the (L,C)-edit distances. By observing the
results in Fig. 1, the following conclusions can be drawn:

– The average dissimilarities decrease with growing L. The smaller L, the
larger maximal distances. The average and maximal distances grow with
increasing C.

– The classification task is difficult since J2
sep takes values close to 0.9 or 1. This

means that the NN distances within a class are not much smaller than the
NN distances to the objects outside the class. C = 31 seems to be optimal.
Concerning the J1

sep, the smaller C, the better the separability.
– None of the dissimilarity data set has a Euclidean behavior. The deviation

becomes larger with the increasing L and decreasing C, as judged by JeigS
and JeigM.

– The (L,C)-edit distances are practically metric up to L≤ 10; they become
non-metric for larger values of L. The deviation from the metric behavior
becomes larger with increasing C and is the smallest for C = 45. For L ≥ 30,
the additive constant γ that makes the dissimilarity measure metric roughly
equals to 16− 30% of the average distance.

The classification results are shown in Fig. 2. In general, we observe that the per-
formance of all classifiers improves with the increasing value of L up to a certain
optimum and then starts to decrease. Most classifiers perform the best or nearly
the best for L = 30. Concerning C, the classifiers reach the highest accuracy for
C = 45 and gradually decrease their performance for larger values of C.

We will now provide the average total number of prototypes, i.e. |R|, deter-
mined by sparse linear classifiers. These numbers, presented as ’· − · − ·’, are
averaged over C as only minor differences occur. The numbers taking the places
of the first, second and third dot refer to L = 5, L = 30 and L = 40, correspond-
ingly. We have: the μ-LPM: 223-123-112, the auc-LPM: 120-86-85, the NLSQC:
217-191-188, the NLSQC(μ): 217-116-106 and the NLSQC(auc): 119-84-83. For
the CNN, the condensed sets vary over C and vary from 38 to 45.

The CNN relies on the smaller condensed set R but it performs the worst
of all. The auc-LPM needs a relatively small R, but it also does not work well;
it cannot compete with the 1-NN and k-NN rules unless L ≤ 15. Other linear
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Fig. 2. Average 2-fold cross-validation errors (over 50 runs) for four values of C.
Markers describing the same classifier are connected by lines to enhance the visi-
bility. The standard deviations of the average errors are 0.0017 − 0.002 on average
(depending on C) for all classifiers. Their maximal values bounded by 0.0027, except
for the μ-LPM, for which the maximal values are 0.011 for C <= 10 (where μ-LPM
fails). The differences (between the average errors) larger than 0.01 are statistically
significant.

classifiers outperform the auc-LPM, expect for the μ-LPM and L≤15. In general,
the μ-LPM does not perform better than the NN rules (with little exceptions)
and it deteriorates for L≤ 15, which is caused by the fact that the hyperplane
cannot be determined (μ-LPM fails) and in our set-up the pseudo-Fisher clas-
sifier is automatically trained instead. However, if the representation objects
determined by the auc-LPM or the μ-LPM are used to train the NLSQC, the
performance drastically increases. The NLSQC(μ) is the third best performing
classifier, which provides a good trade-off between the total cardinality of R
and the classification accuracy. The representation objects preselected by the
auc-LPM seem to make a n over-optimized set for the NLSQC(auc). Interest-
ingly, the performance of the NLSQC(auc) is similar or much better than that of
the RQNC(auc). For all C, our NLSQC performs the best or second best, after
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the RNQC if L ≥ 30. Nearly all training objects are, however, needed for the
representation. For the RNQC, always holds that R = T .

5 Conclusions

In this paper, examples of a parameterized family of (L,C)-edit distances are
evaluated for the classification task on chicken pieces silhouettes. The deviation
from non-Euclidean behavior grows with increasing L and decreasing C, while
the deviation from non-metric behavior grows with both increasing L and C.
Linear or quadratic classifiers built in dissimilarity spaces can outperform the
direct k-NN rule and reach the optimal (or nearly optimal) results for L = 30.
Our new linear classifier, the NLSQC, reaches the highest accuracy for most val-
ues of L and C. The best overall performance is reached for L = 30 and C = 45
which gives rise to a highly non-Euclidean and somewhat non-metric dissimilar-
ity data. This is very interesting, since many researchers try to avoid non-metric
data and define edit distances as metric measures. Our results suggests that
non-Euclidean and/or non-metric distances can be informative and useful in
statistical learning. We hope to explore these issues in the future research.
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Abstract. Based on template facial features and image segmentation, this paper 
demonstrates a novel method for automatic detection of eyes in grayscale still 
images. A decision model of eye location is instituted by the priori knowledge 
of template facial features. After roughly detection of face, we apply three steps 
for system to locate eyes. Firstly, the Bayesian eye detector is used to find eye 
patterns in the upper region of the face image. This vector based Bayesian 
classifier adopts Haar transform as vectorize because we know that is robust at 
illumination variation. Secondly, merging and arbitration strategy are applied. It 
can manage variations of around eye regions due to spectacle rims or eye 
brows. Finally, Gaussian-projection function can locate robust precision eye 
position. The experimental results show that the proposed method can achieve 
higher performance at any test data. 

1   Introduction  

Constructing automatic face recognition system has been a promising field of com-
puter vision and pattern recognition. The face recognition task is achieved in three 
steps, i.e. 1) face detection, 2) marking facial feature points and 3) face recognition.  

The face detection determines whether or not there are any faces in the image and, if 
exist; notify the face location and range of each face. The face recognition identifies 
or authenticates one or more persons in the detected image using a stored database of 
faces. In general, face recognition system needs those remarkable facial landmarks 
such as eyes must be located before any other processing is performed. Since 
recognition algorithm is based on template matching, face must be accurately aligned 
before other recognition processing, which is usually achieved based on the location 
of eyes. Because marking facial feature is necessary step to the template matching, it 
is an important step to face recognition and eyes are crucial points of facial features. 
Therefore, automatically locating eyes is very significant stage. 

There is a series of techniques that can effectively detect eyes in frontal upright face 
images. But they suffer from bad light conditions and a rim of glasses. As a matter of 
fact, eyebrows or thick glasses frame enough to be confused with eye that the 
classifier often makes a incorrect decision. 

To detect eyes in rough face image which is detected by face detector, the size 
window is applied to every pixel position in the image. To detect eyes which are 
larger than the window size, size of input image is repeatedly reduced by method of 
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super sampling or b-spline with factor 1.2 for each step, and the window is applied at 
each size. We define this method as multi-resolution. The multi-resolution method has 
some invariance at position and scale. The amount of invariance determines the 
number of windows which is must be applied at one image and it directly influences 
time of computation. 

This paper introduces methodology for developed eye location procedure and 
depicts on both learning and estimating components. The experimental results are 
gained using the standard BioID, FERET and INHADB facial image database. 

Detailed explanation of training images collection and methods are given in  
Section 2. The classifier architecture, postprocessing and arbitration strategy are given 
in Section 3. In Section 4, the experimentation of the system is described. Conclu-
sions and directions for future research are presented in Section 5.  

2   Bayesian Discriminant Training Method 

In General, classification is the issue of predicting the class of a sample with 
probabilistic theories. The standard Bayesian algorithm produces a posterior 
probability - the probability of the class given that feature value has been measured.  

Let 1ω  and 2ω  be the finite set of classes, and let x  be the feature vector of eye. 

Assume that x is a d-dimension component vector and let be the conditional 
probability density function for x with the probability density function for x  
conditioned on being the true class. And let be the prior probability that class is, then 
the posterior probability can be computed from by Bayes formula. The extraction of 
features and training are learned supervised method. 

To train the classifier a large number of eye and non-eye images are needed. 1,970 
eye images were collected from face databases at FERET probe. The images include 
eyes of similar sizes, orientations, positions, and various intensities. These samples 
were used to normalize each eye to the same scale at pixels. These samples are 
converted to vectors and measured Mahalanobis distance using Bayesian discriminant 
method and PCA. In paper [5], to make vector of face they use 1D Haar wavelet 
representation, but we use 2D Haar wavelet representation. Because an eye image is 
2D data, 2D Haar more suitable for representing features of eye than 1D Haar. To 
classify eye and non-eye using Bayesian method, at least two models [5] are required. 
One is eye class model and the other is non-eye class model. 

In order to classify eye image from non-eye images, we need notion of distance. 
We refer to Mahalanobis distance instead of general Euclidean distance. It is useful 
measure of determining similarity of a test image set to a known one. It is different 
from Euclidean distance in that it takes into compute the correlations of the data set. 
Formally, the Mahalanobis distance from a group of values with 
mean ),...,,,( 321 nmmmmm =  and covariance matrix  for a multivariate vector is 

defined: 

)()()( 1 mxmxxd t −−= −  (1) 
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3   The Eye Location Method Under Bayesian Discriminant 
Framework 

The block diagram of the proposed method is shown in Fig. 1. When a rough face 
region is presented to the system, apply preprocessing to face image. Then creating 
vector and getting Mahalanobis distance are applied to each window. The detected 
positions which are classified as eye according to their distance are stored. The 
merging and arbitration strategy applied to outputs which are gathered from advance 
operation. In particular case, merging applied regions can be arbitrated. Because we 
know that one face image contains exactly two eyes, finally accepted regions are 
restricted in two. 

 

Fig. 1. Block diagram of the proposed eye location method. 

3.1   Eye location Using Bayesian Discriminant Method with Mahalanobis 
Distance  

We get Mahalanobis distance for each window. Suppose exd )( is Mahalanobis 

distance for eye class, nxd )( is Mahalanobis distance for non-eye class. exd )( and 

nxd )(  can be calculated from the input pattern x , the eye class parameters (the mean 

eye, the covariance matrix), and the non-eye class parameters (the mean non-eye, the 
covariance matrix). We use two thresholds, θ  and τ  as follows: 

classeyeofupmakethatsampleford e −= ααθ ))(max(

classeyenonofupmakesampleforxdd ne −−−= ββτ ))()(max(  
(2) 

These are constant values, which are calculated when training time. Bayesian 
classifier offer classifying rule to the eye detection system, such that, 

<−<
∈

otherwise

xdxdandxdif
x

n

neee

ω
τθω ))()(())((

 (3) 

Fig. 2. Examples of detection 
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Detected some examples are shown in Fig. 2. In the figure, each box represents the 
location and size of a window to which the Bayesian discriminant method gives a 
positive response. The blue box is correct location and the red box is false location. 
The Bayesian classifier has some invariance to position and scale, which results in 
multiple boxes around some faces. Note also that there are some false locations; they 
will be eliminated by methods presented in Section 3.3 and 3.4. 

3.2   Merging Strategy 

The examples in Fig. 2 showed that the raw output from Bayesian classifier may 
contain some false detection. In this section, we present one strategy to improve the 
credibility of location: merging overlapped detections [4] from Bayesian classifier. 

There are many detected rectangles at multiple nearby eyes, while false detections 
usually arise with less frequency. This discovery gives us a heuristic that can eliminate 
much false detection. For each position and scale, the number of detected window 
within bounds of a specified neighborhood of that position can be counted. If the 
number is greater than specific number, the position is classified as an eye. The result 
position is indicated by the centroid of the neighbor detections, therefore duplicated 
detections can be eliminated. This method is operated as following manner: 

a) The detections are recorded. 
b) The centers of windows are calculated. 
c) The centers are "spread out" and a threshold is applied. 
d) The centroid of windows which satisfy threshold in scale and position are 

computed, and the centers of windows are collapsed to single point. 
e) If another window overlaps the rectangle, the window is eliminated because it 

regarded as false detection. 

This method is good at not only improving accept rate but decreasing false 
detection. If a specific position is correctly classified as an eye, then all other detected 
positions which overlap it are regarded as errors, therefore these can be eliminated. 
The position with the higher number of detections is conserved, and the position with 
the lower detections is eliminated. This method is affected by two variances that are 
threshold and size of spread out. Only accept a detection if there are at least threshold 
detections within a region (spread out along x, y, and scale) in the detections. The size 
of the region is determined by size, which is the number of pixels from the center of 
the region to its edge. We need to decide reasonable threshold and size for improve 
performance of system. Performance of eye location at 42 randomly extracted images 
 

Table 1. Performance of eye location according to threshold and size 
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among each dataset according to threshold and size is shown in Table 1. And 
examples about this are shown in Fig. 3. 

From the Table, we can see that the system generates highest accept rate when size 
is 4 and threshold is 4. Therefore, we apply this value to the system.  

