
Solving #SAT Using Vertex Covers

Naomi Nishimura1,�, Prabhakar Ragde1,�, and Stefan Szeider2,��

1 School of Computer Science, University of Waterloo,
Waterloo, Ontario, N2L 3G1, Canada

{nishi, plragde}@uwaterloo.ca
2 Department of Computer Science, Durham University,

Durham DH1 3LE, England, United Kingdom
stefan.szeider@durham.ac.uk

Abstract. We propose an exact algorithm for counting the models of
propositional formulas in conjunctive normal form (CNF). Our algorithm
is based on the detection of strong backdoor sets of bounded size; each
instantiation of the variables of a strong backdoor set puts the given
formula into a class of formulas for which models can be counted in
polynomial time. For the backdoor set detection we utilize an efficient
vertex cover algorithm applied to a certain “obstruction graph” that
we associate with the given formula. This approach gives rise to a new
hardness index for formulas, the clustering-width. Our algorithm runs in
uniform polynomial time on formulas with bounded clustering-width.

It is known that the number of models of formulas with bounded
clique-width, bounded treewidth, or bounded branchwidth can be com-
puted in polynomial time; these graph parameters are applied to formu-
las via certain (hyper)graphs associated with formulas. We show that
clustering-width and the other parameters mentioned are incompara-
ble: there are formulas with bounded clustering-width and arbitrarily
large clique-width, treewidth, and branchwidth. Conversely, there are for-
mulas with arbitrarily large clustering-width and bounded clique-width,
treewidth, and branchwidth.

1 Introduction

#SAT is the problem of determining the number of satisfying truth assignments
or models of a given propositional formula in conjunctive normal form (CNF).
This problem is computationally equivalent to several problems that arise in
automatic reasoning and artificial intelligence. However, since the problem is #P-
complete (Valiant [27]), it is very unlikely that it can be solved in polynomial
time. #SAT remains #P-hard even for monotone 2CNF formulas and Horn
2CNF formulas, and it is NP-hard to approximate the number of models of a
formula with n variables within 2n1−ε

for ε > 0. This approximation hardness
holds also for monotone 2CNF formulas and Horn 2CNF formulas [23].

� Supported by the Natural Science and Engineering Research Council of Canada.
�� Research partially supported by the Nuffield Foundation (NAL/01012/G).

A. Biere and C.P. Gomes (Eds.): SAT 2006, LNCS 4121, pp. 396–409, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Solving #SAT Using Vertex Covers 397

An alternative to restricting the language of formulas is to impose structural
restrictions in terms of certain (hyper)graphs associated with formulas. In par-
ticular, graph parameters that restrict the structure of associated primal graphs,
incidence graphs, and formula hypergraphs have been considered; see Sect. 8 for
definitions of the various graphs and graph parameters. Bacchus, Dalmao, and
Pitassi [1] propose an algorithm that solves #SAT in time nO(1)2O(k) for for-
mulas with n variables whose formula hypergraphs have branchwidth k. The
algorithm is based on the DPLL procedure and uses caching techniques for an
efficient reuse of solutions for subproblems. A similar time complexity can be
achieved by restricting the treewidth of primal graphs and by dynamic program-
ming on tree-decompositions; this approach is described by Gottlob, Scarcello,
and Sideri [12] for SAT and can be extended to #SAT in a straight-forward way.
Bounding the clique-width of directed incidence graphs yields larger classes of
formulas for which #SAT is tractable: Fisher, Makowsky, and Ravve [8] obtain
an algorithm for #SAT by combining Oum and Seymour’s approximation algo-
rithm for clique-width [21] with a general result of Courcelle, Makowsky, and
Rotics [4] on counting problems expressible in a certain fragment of Monadic
Second Order Logic. The algorithm solves #SAT in time nO(1)O(f(k)) for for-
mulas with n variables whose directed incidence graphs have clique-width k; here
f denotes a simply exponential function. The latter result is more general than
the results for bounded treewidth and branchwidth in the sense that every class
of formulas with bounded treewidth or bounded branchwidth also has bounded
clique-width; however, there are classes of formulas with bounded clique-width
but unbounded treewidth and unbounded branchwidth, see Sect. 8. Practical
application of the clique-width based algorithm is, however, very limited due to
a huge hidden constant in the estimation of its running time.

Note that the algorithms considered above are so-called fixed-parameter al-
gorithms, since the bound on the running time is, although exponential in the
parameter k, uniformly polynomial in n. The main advantage of fixed-parameter
algorithms is that the running time increases moderately when n becomes large,
in contrast to algorithms with running time nO(k). We will review the basic
concepts of parameterized complexity in Sect. 2.2.

1.1 Our Approach: Backdoor Sets

The concept of strong backdoor sets with respect to a base class C of formulas
was introduced by Williams, Gomes, and Selman [28] as a tool for analyzing
the performance of local search SAT algorithms. Backdoor sets have recently
received a lot of attention in satisfiability research [14,16,18,20,24,26].

