
On Solving the Partial MAX-SAT Problem�

Zhaohui Fu�� and Sharad Malik

Department of Electrical Engineering
Princeton University

Princeton, NJ 08544, USA
{zfu, sharad}@Princeton.EDU

Abstract. Boolean Satisfiability (SAT) has seen many successful applications in
various fields such as Electronic Design Automation and Artificial Intelligence.
However, in some cases, it may be required/preferable to use variations of the
general SAT problem. In this paper, we consider one important variation, the Par-
tial MAX-SAT problem. Unlike SAT, Partial MAX-SAT has certain constraints
(clauses) that are marked as relaxable and the rest are hard, i.e. non-relaxable. The
objective is to find a variable assignment that satisfies all non-relaxable clauses
together with the maximum number of relaxable ones. We have implemented
two solvers for the Partial MAX-SAT problem using a contemporary SAT solver,
zChaff. The first approach is a novel diagnosis based algorithm; it iteratively ana-
lyzes the UNSAT core of the current SAT instance and eliminates the core through
a modification of the problem instance by adding relaxation variables. The second
approach is encoding based; it constructs an efficient auxiliary counter that con-
strains the number of relaxed clauses and supports binary search or linear scan for
the optimal solution. Both solvers are complete as they guarantee the optimality
of the solution. We discuss the relative strengths and thus applicability of the two
solvers for different solution scenarios. Further, we show how both techniques
benefit from the persistent learning techniques of incremental SAT. Experiments
using practical instances of this problem show significant improvements over the
best known solvers.

1 Introduction

In the last decade Boolean Satisfiability (SAT) has seen many great advances, includ-
ing non-chronological backtracking, conflict driven clause learning, efficient Boolean
Constraint Propagation (BCP) and UNSAT core generation. As a consequence, many
applications have been able to successfully use SAT as a decision procedure to deter-
mine if a specific instance is SAT or UNSAT. However, there are many other variations
of the SAT problem that go beyond this decision procedure use of SAT solvers. For
example, the MAX-SAT Problem [8] seeks the maximum number of clauses that can
be satisfied. This paper examines a generalization of this problem referred to as Partial
MAX-SAT [15,2].

� This research is supported by a grant from the Air Force Research Laboratory.
�� Z. Fu is on leave from the Department of Computer Science, National University of Singapore,

Singapore 117543.

A. Biere and C.P. Gomes (Eds.): SAT 2006, LNCS 4121, pp. 252–265, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

On Solving the Partial MAX-SAT Problem 253

Partial MAX-SAT [15,2] (PM-SAT) sits between the classic SAT problem and MAX-
SAT. While the classic SAT problem requires all clauses to be satisfied, PM-SAT relaxes
this requirement by having certain clauses marked as relaxable or soft and others to be
non-relaxable or hard. Given n relaxable clauses, the objective is to find an assignment
that satisfies all non-relaxable clauses together with the maximum number of relaxable
clauses (i.e. a minimum number k of these clauses get relaxed). PM-SAT can thus be
used in various optimization tasks, e.g. multiple property checking, FPGA routing, uni-
versity course scheduling, etc. In these scenarios, simply determining that an instance
is UNSAT is not enough. We are interested in obtaining a best way to make the instance
satisfiable allowing for some clauses to be unsatisfied.

The difference between PM-SAT and MAX-SAT [8] is that every clause in MAX-SAT
can be relaxed, which clearly makes MAX-SAT a special case of PM-SAT. Though deci-
sion versions of both problems are NP-Complete [5], PM-SAT is clearly more versatile.

1.1 Previous Work

PM-SAT was first defined by Miyazaki et al. [15] during their work on optimization of
database queries in 1996. In the same year, Kautz et al. [10] proposed the first heuristic
algorithm based on local search for solving this problem. Later in 1997 Cha et al. [2]
proposed another local search technique to solve the PM-SAT problem in the the context
of university course scheduling.

In 2005, Li used two MinCostSat solvers, eclipse-stoc [12] and wpack [12], for the
transformed PM-SAT problem in FPGA routing. MinCostSat is a SAT problem which
minimizes the cost of the satisfying assignment. For example, assigning a variable to
be true usually incurs a positive cost while assigning it to be false incurs no cost. The
objective is to find a satisfying assignment with minimum total cost. By inserting a
slack variable [12] to each of the relaxable clauses, Li transforms the PM-SAT problem
into a MinCostSat problem with each slack variable having a unit cost. eclipse-stoc is a
general purpose MinCostSat solver and wpack is specialized for FPGA routing bench-
marks. Li demonstrated some impressive results using wpack in his thesis. However,
both eclipse-stoc and wpack are based on local search techniques and hence are not
complete solvers, i.e. the solver provides no guarantee on the optimality of the solution.

Argelich and Manyà uses a branch and bound approach for the over constrained
MAX-SAT problems [1]. However, as we will show in Section 4, branch and bound
based algorithms, including bsolo, do not work well on the PM-SAT problem.

1.2 Our Contribution

In this paper, we propose two practically efficient approaches to solve the PM-SAT
problem optimally. Both approaches use the state-of-the-art SAT solver zChaff [16]
with certain extensions.