Fig. 3. Detection examples according to variable values 

3.3   Arbitration Strategy  

Sometimes even though merging is applied, two or more detected windows which 
gather around one eye are remained. As a matter of fact, eyebrows or thick rims of 
spectacle often look so similar to closed eyes that the classifier often makes a wrong 
decision. So both the eyes and neighborhood of eyes should be considered. Merging 
operates to remain region which has high detection density and to eliminate overlap 
windows. But if two or more high density regions exist independently around one eye, 
merging may product wrong result. Some example of errors is shown in Fig. 3. Red 
marks of (a), (b) and (h) are representative incorrect outputs via merging. These false 
outcomes are occurred by reason of peculiarity of their density distribution of 
windows which has produced by Bayesian discriminant classifier. Bayesian 
discriminant classifier often misclassifies eyebrows as eyes. Because the feature of 
eyebrow is similar to feature of eye, many detected rectangles are occurred around 
eyebrow. Since the positions with the higher number of detections are conserved at 
merging step, if density of detections at eyebrow is higher than that of eye, detections 
around eyebrow are reserved, but on the other hand detections around eye-center are 
eliminated by merging. In Fig. 4, (a) is detection around eyebrow which has highest 
density, (b) is detection around eye-center which has lower density than (a). Because 
the detection (b) overlap the detection (a) and density of (a) is higher than (b), 
detection (b) is eliminated by merging. Therefore, detection (d) and (e) are conserved 
only. In Fig. 5 we can see that detection (d) is upper region of eye-center and 
detection (f) is lower region of eye-center. A point (g) is centroid of detection (d) and 
(f). The point (g) is very close to center of eye. This heuristic method is called 
"Arbitration strategy”. We showed case of arbitration among two error detections 
only, but Arbitration strategy is work under the situation that three or more error 
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detections exist. Because we know that only one eye is in existence at left or right 
region of image, if there are two or more detections at left or right region, the system 
can derive correct location of eye by using Arbitration strategy. 

Fig. 4. Example of error result of merging. (a) is detection around eyebrow which has highest 
density, (b) is detection around eye-center, (c) is detection around eye which has lower density 
than (b). Because density of (a) is higher than density of (b), detection (b) is eliminated as (e). 
Therefore, finally detection (d) and (f) can be conserved only. A point (g) is centroid of 
detection (d) and (f). The point (g) is very close to center of eye. 

4   Experimental Results 

4.1   Data Sets 

The training set is obtained from FERET database, and totally 1970 eyes of 985 faces 
are extracted and normalized for training. Experimental test set consists of BioID 
(1521 images), FERET (3816 images), INHADB (1200 images), and totally 6537 
faces are concerned in the evaluation of localization performance. The three test sets 
are from diverse sources to cover diverse eye variations in view angles, sizes, 
illumination, and glasses. Experiments based on such various sets should be able to 
test the generalization performance of our eye location algorithm. 

4.2   Evaluation Protocol 

To estimate the accuracy of eye location, a scale independent localization measure [3] 
is used. This relative error measure compares the eye automatic detected positions 
which are results of our system with the manually marked positions of each eye. lC  

and rC are the manually assigned left and right positions, '
lC  and '

rC  are the 

automatic detected position, ld  is the Euclidean distance between '
lC  and lC , rd is 

the Euclidean distance between '
rC  and rC  , lrd  is the Euclidean distance between 

ld  and rd . The relative error of detection is defined as follows: 

lr

rl

d

dd
err

),max(
=  (4) 
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4.3   Comparison with Other Eye Location Methods 

Two different eye location methods are implemented and evaluated on the test set. 
Method 1: Method of detecting eyes using only Bayesian Classifier without arbitration 
strategy. Method 2: Algorithm of adding arbitration strategy step to Method1. 

Table 2. Testing performance of Method 1 (err < 0.14) 

 

Table 3. Testing performance of Method 2 (err < 0.14) 

 

 

Fig. 5. Some eye location results from test sets 

Performance of tow methods under err < 0.14 are shown in Table 1 and Table 2. 
From the tables, we can see that Method 2 is better than Method 1. So we can 
conclude that arbitration strategy is effective for eye location. In addition, the average 
processing time per face of method 2 on an AMD Barton 2500+ PC system is 50 ms 
without code optimization. We show some outputs for visual inspection at Fig. 5. 

Method 2 is compared with other systems. In paper [3], a detection rate is 99.1% 
under err < 0.2. On the other hand, our detection rate is 99.31% when err < 0.2 at all 
test sets. In paper [2], a detection is considered to be correct if err < 0.25. Their 
detection rate on BioID dataset is 94.81%. We evaluate method 2 on BioID under the 
same evaluation protocol. The detection rate of our system is 95.20% under err < 
0.14, and the detection rate is 97.63 % under err < 0.25. And their system achieve on 
97.18% of JAFFE data set. But backgrounds and illumination conditions of JAFFE 
are not as complex and diverse as these of BioID. 
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5   Conclusion 

This paper describes a novel arbitration strategy applied Bayesian classifier for eye 
location. The system, which is trained on images from only a portion of one database, 
yet works on test images from diverse sources, displays robust generalization 
performance. The novelty of this paper comes from the combination of the 2D Haar 
based Bayesian classifier, the statistical modeling of eye and non-eye classes, and the 
arbitration strategy for growing performance. The arbitration strategy applied 
Bayesian classifier is trained with 1511 eye images and 3100 random natural (non-
eye) images. Experimental results using 6537 images (containing a total of 13074 
eyes) from various image sources. The novel system achieves 94.94 percent eye 
detection accuracy under err < 0.14. 

In addition, because the arbitration strategy and Bayesian discriminant method 
don’t localized for eye, it can be totally applied for location of other face organs such 
as nose or mouth. 
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Abstract. We consider the problem of recognizing face or object when only 
single training image per class is available, which is typically encountered in 
law enforcement, passport or identification card verification, etc. In such cases, 
many discriminant subspace methods such as Linear Discriminant Analysis 
(LDA) fail because of the non-existence of intra-class variation. In this paper, 
we propose a novel framework called 2-Dimensional Kernel PCA (2D-KPCA) 
for face or object recognition from a single image. In contrast to conventional 
KPCA, 2D-KPCA is based on 2D image matrices and hence can effectively 
utilize the intrinsic spatial structure information of the images. On the other 
hand, in contrast to 2D-PCA, 2D-KPCA is capable of capturing part of the 
higher-order statistics information. Moreover, this paper reveals that the current 
2D-PCA algorithm and its many variants consider only the row information or 
column information, which has not fully exploited the information contained in 
the image matrices. So, besides proposing the unilateral 2D-KPCA, this paper 
also proposes the bilateral 2D-KPCA which could exploit more information 
concealed in the image matrices Furthermore, some approximation techniques 
are developed for improving the computational efficiency. Experimental results 
on the FERET face database and the COIL-20 object database show that: 1) the 
performance of KPCA is not necessarily better than that of PCA; 2) 2D-KPCA 
almost always outperforms 2D-PCA significantly; 3) the kernel methods are 
more appropriate on 2D pattern than on 1D patterns. 

1   Introduction 

Face and object recognition have been an active research area of computer vision and 
pattern recognition for decades, and many powerful recognition algorithms have been 
proposed [16]. Among them, subspace methods such as principal component analysis 
(PCA) [8], linear discriminant analysis (LDA) [11][2] and Bayesian algorithm [4] 
have been extensively studied and many variants of them have been proposed [9][16]. 
Recently, the popular ‘kernel trick’ [7][11] and matrix-based (or more generally, 
tensor-based) representation of faces or objects without image-to-vector transforma-
tion [12][13][15][2] have been introduced into subspace based face recognition, and 
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accordingly, the so-called kernel PCA (KPCA) [7], kernel LDA (KLDA) [11], 
2DPCA [12] and 2DLDA [2] have been proposed independently. 

In some specific scenarios such as law enforcement, passport or identification card 
verification, etc, there may be only single image per class can be used for training the 
face recognition system. This brings great trouble to many existing algorithms such as 
LDA and Bayesian algorithm, which require at least two training samples per class to 
obtain the so-needed intra-class variation. we only consider PCA and its variant in 
this paper for face or object recognition from a single image. In [10], a method called 
(PC)2A was proposed as an extension of the standard PCA, which combines the origi-
nal face image with its first-order projected image and then performs PCA on the en-
riched version of the image. In [1], the enhanced (PC)2A was proposed to use higher 
order projected images. In [14], the singular value decomposition (SVD) was adopted 
to generate virtual samples and then perform PCA on the combined images. In [3], a 
probabilistic approach was described, in which the model parameters were estimated 
by using a set of images generated around a so-called representative sample image. 

As mentioned above, KPCA and 2DPCA are two important variants of PCA based 
on the kernel trick and matrix-based image representation respectively. The basic idea 
of kernel trick is to perform the linear analysis by nonlinearly transforming the origi-
nal input space into a higher or even infinite dimensional feature space and expect 
that the nonlinear problems in original space can be converted into a linear one in the 
transformed space. On the other hand, the key idea of 2DPCA is to represent images 
as matrices without image-to-vector transformation and expect to utilize the underly-
ing spatial structure information for efficient feature extraction and recognition.  
Although KPCA and 2DPCA have been successfully used for face and object recog-
nition with multiple images per class, their performance evaluation on single image 
per class remains unknown. 

In this paper, a novel framework called 2D Kernel PCA (2D-KPCA) is first pro-
posed, which integrates both advantages of KPCA and 2D-PCA. In contrast to KPCA, 
2D-KPCA is based on 2D image matrices and hence can effectively utilize the intrin-
sic spatial structure information of the images, which is ignored in traditional KPCA 
after the image-to-vector transformation. On the other hand, in contrast to 2D-PCA, 
2D-KPCA is capable of capturing part of the higher-order statistics information, while 
the linear 2D-PCA can address at most the second order statistics. Moreover, this 
paper reveals that the current 2D-PCA algorithm and its many variants consider only 
the row information or column information, which has not fully exploited the infor-
mation contained in the image matrices. So, besides proposing the unilateral 2D-
KPCA, this paper also proposes the bilateral 2D-KPCA which could exploit more 
information concealed in the image matrices Furthermore, some approximation tech-
niques are developed for improving the computational efficiency. Then a comparative 
study is made on performances of the above four methods on recognizing the face and 
object from a single image. Experiments are carried out on two well-known data-
bases: the partial FERET face database [6] and the COIL-20 object database [5]. The 
results show that when recognizing the face and object from only a single image: 1) 
the performance of KPCA is not necessarily better than that of PCA (in fact if without 
kernel parameters optimization, KPCA is inferior to PCA in most cases in our ex-
periments); 2) 2D-KPCA nearly always outperforms 2D-PCA significantly; 3) the 
kernel methods are more appropriate on 2D pattern than on 1D patterns. 
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The rest of this paper is organized as follows: In Section 2, we present the 2D-
KPCA framework. Section 3 gives the experimental results on partial FERET face 
database and COIL-20 object database. Finally, we conclude in Section 4. 

2   Two-Dimensional Kernel PCA 

2.1   Unilateral 2D-KPCA  

Given M training face or object images, denoted by m by n matrices ( 1,2,... )kA k M= . 

In traditional KPCA, a kernel-induced mapping function maps the data vector from 
original input space to a higher or even infinite dimensional feature space. Define the 
kernel mapping on matrices as  

1 2( ) ( ) , ( ) ,..., ( )
TT T m TA A A Aφ φ φΦ =  (1) 

where iA  is the i-th row vector (1 by n) of the matrix A  and φ  is conventional 

kernel mapping on vectors. Let 
1

( ( ) ) ( ( ) )
M

T
t k k

K

S A A
=

= Φ − Φ Φ − Φ , here 

1
1 ( )

M

kk
M A

=
Φ = Φ . Without loss of generality, assume that 0Φ = , then 

1 1 1

( ) ( ) ( ) ( )
M M m

T i T i T
t k k k k

K K i

S A A A Aφ φ
= = =

= Φ Φ = Φ Φ  (2) 

here 1 1
1 1( ) ,..., ( ) ,..., ( ) ,..., ( )

TT m T T m T
M MA A A Aφ φ φ φΦ = . 

In Unilateral 2D-KPCA (denoted as U2D-KPCA), the following criterion is 
adopted to compute the optimal projective vector v  

( )( ) T T T
tJ v trace v S v v v= = Φ Φ  (3) 

which is equivalent to solve the eigenvalue problem: find 0λ ≥  and eigenvectors 

{ ( ) , 1,..., ; 1,..., }i T
kv span A i m k Mφ∈ = = , satisfying Tv vλ = Φ Φ . 

If we follow the conventional kernel analysis as in KPCA, there exist mM samples 
to span the kernel feature space { ( ) , 1,..., ; 1,..., }i T

kA i m k Mφ = = , which will result in 

heavy computational cost for subsequent optimization procedure. To alleviate the 
computational cost, in this paper, we use M samples to approximate the kernel feature 

space: 
1( ) ,..., ( )

TT T
MA Aφ φΦ = , here kA  is the mean of the m row vectors of kA . 

So Tv q= Φ , and we have the following equivalent problem 

T
mK q K Kqλ =  (4) 

where T
mK = ΦΦ  is the M by M kernel matrix and TK = ΦΦ  is the Mm by M kernel 

matrix. 
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Suppose 
1 2[ , ,..., ] M d

dR q q q ×= ∈ℜ  are the solutions of Eq. (4) corresponding to 

the largest d eigenvalues, then , 1,...,T
i iv q i d= Φ =  is the solutions of Eq. (3). For 

extracting features for a new pattern m nA ×∈ℜ  with unilateral 2D-KPCA, one simply 
projects the mapped pattern ( )AΦ  onto 

1,..., dv v  

1( )[ ,..., ] ( ) T
d rowY A v v A R K R= Φ = Φ Φ =  (5) 

Here 
rowK  is the m by M kernel matrix, and Y is the extracted m by d feature matrix . 