A set B of variables of a formula F is a strong C-backdoor set if for all truth
assignments τ : B → {0, 1}, the restriction F [τ] of F to τ belongs to the base
class C. Note that if a strong C-backdoor set of size k is found, then we can decide
the satisfiability of the given formula by deciding the satisfiability of 2k formulas
that belong to the base class C. Based on this concept, Nishimura, Ragde, and
Szeider [20] propose algorithms for SAT that search for strong backdoor sets of
bounded size with respect to the base classes HORN and 2CNF. The detection

398 N. Nishimura, P. Ragde, and S. Szeider

of strong backdoor sets is based on the fact that a set B of variables is a strong
HORN-backdoor set (strong 2CNF-backdoor set) of a formula F if and only if
F − B is a Horn formula (2CNF formula, respectively); here F − B denotes the
formula obtained from F by removing all the literals x, x for x ∈ B from the
clauses of F . We also say that B is a deletion C-backdoor set if F − B ∈ C.
In general, deletion C-backdoor sets are not necessarily strong C-backdoor sets.
However, if all subsets of a formula in C also belong to C (C is clause-induced),
then indeed deletion C-backdoor sets are strong C-backdoor sets.

In this paper we extend the algorithmic use of backdoor sets for SAT to the
counting problem #SAT. It is easy to see that the number of models of a formula
F equals the sum over the number of models of the restrictions F [τ] for all truth
assignments τ : B → {0, 1} for a set B of variables of F . Hence, if we can
solve #SAT for the elements of a base class C in polynomial time, then we can
solve #SAT for a formula F in time O(2knO(1)) provided that we know a strong
C-backdoor set of F of size at most k. Hence, to convert the above considerations
into an algorithm for #SAT, we need to identify a base class C for which the
following holds:

1. #SAT can be solved in polynomial time for formulas in C, and
2. for a given formula F we can find strong C-backdoor sets of bounded size

efficiently.

The second condition can be relaxed to deletion C-backdoor sets if C is clause-
induced.

To this end, we introduce the clause-induced class CLU of cluster formulas. A
cluster formula is a variable-disjoint union of so-called hitting formulas; any two
clauses of a hitting formula clash in at least one literal. The known polynomial-
time algorithm for computing the number of models of a hitting formula can
be extended in a straight-forward way to compute the number of models of a
cluster formula.

A strong CLU-backdoor set of size k of a formula F with n variables can
obviously be found by exhaustive search, considering all O(nk) sets of k vari-
ables. This approach does not yield a fixed-parameter algorithm and becomes
inefficient for large n even if k is small. We show in Sect. 5 that under a cer-
tain complexity theoretic assumption, there is no algorithm that is significantly
faster than exhaustive search. We overcome this limitation by restricting by k
the size of a smallest deletion CLU-backdoor set. We propose a fixed-parameter
algorithm that either finds for a given formula a strong CLU-backdoor set of size
at most k or decides that the given formula has no deletion CLU-backdoor set
of size at most k.

To develop such an algorithm, we proceed as follows. We associate with every
formula F a certain graph G(F), the obstruction graph of F , which can be
obtained in polynomial time. The vertex set of G(F) is the set of variables of F .
We show that every vertex cover of G(F) is a strong CLU-backdoor set of F ;
recall that a vertex cover is a set S of vertices such that every edge is incident
with a vertex in S. Now we can apply known vertex cover algorithms, e.g., the
algorithm of Chen, Kanj, and Xia [3] for the detection of strong CLU-backdoor

Solving #SAT Using Vertex Covers 399

sets. Of related interest is Gramm et al.’s work [11] on a graph editing problem
involving cluster graphs (i.e., disjoint unions of cliques).

1.2 Clustering-Width

We define the clustering-width of a formula F as the size of a smallest ver-
tex cover of the obstruction graph of F . It follows from our results that the
clustering-width of a formula F is a lower bound on the size of a smallest dele-
tion CLU-backdoor set of F and an upper bound on the size of a smallest strong
CLU-backdoor set of F .

Finally, we exhibit a class of formulas of bounded clustering-width for which
all the parameters clique-width, branchwidth, and treewidth are unbounded. We
also exhibit a class of formulas with unbounded clustering-width for which all
the parameters clique-width, branchwidth, and treewidth are bounded. In other
words, there are formulas that are easy for our algorithm and arbitrarily hard
for the known algorithms, and formulas where the converse prevails.

It would be interesting to complement our theoretical results with empiri-
cal evidence on the significance of our new parameter. In particular, it would
be interesting to know the clustering-width of CNF formulas that encode real-
world instances from different domains. However, one must choose the encoding
carefully in order to avoid a large clustering-width caused by the gadgets of the
encoding itself. On the other hand, as indicated above, it can be checked very
efficiently whether a CNF formula has small clustering-width. Hence, any other
#SAT algorithm can be extended by a subroutine that checks the clustering-
width and performs our algorithm if the clustering-width is small.