1. Diagnosis Based. The first approach is based on the ability of SAT solvers to pro-
vide an UNSAT core [21] for unsatisfiable instances. This core is a subset of origi-
nal clauses that are unsatisfiable by themselves and in some sense can be considered
to be the “cause” of the unsatisfiability. This core is generated as a byproduct of the
proof of the unsatisfiability. The UNSAT core is analyzed and each relaxable clause
appearing in the core is augmented with a distinct relaxation variable. Additional

254 Z. Fu and S. Malik

clauses are added to the original SAT instance to ensure the one-hot property of
these relaxation variables. This augmentation essentially eliminates this core from
the SAT instance. The procedure continues until the SAT instance is satisfiable. We
give a proof of the optimality of the final solution using these relaxation variables
and the one-hot property.

2. Encoding Based. The second approach constructs an efficient auxiliary logic
counter, i.e. an adder and comparator, to constrain the number of clauses that can be
relaxed simultaneously. It then uses either binary search or linear scan techniques
to find the minimum number of k (out of n) clauses that need to be relaxed. The
logic counter is carefully designed such that maximum amount of learned informa-
tion can be re-used across different invocations of the decision procedure.

2 Diagnosis Based Approach: Iterative UNSAT Core Elimination

Being the best solver in the Certified UNSAT Track of SAT 2005 Competition, zChaff
is very efficient in generating UNSAT cores. Our diagnosis based approach takes full
advantage of this feature. It iteratively identifies the reason of the unsatisfiability of
the instance, i.e. the UNSAT core [21], and uses relaxation variables to eliminate these
UNSAT cores one by one until the instance becomes satisfiable.

Definition 1. An unsatisfiable core is a subset of the original CNF clauses that are
unsatisfiable by themselves.

Modern SAT solvers provide the UNSAT core as a byproduct of the proof of unsatisfi-
ability [21].

2.1 The Optimal Algorithm with Proof

The diagnosis based approach is illustrated in Algorithm 1. We use CNF to represent
the original SAT instance and V (CNF) is the set of all Boolean variables and C(CNF)
is the set of all clauses. An UNSAT core UC is a set of clauses, i.e. UC ⊆ C(CNF).
A clause c ∈ C(CNF) consists of a set of literals. A literal l is just a Boolean variable,
v ∈ V (CNF), with positive or negative phase, i.e. l = v or l = v′.

Given an UNSAT core UC, for each relaxable clause c ∈ UC, a distinct relaxation
variable is added to this clause, i.e. c is replaced by c∪{v}. Setting this variable to true
makes the associated clause satisfied (and hence relaxed). An UNSAT core is said to be
eliminated when at least one of its clauses is satisfied (relaxed) by a relaxation variable
setting to be true.

Let S be the set of relaxation variables from UNSAT core UC, the one-hot constraint
over a set S of Boolean variables requires that one and only one of the variables in S is
assigned to be true and the other |S|−1 variables must be false. The number of clauses

added due to the one-hot constraint is |S|×(|S|−1)
2 + 1. For example, with S = {a,b,c}

and the one-hot constraint clauses are (a′ + b′)(b′ + c′)(a′ + c′)(a + b + c).
One relaxable clause is relaxed during each UNSAT iteration of the while loop

in Algorithm 1. The algorithm stops after exactly k iterations, where k is the minimum
number of clauses to be relaxed. R is the subset of S consisting of all relaxation variables
set to 1, i.e. the corresponding clauses are relaxed.

On Solving the Partial MAX-SAT Problem 255

Algorithm 1. Iterative UNSAT Core Elimination
1: S := /0
2: while SAT solver returns UNSATISFIABLE do
3: Let UC be the UNSAT core provided by the SAT solver
4: S := /0
5: for all Clause c ∈ UC do
6: if c is relaxable then
7: Allocate a new relaxation variable v
8: c := c∪{v}
9: S := S∪{v}

10: end if
11: end for
12: if S = /0 then
13: Return CNF UNSATISFIABLE
14: else
15: Add clauses enforcing the One-Hot constraint for S to the SAT solver
16: S := S ∪S
17: end if
18: end while
19: R := {v | v ∈ S ,v = 1}; k := |R|
20: Return Satisfying Assignment, k, R.

Theorem 1. Algorithm 1 finds the minimum number of clauses to be relaxed.

Proof. Consider the interesting case where the original problem is always satisfiable
with relaxation of certain relaxable clauses (Otherwise Algorithm 1 returns unsatisfiable
in Line 12). Suppose Algorithm 1 stops after exactly k iterations, i.e. relaxing k clauses.
Clearly, Algorithm 1 has encountered a total number of k UNSAT cores (one in each
iteration), which we denote them by a set U, |U |= k. Note that original problem instance
contains at least k UNSAT cores, even though each iteration starts with a new modified
problem instance. Now suppose that there exists some optimal solution that relaxes a
set M, |M| < k, clauses to make the original problem satisfiable. Obviously, relaxing all
clauses in M eliminates all the UNSAT cores in U . However, since |M| < k = |U | and
by the Pigeon Hole Principle there must be at least one clause c ∈ M those relaxation
eliminates two or more UNSAT cores (u1,u2, . . .) ∈ U and c ∈ u1,c ∈ u2. Without the
loss of generality, let us assume that Algorithm 1 encounters u1 first in the while
loop. So every clause including c in u1 is added with a relaxation variable. Let v be the
relaxation variable added to c. Now there exists an assignment that can eliminate both
u1 and u2 by setting v to be true. Due to the completeness of our SAT solver, the UNSAT
core u2 should never be encountered, which leads to a contradiction. This contradiction
is caused by the assumption that |M| < k = |U |. Hence we have to conclude that |M| =
k = |U |, i.e. each relaxed clause in M can eliminate at most one UNSAT core in U . ��

It is worth mentioning that the UNSAT core extraction is not compulsory. One could
add a relaxation variable to each relaxable clause and require this batch of relaxation
variables to be one-hot for every iteration in which the problem remains unsatisfiable.

256 Z. Fu and S. Malik

This naive approach is still capable of finding the minimum number of clauses to be
relaxed. However, recall that the one-hot constraint requires O(|S|2) additional clauses
where S is the set of relaxable clauses in the UNSAT core. Therefore it is impractical to
enforce the one-hot constraint on the relaxation variables for all relaxable clauses. For
example, the PM-SAT instance might have 100 relaxation clauses while only 3 appear
in the UNSAT core. The naive approach adds 100×99

2 + 1 = 4951 clauses while the

diagnosis based approach adds only 3×2)
2 +1 = 4 clauses. The diagnosis based approach

exploits the availability of the UNSAT core to keep the number of relaxation variables
and one-hot constraint clauses small.

2.2 An Illustrative Example

It is worth mentioning that Algorithm 1 does not require the UNSAT core UC to be min-
imal. Furthermore, the UNSAT cores encountered by Algorithm 1 need not be disjoint.
The following example shows a simple CNF formula that contains two overlapping
cores. Suppose we have four Boolean variables x1,x2,x3 and x4. Relaxable clauses are
shown with square brackets and � denotes the resolution operator.

(x′
1 + x′

2)(x
′
1 + x3)(x′

1 + x′
3)(x

′
2 + x4)(x′

2 + x′
4)[x1][x2]

This CNF formula is unsatisfiable since (x′
1 + x′

2)[x1][x2] form an UNSAT core because

(x′
1 + x′

2)� [x1]� [x2] = (x′
2)� [x2] = ()

Note that whether a clause is relaxable or not does not affect the resolution. Recall that
a UNSAT core is a set of original clauses that are unsatisfiable and they resolve to an
empty clause (), which can never be satisfied. The only relaxable clauses in this core
are [x1][x2]. So in the first iteration we add two distinct relaxation variables r1 and r2

to each of them respectively and enforce r1 and r2 to be one-hot. The resulting CNF
formula is

(x′
1 + x′

2)(x
′
1 + x3)(x′

1 + x′
3)(x

′
2 + x4)(x′

2 + x′
4)[x1 + r1][x2 + r2](r′

1 + r′
2)(r1 + r2)

Note that clauses due to the one-hot constraint are not relaxable. However, the relaxable
clauses are still marked as relaxable even after inserting relaxation variables. This is be-
cause, as we will show, one relaxation variable may not be enough to make the instance
satisfiable. The current CNF formula is still unsatisfiable as

(x′
1 + x3)� (x′

1 + x′
3)� [x1 + r1]� (r′

1 + r′
2)� [x2 + r2] = (x2)

(x2)� (x′
2 + x′

4) = (x′
4)

(x2)� (x′
2 + x4) = (x4)

(x′
4)� (x4) = ()

So in the second iteration, we add another two relaxation variables r3 and r4 to the
relaxable clauses [x1 + r1][x2 + r2] in the core. Together with clauses due to the one-hot
constraint of r3 and r4, the CNF formula becomes

(x′
1 + x′

2)(x
′
1 + x3)(x′

1 + x′
3)(x

′
2 + x4)(x′

2 + x′
4)[x1 + r1 + r3][x2 + r2 + r4]

(r′
1 + r′

2)(r1 + r2)(r′
3 + r′

4)(r3 + r4)

On Solving the Partial MAX-SAT Problem 257

This formula is satisfiable with the following assignment

x1 = 0, x2 = 0, x3 = 1, x4 = 1,

r1 = 1, r2 = 0, r3 = 0, r4 = 1.

Based on the above satisfying assignment, both [x1][x2] should be relaxed to make the
problem satisfiable, i.e. k = n = 2. Note that there is no constraint among the relaxation
variables added in different iterations and the one-hot constraint only applies to all
relaxation variables added due to the same UNSAT core in one iteration. The number
of the relaxation variables needed only depends on the number of relaxation clauses in
the current UNSAT core1, and not the total number of relaxation clauses in the entire
SAT instance. In Section 4 we will see some cases where the total number of relaxable
clauses is large and our diagnosis based approach still performs well on these cases.

The iterative core elimination requires the SAT solver to be able to provide the UN-
SAT core (or proof) as part of answering UNSAT. This feature does incur some over-
head. For example, the SAT solver needs to record the resolution trace for each learned
clause2. Even when a learned clause is deleted, which happens very frequently in most
state-of-the-art SAT solvers, the resolution trace for that particular learned clause can-
not be deleted because it might be used to resolve other learned clauses that are not yet
deleted. In case of an unsatisfiable instance, we need all the resolution information so
that we could trace back from the conflict to the original clauses, which then form the
UNSAT core. Recording the resolution trace not only slows down the search speed, but
also uses a large amount of memory, which could otherwise be used for learned clauses.

