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Preface

This volume contains the papers presented at the 9th International Conference
on Theory and Applications of Satisfiability Testing (SAT 2006).

The International Conference on Theory and Applications of Satisfiability
Testing is the primary annual meeting for researchers studying the propositional
satisfiability problem (SAT). SAT 2006 was part of FLoC 2006, the fourth Fed-
erated Logic Conference, which hosted, in addition to SAT, LICS, RTA, CAV,
ICLP and IJCAR. SAT 2005 was held in St. Andrews, Scotland, and SAT 2004
in Vancouver, BC, Canada. This time SAT featured the SAT Race in spirit of
the SAT Competitions, the first competitive QBF Evaluation, an Evaluation of
Pseudo-Boolean Solvers and the Workshop on Satisfiability Solvers and Program
Verification (SSPV).

Many hard combinatorial problems can be formulated as Boolean Satisfia-
bility (SAT) problems. In fact, given the tremendous advances in the state of
the art of SAT solvers in the last decade, many real-world applications are now
being encoded as SAT problems. For example, many practical verification prob-
lems can be rephrased as SAT problems. This applies to verification problems
in hardware and software. SAT is therefore becoming one of the most important
core technologies to verify secure and dependable systems: Improvements in the
theoretical and practical aspects of SAT will consequently apply to a range of
real-world problems.

The topics of the conference spanned practical and theoretical research on
SAT and its applications and included but were not limited to proof systems,
proof complexity, search algorithms, heuristics, analysis of algorithms, hard in-
stances, randomized formulae, problem encodings, industrial applications, solvers,
simplifiers, tools, case studies and empirical results. SAT is interpreted in a rather
broad sense: besides propositional satisfiability, it includes the domain of Quan-
tified Boolean Formulae (QBF), Constraint Programming Techniques (CP) for
word-level problems and their propositional encoding and particularly Satisfia-
bility Modulo Theories (SMT).

There were 80 submissions including 75 regular papers with a page limit of
14 pages and 15 short papers with a page limit of 6 pages. Each submission
was reviewed by at least three Programme Committee members. The committee
decided to accept 26 regular papers and 11 short papers. Out of the 15 papers
submitted as short papers, two papers were accepted. The other nine papers
accepted as short papers had been submitted as regular paper.

The program also includes invited talks by Fahiem Bacchus and Karem
Sakallah, the presentations of the results of the SAT Race, and the Evaluations
of QBF, Pseudo-Boolean and MAX-SAT Solvers.

We would like to thank the organizers of FLoC for coordinating the differ-
ent conferences. We thank Andrei Voronkov for his excellent EasyChair system.



VI Preface

It helped us streamline the reviewing progress tremendously and meet our de-
cision deadlines. Last but not least we thank the Programme Committee and
the additional external reviewers for their careful and thorough work, without
which it would not have been possible for us to put together such an outstanding
conference programme.

We would also like to acknowledge the support of our sponsors: Cadence,
IBM, Microsoft Research, NEC, John von Neumann Minerva Center for the
Development of Reactive Systems, and the Intelligent Information Systems In-
stitute at Cornell University.

August 2006 Armin Biere and Carla P. Gomes
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From Propositional Satisfiability
to Satisfiability Modulo Theories

Hossein M. Sheini and Karem A. Sakallah

University of Michigan, Ann Arbor MI 48109, USA
{hsheini, karem}@umich.edu

Abstract. In this paper we present a review of SAT-based approaches
for building scalable and efficient decision procedures for quantifier-free
first-order logic formulas in one or more decidable theories, known as
Satisfiability Modulo Theories (SMT) problems. As applied to different
system verification problems, SMT problems comprise of different the-
ories including fragments of elementary theory of numbers, the theory
of arrays, the theory of list structures, etc. In this paper we focus on
different DPLL-style satisfiability procedures for decidable fragments of
the theory of integers. Leveraging the advances made in SAT solvers in
the past decade, we introduce several SAT-based SMT solving methods
that in many applications have outperformed classical decision meth-
ods. Aside from the classical method of translating the SMT formula
to a purely Boolean problem, in recent methods, a SAT solver is uti-
lized to serve as the “glue” that ties together the different theory atoms
and forms the basis for reasoning and learning within and across them.
Several methods have been developed to provide a combination frame-
work for implications to flow through the theory solvers and to possibly
activate other theory atoms based on the current assignments. Simi-
larly, conflict-based learning is also extended to enable the creation of
learned clauses comprising of the combination of theory atoms. Addi-
tional methods unique to one or more types of theory atoms have also
been proposed that learn more expressive constraints and significantly
increase the pruning power of these combination schemes. We will de-
scribe several combination strategies and their impact on scalability and
performance of the overall solver in different settings and applications.

1 Introduction

The decision problem for quantifier-free first-order logic formulas arises quite
naturally in a wide variety of applications including software and hardware ver-
ification, scheduling and planning [6,2,31,9,27]. Such formulas typically consist
of logical combinations of atoms from different theories such as the theory of
integer linear arithmetic, the theory of arrays, the theory of equality with un-
interpreted functions, set theory, etc. Systematic procedures for deciding such
formulas, based on equality propagation among the different theory solvers, were
first described by Nelson and Oppen [20]. More recently, interest in this problem
has increased dramatically, sparked in part by the phenomenal progress in the

A. Biere and C.P. Gomes (Eds.): SAT 2006, LNCS 4121, pp. 1–9, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



2 H.M. Sheini and K.A. Sakallah

capacity and speed of modern DPLL-based Boolean satisfiability (SAT) solvers.
A significant number of researchers around the globe are actively exploring a
variety of approaches for solving this problem by leveraging the computational
power of modern SAT solvers. In this new incarnation, the problem has been
dubbed Satisfiability Modulo Theories (SMT) [29] with particular emphasis on
integrating the theory of linear (real and integer) arithmetic within a DPLL
backtrack search framework1.

In this paper we provide a brief survey of the SAT-based approaches for solving
SMT problems. Specifically, after covering some preliminaries in Section 2, we de-
scribe methods for direct translation of SMT instances to SAT (Section 3), meth-
ods based on Abstraction/refinement (Section 4), online approaches (Section 5)
and hybrid solutions methods (Section 6).

2 Preliminaries

Satisfiability Modulo Theories (SMT) is the problem of determining the satisfia-
bility of a quantifier-free first-order logic (FOL) formula in one or more decidable
theories. Quantifier-free first-order logic extends propositional logic with terms,
function symbols, and predicate symbols defined according to the following rules:

• A variable is a term.
• f(t1, · · · , tn) is a term, where f is an n-arity function symbol (with n ≥ 0)

and t1, · · · , tn are terms. 0-arity functions are constants.
• P (t1, · · · , tn) is an atom, where P is an n-arity predicate symbol (with n ≥ 0)

and t1, · · · , tn are terms. 0-arity predicates are propositional variables.
• Quantifier-free FOL formulas are constructed by combining atoms according

to the rules of propositional logic. In particular, a quantifier-free FOL formula
in conjunctive normal form (CNF) is the conjunction of a set of clauses each
of which is the disjunction of a set of literals, where a literal is either an atom
or the negation of an atom.

Using quantifier-free FOL as an organizing framework, we can define several
specialized “logics” or “theories” by specifying the domains of their variables, as
well as the functions (terms) and predicates (atoms) they admit. We list below
some of the most commonly-used theories in hardware and software verification
applications. Note that in these theories all variables and constant are assumed
to be integer-valued.

• Propositional Logic (P): In this theory, there are no function symbols,
and only 0-arity predicate symbols, i.e., propositional variables.

• Equality Logic (E): This theory has no function symbols and only the
equality predicate ti = tj where ti and tj are terms.

• Equality Logic with Successors (ES): This logic extends E logic by
introducing the function succ(t) = t + 1 where t is a term.

1 Independently, Hooker et al [13] and the OR community refer to similar problems
as mixed logical linear programs.
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• Equality Logic with Uninterpreted Functions (EUF): This logic
extends E with n-arity uninterpreted function and predicate symbols and
enforces functional consistency.

• Equality Logic with Successors and Uninterpreted Functions
(ESUF): This logic extends ES with n-arity uninterpreted function and
predicate symbols and enforces functional consistency.

• Difference Logic (DL): This logic extends ES with the interpreted pred-
icate of the form ti − tj ≤ d where ti and tj are terms and d is an integer
constant.

• Counter Arithmetic Logic with Lambda Expressions and Uninter-
preted Functions (CLU): The set of functions and predicates are respec-
tively the union of the functions and predicates of EUF and DL.

• Integer Unit-Two-Variable-Per-Inequality (UTVPI) Logic (T VL):
This logic generalizes the interpreted predicates of DL to the form aiti +
ajtj ≤ d where ai, aj ∈ {±1, 0}, ti and tj are terms and d is an integer
constant.

• Linear Integer Arithmetic (LIA): This is essentially the logic of integer
linear inequalities. Note that DL and T VL are restrictions of LIA.

The choice of which logic to apply in a particular situation depends on the
expressiveness of the logic as well as the existence of efficient procedures for
checking the satisfiability of conjunctions of atoms in that logic. Such proce-
dures are referred to as theory solvers include congruence-closure for the logic of
equality and its extensions [22], transitive-closure for the DL and T VL theories
[15] and Simplex-based Branch-and-Bound algorithms for LIA.

Propositional Satisfiability (SAT). Modern SAT solvers are based on the DPLL
backtrack search algorithm [8] augmented with powerful techniques for search
space pruning and efficient Boolean constraint propagation. These techniques
include conflict-based learning and non-chronological backtracking [18], watched-
literal schemes for Boolean Constraint Propagation and advanced variable
ordering heuristics such as VSIDS [19]. For a survey of these methods, the reader
is referred to [32].

The efficiency of the SMT solvers we describe on the remainder of this paper
drive their power from these modern SAT solvers.

3 Translation to SAT

The earliest use of SAT solvers in the SMT context was through direct translation
of an SMT instance to an equi-satisfiable Boolean formula. Such eager solution
approaches were attractive because they did not require the development of
specialized theory solvers or complex combination strategies. Their effectiveness
derived from their reliance on the underlying SAT engine.

These approaches were most effective when applied to the EUF and CLU
logics in [14,16,23,24,7]. Techniques to translate such formulas to propositional
form include Small Domain Instantiation [23] and Per-Constraint Encoding [25].
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Small Domain Instantiation. This method is based on the fact that for a
formula whose atoms are only equalities between input variables, it is enough to
give each variable the range [1 . . . n] (where n is the number of input variables)
without affecting the satisfiability/unsatisfiability of the formula. Knowing the
range enables us to replace each input variable in the formula with a bit-vector
of Boolean variables of size �logn� yielding a purely Boolean instance. To apply
this procedure to an EUF formula, the formula is first converted, using Acker-
mann reduction [1], to an equi-satisfiable formula that only involves equaliteis.
Specifically, each occurrence of an uninterpreted function is replaced with a new
variable and the formula is conjoined with constraints to preserve functional
consistency.

Further enhancements to this method deal with reducing the [1 . . . n] range
associated with each variable taking into account the structure of the formula.
These methods include the equality graph and range analysis of [23], coloring
the equality graph by analyzing the CNF representation of the formula in [12],
positive equality method of [30] and the hybrid method of [24].

Per-Constraint Encoding. In this approach, also known as eij encoding [11],
an EUF formula is first transformed, as above, into an equi-satisfiable formula,
ϕ, whose atoms are only equalities. Each equality atom ti = tj is replaced
by a fresh unrestricted Boolean variable eij , yielding a Boolean abstraction,
ϕbool that can be processed by a propositional SAT solver. To prevent false
positives this abstraction is augmented with transitivity constraints of the form
(eij ∧ ejk) → eik for all eij variables within the formula. In the worst case the
number of such transitively constraints grow exponentially [7].

4 Abstraction/Refinement

An SMT CNF formula whose propositional and theory atoms are denoted, re-
spectively, by P and T can be generically expressed as

ϕ(P,T ) =
∧

c ∈C

c (1)

where C is a set of clauses whose elements have the form∨
A∈ P∪T

A ∨
∨

A∈ P∪T

¬A (2)

A Boolean abstraction of the SMT formula, ϕbool, can be constructed by
introducing a mapping α that assigns a fresh Boolean indicator variable, α(A),
to each theory atom, A. Thus the SMT CNF formula can be represented as

ϕ(P,I ,T ) = ϕbool(P,I ) ∧
∧

A∈T

(α(A) ↔ A) (3)

where I is the set of indicator variables. In the abstraction/refinement approach,
a SAT solver is initially applied to ϕbool. If ϕbool is found to be unsatisfiable,
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then so is the SMT formula, ϕ and no theory solver needs to be invoked. If ϕbool

is found to be satisfiable, however, a theory solver is applied to the conjunction
of true theory literals in the solution returned by the SAT solver. Satisfiability of
this conjunction establishes the satisfiability of the original formula ϕ; otherwise
the abstracted formula, ϕbool, is refined to eliminate this solution and the process
reiterates. In such a flow the theory solvers are sometimes referred to as offline
solvers and their combination strategy within SAT is called offline integration.

An enhancement of this scheme was proposed in [5] whereby the non-Boolean
literals in the SAT solution of ϕbool are categorized in terms of their logics and
solved sequentially by increasing the expressiveness of their logic. For instance,
if the solution to ϕbool contains ES, ESUF and T VL literals, we can verify the
consistency of only equality atoms first, and if satisfiable check the consistency
of a more complete set of non-Boolean atoms, adding new types of atoms to the
verified set in sequence. In this case the offline solvers are essentially layered in an
increasing solving capability and each are applied to a satisfying solution found to
the formula at the previous layer. Note that if a conflict at any layer is detected,
this conflict is used to prune the search at the Boolean level and the system
reiterates. In order to find conflicts earlier in the search, an incremental layered
approach is suggested in [5] where instead of complete Boolean assignments,
“partial” ones are passed through layers to be checked for consistency.

5 Online Solving Approach

In this approach [10,4,21,28], the consistency of the conjunction of theory literals
is checked incrementally as soon as the SAT solver assigns those literals, i.e.
adds them to the solution model. This combination strategy has been referred
to as the online method in [4], DPLL(T ) in [10] and Mixed Logical Integer
Linear Programming (MLILP) in [28]. In this method the SAT solver is tightly
integrated with one or more theory solvers. In [4], the authors integrate a DL
solver into the SAT solver while in [10] an EUF solver is combined with the SAT
solver. In [28], a combined method for solving systems of T VL literals using
a SAT solver and a transitive-closure UTVPI solver is proposed. Considering
that in this method a growing set of theory literals is incrementally checked
for consistency, it is important that the theory solver is both incremental and
backtrackable. This is the reason that only relatively cheap theory literals, i.e.
ESUF or T VL are considered for this method.

Each theory solver, in this approach, maintains a set of “activated” theory
atoms and incrementally updates this set, returning a conflict as soon an incon-
sistency is detected. Essentially the SAT solver treats such atoms similarly to
the way it treats propositional atoms. The advantages of this approach over the
layered and eager approaches can be summarized as follows:

• Compared to the eager approach, the online method only checks the con-
sistency of theory atoms when they are absolutely required to establish the
satisfiability of the formula. This avoids time- and memory-consuming “pre-
processing” of all theory atoms.
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• Compared to the layered approach, by processing each theory atom “on-
demand”, the online approach is able to detect conflicts among those atoms
as they occur and not at a later layer. The advantage of early detection
of conflicts is more pronounced in cases where the majority of conflicts
are due to inconsistencies among theory atoms. To detect such conflicts,
the layered approach requires solving the entire Boolean layer at each
iteration.

6 Hybrid Solving Approach

The hybrid approach combines the online and layered approaches and is par-
ticularly effective when the SMT formula contains a large number T VL atoms
relative to the number of LIA atoms. The efficiency of transitive-closure solver
for UTVPI suggests an online integration with the SAT solver while the high
computation requirements of simplex-based solvers for LIA atoms, suggests lay-
ering them or invoking them offline.

Combined Deduction Scheme. In Ario [3] a stand-alone deduction scheme
outside the theory solvers is utilized that builds an implication graph taking
into account all types of atoms. Implications in this graph are both due to
unit-clause-propagation of the SAT solver and the linear combination of integer
constraints. In this scheme all possible non-negative linear combinations of equal-
ity and UTVPI constraints are generated and implied. Non-UTVPI constraints
on the other hand are combined with equality or UTVPI constraints only if a
variable could be eliminated and they are not combined with other non-UTVPI
constraints. Consequently the consistency of each implied integer constraint is
verified within its respective theory solver.

Offline Refinement. An advanced refinement technique is introduced in [28]
that further enhances the pruning power of the learned constraints. In this tech-
nique, instead of pruning the search space by adding a learned constraint in
terms of indicator variables, by combining non-UTVPI and UTVPI constraints,
a more powerful constraint including a conflicting combination of UTVPI con-
straints is generated and added to the SMT formula, taking into account that
the UTVPI solver is tightly integrated within the SAT solver. For instance, let
L1, D1, D2, D3 and D4 (whose indicator variables are respectively PL1, PD1,
PD2, PD3 and PD4) comprise the inconsistent set of integer constraints. This
methods instead of simply learning ¬(PL1 ∧PD1 ∧PD2 ∧PD3 ∧PD4), checks the
linear non-negative combinations of L1 and different permutations of the acti-
vated UTVPI constraints D1, D2, D3 and D4. In case, for instance, the linear
combination of L1, D1 and D2 results in a UTVPI constraint, D̂, the following
constraints is learned and is added to the SMT formula which is strictly stronger
than the learned Boolean constraint, PL1 ∧D1 ∧D2 → D̂.
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7 Conclusions and Future Work

The impressive advances in algorithms and implementations of propositional
SAT solvers over the past decade have invigorated the quest for efficient SAT-
based solution methods for the SMT problem. In this paper we briefly surveyed
recently-proposed techniques for applying SAT technology to the SMT prob-
lem. While many issues are still unresolved as to how best architect an SMT
solver, empirical evidence suggests that reasoning about the Boolean structure
of the SMT formula is best handled by the SAT solver. Theory solvers in such
a framework need only worry about conjunctions of theory literals.

On the application side, several SAT-based SMT solving methods have been
adopted in verification problems such as equivalence checking of two versions of a
hardware design or the input and output of a compiler. These methods have been
recently utilized in several model checkers as well. Additionally, optimization in
the context of SMT is also gaining importance [26] especially in planning and
scheduling applications. An online SMT method [27] is applied to Disjunctive
Temporal Problems with preferences [17], referred to as DTPPs in [26]. For
particular applications, custom implementation of a SMT solver may also be
helpful. We believe as more and more SMT solvers utilize SAT solvers as their
deduction and reasoning framework, finding efficient integration techniques to
combine different theories and/or logics within the SAT solver has become very
significant and subject to further research.
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Abstract. One way of viewing the difference between SAT and CSPs
is to think of programming in assembler vs programming in C. It can be
considerably simpler to program in C than assembler. Similarly it can
be considerably simpler to model real world problems in CSP than in
SAT. On the other hand C’s machine model is still rather close to the
underlying hardware model accessed directly in assembler. Similarly, in
CSPs the main method of reasoning, backtracking search, can be viewed
as being an extension of DPLL, the main method of reasoning for SAT.
Where the analogy breaks down is that unlike C and assember whose
machine models are computationally equivalent, some CSP techniques
offer a considerable boost in inferential power over the resolution infer-
ences preformed in DPLL. An intresting question is how to combine this
additional inferential power with the more powerful forms of resolution
preformed in modern DPLL solvers. One approach for achieving such a
combination will be presented.
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Abstract. A weakened version of the Cutting Plane (CP) proof system
with a restriction on the degree of falsity of intermediate inequalities
was introduced by Goerdt. He proved an exponential lower bound for
CP proofs with degree of falsity bounded by n

log2 n+1 , where n is the
number of variables. Hirsch and Nikolenko strengthened this result by
establishing a direct connection between CP and Resolution proofs. This
result implies an exponential lower bound on the proof length of the
Tseitin-Urquhart tautologies, when the degree of falsity is bounded by
cn for some constant c.

In this paper we generalize this result for extensions of Lovász-Schrijver
calculi (LS), namely for LSk+CPk proof systems introduced by Grigoriev
et al. We show that any LSk+CPk proof with bounded degree of falsity
can be transformed into a Res(k) proof. We also prove lower and upper
bounds for the new system.

1 Introduction

The systematic study of propositional proof complexity was initiated by Cook
and Reckhow in [1]. The motivation for this is the following: the NP�=co-NP
assumption implies the existence of hard examples for any proof system. In this
paper we are interested in semialgebraic proof systems, which restate a Boolean
tautology as a set of inequalities and prove that this set has no solution in
{0, 1}-variables. No exponential lower bounds in these systems are known for
tautologies that are hard for many other proof systems.

A weakened version of the Cutting Plane (CP) proof system with a restriction
on the degree of falsity of intermediate inequalities was introduced by Goerdt [2].
He proved an exponential lower bound for CP proofs with the degree of falsity
bounded by n

log2 n+1 , where n is the number of variables. Hirsch and Nikolenko
strengthened this result by establishing a direct connection between CP and
Resolution proofs. This result implies an exponential lower bound on the proof

� Supported in part by INTAS (grants 04-77-7173, 04-83-3836, 05-109-5352), RFBR
(grants 05-01-00932, 06-01-00502, 06-01-00584), RAS Program for Fundamental
Research (“Modern Problems of Theoretical Mathematics”), and Russian Science
Support Foundation.
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length of the Tseitin-Urquhart tautologies, when the degree of falsity is bounded
by cn for some constant c.

In this paper we extend the notion of the degree of falsity to high degree
semialgebraic proof systems and prove lower and upper bounds for the considered
systems. We prove that an LSk+CPk proof with restricted degree of falsity can
be transformed into a Res(k) proof. We also provide exponential separations of
the new proof system from CP and Res(k) by giving short proofs of the Pigeon
Hole Principle and the Weak Clique Coloring tautologies and prove.

Below we give the main ideas of transforming LSk+CPk proofs into Res(k)
proofs. Given an LSk+CPk proof Π we first linearize this proof, i.e., we replace
each monomial by a new variable. This allows us to work with linear inequalities
only. By a Boolean representation of a linear inequality we mean a CNF formula
equivalent to this inequality. By bounding the degree of falsity of an inequality
one bounds the size of this formula. We show that for any step of the proof Π it is
possible to derive the Boolean representation of the conclusion from the Boolean
representations of the premise(s). Thus, we transform an LSk+CPk proof into a
Resolution proof of an auxiliary formula (with additional variables). This implies
the existence of a Res(k) proof of an initial formula.

The paper is organized as follows. Section 2 contains the necessary definitions.
In Sect. 3 we show that any LSk+CPk proof with bounded degree of falsity can
be transformed into a Res(k) proof. Finally, in Sect. 4 we prove upper and lower
bounds for considered systems.

2 General Setting

2.1 Proof Systems

A proof system [1] for a language L is a polynomial-time computable function
mapping words (treated as proof candidates) to L (whose elements are considered
as theorems).

A propositional proof system is a proof system for the co-NP-complete lan-
guage TAUT of all Boolean tautologies in disjunctive normal form (DNF). Since
this language is in co-NP, any proof system for a co-NP-hard language L can be
considered as a propositional proof system. However, we need to fix a concrete
reduction of TAUT to L before compare them.

The proof systems we consider are DAG-like derivation systems, i.e. a proof
is a sequence of lines such that every line is either an axiom or is obtained by
an application of a derivation rule to several previous lines. The proof finishes
with a line called goal. Such a proof system is thus determined by notions of a
line, a goal, a set of axioms and a set of derivation rules.

The resolution proof system [3] has clauses (disjunctions of literals) as its
proof lines and an empty clause as its goal. Given a formula F in DNF, one
takes clauses of ¬F as the axioms and uses the following rules:

Resolution:
A ∨ x ¬x ∨B

A ∨B
, Weakening:

A

A ∨ l
.



Complexity of Semialgebraic Proofs with Restricted Degree of Falsity 13

The Res(k) proof system [4] is a generalization of Resolution where one uses
k-DNFs (disjunctions of terms, i.e. conjunctions of literals) as lines. The goal is
to derive an empty clause. We use the clauses of the formula ¬F as the axioms
and the following inference rules:

Weakening:
A

A ∨ l
AND-introduction:

A ∨ l1 · · ·A ∨ lj

A ∨
∧j

i=1 li

Cut:
A ∨

∧j
i=1 li A ∨

∨j
i=1 ¬li

A ∨B
AND-elimination:

A ∨
∧j

i=1 li
A ∨ li

To define a propositional proof system dealing with inequalities, we translate
each formula ¬F in CNF with n variables into a system D of linear inequalities
such that F is a tautology if and only if the system D has no solution in {0, 1}-
variables. For a given tautology F , we translate each clause Ci of ¬F with
variables xj1 , . . . , xjt , into the inequality

l1 + . . . + lt ≥ 1 , (1)

where li = xji , if the variable xji occurs positively in the clause and li = 1− xj ,
if xji occurs negatively. For every variable xi, 1 ≤ i ≤ n, we also add the
inequalities 0 ≤ xi ≤ 1 to the system D.

The proof lines in the Cutting Plane proof system (CP) [5,6] are linear in-
equalities with integer coefficients. The goal is a contradiction 0 ≥ 1. We use as
the axioms the system of linear inequalities D provided by the translation. The
inference rules are

Addition:
f ≥ 0 g ≥ 0
λff + λgg ≥ 0

, Rounding:
af ≥ c

f ≥ � c
a�

,

where λf , λg are positive constants, a, c are constants, f, g are polynomials.
The extension of CP to higher degree was introduced in [7]. The proof system

LSk+CPk operates with inequalities of degree at most k with integer coefficients
as lines, using the same set of axioms as CP extended by x2

i −xi ≥ 0 for 1 ≤ i ≤ n
and the following rule:

Multiplication:
h ≥ 0
hx ≥ 0

,
h ≥ 0

h(1 − x) ≥ 0
,

where h is a polynomial of degree at most k − 1, x is a variable.

2.2 Proof Linearization

In order to transform an LSk+CPk proof into a Res(k) proof we transform
an initial proof into a Resolution proof of an auxiliary formula. We show the
connection between a Res(k) proof of an initial formula and a Resolution proof
of an auxiliary formula below.

For every set of literals l1, . . . , lm of a formula F , where m ≤ k, we define a
new variable z(l1, . . . , lm) denoting the conjunction of all these literals. This can
be expressed by the following m + 1 clauses:

(z(l1, . . . , lm)∨¬l1 ∨ . . .∨¬lm), (¬z(l1, . . . , lm)∨ l1), . . . , (¬z(l1, . . . , lm)∨ lm) .
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By F (k) we denote the conjunction of F with all such clauses. We need the
following property of F (k):

Lemma 1 ([8]). If F (k) has a Resolution proof of size S, then F has a Res(k)
proof of size O(kS).

For a variable zi = z(l1, . . . , ls) of F (k) and a variable x of F , by z(zi, x) we mean
the variable z(l1, . . . , ls, x). For an inequality ι of degree at most k, by lin(ι)
we denote a linear inequality obtained from ι by replacing each its monomial
x1 · . . . · xm by a linear monomial z(x1, . . . , xm).

In the main theorem of this paper we also use the following simple lemma:

Lemma 2. Let C be a clause containing variables of F (k) and x be a variable
of F . Let C′ be a clause obtained from C by replacing each its variable zi by
z(zi, x). Then the clause (C′ ∨ ¬x) can be obtained from C and clauses of F (k)
in at most O(nk) Resolution steps. If in addition C contains at least one negated
variable, then one can also derive C′.

Proof. For each variable zi = z(l1, . . . , ls) we can derive clauses (zi ∨ ¬z(zi, x))
and (¬zi ∨z(zi, x)∨¬x). The first clause is obtained by resolving (zi∨¬l1∨ . . .∨
¬ls), (¬z(zi, x) ∨ l1), . . ., (¬z(zi, x) ∨ ls), the second one — by resolving clauses
(z(zi, x) ∨ ¬l1 ∨ . . . ∨ ¬ls ∨ ¬x), (¬zi ∨ l1), . . ., (¬zi ∨ ls).

For a literal zi of the clause C, we resolve C with (¬zi ∨ z(zi, x)∨¬x) and for
a literal ¬zi — with (zi ∨ ¬z(zi, x)). The result of these operations is either the
clause C′ or the clause (C′ ∨ ¬x). In case the result is C′, we derive (C′ ∨ ¬x)
by applying the Weakening rule. If C contains at least one negated variable, we
resolve (C′ ∨ ¬x) with (¬z(zi, x) ∨ x) for ¬zi ∈ C.

The number of steps is as required, since the number of variables in C is
O(nk). �

2.3 Degree of Falsity

The definition of the degree of falsity of a linear inequality was given by
Goerdt [2].

Definition 1. For a linear inequality ι of the form
∑s

i=1 αixi ≥ c, DGF1(ι) is
the difference of c and the minimal value of its left-hand side.

Goerdt also gave a simpler definition of the degree of falsity.

Definition 2. A literal form of a linear inequality is its representation in the
form

∑s
i=1 αixi +

∑s′

i=s+1 αi(1 − xi) ≥ c, where αi > 0, for 1 ≤ i ≤ s′. For an
inequality ι, DGF2(ι) is the free coefficient of the literal form of ι.

It is easy to see that these definitions are equivalent, i.e., for any linear in-
equality ι, DGF1(ι) = DGF2(ι). Both these definitions can be extended naturally
to inequalities of arbitrary degrees (one can just replace variables by monomi-
als in both definitions). However, the new definitions would not be equivalent.
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E.g., DGF1(xy + xz − x ≥ 2) = 3, while DGF2(xy + xz − x ≥ 2) = 1. From the
other side, it is not difficult to show that for any inequality ι, DGF1(ι) ≥ DGF2(ι).
So, if DGF1 of a proof is bounded by a constant d, then DGF2 is bounded by d too.
For this reason, we use DGF2 as the degree of falsity in this paper. The explicit
definition is as follows.

Definition 3. A literal form of an inequality is its representation in the form∑s
i=1 αimi +

∑s′

i=s+1 αi(1 −mi) ≥ c, where αi’s are positive constants, mi’s are
monomials. For an inequality ι, DGF(ι) is the free coefficient of the literal form
of ι. The degree of falsity of an LSk+CPk proof is the maximal degree of falsity
of intermediate inequalities of this proof.

2.4 Boolean Representation of Linear Inequalities

By a Boolean representation of a linear inequality we mean a CNF formula that
is equivalent to this inequality. Of course, such a formula is not unique. Below
we describe the construction of a Boolean representation given in [9].

Let ι be a linear inequality of the form
∑s

i=1 αixi +
∑s′

i=s+1 αi(1 − xi) ≥ c,
where αi > 0, for 1 ≤ i ≤ s′. By satisfying a literal of ι we mean assigning either
a value 1 to xi, where 1 ≤ i ≤ s, or a value 0 to xi, where s+1 ≤ i ≤ s′. Let ι0 be
an inequality obtained from ι by satisfying some literals, such that no literal of
ι0 can be satisfied without trivializing ι0. It is easy to see that ι0 is equivalent to
a clause (since it is not satisfied by exactly one assignment to its variables). By
B(ι) we denote the set of all such clauses. Moreover, in the rest of the paper by
the Boolean representation of an inequality ι we mean exactly the set B(ι). The
following lemma shows that this construction is correct and provides an upper
bound one the size of the constructed set.

Lemma 3 ([9]). For any linear inequality ι, B(ι) is equivalent to ι. Moreover,
the number of clauses in B(ι) is at most

(
n

d−1

)
, where d < n/2 is the degree of

falsity of ι.

We also use the following simple property of B(ι), that follows immediately from
the construction.

Lemma 4. Let ι be a linear inequality of the form
∑s

i=1 αixi +
∑s′

i=s+1 αi(1 −
xi) ≥ c, where αi > 0, for 1 ≤ i ≤ s′. Then, the set of clauses of B(ι) that do not
contain the literal xi, where 1 ≤ i ≤ s (or the literal ¬xi, where s + 1 ≤ i ≤ s′)
is exactly the set B(ι|xi=1) (respectively, B(ι|xi=0)).

3 Transforming LSk+CPk Proofs with Restricted Degree
of Falsity into Res(k) Proofs

Theorem 1. For any LSk+CPk proof Π of a CNF formula F , there exists
a Res(k) proof of F of size O(

(
n

d−1

)
|Π |(nk + 26d)), where n is the number of

variables of F and d ≤ n/2 is the degree of falsity of Π.
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Proof. We show that for any step ι1 (ι2)
ι of the proof Π , it is possible to derive

all clauses of B(lin(ι)) from clauses of B(lin(ι1)) (and B(lin(ι2))) and clauses of
F (k) in at most O(

(
n

d−1

)
(nk + 26d)) resolution steps. Note that if an inequality

ι0 is an axiom of the proof Π , then B(lin(ι0)) is a clause of F . Observe also that
B(lin(0 ≥ 1)) is an empty clause. Thus, the constructed proof is a Resolution
proof of F .

For the Addition and Rounding rules this is shown by Hirsch and Nikolenko
[9] (see lemma below). So, we only need to consider the Multiplication rule.

Lemma 5 ([9])

– The Rounding rule does not change the Boolean representation.
– If ι is an integer linear combination of linear inequalities ι1 and ι2, then

every clause of B(ι) can be derived from B(ι1) ∪ B(ι2) in at most 26d steps,
where DGF(ι1), DGF(ι2) ≤ d.

Let ιp be a premise of the Multiplication rule, ιc be its conclusion, and x be a
literal of this rule (so that ιc is obtained from ιp by multiplying by x). Let also
the literal form of lin(ιp) be

∑s
i=1 αizi +

∑s′

i=s+1 αi(1 − zi) ≥ c, where αi > 0,

for 1 ≤ i ≤ s′. The literal form of ιc depends on the sign of (
∑s′

i=s+1 αi − c).
Consider two cases.

1. (
∑s′

i=s+1 αi − c) ≥ 0. In this case, the literal form of lin(ιc) is

s∑
i=1

αiz(zi, x) +
s′∑

i=s+1

αi(1 − z(zi, x)) + (
s′∑

i=s+1

αi − c)x ≥
s′∑

i=s+1

αi .

Note that each clause of B(lin(ιc)) contains a literal ¬z(zi, x) for some s+1 ≤
i ≤ s′ (since lin(ιc) becomes trivial when all these literals are assigned the
value 0). Each clause of B(lin(ιc)) containing x can be obtained by the
Weakening rule from the clause (¬z(zi, x) ∨ x).

Now consider all clauses of B(lin(ιc)) that do not contain x, that is, the
Boolean representation of lin(ιc)|x=1. Observe that lin(ιc)|x=1 can be ob-
tained from lin(ιp) just by replacing each variable zi by z(zi, x), thus, we
can apply Lemma 2.

2. (
∑s′

i=s+1 αi − c) < 0. In this case, the literal form of lin(ιc) is

s∑
i=1

αiz(zi, x) +
s′∑

i=s+1

αi(1 − z(zi, x)) + (c−
s′∑

i=s+1

αi)(1 − x) ≥ c .

Consider all clauses of B(lin(ιc)) that do not contain ¬x. By Lemma 4,
these clauses form a Boolean representation of lin(ιc)|x=0. As in the previous
case, all these clauses contain a literal ¬z(zi, x) for some s + 1 ≤ i ≤ s′.
Note that lin(ιc)|x=0 can be obtained from lin(ιp) by replacing each variable
zi by z(zi, x) and reducing the free coefficient from c to

∑s′

i=s+1 αi. Thus,
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B(lin(ιc)|x=0) can be derived from B(lin(ιp)) by applying the steps described
in Lemma 2 and the Weakening rule.

Each clause C of B(lin(ιc)) containing ¬x corresponds to a clause C0
of B(lin(ιp)) resulting from C by removing ¬x and replacing each variable
z(zi, x) of C by zi. All these clauses can be derived by Lemma 2.

The Boolean representation of lin(ιc) contains at most
(

n
d−1

)
clauses, so the

number of steps is as required. �

4 Lower and Upper Bounds for LSk+CPk with Restricted
Degree of Falsity

In this section we give lower and upper bounds for LSk+CPk with restricted
degree of falsity. Namely, we give short proofs of the Pigeon Hole Principle
(which is known to be hard for Res(k), when k ≤

√
logn/ log logn, [10]) and

the Weak Clique-Coloring tautologies (which are known to be hard for CP [7]).
This gives exponential separation of the new system from Res(k) and CP. We
also prove an exponential lower bound for the LSk+CPk with DGF bounded by
cn for some constant c, provided that Res(k) has a strongly exponential lower
bound.

4.1 Short Proof of the Pigeon Hole Principle

The M to N pigeon hole principle (PHPM
N ) is coded by the following set of

clauses: ∨
1≤�≤M

xk,� , 1 ≤ k ≤ M , (2)

¬xk,� ∨ ¬xk′,� , 1 ≤ k �= k′ ≤ M, 1 ≤ � ≤ N . (3)

This set of clauses is translated into the following set of inequalities:∑
1≤�≤N

xk,� ≥ 1 , 1 ≤ k ≤ M , (4)

(1 − xk,�) + (1 − xk′,�) ≥ 1 , 1 ≤ k �= k′ ≤ M , 1 ≤ � ≤ N . (5)

Using similar to Goerdt [2] arguments we give a short proof of this con-
tradiction in CP (and hence in LSk+CPk) with the degree of falsity bounded
by

√
n.

Lemma 6. Given a set of inequalities xi +xj ≤ 1 for all 1 ≤ i �= j ≤ M and an
inequality

∑M
i=1 xi +A ≥ 0, where A is a polynomial not containing the variables

xi, 1 ≤ i ≤ M , we can deduce an inequality A + 1 ≥ 0 in O(M2) steps with the
degree of falsity not exceeding DGF of the initial inequalities.
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Proof. We prove by induction on s that A+
∑s

i=1 xi−xs′ +1 ≥ 0 for all 1 ≤ s′ ≤ s
can be deduced.

Base: an inequality A +
∑M−1

i=1 xi − xj + 1 ≥ 0 is the sum of initial inequalities
A +

∑M
i=1 xi ≥ 0 and 1 − xM − xj ≥ 0.

Induction step: for all 1 ≤ s′ ≤ s − 1 sum the following three inequalities A +∑s
i=1 xi −xs +1 ≥ 0, A+

∑s
i=1 xi −xs′ +1 ≥ 0, and 1−xs −xs′ ≥ 0, and apply

the Rounding rule to the result to obtain

A +
s−1∑
i=1

xi − xs′ + 1 ≥ 0 . �

Now, summing up all inequalities (4) we have

N∑
j=1

M∑
i=1

xi,j ≥ M . (6)

After then, step-by-step (for i = M, . . . , 1) apply Lemma 6 to obtain Ai−1 from
Ai, where Ai is

i∑
j=1

M∑
i=1

xi,j + (N − i) ≥ M .

It is easy to see that A0 is a contradiction.

4.2 Short Proof of the Weak Clique-Coloring Tautologies

First, we recall the definition of the Weak Clique-Coloring tautologies. Given a
graph G with N vertices, we try to color it with M − 1 colors, while assuming
the existence of a clique of size M in G. The set of variables of this tautology
consists of the three following groups:

– for 1 ≤ i, j ≤ N , pij = 1 iff there is an edge between i-th and j-th vertices
of G

– for 1 ≤ i ≤ N , 1 ≤ k ≤ M , qki = 1 iff the i-th vertex of G is the k-th vertex
of the clique

– for 1 ≤ i ≤ N , 1 ≤ � ≤ M − 1, ri� = 1 iff the i-th vertex of G is colored by
the color �

Thus, the number of variables n is equal to N2 +NM +N(M − 1). The contra-
diction is given by the following set of inequalities.

(1 − pij) + (1 − ri�) + (1 − rj�) ≥ 1 , 1 ≤ i < j ≤ N , 1 ≤ � ≤ M − 1 , (7)
M−1∑
�=1

ri� ≥ 1 , 1 ≤ i ≤ N , (8)

N∑
i=1

qki ≥ 1 , 1 ≤ k ≤ M , (9)
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(1 − qki) + (1 − qk′,i) ≥ 1 , 1 ≤ k �= k′ ≤ M , (10)
pij + (1 − qki) + (1 − qk′,j) ≥ 1 , 1 ≤ i < j ≤ N , 1 ≤ k �= k′ ≤ M . (11)

Grigoriev et al. [7] added to them one more family of inequalities, such that any
CP refutation of the new system still requires at least 2Ω((n/ log n)1/3) steps:

(1 − qkj) + (1 − qki) ≥ 1 , 1 ≤ k ≤ M , 1 ≤ i �= j ≤ N . (12)

Now let us give a short proof of this contradiction with degree of falsity
bounded by

√
n (we just rewrite the proof of [7] by putting each inequality into

its literal form in order to show that the degree of falsity is as required). First,
for each i, we multiply (8) by qki and sum the resulting inequalities over i to
obtain

N∑
i=1

M−1∑
�=1

qkiri� +
N∑

i=1

(1 − qki) ≥ N ,

Adding (9) to this inequality yields

N∑
i=1

M−1∑
�=1

qkiri� ≥ 1 . (13)

Next, we eliminate pij from (7) and (11) and obtain

(1 − qki) + (1 − qk′,j) + (1 − ri�) + (1 − rj�) ≥ 1 , (14)

for 1 ≤ i < j ≤ N , ≤ k �= k′ ≤ M .
Then, we sum (14) with axioms (1−qki)ri� ≥ 0, qki(1−ri�) ≥ 0, qk′,j(1−rj�) ≥

0 and (1 − qk′,j)rj� ≥ 0 and apply the Rounding rule:

(1 − qkiri�) + (1 − qk′,jrj�) ≥ 1 , 1 ≤ i < j ≤ N , 1 ≤ k �= k′ ≤ M , (15)

Using qki(1 − ri�) ≥ 0, qkj(1 − rj�) ≥ 0 and (12), we obtain

(1 − qkiri�) + (1 − qkjrj�) ≥ 1 , 1 ≤ � ≤ M − 1 , 1 ≤ k ≤ M . (16)

Multiplying every (10) by ri� and adding (1 − ri�) ≥ 0 to the result, we obtain

(1 − qkiri�) + (1 − qk′,iri�) ≥ 1 . (17)

Relations (15)–(17) imply that any length 2 sub-sum of monomials in the the
sum

M∑
k=1

N∑
i=1

qkiri� , 1 ≤ � ≤ M − 1 ,

is bounded by 1.
The proof of the Weak Clique-Coloring tautologies is as follows. Sum (13) for

all 1 ≤ k ≤ M to obtain

M∑
k=1

N∑
i=1

M−1∑
�=1

qkiri� ≥ M . (18)
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Then, apply Lemma 6 to (15)–(17) and (18) for s = M − 1, . . . , 1 to obtain

M∑
k=1

N∑
i=1

s−1∑
�=1

qkiri� + M − 1 − s ≥ M . (19)

4.3 An Exponential Lower Bound for LSk+CPk with Bounded
Degree of Falsity

The following lemma extends the Corollary 1, [9].

Lemma 7. If a formula F with n variables has no Res(k) proof containing less
then exp(cn), c > 0 clauses, then for sufficiently large n this formula does not
have an LSk+CPk proof of size less than exp(εn) and degree of falsity bounded
by dn for every choice of positive constants ε < c/2 and d < 1/2 such that

2ε + 6d− d log2 d− (1 − d) log2(1 − d) ≤ c . (20)

Proof. By Theorem 1 any LSk+CPk proof of size 2εn can be transformed into a
Res(k) proof of size(

n

dn− 1

)
2εn+6dn+k log2(n) = o(2(ε+6d+k log2(n)/n−d log2 d−(1−d) log2(1−d))n) ,

by Stirling’s formula. This is o(2cn), since for sufficiently large n, k log2(n)/n < ε.
Note that f(x) = 6x−x log2 x− (1−x) log2(1−x) decreases to 0 as x decreases
from 1/2 to 0, thus, for every ε < c/2 there is d that satisfies (20). �

Below we show that this lemma implies an exponential lower bound on the size
of LSk+CPk proofs with bounded degree of falsity for a class of formulas that
encode a linear system Ax = b that has no solution over GF2, where the matrix
A is a “good” expander.

Recall the definition of hard formulas based on expanders matrices [11] which
is a generalization of Tseitin-Urquhart tautologies. For a set of strings I of a
matrix A ∈ {0, 1}m×n, we define its boundary ∂I as the set of all columns J
of A such that there is exactly one string i ∈ I such that aij = 1 for some
j ∈ J and for all other i′ ∈ I, i′ �= i, is true that ai′,j = 0. We say that A is an
(r, s, c)-boundary expander if

1. Each string contains at most s ones.
2. For all set of strings I of size at most r, |∂I| ≥ c · |I| .

Let b be a vector from {0, 1}n. Then Φ(A, b) is a formula expressing the equality
Ax = b modulo 2, namely, every equation ⊕s

l=1aijl
xjl

= bi is transformed into
the 2s clauses on xj1 , . . . , xjs satisfying all its solutions.

Lemma 8. There exists a positive constant δ such that formulas Φ(A, b) with
respect to (n/2, 3, c)-expander A have only exp(Ω(n))-size LSk+CPk proofs with
degree of falsity bounded by δn.
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Proof (sketch). The proof follows from Lemma 7 and the proof of the following
theorem by Alekhnovich.

Theorem 2 (Theorem 4.1, [12]). For any constant Δ with probability 1−o(1)
every Res(k) refutation of a random 3-CNF formula with Δn clauses and n
variables has size exp(n1−o(1)).

To prove this theorem Alekhnovich showed that a random 3-CNF formula with
Δn clauses and n variables with good probability is an Φ(A, b) formula for an
(r, 3, c)-expander matrix A and proved an exponential lower bound for it. �
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Abstract. Finding out that a SAT problem instance F is unsatisfiable
is not enough for applications, where good reasons are needed for ex-
plaining the inconsistency (so that for example the inconsistency may
be repaired). Previous attempts of finding such good reasons focused
on finding some minimally unsatisfiable sub-clause-set F’ of F, which in
general suffers from the non-uniqueness of F’ (and thus it will only find
some reason, albeit there might be others).

In our work, we develop a fuller approach, enabling a more fine-grained
analysis of necessity and redundancy of clauses, supported by meaningful
semantical and proof-theoretical characterisations. We combine known
techniques for searching and enumerating minimally unsatisfiable sub-
clause-sets with (full) autarky search. To illustrate our techniques, we
give a detailed analysis of well-known industrial problem instances.

1 Introduction

Explaining the causes of unsatisfiability of Boolean formulas is a key requirement
in a number of practical applications. A paradigmatic example is SAT-based
model checking, where analysis of unsatisfiability is an essential step ([7,22])
for ensuring completeness of bounded model checking ([3]). Additional examples
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include fixing wire routing in FPGAs ([24]), and repairing inconsistent knowledge
from a knowledge base ([21]).

Existing work on finding the causes of unsatisfiability can be broadly organ-
ised into two main categories. The first category includes work on obtaining a
reasonable unsatisfiable sub-formula, with no guarantees with respect to the size
of the sub-formula ([5,11,28,4]). The second category includes work that pro-
vides some guarantees on the computed sub-formulas ([10,20,23]). Most existing
work has focused on computing one minimally unsatisfiable sub-formula or all
minimally unsatisfiable sub-formulas. Thus also relevant here is the literature
on minimally unsatisfiable clause-sets, for example the characterisation of min-
imally unsatisfiable clause-sets of small deficiency ([1,9,6,12]), where [12] might
be of special interest here since it provides an algorithm (based on matroids)
searching for “simple” minimally unsatisfiable sub-clause-sets.

In this paper now we seek to obtain a more differentiated picture of the (po-
tentially many and complicated) causes of unsatisfiability by a characterisation
of (single) clauses based on their contribution to the causes of unsatisfiabil-
ity. The following subsection gives on overview on the this categorisation of
clauses.

From necessary to unusable clauses. The problem is to find some “core” in
an unsatisfiable clause-set F : Previous attempts were (typically) looking for some
minimally unsatisfiable sub-clause-set F ′ ⊆ F , that is, selecting some element
F ′ ∈ MU(F ) from the set of all minimally unsatisfiable sub-clause-sets of F .
The problem here is that MU(F ) in general has many elements, and thus it is
hard to give meaning to this process. So let us examine the role the elements of
F play for the unsatisfiability of F .

At the base level we have necessary clauses, which are clauses whose removal
renders F satisfiable. These clauses can also be characterised by the condition
that they must be used in every resolution refutation of F , and the set of all
necessary clauses is

⋂
MU(F ) (the intersection of all minimally unsatisfiable

sub-clause-sets). Determining
⋂

MU(F ) is not too expensive (assuming the SAT
decision for F and sub-clause-sets is relatively easy), and every “core analysis”
of F should determine these clauses as the core parts of F . It is

⋂
MU(F ) itself

unsatisfiable if and only if F has exactly one minimally unsatisfiable sub-clause-
set (that is, |MU(F )| = 1 holds), and in this case our job is finished. However,
in many situations we do not have a unique minimally unsatisfiable core, but⋂

MU(F ) has to be “completed” in some sense to achieve unsatisfiability.
At the next level we consider potentially necessary clauses, which are clauses

which can become necessary clauses when removing some other (appropriately
chosen) clauses. The set of all potentially necessary clauses is

⋃
MU(F ) (the

union of all minimally unsatisfiable sub-clause-sets);
⋃

MU(F ) is unsatisfiable
and seems to be the best choice for a canonical unsatisfiable core of F . How-
ever, it is harder to compute than

⋂
MU(F ), and the best method in general

seems to consist in enumerating in some way all elements of MU(F ). Clauses
which are potentially necessary but which are not necessary are called only po-
tentially necessary; these are clauses which make an essential contribution to the
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unsatisfiability of F , however not in a unique sense (other clauses may play this
role as well).⋃

MU(F ) is the set of all clauses in F which can be forced to be used in every
resolution refutation by removing some other clauses. Now at the third and weak-
est level of our categorisation of “core clauses” we consider all usable clauses,
that is, all clauses which can be used in some resolution refutation (without dead
ends); the set of all usable clauses of F is Na(F ) (see below for an explanation for
this notation). Clauses which are usable but not potentially necessary are called
only usable; these clauses are superfluous from the semantical point of view (if
C is only usable in F , and F ′ ⊆ F is unsatisfiable, then also F ′ \ {C} is unsatis-
fiable), however their use may considerably shorten resolution refutations of F ,
as can be seen by choosing F as a pigeonhole formula extended by appropriate
clauses introduced by Extended Resolution: Those new clauses are only usable,
but without them pigeonhole formulas require exponential resolution refutations,
while with them resolution refutations become polynomial.

Dual to these three categories of “necessity” we have the corresponding de-
grees of “redundancy”, where a SAT solver might aim at removing redundant
clauses to make its life easier; however this also can backfire (by making the
problem harder for the solver and harder even for non-deterministic proof pro-
cedures). The weakest notion is given by unnecessary clauses; the set of all unnec-
essary clauses is F \

⋂
MU(F ). Removing such a clause still leaves the clause-set

unsatisfiable, but in general we cannot remove two unnecessary clauses simulta-
neously (after removal of some clauses other clauses might become necessary).

At the next (stronger) level we have never necessary clauses, that is, clauses
which are not potentially necessary; the set of all never necessary clauses is
F \

⋃
MU(F ). Here now we can remove several never necessary clauses at the

same time, and still we are guaranteed to maintain unsatisfiability; however it
might be that after removal of never necessary clauses the resolution complexity
is (much) higher than before.

For necessary clauses we have a “proof-theoretical” characterisation, namely
that they must be used in any resolution refutation, and an equivalent “se-
mantical” characterisation, namely that removal of them renders the clause-set
satisfiable. Now for unnecessary clauses we also have a semantical criterion,
namely a clause is never necessary iff it is contained in every maximal satisfiable
sub-clause-set.

Finally the strongest notion of redundancy is given by unusable clauses ; the
set of unusable clauses is F \Na(F ). These clauses can always be removed with-
out any harm (that is, at least for a non-deterministic resolution-based SAT
algorithm). As shown in [16], a clause C ∈ F is unusable if and only if there
exists an autarky for F satisfying C. This enables a non-trivial computation of
Na(F ) (as discussed in Section 4), which is among the categorisation algorithms
considered here the least expensive one, and thus can be used for example as a
preprocessing step.
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Organisation of the paper. The paper is organised as follows. The next
section introduces the notations used throughout the paper. Section 3 develops
the proposed clause categorisation for unsatisfiable clause sets. A discussion on
the computation of the lean kernel is included in Section 4. Section 5 presents
results for the well-known Daimler-Chrysler’s [27] problem instances. Finally,
Section 6 concludes the paper and outlines future research work.

2 Preliminaries

Clause-sets and autarkies. We are using a standard environment for (boolean)
clause-sets, partial assignments and autarkies; see [16,17] for further details and
background. Clauses are complement-free (i.e., non-tautological) sets of literals,
clause-sets are sets of clauses. The application of a partial assignmentϕ to a clause-
set F is denoted by ϕ ∗F . An autarky for a clause-set F is a partial assignment ϕ
such that every clause C ∈ F touched by ϕ (i.e., var(ϕ) ∩ var(C) �= ∅) is satisfied
by ϕ.1 Applying autarkies is a satisfiability-equivalent reduction, and repeating
the process until no further autarkies are found yields the (uniquely determined)
lean kernel Na(F ) ⊆ F .

Hypergraphs. A hypergraph here is a pair G = (V,E), where V is a (finite) set
of vertices and E ⊆ P(V ) is a set of subsets. Let �(G) := (V (G), {V (G)\E : E ∈
E(G)}) be the complement hypergraph of G. Obviously we have �(�(G)) = G.
A transversal of G is a subset T ⊆ V (G) such that for all E ∈ E(G) we have
T ∩ E �= ∅; the hypergraph with vertex set V and hyperedge set the set of
all minimal transversals of G is denoted by Tr(G); we have the well-known
fundamental fact (see for example [2]) Tr(Tr(G)) = min(G), where min(G) is the
hypergraph with vertex set V (G) and hyperedges all inclusion minimal elements
of G (the dual operator is max(G)). An independent set of G is a subset I ⊆
V (G) such that V (G) \ I is a transversal of G; in other words, the independent
sets of G are the subsets I ⊆ V (G) such that no hyperedge E ∈ E(G) with
E ⊆ I exists. Let Ind(G) denote the hypergraph with vertex set G and as
hyperedges all maximal independent sets of G. By definition we have Ind(G) =
�(Tr(G)).

Sub-clause-sets. For a clause-set F let USAT (F ) be the hypergraph with
vertex set F and hyperedges the set of all unsatisfiable sub-clause-sets of F ,
and let MU(F ) := min(USAT (F )). Thus MU(F ) has as hyperedges all min-
imally unsatisfiable sub-clause-sets of F , and MU(F ) = ∅ ⇔ F ∈ SAT . And
let SAT (F ) be the hypergraph with vertex set F and hyperedges the set of all
satisfiable sub-clause-sets of F , and MS(F ) := max(SAT (F )). Thus MS(F ) has
as hyperedges all maximal satisfiable sub-clause-sets of F , and F ∈ MS(F ) ⇔
F ∈ SAT ; we always have MS(F ) �= ∅. Finally let CMU(F ) := �(MU(F )) and

1 Equivalently, ϕ is an autarky for F iff for all F ′ ⊆ F we have ϕ ∗ F ′ ⊆ F ′.
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CMS(F ) := �(MS(F )). In [20] the observation of Bailey and Stuckey has been
used that for every clause-set F we have

MU(F ) = Tr(CMS(F )). (1)

This can be shown as follows: By definition we have MS(F ) = Ind(MU(F )),
whence MS(F ) = �(Tr(MU(F ))), and thus �(MS(F )) = Tr(MU(F )); applying
Tr to both sides we get Tr(�(MS(F ))) = Tr(CMS(F )) = MU(F ).

3 Classification

Let F ∈ USAT be an unsatisfiable clause-set for this section. When we speak of
a resolution refutation “using” a clause C then we mean the refutation uses C as
an axiom (and we consider here only resolution refutations without “dead ends”;
since we are not interested in resolution complexity here this can be accomplished
most easily by only considering tree resolution refutations).

3.1 Necessary Clauses

The highest degree of necessity is given by “necessary clauses”, where a clause
C ∈ F is called necessary if every resolution refutation of F must use C.
By completeness of resolution, a clause C is necessary iff there exists a partial
assignment ϕ satisfying F \ {C}. So we can compute all necessary clauses by
running through all clauses and checking whether removal renders the clause-set
satisfiable. The set of all necessary clauses of F is

⋂
MU(F ). Clause-sets with

F =
⋂

MU(F ), that is, clause-sets where every clause is necessary, are exactly the
minimally unsatisfiable clause-sets. So the complexity of computing

⋂
MU(F )

is closely related to deciding whether a clause-set F is minimally unsatisfiable,
which is a DP -complete decision problem (see [25]). The corresponding (weakest)
notion of redundancy is that of clauses which are unnecessary, which are clauses
C ∈ F such that F \ {C} still is unsatisfiable, or, equivalently, clauses for which
resolution refutations of F exist not using this clause.

3.2 Potentially Necessary Clauses

C ∈ F is called potentially necessary if there exists an unsatisfiable F ′ ⊆ F
with C ∈ F ′ such that C is necessary for F ′. In other words, potentially neces-
sary clauses become necessary (can be forced into every resolution refutation) by
removing some other clauses. Obviously the set of potentially necessary clauses
is
⋃

MU(F ) (and every necessary clause is also potentially necessary). The class
of (unsatisfiable) clause-sets F with F =

⋃
MU(F ) (unsatisfiable clause-sets,

where every clause is potentially necessary) has been considered in [16], and it is
mentioned that these clause-sets are exactly those clause-sets obtained from min-
imally unsatisfiable clause-sets by the operation of crossing out variables: The
operation of crossing out a set of variables V in F is denoted by V ∗F . That if F is
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minimally unsatisfiable, then V ∗F is the union of minimally unsatisfiable clause-
sets, has been shown in [26]. For the converse direction consider the characteristic
case of two minimally unsatisfiable clause-sets F1, F2. Choose a new variable v
and let F := {C ∪ {v} : C ∈ F1} ∪ {C ∪ {v} : C ∈ F2}; obviously F is minimally
unsatisfiable and {v} ∗ F = F1 ∪ F2.

So given (unsatisfiable) F with F =
⋃

MU(F ), we have a (characteristic)
representation F = V ∗F0 for some minimally unsatisfiable F0; it is conceivable
but not known to the authors whether such a representation might be useful
(considering “good” F0). The complexity of deciding whether for a clause-set
F we have F =

⋃
MU(F ) is not known to the authors; by definition the prob-

lem is in PSPACE, and it seems to be a very hard problem. See below for the
computation of

⋃
MU(F ).

Clauses which are potentially necessary, but which are not necessary (i.e., the
clauses in

⋃
MU(F ) \

⋂
MU(F )), are called only potentially necessary. By

Lemma 4.3 in [12] we have
⋃

MU(F ) = F \
⋂

MS(F ), i.e., a clause is potentially
necessary iff there exists a maximally satisfiable sub-clause-set not containing
this clause, or, in other words, a clause is not potentially necessary iff the clause
is in every maximally satisfiable sub-clause-set. Thus for computing

⋃
MU(F )

we see two possibilities:

1. Enumerating MU(F ) and computing
⋃

MU(F ).
2. Enumerating MS(F ) and computing

⋃
MU(F ) = F \

⋂
MS(F ) (this is more

efficient than using (1), since for applying (1) we must store all elements of
MS(F ), and furthermore it is quite possible that while MS(F ) is a small set,
MU(F ) is a big set).

The corresponding (medium) degree of redundancy is given by clauses which
are never necessary (not potentially necessary), that is, clauses which can
not be forced into resolution refutations by removing some other clauses, or
equivalently, clauses which are contained in every maximally satisfiable sub-
clause-set. A clause which is never necessary is also unnecessary. Blocked clauses
(see [14]), and, more generally, clauses eliminated by repeated elimination of
blocked clauses, are never necessary; an interesting examples for such clauses
are clauses introduced by extended resolution (see [15]).

3.3 Usable Clauses

The weakest degree of necessity if given by “usable clauses”, where C ∈ F
is called usable if there exists some tree resolution refutation of F using C.
Obviously every potentially necessary clause is a usable clause. By Theorem
3.16 in [16] the set of usable clauses is exactly the lean kernel Na(F ). The set
of F with Na(F ) = F , which are called lean clause-sets (every clause is usable)
has been studied in [17], and the decision problem whether a clause-set is lean
has been shown to be co-NP complete. In Section 4 we discuss the computation
of the lean kernel. The corresponding strongest degree of redundancy is given
by unusable clauses, clauses C ∈ F which are not used in any resolution
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refutation, which are exactly the clauses for which an autarky ϕ for F exists
satisfying C. An unusable clause is never necessary. Clauses which are never
necessary but are which are usable are called only usable, and are given for
example by clauses (successfully) introduced by Extended Resolution: They are
never necessary as discussed before, but they are usable (since we assumed the
introduction to be “successful”), and actually these clauses can exponentially
speed up the resolution refutation as shown in [8].

3.4 Discussion

Figure 1 relates the concepts introduced above. Consider a formula with 9
clauses (represented with bullets). These clauses can be partitioned into nec-
essary clauses (nc) and unnecessary clauses (un). The unnecessary clauses can
be partitioned into only potentially necessary clauses (opn) and never necessary
clauses (nn). The (disjoint) union of the only potentially necessary clauses with
the necessary clauses gives the potentially necessary clauses (pn). In addition,
the never necessary clauses can be partitioned into only usable clauses (ou) and
unusable clauses (uu). The (disjoint) union of the potentially necessary clauses
with the only usable clauses gives the usable clauses (us).

nc

pn

opn

un

ou

nn
uu

us

Fig. 1. Clause classification: an example

3.5 Finding the Cause

Given is an unsatisfiable clause-set F , which is partitioned into F = Fs ·∪Fu,
where Fs come from “system axioms”, while Fu comes from a specific “user re-
quirements”. The unsatisfiability of F means that the user requirements together
with the system axioms are inconsistent, and the task now is to find “the cause”
of this problem.

First if Fu is already unsatisfiable, then the user made a “silly mistake”,
while if Fs already is unsatisfiable, then the whole system is corrupted. So we
assume that Fu as well as Fs is satisfiable. The natural first step now is to
consider

⋂
MU(F ). The best case is that

⋂
MU(F ) is already unsatisfiable (i.e.,

F has a unique minimally unsatisfiable sub-clause-set). Now Fu ∩
⋂

MU(F )
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are the critical user requirements, which together with the system properties
Fs ∩

⋂
MU(F ) yield the (unique) contradiction. So assume that

⋂
MU(F ) is

satisfiable in the sequel.
That Fs ∩

⋂
MU(F ) �= ∅ is the case typically does not reveal much; it can be

a very basic requirement which when dropped (or when “some piece is broken
out of it”) renders the whole system meaningless (if for example numbers would
be used, then we could have “if addition wouldn’t be addition, then there would
be no problem”). However if Fu ∩

⋂
MU(F ) �= ∅ holds, then this could contain

valuable information: These clauses could also code some very basic part of the
user requirement, where without these requirements the whole user requirement
breaks down, and then (again) we do not know much more than before; if however
at least some clauses code some very specific requirement, then perhaps with
their identification already the whole problem might have been solved.

In general the consideration of
⋂

MU(F ) is not enough to find “the cause”
of the unsatisfiability of F . Finding some F ′ ∈ MU(F ) definitely yields some
information: F ′ will contain some system clauses and some user clauses which
together are inconsistent, however this inconsistency might not be the only in-
consistency. Also if F \ F ′ is satisfiable (which is guaranteed if

⋂
MU(F ) �= ∅)

we do not gain much, again because some very fundamental pieces might now be
missing. So what really is of central importance here is

⋃
MU(F ). The clauses

Fu ∩
⋃

MU(F ) are exactly all (pieces) of user requirements which can cause
trouble, while the clauses Fs ∩

⋃
MU(F ) are exactly all pieces of basic require-

ments needed (under certain circumstances) to complete the contraction. The
clauses in F \

⋃
MU(F ), the unnecessary clauses, might be helpful to see some

contradiction with less effort, but they are never really needed.
So what now is the role of Na(F ) (the lean kernel, or, in other words, the set

of usable clauses) here?! To identify the causes of inconsistency the clauses in
Na(F ) \

⋃
MU(F ) (the only usable clauses) are not needed. One role of Na(F )

is as a stepping stone for the computation of
⋃

MU(F ), since the computation
of Na(F ) is easier than the computation of

⋃
MU(F ), and removing the “fat”

helps to get faster to the potentially necessary clauses. Another, quite different
role now is, that the set F \Na(F ) of unusable clauses are the clauses satisfied by
a maximal autarky ϕ; and this ϕ can be considered as the largest “conservative
model”, which doesn’t remove any possibilities to satisfy further clauses.

Satisfying any clause from Na(F ) necessarily implies that some other clause
is touched but not satisfied. Trying to satisfy these touched clauses will lead to
an element F ′ ∈ MS(F ), characterised by the condition that every satisfying
assignment ϕ for F ′ must falsify all clauses in F \ F ′, whence these satisfying
assignments are normally not useful here. In a certain sense a maximal autarky ϕ
for F is the largest generally meaningful model for some part of F . Finding such a
model yields a fulfilment of the “really harmless” user requirements. So with the
set of potentially necessary clauses we covered all causes of the unsatisfiability,
while with the set of unusable clauses we covered everything what can be “truly
satisfied” (without remorse).
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4 Computing the Lean Kernel

In Section 6 of [13] the following procedure for the computation of a “maximal
autarky” ϕ for F (that is, an autarky ϕ for F with ϕ ∗ F = Na(F )) has been
described, using a SAT solver A which for a satisfying input F returns a satis-
fying assignment ϕ with var(ϕ) ⊆ var(F ), while for an unsatisfiable input F a
set V ⊆ var(F ) of variables is returned which is the set of variables used in some
(tree) resolution refutation of F :

1. Apply A(F ); if F is satisfiable then return ϕ.
2. Otherwise let F := F [V ], and go to Step 1.

Here F [V ] is defined as (V ∗ F ) \ {⊥}, where V ∗ F denotes the operation of
removing all literals x from F with var(x) ∈ V , while ⊥ is the empty clause.
So the above procedure can be outlined as follows: Apply the given SAT solver
A to F . If we obtain a satisfying assignment, then ϕ is a maximal autarky for
the original input (and applying it we obtain the lean kernel). Otherwise we
obtain a set V of variable used in a resolution refutation of F ; cross out all these
variables from F , remove the (necessarily obtained) empty clause, and repeat
the process.

Correctness follows immediately with Theorem 3.16 in [16] together with
Lemma 3.5 in [16]. More specifically, Lemma 3.5 in [16] guarantees that if
by iterated reduction F → F [V ] for arbitrary sets V of variables at the end
we obtain some satisfiable F ∗ then any satisfying assignment ϕ for F ∗ with
var(ϕ) ⊆ var(F ∗) is an autarky for F (thus the above process returns only au-
tarkies). For the other direction (the non-trivial part) Theorem 3.16 guarantees
that by using such V coming from resolution refutations we don’t loose any
autarky.

The computation of V by a SAT solver can be done following directly the
correspondence between tree resolution refutations and semantic trees (for a de-
tailed treatment see [18]). Since the set of used variables needs to be maintained
only on the active path, the space required by this algorithm is (only) quadratic
in the input size; the only implementation of this algorithm we are aware of is
in OKsolver (as participated in the SAT 2002 competition), providing an imple-
mentation of “intelligent backtracking” without learning; see [19] for a detailed
investigation.

By heuristical reasoning, a procedure computing some unsatisfiable F ′ ⊆
Na(F ) for unsatisfiable F has been given in [28], also based on computing reso-
lution refutations. Compared to the autarky approach, F ′ is some set of usable
clauses, while Na(F ) is the set of all usable clauses. Furthermore Na(F ) comes
with an autarky (a satisfying assignment for all the other clauses, not touching
Na(F )), and the computation of Na(F ) can be done quite space-efficient (as out-
lined above), while [28] computes the whole resolution tree, and thus the space
requirements can be exponential in the input size.
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5 Experimental Results

The main goal of this section is to analyse a set of problem instances with
respect to the concepts described above. To achieve this goal, we have selected
38 problem instances from the DC family ([27])2. These instances are obtained
from the validation and verification of automotive product configuration data
and encode different consistency properties of the configuration data base which
is used to configure Daimler Chrysler’s Mercedes car lines. For example, some
instances refer to the stability of the order completion process (SZ), while others
refer to the order independence of the completion process (RZ) or to superfluous
parts (UT). We have chosen these instances because they are well known for
having small minimal unsatisfiable cores and usually more than one minimal
unsatisfiable core [20]. Hence, they provide an interesting testbed for the new
concepts introduced in the paper.

The size of DC problem instances analysed in this paper ranges from 1659
to 1909 variables and 4496 to 8686 clauses. However, and as mentioned in [20],
these formulas have a few repeated clauses and also repeated literals in clauses.
Also, there are some variable codes that are not used. Consequently, we have
performed a preprocessing step to eliminate the repeated clauses and literals,
as well as non-used variables. In the resulting formulas the number of variables
ranges from 1513 to 1805 and the number of clauses ranges from 4013 to 7562.