2 Preliminaries

2.1 SAT and #SAT

We consider propositional formulas in conjunctive normal form (CNF), repre-
sented as sets of clauses. That is, a literal is a (propositional) variable x or a
negated variable x; a clause is a finite set of literals not containing a comple-
mentary pair x and x; a formula is a finite set clauses. For a literal � = x we
write � = x; for a clause C we put C = { � : � ∈ C }. For a clause C, var(C)
denotes the set of variables x with x ∈ C or x ∈ C. Similarly, for a formula F
we write var(F) =

⋃
C∈F var(C).

We say that two clauses C, D overlap if C ∩ D �= ∅; we say that C and D
clash if C and D overlap. Note that two clauses can clash and overlap at the
same time.

A truth assignment (or assignment, for short) is a mapping τ : X → {0, 1}
defined on some set X of variables. We extend τ to literals by setting τ(x) =
1 − τ(x) for x ∈ X . F [τ] denotes the formula obtained from F by removing
all clauses that contain a literal x with τ(x) = 1 and by removing from the
remaining clauses all literals y with τ(y) = 0; F [τ] is the restriction of F to τ .
Note that var(F [τ]) ∩ X = ∅ holds for every assignment τ : X → {0, 1} and

400 N. Nishimura, P. Ragde, and S. Szeider

every formula F . A truth assignment τ : X → {0, 1} satisfies a formula F if
F [τ] = ∅. A truth assignment τ : var(F) → {0, 1} that satisfies F is a model of
F . We denote by #(F) the number of models of F . A formula F is satisfiable if
#(F) > 0. The satisfiability problem SAT is the problem of deciding whether a
given formula is satisfiable. #SAT, the counting version of SAT, is the problem of
determining #(F) for a given formula F . SAT and #SAT are complete problems
for the complexity classes NP and #P, respectively.

The following concept of connectedness of formulas will be useful below. We
call a formula F connected if for any two clauses C, D ∈ F there exists a sequence
of clauses C1, . . . , Cr ∈ F such that C1 = C, Cr = D, and var(Ci)∩var(Ci+1) �= ∅
holds for all i ∈ {1, . . . , r − 1}. A maximal connected subset of a formula is a
connected component.

2.2 Parameterized Complexity

Next we give a brief and rather informal review of the most important concepts
of parameterized complexity. For an in-depth treatment of the subject we refer
the reader to other sources [7,19].

The instances of a parameterized problem can be considered as pairs (I, k)
where I is the main part of the instance and k is the parameter of the instance;
the latter is usually a non-negative integer. A parameterized problem is fixed-
parameter tractable if instances (I, k) of size n can be solved in time O(f(k)nc)
where f is a computable function and c is a constant independent of k.

The framework of parameterized complexity offers a completeness theory, sim-
ilar to the theory of NP-completeness, that allows the accumulation of strong the-
oretical evidence that a parameterized problem is not fixed-parameter tractable.
This completeness theory is based on the weft hierarchy of equivalence classes
W[1], W[2], . . . , W[P] of certain parameterized decision problems under parame-
terized reductions. A parameterized reduction is a straightforward extension of a
polynomial-time many-one reduction that ensures a parameter for one problem
maps into a parameter for another (see [7] for details).

Below we will refer to the following parameterized decision problem, which is
known to be W[2]-complete [7].

hitting set

Instance: A family S of finite sets S1, . . . , Sm.
Parameter: An integer k ≥ 0.
Question: Is there a subset R ⊆

⋃m
i=1 Si of size at most k such that

R ∩ Si �= ∅ for all i = 1, . . . , m? (R is a hitting set of S)

3 Backdoor Sets

Consider a base class C of formulas for which the problems #SAT and recognition
can be solved in polynomial time. Furthermore, consider a formula F and a set
B of variables of F . A set B ⊆ var(F) is a strong backdoor set of F with respect
to C (or strong C-backdoor set, for short) if B ⊆ var(F) and for every truth

Solving #SAT Using Vertex Covers 401

assignment τ : B → {0, 1} we have F [τ] ∈ C. For every formula F and every
set B ⊆ var(F) we have #(F) =

∑
τ :B→{0,1} #(F [τ]). Thus, if B is a strong

C-backdoor set of a formula F , then determining #(F) reduces to determining
the number of satisfying assignments for 2|B| formulas of the base class C. Thus,
when we have found a small strong C-backdoor set of F , we can compute #(F)
efficiently. A key question is whether we can find a small backdoor set if it
exists. To study this question, we define for every base class C the following
parameterized problem.

strong C-backdoor

Input: A formula F .
Parameter: A positive integer k.
Question: Does F have a strong C-backdoor set of size at most k?

For base classes that have a certain property, we can relax the problem strong

C-backdoor as follows. For a formula F and a set X of variables let F − X
denote the formula obtained from F by removing all literals x and x from the
clauses of F . We call a set B ⊆ var(F) a deletion backdoor set with respect to a
base class C (or deletion C-backdoor set, for short) if F −B ∈ C. Furthermore, we
define a base class C to be clause-induced if for every F ∈ C and every F ′ ⊆ F ,
also F ′ ∈ C.

Lemma 1. Let F be a formula and C a clause-induced base class. Every deletion
C-backdoor set of F is also a strong C-backdoor set.