3 Encoding Based Approach: Constructing an Auxiliary Counter

With highly optimized state-of-the-art SAT solvers like zChaff [16], Berkmin [6],
Siege [17] and MiniSat [4] , the most straightforward way is to translate the PM-SAT
problem directly into a SAT instance. Such an implementation is likely to be efficient
since the translated SAT instance takes advantages of all the sophisticated techniques
used in a contemporary SAT solver. Furthermore, this approach requires very little or
no modification to the SAT solver itself and hence could continuously benefit from the
advances in SAT.

However, conventional SAT solvers do not support integer arithmetic, which is nec-
essary in PM-SAT for expressing the constraint of ≤ k clauses left unsatisfied. We use an
auxiliary logic counter [11] to represent this ≤ k condition, whose output is a Boolean
variable and the entire counter could then be translated into CNF in a straightforward
way. There are various ways of constructing such an an auxiliary logic counter [11].
Xu considers four types of these logic counters, namely chain counter, hierarchical tree
counter, routing counter and sorting counter in her work on subSAT [20]. subSAT is a

1 Recall that we assume there must exist at least one relaxation clause in every core since other-
wise the problem is unsatisfiable even if we relax all relaxable clauses.

2 Each learned clause is the result of a series of resolutions of other clauses, both learned or
original. But ultimately, each learned conflict clause is the result of a series of resolutions
using only the original clauses.

258 Z. Fu and S. Malik

MAX-SAT problem but with the assumption that k
 n, where n here is the total num-
ber of clauses. In other words, the problem becomes satisfiable with very small number
(usually k < 5) of clauses removed (relaxed). In the subSAT implementation, one mask
variable (which is equivalent to our relaxation variable) is added to each of the n clauses
and they constrain that only ≤ k mask variables can be true by using one of the four logic
counters as mentioned above. The chain counter method creates a �lgk + 1� bit adder
for each clause and concatenates them together. The final output from the last adder
is constrained to be ≤ k. The hierarchical tree counter creates a tree using �lgk + 1�
bit adders as internal nodes that sum up all n mask variables and gives a �lgk + 1� bit
output at the root of the tree. The routing counter implements k k-to-n decoders with k
inputs all set to be 1. The sorting counter uses a sorting circuit with k max operators
(range from n bit to n − k + 1 bit) to move the 1s to one side of the output and then
checks the kth bit of the output. Xu states that the first two counters (chain and tree
counters) are more efficient than the others in terms of the amount of additional logic.

3.1 An Efficient Hierarchical Tree Adder

The most significant differences between our proposed encoding based approach and
the subSAT approach are that our hierarchical tree adder is independent of k and we
do not assume k
 n. In addition to the linear scan for minimum k, we also use a
binary search on [0,n] for the minimum k (subSat only uses linear scan due to their
assumption of k
 n). We design our tree adder to be independent of the value k for
two obvious reasons. First, we only need to construct the adder once at the beginning
and re-use it during each iteration of the binary search, as compared to constructing the
adder lgn times for binary search and k times for linear scan. Second, using the idea of
incremental SAT [18], all clauses associated with the adder can be kept intact since they
are always consistent with the problem. Maintaining the learned information is very
important to the performance of most contemporary SAT solvers. Unfortunately, all the
above 4 types of auxiliary counters proposed by Xu are dependent on k, particularly for
the routing and sorting counters.

We propose a hierarchical tree adder that is independent of k using elementary
adders, e.g. half adder and full adders. Figure 1 gives an example of such an adder
with n = 9. It can be shown that the total number of additional 2-input logic gates is
≤ 5n as follows. Consider starting with n ≥ 3 bit input, we use a full adder to sum up
3 bits while returning a sum bit and a carry bit [9]. The sum bit needs to be added with
the other n − 3 bits left and the carry bit will only be used in next level. So each full
adder reduces the number of inputs left by 2 and � n

2� full adders are sufficient for the
first level. Note the last sum bit becomes the least significant bit of the final sum. In the
second level, we consider all the carry bits from the previous level and there are at most
� n

2� of them. Similar results extends to the third level and so on. So the total number of
full adders is:

�n
2
�+ �n

4
�+ �n

8
�+ . . .+ 1 ≤ n

Each full adder requires 5 2-input logic gates (2 AND, 2XOR and 1OR gate), which gives
the total number of additional logic gates ≤ 5n. Note that we can sometimes replace a

On Solving the Partial MAX-SAT Problem 259

 FA
SC

 FA
SC

 FA
SC

 FA
SC

 FA
SC

 HA
SC

 HA
SC

Fig. 1. An efficient hierarchical tree adder that sums the number of 1s from the n = 9 bit input
(top) and gives a 4 bit binary value (bottom). The first level uses 4 full adders (FA); the second
level needs 1 full adder and 1 half adder (HA); the third level just needs 1 half adder. S and C are
the sum and carry bits of the adder respectively.

full adder by a half adder due to simplification by constant value (0), as shown in the
second and third levels in Figure 1.