The essence of aforementioned U2D-KPCA can be seen as performing conven-
tional KPCA on the rows of the image matrices when each row is treated as an indi-
vidual element. Similarly, we can construct the alternative U2D-KPCA if treating 
each column of images as an individual element. 

Denote 1 2( ) ( ), ( ),..., ( )nA A A Aφ φ φΦ = , where iA  is the i-th column vector (m 

by 1) of the matrix A , then 

1 1 1

( ) ( ) ( ) ( )
M M n

T i i T T
t k k k k

K K i

S A A A Aφ φ
= = =

= Φ Φ = ΦΦ  (6) 

Here 1 1
1 1( ),..., ( ),..., ( ),..., ( )n n

M MA A A Aφ φ φ φΦ = . 

The objective function for alternative U2D-KPCA is 

( )( ) T T T
tJ v trace v S v v v= = ΦΦ  (7) 

Let 
1( ),..., ( )MA Aφ φΦ = , here kA  is the mean of the n column vectors of 

kA , so 

v α= Φ , and we have the following equivalent problem 

T
mK KKλ α α=  (8) 

where T
mK = Φ Φ  is the M by M kernel matrix and TK = Φ Φ  is the M by Mn kernel 

matrix. 
Suppose 

1 2[ , ,..., ] M d
dL α α α ×= ∈ℜ  are the solutions of Eq. (8) corresponding to the 

largest d eigenvalues, then , 1,...,i iv i dα= Φ =  is the solutions of Eq. (7). For extract-

ing features for a new pattern m nA ×∈ℜ  with alternative U2D-KPCA, one simply 
projects the mapped pattern ( )AΦ  onto 

1,..., dv v  

1[ ,..., ] ( ) ( )T T T T
d colZ v v A L A L K= Φ = Φ Φ =  (9) 

Here 
colK  is the M by n kernel matrix, and Z is the extracted d by n feature matrix. 

2.2   Bilateral 2D-KPCA  

As analyzed above, U2D-KPCA and alternative U2D-KPCA are essentially KPCA on 
rows and columns of images respectively. However, both U2D-KPCA and alternative 
U2D-KPCA only consider the dependency (correlation) among the row or column 
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vectors of the image matrix and neglects the other one. Therefore, some useful infor-
mation for recognition may be lost in them. Considering this, the bilateral 2D-KPCA 
is proposed by integrating U2D-KPCA (Eq. (5)) and alternative U2D-KPCA (Eq. (9)) 
together, which could exploit more information concealed in the image matrices. 

After performing U2D-KPCA (Eq. (5)) and alternative U2D-KPCA (Eq. (9)), m by 
d feature matrix Y and d by n feature matrix Z are obtained for each image. They are 
combined together for recognition. In this paper, we propose two ways for combining 
feature matrices Y and Z. In the first bilateral 2D-KPCA method (denoted as B2D-
KPCA-1), Y and Z are firstly transformed into 1D vectors independently for each 
images, and then PCA is applied onto these vectors (Ys and Zs) respectively. Finally, 
two shorter vectors are further combined into one vector for classification. In the 
second bilateral 2D-KPCA method (denoted as B2D-KPCA-2), Y and Z are firstly 
transformed into 1D vectors and then combined into one 1D vectors for each images, 
and then perform PCA on the combined vectors. 

It is worthy noting that for comparison, we also implemented the bilateral 2D-PCA 
algorithms (denoted as B2D-PCA-1 and B2D-PCA-2 respectively) according to a 
similar procedure as 2D-KPCA. And accordingly, the unilateral 2D-PCA introduced 
in Section 2 is denoted as U2D-PCA. 

3   Experimental Results 

In this section, a series of experiments are presented to evaluate the performances of 
the proposed 2D-KPCA including U2D-KPCA, B2D-KPCA-1 and B2D-KPCA-2, 
compared with existing PCA, KPCA and 2D-PCA methods on single training image 
per class recognition. These algorithms are tested on two well-known datasets, 
FERET face database [6] and COIL-20 object database [5]. In our experiments, we 

adopted the Gaussian kernel function: 
2

2

|| ||
( , ) exp

2

x y
k x y

σ
−=  for KPCA and 2D-

KPCA, and kernel width σ  are chosen as the standard variation of training data. It is 
worthy noting that for fair comparison, we don’t perform any kernel or parameters 
optimization for both KPCA and 2D-KPCA. And in all the experiments, the nearest 
neighbor classifier is employed for classification. 

3.1   FERET Face Database  

In this experiment, a partial FERET face database containing 400 gray-level frontal 
view face images from 200 persons are used, each of which is cropped with the size 
of 6 ×60. There are 71 females and 129 males; each person has two images (fa and 
fb) with different facial expressions. The fa images are used as gallery for training 
while the fb images as probes for test. 

Figure 1 gives the comparisons of accuracies of linear and kernel methods under 
different feature dimensions on FERET face database. Here total 4 pairs of methods 
are compared: (a) PCA vs. KPCA; (b) U2D-PCA vs. U2D-KPCA; (c) B2D-PCA-1 vs. 
B2D-KPCA-1; (d) B2D-PCA-2 vs. B2D-KPCA-2. It can be seen from Fig. 1 that 
except KPCA, the other three kernel methods outperform the corresponding linear 
methods greatly. Table 1 gives comparison of accuracies of linear and kernel methods 
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on FERET database, including results of three recent methods for single image face 
recognition on the same database. And Table1 also shows that except KPCA, the 
other three kernel methods proposed in this paper outperforms much better than the 
corresponding linear methods. 

Then why the kernel methods perform better on 2D patterns than on 1D patterns? 
We guess one reason maybe that the 2D representations in some sense enlarge the size 
of samples through treating each rows or columns of images as individual samples, and 
hence the image covariance matrix in kernel-induce feature space is more accurately 
evaluated than in 1D representation where each class has only single sample. 

 

 

Fig. 1. Comparisons of accuracies of linear and kernel methods under different feature dimen-
sions on FERET face database 

3.2   COIL-20 Object Database  

COIL-20 is a database of gray-scale images of 20 objects. The objects were placed on 
a motorized turntable against a black background. The turntable was rotated through 
360 degrees to vary object pose with respect to a fixed camera. Images of the objects 
were taken at pose intervals of 5 degrees, which corresponds to 72 images per object. 
In our experiments, each of the 1440 images were cropped with the size of 64x64. For 
each of the 20 objects, we only use the first image per object as the training image, 
and the rest 71 images for testing. 

Figure 2 gives comparisons of accuracies of linear and kernel methods under  
different feature dimensions on COIL-20 object database. Figure 2 shows that the 
performance of KPCA is not necessarily better than that of PCA. In fact, KPCA is 
inferior to PCA in most cases in this experiment. On the other hand, it can be also 
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seen from Fig. 2 that the proposed three kernel methods nearly always outperform the 
corresponding linear methods on this database. 

Table 2 gives the detailed comparisons of the relative recognition ability between 
linear and kernel methods. For each of the 20 objects, the first image is used for train-
ing, and the rest 71 images for testing. On each of the 71 images, if the accuracy of 
the kernel method is higher than that of corresponding linear method, then the count 
of ‘win’ plus 1, and vice versa. Then the counts are averaged on the 20 objects and 
different dimensions. Table 2 indicates that except KPCA, the performances of the 
other three kernel methods are better than corresponding linear ones. 

 

 

Fig. 2. Comparisons of accuracies of linear and kernel methods under different feature dimen-
sions on COIL-20 object database 

Table 1. Comparisons of accuracies of linear and kernel methods on FERET face database 

 Method Accuracy (%) 
PCA [1] 83.0 

(PC) 2A [10] 83.5 
E(PC) 2A [1] 85.5 

(2D)2PCA [15] 85.0 
U2D-PCA 84.5 

B2D-PCA-1 84.5 

Linear  

B2D-PCA-2 84.5 
KPCA 83.5 

U2D-KPCA 89.0 
B2D-KPCA-1 89.5 Kernel 

B2D-KPCA-2 89.5 
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Table 2. Comparisons of relative recognition ability between linear and kernel methods on 
COIL-20 object database 

Match win 
stand-
off 

lose 

KPCA vs. PCA 11.3 32.6 27.1 

U2D-KPCA vs. 
U2D-PCA 

33.5 16.6 20.9 

B2D-KPCA-1 
vs. B2D-PCA-1 

34.1 17.7 19.2 

B2D-KPCA-2 
vs. B2D-PCA-2 

28.3 19.2 23.5 

4   Conclusions 

In this paper, we propose a novel framework called 2D-KPCA (including U2D-
KPCA, B2D-KPCA-1 and B2D-KPCA-2) for face and object recognition from a 
single image. Then we make a comparative study on performances of the linear and 
kernel methods on recognizing the face and object from a single image on two well-
known databases: the partial FERET face database and the COIL-20 object database. 
The experimental results suggest that, when recognizing the face and object from only 
a single image: 1) the performance of KPCA is not necessarily better than that of 
PCA; 2) 2D-KPCA nearly always outperforms 2D-PCA significantly; 3) the kernel 
methods are more appropriate on 2D pattern than on 1D patterns. 
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A Coupled Statistical Model for Face Shape Recovery
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Abstract. We focus on the problem of developing a coupled statistical model
that can be used to recover surface height from brightness images of faces. The
idea is to couple intensity and height by jointly modeling their combined varia-
tions. The models are constructed by performing Principal Component Analysis
(PCA) on the shape coefficients for both intensity and height training data. By
fitting the model to intensity data, the height information is implicitly recovered
from the coupled shape parameters. Experiments show that the methods generate
accurate surfaces from out-of training intensity images.

1 Introduction

One of the simplest approaches to facial shape recovery using shape-from-shading is
to extract a field of surface normals and then recover the surface height function by
integrating the surface normals [4,8,14]. Unfortunately, there are a number of obsta-
cles that are encountered when this simple strategy is applied to real-world data. The
most important of these is that when integrated, the concave/convex ambiguities in the
needle-map can lead to the distortion of the topography of the reconstructed face. One
of the most serious instances of this problem is that the nose can become imploded.

In general, shape-from-shading is an under-constrained problem since a surface nor-
mal has two degrees of freedom corresponding to the elevation and azimuth angles
on the unit sphere which can not be recovered from a single brightness measurement.
Domain specific constraints have been used to overcome this problem. Several au-
thors [15,11,5,10] have shown that, at the expense of generality, the accuracy of recov-
ered shape information can be greatly enhanced by restricting a shape-from-shading
algorithm to a particular class of objects. For instance, both Prados and Faugeras [10]
and Castelán and Hancock [5] use the location of singular points to enforce convexity on
the recovered surface. Zhao and Chellappa [15] have introduced a geometric constraint
which exploited the approximate bilateral symmetry of faces.

On the other hand, Atick et al. [1] proposed a statistical shape-from-shading frame-
work based on a low dimensional parametrization of facial surfaces. Principal compo-
nents analysis was used to derive a set of ‘eigenheads’ which compactly captures 3D
facial shape. Unfortunately, it is surface orientation and not height which is conveyed by
image intensity. Therefore, fitting the model to an image equates to a computationally
expensive parameter search which attempts to minimise the error between the rendered
surface and the observed intensity. Dovgard and Basri [7] combined the statistical con-
straint of Atick et al. and the geometric constraint of Zhao and Chellappa into a single

� Supported by National Council of Science and Technology (CONACYT), Mexico, under grant
No. 141485.

D.-Y. Yeung et al. (Eds.): SSPR&SPR 2006, LNCS 4109, pp. 898–906, 2006.
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shape-from-shading framework. However, asymmetry in real face images results in er-
rors in the recovered surfaces. Blanz and Vetter [3] decoupled surface texture from
shape and performed PCA on the two components separately. Their framework could
be used regardless of pose and illumination changes, but linear combinations of shape
and texture had to be formed separately for the eyes, nose, mouth and the surround-
ing area. In addition, expensive alignment and parameter fitting procedures had to be
carried out. The results delivered by fitting this morphable model proved to be accu-
rate enough to generate photo-realistic views from an input image, though sacrificing
efficiency and simplicity.

The aim in this paper is to explore how coupled statistical models can be used to
overcome these difficulties. We couple height surface with intensity, developing a cou-
pled statistical model that jointly describes variations in image brightness and height
data over the surface of a face. The coupled model is inspired by the active appearance
model developed by Cootes, Edwards and Taylor [6], which simultaneously models 2D
shape and texture.