Proof. The result follows directly from the fact that F [τ] ⊆ F − X holds for
every truth assignment τ : X → {0, 1}. 	

For a base class C, deletion backdoor sets can be larger than strong backdoor
sets. However, if the detection of strong C-backdoor sets is fixed-parameter in-
tractable, we can still hope that the detection of deletion C-backdoor sets is
fixed-parameter tractable. We state the corresponding parameterized problem:

deletion C-backdoor

Input: A formula F .
Parameter: A positive integer k.
Question: Does F have a deletion C-backdoor set of size at most k?

4 Hitting Formulas and Cluster Formulas

A formula is a hitting formula if any two of its clauses clash (see [17]). A cluster
formula is the variable-disjoint union of hitting formulas. In other words, a for-
mula is a cluster formula if and only if all its connected components are hitting
formulas. We denote the class of all hitting formulas by HIT and the class of all
cluster formulas by CLU.

402 N. Nishimura, P. Ragde, and S. Szeider

The next lemma is due to an observation of Iwama [15].

Lemma 2. A hitting formula F with n variables has exactly 2n −
∑

C∈F 2n−|C|

models.

Proof. Let F be a hitting formula with n variables. For a clause C ∈ F let TC

denote the set of all truth assignments τ : var(F) → {0, 1} that do not satisfy
C. Obviously |TC | = 2n−|C| since TC contains exactly those assignments that
set all literals in C to 0. Since F is a hitting formula, the sets TC and TC′ are
disjoint for any two distinct clauses C, C′ ∈ F . Hence the lemma follows. 	

Lemma 3. #SAT can be solved in polynomial time for cluster formulas.

Proof. If a formula F is the variable-disjoint union of formulas F1, . . . , Fq, then
#(F) =

∏q
i=1 #(Fi). Thus the result follows directly from Lemma 2. 	

By means of the previous lemma we can consider CLU as the base class for a
backdoor set approach to #SAT. Observe that CLU is clause-induced.

5 Finding Smallest Strong CLU-Backdoor Sets

In this section we show that the detection of strong CLU-backdoor sets is fixed-
parameter intractable.

We shall use the following construction. Let D be a directed graph. We asso-
ciate with D a formula FD where every arc a of D corresponds to a variable xa

of F , and every vertex v of D corresponds to a clause Cv of F . The clause Cv

contains the literals xa for outgoing arcs a of v, and the literals xb for incoming
arcs b of v. Note that if D is the orientation of a complete graph, then FD is a
hitting formula.

Theorem 1. The problem strong CLU-backdoor is W[2]-hard.

Proof. (Sketch.) We give a parameterized reduction from the W[2]-complete
problem hitting set as defined in Sect. 2.2. Let S = S1, . . . , Sm be an in-
stance of hitting set;

⋃m
i=1 Si = {x1, . . . , xn}. Let D be an orientation of a

complete graph with r = (m + 1)(k + 1) vertices. Consider the hitting formula
FD. We partition FD into formulas F1, . . . , Fm, H such that each of the partite
sets contains exactly k + 1 clauses. For i = 1, . . . , m we put

F ′
i = { C ∪ Si : C ∈ Fi }.

Finally, we put C∗ = {x1, . . . , xn} and

F = {C∗} ∪
m⋃

i=1

F ′
i ∪ H.

We can show that S has a hitting set of size at most k if and only if F has a
strong CLU-backdoor set of size at most k. 	

The NP-hardness of the non-parameterized version of strong CLU-backdoor

(where the parameter is taken as part of the input) follows from the proof of
Theorem 1.

Solving #SAT Using Vertex Covers 403

We will show in sections below that the concept of deletion backdoor sets can
be used to find small strong backdoor sets with respect to CLU. Next we give
an example that shows that for the base class CLU, smallest deletion backdoor
sets can be larger that smallest strong backdoor sets.

Consider the formula

F = {{x1, . . . , xn}, {x1, . . . , xn, y1, . . . , yn}, {y1, . . . , yn}}.

Note that each of the variables of F forms a strong CLU-backdoor set of F ;
e.g., B = {x1} is a strong CLU-backdoor set. However, we need to delete at
least n variables in order to obtain a cluster formula. Thus a smallest strong
CLU-backdoor set of F has size 1, but every deletion CLU-backdoor set of F
has size at least n.

6 Obstructions

In the following results, it is helpful to characterize cluster formulas in terms
of obstructions. An overlap obstruction is a formula {C1, C2} consisting of two
clauses that overlap but do not clash. With an overlap obstruction we associate
the following pair of sets of variables:

{var(C1 ∩ C2), var(C1 � C2)}.

Here C1 �C2 denotes the symmetric difference (C1 \ C2) ∪ (C2 \ C1) of C1 and
C2. A clash obstruction is a formula {C1, C2, C3} where C1 and C2 clash such
that (C1 \ C3) ∩ C2 �= ∅, C2 and C3 clash such that (C3 \ C1) ∩ C2 �= ∅, and C1
and C3 do not clash. (Any two of the three clauses may overlap.) With a clash
obstruction we associate the following pair of sets of variables:

{var((C1 \ C3) ∩ C2), var((C3 \ C1) ∩ C2)}.