There is an important distinction between our hierarchical tree adder in Figure 1
and the one used by Xu [20]. Instead of using full/half adders as internal nodes of the
tree, Xu uses a �lgk + 1� bit adder for each of the internal nodes, which introduces a
large amount of redundancy with relatively large k. For example, the first level inputs
to the adder are at most 1 and in a binary representation of �lgk + 1� bits, at least
�lgk + 1�−1 bits are just 0s. Our hierarchical tree adder is free of such redundancy due
to the judicious use of full/half adders.

The hierarchical tree adder outputs a �lgn + 1� bit binary value, which is then com-
pared against a given value k using a logic comparator that outputs true if and only if
the sum is less than or equal to k. Note that this logic comparator is dependent on k
for efficiency reasons3. This hierarchical tree adder with comparator provides us an ef-
ficient platform for searching the minimum k. Generally binary search has advantages
over linear scan on the benchmarks with k > lgn.

It is worth mentioning that when this logic counter (adder with comparator) are trans-
lated into CNF clauses, the hierarchical tree adder generates many more clauses than
the comparator does. In general, the number of CNF clauses from the adder is O(n)
while from the comparator is O(lgn). For each iteration during the binary search or
linear scan, only O(lgn) original CNF clauses with related learned clauses need to be
changed. The remaining clauses include both original and learned clauses correspond-
ing to the original problem instance and the adder. The learned clauses capture the logic

3 The resulting circuit is equivalent to performing the constant propagation on a general logic
comparator with any given k.

260 Z. Fu and S. Malik

relationship among the Boolean variables used in the problem instance and the adder
and they cannot be learned without the adder.

One disadvantage of using an auxiliary counter is the introduction of a large number
of XOR gates. Each full adder consists of two XOR gates and the entire counter results
in 2n XOR gates. Though the number of additional logic gates is only linear in n, the
situation could get worse when many XOR gates are chained together. For example, the
least significant bit of the sum comes from an XOR chain of length �lgn�. XOR chains
are well known to cause poor performance of SAT solvers. One main reason is that
unlike AND/OR gates, Boolean constraint propagation over XOR gates is very limited.
This complication makes this approach no longer efficient for solving problems with
very large n. It is worth mentioning that a large n does not necessarily imply a large k
though obviously k ≤ n.

3.2 A Discussion on Incremental SAT

Incremental SAT was first formalized by Strichman [18]. It is the process of solving
a series of SAT instances ϕ1,ϕ2, . . . ,ϕn. The consecutive SAT instances, ϕi and ϕi+1,
are similar, i.e. only a small number of clauses (and variables) are different. Given the
solution of ϕi, we could solve ϕi+1 incrementally by only updating the different clauses
while keeping most learned clauses in ϕi, which are still consistent with ϕi+1, intact.
Maintaining the maximum amount of the learned clauses, i.e. recording the most visited
search space, is a great advantage than starting from scratch each time.

A key issue in the implementation of incremental SAT is the efficient updating
from instance ϕi to ϕi+1, which usually includes both deletion and addition of origi-
nal clauses. Addition of new original clauses is trivial. However, deletion of original
clauses implies the additional deletion of all learned clauses related to the deleted orig-
inal clauses in order to maintain the integrity of the clauses database. This deletion can
be performed efficiently with the use of group IDs. A group ID indicates a particular
group, to which the clause belongs. The group IDs of a learned clause is the union of
all the group IDs from the clauses used to generate this learned clauses (through reso-
lution). Deletion according to a particular group ID removes all clauses (both original
and learned) having this ID.

For the encoding based approach, we utilize the incremental SAT feature of zChaff
and group all CNF clauses associated with the comparator using the same group ID.
This implementation enable us to only change a very small fraction of all clauses (both
original and learned) that are related to the comparator for each different value of k dur-
ing binary search or linear scan. All clauses associated with the adder are independent
of k and hence remain unchanged throughout the entire incremental SAT. Recall that
the adder corresponds to many more clauses than the comparator does.

However, unlike the encoding based approach, the diagnosis based approach requires
us to update the original clauses by inserting some relaxation variables. This makes it
harder to use the incremental SAT algorithm. However, we can still group all the hard
constraint clauses in a group and reuse all learned clauses that are generated within this
group. In other words, we only delete the learned clauses associated with the relaxable
constraint clauses.