2 Principal Component Analysis

In this section we describe how the intensity and 3D data are represented, and how
eigenspace models are constructed for these data. Here we follow the approach adopted
by Turk and Pentland who were among the first to explore the use of principal com-
ponents analysis for performing face recognition [13]. Further, we make use of the
technique described by Sirovich et al. [12] to render the method efficient.

2.1 Generating an Intensity Model

The image data is vectorized by stacking the image columns to form long column vec-
tors p. If the K training images contain M columns and N rows, then the pixel with
column index jc and row index jr corresponds to the element indexed j = (N−1)jc+jr

of the long column vector. The long column vectors are centered by computing the mean
mp = 1

K

∑K
k=1 pk.

From the centered vectors an MN×K data matrix P = (p1−mp|p2−mp|...|pK−
mp) is constructed, whose covariance matrix is Σp = 1

K PPT . Unfortunately, since it
is of size MN × MN the computation of the eigenvalues and eigenvectors of Σp

becomes computationally impossible for large sets of data. However, the numerically
efficient method proposed in [12] can be used to overcome these difficulties. This in-
volves computing the eigen-decomposition of the K×K matrix 1

K PTP = UpΛpUT
p ,

where the ordered eigenvalue matrix Λp and temporal eigenvector matrix Up are both
real. The spatial eigenvectors (or eigenfaces) of the covariance matrix Σp = 1

K PPT

are given in terms of the eigenvectors of PT P by P̃ = PUp.
We deform the mean long-vector of image intensities in the directions defined by

the eigenvalue matrix P̃ . If we truncate P̃ after the L leading eigenvectors then the
deformed long vector is p∗ = mp +P̃bp, where bp = [bp1 , bp2 , · · · , bpL ]T is a column
vector of real valued parameters of length L. Suppose that po is a centered long-vector
of measurements to which we wish to fit the statistical model. We seek the parameter
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vector b∗
p that minimizes the squared error. The solution to this least-squares estimation

problem is
b∗

p = P̃Tpo. (1)

In order to be valid examples of the class represented by the training set, the values
of the coefficients b∗

p should be constrained to fall in the interval bp ∈ [−3
√

Λpe,

+3
√

Λpe], where e = [1, 1, · · · , 1]T is the all-ones vector.

2.2 Generating a Height Model

We aim to train a surface height model corresponding to the image intensity data us-
ing range images. However, for range data there are alternative representations, One of
the most commonly used alternatives is a representation that uses cylindrical coordi-
nates [1,2]. Using cylindrical coordinates, the surface of a human face (or head) can be
parameterized by the function R(θ, �), where R is the radius, and θ and � are the height
and angular coordinates respectively. This representation has been adopted since it cap-
tures the linear relations between basis heads. Unfortunately, it can lead to ambiguity
since different data can be fitted to the same head-model.

An alternative, which overcomes this problem, is to use a Cartesian representa-
tion [7], in which each surface point is specified by its (x, y, z) co-ordinates, where the
z-axis is in the direction of the viewer. The Cartesian coordinates are related to the cylin-
drical coordinates through (x, y, z) = (x0 + R(θ, �) sin θ, y0 + �, z0 + R(θ, �) cos θ),
where (x0, y0, z0) is a reference shift. In this paper we will use the Cartesian form.

Each of the K range images (which are registered with the intensity images) in the
training set may be represented by long vectors of height values h in the same way as
the intensity data. The mean height vector mh is given by mh = 1

K

∑K
k=1 hk. We form

the MN ×K matrix of centered long vectors H = (h1−mh|h2−mh|...|hK −mh).
We can perform PCA to extract the set of spatial modes of variations of H, H̃ = HUh.
In the same manner, a centered long vector of height values ho can be projected onto
the eigenheads and represented using the vector of model coefficients b∗

h = H̃Tho.

3 Coupling Surface Height with Intensity

We now show how the intensity and the height models described above can be combined
into a single coupled model. Each training sample can be summarized by the parameter
vectors bp and bh, representing the intensity and height of the sample respectively. In
both models, we may consider small scale variation as noise. Hence, if the ith eigen-
value for the intensity model is λi

p (where λp is the diagonal vector of the eigenvalue
matrix Λp), we need only S eigenmodes to retain p percent of the model variance. We
choose S using

∑S
i=1 λ

i
p ≥ p

100

∑K
i=1 λ

i
p. Similarly, for the height model we keep T

eigenmodes to capture p percent of the variance.
For the kth training sample we can generate the concatenated vector of length S+T :

bk
c =

(
Wbk

p

bk
h

)
=

(
WP̃T (pk −mp)
H̃T (hk −mh)

)
, (2)
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where W is a diagonal matrix of weights for each intensity model parameter, allowing
for the different relative weighting of the intensity and height models. As the elements
of bp and bh represent different classes of data (grayscale and height), they can not be
compared directly. We follow Cootes and Taylor [6] and set W = rI, where r2 is the
ratio of the total height variance to the total intensity variance. The coupled model data
matrix is C = (b1

c |b2
c |...|bK

c ). We apply a final PCA to this data to obtain the coupled
model:

bc = C̃c =

(
C̃p

C̃h

)
c, (3)

where C̃ are the eigenvectors and c is a vector of coupled parameters controlling the
intensity and height models simultaneously. The matrix C̃p has S rows, and represents
the fist S eigenvectors, corresponding to the intensity subspace of the model. The matrix
C̃h has T rows, and represents the final T eigenvectors, corresponding to the height
subspace of the model.

We may express the vectors of projected intensity and height values directly in terms
of the parameter vector c:

p = mp + P̃W−1C̃pc. (4)

h = mh + H̃C̃hc. (5)

For compactness we write: Qp = W−1C̃p.
A plot of cumulative variance versus number of eigenmodes is shown in Figure 1.

The height, intensity and coupled models are represented by the dashed, solid and dotted
lines respectively. It is evident that fewer eigenmodes are required to capture variance in
facial height than in facial intensity. This is because the intensity model has to deal with
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Fig. 1. Plot of cumulative variance versus number of eigenmodes used for intensity model (solid
line), height model (dashed line) and coupled model (dotted line)
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changes in shape and illumination, while the height model only deals with changes
in shape. We retained 65 dimensions of the height model and 85 dimensions of the
intensity model (each accounting for 95% of the variance). For the coupled model we
retained 80 modes.

3.1 Fitting the Model to Intensity Data

Fitting the model to intensity data involves estimating the parameter vector c from input
images of faces. To do this we seek the coupled model parameters which minimize the
error between the best fit parameters b∗

p and the recovered parameters Qpc. In doing
so, we implicitly recover the surface which is also represented by the coupled model
parameters.

Suppose that po is a centered vector of length MN that represents an intensity image
of a face. Its best fit parameter vector, b∗

p, is calculated through Equation 1. We fit the
model to data seeking the vector c∗ of length S + T that satisfies the condition

c∗ = arg min
c

{(b∗
p −Qpc)T (b∗

p −Qpc)} (6)

The corresponding best fit vector of height values is given by

h = mh + H̃C̃hc∗ (7)

We used a Matlab implementation of a quasi-Newton minimization procedure to
solve Equation 7, constrained such that each coupled parameter lies within±3 standard
deviations from the mean. One input image took around 5 seconds to converge to the
best solution.

4 Experiments

In this section we report experiments focused on out-of-training characterization for the
coupled model. The face database used for building the models was provided by the Max-
Planck Institute for Biological Cybernetics in Tuebingen, Germany [2]. This database
was constructed using Laser scans (CyberwareTM ) of heads of young adults, and pro-
vides head structure data in a cylindrical representation. For constructing the height based
model, we converted the cylindrical coordinates to Cartesian coordinates and solved for
height values. We were also provided with the intensity maps for each 3D face.

We used 93 out-of-training cases. We calculated the fractional height difference er-
ror ‖Ground truth − Recovered surface‖/Ground truth as an average over the
93 surfaces and over all points. For the purposes of analysis, we ordered the out-of-
training cases so that the first examples were those close in appearance to the mean
shape mp. We used the sum of the first ten values of bp (to account for at least 50% of
the variability), i.e.,

∑10
i=1 bpi as a similarity measure.

In Figure 2 we show surface recovery results for three cases. The figure is divided
into five columns. The different rows are for the three different subjects. In the first
column, the three panels show the input image together with its frontal and profile
views. The second panel contains the recovered best-fit intensity image. The third and
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Fig. 2. Surface recovery results for three cases. The figure is divided in four columns. The first
column shows the input image together with its frontal and profile views. The second column
presents the best-fit intensity recovery. The next two panels present frontal and profile views from
the intensity-height coupled model (third column) and the single height model (fourth column).

fourth columns contain panels which show frontal and profile views. The results of
applying the full model are shown in the third column and those of applying the single
height model are shown in the fourth column (i.e. the height data for the surface in panel
1 was used as an input for the single model H̃). The first two rows present cases where
a percentage of height error around 1% while the last row shows cases with percentage
of error bigger then 2%. As expected, the results shown in columns 3 seem to match
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the mean height shape.
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the best-fit intensity in column 2 rather than the original data in panel 1. However,
even in those cases that differ significantly from the mean (last row), there is a good
resemblance to the original data. This may be a consequence of basing surface recovery
on the best-fit parameters directly from an intensity image. From the recovered faces,
one can infer that in column 3, the surface recovery was led by the appearance of an
input image. On the other hand, a visual analysis of the profiles in column 4 suggests
that surface recovery was determined by an input height map.

In Figure 3 we plot the fractional height difference for the 93 cases. The solid line
shows the coupled model performance. The dashed line shows the error obtained using a
single height model (using height information as input), while the dot-dashed line shows
the error from the mean height shape. The results were ordered in an ascending way for
the purposes of comparison. The average error for the simple height model, coupled
model and from the mean height are respectively 0.08%, 1.19% and 1.71%. Observe
that many out-of-training examples whose intensities cannot be accurately recovered
will generate less accurate height maps. However, considering that we are comparing
two kinds of inputs (height and intensity), we can say that the coupled model delivers
encouraging results.

Finally, we illustrate the utility of the coupled model with real world face images.
These are drawn from the Yale B database [9] and are disjoint from the data used to train
the statistical model. In the images the faces are in the frontal pose and were illuminated
by a point light source situated approximately in the viewer direction. We aligned each

Fig. 4. Height recovery results using five examples from the Yale B database. From left to right:
input image, intensity best-fit recovery, frontal illumination of the recovered height and profile
and close-to-profile views with warped albedo-free and input images.
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image with the mean intensity shape so that the eyes, nose tip and mouth center were
in the same position. The surface recovery results are shown in Figure 4, where we
present, from left to right: input image, intensity best-fit recovery, frontal illumination
of the recovered height and profile and close-to-profile views with warped albedo-free
and input image. Notice that even when the best-fit recovered intensity image is of lower
quality than those in Figure 2(2), the surface reconstructions from the best-fit intensity
parameters are sufficiently good to render novel views.

5 Conclusions

We have explored a way for coupling intensity and height information to construct
statistical models of facial shape. Our coupled model strongly links the best-fit coeffi-
cients for intensity and height into a single statistical model. To recover the parameters
of the coupled model, and hence reconstruct height, requires an optimization method.
In this way best-fit intensity parameters can be calculated directly from an input image,
and then used to recover height through the optimization search. The process only take
some few seconds to converge to a minimum. The coupled model proved to be good
enough to generate accurate surfaces from real world intensity imagery in an efficient
way. Future research will focus on exploring the effect of these approaches to alterna-
tive representations including surface gradient, azimuth and zenith angles, and surface
normals.
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Abstract. Although fingerprint verification systems have attained a good 
performance, researchers recently pointed out their weakness under fraudulent 
attacks by fake fingers. In fact, the acquisition sensor can be deceived by fake 
fingerprints created with liquid silicon rubber. Among the solutions to this 
problem, the software-based ones are the cheapest and less intrusive. They use 
feature vectors made up of measures extracted from one or multiple impressions 
(static measures) or multiple frames (dynamic measures) of the same finger in 
order to distinguish live and fake fingers. In this paper, we jointly use both static 
and dynamic features and report an experimental investigation aimed to compare 
them and select the most effective ones.  

1   Introduction 

Fingerprint matching algorithms are widely used for automatic personal verification 
[1]. Although the fingerprint verification systems have shown a good degree of 
accuracy, their weak point is the acquisition sensor, which can be of optical or solid-
state type [1]. It has been shown by Matsumoto et al. that commonly used sensors can 
be deceived by submitting a “gummy” finger, made up of liquid silicon rubber and 
similar materials [2]. The image produced by this kind of fingers is processed as well 
as a “live” image.  

Although reproducing fingerprint is not simple, the academic and commercial 
interest on spoof attempts is increasing. In order to prevent the fraudulent attempts by 
fake fingers, several solutions have been proposed. Most of them are based on the use 
of additional hardware, embedded in the sensor, which can detect the “vitality” of the 
finger, e.g., through the heartbeat detection. 