We say that an overlap or clash obstruction F ′ is an obstruction of a formula F
if F ′ is a subset of F . A pair {X, Y } of sets of variables is a deletion pair of F if
the pair is associated with an overlap or clash obstruction of F . It follows from
the definitions of overlap and clash obstructions that the two sets in a deletion
pair are nonempty and disjoint.

Lemma 4. A formula is a cluster formula if and only if it has no overlap or
clash obstruction.

Proof. If a formula F contains an overlap or clash obstruction, then there are
two clauses C, D ∈ F that belong to the same connected component of F but
do not clash. Hence F is not a cluster formula.

Conversely, consider a formula F that does not contain any overlap or clash
obstructions. We show that F is a cluster formula. Consider a connected compo-
nent F ′ of F . If |F | = 1 then F ′ is a hitting formula; hence assume |F | > 1. We
show that any two clauses of F ′ clash. Choose two arbitrary clauses C, D ∈ F ′.

404 N. Nishimura, P. Ragde, and S. Szeider

Since F ′ is connected, there is a sequence of clauses C1, . . . , Cr ∈ F such that
C1 = C, Cr = D, and var(Ci) ∩ var(Ci+1) �= ∅ holds for all i ∈ {1, . . . , r − 1}.
We observe that Ci and Ci+1 clash for all and i ∈ {1, . . . , r − 1} since otherwise
Ci and Ci+1 would form an overlap obstruction. It now follows inductively that
the clauses C1 and Ci clash for all i ∈ {3, . . . , r} since otherwise C1, Ci−1, and
Ci would form a clash obstruction. Thus, indeed, C and D clash. Whence F ′ is
a hitting formula. 	

The next result is a consequence of Lemma 4. We omit the proof due to space
limitations.

Lemma 5. Let F be a formula and B ⊆ var(F). If F − B is a cluster formula,
then X ⊆ B or Y ⊆ B holds for every deletion pair {X, Y } of F .

7 Finding Backdoor Sets Using Vertex Covers

For a formula F let GF denote the graph with vertex set var(F); two variables x
and y are joined in GF by an edge if and only if there is a deletion pair {X, Y }
of F with x ∈ X and y ∈ Y . We call GF the obstruction graph of F . Note that
the obstruction graph of a formula can be constructed in polynomial time.

We consider vertex covers of obstruction graphs. Recall that a vertex cover
of a graph is a set of vertices that contains at least one end of every edge of
the graph. It is NP-hard to determine, given a graph and an integer k, whether
the graph has a vertex cover of size at most k. Parameterized by the size of
the vertex cover, however, the problem is fixed-parameter tractable. In fact,
vertex cover is the best studied problem in parameterized complexity with a
long history of improvements. The current best worst-case time complexity for
the parameterized vertex cover problem is due to Chen, Kanj, and Xia [3]:

Theorem 2. Given a graph G on n vertices, one can find in time O(1.273k+nk)
(and in polynomial space) a vertex cover of G of size at most k, or determine
that no such vertex cover exists.

The next two lemmas relate backdoor sets and vertex covers of obstruction
graphs. The first is a direct consequence of Lemma 5.

Lemma 6. Every deletion CLU-backdoor set of a formula F is a vertex cover
of the obstruction graph of F .

Lemma 7. Every vertex cover of the obstruction graph of a formula F is a
strong CLU-backdoor set of F .

Proof. (Sketch.) Let B be a vertex cover of the obstruction graph of a formula
F . Assume to the contrary that B is not a strong CLU-backdoor set of F . Thus,
there is an assignment τ : B → {0, 1} such that F [τ] /∈ CLU. Let B0 = { y ∈
B ∪ B : τ(y) = 0 }; i.e., B0 is the set of all literals over variables of B that are
mapped to 0 under τ . By Lemma 4, F [τ] contains overlap or clash obstructions.

Solving #SAT Using Vertex Covers 405

We assume that F [τ] contains an overlap obstruction; for clash obstructions
the argument is similar. Let C1, C2 be two clauses of F [τ] that overlap but do
not clash. For the associated obstruction pair {X, Y } with X = var(C1 ∩ C2)
and Y = var(C1 � C2) choose x ∈ X and y ∈ Y . By definition of F [τ] it follows
that F contains clauses C′

1, C
′
2 with C1 = C′

1 \ B0 and C2 = C′
2 \ B0. It follows

that C′
1 and C′

2 overlap but do not clash, thus {C′
1, C

′
2} is an overlap obstruction

of F . We have x ∈ X ⊆ var(C′
1 ∩ C′

2) and y ∈ Y ⊆ var(C′
1 �C′

2). Thus xy is an
edge of GF . Since B is a vertex cover of GF , either x or y must belong to B.
This contradicts the fact that var(F [τ]) ∩ B = ∅. Whence it follows that B∗ is
indeed a strong CLU-backdoor set of F . 	

From Theorem 2 and the previous two lemmas we get immediately the main
result of this section.