On Solving the Partial MAX-SAT Problem 261

4 Experimental Results

We implemented the subSat approach for PM-SAT using the chain counter and hierar-
chical tree counter proposed by Xu [20] for comparison. In addition, we translate our
PM-SAT benchmarks into MinCostSat instances so that we can have an extensive com-
parison using other general purpose solvers. Recall that a MinCostSat problem is a SAT
problem with a cost function for each satisfying assignment. We add a unique relax-
ation variable to each relaxable clause in PM-SAT and the cost of this relaxation vari-
able is 1. All other variables have a cost of 0. Non-relaxable clauses remain unchanged
in the above translation. The resulting problem is now a MinCostSat instance where
the minimum cost corresponds to the minimum number of relaxation variables setting
to be 1, which in turn implies that minimum number of clauses are relaxed. We then
use Scherzo [3], bsolo [13] and cplex [7] to solve the translated MinCostSat problem.
Scherzo is a well known branch-and-bound solver for Binate/Uniate Covering Problem
(BCP/UCP) that incorporates many state-of-the-art techniques, including Maximum In-
dependent Set [5] based lower bounding, branch variable selection and various search
pruning rules. The BCP problem is essentially a MinCostSat problem [12] with a spe-
cific cost function. UCP has the additional restriction that all variables appear in only
one phase. But unfortunately, Scherzo is not able to solve any of the benchmarks in the
following tables. bsolo is another state-of-the-art branch-and-bound BCP/UCP solver
based on the SAT solver GRASP [14]. cplex is the cutting edge commercial Linear
Programming (LP) solver that is also capable of finding integer solutions efficiently.

All the experiments are conducted on a Dell PowerEdge 700 running Linux Fe-
dora core 1.0 (g++ GCC 3.3.2) with single Pentium 4 2.8GHz, 1MB L2 cache CPU on
800MHz main bus.

4.1 FPGA Routing Benchmarks

We conduct our experiments mainly on industrial benchmarks. Table 1 shows the results
of industrial examples resulting from a SAT based FPGA router. Each relaxable clause
corresponds to a net-arc (single source, single destination) in the routing problem. Re-
laxation of clauses in the unsatisfiable SAT instance to make it satisfiable represent
finding the fewest number of net-arcs which, if re-routed elsewhere, e.g. route-around,
would allow the remaining set of net-arcs to be routed simultaneously.

Table 1. Performance comparison on FPGA routing benchmarks. Timeout for all solvers: 1 hour.
∗ indicates server times out, the best solution found is reported.

Bench- Num. Num. Rlx. Min. Diagnosis Encoding subSat Gen. Solver
mark Vars. Cls. Cls. k Core Rmv Binary Linear Chain Tree bsolo cplex
FPGA 27 3953 13537 27 3 1.85 2.13 1.65 2.64 2.85 21.29 3∗

FPGA 31 17869 65869 31 1 380.83 88.68 309.75 393.26 860.18 4∗ 12∗

FPGA 32 2926 9202 32 3 0.89 1.10 0.95 1.12 1.18 6.56 3∗

FPGA 33 9077 32168 33 3 18.65 19.25 26.44 27.02 27.93 61.5 4∗

FPGA 39 6352 22865 39 4 31.22 7.76 7.15 8.83 8.48 59.07 6∗

FPGA 44 6566 22302 44 3 10.12 9.00 8.36 11.75 12.80 6∗ 5∗

262 Z. Fu and S. Malik

The benchmark name in Table 1 shows the number of net-arcs in the actual FPGA
routing problem. For example, the first row shows the result of benchmark FPGA 27,
which has 27 net-arcs to be routed. The PM-SAT instance consists of 3953 Boolean
variables with 13537 clauses. Among these clauses, 27 clauses are marked as relaxable,
which corresponds to the 27 net-arcs to be routed. The optimal solution is a relaxation
of k = 3 clauses (out of 27) that makes the entire problem satisfiable. The diagnosis
based approach takes 1.85 seconds to find the optimal solution. The binary search and
linear scan of the encoding based approach take 2.13 and 1.65 seconds respectively. The
subSat approach using linear scan with the chain counter and hierarchical tree counter
need 2.64 and 2.85 seconds respectively. For the translated MinCostSat problem, bsolo
takes 21.29 seconds. cplex only reports a solution of k = 3 but it cannot prove its opti-
mality. Scherzo could not report any solution found within the 1 hour time limit for all
our benchmarks and hence is omitted from all of our tables.

4.2 Multiple Property Checking Benchmarks

Table 2 shows the results of multiple property checking using circuits from ISCAS85
and ITC99 benchmarks. Relaxable clauses are the properties (assertions) that assume
each output signal of the entire circuit to be 1 or 0. The non-relaxable clauses are trans-
lated from the circuit structure. The corresponding PM-SAT instance is to find the max-
imum number of outputs that can be 1 or 0 (satisfying the property). Benchmarks that
are satisfiable without any relaxation are excluded from the tables. All benchmarks start
with a c are from the iscas85 family and the rests are from the itc99 family.

Table 2. Performance comparison on multiple property checking benchmarks. Benchmarks end
with 1 (0) are asserted to be 1 (0). Timeout for all solvers: 1 hour. ∗ indicates server times out,
the best solution found is reported.