Table 1 gives the number of variables, the number of clauses and the average
clause size for each of the 38 problem instances from the DC family. Table 1 also
gives the number of minimal unsatisfiable sub-clause-sets (#MU) contained in
each formula, the number of maximal satisfiable sub-clause-sets (#MS) (recall
(1)), the percentage of necessary clauses (nc) and the percentage of the number of
clauses in the smallest (min) and largest (max) minimal unsatisfiable sub-clause-
set. Furthermore Table 1 shows the percentages of only potentially necessary
clauses (opn) and the percentage of only potentially necessary clauses (pn), as
well as the percentage of only usable clauses (ou) and the percentage of usable
clauses (us). Then redundant clauses are considered: the percentage of unusable
clauses (un), the percentage of never necessary clauses (nn) and the percentage
of unnecessary clauses (un). Recall that uu stands for the clauses which can be
satisfied by some autarky; in the final column we give the percentage of the
uu-clauses which can be covered by (iterated) elimination of pure literals alone.3

These results have been obtained using a tool provided by the authors of [20],
and also a Perl script for computing the lean kernel that iteratively invokes a
SAT solver ([28]) which identifies variables used in a resolution refutation. From
this table some conclusions can be drawn. As one would expect in general to
be the case, as the number of mus’s increases, the relative number of necessary
clauses decreases. Regarding the number of mus’s we see of lot of variation:
2 Available from http://www-sr.informatik.uni-tuebingen.de/˜sinz/DC/.
3 Since all instances contain necessary clauses, the maximum (size) maximal satisfi-

able sub-clause-sets are always as large as possible (only one clause missing); the
minimum (size) maximal satisfiable sub-clause-sets here are never much smaller, so
we considered these number negligible.
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Although half of the problem instances have only a few mus’s, there are also
many problems with many mus’s. In addition, there seems to be no relation
between the number of mus’s and the number of mss’s.

Looking at the levels of necessity, we may observe the following. For all in-
stances the percentage of clauses in the smallest mus is quite small (in most
cases less than 1%) and the largest mus is usually not much larger than the
smallest one. The number of potentially necessary clauses is typically somewhat
bigger than the size of the largest mus, but for all instances the set of potentially
necessary clauses is still fairly small. The percentage of usable clauses is typically
substantially larger, but only for the UT-family more than half of all clauses are
usable. Looking at the levels of redundancy, we see that in many cases autarky
reduction to a large part boils down to elimination of pure literals. In most cases
most never necessary clauses are already unusable, with the notable exceptions
of the UT- and (to a somewhat lesser degree) the SZ-family, while almost all
unnecessary clauses are already never necessary.

6 Conclusions

This paper proposes a categorisation of clauses in unsatisfiable instances of SAT,
with the objective of developing new insights into the structure of unsatisfiable
formulas. The paper also addresses which sets of clauses are relevant when deal-
ing with unsatisfiable instances of SAT. Finally, the paper evaluates the proposed
categorisation of clauses in well-known unsatisfiable problem instances, obtained
from industrial test cases [27].

We see the following main directions for future research:

– Regarding the industrial test cases considered, we were mainly interested
in them as proof of concept, and likely there are many more interesting
relations hidden in the data (especially when combining them with special
insights into the structure of these formulas).

– In Subsection 3.5 we outlined a general approach for finding causes of un-
satisfiability in a scenario motivated by [27]; it would now be interesting to
see how helpful these considerations are in practice.

– Obviously there are many non-trivial problems regarding the complexity of
the algorithms involved. A main problem here, which according to our knowl-
edge has not been tackled until now, is the complexity of the computation
of
⋃

MU(F ).
– For the computation of the lean kernel in this paper we considered an al-

gorithm exploiting the “duality” between resolution proofs and autarkies.
It would be interesting to compare this approach with a direct approach
(directly searching for autarkies).

– Finally, it would be interesting to perform an analysis as in Table 1 on many
other classes of SAT problems and to see how useful these statistics are for
the categorisation of classes of problem instances.
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Abstract. We propose a new algorithm for minimal unsatisfiable core
extraction, based on a deeper exploration of resolution-refutation proper-
ties. We provide experimental results on formal verification benchmarks
confirming that our algorithm finds smaller cores than suboptimal al-
gorithms; and that it runs faster than those algorithms that guarantee
minimality of the core. (A more complete version of this paper may be
found at arXiv.org/pdf/cs.LO/0605085 .)

1 Introduction

Many real-world problems, arising in formal verification of hardware and soft-
ware, planning and other areas, can be formulated as constraint satisfaction
problems, which can be translated into Boolean formulas in conjunctive normal
form (CNF). When a formula is unsatisfiable, it is often required to find an unsat-
isfiable core—that is, a small unsatisfiable subset of the formula’s clauses. Exam-
ple applications include functional verification of hardware, field-programmable
gate-array (FPGA) routing, and abstraction refinement. An unsatisfiable core is
a minimal unsatisfiable core (MUC), if it becomes satisfiable whenever any one
of its clauses is removed.

In this paper, we propose an algorithm that is able to find a minimal unsatis-
fiable core for large “real-world” formulas. Benchmark families, arising in formal
verification of hardware (such as [8]), are of particular interest to us.

The folk algorithm for MUC extraction, which we dub Näıve, works as follows:
For every clause C in an unsatisfiable formula F , Näıve checks if it belongs to
the minimal core by invoking a propositional satisfiability (SAT) solver on F ,
but without clause C. Clause C does not belong to a minimal core if and only
if the solver finds that F \ {C} is unsatisfiable, in which case C is removed from
F . In the end, F contains a minimal unsatisfiable core.

There are four more practical approaches for unsatisfiable core extraction
in the current literature: adaptive core search [2], AMUSE [7], MUP [5] and a
� We thank Jinbo Huang and Zaher Andraus for their help in providing MUP and

AMUSE, respectively. The work of Alexander Nadel was carried out in partial ful-
fillment of the requirements for a Ph.D. This research was supported in part by the
Israel Science Foundation (grant no. 250/05).

A. Biere and C.P. Gomes (Eds.): SAT 2006, LNCS 4121, pp. 36–41, 2006.
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resolution-based approach [9,4]. MUP is the only one guaranteeing minimality of
the core, whereas the only algorithm that scales well for large formal verification
benchmarks is the resolution-based approach. We refer to the latter method as
the EC (Empty-clause Cone) algorithm.

EC exploits the ability of modern SAT solvers to produce a resolution refuta-
tion, given an unsatisfiable formula. Most state-of-the-art SAT solvers, beginning
with GRASP [6], implement a DPLL backtrack search enhanced by a failure-
driven assertion loop. These solvers explore the variable-assignment tree and
create new conflict clauses at the leaves of the tree, using resolution on the
initial clauses and previously created conflict clauses. This process stops when
either a satisfying assignment for the given formula is found or when the empty
clause (�)—signifying unsatisfiability—is derived. In the latter case, SAT solvers
are able to produce a resolution refutation in the form of a directed acyclic graph
(dag) Π(V,E), whose vertices V are associated with clauses, and whose edges
describe resolution relations between clauses. The vertices V = V i ∪ V c are
composed of a subset V i of the initial clauses and a subset V c of the conflict
clauses, including the empty clause �. The empty clause is the sink of the refuta-
tion graph, and the sources are V i. Here, we understand a refutation to contain
those clauses connected to �. The sources of the refutation comprise the un-
satisfiable core returned by EC. Invoking EC until a fixed point is reached [9],
allows one to reduce the unsatisfiable core even more. We refer to this algorithm
as EC-fp. However, the resulting cores are still not guaranteed to be minimal
and can be further reduced.

The basic flow of the algorithm for minimal unsatisfiable core extraction pro-
posed in this paper is composed of the following steps:

1. Produce a resolution refutation Π of a given formula using a SAT solver.
2. For every initial clause C in Π , check whether it belongs to a MUC in the

following manner:
(a) Remove C from Π , along with all conflict clauses for which C was re-

quired to derive them. Pass all the remaining clauses (including conflict
clauses) to a SAT solver.

(b) If they are satisfiable, then C belongs to a MUC, so continue with another
initial clause.

(c) If the clauses are unsatisfiable, then C does not belong to a MUC, so
replace Π by a new valid resolution refutation not containing C.

3. Terminate when all the initial clauses remaining in Π comprise a MUC.

Our basic Complete Resolution Refutation (CRR) algorithm is described
in Sect. 2, and a pruning technique, enhancing CRR and called Resolution
Refutation-based Pruning (RRP), is described in Sect. 3. Experimental results
are presented and analyzed in Sect. 4. This is followed up by a brief conclusion.

2 The Complete Resolution Refutation (CRR) Algorithm

One says that a vertex D is reachable from vertex C in graph Π if there is a path
(of 0 or more edges) from C to D. The sets of all vertices that are reachable and
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unreachable from C in Π are denoted Re(Π,C) and UnRe(Π,C), respectively.
The relative hardness of a resolution refutation is the ratio between the total
number of clauses and the number of initial clauses.

Our goal is to find a minimal unsatisfiable core of a given unsatisfiable formula
F . The proposed CRR method is displayed as Algorithm 1.

Algorithm 1 (CRR). Returns a MUC, given an unsatisfiable formula F .
1: Build a refutation Π(V i ∪ V c, E) using a SAT solver
2: while unmarked clauses exist in V i do
3: C ← PickUnmarkedClause(V i)
4: Invoke a SAT solver on G = UnRe(Π, C)
5: if UnRe(Π,C) is satisfiable then
6: Mark C as a MUC member
7: else
8: Let Π ′(V i

G ∪ V c
G, EG) be the refutation built by the solver

9: V i ← V i ∩ V i
G; V c ← (V i

G ∪ V c
G) \ V i; E ← EG

10: return V i

First, CRR builds a resolution refutation Π(V i∪V c, E). CRR checks, for every
unmarked clause C left in V i, whether C belongs to a minimal core. Initially, all
clauses are unmarked. At each stage of the algorithm, CRR maintains a valid
refutation of F .

By construction of Π , the UnRe(Π,C) clauses were derived independently of
C. To check whether C belongs to a minimal core, we provide the SAT solver
with UnRe(Π,C), including the conflict clauses. We are trying to complete the
resolution refutation without using C as one of the sources. Observe that � is
always reachable from C; thus � is never passed as an input to the SAT solver.
We let the SAT solver try to derive �, using UnRe(Π,C) as the input formula,
or else prove that UnRe(Π,C) is satisfiable.

In the latter case, we conclude that C must belong to a minimal core, since
we found a model for an unsatisfiable subset of initial clauses minus C. Hence,
if the SAT solver returns satisfiable, the algorithm marks C (line 6) and moves
to the next initial clause. Otherwise, the SAT solver returns a valid resolution
refutation Π ′(V i

G ∪V c
G, EG), where G = UnRe(Π,C). We cannot use Π ′ as is, as

the refutation for the subsequent iterations, since the sources of the refutation
may only be initial clauses of F . The necessary adjustments to the refutation
are shown on line 9.

3 Resolution-Refutation-Based Pruning

In this section, we propose an enhancement of Algorithm CRR by developing
resolution refutation-based pruning techniques for when the SAT solver is in-
voked on UnRe(Π,C) to check whether it is possible to complete a refutation
without C. We refer to the suggested technique as Resolution Refutation-based
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Pruning (RRP). (We presume that the reader is familiar with the functionality
of a modern SAT solver.)

An assignment σ falsifies a clause C if every literal of C is false under σ; it
falsifies a set of clauses P if every clause C ∈ P is falsified by σ. We claim that a
model for UnRe(Π,C) can only be found under a partial assignment that falsifies
every clause in some path from C to the empty clause in Re(Π,C). The reason
is that otherwise there would exist a satisfiable vertex cut U in Π , contradicting
the fact that the empty clause is derivable from U . (We omit a formal proof due
to space limitations.)

Denote a subtree connecting C and � by Π�C . The RRP technique is inte-
grated within the decision engine of the SAT solver. The solver receives Π�C ,
together with the input formula UnRe(Π,C). The decision engine of the SAT
solver explores Π�C in a depth-first manner, picking unassigned variables in the
currently explored path as decision variables and assigning them false. As usual,
Boolean Constraint Propagation (BCP) follows each assignment. Backtracking
in Π�C is tightly coupled with backtracking in the assignment space. Both hap-
pen when a satisfied clause in Π �C is found or when a new conflict clause is
discovered during BCP. After a particular path in Π �C has been falsified, a
general-purpose decision heuristic is used until the SAT solver either finds a sat-
isfying assignment or proves that no such assignment can be found under the
currently explored path. This process continues until either a model is found or
the decision engine has completed exploring Π �C . In the latter case, one can
be sure that no model for UnRe(Π,C) exists. However, the SAT solver should
continue its work to produce a refutation. (Refer to the full version of this paper
for details.)

4 Experimental Results

We have implemented CRR and RRP in the framework of the VE solver. VE,
a simplified version of the industrial solver Eureka, is similar to Chaff [3].
We used benchmarks from four well-known unsatisfiable families, taken from
bounded model checking (barrel, longmult) [1] and microprocessor verification
(fvp-unsat.2.0, pipe unsat 1.0) [8]. The instances we used appear in the first
column of Table 1. The experiments on Families barrel and fvp-unsat.2.0 were
carried out on a machine with 4Gb of memory and two Intel Xeon CPU 3.06
processors. A machine with the same amount of memory and two Intel Xeon
CPU 3.20 processors was used for the other experiments.

Table 1 summarizes the results of a comparison of the performance of two
algorithms for suboptimal unsatisfiable core extraction and five algorithms for
minimal unsatisfiable core extraction in terms of execution time and core sizes.

First, we compare algorithms for minimal unsatisfiable core extraction,
namely, Näıve, MUP, plain CRR, and CRR enhanced by RRP. In preliminary
experiments, we found that invoking suboptimal algorithms for trimming down
the sizes of the formulas prior to MUC algorithm invocation is always useful.
We used Näıve, combined with EC-fp and AMUSE, and MUP, combined with
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Table 1. Comparing algorithms for unsatisfiable core extraction. Columns Instance,
Var and Cls contain instance name, number of variables, and clauses, respectively. The
next seven columns contain execution times (in seconds) and core sizes (in number of
clauses) for each algorithm. The cut-off time was 24 hours (86,400 sec.). Column Rel.
Hard. contains the relative hardness of the final resolution refutation, produced by
CRR+RRP. Bold times are the best among algorithms guaranteeing minimality.

Subopt. CRR Näıve MUP Rel.
Instance Var Cls EC EC-fp RRP plain EC-fp AMUSE EC-fp Hard.

4pipe 4237 9 171 3527 4933 24111 time-out time-out 1.4
80213 23305 17724 17184 17180 17182

4pipe 1 ooo 4647 10 332 4414 10944 25074 time-out mem-out 1.7
74554 24703 14932 12553 12515 12374

4pipe 2 ooo 4941 13 347 5190 12284 49609 time-out mem-out 1.7
82207 25741 17976 14259 14192 14017

4pipe 3 ooo 5233 14 336 6159 15867 41199 time-out mem-out 1.6
89473 30375 20034 16494 16432 16419

4pipe 4 ooo 5525 16 341 6369 16317 47394 time-out mem-out 1.6
96480 31321 21263 17712 17468 17830

3pipe k 2391 2 20 411 493 2147 12544 mem-out 1.5
27405 10037 6953 6788 6786 6784 6790

4pipe k 5095 8 121 3112 3651 15112 time-out time-out 1.5
79489 24501 17149 17052 17078 17077

5pipe k 9330 16 169 13836 17910 83402 time-out mem-out 1.4
189109 47066 36571 36270 36296 36370

barrel5 1407 2 19 93 86 406 326 mem-out 1.8
5383 3389 3014 2653 2653 2653 2653

barrel6 2306 35 322 351 423 4099 4173 mem-out 1.8
8931 6151 5033 4437 4437 4437 4437

barrel7 3523 124 1154 970 1155 6213 24875 mem-out 1.9
13765 9252 7135 6879 6877 6877 6877

barrel8 5106 384 9660 2509 2859 time-out time-out mem-out 1.8
20083 14416 11249 10076 10075

longmult4 1966 0 0 8 7 109 152 13 2.6
6069 1247 1246 972 972 972 976 972

longmult5 2397 0 1 74 31 196 463 35 3.6
7431 1847 1713 1518 1518 1518 1528 1518

longmult6 2848 2 13 288 311 749 2911 5084 5.6
8853 2639 2579 2187 2187 2187 2191 2187

longmult7 3319 17 91 6217 3076 6154 32791 68016 14.2
10335 3723 3429 2979 2979 2979 2993 2979

EC-fp. CRR performs best when combined with EC, rather than EC-fp. The
sizes of the cores do not vary much between MUC algorithms, so we concentrate
on a performance comparison. One can see that the combination of EC-fp and
Näıve outperforms the combination of AMUSE and Näıve, as well as MUP. Plain
CRR outperforms Näıve on every benchmark, whereas CRR+RRP outperforms
Näıve on 15 out of 16 benchmarks (the exception being the hardest instance of
longmult). This demonstrates that our algorithms are justified practically. Usu-
ally, the speed-up of these algorithms over Näıve varies between 4 and 10x, but it
can be as large as 34x (for the hardest instance of barrel family) and as small as
2x (for the hardest instance of longmult). RRP improves performance on most
instances. The most significant speed-up of RRP is about 2.5x, achieved on hard
instances of Family fvp-unsat.2.0. The only family for which RRP is usually un-
helpful is longmult, a family that is hard for CRR, and even harder for RRP due
to the hardness of the resolution proofs of its instances.
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Comparing CRR+RRP on one side and EC and EC-fp on the other, we find
that CRR+RRP always produce smaller cores than both EC and EC-fp. The
average gain on all instances of cores produced by CRR+RRP over cores pro-
duced by EC and EC-fp is 53% and 11%, respectively. The biggest average gain
of CRR+RRP over EC-fp is achieved on Families fvp-unsat.2.0 and longmult
(18% and 17%, respectively). Unsurprisingly, both EC and EC-fp are usually
much faster than CRR+RRP. However, on the three hardest instances of the
barrel family, CRR+RRP outperforms EC-fp in terms of execution time.

5 Conclusions

We have proposed an algorithm for minimal unsatisfiable core extraction. It
builds a resolution refutation using a SAT solver and finds a first approxima-
tion of a minimal unsatisfiable core. Then it checks, for every remaining initial
clause, if it belongs to a minimal unsatisfiable core. The algorithm reuses conflict
clauses and resolution relations throughout its execution. We have demonstrated
that the proposed algorithm is faster than currently existing ones for minimal
unsatisfiable cores extraction by a factor of 6 or more on large problems with
non-overly hard resolution proofs, and that it finds smaller unsatisfiable cores
than suboptimal algorithms.
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Abstract. We consider the problem of finding the smallest proof of un-
satisfiability of a 2CNF formula. In particular, we look at Resolution
refutations and at minimum unsatisfiable subsets of the clauses of the
CNF. We give a characterization of minimum tree-like Resolution refuta-
tions that explains why, to find them, it is not sufficient to find shortest
paths in the implication graph of the CNF. The characterization allows us
to develop an efficient algorithm for finding a smallest tree-like refutation
and to show that the size of such a refutation is a good approximation
to the size of the smallest general refutation. We also give a polynomial
time dynamic programming algorithm for finding a smallest unsatisfiable
subset of the clauses of a 2CNF.

1 Introduction

Two important areas of SAT research involve identification of tractable cases,
and the study of minimum length proofs for interesting formulas. Resolution is
the most studied proof system, in part because it is among the most amenable to
analysis, but also because it is closely related to many important algorithms. The
two most important tractable cases of SAT, 2-SAT and Horn-SAT, have linear
time algorithms that can be used to produce linear-sized Resolution refutations
of unsatisfiable formulas. However, for Horn formulas it is not possible even
to approximate the minimum refutation size within any constant factor, unless
P=NP [1]. Here, we consider the question of finding minimum-size Resolution
refutations, both general and tree-like, for 2-SAT.

The linear-time 2-SAT algorithm of [2] is based on the implication graph,
a directed graph on the literals of the CNF. It seems plausible that finding a
minimum tree-like Resolution refutation would amount to finding shortest paths
in the implication graph. This approach is proposed in [3], but is incorrect. Hence,
while [3] correctly states that finding a minimum tree-like refutation can be done
in polytime, the proof is flawed. We show that a different notion of shortest path
is needed, and give an O(n2(n + m))-time algorithm based on BFS. We also
show that such a refutation is at most twice as large as the smallest general
Resolution refutation and that there are cases where this bound is tight. This
contrasts with the above-mentioned inapproximability in the Horn case.

Since 2-SAT is linear time, the formula itself, or any unsatisfiable subset
of its clauses, is an efficiently checkable certificate of unsatisfiability. For the
question of finding a minimum unsatisfiable subset of a set of 2-clauses, analysis

A. Biere and C.P. Gomes (Eds.): SAT 2006, LNCS 4121, pp. 42–47, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Minimum Witnesses for Unsatisfiable 2CNFs 43

of certain types of paths in the implication graph again allows us to develop a
polytime algorithm. This is interesting in light the fact that finding a maximum
satisfiable subset of the clauses of a 2CNF is NP-hard, even to approximate.
Perhaps surprisingly, a minimum tree-like Resolution refutation of a 2CNF is
not necessarily a refutation of a minimum unsatisfiable subformula. This also
seems to be the case with minimum general Resolution refutations.

2 Preliminaries and Characterization

Throughout, let C be a collection of 2-clauses over the variables {x1, ..., xn}. Say
|C| = m. As first suggested by [2], C can be represented as a directed graph GC
on 2n nodes, one for each literal. If (a ∨ b) ∈ C for literals a, b, then the edges
(ā, b) and (b̄, a) appear in GC (note that literals a and b can be the same). Both of
these edges are labelled by the clause (a∨ b). For an edge e = (a, b), let dual(e),
the dual edge of e, be the edge (b̄, ā).

Consider a directed path P in GC (that is, a sequence of not-necessarily-
distinct directed edges). Note that in GC even a simple path may contain two
edges with the same clause label. Let set(P ) denote the set of clause-labels
underlying the edges of P . We define |P |, the size of the path P , to be |set(P )|.
In contrast, let length(P ) denote the length of P as a sequence. Call a path P
singular if it does not contain two edges that have the same clause label. For
any singular path P , |P | = length(P ).

For literals a, b, define Pab to be the set of all simple, directed paths from a
to b in GC . If c is also a literal, let Pabc be the set of all simple, directed paths
that start at a, end at c and visit b at some point. Let P ∈ Pab. We say P is
minimum if it has minimum size among all paths in Pab.

Proposition 1 ([2]). If C is unsatisfiable, then there is a variable x such that
there is a path from x to x̄ and a path from x̄ to x in GC . Furthermore, for any
Resolution derivation of the clause (ā ∨ b) (ā and b need not be distinct) there
must a path P ∈ Pab whose labels are contained in the axioms of this derivation.

Let P ∈ Pab. Let IR(P ) be the Input Resolution derivation that starts by
resolving the clauses labelling the first two edges in P and then proceeds by
resolving the latest derived clause with the clause labelling the next edge in the
sequence P . This is a derivation of either (ā ∨ b) or simply (b). It is not hard to
see that the size of the derivation IR(P ) is 2 · length(P ) − 1.

For a path P = (e1, ..., ek) ∈ Pab, let dual(P ) ∈ Pb̄ā be the path (dual(ek),
..., dual(e1)). Let suf(P ) be the maximal singular suffix of P (as a sequence).
Similarly, let pre(P ) be the maximal singular prefix of P . For a simple path P ∈
Pabb̄, let extend(P ) be the following path in Paā: let P ′ be the portion of P that
starts at a and ends at b. Then extend(P ) is the sequence P concatenated with
the sequence dual(P ′). If P ∈ Paāb, then extend(P ) ∈ Pb̄b is defined similarly.

Proposition 2. Let x be a literal and let P ∈ Pxx̄. There is some literal a
(possibly equal to x) such that suf(P ) ∈ Paāx̄, pre(P ) ∈ Pxaā. If P is minimum,
then extend(suf(P )) and extend(pre(P )) are minimum.
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Lemma 1. Assume a clause (a), for some literal a, has a Resolution derivation
from C. Then the size of the smallest Resolution derivation of (a) is 2�−1, where
� = minP∈Pāa |P |. Moreover, if P is the minimum such path, then IR(suf(P ))
is a smallest derivation.

Proof. We first show that there is an input derivation of size at most 2� − 1.
Let P be a minimum path from ā to a. Then length(suf(P )) = |suf(P )| = �
and, by Proposition 2, there is some b such that suf(P ) ∈ Pbb̄a. Let P ′ be
the prefix of suf(P ) that ends at literal b̄. Then IR(P ′) is a derivation of the
singleton clause (b̄) and IR(suf(P )) is a derivation of (a). This derivation has
size 2 · length(suf(P ))− 1 = 2�− 1.

To see that any Resolution derivation of (a) has size at least 2�− 1, assume
otherwise. Any Resolution derivation that uses k axioms has size at least 2k−1,
so (a) is derivable from �′ < � axioms of C. These axioms cannot form a path
from ā to a by minimality, so (a) cannot be derived from them by Proposition 1.

3 Finding Minimum Tree-Like Refutations

Lemma 1 gives us the size of a minimum tree-like Resolution refutation of any
contradictory C and suggests a way to find one. Let sizegen(C) (sizetree(C))
be the size of a smallest general (tree-like) Resolution refutation of C. Then,
sizetree(C) is 2 mini∈[n]

(
minP∈Pxix̄i

|P | + minP∈Px̄ixi
|P |
)
−1. That is, any min-

imum tree-like refutation of C consists of minimum derivations of xi and x̄i, for
some xi, plus the empty clause. Such derivations of xi and x̄i come from input
derivations along the suffix of minimum paths from xi to x̄i and vice versa.
We search for such suffixes by doing BFS from xi, avoiding already-used clause
labels, until either we reach x̄i or, for some literal y, both y and ȳ are visited
along the same path (the latter case constitutes the prefix of a minimum path
in Pxix̄i , which defines the suffix to be used in the minimum derivation of x̄i).

The algorithm proceeds as follows. For each literal x, perform a modified BFS
starting at x, except: (1) Whenever y is reached from x, store a list L1(y) of
all clause-labels on the path from x to y and a list L2(y) of all literals on the
path from x to y; (2) If ȳ appears in L2(y), set path(x, x̄) to extend(path(x, y)).
Terminate BFS at this point; Otherwise, (3) when continuing from y, avoid all
edges labelled with clauses in L1(y). When BFS is completed for each literal,
find a literal x such that |path(x, x̄)| + |path(x̄, x)| is minimum. The tree-like
refutation is IR(suf(path(x, x̄))), IR(suf(path(x̄, x))) and the empty clause.

BFS, runs in time O(n+m); Doing it for each literal takes time O(n(n+m)).
Adding the time to check lists L1 and L2, the algorithm takes time O(n2(n+m)).

Theorem 1. For any contradictory 2CNF C, sizetree(C) < 2 sizegen(C).

Proof. Let π be the minimum General Resolution refutation of C. Assume π
ends by resolving variable x with x̄. Assume, wlog, that the minimum Resolution
derivation of x is at least as big as the minimum derivation of x̄, and let � be
the size of this derivation. Clearly size(π) ≥ � since π contains a derivation of
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x. In fact, size(π) ≥ � + 1 since π also contains the empty clause (which is not
used in the derivation of x). On the other hand, there is a tree-like refutation of
size at most 2�+ 1: use the minimum derivations of x and x̄, which are tree-like
by Lemma 1, and then resolve the two.

Hence, the algorithm for finding the shortest tree-like refutation is an efficient
2-approximation for computing sizegen. In fact, this algorithm cannot do better
than a 2-approximation in the worst-case.

Theorem 2. For any ε > 0, there exists a contradictory 2CNF Cn such that
sizetree(C) ≥ (2 − ε) · sizegen(C).

Proof. Choose n such that 2εn ≥ 9. C will be a formula over n + 1 variables
{a, x1, . . . , xn} with the following clauses: (ā∨x1), {(x̄i∨xi+1)}n−1

i=1 , (x̄n∨ ā), (a∨
x1), (x̄n ∨ a). It is not hard to verify that ∀y, P ∈ Pyȳ, P ′ ∈ Pȳy, |P | + |P ′| ≥
2n + 2. Any refutation must consist of a derivation of y, a derivation of ȳ and
the empty clause, for some variable y. By Lemma 1, the size of a derivation for
y plus the size of a derivation for ȳ must be at least 2(2n + 2) − 2 = 4n + 2, so
any tree-like refutation has size at least 4n+ 3.

On the other hand, there is a general Resolution refutation that proceeds as
follows: derive the clause (x̄1∨xn) using an input derivation of size 2(n−1)−1 =
2n − 3. Using also (ā ∨ x1) and (x̄n ∨ ā), derive ā. Likewise, using (a ∨ x̄n)
and (x1 ∨ a) and the already-derived (x̄1 ∨ xn), derive a. Finally derive the
empty clause. This derivation has size 2n − 3 + 4 + 4 + 1 = 2n + 6. Certainly
4n + 3 ≥ (2 − ε)(2n + 6).

4 Finding Minimum Unsatisfiable Subformulas

Any unsatisfiable subformula of C must have a variable x for which there is a
path from x to x̄ and a path from x̄ to x in GC . However, each of these paths
might use the same clause twice and the two paths may share clauses. Therefore,
we are searching for the set of clauses that comprise the paths that minimize the
expression minx minP1∈Pxx̄,P2∈Px̄x |set(P1)∪ set(P2)|. Call two such paths joint-
minimum. Define the cost of any two paths P1 and P2 to be |set(P1) ∪ set(P2)|.

Proposition 2 states that if P is minimum path, then extend(suf(P )) is
minimum. We can say a similar thing about joint-minimum paths: If P1 and
P2 are joint-minimum, then extend(suf(P1)) and extend(suf(P2)) are joint-
minimum, and cost(suf(P1), suf(P2)) = cost(P1, P2). Therefore, we need to
find not-necessarily distinct literals x, a, b and singular paths P1 ∈ Paāx̄ and
P2 ∈ Pbb̄x of minimum cost.

A segment of a path is a consecutive subsequence of the path’s sequence. For
two singular paths P1 and P2, a shared segment is a maximal common segment.
A dual shared segment of P1 with respect to P2 is a maximal segment t of P1
such that dual(t) is a segment of P2. For two disjoint segments s and t of P , say
s ≺P t if s appears before t in P .
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Consider the following properties of two paths P1 and P2.

Property I: Let s1 ≺P1 · · · ≺P1 sk be the shared segments of P1 and P2. Then
sk ≺P2 · · · ≺P2 s1.
Property II: Let t1 ≺P1 · · · ≺P1 t� be the dual shared segments of P1 with
respect to P2. Then dual(t1) ≺P2 · · · ≺P2 dual(t�).
Property III: Let s1 ≺P1 · · · ≺P1 sk be the shared segments of P1 and P2 and
let t1 ≺P1 · · · ≺P1 t� be the dual shared segments of P1 with respect to P2. For
any i, j, ti ≺P1 sj if and only if dual(ti) ≺P2 sj .

Lemma 2. There are joint-minimum paths P1 and P2 such that suf(P1) and
suf(P2) satisfy Properties I-III.

Proof. Consider Property I. If suf(P1) and suf(P2) violate the property, then
there is some i < j such that si ≺P2 sj . Let P ′

1 be the segment of P1 starting at
the beginning of si and ending at the end of sj . Likewise, let P ′

2 be the segment
of P2 that starts at the beginning of si and ends at the end of sj . Assume, wlog,
that length(P ′

1) ≤ length(P ′
2). Let P ′′

2 be the path P2 with P ′
2 replaced by P ′

1.
Certainly P1 and P ′′

2 are still joint-minimum. Property II follows in the same
way by looking at P1 and dual(P2).

Consider Property III. If suf(P1) and suf(P2) violate the property, then
there is some i, j such that, wlog, ti ≺P1 sj , but sj ≺P2 dual(ti). Let a, b be the
endpoints of ti. Then there is a cycle that includes a and ā that uses a strict
subset of the edges of P1 and P2.

The algorithm will search for the suffixes guaranteed by Lemma 2. More gener-
ally, given two pairs of endpoints (and possibly two intermediate points), we will
find a pair of (not necessarily singular) paths P1 and P2 that obey Properties
I-III, that have the specified endpoints (and perhaps intermediate points) and
that have minimum cost over all such pairs of singular paths. The fact that P1
and P2 themselves may not be singular is not a problem since they will achieve
the same optimum that singular paths achieve.

The algorithm uses dynamic programming based on the following idea. The
reason joint-minimum paths P1 and P2 may not each be of minimum length
is that, while longer, they benefit by sharing more clauses. If we demand that
P1 and P2 have a shared segment with specified endpoints, then that segment
should be as short as possible; likewise, for any segment of, say, P1 with speci-
fied endpoints that is guaranteed not to overlap any shared segment. By doing
this, we isolate segments of P1 and P2 that we can locally optimize and then
concentrate on the remainder of the paths.

We will compute a table A[(a1, b1, c1), (a2, b2, c2), k, �] which stores the mini-
mum of cost(P1, P2) over all paths P1 ∈ Pa1b1c1 and P2 ∈ Pa2b2c2 such that: (1)
We recognize at most k shared segments between P1 and P2; (2) We recognize
at most � dual shared segments of P1 with respect to P2; and (3) P1, P2 obey
Properties I-III. By “recognizing” k shared segments, we mean that if there are
more shared segments, their lengths are added twice to the cost of P1 and P2,
with no benefit from sharing. If we omit b1, respectively b2, as a parameter in
A[ ], then P1, respectively P2, comes from Pa1c1 .



Minimum Witnesses for Unsatisfiable 2CNFs 47

To begin, for all literals a, b, set B[a, b] to the length of a shortest path
in Pab. Likewise, set B[a, b, c] to the length of a shortest path in Pabc. For
all a1, b1, c1, a2, b2, c2, set A[(a1, b1, c1), (a2, b2, c2), 0, 0] equal to B[a1, b1, c1] +
B[a2, b2, c2]. Set A[((a1, c1), (a2, c2), 0, 0] to B[a1, c1] + B[a2, c2].

To compute a general entry in A where � is nonzero, let P1 and P2 be the paths
that achieve the minimum corresponding to the entry in question. By Properties
II and III, there are two cases. (1) The first shared segment of any kind in P1
(in order of appearance) is a dual shared segment t1 and dual(t1) is the first
shared segment of any kind in P2. (2) The last shared segment of any kind in
P1 is a dual shared segment tk and dual(tk) is the last shared segment of any
kind in P2.

Suppose we are in Case 1 (Case 2 is similar). We try placing b1 before, in,
or after t1 in P1 (likewise for b2, dual(t1), P2) and we try all endpoints for t1.
For example, in the case where we try placing b1 before t1 in P1 and b2 before
dual(t1) in P2, we take the minimum over all literals u, v, of

B[a1, b1, u] + B[a2, b2, v̄] + B[u, v] + A[(v, c1), (ū, c2), k, �− 1].

Then we assign A the minimum over all nine placements of b1 and b2. Finally,
if A[(a1, b1, c1), (a2, b2, c2), k, � − 1] is less than the calculated value, we replace
the current entry with that.

If � = 0 and k is nonzero, we proceed similarly except that the first shared
segment in P1 is the last shared segment in P2 by Property I. Therefore (placing
b1 before s1 and b2 before sk), we take the minimum over all u, v of

B[a1, b1, u] + B[v, c2] + B[u, v] + A[(v, c1), (a2, b2, u), k − 1, 0].

Again, minimize over all b1 and b2, then check A[(a1, b1, c1), (a2, b2, c2), k− 1, 0].
The size of the joint minimum paths will finally be stored in A[(a, ā, x),

(b, b̄, x̄), n, n] for some literals a, b, x; we simply find the smallest such entry.
We can recover the actual set of edges comprising these paths using the stan-
dard dynamic-programming technique of remembering which other entries of A
were used to compute the current entry. The algorithm is clearly polynomial
time, since there are polynomially-many entries in A and each one is computed
as the minimum of polynomially-many expressions.
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Abstract. Input Cover Number (denoted by κ) is introduced as a met-
ric for difficulty of propositional resolution derivations. If F = {Ci} is the
input CNF formula, then κF (D) is defined as the minimum number of
clauses Ci needed to form a superset of (i.e., cover) clause D. Input Cover
Number provides a refinement of the clause-width metric in the sense
that it applies to families of formulas whose clause width grows with for-
mula size, such as pigeon-hole formulas PHP(m, n) and GT(n). Although
these two families have much different general-resolution complexities, it
is known that both require Θ(n) clause width (after transforming to 3-
CNF). It is shown here that κ is Θ(n) for pigeon-hole formulas and is
Θ(1) for GT(n) formulas and variants of GT(n).

1 Introduction

Ben-Sasson and Wigderson showed that, if the minimum-length general resolu-
tion refutation for a CNF formula F has S steps, and if the minimum-length
tree-like refutation of F has ST steps, then there is a (possibly different) refu-
tation of F using clauses of width at most:

w(F � ⊥) ≤ w(F) + c
√
n lnS; (1)

w(F � ⊥) ≤ w(F) + lgST . (2)

where F has n variables and w(F � ⊥) denotes resolution-refutation width. The
w(F) terms were omitted from their statement in the introduction, but appear
in the theorems [3].

Our first results essentially eliminate the w(F) terms in the Ben-Sasson and
Wigderson theorems, and replace resolution width by κF(π), the input cover
number, as defined below.

Our interest in input cover number stems from the indications that it separates
polynomial families from super-polynomial families for a wide class of formulas
that represent SAT encodings of constraint satisfaction problems.

Two prototypical and widely studied examples are the pigeon-hole family
PHP(n + 1, n) and the GT(n) family. Both families have a similar appearance:
Θ(n) clause width, Θ(n2) propositional variables, Θ(n3) clauses, and Θ(n3) over-
all formula length. However, the pigeon-hole family has minimum resolution
length in Ω(2n) [6,3], whereas the GT(n) family has minimum resolution length
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in O(n3) [9,4]. The clause-width metric does not distinguish between these two
families: after the standard transformations into 3-CNF, giving EPHP(n+ 1, n)
and MGT(n), they both have lower bounds for w(F � ⊥) in Ω(n) [3,4]. The in-
put distance metric [10] also does not distinguish them. We show that the input-
cover-number metric distinguishes sharply between them: κ(PHP(n+1, n) � ⊥)
is in Θ(n), whereas κ(GT(n) � ⊥) is in Θ(1).

Definition 1.1. (input cover number) All clauses mentioned are nontautol-
ogous sets of literals. Let D be a clause; let C be a clause of formula F . The
input cover number of D w.r.t. F , denoted κF(D), is the minimum number of
clauses Ci ∈ F such that D ⊆

⋃
i Ci, i.e., the cardinality of the minimum set

cover.
For a resolution proof π κF (π) is the maximum over D ∈ π of the input cover

numbers of D w.r.t. F .
When F is understood from the context, κ(D) and κ(π) are written. κ(F � D)

denotes the minimum of κF(π) over all π that are derivations of D from F .

The theorems shown in the full paper1 are that, if π is a resolution refutation of
F and π uses all clauses of F and the length of π is S, then there is a refutation
of F using clauses that have input cover number w.r.t. F that is at most:

κ(F � ⊥) ≤ c
√
n lnS; (3)

κ(F � ⊥) ≤ lg ST . (4)

Proofs and additional details may be found in full paper.
Also, we show that the pigeon-hole family of formulas PHP(m,n) require refu-

tations with input cover number Ω(n), although they contain clauses of width
n. This result suggests that input cover number provides a refinement of the
clause-width metric as a measure of resolution difficulty. That is, when a fam-
ily of formulas with increasing clause-width, such as PHP(m,n), is transformed
into a bounded-width family, such as EPHP(m,n), and the bounded-width fam-
ily has large resolution width, this is not simply because they rederive the wide
clauses of the original family, then proceed to refute the original family. Rather,
it is the case that wide clauses substantially different from those in the original
family must be derived.

Although the results are promising in some cases, the input-cover-number
metric has an inherent fragility. Although κ(GT(n) � ⊥) is in Θ(1) for the
natural encoding of GT(n), for 3-CNF variant, κ(MGT(n) � ⊥) is necessarily
the same order of magnitude as the clause-width lower bound, w(MGT(n) � ⊥),
i.e., in Ω(n).

Recall that Bonet and Galesi showed that w(MGT(n) � ⊥) is in Ω(n), yet
MGT(n) has a refutation in Θ(n3) [4]. Due to the fragility of κ mentioned in the
previous paragraph, the following attractive conjecture must fail : If a family has
κ in Ω(n), its refutation length must be super-polynomial in n. The full paper
discusses fragilities of κ in greater length.
1 See http://www.cse.ucsc.edu/~avg/Papers/cover-number.{pdf,ps}.
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Table 1. Summary of notations

a, . . . , z Literal; i.e., propositional variable or negated propositional variable.
A, . . . , Z Disjunctive clause, or set of literals, depending on context.
A, . . . , H CNF formula, or set of literals, depending on context.
π Resolution derivation DAG.
[p1, . . . , pk] Clause consisting of literals p1, . . . , pk.
⊥, � empty clause, tautologous clause.
α, . . . , δ Subclause, in the notation [p, q, α].
C− Read as “C, or some clause that subsumes C”.
res(q, C, D) Resolvent of C and D, where q and ¬q are the clashing literals (see

Definition 2.1).
C|A, F|A,
π|A

C (respectively F , π) restricted by A (see Definition 2.3).

2 Preliminaries

Notations are summarized in Table 1. Although the general ideas of resolution
and derivations are well known, there is no standard notation for many of the
technical aspects, so it is necessary to specify our notation in detail.

Defining resolution as a total function removes the need to include the weak-
ening rule in the proof system. Numerous proof complexity papers include the
weakening rule as a crutch to handle “life after restrictions” [3,4,1]. However,
according to Alasdair Urquhart, the weakening rule might add power to some
resolution strategies, such as linear resolution. See Table 1 for the notation of
the resolution operator, which satisfies these symmetries:

res(q, C,D) = res(q,D,C) = res(¬q, C,D) = res(¬q,D,C).

Definition 2.1. (resolution, tautologous) A clause is tautologous if it con-
tains complementary literals. All tautologous clauses are considered to be indis-
tinguishable and are denoted by �.

Fix a total order on the clauses definable with the n propositional variables
such that ⊥ is smallest, � is largest, and wider clauses are “bigger” than narrower
clauses. Other details of the total order are not important. The following table,
in which α and β denote clauses that do not contain q or ¬q, extends resolution
to a total function:

C D res(q, C,D)
[q, α] [¬q, β] [α, β]
[γ] � [γ]
[α] [¬q, β] [α]
[α] [β] smaller of α, β

�

With this generalized definition of resolution, we have an algebra, and the set of
clauses (including �) is a lattice. Now resolution “commutes up to subsumption”
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with restriction (see Definition 2.3), so restriction can be applied to any resolution
derivation to produce another derivation.

Definition 2.2. (derivation, refutation) A derivation (short for propositional
resolution derivation) from formula F is a rooted, directed acyclic graph (DAG)
in which each vertex is labeled with a clause and, unless it is a leaf (C ∈ F), it is
also labeled with a clashing literal and has two out-edges. �

Definition 2.3. (restricted formula, restricted derivation) Let A be a
partial assignment for formula F . Let π be a derivation from F . Read “|A” as
“restricted by A”.

1. C|A = �, if C contains any literal that occurs in A, otherwise C|A =
C − {¬q | q ∈ A}.

2. F|A results by applying restriction to each clause in F .
3. π|A is defined differently from most previous papers. It is the same DAG as

π structurally, but the clauses labeling the vertices are changed as follows.
If a leaf (input clause) of π contains C, then the corresponding leaf of π|A
contains C|A. Each derived clause of π|A uses resolution on the same clash-
ing literal as the corresponding vertex of π. �

Lemma 2.4. Given formula F , and a restriction literal p,

res(q,D1|p,D2|p) ⊆ res(q,D1, D2)|p.

Lemma 2.5. Given formula F , and a restriction literal p, if π is a derivation of
C from F , then π|p is a derivation of (C|p)− (a clause that subsumes C|p) from
F|p.

Lemma 2.6. Let C be a clause of F and let A be a partial assignment. If
C|A �= � (i.e., A does not satisfy C), then κF(C|A) = 1.

Lemma 2.7. Let D be a clause of F , let A be a partial assignment, and let
G = F|A. If D|A �= � (i.e., A does not satisfy D), then κF(D) ≤ κG(D|A)+ |A|.

3 Size vs. Input Cover Number Relationships

Ben-Sasson and Wigderson [3] derived size-width relationships that they describe
as a “direct translation of [CEI96] to resolution derivations.” Their informal
statement, “if F has a short resolution refutation then it has a refutation with
a small width,” applies only when F has no wide clauses.

This section shows that by using input cover number rather than clause width,
the restriction on the width of F can be removed. That is, the relationships are
strengthened by removing the additive term, width(F).

The use of restriction for recursive construction of refutations with special
properties originates with Anderson and Bledsoe [2], and has been used by
numerous researchers subsequently [5,3,10]. We use it to construct resolution
refutations of small input cover number.
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Lemma 3.1. Let G = F|p. If derivation π1 derives clause D from G with
κG(π1) = (d − 1), then there is a derivation π2 that derives (D + ¬p)− from
F with κF(π2) ≤ d.

Lemma 3.2. Let G = F|p and H = F|¬p. If derivation π1 derives ⊥ from G
with κG(π1) = d− 1, and derivation π2 derives ⊥ from H with κH(π2) = d, then
there is a derivation π3 that derives ⊥ from F with κF(π3) ≤ d.

Theorem 3.3. Let F be an unsatisfiable formula on n ≥ 1 variables and let
d ≥ 0 be an integer. Let ST be the size of the shortest tree-like refutation of F .
If ST ≤ 2d, then F has a refutation π with κF (π) ≤ d.

Corollary 3.4. ST (F) ≥ 2κ(F�⊥).

Theorem 3.5. Let F be an unsatisfiable formula on n ≥ 1 variables and let
d ≥ 0 be an integer. Let S(F) be the size of the shortest refutation of F . If
S(F) ≤ e(d2/8n), then F has a refutation π1 with κF(π1) ≤ d.

Corollary 3.6. S(F) ≥ e(κ(F�⊥)2/8n).

4 Pigeon-Hole Formulas

The well-known family of Pigeon-Hole formulas for m pigeons and n holes
(PHP(m,n)) is defined by these clauses:

Ci = [xi,1, . . . , xi,n] for 1 ≤ i ≤ m

Bijk = [¬xi,k,¬xj,k] for 1 ≤ i ≤ m, 1 ≤ j ≤ m, 1 ≤ k ≤ n.

Theorem 4.1. Any refutation of PHP(m,n) with m > n has input cover num-
ber at least n/6.

5 The GT(n) Family

The GT(n) family was conjectured to require exponential length refutations
[7], but St̊almarck demonstrated the first polynomial solution, then Bonet and
Galesi found another [9,4]. Both of these solutions produce derived clauses of
width about double that of the input and have input cover numbers of two. The
full paper describes a refutation with input cover number 3, which also has no
derived clause wider than an input clause. This new refutation is half as long as
those previously published.

Definition 5.1. The clauses of GT(n) are named as follows for indexes
indicated.

Cn(j) ≡ [〈1, j〉, . . . , 〈j − 1, j〉, 〈j + 1, j〉, . . . , 〈n, j〉] 1 ≤ j ≤ n

B(i, j) ≡ [¬〈i, j〉,¬〈j, i〉] 1 ≤ i < j ≤ n

A(i, j, k) ≡ [¬〈i, j〉,¬〈j, k〉, 〈i, k〉] 1 ≤ i, j, k ≤ n and i, j, k distinct.
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We recursively construct a refutation with input cover number 3, which also
limits derived clause width to that of the input. The base case is GT(1), in
which C1(1) = ⊥. For GT(n), where n > 1, the refutation begins by deriving
Cn−1(m) for 1 ≤ m ≤ n − 1. Then GT(n − 1) is refuted. The subderivation of
Cn−1(m) from Cn(m), Cn(n), B(i, j) and A(i, j, k) begins by resolving Cn(n)
with B(m,n). This is the key difference from earlier published refutations, and
introduces ¬〈n,m〉 in place of 〈m,n〉. Then 〈i, n〉 are replaced one by one with
〈i,m〉 by resolving with A(i, n,m). Finally, ¬〈n,m〉 is removed by subsumption
resolution with Cn(m).

6 Conclusion

We proposed the input cover number metric (κ) as a refinement of clause width
and input distance for studying the complexity of resolution. For families with
wide clauses, the trade-off between resolution refutation size and κ is sharper
than the trade-off between resolution refutation size and clause width.

The GT(n) family has exponential tree-like refutations [4], and can be modi-
fied so that regular refutations are also exponential [1]. The original and modified
families have κ = 3. These results suggest (very tentatively) that κ might be the
sharper metric for general resolution, while clause-width is sharper for tree-like
resolution.
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Abstract. Symbolic SAT solving is an approach where the clauses of a CNF
formula are represented using BDDs. These BDDs are then conjoined, and finally
checking satisfiability is reduced to the question of whether the final BDD is
identical to false. We present a method combining symbolic SAT solving with
BDD quantification (variable elimination) and generation of extended resolution
proofs. Proofs are fundamental to many applications, and our results allow the
use of BDDs instead of—or in combination with—established proof generation
techniques like clause learning. We have implemented a symbolic SAT solver
with variable elimination that produces extended resolution proofs. We present
details of our implementation, called EBDDRES, which is an extension of the
system presented in [1], and also report on experimental results.

1 Introduction

Propositional logic decision procedures [2,3,4,5,6] lie at the heart of many applications
in hard- and software verification, artificial intelligence and automatic theorem proving
[7,8,9,10,11], and have been used to successfully solve problems of considerable size.
In many practical applications it is not sufficient to obtain a yes/no answer from the
decision procedure, however. Either a model, representing a sample solution, or a justi-
fication why the formula possesses none is required. In the context of model checking
proofs are used, e.g., for abstraction refinement [11] or approximative image compu-
tations through interpolants [12]. Proofs are also important for certification by proof
checking [13], in declarative modeling [9], or product configuration [10].

Using BDDs for SAT is an active research area [14,15,16,17,18,19]. It turns out that
BDD and search based techniques are complementary [20,21,22]. There are instances
for which one works better than the other. Therefore, combinations have been pro-
posed [15,16,19] to obtain the benefits of both, usually in the form of using BDDs for
preprocessing. However, in all these approaches where BDDs have been used, proof
generation has not been possible so far.

In [1], we presented a method for symbolic SAT solving that produces extended reso-
lution proofs. However, in that paper the only BDD operation considered is conjunction.
Here, we address the problem of existential quantification left open in [1]. In particular,
we demonstrate how BDD quantification can be combined with the construction of ex-
tended resolution proofs for unsatisfiable instances. Using quantification allows to build
algorithms that have an exponential run-time only in the width of the elimination order
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used [17,21]. It can therefore lead to much faster results on appropriate instances and
hence produce shorter proofs, which is also confirmed by our experiments. For instance,
we can now generate proofs for some of the Urquhart problems [23].

2 Theoretical Background

We assume that we are given a formula in CNF that we want to refute by an extended
resolution proof. In what follows, we largely use an abbreviated notation for clauses,
where we write (l1 . . . lk) for the clause l1 ∨ · · · ∨ lk.

We assume that the reader is familiar with the resolution calculus [24]. Extended
resolution [25] enhances the ordinary resolution calculus by an extension rule, which
allows introduction of definitions (in the form of additional clauses) and new (defined)
variables into the proof. Additional clauses must stem out of the CNF conversion of def-
initions of the form x ↔ F , where F is an arbitrary formula and x is a new variable, i.e.
a variable neither occurring in the formula we want to refute nor in previous definitions
nor in F. In this paper—besides introducing variables for the Boolean constants true
and false—we only define new variables for if-then-else (ITE) constructs. ITE(x, a, b)
is the same as x ? a : b (for variables x, a, b), which is an abbreviation for (x →
a) ∧ (¬x → b). So introducing a new variable w as an abbreviation for ITE(x, a, b)
results in the additional clauses (w̄x̄a), (w̄xb), (wx̄ā) and (wxb̄), which may then be
used in subsequent resolution steps. Extended resolution is among the strongest proof
systems available and equivalent in strength to extended Frege systems [26].

Binary Decision Diagrams (BDDs) [27] are used to compactly represent Boolean
functions as directed acyclic graphs. In their most common form as reduced ordered
BDDs (that we also adhere to in this paper) they offer the advantage that each Boolean
function is uniquely represented by a BDD, and thus all semantically equivalent formu-
lae share the same BDD. BDDs are based on the Shannon expansion f =ITE(x, f1, f0),
decomposing f into its co-factors f0 and f1 (w.r.t variable x). The co-factor f0 (resp.
f1) is obtained by setting variable x to false (resp. true) in formula f and subsequent
simplification.

In [1], we presented a symbolic SAT solver that conjoins all the BDDs representing
the clauses. This approach has the potential hurdle that the intermediate BDDs may
grow too large. If memory consumption is not a problem, however, the BDD approach
can be orders of magnitude faster than DPLL-style implementations [17,18,20]. Using
existential quantification can speed up satisfiability checking even more and, moreover,
improve memory consumption considerably by eliminating variables from the formula
and thus produce smaller BDDs.

If the formula is a conjunction, rules of quantified logic allow existential quantifica-
tion of variable x to be restricted to those conjuncts where x actually appears, formally:

∃x(f(x, Y ) ∧ g(Z)) = (∃xf(x, Y )) ∧ g(Z)

where Y and Z are sets of variables not containing x. This suggests the following sat-
isfiability algorithm [17]. First, choose a total order π = (x1, . . . , xn) of the variables
X of formula F . Then, build for each variable xi a bucket. The bucket Bi for xi ini-
tially contains the BDD representations of all the clauses where xi is the first variable
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according to π. Start from bucket B1 and build the conjunction BDD b of all its ele-
ments. Then, compute ∃x1b and put the resulting BDD to the bucket of its first variable
according to π. Then, the computation proceeds to B2 and continues until all buckets
have been processed. If for any bucket, the conjunction of its elements is the constant
false, we know that F is unsatisfiable. If the instance is satisfiable we get the true BDD
after processing all the buckets.

3 Proof Construction

As above, we assume that we are given a formula F in CNF and that F contains the
variables {x1, . . . , xn}. Furthermore, we assume a given variable ordering π and that
the BDD representation of clauses are initially divided into buckets B1, . . . , Bn accord-
ing to π and that variables in the BDDs are ordered according to π (the first variable of
π is the root etc.). The details of how clauses are converted to BDDs are given in [1].

Our computation builds intermediate BDDs for the buckets one by one in the order
mandated by π. Assume that we process a bucket that contains the BDDs b1, . . . , bm.
We construct intermediate BDDs hi corresponding to partial conjunctions of b1∧· · ·∧bi

until, by computing hm, we have computed a BDD for the entire bucket. Finally, we
compute a BDD ∃hm corresponding to hm where its root variable has been existen-
tially quantified, and add the BDD ∃hm to the (so far unprocessed) bucket of its root
variable. Assuming that the children of hm are called hm0 and hm1, respectively, these
intermediate BDDs can be computed recursively by the equations:

h2 ↔ b1 ∧ b2, hi ↔ hi−1 ∧ bi for 3 ≤ i ≤ m and ∃hm ↔ hm0 ∨ hm1

If it turns out that hm is the false BDD, F is unsatisfiable and the construction of the
proof can start. For this construction, we introduce new variables (using the extension
rule) for each BDD node that is generated during the BDD computation, i.e. for all bi,
hi, and ∃hm as well as for the nodes of the BDDs of the original clauses. Let f be such
an internal node with the children f0 and f1 (leaf nodes are handled according to [1]).
Then we introduce a variable (also called f ) based on Shannon expansion as follows:

f ↔ (x ? f1 : f0) (f̄ x̄f1)(f̄xf0)(fx̄f̄1)(fxf̄0)

On the right, we have also given the clausal representation of the definition. In order
to prove F , we have to construct proofs of the following formulas for all buckets:

F � bi for all 1 ≤ i ≤ m (ER-1)

F � b1 ∧ b2 → h2 (ER-2a)

F � hi−1 ∧ bi → hi for all 3 ≤ i ≤ m (ER-2b)

F � hm0 ∨ hm1 → ∃hm (ER-3a)

F � hm → ∃hm (ER-3b)

F � ∃hm (ER-4)

Here, the elements bi can either be (initially present) clauses or results of an existential
quantification. For clauses, the proof is straightforward (see [1]). For non-clauses, the
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proof is ER-4 (shown below). The proofs of ER-2a, and ER-2b are also given in [1] and
we now concentrate on proving ER-3a, ER-3b, and ER-4. For the proof of ER-3a, we
use the fact that ∃hm is the disjunction of the children (we call them hm0 and hm1) of
hm. We first prove that hm0 ∨ hm1 → ∃hm, in clausal form (h̄m0∃hm)(h̄m1∃hm). For
representational purposes, assume hm0 = f , hm1 = g, and ∃hm = h, and that the root
variable of f , g and h is x. We know that:

f ↔ (x ? f1 : f0) (f̄ x̄f1)(f̄xf0)(fx̄f̄1)(fxf̄0)
g ↔ (x ? g1 : g0) (ḡx̄g1)(ḡxg0)(gx̄ḡ1)(gxḡ0)
h ↔ (x ? h1 : h0) (h̄x̄h1)(h̄xh0)(hx̄h̄1)(hxh̄0) .

We now recursively construct an ER proof for f ∨g → h, where in the recursive step
we assume that proofs for both f0 ∨ g0 → h0 and f1 ∨ g1 → h1 are already given. We
prove f ∨ g → h by generating separate proofs for (f̄h) and (ḡh). The proof for (f̄h)
is as follows.

(hxh̄0)
(f̄xf0)

...
(f̄0h0)

(f̄xh0)
(f̄xh)

...
(f̄1h1) (f̄ x̄f1)

(f̄ x̄h1) (hx̄h̄1)
(f̄ x̄h)

(f̄h)

The recursive process stops when we arrive at the leaf nodes resp. the base case of
the recursive BDD-or algorithm. The proof for (ḡh) is the same, except that f , f0, and
f1 are replaced with g, g0, and g1, respectively.

The case ER-3b, in clausal form (h̄m∃hm), is not recursive but consists of just three
simple steps. The proof uses the results of ER-3a, i.e. (h̄m0∃hm) and (h̄m1∃hm). The
root variables of hm and ∃hm are different. To illustrate this we use w instead of x.

(h̄mwhm0) (h̄m0∃hm)

(h̄mw∃hm)

(h̄m1∃hm) (h̄mw̄hm1)

(h̄mw̄∃hm)
(h̄m∃hm)

The proof of ER-4 is just a combination of parts one to three. First, having unit
clauses b1 and b2, we resolve h2 (using ER-2a), then all the hi up to hm (using ER-2b)
and finally ∃hm (using ER-3b). The so-produced proofs may contain tautological
clauses. As stated in [1] for the case of conjunction, careful analysis is needed in or-
der to remove them, but it is clearly possible, also in case of existential quantification
(disjunction). The full details will be given in an extended version.

4 Implementation and Experimental Result

We have implemented our approach in the SAT solver EBDDRES. It takes as input a
CNF formula in DIMACS format and computes the bucket elimination algorithm. The
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Table 1. Comparison of Trace generation with MINISAT and with EBDDRES

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
MINISAT EBDDRES EBDDRES, quantification
solve trace solve trace bdd solve trace bdd

resources size resources gen ASCII bin chk nodes resources gen ASCII bin chk nodes
sec MB MB sec MB sec MB MB sec ×103 sec MB sec MB MB sec ×103

ph7 0 0 0 0 0 0 1 0 0 3 0 5 0 12 4 1 60
ph8 0 4 1 0 0 0 3 1 0 15 1 14 1 49 15 4 236
ph9 6 4 11 0 0 0 3 1 0 8 6 52 4 186 59 14 864

ph10 44 4 63 1 17 1 30 10 2 136 20 214 16 683 * * 2974
ph11 884 6 929 1 13 1 21 8 2 35 - * - - - - -
ph12 * - - 2 22 1 33 12 3 31 - * - - - - -
ph13 * - - 10 126 7 260 92 20 850 - * - - - - -
ph14 * - - 9 111 7 204 74 18 166 - * - - - - -

mutcb8 0 0 0 0 0 0 2 1 0 10 0 0 0 3 1 0 16
mutcb9 0 4 0 0 5 0 5 2 0 27 0 4 0 6 2 0 35

mutcb10 0 4 1 0 8 0 11 4 1 58 0 5 0 11 4 1 59
mutcb11 1 4 4 1 17 1 31 10 2 153 1 8 1 23 7 2 123
mutcb12 8 4 22 2 32 2 69 22 5 320 1 13 1 38 12 3 198
mutcb13 112 5 244 7 126 5 181 61 13 817 2 24 2 70 22 5 347
mutcb14 488 8 972 14 250 10 393 132 27 1694 4 37 3 127 40 8 621
mutcb15 * - - 36 498 26 1009 * * 4191 6 52 5 211 67 14 1012
mutcb16 * - - - * - - - - - 12 104 9 391 126 26 1821

urq35 95 4 218 2 22 1 37 13 3 24 0 0 0 1 0 0 5
urq45 * - - - * - - - - - 0 0 0 1 0 0 10
urq55 * - - - * - - - - - 0 0 0 2 1 0 15
urq65 * - - - * - - - - - 0 4 0 6 2 0 34
urq75 * - - - * - - - - - 0 4 0 7 2 0 39
urq85 * - - - * - - - - - 0 5 0 10 3 1 59

fpga108 0 2 6 47 4 135 47 11 186 8 92 6 239 77 18 1088
fpga109 0 0 3 44 2 70 24 6 83 10 114 8 323 105 9 1434

fpga1211 0 0 53 874 37 1214 * * 1312 - * - - - - -
add16 0 0 0 0 4 0 6 2 0 30 0 3 0 4 2 0 26
add32 0 0 0 1 9 1 24 8 2 122 1 7 0 19 6 1 106
add64 0 0 0 12 146 9 338 112 23 1393 12 95 9 393 127 26 1839

add128 0 4 0 - * - - - - - - * - - - - -

The first column lists the name of the instance (see [1] for descriptions of the instances). Columns
2-4 contain data for MINISAT, first the time taken to solve the instance including the time to
produce the trace, then the memory used, and in column 4 the size of the generated trace. The
data for EBDDRES takes up the rest of the table, columns 5-11 for the approach only conjoining
BDDs [1] and 12-18 for variable elimination. Column 5 (12) shows the time taken to solve the
instance with EBDDRES including the time to generate and dump the trace. The latter is shown
separately in column 7 (14). The memory used by EBDDRES, column 6 (13), is linearly related
to the number of BDD nodes shown in column 11 (18). Column 8 (15) shows the size of the trace
files in ASCII format. Column 9 (16) shows the size in a binary format comparable to that used
by MINISAT (column 4). Finally, column 10 (17) shows the time needed to check that the trace
is correct. The * denotes either time out (> 1000 seconds) or out of memory (> 1GB of main
memory). The table shows that quantification performs worse than conjoining on pigeonhole
formulas (ph*). We assume that this could be improved if we used separate variable orderings for
BDDs and elimination. On the other hand, quantification is faster on the mutilated checker board
instances (mutcb*) and Urquhart formulas (urq*).
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result is either the false BDD or the true BDD. In the latter case, a satisfying assignment
is created by traversing the intermediate BDDs right before existential quantification
(called hm above) from the last eliminated variable to the first. For the last eliminated
variable, a truth value is chosen based on which branch of the BDD leads to the sink
true. For all the previous BDDs, the value for the root variable is chosen based on
seeking from its children a path to the sink true. Notice that for all the variables below
the root, the truth value is already fixed. Therefore, at maximum two paths have to be
traversed for each root hm. The length of the traversed paths grow from one to the
number of variables in the worst case. Thus, the algorithm to find a satisfiable valuation
is quadratic in the number of variables. In practise with our test cases, this has not been
a problem. Finally, for unsatisfiable cases a proof trace (deduction of the empty clause)
can be generated.

For the experiments we used a cluster of Pentium IV 3.0 GHz PCs with 2GB of main
memory running Debian Sarge Linux. The time limit was set to 1000 seconds and the
memory limit to 1GB main memory. No limit was imposed on the generated traces. The
experimental results are presented in Table 1.

5 Conclusions

Resolution proofs are used in many practical applications. Our results enable the use of
BDDs for these purposes instead—or in combination with—already established meth-
ods based on DPLL with clause learning. This paper extends work in [1] by presenting
a practical method to obtain extended resolution proofs for symbolic SAT solving with
existential quantification. Our experiments confirm that on appropriate instances we are
able to outperform both a fast search based approach as well as our symbolic approach
only conjoining BDDs.
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Abstract. Recent algorithms for model counting and compilation work
by decomposing a CNF into syntactically independent components
through variable splitting, and then solving the components recursively
and independently. In this paper, we observe that syntactic compo-
nent analysis can miss decomposition opportunities because the syntax
may hide existing semantic independence, leading to unnecessary vari-
able splitting. Moreover, we show that by applying a limited resolution
strategy to the CNF prior to inference, one can transform the CNF to
syntactically reveal such semantic independence. We describe a general
resolution strategy for this purpose, and a more specific one that utilizes
problem–specific structure. We apply our proposed techniques to CNF
encodings of Bayesian networks, which can be used to answer probabilis-
tic queries through weighted model counting and/or knowledge compi-
lation. Experimental results demonstrate that our proposed techniques
can have a large effect on the efficiency of inference, reducing time and
space requirements significantly, and allowing inference to be performed
on many CNFs that exhausted resources previously.

1 Introduction

Recent algorithms for model counting [17,6] and compilation [13] work by de-
composing a CNF into syntactically independent components through variable
splitting, and then solving the components recursively and independently. Crit-
ical to the efficiency of these search with decomposition algorithms is the early
identification of independent components, which would minimize the amount of
variable splitting required (a typical source of exponential behavior).

Search–with–decomposition algorithms consider two CNFs independent when
they do not have variables in common, a condition which we call syntactic in-
dependence. Note, however, that even though two CNFs α and β may share
variables (and are hence syntactically dependent), they may still be capable of
being solved separately in two circumstances. First, there may exist CNFs α′

and β′ that encode the same semantics as α and β, respectively, and which do
not have variables in common. This happens when one of the the CNFs α or
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β mentions irrelevant variables. Second, it may be that values of shared vari-
ables are implied by α and β, but removing subsumed clauses and performing
unit resolution is insufficient to recognize this situation. If the information were
known, then the variables could be set accordingly and the CNFs would thus
become syntactically independent. Both of these situations cause decomposition
algorithms to perform unnecessary splitting on the variables common to α and β.
The phenomenon is not only present at the first level of decomposition, but can
be exhibited at any level in the search tree, leading to compounded inefficiencies.
As we demonstrate in this paper, the gap between syntactic independence and
what we will call semantic independence can be bridged considerably by apply-
ing limited forms of resolution to the CNF, leading to major improvements to
search–with–decomposition algorithms. In fact, the effect of such pre–processing
can be much more dramatic if one pays attention to where the CNF originated.

Table 1. Cachet model count times for ISCAS89 circuits using three different CNF
encodings. Timeout was four hours on a 2.40 GHz Intel Xeon CPU with 4GB of memory.

Resolution
Syntax 1 Syntax 2 Improvement Strategy 1 Improvement

Circuit Time (s) Time (s) Time (s)
s510 0.09 0.06 1.55 0.06 1.50
s444 0.12 0.07 1.69 0.07 1.74
s382 0.12 0.07 1.78 0.07 1.73
s400 0.12 0.07 1.80 0.07 1.78
s420 0.21 0.07 3.19 0.07 3.19
s344 0.25 0.07 3.44 0.07 3.31
s349 0.25 0.07 3.47 0.08 3.29
s386 0.29 0.07 4.26 0.07 4.26
s838 0.86 0.19 4.55 0.14 6.22
s1238 7.48 0.99 7.59 1.03 7.29
s713 4.66 0.50 9.37 0.40 11.61
s526n 2.28 0.18 12.73 0.18 12.32
s1196 11.89 0.93 12.81 0.97 12.29
s526 2.27 0.18 12.82 0.18 12.61
s953 5.34 0.34 15.48 0.33 16.13
s641 5.20 0.32 16.30 0.33 15.67
s1488 2.78 0.13 21.24 0.13 21.24
s1494 2.89 0.13 22.43 0.13 22.25
s832 3.15 0.10 31.21 0.11 29.19
s838.1 2.95 0.08 38.80 0.08 38.80
s1423 timeout 63.78 n/a 49.94 n/a
s13207.1 timeout 186.61 n/a 199.49 n/a
s35932 timeout 2.83 n/a 3.09 n/a

To demonstrate the effect of initial CNF syntax on the performance of search–
with–decomposition algorithms, consider Table 1 which depicts the result of run-
ning a state–of–the–art model counter Cachet [17,1] on two CNF encodings of
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ISCAS89 benchmark circuits (e.g., [2]).1 We will have more to say about the two
encodings later, but for now, suffice it to say that Syntax 1 is chosen carefully
to worsen the gap between syntactic and semantic independence, and that Syn-
tax 2 is chosen to bridge this gap. The first four columns (other columns will be
discussed in Section 3) of Table 1 illustrate the dramatic performance difference
between these two encodings, where Syntax 2 model count times range from
1.5 times faster on easy problems to over 38 times faster on harder ones, and
where three networks could not be processed in four hours using Syntax 1 but
required only minutes or less using Syntax 2.