Theorem 3. Given a formula with n variables together with its obstruction
graph and an integer k, in time O(1.273k + nk) we can find a strong CLU-back-
door set of F of size at most k, or decide that the size of every deletion CLU-back-
door set of F exceeds k.

8 Comparison with Other Parameters

In this section we introduce a general framework for comparing parameters that
allow fixed-parameter algorithms for #SAT. Here we consider as a parameter
any computable function p that assigns to each formula F a non-negative
integer p(F). We assume that the parameter is invariant under changing the
names of variables.

The following three parameters arise from the considerations of this paper.
We denote by strCLU(F) the size of a smallest strong backdoor set of a formula F
with respect to CLU, and we denote by delCLU(F) the size of a smallest deletion
backdoor set of F with respect to CLU. The clustering-width clu(F) of F is the
size of a smallest vertex cover of the obstruction graph of F . Consequently, HIT
is the class of formulas with clustering-width 0. From Lemmas 1 and 6 we know
that for every formula F the following holds:

strCLU(F) ≤ clu(F) ≤ delCLU(F). (1)

For a parameter p we consider the following generic parameterized problem.

#SAT(p)
Instance: A formula F and a non-negative integer k such that p(F) ≤ k.
Parameter: The integer k.
Question: What is the total number of models of F? (I.e., what is the
number #(F)?)

The definition of fixed-parameter tractability carries over from decision problems
to counting problems in a natural way. Flum and Grohe [9] provide a framework
of intractability of parameterized counting problems.

406 N. Nishimura, P. Ragde, and S. Szeider

Note that the above formulation of #SAT(p) is a “promise problem” in the
sense that we only need to consider instances (F, k) for which we can take as
granted that p(F) ≤ k holds. However, for most parameters p considered in
the sequel for which #SAT(p) is fixed-parameter tractable, deciding whether
p(F) ≤ k actually holds is also fixed-parameter tractable with respect to the
parameter k. An exception is the parameter delCLU; however, also in that case
we do not depend on the promise as will be discussed below.

By Theorem 2, deciding whether clu(F) ≤ k is fixed-parameter tractable;
if clu(F) ≤ k, then it is also fixed-parameter tractable to produce a strong
CLU-backdoor set B of F of size at most k. We then compute #(F) as the
sum of #(F [τ]) over all truth assignments τ : B → {0, 1}. Whence we have the
following corollary to Theorem 2.

Corollary 1. The problem #SAT(clu) is fixed-parameter tractable.

Note that the algorithm outlined above also checks whether the promise
clu(F) ≤ k is true. Furthermore, from (1) it follows that every instance (F, k)
of #SAT(delCLU) is also an instance of #SAT(clu). Whence Corollary 1 also
implies fixed-parameter tractability of #SAT(delCLU).

Corollary 2. The problem #SAT(delCLU) is fixed-parameter tractable.

Although we do not know whether deletion C-backdoor is fixed-parameter
tractable, we emphasize that the algorithm for Corollary 2 will not produce an
incorrect solution, even if the promise delCLU(F) ≤ k does not hold. Consider
F and k with delCLU(F) > k. The algorithm checks whether clu(F) ≤ k. If
clu(F) ≤ k, then the algorithm outputs the correct solution #SAT(F). If, how-
ever, clu(F) > k, then we know by (1) that also delCLU(F) > k, hence the
algorithm can reject the input.

8.1 Treewidth, Branchwidth, and Clique- Width

Several parameters are defined in terms of the following directed and undirected
graphs associated with a formula F . The primal graph P (F) is the graph whose
vertices are the variables of F , and where two variables x and y are joined by
an edge if and only if F contains a clause C with x, y ∈ var(C). The incidence
graph I(F) is the bipartite graph where one vertex class consists of the variables
of F , the other vertex class consists of the clauses of F ; a variable x and a
clause C are joined by an edge if and only if x ∈ var(C). The directed or signed
incidence graph Id(F) arises from I(F) by orienting edges from C to x if x ∈
C, and from x to C if x ∈ C. The underlying graph GD of a directed graph
D is the undirected graph obtained from D by “forgetting” the orientation of
edges and by identifying possible parallel edges. Thus I(F) is the underlying
graph of Id(F). For an undirected graph G we consider its treewidth tw(G), its
branchwidth bw(G), and its clique-width cwd(G); clique-width is also defined for
directed graphs. For definitions of these graph parameters we refer the reader to
related work [2,6,5,1,13,25]. By means of primal, incidence and directed incidence

Solving #SAT Using Vertex Covers 407

graphs, these graph parameters apply to formulas as follows: For a formula F
we call tw(F) = tw(P (F)) the primal treewidth of F , tw∗(F) = tw(I(F)) the
incidence treewidth of F , bw(F) = bw(P (F)) the branchwidth of F , cwd(F) =
cwd(Id(F)) the clique-width of F .