A novel approach to the vitality detection of fingerprints has been proposed in [3-
5]. It is based on the extraction of features which can discriminate between live and 
fake fingerprints by using the images acquired by the sensor. These software-based 
solutions are obviously less intrusive and cheaper than the hardware-based ones. So 
far, the state-of-the-art consists of two main approaches: the first one is based on the 
dynamic measure of some “intrinsic” features [3-4], while the second one uses 
relative measures between an unknown fingerprint image and another one which is 
known to be “live” [5]. The search of some physiologic or physic characteristics of 
the fingerprint, in order to derive some vitality measures, follows the observation that 
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the “vitality” is a property of the fingertip and not of the fingerprint. Therefore, the 
main features considered so far are based on the perspiration of the skin through the 
pores and the “deformation” properties of the skin. To measure the first kind of 
features a temporal analysis of the fingerprint was adopted [3-4], whilst a static 
analysis was adopted for the second kind [5]. 

So far, static and dynamic features have been used separately. However, it is 
reasonable to argue that both features provide discriminant information about live and 
fake fingers. Accordingly, their joint contribution should be investigated. This is the 
purpose of this paper, which reports an experimental comparison aimed to select the 
most discriminant subsets of features for optimising the performance of automatic 
fingerprint vitality detection systems.  

Section 2 presents the features we used for our experiments. Section 3 describes 
the used data set and the experiments performed for the feature selection process. 
Section 4 draws some preliminary conclusions. 

2   Static and Dynamic Features for the Fingerprint Vitality 
Detection 

The vitality detection by software-based solutions starts from the measure of some 
features extracted from the fingerprint image acquired by standard acquisition sensors 
(e.g., optical or capacitive [1]). 

At present, the main approaches proposed in literature to perform vitality detection 
are based on the study of the skin perspiration through the pores and the elastic 
properties of the skin. 

For the first kind of measures, the user hold his finger on the scanner surface, and 
the biometric system acquires different frames in the time. Features are extracted 
according to the differences among these frames. 

For the second kind of measures, the vitality information is given by the different 
elastic response which is hypotesized to coming from true and fake fingers. In order 
to derive this type of information the user has to repeat the acquisition process on the 
scanner surface.  

In the following, we refer to the features derived from these approaches by  
the terms “dynamic” and “static”. In fact, to measure the first kind of features the 
“dynamic” acquisition of multiple frames of the same finger is required, whilst  
the “static” acquisition of multiple impressions of the same finger is required for the 
second kind.  

The following sections describe the features we adopted for our experiments. 

2.1   Static Features 

The use of elastic measures has been adopted in previous works in order to correct the 
non-linear deformations introduced during the acquisition stage, and so improving the 
alignment between different impressions of the same fingerprint [6]. 

Recently, an elastic model has been adopted into a vitality detection system [5]. In 
this work Chen et al. compute an elastic model to study the different deformation of a 
fake fingerprint from a live one. They have observed that the contact of the fingertip 
with a plane surface involves an elastic deformation: the flow of papillary ridges 
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changes from a 3D to a 2D-pattern. Through the mathematical model proposed in [6], 
Chen et al. showed that it is possible to study the elastic behaviour of a live and a fake 
finger. 

The first step for the computation of this static measure is the extraction of a fixed 
and ordered set of minutiae from the fingerprints. For the purpose of this work we 
manually extracted the minutiae in order to eliminate all possible error sources. From 
a fingerprint k we manually extracted 20 minutiae Mk=(mk

1,m
k
2,…mk

20). 
Then, starting from a couple of set of minutiae extracted from two fingerprints, 

namely, a “template” fingerprint and an input impression of the same subject, 
Mt={mt

1,m
t
2,…mt

20} and Mc={mc
1,m

c
2,…mc

20}, we computed the TPS (Thin Plate 
Splines) model to obtain the complete correspondence of the 20 minutiae: 

tc MMF =)(  (1) 

Each minutia is characterised by a triplet { }ϑ,, yxu =  where { }yx,  are its 

Cartesian coordinates in the image and ϑ  is its orientation. The correspondence is 
defined according to: 

cuF =)( + uA + )(uWs  (2) 

Where the c and A parameters are referred to the rigid transformation and W indicates 
the non-linear transformation that includes the elastic deformation, and s(u)=u2 log u 
is the basis function.  

The amount of the deformation is given by a function known as “bending energy”: 
this value can be computed by the elastic parameters W and s. Further details for the 
bending energy computation can be found in [5]. We refer to this feature with the 
name “SF2”. 

Moreover, we added some “morphological” features which give a general 
description of the fingerprint pattern based on its geometrical properties. The first one 
of these static measures is the mean of the intra-distances among the set of the 
extracted minutiae (named SF1). For each of these it has been computed the sum of 
the distances with the other ones. Finally we have considered the mean of this values. 
The second one is the mean of the ridge width (named SF3). By following the 
skeleton extracted for each fingerprint images, we computed the value of the width of  
the correspondent ridge. In fact, the creation of the fake finger (e.g., by the consensual 
method) includes a sequence of steps which can involve a modification of the width 
of the ridges and furrows with respect to the correspondent live finger. We give 
details about the fingerprint reproduction method we followed in Section 3.1. 

2.2   Dynamic Features 

The perspiration is a unique feature of the skin: the perspiration of the pores, which 
are in every part of the skin, allows to conserve the body temperature into a constant 
value (body temperature homeostasis). During the contact of a finger on the sensor 
surface, the perspiration produces a modification of the skin wetness and so of the 
corresponding image. With a synthetic finger used to spoof a biometric system, the 
perspiration phenomenon is not present.  
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In [3-4] this physiological feature of the skin is used in order to extract some vitality 
measures from fingerprint images. By using some standard optical and capacitive 
sensors a time sequence of fingerprint images is captured. The user keeps his fingertip 
in contact with the surface of the sensor for about 5 seconds, and the sensor captures a 
certain number of images (frames). The grey-levels variation of two sequential 
fingerprint frames is a dynamic measure of the perspiration process and, therefore, of 
the vitality of the finger. These dynamic measures are used as feature vectors submitted 
to a machine learning algorithm for classification into the “live” and the “fake” 
fingerprint classes. In order to obtain a good trade-off between the reliability of dynamic 
features and the usability of the biometric system, an acquisition time of five seconds 
has been considered [3]. 

The algorithm for the measure of the perspiration is based on the grey-level values 
along the ridges path according to the steps described in [4] which we followed: 

1) acquisition of two frames of the same fingerprint temporally separated from 5 
seconds; 

2) separation of the two fingerprint images from the background; 
3) binarization and thinning of the last frame; 
4) computation of two mono-dimensional signal C1 and C2, containing the grey-level 

profile along the skeleton extracted at step 3. 

The grey-level variations from C1 to C2 represent the dynamic variations of the 
fingerprint moisture during the acquisition process. Accordingly, a set of dynamic 
features can be extracted. In [3-4] six measures were computed. However some of 
these features have not been used in the classification stage. As it is remarked in [3-4], 
the dynamic measures strongly depend on the acquisition characteristics of the sensor, 
in particular on the device’s dynamic. Therefore, in this work we have selected the 
following dynamic features from those described in [4]: the time difference of mean 
grey-level on the skeleton (DF1), the dry saturation percentage change (DF2), and the 
wet saturation percentage change (DF3). These measures have shown to be 
appropriate for the capture device we used in our experiments.  

Moreover, we added other two dynamic measures: the time variation of the grey-
level mean value of the whole image (DF4) and the L1-distance of its grey-levels 
histogram (DF5). 

3   Experimental Results 

3.1   The Data Set 

The data-set we used is made up of twenty-eight different fingerprint images from a 
male population aged between 20 and 40. Images were taken by the Biometrika 
FX2000 optical sensor.  

The data-set is made up of: 

- twenty-eight couples of frames (temporally separated from 5 seconds) from live 
fingerprints; 

- twenty-eight couples of frames (temporally separated from 5 seconds) from fake 
fingerprints of the same subjects; 

- twenty-eight additional live impressions of the same subjects. 
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The fake data have been created from twenty-eight reproductions of each live 
fingerprint with the cooperation of the subject, which put his finger on a plasticine-
like material. These moulds have been then filled with liquid silicon rubber to create 
wafer-thin silicon replicas. About one day has been necessary for the solidification of 
the rubber. Fig. 1 illustrates the main steps of our fingerprint reproduction method. 

 
(a) (b) (c) 

Fig. 1. Basic steps of our fingerprint reproduction by “consensual” method. (a) The user put his 
finger on the plasticine-like material, thus creating the mould. (b) The liquid silicon rubber is 
dripped over the mould. (c) After one day, the solidification of the rubber is completed and it 
can be removed from the mould. It can be used as a fingerprint stamp. 

Our data set has size and characteristics similar to the ones of other data sets used 
for the vitality detection [3-4]. For example, the data set used in [3] is made of 
eighteen live finger images, eighteen fake finger images and eighteen finger images 
from cadavers. 

3.2   Experimental Protocol 

In order to extract the above features from fingerprint images, we adopted the 
following protocol: 

- the second impression has been considered as the template of the fingerprint stored 
in the system database. The minutiae-points were manually detected in order to 
avoid errors due to the minutiae detection algorithm; 

- the first and the second frame of the first impression have been considered as the 
images provided by the system during an access attempt. Only attempts related to 
fingerprints of the same subject were considered (“genuine” attempts by live and 
fake fingers). Even for these images the minutiae-points were manually detected. 

In particular: 

- to compute the morphological features (SF1 and SF3), we used the second frame of 
the first impression;  

- to compute the bending energy (SF2), we used twenty-eight images of the second 
impression as the template of the fingerprint verification system. We computed the 
bending energy on the basis of the comparison between the template and the second 
frame of the first impression; 

- to compute the dynamic features (from DF1 to DF5) we used the first and the 
second frame of the first impression; 

- each feature was normalised according to: 
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i

iin
i

f
f

σ
μ−=)(

 (1) 

Where 
)(n

if  is the i-th normalised feature (i = 1,…, 8), iμ  and iσ are the mean and 

the standard deviation of fi over all available patterns. 
Thus, we obtained fifty-six feature vectors made up of three static features from 

live and fake fingers, and fifty-six feature vector made up of five dynamic features 
from live and fake fingers. 

We used the k-Nearest Neighbour classifier to discriminate between the live and 
fake fingerprint images characterized by such feature vectors. We performed trials 
with values of the parameter k between 1 and 27. For each trial, the accuracy of the k-
Nearest Neighbour classifier was assessed by the leave-one-out method, namely, the 
accuracy values reported are averaged on fifty-six trials and the k value corresponding 
to the highest accuracy is selected. 

3.3   Results 

Table 1 shows the correlation coefficient between features. Some subsets of features 
(dynamic features especially) exhibit a significant degree of correlation. For example, 
DF4 and DF5 are negatively correlated with DF1. On the other hand, these features 
are less correlated with static ones than DF1. Therefore, these results suggest that an 
appropriate feature selection step is necessary in order to exploit static and dynamic 
features at best. 

Table 2 reports the best performance achieved by using only one feature, in 
particular the maximum classification accuracy obtained using values of k ranging in 
the interval {1,…,27}. It is easy to see that static features perform generally worse 
than dynamic ones, except for SF3.   

Table 1. Correlation coefficient of static and dynamic features 

  SF2 SF3 DF1 DF2 DF3 DF4 DF5 

SF1 0,08 0,29 0,36 0,15 0,31 -0,27 -0,27 

SF2   0,09 0,19 -0,04 0,04 -0,16 -0,13 

SF3     0,66 0,68 0,04 -0,43 -0,43 

DF1       0,65 0,30 -0,85 -0,89 

DF2         0,08 -0,47 -0,54 

DF3           -0,50 -0,24 

DF4             0,78 

Table 2. Best classification percentage accuracy achieved by the individual features over the 
investigated values of k (k=1,…,27) 

 SF1 SF2 SF3 DF1 DF2 DF3 DF4 DF5
Accuracy (%) 53,6 57,1 62,5 85,7 60,7 82,1 75,0 71,4
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Fig. 2. Overall percentage accuracy over the investigated values of k (k=1,…,27) for the best 
subset of each group of n features (n = 1,…,8) 

In order to detect the best features subsets, we performed classification of fake and 
live fingers by using the k-NN classifier with all possible subsets of the available 
features. In other words, we computed the accuracy on the subsets obtained by 
grouping n features (n = 2,…,8). Then we selected the best group of each subset by 
using the best accuracy over k ranging from 1 to 27. Fig. 2 shows the overall accuracy 
of each best group of n features.  

Reported results point out that the performance achieved with the best subset is 
higher than that of the best individual feature (about 10% more than DF1’s accuracy) 
and that six features allow to obtain the best performance. This subset is made up of 
SF3 and all the dynamic features (Fig. 2). It is worth noting that the best classification 
accuracy obtained by using all static features only is 62,5% and that obtained by using 
all dynamic features only is 82,1%.  

With regard to the best feature subset, it can be noticed that adding the remaining 
static features negatively affects the performance. However this does not necessarily 
mean that SF1 and SF2 are not useful for discriminating between live and fake fingers 
in general, due to the small sample size of the used data set. 