Bench- Num. Num. Rlx. Min. Diagnosis Encoding subSat Gen. Solver
mark Vars. Cls. Cls. k Core Rmv Binary Linear Chain Tree bsolo cplex
c2670 1 1426 3409 140 7 0.05 0.07 0.06 0.25 0.34 1.05 106.40
c5315 1 2485 6816 123 10 0.09 0.18 0.13 0.83 1.13 15.35 208.80
c6288 1 4690 11700 32 2 343.71 81.98 192.27 185.67 169.94 2∗ 3∗

c7552 1 4246 10814 108 5 2.64 1.41 1.17 1.62 1.77 5∗ 1909.63
b14 1 10044 28929 245 1 0.19 0.53 0.48 0.79 0.93 4.45 1182.85
b15 1 8852 26060 449 2 0.26 1.08 1.07 1.23 1.85 7.55 1308.47
b17 1 32229 94007 1445 6 1.65 14.93 14.92 67.73 90.85 65.88 65∗

b20 1 20204 58407 512 2 0.50 2.62 2.90 1.97 5.59 10.88 5∗

b21 1 20549 59532 512 2 0.49 2.59 2.89 2.36 5.47 12.63 1522.35
b22 1 29929 86680 757 4 0.96 6.19 5.43 11.78 18.52 25.53 31∗

c7552 0 4246 10814 108 6 1.57 2.54 1.99 2.07 1.95 2369.5 6∗

b15 0 8852 26060 449 3 0.22 0.14 0.79 1.83 2.68 19.37 260.75
b17 0 32229 94007 1445 13 4.54 13.74 6.85 90.64 173.17 17∗ 13∗

On Solving the Partial MAX-SAT Problem 263

4.3 Randomized UNSAT Benchmarks

Table 3 shows the results of classic UNSAT benchmarks with randomly chosen relax-
able clauses. These benchmarks are from the fvp-unsat-2.0 (verification of super-
scalar microprocessors) family by Velev [19]. Note that all the benchmarks in Table 3
have k = 1, which makes it inefficient to use binary search.

Table 3. Performance comparison on randomized UNSAT benchmarks. The encoding based ap-
proach using binary search is inefficient since k = 1 for all benchmarks and hence omitted. Time-
out for all solvers: 1 hour. ∗ indicates server times out, the best solution found is reported.

Bench- Num. Num. Rlx. Min. Diagnosis Encoding subSat Gen. Solver
mark Vars. Cls. Cls. k Core Rmv Linear Chain Tree bsolo cplex
2pipe 892 6695 6695 1 5.12 22.34 34.82 65.54 868.34 1∗

3pipe 2468 27533 5470 1 4.96 18.18 19.97 31.43 1∗ 1∗

4pipe 5237 80213 802 1 8.45 8.65 8.81 11.32 1∗ 1∗

5pipe 9471 195452 19474 1 18.91 305.69 273.79 367.93 1∗ 1∗

6pipe 15800 394739 15828 1 107.33 383.36 463.81 424.35 1∗ 1∗

Table 1, Table 2 and Table 3 clearly show that both approaches constantly outperform
the best known solvers. For benchmarks with a large number of relaxable clauses, e.g.
b17, b20 and b22 in Table 2 and all benchmarks in Table 3, the diagnosis based ap-
proach has obvious advantage over the search approach (either binary or linear), which
suffers from the large auxiliary adder. With most other benchmarks like c6288 in Ta-
ble 2 and FPGA 39 in Table 1, whose number of relaxable clauses is small, the encoding
based search approach is faster. As we can see from the tables that there is no significant
difference between binary search and linear scan used in the encoding based approach.
However, we still believe that for instances with large k, binary search is a better option.
In addition, for the benchmarks with small k value, the performance of the subSat ap-
proach is comparable with our encoding based approach. This is because the �lgk + 1�
bit adder used in subSat is not much larger than a full adder or half adder for very small
k, e.g. k = 2. However, the performance subSat of degrades dramatically with relative
large k, e.g. benchmark b17 0 in Table 2.

It is interesting to see that all SAT based approaches (all of our approaches, subSat
and bsolo) generally outperform the non-SAT based branch-and-bound methods like
scherzo and cplex. One possible reason is that these industrial benchmarks have more
implications and conflicts, than the typical UCP/BCP or ILP instances.

Both our diagnosis based and encoding based approaches benefit from the incremen-
tal SAT and so does our implementation of the subSat. Among these three, the encoding
based approach gains the most improvements due to the incremental SAT as it solves
very similar SAT instances. However, we could not provide additional results for this
due to the page limit.

Note that though both our diagnosis based and encoding based methods use zChaff
as an underlying SAT solver, each of them has a customized zChaff solver based on the
features needed. The zChaff solver used in the encoding based approach is relatively

264 Z. Fu and S. Malik

faster than the one used in the diagnosis based approach as the latter one has a significant
overhead of bookkeeping the information for constructing an UNSAT core. Further,
different approaches solve different numbers of underlying SAT instances. The binary
search always makes �lgn + 1� SAT calls while the core elimination approach and the
linear search make k+1 such SAT calls. The overall time used as presented in all tables
includes the time used by these intermediate SAT instances. Usually the SAT instance
becomes more and more difficult as we approach k, which is because the corresponding
instance becomes more and more constrained.

Usually the diagnosis based approach has an advantage for instances with large n
and small k due to the absence of the overhead caused by the hierarchical adder. For
instances with relatively small n, the encoding based approach is faster and particularly
binary/linear search should be used when k is large/small.

5 Conclusions and Future Directions

We have presented two complete and efficient approaches specialized for solving the
PM-SAT problem, which arises from various situations including multiple property
checking, FPGA routing, etc. These two specialized solvers significantly outperform
the best known solvers.