The primary goal of this paper is to demonstrate that CNFs can be pre–
processed, or carefully encoded, to better bridge the gap between syntactic and
semantic independence. The approach we propose is to apply a limited resolution
strategy to the CNF prior to execution of search. We first identify a general reso-
lution strategy that can be applied to any CNF. As we shall see, for example, this
strategy matches the performance of Syntax 2 when applied to CNFs encoded
according to Syntax 1 from Table 1. We also show that by paying attention to
where a CNF originates, and by bringing to bear structure that exists in the sys-
tem being modeled, it is possible to define a more effective structured resolution
strategy. We demonstrate this on CNF encodings of Bayesian networks, which
have been used as inputs to both model counters [18] and knowledge compilers
[12]. Using this structured strategy, we achieve significant improvements in the
time and space efficiency of inference compared to unprocessed CNFs. More-
over, we are able to perform inference on some models that proved too difficult
without applying the resolution strategy.

This paper is organized as follows. In Section 2, we review search with de-
composition and demonstrate the importance of syntax. In Section 3, we define
semantic independence, and describe a resolution strategy that is meant to bridge
the gap between syntactic and semantic independence. Section 4 then reviews
CNF encodings of Bayesian networks. Section 5 presents a technique that uti-
lizes structure in a Bayesian network to guide the encoding of the corresponding
CNF. In Section 6, we provide experimental results that show the benefits of
this strategy. Finally, we conclude with a few remarks in Section 7.

2 The Effect of Syntax on the Syntactic Identification of
Components

In this section, we review how search with decomposition works and then demon-
strate the effect that syntax can have on the ability of the algorithm to identify
components. Consider the problem of counting the models in the CNF at the
top of Figure 1. Because all of the clauses in this CNF contain variable A, we
cannot syntactically decompose the CNF, and so we must split on some variable.
Splitting on variable A and performing unit resolution generates the two CNFs
1 Sequential circuits have been converted into combinational circuits in a standard

way, by cutting feedback loops into flip-flops, treating a flip-flop’s input as a circuit
output and its output as a circuit input.
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A  B  C ¬A ¬B  C
A  D  E ¬A ¬D  E

B  C
D  E

A

3 3

9 case

D  EB  C

decompose

3 3

9
¬ B  C
¬ D  E

case

¬ D  E¬ B  C

decompose

18

CNF

A¬A

Fig. 1. An example of a search algorithm (with decomposition) that performs model
counting

at the middle of Figure 1. At this point, we solve each of the two subproblems
recursively and independently. We see that each subproblem decomposes into
two sets of syntactically independent clauses. The four resulting sets are shown
at the bottom of the figure. The CNFs at the bottom represent base cases in
the recursion, each having a count of 3, as indicated. From these counts, we
can compute counts for the CNFs in the middle, both 9 in this case. And from
the middle counts, we compute the count for the CNF at the top of the figure,
18, which is the answer to the original problem. Although we have illustrated
the search in a breadth first–fashion, it is normally performed depth–first [6]. In
addition, advanced techniques such as clause learning, component caching and
non–chronological backtracking, are used to improve efficiency, but we do not
detail them here; see [17,11,13,5].

We next present an example which reveals the effect that syntax can have
on the identification of components. Consider Figure 2(a) which depicts two
fragments of a CNF: fragment α which includes, among other things, an encoding
of an AND gate g with output D and inputs A, B, and C, and fragment β which
includes clauses that mention variables A,B and C. Suppose further that the
clauses for gate g are the only ones that mention variables A,B and C within
α. These two fragments are then syntactically dependent as they share common
variables, and cannot be solved in isolation. Suppose now that we decide to
split on variable A by setting it to false. Under this setting, the output D of
the gate must become false, and the inputs B and C are no longer relevant
to fragment α. Semantically, fragments α and β are now independent and can
be solved in isolation. However, depending on how we encode the gate g, this
semantic independence may or may not be revealed syntactically! In particular,
Figures 2(b) and 2(c) depict two different encodings of g, which we shall call
Syntax 1 and Syntax 2, respectively. Either of these encodings could form
the part of fragment α pertaining to gate g. The figures also show the result
of simplifying (by performing unit resolution and removing subsumed clauses)
these encodings when setting variable A to false. As is clear from this example,
variables B and C continue to appear in the clauses of Syntax 1 even though
they are irrelevant. These variables, however, cease to appear in the clauses of
Syntax 2. Therefore, Syntax 2 enables decomposition, but Syntax 1 will
probably require splitting on variables B and C.
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A different situation occurs when we set the output D to true. In this case,
all gate inputs must be true. Setting them accordingly is sufficient to sever the
dependency between the two fragments. In the case of Syntax 1, simplifying is
insufficient to discover that the inputs can be set, but in the case of Syntax 2,
simplifying does indeed tell us the values of the inputs. As a result, Syntax 2
once again enables decomposition, but Syntax 1 requires more splitting (or a
more powerful inference than unit resolution). In fact, the two different encodings
of Table 1 are based on the encodings of gates shown in Figure 2, which encode
each gate in isolation, in the two ways described. We have seen the significant
discrepancy in performance that search with decomposition can have on these
two different encodings.

βα ¬ ∧ ¬ ∧ ¬ ⇒ ¬
¬ ∧ ¬ ∧ ⇒ ¬
¬ ∧ ∧ ¬ ⇒ ¬
¬ ∧ ∧ ⇒ ¬
∧ ¬ ∧ ¬ ⇒ ¬
∧ ¬ ∧ ⇒ ¬
∧ ∧ ¬ ⇒ ¬
∧ ∧ ⇒

¬
¬ ∧ ¬ ⇒ ¬
¬ ∧ ⇒ ¬

∧ ¬ ⇒ ¬
∧ ⇒ ¬

∧ ∧ ⇒
¬ ⇒ ¬
¬ ⇒ ¬
¬ ⇒ ¬

¬¬
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Fig. 2. (a) A depiction of two sets of clauses; (b) the AND gate encoded according to
Syntax 1; and (c) the AND gate encoded according to Syntax 2

3 Semantic Independence

In this section, we define the notions of syntactic and semantic independence
and discuss the encoding of CNFs to reduce the gap between them. Two CNFs
are syntactically independent if they do not have variables in common. Two
CNFs are semantically independent if each variable is irrelevant to either CNF
(or both). More formally, two CNFs α and β are semantically independent iff
for every variable V , α|V ≡ α|¬V or β|V ≡ β|¬V , where α|V is the result of
setting variable V to true in α, and α|¬V is the result of setting V to false.

Given a logical theory Δ on which we must perform inference, there are many
CNFs that specify Δ, any one of which may be supplied to the search with
decomposition to obtain a correct answer. However, to make inference efficient,
the goal will be to supply a CNF that makes semantic independence visible
syntactically throughout the search. That is, whenever two subsets of the clauses
are semantically independent, one should strive to also make them syntactically
independent.

Given a CNF for Δ, we now describe a general method that produces another
CNF for Δ that may better reveal semantic independence. The idea is to per-
form a limited type of resolution on the CNF prior to invoking the search. In
particular, the strategy, which we will call Resolution Strategy 1, specifies
that whenever there are two clauses of the form α ∨ β ∨X and α ∨ ¬X , where
α and β are clauses and X is a variable, replace the former clause with α ∨ β.
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Resolution Strategy 1 makes semantic independence more visible within
the CNF, as demonstrated by the following example. Consider again the AND
gate with inputs A, B, and C and output D. As we have seen, encoding this
gate into CNF according to Syntax 1 results in the following clauses:

¬A ∧ ¬B ∧ ¬C ⇒ ¬D A ∧ ¬B ∧ ¬C ⇒ ¬D
¬A ∧ ¬B ∧ C ⇒ ¬D A ∧ ¬B ∧ C ⇒ ¬D
¬A ∧B ∧ ¬C ⇒ ¬D A ∧B ∧ ¬C ⇒ ¬D
¬A ∧B ∧ C ⇒ ¬D A ∧B ∧ C ⇒ D

Applying Resolution Strategy 1 transforms the clauses as follows:

A ∧B ∧ C ⇒ D ¬A ⇒ ¬D ¬B ⇒ ¬D ¬C ⇒ ¬D

These reduced clauses correspond to Syntax 2’s encoding of the AND gate.
For ISCAS89 circuits, applying Resolution Strategy 1 to Syntax 1 is

very efficient. The last two columns of Table 1 demonstrate what happens to
model count times using Cachet [1]. The most important point is that Resolu-
tion Strategy 1 matches Syntax 2’s performance, even though Syntax 2
had the advantage of utilizing structure from the source domain (gate types),
which was unavailable to Resolution Strategy 1.

It will help at this point to describe two types of structure that can exist in
a circuit: local and global. One approach to encoding a circuit is to construct a
truth table over all variables in the circuit, and for each term that corresponds
to falsehood, generate a clause that outlaws the term. This approach utilizes
no structure and is clearly impractical in most cases. Syntax 1 described ear-
lier represents an improvement that makes use of structure that can be inferred
from the topology of the circuit. In particular, the topology implies a factor-
ization of the global truth table into many smaller truth tables, one for each
gate, that allows us to encode each smaller truth table in isolation. We refer to
this type of structure as global structure. Utilizing global structure makes many
problems practical that would not be otherwise. Syntax 2 goes even further,
paying attention to gate type during the encoding of a specific gate. We refer to
this type of structure as local structure. As we have seen, harnessing local struc-
ture can uncover additional semantic independence, making a large difference in
how efficiently search with decomposition runs. Benefits that arise from exploit-
ing global and local structure have long been realized in the domain of logical
circuits, as Syntax 2 is the standard way of encoding such circuits. However,
these benefits may also exist in other domains, where they are not always fully
exploited. To demonstrate further how both global and local structure can be
utilized to reveal semantic independence, we now turn to a specific application
where CNFs correspond to encodings of Bayesian networks. Although Resolu-
tion Strategy 1 is very efficient when applied to logical circuits, when dealing
with Bayesian networks, more can be gained by paying attention to where the
CNF originated.
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4 CNF Encodings of Bayesian Networks

The encoding of Bayesian networks into CNFs was proposed in [12], which called
for compiling these CNFs into a tractable form, d-DNNF, allowing probabilistic
inference to be performed in time linear in the size of resulting compilation
(through weighted model counting on the compiled form [10]). More recently, [18]
proposed a similar approach, but using a different CNF encoding and applying
a model counter directly on the CNF, instead of compiling the CNF first. Both
approaches, however, use search with decomposition as the core algorithm, yet
the compilation approach keeps a trace of the search [15].

We will now review the CNF encoding of a Bayesian network as given in [12]
as the specific encoding will play a role in the remainder of the paper. A Bayesian
network is a directed acyclic graph (DAG) and a set of tables called conditional
probability tables (CPTs), one table for each node in the DAG. The CPTs
are analogous to the truth tables of gates in a circuit. Two major differences
are that variables in a CPT can be multi–valued and instead of mapping each
row to truth or falsehood, a CPT maps each row to a real–number called a
parameter.2 Figure 3(a) depicts an example CPT, where variable A and B each
have two values and variable C has three values. When encoding gates of a
circuit, global structure allowed Syntax 1 to encode each gate separately. In a
similar way, each CPT in a network can be encoded in isolation. When encoding
a truth table for a particular logic gate, local structure allowed Syntax 2 to
tailor its encoding to the particular gate type. It can be more difficult to utilize
local structure in a Bayesian network. Tables are not normally associated with
a type, so local structure must be inferred from parameter values.

A B C Pr(c|a, b)
a1 b1 c1 0.7 (θ1)
a1 b1 c2 0.0 (false)
a1 b1 c3 0.3 (θ2)
a1 b2 c1 0.4 (θ3)
a1 b2 c2 0.3 (θ2)
a1 b2 c3 0.3 (θ2)
a2 b1 c1 0.333 (θ4)
a2 b1 c2 0.333 (θ4)
a2 b1 c3 0.333 (θ4)
a2 b2 c1 0.2 (θ5)
a2 b2 c2 0.3 (θ2)
a2 b2 c3 0.5 (θ6)

λa1 ∧ λb1 ∧ λc1 → θ1

¬λa1 ∨ ¬λb1 ∨ ¬λc2

λa1 ∧ λb1 ∧ λc3 → θ2

λa1 ∧ λb2 ∧ λc1 → θ3

λa1 ∧ λb2 ∧ λc2 → θ2

λa1 ∧ λb2 ∧ λc3 → θ2

λa2 ∧ λb1 ∧ λc1 → θ4

λa2 ∧ λb1 ∧ λc2 → θ4

λa2 ∧ λb1 ∧ λc3 → θ4

λa2 ∧ λb2 ∧ λc1 → θ5

λa2 ∧ λb2 ∧ λc2 → θ2

λa2 ∧ λb2 ∧ λc3 → θ6

λa1 ∧ λb1 ∧ λc1 → θ1

¬λa1 ∨ ¬λb1 ∨ ¬λc2

λa1 ∧ λc3 → θ2

λb2 ∧ λc2 → θ2

λa1 ∧ λb2 ∧ λc1 → θ3

λa2 ∧ λb1 → θ4

λa2 ∧ λb2 ∧ λc1 → θ5

λa2 ∧ λb2 ∧ λc3 → θ6

(a) (b) (c)

Fig. 3. (a) A CPT over three variables, (b) Clauses generated by the encoding from
[8] for the CPT, and (c) an equivalent encoding.

2 There are other restrictions on the CPTs of a Bayesian network that are not impor-
tant to the current discussion.
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The encoding that will serve as our starting point, which we will refer to
as Baseline Encoding, captures a large amount of local structure and was
consequently shown in [8] to vastly improve compilation performance on many
benchmark networks. This encoding begins by looking at the network variables.
For each value x of each network variable X , we create in the CNF an indicator
variable λx. For example, for network variable C with values c1, c2, and c3, the
encoding would generate CNF variables λc1 , λc2 , and λc3 . Next, for each network
variable, we generate indicator clauses, which assert that in each model, exactly
one of the corresponding indicator variables is true. For variable C, these clauses
are as follows: λc1 ∨ λc2 ∨ λc3 , ¬λc1 ∨ ¬λc2 , ¬λc1 ∨ ¬λc2 , and ¬λc1 ∨ ¬λc1 . The
encoding then looks at each CPT in isolation. For each non–zero parameter value
that is unique within its CPT, the encoding generates a CNF parameter variable.
For example, the parameters in rows 7–9 in the CPT in Figure 3(a), all equal to
0.333, might generate parameter variable θ4. Finally, for each row in the CPT,
the encoding generates a parameter clause. A parameter clause asserts that the
conjunction of the corresponding indicators implies θ, where θ is the parameter
variable for the row, or falsehood if the row’s parameter is zero. For example,
the seventh row in Figure 3(a) generates the clause λa2 ∧λb1 ∧λc1 ⇒ θ4, and the
second row generates the clause ¬λa1 ∨ ¬λb1 ∨ ¬λc2 . The encoding in [8] uses a
few additional optimizations, which are unimportant for the current discussion.
The complete set of clauses for the rows of the CPT in Figure 3(a) is shown in
Figure 3(b).

5 Encoding with Local Structure

Baseline Encoding capitalizes on determinism (zero probabilities) and equal
parameters in the network by omitting the generation of parameter variables
for certain parameters. The effect on inference can be dramatic, as was shown
in [8]. However, Baseline Encoding does not go as far as possible to capital-
ize on local structure. In this section, we introduce a new encoding method
that retains the advantages of Baseline Encoding while further harness-
ing local structure to uncover semantic independence and improve component
analysis.

Consider again Figure 3(a) and observe that given values for certain variables,
other variables sometimes become irrelevant. For example, given A = a2 and B =
b1, the probability no longer depends upon C (C has a uninform probability).
Moreover, given values A = a1 and C = c3, variable B becomes irrelevant to
the probability of variable C. This phenomenon is similar to context–specific–
independence (CSI) [7] and can be very powerful. CSI is normally taken to
mean that given values of certain parents (A or B in this case), some other
parent becomes irrelevant to the probability of the child (C). The phenomenon
described here is a more powerful generalization as it also captures cases where
(1) setting one or more parents causes the distribution on the child to become
uniform or (2) when setting the child to a certain value makes a parent irrelevant.
This type of structure allows the clauses in Figure 3(b) to be simplified to the
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clauses in Figure 3(c), which will tend to have fewer occurrences of irrelevant
variables as we set variables in search process.

Before defining a general procedure for simplifying the clauses of a given CPT,
we observe that because we are working with multi–valued variables, it makes
sense to use a multi–valued form of resolution. We therefore define a logic over
multi–valued variables X. The syntax of the logic is identical to that of standard
propositional logic, except that an atom is an assignment to a variable in X of a
value in its domain. For example, C = c2 is an atom. The semantics is also like
that of standard propositional logic, except that a world, which consists of an
atom for each variable, satisfies an atom iff it assigns the common variable the
same value. Within this logic, a term over X′ ⊆ X is a conjunction of atoms, one
for each variable in X′. Let Γ be a disjunction of terms over X. An implicant
γ of Γ is a term over X′ ⊆ X that implies Γ . A prime implicant γ of Γ is an
implicant that is minimal in the sense that the removal of any atom would result
in a term that is no longer an implicant of Γ .

Algorithm 1. EncodeCPT(φ: CPT) Generates a set of clauses for φ.
Partition the rows of φ into groups so that all rows with the same parameter are in
the same group
for each encoding group Γ do

M ← terms of Γ
θ ← consequent of Γ
P ← the prime implicants of M
for p in P do

I ← encoding of p
if θ = 0 then

assert clause ¬I
else

assert clause I ⇒ θ
end if

end for
end for

Given these definitions, we can encode the network by generating the same
CNF variables and indicator clauses as in Baseline Encoding and by gener-
ating clauses for each CPT according to Algorithm 1. This algorithm encodes
a CPT φ over variables X by first partitioning the CPT into encoding groups,
which are sets of rows that share the same parameter value. Note that each row
in the CPT induces a term over variables X and so each encoding group induces a
set of terms. Moreover, the terms within an encoding group will share a common
parameter variable or all correspond to falsehood. We refer to this variable (or
falsehood) as the consequent of the encoding group. To process encoding group
Γ , we find the prime implicants of Γ ’s terms, and for each prime implicant p,
we assert a clause I ⇒ θ, where I is conjunction of indicators corresponding to
p, and θ is the consequent of the encoding group. If the parameter θ equals 0,
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we simply generate the clause ¬I. Figure 4 demonstrates this algorithm for the
CPT in Figure 3(a).

The algorithm we use to find prime implicants is an extension of the vener-
able Quine-McCluskey (QM) algorithm (e.g., [14]). QM works only for binary
variables, so we extend it to multi–valued variables in a straightforward manner.
Extensions of the QM algorithm for multi–valued variables are common, some
of them defining a prime implicant differently (e.g., [16]). The definition given
here was found effective for the purpose at hand.

Encoding Param Conse- Prime
Group Value Terms quent Implicants Encoding
Γ1 .7 a1b1c1 θ1 a1b1c1 λa1 ∧ λb1 ∧ λc1 ⇒ θ1

Γ2 0 a1b1c2 false a1b1c2 ¬λa1 ∨ ¬λb1 ∨ ¬λc2

Γ3 .3 a1b1c3, a1b2c2, a1b2c3, a2b2c2 θ2 a1c3, b2c2 λa1 ∧ λc3 ⇒ θ2,
λb2 ∧ λc2 ⇒ θ2

Γ4 .4 a1b2c1 θ3 a1b2c1 λa1 ∧ λb2 ∧ λc1 ⇒ θ3

Γ5 .333 a2b1c1, a2b1c2, a2b1c3 θ4 a2b1 λa2 ∧ λb1∧ ⇒ θ4

Γ6 .2 a2b2c1 θ5 a2b2c1 λa2 ∧ λb2 ∧ λc1 ⇒ θ5

Γ7 .5 a2b2c3 θ6 a2b2c3 λa2 ∧ λb2 ∧ λc3 ⇒ θ6

Fig. 4. Encoding a CPT using prime implicants

The new encoding method described defines a structured resolution strategy
which we will refer to as Resolution Strategy 2. The strategy is structured
in the sense that rather than working on a set of clauses, the strategy works on a
partition of clauses, and restricts resolution to clauses within the same element
of the partition. Each element in the partition corresponds to clauses belonging
to the same CPT and having the same consequent.

We close this section with a few observations. First, even though computing
prime implicants can be expensive in general, Resolution Strategy 2 adds
little overhead to Baseline Encoding. This efficiency stems from the small
number of variables that are involved in the computation (those appearing in a
CPT). This is to be contrasted with our first resolution strategy, which is ap-
plied to variables in the whole CNF. Second, there is a strong similarity between
the two strategies. In particular, both are capable of removing occurrences of
literals, transforming a set of terms into a more minimal set, and in this way
revealing semantic independence. Third, the main idea presented might be ap-
plied more generally to other domains where a CNF is encoded from a set of
functions over finitely valued variables. As we have seen, two examples are truth
tables and Bayesian networks. Other examples are Markov networks and influ-
ence diagrams. Finally, CNFs created using Resolution Strategy 2 will be
smaller than those created using Baseline Encoing. A natural question is how
much of any gains achieved arise from smaller CNFs as opposed to increased de-
composability? It is not clear how one would conduct an analysis to answer this
question, but the magnitude of improvements obtained clearly demonstrate that
reduction in size could not be solely responsible.
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6 Experimental Results

In this section, we examine a number of Bayesian networks. For each, we gener-
ate a CNF according to Baseline Encoding and another using Resolution
Strategy 2. We compile the CNFs into d-DNNF using the c2d compiler [3,13]
and compare performance. Table 2 shows five sets of networks. The first set
consists of ISCAS89 circuits converted to Bayesian networks by placing uniform
probability distributions on inputs and encoding other gates with determinis-
tic CPTs (all parameters 0 or 1). The blockmap (bm) networks were generated
from relational probabilistic models and were first used in [9] to demonstrate the
effectiveness of the compilation approach to networks of this type. The OR and
grid (gr) networks were used in [18] to also show the effectiveness of weighted
model counting for probabilistic inference, this time using search rather than
compilation. From the large number of OR and grid networks, which are divided
into sets of ten, we selected sets that provided a challenge for c2d, while still
possible to compile within 2GB of memory using Resolution Strategy 2.
Finally, the last set consists of benchmark networks from various sources that
have long been used to compare probabilistic inference algorithms. Experiments
ran on a 1.6Ghz Pentium M with 2GB of memory. The implementation of the
encoding and compiling algorithms have been packaged in the publicly available
tools Ace 1.1 [4] (Resolution Strategy 2 for encoding Bayesian networks)
and c2d 2.2 [3] (Resolution Strategy 1 for general CNFs).

For each network, Table 2 first lists the maximum cluster size as computed
by a minfill heuristic. This measure is important because inference algorithms
that do not use local structure run in time that is exponential in this number.
We next list encoding times for the two encoding algorithms. The main point
is that the resolution taking place in Resolution Strategy 2 is not adding
significant time to the encoding. Compile times then reveal the extent to which
Resolution Strategy 2 helps. In particular, we see that, except for one case,
compile times improve anywhere from 1.45 times to over 17 times. Moreover,
many of the grid networks and also barley caused the compiler to run out of
memory (as indicated by dashes) when applied to Baseline Encoding but
compiled successfully using Resolution Strategy 2. The last three columns
show the improvement to the size (number of edges) of the resulting compila-
tions. This size is important to demonstrate space requirements and also because
online inference, which may be repeated a great many times for a given appli-
cation, runs in time that is linear in this size. Here, we see that on networks
where Baseline Encoding was successful, sizes were sometimes comparable
and otherwise significantly reduced.

Before closing this section, we place these results into a broader perspective.
The first critical point is that on many of these networks, inference approaches
that do not utilize local structure would simply fail, because of large cluster sizes.
The second point is that the gains that Resolution Strategy 2 achieves are
particularly noteworthy, since they are being compared to a state–of–the–art
technique for utilizing local structure [8]. The approach described in [18] har-
nesses local structure within the Bayesian network, applies the Cachet model
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Table 2. Results for compiling a number of networks using Baseline Encoding and
the Resolution Strategy 2 encoding. All times are in seconds.

Max. Baseline RS 2 Baseline RS 2 Imp- Baseline RS 2 Imp-
Clst. Enc. Enc. Comp. Comp. rove- Comp. Comp. rove-

Network Size Time Time Time Time ment Size Size ment
s1238 61.0 0.91 0.86 11.32 1.83 6.19 853,987 263,786 3.24
s713 19.0 0.80 0.79 1.40 0.35 4.00 67,428 37,495 1.80
s526n 18.0 0.73 0.73 0.23 0.12 1.92 10,088 10,355 0.97
s1196 54.0 0.86 0.83 6.16 1.33 4.63 685,254 189,381 3.62
s526 18.0 0.69 0.68 0.22 0.14 1.57 13,352 14,143 0.94
s953 70.0 0.79 0.80 13.88 2.19 6.34 691,220 205,043 3.37
s641 19.0 0.84 0.79 2.54 0.38 6.68 78,071 36,555 2.14
s1488 46.0 0.89 0.88 1.65 0.56 2.95 333,629 125,739 2.65
s1494 48.0 0.88 0.90 1.82 0.44 4.14 419,274 85,469 4.91
s832 27.0 0.75 0.76 1.38 0.24 5.75 62,756 32,715 1.92
s838.1 13.0 0.79 0.80 0.43 0.20 2.15 49,856 30,899 1.61
s1423 24.0 0.91 0.91 56.62 14.54 3.89 3,010,821 994,518 3.03
bm-05-03 19.0 1.04 1.10 0.29 0.20 1.45 19,190 10,957 1.75
bm-10-03 51.0 2.90 3.03 19.57 4.97 3.94 938,371 275,089 3.41
bm-15-03 62.0 7.76 7.39 254.96 44.07 5.79 7,351,823 1,460,842 5.03
bm-20-03 90.0 17.96 17.40 1,505.24 388.65 3.87 37,916,087 6,195,000 6.12
bm-22-03 107.0 26.26 25.62 4,869.64 748.13 6.51 72,169,022 14,405,730 5.01
or-60-20-1 24.0 0.69 0.77 338.48 54.47 6.21 6,968,339 7,777,867 0.90
or-60-20-3 25.0 1.04 0.69 1.40 0.77 1.82 104,275 119,779 0.87
or-60-20-5 27.0 0.74 0.70 728.36 118.17 6.16 17,358,747 14,986,497 1.16
or-60-20-7 26.0 1.08 0.71 250.72 97.13 2.58 11,296,613 12,510,488 0.90
or-60-20-9 25.0 0.73 0.70 19.58 7.17 2.73 1,011,193 1,060,217 0.95
gr-50-16-1 24.0 0.76 0.75 137.25 43.95 3.12 14,692,963 5,739,854 2.56
gr-50-16-2 25.0 0.86 4.52 - 292.42 - - 35,473,955 -
gr-50-16-3 24.0 0.92 0.74 65.03 40.45 1.61 7,755,318 5,280,027 1.47
gr-50-16-4 24.0 1.21 0.80 407.60 46.83 8.70 35,950,912 6,128,859 5.87
gr-50-16-5 25.0 0.88 0.82 - 26.70 - - 3,431,139 -
gr-50-16-6 25.0 0.85 0.79 44.40 22.99 1.93 4,598,373 3,159,007 1.46
gr-50-16-7 24.0 0.85 0.84 51.68 2.99 17.28 6,413,897 421,060 15.23
gr-50-16-8 24.0 0.84 0.81 86.19 32.29 2.67 10,341,755 4,280,261 2.42
gr-50-16-9 24.0 0.84 0.94 - 60.55 - - 7,360,872 -
gr-50-16-10 24.0 0.84 0.83 133.70 287.08 0.47 15,144,602 33,561,672 0.45
gr-50-18-1 27.0 1.02 0.87 411.45 48.36 8.51 39,272,847 6,451,916 6.09
gr-50-18-2 28.0 0.94 0.92 - 172.13 - - 19,037,468 -
gr-50-18-3 27.0 0.91 0.86 362.90 29.18 12.44 32,120,267 2,507,215 12.81
gr-50-18-4 28.0 1.62 0.98 - 139.81 - - 15,933,651 -
gr-50-18-5 27.0 1.26 1.07 - 158.13 - - 18,291,116 -
gr-50-18-6 28.0 1.05 0.86 403.96 52.55 7.69 37,411,619 7,111,893 5.26
gr-50-18-7 27.0 0.98 0.98 - 79.97 - - 9,439,318 -
gr-50-18-8 28.0 0.93 0.89 - 42.17 - - 5,036,670 -
gr-50-18-9 27.0 0.96 0.87 - 68.51 - - 7,890,645 -
gr-50-18-10 28.0 1.00 1.00 - 188.66 - - 22,387,841 -
water 20.8 1.04 0.95 2.81 1.73 1.62 101,009 103,631 0.97
pathfinder 15.0 2.97 1.86 12.45 2.86 4.35 36,024 33,614 1.07
diabetes 18.2 10.76 7.77 6,281.23 3,391.18 1.85 15,426,793 15,751,044 0.98
mildew 20.7 13.37 8.16 6,245.45 1,869.92 3.34 1,693,750 1,696,139 1.00
barley 23.4 4.36 6.75 - 14,722.19 - - 37,321,497 -
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Table 3. Median times for Cachet search and for c2d compilation using Baseline
Encoding and Resolution Strategy 2

Network Cachet Baseline Encoding Resolution Strategy 2
Set Search Time (s) Compile Time (s) Compile Time (s)
grid-50-16 890 135 42
grid-50-18 13,111 592 74
or-60-5 1.7 3.9 1.9
or-60-10 3.9 24.9 8.7
or-60-20 54 294.6 64.8

counter to a different CNF encoding, and has been shown to be successful on
some of the networks considered here. Table 3 repeats some of the results re-
ported in [18] with regards to networks in Table 2. In particular, for each of
several sets of networks, search times running on a dual 2.8GHz processor with
4GB of memory are shown. Each time represents the median over ten networks.
Also shown in the table are median compile times we achieved for the two en-
codings considered in this paper. As can be seen from the table, the times are
comparable for the OR networks, but both Baseline Encoding and Resolu-
tion Strategy 2 allow compilation to run more efficiently on grid networks
(even though compilation would normally require much more overhead than
search). We note here that the grid networks in Table 3 were chosen from a
large number of such networks because they represent some of the hardest of
the group (they contain the least amount of determinism and any larger grids
having the same degree of determinism cause Cachet to fail).

7 Conclusion

We observe in this paper that the particular syntax of a CNF can be critical for
the performance of search–with–decomposition algorithms, as it can lead to a gap
between semantic and syntactic independence that can hinder the identification
of semantically independent components. We provide two resolutions strategies,
one general and one more structured, for pre–processing a CNF with the aim of
reducing the gap between syntactic and semantic independence. We apply our
proposed techniques to general CNF encodings, and to more specific ones corre-
sponding to Bayesian networks. Experimental results show large improvements
when applying state of the art search–with–decomposition algorithms, includ-
ing the Cachet model counter and the c2d compiler, allowing us to solve some
problems that have previously exhausted available resources.
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Abstract. Most state-of-the-art SAT solvers are based on DPLL search and re-
quire the input formula to be in clausal form (cnf). However, typical formulas that
arise in practice are non-clausal. We present a new non-clausal SAT-solver based
on General Matings instead of DPLL search. Our technique is able to handle
non-clausal formulas involving ∧, ∨, ¬ operators without destroying their struc-
ture or introducing new variables. We present techniques for performing search
space pruning, learning, non-chronological backtracking in the context of a Gen-
eral Matings based SAT solver. Experimental results show that our SAT solver
is competitive to current state-of-the-art SAT solvers on a class of non-clausal
benchmarks.

1 Introduction

The problem of propositional satisfiability (SAT) is of central importance in various
areas of computer science, including theoretical computer science, artificial intelli-
gence, hardware design and verification. Most state-of-the-art SAT procedures are
variations of the Davis-Putnam-Logemann-Loveland (DPLL) algorithm and require the
input formula to be in conjunctive normal form (cnf). Typical formulas generated by
the previously mentioned applications are not necessarily in cnf. As argued by Thiffault
et al. [17] converting a general formula to cnf introduces overhead and may destroy the
initial structure of the formula, which can be crucial in efficient satisfiability checking.

We propose a new propositional SAT-solving framework based on the General Mat-
ings technique due to Andrews [6]. It is closely related to the Connection method dis-
covered independently by Bibel [8]. Theorem provers based on these techniques have
been used successfully in higher order theorem proving [5]. To the best of our knowl-
edge, General Matings has not been used in building SAT-solvers for satisfiability
problems arising in practice. This paper presents techniques for building an efficient
SAT-solver based on General Matings.

When applied to propositional formulas the General Matings approach can be sum-
marized as follows [7]. The input formula is translated into a 2-dimensional format
called vertical-horizontal path form (vhpform). In this form disjuncts (operands of ∨)
are arranged horizontally and conjuncts (operands of ∧) are arranged vertically. The
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formula is satisfiable if and only if there exists a vertical path through this arrangement
that does not contain two opposite literals ( l and ¬l). The input formula is not required
to be in cnf.

We have designed a SAT procedure for non-clausal formulas based on the General
Matings approach. At a high level our search algorithm enumerates all possible vertical
paths in the vhpform of a given formula until a vertical path is found which does not
contain two opposite literals. If every vertical path contains two opposite literals, then
the given formula is unsatisfiable. The number of vertical paths can be exponential in
the size of a given formula. Thus, the key challenge in obtaining an efficient SAT solver
is to prevent the enumeration of vertical paths as much as possible. We present several
novel techniques for preventing the enumeration of vertical paths. Our contributions
can be summarized as follows:

• The vhpform of a given formula succinctly encodes: 1) disjunctive normal form
(dnf) of a given formula as a set of vertical paths 2) conjunctive normal form (cnf)
of a given formula as a set of horizontal paths. Our solver employs a combination of
both vertical and horizontal path exploration for efficient SAT solving. The choice
of which variable to assign next (decision making) is made using the vertical paths
which are similar to the terms (conjunction of literals) in the dnf of a given formula.
Conflict detection is aided by the use of horizontal paths which are similar to the
clauses (disjunction of literals) in the cnf of a given formula.

• We show how to adapt the techniques found in the current state-of-the-art SAT
solvers in our algorithm. We describe how to perform search space pruning, conflict
driven learning, non-chronological backtracking by using the vertical paths and
horizontal paths present in the vhpform of a given formula.

• We present graph based representations of the set of vertical paths and the set of
horizontal paths which makes it possible to implement our algorithms efficiently.

Related Work: Many SAT solvers have been developed, most employing some com-
bination of two main strategies: the DPLL search and heuristic local search. Heuristic
local search techniques [12] are not guaranteed to be complete, that is, they are not guar-
anteed to find a satisfying assignment if one exists or prove unsatisfiability. As a result,
complete SAT solvers (such as GRASP [11], SATO [18], zChaff [14], BerkMin [10],
Siege [4], MiniSat [2]) are based almost exclusively on the DPLL search. While most
DPLL based SAT solvers operate on cnf, there has been work on applying DPLL di-
rectly to circuit [9] and non-clausal [17] representations. The key differences between
existing work and our approach are as follows:

– Unlike heuristic local search based techniques, we propose a complete SAT solver.
– Unlike DPLL based SAT solvers (operating on either cnf, circuit or non-clausal rep-

resentation), the basis of our search procedure is General Matings. There is a crucial
difference between the two techniques. In DPLL the search space is the set of all
possible assignments to the propositional variables, whereas in General Matings
the search space is the set of all possible vertical paths in the vertical-horizontal
path form of a given formula. We give an example illustrating the difference in
Section 2. In contrast to current cnf SAT solvers which produce a complete satis-
fying assignment (all variables are assigned), our solver produces partial satisfying
assignments when possible.
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– The General Matings technique is designed to work on non-clausal forms. In par-
ticular, any arbitrary propositional formula involving ∧,∨,¬ is handled naturally,
without introduction of new variables or loss of structural information.

Semantic Tableaux [16] is a popular theorem proving technique. The basic idea is to
expand a given formula in the form of a tree, where nodes are labeled with formulas. If
all the branches in the tree lead to contradiction, then the given formula is unsatisfiable.
The tableau of a given propositional formula can blowup in size due to repetition of sub-
formulas along the various paths. In contrast, when using General Matings a vertical-
horizontal path form of a given formula is built first. This representation is a directed
acyclic graph (DAG) and polynomial in the size of the given formula.

2 Preliminaries

A propositional formula is in negation normal form (nnf) iff it contains only the propo-
sitional connectives ∧, ∨ and ¬ and the scope of each occurrence of ¬ is a proposi-
tional variable. It is known that every propositional formula is equivalent to a formula
in nnf. Furthermore, a negation normal form of a formula can be much shorter than
any dnf or cnf of that formula. The internal representation in our satisfiability solver
is nnf. More specifically, we use a two-dimensional format of a nnf formula, called a
vertical-horizontal path form (vhpform) as described in [7]1. In this form disjunctions
are written horizontally and conjunctions are written vertically. For example Fig. 1(a)
shows the formula φ = (((p ∨ q) ∧ ¬r ∧ ¬q) ∨ (¬p ∧ (r ∨ ¬s) ∧ q)) in vhpform.

Vertical path: A vertical path through a vhpform is a sequence of literals in the
vhpform that results by choosing either the left or the right scope for each occurrence
of ∨. For the vhpform in Fig. 1(a) the set of vertical paths is {〈p,¬r,¬q〉, 〈q,¬r,¬q〉,
〈¬p, r, q〉, 〈¬p,¬s, q〉}.

Horizontal path: A horizontal path through a vhpform is a sequence of literals in the
vhpform that results by choosing either the left or the right scope for each occurrence
of ∧. For the vhpform in Fig. 1(a) the set of horizontal paths is {〈p, q,¬p〉, 〈p, q, r,¬s〉,
〈p, q, q〉, 〈¬r,¬p〉, 〈¬r, r,¬s〉, 〈¬r, q〉, 〈¬q,¬p〉, 〈¬q, r,¬s〉, 〈¬q, q〉}.

The following are two important results regarding satisfiability of negation normal
formulas from [7]. Let F be a formula in negation normal form and let σ be an assign-
ment (σ can be a partial truth assignment).

Theorem 1. σ satisfies F iff there is a vertical path P in the vhpform of F such that σ
satisfies every literal in P .

Theorem 2. σ falsifies F iff there is a horizontal path P in the vhpform of F such that
σ falsifies every literal in P .

1 In [7] the term vertical path form (vpform) is used in place of vertical-horizontal path form (vh-
pform). We use vertical-horizontal path form (vhpform) in this paper for clarity.
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Fig. 1. We show the negation of a variable by a − sign. (a) vhpform for the formula (((p ∨ q) ∧
¬r ∧ ¬q) ∨ (¬p ∧ (r ∨ ¬s) ∧ q)) (b) the corresponding vpgraph (c) the corresponding hpgraph.

The vhpform in Fig. 1(a) has a vertical path 〈p,¬r,¬q〉 whose every literal can be satis-
fied by an assignment σ which sets p to true and r, q to false. It follows from Theorem 1
that σ satisfies φ. Thus, φ is satisfiable. An example of a vertical path whose every lit-
eral cannot be satisfied by any assignment is 〈q,¬r,¬q〉 (due to opposite literals q and
¬q). An assignment σ′ which sets p, r to true, falsifies every literal in the horizontal
path 〈¬r,¬p〉 in the vhpform of φ. Thus, from Theorem 2 it follows that σ′ falsifies φ.

Let VP(φ) and HP(φ) denote the set of vertical paths and the set of horizontal paths
in the vhpform of φ, respectively. We use l ∈ π to denote the occurrence of a literal l in
a vertical/horizontal path π. The following result from [7] states that the set of vertical
paths encodes the dnf and the set of horizontal paths encodes the cnf of a given formula.

Theorem 3. (a) φ is equivalent to the dnf formula
∨

π∈VP(φ)
∧

l∈π l. (b) φ is equivalent
to the cnf formula

∧
π∈HP(φ)

∨
l∈π l.

Theorem 1 forms the basis of a General Matings based SAT procedure. The idea is
to check the satisfiability of a given nnf formula by examining the vertical paths in
its vhpform. For the vhpform in Fig. 1(a) the search space is {〈p,¬r,¬q〉, 〈q,¬r,¬q〉,
〈¬p, r, q〉, 〈¬p,¬s, q〉}. In contrast, the search space for a DPLL-based SAT solver is
the set of all possible truth assignments to the variables p, q, r, s. We use Theorem 2 for
efficient Boolean constraint propagation in two ways: 1) For detecting when the current
candidate for a satisfying assignment falsifies the given formula (conflict detection). 2)
For obtaining a unit literal rule (Section 3) similar to the one used in cnf SAT solvers.

3 Graph Representations

Our SAT procedure operates on the graph based representations of the vhpform of a
given formula. These graph based representations are described below.

Graphical encoding of vertical paths (vpgraph): A graph containing all vertical paths
present in the vhpform of a nnf formula is called a vpgraph. Given a nnf formula φ,
we define the vpgraph Gv(φ) as a tuple (V,R, L,E, Lit), where V is the set of nodes
corresponding to all occurrences of literals in φ, R ⊆ V is a set of root nodes, L ⊆ V
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is a set of leaf nodes, E ⊆ V × V is the set of edges, and Lit(n) denotes the literal
associated with node n ∈ V . A node n ∈ R has no incoming edges and a node n ∈ L
has no outgoing edges.

The vpgraph containing all vertical paths in the vhpform of Fig. 1(a) is shown in
Fig. 1(b). For the vpgraph in Fig. 1(b), we have V = {1, 2, 3, 4, 5, 6, 7, 8}, R =
{1, 2, 5}, L = {4, 8}, E = {(1, 3), (2, 3), (3, 4), (5, 6), (5, 7), (6, 8), (7, 8)} and for
each n ∈ V , Lit(n) is shown inside the node labeled n in Fig. 1(b). Each path in the
vpgraph Gv(φ), starting from a root node and ending at a leaf node, corresponds to a
vertical path in the vhpform of φ. For example, path 〈1, 3, 4〉 in Fig. 1(b) corresponds
to the vertical path 〈p,¬r,¬q〉 in Fig. 1(a) (obtained by replacing node n on path by
Lit(n)). Using this correspondence one can see that vpgraph contains all vertical paths
present in the vhpform shown in Fig. 1(a).

Given nnf formula φ, we can construct the vpgraph Gv(φ) = (V,R, L,E, Lit) di-
rectly without constructing the vhpform of φ. This is done inductively as follows:

• If φ is a literal l, then we create a graph containing just one node fv, where fv is a
fresh identifier. The literal stored inside fv is set to l.

Gv(φ) = ({fv}, {fv}, {fv}, ∅, Lit) and Lit(fv) = l, fv is a fresh identifier.
• If φ = φ1 ∨ φ2, then the vpgraph for φ is obtained by taking the union of the vp-

graphs of φ1 and φ2. Let Gv(φ1) = (V1, R1, L1, E1, Lit1) and Gv(φ2) = (V2, R2,
L2, E2, Lit2). Then Gv(φ) is the union of Gv(φ1) and Gv(φ2).

Gv(φ) = (V1 ∪ V2, R1 ∪R2, L1 ∪ L2, E1 ∪ E2, Lit1 ∪ Lit2)
• If φ = φ1 ∧ φ2, then the vpgraph for φ is obtained by concatenating the vpgraph

of φ1 with the vpgraph of φ2. Let Gv(φ1) = (V1, R1, L1, E1, Lit1) and Gv(φ2) =
(V2, R2, L2, E2, Lit2). Then Gv(φ) contains all the nodes and edges in Gv(φ1)
and Gv(φ2). But Gv(φ) has additional edges connecting leaves of Gv(φ1) with the
roots of Gv(φ2). The set of additional edges is denoted as L1 ×R2 below. The set
of roots of Gv(φ) is R1, while the set of leaves is L2.
Gv(φ) = (V1 ∪ V2, R1, L2, E1 ∪ E2 ∪ (L1 ×R2), Lit1 ∪ Lit2)

Graphical encoding of horizontal paths (hpgraph): A graph containing all horizontal
paths present in the vhpform of a nnf formula is called a hpgraph. We use Gh(φ) to
denote the hpgraph of a formula φ. The procedure for constructing a hpgraph is similar
to the above procedure for constructing the vpgraph. The difference is that the hpgraph
for φ = φ1 ∧ φ2 is obtained by taking the union of hpgraphs for φ1 and φ2 and the
hpgraph for φ = φ1 ∨ φ2 is obtained by concatenating the hpgraphs of φ1 and φ2.

The hpgraph containing all horizontal paths in the vhpform in Fig. 1(a) is shown
in Fig. 1(c). For the hpgraph in Fig. 1(c), we have V = {1, 2, 3, 4, 5, 6, 7, 8}, R =
{1, 3, 4}, L = {5, 7, 8}, E = {(1, 2), (2, 5), (2, 6), (2, 8), (3, 5), (3, 6), (3, 8), (4, 5),
(4, 6), (4, 8), (6, 7)} and for each n ∈ V , Lit(n) is shown inside the node labeled n.

Using vpgraph/hpgraph: We use G(φ) to refer to either a vpgraph or hpgraph of φ. It
can be shown by induction that the vpgraph and hpgraph of a nnf formula are directed
acyclic graphs (DAGs). This fact allows obtaining more efficient versions of standard
graph algorithms (such as shortest path computation) for vpgraph/hpgraph. The con-
struction of vpgraph/hpgraph takes O(k2) time in the worst case where k is the size of
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the given formula. This is mainly due to the L1 × R2 term in the handling of φ1 ∧ φ2
(for vpgraph construction) and φ1 ∨ φ2 (for hpgraph construction).

Given a vpgraph or hpgraphG(φ) = (V,R, L,E, Lit), the following definitions will
be used in subsequent discussion.

r-path: A path π = 〈n0, . . . , nk〉 in G(φ) is said to be a r-path (rooted path) iff it starts
with a root node (n0 ∈ R). In Fig. 1(b), 〈2, 3〉 is a r-path while 〈3, 4〉 is not a r-path.
rl-path: A path π = 〈n0, . . . , nk〉 in G(φ) is said to be a rl-path iff it starts at a root
node and ends at a leaf node (n0 ∈ R and nk ∈ L). In Fig. 1(b), both 〈2, 3, 4〉, 〈5, 6, 8〉
are rl-paths, but 〈3, 4〉 is not a rl-path.
Conflicting nodes: Two nodes n1, n2 ∈ V are said to be conflicting iff Lit(n1) =
¬Lit(n2). In Fig. 1(b), nodes 2,4 are conflicting.

– We say an assignment σ satisfies (falsifies) a node n ∈ V iff σ satisfies (falsifies)
Lit(n). An assignment which sets q to true satisfies nodes 2, 8 and falsifies node 4
in Fig. 1(b).

– We say an assignment σ satisfies (falsifies) a path π ∈ G(φ) iff σ satisfies (fal-
sifies) every node on π. For example, in Fig. 1(b) path 〈5, 6, 8〉 is satisfied by an
assignment which sets p to false and r, q to true. The same path is falsified by an
assignment which sets p to true and r, q to false. We say that a path π ∈ G is satis-
fiable iff there exists an assignment which satisfies π. In Fig. 1(b), path 〈5, 6, 8〉 is
satisfiable, while the path 〈2, 3, 4〉 is not satisfiable due to conflicting nodes 2,4.

Recall, that an rl-path in a vpgraph Gv(φ) corresponds to a vertical path in the vh-
pform of φ. Similarly, an rl-path in a hpgraph Gh(φ) corresponds to a horizontal path
in the vhpform of φ. The following corollaries adapt Theorem 1 and Theorem 2 to the
graph representations of the vhpform of a given formula φ.

Corollary 1. An assignment σ satisfies φ iff there exists a rl-path π in Gv(φ) such that
σ satisfies π.

Corollary 2. An assignment σ falsifies φ iff there exists a rl-path π in Gh(φ) such that
σ falsifies π.

The following corollary is a re-statement of corollary 1.

Corollary 3. φ is satisfiable iff there exists a rl-path π in Gv(φ) which is satisfiable.

The following corollary connects the notion of conflicting nodes with the satisfiability
of a path.

Corollary 4. A path π in G(φ) is satisfiable iff no two nodes on π are conflicting.

Discovery of unit literals from hpgraph: Modern SAT solvers operating on a cnf rep-
resentation employ a unit literal rule for efficient Boolean constraint propagation. The
unit literal rule states that if all but one literal of a clause are set to false, then the
un-assigned literal in the clause must be set to true under the current assignment. In
our context the input formula is not necessarily represented in cnf, however, it is still
possible to obtain the unit literal rule via the use of the hpgraph of a given formula. The
following claim states the unit literal rule for the non-clausal formulas.
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Input: vpgraph Gv(φ) = (V, R,L, E, Lit) and hpgraph Gh(φ) = (V ′, R′, L′, E′, Lit′)
Output: If Gv(φ) has a satisfiable rl-path return SAT, else return UNSAT
Algorithm:
1: st ← R //push all roots in Gv(φ) on stack st
2: σ ← ∅ //initial truth assignment is empty
3: ∀n ∈ V : mrk(n) ← false //all nodes are un-marked to start with
4: while (st �= ∅) //stack st is not empty
5: m ← st.top() // top element of stack st
6: if (mrk(m) == false) //can we extend current r-path CRP with m
7: if (conflict == prune()) //check if taking m causes conflict
8: learn() //compute reason for conflict and learn
9: backtrack () //non-chronological backtracking
10: continue //goto while loop (line 4)
11: end if
12: mrk(m) ← true //extend current satisfiable r-path with m
13: σ ← σ ∪ {Lit(m)} //add Lit(m) to current assignment
14: if (m ∈ L) //node m is a leaf
15: return SAT //we found a satisfiable rl-path in Gv(φ)
16: else
17: push all children of m on st //try extending CRP〈m〉 to reach a leaf
18: end if
19: else //backtracking mode
20: backtrack () //non-chronological backtracking
21: end if
22: end while
23: return UNSAT //no satisfiable rl-path exists in Gv(φ)

Fig. 2. Searching a vpgraph for a satisfiable rl-path

Corollary 5. Let an assignment σ falsify all but a subset of nodes Vs on an rl-path π
in Gh(φ). If all nodes in Vs contain the same literal l and l is not already assigned by
σ, then l must be set to true under σ in order to obtain a satisfying assignment.

The above corollary follows from Theorem 3(b). Intuitively, each rl-path in the hpgraph
corresponds to a clause in the cnf of a given formula. Thus, at least one literal from each
rl-path in Gh(φ) must be satisfied in order to obtain a satisfying assignment.

Example: Consider the hpgraph shown in Fig. 1(c) and an assignment σ which sets p, q
to false and s to true. σ falsifies all but node 6 on the rl-path 〈1, 2, 6, 7〉 in the hpgraph.
It follows from Corollary 5 that Lit(6) which is r must be set to true under σ.

4 Top Level Algorithm

In order to check the satisfiability of a nnf formula φ, we obtain a vpgraph Gv(φ).
From Corollary 3 it follows that φ is satisfiable iff Gv(φ) has a satisfiable rl-path. At
a high level our search algorithm enumerates all possible rl-paths until a satisfiable
rl-path is found. If no satisfiable rl-path is found, then φ is unsatisfiable. For dnf (or
dnf-like) formulas the number of rl-paths in vpgraph is small, linear in the size of the
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Fig. 3. (a) Current r-path or CRP in a vpgraph. (b) Can CRP be extended by node m? (c) Back-
tracking from node m. (d) vpgraph for formula (a ∨ c) ∧ (b ∨ ¬a) ∧ (¬a ∨ ¬c).

formula, and therefore the basic search algorithm is efficient. However, for formulas
that are not in dnf form, the algorithm of just enumerating all rl-paths in Gv(φ) does not
scale. We have adapted several techniques found in modern SAT solvers such as search
space pruning, conflict driven learning, non-chronological backtracking to make the
search efficient. Search space pruning and conflict driven learning will be described in
detail in the following sections. Due to space restriction we present non-chronological
backtracking in a detailed version of this paper available at [3].

The high level description of the algorithm is given in Fig. 2. The input to the algo-
rithm is a vpgraph Gv(φ) = (V,R, L,E, Lit) and a hpgraph Gh(φ) = (V ′, R′, L′, E′,
Lit′) corresponding to a formula φ. If Gv(φ) contains a satisfiable rl-path, then the
algorithm returns SAT as the answer. Otherwise, φ is unsatisfiable and the algorithm
returns UNSAT. The algorithm uses the hpgraph Gh(φ) in various sub-routines such as
prune and learn. The following data structures are used:

• st is a stack. It stores a subset of nodes from V that need to be explored when
searching for a satisfiable rl-path in Gv(φ). Initially, the roots in Gv(φ) are pushed
on the stack st (line 1). Let st.top() return the top element of st. We write st as
[n0, . . . , nk] where the top element is nk and the bottom element is n0.

• σ stores the current truth assignment as a set. Each element of σ is a literal which is
true under the current assignment. It is ensured that σ is consistent, that is, it does
not contain contradictory pairs of the form l and ¬l. Initially, σ is the empty set
(line 2). For example, an assignment which sets variables a, b to true and c to false
will be denoted as {a, b,¬c}.

• mrk maps a node in V to a Boolean value. It identifies an r-path in Gv(φ) which
is currently being considered by the algorithm to obtain a satisfiable rl-path (see
Fig. 3(a)). We refer to this r-path as the current r-path (CRP for short). Intuitively,
mrk(n) is true for nodes that lie on CRP (n ∈ CRP) and false for all other nodes
in Gv(φ). More precisely, the CRP is obtained by removing every node n from
the stack st for which mrk(n) is false. The remaining nodes constitute the CRP.
Initially, mrk(n) is set to false for every node n (line 3), thus, CRP is empty.
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Example: The vpgraph for the formula φ = (a ∨ c) ∧ (b ∨ ¬a) ∧ (¬a ∨ ¬c) is shown
in Fig. 3(d). Initially, we have st as [2, 1] where the top element of the stack is 1,
σ = ∅, mrk(n) = false for all n ∈ {1, 2, 3, 4, 5, 6}. Suppose during the execu-
tion of the algorithm we have st as [2, 1, 4, 3, 6, 5], and mrk(1),mrk(3) are true and
mrk(n) = false for n ∈ {2, 4, 5, 6}. Thus, CRP is 〈1, 3〉. Observe that CRP is an
r-path. Intuitively, the algorithm tries to extend CRP by one node at a time, to obtain a
satisfiable rl-path. In this case CRP can be extended to obtain two rl-paths π1 = 〈1, 3, 5〉
or π2 = 〈1, 3, 6〉. However, only π2 is satisfiable (by σ = {a, b,¬c}) and is enough to
show that φ is satisfiable.

The main part of the algorithm is the while loop (lines 4-22) which executes as long
as st is not empty and the algorithm has not returned SAT on line 15. The algorithm
maintains the following loop invariant.

Loop invariant: At the beginning of iteration number i of the while loop: let the
current r-path (CRP) be 〈n0, . . . , nk〉. Then the assignment σ is equal to {Lit(ni)|ni ∈
CRP}. That is, σ satisfies each node on CRP and thus, σ satisfies CRP. For example,
suppose CRP is 〈1, 3〉 in the vpgraph shown in Fig. 3(d), then σ will be {a, b}.

If st is not empty, then the top element of the stack (denoted by m) is considered in
line 5. There are two possibilities for node m according to the if statement in line 6.

•mrk(m) is false : In this case the algorithm checks if the current r-path CRP can be
extended by node m as shown in Fig. 3(b). This check is carried out by a call to prune
(line 7). If prune returns conflict, then the current r-path extended by node m
cannot lead to a satisfiable rl-path. Thus, the solver needs to backtrack from node m,
and if possible extend CRP by some other node. This is done by calling backtrack
on line 9 and going back to while loop (line 4) by using continue (line 10). Before
backtracking a call to learn (line 8) is made which summarizes the reason for the con-
flict when CRP is extended by m. This reason is learned in form of a clause and is used
later to avoid similar conflicts. We denote CRP concatenated with m as CRP〈m〉. De-
pending upon the reason why there is no satisfiable rl-path with CRP〈m〉 as prefix, the
backtrack routine can pop several nodes from st (non-chronological backtracking)
instead of just popping m from st.

If a call to prune results in no-conflict (line 7), then m can extend CRP. In
this case execution reaches line 12. At line 12 mrk(m) is set to true, which means that
the new current r-path is CRP concatenated with m, that is, CRP〈m〉. The algorithm
maintains the loop invariant that the assignment σ satisfies the current r-path. In order
to maintain this invariant σ now needs to satisfy node m which is on the current r-path
CRP〈m〉. This is done by adding Lit(m) to σ (line 13). If m is a leaf in the vpgraph,
then CRP〈m〉 is a satisfiable rl-path. In this case SAT is returned (lines 14-15). If m is
not a leaf, then the children of m are pushed on the stack (line 17). The algorithm will
next attempt to extend the current r-path CRP〈m〉.
•mrk(m) is true : This happens when the current r-path is of the form 〈n0, . . . , nk,m〉.
Intuitively, the algorithm has explored all possible rl-paths with 〈n0, . . . , nk,m〉 as pre-
fix, but none of them leads to a satisfiable rl-path as shown in Fig. 3(c). The algorithm
now backtracks from node m by calling backtrack on line 20 . Depending upon the
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reason why there is no satisfiable rl-path with 〈n0, . . . , nk,m〉 as prefix, the algorithm
can pop several nodes from st instead of just popping m.

For each node n removed from the stack during backtracking (lines 9, 20) mrk(n)
is set to false again. This enables the removed nodes to be examined again on rl-paths
which have not yet been explored.

5 Search Space Pruning

This section describes the procedure prune called in the non-clausal SAT algorithm
shown in Fig. 2 (line 7). A call to prune checks if the current r-path CRP can be ex-
tended by node m or not, as shown in Fig. 3(b). Intuitively, prune returns conflict
if there cannot be a satisfiable rl-path in vpgraph Gv(φ) with CRP〈m〉 as prefix. When
prune is called, the current r-path CRP is satisfied by assignment σ, which is equal to
{Lit(n)|n ∈ CRP} (maintained as a while loop invariant in the top level algorithm
shown in Fig. 2). The three cases when conflict is returned are as follows:

Case 1: When CRP〈m〉 is not satisfiable. This happens when there is a node n on CRP
such that Lit(n) = ¬Lit(m). In this case no assignment can satisfy the r-path CRP〈m〉
(Corollary 4). For example, in the vpgraph shown in Fig. 4(a) this conflict arises when
the CRP is 〈1, 3〉 and m is node 5.

Otherwise, CRP〈m〉 is satisfiable and σ′ = σ ∪ {Lit(m)} satisfies CRP〈m〉. How-
ever, it is still possible that there is no satisfiable rl-path in Gv(φ) with CRP〈m〉 as
prefix. These cases are described below.

Case 2 (Global conflict): When σ′ falsifies φ. In this case no satisfiable rl-path in
Gv(φ) can be obtained with CRP〈m〉 as prefix. We prove this claim by contradiction.
Assume that there is an rl-path π in Gv(φ) which has CRP〈m〉 as prefix and is satisfi-
able. By definition there exists an assignment σ′′ which satisfies π. From Corollary 1
we know that σ′′ satisfies φ. In order to satisfy π, σ′′ must satisfy CRP〈m〉. That is,
σ′′ must contain Lit(n) for every n ∈ CRP〈m〉. Since σ′ = {Lit(n)|n ∈ CRP〈m〉}, it
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follows that σ′ ⊆ σ′′. But σ′ falsifies φ and hence σ′′ must falsify φ. This leads to a
contradiction.

Example: In Fig. 4(b) vpgraph for formula φ := (a∨c)∧((b∧u)∨(d∧v))∧(¬a∨¬b)
is given. Consider the case when CRP is 〈1〉 and σ = {a}. The algorithm checks if
CRP can be extended by node 3 (m = 3). Using our notation σ′ = {a, b}. Observe
that σ′ falsifies φ by substituting a = true, b = true in φ. There are two rl-paths
π1 := 〈1, 3, 5, 7〉, π2 := 〈1, 3, 5, 8〉 in the vpgraph shown in Fig. 4(b) which have 〈1, 3〉
as prefix. Neither of these rl-paths is satisfiable: π1 is not satisfiable due to conflicting
nodes 1, 7 and π2 is not satisfiable due to conflicting nodes 3, 8.

Detection of global conflict: We use Corollary 2 to check if σ′ falsifies φ. We check if
there is an rl-path π in Gh(φ) such that σ′ falsifies π. Continuing the above example,
the hpgraph corresponding to φ is shown in Fig. 4(c). Observe that σ′ = {a, b} falsifies
the rl-path 〈7, 8〉 in Fig. 4(c). Thus, using Corollary 2, it follows that σ′ falsifies φ.

If there is no global conflict, then the set of implied assignments can be found by the
application of unit literal rule on Gh(φ) as described in Corollary 5.

Case 3 (Local conflict): This conflict arises when every rl-path in Gv(φ) with CRP〈m〉
as prefix contains two nodes which are conflicting and one of the conflicting nodes
lies on CRP〈m〉. Formally, this conflict arises when for every rl-path π in Gv(φ) with
CRP〈m〉 as prefix there exist two nodes k, l ∈ π and k ∈ CRP〈m〉 such that Lit(k) =
¬Lit(l). From Corollary 4, it follows that any rl-path π containing conflicting nodes is
not satisfiable. Thus, when a local conflict occurs no rl-path in Gv(φ) with CRP〈m〉 as
prefix is satisfiable. Whenever there is a global conflict (case 2 above) there is also a
local conflict, however, the reverse need not hold as shown by the example below.

Example: In Fig. 4(d) the vpgraph for formulaφ := (a∨c)∧((b∧u∧(¬a∨¬b))∨(d∧v))
is shown. Consider the case when CRP is 〈1〉 and m is node 3 (m = 3). Using our earlier
notation σ′ = {a, b}. Note that σ′ does not falsify φ, which means there is no global
conflict. There are two rl-paths 〈1, 3, 5, 7〉, 〈1, 3, 5, 8〉 in the vpgraph shown in Fig. 4(d)
which have 〈1, 3〉 as prefix. Both of these rl-paths contain two conflicting nodes, nodes
1,7 are conflicting on 〈1, 3, 5, 7〉 and nodes 3,8 are conflicting on 〈1, 3, 5, 8〉. Thus, there
is a local conflict and the solver needs to backtrack from node m = 3.

Detection of global and local conflicts can be done in linear time as described in a
more detailed version of this paper available at [3]. Depending upon the type of conflict
(global or local) we perform global or local learning as described below.

6 Learning

Learning records the cause of a conflict. This enables the preemption of similar conflicts
later on in the search. In the following, a clause will refer to a disjunction of literals. A
clause C is conflicting under an assignment σ iff all literals in C are falsified by σ. If a
clause C is not conflicting under an assignment σ, we say C is consistent under σ. We
distinguish between two types of learning:

Global learning: A globally learned clause is a clause whose consistency must be
maintained irrespective of the current search state, which is given by the current
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r-path CRP (and assignment σ = {Lit(n)|n ∈ CRP}). That is, whenever a globally
learned clause becomes conflicting under σ the solver abandons the current search state
and backtracks. A globally learned clause is generated from a conflicting clause. A
conflicting clause C arises in two cases as described below.

1) When analyzing global conflicts as described in the previous section. When a global
conflict occurs there is an rl-path π in hpgraph Gh(φ) which is falsified by the assign-
ment σ currently under consideration. The set of literals corresponding to the nodes on
π gives us a clause C :=

∨
n∈π(Lit(n)). Observe that C is a conflicting clause, that is,

all literals occurring in C are set to false under the current assignment.

Example: The hpgraph corresponding to φ := (a∨c)∧((b∧u)∨(d∧v))∧(¬a∨¬b) is
shown in Fig. 4(c). A global conflict occurs when the current assignment is σ = {a, b},
that is, σ falsifies φ. In this case the rl-path in the hpgraph which is falsified by σ is
〈7, 8〉. Thus the required conflicting clause is ¬a ∨ ¬b.
2) When all literals of an existing globally learned clause C become false.

Once a conflicting clause C is obtained, we perform a 1-UIP (first unique implication
point) analysis [19] to obtain a learned clause C′. Clause C′ is added to the database
of globally learned clauses. In order to perform 1-UIP analysis we maintain a notion of
a decision level. We associate a decision level dec(n) with each node n in the current
r-path CRP. We also maintain a set of implied literals at each node (or decision level)
along with the reason (set of variable assignments) which led to the implication. We
follow the same algorithm as in [19] to perform the 1-UIP learning.

Local learning: A locally learned clause is associated to a node n in the vpgraph when
a local conflict occurs at n. Suppose C is a locally learned clause at node n. Then the
consistency of C needs to be maintained only when n is part of the current search state,
that is, n ∈ CRP. If n does not lie on CRP, then the consistency of C is irrelevant. This is
in contrast to a globally learned clause whose consistency must always be maintained.

Example: Consider the local conflict which occurs in the vpgraph in Fig. 4(d) when
CRP is 〈1〉 and it is checked if CRP can be extended by m = 3. In this case every
rl-path in vpgraph with 〈1, 3〉 as prefix contains two conflicting nodes one of which lies
on 〈1, 3〉. The rl-path 〈1, 3, 5, 7〉 has conflicting nodes 1,7 and the rl-path 〈1, 3, 5, 8〉 has
conflicting nodes 3,8. In this case a clause Lit(7) ∨ Lit(8) = ¬a ∨ ¬b can be learned
at node 3. Intuitively, when we consider extending the CRP with node m the (locally)
learned clauses at node m must be consistent with the assignment σ = {Lit(n)|n ∈
CRP〈m〉}. Otherwise, a local conflict will occur at m causing the solver to backtrack.
Having learned clauses at node m avoids repeating the work done in detecting the same
local conflict. For the vpgraph in Fig. 4(d), when CRP is 〈2〉 and m = 3, σ = {c, b}
is consistent with the learned clause ¬a ∨ ¬b at node 3, thus, the solver cannot get the
same local conflict at node 3 as before (when CRP was 〈1〉 and m = 3).

If a local conflict occurs when extending CRP by node m, then a clause is learned at
node m as follows: For each rl-path π having CRP〈m〉 as prefix let ω1(π), ω2(π) denote
the pair of conflicting nodes on π. Without loss of generality assume that ω1(π) lies on
CRP〈m〉. Then the learned clause C at node m is given by

∨
π Lit(ω2(π)). Consistency

of C must be maintained only when considering rl-paths passing through m.
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Table 1. Comparison between SatMate, MiniSat, BerkMin, Siege, zChaff. ”Time” gives total
time in seconds and ”Solved” gives #problems solved within timeout of 600 seconds/problem.

Bench #Probs SatMate MiniSat BerkMin Siege zChaff
-mark Time Solved Time Solved Time Solved Time Solved Time Solved
QG6 256 23266 235 49386 179 46625 184 46525 184 47321 180
QG6* 256 23266 235 37562 211 15975 239 30254 225 45557 186
Mboard 19 4316 12 4331 12 4947 11 4505 12 5029 11
Pigeon 19 5110 11 6114 9 5459 10 6174 9 5483 11

7 Experimental Results

The experiments were performed on a 1.5 GHZ AMD machine with 3 GB of memory
running Linux. The techniques described in the paper have been implemented in a SAT
solver called SatMate [3]. The non-clausal input formula is given in EDIMACS [1] or
ISCAS format. SatMate also accepts cnf inputs in DIMACS format. We compare Sat-
Mate against four state-of-the-art cnf SAT solvers MiniSat version 1.14 [2], BerkMin
version 561 [10], Siege version 4 [4], and zChaff version 2004.5.13 [14].

QG6 benchmarks: The authors of [13] provided us with a benchmark set called QG6
which consists of 256 non-clausal formulas of varying difficulty. These benchmarks
were generated during the construction of classification theorems for quasigroups [13].
The cnf version of these problems was also made available to us by the authors of [13].
The cnf version was obtained by directly expressing the problem of classifying qua-
sigroups into cnf as opposed to the translation of non-clausal formulas into cnf. The
non-clausal versions of these benchmarks have 300 variables and 7500 gates (AND,
OR gates) on average, while the cnf versions have 1700 variables and 7500 clauses
on average. We ran SatMate on the non-clausal formulas and cnf SAT solvers on the
corresponding cnf formulas from QG6 suite.

QG6* benchmarks: We translated the non-clausal formulas from the QG6 suite into
cnf by introducing new variables [15]. The cnf formulas obtained after translation have
7500 variables and 30000 clauses on average. We ran cnf SAT solvers on the cnf formu-
las obtained after translation. Note that we still ran SatMate on the non-clausal formulas.

Mboard benchmarks: encode the mutilated-checkerboard problem.

Pigeon benchmarks: encode the pigeon hole principle with n holes and n+1 pigeons.

Both QG6 and QG6* benchmarks contain a mixture of satisfiable and unsatisfiable
problems. All problems in the Mboard and Pigeon benchmarks are unsatisfiable.

The experimental results are summarized in Table 1. The column ”#Probs” gives the
number of problems in each benchmark set. There was a timeout of 10 minutes per
problem per solver. For each solver we report two quantities: 1) ”Time” is the total
time spent in seconds when solving problems in a given benchmark, including the time
spent (= timeout) for each instance not solved within timeout. 2) ”Solved” gives the
total number of problems that were solved within timeout.
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Table 2. Comparison on individual benchmarks. Timeout is 1 hour per problem per solver.
”Time” sub-column gives time taken in seconds.