Nevertheless, the good performance achieved by combining the dynamic features 
with the SF3 static feature only can be explained by the physical interpretation that 
can be associated to these features (especially to dynamic ones [3-4]), which gives 
more evidence that these results can be expected to hold also on larger data sets. To 
investigate this hypothesis, let us consider as an example the DF4 and SF3 features.  

The first one corresponds to the time difference of the grey-levels mean on the 
whole images. The expressive power of this feature is evident by looking at Figs. 3(a-
d), which shows two frames of the same live finger taken at 0 and 5 seconds (Figs. 
3(a-b)), and two sequential frames of the correspondent fake finger (Figs. 3(c-d)). It is 
evident that the second “live” frame exhibits a higher number of “dark” pixels than 
that of the first “live” frame, due to the perspiration effect. This does not happen for 
the two “fake” frames due to the absence of the perspiration phenomenon (see also [3-
4]). Therefore, by computing the average difference of the pixels grey-levels between 
the first and the second frame, we can expect that its value for fake fingers is lower 
than for live fingers. Similar observations can be made for other dynamic measures. 
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(a) (b) (c) (d) 

Fig. 3. (a-b) Two sequential frames of the same live fingerprint acquired by an optical sensor at 
0 seconds (a) and 5 seconds (b). (c-d) Two sequential frames of the fake finger correspondent 
to that of (a-b).  

 
Fig. 4. The patterns of the used data set projected to the SF3-DF4 feature subspace 

The second one is the average width of the ridges in a fingerprint image. In fact, 
the fake fingers creation process involves steps which lead to a different ridges width 
of the stamp with respect to that of the correspondent live finger (Fig. 1). We 
observed that the ridges of fake fingerprints images were wider than those of live 
fingerprints images. Figs. 3(b, d), which is related to a live finger impression and to 
the correspondent fake finger, clearly show that the ridges of the fake sample are 
wider than those of the live sample. Therefore, by computing the average width of the 
fingerprint ridges, we can expect a higher value for fake fingers than for live fingers. 

Accordingly, the plot of the pattern projected on the SF3-DF4 feature subspaces 
should be characterised by fake patterns around low values of the DF4 feature and 
high values of the SF3 feature and by live patterns spread over the range of each 
feature, due to the variability of the perspiration phenomenon and the skin 
characteristics of live fingers each others. Fig. 4 shows the Live and Fake patterns 
projected to the SF3-DF4 feature subspaces. Distributions of Live and Fake patterns 
follow the given physical interpretation, thus supporting our hypothesis about the 
reduction of the impact of the small sample size issue on reported results. 
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4   Conclusions 

In this paper, we investigated static and dynamic features for the vitality detection of 
fingers. The adopted static features were based on the elastic and morphological 
properties of the skin, whilst the dynamic ones were based on the perspiration 
phenomenon as observed in previous works. 

So far, no studies on joint static and dynamic features are present in the literature. 
However, it can be argued that both static and dynamic features could jointly help in 
distinguishing between live and fake fingers. This preliminary study was aimed to 
support such hypothesis and also to indicate the most promising of the investigated 
features. Reported results showed that it was possible to find a subset of static and 
dynamic features which performed much better than those made up of only one 
feature or features of the same type. Despite the small size of the used data set, the 
possibility of associating a physical interpretation to some features suggested that our 
results could be confirmed even on larger data sets.  
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Abstract. This paper addresses the problem of facial expressions recognition 
using principal component analysis and independent component analysis onto 
dimension of the emotion. To reflect well the changes in facial expressions, a 
representation based on principal component analysis (PCA) excluded the first 
2 principal components is presented, ICA representation from this PCA repre-
sentation is developed. Facial expression performance in two dimensional struc-
ture was significant 90.9% in pleasure/displeasure dimension and 66.6% in the 
arousal/sleep dimension. The findings indicate that the two dimensional struc-
ture of emotion may reflect various emotion states as a stabled structure for the 
facial expression recognition. 

1   Introduction 

In the field of facial expression recognition, most research has been made in trying to 
recognize expressions of discrete emotions suggested by Ekman[1]. Such studies 
provide a convenient framework [2, 3, 4]. But these studies have limitations for rec-
ognition of natural facial expressions which consist of several other emotions and 
many combinations of emotions. Thus, when developing methods for analyzing facial 
expressions in human-computer interaction, dimension approach is needed. 

The dimensions of emotion can be overcome this limitation. The two most common 
dimensions are “arousal” (calm/excited), and “valence” (negative/positive) [5, 6]. To 
recognize facial expressions in various emotion states, we worked with dimensions of 
emotion instead of with basic emotions or discrete emotion categories. The dimensions 
of emotion proposed are pleasure/displeasure dimension and arousal/sleep dimension. 

Several methods for representing facial expression images have been proposed such 
as PCA (Principal Component Analysis), ICA (Independent Component Analysis), 
Optic flow and Geometric tracking method, and Gabor representation [7, 8,9]. ICA 
filters as features on facial expression recognition were demonstrated the successful 
classifying twelve facial actions of the upper and lower face [9]. At recently study, PCA 
representation excluded the first 1 principal component in full face was applied to input 
features of neural network classifier in work for facial expression recognition [10]. PCA 
representation excluded the first 1 principal component can remove neutral expressions. 
ICA is a generalization of PCA which learns the high-order moments of the data in 
addition to the second-order moments [11]. Therefore we thought that ICA 
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representation using PCA images excluded neutral expression components in full face 
could be used effectively in the facial expression recognition as well.  

This paper develops a method to recognize facial expressions on dimension of 
emotion using a combination of PCA and ICA. Section 2 indicates a representation of 
facial expression images based on PCA and ICA for feature extraction of facial ex-
pressions. Section 3 describes the classification of facial expressions on two dimen-
sional structure of emotion. Section 4 concludes with discussion. 

2   Feature Extraction 

This section provides a database based on dimension structure of emotion and the 
representation of facial expression images for feature extraction of facial expressions. 
The representation of facial expression images is developed as two steps. In the first 
step, we present a representation based on PCA  excluded the first 2 principal compo-
nents. Second step, ICA representation from this PCA representation was developed. 

2.1   Database of Dimension Structure 

The database [12] with two dimension structure of emotion contained 498 images, 3 
females and  3 males, each image using 640 by 480 pixels. Expressions were divided 
into two dimensions(Pleasure/Displeasure and Arousal/Sleep dimension) according to 
the study of internal emotion states through the semantic analysis of words related 
with emotion by Younga et al. [13]  using 83 expressive words.  

Each expressor of females and males posed 83 internal emotional state expressions 
when 83 words of emotion are presented. 51 experimental subjects rated pictures on the 
degrees of expression in each of the two dimensions on a nine-point scale. The images 
were labeled with a rating averaged over all subjects. The result of the dimension  
analysis  of emotion  words  related  to internal emotion states is shown in figure. 1.  

2.2   PCA Representation Excluded Neutral Expressions 

Facial expression images were centered with coordinates for eye and mouth locations, 
and then cropped and scaled to 20x20 pixels to minimize reconstruction error. The 
luminance was normalized in two steps. The rows of the images were concatenated to 
produce 1 ×  400 dimensional vectors. The row means are subtracted from the data 
set, X. Then X is passed through the zero-phase whitening filter, V, which is the in-
verse square root of the covariance matrix:  

XVZXXEV T == − ,}{ 2

1

 (1) 

From this process, Z removes much of the variability due to lightening. Atick and 
Redlich [14] have argued for such compact, decorrelated representations as a general 
coding strategy for the visual system. Redundancy reduction has been discussed in 
relation to the visual system at several levels. A first-order redundancy is mean lumi-
nance. The variance, a second order statistic, is the luminance contrast. PCA is a way 
of encoding second order dependencies in the input by rotating the axes to corre-
sponding to directions of maximum covariance. 
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Fig. 1. The dimension analysis of emotion words related to internal emotion states 

The first 1 or 2 principal components of PCA do not address the changes of facial 
expressions. It just  displays the neutral face. That is to say, the neutral face means 
redundant codes in facial expressions. Figure 2(a) shows PCA representation that 
included the first 2 principal components. But selecting intermediate ranges of com-
ponents that excluded the first 2 principal components of PCA do address well the 
changes in facial expression (Figure 2(b)).  

To extract information of facial expression excluded redundant codes such as neu-

tral expressions in facial expressions, we employed the 200 PCA coefficients, nP , 
 

               
                         (a)                                                                (b) 

Fig. 2. (a) PCA representation included only the first 2 principal components (b) PCA repre-
sentation excluded the first 2 principal components 
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excluded the first 2 principal components of PCA of the face images. 200 principal 
components excluded the first 2 principal components provided best performance on 
facial expression recognition. 

The principal component representation of the set of images in Z in Equation(1) 

based on  nP  is defined as nn PZY ∗= . The approximation of Z is obtained as 

T
nn PYZ ∗= . The columns of nY  consist of input data for ICA representation.  

2.3   ICA Representation  

Independent component analysis (ICA) is a generalization of principal component 
analysis, which decorrelates the high-order moments of the input. Much of the impor-
tant information is contained in the high-order statistics of the images. In a task such 
as facial expression recognition, a representational basis in which the high-order sta-
tistics are decorrelated should consider changes in facial expressions. Therefore, we 
applied images after excluding the high-order statistics such as neutral expressions for 
feature extraction of facial expressions to ICA representation. 

The images were converted to vectors and comprised the rows of a 252x200 data 
matrix, Y .  We assume the facial images in Y to be a linear mixture of an known set 

of statistically independent source images U, where 1−= WA  is an unknown mixing 
matrix. The sources, U are gained by a matrix of learned filters, W. ICA representa-
tion is generated according to the following linear model [15, 16] 

 

Fig. 3. Basis images for the ICA factorial representation )( 1−=WA  

 
 

*1u=             *2u+              *... nu++                   

 

Fig. 4.  ICA factorial representation=( nuuu ......,,2,1 ) 
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.WYU =  (2) 

The weight matrix, W, was obtained by using the FastICA algorithm [17].  The 
FastICA algorithm computes the independent components that become uncorrelated 
by a whitening process and then maximizes non-Gaussianity of data distribution by 
using kurtosis maximization. The columns of the ICA output matrix, UWY =  pro-
vided a factorial code for the training images inY . Each column of U contained the 
coefficients of the basis images in A for reconstructing each images in Y . The col-

umns of 1−= WA  consist of  basis images for the ICA factorial representation 
(Fig. 3). Figure 4 shows the factorial code representation in facial expression image. 

The representational code for the test images was found by testtest UWY = . The ma-

trix excluded the first 2 principal components of test images is testY and W is the 

weight matrix gained by performed ICA on the training images. 

3   Recognizing Facial Expressions 

252 images for training and 66 images excluded from the training set for testing are 
used. The 66 images for test include 11 expression images of each six people. Facial 
expression recognition in various emotion states was evaluated by the nearest 
neighbor classifier in two dimensional structure of emotion on pleasure/displeasure 
dimension and arousal/sleep dimension. The coefficient vectors U in  each of the two 
dimensions  are given as vectors of 

trainU  and 
testU .  Coefficient vectors in each test 

set were assigned to the class label of the coefficient vector in the training set that was 
most similar as evaluated by S: 

),min(
train

test

test

train

testtrain

testtrain

U

U

U

U

UU

UU
S

⋅=  (3) 

The class label consists of four section on two dimensional structure of emotion. 
C1 class is described with pleasure/displeasure dimension ranging from 5 up to 9 and 
arousal/sleep dimension ranging from 1 up to 4. C2 class is described with pleas-
ure/displeasure dimension ranging from 5 up to 9 and arousal/sleep dimension rang-
ing from 5 up to 9. C3 class is described with pleasure/displeasure dimension ranging 
from 1  up to 4  and arousal/sleep dimension ranging from 5 up to 9. C4 class is de-
scribed with pleasure/displeasure dimension ranging from 1 up to 4 and arousal/sleep 
dimension ranging from 1 up to 4.   

The first test verified with 252 facial images trained already. The recognition result 
that was produced by 252 images trained previously showed 100% recognition rates. 
The recognition result of test set showed 90.9% in the pleasure/displeasure dimension 
and 66.6% in the arousal/sleep dimension. Table 1 describes a part of facial expres-
sion recognition derived from three people in all six people on two dimensions of 
emotion.  
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Table 1. The result of facial expression recognition derived from three people. (Abbreviation: 
P-D, pleasure/displeasure; A-S, arousal/sleep;). 