For two formula parameters p and q we say that p dominates q if there is a
computable function f such that p(F) ≤ f(q(F)) holds for all formulas F . We
say that p and q are incomparable if neither p dominates q nor q dominates p.
Note that if #SAT(p) is fixed-parameter tractable and p dominates q, then also
#SAT(q) is fixed-parameter tractable. From known results it follows that clique-
width dominates incidence treewidth, and that, in turn, incidence treewidth
dominates primal treewidth and branchwidth [25]. Whence, clique-width can be
considered as the most general parameter considered so far. Fischer, Makowsky,
and Ravve [8] show that #SAT(cwd) is fixed-parameter tractable, combining an
earlier result of Courcelle, Makowsky, and Rotics [5] and a recent result of Oum
and Seymour [21]. By the above relationships among the various parameters, this
result also implies the fixed-parameter tractability of #SAT(tw∗), #SAT(tw),
and #SAT(bw):

Theorem 4. The problems #SAT(cwd), #SAT(tw∗), #SAT(tw), and
#SAT(bw), are fixed-parameter tractable.

The question arises how our new parameter, the clustering-width, is related to
the other parameters. Does any of the above parameters dominate clustering-
width, or does clustering-width dominate any of the other parameters? We will
show that the answer to both questions is ‘no’: clustering-width is incomparable
with any of the other parameters.

Lemma 8. The class HIT has unbounded clique-width.

Proof. Let n ≥ 3 be an integer and let G denote an n × n grid. That is, G is
a bipartite graph with n2 vertices vi,j , i, j ∈ {1, . . . , n}, where two vertices vi,j

and vi′,j′ are joined by an edge if and only if either i = i′ and |j − j′| = 1, or
|i − i′| = 1 and j = j′. Let V1, V2 be a bipartition of the vertex set of G. We
obtain a formula F with I(F) = G by considering vertices in V1 as variables and
putting F = { N(vi,j) : vi,j ∈ V2 }; here N(vi,j) denotes the set of neighbors of
vi,j in G.

Consider a directed graph D whose underlying graph is the complete graph
Km for m = |V2|. We construct the hitting formula FD as described at the begin-
ning of Sect. 5; we assume that F and FD do not share variables. Observe that
|FD| = m; thus we can write F = {C1, . . . , Cm} and FD = {C1,D, . . . , Cm,D},
ordering the clauses arbitrarily.

Let H be the formula {C1 ∪ C1,D, . . . , Cm ∪ Cm,D}. Clearly H is a hitting
formula since FD is a hitting formula. Golumbic and Rotics [10] show that the
clique-width of n × n grids, n ≥ 3, is exactly n + 1, hence cwd(G) = n + 1. Note
that I(F) = G is isomorphic to a vertex-induced subgraph of I(H); this implies
that cwd(H) ≥ cwd(G) = n + 1 (see Courcelle and Olariu [6]). Moreover, also
noted by Courcelle and Olariu, the clique-width of a directed graph is at least as

408 N. Nishimura, P. Ragde, and S. Szeider

large as the clique-width of its underlying graph; hence we have cwd(Id(H)) ≥
cwd(I(H)) ≥ cwd(I(F)) = cwd(G) = n+1. We conclude that for every positive
integer n there exists a hitting formula H with cwd(H) > n. 	

Lemma 9. The class of formulas with primal treewidth 1 has unbounded
clustering-width.

Proof. Let C denote the class of formulas with primal treewidth 1. Let n be an
even positive integer and consider the formula

F = {{x0, x1}, {x1, x2}, . . . , {xn−1, xn}}.

The primal graph of F is a path. Since paths have treewidth 1, F ∈ C follows.
For every i = 1, . . . , n − 1, the formula F contains the overlap

obstruction {{xi−1, xi}, {xi, xi+1}} with the corresponding deletion pair
{{xi}, {xi−1, xi+1}}. There are no clash obstructions. The obstruction graph
is therefore a path P on the vertices x1, . . . , xn. Any vertex cover of P contains
at least n/2 vertices, hence clu(F) ≥ n/2 follows.

As we can choose arbitrarily large n, C has unbounded clustering-width. 	

In view of the relationships omong the parameters cwd, tw∗, tw, and bw stated
above, the last two lemmas imply the following result.

Theorem 5. The parameters cwd, tw∗, tw, and bw, are all incomparable with
clustering-width.

References

1. F. Bacchus, S. Dalmao, and T. Pitassi. Algorithms and complexity results for
#SAT and Bayesian Inference. In 44th Annual IEEE Symposium on Foundations
of Computer Science (FOCS’03), 340–351, 2003.

2. H. L. Bodlaender. A partial k-arboretum of graphs with bounded treewidth. The-
oret. Comput. Sci., 209(1-2):1–45, 1998.

3. J. Chen, I. A. Kanj, and G. Xia. Simplicity is beauty: Improved upper bounds for
vertex cover. Technical Report TR05-008, DePaul University, Chicago IL, 2005.

4. B. Courcelle, J. A. Makowsky, and U. Rotics. Linear time solvable optimization
problems on graphs of bounded clique-width. Theory Comput. Syst., 33(2):125–
150, 2000.