Problem SatMate MiniSat BerkMin Siege zChaff
Time Local confs Global confs Time Time Time Time

dnd02 174 23500 15588 1308 1085 1238 TO
brn13 181 20699 20062 1441 1673 1508 TO
icl39 200 22683 14069 TO TO 2629 TO
icl45 TO 4850 72106 TO 2320 1641 TO
q2.14 237 113 15863 23 24 34 88
cache.inv12 58 659 7131 1 1 1 2

Summary of results in Table 1: On QG6 benchmarks SatMate solves around 50 more
problems and it is approximately 2 times faster than the cnf SAT solvers MiniSat, Berk-
Min, Siege, and zChaff. On QG6* benchmarks SatMate performs better than MiniSat,
zChaff, Siege. However, BerkMin outperforms SatMate on QG6* benchmarks. The dif-
ference in the performance of cnf SAT solvers on QG6 and QG6* benchmarks shows
how the differences in the encoding of a given problem to cnf can significantly im-
pact the performance of cnf SAT solvers. The performance of SatMate on Mboard and
Pigeon benchmarks is slightly better than the cnf SAT solvers.

Table 2 summarizes the performance of SatMate and four cnf SAT solvers on various
individual problems. Problems dnd02, brn13, icl39, icl45 are from QG6
benchmark suite. Problems q2.14,cache.inv12 are generated by a verification
tool. The sub-column ”Time” gives the time required for SAT solving (in seconds). For
SatMate we report the number of local conflicts and the number of global conflicts (Sec-
tion 5) in the ”Local confs” and ”Global confs” sub-columns, respectively. A timeout of
1 hour was set per problem. We denote timeout by ”TO”. In case of timeout we report
the number of conflicts just before the timeout for SatMate.

Performance of SatMate is correlated with the number of local conflicts and global
conflicts. A local conflict is a conflict that occurs in a part of a formula and it depends
on the structure of the vpgraph. There is no equivalent of local conflict in cnf SAT
solvers. In cnf SAT solvers a conflict arises when the current assignment falsifies an
original/learned clause which is equivalent to a global conflict. As shown in Table 2 the
number of local conflicts is usually comparable to the number of global conflicts on the
benchmarks where SatMate outperforms cnf SAT solvers. Indeed the performance of
SatMate degrades if no local conflict detection and local learning is done.

8 Conclusion

We presented a new non-clausal SAT solver based on the General Matings approach.
This approach involves the search for a vertical path which does not contain opposite
literals in the vertical-horizontal path form (vhpform) of a given negation normal form
formula. The main challenge in obtaining an efficient SAT solver based on the General
Matings approach is to prevent the enumeration of vertical paths. We presented tech-
niques for preventing the enumeration of vertical paths and graph based representations
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of the vhpform for efficient implementation of these ideas. Experimental results show
that on a class of non-clausal benchmarks our SAT solver has a performance compara-
ble to the current state-of-the-art cnf SAT solvers. Overall, our results show the promise
of the General Matings approach in building SAT solvers.
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Guoqiang Pan, Sanjit Seshia, Volker Sorge for providing us with benchmarks.
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Abstract. “Determinization” of resolution is usually done by a DPLL-
like procedure that operates on partial assignments. We introduce a
resolution-based SAT-solver operating on complete assignments and give
a theoretical justification for determinizing resolution this way. This jus-
tification is based on the notion of a point image of resolution proof. We
give experimental results confirming the viability of our approach. The
complete version of this paper is given in [2].

1 Introduction

The resolution proof system has achieved an outstanding popularity in practical
applications. Since resolution is a non-deterministic proof system, any SAT-
solver based on resolution, one way or another, has to perform its “determiniza-
tion”. In the state-of-the-art SAT-solvers this determinization is based on using
the DPLL procedure [1] that operates on partial assignments. The current par-
tial assignment is extended until a clause is falsified. Then, the DPLL procedure
backtracks to the last decision assignment and flips it. The search performed by
the DPLL procedure can be simulated by so-called tree-like resolution (a special
type of general resolution).

The reason for using partial rather than complete assignments is that by re-
jecting a partial assignment the DPLL procedure may “simultaneously” reject an
exponential number of complete assignments. The premise of such an approach
is that to prove that a CNF formula F is unsatisfiable one has to show that F
evaluates to 0 for all complete assignments.

In this paper, we introduce the notion of a point image of a resolution proof
that questions the premise above. A point image of a resolution proof can be
viewed as an “encryption” of this resolution proof. Given a resolution proof R,
one can always build its point image whose size is at most twice the size of R
(measured in the number of resolution operations). On the other hand, given
a set of points T and a CNF formula F one can use a simple procedure to
test if T is a point image of a resolution proof. If it is, this procedure builds
a resolution proof “specified” by T . This result implies that a resolution proof
that F is unsatisfiable can be “guided” by testing the value of F in a sequence of
points. Moreover, if a CNF formula F has a short resolution proof, the number of
“guiding” points is negligible with respect to the size of the entire search space.

A. Biere and C.P. Gomes (Eds.): SAT 2006, LNCS 4121, pp. 90–95, 2006.
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We introduce a SAT-solver operating on complete assignments that is inspired
by the notion of a point image of resolution proof. The complete version of this
paper is given in [2].

2 Main Definitions

Let F be a CNF formula over a set X of Boolean variables. The satisfiability
problem (SAT) is to find a complete assignment p (called a satisfying as-
signment) to the variables of X such that F (p) = 1 or to prove that such an
assignment does not exist. If F has a satisfying assignment, F is called satisfi-
able. Otherwise, F is unsatisfiable. A disjunction of literals is further referred
to as a clause. A complete assignment to variables of X will be also called a
point of the Boolean space B|X| where B={0,1}. A point p satisfies clause C
if C(p)=1. If C(p)=0, p is said to falsify C.

Let C1 and C2 be two clauses that have opposite literals of a variable xi. Then
the clause consisting of all the literals of C1,C2 except those of xi is called the
resolvent of C1,C2. The resolvent of C1,C2 is said to be obtained by the resolu-
tion operation. Given an unsatisfiable CNF formula F , one can always generate
a sequence of resolution operations resulting in an empty clause. This sequence
of operations is called a resolution proof. The resolution proof system is very
important from a practical of view because many successful SAT-algorithms for
solving “industrial” CNF formulas are based on resolution.

3 Justification of Our Approach

In this section, we give a theoretical justification of our approach.
Let R be a resolution proof that a CNF formula F is unsatisfiable. Let T be a

set of points that has the following property. For any resolvent C of R, obtained
from parent clauses C′ and C′′ there are two points p′ and p′′ of T such that

1. C′(p′) = 0 and C′′(p′′) = 0
2. Points p′ and p′′ are different only in the variable in which clauses C′ and

C′′ are resolved.

Then the set T is called a point image of resolution proof R. The points p′

and p′′ are called a point image of the resolution operation over clauses
C′ and C′′.

Building a point image of a resolution proof. Given a resolution proof R
that F is unsatisfiable, a point image T of R can be built as follows. We start
with an empty set T . Then for every resolution operation from R over clauses
C′ and C′′ we add to T two points p′ and p′′ forming a point image of this
operation (unless p′ and/or p′′ have been added to T before). Clearly, the size
of a set T built this way is at most twice the size of R.

Checking if a set of points is a point image. Given a set of points T and a
CNF formula F , one can test if T is a point image of a resolution proof by the
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following procedure. Let S be a set of clauses that initially consists of the clauses
of F . At each step of the procedure, we pick a pair of clauses C′ and C′′ of S
such that a point image of the resolution operation over C′ and C′′ is in T and
add the resolvent to S unless it is subsumed by a clause of S. This procedure
has three termination conditions. 1) If a point of T satisfies F , then clearly F is
satisfiable and T is not a point image. 2) No new clause can be added to S at
a step of the procedure. This means that T is not a point image of a resolution
proof (because T does not have “enough” points) and so one can not say yet
whether F is satisfiable or not. 3) An empty clause is derived at a step of the
procedure. This means that T is a point image of a resolution proof that F is
unsatisfiable.

The procedure above implies that one can use complete assignments to “guide”
a resolution proof. The size of the “guiding” set T is at most twice as large as
the size of the proof R the set T “guides”.

A proof has a huge number of point images. Let Res be the resolution
operation over clauses C′ and C′′ used in a proof that CNF formula F is un-
satisfiable. The operation Res, in general, has a huge number of point images
because points p′ and p′′ forming a point image of Res are specified only for the
variables of C′ and C′′. For the variables of F that are not in C′ and C′′, points
p′ and p′′ may have arbitrary (but identical) values (because, by definition, p′

and p′′ are different only in the variable in which C′ and C′′ are resolved ).
Since a point image of a resolution proof R is essentially the union of point

images of resolution operations comprising R, the latter has a huge number of
point images. However, not all point images of R are equivalent in the sense that
some images are more regular and so can be more easily built by a deterministic
algorithm. Resolution, being a non-deterministic proof system, does not distin-
guish between different point images of R. On the other hand, the fact that the
“space” of images of R is very rich (and that some images are easier to find
than others) implies that an algorithm operating on complete assignments can
be used for finding resolution proofs.

4 Algorithm Operating on Complete Assignments

In this section, we introduce a resolution-based SAT-solver called FI (Find
Image). Although FI is inspired by the ideas of Section 3 it does not look for a
point image of a resolution proof “directly”. Instead, FI implements a DPLL-
like procedure that operates on complete assignments. Here, we give only a very
high-level picture of FI. A detailed description can be found in [2]. Besides, [2]
explains the relation between the set of points “visited” by FI and the proof FI
builds.

FI operation. Operationally, FI can be viewed as a regular resolution-based
SAT-solver that uses a complete assignment p as an “oracle”. An initial assign-
ment p can be generated randomly or using some heuristic. Let F be the current
CNF formula (consisting of initial and conflict clauses) and M(p) be the set of
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clauses of F falsfiied by p. Then only a variable of a clause from M(p) can
be assigned a value during decision making. If a variable xi is assigned a value
b ∈ {0, 1} (either during decision making or BCP) and the value of xi in p is b,
then value of xi in p is flipped to b. In other words, one can view FI as a regular
SAT-solver in which the choice of variables for decision making is controlled by
a complete assignment that dynamically changes.

Interpretation in terms of complete assignments. The interpretation of
FI above is convenient for “historical” reasons. However, we believe that a much
more fruitful interpretation of FI is as follows. FI operates on complete assign-
ments and so at any step of FI, every variable of the formula is assigned. Instead
of making an assignment to a free variable xi as in DPLL , FI fixes the assign-
ment of xi in p. This fixing means that in all the points p visited later the value
of xi stays the same until the time it is “unfixed”. Unfixing xi in FI corresponds
to unassigning xi in a DPLL-like procedure and making it free again. Only vari-
ables of clauses from the set M(p) can be fixed. FI either fixes the value of a
variable xi that agrees with current point p or it first changes the value of xi in
p and only then fixes it. In the first case, the set M(p) of falsified clauses stays
the same, in the second case it has to be recomputed.

Note, that while a DPLL-like procedure can reproduce the decision-making
of FI, the opposite is not true. Namely, the “overwhelming majority” of search
trees that can be built by DPLL are out of reach for FI because at every step,
FI is limited in the choice of variables that can be used for decision-making.
(In a sense, this extra power of DPLL is due to the fact that DPLL is not an
algorithm, but rather a proof system still containing a lot of non-determinism.)

In [2] we list reasons why FI should be interpreted in terms of complete
assignments. Here we mention only one of them. The underlying semantics of
a DPLL-like procedure operating on partial assignments is that it covers all
the points of the search space. If one considers FI just as a regular DPLL-like
procedure with a particular decision-making “heuristic”, it is hard to explain
why this “heuristic” works. As we mentioned above, the decisions of FI are
extremely limited being controlled by a complete assignment, that is by 1/2n of
the search space. On the other hand, such an explanation can be easily done in
terms of point images of resolution proofs.

5 Advantages of Using Complete Assignments

In Section 3 we gave a very “abstract” justification of using complete assignments
in a resolution based algorithm. In this section, we list more concrete arguments
(that are, in a sense, consequences of this abstract justification) in favor of our
approach. In [2] we substantiate our claims experimentally.

Identifying small unsatisfiable sub-formulas. Current SAT-solvers are of-
ten used for solving huge CNF formulas e.g. in bounded model checking. The
fact that SAT-solvers can efficiently prove the unsatisfiability of a CNF for-
mula F of, say, 1 million variables usually means that there is an unsatisfiable
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sub-formula of a relatively small size (like 10-20 thousand variables). So identi-
fying an unsatisfiable sub-formula is of great practical importance. Let G be an
unsatisfiable sub-formula of F . The advantage of using complete assignments is
that any complete assignment p falsifies at least one clause of G. So at least one
clause of G is always present in M(p) and so clauses from G are always on the
“radar” of FI. On the other hand, a resolution based SAT-solver operating on
partial assignments may spend a lot of time trying to satisfy clauses of F that
are not in G.

Finding clauses that can be resolved. Let C be a clause that contains
variable xi and is falsified by the current point p. Let C′ be a new clause falsified
by the point p′ obtained from p by flipping the value of xi. Then clauses C and
C′ can be resolved in xi. So, FI takes into account the “resolution nature” of
the underlying proof system.

Efficient decision making. When solving large formulas it is very important
to have a decision making procedure that is fast and at the same time manages
to avoid branching on “irrelevant” variables. Making “redundant”decision as-
signments increases time spent on decision-making and may lead to the increase
of redundant assignments made by the BCP procedure. Since the size of M(p) is
much smaller than that of the formula, picking the next variable to be fixed can
be done efficiently. On the other hand, as we mentioned above, new clauses that
appear in the set M(p′) (where p′ is obtained from p by flipping the value of a
variable) can be resolved with clauses of M(p) satisfied by p′. So, by reducing
our choice of variables to those of the clauses falsified by the current point, one
reduces the probability of making assignments to “irrelevant” variables.

Successful use of frequent restarts. FI employs restarts. Instead of gener-
ating a new initial point randomly, FI starts with the last point visited in the
previous iteration. This makes the resolution proof more “coherent” and allows
one to use more frequent restarts successfully.

6 Experimental Results

In this section, we give results of experiments with an implementation of FI.
We compare FI ’s results (in terms of the number of conflicts i.e. backtracks)
with those of Forklift and Minisat. (Many more experimental results can be
found in [2].) Experiments show that although FI is extremely limited in its
decision-making, it is competitive in the number of conflicts with Forklift and
Minisat.

7 Conclusions

We introduce a resolution based SAT-solver FI that operates on complete as-
signments (points). FI is inspired by the fact that a resolution proof can be
specified by a small set of points. Experimental results show the viability of our
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Table 1. Some experimental results

Name # for-
mu-
las

Forklift
#conflicts

Minisat
#conflicts
(#aborted)

FI
#conflicts

Dimacs formulas
aim 72 3,303 3,587 3,256
bf 4 774 383 379
dubois 13 3,062 4,904 3,260
hanoi 2 26,156 65,428 223,040
hole 5 227,102 1,538,350 56,884
ii 41 6,505 4,088 1,254
jnh 49 2,151 2,096 2,069
par16 10 42,934 47,568 70,915
par8 10 304 162 83
pret 8 4,342 6,892 2,942
ssa 8 744 367 348
Velev’s formulas
vliw-sat.1.0 100 679,827 1,413,027 527,416
fvp-unsat.1.0 4 101,991 180,240 92,333
3pipe 4 24,738 66,567 33,856
4pipe 5 125,850 538,932 154,321
5pipe 6 268,463 1,261,229 231,975
6pipe 2 218,461 >470,779(1) 176,067
Some other known formulas
Beijing 16 494,534 > 721,258(1) 106,896
blocksworld 7 2,116 4,732 8,209
bmc 13 54,098 44,195 48,568
bmc1 31 1,033,434 1,326,812 1,568,729
planning 6 29,415 17,153 24,426

approach. Determinization of resolution by operating on complete assignments
seems to be a promising way to design resolution-based SAT-solvers. In [2], we
give the complete version of this paper that contains a more detailed description
of FI and more experimental results.
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Abstract. The restart strategy can improve the effectiveness of SAT
solvers for satisfiable problems. In 2002, we proposed the so-called ran-
dom jump strategy, which outperformed the restart strategy in most
experiments. One weakness shared by both the restart strategy and the
random jump strategy is the ineffectiveness for unsatisfiable problems:
A job which can be finished by a SAT solver in one day cannot not be
finished in a couple of days if either strategy is used by the same SAT
solver. In this paper, we propose a simple and effective technique which
makes the random jump strategy as effective as the original SAT solvers.
The technique works as follows: When we jump from the current position
to another position, we remember the skipped search space in a simple
data structure called “guiding path”. If the current search runs out of
search space before running out of the allotted time, the search can be
recharged with one of the saved guiding paths and continues. Because
the overhead of saving and loading guiding paths is very small, the SAT
solvers is as effective as before for unsatisfiable problems when using the
proposed technique.

1 Introduction

Modern SAT solvers based on the DPLL method can handle instances with
hundreds of thousands of variables and several million clauses. To improve the
chance of solving these problems, in [16], we proposed another technique called
the “random jump strategy” which solves the same problem as the restart strat-
egy [11]: When the procedure stuck at a region of the search space along a search
tree, the procedure jumps to another region of the search space. One major ad-
vantage of the random jump strategy over the restart strategy is that there is no
danger of visiting any region of the search space more than once (except those
nodes appearing in a guiding path).

However, the strategy proposed in [16] may (with a small chance) destroy the
completeness of a SAT solver because of skipped search space: A job which can
be finished by a SAT solver in one day might not be finished in one or two days if
either this strategy or the restart strategy is used by the same SAT solver. In this
paper, we propose a simple technique which makes the random jump strategy
� Supported in part by NSF under grant CCR-0098093.
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effective for both satisfiable and unsatisfiable problems. The technique works as
follows: When we jump from the current search position to another position, we
remember the skipped search space as a “guiding path” [18]. If we have no more
search space left in the current run before running out of the allotted time, we
may load one of the saved guiding paths and start another run of the search.
The procedure stops when either a model is found or when no time left or when
no more guiding paths left. Because the overhead of saving and loading guiding
paths is very small, the SAT solvers are as effective as before for unsatisfiable
problems when using this version of the random jump strategy. While the pro-
posed technique can be used for any combinatorial backtrack search procedures,
to keep the presentation simple, in this paper we will limit the discussion of our
idea on the DPLL method.

We wish to point out that our random jump strategy is different from the
general random jump strategy proposed in [10] in that when we backtrack to
a previously selected literal, we require that the selected literal be set to its
opposite value. This will prevent the selected literal from being assigned the same
value. The strategy proposed in [10] cannot be complete with this requirement;
they require that the literal be unassigned. Since the literal may take the same
value in the next step, some portion of the search will be repeated. Another
difference is that the completeness of their strategy is based on keeping the
lemmas learned from the conflict analysis. The completeness of our strategy
does not depend on the use of lemmas.

2 Random Jump in the DPLL Method

To use the random jump strategy, we divide the allotted search time into, say
eight, equal time intervals and set up a checkpoint at the end of each time slot.
At a checkpoint, we look at (the first few nodes of) the path from the root to the
current node to estimate the percentage of the remaining space. If the remaining
space is sufficiently large, we may jump up along the path, skipping some open
branches along the way. After the jump, we wish that the remaining space is
still sufficiently large.

2.1 Search Space of the DPLL Method

The space explored by a backtrack search procedure can be represented by a tree,
where an internal node represents a backtrack point, and a leaf node represents
either a solution or no solution. The search space explored by the DPLL method
is a binary tree where each internal node is a decision point and the two outgoing
branches are marked, respectively, by the two literals of the same variable with
opposite sign. The case-splitting rule creates an internal node with two children
in the search space. Without loss of any generality, if L is the literal picked at an
internal node for splitting, we assume that the link pointing to the left child is
marked with 〈L, 1〉 (called open link) while the link pointing to the right child is
labeled with 〈L, 0〉 (called closed link). A leaf node in the search space is marked
with either an empty clause (a conflict) or an empty set of clauses (a model).
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We can record the path from the root of the tree to a given node, called
guiding path in [18], by listing the links on the path. Thus, a guiding path is a
list of literals each of which is associated with a Boolean flag [18]. The Boolean
flag tells if the chosen literal has been assigned true only (1) or both true and
false (0). According to [9], the concept of “guiding path” was first introduced in
[6]. However, the name of “guiding path” does not appear in [6] and the literals
used in [6] do not have an associated Boolean flag. For the implementation of
the DPLL method, the current guiding path is stored in a stack.

In addition to the input formula, a DPLL algorithm can also take a guiding
path as input. The DPLL algorithm will use the guiding path for decision literals
until all the literals in the guiding path are used. If a literal is taken from a
closed link, the DPLL algorithm will treat it as having only one (right) child.
We can use guiding paths to avoid repeated search so that the search effort can
be accumulated. For instance, the guiding path (〈x1, 1〉 〈¬x5, 0〉 〈x3, 0〉) tells us
that the literals are selected in the order of x1,¬x5, x3, and the subtree starting
with the path (〈x1, 1〉 〈¬x5, 1〉) is already complete; so is the subtree starting
with (〈x1, 1〉 〈¬x5, 0〉 〈x3, 1〉).

For the standard DPLL method, the backtrack is done by looking bottom-up
for the first open link in the guiding path. If an open link is found, we replace it by
its corresponding closed link and continue the search from there. To implement
the jump, we may skip a number of open links in the guiding path as long as
the remaining search space is sufficiently large.

2.2 Random Jump in the DPLL Method

The random jump strategy is proposed in [16] with the following goals in mind.

– Like the restart strategy, the new strategy should allow the search to jump
out of a “trap” when it appears to explore a part of the space far from a
solution.

– The new strategy will never cause any repetition of the search (except the
few nodes appearing in guiding paths) performed by the original search al-
gorithm.

– The new strategy will not demand any change to the branching heuristic, so
that any powerful heuristic can be used without modification.

– If a search method can exhaust the space without finding a solution, thus
showing unsatisfiability, the same search method with the new strategy
should be able to do the same using the same amount of time.

Suppose the root node is at level 0 and the two children of a level i node are
at level i+ 1. To facilitate the presentation in this section, we assume that each
path of the search tree is longer than three. Under this assumption, there are
eight internal nodes at level 3 and we number the subtrees rooted by these nodes
as T1, T2, ..., T8. To check if the current search position in one of these subtrees,
we just need to check the first three Boolean flags in the current guiding path:
If they are (1, 1, 1), then it is in T1; if they are (1, 1, 0), then it is in T2; ...; if
they are (0, 0, 0), then it is in T8.
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The main idea of our new strategy can be described as follows: Suppose a
search program is allotted t hours to run on a problem. We divide t into eight
time intervals. At the end of time interval i, where 1 ≤ i < 8, suppose the current
search position is in Tj, we say the search is “on time” if j ≥ i and is “late” if
j < i. If the search is on time, we continue the search; if the search is late, then
we say the remaining space is sufficiently large [16]. If this is the case, we may
skip some unexplored space to avoid some traps, as long as we do not skip the
entire Tj. To skip some unexplored space, we simply remove some open links
(bottom up) on the guiding path.

At any checkpoint during the execution of the DPLL method, we can use the
current guiding path to check in which subtree the current position is. Suppose
we are at the end of time interval j and the current search position is still in
T1. The first three links ( they must be open as we are in T1) may or may be
removed, depending on the value of j; all the other open links can be removed.
If j ≥ 4, then the first link can be skipped; if j ≥ 2, then the second link can be
skipped; if j = 1, then the third link can be skipped.

Example 1. Suppose the current guiding path is

(〈l1, 1〉〈l2, 1〉〈l3, 1〉〈l4, 0〉〈l5, 1〉〈l6, 1〉〈l7, 0〉〈l8, 1〉),

and we are at the end of time interval 5. The total number of open links in
this case is 6 and every one can be skipped. In our implementation, a random
number will be picked from {4, 5, 6}. If the chosen number is 4, then four open
links will be removed and 〈l3, 1〉 is called the cutoff link which is the last open
link to be removed. The guiding path after skipping will be (〈l1, 1〉〈l2, 1〉〈l3, 0〉),
where l is the negation of l. The search will use this path to continue the search.
Note that the value of l3 will be set to 0 when using this path.

2.3 Remembering the Skipped Search Space

Of course, it is true that each tree Ti will take different amounts of time to
finish. If T1 needs 99% of total time and the rest trees need only 1%, then we
may skip too much after time interval 1 and become idle once T2, ..., and T8
are exhausted. To avoid the risk of being idle, we may memorize what has been
skipped and this information can be stored as a guiding path.

For the previous example, the cutoff link is 〈l3, 1〉. To remember all the skipped
open links, we just need to replace all the open links before the cutoff link, i.e.,
〈l3, 1〉, by the corresponding closed links. That is, we need to save the following
guiding path:

(〈l1, 0〉〈l2, 0〉〈l3, 1〉〈l4, 0〉〈l5, 1〉〈l6, 1〉〈l7, 0〉〈l8, 1〉).

This example illustrates how to skip a portion of the search space and how
to save the skipped search space. For a more general description of the random
jump strategy with guiding path, and related work, please refer to [17].

In [2], the concept of search signature is proposed to avoid some repeated
search between restarts. At first, the search signature, which is a set of lemmas,
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takes more memory to store than a guiding path. Secondly, lemmas can avoid the
repetition of leaf nodes but cannot eliminate the repeated visitation of internal
nodes at the beginning of a search path before these lemmas become unit clauses.
Because of this reason, their strategy creates bigger overhead than our strategy.

3 Conclusion

We have presented an improvement to a randomization strategy which takes the
allotted run time as a parameter and checks at certain points if the remaining
search space is sufficiently large comparing to the remaining run time; if yes, some
space will be skipped and the skipped space is recorded as a guiding path. Like
the restart strategy, it can prevent a backtrack search procedure from getting
trapped in the long tails of many hard combinatorial problems and help it to find
a solution quicker. Unlike the restart strategy, it never revisits any search space
decided by the original search procedure. Unlike the restart strategy, it does not
lose the effectiveness when working unsatisfiable problems as the overhead of the
strategy is very small and is ignorable.

The motivation behind this research is to solve open quasigroup problems
[14]. Without the random jump strategy, given a week of run time, SATO could
not solve any of the possible exceptions in the theorems in [5,4,13,21]. Four cases
were reported satisfiable in [4] and two cases were found satisfiable in [5]. In [13],
four previously open cases were found satisfiabl; they are: QG3(49), QG3(59),
QG3(512), and QG3(79). With the strategy, SATO solved each of them in less
than a week. This clearly demonstrated the power of the new strategy. Moreover,
since the random jump strategy keeps the completeness of SATO, we are able
to prove that several previously unknown problems have no solutions, including
QG5(18) [14].
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Abstract. Several standard cryptographic hash functions were broken
in 2005. Some essential building blocks of these attacks lend themselves
well to automation by encoding them as CNF formulas, which are within
reach of modern SAT solvers. In this paper we demonstrate effectiveness
of this approach. In particular, we are able to generate full collisions for
MD4 and MD5 given only the differential path and applying a (minimally
modified) off-the-shelf SAT solver. To the best of our knowledge, this is
the first example of a SAT-solver-aided cryptanalysis of a non-trivial
cryptographic primitive. We expect SAT solvers to find new applications
as a validation and testing tool of practicing cryptanalysts.

1 Introduction

Boolean Satisfiability (SAT) solvers have achieved remarkable progress in the
last decade [MSS99, MMZ+01, ES03]. The record-breaking performance of the
state-of-the-art SAT solvers opens new vistas for their applications beyond what
conventionally has been thought feasible. Still, most of the successful real world
applications of SAT solvers belong to the traditional domains of formal verifica-
tion and AI. In this paper we explore applications of SAT solvers to cryptanalysis
of hash functions.

Several applications of SAT solvers to cryptanalysis have been described in
the literature [Mas99, MM00, FMM03, JJ05]. Their strategy can be regarded as
a “head-on” approach, in the sense that they are not using any new or existing
cryptanalytic methods in their attacks. Unsurprisingly, these efforts failed to
produce any attacks of interest to cryptologists.

Despite the previous (arguably unsuccessful) attempts, we are convinced that
SAT solvers could be of use in practical cryptanalysis. Our strategy may be
described as “meet-in-the-middle”: after initial, highly creative work of crypt-
analysts, we are able to delegate the more laborious parts of the attack to the
SAT solver.

Recently, several important cryptographic hash functions were shown to be
vulnerable to collision-finding attacks [WY05, WYY05b]. The original attacks
consisted of several steps each of which involves a lot of bit-tweaking and manual
work. It suffices to say that the attack on the simplest function of the family,
MD4, requires keeping track of as many as 122 boolean conditions.
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In this paper, we show that SAT solvers can be used to automate certain
elements of these attacks. In particular, we demonstrate that SAT solvers may
obviate the need for compiling tables of sufficient conditions and designing clever
message-modifications techniques. Our successful attacks on MD4 and MD5 sug-
gest that SAT solvers could be a valuable addition to cryptanalysts’ toolkit.

The paper is structured as follows. Section 2 is a short primer on theory
and practical constructions of hash functions. Section 3 covers recent attacks on
hash functions; Section 4 presents experimental results of applying SAT solvers
to automation of these attacks. We conclude in Section 5.

2 Theory and Constructions of Hash Functions

Cryptographic hash functions are essential for security of many protocols. Early
applications of hash functions in systems security include password tables
[JKW74] and signature schemes [RSA78, Lam79]; since then virtually any cryp-
tographic protocol uses directly or indirectly a secure hash function as a building
block.

The properties required of a secure hash function differ and often depend on the
protocol in question. Still, the property of being collision-resistant is recognized
as the “gold standard” of security of hash function. The first formal definition
of collision-resistant hash functions (CRHF) was given by Damg̊ard [Dam88]. A
function H is said to be collision-resistant if it is infeasible to find two different
inputs x, y such that H(x) = H(y). Since any compressing function has collisions,
a guarantee of collision-resistance may only be computational.

A first standard hash function, MD4, was designed by Ron Rivest [Riv91];
its strengthened version MD5 followed shortly thereafter [Riv92]. A first NIST-
approved hash function, SHA (Secure Hash Algorithm), adopted the general
structure (and even some constants!) of MD4 [NIS93]; it was withdrawn in 1995
and replaced with a new version, dubbed SHA-1 [NIS95], that differed in one
additional instruction. To avoid confusion, the original SHA is commonly referred
to as SHA-0. As of 2004, two hash functions were in wide-spread (and almost
exclusive) use: MD5 and SHA-1. It is fair to say that all of these functions belong
to one family that shares similar design principles.

Compression function. The basic construction block of CRHFs is a collision-
resistant compression function, which maps a fixed-length input into a shorter
fixed-length output.

The heart of the construction is a block cipher, which is defined as a function
of two inputs E : {0, 1}k × {0, 1}n  → {0, 1}n. Although E(·, ·) compresses its
input by mapping k + n bits into k bits, as is it is trivially invertible. However,
the following trick, called the Davies-Meyer construction, results in a CRHF F
under the assumption that E is an ideal block cipher (i.e., E(x, ·) is an indexed
collection of random permutations on {0, 1}n):

F (M,x) = E(x,M) ⊕M.
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Among several methods for constructing block ciphers, the Feistel ladder is by
far the best-known, being the method of choice for DES. The (unbalanced) Feistel
ladder is a foundation of all block ciphers inside MDx and SHAx families. It is an
iterative method, which consists of two separate components, a key-expansion
algorithm and a collection of round functions. The ladder is parameterized by
the number of rounds r and the size of the state. Assume for concreteness that
the state consists of four 32-bit words (as the case of MD4 and MD5). The state
goes through r rounds of transformation; let the initial, intermediate, and final
states be (ai, bi, ci, di) for i ∈ {0, . . . , r}. The key-expansion algorithm K maps
M to r round keys denoted K(M) = w0,. . . ,wr−1:

K : {0, 1}n  → {0, 1}32 × · · · × {0, 1}32︸ ︷︷ ︸
r times

.

Round functions fi : {0, 1}128  → {0, 1}32 for i ∈ {0, . . . , r−1} are used to update
the state. MD5’s transformation is one example (ki and si are constants):

(ai+1, bi+1, ci+1, di+1) ←
(di, bi + (ai + f(bi, ci, di) + wi + ki) ≪ si, bi, ci).

Notice that the transformation is reversible if the round key wi is known.

Fig. 1. One round of Feistel ladder for MD5 and the Merkle-Damg̊ard construction

Merkle-Damg̊ard paradigm. CRHFs are expected to take inputs of arbitrary
length. A composition of fixed-length compression functions, discussed above,
preserves the collision-resistance property. This method is called the Merkle-
Damg̊ard construction [Mer90, Dam90] (see Figure 1).

Generic Attacks. Generic attacks against hash functions are oblivious to the par-
ticulars of their constructions—they treat hash functions as black-boxes and in
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general provide an upper bound on security of different cryptographic
properties.

We contrast two generic attacks on hash functions. Both attacks find two
messages x �= y such that H(x) = H(y). In the first attack the two messages are
unrestricted, and thanks to the birthday paradox its generic complexity is 2n/2,
where the output length of H is n bits. The goal of the second attack is to find
colliding x and y such that x = y ⊕ δ for some fixed δ. The generic complexity
of this attack is 2n.

Practical hash functions. Following the nomenclature developed above, designs
of MD4, MD5, SHA-0, and SHA-1 hash functions follow the Merkle-Damg̊ard
paradigm, making use of a compression function built via the Davies-Meyer
construction from block ciphers of the unbalanced Feistel ladder-type.

The internal state of the compression function consists of four 32-bit words
(ai, bi, ci, di) for MD4 and MD5 and five 32-bit words (ai, bi, ci, di, ei) for SHA-0
and SHA-1. Since the size of the internal state is also the size of the output
of the hash function, the output length of MD4 and MD5 is 128 bits; SHA-
0 and SHA-1 produce 160-bit outputs. MD4 applies 48 rounds of the Fiestel
transform, MD5 has 64, and SHA-0,1 both use 80 rounds. For details of the
constructions, including the round functions, the key expansion algorithms, and
the constants, omitted in the interest of brevity, we refer the reader to [MvOV96]
or corresponding standards.

Commonly held belief in security of MD5 and SHA-1 had been supported by
a relative absence of attacks on these and related functions. Although a collision
in MD4 was discovered in 1996 [Dob96a], some weaknesses were identified in
MD5 and SHA-0 [dBB94, Dob96b, BC04] and a theoretical attack was known
on SHA-0 [CJ98], no collisions had been found for MD5 and SHA-1 despite more
than ten years of intense scrutiny.

The year 2005 brought about a sea change in our understanding of hash
functions. A new and improved attack on MD4 [WLF+05], collisions for MD5
and SHA-0 [WY05, WYY05b], and a theoretical attack on SHA-1 [WYY05a]
were announced by a group of Chinese researchers led by Xiaoyun Wang in two
consecutive conferences. Independently of them, attacks on SHA-0 and reduced-
round SHA-1 were discovered by Biham et al. [BCJ+05].

Most of these attacks are conceptually simple but their implementations tend
to be extremely laborious. Although there is considerable interest in generalizing
the attacks and applying them in other contexts, the required amount of manual
work may be unsurmountable. We observe that some components of the attacks
may be expressed as CNF formulas and be rather efficiently solved by advanced
SAT solvers.

3 Attacks on Hash Functions

In this section we develop notation and a common framework describing collision-
finding attacks on hash functions.
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3.1 Notation

Throughout this section and in the rest of the paper, whenever we are trying to
find a collision between M = (m0, . . . ,m15) and M ′ = (m′

0, . . . ,m
′
15), variables

wi, ai, bi, ci, di, ei refer to the computation of the compression function on input
M and their primed counterparts w′

i, a
′
i, b

′
i, c

′
i, d

′
i, e

′
i to the computation of the

same function on M ′.
We will be interested in two types of differentials: in respect to XOR and in

respect to difference modulo 232. Define

Δ+ai = ai − a′i (mod 232) and similarly Δ+wi, Δ
+mi, Δ

+bi, . . . [, Δ+ei]

and
Δ⊕ai = ai ⊕ a′i and similarly Δ⊕wi, Δ

⊕mi, Δ
⊕bi, . . . , [Δ⊕ei].

Let
Δ⊕

i = (Δ⊕ai, Δ
⊕bi, Δ

⊕ci, Δ
⊕di, [Δ⊕ei]), and similarlyΔ+

i .

The sequence Δ⊕
0 , Δ

⊕
1 , Δ

⊕
2 , . . . (resp., Δ+

0 , . . . ) is a called a differential path in
respect to the XOR differential (resp., to the difference modulo 232). In the rest
of the paper, ◦ stands for both + and ⊕.

Strictly speaking, the attacks due to Wang et al. fix the exact settings for
most of the differing bits, subsuming both differentials. Our encodings fully use
this information.

3.2 Overview of the Attacks

Conceptually, the attacks on MDx and SHA-0,1 have a lot in common. Most
remarkably, the attacks solve a seemingly harder problem, i.e., finding a 512-
bit message such that H(IV,M) = H(IV,M ◦ δ), where H is the compression
function and δ is fixed.1 As observed earlier, the generic complexity of this attack
(the one that uses the function as a black-box) is 2n, where n = 128 or 160. A
judicious choice of δ and a collection of clever techniques for finding M that take
advantage of the weaknesses of the compression function bring the complexity
of the attack to fewer than 242 evaluations of the hash function.

Conceptually, the attacks consist of four distinct stages.

Stage I. Choose Δ◦m0,. . . ,Δ◦m15.
Stage II. Choose a differential path Δ◦

0,. . . ,Δ
◦
r−1, where r is the number of

rounds (r = 48, 64 or 80).
Stage III. Find a set of sufficient conditions on the message M =(m0, . . . ,m15)
and the intermediate variables ai,. . . ,di that guarantee (with high probability)
that the message pair M , M ′ = (m0 ◦ Δ◦m0, . . . ,m15 ◦ Δ◦m15) follows the
differential path Δ◦

0,. . . ,Δ
◦
r−1.

Stage IV. Choose a message M such that all sufficient conditions hold.
1 Some attacks solve the problem in two steps: they seek to find two messages M0

and M1, and differences δ, δ0, and δ1 such that H(IV, M0) = H(IV, M0 ◦ δ0) ◦ δ and
H(H(IV, M0), M1) = H(H(IV, M0 ◦ δ0), M1 ◦ δ1).
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The attacks may seem counter-intuitive: rather than finding any two messages
that collide under the hash function, we first severely constrain the space of
possible message-pairs by fixing their difference, and by choosing the differential
path we restrict the space of possible solutions even further.

There are two reasons that make this approach work. First, the differential
path is carefully chosen to maximize the probability of a collision. Second, by
deliberately constraining the solution space, we know some important properties
of the solution, which allow us to construct one by an iterative process.

The first stage of the attack is usually done by hand or by applying some
heuristics, such as trying to find a difference with low Hamming weight.

The second stage is the most creative stage of all four.There is fair amount of
flexibility in it, for the curios reason that, as the round functions are non-linear, a
given difference in the input may result in many possible differences in the output.
Ironically, the attack turns the very foundation of security of hash functions—
non-linearity of the round transformation—to its advantage. There are several
constraints imposed on the differential path. First, it must be feasible. Further,
it must be likely and finally it should facilitate the third stage of the attack.

The third stage is tightly coupled with the previous one. Most sufficient con-
ditions naturally follow from the properties of the round function.

The fourth stage is computationally most intensive. Spectacular attacks due
to Wang et al. would not be possible with a breakthrough in this stage. Indeed,
a random pair of messages M and M ′ is very unlikely to follow the differential
path. This is where the recent attacks depart most radically from earlier work.
The idea is to start with an arbitrary message M and then carefully “massage”
it into the differential path. The crucial contribution of Wang et al. was to come
up with a set of tools of fixing errors in the differential path one by one.

We claim that SAT solvers might be very helpful in automating the third and
the fourth stages of the attack. Since the actual attack requires a lot of iterations
between the second stage and the next two, any method that would speed up
testing and validation of differential paths becomes a useful cryptanalytic tool.

3.3 Attacks on MD4 and MD5

The terse exposition of the attacks due to Wang et al. was lacking some details
and very short on intuition. Several papers attempted to explain, fill in omitted
details, correct, improve, and automate these attacks [HPR04, Kli05, Dau05,
BCH06, SO06]. In particular, we refer to Black et al. and Oswald et al. [BCH06,
SO06] for intuition on the discovery process of the differential path for MD4 and
MD5 (Stages I and II of our framework).

For ease of exposition, examples below are given for the attack on MD5
[WLF+05]. Attacks on MD4, SHA-0 and (reduced-round) SHA-1 are similar,
with the main difference being usage of XOR differentials for the SHAx func-
tions instead of differentials in respect to subtraction for MDx.

Stage III of the attacks produces a list of probabilistically sufficient conditions
on the internal variables for the differential path to hold (of the type: lsb of c7
is 0 and the 11th bit of a7 is 1). There are as many as 310 of them; fortunately,
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most of these conditions appear in the first 25 rounds. If all conditions are met,
the differential path is very likely to hold as well.

Successful completion of Stage IV of the attack is ensured by a combination
of single-message and multi-message modification techniques and a probabilistic
argument. More precisely, conditions in the first 16 rounds of MD5 can be fixed
by going from bi+1, chosen to satisfy all conditions, to mi, as follows:

mi ← ((bi+1 − bi) ≫ si) −K
(5)
i − ai − f(bi, ci, di).

This operation is called a single-message modification as it only affects one block
of the message. Unfortunately, if we try to apply this method to correcting errors
in later rounds, we are most likely to introduce new errors in earlier rounds.

Multi-message modifications do just that—they correct errors in the differen-
tial path in rounds beyond 16, by changing several blocks of the message at a
time. The example given in [WY05] and discussed in more details in [BCH06] is
(roughly) the following.

Suppose, we would like to force the msb of b17 be 1. This can be achieved by
modifying w16 = m∗

1 ← m1 + 226. This modification changes the value of b2 to
b∗2 (and, since b2 = c3 = d4 = a5, other values as well), which is where m1 was
used for the first time. To absorb the change, we modify

m∗
2 ← ((b3 − b∗2) ≫ 17) − a2 − f(b∗2, c2, d2) −K

(5)
2 ,

m∗
3 ← ((b4 − b∗3) ≫ 22) − a3 − f(b3, c∗3, d3) −K

(5)
3 ,

m∗
4 ← ((b5 − b∗4) ≫ 7) − a4 − f(b4, c4, d∗4) −K

(5)
4 ,

m∗
5 ← ((b6 − b∗5) ≫ 12) − a∗5 − f(b5, c5, d5) −K

(5)
5 .

As a result, none of the values computed in rounds 1–5 got changed; only the
message blocks m1,. . . ,m5, intermediate variables b2 = c3 = d4 = a5 and b17 =
c18 = d19 = a20 did.

This is a representative example of a multi-message modification method,
although by no means the trickiest. None of this methods expand beyond round
22, and they become progressively more complicated as more message blocks get
affected.

Since as many as 37 conditions cannot be fixed using message modifications,
Wang et al. fall back on the probabilistic method. Since all conditions are satisfied
(heuristically) with probability 2−37, it suffices to apply known message modifi-
cations to random messages 237 times to have a non-trivial chance of generating
a collision. Subsequent papers enriched the toolkit of message modifications, re-
ducing the number of conditions that need to be satisfied probabilistically to
around 30 [Kli05, BCH06].

4 Automation Via SAT Solvers

Arguably, the most annoying aspects of the attacks due to Wand et al. is the need
to keep track of hundreds of conditions with a corresponding code to take care of
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them by means of message modifications. Our approach completely eliminates
this difficulty, as we encode the entire differential path and leave the task of
finding a message satisfying it to the SAT solver.

In this section, we report our preliminary results on using SAT solvers to
implement the attacks due to Wang et al.

Fig. 2. Comparison of Different Solvers on MD5 Instances

To apply SAT solver to cryptanalysis of hash functions, we need to transform
the hash functions’ code into boolean circuits and perform CNF clausification.
We experimented with several boolean circuit implementations for the adders
and multiplexors, and found that different implementations of these primitives
may have some tangible effect on the size of the resulting CNFs and efficiency of
SAT solvers applied to these formulas. In this section, we report results on using
a simple full-adder implementation and a multiplexer implemented with two
AND gate and one OR gate. We found that this combination works reasonably
well in our experiments. For clausification, currently we use the straightforward
Tseitin transformation [Tse68] on the propositional formulas. We believe that
more optimization can be obtained from careful examination of the encoding
process [ES06].

Since we are dealing exclusively with satisfiable instances, we evaluated a num-
ber of stochastic and complete SAT solvers. We found that stochastic
methods were not suitable for this task, which was unsurprising because the
instances were highly structured with complicated interactions among the vari-
ables. For the complete solvers, we experimented with several state-of-the-art
DLL search-based solvers, including the latest versions of ZChaff [MMZ+01],
MiniSAT [ES03], BerkMin [GN02], and Siege [Rya04]. Each solver was tested by
itself and with the SatELite preprocessor [EB05]. Figure 2 gives the average
runtime of these solvers for finding a first solution of MD5. Each data point is
the average of 30 runs with randomly generated IV vectors. The SatELite pre-
processor followed by MiniSat (collectively known as SatELiteGTI) produced
best results, which are reported in this section.

Wang et al.’s attacks on MD4 and MD5. The sizes of the resulting formulas
appear in Table 1.
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Table 1. Applying SAT solvers to MD4, MD5, and SHA-0

Hash Total Modifications Formula
Rnd Manual SAT Vars. Cls

MD4 48 all all 53228 221440
MD5 64 22 46 89748 375176
SHA-0 80 20 35 114809 486185

Fig. 3. Mean running time over 100 runs for MD5

Another information given in Table 1 is the number of rounds for which
SatELiteGTI can find a message satisfying the differential in the median time
of less than 15 min on a PC (3.2GHz PIV, 1Gb RAM) versus the number of
rounds for which manual message modifications techniques are known.

As implied by Table 1, finding a collision in MD4 is easy and usually takes
less than 10 minutes (the median value is approximately 500 s).

Making SatELiteGTI work for the full MD5 is less straightforward. Recall
that for rounds beyond the limits of the message modifications techniques, Wang
et al. use a probabilistic argument, whose running time increases exponentially
with the number of sufficient conditions in the additional rounds. Although the
behavior of SatELiteGTI is more complex, we discover that the best mode of
operation for the solver is to follow exactly the same paradigm! The slowdown
experienced by SatELiteGTI as a function of the number of rounds makes it
more economical to run the solver for n < 64 rounds and than screen the results
for solutions that hold for more rounds. The optimal value for n is 25 rounds.
In other words, n = 25 minimizes the ratio of the number of solutions for the
n-round MD5 produced in one second to the probability that a solution for n
rounds will be a solution for the full MD5.

We modified SatELiteGTIto produce multiple solutions for a single SAT
instance. We observe that finding subsequent solutions is much faster than find-
ing the first solution (the runtime for finding the first solution is shown in Fig-
ure 3). In Figure 4, we plot the number of conflicts encountered between the first
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Fig. 4. Num. of Conflicts for Finding 10000 Solutions in MD5

and the 10000th solution. This graph illustrates the inverse density of solutions
in the boolean space as explored by the SAT solver. For example, at round 25,
on the average the solver encounters about 15 conflicts before finding a solution.
We can generate around 350 solutions per second on our machine. The probabil-
ity that one solution that follows the differential path for 25 rounds will lead to
a collision is approximately 2−27. Finding a solution for the full MD5 (first block
of the attack) takes approximately 100 hours, which is comparable, albeit slower
than an hour on an IBM supercomputer required by the original attack (the
best known attack takes approximately 8 minutes [BCH06]). Finding solutions
for the second block is significantly faster (less than an hour on our PC).

An interesting result of our experiments with SAT solvers is the importance
of having a differential path encoded in the formula. Discovering a differential
part is a difficult process (Stage II of the framework), which ideally should be
automated. Currently, the only method of automatic enumeration of differen-
tial paths is known for MD4 [SO06], extending it to other hash functions is an
open problem. Our experiments with applying SAT solvers to this task were
not very encouraging. Specifically, absent restrictions imposed by the differen-
tial path the SAT solver performs much worse than in the presence of these
restrictions.

Dobbertin’s attack on MD4. We automated Dobbertin’s attack on MD4 [Dob96a],
which is considerably weaker than the more recent attacks. The reader is referred
to Dobbertin’s paper for details of the attack. The most difficult part of Dob-
bertin’s method is finding a solution to a non-linear system of equations defined
by rounds 12–19 of the hash function. He describes an ad hoc iterative process
that starts with a random assignment and then fixes errors four bits at a time. We
observe that this part may be encoded as a CNF formula without doing any addi-
tional transformations. Namely, we translate the rounds 12–19 of the compression
function of MD4 into a CNF formula with 10364 variables and 39482 clauses. In
fact, we may do it in more generality than Dobbertin, by accepting any initial
value for (a12, b12, c12, d12), which simplifies Part 2 of his attack.
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SatELiteGTI finds 222 solutions to the resulting formula in less than one
hour on a PC. This attack is again slower than the original attack, but has the
added benefit of being substantially simpler and conceptually simpler.

Wang et al.’s attack on SHA-0. Translating the first two stages of the attack
due to Wang et al. on SHA-0 into a CNF formula is analogous to the similar task
for MD4 and MD5. The optimal number of rounds after which the probabilistic
method outdoes the solver is 20, after which the probability that a solution re-
sults in a collision is 2−42. The size of the formula for 20 rounds is 29217 variables
and 117169 clauses. Based on several test runs, we estimate that generating a
full collision using SatELiteGTI would require approximately 3 million CPU
hours.

5 Conclusion and Directions for Future Work

In this work, we describe our initial results on using SAT solvers to automate
certain components of cryptanalysis of hash functions of the MDx and SHAx
families. Our implementations are considerably easier (but also slower) than the
originals, since we delegate many minute details of the attacks to the SAT solver.

In particular, our method has no use for sufficient conditions and message-
modification techniques, which are automatically (and implicitly) discovered by
the SAT solver. We conjecture that finding a differential path, a formidable
problem in itself, may be simplified if one is able to quickly test feasibility of the
path without having to compile and consult tables with sufficient conditions.

Our results can be summarized as follows. We are able to launch a complete
attack on MD4 by applying SatELiteGTI to the most straightforward encoding
of a differential path as a CNF formula, finding a solution in less than 10 minutes.
Finding a collision in MD5 follows closely the probabilistic method of Wang et
al.: the SAT solver generates a lot of solutions for truncated MD5, which are then
filtered in order to find a solution for the full hash function. This attack generates
one collision in approximately 100 hours. A successful SAT-solver-aided attack
on SHA-0 is still a theoretical possibility.

We rely in our experiments on an off-the-shelf SAT solver, SatELiteGTI,
with a simple modification to allow generation of multiple solutions. To the
extent of our knowledge, this is a first work that demonstrates the practicality
of using SAT solvers for real cryptanalysis.

This work opens many intriguing possibilities. First, we currently use general-
purpose SAT solvers. Optimizing and specializing them for cryptographic appli-
cations are interesting research directions. For example, one optimization may
take advantage of the fact that many internal signals are likely to be correlated
between the two input messages. Faster SAT solvers may directly translate into
better cryptanalyses.

Second, the primitives studied in this work are restricted to modular addition
and bit-wise boolean operations, which allow simple translation into CNF for-
mulas. Multiplications and table lookups are widely used in construction of other
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cryptographic primitives. It is well known these operations pose a challenge for
SAT solvers. There are some known methods for tackling such operations in a
SAT solver. One approach is to use CAD tools to synthesize lookup table before
translation into CNF [MM00]. Another method consists of rearranging signals
during search to handle arithmetic operations more efficiently [WSK04]. The
effectiveness of these approaches in cryptanalytic context is largely unexplored.

Finally, we observe that the probabilistic method of generating solutions for
truncated hash function and screening them for a complete solution, a necessity
in the case of Wang et al. attacks, might be avoidable in the case of a SAT solver.
Indeed, there are no reasons why SAT solvers should experience a dramatic slow-
down on large formulas compared to the method that uses the same SAT solver
to produce multiple solutions for a shorter formula and test them by substitu-
tion into the longer formula. We find the current behavior counter-intuitive and
amusing.
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Abstract. Many reasoning problems in logic and constraint satisfaction
have been shown to be exponential only in the treewidth of their inter-
action graph: a graph which captures the structural interactions among
variables in a problem. It has long been observed in both logic and con-
straint satisfaction, however, that problems may be easy even when their
treewidth is quite high. To bridge some of the gap between theoretical
bounds and actual runtime, we propose a complexity parameter, called
functional treewidth, which refines treewidth by being sensitive to non–
structural aspects of a problem: functional dependencies in particular.
This measure dominates treewidth and can be used to bound the size
of CNF compilations, which permit a variety of queries in polytime, in-
cluding clausal implication, existential quantification, and model count-
ing. We present empirical results which show how the new measure can
predict the complexity of certain benchmarks, that would have been
considered quite difficult based on treewidth alone.

1 Introduction

The complexity of a number of problems in logic, constraint satisfaction, and
probabilistic reasoning is bounded by the treewidth of their interaction graph
[8,3,9,12]. The interaction graph is an undirected graph, with nodes represent-
ing variables in the given problem, and edges representing direct interactions
between variables. For example, the interaction graph for a CNF contains an
edge between two variables iff they appear in the same clause. Treewidth is a
graph theoretic parameter, which measures the extent to which the graph re-
sembles a tree [12].

Treewidth, however, appears to be too loose of a complexity bound in some
cases. In particular, many problem instances that have large treewidth tend to
be solvable in time and space that is much smaller than predicted by treewidth.
The reason for the discrepancy between theoretical bounds and actual runtime
is due to aspects of a problem structure, in particular determinism, which are
not captured in the interaction graph and, hence, do not factor into the notion
of treewidth. For example, for CNFs, treewidth is insensitive to the particular
literals appearing in a clause, being only a function of the variables appearing
in such a clause.

A. Biere and C.P. Gomes (Eds.): SAT 2006, LNCS 4121, pp. 116–129, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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To bridge some of the gap between theoretical bounds based on treewidth and
actual runtime, we propose in this paper a more refined parameter, which we call
functional treewidth, that is sensitive to other aspects of a problem structure,
beyond its interaction graph. In particular, functional treewidth is based on both
the interaction graph and functional dependencies that are known to hold for
the given problem. A functional dependency is a statement of the form V → V ,
where V is a set of variables and V is a single variable, indicating that each
assignment of values to V implies a particular value for V .

Functional treewidth dominates treewidth and is therefore no easier to com-
pute than treewidth, which is known to be NP–complete [1]. However, we show
in this paper that if a CNF has functional treewidth wf , then it has a compilation
which is exponential only in wf . This compilation is in the form of a determin-
istic, decomposable negation normal form (d-DNNF), which allows a number of
queries to be answered in polytime, including clausal entailment, model count-
ing and existential quantification [7]. In fact, we show that one of the simplest
algorithms for compiling CNFs into d-DNNFs is capable of producing compila-
tions that are only exponential in the functional treewidth. We note here that
these results apply to the compilation of Bayesian networks as well, which can
be reduced to the problem of compiling CNFs into d-DNNFs [5].

This paper is structured as follows. Section 2 introduces the new parame-
ter of functional treewidth. Section 3 discusses the compilation of CNFs into
d-DNNFs, showing the existence of d-DNNFs that are only exponential in func-
tional treewidth. Section 4 presents a method for approximating functional
treewidth, together with experimental results. Section 5 presents further ex-
perimental results, showing how functional treewidth can be used to bound the
size of d-DNNF compilations. Finally, Section 6 closes with some concluding
remarks.

2 Functional Treewidth

The treewidth of an (interaction) graph is usually defined in terms of secondary
structures, such as elimination orders, jointrees1, or dtrees, which can also be
used to drive algorithms whose complexity is only exponential in treewidth.
A number of these definitions are discussed in [6], with polytime transforma-
tions between these structures. We will base our treatment in this paper on
dtrees, since these have been used to drive algorithms for compiling CNFs into
d-DNNFs.

A dtree (decomposition tree) for a CNF Δ is a full binary tree whose leaves
are in one–to–one correspondence with the CNF clauses; see Figure 1. We will
now define the width of a dtree, where the treewidth of CNF Δ is the width of
its best dtree (the one with smallest width). This will also correspond to the
treewidth of the interaction graph for CNF Δ.

1 Jointrees correspond to tree decompositions as known in the graph theoretic
literature.
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Fig. 1. A dtree (left) for the CNF equivalent to (a∨ b ≡ c)∧ (a∧ b ≡ e) and its clusters
(right). The width of this dtree is 3.

Before we define the width of a dtree, we need some additional notation. First,
as is common with binary trees, we will identify a dtree with its root node. And
for a dtree node T , we will use T l and T r to denote the left and right children
of T , respectively. Moreover, for a leaf node T , the variables of T , vars(T ),
are just the variables appearing the clause associated with T . For an internal
node T , vars(T ) = vars(T l) ∪ vars(T r). We will also use vars↑(T ) to denote⋃

T ′ vars(T ′), where T ′ is a leaf node that is not a descendant of T .
The width of a dtree is defined in terms of the clusters of its nodes T ,

cluster(T ). The cluster for a leaf node T is vars(T ). The cluster for an in-
ternal node T is (vars(T l) ∩ vars(T r)) ∪ (vars(T ) ∩ vars↑(T )). The width of a
dtree is then the size of its largest cluster minus one. Figure 1 depicts a dtree
with its clusters, leading to a width of 3.

We will next define functional treewidth for a given CNF and a set of func-
tional dependencies that are known to hold in the CNF. A functional dependency
is a statement indicating that a variable, say, c, is functionally determined by
a set of other variables, say, {a, b}. The functional dependency is denoted by
{a, b}→c in this case. We will also find it useful to define the closure of a set of
variables V under some functional dependencies FD, denoted V+ [11]. This set
includes V and other variable that can be derived using the dependencies FD.
Consider the following dependencies for example:

{a, b} → c,
{b, c} → d,
{d} → e

We then have {a, b}+ = {a, b, c, d, e}, {a}+ = {a} and {d}+ = {d, e}.
The basic intuition behind functional treewidth is that not all instantiations

of a cluster in a dtree are indeed consistent with the given CNF, and that
complexity can be linear in the number of consistent instantiations instead of
all instantiations. Moreover, by reasoning about the functional dependencies
that are known to hold in the CNF, one can bound the number of consistent
instantiations for a given cluster. To provide such a bound, we need the notion
of a (functional) implicant.

Definition 1. Let FD be a set of functional dependencies over variables V, and
let X be a subset of V. We will say that variables I are a minimal implicant for
variables X under FD iff X ⊆ I+ and for any other set of variables J where
X ⊆ J+, we have |I + | ≤ |J + |.
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Fig. 2. Dtree (left) and functional clusters (right)

The importance of minimal implicants is this: if a cluster has a minimal implicant
of size m, then it has no more than 2m instantiations which are consistent with
the given CNF. Note that the identity of the minimal implicant is not essential
for this bound, only its size is.2 Note also that this notion is different from the
notion of a key as employed in database theory in the context of functional
dependencies, where a key for X is an implicant for X that is also a subset
of X.

We are now ready to define functional treewidth.

Definition 2. Let T be a node in a dtree for CNF Δ with functional depen-
dencies FD. A functional cluster for node T , denoted clusterf(T ), is a minimal
implicant for cluster(T ) under dependencies FD.

Figure 2 depicts functional clusters for the dtree introduced in Figure 1.

Definition 3. Let T be a dtree for CNF Δ with functional dependencies FD.
The functional width of dtree T is the size of its maximal functional cluster
minus 1. The functional treewidth of CNF Δ is the functional width of its best
dtree (the one with the smallest functional cluster).

It should be clear that functional treewidth can be no greater than treewidth,
with equality in case the set of functional dependencies is empty. We will show
constructively in the following section that if a CNF Δ has functional treewidth
wf , it must then have a d-DNNF compilation exponential only in wf .

3 The Compilability of CNFs

We will consider in this section the compilability of CNFs into d-DNNFs, which
is a tractable form that supports in polytime queries such as clausal entailment,
model counting, and existential quantification [7]. This tractable form is also
closed under conditioning (the setting of variable values), allowing an exponential
number of queries to be answered each in polytime.

A d-DNNF is a rooted directed acyclic graph in which each leaf node is labeled
with a literal, true or false, and each internal node is labeled with a conjunction
2 If an algorithm is to take advantage of functional dependencies to improve its running

time, the identity of the minimal implicant may matter then.
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Fig. 3. A d-DNNF

Algorithm 1. cnf2ddnnf(T : dtree, α: instantiation): returns a d-DNNF.
1: γ = project(α, context(T ))
2: result = CACHET (γ)
3: if result �= NIL then
4: return result
5: if T is a leaf then
6: result = clause2ddnnf(cnf(T ), α)
7: else
8: result = ∨βcnf2ddnnf (T l, α ∧ β) ∧ cnf2ddnnf (T r, α ∧ β) ∧ β
9: where β ranges over all instantiations of cutset(T )

10: insert CACHET (γ, result)
11: return result

or disjunction; see Figure 3. For any node N in a d-DNNF graph, vars(N)
denotes all propositional variables that appear in the subgraph rooted at N , and
Δ(N) denotes the formula represented by N and its descendants. The nodes in
a d-DNNF have the following two properties:

– Decomposability: vars(Ni) ∩ vars(Nj) = ∅ for any two children Ni and
Nj of an and-node N .

– Determinism: Δ(Ni) is inconsistent with Δ(Nj) for any two children Ni

and Nj of an or-node N .

Algorithm 1 provides a procedure for compiling a CNF into a d-DNNF,
adapted from [4]. We will explain the intuition behind the algorithm shortly,
but we first point out its complexity. If the algorithm is passed a dtree with n
nodes and width w, it will generate a d-DNNF for the corresponding CNF in
O(nw2w) time. The algorithm must initially be called with α being the empty
instantiation.
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Algorithm 2. clause2ddnnf(l1 ∨ . . . ∨ lm: clause, α: instantiation): returns a
d-DNNF for clause (l1 ∨ . . . ∨ lm)|α
1: if m = 1 then
2: return l1|α
3: else if α |= ¬l1 then
4: return clause2ddnnf(l2 ∨ . . . ∨ lm, α)
5: else if α |= l1 then
6: return true
7: else
8: return l1 ∨ (¬l1 ∧ clause2ddnnf(l2 ∨ . . . ∨ lm, α))

The main technique in Algorithm 1 is that of recursive decomposition. Specif-
ically, given a CNF Δ, we partition its clauses into Δl and Δr. If Δl and Δr

share no variables, we can then compile them independently and simply conjoin
the results. Suppose, however, that the two sets turn out to share a variable v.
We will then use what is known as Boole’s or Shannon’s expansion:

Δ = (v ∧Δl|v ∧Δr|v) ∨ (¬v ∧Δl|¬v ∧Δr|¬v),

where Δ|v (Δ|¬v) denotes the process of conditioning, which consists of replacing
the occurrences of variable v by true (false) in Δ. This recursive decomposition
process is then governed by the given dtree, since each dtree node can be viewed
as inducting a binary partition on the clauses below that node.

The algorithm makes use of two sets of variables at each node T . First, is
cutset(T ) which is the set of variables that we must condition on so we can
decompose the clauses below node T , Δ(T ), into those below child T l, Δ(T l),
and those below child T r, Δ(T r). Note that by the time we reach node T in the
recursive decomposition process, the cutsets of all ancestors of node T must be
instantiated. These variables are called acutset(T ), for ancestoral cutset of node
T . Hence, cutset(T ) is defined as vars(T l) ∩ vars(T r) − acutset(T ).

The second set of variables used at node T is context(T ) = acutset(T ) ∩
vars(T ). These are variables that are guaranteed to be set when we recurse on
node T , and that also appear in clauses below T . Any two recursive calls to
node T which agree on the value of variables context(T ) must return equivalent
answers. Hence, the algorithm maintains a cache at each node indexed by the
instantiations of context(T ) to avoid recursing multiple times on the same sub-
problem. We note here that for an internal dtree node T , cutset(T )∪context(T )
is actually the cluster of node T as defined in the previous section.

Before we present the central result in this section, we point out the follow-
ing about Algorithm 1. Figure 4 depicts the d-DNNF substructure that a call
cnnf2dnnf(T, ) will contribute to the final d-DNNF. In particular, for every
instantiation γ of context(T ), Algorithm 1 will produce an OR–node, and for
each instantiation β of cutset(T ) (under a given context instantiation γ), it will
produce an AND–node. In fact, the contributed substructures can be exponen-
tial in the size of cluster(T ). In particular, the call will contribute 2|context(T )|
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Fig. 4. The d-DNNF substructure constructed by cnf2ddnnf (T, α) at node T

OR–nodes, and for each such node, it will contribute 2|cutset(T )| AND–nodes as
children. Since cutset(T ) and context(T ) share no variables by definition, the
size of the contributed structure is then

2|cutset(T )∪context(T )| = 2|cluster(T )|.

Our central result is then as follows.

Theorem 1. If Algorithm 1 is passed a dtree with n nodes, m variables and
functional treewidth wf , it will return a d-DNNF of size O((n + m)2wf

).3

This basically shows that if a CNF Δ has a functional treewidth of wf , then it
must have a d-DNNF compilation of size O((n+m)2wf

). In fact, for cluster(T ),
only instantiations which are consistent with the CNF will contribute structures
to the final d-DNNF compilations, as shown in Figure 4. The proof of Theorem 1
is given in the Appendix.

4 Approximating Functional Treewidth

Determining the functional width of a dtree requires the computation of minimal
implicants, which includes the computation of minimal keys as a special case (a
problem known to be NP-complete [10]). We consider in this section a method
for approximating functional width of a given dtree and present a number of
empirical results, showing its effectiveness.

Our basic method for computing minimal implicants for cluster(T ) is based
on an exhaustive procedure which searches for implicants of increasing sizes, up

3 Alternatively, we can bound the size of produced d-DNNF by O(nw2wf

), where w
is the width of a dtree.
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to size k = |cluster(T )|. This procedure is not practical though given the number
of candidate implicants we need to consider, which is a function of both k and
the number of CNF variables (from which we need to compute an implicant).
We improve this procedure by not involving all CNF variables in the analysis,
but only those that can be reached by traversing the functional dependencies
backward, starting from variables in cluster(T ). We also approximate the pro-
cedure if this is not sufficient by restricting the set of variables from which the
implicant is computed. In particular, we restrict our implicants to the following
sets, with decreasing size: (acutset(T )∪vars(T ))+, (acutset(T )∪ cluster(T ))+,
and cluster(T ). Our method will switch from one approximation to the next
if it examines more than a certain number of candidates, finally giving up and
returning cluster(T ) as the approximation if none of the tried approximations
yield a smaller set. Another approximation technique is to try to find implicants
for cutset(T ) and context(T ) separately, instead of cluster(T ), as that provides
more specific choices for reducing the set of variables from which to draw an
implicant from.

To evaluate the effectiveness of proposed approximations, we experimented
with many benchmarks with abundance of (easily recognizable) functional de-
pendencies. This included various digital circuits from the LGSynth93 suite
(http://www.bdd-portal.org/benchmarks.html), and grid CNFs from [13] which
come with varying degrees of functional dependencies. Table 1 depicts results for
the LGSynth93 suite, showing exponential improvements in the bounds based
on (approximated) functional treewidth compared to those based on (approx-
imated) treewidth. This basically allows us to prove the compilability of cor-
responding CNFs using (approximate) functional treewidth, even though the
CNFs have very large (approximate) treewidths.

Grid networks were defined in [13]. They are N ×N Bayesian networks with
variables denoted Xi,j for 1 ≤ i, j ≤ N , where each variable Xi,j has par-
ents Xi−1,j and Xi,j−1 when the corresponding indices are greater than zero. A
fraction of the nodes, equal to d ratio, is determined by their parents (half of
those nodes determined by both parents and another half by a single parent).
Table 2 depicts results on CNF encodings of grid networks, showing how the
(approximated) functional treewidth gets smaller as we increase the amount of
determinism.