Test Set Named emo-
tional word of 

Pictures(person) 

Clas
s label P – D A – S

Recognized 
Class label 

depression(a) 1 6.23 4.43 3 
crying(a) 1 6.47 4.10 1 
gloomy(a) 2 7.37 5.53 1 
strange(a) 1 6.17 5.17 1 
proud(a) 4 3.07 4.47 4 
confident(a) 3 3.47 4.57 1 
despair(a) 2 6.23 5.97 2 
sleepiness(a) 4 5.00 1.80 1 
likable(a) 3 1.97 4.23 3 
delight(a) 3 1.17 4.20 3 
boredom(a) 1 6.77 5.50 2 
pleasantness (b) 3 1.40 5.47 3 
depression (b) 1 6.00 4.23 1 
crying(b) 2 7.13 6.17 2 
gloomy(b) 1 5.90 3.67 1 
strangeness(b) 2 6.13 6.47 1 
proud(b) 3 2.97 5.17 3 
confident(b) 4 2.90 4.07 2 
despair(b) 1 7.80 5.67 2 
sleepiness(b) 4 6.00 1.93 3 
likable(b) 4 2.07 4.27 2 
delight(b) 3 1.70 5.70 2 
gloomy( c ) 1 6.60 3.83 1 
strangeness( c ) 2 6.03 5.67 2 
proud( c ) 4 2.00 4.53 4 
confident( c ) 4 2.47 5.27 4 
despair (c ) 1 6.47 5.03 2 
sleepiness( c ) 1 6.50 3.80 1 
likable(c) 4 1.83 4.97 4 
delight(c) 3 2.10 5.63 4 
boredom( c ) 2 6.47 5.73 1 
tedious( c) 1 6.73 4.77 1 
jealousy( c ) 2 6.87 6.80 2 

4   Conclusion 

A new approach method to recognize facial expressions in various emotion states 
with ICA and PCA has been discussed in this paper. Facial expression performance in 
two dimensional structure was evaluated by the nearest neighbor classifier. The result 
of facial expression recognition with ICA and PCA onto  dimension structure of emo-
tion shows  significant conclusions as follow. 

First, the two dimensional structure of emotion provided a stabled structure for the 
facial expression recognition. Second, pleasure-displeasure dimension was analyzed 
as a more stable dimension than arousal-sleep dimension. Pleasure/Displeasure 
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dimension was significant 90.9%, while Arousal-Sleep dimension was significant 
66.6%. We suggest that the two dimensional structure of emotion may provide a 
structure for the facial expression recognition as close to real life as possible.  
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Abstract. In this paper, we present an audio scheme protective of copyright 
protection using information hiding. We propose visually recognizable binary 
image and text information as watermark (copyright) information embedded in 
audio signal. Cepstrum representation of audio can be shown to be very robust 
to a wide range of attacks. We apply SMM(statistical mean manipulation) 
theory in embedding image watermarking, and address attacks against lossy 
audio compression like MP3, white Gaussian noise and so on. A blind detection 
watermarking can be realized with the proposed scheme. 

Keywords: copyright protection, information hiding, watermark, statistical 
mean manipulation, cepstrum domain. 

1   Introduction 

The digital watermark technique is a technique to solve the copyright problem. The 
media owner can use this technique to insert some information into the media. 
There has been a fair amount of research on diverse applied techniques of audio 
watermark, i.e. Spread Spectrum method [1-4], echo hiding [5-7], a method Replica 
Signal [9] etc. 

However in most audio watermarking methods, the embedding algorithms embed a 
chaos sequence or pseudo-random array to be watermarking in the content, insert 
mean information is very peculiar. In this paper we will insert a still binary image 
being audio watermarking into the ceptrum domain. Extensive experimental results 
prove that the embedded watermark is inaudible and robust.1 

                                                           
* The work is fully supported by the international co-operation project of the ministry Science 

and Technology of Korea: Co-Development of Broadcasting Sync. Equipment and DRM 
Watermark Chipset for Digital Broadcasting Content based on Original Watermarking 
Technology of Korea. (Project No: M60401000150-05A0100-15010). 
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2   Details of the Proposed Algorithm 

The cepstrum domain analysis is used commonly in speech application, such as 
recognition area. In speech recognition, the cepstral coefficients are regarded as the 
main features of a voice. The cepstral coefficients vary less after general signal 
processing then samples in time domain .Due to the advantage of cepstral coefficients, 
Li and Yu [10] proposed a robust audio data hiding technique in cepstrum domain. 

Cepstral analysis utilizes a form of homomorphic system which converts the 
convolution operation an addition operation. It consists of three consecutive steps: 
Fourier transform, take logarithm and inverse Fourier transform. It is easy to see that 
those three operations are all linear It should be noted that the logarithm we take at 
the second step is complex logarithm and X(n) is formally called “complex cepstrum”. 
But in practice, people often define the real part of complex cepstrum to be the “real” 
cepstrum for convenience. 

( )( )( )( )( )nxFFTREALIFFTnX log)( =  (1) 

And we can exactly recover the original signal in time domain from its cepstrum 
domain representation by taking correspondent inverse operations 

( ) ( )( )( )( )( )nXFFTREALIFFTnx exp=  (2) 

Cepstrum coefficients are around zero except the last, therefore we shall modify 
small cepstrum coefficients except the last. Experimental studies have shown that 
most common signal processing could change individual cepstrum coefficients 
dramatically, but their statistical mean often experiences much less disturbance, 
offering an appropriate candidate for information carrying. 

3   Scheme on Binary Image Watermark Embedding 

In embedding process, we adopt the concept of the cepstrum, and embed the data 
based on statistical mean theory which is much more robust, especially for attacks 
destroying synchronization structure of audio signal. We shall focus on the statistical 
mean of cepstrum coefficients to be a real number for embedding ‘1’,and another 
number for embedding ‘0’, then we can detect the watermarking by adjudging the 
threshold derived from the two number. The detail watermarking embedding works as 
following: 

1. Transform time domain signal to cepstrum domain. 
2. Divide audio cepstrum into frames, which is depend on the size of binary image. 
3. Calculate the mean of each frame of cepstral coefficients. Modify the mean of 
cepstral coefficients to zero. Then the embedding algorithm is following: 
To embedding ‘1’: 

)(*)()'( nWnXnX mα+=  (3) 

To embedding ‘0’: 

)()'( nXnX =  (4) 
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Where α is the factor controlling the allowable distortion for individual cepstrum 
component X(n). Wm(n) is watermarking information, m denotes the number of frame. 

4. Create the final watermarked audio. 

4   Binary Image Watermark Detecting 

The watermark should be extractable even if common signal processing (including 
data compression and some kinds of noise attacks) operations are applied to the host 
audio. In detection procession, don’t need original audio signal, is total blind 
detection process. The detection method is base on statistical mean manipulation, 
calculate the sum of every frame cepstrum coefficients, and set the threshold Td to 
identify the watermark information. 

5   Experiment Results 

In the experiment, Matlab6.1 is used as emulation software, the music used as the 
watermarked media is 102.06 seconds music, 11025Hz of sampling rate and 16 bit 
recorded for each sampling. The embedding capacity is 62kbps.The watermark is 
64x64 binary image , given in Fig1 (a). A blind listening test was used to confirm the 
transparency of the watermarked signal and most listeners couldn’t distinguish the 
difference of the watermarked signals.  

The following are the test results, where Fig1 (a) is original watermark (binary 
image), and Fig1 (b) is picked up without attacked by our detection method. 

                         

(a) (Sim=1)      (b) (Sim=1)   (c) (Sim=0.805) (d) (Sim=0.624) 

Fig. 1. (a) Original watermark, (b) Detected watermark, (c) MP3 compression at 64kbps, 
(d) MP3 compression at 32kbps 

To test the robust of our scheme, we evaluate the performance of the watermark 
against lossy attacks by diving the test results into four subtest, the performance can 
refer Fig1 and Fig4: 

Subtest1 (MP3 Attack): We compare the effect marked the audio and the decoded 
audio given by MP3 compression at different bit rate. Fig1 (c) is under attack of MP3 
compression at the rate of 64kbps, and provides transparent audio quality. Fig1 (d) is 
at 32kbps. Each similarity value corresponding to the compression rate is shown in 
Fig2. In Fig2 with the rate of MP3 increase, accordingly the similarity value increase, 
here we list four kinds of conditions, the lowest rate is 32kbps, and under 32kbps, the 
image can’t be extracted. So we can see that embedded image can be extracted for 
MP3 compression at the rate of above 32kbps. 

Subtest2 (White Gaussian Noise Attack): Fig3. (a), (b) are under attack of white 
Gaussian noise with mean zero, covariance 1  and 0.1. We can see our proposed scheme 
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Fig. 2. Similarity comparison with various Mp3 compression rate 

                     
(a) (Sim=0.89)  (b) (Sim=0.81)     (c) (Sim=0.88) 

Fig. 3. (a)White Gaussian noise (0,1); (b) White Gaussian noise (0,0.1); (c) Median filter 

demonstrates good survivability with (0,1) white Gaussian noise. But if mean is 
nonzero, or covariance is above 0.1, we can’t detect the watermark. 

Subtest3 (Filter Attack): Fig3 (c) shows the detection performance after median 
filter, which is nonlinear filter. It can be seen from Fig3 that our scheme demonstrates 
good robustness. 

                               
(a) (Sim=0.95)   (b)(Sim=0.86)     (c)(Sim=0.98)     (d)(Sim=0.58) 

Fig. 4. (a) 22050Hz  (b) 44100Hz (c) 8000Hz (d)8 bit 

Subtest4 (Repeat Sampling and Repeat Quantification): for repeat sampling test 
we subsampling watermarked signal at 22050Hz and 44100Hz and 8000Hz ,then 
revert original sampling frequency, Fig4 (a-c) show the performance under these 
condition.for repeat quantification test we quantify watermarked signal from 16 bit at 
first to 8 bit, then restore signal, the performance just as (d ) show. 
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where the xm(i) denote the mth frame of the audio signal, Wm’ is detected 
watermarking  information, the value is ‘1’ or ‘0’. We embed 1 bit each frame. To 
show the performance of our test, we compare the extracted watermark with original 
watermark. In this comparison, we use the similarity measure given in (6). 

WWWWWWSim ⋅⋅= /')',(  (6) 

6   Conclusion 

In this paper, an audio scheme protective of copyright protection using information 
hiding is proposed. The binary image watermark scheme based on SMM(statistical 
mean manipulation) theory, and divide frames to embedding watermark. The audio 
scheme is robustness against the data compression and some kinds of attacks such as 
MP3, Audio Stirmark, white Gaussian noise and repeat sampling and repeat 
quantification. 

The following is our future work: 

(1) Study on the performance of SMM further. 
(2) Research for the robust performance of the other audio attack. 
(3) Research for the robust performance of the other embedding domain. 
(4) Multi-watermark embedding. 
(5) Study on the performance of Text as watermarks. 
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Abstract. As radar backscatter values for oil slicks are very similar to
backscatter values for very calm sea areas and other ocean phenomena,
dark areas in Synthetic Aperture Radar (SAR) imagery tend to be mis-
interpreted. In this paper three feature sets are used to identify the oil
slicks in SAR images. These images are submitted to different MLP ar-
chitectures to verify the separability performance over each feature set.
This analysis is very suitable for remote sensing of environment appli-
cations concerning marine oil pollution. The estimated resulting perfor-
mance points out which feature set is the best suitable for the suggested
application.

1 Introduction

Since the last decade Synthetic Aperture Radar (SAR) systems have played an
important role in remote sensing of environmental disasters. These systems pro-
vide oil spills detection and monitoring, that seriously affect the marine ecosys-
tem, providing a more rigorous and effective environment monitoring. Further-
more, SAR images have considerably contributed to understand atmospheric
phenomena, land use mapping and monitoring, deforestation assessment, geo-
graphic evolution, urban growing rates assessment, agricultural crops monitor-
ing and so on. The potential damage for the environment and economy of the
area at stake requires that agencies be prepared to rapidly detect, monitor, and
clean up any large spill [1]. Remote sensing of dark spots in the sea is a complex
process, due to the simultaneous movement of radar and spots. The presence of
an oil film on the sea surface damps out the small waves and reduces the rough
surface due to the increased viscosity of the top layer and drastically reduces the
measured backscattering energy, resulting in darker areas in SAR imagery [2].
The interest in appraising texture features in this work becomes from the differ-
ent rough degrees presented in SAR images. Oil spill images are characterized by
being less rough when compared to the similar slicks. Moreover, the procedures
to extract texture features are independent of segmentation methods. The diffu-
sion of the electromagnetic waves in the surface of the sea depends, mainly, on
the rough surface which is influenced by the presence of winds, currents, waves

D.-Y. Yeung et al. (Eds.): SSPR&SPR 2006, LNCS 4109, pp. 928–936, 2006.
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and parameters of the radar, such as incidence angle, frequency, polarization and
resolution. The sea behaves as a specular surface when there are not waves and
winds. However, dark areas might not be oil slicks but merely local wind effects
or natural oil films due to low winds [3].