Some key features about these two approaches can be summarized as follows:

1. The diagnosis based approach uses an iterative core elimination technique, which
does not require any auxiliary structure and hence is independent of the total num-
ber of relaxable clauses. This approaches iteratively identifies the UNSAT core of
the problem and relaxes it by inserting relaxation variables to the relaxable clauses
in the core. We provide a proof of optimality for this approach.

2. The encoding based approach uses an auxiliary counter implemented as an efficient
hierarchical tree adder with a logic comparator to constrain the number of true
relaxation variables, and hence the number of relaxed clauses, during the search.
The hierarchical tree adder only needs to be constructed once at the beginning and
the SAT solver can re-use most of the learned clauses for the instances generated
during each search iteration using incremental SAT techniques. Both binary and
linear search are supported in this approach.

We believe that there is still room for improvement. One such area is the further
tuning of zChaff solver according to different characteristics of the SAT instances gen-
erated by each of the two approaches. The other area is to optimize the UNSAT core
generation process, e.g. reducing overhead, minimizing UNSAT core, etc.

Acknowledgement

We would like to thank Richard Rudell, Olivier Coudert and Vasco Manquinho for
providing us various solvers and benchmarks.

On Solving the Partial MAX-SAT Problem 265

References

1. J. Argelich and F. Manyà. Solving over-constrained problems with SAT technology. Lecture
Notes in Computer Science (LNCS): Theory and Applications of Satisfiability Testing: 8th
International Conference, 3569:1–15, 2005.

2. B. Cha, K. Iwama, Y. Kambayashi, and S. Miyazaki. Local search algorithms for partial
MAXSAT. In Proceedings of the Fourteenth National Conference on Artificial Intelligence,
pages 263–268, 1997.

3. O. Coudert. On solving covering problems. In Proceedings of the 33rd Design Automation
Conference, pages 197–202, 1996.

4. N. Eén and N. Sörensson. MiniSat – A SAT solver with conflict-clause minimization. In
Proceedings of the International Symposium on the Theory and Applications of Satisfiability
Testing, 2005.

5. M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-completeness. Freemand & Co., New York, 1979.

6. E. Goldberg and Y. Novikov. Berkmin: A fast and robust SAT solver. In Proceedings of the
Design Automation and Test in Europe, pages 142–149, 2002.

7. ILOG. Cplex homepage, http://www.ilog.com/products/cplex/, 2006.
8. D. S. Johnson. Approximation algorithms for combinatorial problems. Journal of Computer

and System Sciences, 9:256–278, 1974.
9. R. H. Katz. Contemporary Logic Design. Benjamin Cummings/Addison Wesley Publishing

Company, 1993.
10. H. Kautz, B. Selman, and Y. Jiang. A general stochastic approach to solving problems with

hard and soft constraints,, In D. Du, J. Gu, and P. M. Pardalos, editors, The Satisfiability
Problem: Theory and Applications, 1996.

11. I. Koren. Computer Arithmetic Algorithms. Prentice Hall, 1993.
12. X. Y. Li. Optimization Algorithms for the Minimum-Cost Satisfiability Problem. PhD thesis,

Department of Computer Science, North Carolina State University, Raleigh, North Carolina,
2004. 162 pages.

13. V. Manquinho and J. Marques-Silva. Search pruning techniques in SAT-based branch-and-
bound algorithms for the binate covering problem. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 21:505–516, 2002.

14. J. Marques-Silva and K. A. Sakallah. GRASP: A search algorithm for propositional satisfia-
bility. IEEE Transactions on Computers, 48:506–521, 1999.

15. S. Miyazaki, K. Iwama, and Y. Kambayashi. Database queries as combinatorial optimization
problems. In Proceedings of the International Symposium on Cooperative Database Systems
for Advanced Applications, pages 448–454, 1996.

16. M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engineering an
efficient SAT solver. In Proceedings of the 38th Design Automation Conference, 2001.

17. L. Ryan. Efficient algorithms for clause-learning SAT solvers. Master’s thesis, Simon Fraser
University, 2004.

18. O. Strichman. Prunning techniques for the SAT-based bounded model checking problem. In
Proceedings of the 11th Conference on Correct Hardware Design and Verification Methods,
2001.

19. M. Velev. Sat benchmarks, http://www.ece.cmu.edu/˜mvelev/, 2006.
20. H. Xu. subSAT: A Formulation for Relaxed Satisfiability and its Applications. PhD thesis, De-

partment of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh,
Pennsylvania, 2004. 160 pages.

21. L. Zhang and S. Malik. Validating SAT solvers using an independent resolution-based
checker: Practical implementations and other applications. In Proceedings of the Design
Automation and Test in Europe, 2003.

http://www.ilog.com/products/cplex/
http://www.ece.cmu.edu/~mvelev/

	Introduction
	Previous Work
	Our Contribution

	Diagnosis Based Approach: Iterative UNSAT Core Elimination
	The Optimal Algorithm with Proof
	An Illustrative Example

	Encoding Based Approach: Constructing an Auxiliary Counter
	An Efficient Hierarchical Tree Adder
	A Discussion on Incremental SAT

	Experimental Results
	FPGA Routing Benchmarks
	Multiple Property Checking Benchmarks
	Randomized UNSAT Benchmarks

	Conclusions and Future Directions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