5 Bounding the Size of CNF Compilations

We have evaluated in the previous section the quality of our approximations
for functional treewidth by comparing them to treewidth. In this section, we do
another comparison with the actual size of d-DNNFs computed by cnf2ddnnf.
To be able to perform this comparison, we had to restrict ourselves to problems
whose (approximate) treewidth is manageable (≤ 20) since the time complexity
of cnf2ddnnf is exponential in this treewidth. Hence, our results in this section
are to some extent biased towards problems that are somewhat easy due to the
relatively small clusters involved.
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Table 1. LGsynth93 suite: n is number of clauses, m is number of variables, and a
is the number of clusters for which the functional cluster was not necessarily minimal
(approximated)

cnf w wf dtree nodes m n a time (min)
5xp1 27 8 1563 296 782 35 0.59
5xp1 ok 19 7 1253 255 627 9 0.23
9sym 51 14 2403 442 1202 155 1.89
9sym.scan ok 35 9 2195 439 1098 85 1.44
9symml 31 13 1901 376 951 67 1.03
alu2 55 17 4551 833 2276 686 15.32
apex2.scan ok 47 39 3869 784 1935 322 6.00
C1355 32 26 4775 979 2388 702 11.28
C1908 38 34 3769 770 1885 915 5.80
C2670 29 26 5985 1407 2993 415 11.19
C880 24 24 2949 633 1475 192 1.71
clip 58 12 3881 716 1941 219 6.09
clip ok 29 14 1577 316 789 49 0.49
duke2 66 41 3743 689 1872 375 5.64
e64 83 67 4875 899 2438 633 10.89
ex4p 22 17 4497 1014 2249 197 3.74
f51m 28 12 1853 347 927 49 0.66
frg1 47 25 4541 834 2271 383 11.46
inc 20 7 1483 299 742 14 0.27
rd53 19 10 717 138 359 19 0.15
rd73 37 7 2871 536 1436 168 4.47
rd84 42 22 5331 985 2666 605 12.02
sao2 34 17 1871 346 936 155 1.18
sct 18 11 1293 266 647 45 0.32
sqrt8ml 16 10 1781 363 891 174 1.80
squar5 25 12 885 167 443 62 0.64
term1 45 25 5471 1064 2736 342 8.88
ttt2 22 15 4017 774 2009 192 4.49
vda 101 51 6691 1180 3346 772 31.86
vg2 58 33 4063 748 2032 235 4.72
x4 25 23 5919 1199 2960 281 8.71
z4ml 22 11 1581 294 791 29 0.48

For a set of circuit benchmarks from the suite LGsynth93, we extracted CNFs
together with functional dependencies: for every gate constructing a functional
dependency from its inputs to its output. For every CNF we constructed a dtree
using hypergraph partitioning method [6], approximated its treewidth w and ap-
proximated its functional width wf . Next, we bounded the number of edges that
every node T will contribute to the d-DNNF based on on the size of clusterf(T ).
Using this procedure we got two bounds on the number of d-DNNF edges: a
bound based on structural clusters s-bound, and a bound based on functional
clusters f-bound. We then ran Algorithm 1 and calculated the true number of
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Table 2. Grid networks

N× N d-ratio w wf dtree nodes m n a time (min)
10 × 10 50 15 13 455 100 228 27 0.01
10 × 10 75 15 9 575 100 288 49 0.01
10 × 10 100 15 1 627 100 314 0 0.02
14 × 14 50 21 18 835 196 418 37 0.02
14 × 14 75 21 17 1091 196 546 252 0.06
14 × 14 100 21 1 1295 196 648 0 0.13
18 × 18 50 27 26 1293 324 647 62 0.07
18 × 18 75 27 23 1767 324 884 408 0.19
18 × 18 100 27 1 2155 324 1078 0 0.59
22 × 22 50 33 32 2073 484 1037 138 0.25
22 × 22 75 33 30 2709 484 1355 885 0.63
22 × 22 100 33 1 3269 484 1635 0 1.97
26 × 26 50 39 36 2927 676 1464 229 0.60
26 × 26 75 39 34 3675 676 1838 848 1.74
26 × 26 100 40 1 4569 676 2285 89 6.73
30 × 30 50 46 42 3940 900 1970 319 2.20
30 × 30 75 43 38 5043 900 2522 1682 4.07
30 × 30 100 47 3 6125 900 3063 451 13.10
34 × 34 50 52 49 5083 1156 2542 361 3.23
34 × 34 75 51 47 6536 1156 3268 1950 4.68
34 × 34 100 52 27 7855 1156 3928 1447 48.93

edges in every d-DNNF e-count. Tables 3 and 4 depict the results of our experi-
ments. To make the assessment of the quality of approximations easier, we also
report s/f = s-bound/f-bound and f/e =f-bound/e-count. As f/e approaches 1,
our functional treewidth bounds get closer to the true size of compilation. The
point that is worth noting is that even in the cases where w and wf are quite
close, the bound provided by functional treewidth can still be much smaller than
the one based on treewidth since our bounds are a function of all clusters in the
dtree, not just the largest ones (captured by width).

6 Discussion

We proposed in this paper the notion of functional treewidth, as a complexity
parameter for bounding the size of certain CNF compilations, which permit
polytime queries, such as clausal entailment, model counting and existential
quantification. We have also presented a method for approximating functional
treewidth and applied it to a number of benchmarks, showing its ability to
provide bounds that are exponentially better than those based on treewidth.

Our current and future work on this subject centers around three direc-
tions. First, the development of better approximation algorithms for functional
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Table 3. LGsynth93 suite: A stands for approximate and E for exact value of wf (for
given dtree), n is number of clauses, m is number of variables, s-bound is edge bound
based on structural clusters, f-bound is edge bound based on functional clusters, e-count
is true number of edges in d-DNNF compiled by cnf2ddnnf, s/f = s-bound/f-bound and
f/e =f-bound/e-count, Tc is time to run cnf2ddnnf and Tw is time to calculate wf

cnf A n m s-bound f -bound e-count s/f f/e w wf Tc(s) Tw(s)

5xp1 A 627 255 7066536 26246 21427 269.24 1.22 19 7 4.92 12.30
apex7 A 1147 493 2246904 148576 35994 15.12 4.13 16 11 0.72 48.66
b1 E 66 29 5316 1266 919 4.20 1.38 8 3 0.00 0.05
b12 A 402 174 715024 62318 23887 11.47 2.61 15 11 0.84 2.52
b9 A 551 256 449264 69156 36807 6.50 1.88 15 11 0.20 6.17
bw A 844 337 20659544 25464 19858 811.32 1.28 20 5 37.25 74.20
C17 E 30 17 900 556 355 1.62 1.57 4 3 0.01 0.02
C432 A 946 403 4446852 829182 53043 5.36 15.63 17 15 3.09 51.02
c8 A 1091 444 11843932 431312 98070 27.46 4.40 19 13 16.77 87.19
cc A 302 140 19876 8042 5532 2.47 1.45 8 5 0.05 1.11
cht A 1243 515 310124 44348 32945 6.99 1.35 12 7 0.20 42.72
cm138a A 74 35 3156 1738 1268 1.82 1.37 6 4 0.00 0.06
cm150a A 364 165 28672 8464 6458 3.39 1.31 8 6 0.03 2.55
cm151a A 176 82 12224 4028 3074 3.03 1.31 8 5 0.01 0.48
cm152a A 117 54 14276 5134 2287 2.78 2.24 8 7 0.01 0.19
cm162a A 238 107 15028 6306 4034 2.38 1.56 7 7 0.01 0.80
cm163a A 230 106 13708 5644 3873 2.43 1.46 7 6 0.00 0.75
cm42a E 84 37 4044 1796 1381 2.25 1.30 6 4 0.00 0.08
cm82a A 116 52 5416 2012 1528 2.69 1.32 5 3 0.00 0.17
cm85a A 208 95 16776 6700 3395 2.50 1.97 8 8 0.01 0.64
cmb A 214 97 65912 34124 8020 1.93 4.25 11 11 0.06 0.73
comp A 577 258 50528 21478 10900 2.35 1.97 9 7 0.03 7.45
con1 A 93 45 6812 2678 1608 2.54 1.67 8 6 0.01 0.11
cordic A 533 235 135768 54876 11444 2.47 4.80 12 12 0.11 6.47
count A 641 292 39324 14702 10237 2.67 1.44 7 5 0.03 7.03
cu A 259 110 82200 24388 10918 3.37 2.23 11 10 0.08 0.78
decod E 98 39 8416 2580 1886 3.26 1.37 8 5 0.01 0.09
i1 A 177 95 7289 3733 2559 1.95 1.46 6 5 0.01 0.36
i2 A 1144 657 523620 440606 101623 1.19 4.34 15 15 0.45 38.05
i3 A 774 456 22565 12981 8955 1.74 1.45 5 4 0.02 14.08
i4 A 922 530 42863 25627 16000 1.67 1.60 6 6 0.03 16.81
i5 A 1538 734 171886 69408 45664 2.48 1.52 10 9 0.16 72.16
i6 A 1844 866 285256 97294 25765 2.93 3.78 14 11 0.30 112.70
i7 A 2346 1115 369436 140848 32221 2.62 4.37 13 10 0.30 267.94
inc A 742 299 17985228 37284 27866 482.38 1.34 20 7 15.30 12.98
lal A 643 275 7525122 2263668 68058 3.32 33.26 19 17 3.80 8.98
ldd A 418 162 16931664 1312920 9504 12.90 138.14 20 17 0.63 3.70
majority A 73 33 6300 2280 1709 2.76 1.33 7 5 0.00 0.11
misex1 A 320 135 136812 22928 7852 5.97 2.92 12 10 0.11 1.31
misex2 A 457 194 1153460 294684 36024 3.91 8.18 15 13 0.89 2.95
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Table 4. LGsynth93 suite. Continuation of Table 3.

cnf A n m s-bound f -bound e-count s/f f/e w wf Tc(s) Tw(s)

mux A 501 210 464996 24372 16759 19.08 1.45 13 7 0.31 6.31
o64 A 519 325 20624 10670 7745 1.93 1.38 6 5 0.02 4.89
parity A 257 122 10924 4000 2954 2.73 1.35 5 3 0.00 1.06
pcle A 280 128 16100 6352 4142 2.53 1.53 6 5 0.01 1.06
pcler8 A 344 160 24560 12090 5575 2.03 2.17 7 6 0.03 1.69
pm1 A 270 121 38507 15577 13147 2.47 1.18 10 8 0.03 0.84
rd53 A 279 117 1064492 17360 5431 61.32 3.20 16 10 0.38 1.08
rd73 A 738 300 74425360 34784 26292 2139.64 1.32 22 7 88.98 27.42
sct A 647 266 7146520 364242 60214 19.62 6.05 19 14 4.33 10.19
sqrt8 A 310 131 437540 26908 8566 16.26 3.14 15 10 0.13 1.31
sqrt8ml A 891 363 1389624 62652 14777 22.18 4.24 16 11 1.42 40.03
squar5 A 298 122 275848 8838 6342 31.21 1.39 14 6 0.31 1.31
t481 A 409 172 45598204 7203748 98915 6.33 72.83 21 19 30.67 6.25
tcon E 202 98 9472 3878 2969 2.44 1.31 5 3 0.00 0.41
unreg A 568 264 56284 18402 13415 3.06 1.37 8 6 0.06 4.74
x2 A 223 93 602572 37384 8102 16.12 4.61 15 11 0.41 0.66
xor5 A 115 52 7660 2158 1332 3.55 1.62 6 5 0.00 0.19
z4ml A 791 294 53209456 107650 38650 494.28 2.79 22 11 100.74 31.59

treewidth (there is a long tradition of such approximations for treewidth (see,
e.g., [2]). Next, the development of dtree construction methods which are sensi-
tive to functional dependencies. Note that a dtree with larger width may have
a smaller functional width. This means that a method for constructing dtrees
that minimizes width may miss dtrees which are optimal from a functional width
viewpoint. Finally, the use of functional dependencies in improving the time and
space complexity of compilation algorithms, therefore, allowing bounds on the
running time based on functional treewidth.
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Proof of Theorem 1

Without loss of generality, we will assume that the original CNF Δ is consistent,
and that cnf2ddnnf(T, α) is initially called with α = true.

The proof is based on a number of lemmas, which concern a recursive call
cnf2ddnnf(T, α) to dtree node T , with Δ(T ) denoting the clauses below
node T :

1. Lemma 1: cnf2ddnnf(T, α) returns false if Δ(T )|α is inconsistent.
2. Lemma 2: If Δ ∧ α is consistent, and Δ ∧ α ∧ β is inconsistent for some

instantiation β of cutset(T ), then Δ(T )|αβ is inconsistent and, moreover,
either Δ(T l)|αβ or Δ(T r)|αβ is inconsistent.

3. Lemma 3: If Δ∧α is inconsistent, then there is an ancestor T a of node T for
which Δ ∧ αa is consistent, where αa = project(α, acutset(T a)). Moreover,
Δ ∧ αa ∧ βa is inconsistent for instantiation βa = project(α, cutset(T a)).

The proof is based on the observation that each disjunct on Line 8 of Algo-
rithm 1 corresponds to an instantiation γ ∧ β of cluster(T ) (γ is instantiation
of context(T ) and β is instantiation of cutset(T )). We will prove that the dis-
juncts corresponding to instantiations γ ∧β of cluster(T ) will not be part of the
returned d-DNNF if γ ∧ β is inconsistent with the CNF Δ.

Consider now the call cnf2ddnnf(T, α), and let γ = project(α, context(T )).
If γ∧β is inconsistent with Δ then α∧β is inconsistent with Δ as well. We have
two cases:

1. Δ ∧ α is consistent, but Δ ∧ α ∧ β is inconsistent.
Note that context(T ) contains all variables shared between clauses in Δ(T )
and other clauses. Hence, if Δ ∧ α ∧ β is inconsistent, then Δ(T ) ∧ α ∧ β
is inconsistent. By Lemma 2, Δ(T )|αβ is inconsistent and, moreover, either
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Δ(T l)|αβ or Δ(T r)|αβ is inconsistent. Hence, by Lemma 1, the correspond-
ing disjunct on Line 8 of Algorithm 1 will evaluate to false and will not be
included in the computed d-DNNF.

2. Δ ∧ α is inconsistent (and, hence,Δ ∧ α ∧ β is inconsistent).
By Lemma 3, there is an ancestor T a of node T for which Δ ∧ αa is consis-
tent, where αa = project(α, acutset(T a)). Moreover, Δ∧αa ∧βa is inconsis-
tent for instantiation βa = project(α, cutset(T a)). By Lemma (1), the call
cnf2ddnnf(T a, αa) will return false and, hence, the disjunct on Line 8 of
Algorithm 1 constructed during the call cnf2ddnnf(T, α) will not be part
of the returned d-DNNF.

We will now bound the size of returned d-DNNF, measured by the number
of edges in the d-DNNF. Let cnf Δ have nΔ clauses and m variables, then dtree
TΔ will have nΔ leaf nodes and nΔ − 1 internal nodes. Each internal node T
will contribute ≤ 2|clusterf (T )| disjuncts. Each disjunct will have the following
edges: an edge to the parent OR–node; two edges to the solutions produced
by left and right child; |cutset(T )| edges to the literal nodes corresponding to
the instantiation of the cutset(T ). Thus the total amount of edges contributed
by internal nodes is (an additional factor of 2 appears when we switch from
|clusterf(T )| to wf due to −1 in the definition of wf ):∑

internal node T

(3 + |cutset(T )|) · 2|clusterf (T )| ≤ 2 · 2wf · (3nΔ + m).

Note that
∑

internal node T |cutset(T )| can be bounded either by the number of
variables m (because all the cutsets are disjoint) or by w · nΔ (because none of
the cutsets have the size greater than w).

Each consistent instantiation of the cluster(T ) for leaf T contributes 4 ·
(|var(T ) − acutset(T )| − 1) edges: each uninstantiated variable contributes at
most one AND-node, one OR-node and two literal nodes (except for the last one
contributing one literal node). Thus the total number of edges contributed by
leaf nodes is∑

leaf node T

4 · (|var(T ) − acutset(T )| − 1) · 2|clusterf (T )| ≤ 4m · 2 · 2wf

The result is due to the fact that
∑

leaf node T(|var(T )− acutset(T )|− 1) can be
bounded analogous to

∑
internal node T |cutset(T )|.

Noting that the total number of nodes n in dtree TΔ is equal to 2nΔ − 1,
we conclude that the number of edges in the final compilation produced by
Algorithm 1 is bounded by O((n + m)2wf

).
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Abstract. In the last two decades, modal and description logics have been ap-
plied to numerous areas of computer science, including artificial intelligence,
formal verification, database theory, and distributed computing. For this reason,
the problem of automated reasoning in modal and description logics has been
throughly investigated.

In particular, many approaches have been proposed for efficiently handling the
satisfiability of the core normal modal logic Km, and of its notational variant, the
description logic ALC . Although simple in structure, Km/ALC is computation-
ally very hard to reason on, its satisfiability being PSPACE-complete.

In this paper we explore the idea of encoding Km/ALC -satisfiability into SAT,
so that to be handled by state-of-the-art SAT tools. We propose an efficient en-
coding, and we test it on an extensive set of benchmarks, comparing the approach
with the main state-of-the-art tools available.

Although the encoding is necessarily worst-case exponential, from our exper-
iments we notice that, in practice, this approach can handle most or all the prob-
lems which are at the reach of the other approaches, with performances which are
comparable with, or even better than, those of the current state-of-the-art tools.

1 Introduction

In the last two decades, modal and description logics have been applied to numerous
areas of computer science, including artificial intelligence, formal verification, database
theory, and distributed computing. For this reason, the problem of automated reasoning
in modal and description logics has been throughly investigated (see, e.g., [2,9,6,10]).
Many approaches have been proposed for efficiently handling the satisfiability of modal
and description logics, in particular of the core normal modal logic Km and of its no-
tational variant, the description logic ALC (see, e.g., [2,10,3,4,7,8,1,12]). Notice that,
although simple in structure, Km/ALC is computationally very hard to reason on, as its
satisfiability is PSPACE-complete [6].

In this paper we explore the idea of encoding Km/ALC -satisfiability into SAT, so that
to be handled by state-of-the-art SAT tools. We propose an efficient encoding, with four
simple variations. We test (the four variations of) it on an extensive set of benchmarks,
comparing the results with those of the main state-of-the-art tools for Km-satisfiability
available. Although the encoding is necessarily worst-case exponential (unless PSPACE
= NP), from our experiments we notice that, in practice, this approach can handle most
or all the problems which are at the reach of the other approaches, with performances
which are comparable with, or even better than, those of the current state-of-the-art tools.
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For lack of space, in this short version of the paper we omit the proof of Theorem 1,
the description of the empirical tests and results, and every reference to related work.
All such information can be found in the extended version of the paper [13], which is
publicly downloadable 1.

2 Background

We recall some basic definitions and properties of Km. Given a non-empty set of prim-
itive propositions A = {A1,A2, . . .} and a set of m modal operators B = {�1, . . . ,�m},
the language of Km is the least set of formulas containing A , closed under the set
of propositional connectives {¬,∧} and the set of modal operators in B . Notation-
ally, we use the Greek letters α,β,ϕ,ψ,ν,π to denote formulas in the language of
Km (Km-formulas hereafter). We use the standard abbreviations, that is: “�rϕ” for
“¬�r¬ϕ”, “ϕ1∨ϕ2” for “¬(¬ϕ1∧¬ϕ2)”, “ϕ1 →ϕ2” for “¬(ϕ1∧¬ϕ2)”, “ϕ1 ↔ϕ2” for
“¬(ϕ1∧¬ϕ2)∧¬(ϕ2 ∧¬ϕ1)”, “�” and “⊥” for the constants “true” and “false”. (Here-
after formulas like ¬¬ψ are implicitly assumed to be simplified into ψ, so that, if ψ is
¬φ, then by “¬ψ” we mean “φ”.) We call depth of ϕ, written depth(ϕ), the maximum
number of nested modal operators in ϕ. We call a propositional atom every primitive
proposition in A , and a propositional literal every propositional atom (positive literal)
or its negation (negative literal).

In order to make our presentation more uniform, we adopt from [2,10] the represen-
tation of Km-formulas from the following table:

α α1 α2 β β1 β2 πr πr
0 νr νr

0
(ϕ1 ∧ϕ2) ϕ1 ϕ2 (ϕ1 ∨ϕ2) ϕ1 ϕ2 �rϕ1 ϕ1 �rϕ1 ϕ1

¬(ϕ1 ∨ϕ2) ¬ϕ1 ¬ϕ2 ¬(ϕ1 ∧ϕ2) ¬ϕ1 ¬ϕ2 ¬�rϕ1 ¬ϕ1 ¬�rϕ1 ¬ϕ1

¬(ϕ1 → ϕ2) ϕ1 ¬ϕ2 (ϕ1 → ϕ2) ¬ϕ1 ϕ2

in which non-literal Km-formulas are grouped into four categories: α’s (conjunctive),
β’s (disjunctive), π’s (existential), ν’s (universal).

A Kripke structure for Km is a tuple M = 〈U,L,R1, . . . ,Rm〉, where U is a set of
states, L is a function L : A ×U  −→ {True,False}, and each Rr is a binary relation
on the states of U. With an abuse of notation we write “u ∈ M ” instead of “u ∈ U”.
We call a situation any pair M ,u, M being a Kripke structure and u ∈ M . The binary
relation |= between a modal formula ϕ and a situation M ,u is defined as follows:

M ,u |= Ai, Ai ∈ A ⇐⇒ L(Ai,u) = True;
M ,u |= ¬Ai, Ai ∈ A ⇐⇒ L(Ai,u) = False;
M ,u |= α ⇐⇒ M ,u |= α1 and M ,u |= α2;
M ,u |= β ⇐⇒ M ,u |= β1 or M ,u |= β2;
M ,u |= πr ⇐⇒ M ,w |= πr

0 for some w ∈ U s.t. Rr(u,w) holds in M ;
M ,u |= νr ⇐⇒ M ,w |= νr

0 for every w ∈ U s.t. Rr(u,w) holds in M .

“M ,u |= ϕ” should be read as “M ,u satisfy ϕ in Km” (alternatively, “M ,u Km-satisfies
ϕ”). We say that a Km-formula ϕ is satisfiable in Km (Km-satisfiable from now on) if

1 Available at http://www.dit.unitn.it/˜rseba/sat06/extended.ps
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and only if there exist M and u ∈ M s.t. M ,u |= ϕ. (When this causes no ambiguity,
we sometimes drop the prefix “Km-”.) We say that w is a successor of u through Rr iff
Rr(u,w) holds in M .

The problem of determining the Km-satisfiability of a Km-formula ϕ is decidable and
PSPACE-complete [9,6], even restricting the language to a single boolean atom (i.e.,
A = {A1}) [5]; if we impose a bound on the modal depth of the Km-formulas, the prob-
lem reduces to NP-complete [5]. For a more detailed description on Km— including,
e.g., axiomatic characterization, decidability and complexity results — see [6,5].

A Km-formula is said to be in Negative Normal Form (NNF) if it is written in terms
of the symbols �r, �r, ∧, ∨ and propositional literals Ai, ¬Ai (i.e., if all negations occur
only before propositional atoms in A). Every Km-formula ϕ can be converted into an
equivalent one NNF(ϕ) by recursively applying the rewriting rules: ¬�rϕ=⇒�r¬ϕ,
¬�rϕ=⇒�r¬ϕ, ¬(ϕ1 ∧ϕ2)=⇒(¬ϕ1 ∨¬ϕ2), ¬(ϕ1 ∨ϕ2)=⇒(¬ϕ1 ∧¬ϕ2), ¬¬ϕ=⇒ϕ.

A Km-formula is said to be in Box Normal Form (BNF) [11,12] if it is written in
terms of the symbols �r, ¬�r, ∧, ∨, and propositional literals Ai, ¬Ai (i.e., if no di-
amonds are there, and all negations occurs only before boxes or before propositional
atoms in A). Every Km-formula ϕ can be converted into an equivalent one BNF(ϕ) by
recursively applying the rewriting rules: �rϕ=⇒¬�r¬ϕ, ¬(ϕ1 ∧ϕ2)=⇒(¬ϕ1 ∨¬ϕ2),
¬(ϕ1 ∨ϕ2)=⇒(¬ϕ1 ∧¬ϕ2), ¬¬ϕ=⇒ϕ.

3 The Encoding

We borrow some notation from the Single Step Tableau (SST) framework [10]. We
represent univocally states in M as labels σ, represented as non empty sequences of
integers 1.nr1

1 .n
r2
2 . ... .n

rk
k , s.t. the label 1 represents the root state, and σ.nr represents

the n-th successor of σ through the relation Rr.
Notationally, we often write “( i li) → j l j” for the clause “ j ¬li ∨ j l j”, and

“( i li) → ( j l j)” for the conjunction of clauses “ j( i¬li ∨ l j)”.

3.1 The Basic Encoding

Let A[, ] be an injective function which maps a pair 〈σ,ψ〉, s.t. σ is a state label and ψ
is a Km-formula which is not in the form ¬φ, into a boolean variable A[σ, ψ]. Let L[σ, ψ]
denote ¬A[σ, φ] if ψ is in the form ¬φ, A[σ, ψ] otherwise. Given a Km-formula ϕ, the
encoder Km2SAT builds a boolean CNF formula as follows:

Km2SAT(ϕ) := A[1, ϕ] ∧De f (1, ϕ), (1)

De f (σ, Ai), := � (2)

De f (σ, ¬Ai) := � (3)

De f (σ, α) := (L[σ, α] → (L[σ, α1]∧L[σ, α2]))∧De f (σ, α1)∧De f (σ, α2) (4)

De f (σ, β) := (L[σ, β] → (L[σ, β1]∨L[σ, β2]))∧De f (σ, β1)∧De f (σ, β2) (5)

De f (σ, πr, j) := (L[σ, πr, j ] → L[σ. j, πr, j
0 ])∧De f (σ. j, πr, j

0 ) (6)

De f (σ, νr) :=
〈σ:πr,i〉

((L[σ, νr ] ∧L[σ, πr,i]) → L[σ.i, νr
0]) ∧

〈σ:πr,i〉
De f (σ.i, νr

0). (7)

Here by “〈σ : πr,i〉” we mean that πr,i is the j-th dinstinct πr formula labeled by σ.
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We assume that the Km-formulas are represented as DAGs, so that to avoid the expan-
sion of the same De f (σ, ψ) more than once. Moreover, following [10], we assume that,
for each σ, the De f (σ, ψ)’s are expanded in the order: α,β,π,ν. Thus, each De f (σ, νr)
is expanded after the expansion of all De f (σ, πr,i)’s, so that De f (σ, νr) will generate
one clause ((L[σ, πr,i] ∧L[σ, �rνr

0]) → L[σ.i, νr
0]) and one novel definition De f (σ.i, νr

0) for

each De f (σ, πr,i) expanded.

Theorem 1. A Km-formula ϕ is Km-satisfiable if and only if the corresponding boolean
formula Km2SAT(ϕ) is satisfiable.

Notice that, due to (7), the number of variables and clauses in Km2SAT(ϕ) may grow
exponentially with depth(ϕ). This is in accordance to what stated in [5].

3.2 Variants

Before the encoding, some potentially useful preprocessing can be performed.
First, the input Km-formulas can be converted into NNF (like, e.g., in [10]) or into

BNF (like, e.g., in [3,11]). One potential advantage of the latter is that, when one �rψ
occurs both positively and negatively (like, e.g., in (�rψ∨ ...)∧(¬�rψ∨ ...)∧ ...), then
both occurrences of �rψ are labeled by the same boolean atom A[σ, �rψ], and hence
they are always assigned the same truth value by DPLL; with NNF, instead, the negative
occurrence ¬�rψ is rewritten into �r¬ψ, so that two distinct boolean atoms A[σ, �rψ]
and A[σ, �r¬ψ] are generated; DPLL can assign them the same truth value, creating a
hidden conflict which may require some extra boolean search to reveal.

Example 1 (NNF).
Let ϕnn f be (�A1 ∨�(A2 ∨A3)) ∧ �¬A1 ∧ �¬A2 ∧ �¬A3.2 It is easy to see that
ϕnn f is K1-unsatisfiable. Km2SAT(ϕnn f ) is:

1. A[1, ϕnn f ]
2. ∧ ( A[1, ϕnn f ] → (A[1, �A1∨�(A2∨A3)] ∧A[1, �¬A1] ∧A[1, �¬A2] ∧A[1, �¬A3]) )
3. ∧ ( A[1, �A1∨�(A2∨A3)] → (A[1, �A1]∨A[1, �(A2∨A3)]) )
4. ∧ ( A[1, �A1] → A[1.1, A1] )
5. ∧ ( A[1, �(A2∨A3)] → A[1.2, A2∨A3] )
6. ∧ ( (A[1, �¬A1] ∧A[1, �A1]) →¬A[1.1, A1] )
7. ∧ ( (A[1, �¬A2] ∧A[1, �A1]) →¬A[1.1, A2] )
8. ∧ ( (A[1, �¬A3] ∧A[1, �A1]) →¬A[1.1, A3] )
9. ∧ ( (A[1, �¬A1] ∧A[1, �(A2∨A3)]) →¬A[1.2, A1] )

10. ∧ ( (A[1, �¬A2] ∧A[1, �(A2∨A3)]) →¬A[1.2, A2] )
11. ∧ ( (A[1, �¬A3] ∧A[1, �(A2∨A3)]) →¬A[1.2, A3] )
12. ∧ ( A[1.2, A2∨A3] → (A[1.2, A2] ∨A[1.2, A3]) )

After a run of BCP, 3. reduces to the implicate disjunction. If the first element A[1, �A1] is
assigned, then by BCP we have a conflict on 4.,6. If the second element A[1, �(A2∨A3)] is
assigned, then by BCP we have a conflict on 12. Thus Km2SAT(ϕnn f ) is unsatisfiable. %

2 For K1 formulas, we omit the box and diamond indexes.
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Example 2 (BNF).
Let ϕbn f = (¬�¬A1 ∨¬�(¬A2 ∧¬A3)) ∧ �¬A1 ∧ �¬A2 ∧ �¬A3. It is easy to see
that ϕbn f is K1-unsatisfiable. Km2SAT(ϕbn f ) is:

1. A[1, ϕbn f ]
2. ∧ ( A[1, ϕbn f ] → (A[1, (¬�¬A1∨¬�(¬A2∧¬A3))] ∧A[1, �¬A1] ∧A[1, �¬A2] ∧A[1, �¬A3]) )
3. ∧ ( A[1, (¬�¬A1∨¬�(¬A2∧¬A3))] → (¬A[1, �¬A1] ∨¬A[1, �(¬A2∧¬A3)]) )
4. ∧ ( ¬A[1, �¬A1] → A[1.1, A1] )
5. ∧ ( ¬A[1, �(¬A2∧¬A3)] →¬A[1.2, (¬A2∧¬A3)] )
6. ∧ ( (A[1, �¬A1] ∧¬A[1, �¬A1]) →¬A[1.1, A1] )
7. ∧ ( (A[1, �¬A2] ∧¬A[1, �¬A1]) →¬A[1.1, A2] )
8. ∧ ( (A[1, �¬A3] ∧¬A[1, �¬A1]) →¬A[1.1, A3] )
9. ∧ ( (A[1, �¬A1] ∧¬A[1, �(¬A2∧¬A3)]) →¬A[1.2, A1] )

10. ∧ ( (A[1, �¬A2] ∧¬A[1, �(¬A2∧¬A3)]) →¬A[1.2, A2] )
11. ∧ ( (A[1, �¬A3] ∧¬A[1, �(¬A2∧¬A3)]) →¬A[1.2, A3] )
12. ∧ ( ¬A[1.2, (¬A2∧¬A3)] → (A[1.2, A2]∨A[1.2, A3]) )

Unlike with NNF, Km2SAT(ϕbn f ) is found unsatisfiable directly by BCP. Notice that
the unit-propagation of A[1, �¬A1] from 2. causes ¬A[1, �¬A1] in 3. to be false, so that
one of the two (unsatisfiable) branches induced by the disjunction is cut a priori. With
NNF, the corresponding atoms A[1, �¬A1] and A[1, �A1] are not recognized to be one the
negation of the other, s.t. DPLL may need exploring one boolean branch more. %
Second, the (NNF or BNF) Km-formula can also be rewritten by recursively applying
the validity-preserving “box/diamond lifting rules”:

(�rϕ1 ∧�rϕ2) =⇒ �r(ϕ1 ∧ϕ2), (�rϕ1 ∨�rϕ2) =⇒ �r(ϕ1 ∨ϕ2). (8)

This has the potential benefit of reducing the number of πr,i formulas, and hence the
number of labels σ.i to take into account in the expansion of the De f (σ, νr)’s.

Example 3 (BNF with LIFT).
Let ϕbn f li f t = ¬�(¬A1 ∧¬A2 ∧¬A3) ∧ �(¬A1 ∧¬A2 ∧¬A3). It is easy to see that
ϕbn f li f t is K1-unsatisfiable. Km2SAT(ϕbn f li f t ) is:

1. A[1, ϕbn f li f t ]
2. ∧ ( A[1, ϕbn f li f t ] → (¬A[1, �(¬A1∧¬A2∧¬A3)] ∧A[1, �(¬A1∧¬A2∧¬A3)]) )
3. ∧ ( ¬A[1, �(¬A1∧¬A2∧¬A3)] →¬A[1.1, (¬A1∧¬A2∧¬A3)] )
4. ∧ ( ¬A[1.1, (¬A1∧¬A2∧¬A3)] → (A[1.1, A1] ∨A[1.1, A2] ∨A[1.1, A3]) )

Km2SAT(ϕbn f li f t) is found unsatisfiable by BCP. %
One potential drawback of applying the lifting rules is that, by collapsing (�rϕ1 ∧
�rϕ2) into �r(ϕ1 ∧ϕ2) and (�rϕ1 ∨�rϕ2) into �r(ϕ1 ∨ϕ2), the possibility of sharing
box/diamond subformulas in the DAG representation of ϕ is reduced.

4 Conclusions and Future Work

In this paper (see also the extended version) we have explored the idea of encoding
Km/ALC -satisfiability into SAT, so that to be handled by state-of-the-art SAT tools. We
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have showed that, despite the intrinsic risk of blowup in the size of the encoded formu-
las, the performances of this approach are comparable with those of current state-of-
the-art tools on a rather extensive variety of empirical tests. (Notice that, as a byproduct
of this work, the encoding of hard Km-formulas could be used as benchmarks for SAT
solvers.)

We see many possible direction to explore in order to enhance and extend this ap-
proach. First, our current implementation of the encoder is very straightforward, and
optimizations for making the formula more compact can be introduced. Second, tech-
niques implemented in other approaches (e.g., the pure literal optimization of [12])
could be imported. Third, hybrid approaches between Km2SAT and KSAT-style tools
could be investigated.

Another important open research line is to explore encodings for other modal and
description logics. Whilst for logics like Tm the extension should be straightforward,
logics like S4m, or more elaborated description logics than ALC , should be challenging.
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Abstract. Mutation in DNA is the principal cause for differences among
human beings, and Single Nucleotide Polymorphisms (SNPs) are the
most common mutations. Hence, a fundamental task is to complete a
map of haplotypes (which identify SNPs) in the human population. As-
sociated with this effort, a key computational problem is the inference
of haplotype data from genotype data, since in practice genotype data
rather than haplotype data is usually obtained. Recent work has shown
that a SAT-based approach is by far the most efficient solution to the
problem of haplotype inference by pure parsimony (HIPP), being several
orders of magnitude faster than existing integer linear programming and
branch and bound solutions. This paper proposes a number of key opti-
mizations to the the original SAT-based model. The new version of the
model can be orders of magnitude faster than the original SAT-based
HIPP model, particularly on biological test data.

1 Introduction

Over the last few years, an emphasis in human genomics has been on identify-
ing genetic variations among different people. This allows to systematically test
common genetic variants for their role in disease; such variants explain much of
the genetic diversity in our species. A particular focus has been put on the iden-
tification of Single Nucleotide Polymorphisms (SNPs), point mutations found
with only two possible values in the population, and tracking their inheritance.
However, this process is in practice very difficult due to technological limitations.
Instead, researchers can only identify whether the individual is heterozygotic at
that position, i.e. whether the values inherited from both parents are different.
This process of going from genotypes (which include the ambiguity at heterozy-
gous positions) to haplotypes (where we know from which parent each SNP is
inherited) is called haplotype inference.

A well-known approach to the haplotype inference problem is called Haplo-
type Inference by Pure Parsimony (HIPP). The problem of finding such solu-
tions is APX-hard (and, therefore, NP-hard) [7]. Current methods for solving the
HIPP problem utilize Integer Linear Programming (ILP) [5,1,2] and branch and
bound algorithms [10]. Recent work [8] has proposed the utilization of SAT for
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the HIPP problem. Preliminary results are significant: on existing well-known
problem instances, the SAT-based HIPP solution (SHIPs) is by far the most effi-
cient approach to the HIPP problem, being orders of magnitude faster than any
other alternative exact approach for the HIPP problem. Nevertheless, additional
testing revealed that the performance of SHIPs can deteriorate for larger prob-
lem instances. This motivated the development of a number of optimizations to
the basic SHIPs model, which are described in this paper. The results of the
improved model are again very significant: the improved model can be orders of
magnitude faster on biological test data than the basic model.

2 Haplotype Inference

A haplotype is the genetic constitution of an individual chromosome. The under-
lying data that forms a haplotype can be the full DNA sequence in the region,
or more commonly the SNPs in that region. Diploid organisms pair homologous
chromosomes, and thus contain two haplotypes, one inherited from each parent.
The genotype describes the conflated data of the two haplotypes. In other words,
an explanation for a genotype is a pair of haplotypes. Conversely, this pair of
haplotypes explains the genotype. If for a given site both copies of the haplotype
have the same value, then the genotype is said to be homozygous at that site;
otherwise is said to be heterozygous.

Given a set G of n genotypes, each of length m, the haplotype inference
problem consists in finding a set H of 2·n haplotypes, such that for each genotype
gi ∈ G there is at least one pair of haplotypes (hj , hk), with hj and hk ∈ H
such that the pair (hj , hk) explains gi. The variable n denotes the number of
individuals in the sample, and m denotes the number of SNP sites. gi denotes a
specific genotype, with 1 ≤ i ≤ n. (Furthermore, gij denotes a specific site j in
genotype gi, with 1 ≤ j ≤ m.) Without loss of generality, we may assume that
the values of a SNP are always 0 or 1. Value 0 represents the wild type and value
1 represents the mutant. A haplotype is then a string over the alphabet {0,1}.
Moreover, genotypes may be represented by extending the alphabet used for
representing haplotypes to {0,1,2}. Homozygous sites are represented by values
0 or 1, depending on whether both haplotypes have value 0 or 1 at that site,
respectively. Heterozygous sites are represented by value 2.

One of the approaches to the haplotype inference problem is called Haplotype
Inference by Pure Parsimony (HIPP). A solution to this problem minimizes the
total number of distinct haplotypes used. Experimental results provide support
for this method: the number of haplotypes in a large population is typically very
small, although genotypes exhibit a great diversity.

3 SAT-Based Haplotype Inference

This section summarizes the model proposed in [8], where a more detailed de-
scription of the model (and associated optimizations) can be found. The SAT-
based formulation models whether there exists a set H of haplotypes, with
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r = |H| haplotypes, such that each genotype gi ∈ G is explained by a pair
of haplotypes in H. The SAT-based algorithm considers increasing sizes for H,
from a lower bound lb to an upper bound ub. Trivial lower and upper bounds
are, respectively, 1 and 2 ·n. The algorithm terminates for a size of H for which
there exists r = |H| haplotypes such that every genotype in G is explained by
a pair of haplotypes in H. In what follows we assume n genotypes each with
m sites. The same indexes will be used throughout: i ranges over the genotypes
and j over the sites, with 1 ≤ i ≤ n and 1 ≤ j ≤ m. In addition r candidate
haplotypes are considered, each with m sites. An additional index k is associ-
ated with haplotypes, 1 ≤ k ≤ r. As a result, hkj ∈ {0, 1} denotes the jth site of
haplotype k. Moreover, a haplotype hk, is viewed as a m-bit word, hk 1 . . . hk m.
A valuation v : {hk 1, . . . , hk m} → {0, 1} to the bits of hk is denoted by hv

k.
Observe that valuations can be extended to other sets of variables.

For a given value of r, the model considers r haplotypes and seeks to associate
two haplotypes (which can possibly represent the same haplotype) with each
genotype gi, 1 ≤ i ≤ n. As a result, for each genotype gi, the model uses selector
variables for selecting which haplotypes are used for explaining gi. Since the
genotype is to be explained by two haplotypes, the model uses two sets, a and
b, of r selector variables, respectively sa

ki and sb
ki, with k = 1, . . . , r. Hence,

genotype gi is explained by haplotypes hk1 and hk2 if sa
k1i = 1 and sb

k2i = 1.
Clearly, gi is also explained by the same haplotypes if sa

k2i = 1 and sb
k1i = 1.

If a site gij of a genotype gi is either 0 or 1, then this is the value required
at this site and so this information is used by the model. If a site gij is 0, then
the model requires, for k = 1, . . . , r, (¬hkj ∨ ¬sa

ki) ∧ (¬hkj ∨ ¬sb
ki). If a site

gij is 1, then the model requires, for k = 1, . . . , r, (hkj ∨ ¬sa
ki) ∧ (hkj ∨ ¬sb

ki).
Otherwise, one requires that the haplotypes explaining the genotype gi have
opposing values at site i. This is done by creating two variables, ga

ij ∈ {0, 1}
and gb

ij ∈ {0, 1}, such that ga
ij �= gb

ij . In CNF, the model requires two clauses,
(ga

ij ∨ gb
ij) ∧ (¬ga

ij ∨ ¬gb
ij). In addition, the model requires, for k = 1, . . . , r,

(hkj ∨¬ga
ij ∨¬sa

ki)∧ (¬hkj ∨ga
ij ∨¬sa

ki)∧ (hkj ∨¬gb
ij ∨¬sb

ki)∧ (¬hkj ∨gb
ij ∨¬sb

ki).
Clearly, for each i, and for a or b, it is necessary that exactly one haplotype
is used, and so exactly one selector variable be assigned value 1. This can be
captured with cardinality constraints, (

∑r
k=1 s

a
ki = 1) ∧

(∑r
k=1 s

b
ki = 1

)
. Since

the proposed model is purely SAT-based, a simple alternative solution is used,
which consists of the CNF representation of a simplified adder circuit [8].

The model described above is not effective in practice. Hence a number of
improvements have been added to the basic model. One technique, common to
other approaches to the HIPP problem, is the utilization of structural simplifica-
tions techniques, for reducing the number of genotypes and sites [2,8]. Another
technique is the utilization of lower bound estimates, which reduce the number
of iterations of the algorithm, but also effectively prune the search space. Fi-
nally, one additional key technique for pruning the search space is motivated by
observing the existence of symmetry in the problem formulation. Consider two
haplotypes hk1 and hk2 , and the selector variables sa

k1i, s
a
k2i, s

b
k1i and sb

k2i. Fur-
thermore, consider Boolean valuations vx and vy to the sites of haplotypes hk1
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and hk2 . Then, hvx

k1
and h

vy

k2
, with sa

k1is
a
k2is

b
k1is

b
k2i = 1001, corresponds to h

vy

k1
and

hvx

k2
, with sa

k1is
a
k2is

b
k1is

b
k2i = 0110, and one of the assignments can be eliminated.

To remedy this, one possibility is to enforce an ordering of the Boolean valua-
tions to the haplotypes 1. Hence, for any valuation v to the problem variables
we require hv

1 < hv
2 < . . . < hv

r (see [8] for further details).

4 Improvements to SAT-Based Haplotype Inference

Motivated by an effort to apply the SHIPs model to biological test data, we
were able to identify a number of additional improvements to the basic model.
For difficult problem instances, the run time is very sensitive to the number of g
variables used. The basic model creates two variables for each heterozygous site.
One simple optimization is to replace each pair of g variables associated with a
heterozygous site, ga

ij and gb
ij , by a single variable tij . Consequently, the new set

of constraints becomes, (hkj ∨¬tij ∨¬sa
ki)∧(¬hkj ∨tij ∨¬sa

ki)∧(hkj ∨tij ∨¬sb
ki)∧

(¬hkj ∨¬tij ∨¬sb
ki). Hence, if selector variable sa

ki is activated (i.e. assumes value
1), then hkj is equal to tij . In contrast, if selector variable sb

ki is activated, then
hkj is the complement of tij . Observe that, since the genotype has at least one
heterozygous site, then it must be explained by two different haplotypes, and so
sa

ki and sb
ki cannot be simultaneously activated.

The basic model utilizes lower bounds, which are obtained by identifying in-
compatibility relations among genotypes. These incompatibility relations find
other applications. Consider two incompatible genotypes, gi1 and gi2 , and a
candidate haplotype hk. Hence, if either sa

ki1
or sb

ki1
is activated, and so hk

is used for explaining genotype gi1 , then haplotype hk cannot be used for ex-
plaining gi2 ; hence both sa

ki2
and sb

ki2
must not be activated. The implementa-

tion of this condition is achieved by adding the following clauses for each pair
of incompatible genotypes gi1 and gi2 and for each candidate haplotype hk,
(¬sa

ki1
∨ ¬sa

ki2
) ∧ (¬sa

ki1
∨ ¬sb

ki2
) ∧ (¬sb

ki1
∨ ¬sa

ki2
) ∧ (¬sb

ki1
∨ ¬sb

ki2
).

One of the key techniques proposed in the basic model is the utilization of
the sorting condition over the haplotypes, as an effective symmetry breaking
technique. Additional symmetry breaking conditions are possible. Observe that
the model consists of selecting a candidate haplotype for the a representative and
another haplotype for the b representative, such that each genotype is explained
by the a and b representatives. Given a set of r candidate haplotypes, let hk1 and
hk2 , with k1, k2 ≤ r, be two haplotypes which explain a genotype gi. This means
that gi can be explained by the assignments sa

k1is
a
k2is

b
k1is

b
k2i = 1001, but also by

the assignments sa
k1is

a
k2is

b
k1is

b
k2i = 0110. This symmetry can be eliminated by

requiring that only one arrangement of the s variables can be used to explain
each genotype gi. One solution is to require that the haplotype selected by the
sa

ki variables always has an index smaller than the haplotype selected by the sb
ki

variables. This requirement is captured by the conditions
(
sa

k1i →
∧k1−1

k2=1 ¬sb
k2i

)
1 See for example [4] for a survey of work on the utilization of lexicographic orderings

for symmetry breaking.
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Fig. 1. Comparison of the basic and improved SHIPs models (run times)

and
(
sb

k2i →
∧r

k1=k2+1 ¬sa
k1i

)
. Clearly, each condition above can be represent by

a single clause. Moreover, observe that for genotypes with heterozygous sites,
the upper limit of the first constraint can be set to k1 − 1 and the lower limit of
the second condition can be set to k2 + 1.

5 Experimental Results

The models described in the previous section, referred to as SHIPs (Sat-based
Haplotype Inference by Pure Parsimony), have been implemented as a Perl
script, which iteratively generates CNF formulas to be given to a SAT solver.
Currently, MiniSAT [3] is used.

With the purpose of comparing the basic and the improved versions of SHIPs,
two sets of problem instances are considered. The first set of instances were
generated using Hudson’s program ms [6] (denoted std instances). The second
set of instances are the instances currently available from biological test data
(denoted bio test data) (e.g. from [9]).

The results are shown in Figure 1. Each plot compares the CPU time required
by both the basic and the improved SHIPs models for solving each problem
instance. The limit CPU time was set to 10000s using a 1.9 GHz AMD Athlon XP
with 1GB of RAM running RedHat Linux. For the std instances the results are
clear. The improved model is consistently faster than the basic model, especially
for the most difficult problem instances. For problem instances requiring more
than 10 CPU seconds, and with a single exception, the improved model is always
faster than the basic model. For most of these instances, and by noting that the
plot uses a log scale, we can conclude that the speedups range from a factor of 2
to a factor of 10. For the bio test data instances the performance differences
become even more clear. The improved model significantly outperforms the basic
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model. Observe that the speedups introduced by the improved model can exceed
4 orders of magnitude.

6 Conclusions and Future Work

This paper provides further evidence that haplotype inference is a new very
promising application area for SAT. The results in this paper and in [8] provide
unquestionable evidence that the utilization of SAT yields the most efficient ap-
proach to the problem of haplotype inference by pure parsimony. Indeed, the
SAT-based approach is the only approach currently capable of solving a large
number of practical instances. Moreover, the optimizations proposed in this pa-
per are shown to be essential for solving challenging problem instances from
biological test data. Despite the promising results, several challenges remain.
Additional biological test data may yield new challenging problem instances,
which may motivate additional optimizations to the SAT-based approach.

Acknowledgments. The authors thank Arlindo Oliveira for having pointed
out the haplotype inference by pure parsimony problem. This work is partially
supported by FCT under research project POSC/EIA/61852/2004.
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Abstract. The past decade has seen great improvement in Boolean Satisfiabil-
ity(SAT) solvers. SAT solving is now widely used in different areas, includ-
ing electronic design automation, software verification and artificial intelligence.
However, many applications have non-Boolean constraints, such as linear rela-
tions and uninterpreted functions. Converting such constraints into SAT is very
hard and sometimes impossible. This has given rise to a recent surge of interest
in Satisfiability Modulo Theories (SMT). SMT incorporates predicates in other
theories such as linear real arithmetic, into a Boolean formula. Solving an SMT
problem entails either finding an assignment for all Boolean and theory specific
variables in the formula that evaluates the formula to TRUE or proving that such
an assignment does not exist. To solve such an SMT instance, a solver typically
combines SAT and theory-specific solving under the Nelson-Oppen procedure
framework. Fast SAT and theory-specific solvers and good integration of the two
are required for efficient SMT solving.

Efficient learning contributes greatly to the success of the recent SAT solvers.
However, the learning technique in SMT is limited in the current literature. In this
paper, we propose methods of efficient lemma learning on SMT problems with
linear real/integer arithmetic constraints. We describe a static learning technique
that analyzes the relationship of the linear constraints. We also discuss a conflict
driven learning technique derived from infeasible sets of linear real/integer con-
straints. The two learning techniques can be expanded to many other theories.
Our experimental results show that lemma learning can significantly improve the
speed of SMT solvers.

1 Introduction

Boolean Satisfiability(SAT) has been widely used in verification, artificial intelligence
and many other areas. However, in many cases, constraints and variables are not nec-
essarily Boolean; some constraints may be linear relationships among integer or real
variables. Many verification systems have been designed to address such problems.
Some systems, such as Alloy [1], choose to convert the integer constraints into Boolean
formulae by encoding the arithmetic constraints and bit-blasting the variables with a
limited range (for instance, it converts an 32-bit integer variable into 32 Boolean vari-
ables); this results in a huge CNF formula that is hard for the current state-of-art SAT
solvers.

Satisfiability Modulo Theory (SMT) is an extension of SAT addressing the problem
of different types of constraints. An SMT problem determines the satisfiability of a
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Boolean formula with predicates on a decidable theory. It is particularly useful in situa-
tions where linear constraints and other types of constraints are required, such as timing
verification, software verification[2] and artificial intelligence.

For satisfiability problems like SAT and SMT, lemma learning or just learning means
extracting new constraints from previous search process and adding them into the prob-
lem to reduce search space. It has been shown to be very effective in SAT[3][4][5].
In this paper, we show that SMT solvers can benefit significantly from two types of
learning processes, static and dynamic.

2 Basic Definitions and SMT Algorithm

In this section, we review the basic definitions of Satisfiability Modulo Theory and basic
algorithms for solving SMT problems.

2.1 Basic Definitions

SMT solving is a procedure of finding an satisfying assignment for a quantifier-free
formula F with predicates on a certain background theory T , or showing that such as-
signment does not exist. A satisfying assignment M is an assignment on all variables
(may also be referred to as a model), such that the formula evaluates to TRUE under a
given background theory T . We can say M entails F under theory T , or expressed as
M |=T F . Theory T must be decidable, i.e., given a conjunction of constraints in T ,
there must exist a procedure of finite steps that can test the existence of a satisfying as-
signment for these constraints. Otherwise, the underlying SMT problem would become
undecidable – a solver for such SMT problems would be impossible.

Typical theories used in SMT are Linear Real Arithmetic (LRA), Linear Integer
Arithmetic(LIA), Real/Interger Difference Arithmetic(RDA/IDA), List theory (L) and
Equality and Uninterpreted Functions (EUF). A simple example of an SMT instance on
LRA is:

Example 1

((b1 ∨ (x1 + x2 ≤ 5)) ∧ (¬b1 ∨ (x1 + x2 ≥ 7)) ∧ (x1 > 10) (1)

Where b1 ∈ {T, F} and x1, x2 ∈ R. Assignment {b1 = F, x1 = 11, x2 = −6} makes
the formula evaluate to TRUE. Therefore this SMT instance is satisfiable.

In this paper, a theory-specific predicate is an expression in theory T , such that it
evaluates to a Boolean value (T or F) under T when a T -value is assigned to each of the
variables in the expression. The predicate is atomic in the Boolean formula, containing
no Boolean operators AND(∧), OR(∨) or NOT(¬). A Boolean variable is a variable that
can only take Boolean constant T or F as its value. A Satisfiability Modulo Theory
(SMT) instance on a theory T is defined recursively as following:

1. A predicate on theory T or a Boolean variable is an SMT instance.
2. The logic AND(∧), OR(∨) of two SMT instances or the logic NOT(¬) of an SMT

instance is an SMT instance.
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A literal is an occurrence of a Boolean variable or its inverse. It is either a part of
a Boolean formula, or represents an assignment on this Boolean variable such that the
literal evaluates to true. A clause is the disjunction(OR) of a set of literals. A Boolean
formula in Conjunctive Normal Form(CNF) is a conjunction of clauses. Adding a clause
to a CNF means conjuncting(AND) it with a clause. A SAT solver is capable of checking
the satisfiability of a Boolean formula in CNF. It is trivial to convert a non-CNF Boolean
formula into an equivalent formula in CNF by introducing additional Boolean variables
to represent interim terms. SMT solvers typically call SAT internally and use CNF
function representations.

2.2 Basic SMT Algorithm

The basic SMT algorithm uses the DPLL[6][7] algorithm for Boolean satisfiability
and employs the Nelson-Oppen[8] procedure to combine theory-specific solvers with
DPLL.

In the basic algorithm, given an SMT formula F , every theory-specific predicate
p is abstracted and represented by a Boolean variable bp. bp is required to have the
same Boolean value as the predicate p in any assignment. All occurrences of p in F is
replaced by bp. The resulting formulaB is a Boolean formula. Some additional Boolean
variables may be introduced to convert a general Boolean formula into CNF.

The Boolean variables that represent theory-specific predicates themselves are also
referred to as predicate variables. An assignment on a predicate variable bp means the
underlying theory-specific predicate must evaluate to T if bp = T and must evaluate to
F if otherwise. A predicate literal is a literal with a predicate variable as its Boolean
variable.

For linear constraints on real/integer variables, we may further assume the compar-
ison predicates of bounds are only ≤, = and ≥ and those of constraints are only ≤ or
=. As we can choose the inverse form of a variable for both bounds and constraints and
negate both sides for constraints, these assumptions do not limit generality.

In Example 1, the Boolean formula B after abstraction becomes:

B ≡ ((b1 ∨ b2) ∧ (¬b1 ∨ b3) ∧ b4 (2)

while the theory specific predicates are:

b2 : (x1 + x2 ≤ 5)
b3 : (x1 + x2 ≥ 7)
b4 : (x1 > 10)

SAT solvers that can enumerate all solutions are used to find satisfying assignments
for the resulting Boolean formula in CNF.

A satisfying assignment for (2) is b1 = F, b2 = T, b3 = F and b4 = T.
Upon finding a satisfying assignment A, each theory-specific predicate p is required

to evaluate to the Boolean value assigned to its corresponding predicate variable bp.
Thus these predicates become constraints on the particular theory. The consistency
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of these constraints are tested with theory-specific solvers SoverT . For instance, for
linear real constraints, we may linear programming solvers such as Cassowary[9].
If the theory-specific solver finds a consistent assignment for these constraints, the
SMT instance is satisfiable; the satisfying assignment is the combination of the theory-
specific assignment and assignment on Boolean variables. An inconsistent verdict from
SovlerT requires the SAT solver to find another satisfying assignment until no more
such assignments exist. If no satisfying assignment for the Boolean part corresponds to
a consistent theory specific constraint set, the SMT instance is unsatisfiable, or invalid.
Fig. 1 shows the basic SMT algorithm. Here AtomMap is the map of theory-specific
atoms to Boolean variables generated by the abstraction process SMT Atomize. Find-
NextSAT is a call to a SAT solver. Calling it consecutively will obtain different satisfy-
ing assignments until all possible assignments are returned, in which case FindNextSAT
will return empty. SolverT tests the consistency of theory-specific constraints and re-
turns TRUE for consistent and FALSE otherwise.

Function SMT Solve (F : SMT Instance)
{B, AtomMap} ← SMT Atomize(F )
loop

A ← FindNextSAT(B)
if A does not exist then

return UNSATISFIABLE
else

P ← AtomMap(A)
if SolveT (P ) = SATISFIABLE then

return SATISFIABLE
end if

end if
end loop

Fig. 1. Basic SMT algorithm

2.3 SMT with Linear Constraints

In this paper, we focus on SMT instances with linear predicates on real/integer vari-
ables. Without loss of generality, a predicate on a linear constraint is in the form of∑k

i=1 aixi ∼ b, in which ∼∈ {=,≤,≥} (∼∈ {=,≤} if k ≥ 2).
To facilitate discussion in following sections, we categorize linear predicates into

two types:

1. Bound predicates are predicates with only one real/integer variable involved, in the
form of x ∼ c.

2. Constraint predicates are predicates that compares the linear combination of at least
two real variables with a constant, in the form of

∑k
i=1 aixi ∼ c, k ≥ 2.

The constraints in the first category correspond to the column constraints in linear pro-
gram solving and the ones in the second category correspond to the row constraints.
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The basic solving algorithm for SMT with linear constraints is the same as in
Figure 1. The TheorySolve function can use any linear programming solver or integer
linear programming solver, such as CPLEX[10], Xpress-MP[11] and Mosek[12].

2.4 Previous Works on SMT

In the recent years, a number of good SMT solvers are developed, such as ario[13],
MathSAT[14], CVCLite[15], DPLL(T)[16], Simplify[2], ICS, simplics and
Yices[17]. All of them are based on the Nelson-Oppen algorithm, but with different
techniques to improve the solving speed. In particular, ario incorporated UTVPI (unit
two variable per inequality) that can propagate constraints with only two unit coefficient
variables efficiently. DPLL(T) derives implications in the theory domain extensively
and shows the effectiveness of learning in integer difference logic. MathSAT uses lay-
ers of solvers so that some conflicts that only involve simpler theories may be detected
much more efficiently, such as the conflicts on linear difference constraints for an SMT
with general linear arithmetic constraints. Some of these solvers also use “early” theory-
specific inference procedure. Such procedure will not wait till the Boolean variables are
assigned; rather, it checks on-the-fly the consistency of the underlying constraints based
on a partial Boolean assignment.

3 Learning in SMT

The basic SMT algorithm suffers from an overly relaxed Boolean formula. In the con-
version from SMT to SAT, many predicate variables are not well constrained as they
typically have few occurrences in the converted Boolean formula. This leads to a huge
number of satisfying assignments; most of which are conflicting when they are mapped
back as theory specific constraints. In this section, we address this issue by proposing
to add clauses to reflect the relationship of underlying theories.

Boolean Learning elevates theory specific constraints into the Boolean domain. If a
set of constraints in an SMT problem P are inconsistent, and they correspond to a set
of literals {l1, . . . , lk}, it means these set of literals cannot be satisfied simultaneously.
This can be represented as a clause of negated literals of all predicates involved as (l′1 +
· · · + l′k). This clause is implied by the theory specific predicates; adding it (ANDing
it to the original Boolean formula, in fact) will not change the satisfiability of the SMT
problem, but will prune the search space in Boolean search. P |=T (l′1 + · · · + l′k).
This technique is Theory specific Learning; it is referred to as learning heretofore in
this paper for simplicity.

To illustrate learning, we reuse the example from last section. It is clear that b2 and
b3 can never be true simultaneously, as x1 + x2 cannot be ≤ 5 and ≥ 7 at the same
time. A Boolean clause (b′2 + b′3) can be added to avoid such local constraint conflicts.
In this section, we mainly discuss learning methods for SMT with linear constraints.

3.1 Static Learning for SMT with Linear Constraints

A traditional SAT solver has no knowledge to avoid conflicting assignments on theory-
specific predicates. If learning is not involved, the SAT solver will enumerate all the
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possible satisfying assignments (or partial assignments for solvers that justify theory-
specific predicates whenever their corresponding predicates variables are assigned) Be-
cause of the relaxed nature of the related Boolean formula, there may be huge number
of satisfying assignments. Learning can be used to mitigate the problem.

To address the problem, some previous work has proposed to use theory based im-
plications [14]. However, implication based on Boolean clauses are much more effi-
cient due to the effectiveness of fast Boolean Constraint Propagation(BCP) algorithms
like two-literal watching[4]. We propose a preprocessing procedure that directly elevate
most of local theory-specific inconsistencies into Boolean domain: A clause is added
to the CNF when a possible conflict exists among a set of predicates. In the previous
example, the clause (b′2 + b′3) will be added to the CNF in this preprocessing step.

Deriving clauses from simple linear constraints. Many simple constraints can be
derived from analyzing the relationship of constraints. In a typical SMT problem with
linear constraints, a majority of constraints has only one or two variables. Table 1
shows the distribution of number of variables in a linear predicate. In this table, each
row represent a group of benchmarks from SMTLIB’s QF LRA and QF LIA groups.
The number in each column represents the average percentage of predicates with a
specific number of variables (the percentage in each instance, unweighed average).

Table 1. Distribution of # of variables in linear predicates

Name 1 2 3 4 5 6+
Carpark2 49.06 45.99 4.94 0 0 0
gasburner-prop3 65.09 21.70 13.21 0 0 0
pursuit-safety 61.42 27.50 11.08 0 0 0
scheduler 0.83 99.17 0 0 0 0
TM 75.88 17.99 4.19 .40 .14 1.40
tgc io 77.56 17.50 4.93 0 0 0
windowreal 83.17 13.49 3.43 0 0 0
ckt 95.09 .43 .30 .30 .30 3.56
FISCHER 0 97.23 0 2.77 0 0
MULTIPLIER 84.87 12.37 .44 .33 .27 1.70
wisa .10 92.33 7.32 .13 .10 0

The simpler constraints enable us to exploit their relationship and derive clauses.
Here we show three different types of simple constraint relationships and the possible
implications they may generate.

Bound predicates on the same variable
Consider two bound predicates p1 and p2 on the same variable x with bounds b1 and b2
respectively. If both comparison signs are ≥ and b1 < b2, then the assignment p1 = F
and p2 = T would require x < b1 and x ≥ b2, which conflicts with the fact b1 < b2.
This can be represented as a clause (p1 + p′2). Similar conflict clauses can be added for
pairs of different bounds. The detailed list of derived clauses is shown in Table 2. The
clause may also be understood as the fact of p2 → p1, which is equivalent to the new
clause (p1 + p′2). The new clause for each situation is listed in Table 2. Without loss
of generality, we assume that b1 ≤ b2 and the predicate signs ∼∈ {≤,=,≥}. We may



148 Y. Yu and S. Malik

Table 2. The implication table for a pair of bounds on the same real variable

p1 p2 b1 ∼ b2 new clause
≤, = ≤ b1 < b2 (p′

1 + p2)
≤, = =, ≥ b1 < b2 (p1 + p2)
≥ ≤ b1 < b2 (p′

1 + p′
2)

≥ =, ≥ b1 < b2 (p1 + p′
2)

≤ ≥ b1 = b2 (p1 + p2)
≤, ≥ = b1 = b2 (p1 + p′

2)
≤ ≤ b1 = b2 (p1 + p′

2),(p′
1 + p2)

= = b1 = b2 (p1 + p′
2),(p′

1 + p2)
≥ ≥ b1 = b2 (p1 + p′

2),(p′
1 + p2)

swap p1 and p2 if b1 > b2 and/or take the inverse of the predicate if the predicate signs
are < or >.

In fact not all such predicates are necessary. Inequality predicates (≤,≥) are transi-
tive, so only adjacent inequality predicates on the same variable need to add Boolean
predicates according to Table 2; for equality predicates, it only need to add clauses for
other equality predicates and closest inequality predicates.

For predicates on integer variables, stronger clauses are possible. For example, two
inequality predicates with their non-integer bounds in a same open range (k, k + 1),
k ∈ Z are equivalent (or inversely equivalent if on is ≤ and the other is ≥ ). The fact
that (x > k) ≡ (x ≥ k+ 1)ifx, k ∈ Z and (x > k) ≡ (x ≥ �k�)ifx ∈ Z, k /∈ Z can be
also used to generate stronger clauses.

Bound predicates on variables used in constraint predicates
Consider a linear constraint predicate p, if every real variables xi in p has one or more
bound predicates associated with it, we may derived new bound predicates out of them:
Consider constraint predicate

p : (a1x1 + . . . + akxk ∼ b)

Suppose each of k − 1 variables x1, . . . , xk−1 has a bound predicate

bi : (xi ∼ xi0), (i = 1, . . . , k − 1)

A new predicate for xk can be generated as

(xk ∼ b−
∑k−1

i=1 aixi0

ak
)

The ‘∼’ is ‘=’ if all predicate signs of b1, . . . , bk−1 and p are ‘=’; if otherwise, ‘∼’ can
be ‘≤’ or ‘≥’ depending on the simple inequality relationship.

For example, given predicates p : 3x1 + x2 + x3 ≤ 12, q1 : x1 ≤ 3 and q2 : x2 ≤ 2.
We may add a new predicate q3 : x2 ≥ 1 that subject to: (p∧ q1 ∧ q2 → q3), which is a
clause (p′ + q′1 + q′2 + q3).
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Two constraint predicates share the same set of variables
If two constraint predicates share the same set of real variables, We may extract new
predicates from them. Here we illustrate the method on two constraints on same two
real variables. To facilitate discussion, we denote the two constraints as p1 : a11x1 +
a12x2 ∼ b1 and p2 : a21x1 + a22x2 ∼ b2, in which ∼ can be either ≤ or =.

– If the two lines represented by the two constraints are parallel, i.e., a12/a11 =
a22/a21, then their corresponding predicates will not allow certain combinations.
For instance, if one predicate p1 is (x1 + 2x2 ≤ 5) while the other predicate p2 is
(−2x1 − 4x2 ≤ 8), p1 and p2 being FALSE is impossible, as x1 + 2x2 cannot be
greater than 5 and less than −4 simultaneously. A clause (p1 + p2) is added to the
clause database accordingly. The detailed implication step is omitted here as it is
easy to infer and similar to the implication table for a pair of bounds.

– If the two lines are not parallel, they must cross at a certain point (x10, x20), in
which

x10 =
a22b1 − a21b2
a11a22 − a21a12

, x20 =
a11b2 − a21b1
a11a22 − a21a12

In this case, we may derive additional predicates of q1 : (x1 ∼ x10), q2 : (x2 ∼
x20) based on basic arithmetic inequality rules. An assignment of p1 and p2 may
imply q1, q2 and/or their inverse depending on the signs of the coefficients aij

and bi.
An example of such new predicates is: p1 : x1 + x2 ≤ 3, p2 : x1 − x2 ≤ 5. Their
crossing point is (4,−1). This entails the following implication relationships:

p1 ∧ p2 → x1 ≤ 4

p1 ∧ p′2 → x2 < −1

p′1 ∧ p2 → x2 > −1

p′1 ∧ p′2 → x1 > 4

The detailed implication table for all conditions is quite long but nevertheless can
be implemented efficiently. As all the predicate relationships can be easily derived
by arithmetic inequality rules similar to the above.
For constraints with n variables, we may add n− 1 variable predicates similarly as
what we describe above.

Note that adding these predicates does not generate more implications for existing
Boolean variables in most cases. However, such new predicates, especially if they are
bound predicates, may be used to generate static learned clauses (such as what is de-
scribed in “Bound predicates on the same variable”). For example, a bound predicates
bn : x1 ≤ 0 can be generated by pairs of two-variable predicates b1 : x1 + x2 ≤ 0 and
b2 : x1 − x2 ≤ 0 with a clause (b′1 + b′2 + bn). If we have another bound predicate
b : x1 ≤ 1, we may derive another clause (b + b′n) and obtain an implication chain of
b1 ∧ b2 → bn → b which is not otherwise available.



150 Y. Yu and S. Malik

3.2 Conflict Driven Learning

The constraints derived from static learning we described in the previous subsection is
not complete – satisfying all additional constraints does not guarantee the underlying
LP/ILP feasible; though such assignments are more likely to have an feasible underlying
LP/ILP, but linear constraint solving is still needed to check the actual feasibility.

Conflict driven learning is widely used in SAT solvers to avoid searching previously
visited Boolean sub-spaces. It has led to significant improvement on SAT solvers. For
a problem with difference logic, its underlying theory-specific problem is a network
flow; a conflict means a negative cycle in the network flow graph; a conflict clause
based on the Boolean assignments on the cycle can be added to the clause database, as
implemented in many solvers such as MathSAT[14].

For problems with linear real/integer constraints, a naı̈ve conflict driven learning
method is just adding the inverse of all literals that determine theory-specific predicates.

A smaller conflict clause can prune more search space than larger ones. To generate a
smaller conflict clause from a set of infeasible constraints, we should reduce the number
of constraints while maintaining its infeasibility. Irreducible Infeasible Set (IIS)[18][19]
of the corresponding LP/ILP can be used. An IIS is an infeasible subset of constraints
in an infeasible linear program, such that removing a single constraint from IIS will
make the subset feasible. The size of an IIS is typically much smaller than that of an
original linear program. IIS-finding capability is provided by most linear programming
solvers, such as CPLEX, Xpress-MP, Mosek and MINOS(IIS). The disjunction
of the inverse of all predicate literals that are involved in the IIS can be added to the
original Boolean formula as a conflict clause. In fact, in our experiments, the average
size of conflict clause derived from IIS is only 3.66% of the size of naı̈ve conflict clause
for benchmark group sal and 20.03% for benchmark group TM in SMTLIB.

To illustrate the difference of the naı̈ve method and conflict driven learning, we may
revisit Example 1. If we obtained a satisfying assignment for the Boolean formula 1:
b1 = T, b2 = T, b3 = T and b4 = T. This assignment will lead to a set of inconsistent
linear constraints: b2 = T requires (x1 + x2 ≤ 5) while b3 = T requires (x1 + x2 ≥ 7).
The naı̈ve method requires inverting all predicate assignments to form a conflict clause;
in this case the clause is (b′2 + b′3 + b′4). Obviously, only b2 = T and b3 = T contribute
to the inconsistency while the assignment on b4 is not needed. Therefore the clause
generated from conflict driven learning is (b′2 + b′3), which is shorter than the one from
naı̈ve learning.

The SMT algorithm that incorporates both types of learning is shown in Fig. 2.