5. B. Courcelle, J. A. Makowsky, and U. Rotics. On the fixed parameter complexity
of graph enumeration problems definable in monadic second-order logic. Discr.
Appl. Math., 108(1-2):23–52, 2001.

6. B. Courcelle and S. Olariu. Upper bounds to the clique width of graphs. Discr.
Appl. Math., 101(1-3):77–114, 2000.

7. R. G. Downey and M. R. Fellows. Parameterized Complexity. Monographs in
Computer Science. Springer Verlag, 1999.

8. E. Fischer, J. A. Makowsky, and E. R. Ravve. Counting truth assignments of
formulas of bounded tree-width or clique-width. Discr. Appl. Math. to appear.

9. J. Flum and M. Grohe. The parameterized complexity of counting problems. SIAM
J. Comput., 33(4):892–922, 2004.

Solving #SAT Using Vertex Covers 409

10. M. C. Golumbic and U. Rotics. On the clique-width of some perfect graph classes.
Internat. J. Found. Comput. Sci., 11(3):423–443, 2000. Selected papers from the
Workshop on Graph-Theoretical Aspects of Computer Science (WG 99), Part 1
(Ascona).

11. J. Gramm, J. Guo, F. Hüffner, and R. Niedermeier. Graph-modeled data clustering:
fixed-parameter algorithms for clique generation. Theory Comput. Syst., 38(4):373–
392, 2005.

12. G. Gottlob, F. Scarcello, and M. Sideri. Fixed-parameter complexity in AI and
nonmonotonic reasoning. Artificial Intelligence, 138(1-2):55–86, 2002.

13. G. Gottlob and S. Szeider. Fixed-parameter algorithms for artificial intelligence,
constraint satisfaction, and database problems. Submitted, April 2006.

14. Y. Interian. Backdoor sets for random 3-SAT. In Informal Proceedings of SAT
2003, 231–238, 2003.

15. K. Iwama. CNF-satisfiability test by counting and polynomial average time. SIAM
J. Comput., 18(2):385–391, 1989.

16. P. Kilby, J. K. Slaney, S. Thiébaux, and T. Walsh. Backbones and backdoors
in satisfiability. In Proceedings, The Twentieth National Conference on Artificial
Intelligence and the Seventeenth Innovative Applications of Artificial Intelligence
Conference (AAAI 2005), 1368–1373, 2005.

17. H. Kleine Büning and X. Zhao. Satisfiable formulas closed under replacement. In
Proceedings for the Workshop on Theory and Applications of Satisfiability, volume 9
of Electronic Notes in Discrete Mathematics. Elsevier Science Publishers, North-
Holland, 2001.

18. I. Lynce and J. P. Marques-Silva. Hidden structure in unsatisfiable random 3-SAT:
An empirical study. In 16th IEEE International Conference on Tools with Artificial
Intelligence (ICTAI 2004), 246–251. IEEE Computer Society, 2004.

19. R. Niedermeier. Invitation to Fixed-Parameter Algorithms. Oxford Lecture Series
in Mathematics and Its Applications. Oxford University Press, 2006.

20. N. Nishimura, P. Ragde, and S. Szeider. Detecting backdoor sets with respect to
Horn and binary clauses. In Informal Proceedings of SAT 2004, 96–103, 2004.

21. S. Oum and P. Seymour. Approximating clique-width and branch-width. J. Com-
bin. Theory, Ser. B, to appear.

22. N. Robertson and P. D. Seymour. Graph minors. X. Obstructions to tree-
decomposition. J. Combin. Theory Ser. B, 52(2):153–190, 1991.

23. D. Roth. On the hardness of approximate reasoning. Artificial Intelligence, 82(1-
2):273–302, 1996.

24. Y. Ruan, H. A. Kautz, and E. Horvitz. The backdoor key: A path to understanding
problem hardness. In Proceedings of the 19th National Conference on Artificial
Intelligence, 16th Conference on Innovative Applications of Artificial Intelligence,
124–130. AAAI Press / The MIT Press, 2004.

25. S. Szeider. On fixed-parameter tractable parameterizations of SAT. In Theory and
Applications of Satisfiability, 6th International Conference, SAT 2003, Selected and
Revised Papers, LNCS, vol. 2919, 188–202. Springer, 2004.

26. S. Szeider. Backdoor sets for DLL subsolvers. Journal of Automated Reasoning,
2005. In press.

27. L. G. Valiant. The complexity of computing the permanent. Theoret. Comput.
Sci., 8(2):189–201, 1979.

28. R. Williams, C. Gomes, and B. Selman. On the connections between backdoors,
restarts, and heavy-tailedness in combinatorial search. In Informal Proceedings of
SAT 2003, 222–230, 2003.

	Introduction
	Our Approach: Backdoor Sets
	Clustering-Width

	Preliminaries
	SAT and #SAT
	Parameterized Complexity

	Backdoor Sets
	Hitting Formulas and Cluster Formulas
	Finding Smallest Strong CLU-Backdoor Sets
	Obstructions
	Finding Backdoor Sets Using Vertex Covers
	Comparison with Other Parameters
	Treewidth, Branchwidth, and Clique- Width

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