Automatic identification of oil spills in SAR images is a very complex task
because similar images of oil spills frequently occur, particularly in low-wind
conditions [4] requiring a careful interpretation. In general, the human interpreter
determines if a dark object is an oil spill or a look-alike one. The contrast between
oil spectral and water radiance around the oil determines which might be oil
slicks. Studies have been carried out to improve methods to detect oil spills in
satellite images. Liu et al.[5] proposed algorithms to detect and track mesoscale
oceanic features employing multiscale wavelet analysis using the 2-D Gaussian
wavelet transform to track oil slicks, eddies, fronts, whirlwinds and icebergs. The
authors concluded that the wavelet analysis can provide a more cost-effective
monitoring program that would keep track of changes in important elements of
the coastal watch system. In [4] it was proposed a semi-automatic algorithm for
spots detection which identifies objects in the scene with larger probability of
being oil spills. A neural network approach for oil spills detection in European
Remote Sensing Satellite-Synthetic Aperture Radar (ERS-SAR) imagery has
been explored as an alternative tool in [2]. Del Frate et al. [2] proposed an
algorithm to classify spots based on a set of geometric features extracted from
real oil spots and look-alike ones. The input of the network consisted of a set of
features regarding an oil spill candidate and the output concerns the probability
for the candidate to be a real oil spill. The authors reported that the introduction
of physical characteristics related to atmospheric conditions such as wind speed
and water temperature could improve the algorithm results.

Concerning evaluation of feature selection issue, Jain and Zongker [6] applied
feature selection algorithms to SAR images in order to classify land use combin-
ing features of four different texture models. The researchers also evaluated the
potential difficulties of performing feature selection in small sample size situa-
tions due to the curse of dimensionality.

This paper proposes an analysis of the discrimination power of three different
feature sets, comparing the performance of a classifier based on neural networks
applied to each set: the physical-geometrical feature set generated by statistical
measures on geometric characteristics [7], the texture feature set obtained as
described in Bevk et al [8], and the third one as a composition of the previous
sets. To minimize the computational effort of the classifier, principal component
analysis (PCA) is used to reduce the dimensionality of each feature set and the
reduced sets are compared with the original ones. The overall performance of the
classifier is evaluated for different feature sets based on geometrics and texture
attributes aiming at optimizing oil spills detection in SAR images. The proposed
method can be used to support environmental remote monitoring.

This paper is organized as follows. The next section describes the method-
ology, the feature extraction process and the approach used to detect oil spills.
Section 3 presents the simulation results and the last section concludes the paper.
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2 Methodology

The feature data sets are generated using SAR images collected from different
sources. After extracting the features from the spots, the data is divided into
three feature sets and two different analysis are made: a) a classifier processes the
original feature sets and b) a classifier processes the reduced sets using principal
component analysis. The classifier estimated performance states the discrimi-
nation power of each set. Fig. 1 exhibits the block diagram of the previously
described proposed methodology.

Fig. 1. General steps for feature sets evaluation of dark spots in SAR images

2.1 Feature Extraction

Texture analysis is able to provide an automatic classification of features pre-
sented in SAR images [1]. In general, texture characteristics are important for
surface or object identification from aerial, satellites or biomedical images and
for other applications such as industrial monitoring or product quality, remote
sensing of natural resources, and medical diagnosis with tomography [9]. De-
spite its importance and ubiquity in image data, a formal approach or precise
definition of texture does not exist [10]. The term is used to point to intrinsic
properties of surfaces, especially those that do not vary smoothly in intensity.
Texture includes intuitive properties like roughness, granulation and regularity.
More formally, it can be defined as the set of local neighborhood properties of
image grey levels [11].

Statistical information of texture characteristics is based on the representation
of texture using properties governing the distribution and relationships of grey
level values in the image [12]. The spatial grey level dependence matrix proposed
in [13] is used to extract features, i.e., energy, contrast or entropy. In this paper
the first and second order statistics of the segmented images are extracted to
provide the textural features of oil spills.

The first-order probability distribution of the amplitude of a quantized image
may be defined as:

H (g) =
ng

N
; g = 0, 1, . . . ,G− 1 (1)

where N represents the total number of pixels in the image, G denotes the num-
ber of grey levels and ni denotes the number of pixels of grey value i in a given
image. The histogram is a probability function of pixel values, therefore we can
characterize its properties with a set of statistical parameters (also called first-
order statistics). Many parameters may be derived from the histogram such as
its mean, variance and percentiles. The following parameters are also computed:
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mean (SM ), standard deviation or image contrast (SD), skewness (SS), kurtosis
(SK), entropy (SEnt) and energy (SE) [8].

Second-order statistics operate on the probability function (P (i, j|d, θ)), that
measures the probability of observing a pair of pixel values that are some vector−→
d apart in the image [8].

The grey level cooccurrence can be specified in a matrix of relative frequen-
cies Pi,j with which two neighboring pixels separated by distance d in a given
direction, occur on the image, one with grey level i and the other with grey level
j. Generally, the cooccurrence matrix is computed for a finite number of pixel
orientations, formally for angles in intervals of 45◦. The cooccurrence matrices
are symmetric.

The results of the grey level coocurrence are averaged for each angle with its
transposed matrix as follows:

S (i, j) =
∑

θ=0,45,90,135◦

P (i, j|θ, d) + P (i, j|θ, d)t

8
(2)

The second order statistics are extracted from the matrix shown in equa-
tion 2. Based on this matrix the following texture measures are computed: auto-
correlation (A), cluster proeminence (CP ), cluster shade (CS), contrast (C),
correlation (Corr), covariance (Cov), energy (E), entropy (Ent), local homo-
geneity (H) and maximum probability (MAX). More detailed definitions of
these features can be found in [13].

Another set of features used to describe a dark spot is extracted after the
segmentation step. These measures are the physical-geometrical characteristics.
Del Frate et al [7] state that some of these characteristics take into account
the geometry and the shape of the dark spot, other part contains information
about the backscattering intensity (calculated in dB) gradient along the border
of the analyzed dark spot and others focus on the backscattering in the dark
spot and/or in the background. The following measures, corresponding to the
physical-geometrical set, are computed: area (Ar), average backscattering in-
side the area (ABIA), standard deviation of the backscattering inside the area
(SDBIA), average backscattering outside the area (ABOA) and standard devi-
ation of the backscattering outside the area (SDBOA). From the previous ones
the following parameters are calculated: ratio between area and perimeter (AP ),
ratio between average backscattering inside and outside the area (RBIO), ra-
tio between average backscattering and its standard deviation inside the area
(RBSDI), ratio between average backscattering and its standard deviation out-
side the area (RBSDO), ratio between backscattering standard deviation in-
side and outside the area (RSDIO) and ratio between SBSDI and RBSDO
(RBSDIO).

2.2 Principal Component Analysis

The use of more features extracted from patterns may lead to a better charac-
terization and thus a better classification with a lower error rate, but in practice,
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the opposite is observed. For a given problem the error rate initially drops with
an increasing number of features, but at a certain point the error rate saturates
or rises if additional features are included. This phenomenon is called curse of
dimensionality. The origin of this phenomenon is the fact that classifier design re-
lies on the inference of statistical properties from the data such as the estimation
of the likelihoods or the estimation of the parameters of a distribution [14].

The problem of feature selection is defined as follows: given a set of candi-
date features, select a subset that performs the best under some classification
system. This procedure can reduce not only the cost of recognition by reducing
the number of features that need to be collected, but in some cases it can also
provide a better classification accuracy due to finite sample size effects [5]. The
term feature selection is taken to refer to algorithms that output a subset of
the input feature set [6]. Principal components analysis (PCA) is a multivariate
procedure which rotates the data such that maximum variabilities are projected
onto the axes, mapping the image data into a new, uncorrelated co-ordinated
system or vector space [15]. It produces a space in which the data has the most
variance along its first axis, the next largest variance along a second mutually
orthogonal axis, and so on. The later principal components would be expected,
in general, to show little variance. These could be considered therefore to con-
tribute little to separability and could be ignored, thereby reducing the essential
dimensionality of the classification space and thus improving the classification
speed. It is useful to know that due the nonlinearity of some data sets, the PCA
space transformation not always leads to an optimal feature subspace. In this
case further analysis using another space transformation methods are necessary
to achieve better results.

3 Simulation Results

The experiments were obtained by using a set of 20 real dark spot images, where
half of them are oil spill images and the other half consist of look-alike images.
Figure 2a and Figure 2b are SAR image examples of a typical oil slick and a
natural film, respectively. The first two sets are physical-geometrical features
(S1) and texture features (S2). The third one is formed by the union (S3 =
S1
⋃

S2) of the both cited. The sets S1, S2 and S3 are respectively 8, 15 and
23-dimensional.

The classifiers performance assessment is shown in Figures 3 and 4. The results
were obtained by running the classifier algorithm 100 times using a hold-out
method varying the training size from 10% to 90% of the whole sample set. As
the performance for the compound set degrades due to its higher dimensionality,
we also tested different MLP architectures. Using the same N inputs and M
outputs, where N is the size of the input vector and M is the number of different
classes, we changed the number of neurons in the hidden layer from 2 until 20.
Indeed, we experimented individual higher classification rates as the classifier
fitted more the data and noise. This can be observed in Fig. 3(a) for the feature
set S3. We decided to use the 5 hidden neurons MLP architecture, beside its
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(a) (b)

Fig. 2. SAR image examples of (a) an oil slick and (b) a natural film
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Fig. 3. MLP performance comparison (a) using different number of hidden neurons
over the S3 feature space and (b) with a reference model MLE over all three feature
sets

higher computational training cost, because of the generalization loss caused by
overfitting when using the MLPs with more hidden neurons.

In Fig. 3(b) we provide a comparison between a three layer MLP with 5 hidden
neurons and a maximum-likelihood estimator (MLE) [16] used as a reference
model. The maximum-likelihood estimator tries to fit one gaussian probability
function to each class centered on their means using unitary covariances and
based on assumption of data independence. The maximum class probability is
taken to assign a class label to the sample. The error probability is computed
according the bayesian decision rule: Pe = p1P (e|C1)+p2P (e|C2), where P (e|Cn)
is the conditional error probability for the input vector classified as belonging to
class Cn and pn is the a priori probability for the classes.

The use of PCA to reduce the dimensionality has achieved a better classifica-
tion performance. Fig. 4 shows the PCA transformed data set presents a slightly
better separability. Unfortunately this varies as the linearity changes from one
data set to another. Thus, for S3 it is a good solution, but to the rest of the
data sets the classifier performance is worse than working on the original space
or quite the same.

Table 1 shows a rounded average confusion matrix computed from 100 clas-
sification rounds. The feature set S3 was applied to a MLP classifier with 5
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Fig. 4. MLP x Näıve Bayes performance and error probability comparison between the
original space and the PCA transformed space

Table 1. Confusion matrix for S3 feature set applied to MLP classifier with 5 hidden
neurons

Predicted True Class
Class C1 C2

C1 9 2
C2 1 8

Table 2. Variance comparison between original and PCA transformed feature spaces

Original space PCA space
Classifier S1 S2 S3 S1 S2 S3

MLP 0.0201 0.0255 0.0135 0.0215 0.0208 0.0172
BAYES 0.1010 0.0570 0.0712 0.0928 0.0339 0.0681

hidden neurons using 70% training size. Oil Spill samples are represented by
class C1 and the look-alike ones by the class C2. It is worthy of notice that this
low false-alarm rate was achieved using only 20 image samples.

The classifier variances obtained in the experiments are shown in Table 2. The
variances for the original feature space and for the PCA transformed ones are
very similar. The result obtained by adding the texture features (feature set S3)
has shown that a better classification performance can be reached without loss
of generality. Although the Näıve Bayes classifier has achieved higher correct
classification rates, as expected, the MLP has provided better generalization.

4 Conclusions

This paper presented a methodology to improve oil spill classification in SAR
images. In this approach, a small set of images is described by a large number of
features. Thus, for this purpose a non-parametrical classifier like MLP is more
suitable than the statistical parameters based ones, like Fisher Discriminant
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Analysis (FLDA) for example. This occurs because the higher-order moments,
necessary to establish the discriminant, are poorly estimated which leads to
errors. The maximum-likelihood estimator, used in this paper, can give only a
good point of observation, which we use to compare the performances of the
classifiers. The overall misclassification achieved with a MLP classifier is low
enough but we have a lot of work to do in order to reduce false alarms to permit
the use of this methodology in reliable marine surveillance applications. Further
investigation is required to choose a more robust classifier in order to achieve a
higher rate of correct classification and improve its reliability for environment
surveillance applications.

The error probability is smaller as the number of training samples grows up.
We believe that with a larger data set it is possible to develop a MLP archi-
tecture that can reach even higher performances. Finally, the feature sets tested
on these experiments have shown that textural features provide important effect
in the performance improvement for oil spill detection application. The results
reported in this paper point out that the use of texture features can add sig-
nificantly discrimination power for oil spill detection applications without loss
of generality. This improvement is reached when using that set combined with
physical-geometrical features. As the use of PCA transformation also accom-
plished a less complex classifier, the overall computational cost was maintained
low. It is noteworthy that a very small data set was used, furthermore we con-
cluded that any performance improvement can be a very hard task to perform
with this set. Although we consider these results an advance for automatic oil
spill detection systems, the misclassification rate is not lower enough. In future
works, we will investigate improvements on this approach by using methods for
automatic feature selection using classifier combination.
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