4 Implementation and Experimental Results

4.1 Implementation

To evaluate the methodology described above, we implemented a test SMT solver on
linear constraints based on zChaff[4] revision 2004.11.15 as the propositional
solver and CPLEX[10] version 10.0 as the LP/ILP solver. zChaff is modified to ac-
commodate incremental clause addition and deletion. Our SMT solver incorporated
the static clause and predicate generation as described in Section 3.1 and conflict
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Function SMT Solve With Learning (F : SMT Instance)
{B, AtomMap} ← SMT Atomize(F )
B ← B ∧ SMT Static Learn(AtomMap)
loop

A ← SolveSAT(B)
if A does not exist then

return UNSATISFIABLE
else

P ← AtomMap(A)
if TheorySolve(P ) = SATISFIABLE then

return SATISFIABLE
else

C ← FindConflictSet(P )
B ← B∧ � C

end if
end if

end loop

Fig. 2. SMT algorithm with learning

driven learning as described in Section 3.2. Among the methods described in Sec-
tion 3.1, clause generation for adjacent bound predicate pairs was implemented; for the
constraint-bound predicate pairs, we generate new bound predicates. For two
variable predicates with same real variables, we generate predicates on one variable
accordingly. The preprocessing step ignores predicates and bounds with variable coeffi-
cients (coefficients that may change depending on the Boolean assignments, for instance
3 ∗ x + (a?5:3) ∗ y ≤ 4, in which x, y ∈ R and a ∈ {T, F}), because the implication
relationship is uncertain when predicates with variable coefficients are involved. As a
proof-of-concept implementation, we did not include certain advanced features like dy-
namic theory specific implications and optimizations for difference constraints so that
we can separate the benefit of learning from other techniques.

The SMT solver reads in the SMT formula in SMT-LIB format[20]. The Boolean for-
mula is represented as a binary and-inverter graph(BAIG) internally[21]. Light-weight
logic simplification is applied on the Boolean formula, including structural hashing and
two-level optimizations. The linear part of the formulas are hashed as well; identical for-
mulas are merged. The simplified Boolean formula is converted into Conjunctive Normal
Form by introducing interim Boolean variables. A Boolean variable is assigned on each
linear predicate. For conflict driven learning, our SMT solver uses the IIS procedure in
CPLEX to find the conflict sets. The program is written in C++, it is compiled by g++
4.0.1 with option -march=pentium4-O3 and run on Fedora Core 4.0 Linux system.

4.2 Experimental Results

The effectiveness of learning. We report the experimental results here. The first ex-
periment is to evaluate the effectiveness of learning. We implemented the basic algo-
rithm and compared the results with and without static and conflict driven learning. The
benchmarks we used are from SMTLIB[20]. We tested the sal and TM groups from
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linear real arithmetic section (QF LRA) of the benchmark suite as well as wisa group
from linear integer arithmetic section(QF LIA). The test cases in these groups have
significant number of predicates that are not just difference predicates. This will give a
fair evaluation for solvers that are not optimized for difference arithmetic. The results
of a random selection in each benchmark group is listed, as we have more than 100
benchmark cases and the omitted ones shows the same data trend. The test results are
shown in Table 3. The time limit for each single instance is 300 seconds. All the test
cases are run on a Linux machine with a 2.8GHz Intel Pentium 4 CPU (1MB L2 cache)
and 1GB memory.

The columns of Table 3 are as following: In Table 3(a), Tx means the CPU time for
solving a particular instance (in seconds). “TIME” in a Tx column means the instance
cannot be solved in the given time limit. Lx means the number of LP solver calls. The
subscript possibilities of x are Base, for SMT solver with naı̈ve learning (adding a
conflict clause that disjuncts the inversion of all assignments on predicates), SL for
static learning only, CL for conflict driven learning by IIS only and AL for both static
and conflict driven learning enabled. Table 3(b) shows how many instances each of the
four cases can solve for each group of SMT instances.

Table 3. SMT solver with and without learning

Name TBase LBase TSL LSL TCL LCL TAL LAL

Carpark2-t1-3 TIME - 0.15 0 0.21 35 0.17 0
gasburner-prop3-10 78.51 68,222 16.13 42,875 0.13 43 0.08 5

pursuit-safety-4 102.32 69,615 10.14 31,752 0.06 14 0.04 5
pursuit-safety-20 TIME - TIME - 2.67 686 1.21 164

tgc io safe-12 TIME - TIME - 0.95 322 0.57 31

(a) Individual instances

Group Name # of Inst BASE Stat. Learn Conf. Learn All Learn
Carpark2 12 10 12 12 12

gasburner-prop3 20 10 18 20 20
pursuit-safety 20 4 10 20 20
tgc io-nosafe 7 4 7 7 7
tgc io-safe 20 4 13 20 20

windowreal-no t deadlock 20 20 20 20 20
wisa 5 0 0 4 4

(b) Instance groups

The test results show that the conflict driven learning can significantly improve the
solving speed of SMT solvers. Adding static constraints can further improve the solv-
ing performance by reducing solving time and number of LP solver calls. It can even
completely avoid any linear program solving in the test case Carpark2-t1-3. How-
ever, although only adding static constraints can significantly improve the performance
of the basic SMT solver, it is not as good as conflict driven learning by itself. It is not
surprising as conflict driven learning is capable of deriving all the implications that can
be found by static learning, although not as efficiently. The conflict between bound con-
straints can always be detected when transforming a satisfying assignment into a linear
program; all the other types of statically learned clauses can also be found by conflict
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driven learning as CPLEX can find minimum conflicting constraints sets. However, it
is not as efficient because such conflicts are found in the linear programming phase,
which requires a full assignment (some solvers like MathSAT can check some types of
conflict dynamically, which make it more effective).

Performance test. The second experiment compares our SMT solver with a few state-
of-art SMT solvers available. We chose MathSAT 3.3.1[14], Yices 0.1[17], Ario
1.1[13] and Simplics 1.1[22] to compare with our SMT solver with learning. All
these versions are the latest from their respective websites. Among them Simplics is
the best in thelinear real arithmetic part of SMT-COMP’05[23]. Each row is a group of
test benches.

The first column in Table 4 is the name of a group of benchmarks and the second
is the number of instances in each group. The next five columns are the result from
MathSAT, Yices, ario, Simplics and our SMT solver respectively. The number
outside the parenthesis is the number of instances the solver can solve in 15 minutes
(900 seconds). The number inside is the amount of time the solver used to solve all the
SMT instance in this group. TIME OUT or MEM OUT is charged 900 seconds as well.

Table 4. SMT solver performance comparisons

Name # of Inst. MathSAT Yices ario simplics SMT/WL
TM 25 19(6969.61) 17(8402.9) 12(12624.7) 20(5585.73) 17(8897.2)

Carpark2 12 12(1.62) 12(0.62) 12(0.77) 12(0.4) 12(2.46)
gasburner-prop3 20 20(41.18) 20(0.81) 20(1.7) 20(0.55) 20(1.35)

pursuit-safety 20 20(523.5) 20(7.15) 13(7095.46) 20(5.7) 20(10.88)
tgc io nosafe 7 7(0.76) 7(0.17) 7(0.19) 7(0.21) 7(1.00)
tgc io safe 20 20(157.60) 20(6.99) 20(37.85) 20(4.81) 20(11.82)

windowreal-no t deadlock 20 20(14.09) 20(1.03) 20(3.03) 20(1.83) 20(9.84)
windowreal-safe 4 4(0.27) 4(0.09) 4(0.07) 4(0.09) 4(0.45)

windowreal-safe2 4 4(0.26) 4(0.11) 4(0.08) 4(0.04) 4(0.4)
scheduler abz5 5 5(103.8) 5(20.7) 5(117.03) 5(199.12) 5(896.12)

wisa 5 2(3643.19) 4(1014.17) 4(961.56) 5(317.55) 4(1281.52)

From Table 4, we can see the performance of our solver is comparable with the state-
of-art SMT solvers available in most cases. This is impressive as we use only the two
learning schemes proposed in this paper compared to optimizations such as eager the-
ory propagation, UTVPI, network optimization, layered solver structure, and so on in
current state-of-art SMT solvers. The performance on the scheduling abz5 group
is not as good because each instance in this group contains a large number of difference
constraints. Our solver is not optimized for this network type of constraint while other
solvers like MathSAT optimize for difference constraints. In the TM benchmarks, learn-
ing is not as effective as the conflict clause obtained from IIS is much larger than other
cases.

5 Conclusions and Further Work

This paper proposes static and dynamic learning for linear real constraints. The over-
all goal is to have a much tighter coupling of the Boolean and real/integer reasoning
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engines. With static learning, we have shown how relatively simple relationships be-
tween the predicates may be statically captured in the Boolean part and dynamically
exploited. Using efficient Boolean Constraint Propagation, this basic framework can
serve as the basis for adding additional clauses using more sophiscated reason. The
important benefit of such learning is reduction in the number of calls to the LP/ILP
solvers.

With conflict driven learning in the LP/ILP solvers, we have successfully used the
notion of the Irreducible Infeasible Set(IIS) (also known as “conflict” in CPLEX) to
identify the core of the infeasibility and exclude this from future search. This has
demonstrated clear benefit in the solver.

As for future work, the methodology can be applied on mixed integer linear con-
straints and as well as other types of constraints. More sophiscated static and dynamic
learning methods may be applied; the algorithms for special cases like difference con-
straints may be incorporated into this framework.
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On SAT Modulo Theories and Optimization
Problems

Robert Nieuwenhuis and Albert Oliveras�

Abstract. Solvers for SAT Modulo Theories (SMT) can nowadays han-
dle large industrial (e.g., formal hardware and software verification) prob-
lems over theories such as the integers, arrays, or equality. Here we show
that SMT approaches can also efficiently solve problems that, at first
sight, do not have a typical SMT flavor. In particular, here we deal with
SAT and SMT problems where models M are sought such that a given
cost function f(M) is minimized.

For this purpose, we introduce a variant of SMT where the theory T
becomes progressively stronger, and prove it correct using the Abstract
DPLL Modulo Theories framework. We discuss two different examples
of applications of this SMT variant: weighted Max-SAT and weighted
Max-SMT. We show how, with relatively little effort, one can obtain a
competitive system that, in the case of weighted Max-SMT in the theory
of Difference Logic, can even handle well-known hard radio frequency as-
signment problems without any tailored heuristics. These results seem to
indicate that Max-SAT/SMT techniques can already be used for realistic
applications.

1 Introduction

The Davis-Putnam-Logemann-Loveland (DPLL) procedure for propositional
SAT [DP60, DLL62] has also been adapted for handling problems in more ex-
pressive logics, and, in particular, for the SAT Modulo Theories (SMT) problem:
deciding the satisfiability of ground first-order formulas with respect to back-
ground theories such as the integer or real numbers, or arrays. SMT problems
frequently arise in formal hardware and software verification applications, where
typical formulas consist of very large sets of clauses like:

p ∨ ¬q ∨ a = b− c ∨ read(v, b+c ) = d ∨ a−c≤7
with propositional atoms as well as atoms over (combined) theories like the in-
tegers, the reals, or arrays. SMT has become a very active area of research, and
efficient SMT solvers exist that can handle (combinations of) many such theories
(see also the SMT problem library [TR05] and the SMT Competition [BdMS05]).
Currently most SMT solvers follow the so-called lazy approach to SMT, com-
bining (i) theory solvers to process conjunctions of literals over the given theory
T , with (ii) DPLL-based engines for dealing with the boolean structure of the
formulas.
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DPLL(T ) is a general SMT architecture for the lazy approach [GHN+04]. It
consists of a DPLL(X) engine, whose parameter X can be instantiated with a T -
solver Solver

T
, thus producing a DPLL(T ) system. The DPLL(X) engine always

considers the problem as a purely propositional one. For example, if the theory
T is the integers, at some point DPLL(X) might consider a partial assignment
containing, among many others, the three literals a ≥ b + 3, b − 2 ≥ c, and
a �> c without noticing its T -inconsistency, because it just considers such liter-
als as propositional (syntactic) objects. But Solver

T
continuously analyzes the

partial model that DPLL(X) is building (a conjunction of literals). It can warn
DPLL(X) about this T -inconsistency, and generate a clause, called a theory
lemma, a �≥ b + 3 ∨ b − 2 �≥ c ∨ a > c that can be used by DPLL(X) for
backjumping. Solver

T
sometimes also does theory propagation: as soon as, e.g.,

a ≥ b + 3 and b − 2 ≥ c become true, it can notify DPLL(X) about T -
consequences like a > c that occur in the input formula. The modular DPLL(T )
architecture is flexible, and, compared with other SMT techniques, DPLL(T ) is
also very efficient and has good scaling properties: the BarcelogicTools imple-
mentation of DPLL(T ) won all the four divisions it entered at the 2005 SMT
Competition [BdMS05].

The aim of this paper is to show that SMT techniques such as DPLL(T )
can be easily adapted to efficiently solve problems that, at first sight, do not
have a typical SMT flavor. In particular, here we deal with SAT and SMT
problems where models M are sought such that a given cost function f(M) is
minimized.

For this purpose, in Section 2 we introduce a variant of SMT where the (first-
order) theory T becomes progressively stronger, that is, T may be periodically
replaced by T ∧ T ′ for some first-order theory T ′. Then, after mentioning some
applications to optimization and other problems, we prove this variant correct
by extending Abstract DPLL Modulo Theories, a uniform, declarative frame-
work introduced in [NOT05] for modeling and reasoning about lazy SMT pro-
cedures.

In Section 3 we apply this SMT variant in a branch-and-bound setting, where
the theory T “knows”, possibly among the information about other theories,
the cost function f and its current best bound. Each time a better bound is
found, the SMT procedure continues with a theory that has become stronger,
in the sense that models with a cost higher than this new bound now become
T -inconsistent.

We then show how to deal in this framework with the exact weighted Max-
SAT problem: given a set of pairs {(C1, w1) . . . , (Cm, wm)} where each Ci is a
propositional clause and wi is its weight (a positive natural or real number), find
a propositional assignment M that minimizes the sum of the weights of clauses
that are false in M .

In Section 4 we report experimental results on an implementation of DPLL(T )
for Max-SAT and also explain how specialized propagation rules for Max-SAT in
the style of [LH05] can be easily and flexibly incorporated. For instance, when two
pairs of the form (l, w1) and (¬l, w2) appear, one can propagate min{w1, w2}.
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An interesting aspect of this approach is that DPLL(T ) allows one to obtain
with relatively little effort Max-SAT implementations that are competitive w.r.t.
state-of-the-art systems. We give experimental results that show this, for settings
with and without the additional propagation rules.

In Section 5 we show how this approach can be smoothly extended to Max-
SMT. As an example, we deal with weighted Max-SMT modulo the theory of
Integer Difference Logic, a fragment of integer linear arithmetic. In this case,
formulas are built over propositional atoms, as well as (ground) atoms of the
form a − b ≤ k, where a and b are (Skolemized) integer variables and k is an
integer.

This logic is used in the context of hardware and software verification; for
instance, some properties of timed automata are naturally expressed in it. But
again, also problems that do not look a priori like typical SMT problems can be
handled very efficiently with it, and also optimization problems can be solved
using our approach.

We give experimental results on the well-known hard CELAR radio frequency
assignment problems [CdGL+99]. In these problems, integer variables must be-
long to certain intervals, and constraints express minimal distances between
variables, all of which can be very nicely modeled in Difference Logic.

From our BarcelogicTools DPLL(T ) implementation we have obtained, with
very little effort, our first Max-SMT system. In spite of its unlabored develop-
ment, and of its single standard SMT decision heuristic, our experiments reveal
that it can already handle these CELAR problems that, according to our ex-
periments, appear to be far beyond the capabilities of systems dealing with
translations into, e.g., Weighted Max-SAT, pseudo-Boolean, or Integer Linear
Programming Problems. On the CELAR problems, this implementation impor-
tantly outperforms the best-known weighted CSP solver Toolbar [dGHZL05] in
its default settings, and is still close or superior to Toolbar with its best (accord-
ing to its authors) branching heuristic for these problems.

2 SMT with Progressively Stronger Theories

Abstract DPLL Modulo Theories [NOT05] is a framework for modeling and rea-
soning about DPLL-based SAT and SMT systems in terms of simple transition
rules and rule application strategies. The framework eases the understanding and
the comparison of different approaches as well as the proving of their correct-
ness. In this section, we briefly describe the framework (see [NOT05] for details)
and then extend it to accommodate progressively stronger theories, that is, the
theory T may be periodically replaced by T ∧ T ′ for some first-order theory T ′,
and prove the correctness of this extension.

2.1 Potential Applications

Such a SAT or SMT procedure where the theory becomes progressively stronger
has applications in the context of branch-and-bound-like applications, where a
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single model is sought that minimizes a given cost function. The weighted Max-
SAT and Max-SMT problems addressed in the next sections are just a particular
case of this; one could also handle problems like Max-Ones, or even problems
with non-linear cost functions.

But, apart from optimization problems, it can also be useful for problems
where, given a set of pairwise T -incompatible (first-order) properties P1 . . . Pn,
different models M1 . . .Mn are sought such that each Mi satisfies the correspond-
ing Pi. Initially, one can add P1∨ . . .∨Pn to the theory. Then, each time such an
Mi is found, before backjumping to continue the search one can strengthen the
theory T , replacing it by T ∧ ¬Pi, which can help pruning the search of models
for the remaining Pj ’s.

A more concrete problem of this kind is, for instance, a company where every
month the best employee is rewarded with a favorable working schedule for the
following month. Hence the company needs to prepare in advance n schedules
with properties P1 . . . Pn, where each Pi expresses that employee i is the one
that works less hours, (or works least night shifts, or gets most money, etc).

Another completely different application is automatic classification of finite
algebras [CMSM04], where one may be searching for, say, finite groups satisfying
a set P1 . . . Pn of different properties, one group for each Pi.

We stress that this is particularly useful if the properties P1 . . . Pn cannot
(efficiently) be expressed at the level of the SMT formula itself, and if Solver

T

can adequately handle their negations.

2.2 Abstract DPLL Modulo Theories

As usual in SMT, given a background theory T (a set of closed first-order formu-
las), we will only consider the SMT problem for ground (and hence quantifier-
free) CNF formulas F . Such formulas may contain free constants, i.e., constant
symbols not in the signature of T , which, as far as satisfiability is concerned,
can be equivalently seen as existential variables. Other than free constants, all
other predicate and function symbols in the formulas will instead come from
the signature of T . From now on, we will assume that all formulas satisfy these
restrictions.

The formalism we describe is based on a set of states together with a binary
relation =⇒ (called the transition relation) over these states, defined by means
of transition rules. Starting with a state containing an input formula F , one
can use the rules to generate a finite sequence of states, where the final state
indicates, for a certain theory T , whether or not F is T -consistent.

A state is either the distinguished state T || fail (denoting T -unsatisfiability)
or a triple of the form T || M || F , where T is a theory, M is a sequence of
literals, and F is a formula in conjunctive normal form (CNF), i.e., a finite
set of disjunctions of literals. We additionally require that M never contains
both a literal and its negation and that each literal in M is annotated as either
a decision literal (indicated by ld) or not. Frequently, we will refer to M as a
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partial assignment or consider M just as a set or conjunction of literals, ignoring
both the annotations and the order of its elements. We use ∅ to denote the empty
sequence.

In what follows, a possibly subscripted or primed lowercase l always denotes
a literal. Similarly T and T ′ always denote theories, C and D always denote
clauses (disjunctions of literals), F and G denote conjunctions of clauses, and
M and N denote assignments.

We write M |= F to indicate that M propositionally satisfies F . If C is a
clause l1∨ . . .∨ ln, we sometimes write ¬C to denote the formula ¬l1 ∧ . . .∧¬ln.
We say that C is conflicting in a state T || M || F,C if M |= ¬C.

A formula F is called T -(in)consistent if F ∧ T is (un)satisfiable in the first-
order sense. We say that M is a T -model of F if M |= F and M , seen as a
conjunction of literals, is T -consistent. It is not difficult to see that F is T -
consistent if, and only if, it has a T -model. If F and G are formulas, then F
entails G in T , written F |=T G, if F ∧ ¬G is T -inconsistent. If F |=T G and
G |=T F , we say that F and G are T -equivalent.

We start presenting a small variant, to accomodate the presence of the theory
in the states, of the transition system first presented in [NOT05]:

Definition 1. The Basic DPLL Modulo Theories system consists of the follow-
ing five rules:

UnitPropagate :

T || M || F, C ∨ l =⇒ T || M l || F, C ∨ l if
{
M |= ¬C
l is undefined in M

Decide :

T || M || F =⇒ T || M ld || F if
{

l or ¬l occurs in a clause of F
l is undefined in M

Fail :

T || M || F, C =⇒ T || fail if
{
M |= ¬C
M contains no decision literals

Backjump :

T || M ld N || F, C =⇒ T || M l′ || F, C if

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

M ld N |= ¬C, and there is
some clause C′ ∨ l′ such that:
F,C |=T C′ ∨ l′ and M |=¬C ′,
l′ is undefined in M , and
l′ or ¬l′ is in F or in M ld N

Theory Propagate :

T || M || F =⇒ T || M l || F if

⎧⎨
⎩

M |=T l
l or ¬l occurs in F
l is undefined in M



On SAT Modulo Theories and Optimization Problems 161

Definition 2. The Strengthening DPLL Modulo Theories system consists of
the five Basic DPLL Modulo Theories rules, and the following four rules:

Restart :

T || M || F =⇒ T || ∅ || F

Theory Learn :

T || M || F =⇒ T || M || F, C if
{

each atom of C is in F or in M
F |=T C

Theory Forget :

T || M || F, C =⇒ T || M || F if
{
F |=T C

Theory Strengthen :
T || M || F =⇒ T ∧ T ′ || M || F

We denote the transition relation defined by all nine rules by =⇒S.

For a transition relation =⇒, we denote by =⇒∗ the reflexive-transitive closure of
=⇒. We call any sequence of the form S0 =⇒ S1, S1 =⇒ S2, . . . a derivation,
and denote it by S0 =⇒ S1 =⇒ S2 =⇒ . . . . We call any subsequence of a
derivation a subderivation. If S =⇒ S′ we say that there is a transition from S
to S′. A state S is final with respect to =⇒ if there are no transitions from S.

2.3 Correctness of Strengthening Abstract DPLL Modulo Theories

A decision procedure for SMT can be obtained by generating a derivation using
=⇒S with a particular strategy. The relevant derivations are those that start
with a state of the form T0 || ∅ || F0, where F0 is the initial formula. The aim of
a derivation is to compute a state S such that: (i) S is final with respect to the
five rules of Basic DPLL Modulo Theories and (ii) if S is of the form T || M || F
then M is T -consistent. We start by stating some invariants.

Lemma 3. If T0 || ∅ || F0 =⇒∗
S T || M || F then the following hold.

1. All the atoms in M and all the atoms in F are atoms of F0.
2. M contains no literal more than once and is indeed an assignment, i.e., it

contains no pair of literals of the form l and ¬l.
3. F and F0 are T -equivalent.
4. If M is of the form M0 l1 M1 . . . ln Mn, where l1, . . . , ln are all the decision

literals of M , then F0, l1, . . . , li |=T Mi for all i in 0 . . . n.

The following termination result says that derivations are finite provided some
standard conditions are fulfilled (e.g., Restart is applied with increasing period-
icity), and that the theory is not strengthened infinitely many times, which is
indeed the case in branch and bound and the other mentioned applications. The
proof is a simple extension of the one for the standard conditions [NOT05]. This
is also the case for the other proofs we omit here for space reasons.
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Theorem 4 (Termination of =⇒S). Every derivation Der of the form
T || ∅ || F = S0 =⇒S S1 =⇒S . . . is finite if the following conditions hold:

1. Der has no infinite subderivations consisting of only Theory Learn and
Theory Forget steps.

2. Theory Strengthen is applied only finitely many times.
3. For every subderivation of Der of the form

Si−1 =⇒S Si =⇒S . . . =⇒S Sj =⇒S . . . =⇒S Sk where the only three
Restart steps are the ones producing Si, Sj, and Sk, either:
– there are more Basic DPLL Modulo Theories steps in Sj =⇒S . . . =⇒S

Sk than in Si =⇒S . . . =⇒S Sj, or
– in Sj =⇒S . . . =⇒S Sk a new clause is learned that is not forgotten in

Der.

Lemma 5. If T0 || ∅ || F0 =⇒∗
S T || M || F and there is some conflicting

clause in T || M || F , i.e., M |= ¬C for some clause C in F , then either Fail or
Backjump applies to T || M || F .

Property 6. If T0 || ∅ || F0 =⇒∗
S T || M || F and M is T -inconsistent, then

either there is a conflicting clause in T || M || F , or else Theory Learn applies to
T || M || F , generating a conflicting clause.

Even if it is very easy to generate non-terminating derivations for =⇒S ,
Theorem 4 defines a very general strategy for avoiding that.

Lemma 5 and Property 6 show that, for a state of the form T || M || F , if
there is some literal of F undefined in M , or there is some conflicting clause,
or M is T -inconsistent, then a rule of Basic DPLL Modulo Theories is always
applicable, possibly after a single Theory Learn step. Together with Theorem 4
(Termination), this shows how to compute a state to which the following main
theorem is applicable.

Theorem 7. Let Der be a derivation T0 || ∅ || F0 =⇒∗
S S , where S is (i)

final with respect to Basic DPLL Modulo Theories, and (ii) if S is of the form
T || M || F then M is T -consistent. Then

1. S is T || fail if, and only if, F is T -inconsistent.
2. If S is of the form T || M || F then M is a T -model of F .

These results are easy to apply. For example, in the context of branch and bound,
each time a final state T || M || F is obtained (final in the sense of conditions
(i) and (ii) of Theorem 7), M is the current best model found. After that, one
can apply Theory Strengthen to decrease the current upper bound and make M
inconsistent with the strengthened theory that says that an M with smaller
cost is needed (see the next section). By property 6, this will trigger further
rule applications. When no smaller cost solution exists, the theorem implies that
T || fail will be eventually obtained.

Similarly, when different models M1 . . .Mn are sought satisfying properties
P1 . . . Pn, one can initially add P1 ∨ . . . ∨ Pn to the theory. Then, each time one
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Mi is found for a Pi, the theory is strengthened by adding ¬Pi to it, and again
by property 6 the derivation continues. Once all Mi have been found, instead of
adding the last ¬Pi (which would make the theory inconsistent), the process is
stopped.

3 Expressing Max-SAT and Max-SMT in This
Framework

Here we apply this SMT variant in a branch-and-bound setting, where, given
a cost function f , a model M is sought with minimum f(M). In this case, the
progressively stronger theory T “knows”, possibly among the information about
other theories, the cost function f and its current best upper bound.

In particular, here we consider the exact weighted Max-SAT or Max-SMT
problem: given a set of pairs {(C1, w1) . . . , (Cm, wm)} where each Ci is a (propo-
sitional or SMT) clause and wi is its weight (a positive natural or real number),
find an assignment M (consistent with the initial background theory T ) that
minimizes the sum of the weights of clauses that are false in M .

We use the well-known encoding where each weighted clause (Ci, wi) gets a
distinct additional positive literal pi, i.e., it becomes Ci ∨ pi, where pi is a fresh
propositional symbol.

Given this encoding, apart from the initial background theory T (which is
empty in the propositional case), the theory consists of the integers plus

p1 → (k1 = w1)
. . .

pm → (km = wm)

¬p1 → (k1 = 0)
. . .

¬pm → (km = 0)
k1 + · · · + km ≤ B

In addition, we will have an initial cost bound B0, and the relation B < B0 will
also be part of the theory. Then, each time the theory is strengthened with a
new upper bound Bi, the relation B < Bi is added.

Note that one can also express that a certain (disjoint) subset of the clauses
must be true with a single common weight wi, by simply adding the same pi to
all clauses in the subset.

Also note that initially each clause contains at most one weight literal pi, but
during the search these literals receive the same treatment as any other literal.
Hence, due to conflict-driven learning, clauses with many (positive and negative)
occurrences of such weight literals appear. The truth value of such weight literals
can be set by theory propagation, since Solver

T
may communicate DPLL(X) that

a certain pi must be false in order not to exceed the current best upper bound
for the function cost f .

4 Experiments with Max-SAT and Further Pruning
Rules

In this section we give experimental results for propositional Max-SAT, show-
ing that a competitive (wrt. pseudo-Boolean solvers) DPLL(T ) system can be
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obtained with relatively little effort. Moreover, we also discuss how specialized
propagation rules can be incorporated into a DPLL(T ) implementation.

4.1 Comparison with Other Approaches

Existing specific algorithms for Max-SAT (e.g., [LMP05, LH05, XZ05]) have been
mainly designed to attack relatively small but challenging problems. To solve
these problems, they use several pruning techniques that detect when a certain
partial assignment cannot be extended to a complete assignment that improves
the current upper bound. However, on larger examples such as most of the ones
analyzed here, these techniques (and their implementations) become extremely
time and memory consuming, and hence here we only give experimental results
for one of them, namely Toolbar [LH05].

Another possibility for attacking Max-SAT problems is to use pseudo-Boolean
solvers [ARMS02, SS06, ES06]. The encoding for Max-SAT presented in Sec-
tion 3 can be easily adapted to convert the clauses, including the additional
weight literals, into pseudo-Boolean constraints. Then, the objective function
the pseudo-Boolean solver has to minimize, subject to the pseudo-Boolean con-
straints, is w1 ∗ p1 + . . . + wm ∗ pm. Since these solvers are designed to deal
with large input pseudo-Boolean problems, they do not incorporate any ad-hoc
technique for Max-SAT, which makes them inefficient on the previously men-
tioned small challenging problems, but competitive on problems whose difficulty
is essentially due to its size.

As we will see in the experiments below, the DPLL(T ) system we propose
here is competitive with the pseudo-Boolean solvers (in fact, it is usually faster),
but in addition, due to its modular architecture, it is easy to develop. Once
a DPLL(T ) system for SMT has been constructed, almost no additional work
has to be done to convert it into a tool for Max-SAT. The DPLL(X) engine
already incorporates all the necessary machinery and the only thing needed is
to implement Solver

T
for the theory described in Section 3, something doable in

less than 200 lines of C code. It can also easily be adapted in order to incorporate
additional pruning rules.

4.2 Additional Pruning Rules

The resulting DPLL(T ) system can be further improved by providing it with
specialized deduction rules for Max-SAT.

Example 8. If, due to conflict-driven lemma learning, DPLL(X) learns a clause
consisting only of positive-weight literals p1∨ . . .∨pn, each pi with its associated
weight wi, one can immediately add min{w1 . . . wn} to the current cost of the
assignment.

Some more complicated resolution-like rules were studied and shown to be very
effective in [LH05]. Hence, we have investigated up to what extent such special-
ized resolution rules can be incorporated into our architecture.
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Example 9. Assume our input formula contains, among many others, the binary
clauses l∨ p1 and ¬l ∨ p2, where each pi is a literal of weight wi. Since any total
assignment will contain either l or ¬l, it is easy to observe that any model will
have a cost of at least min{w1, w2}.

All the other rules presented in [LH05] are similar forms of resolution. In order to
implement them, one should detect binary or ternary clauses to which resolution
is applicable, and for greater effectivity, this should be done on the fly, not only as
a preprocessing step. This is quite expensive in general for DPLL-based systems
using the two-watched literal scheme [MMZ+01]. In this scheme, one can detect
newly generated unit clauses by only watching two literals in each clause, but
the detection of binary clauses would require to watch three literals per clause.
However, special situations like the one in Example 9 are still detectable with
only two watched literals per clause if one watches a positive literal weight p
only if there is no other possibility. This restriction ensures that, as soon as such
a literal p becomes watched, we have found a binary clause of the form l ∨ p.

With this small modification, DPLL(X) can efficiently detect the presence
of binary clauses of the form l ∨ p1 and ¬l ∨ p2 and then notify to SolverT an
increment in the cost of the current assignment of m=min{w1, w2}, thus allowing
Solver

T
to further prune partial assignments that have no possibility to improve

the current upper bound. Since part of the weights w1 and w2 has already been
amortized in the cost of the assignment, Solver

T
also has to be notified that the

weights of p1 and p2 now become w1 −m and w2 −m, respectively.

4.3 Experimental Evaluation

Experiments have been done on several well-known already existing benchmark
families. The DIMACS suite consists of unsatisfiable propositional formulas with
a weight of 1 for each clause, similarly to the Weighted DIMACS family, with
random weights between 1 and 1000 for each clause [dGLMS03]. Finally, the
Quasi-group instances1 encode quasi-group completion problems in which the
clauses enforcing the quasi-group structure and that some cells must contain a
given element have been given a certain weight.

We compare with three other systems: Toolbar [dGHZL05], a weighted-CSP
solver which incorporates specialized algorithms and data structures for the Max-
SAT problem; Pueblo [SS06], a pseudo-Boolean solver implementing a branch-
and-bound approach to minimize a given goal function; and Minisat+ [ES06], a
pseudo-Boolean solver based on translations to propositional satisfiability. This is
by no means an exhaustive comparison with all available tools. We chose three
tools that –we believe– represent the state of the art in these three different
approaches, and that can handle problems of a reasonable size.

We ran our system in two settings: the basic one (General DPLL(T ) in the
table) and one implementing the specialized deduction rule mentioned in Exam-
ple 9 (Special DPLL(T )). In none of them specialized heuristics were developed.

1 We thank Felip Manyà for providing us with them.
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We used our standard branching heuristic for solving general SMT problems, an
extension of VSIDS [MMZ+01].

Results are in seconds and aggregated per family of benchmarks. Each bench-
mark was run on a 2GHz 512MB Pentium 4 for 10 minutes, i.e. 600 seconds. An
annotation of the form (n t) indicates that the system timed out in n bench-
marks. Each timeout is counted as 600s in the table.

Benchmark General Special.
family #pblms. Toolbar Minisat+ Pueblo DPLL(T) DPLL(T)

DIMACS:
aim 24 (15 t) 9397 0.5 0.5 0.5 0.5

bridge fault 4 (4 t) 2400 220 73 0.3 0.6
dubois 13 (9 t) 6442 0.4 1 0.9 0.97
hole 5 (1 t) 795 102 57 470 (1 t) 605
jnh 30 587 (2 t) 5433 (3 t) 3798 (1 t)1485 948
pret 8 (4 t) 2782 0.38 0.4 0.28 0.27
ssa 4 (4 t) 2400 (1 t) 626 (1 t) 601 (1t)601 (1 t) 601

Weighted DIMACS:
wjnh 30 105 (19 t) 14025 1415 42.6 54.3

Quasi-groups:
Size 6 100 (5 t) 4194 16 2.3 1.2 3.5
Size 7 100 (69 t) 46202 178 6.4 2.9 13
Size 8 100 (100 t) 60000 582 17 9.1 41
Size 9 100 (100 t) 60000 1599 47 29 157
Size 10 100 (100 t) 60000 4783 203 151 668

These experiments only have a relative value, given the fact that tools such as
Minisat+ or Pueblo are designed to attack the broader class of pseudo-boolean
optimization problems, and also because Toolbar’s specialized Max-SAT algo-
rithms are more tailored towards small but challenging Max-SAT problems.

One can also observe from the results that the integration of specialized de-
duction rules was not always successful. In some benchmarks, like Quasi-groups,
the rule we implemented did never apply. In this case one pays a non-negligible
overhead (the system gets as much as 5 times slower) without obtaining any
gain. On the other hand, in the benchmarks where it was more productive (e.g.
in the jnh family, where on average at least one rule application was possible
out of every 10 decisions) the overhead was compensated by a reduction in the
search space. We believe it is still unclear whether to pursue the integration of
such rules is worthwile. A more careful analysis should be made on more real-
istic benchmarks, coming from real applications where weights are not assigned
at random.

5 Max-SMT: The Example of Difference Logic

We now show how this approach can be smoothly extended to Max-SMT. We
focus here on the case of weighted Max-SMT modulo the theory of Integer Dif-
ference Logic, a fragment of integer linear arithmetic, but our approach is not
limited to this theory.

In Integer Difference Logic, formulas are built over propositional atoms, as
well as (ground) atoms of the form a − b ≤ k, where a and b are (Skolemized)
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integer variables and k is an integer2. This logic is used in the context of hardware
and software verification; for instance, some properties of timed automata are
naturally expressed in it. But here we will show how a problem that a priory
doesn’t look well-suited for Difference Logic can be encoded in it, and how also
optimization problems can be solved using our approach.

5.1 Encoding the CELAR Problems in Integer Difference Logic

The well-known CELAR Radio Link Frequency Assignment problems [CdGL+99]
consist of, given a set of radio links and a set of radio frequencies, assigning a
frequency to each radio link. For some pairs of radio links, their frequencies must
be at a certain exact distance, and for others, they must be at least at a certain
distance. The latter constraints are soft, i.e., each one of them has an associated
cost if it is not satisfied, and the solution with minimum total cost has to be
found. Here we shortly explain how we encode these problems as a Max-SMT
problem for Integer Difference Logic.

Each radio link li has a finite set of available frequencies Di that can always
be seen as the disjoint union of four sets. For example:

{2 + 14k | 1 ≤ k ≤ 11} {2 + 14k | 18 ≤ k ≤ 28}
{8 + 14k | 29 ≤ k ≤ 39} {8 + 14k | 46 ≤ k ≤ 56}

This observation is crucial to express in a compact manner that the frequency
fi for the radio link li has to be in Di. For that purpose, we will encode the
value of fi using two variables: a propositional variable ti expressing whether fi

is 2 modulo 14 or not, and an integer variable mi, representing fi mod 14. With
these additional variables we can express that fi is in Di with the formulas:

ti → (1 ≤ mi ≤ 11 ∨ 18 ≤ mi ≤ 28)
¬ti → (29 ≤ mi ≤ 39 ∨ 46 ≤ mi ≤ 56)

It now remains to encode distance constraints of the form |fi − fj| > k, with
their costs wij . Our encoding of fi and fj using the auxiliary variables makes it
natural to reason by cases, depending on whether fi and fj are 2 modulo 14 or
not. For example if fi is 2 modulo 14 and fj is not (and hence is 8 modulo 14),
then |fi − fj| > k is equivalent to |2+14mi−8−14mj| > k. After the necessary
manipulations, the corresponding Difference Logic clause is:

(ti ∧ ¬tj) →
(
mi−mj ≥

⌊
k + 6
14

⌋
+ 1 ∨ mi−mj ≤

⌈
−k + 6

14

⌉
− 1
)

The exact distance constraints are encoded similarly. Costs are expressed by
additional weight literals as explained in Section 3.
2 Atoms of the form a ≤ k are also allowed because one can use an auxiliary integer

variable z0, and consider the inequality a− z0 ≤ k instead. It is not difficult to
see that this transformation preserves T -satisfiability. See [NO05] for details on our
DPLL(T ) system for Difference Logic.
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5.2 Experimental Evaluation

As before, from our BarcelogicTools DPLL(T ) implementation we obtained, with
little effort, our first Max-SMT system.

We compared our system with the best-known weighted CSP solver Toolbar
[dGHZL05] in three different settings. The first one used a static branching
heuristic, the second one was the default setting for Toolbar and the third one,
the best possible choice according to the authors, used a Jeroslow-like branching
heuristic. We used the same machine as before and again results are in seconds.

Benchmark Toolbar
name Static Default Jeroslow DPLL(T)

SUBCELAR 6 0 0.2 0.4 0.2 5
SUBCELAR 6 1 85 252 65 90
SUBCELAR 6 2 127 982 25 132
SUBCELAR 6 3 7249 2169 355 636
SUBCELAR 6 4 7021 > 5 hours 1942 1417

The choice of different branching heuristics leads to dramatic changes in Tool-
bar’s runtime. Hence, we believe that specialized heuristics for DPLL(T ) could
still improve its performance. From these limited results, one cannot infer that
DPLL(T ) has better scaling properties than Toolbar in its best setting, although
it is 20 times slower on the smallest problem, but faster on the largest one. In
any case, we believe these results indicate that SMT tools can be already used
for efficiently solving industrial optimization problems.

We also carefully translated these problems into weighted Max-SAT and
pseudo-Boolean problems. Somewhat to our surprise, the tools mentioned in
Section 4 needed around 30 seconds on the smallest of these problems, and did
not terminate in a day on the second smallest one. These problems are also
not known to be tractable by means of translations into pure Integer Linear
Programming, in spite of attempts using the best ILP solvers (Javier Larrosa,
private communication).

6 Conclusions and Further Work

By developing DPLL(T ) techniques for weighted Max-SAT, we have shown that
DPLL(T ) can be very competitive for problems that do not look a priori like
typical SMT problems. Since this was achieved with relatively little effort, we
see this as an indication of the quality, in terms of efficiency and flexibility, of
our approach.

The success of our Max-SMT implementation on the CELAR benchmarks re-
veals that realistic problems can be modeled as Max-SMT problems and solved
with small variants of SMT solvers. Effectivity of SMT solvers for that purpose
has also been recently shown in [SPSP05], using SMT over another fragment of
linear arithmetic, for solving soft temporal constraints, where extensive experi-
ments were done on random problems.

Future work concerns other problems that are not typical SMT-like. For
example, we are currently investigating the use of DPLL(T ) for expressing
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finite-domain constraints, and in particular global constraints from the constraint
programming world, such as alldifferent.
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Abstract. In the context of DPLL(T), theory propagation is the process
of dynamically selecting consequences of a conjunction of constraints
from a given set of candidate constraints. We present improvements to a
fast theory propagation procedure for difference constraints of the form
x − y ≤ c. These improvements are demonstrated experimentally.

1 Introduction

In this paper, theory propagation refers to the process of of dynamically select-
ing consequences of a conjunction of constraints from a given set of constraints
whose truth values are not yet determined. The problem is central to an emerg-
ing method, known as DPLL(T) [10,17,3,18] for determining the satisfiability
of arbitrary Boolean combinations of constraints. We present improvements to
theory propagation procedure for difference logic whose atomic constraints are
of the form x− y ≤ c. Our contribution is summarized below:

1. We introduce flexibility in the invocation times and scope of constraint prop-
agation in the DPLL(T) framework. This feature is theory independent and
is described in more detail in [4].

2. We identify conditions for early termination of single source shortest path
(SSSP) based incremental propagation. These conditions allow us to ignore
nodes in the constraint graph which are not affected by the assignment of
the new constraint.

3. We implement a fast consistency check algorithm for difference constraints
based on an algorithm presented in [9]. As a side effect, the performance
of subsequent theory propagation is improved. We present an adaptation of
Goldberg’s smart-queue algorithm [11] for the theory propagation itself.

4. We show that incremental complete difference constraint propagation can be
achieved in O(m+n log n+ |U |) time, where m is the number of constraints
whose consequences are to be found, n the number of variables in those
constraints, and U the set of constraints which are candidates for being
deduced. This is a major improvement over the O(mn) complexity of [17].
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The rest of this paper is organized as follows. In Section 2 we describe the
context of theory propagation in DPLL(T) and review difference constraint prop-
agation in particular. In Section 3, we present a simplified consistency checker
which also speeds up subsequent propagation. Our propagation algorithm in-
cluding the early termination feature is presented in Section 4; experimental
evidence is presented in Section 5; and we conclude in Section 6.

2 Background

Propagation in DPLL(T). The Davis-Putnam-Loveland-Logemann (DPLL)
satisfiability solver is concerned with propositional logic [6,5]. Its input formula
ϕ is assumed to be in conjunctive normal form. Given such a formula, a DPLL
solver will search the space of truth assignments to the variables by incrementally
building up partial assignments and backtracking whenever a partial assignment
falsifies a clause. Assignments are extended both automatically by unit prop-
agation and by guessing truth values. Unit propagation is realized by keeping
track of the effect of partial assignments on the clauses in the input formula. For
example, the clause x ∨ ¬y is solved under an assignment including y  → false
and is reduced to the clause x under an assignment which includes y  → true
but which contains no mapping for x. Whenever a clause is reduced to contain
a single literal, i.e. it is in the form v or the form ¬v, the DPLL engine extends
the partial assignment to include the truth value of v which solves the clause. If
a satisfying assignment is found, the formula is satisfiable. If the procedure ex-
hausts the (guessed) assignment space without finding a satisfying assignment,
the formula is not satisfiable.

DPLL(T) is a DPLL-based decision procedure for satisfiability modulo theo-
ries. The DPLL(T) framework extends a DPLL solver to the case of a Boolean
combination of constraints which are interpreted with respect to some back-
ground theory T . An external theory-specific solver called SolverT is invoked at
each assignment extension in the DPLL procedure. SolverT is responsible for
checking the consistency of the assignment with respect to the theory T . If an
assignment is inconsistent, the DPLL procedure backtracks just as it would if
an empty clause were detected. In addition, a central feature of DPLL(T) is
that SolverT may also find T -consequences of the assignment and communicate
them to the DPLL engine. This latter activity, called theory propagation, is in-
tended to help guide the DPLL search so that the search is more informed with
respect to the underlying theory. Theory propagation is thus interleaved with
unit propagation and moreover the two types of propagation feedback into one
another. This quality gives the resulting system a strong potential for reducing
the guessing space of the DPLL search. Consequently, DPLL(T) is an effective
framework for satisfiability modulo theories [10,3,17].

Flexible Propagation. We define an interface to SolverT which allow it to
interact with the DPLL engine along any such interleaving of unit propagation
and theory propagation. Below are three methods to be implemented by SolverT ,
which can be called in any sequence:



172 S. Cotton and O. Maler

SetTrue. This method is called with a constraint c every time the DPLL engine
extends the partial assignment A with c. SolverT is expected to indicate
whether or not A∪{c} is T -consistent. If consistent, an empty set is returned.
Otherwise, an inconsistent subset of A ∪ {c} is returned.

TheoryProp. This method returns a set C of T -consequences of the current
assignment A. A set of reasons Rc ⊆ A is associated with each c ∈ C,
satisfying Rc |= c. Unlike the original DPLL(T) of [10], the method is entirely
decoupled from SetTrue.

Backtrack. This method simply indicates which assigned constraints become
unassigned as a result of backtracking.

The additional flexibility of the timing of occurences of calls to SetTrue in
relation to occurences of calls to TheoryProp allows the system to propagate con-
straints either eagerly or lazily. Eager propagation follows every call to SetTrue
with a call to TheoryProp. Lazy propagation calls TheoryProp only after a se-
quence of calls to SetTrue, in particular when unit propagation is not possible.

Whatever the sequence of calls, it is often convenient to identify the source of
an assignment in the method SetTrue. At the same time, it is the DPLL engine
which calls these methods and we would like to minimize its responsibilities
to facilitate using off-the-shelf DPLL solvers along with the host of effective
optimizations associated with them. Hence, we do not require that the DPLL
engine keep track of the source of every assignment. Rather we allow it to treat
constraints more or less the same way it treats propositional literals, and put
the burden on SolverT instead.

Towards this end, we have SolverT associate an annotation αc with each con-
straint (or its negation) which appears in a problem. In addition to tracking the
origin of constraints passed to SetTrue, the annotation is used to keep track of a
set of assigned constraints whose consequences have been found. The annotation
can take any value from {Π,Σ,Δ,Λ} with the following intended meanings.

Π : Constraints whose consequences have been found (propagated constraints).
Δ: Constraints which have been identified as consequences of constraints la-

belled Π .
Σ: Constraints which have been assigned, but whose consequences have not

been found yet.
Λ: Unassigned constraints.

For convenience, we use the labels Π,Δ,Σ and Λ interchangeably with the set
of constraints which have the respective label.

It is fairly straightforward to maintain labels with these properties via the
methods SetTrue, TheoryProp, and Backtrack. Whenever a constraint is passed
to SetTrue which is labelled Λ we label it Σ and perform a consistency check.
Whenever TheoryProp is called, constraints labelled Σ are labelled Π one at a
time. After each such relabelling, all the constraints in Σ ∪ Λ which are con-
sequences of constraints labelled Π are re-labelled Δ. Whenever backtracking
occurs, all constraints which become unassigned together with all consequences
which are not yet assigned are labelled Λ.
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As explained at length in [4] for the more general context of theory decomposi-
tion, such constraint labels provide for a more flexible form of theory propagation
which, in particular, exempts constraints labelled Δ from consistency checks and
from participating as antecedents in theory propagation. This feature reduces the
cost of theory propagation without changing its outcome, and is independent of
the theory and propagation method used.

2.1 Difference Constraints and Graphs

Difference constraints can express naturally a variety of timing-related problems
including schedulability, circuit timing analysis, and bounded model checking
of timed automata [16,3]. In addition, difference constraints can be used as an
abstraction for general linear constraints and many problems involving general
linear constraints are dominated by difference constraints. Difference constraints
are also much more easily decided than general linear constraints, in particular
using the following convenient graphical representation.

Definition 1 (Constraint graph). Let S be a set of difference constraints and
let G be the graph comprised of one weighted edge x

c→ y for every constraint
x− y ≤ c in S. We call G the constraint graph of S.

The constraint graph may be readily used for consistency checking and constraint
propagation, as is indicated in the following well-known theorem.

Theorem 1. Let Γ be a conjunction of difference constraints, and let G be the
constraint graph of Γ . Then Γ is satisfiable if and only if there is no negative
cycle in G. Moreover, if Γ is satisfiable, then Γ |= x − y ≤ c if and only if y
is reachable from x in G and c ≥ dxy where dxy is the length of a shortest path
from x to y in G.

As the semantics of conjunctions of difference constraints are so well character-
ized by constraint graphs, we refer to sets of difference constraints interchange-
ably with the corresponding constraint graph. In this way, we also further abuse
the notation associated with constraint labels introduced in section 2. In partic-
ular, the labels Π,Σ,Δ, and Λ are used not only to refer to the set of difference
constraints with the respective label, but also to the constraint graph induced
by that set of constraints. We also often refer to a difference constraint x−y ≤ c
by an edge x

c→ y in a constraint graph and vice versa.

3 Consistency Checks

In accordance with Theorem 1, one way to show that a set of difference con-
straints Γ is consistent is to show that Γ ’s constraint graph G contains no
negative cycle. This in turn can be accomplished by establishing a valid po-
tential function, which is a function π on the vertices of a graph satisfying
π(x) + c − π(y) ≥ 0 for every edge x

c→ y in G. A valid potential function
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may readily be used to establish lower bounds on shortests path lengths be-
tween arbitrary vertices (v1, vn):

Σn−1
i=1 π(vi) + ci − π(vi+1) ≥ 0
π(v1) − π(vn) + Σn−1

i=1 ci ≥ 0
Σn−1

i=1 ci ≥ π(vn) − π(v1)

If one considers the case that v1 = vn, it follows immediately that the existence
of a valid potential function guarantees that G contains no negative cycles. In
addition, a valid potential function for a constraint graph G defines a satisfying
assignment for the set Γ of difference constraints used to form G. In particular, if
π is a valid potential function for G, then the function v  → −π(v) is a satisfying
assignment for Γ .

In the DPLL(T) framework, consistency checks occur during calls to SetTrue,
when a constraint u d→ v is added to the set of assigned constraints. If the con-
straint is labelled Δ, then there is no reason to perform a consistency check.
Otherwise, the constraint is labelled Σ. In this latter case, SetTrue must per-
form a consistency check on the set Π ∪ Σ. To solve this problem, we make
use of an incremental consistency checking algorithm based largely on an incre-
mental shortests paths and negative cycle detection algorithm due to Frigioni1

et al [9]. Before detailing this algorithm, we first formally state the incremen-
tal consistency checking problem in terms of constraint graphs and potential
functions:

Definition 2 (Incremental Consistency Checking). Given a directed graph
G with weighted edges, a potential function π satisfying π(x) + c− π(y) ≥ 0 for
every edge x

c→ y, and an edge u
d→ v not in G, find a potential function π′ for

the graph G′ = G ∪ {u d→ v} if one exists.

The complete algorithm for this problem is given in pseudocode in Figure 1. The
algorithm maintains a function γ on vertices which holds a conservative estimate
on how much the potential function must change if the set of constraints is
consistent. The function γ is refined by scanning outgoing edges from vertices
for which the value of π′ is known.

3.1 Proof of Correctness and Run Time

Lemma 1. The value min(γ) is non-decreasing throughout the procedure.

Proof. Whenever the algorithm updates γ(z) to γ′(z) �= γ(z) for some vertex z,
it does so either with the value 0, or with the value π′(s) + c − π(t) for some

1 The algorithm and its presentation here are much simpler primarily because Frigioni
et al. maintain extra information in order to solve the fully dynamic shortests paths
problem, whereas this context only demands incremental consistency checks. In par-
ticular, we do not compute single source shortests paths, but rather simply use a
potential function which reduces the graph size.
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γ(v) ← π(u) + d − π(v)
γ(w) ← 0 for all w �= v
while min(γ) < 0 ∧ γ(u) = 0

s ← argmin(γ)
π′(s) ← π(s) + γ(s)
γ(s) ← 0
for s

c→ t ∈ G do
if π′(t) = π(t) then

γ(t) ← min{γ(t), π′(s) + c − π(t)}

Fig. 1. Incremental consistency checking algorithm, invoked by SetTrue for a con-
straint u

d→ v labelled Λ. If the outer loop terminates because γ(u) < 0, then the set
of difference constraints is not consistent. Otherwise, once the outer loop terminates,
π′ is a valid potential function and −π′ defines a satisfying assignment for the set of
difference constraints.

edge s
c→ t in G such that t = z. In the former case, we know γ(z) < 0 by

the termination condition, and in the latter we have γ′(z) = π′(s) + c− π(t) =
(π(s) + c− π(t)) + γ(s) ≥ γ(s), since π(s) + c− π(t) ≥ 0. �

Lemma 2. Assume the algorithm is at the beginning of the outer loop. Let z
be any vertex such that γ(z) < 0. Then there is a path from u to z with length
L(z) = π(z) + γ(z)− π(u).

Proof. (sketch) By induction on the number of times the outermost loop is
executed. �

Theorem 2. The algorithm correctly identifies whether or not G′ contains a
negative cycle. Moreover, when there is no negative cycle the algorithm estab-
lishes a valid potential function for G′.

Proof. We consider the various cases related to termination.

– Case 1. γ(u) < 0. From this it follows that L(u) < 0 and so there is
a negative cycle. In this case, since the DPLL engine will backtrack, the
original potential function π is kept and π′ is discarded.

– Case 2. min(γ) = 0 and γ(u) = 0 throughout.
In this case we claim π′ is a valid potential function. Let γi be the value
of γ at the beginning of the ith iteration of the outer loop. We bserve that
∀v . π′(v) ≤ π(v) and consider the following cases.
• For each vertex v such that π′(v) < π(v), π′(v) = π(v) + γi(v) for

some refinement step i. Then for every edge v
c→ w ∈ G, we have that

γi+1(w) ≤ π′(v) + c − π(w) and so π′(w) ≤ π(w) + γi+1(w) ≤ π(w) +
π′(v) + c− π(w) = π′(v) + c. Hence π′(v) + c− π′(w) ≥ 0.

• For each vertex v such that π′(v) = π(v), we have π′(v) + c − π′(w) =
π(v) + c− π′(w) ≥ π(v) + c− π(w) ≥ 0 for every v

c→ w ∈ G
We conclude π′ is a valid potential function with respect to all edges in G′.
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In all cases, the algorithm either identifies the presence of a negative cycle,
or it establishes a valid potential function π′. As noted above, a valid potential
function precludes the existence of a negative cycle. �

Theorem 3. The algorithm runs in time2 O(m + n logn).

Proof. The algorithm scans every vertex once. If a Fibonacci heap is used to
find argmin(γ) at each step, and for decreases in γ values, then the run time is
O(m + n logn). �

3.2 Experiences and Variations

For simplicity, we did not detail how to identify a negative cycle if the set of
constraints is inconsistent. A negative cycle is a minimal inconsistent set of
constraints and is returned by SetTrue in the case of inconsistency. Roughly
speaking, this can be accomplished by keeping track of the last edge x

c→ y
along which γ(y) was refined for every vertex. Then every vertex in the negative
cycle will have such an associated edge, those edges will form the negative cycle
and may easily recovered.

In practice we found that the algorithm is much faster if we maintain for
each vertex v a bit indicating whether or not its new potential π′(v) has been
found. With this information at hand, it is straightforward to update a single
potential function rather than keeping two. In addition, this information can
readily be used to skip the O(n) initialization of γ and to keep only vertices v
with γ(v) < 0 in the priority queue. We found that the algorithm ran faster with
a binary priority queue than with a Fibonacci heap, and also a bit faster when
making use of Tarjan’s subtree-enumeration trick [20,1] for SSSP algorithms.
Profiling benchmark problems each of which invokes hundreds of thousands of
consistency checks indicated that this procedure was far less expensive than
constraint propagation in the DPLL(T) context, although the two have similar
time complexity.

4 Propagation

The method TheoryProp described in Section 2 is responsible for constraint
propagation. The procedure’s task is to find a set of consequences C of the
current assignment A, and a set of reasons Rc for each consequence c ∈ C. For
difference constraints, by Theorem 1, this amounts to computing shortests paths
in a constraint graph.

We present a complete incremental method for difference constraint propa-
gation which makes use of the constraint labels Π,Σ,Δ, and Λ. The constraint
propagation is divided into incremental steps, each of which selects a constraint
c labelled Σ, relabels c with Π , and then finds the consequences of those con-
straints labelled Π from the set Σ ∪ Λ, labelling them Δ. A single step may
2 Whenever stating the complexity of graph algorithms, we use n for the number of

vertices in the graph and m for the number of edges.
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or may not find unassigned consequences. On every call to TheoryProp, these
incremental steps occur until either there are no constraints labelled Σ, or some
unassigned consequences are found. Any unassigned consequences are returned
to the DPLL(X) engine for assignment and further unit propagation. We state
the problem of a single incremental step in terms of constraint graphs and short-
ests paths below.

Definition 3 (Incremental complete difference constraint propagation).
Let G,H be two edge disjoint constraint graphs, and let x c→ y ∈ H be a distin-
guished edge. Suppose that for every edge u

d→ v ∈ H, the length of a shortest
path from u to v in G exceeds d. Let G′ = G ∪ {x c→ y} and H ′ = H \ {x c→ y}.
Find the set of all edges u d→ v in H ′ such that the length of a shortest path from
u to v in G′ does not exceed d.

The preconditions relating the graphs G and H are a result of labelling and
complete propagation. If all consequences of G are found and removed from H
prior to every step, then no consequnces of G are found in H and so the length
of a shortest path from x to y in G exceeds the weight of any edge u

d→ v ∈ H .
As presented by Nieuwenhuis et al. [17], this problem may be reduced to solv-

ing two SSSP problems. First, for the graph G′, the SSSP weights δ→y from y
are computed and then SSSP weights δ←x to x are computed, the latter being
accomplished simply by computing δ→x in the reverse graph. Then for any con-
straint u d→ v ∈ H ′, the weight of the shortests path from u to v passing through
x

c→ y in G′ is given in constant time by δ←x (u) + c+ δ→y (v). In accordance with
Theorem 1, the weight of this path determines whether or not the constraint
u

d→ v is implied, in particular by the condition δ←x (u) + c + δ→y (v) ≤ d. It then
suffices to check every constraint in H ′ in this fashion. We now present several
improvements to this methodology.

4.1 Completeness, Candidate Pruning, and Early Termination

A slight reformulation of the method above allows for early termination of the
SSSP computations under certain conditions. That is, nodes for which it becomes
clear that their minimal distance will not be improved due to the insertion of
x

c→ y to the constraint graph will not be explored. We introduce the idea
of relevancy below to formalize how we can identify such vertices and give an
example in Figure 2. For a new edge x

c→ y, relevancy is based on shortest path
distances δ→x (from x) and δ←y (to y), in contrast to the formulation above. Under
this new formulation, if the shortest path from u to v passes through x

c→ y,
then the path length is δ←y (u) + δ→x (v) − c.

Definition 4 (δ-relevancy with respect to x
c→ y). A vertex z is δ→x -

relevant if every shortest path from x to z passes through x
c→ y; similarly, a

vertex z is δ←y -relevant if every shortest path from z to y passes through x
c→ y.

A constraint u d→ v is δ-relevant if both u is δ←y -relevant and v is δ→x -relevant.

A set C of constraints is δ-relevant if every u
d→ v ∈ C is δ-relevant.
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YX Z

Fig. 2. An example graph showing δ-relevant vertices with respect to the edge (x, y).
For simplicity, all edges are assumed to have weight 1. The relevant vertices are white
and the irrelevant vertices are shaded. As an example, the vertex z is not δ→

x -relevant
because there is a shortest path from x to z which does not pass through y. As a result,
any constraint u

d→ z ∈ H ′ is not member of the incremental complete propagation
solution set.

Lemma 3. The solution set for complete incremental difference constraint prop-
agation is δ-relevant.

Proof. Let x
c→ y be the new edge in G, and suppose for a contradiction that

some constraint u
d→ v ∈ H ′ in the solution set is not δ-relevant. Then the

length of a shortest path from u to v in G′ does not exceed d. By definition of
δ-relevancy, some path p from u to v in G′ which does not pass through x

c→ y is
at least as short as the shortest path from u to v passing through x

c→ y. Observe
that p is a path in G. By the problem definition, u d→ v �∈ H and H ′ ⊂ H . Hence
u

d→ v �∈ H ′, a contradiction. �

Corollary 1 (Early Termination). It suffices to check every δ-relevant mem-
ber of H ′ for membership in the solution set. As a result, each SSSP algorithm
computing δ ∈ {δ→x , δ←y } need only compute correct shortests path distances for
δ-relevant vertices.

Early termination is fairly easy to implement with most SSSP algorithms in
the incremental constraint propagation context. First, for δ ∈ {δ→x , δ←y }, we
maintain a label for each vertex indicating whether or not it is δ-relevant. We
then define an order ≺ over shortest path distances of vertices in a way that
favors irrelevancy:

δ(u) ≺ δ(v) ⇐⇒ δ(u) < δ(v) or

⎧⎨
⎩
δ(u) = δ(v)
u is δ-irrelevant
v is δ-relevant

Since the new constraint x c→ y is a unique shortest path, we initially give y the
label δ→x -relevant and x the label δ←y -relevant. During the SSSP computation of

δ, whenever an edge u
d→ v is found such that δ(u) ≺ δ(v) + d, the distance to v

is updated and we propagate u’s δ-relevancy label to v. If at any point in time
all such edges are not δ-relevant, then the algorithm may terminate.
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To facilitate checking only δ-relevant constraints in H ′, one may adopt a trick
described in [17] for checking only a reachable subset of H ′. In particular, one
may maintain the constraint graph H ′ in an adjacency list form which allows
iteration over incoming and outgoing edges for each vertex as well as finding
the in- and out-degree of each vertex. If the sets of δ→x -relevant and δ←y -relevant
vertices are maintained during the SSSP algorithm, the smaller of these two sets,
measured by total in- or out-degree in H ′, may be used to iterate over a subset
of constraints in H ′ which need to be checked.

4.2 Choice of Shortests Path Algorithm

There are many shortest path algorithms, and it is natural to ask which one is
best suited to this context. An important observation is that whenever shortests
paths δ→x or δ←y are computed, the graph G has been subject to a consistency
check. Consistency checks establish a potential function π which can be used to
speed up the shortests path computations a great deal. In particular, as was first
observed by Johnson [13], we can use π(x)+c−π(y) as an alternate, non-negative
edge weight for each edge x

c→ y. This weight is called the reduced cost of the
edge. The weight w of path p from a to b under reduced costs is non-negative and
the original weight of p, that is, without using reduced costs, is easily retrieved
as w + π(b) − π(a). Our implementation of constraint propagation exploits this
property by using an algorithm for shortests paths on graphs with non-negative
edge weights. The most common such algorithm is Dijkstra’s [7], which runs in
O(m+n logn) time. This is an improvement over algorithms which allow arbitrary
edge weights, the best of which run in O(mn) time [2]. A direct result follows.

Theorem 4. Complete incremental difference constraint propagation can be ac-
complished in O(m + n logn + |H ′|) time where m is the number of assigned
constraints, n the number of variables occuring in assigned constraints, and H ′

is the set of unassigned constraints.

Proof. The worst case execution time of finding all consequences over a se-
quence of calls to SetTrue and TheoryProp, is O(m + n logn + |H ′|) per call
to TheoryProp and O(m + n logn) per call to SetTrue. Thus if every call to
SetTrue is followed by a call to TheoryProp, then the combined time for both
calls is O(m + n logn + |H ′|). �

4.3 Adaption of a Fast SSSP Algorithm

In order to fully exploit the use of the potential function in constraint propa-
gation, we make use of a state-of-the-art SSSP algorithm for a graph with non-
negative edge weights. In particular, we implemented (our own interpretation
of) Goldberg’s smart-queue algorithm [11]. The application of this algorithm to
difference constraint propagation context is non-trivial because it makes use of
a heuristic requiring that we keep track of some information for each vertex as
the graph Π and its potential function changes. Even in the face of the extra
book-keeping the algorithm turns out to run significantly faster than standard
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implementations of Dijkstra’s algorithm with a Fibonacci heap or a binary pri-
ority queue.

The smart-queue algorithm is a priority queue based SSSP algorithm for a
graph with non-negative edge weights which maintains a priority queue on ver-
tices. Each vertex is prioritized according to the shortest known path from the
source to it. The smart-queue algorithm also makes use of the caliber heuristic
which maintains for each vertex the minimum weight of any edge leading to
it. This weight is called the caliber of the vertex. After removing the minimum
element of distance d from the priority queue, d serves as a lower bound on the
distance to all remaining vertices. When scanning a vertex, we know the lower
bound d, and if we come accross a vertex v with caliber cv and tentative distance
dv, we know that the distance dv is exact if d+ cv ≥ dv. Vertices whose distance
is known to be exact are not put in the priority queue, and may be removed from
the priority queue prematurely if they are already there. The algorithm scans
exact vertices greedily in depth first order. When no exact vertices are known
it backs off to use the priority queue to determine a new lower bound. The pri-
ority queue is based on lazy radix sort, and allows for constant time removal of
vertices. For full details, the reader is referred to [11].

In this context, the caliber of a vertex may change whenever either the graph
Π or its potential function changes. This in turn requires that the graph Π be
calibrated before each call to TheoryProp. Calibration may be accomplished with
linear cost simply by traversing the graphΠ once prior to each such call. However,
we found that if, between calls to TheoryProp, we keep track of those vertices
whose potential changes as well as those vertices which have had an edge removed
during backtracking, then we can reduced the cost of recalibration. In particular,
the recalibration associated with each call to TheoryProp can then be restricted
to the subgraph which is reachable in one step from any such affected vertex.

5 Experiments

We present various comparisons between different methods for difference con-
straint propagation. With one exception, the different methods are implemented
in the same basic system: a Java implementation of DPLL(T) which we call Jat.
The underlying DPLL solver is fairly standard with two literal watching [14],
1UIP clause learning and VSID+stack heuristics [12] as in the current version
of ZChaff [15], and conflict clause minimization as in MiniSat [8]. Within this
fixed framework, we present a comparison of reachability-based and relevancy-
based early termination in Figure 3 as well as a comparison of lazy and eager
strategies in Figure 4. These comparisons are performed on scheduling problems
encoded as difference logic satisfiability problems on a 2.4GHz intel based box
runnning linux. The scheduling problems are taken from standard benchmarks,
predominately from the SMT-LIB QF RDL section [19]. In Figure 5, we also
present a comparison of our best configuration, implemented in Java, against
BarceLogicTools (BCLT) which is implemented in C and which, in 2005, won
the SMT competition for difference logic.
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Fig. 3. A comparison of relevancy based early termination and reachability based early
termination. The relevancy based early termination is consistently faster and the speed
difference is roughly proportional to the difficulty of the underlying problem.
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Fig. 4. A comparison of lazizess and eagerness in theory propagation for difference
logic. Both lazy and eager implementations use relevancy based early termination and
the same underlying SSSP algorithm. The lazy strategy is in general significantly faster
than the eager strategy. This difference arises because the eager strategy performs
constraint propagation more frequently.

Job-shop scheduling problems encoded as difference logic satisfiability prob-
lems, like the ones used in our experiments, are strongly numerically constrained
and weakly propositionally constrained. These problems are hence a relatively
pure measure of the efficiency of difference constraint propagation. While it
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Fig. 5. Jat with lazy propagation and relevancy based early termination compared with
BarceLogicTools [17] on job-shop scheduling problems. The Jat propagation algorithm
uses consistency checks and Goldberg’s smart-queue SSSP algorithm as described in this
paper, and is implemented in Java. Assuming BarceLogicTools hasn’t changed since [17],
it uses no consistency checks, eager propagation, a depth first search SSSP based O(mn)
propagation algorithm, and is implemented in C. The Jat solver is generally faster.

seems that our approach outperforms the others on these types of problems3,
this is no longer the case when Boolean constraints play a stronger role. In fact,
BCLT is several times faster than Jat on many of the other types of difference
logic problems in SMT-LIB. Upon profiling Jat, we found that on all the non-
scheduling problems in SMT-LIB, Jat was spending the vast majority of its time
doing unit propagation, whereas in the scheduling problems Jat was spending
the vast majority of its time doing difference constraint propagation. Although
it is at best difficult to account for the difference in implementations and pro-
gramming language, this suggests that the techniques for difference constraint
propagation presented in this paper are efficient, in particular for problems in
which numerical constraints play a strong role.

6 Conclusion

We presented several improvements for difference constraint propagation in SMT
solvers. We show that lazy constraint propagation is faster than eager con-
straint propagation, and that relevancy based early termination is helpful. We
presented adaptations of state-of-the-art shortest paths algorithms to the dif-
ference constraint propagation context in the DPLL(T) framework. We showed

3 Although we have few direct comparisons, this is suggested by the fact that BCLT
did outperform the others in a recent contest on scheduling problems, and that our
experiments indicate that our approach outperforms BCLT on the same problems.
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experimentally that these improvements taken together make for a fast
difference logic solver which is highly competitive on problems dominated by
numerical constraints.
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Abstract. In this paper we present a new progressive cooperating sim-
plifier for deciding the satisfiability of a quantifier-free formula in the
first-order theory of integers involving combinations of sublogics, referred
to as Satisfiability Modulo Theories (SMT). Our approach, given an SMT
problem, replaces each non-propositional theory atom with a Boolean
indicator variable yielding a purely propositional formula to be decided
by a SAT solver. Starting with the most abstract representation (the
Boolean formula), the solver gradually integrates more complex theory
solvers into the working decision procedure. Additionally, we propose
a method to simplify “expensive” atoms into suitable conjunctions of
“cheaper” theory atoms when conflicts occur. This process considerably
increases the efficiency of the overall procedure by reducing the number
of calls to the slower theory solvers. This is made possible by adopting
our novel inter-logic implication framework, as proposed in this paper.
We have implemented these methods in our Ario SMT solver by com-
bining three different theory solvers within a DPLL-style SAT solver:
a Unit-Two-Variable-Per-Inequality (UTVPI) solver, an integer linear
programming (ILP) solver, and a solver for systems of equalities with
uninterpreted functions. The efficiencies of our proposed algorithms are
demonstrated and exhaustively investigated on a wide range of bench-
marks in hardware and software verification domain. Empirical results
are also presented showing the advantages/limitations of our methods
over other modern techniques for solving these SMT problems.

1 Introduction

Procedures to decide quantifier-free formulas in (a combination of) first-order
theories, recently dubbed as Satisfiability Modulo Theories (SMT), have been
used to solve problems in a wide range of applications mainly in hardware and
software verification. Examples of such applications are RTL datapath verifica-
tion [1], symbolic timing verification [2], and buffer over-run vulnerability de-
tection [3]. In the past several years, there has been considerable progress in
solving these types of problems by leveraging the recent advances in Boolean
SAT and combining them with different solvers for conjunctions of theory atoms
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[4,5,6,7,8]. These combination strategies include the layered approach of [6] based
on solving each particular set of theory atoms separately and in layers, ordered
in their increasing expressiveness, and the online approach including the Mixed
Logical Integer Linear Programming (MLILP) [9] and DPLL(T) [8] methods,
where the SAT reasoning and learning techniques are applied to both proposi-
tional and theory literals simultaneously. Applied to simpler logics, such as to
the Unit-Two-Variable-Per-Inequality (UTVPI) Logic in [9] or Difference Logic
in [8], the online method utilizes incremental theory solvers while the proposi-
tional abstraction of the problem is being solved in order to reason about any
single assignment to the theory atoms on-demand.

Recognizing the expressiveness relations among the theory atoms within the
SMT problem, on one hand, and the unequal efficiencies of different theory
solvers specialized in certain logics, on the other hand, in this paper, we in-
troduce a new combined inter-logic deduction procedure that enables the SMT
solver reason across different solvers. We subsequently propose the following
two simplification schemes (collectively called progressive) in order to gradually
increase the role of simpler theory solvers in the overall procedure:

1. Conflict-induced inter-Logic Constraint Simplification, where at
each conflict, implications involving expensive theory atoms are simplified
into a combination of cheaper atoms. Note that in order to be able to de-
tect such implications, the “inter-logic deduction” and reasoning framework
is utilized. Unlike many recent SAT-based SMT solvers [4,6] where at each
conflict, the formula is augmented with constraints over its existing atoms,
our simplification approach can introduce new theory atoms to yield the
strongest representation of the conflicts/implications in terms of atoms in
different logics. This consequently results in better pruning of the search
space, lower propagation costs and ultimately considerable speed-up.

2. Step-by-Step Formula Concretization, where a more concrete repre-
sentation of the problem is solved only if a solution to an abstract version is
found. Unlike the layered approach where the satisfying solutions are passed
down the layers, this method gradually incorporates theory solvers into the
overall procedure upon finding the first SAT solution to each abstract for-
mula. The abstract formulas are solved following the online approach.

Note that in this paper we are considering different logics within the theory
of integer numbers. In case of combining different theories, such as the theory of
arrays or the theory of list structures, a combination strategy such as Nelson-
Oppen method [10] or Delayed Theory Combination approach [11] is adopted to
communicate equalities between shared variables. Our progressive simplification
and our inter-logic deduction methods are only applicable to those theory atoms
that are convertible to each other.

The remainder of this paper is organized as follows. In Section 2 we formally
define the SMT problem and in Section 3 we describe the cooperating theory
solvers and our inter-logic deduction scheme. We introduce the two algorithms
of our progressive simplifier in Section 4. Experimental results are reported in
Section 5 and we conclude in Sections 6.
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2 Satisfiability Modulo Theories

An SMT problem is the problem of deciding the satisfiability of a quantifier-free
formula in (combinations of) first-order theories.

Following the SMT-LIB standards [12], a language of a theory within the first-
order logic with equality consists of three disjoint sets of symbols: individual
variables V , n-ary function symbols Fun, and n-ary predicate symbols Pr. A
0-ary function symbol is called a constant, denoted by c, and a 0-ary predicate
symbol is called a propositional variable, denoted by P . A term, denoted by t, is
defined inductively as a variable symbol, v ∈ V , or f(t1, · · · , tn) where f ∈ Fun.
Furthermore, an Atom is p(t1, · · · , tn) where p ∈ Pr. A function (predicate)
symbol is termed “uninterpreted” and denoted by fU ∈ Fun (pU ∈ Pr), when we
only know that it is consistent, i.e. two of its applications to the same arguments
produce the same value. Hence, a Functional Consistency constraint, FC, of the
following form is implicit due to the uninterpreted functions (predicates):

FC ::= ∀fU ∈ Fun, ∀pU ∈ Pr, ∀t11, . . . , t1k, t21, . . . , t2k :
(t11 = t21 ∧ . . . ∧ t1k = t2k) → fU (t11, · · · , t1k) = fU (t21, · · · , t2k)
(t11 = t21 ∧ . . . ∧ t1k = t2k) → [ pU (t11, · · · , t1k) ↔ pU (t21, · · · , t2k) ]

(1)

We distinguish an input language to be a certain syntactic class of atoms that
a procedure accepts as input. A pair of a theory and an input language is referred
to as a sublogic or simply a logic. Table 1 contains the terms and atoms defined
under the logics of interest in our SMT framework (all defined within the theory
of integer numbers). Note that we interchangeably refer to atoms that are in the
form of integer constraints, i.e. equality, UTVPI and non-UTVPI unrestricted
constraints, as integer constraints.

Thus, an SMT formula, ϕ, is constructed by applying logical connectives
(∧,∨,¬) to the atoms in any of these logics. Replacing integer constraints, C, in
the SMT formula with fresh propositional indicator variables, denoted by PC ,

Table 1. Logics of Interest within the theory of integer numbers

Logic Input Language

Sentential (Propositional) Logic (P)
Term ::= −
Atom ::= P

Equality Logic with Successors (E)
Term ::= c | v | t | t + c
Atom ::= ti = tj | ti �= tj

Equality Logic with Successors Term ::= c | v | t | t + c | fU (t1, · · · , tn)
and Uninterpreted Functions (EUF) Atom ::= ti = tj | ti �= tj | pU (t1, · · · , tn)

Integer UTVPI Logic (T VL)
Term ::= c | v | t | t + c
Atom ::= aiti + ajtj ≤ b

where ai, aj ∈ {0, ±1}; b ∈ ZZ

Linear Integer Arithmetic (LIA)
Term ::= c | v | t | t + t | t − t
Atom ::= n

i=1 aiti ≤ b
where ai, b ∈ ZZ
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results in the propositional abstraction of the problem, ϕbool, and the decompo-
sition of the SMT formula, as follows:

ϕ = ϕbool ∧
∧

C∈E

(PC ↔ C) ∧ FC ∧
∧

C∈D

(PC ↔ C) ∧
∧

C∈L

(PC ↔ C) (2)

where E , D and L denote sets of equality, UTVPI and unrestricted integer
constraints (atoms) within the SMT formula respectively. Additionally, the SMT
formula ϕ can be represented at five different levels of abstraction as follows:

level theory formula
1 P ∪ EUF ∪ T VL ∪ LIA ϕ

2 P ∪ EUF ∪ T VL ϕbool ∧
C∈E

(PC ↔ C) ∧ FC ∧
C∈D

(PC ↔ C)

3 P ∪ EUF ϕbool ∧
C∈E

(PC ↔ C) ∧ FC

4 P ∪ E ϕbool ∧
C∈E

(PC ↔ C)

5 P ϕbool

(3)

Moreover, we would call a logic to be the sub-logic of another logic if all its
atoms can be expressed in the more expressive logic. For instance, T VL is a sub-
logic of LIA and E is a sub-logic of EUF and T VL. Finally, an SMT formula,
ϕ, is satisfiable if it evaluates to true under (the combination of) its theory
structures.

3 Cooperating Theory Solvers

The most straightforward method to decide the satisfiability of an SMT for-
mula, ϕ as in (2), is to enumerate all the satisfiable solutions to the Boolean
formula, ϕbool, using a generic SAT solver [13] and to check the consistency of
the corresponding set of theory literals using a specific theory solver. This theory
solver is capable to solve a conjunction of all theory literals within the solu-
tion. This process terminates if a theory-consistent solution is found, implying
that ϕ is satisfiable, or all solutions are rejected by the theory solver, implying
otherwise.

Following a similar scheme, it is possible to layer a series of specialized theory
solvers in an increasing solving capability, each utilized if a satisfying solution at
the previous layer is found. If a theory solver finds a conflict, then this conflict is
used to prune the search at the propositional level and the system backtracks to
the highest (Boolean) layer; if it does not, the consistency of a more expressive set
of theory atoms is determined at the next layer. This approach is demonstrated
in Fig. 1. In order to find conflicts earlier in the search, an incremental layered
approach is suggested in [6] where instead of complete Boolean assignments,
“partial” ones are passed through layers to be checked for consistency. Note that
in this framework, each theory solver is responsible for deciding the satisfiability
of conjunctions of atoms in only one logic and does not interact with the other
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Fig. 1. The layered approach - π(PC) represents the assignment to PC satisfying ϕbool

(C represents an integer constraint in the form of equality, UTVPI or non-UTVPI)

theory solvers. Therefore, theory atoms are converted to ones in more expressive
logics as the procedure advances to higher layers.

3.1 Online Theory Solver Integration

In this approach, as introduced in [14] and further improved in [8,9], a Boolean
SAT solver is coupled with other theory solvers, each capable to decide the sat-
isfiability of a conjunction of theory atoms in a particular logic independently
and incrementally. The Boolean abstraction of the SMT formula, ϕbool, is de-
cided by the SAT solver and the consistency of theory atoms is checked upon
assignments to their corresponding indicator variables. This process is referred
to as online approach because the satisfiability of the constraints are determined
as theory atoms are “activated”, i.e. added to the model. This is achieved by
maintaining a satisfiable set of activated theory atoms, referred to as active
set, by each theory solver. Upon activation of a new theory atom, its corre-
sponding theory solver incrementally determines the satisfiability of its entire
activated atoms that could result in the rejection or addition of the new atom
to the active set. A SAT solver is responsible to maintain the satisfiability of
the formula at the Boolean level and “orchestrate” the theory atom activations
accordingly. Similar to the layered approach, in the online framework, the in-
teractions among theory solvers are limited to the communications through the
SAT solver.

A hybrid layered+online approach is suggested in [7] where the simpler and
more efficient theory solvers, i.e. the UTVPI solver, are integrated within the
SAT solver following the online approach while harder ones (i.e. the ILP solver)
are utilized in separate layers.

3.2 Inter-logic Deduction Scheme

Noting the hierarchies among theory atoms in different logics and in order to
detect the inter-logic implications and conflicts online, we propose an inter-logic
interaction scheme that maintains a graph representing “all” the implications
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Table 2. Summary of covered inter-logic implications

initiating activated atom ∧ involved
logic [existing atom(s)] → implied atom logic

E
ti = tj ∧ [ ] → Pti=tj P

t1i = t2i ∧ [t1j = t2j , · · ·] → fU (t1i, · · ·) = fU (t2i, · · ·) EUF
t1i = t2i ∧ [ait1i + ajtj ≤ b] → ait2i + ajtj ≤ b T VL

T VL

aiti + ajtj ≤ b ∧ [ ] → Paiti+ajtj≤b P
ti − tj ≤ b ∧ [tj − ti ≤ −b] → ti = tj + b E

aiti + ajtj ≤ b ∧
LIA[−ai.k.ti + n

l=1,l�=i altl ≤ b′] → aj .k.tj + n
l=1,l�=i altl ≤ b′′

k > 0 b′′ = b′ + k.b

LIA
ai.k.ti + n

l=1,l�=i altl ≤ b ∧
T VL[−aiti + ajtj ≤ b′] → aj .k.tj + n

l=1,l�=i altl ≤ b′′

ai, aj ∈ {0, ±1}, k > 0 b′′ = b + k.b′

across all involved theory atoms. The vertices of this graph are atoms in different
logics and a new implication edge is incrementally added to the graph whenever:

– the current assignments enforce an assignment to an atom in order to main-
tain the satisfiability of the first-order formula, or

– the combination of two atoms yields another, possibly fresh, atom.

Note that even though all the edges corresponding to the first case are detected
and added, not all combinations subject to the other case are checked. This does
not affect the completeness of the overall process since these new implications
are augmentations to an already complete method. The allowed combinations
resulting in inter-logic implications due to the activation of an atom are listed
in Table 2 and can be categorized as follows:

1. implying a theory atom if it is subsumed by the activated atom. This would
also result in the implication of the corresponding Boolean indicator variable.

2. implying an equality atom due to the functional consistency constraint (1).
3. implying an integer constraint resulting from the non-negative linear combi-

nation of two active integer constraints (Only those combinations resulting
in the elimination of at least one variable are allowed and two unrestricted
integer constraints are not combined due to the complexity of the process).

Note that our proposed inter-logic deduction scheme can be applied in both
layered and online frameworks. In the layered approach, the activated atoms
are only added to the combined implication graph and are solved later at their
particular layers. For instance, it is possible not to solve the unrestricted integer
constraints as they are activated and only use them for inter-logic deductions.
More specifically, the layered+online approach of [7] can be augmented with
inter-logic deductions regardless of its theory integration scheme. Additionally,
note that our proposed combined implication graph is a generalization of the
Bool+Theory graphs of [9,15] extended to combinations of non-Boolean atoms.
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Fig. 2. Combined inter-logic implication graph for Example 1

4 SMT Progressive Simplification Algorithms

In this section, we describe our progressive simplifier for solving an SMT prob-
lem. The main objective in this simplifier is to take advantage of the efficiencies
of the simpler theory solvers by “progressively” simplifying the SMT formula in
terms of theory atoms in less expressive logics.

4.1 Conflict-Induced Inter-logic Constraint Simplification

The most straightforward approach for learning from conflicts in a SAT-based
cooperating SMT solver is to prune that conflict from the propositional represen-
tation of the problem. Detected by a theory solver for a particular logic, conflicts
in many SMT solvers [4,5,6,7,8] are only represented in terms of the atoms solely
in that logic and learned as a constraint over Boolean indicator variables cor-
responding to those atoms. Specifically, if any of the theory solvers detects a
conflict in its “active set”, the reason for that inconsistency is refined from the
Boolean abstraction of the problem by adding a conflict-induced learned con-
straint. However, by utilizing our inter-logic implication graph, it is possible to
detect conflicts resulting from atoms in multiple logics and consequently learn a
constraint comprising of atoms across different logics.

Example 1. Consider the following SMT problem comprising of P , T VL and
LIA atoms (refer to Fig. 2 for combined implication graph):

ϕ = (w+x+y−z ≥ 9)∧(z = 0)∧ [A∨(x ≤ 1∧y ≤ 1)]∧(w ≤ 2∨w ≤ 4∨w ≤ 6)

where (w + x + y − z ≥ 9) and (z = 0) should be satisfied in all cases. Suppose
we first assign A to false so that both (x ≤ 1) and (y ≤ 1) should be satisfied.
Selecting (w ≤ 2) to satisfy the third constraint would violate (w+x+y−z ≥ 9)
to be detected by checking an LIA atom (refer to Fig. 2 for details). This results
in learning ¬[(w + x+ y− z ≥ 9) ∧ (z = 0) ∧ (x ≤ 1)∧ (y ≤ 1) ∧ (w ≤ 2)] across
T VL and LIA logics. The process continues by selecting (w ≤ 4) and then
(w ≤ 6) both resulting in conflicts, detected again by checking an LIA atom,
and learning ¬[(w + x + y ≥ 9) ∧ (z = 0) ∧ (x ≤ 1) ∧ (y ≤ 1) ∧ (w ≤ 4)] and
¬[(w + x + y ≥ 9) ∧ (z = 0) ∧ (x ≤ 1) ∧ (y ≤ 1) ∧ (w ≤ 6)] respectively.

Detecting the involvement of expensive atoms, i.e. LIA or EUF atoms, in con-
flicts offers the opportunity to augment the SMT formula with information about
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those atoms in the language of their sub-logics. Our proposed inter-logic simpli-
fication scheme acknowledges the advantages of representing the constraints in
less complex logics (i.e. T VL instead of LIA) in order to use them for possible
earlier implications in those theory solvers. Hence, all implications participating
in the conflict, referred to as “conflicting implications”, that involve atoms in
two or more related logics, i.e. T VL and LIA or E and EUF , are simplified into
new constraints comprising of cheaper atoms in their sub-logics and representing
the same conflicting implication.

Following this approach would ultimately result in a “progressive” simplifi-
cation of the theory atoms in terms of atoms in their sub-logics. Note that this
process is performed in addition to the general learning scheme and results in
a constraint across logics. We apply this algorithm to LIA and EUF atoms,
involved in a conflict, and simplify them to logical combinations of respectively
T VL and E atoms to be added to the formula after each conflict.

Simplifying LIA atoms. If the analysis of the combined inter-logic impli-
cation graph determines that an unrestricted integer constraint is involved in a
conflict, a new constraint is generated and conjoined to the formula, comprising
of only T VL atoms and indicator variables. This constraint represents the same
conflicting implication and is generated as follows:

1. Traverse the combined implication graph backward from the conflict.
2. Locate any unseen implications involving an unrestricted integer constraint,

C1, as an implicant. If none is found, Terminate. Note that we only consider
implications of the form of C ∧

∧
j Uj → U where U and C represent UTVPI

and unrestricted integer constraints, respectively.
3. If Ci is implied by other integer constraints, Replace it with its implicants.
4. If any implied unrestricted integer constraint is involved, Goto step 3.
5. Replace any existing unrestricted integer constraint, Ci, with its corre-

sponding indicator variable, PCi .
6. Conjoin the final constraint of the form of (

∧
j Uj ∧

∧
i PCi) → U to the

SMT formula. Goto step 1.

Note that the final constraint could include some Uj’s that were not originally
in the formula (implied by other UTVPI constraints). These atoms are referred
to as “unrepresented” atoms and in order to control the number of new atoms
permanently added to the problem, only one unrepresented atom is allowed in the
final generated constraint and the rest are replaced by their UTVPI implicants.

Example 2. Consider the conflict of Example 1, where the unrestricted integer
constraint (w + x + y ≥ 9) is first detected to be involved in a conflicting im-
plication: (w + x + y ≥ 9) ∧ (x + y ≤ 2) → (w ≥ 7). Since (w + x + y ≥ 9)
is not original, it is replaced by its implicants following step 3 of our algorithm
resulting in (w+x+ y− z ≥ 9)∧ (z = 0)∧ (x+ y ≤ 2) → (w ≥ 7). At step 5, the
unrestricted integer constraint is replaced by its indicator variable, in this case
true and therefore the constraint would be (z = 0) ∧ (x + y ≤ 2) → (w ≥ 7).
The atoms involved in this process are highlighted in the combined implication
graph of Fig. 2. Since in this constraint two unrepresented atoms, (x + y ≤ 2)
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and (w ≥ 7) exist, we replace (x+y ≤ 2) with its implicants (x ≤ 1) and (y ≤ 1)
and the final constraint to be conjoined to the SMT formula would be:

(z = 0) ∧ (x ≤ 1) ∧ (y ≤ 1) → (w ≥ 7)

This constraint further prunes the infeasible space of the T VL theory solver and
results in implying (w ≤ 4) and (w ≤ 6) to false as long as (x ≤ 1) and (y ≤ 1)
are true. This ultimately implies A to true removing (x ≤ 1) and (y ≤ 1) from
the solution with no further involvement of the LIA atoms and the ILP solver.

Note that this process is an augmentation to the offline refinement approach
of [7] in the sense that it is applied to each conflict encountered in the online
search and requires the analysis of the combined implication graph. Utilizing
this method reduces the applications of the offline ILP solver by detecting the
majority of the conflicts online.

Simplifying EUF atoms. A similar procedure to the one that simplifies un-
restricted integer constraints is also applied to the functional consistency appli-
cations involved in the conflicts. If an equality atom is implied by the functional
consistency constraint of (1) and is involved in a conflict, that implication is
reduced into a constraint in E logic, which is then conjoined to the formula.

Example 3. Consider the following formula where f is an uninterpreted function:

ϕ = [f(x) �= f(y) ∧ f(z) = f(x)] ∧ (1 ≤ x ≤ n) ∧
∧n

i=1
(x = i → y = i)

In order to determine the (un)satisfiability of this formula, it is required to
examine n pairs of equalities between x and y separately by calling the EUF
theory solver, each being rejected in order to maintain the functional consistency
of f . However, our method, after detecting the first conflict, say due to activating
x = 1 and y = 1, conjoins the formula with the following consistency constraint:

(x = y) → [f(x) = f(y)]

which is essentially the reduction of FC only for this particular conflicting in-
stance. Since f(x) �= f(y), all remaining activations of (x = i)/(y = i)’s are
rejected in the equality solver with no further calls to the costly EUF solver.

Note that our method is essentially an “on-demand” utilization of Ackermann
reduction [16] on those functional consistency applications involved in a conflict.

4.2 Step-by-Step Formula Concretization

As discussed earlier, the SMT formula can be represented at different levels
of abstraction. By solving each of these formulas individually and “sequen-
tially”, it is possible to progressively simplify the SMT problem through learn-
ing from conflicts in abstracted formulas earlier and cheaper. Note that the
satisfiabilities of the abstracted formulas do not imply the satisfiability of the
SMT problem. Thus, our proposed progressive procedure initially solves the for-
mula at the highest level of abstraction. If satisfiable, it continues with solving
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Fig. 3. progressive approach on online solvers. The problem is solved in two layers

the formula at the next level of abstraction and so forth. Our algorithm solves
each abstracted formula of (3) in descending abstraction order, following the on-
line solving approach. If any of the abstracted formulas is proved unsatisfiable,
the SMT formula is UNSAT, otherwise the formula at the next lower abstrac-
tion level is solved. This procedure is demonstrated in the first four steps of Fig.
3. Note that all the learned constraints added to the abstract formulas remain
valid as the representation of the formula becomes more concrete. This allows the
overall procedure to progressively simplify the formula by pruning large parts of
the search space detected as conflicts in abstract formulas earlier and less costly.

Note that our proposed progressive method is fundamentally different from
the layered approach. Unlike the layered approach where the theory-consistency
of activated atoms is explored separately and in a “depth-first” manner, i.e. each
set of atoms in a particular logic is solved in isolation at its own layer (Fig. 1), in
our progressive approach, each abstracted formula is solved once, following the
online approach, after the first satisfiable solution to the formula at the previous
abstraction level is found.

It is possible to combine the layered and progressive approaches based on the
computational overheads of the involved theory solvers. The solvers with high
overhead, i.e. ILP solver, are integrated in layered manner while the ones with
lower overhead and with the possibility of simpler integration inside SAT, are
combined in progressive manner. An example of such hybrid configuration is
demonstrated in Fig. 3. In this example, the propositional abstraction of the
formula is initially solved and if found satisfiable, the formula containing the
consistency constraints associated with equality atoms (abstraction level 4) is
solved, keeping the status of the SAT solver in terms of learned constraints,
variable ordering, etc. unchanged. The process continues until it finds a SAT
solution to the formula at the abstraction level 2, after which it moves to the
next layer to establish the consistency of the LIA atoms. At this point the
solver follows the layered+online approach of [7] augmented with inter-theory
deduction and conflict-induced simplification techniques as described earlier.

5 Implementation and Experimental Evaluations

We implemented our inter-logic deduction scheme and progressive simplifier in
our Ario SMT solver [7]. Ario utilizes MiniSAT [13] SAT solver and adopts the
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congruence closure algorithm of [17] to solve systems of equalities, the currify-
ing method [17] to represent the uninterpreted functions, the transitivity closure
algorithm of [18] to solve systems of UTVPI constraints and a Simplex/Branch-
and-Bound solver to solve systems of unrestricted integer constraints. All exper-
iments were conducted on a Pentium-IV 2.8GHz with 1 GB of RAM.

For this evaluation we used four sets of SMT benchmark suites as follows: 1)
Wisconsin Safety Analyzer (WiSA) [19] dealing with the detection of API-level
software exploits, 2) CIRC suite dealing with the verification of circuits modeling
the equivalence of sum/multiplication of two integers and their bit-wise operation
[6], 3) Pipelined Machine Verification (PMV) suite dealing with the verification
of safety and liveness for XScale-like processor models [20], and 4) UCLID suite
dealing with the verification of out-of-order microprocessors [21]. The WiSA and
CIRC suites are formulated in T VL and LIA logics and PMV and UCLID suites
are formulated in P and EUF logics. We compared Ario against the top three
performers in the SMT Competition [22], namely MathSAT v3.3.1 [6,11] based
on the incremental layered approach, YICES [23] the most recent version of ICS
[5] and BarceLogicTools (BCLT) [24] following the online approach. Note that
BCLT does not support LIA logic.

As demonstrated in Fig. 4, Ario performed relatively better than YICES and
MathSAT in most of the benchmarks. This is mostly due to its hybrid theory
combination strategy (layered+progressive) and its inter-logic deduction scheme
which enables it to detect conflicts earlier with no expensive communications
through layers.

The performance of the progressive simplifier of Ario, utilizing both algo-
rithms of Section 4, is best demonstrated in the comparison between Ario and
its non-progressive version1, referred to as Ario-hnp (left column in Fig. 4). In
WiSA suite, the step-by-step formula concretization was the main reason be-
hind better performance of Ario against Ario-hnp. This is mainly because of the
fact that, in this benchmark suite, the non-UTVPI integer constraints include
variables not shared with any UTVPI integer constraint. This automatically dis-
ables the conflict-induced inter-logic constraint simplification technique because
no combination of T VL and LIA atoms yields an T VL atom that can be used
in the online solvers. On the other hand, on CIRC suite, the unrestricted in-
teger constraints (LIA atoms) are actively involved in almost all the conflicts
which makes their simplification into a constraint over T VL atoms considerably
effective in improving the overall performance of the solver.

On the benchmarks in the EUF logic, i.e. PMV and UCLID suites, Ario and
Ario-hnp performed relatively similar, incorrectly inferring that the progressive
simplifier is not as effective on these benchmarks. The same can be observed by
the comparison of Ario and BCLT, noting that both Ario and BCLT adopt a
similar online theory combination approach. However, by comparing Ario-ho1
(Ario-hnp with only conflict-induced inter-theory constraint simplification) and
Ario-ho2 (Ario-hnp with only step-by-step formula concretization) against Ario-
hnp, as partially demonstrated in Fig. 5, it is evident that:

1 As described in [7] augmented with an EUF solver and inter-logic deductions.
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Fig. 4. Comparison of Ario hybrid progressive simplifier (X-axis) against Ario-hnp (no
progressive simplifier), Yices, MathSAT and BarcelogicTools (Y-Axis). A dot above
the diagonal line represents an instance that Ario performed better. (time-out: 600 s).

– on PMV benchmarks, the conflict-induced constraint simplification method
is relatively effective but its resulted performance gains are canceled out by
the adoption of the step-by-step formula concretization algorithm. This is
due to the high number of unnecessary conflicts detected in abstract formulas
that would have been covered by conflicts in more concrete formulas.

– on UCLID benchmarks, on the contrary, step-by-step formula concretization
is more effective and constraint simplification imposes some overhead.

This is further shown in Table 3 which includes some statistics on a representa-
tive set of instances from these benchmark suites. This table shows that solving
increasingly concretizations of the formula is mainly useful when a benchmark
over a complex logic (say EUF) can be instead solved in an abstract level. Exam-
ples of this case are the benchmarks “q2.14” which isP solvable and “cache.inv18”
which is P + E solvable although they contain uninterpreted functions. In such
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Table 3. Ario solving statistics on instances from PMV and UCLID suites

benchmark
% of FC # of conflict detected in: run time (sec.)
simplified P P ∪ E P ∪ EUF Ario Ario-ho1 Ario-ho2 Ario-hnp

c10ni.i 7.28% 0 1127 18395 36.44 27.13 44.18 37.13
c9nidw.i 3.30% 0 794 18823 31.56 23.03 31.62 28.16
9stage.flush 5.29% 1 195 8312 4.37 4.27 6.47 7.46
fxs.bp.safety 5.57% 0 43 1258 0.61 0.48 0.68 0.62
cache.inv18 0% 4839 60728 NA 121.59 174.32 123.24 175.89
q2.14 0% 18543 NA NA 8.9 9.44 8.81 9.62
ooo.rf10 19.02% 1 70 19641 11.83 9.25 16.9 19.86

benchmarks the Boolean abstraction of the formula contributes to a substantial
pruning which can be achieved before processing expensive theory atoms.

6 Conclusions and Future Work

In this paper, we presented our novel inter-logic deduction scheme as well as our
progressive simplifier comprising of two algorithms: conflict-induced inter-logic
constraint simplification and step-by-step formula concretization. We thoroughly
analyzed the performance of these algorithms on a wide range of benchmarks in
various logics. While in many instances all these methods significantly added to
the efficiency of the SMT solver, in some cases, some limitations were observed.

Consequently, we are planning to further investigate the interactions be-
tween theory solvers and work on methods to combine these algorithms, pre-
serving all their advantages. Finally, in the SMT formulas with only a few
atoms in complex logics (common in hardware and software verification applica-
tions), it is possible to cheaply simplify those atoms on-demand. Therefore, we
are working on comprehensive and complete simplification methods that over-
come methods based on the adoption of full-scale solvers for those logics. This
could considerably reduce the complexity and add to the efficiency of the SMT
solvers.
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Abstract. Dependency quantified Boolean formulas (DQBF ) extend
quantified Boolean formulas with Henkin-style partially ordered quan-
tifiers. It has been shown that this is likely to yield more succinct rep-
resentations at the price of a computational blow-up from PSPACE to
NEXPTIME. In this paper, we consider dependency quantified Horn
formulas (DQHORN ), a subclass of DQBF, and show that the compu-
tational simplicity of quantified Horn formulas is preserved when adding
partially ordered quantifiers.

We investigate the structure of satisfiability models for DQHORN
formulas and prove that for both DQHORN and ordinary QHORN for-
mulas, the behavior of the existential quantifiers depends only on the
cases where at most one of the universally quantified variables is zero.
This allows us to transform DQHORN formulas with free variables into
equivalent QHORN formulas with only a quadratic increase in length.

An application of these findings is to determine the satisfiability of a
dependency quantified Horn formula Φ with |∀| universal quantifiers in
time O(|∀| · |Φ|), which is just as hard as QHORN -SAT.

1 Introduction

The language of Quantified Boolean Formulas (QBF ) offers a concise way to
represent formulas which arise in areas such as planning, scheduling or verifica-
tion [15, 17]. QBF formulas are usually assumed by definition to be in prenex
form such that all quantifiers appear at the beginning, and that is also the input
format generally required by QBF solvers. This does, however, impose a total
ordering on the quantifiers where each existentially quantified variable depends
on all preceding universal variables. Consider the following example:

∀x1 [(∀x2∃y1φ(x1, x2, y1)) ∧ (∀x3∃y2ψ(x1, x3, y2))]
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In this non-prenex formula, the choice for y1 depends on the values of x1 and
x2, and y2 depends on x1 and x3. Using quantifier rewriting rules, we can obtain
the equivalent prenex formula

∀x1∀x2∃y1∀x3∃y2 φ(x1, x2, y1) ∧ ψ(x1, x3, y2)

As above, y1 depends on x1 and x2, but y2 now depends on x1, x2 and x3, so
we lose some of the structural information inherent in the original formula.

Recent experimental studies [7, 8] have shown that this problem may have a
considerable impact on the performance of QBF solvers. Accordingly, different
solutions have lately been suggested to overcome the problem, e.g. by recovering
lost information from the formula structure (in particular from the local con-
nectivity of variables in common clauses) [2, 3], or by extending QBF solvers to
directly handle non-prenex formulas [8].

Another solution has been proposed by Henkin [9] for first-order predicate
logic. He has introduced partially ordered quantifiers, called branching quantifiers
or simply Henkin quantifiers, as in the expression(

∀x1∀x2∃y1
∀x1∀x3∃y2

)
φ(x1, x2, y1) ∧ ψ(x1, x3, y2)

which correctly preserves the dependencies from our introductory example. Since
the only relevant information is which universal quantifiers precede which exis-
tential quantifier, we can use a (typographically) simpler function-like notation
as follows:

∀x1∀x2∃y1(x1, x2)∀x3∃y2(x1, x3) φ(x1, x2, y1) ∧ ψ(x1, x3, y2)

For each existential quantifier, we indicate the universal variables on which it
depends. Without loss of information, we can assume that the prefix is in the
form ∀∗∃∗:

∀x1∀x2∀x3∃y1(x1, x2)∃y2(x1, x3) φ(x1, x2, y1) ∧ ψ(x1, x3, y2)

This notation has been introduced for quantified Boolean formulas by Peterson,
Azhar and Reif [16] under the name Dependency Quantified Boolean Formulas
(DQBF).

Notice that partially ordered quantifiers do not only eliminate the aforemen-
tioned loss of information due to prenexing, caused by flattening a tree-like hier-
archy of quantifiers and corresponding scopes into a linear ordering. The Henkin
approach is significantly more general than the suggestions above, because it
allows to express subtle dependencies where the hierarchy of quantifier scopes is
no longer tree-like. For example, we could add an existential variable y3 to our
sample formula, such that y3 depends on x2 and x3 as indicated in the following
prefix:

∀x1∀x2∀x3∃y1(x1, x2)∃y2(x1, x3)∃y3(x2, x3)

It is not clear how this prefix could be represented in a succinct QBF, even if
we allow non-prenex formulas.
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Partially-ordered quantification has been around for quite some time, but has
not been widely used in combination with quantified Boolean formulas. This
is probably due to the fact that DQBF is NEXPTIME-complete, as has been
shown by Peterson, Azhar and Reif [16]. Assuming that NEXPTIME�=PSPACE,
this means that there are DQBF formulas for which no equivalent QBF of poly-
nomial length can be computed in polynomial space. It also means a jump in
complexity compared to QBF which is PSPACE-complete. The latter is already
considered quite hard, but continued research and the lifting of propositional
SAT techniques to QBF s have recently produced interesting improvements (see,
e.g., [3, 14, 18]) and have led to the emergence of more powerful QBF -SAT
solvers [13]. In addition, tractable subclasses of QBF have been identified and
investigated, e.g. QHORN, which contains all QBF formulas in conjunctive nor-
mal form (CNF ) whose clauses have at most one positive literal. This subclass
is important, because it is sufficient for expressing simple “if-then” statements,
and because QHORN formulas may occur as subproblems when solving arbitrary
QBF formulas [5].

In this paper, we consider dependency quantified Horn formulas (DQHORN ),
the dependency quantified equivalent to QHORN. Our main contribution is to
prove that DQHORN is a tractable subclass of DQBF and is in fact just as
difficult as QHORN. To be more precise, we present an algorithm which can
determine the satisfiability of a DQHORN formula Φ with free variables, |∀|
universal quantifiers and an arbitrary number of existential quantifiers in time
O(|∀| · |Φ|).

We achieve this by investigating the interplay of existential and universal
quantifiers with the help of satisfiability models. This concept has been intro-
duced in [12], and Section 3 shows how it can be extended for DQBF formulas.
We prove that for both DQHORN and ordinary QHORN, the behavior of the
existential quantifiers depends only on the cases where at most one of the uni-
versally quantified variables is zero. In Section 4, we demonstrate how DQBF
formulas with free variables can be transformed into equivalent QBF formulas
by expanding the universal quantifiers. This expansion may cause an exponential
blowup for arbitrary formulas. But the results from Section 3 allow us to avoid
this for DQHORN formulas with free variables by applying a generalization of
the special expansion method that we have presented in [4] for QHORN. Finally,
an algorithm for solving DQHORN -SAT is developed in Section 5.

2 Preliminaries

In this section, we recall the basic terminology and notation for QBF and intro-
duce DQBF.

A quantified Boolean formula Φ ∈ QBF in prenex form is a formula

Φ = Q1v1...Qkvk φ(v1, ..., vk)

with quantifiers Qi ∈ {∀, ∃} and a propositional formula φ(v1, ..., vk) over vari-
ables v1, ..., vk. We call Q := Q1v1...Qkvk the prefix and φ the matrix of Φ.
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Variables which are bound by universal quantifiers are called universal variables
and are usually given the names x1, ..., xn. Analogously, variables in the scope of
an existential quantifier are existential variables and have names y1, ..., ym. We
write Φ = Q φ(x,y) or simply Φ = Q φ.

Variables which are not bound by quantifiers are free variables. Formulas with-
out free variables are said to be closed. If free variables are allowed, we indicate
this with an additional star ∗ after the name of the formula class. Accordingly,
QBF is the class of closed quantified Boolean formulas, and QBF ∗ denotes the
quantified Boolean formulas with free variables. We write Φ(z) = Q φ(x,y, z) or
Φ(z) = Q φ(z) for a QBF ∗ formula with free variables z = (z1, ..., zr). A closed
QBF formula is either true or false, whereas the truth value of a QBF ∗ formula
depends on the value of the free variables. Two QBF ∗ formulas Ψ1(z1, ..., zr) and
Ψ2(z1, ..., zr) are said to be equivalent (Ψ1 ≈ Ψ2) if and only if Ψ1 |= Ψ2 and
Ψ2 |= Ψ1, where semantic entailment |= is defined as follows: Ψ1 |= Ψ2 if and only
if for all truth assignments t(z) := (t(z1), ..., t(zr)) ∈ {0, 1}r to the free variables
z = (z1, ..., zr), we have Ψ1(t(z)) = 1 ⇒ Ψ2(t(z)) = 1.

For DQBF formulas, we introduce a notation which allows us to quickly enu-
merate the dependencies for a given existential variable yi (1 ≤ i ≤ m). We are
using indices di,1, ..., di,ni which point to the ni universals on which yi depends.
For example, given the existential quantifier ∃y4(x3, x5), we say that y4 depends
on xd4,1 and xd4,2 with d4,1 = 3 and d4,2 = 5.

With this notation, a dependency quantified Boolean formula Φ ∈ DQBF
with universal variables x = (x1, ..., xn) and existential variables y = (y1, ..., ym)
is a formula of the form

Φ = ∀x1...∀xn∃y1(xd1,1 , ..., xd1,n1
)...∃ym(xdm,1 , ..., xdm,nm

)φ(x,y)

In Sections 4 and 5, we will also allow free variables, using the same notation
and definition of equivalence as for QBF ∗.

The class DQHORN contains all DQBF formulas in conjunctive normal form
(CNF ) whose clauses have at most one positive literal.

As stated in the following Definitions 1 and 2, the semantics of DQBF is
defined over model functions. A DQBF formula is said to be true if for each
existential variable yi, there exists a propositional formula fyi over the universals
xdi,1 , ..., xdi,ni

on which yi depends, such that substituting the model functions
for the existential variables (and dropping the existential quantifiers) leads to a
universally quantified QBF formula which is true. The tuple M = (fy1 , ..., fym)
of such functions is called a satisfiability model.

Definition 1. For a dependency quantified Boolean formula Φ ∈ DQBF with
existential variables y = (y1, ..., ym), let M = (fy1 , ..., fym) be a mapping which
maps each existential variable yi to a propositional formula fyi over the universal
variables xdi,1 , ..., xdi,ni

on which yi depends. Then M is a satisfiability model
for Φ if the resulting QBF formula Φ[y/M ] := Φ[y1/fy1, ..., ym/fym ], where si-
multaneously each existential variable yi is replaced by its corresponding formula
fyi and the existential quantifiers are dropped from the prefix, is true.
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Definition 2. A dependency quantified Boolean formula is true if and only if it
has a satisfiability model.

The notion of satisfiability models has been originally introduced in [12] for
QBF formulas. For QBF s, the last definition is actually a theorem, because
their semantics is usually defined inductively without referring to model func-
tions, which is not possible for DQBF s. In fact, the NEXPTIME-completeness
of DQBF suggests that solving a DQBF formula involves finding and storing
those functions. Fortunately, we will soon see that this is not a problem in the
DQHORN case.

3 Satisfiability Models for DQHORN Formulas

We are not only interested in the mere existence of satisfiability models, but we
also want to characterize their structure for certain classes of formulas. In this
section, we will see that DQHORN formulas have satisfiability models of a very
simple structure.

We begin with an observation: it is a well known fact about propositional
Horn formulas, proved by Alfred Horn himself [10], that the intersection of two
satisfying truth assignments is a satisfying truth assignment, too. If we repre-
sent truth assignments by sets which collect the variables that are assigned the
value 1, the intersection of these assignments is given by the intersection of the
corresponding sets of variables.

Now assume that a quantified Horn formula with two universal variables xi

and xj is known to be satisfiable when xi = 0 and xj = 1 or when xi = 1
and xj = 0. That means there exist two truth assignments t1 and t2 to the
existential variables such that the formula is satisfied in both cases. If we could
lift the closure under intersection to the quantified case, it would mean that
the intersection of t1 and t2 would satisfy the formula when both xi and xj are
zero. This would imply that the satisfiability of a quantified Horn formula is
determined only by those cases where at most one of the universal variables is
zero.

Unfortunately, we have to obey the quantifier dependencies when choosing
truth values for the existential variables, so we cannot simply intersect t1 and t2.
Thus, lifting this result is obviously not so straightforward for the QHORN case,
and even less straightforward for DQHORN with its sophisticated dependencies.
What we need here is a way to characterize the behavior of the existentially
quantified variables. As it turns out, satisfiability models are a suitable formal-
ism for this and allow us to present a model-based proof which even works for
DQHORN.

Since the number of zeros being assigned to the universal variables is an im-
portant criterion for our investigations, we first introduce some useful notation.

Definition 3. By Bi
n, we denote the bit vector of length n where only the i-th

element is zero, i.e. Bi
n := (b1, ..., bn) with bi = 0 and bj = 1 for j �= i. Moreover,

we define the following relations on n-tuples of truth values:
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1. Z≤1(n) =
⋃
i

{
Bi

n

}
∪ {(1, ..., 1)} (at most one zero)

2. Z=1(n) =
⋃
i

{
Bi

n

}
(exactly one zero)

3. Z≥1(n) = {(a1, ..., an) | ∃i : ai = 0} (at least one zero)

For example, if n = 3, we have the following relations:

Z≤1(3) = {(0, 1, 1), (1, 0, 1), (1, 1, 0), (1, 1, 1)}
Z=1(3) = {(0, 1, 1), (1, 0, 1), (1, 1, 0)}
Z≥1(3) = {(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 0, 1), (1, 1, 0)}

We omit the parameter n and simply write Z≤1 (or Z=1 resp. Z≥1) when it
is clear from the context. Usually, n equals the total number of the universal
quantifiers in a given formula.

Let Φ = Qφ(x,y) ∈ DQBF . The definition of a satisfiability model in Sec-
tion 2 requires that substituting the existentials y in Φ produces a formula
Φ[y/M ] which is true. That means the matrix φ[y/M ] must be true for all pos-
sible assignments to the universals x. But as motivated before, we want to focus
only on the cases where at most one of the universals is assigned zero. Accord-
ingly, we now introduce a special kind of satisfiability model which weakens the
condition that all possible assignments are considered: a so-called R∀-partial sat-
isfiability model is only required to satisfy φ[y/M ] for certain truth assignments
to the universal variables which are given by a relation R∀.

Definition 4. For a formula Φ = Qφ(x,y) ∈ DQBF with universal variables
x = (x1, ..., xn) and existential variables y = (y1, ..., ym), let M = (fy1 , ..., fym)
be a mapping which maps each existential variable yi to a propositional formula
fyi over the universal variables xdi,1 , ..., xdi,ni

on which yi depends. Furthermore,
let R∀(n) be a relation on the set of possible truth assignments to n universals.
Then M is a R∀-partial satisfiability model for Φ if the formula φ[y/M ] is
true for all x ∈ R∀(n).

Consider the following example:

Φ = ∀x1∀x2∀x3∃y1(x1, x2)∃y2(x2, x3) (x1 ∨ y1) ∧ (x2 ∨ ¬y1) ∧ (¬x2 ∨ x3 ∨ ¬y2)

Then Φ does not have a satisfiability model, but M = (fy1 , fy2) with fy1(x1, x2)
= ¬x1∨x2 and fy2(x2, x3) = 0 is a Z≤1-partial satisfiability model for Φ, because
φ[y/M ] = (x1 ∨ ¬x1 ∨ x2) ∧ (x2 ∨ (x1 ∧ ¬x2)) ∧ (¬x2 ∨ x3 ∨ 1) ≈ x2 ∨ x1, which
is true for all x = (x1, x2, x3) with x ∈ Z≤1.

It is not surprising that the mere existence of a Z≤1-partial satisfiability model
does not imply the existence of a (total) satisfiability model - at least not in the
general case. But as discussed before, we are going to prove that for DQHORN
formulas, the behavior of the formula for x ∈ Z≤1 does indeed completely de-
termine its satisfiability. Accordingly, we now show: if we can find a Z≤1-partial
satisfiability model M to satisfy a DQHORN formula whenever at most one of
the universals is false, then we can also satisfy the formula for arbitrary truth
assignments to the universals. We achieve this by using M to construct a (total)
satisfiability model M t.
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Definition 5. Let Φ = Qφ(x,y) ∈ DQHORN with universal variables x =
(x1, ..., xn) and existential variables y = (y1, ..., ym), and let M = (fy1 , .., fym)
be a Z≤1-partial satisfiability model for Φ. For each fyi(xdi,1 , ..., xdi,ni

) in M , we
define f t

yi
as follows:

f t
yi

(xdi,1 , ..., xdi,ni
) := (¬xdi,1 → fyi(0, 1, 1, ..., 1))

∧ (¬xdi,2 → fyi(1, 0, 1, ..., 1))
∧ ...
∧ (¬xdi,ni

→ fyi(1, 1, ..., 1, 0))
∧ fyi(1, ..., 1)

Then we call M t = (f t
y1
, ..., f t

ym
) the total completion of M .

The intuition behind this definition is the following: for each argument which
is zero, we consider the value of the original function when only this argu-
ment is zero. Then we return the conjunction (the intersection) of those orig-
inal function values. Additionally, we have to intersect with fyi(1, ..., 1). For
example, f t

yi
(1, 0, 0, 1) = fyi(1, 0, 1, 1) ∧ fyi(1, 1, 0, 1) ∧ fyi(1, 1, 1, 1). In case all

the arguments are 1, we simply return the value of the original function, i.e.
f t

yi
(1, .., 1) = fyi(1, .., 1).
At the beginning of this section, we have mentioned that for propositional

Horn formulas, the intersection of satisfying truth assignments is again a satis-
fying truth assignment. If you compare this to the previous definition (together
with the following theorem), you will notice that we have just presented the
generalized DQHORN version of it. The most important difference is that we
now always intersect with fyi(1, ..., 1). This takes care of the cases where certain
universal variables are zero, but yi does not depend on them due to the imposed
quantifier dependencies.

Theorem 1. Let Φ = Qφ(x,y) ∈ DQHORN be a dependency quantified Horn
formula with a Z≤1-partial satisfiability model M = (fy1 , .., fym). Then the total
completion of M , i.e. M t = (f t

y1
, ..., f t

ym
) as defined above, is a satisfiability

model for Φ.

Proof. We must show that φ[y/M t] is true for all truth assignments t(x) :=
(t(x1), ..., t(xn)) ∈ {0, 1}n to the universal variables.
Since f t

yj
(1, ..., 1) = fyj (1, ..., 1), we only need to consider t(x) ∈ Z≥1.

The proof is by induction on the number of zeros in t(x). The induction base
is the case t(x) ∈ Z=1. Then the definition of M t implies that

f t
yj

(t(xdj,1), ..., t(xdj,nj
)) = fyj(t(xdj,1 ), ..., t(xdj,nj

)) ∧ fyj(1, ..., 1) = 1

for all yj. Now let t(x) = Bi
n be an assignment to the universals where t(xi) = 0.

In order to prove that every clause in φ[y/M t] is true for t(x), we make a case
distinction on the structure of Horn clauses. Any clause C belongs to one of the
following cases:
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1. C contains a positive existential variable yj :
Consider a clause of the form C = yj ∨

∨
l∈Ly

¬yl ∨
∨

l∈Lx
¬xl. We assume

that i �∈ Lx, because C[y/M t] is trivially true for t(x) if i ∈ Lx.
If fyj(t(xdj,1), ..., t(xdj,nj

)) = fyj(1, ..., 1) = 1 then f t
yj

(t(xdj,1), ...,
t(xdj,nj

)) = 1. Otherwise, without loss of generality, let fyj(t(xdj,1), ...,
t(xdj,nj

)) = 0. Then fyr(t(xdr,1), ..., t(xdr,nr
)) = 0 for some r ∈ Ly, as M is a

Z≤1-partial satisfiability model. This implies f t
yr

(t(xdr,1), ..., t(xdr,nr
)) = 0,

which makes C[y/M t] true.
2. C contains a positive universal variable xj :

Consider a clause of the form C = xj ∨
∨

l∈Lx
¬xl ∨

∨
l∈Ly

¬yl. The only
interesting case to discuss is i = j. As above, M being a Z≤1-partial satis-
fiability model implies that fyr(t(xdr,1), ..., t(xdr,nr

)) = 0 for some r ∈ Ly.
And this implies f t

yr
(t(xdr,1), ..., t(xdr,nr

)) = 0.
3. no positive literal in C:

Consider a clause of the form C =
∨

l∈Lx
¬xl ∨

∨
l∈Ly

¬yl. We only need
to discuss the case that i �∈ Lx. Again, M being a Z≤1-partial satisfiability
model implies that we have fyr(t(xdr,1), ..., t(xdr,nr

)) = 0 for some r ∈ Ly.
This means f t

yr
(t(xdr,1), ..., t(xdr,nr

)) = 0.

For the induction step, we consider an assignment where k > 1 universals are
false. Let t(xi1) = 0, ..., t(xik

) = 0 and t(xs) = 1 for s �= i1, ..., ik. In order
to show that φ[y/M t] is true for t(x), we can use the induction hypothesis
and assume that φ[y/M t] is true for t1(x) = Bik

n as well as for tk−1(x) with
tk−1(x1) = 0, ..., tk−1(xik−1 ) = 0 and tk−1(xs) = 1 for s �= i1, ..., ik−1. That
means, the case with k zeros xi1 ,..., xik

is reduced to the case where only xik
is

zero and the case where xi1 , ..., xik−1 are zero. Then the definition of f t
yj

implies

f t
yj

(t(xdj,1), ...,t(xdj,nj
))=f t

yj
(t1(xdj,1), ..., t1(xdj,nj

))∧f t
yj

(tk−1(xdj,1), ..., tk−1(xdj,nj
))

Again, we make a case distinction. It is actually very similar to the one from
the induction base:

1. C contains a positive existential variable yj :
Consider a clause of the form C = yj ∨

∨
l∈Ly

¬yl ∨
∨

l∈Lx
¬xl. We assume

that i1, ..., ik �∈ Lx, because otherwise, C[y/M t] is trivially true for t(x).
If f t

yj
(t1(xdj,1), ..., t1(xdj,nj

)) = 1 and f t
yj

(tk−1(xdj,1), ..., tk−1(xdj,nj
)) = 1,

we have f t
yj

(t(xdj,1), ..., t(xdj,nj
)) = 1.

Otherwise, without loss of generality, let f t
yj

(t1(xdj,1), ..., t1(xdj,nj
)) = 0.

Then the induction hypothesis implies that f t
yr

(t1(xdr,1), ..., t1(xdr,nr
)) = 0

for some r ∈ Ly, and we get f t
yr

(t(xdr,1), ..., t(xdr,nr
)) = 0.

2. C contains a positive universal variable xj :
Consider a clause of the form C = xj ∨

∨
l∈Lx

¬xl ∨
∨

l∈Ly
¬yl. The only

interesting case to discuss is j ∈ {i1, ..., ik}. Without loss of generality, we
assume j = ik.
It follows from the induction hypothesis that f t

yr
(t1(xdr,1), ..., t1(xdr,nr

)) = 0
for some r ∈ Ly. Then f t

yr
(t(xdr,1), ..., t(xdr,nr

)) = 0.
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3. no positive literal in C:
Consider a clause of the form C =

∨
l∈Lx

¬xl ∨
∨

l∈Ly
¬yl. We only need

to discuss the case that i1, ..., ik �∈ Lx. Again, the induction hypothesis im-
plies that we have f t

yr
(t1(xdr,1), ..., t1(xdr,nr

)) = 0 for some r ∈ Ly. Then
f t

yr
(t(xdr,1), ..., t(xdr,nr

)) = 0.
�

4 From DQBF∗ to QBF ∗: Eliminating Universals

4.1 The General Case

Quantifier expansion is a well-known technique for solving QBF s [1, 3]. As
demonstrated in this section, it can be generalized to dependency quantified
formulas and may be used to compute for any DQBF∗ formula an equivalent
prenex QBF∗ formula.

A universal quantifier ∀x φ(x) is just an abbreviation for φ(0) ∧ φ(1), so we
can expand it and make two copies of the original matrix, one for the universally
quantified variable being false, and one for that variable being true. As explained
in [3], existential variables which depend on that universal variable need to be
duplicated as well. For example, in

∀x1∀x2∀x3∃y1(x1, x2)∃y2(x2, x3)φ(x1, x2, x3, y1, y2)

the choice for y1 depends on the value of x1. We must therefore introduce two
separate instances y1,(0) and y1,(1) of the original variable y1, where y1,(0) is used
in the copy of the matrix for x1 = 0, and analogously y1,(1) for x1 = 1. We
obtain the expanded formula

∀x2∀x3∃y1,(0)(x2)∃y1,(1)(x2)∃y2(x2, x3)φ(0, x2, x3, y1,(0), y2) ∧ φ(1, x2, x3, y1,(1), y2)

We can do this successively to expand multiple universal quantifiers. Unlike
the QBF∗ case described in [3] and [4], we do not need to start with the innermost
quantifier, because DQBF∗ formulas can always be written with a ∀∗∃∗ prefix
where the order of the universals is irrelevant. After expanding all universal
quantifiers, we are left with a QBF∗ formula - actually a very special one with
a ∃∗ prefix. Obviously, this expansion leads to an exponential blowup of the
original formula. In practice, we do not need to expand all universals. For our
sample formula, the expansion of x1 is sufficient, because the resulting formula
can be written in QBF∗ as

∀x2∃y1,(0)∃y1,(1)∀x3∃y2 φ(0, x2, x3, y1,(0), y2) ∧ φ(1, x2, x3, y1,(1), y2)

One could think of sophisticated strategies for selecting which universals must be
expanded for a given DQBF∗ formula. In the general case, however, this cannot
avoid exponential growth, therefore the following discussion will assume that all
universal quantifiers are eliminated. Using the results from the previous section,
we will show that this is not a problem for DQHORN∗ formulas, because the
expanded formula is always small, even if all universals are expanded.
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In the general case, for a DQBF ∗ formula

Φ(z) = ∀x1...∀xn∃y1(xd1,1 , ..., xd1,n1
)...∃ym(xdm,1 , ..., xdm,nm

)φ(x,y, z)

with universal variables x = x1, ..., xn, existential variables y = y1, ..., ym and
free variables z, we obtain the expanded QBF∗ formula

Φ∃QBF (z) := ∃y1,(0,...,0)∃y1,(0,...,0,1)...∃y1,(1,...,1,0)∃y1,(1,...,1)
...

∃ym,(0,...,0)∃ym,(0,...,0,1)...∃ym,(1,...,1,0)∃ym,(1,...,1)∧
t(x)∈{0,1}n

φ(t(x), y1,(t(xd1,1 ),...,t(xd1,n1
)), ..., ym,(t(xdm,1),...,t(xdm,nm

)), z)

We omit the formal proof that Φ(z) ≈ Φ∃QBF (z), as it is quite obvious that
Φ∃QBF is simply the formalization of the elimination algorithm we have just
described.

Here is an example: the formula

Φ(z) = ∀x1∀x2∀x3∃y1(x1, x2)∃y2(x2, x3)φ(x1, x2, x3, y1, y2, z)

from above is expanded to

Φ∃QBF (z) = ∃y1,(0,0)∃y1,(0,1)∃y1,(1,0)∃y1,(1,1)∃y2,(0,0)∃y2,(0,1)∃y2,(1,0)∃y2,(1,1)
φ(0, 0, 0, y1,(0,0), y2,(0,0), z) ∧ φ(0, 0, 1, y1,(0,0), y2,(0,1), z)

∧ φ(0, 1, 0, y1,(0,1), y2,(1,0), z) ∧ φ(0, 1, 1, y1,(0,1), y2,(1,1), z)
∧ φ(1, 0, 0, y1,(1,0), y2,(0,0), z) ∧ φ(1, 0, 1, y1,(1,0), y2,(0,1), z)
∧ φ(1, 1, 0, y1,(1,1), y2,(1,0), z) ∧ φ(1, 1, 1, y1,(1,1), y2,(1,1), z)

4.2 Special Case: DQHORN ∗

We will now show that the expansion of universal quantifiers is feasible for
DQHORN ∗ formulas.

Definition 6. Let Φ ∈ DQHORN∗ with

Φ(z) = ∀x1...∀xn∃y1(xd1,1 , ..., xd1,n1
)...∃ym(xdm,1 , ..., xdm,nm

)φ(x,y, z)

be a dependency quantified Horn formula with universal variables x = x1, ..., xn,
existential variables y = y1, ..., ym and free variables z.
Then we define the formula Φ∃HORN (z) as

Φ∃HORN (z) := ∃y1,(0,1,...,1)∃y1,(1,0,1,...,1)...∃y1,(1,...,1,0)∃y1,(1,...,1)
...

∃ym,(0,1,...,1)∃ym,(1,0,1,...,1)...∃ym,(1,...,1,0)∃ym,(1,...,1)∧
t(x)∈Z≤1(n)

φ(t(x), y1,(t(xd1,1 ),...,t(xd1,n1
)), ..., ym,(t(xdm,1),...,t(xdm,nm

)), z)
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The only difference between the formula Φ∃HORN and the expansion Φ∃QBF

for general DQBF∗ formulas is that for Horn formulas, not all possible truth
assignments to the universally quantified variables have to be considered. Based
on the results from Section 3, assignments where more than one universal variable
is false are irrelevant for DQHORN∗ formulas.

For the formula

Φ(z) = ∀x1∀x2∀x3∃y1(x1, x2)∃y2(x2, x3)φ(x1, x2, x3, y1, y2, z)

from the example in Section 4.1, we have

Φ∃HORN (z) = ∃y1,(0,1)∃y1,(1,0)∃y1,(1,1)∃y2,(0,1)∃y2,(1,0)∃y2,(1,1)
φ(0, 1, 1, y1,(0,1), y2,(1,1), z) ∧ φ(1, 0, 1, y1,(1,0), y2,(0,1), z)

∧ φ(1, 1, 0, y1,(1,1), y2,(1,0), z) ∧ φ(1, 1, 1, y1,(1,1), y2,(1,1), z)

Before we can prove that Φ∃HORN is indeed equivalent to Φ, we make a
fundamental observation: for the special case that Φ is closed, i.e. there are no
free variables, the satisfiability of Φ∃HORN implies the existence of a Z≤1-partial
satisfiability model for Φ.

Lemma 1. Let Φ ∈ DQHORN be a dependency quantified Horn formula with-
out free variables, and let Φ∃HORN be defined as above. If Φ∃HORN is satisfiable
then Φ has a Z≤1-partial satisfiability model.

Proof. Let t be a satisfying truth assignment to the existentials in Φ∃HORN . This
assignment t provides us with all the information needed to construct a Z≤1-
partial satisfiability model for Φ. The idea is to assemble the truth assignments to
the individual copies yi,(xdi,1 ,...,xdi,ni

) of an existential variable yi into a common
model function. We achieve this with the following definition:

fyi(xdi,1 , ..., xdi,ni
) = (x̄di,1 ∧ xdi,2 ∧ ... ∧ xdi,ni

→ t(yi,(0,1,...,1)))
∧ (xdi,1 ∧ x̄di,2 ∧ xdi,3 ∧ ... ∧ xdi,ni

→ t(yi,(1,0,1,...,1)))
∧ ...
∧ (xdi,1 ∧ ... ∧ xdi,ni−1 ∧ x̄di,ni

→ t(yi,(1,...,1,0)))
∧ (xdi,1 ∧ ... ∧ xdi,ni

→ t(yi,(1,...,1)))

Now, the fyi form a Z≤1-partial satisfiability model for Φ, because for all x =
(x1, ..., xn) with x ∈ Z≤1, we have fyi(xdi,1 , ..., xdi,ni

) = t(yi,(xdi,1 ,...,xdi,ni
)),

and φ(x1, ..., xn, t(y1,(xd1,1 ,...,xd1,n1
)), ..., t(ym,(xdm,1 ,...,xdm,nm

))) = 1 due to the
satisfiability of Φ∃HORN . �

Using Lemma 1 in combination with Theorem 1, it is now easy to show that
Φ∃HORN is equivalent to Φ.

Theorem 2. For Φ ∈ DQHORN∗ and Φ∃HORN as defined above, it holds that
Φ ≈ Φ∃HORN .



Dependency Quantified Horn Formulas: Models and Complexity 209

Proof. The implication Φ(z) |= Φ∃HORN (z) is obvious, as the clauses in Φ∃HORN

are just a subset of the clauses in Φ∃QBF , which in turn is equivalent to Φ.
The implication Φ∃HORN (z) |= Φ(z) is more interesting. Assume Φ∃HORN (z∗)
is satisfiable for some fixed z∗. With the free variables fixed, we can treat both
Φ∃HORN (z∗) and Φ(z∗) as closed formulas and apply Lemma 1 and the results
from Section 3 as follows:
According to Lemma 1, the satisfiability of Φ∃HORN (z∗) implies that Φ(z∗) has
a Z≤1-partial satisfiability model. On this partial model, we can apply the to-
tal expansion from Definition 5 and Theorem 1 to obtain a (total) satisfiability
model. The fact that Φ(z∗) has a satisfiability model implies that Φ(z∗) is satis-
fiable. �

We immediately obtain the following corollary:

Corollary 1. For any dependency quantified Horn formula Φ ∈ DQHORN∗

with free variables, there exists an equivalent formula Φ∃HORN ∈ QHORN∗

without universal quantifiers. The length of Φ∃HORN is bounded by |∀|·|Φ|, where
|∀| is the number of universal quantifiers in Φ, and |Φ| is the length of Φ.

5 Solving DQHORN ∗-SAT

We can take advantage of the fact that the transformation we have just pre-
sented produces QHORN ∗ formulas without universal variables. The absence of
universals allows us to easily determine their satisfiability, because a formula of
the form Ψ(z) = ∃y1...∃ym ψ(y1, ..., ym, z) is satisfiable if and only if its matrix
ψ(y1, ..., ym, z) is satisfiable. The latter is a purely propositional formula, so we
can apply existing SAT solvers for propositional Horn.

We then obtain the following algorithm for determining the satisfiability of a
formula Φ ∈ DQHORN∗:

1. Transform Φ into Φ∃HORN according to Definition 6. This requires time
O(|∀| · |Φ|) and produces a formula of length |Φ∃HORN | = O(|∀| · |Φ|).

2. Determine the satisfiability of φ∃HORN , which is the purely propositional
matrix of Φ∃HORN . It is well known [6] that SAT for propositional Horn
formulas can be solved in linear time, in this case O(|φ∃HORN |) = O(|∀|·|Φ|).

In total, this requires time O(|∀|·|Φ|), which is just as hard as QHORN ∗-SAT [11].

6 Conclusion

We have introduced the class of dependency quantified Horn formulas DQHORN ∗

and have shown that it is a tractable subclass of DQBF ∗. We have demonstrated
that the tractability of DQHORN ∗ is due to an interesting effect that the Horn
property has on the behavior of the quantifiers, a phenomenon which is preserved
when adding partially ordered quantifiers. Based on this result, we have been able
to prove that
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– any dependency quantified Horn formula Φ ∈ DQHORN∗ of length |Φ| with
free variables, |∀| universal quantifiers and an arbitrary number of existential
quantifiers can be transformed into an equivalent quantified Horn formula
of length O(|∀| · |Φ|) which contains only existential quantifiers.

– DQHORN∗-SAT can be solved in time O(|∀| · |Φ|).

This shows that the class DQHORN ∗ is no more difficult than QHORN ∗, but
apparently does not provide significant increases in expressive power either.
DQHORN ∗should, however, not be considered as an isolated subclass of DQBF ∗.
Just like ordinary QHORN∗ formulas are important as subproblems when solv-
ing arbitrary QBF∗ formulas [5], our findings on DQHORN∗ should prove useful
for handling more general classes of DQBF ∗ formulas. And since the latest trend
of enabling QBF solvers to directly handle non-prenex formulas [8] constitutes
a special case of partially-ordered quantification with tree-like dependencies,
our results might also be applied in non-prenex QBF solvers for cutting Horn
branches.

In addition, the tractability of DQHORN ∗ shows that adding partially ordered
quantifiers does not necessarily lead to a computational blow-up as in the general
case with DQBF ∗. Further research should therefore explore the complexity
and expressiveness of other subclasses and special cases, in particular tree-like
dependencies as mentioned above.
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{porschen, esp, randerath}@informatik.uni-koeln.de

Abstract. In the present paper we introduce the class of linear CNF
formulas generalizing the notion of linear hypergraphs. Clauses of a linear
formula intersect in at most one variable. We show that SAT for the gen-
eral class of linear formulas remains NP-complete. Moreover we show that
the subclass of exactly linear formulas is always satisfiable. We further
consider the class of uniform linear formulas and investigate conditions
for the formula graph to be complete. We define a formula hierarchy such
that one can construct a 3-uniform linear formula belonging to the ith
level such that the clause-variable density is of Ω(2.5i−1)∩O(3.2i−1). Fi-
nally, we introduce the subclasses LCNF≥k of linear formulas having only
clauses of length at least k, and show that SAT remains NP-complete
for LCNF≥3.

Keywords: linear CNF formula, satisfiability, edge colouring,
NP-completeness, linear hypergraph, latin square.

1 Introduction

A prominent concept in hypergraph research are linear hypergraphs [1] hav-
ing the special property that its hyperedges have pairwise at most one vertex
in common. A hypergraph is called loopless if no hyperedge has length one. A
long-standing open problem for linear hypergraphs is the Erdös-Farber-Lovas̀z
conjecture [4] stating that for each loopless linear hypergraph over n vertices
there exists an edge n-coloring such that hyperedges of non-empty intersection
are colored differently. In this paper we introduce the class of linear CNF for-
mulas generalizing the concept of linear hypergraphs. In a linear formula each
pair of distinct clauses has at most one variable in common.

The motivation for our work basically is the abstract interest in the structure
and the complexity of linear formulas w.r.t. SAT. We thus take a theoretical
point of view in this paper. However, the class of linear formulas may be useful
for applications with objects exhibiting only weak interdependencies in the sense
that the corresponding CNF encoding yields only sparse overlapping clauses.

By reduction from the well known SAT problem it can be shown that SAT
restricted to linear CNF formulas remains NP-complete. The reduction relies on
introducing new variables for variables occuring in clauses having at least two
variables in common with a different clause. The truth values of the original
variable and the corresponding new one must be forced to be identical. This can
easily be achieved by convenient binary clauses. In case of linear CNF formulas C

A. Biere and C.P. Gomes (Eds.): SAT 2006, LNCS 4121, pp. 212–225, 2006.
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without clauses of length at most two it causes serious problems forcing variables
to have the same value in every satisfying truth assignment (model) of C.

For a while we had the impression that linear CNF formulas without clauses of
length two or less are all satisfiable. Early experiments supported this hypothesis
but all attempts to prove it failed. In order to disprove the hypothesis we tried
to construct linear CNF formulas with a highest possible dependency between
the clauses. The first class of candidates, the exactly linear CNF formulas, where
every two clauses have exactly one common variable supported the hypothesis,
for the famous König-Hall theorem yields satisfiability in this case, see Section
3, Theorem 2. So, we had to exploit further structural properties of the linear
hypergraphs underlying the linear formulas. We restricted to k-CNF formulas.
For ease of explaining let k = 3. We first constructed an exactly linear 3-CNF
formula such that for the corresponding hypergraph its intersection graph which
forms a clique is isomorphic to the vertex graph in which each two vertices are
joined by an edge if they occur together in a hyperedge. Such formulas have
as many clauses as variables. In case of k = 3 there are seven clauses and
variables, see Section 4, p. 219. Lemma 4 formulates conditions to be satisfied
by such formulas, called k-blocks, for arbitrary values of k ≥ 3. Taking the
signature of the 3-block with the corresponding 7 variables, a 7-block (fragment)
is constructed yielding linear 3-CNF formula with 43 variables and 133 clauses.
Here we additionally use a result about the existence of certain latin squares as
stated in Section 4, Prop. 3. On the basis of this (monotone) formula skeleton
we have generated more than 3.5 · 108 formulas by randomly assigning different
polarities to the variables in the skeleton of this linear 3-CNF formula. 488 of
these formulas were unsatisfiable using the solver [2], i.e., only one of 70,000 of
these formulas was unsatisfiable. From one of these unsatisfiable formulas we
extracted a minimal unsatisfiable subformula with 43 variables and 81 clauses.
Eliminating an arbitrary clause (x∨y∨z) from this formula yields three backbone
variables of the remaining (satisfiable) formula, which can be used to show the
NP-completeness of SAT for linear 3-CNF formulas by padding up clauses of
length 2 by such complemented backbone variables. For this we extracted an
even smaller formula see Section 4, p. 223. Recall that a backbone variable x in
a satisfiable formula C, by definition, has the same truth value in each model of
C (cf. e.g. [10]). Note that random 3-CNF formulas with constant clause-variable
density w.h.p. are linear up to a logarithmic number of clauses. Unfortunately,
this observation does not help showing that linear formulas may have backbone
variables which forms the core of showing the major NP-completeness result of
Theorem 4.

Finally, in Section 5 we formulate some open problems.

2 Preliminary Facts

To fix notation, let CNF denote the set of formulas (free of duplicate clauses)
in conjunctive normal form over propositional variables xi ∈ {0, 1}. A variable
x induces a positive literal (variable x) or a negative literal (negated variable:
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x). The complement of a literal l is l. Each formula C ∈ CNF is considered as
a set of its clauses C = {c1, . . . , c|C|} having in mind that it is a conjunction
of these clauses. Each clause c ∈ C is a disjunction of different literals, and
is also represented as a set c = {l1, . . . , l|c|}. A clause c ∈ C is called unit iff
|c| = 1. A literal in C is called pure iff its complement does not occur in C. For a
given formula C, clause c, by V (C), V (c) we denote the set of variables occuring
(negated or unnegated) in C resp. c. The satisfiability problem (SAT) takes as
input a formula C ∈ CNF and asks whether there is a truth (value) assignment
t : V (C) → {0, 1} such that at least one literal in each clause of c is set to 1, in
which case C is said to be satisfiable, and t is a model of C. For convenience we
allow the empty set to be a formula: ∅ ∈ CNF which is satisfiable. From now on
the notion formula means a (duplicate free) element of CNF.

A hypergraph is a pair H = (V,E) where V = V (H) is a finite set, the vertex
set and E = E(H) is a family of subsets of V the (hyper)edge set such that for
each x ∈ V there is an edge containing it. If |e| ≥ 2 holds for all edges of a
hypergraph it is called loopless. A hypergraph H is called k-uniform if for each
edge holds |e| = k and k is a fixed positive integer. For a vertex x of a hypergraph
H = (V,E), let Ex = {e ∈ E : x ∈ e} be the set of all edges containing x. Then
ωH(x) := |Ex| denotes the degree of vertex x in H , we simply write ω(x) when
there is no danger of confusion. H is called j-regular if there is a positive integer
j and each vertex has degree j in H . We call ‖E‖ :=

∑
e∈E |e| the length of the

hypergraph which is a useful constant. The next equation, throughout refered
to as the length condition of H , is obvious, but useful: ‖E‖ =

∑
e∈E |e| =∑

x∈V ω(x). A hypergraph is called linear if (∗) : |e ∩ e′| ≤ 1, e �= e′, and is
called exactly linear if in (∗) equality holds for each pair of distinct hyperedges.
Let LIN (resp. XLIN) denote the class of all linear (resp. exactly linear) (finite)
hypergraphs. There are some useful graphs that can be assigned to a hypergraph
H = (V,E). First, the intersection graph GE of H . It has a vertex for each
hyperedge and two vertices are joined by an edge in GE if the corresponding
hyperedges have a non-empty intersection; let each edge of GE be labeled by
the vertices in the corresponding intersection of hyperedges. Further, the vertex
graph GV with vertex set V . x and x′ are joined by an edge in GV iff there
is a hyperedge in E containing x and x′, let each edge of GV be labeled by
the corresponding hyperedges. Clearly, for each e ∈ E the induced subgraph
GV |e of GV is isomorphic to the complete graph K|e|. The incidence graph of a
hypergraph H = (V,E) is the bipartite graph whose vertex set is V ∪ E. Each
vertex is joined to all hyperedges containing it.

Definition 1. C ∈ CNF is called linear if
(1) C contains no pair of complementary unit clauses and
(2) (∗): for all c1, c2 ∈ C : c1 �= c2 holds |V (c1) ∩ V (c2)| ≤ 1.
C ∈ CNF is called exactly linear if it is linear and equality holds in (∗).
Let (X)LCNF denote the class of all (exactly) linear formulas.

Clearly linear formulas that do not have property (1) are unsatisfiable. Due to
condition (1) a linear formula C directly corresponds to a linear hypergraph HC

by disregarding all negations of variables which correspond to the vertices and
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the clauses to the hyperedges; we call HC the underlying hypergraph of C. A
monotone formula by definition having no negated variables thus is identical to
its underlying hypergraph. So, we are justified to call a linear formulaC j-regular,
resp. k-uniform if HC is j-regular resp. k-uniform. Similarly, the incidence graph
IC resp. the intersection graph GC of C are identified by the corresponding
graphs of HC , the variable graph GV (C) of C is defined to be the vertex graph of
HC . Reversely, to a given linear hypergraph H there corresponds a family C(H)
of linear formulas such that H is the underlying hypergraph of each C ∈ C. It
is easy to see that C(H) (up to permutations of vertices in the hyperedges) has
size 2‖E(H)‖ if E(H) is the edge set of H .

Lemma 1. For C ∈ LCNF, with n := |V (C)| holds |C| ≤ n +
(
n
2

)
.

Proof. Let V (C) = {x1, . . . , xn}. C can have at most n unit clauses which
are independent of the remaining formula, because otherwise by the pigeonhole
principle there exists a pair of complementary unit clauses. Since C is linear
each pair of variables (xi, xj), with j > i, can occur in exactly one clause of
C, yielding

(
n
2

)
possible clauses of length at least 2 by the pigeonhole principle

completing the proof. �
Theorem 1. SAT remains NP-complete when restricted to the class LCNF.

Proof. We provide a polynomial time reduction from CNF-SAT to LCNF-SAT.
Let C ∈ CNF be arbitrary. We recursively transform C step by step due to the
following procedure:

begin
while there are two clauses c, c′ ∈ C such that |V (c) ∩ V (c′)| ≥ 2 do:
for each variable x ∈ V (c) ∩ V (c′) introduce new variables x1, x

′
1

remove c and c′ from C
add the new clauses c1, c′1 obtained from c, c′ by replacing each x ∈ V (c)∩V (c′)
by x1 in c and by x′1 in c′ such that the polarities remain the same as in c, c′

for each x ∈ V (c) ∩ V (c′) add the three clauses {x, x1}, {x1, x
′
1}, {x′1, x}

end

Clearly, the transformation of C by the procedure above takes polynomial time.
Moreover it is obvious that the resulting formula C′ is linear because all variables
occuring in the intersection of any two clauses is recursively replaced by a new
variable. It remains to verify that C is satisfiable iff C′ is satisfiable. This can
be seen immediately by observing that the clauses added in the last step ensure
equivalence of the replaced variables with the original ones correspondingly, as
they are equivalent to the implicational chain: x ⇒ x1 ⇒ x′1 ⇒ x implying
x⇔x1⇔x′1 independently for each triple x, x1, x

′
1. Note that these equivalences

are independent of the polarities of the corresponding literals as long as the new
variables are assigned the same polarities as that of the substituted ones in the
corresponding clause. It is not hard to see that via these equivalences one can
construct a model of C′ from a model of C and vice versa finishing the proof. �
The reduction given above adds 2-clauses to a non-linear input formula forcing
the newly introduced variables all to be assigned the same truth value in every
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model of C′. Therefore, if we consider the subclass LCNF≥3 of LCNF where
each formula contains only clauses of length at least 3, then the reduction above
does not work. So, the question arises whether SAT restricted to LCNF≥3 is
NP-complete, too. Below we will reconsider that point, but let us mention here
already that in case of formulas in LCNF≥3 forcing introduced variables, as done
by the previously given reduction, to have the same value becomes a serious
problem, and its solution requires a lot of structural insight into this class of
formulas. So the NP-completeness proof of SAT for LCNF≥3 in the last section
of the paper relying on properties of certain exactly linear formulas and uniform
linear formulas described in the next two sections.

Some of the combinatorial structure of a linear formula is reflected by its
underlying hypergraph. So, before treating the class of exactly linear hypergraphs
and formulas in the next section, let us collect some elementary relations holding
for arbitrary linear hypergraphs (the proof can be found in [12]):

Lemma 2. For H = (V,E) ∈ LIN with n := |V |,m := |E| ≥ 1 holds:

(i) ∀e ∈ E holds m ≥ 1 − |e| +
∑

x∈e ω(x),
(ii) m(m− 1) ≥

∑
x∈V ω(x)(ω(x) − 1),

(iii) ∀x ∈ V holds n ≥ 1 − ω(x) +
∑

e∈Ex
|e|,

(iv) n(n− 1) ≥
∑

e∈E |e|(|e| − 1).

3 Exactly Linear Hypergraphs and Formulas

Let H = (V,E) be an exactly linear hypergraph with n := |V | and m := |E|,
hence GE = Km. A basic result is the following:

Proposition 1. For every H ∈ XLIN holds m ≤ n. �
The result is a special case of the Fisher-inequality [13]. A short indirect proof of
which can be found in [11]. Obviously, due to Proposition 1, the Erdös-Farber-
Lovàsz conjecture holds for the class of exactly linear hypergraphs.

The above assertion has direct impact on SAT for exactly linear formulas.
Restated for formulas, the result above tells us that these formulas and all its
subformulas have deficiency m−n at most 0 corresponding to matching formulas
as introduced in [6]. A matching argument showing satisfiability of deficiency 0
formulas has already been used in [15]. With similar arguments we obtain:

Theorem 2. Every C ∈ XLCNF is satisfiable, and a model for C can be deter-
mined in O(

√
n‖C‖) time.

Proof. Recall that C ∈ XLCNF by definition has no pair of complementary
unit clauses therefore HC ∈ XLIN, similarly every subformula C′ ⊆ C is exactly
linear, and contains no pair of complementary unit clauses, hence for eachC′ ⊆ C
holds HC′ ∈ XLIN. Now consider IC the bipartite incidence graph of C with
vertex set partition V (C) ∪ C. It is easy to see, that every subset C′ ⊆ C has
the neighbourhood NI(C′) = V (C′) ⊆ V (C) in IC . Because of |C′| ≤ |V (C′)| =
|NI(C′)| for every subset C′ ⊆ C, we can apply the classic Theorem of König-
Hall [7,8] for bipartite graphs stating that there exists a matching in IC covering
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the component C of the vertex set. In terms of the formula, this means that there
is a set of variables, corresponding to the vertices of the matching edges such
that each of it is joined uniquely to a clause of C such that no clause is left out.
Since these variables are all distinct the corresponding literals can independently
be set to true yielding a model of C.

To verify the time bound first observe that for given C ∈ XLCNF, IC can
be constructed in O(‖C‖) time using appropriate data strutures. Next regard
the bipartite matching problem on IC as formulated previously as a network
flow problem: Assign to each of IC an orientation from the variable partition
to the clause partition. Introduce a source vertex joined to each variable vertex
by exactly one directed edge, similarly, introduce a sink vertex t such thta each
clause vertex gets exactly one directed arc terminating in t, no further edges
are added. Even in [5] provided an algorithm for finding a maximum flow which
can easily be seen to be equivalent to a König-Hall matching in IC covering
the clause partition. That algorithms runs in O(

√
pq) time if the network has p

vertices and q edges. Because IC has ‖C‖ edges and at most n+m ≤ 2n vertices,
the network has at most ‖C‖+2n edges thus in summary, we obtain O(

√
n‖C‖)

as running time for finding a model of C ∈ XLCNF with n variables. �

4 Uniform Linear Formulas: Key for NP-Completeness
Proof

Observe that a linear formula has the property that each pair of variables occurs
at most once. Let P (C) := {p1, . . . , ps} denote all pairs of literals that occur in a
linear formula C = {c1, . . . , cm}. Consider the bipartite graph GP (C) associated
with C having vertex set bipartition P (C) ∪ C and each literal pair p is joined
to the unique clause of C it belongs to, hence the degree of each p is 1. In
case of a k-uniform formula C, k ≥ 2, each clause-vertex in GP (C) has degree
k(k − 1)/2. Hence, if C has n variables, we have s ≤

(
n
2

)
and on the other hand

s = m · k(k − 1)/2 implying m ≤ n(n−1)
k(k−1) . We only have s =

(
n
2

)
if each pair

occurs exactly once, i.e., if the variable graph GV (C) is a clique . So, we have
proven:

Lemma 3. For C ∈ LCNF k-uniform with n variables always holds |C| ≤
n(n−1)
k(k−1) . And equality holds iff GV (C) is complete. �

Satisfiability of linear formulas can be characterized in terms of matchings in
GP (C): Clearly, P (C) itself is a 2-uniform linear formula, and in case P (C) is
satisfiable then also C is satisfiable. More generally, by the pigeonhole principle
holds s ≥ m. And the fact that each subformula C′ ⊆ C again satisfies |P (C′)| ≥
|C′| enables us once more to apply the König-Hall Theorem providing existence
of a matching M of cardinality m covering the clause-vertices in GP (C). Now it
is not hard to see that C is satisfiable iff there exists a matching M as above
with the additional property that the 2-CNF subformula of P (C) consisting
of those literal pairs p that are incident to edges of M is satisfiable. So, if C
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has m clauses there are exactly [k(k − 1)/2]m König-Hall matchings in GP (C),
and an unsatisfiable formula C forces all [k(k − 1)/2]m subformulas of P (C)
of cardinality m selected by the corresponding matchings to be unsatisfiable.
Observe that the case k = 2 is specific in the sense that it exhibits exactly one
König-Hall matching. Therefore it is easy to construct an unsatisfiable linear
2-uniform formula. A shortest one consists of 6 clauses C = {c1, . . . , c6} where
c1, c2, c3 are determined by x ⇒ y ⇒ z ⇒ x and c4, c5, c6 are determined by
x ⇒ u ⇒ v ⇒ x. This is not surprising as in a certain sense the SAT-complexity
of a 2-uniform formula is exhibited by its linear part: Suppose C is 2-uniform
but not linear and let c, c′ be two clauses such that V (c) = V (c′) = {x, y}. Then
we claim that c, c′ can be removed from C without affecting satisfiability status
of C. Indeed, we have three cases: (1) c = {x, y}, c′ = {x, y}, then c, c′ are always
satisfied by x. (2) c = {x, y}, c′ = {x, y}, meaning x⇔y a condition according
to which the resulting formula can be evaluated. And (3) c = {x, y}, c′ = {x, y},
similarly meaning x⇔y which can be handled as before yielding the claim.

To construct an unsatisfiable 3-uniform linear formula “at hand” seems not
to be an easy task. Below we will provide a scheme for finding such formulas
also revealing that unsatisfiable formulas are very sparsely distributed. On the
other hand, it will turn out that finding one such formula answers the earlier
stated question whether SAT remains NP-complete also for the class LCNF≥3.
For obtaining that answer it is useful to consider the combinatorially somehow
extreme class of linear formulas C containing each pair of variables exactly once,
in other words the variable graph is a clique Kn, for n variables in C. For k-
uniform linear hypergraphs, i.e., the monotone case, this situation is also known
as a Steiner triple system S(2, k, n) [1]. So we derive some necessary algebraic
existence conditions for a k-uniform linear hypergraphH = (V,E) with complete
vertex graph GV . The degree of each vertex x in GV then is given by

degV (x) =
∑

e∈Ex

(|e| − 1) = (k − 1)ω(x) = n− 1

therefore ω(x) = n−1
k−1 for each vertex, hence H is regular. By the length condition

for H we immediately derive k|E| = nn−1
k−1 hence recovering the assertion of

Lemma 3. More generally we have (the proof can be found in [12]):

Proposition 2. If a k-uniform linear hypergraph, k ≥ 3, with n vertices admits
a complete vertex graph then necessarily n ∈ M1 ∪M2 where

M1 = {k + jk(k − 1)|j ∈ N}, M2 = {1 + jk(k − 1)|j ∈ N}, M1 ∩M2 = ∅

For k = 3 the conditions in Prop. 2 are equivalent to 6|n−3 or 6|n−1 which have
shown (non-constructively) also to be sufficient by Kirkman, resp. Hanani ac-
cording to [1]. For k a prime power and n sufficiently large the above conditions
also are sufficient [16]. Some specific k-uniform linear hypergraphs admitting
complete vertex graphs are listed as the corresponding Steiner triple systems in
[1], also confer [9] for a more complete presentation. Although the Hanani result
ensures indirectly that there exist very dense linear formulas we have no sys-
tematic way to explicitly construct and to investigate them. To circumvent that
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problem we next provide a scheme for explicitly constructing k-uniform formu-
las of highest possible clause-variable density. To that end it is instructive first
to consider k-uniform exactly linear formulas having a complete variable graph.
Clearly, a formula containing only one k-clause is exactly linear and satisfies
GV (C) = Kk thus we require formulas of at least two k-clauses.

Definition 2. A k-uniform formula B ∈ XLCNF with |B| > 1 is called a k-
block if GV (C) = K|V (C)|. Let Bk denote the set of all k-blocks, and n(k) :=
1 + k(k − 1). Any subset of a k-block is called a k-block fragment.

Lemma 4. For k-uniform C ∈ XLCNF, with |C| > 1, k ≥ 3, the following
assertions are equivalent:
(i) C is a k-block,
(ii) |V (C)| = |C|,
(iii) ω(x) = k, for each x ∈ V (C). Each k-block has n(k) variables.

Proof. Obviously it suffices to consider the monotone case as we only touch
the combinatorial hypergraph structure disregarding any logical aspect. We first
show (i) implies (ii): If C ∈ Bk then GV (C) is a clique, and for each variable x we
have deg(x) = (k − 1)ω(x) = n − 1 where n := |V (C)|. Therefore ω(x) = n−1

k−1 .
Moreover, as C is exactly linear also the intersection graph is complete, hence
deg(c) = k(n−1

k−1 − 1) = |C| − 1. Since (∗) nn−1
k−1 = ‖C‖ = |C|k we derive

k(n−1
k−1 − 1) = n(n−1)

k(k−1) − 1 which is equivalent to (n− k)(n − [1 + k(k − 1)]) = 0
having the roots n = k corresponding to |C| = 1 and n = 1 + k(k − 1). For the
latter case we have n−1

k−1 = k = ω(x), for each x ∈ V (B). Therefore from (∗) we
immediately obtain |C| = n.
(ii) ⇒ (iii): If the formula is regular meaning ∀x : ω(x) = j then nj = kn by
the length condition thus j = k, and we are done. If the formula is not regular,
we see by the length condition

∑
x∈V (C) ω(x) = kn that if ω(x) ≤ k for each x

then already ω(x) = k for each x ∈ V (C). So assume there is a variable x with
r := ω(x) > k ≥ 3. Then C contains at least all r clauses in C(x) each having
length k. Suppose there was no further clause then n = 1 + r(k − 1) = |C| = r
which has a solution in r only for k = 1. So there is at least one further k-clause
c contained in C. Because c must contain exactly one variable of each clause in
C(x) we get that r ≤ k so we obtain ω(x) = k for each x ∈ V (C).
(iii) ⇒ (i): From the degree relation in the variable graph GV (C) we see ∀x ∈
V (C) : degGV (C)

(x) = k(k − 1) if ω(x) = k for each x ∈ V (C) thus the variable
graph is k(k− 1) regular. Similarly, from the degree relation in the clause graph
we obtain ∀c ∈ C: degGC

(c) = k(k−1) = |C|−1 hence |C| = 1+k(k−1). Finally,
by the length condition we see nk = ‖C‖ = k|C| thus n = |C| = 1 + k(k − 1).
Therefore GV (C) with n vertices is n−1-regular, so is complete and by definition
C is a k-block. �
Thus in a k-block each clause has length k and each variable occurs exactly k
times, moreover the number of variables equals the number of its clauses. As an
example consider a monotone 3-block :
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c1 := {x, y1, y2}
c2 := {x, a11, a12}
c3 := {x, a21, a22}
c4 := {y1, a11, a21}
c5 := {y1, a12, a22}
c6 := {y2, a11, a22}
c7 := {y2, a12, a21}

Although we can construct k-blocks also for k = {4, 5, 6}, we are not aware
whether a k-block really exists for arbitrary values of k ≥ 7. The next result
relates that question to the number of latin squares for a given positive integer
that mutually satisfy a certain condition. Recall that a latin square of order
s ∈ N is a s× s-matrix where each row and each column contains each element
of S = {1, . . . , s} exactly once (cf. e.g. [14,3]), as an examples for s = 5 consider
the first two of the following matrices:

L5 =

⎛
⎜⎜⎜⎜⎝

1 2 3 4 5
5 1 2 3 4
2 3 4 5 1
3 4 5 1 2
4 5 1 2 3

⎞
⎟⎟⎟⎟⎠ , L′

5 =

⎛
⎜⎜⎜⎜⎝

1 2 3 4 5
4 5 1 2 3
3 4 5 1 2
5 1 2 3 4
2 3 4 5 1

⎞
⎟⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎜⎝

(1, 1) (2, 2) (3, 3) (4, 4) (5, 5)
(5, 4) (1, 5) (2, 1) (3, 2) (4, 3)
(2, 3) (3, 4) (4, 5) (5, 1) (1, 2)
(3, 5) (4, 1) (5, 2) (1, 3) (2, 4)
(4, 2) (5, 3) (1, 4) (2, 5) (3, 1)

⎞
⎟⎟⎟⎟⎠

Two latin squares L = (lij)1≤i,j≤s, L
′ = (l′ij)1≤i,j≤s of order s are said to be

orthogonal iff the pairs (lij , l′ij) are distinct for all 1 ≤ i, j ≤ s. L5, L
′
5 above are

orthogonal as the third matrix above providing all corresponding pairs indicates.
A set of latin squares is called mutually orthogonal, if each different pair of its
elements are orthogonal.

Proposition 3. A k-block exists if there is a set L of k − 2 latin squares each
of order k − 1 such that each K,L ∈ L: K �= L satisfy the following condition:
For each row r of K and each row r′ of L holds:

(∗) ∀1 ≤ q < p ≤ k − 1 : rp = r′p ⇒ rq �= r′q

Proof. Considering k-blocks it suffices to consider its underlying hypergraph
corresponding to the monotone case. So, a monotone k-block B has n(k) clauses
each of length k, let c0 := {x, y1, . . . , yk−1} be its first clause, called the leading
clause. As each variable occurs in k different clauses of B, there are k−1 further
clauses containing x, namely determined by the (k−1)×(k−1)-variable matrix:

Ak =

⎛
⎜⎜⎜⎝

a11 a12 · · · a1k−1
a21 a22 · · · a2k−1
...

...
...

...
ak−11 ak−12 · · · ak−1k−1

⎞
⎟⎟⎟⎠

such that the ith clause contains x and all variables in the ith row of Ak. Ob-
serve that the subformula X consisting of all clauses containing x already has
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n(k) = 1 + k(k− 1) variables that means all remaining (k − 1)(k − 1) clauses of
B can only contain these variables. We collect these clauses in (k− 1) subblocks
Yi, 1 ≤ i ≤ k − 1, each consisting of (k − 1) clauses such that each clause of
subblock Yi contains variable yi. W.l.o.g. Y1 can be constructed by filling the
remaining positions in the ith clause of Y1 with the variables in the ith row of
AT

k , the transpose of A. Subblock Y1 is shown in the left matrix below:

Y1 =

⎛
⎜⎜⎜⎝
y1 a11 a21 · · · ak−11
y1 a12 a22 · · · ak−12
...

...
...

...
...

y1 a1k−1 a2k−1 · · · ak−1k−1

⎞
⎟⎟⎟⎠ , Yi =

⎛
⎜⎜⎜⎝
yi a1i11 a2i12 · · · ak−1i1k−1

yi a1i21 a2i22 · · · ak−1i2k−1

...
...

...
...

...
yi a1ik−11 a2ik−12 · · · ak−1ik−1k−1

⎞
⎟⎟⎟⎠

Observe that the formula X ∪ Y1 is exactly linear. Each of the remaining sub-
blocks Yi, 2 ≤ i ≤ k − 1, w.l.o.g. looks as shown in the right above where
I = (ipq)1≤p,q≤k−1 is a latin square of order k−1. Obviously, for each i, X∪Y1∪Yi

is exactly linear. However, to ensure that Yi, Yj , 2 ≤ i < j ≤ k − 1 satisfy mu-
tually exact linearity the corresponding matrices I, J must satisfy the following
condition (*) above clearly guaranteeing that no pair of variables in Ak occurs
twice in any clause of X ∪ Y1 ∪ · · · ∪ Yk−1. Moreover, as then we have n(k) k-
clauses we have place capacity for exactly n(k)k(k − 1)/2 variable pairs which
is identical to the number of variab;le pairs we can build over n(k) variables.
Therefore by the pigeonhole principle each pair of variables indeed occurs ex-
actly once in case (∗) holds. �
Condition (∗) and orthogonality for latin squares are incomparable in the sense
that in general neither orthogonality implies (∗) nor (∗) implies orthogonality.
Determining s − 1 latin squares of order s that are mutually orthogonal resp.
satisfy (∗) is an extremely hard combinatorial task about which there is not
much known. E.g. regarding orthogonality, it is known that if the order s is a
prime power one can find s− 1 orthogonal latin squares. Otherwise one can find
at least pt − 1 orthogonal latin squares, where pt is the smallest prime-power in
the prime factorization of s [14]. Consequently, if 2 is the smallest prime power
one can find at most one orthogonal latin square. However we can also ensure
existence of at least one latin square for each k providing the next density result:

Theorem 3. For each k ≥ 3 such that Bk �= ∅ one can explicitly construct
for each i ∈ N a k-uniform linear formula Ci(k), k ≥ 3, such that |Ci(k)|

|V (Ci(k))| ∈
Ω(2.5i−1) ∩O(3.2i−1).

Proof. To prove the assertion we describe a construction scheme based on Prop.
3: Let k be such that Bk is not empty and let B1 be a corresponding monotone
k-block as constructed in the proof of Prop. 3. Clearly B1 has n(k) variables
and clauses. Next we build a monotone clause cB1 of length n(k) containing all
variables of V (B1) with x as the first variable and use it as signature for our block
B1 canonically as described above. Now we interprete cB1 as the leading clause
of a n(k)-block fragment denoted as B2. We only can ensure a block fragment
because we do not know whether Bn(k) is non-empty. In any case we obviously
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can add n(k)-clauses to cB1 such that the subblock X for B2 is complete, each of
its clauses again is regarded as the signature of another k-block, which pairwise
have only variable x in common. Building X we obtain the (n(k)−1)×(n(k)−1)
variable matrix An(k) for our n(k)-block the transpose of which delivers the next
subblock Y1 of B2 as shown in the proof of Prop. 3. Now we claim that we can
always find at least one latin square of order n(k) − 1 satisfying condition (∗)
above yielding another subblock Y2 of B2: Simply perform a cyclic shift of order
i to the ith column of AT

n(k) for 0 ≤ i ≤ n(k) − 2 guaranteeing linearity of B2

as is easy to verify. By construction follows that each clause of B2 delivers n(k)
blocks B1 which pairwise have at most one variable in common thus expanding
C2(k) that means resolving the signatures into k-blocks from Bk yields a k-
uniform linear formula of n(2)(k) = n(n(k)) variables and [1 + 3(n(k) − 1)]n(k)
clauses. The procedure described can be continued inductively by constructing
a n(i)(k)-block fragment Ci(k) consisting of 1 + 3(n(i−1)(k) − 1) clauses each of
length n(i−1)(k) and regarded as the signature of an n(i−1)(k)-block fragment
Ci−1(k) such that again all these signature-clauses have exactly one variable
in common yielding a hierarchie Bi, i ≥ 1, where B1 := B ∈ Bk. Expanding
Bi thus provides a k-uniform linear formula Ci(k) of n(i)(k) variables and [1 +
3(n(i−1)(k) − 1)]|Ci−1(k)| k-clauses. Again yielding a hierarchy of k-uniform
linear formulas Ci(k), i ≥ 1 where C1(k) := B.

It remains to settle the claim on the clause-variable density di(k) := |Ci(k)|
|V (Ci(k))| ,

which is shown by induction on i ≥ 1. For i = 1 we have C1(k) := B ∈ B(k) thus
d1(k) = n(k)/n(k) = 1. Now assume the claim holds for all positive integers ≤ i
for fixed i ≥ 2. Then

di+1(k) =
1 + 3[n(i)(k) − 1]

1 + n(i)(k)[n(i)(k) − 1]
|Ci(k)|

≤ 1 + 3[n(i)(k) − 1]
n(i)(k) − 1

· |Ci(k)|
|V (Ci(k))|

= (3 + [n(i)(k)]−1)di(k) < 3.2 di(k)

because n(i)(k) ≥ n(k) ≥ 7, and by the induction hypothesis we obtain di+1(k) ∈
O(3.2i). Similarly, for the remaining bound we derive:

di+1(k) =
1 + 3[n(i)(k) − 1]

1 + n(i)(k)[n(i)(k) − 1]
|Ci(k)|

>
3[n(i)(k) − 1]

[n(i)(k)]−1 + n(i)(k) − 1
· |Ci(k)|
|V (Ci(k))|

=
1

1/3 + 1/[3n(i)(k)(n(i)(k) − 1)]
di(k) > 2.5 di(k)

where again for the last inequality we used n(i)(k) ≥ n(k) ≥ 7 from which the
claim follows by the induction hypothesis. �
We have run some numerical experiments by randomly assigning polarities to
the literals in the 3-uniform linear formula C2(3) containing 133 clauses and 43



On Linear CNF Formulas 223

variables constructed as shown in the proof above. The experiments supplement
the intuition that unsatisfiable formulas are distributed very sparsely: Among
354442000 formulas over the monotone C2(3) we only found 488 unsatisfiable
ones. From one such unsatisfiable formula we extracted a minimal unsatisfiable
formula C consisting of 81 clauses, 43 variables. From C, in turn, we extracted
a smaller satisfiable formula Γ shown below of 69 clauses and 43 variables con-
taining only 0 as a backbone variable.

( -42, 21, 14) ( -0, 40, -39) ( -0, 22, -21) ( -0, 1, 2) ( -0, 26, -25)
( -0, 24, 23) ( 42, 0, -41) ( 40, -1, -34) ( 41, 40, 38) ( 40, -33, -2)
( 0, 37, -38) ( 42, -40, 37) ( -2, -36, 37) ( -40, 19, 18) ( 2, 19, -26)
( -33, 11, 19) ( -37, 19, -13) ( -40, 22, -16) ( 1, 22, 28) ( -37, 22, 15)
( -23, 22, -20) ( -19, -22, -24) ( -24, 21, 20) ( 39, -24, 17) ( -19, 1, 25)
( 25, 28, -30) ( 25, -32, 17) ( 1, 13, -7) ( -37, -25, -7) ( -22, -2, -29)
( -2, -28, 21) ( -2, -9, 16) ( 24, -25, -2) ( -2, 20, -27) ( -22, -34, 10)
( -1, 16, 10) ( 7, 10, 12) ( -40, -10, -28) ( 34, -28, -16) ( 0, 28, 27)
( 30, 26, 27) ( 39, 27, -9) ( 1, -18, -12) ( 41, -27, -12) ( 0, -10, -9)
( 12, 9, -8) ( -15, 21, -39) ( -19, 21, 23) ( -27, -21, -1) ( 24, -1, 30)
( 39, -1, 33) ( -1, -17, -11) ( 9, -21, 33) ( 33, 32, 36) ( 0, -33, 34)
( -27, -34, 13) ( -17, 13, 15) ( -34, 35, -32) ( 8, -20, -32) ( 1, -20, 26)
( 32, 26, 14) ( 28, -26, 29) ( -17, 29, -35) ( 0, 16, 15) ( -13, 16, -18)
( -16, 17, -14) ( 0, -17, 18) ( 2, -23, -30) ( -18, 15, -14)

Theorem 4. SAT remains NP-complete when restricted to LCNF≥3.

Proof. Let CNF≥3 be the set of all CNF formulas containing only clauses of
length at least 3, then clearly SAT is NP-complete for CNF≥3. We now pro-
vide a polynomial time reduction from CNF≥3-SAT to LCNF≥3-SAT. The new
reduction is a modification of the procedure used in the proof of Theorem 1.
So let C ∈ CNF≥3 be arbitrary and perform the latter procedure on C. Recall
that to transform C into a linear formula C′ the procedure replaces overlapping
variables by new variables and forces the new variables to be equivalent with
the original ones via implicational chains that are added as 2-clauses. These
2-clauses are the only one in the resulting formula C′ in case C ∈ CNF≥3.

For obtaining LCNF≥3 to be NP-complete it remains to get rid of the 2-clauses
adequately which is done as follows: For each such 2-clause ci add a 3-uniform
linear pattern Γi to C′ such that ∀i : V (Γi) ∩ V (C′) = ∅ and V (Γi) ∩ V (Γj) =
∅, i �= j. Finally, let xi be a backbone variable in Γi which is forced to be set in
Γi according to l(xi), then replace ci by ci ∪ l(xi). That last step ensures that
there are no more 2-clauses in the resulting formula and moreover the added
literals must be set to false ensuring that the constructed 3-clauses can take
their tasks as providing equivalences with originally overlapping variables in C.
Since the Γi’s are independently satisfiable we are done. �

5 Concluding Remarks and Open Problems

The class of linear formulas introduced here has been shown to be NP-complete
w.r.t. SAT for the general case. The reduction used essentially relies on 2-clauses,
and it therefore did not cover the subset of linear formulas that contain only
clauses of length at least 3. To prove that SAT remains complete also for this lat-
ter class, we provided an enlargment of the earlier reduction by certain patterns
of 3-clauses that could eliminate the 2-clauses. However, the question whether
SAT is NP-complete for the classes of linear formulas C containing only clauses
of length at least k, for each fixed k ≥ 4 is still open.
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Intuitively, one might believe that for large k each k-uniform linear formula
should be satisfiable. In turn that meant there was a smallest k0 for which
satisfiability holds implying that every formula containing only clauses of length
at least k0 was satisfiable as longer clauses could be shortened yielding a k0-
uniform linear formula which is satisfiable. However, there are two arguments
against that intuition: First observe that the bipartite graph GP (C) admits [k(k−
1)/2]m many König-Hall matchings if the input formula C has m clauses and is
k-uniform, which is rapidly growing in k. The 2-CNF formula P (C) extracted
from C has m·k(k−1)/2 clauses and thus admits O([m·k(k−1)/2]m) subformulas
of cardinality m. Recall that, for C to be unsatisfiable each subformula of P (C)
selected by a König-Hall matching must be unsatisfiable. Hence the density of
these, let’s say, König-Hall subformulas in all subformulas of cardinality m is of
order O(mm) which is independent of k. Second, for larger k formulas of clause-
variable density exponentially in i can exist. Clearly, both arguments do not
replace a proof but make clear that it is quite likely that it might be hard to
find a k for which all k-uniform linear formulas are satisfiable.

Otherwise, detecting a first unsatisfiable one means NP-completeness w.r.t.
SAT for the corresponding class by the same padding argument as in the proof
of Theorem 4. In conclusion we obtain:

Theorem 5. For k ≥ 4, SAT remains NP-complete restricted to the class
LCNF≥k iff there exists an unsatisfiable k-uniform linear formula. �
Besides linear CNF formulas having the defining property that each pair of
distinct clauses has at most one common variable one can consider r-intersecting
formulas. Restricting to the class k-CNF of formulas containing only clauses of
length at most k one could define for each r ≤ k the r-intersecting subclasses
k-CNFr defined as the collection of formulas C in k-CNF such that

∀c, c′ ∈ C, c �= c′ : |V (c) ∩ V (c′)| ≤ r

E.g. for k = 3, the class of formulas is left where each two clauses c �= c′ have
variable-intersection either 0 or 2. The case 0 or 3 is trivial as one only has to
detect whether there exist three variables over which the formula contains all
8 polarity patterns, which is the only case that such a formula can be unsat-
isfiable. By the Fisher-inequality also m ≤ n follows for exactly r-intersecting
hypergraphs of m edges and n vertices, i.e., above ≤ is replaced by =. Thus,
arguing again with König-Hall as in the exactly linear (= exactly 1-intersecting)
case ensures that also exactly r-intersecting formulas are always satisfiable (as
long as they contain no pair of complementary unit clauses). However, studying
SAT-complexity for the 0 or 2 case is left as an open problem.

Finally, we have some implications towards polynomial time solvability re-
garding SAT of certain classes of linear formulas C that are characterized by the
graph GP (C). Observe that the extracted 2-CNF P (C) is linear and if it is satis-
fiable then also C is satisfiable. Otherwise P (C) contains an unsatisfiable linear
subformula which is determined by implicational double-chains of the form

x ⇒ l1 ⇒ l2 ⇒ · · · ⇒ lp1 ⇒ x, x ⇒ l′1 ⇒ l′2 ⇒ · · · ⇒ l′p2
⇒ x
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where li 1 ≤ i ≤ p1, resp. l′i, 1 ≤ i ≤ p2 are literals over distinct variables,
the length of the double-chain is p := p1 + p2 + 2 as it is equivalent to p linear
2-clauses. Defining the class LCNF(p) consisting of all linear formulas such that
P (C) has a longest double-implicational chain of length p, we can decide satisfi-
ability for members of LCNF(p) in O(poly(p)n2p) time. A simple corresponding
algorithm proceeds as follows: Observe that an input formula C ∈ LCNF(p) is
unsatisfiable if there is a subformula C′ of C of cardinality p for which each
König-Hall matching in GP (C′) selects an unsatisfiable subformula of P (C′); by
usual matching algorithms that can be checked in polynomial time. Thus check-
ing all O(mp) p-subformulas C′ yields O(poly(p)mp) time. Since m ≤ n2 the
claim follows.

Acknowledgement. We would like to thank M. Gärtner for implementations.
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Abstract. This paper is a contribution to the general investigation into
how the complexity of constraint satisfaction problems (CSPs) is deter-
mined by the form of the constraints. Schaefer proved that the Boolean
generalized CSP has the dichotomy property (i.e., all instances are either
in P or are NP-complete), and gave a complete and simple classification of
those instances which are in P (assuming P �= NP) [20]. In this paper we
consider a special subcase of the generalized CSP. For this CSP subcase,
we require that the variables be drawn from disjoint Boolean domains.
Our relation set contains only two elements: a monotone multiple-arity
Boolean relation R and its complement R. We prove a dichotomy theo-
rem for these monotone function CSPs, and characterize those monotone
functions such that the corresponding problem resides in P.

1 Context and Related Work

Since Ladner’s demonstration that if P �= NP, then there exist infinitely many
problems in NP that are neither in P nor are NP-complete [19], there have been
attempts to classify broad subclasses of NP by complexity. Therefore it is of
striking interest that several (natural) subclasses of NP have been shown to
exhibit dichotomy: that is, all members of the subclass either are in P, or are
NP-complete [20], [16], [8], [3], [9], [18], [6], [4], [2]. (Of course if P = NP there
is no “dichotomy.”) In a number of such cases, it has been shown that there is a
surprisingly compact set of conditions which determine whether a given member
of the subclass is in P (is not NP-complete). There are also attempts to identify
the largest subclass of NP for which such a dichotomy holds (see notably [13],
[10], [2]).

A natural subclass of NP in which to carry out such investigations is that of
Constraint Satisfaction Problems (CSPs). The generalized CSP case is important
from a classification standpoint because it contains both 2SAT (in P) and 3SAT
(NP-complete); it is important pragmatically because it contains special cases
arising from applications throughout mathematics and computer science. In its
most general sense, a CSP is a problem of the form: For each of the given
variables, find an assignment of a value (from the appropriate specified domain)
in such a way that all members of the given set of specified constraints are
met. If all the variables have the same two-valued (Boolean) domain and the
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c© Springer-Verlag Berlin Heidelberg 2006
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constraints require satisfying logical propositions, this is the Boolean generalized
satisfiability problem (see for example [14]).

Formally, the generalized CSP may be described as follows.
An instance consists of a specification of the following data:

– A set of domains {Dj|j ∈ J}, and for each domain Dj an associated set of
variables Vj .

– A set of relations {Ri|i ∈ I} over tuples of the domains. More precisely, for
each i ∈ I there is associated:
• a positive integer Qi [the arity (or rank) of Ri];
• a Qi-tuple of domain indices ji =

(
j(i, 1), j(i, 2), . . . , j(i, Qi)

)
∈ JQi

[this tuple is called the signature of Ri];
• a relation Ri ⊆ Dj(i,1) ×Dj(i,2) × . . . ×Dj(i,Qi) over the corresponding

domains.
– A set of constraint relations {Ci|i ∈ I}, where Ci is a relation over the

variable sets having the same arity and signature as Ri. That is, Ci ⊆ Vj(i,1)×
Vj(i,2) × . . .× Vj(i,Qi). [A constraint is a particular tuple from some Ci.]

The corresponding question is: Is there an assignment of variables to domain
elements τ :

⋃
j∈J Vj →

⋃
j∈J Dj with τ

∣∣
Vj

 → Dj so that for all i ∈ I and for all

v = (v1, v2, . . . , vQi) ∈ Ci we have
(
τ(v1), τ(v2), . . . , τ(vQi )

)
∈ Ri ?

(For this problem to be in NP all sets must be finite, assumed throughout.)
For the Boolean generalized CSP, there is a single two-element domain D =

{0, 1}. Schaefer proved that the Boolean generalized CSP has the dichotomy
property (i.e., all instances either in P or are NP-complete), and moreover gave
a complete and simple classification of those instances which are in P (assuming
P �= NP) [20]. A powerful algebraic approach by polymorphisms, confirming and
extending those results, was taken in [18] and [4]. That method does not appear
to be applicable to the case in this paper.

A dichotomy result for satisfiability in which there is a single three-element
domain was recently proved in [3], using methods from universal algebra. For
single domains of larger cardinality, the problem is open, despite investigation
and conjecture (see e.g. [13], [6], [2]). An overview of CSP complexity via limiting
the types of constraints is in [7].

Interesting explorations into classification have been possible when limiting
the number of occurences of each variable [17], [11], [10], [12]. Using the equiv-
alence of CSP and homorphisms noted in [13], complexity classifications results
have been obtained by [16] and [15].

There has recently been some initial exploration into the generalized CSP.
Here the various variables are allowed to be drawn from distinct domains (as
is often the case in applications). In [5] the authors demonstrate that treating
distinct domains as one can disguise the complexity of the problem.

2 Typed Constraint Satisfaction Problem

In this paper we consider a special subcase of the generalized CSP. As in [5]
we allow (in our case, require) distinct domains, but our domains are all



228 S. Chen et al.

two-valued (Boolean). Our relation set contains only two elements: a Q-arity
Boolean relation R, and its complement R = {0, 1}Q\R.

It is convenient in this special case to think of R as being the set of Q-tuples
mapped by a Boolean function g : {0, 1}Q → {0, 1} to 1. So R is the analogous
set of tuples for g. We limit our attention to functions g that are monotone
increasing. (Monotone functions and their properties are described in section 3.)

For a function g : {0, 1}Q → {0, 1}, an instance of the problem SAT[g]
consists of disjoint Boolean variable sets V1, V2, . . . , VQ and two Boolean vector
sets P = {pj |j ∈ 1 . . . P}, N = {nk|k ∈ 1 . . .N}, where P ,N ⊆ V1×V2×. . .×VQ.
We wish to know whether Φg(P ,N ) =

∧P
j=1 g(pj) ∧

∧N
k=1 g(nk) is satisfiable.

(Clearly the answer is yes if P = ∅ or if N = ∅, so such instances are regarded as
trivial. Likewise, the answer is no if P∩N �= ∅, in which case it is inconsistent.)
We refer to an instance as a typed constraint satisfaction problem (CSP)
for the function g.

This problem is clearly in NP; we wish to characterize those monotone func-
tions for which SAT[g] is in P (and those for which it is NP-complete).

For a non-constant monotone increasing Boolean function g, the minimal DNF
[and CNF] of g contains positive literals only. Likewise, the minimal CNF of g
contains only negated literals. We therefore regard the set {g(pj) = 1}P

j=1 as the
set of positive constraints, and the set {g(nk) = 1}N

k=1 as the set of negative
constraints. Likewise, P is the set of positive constraint vectors, N the
negative constraint vectors.

Lemma 1. For a monotone function g: {0, 1}Q → {0, 1}, let g∧: {0, 1}Q+1 →
{0, 1} be defined by g∧(x1, . . . , xQ+1) = g(x1, . . . , xQ) ∧ xQ+1. Define g∨ simi-
larly, and let g∗ be defined by g∗(x1, . . . , xQ+1) = g(x1, . . . , xQ).

If SAT[g] is in P, then g∗, g∧, and g∨ also have this property. If SAT[g] is
NP-complete, so are the corresponding satisfiability problems for g∗, g∧, and g∨.

Proof of Lemma 1. The statements are obvious for g∗.
Let g : {0, 1}Q → {0, 1}, and consider any instance of SAT[g∧]: We have disjoint
sets of Boolean variables V1, V2, . . . , VQ+1, and two sets of Boolean vectors P =
{pj|j ∈ 1 . . . P}, N = {nk|k ∈ 1 . . .N} ⊆ V1 × V2 × . . . × VQ+1. Consider the
satisfiability of Φg∧ =

∧P
j=1 g

∧(pj) ∧
∧N

k=1 g
∧(nk) .

For this proof only, we adopt the following notation for a “truncated” vec-
tor. For any v = (v1, v2, . . . , vQ+1) ∈ V1 × V2 × . . . VQ+1, write v trunc for
(v1, v2, . . . , vQ). So we may write g∧(v) = g(v trunc ) ∧ vQ+1, and g∧(v) =
g(v trunc ) ∨ vQ+1 .

For any s ∈ VQ+1, let {pjl |l ∈ 1 . . . Ps} be the subset of positive constraint
vectors containing s. Then the conjunction of corresponding positive constraints
is:
∧Ps

l=1 g
∧(pjl) =

∧Ps

l=1

(
g(pjl

trunc ) ∧ s
)

=
[∧Ps

l=1 g(pjl
trunc )

]
∧ s .

Similarly, for s ∈ VQ+1, let {nkm |m ∈ 1 . . .Ns} be the subset of negative con-
straint vectors containing s. Then the conjunction of corresponding constraints
is:
∧Ns

m=1 g
∧(nkm) =

∧Ns

m=1

(
g(nkm

trunc ) ∨ s
)

=
[∧Ns

m=1 g(nkm
trunc )

]
∨s .
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Consider any truth assignment that maps each element of VQ+1 to 1. By
the above, this reduces our satisfiability problem to Φg =

∧P
j=1 g

∧(pj
trunc ) ∧∧N

k=1 g
∧(nk

trunc ) , an instance of SAT[g].
In fact, the instance Φg∧ may be satisfiable in cases when Φg is not: For any

element s of VQ+1 which occurs only in negative constraints, map s to 0. Since[∨Ns

m=1 g
(
nkm

trunc
)]

∨ s is trivially satisfied, we can eliminate some of the
negative constraints from Φg to obtain Ψg (if distinct, Ψg has fewer constraints).

It follows that if SAT[g] may be determined in polynomial time, then so
may SAT[g∧]. Using the same arguments, if SAT[g] is NP-complete, then for
a given (non-trivial) instance Θg(P ,N ) we can create a corresponding instance
Θg∧(P×{s},N ×{s}) (here VQ+1 = {s}). In any satisfying truth assignment for
Θg∧ , s must be mapped to 1 (because there is at least one positive constraint).
So Θg∧ is satisfiable iff Θg is. (The argument for g∨ is symmetric.) �

We say a function g of Q variables depends on its ith variable if there are
vectors a1 ∈ {0, 1}i−1 and a2 ∈ {0, 1}Q−i so that g(a1, 0,a2) �= g(a1, 1,a2).

Corollary 1. Let g be a monotone function of arity at least two. If the minimal
CNF ( or the DNF) of g contains a single-literal clause, or if g does not depend
on some variable, then we may derive from g a function h of fewer variables,
such that SAT[g] and SAT[h] are either both in P, or are both NP-complete.
After a finite number of reductions, we derive some function which cannot be
further reduced.

Let us define the set M to be all monotone increasing functions which cannot
be reduced under this process. We wish to show:

Theorem 1. For any monotone increasing Boolean function g, SAT[g] is either
polynomial-time decidable, or is NP-complete.

Consider a monotone increasing Boolean function g. By the above, it is no
loss of generality to assume that g is in M.

Then SAT[g] is in P if (and only if, assuming P �= NP) g is constant, or is
the identity function, or is one of the following functions or the dual thereof, up
to permutation on the variables:

Triangle(x1, x2, x3) = (x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x2 ∨ x3)
Box(x1, x2, x3, x4) = (x1 ∨ x2) ∧ (x2 ∨ x3) ∧ (x3 ∨ x4) ∧ (x4 ∨ x1)
Path(x1, x2, x3, x4) = (x1 ∨ x2) ∧ (x2 ∨ x3) ∧ (x3 ∨ x4) .

(The names Triangle, Box, and Path are based on the hypergraph representa-
tions of these functions. Triangle corresponds to the majority operation.)

3 Essential Terminology: Monotone Boolean Functions

If a = (a1, a2, . . . , aQ) and b = (b1, b2, . . . , bQ) are vectors in {0, 1}Q, then we
say that a ≤ b if for all i ∈ {1, 2, . . . , Q} we have ai ≤ bi.
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A Boolean function g: {0, 1}Q → {0, 1} is said to be monotone (increasing)
if for any a, b ∈ {0, 1}Q such that a ≤ b, we have g(a) ≤ g(b).

For g, h: {0, 1}Q → {0, 1}, we write that g ≤ h if for all a ∈ {0, 1}Q we have
g(a) ≤ h(a). Note that in this case, g−1(1) ⊆ h−1(1). For this reason, it is said
that g implies h. We write g < h if g ≤ h and g �= h.

It is sometimes convenient to write x0 for x, and x1 for x.
If X = {x1, x2, . . ., xQ} is a set of Boolean variables, an implicant on X is a

non-empty conjunction of literals m(x1, x2, . . . , xQ) = xa1
i1
∧xa2

i2
∧. . .∧xaP

iP
, where

P ≥ 1, a = (a1, a2, . . . , aP ) ∈ {0, 1}P , and 1 ≤ i1 < i2 < . . . < iP ≤ Q. For a
Boolean function g: {0, 1}Q → {0, 1}, an implicant m(x1, x2, . . . , xQ) is said to be
an implicant of the function g if both m implies g [i.e., m−1(1) ⊆ g−1(1)], and
m−1(1) �= ∅. An implicant m of g is said to be a prime implicant of g if there
is no implicant m′ of g such that m′ < m. A prime implicant of g corresponds to
a subset S of X , minimal under the property that some assignment for S forces
the function value to be 1, regardless of the values for the remaining variables.

Symmetrically: An implicate on X is a non-empty ordered disjunction of
literals from X . We say that M is an implicate of a Boolean function g if both g
implies M and M−1(0) �= ∅, and a prime implicate of g if there is no implicate
M ′ of g so that M ′ < M .

When a non-constant g is monotone (increasing), each implicant of the mini-
mal DNF of g is a prime implicant consisting of positive literals only, and likewise
for the CNF [21].

4 A Class of Monotone Functions g with SAT[g] in P

Consider the set M2 ⊆ M consisting of the following three classes:

1. (Constant) g, gdual: {0, 1} → {0, 1} where g ≡ 0 and gdual ≡ 1;
2. (Identity) g: {0, 1} → {0, 1} by g(x) = x (this is self-dual);
3. (Positive pair decomposition) g, gdual: {0, 1}Q → {0, 1} have non-empty

CNF and DNF decompositions so that:

g (x1, x2, . . . , xQ) =
D∧

d=1

(y(d,1) ∨ y(d,2)) =
C∨

c=1

(z(c,1) ∧ z(c,2)) , and

gdual(x1, x2, . . . , xQ) =
D∨

d=1

(y(d,1) ∧ y(d,2)) =
C∧

c=1

(
z(c,1) ∨ z(c,2)

)
, where

– In both the CNF and DNF expressions, the pairs cover the variable set.
– Variables within any pair (in DNF or CNF) are distinct.
– Any two pairs within a decomposition may be assumed to be distinct.

Three examples of functions with positive pair decomposition are listed in
Theorem 1. In fact these three (and their duals) are, up to permutation of the
variables, the entire set of such functions (Lemma 5).
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Lemma 2. For each g in M2, the satisfiability problem SAT[g] is in P.

Proof of Lemma 2. For g: {0, 1}Q → {0, 1} in M2, consider an instance of
SAT[g]: Φ(P ,N ) =

∧P
j=1 g(pj) ∧

∧N
k=1 g(nk) .

If g ≡ 0, the instance is satisfiable iff P = ∅; g ≡ 1 is satisfiable iff N = ∅.
If g: {0, 1} → {0, 1} is the identity, the instance is satisfiable iff P ∩N = ∅.
For a function g with positive pair decomposition, say g(x1, x2, . . . , xQ) =∧D

d=1(y(d,1) ∨ y(d,2)) =
∨C

c=1(z(c,1) ∧ z(c,2)) , we observe that g(x1, x2, . . . , xQ) =∨D
d=1(y(d,1)∧y(d,2)) =

∧C
c=1(z(c,1)∨ z(c,2)) . So Φ(P ,N ) is an instance of 2-SAT,

and therefore its satisfiability can be determined in polynomial time. �

A set S of Boolean functions is said to be closed with respect to disjoint con-
junction if, for any function g: {0, 1}Q → {0, 1} in S, the function g∧(x1, . . . ,
xQ+1) = g(x1, . . . , xQ) ∧ xQ+1, is also in S. We define closure under disjoint
disjunction similarly. We say S is closed with respect to immaterial vari-
ables if for each g ∈ S of arity Q, the function g∗(x1, . . . , xQ+1) = g(x1, . . . , xQ),
is also in S.

Let Cl(S) denote the closure of the set S under disjoint conjunction, disjoint
disjunction, and immaterial variables.

It follows immediately from lemmas 1 and 2 that:

Theorem 2. Cl(M) contains all monotone increasing Boolean functions. For
each function g in Cl(M2), the satisfiability problem SAT[g] is in P.

5 Monotone Functions so SAT[g] Is NP-Complete

For a non-constant monotone function g, a conjunction xi1 ∧ xi2 ∧ . . . ∧ xiP

defines a prime implicant of g iff the set of variables {xij}P
j=1 is minimal under

the property that assigning each of these variables the value 1, ensures that
the value of g is 1. Such a variable set will be called a 1-set of g. Likewise, a
disjunction xi1 ∨xi2 ∨ . . .∨xiP defines a prime implicate of g iff the set {xij}P

j=1
is minimal under the property that assigning each of these variables the value 0,
ensures that the value of g is 0. Such a variable set will be called a 0-set of g.

Note the functions in M2 ⊆ M are either constant, or so that the maximum
cardinality over all 1-sets and 0-sets is no more than two.

We now consider M3 = M − M2. Necessarily, M3 is the set of monotone
functions g so that 1) g depends on each of its variables; 2) g has no 1-set and
no 0-set of cardinality exactly one; and 3) g has either some 1-set or some 0-
set of cardinality at least three. (So for any function f in M3, the minimum
cardinality for 1-sets and 0-sets is two, and the maximum is at least three.)

Corollary 2. For any monotone increasing Boolean function g, either g is in
Cl(M2) (in which case SAT[g] is in P) or g is in Cl(M3).

Thus, to establish a dichotomy, it would be enough to show that:

Theorem 3. For all g in M3, the satisfiability problem SAT[g] is NP-complete.
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We first require an intermediate result. By the restricted 3SAT problem (or
R-3SAT) we shall mean instances of 3SAT

∧Q
i=1(αi∨βi∨γi), where αi ∈ A∪A¬,

βi ∈ B ∪B¬, γi ∈ C ∪ C¬ for disjoint sets A, B, and C.

Lemma 3. The restricted 3SAT problem, R-3SAT, is NP-complete.

Proof of Lemma 3. Let Φ =
∧Q

i=1(αi∨βi∨γi) be an instance of the unrestricted
3SAT problem, with αi, βi, γi ∈ X∪X¬; let X = {x1, x2, . . . , xn} be the variable
set of Φ. We will define an equivalent instance for R-3SAT. First we create disjoint
variable sets A = {a1, a2, . . . , an}, B = {b1, b2, . . . , bn}, C = {c1, c2, . . . , cn}.

We need to express the constraint that aj = bj = cj . Let N = {0, 1}3 −
{(0, 0, 0), (1, 1, 1)}, and recall the notation x0 ≡ x, x1 ≡ x. For each j ∈ {1 . . . n},
define Gj =

∧
(v1,v2,v3)∈N (a1−v1

j ∨ b1−v2
j ∨ c1−v3

j ).
Also, from Φ we create a CNF Φ′ by replacing each disjunct αi ∨ βi ∨ γi by

α′
i ∨β′

i ∨ γ′
i so that each literal in X ∪X¬ is replaced by the appropriate copy in

A∪A¬, B ∪B¬, or C ∪C¬. (For example, replace x3 ∨ x1 ∨ x2 by a3 ∨ b1 ∨ c2.)
We see that Φ is satisfiable iff the instance G1 ∧G2 ∧ . . .∧Gn ∧Φ′ of R-3SAT

is satisfiable. It follows that R-3SAT is NP-complete. �

It remains for any function g in M3 to define a map carrying each instance Φ of
R-3SAT to an instance ΨΦ,g of SAT[g] so that Φ satisfiable ⇔ ΨΦ,g satisfiable.

The result we need is based solely on the properties of g, and does not depend
on any instance of SAT[g]. For this reason, we may temporarily set aside the
language of satisfiability, and concentrate solely on the 1-sets and the 0-sets of
g. A methodology for studying collections of subsets is provided by hypergraphs.

6 Hypergraphs and Monotone Functions

A [nonempty] hypergraph is a ordered pair (X,E), where X is a finite [non-
empty] set and E is a collection of non-empty subsets of X whose union is X .
Elements of X are referred to as nodes of the hypergraph, and elements of E
as edges. A hypergraph is said to be simple if no edge contains any distinct
edge. (A general source for hypergraph terminology is [1].)

If (X,E) is a hypergraph, a blocker of the hypergraph is some subset of the
nodes which intersects every edge e ∈ E. A blocker is considered minimal if no
proper subset of the blocker is itself a blocker.

If H = (X,E) is a hypergraph, then the transversal (or blocker) hyper-
graph of the hypergraph is a simple hypergraph Tr(H) = (X,B), where B
consists of all minimal blockers of (X,E). In the case that the original hyper-
graph H is simple, Tr (Tr(H)) = H .

Lemma 4. Consider a simple hypergraph with non-empty edge set, with the
additional property that neither the hypergraph nor its transversal hypergraph
contains any single element edge. Then:

– For any edge e, the complement of e, together with any node of e, is a blocker.
– For any node, there is an edge which does not contain the node.
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– For any node n and edge e not containing n, there is some minimal blocker
containing n and some node of e.

Proof of Lemma 4. Let H = (X,E) be such a hypergraph.
Let e be an edge; by definition, e is a non-empty subset of X , so let n ∈ E.
Consider the node set Y(e,n) = (X − e) ∪ {n}. We claim that Y(e,n) is a blocker:
Any edge of H that does not intersect e is entirely contained in Y(e,n). Any edge
e′ �= e intersecting e can’t be contained in e (since H is simple), and so must
contain some node outside of e, hence in Y(e,n). Finally, n ∈ e ∩ Y(e,n).

Because the transversal hypergraph contains no single element sets, for any
node there is some edge not containing the node.

Consider a fixed node n and an edge e ∈ E so that n �∈ e. By the above, Y(e,n)
is a blocker. It therefore contains some minimal blocker b. Since b must intersect
e, and since n is the only node of e in Y(e,n) ⊇ b, necessarily n ∈ b. �

A node n in a hypergraph is a basepoint for an odd alternating circuit if
there is an node sequence n = n0, n1, . . . , n2k+1 = n (where k ≥ 1) such that:

– Any two consecutive nodes are distinct;
– For i ∈ {1, . . . , k + 1}, some minimal blocker bi contains n2i−2 and n2i−1;
– For i ∈ {1, . . . , k}, some edge ei contains n2i−1 and n2i.

Analogously, an even alternating chain from n to m is a node sequence
n = n0, n1, . . . , n2k = m (where k ≥ 1) such that any two consecutive nodes
are distinct; for i ∈ {1, . . . , k}, some minimal blocker bi contains both n2i−2 and
n2i−1 and some edge ei contains both n2i−1 and n2i.

Theorem 4. Consider a simple hypergraph with non-empty edge set, with the
additional property that neither the hypergraph nor its transversal hypergraph
contains any single element edge. Then each node of the hypergraph is the base-
point for an odd alternating circuit.

Proof of Theorem 4. Fix a node n∗. Define a subset S∗ of the nodes consisting
of n∗ together with all nodes n ∈ S∗ so that there is an even alternating chain
from n∗ to n. We claim first that S∗ intersects all edges of E, i.e., S∗ is a blocker:

Clearly any edge containing n∗ intersects S∗. So now consider an edge e such
that n∗ �∈ e. By Lemma 4, there is some minimum blocker b ∈ B containing
n∗ and some node n′ in e. Since e necessarily contains another node n′′, the
sequence n∗, n′, n′′ is an even alternating chain. It follows that n′′ ∈ S∗, so e
intersects S∗.

Since S∗ is a blocker, it contains a minimal blocker b ∈ B; we know |b| ≥ 2.
In the special case that b = {n∗, n}, we see that n∗ is a basepoint for the odd
alternating circuit obtained by appending n2k+1 = n∗ to the even alternating
chain from n∗ to n. Otherwise, b contains two nodes n and n′, neither of which
is n∗. By the definition of S∗, there is an even alternating chain β from n∗ to
n, and one γ from n∗ to n′. Since b ∈ B contains both n and n′, we obtain the
desired odd circuit by concatenating the sequences β and γ−1. �

For a non-constant monotone function, we consider the collection of 1-sets.
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Observation 1. If g : {0, 1}Q → {0, 1} is monotone and a = (a1, . . . , aQ) is
such that g(a) = 1, then Xa = {xi|ai = 1} contains a 1-set of g.

Proof of Observation 1. Using the notation x0 ≡ x, x1 ≡ x: Define a conjunction
ma = x1−a1

1 ∧ x1−a2
2 ∧ . . . ∧ x

1−aQ

Q . Since m−1
a (1) = {a} and g(a) = 1, ma is an

implicant of g. If it is a prime implicant, Xa is the desired 1-set. Otherwise, there
is b < a such that mb is a prime implicant of g, and Xb ⊂ Xa is a 1-set. �

Consequence 1. If g : {0, 1}Q → {0, 1} is monotone and depends on its P th

variable, then there is some 1-set of g containing the P th variable. (So the 1-sets
cover the variable set of g.)

Proof of Consequence 1. Choose vectors a = (a1, . . . , aP−1, 1, aP+1, . . . , aQ) and
a′ = (a1, . . . , aP−1, 0, aP+1, . . . , aQ) so that g(a) = 1 and g(a′) = 0. By Obser-
vation 1, Xa contains a 1-set Xb of g. We observe that bP = 1; else, b ≤ a′, and
since g(a′) = 0 and g is monotone, it follows that g(b) = 0, contradicting Xb

being a 1-set. �

Consequence 2. Let g be a non-constant monotone increasing function that
depends on each of its variables X , and let E be collection of the 1-sets of g.
Then (X,E) is a simple hypergraph.

A subset S of X is a [minimal] blocker for the hypergraph if and only if S [is
minimal such that it] has the property that for any a so that {ai = 0|xi ∈ S},
we have g(a) = 0.

Thus, if B is the collection of 0-sets of g: Tr(X,E) = (X,B) is a simple
hypergraph. The hypergraph of 1-sets of g, and the hypergraph of 0-sets of g,
are transverse hypergraphs (blockers) to one another.

Proof of Consequence 2. By Consequence 1, E covers X , so (X,E) is a hyper-
graph. It is simple because no 1-set can contain another.

Consider a blocker S, and any a such that {ai = 0|xi ∈ S}. If g(a) = 1, we
know (by Observation 1) that X − S contains a 1-set of g. This is impossible,
since by definition the blocker S must intersect any 1-set of g.

Now consider a subset T ⊆ X such that for any a with {ai = 0|xi ∈ T }, we
have g(a) = 0. Suppose that some 1-set m of g does not intersect T . Define b so
that bi = 1 iff xi �∈ T . By the property of T , g(b) = 0, but since bi = 1 for each
xi ∈ m (a 1-set), g(b) = 1. This is a contradiction, so T is a blocker. �

Therefore, by duality, we may reverse the roles of 0-set and 1-set, 1 and 0, in the
observations above. It follows from Theorem 4 and from Consequence 2:

Theorem 5. Let g be an element of M of arity at least two: a monotone in-
creasing Boolean function which depends on each of its variables, having neither
a 1-set (prime implicant) nor a 0-set (prime implicate) of cardinality one.

Then for any variable v of g, there is a sequence v0 = v, v1, . . ., v2p+1 = v
(where p ≥ 1) on the variables of g so that:
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– Consecutive elements of the sequence differ;
– Each consecutive pair {v2i, v2i+1} is contained in some 0-set;
– Each consecutive pair {v2i+1, v2i+2} is contained in some 1-set.

Recall the set of functions with positive pair decomposition; for such a func-
tion, the hypergraph of 1-sets and its transverse hypergraph of 0-sets are both
graphs. It is now easy to show that:

Lemma 5. The set of functions with positive pair decomposition consists of the
functions Triangle, Box, and Path and their duals (up to variable permutation).

Proof of Lemma 5. Let g(x1, x2, . . . , xQ) =
∧D

d=1(y(d,1) ∨ y(d,2)) =
∨C

c=1(z(c,1) ∧
z(c,2)). Consider the hypergraph of 0-sets and its traverse hypergraph of 1-sets;
both are graphs, neither has isolated vertices. Note that no single variable (node)
can occur in every pair (edge) in the CNF (or the DNF), else this single variable
is a blocker. So C,D ≥ 2, Q ≥ 3.

Note that for any c, the pair {z(c,1), z(c,2)} is a 1-set, and therefore intersects
each 0-set {y(d,1), y(d,2)}. In other words, for any edge in the hypergraph, its
endpoints are a vertex cover for the transverse hypergraph. So suppose we have
di �= dj so that y1 = y(di,1), y2 = y(di,2), y3 = y(dj,1), y4 = y(dj ,2) are all distinct
(the hypergraph of 0-sets contains two edges with no common vertices). (Note
that if there are no such disjoint pairs, Q = 3 and the function is Triangle.) Since
each pair of z’s must intersect both {y1, y2} and {y3, y4}, there are at most four
ways to do this, so Q ≤ 4.

Note that if no variable occurs more than once in the CNF, the function is
(y1∨y2)∧ (y3 ∨y4) = Boxdual. Otherwise, we observe that no variable xi occurs
in more than two pairs {y(d,1), y(d,2)}, or in more than two pairs {z(c,1), z(c,2)}.

Consider any node n in the hypergraph of 0-sets (respectively, 1-sets). There
is some minimal blocker not containing n. Any blocker which does not contain
n must necessarily contain all neighbors of n. Since the transverse hypergraph
is a graph, n may have no more than two neighbors.

So we may assume some variable x occurs in exactly two pairs {x, y} and
{x, z} in the DNF (two edges in the hypergraph). Let us consider the special
case that {x, y} also occurs as a pair in the CNF (a blocker); then every edge
must be incident on either x or y. Note x and y each must have exactly two
neighbors. If the remaining neighbor of y is z this is Triangle, else it is Path.

Now consider the remaining case, that {x, y} and {x, z} are pairs in the DNF
(edges) and that {x, y} is not a pair in the CNF (blocker). Note that {y, z} is a
blocker (since x cannot be), and there must be at least one more edge, incident
on either y or z. Some edge is not blocked by {x, y}, so there must be an edge
{z, w} (and blocker {x, y}). So this function must be either Box or Path. �

7 Defining a Map from R-3SAT to SAT[g]

Our goal is to show that for g in M3, the problem SAT[g] is NP-complete. We
now fix a Boolean function g on Q variables in M3, and some 0-set [resp. 1-set]
M∗ of g of size at least three.
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Given an instance Φ =
∧L

l=1(αl ∨ βl ∨ γl) of the R-3SAT problem, we will
construct disjoint Boolean variable sets V1, V2, . . ., VQ and two sets of Boolean
vectors P = {pj}P

j=1, N = {nk}N
k=1 ⊆ V1 × V2 × . . . × VQ, so that ΨΦ(P ,N )is

satisfiable if and only if Φ is satisfiable.
We shall denote the input variables of g by X = {xi}Q

i=1 and its index set by
I. Without loss of generality, we may assume that the variables of g occuring in
the specified 0-set M∗ are {xi}H

i=1, where H = |M∗| ≥ 3.
We represent the three disjoint variable sets of the R-3SAT instance by W1,

W2, and W3. For notational simplicity, we shall define Wi = ∅ for i ∈ I, i > 3.

Definition 1. For i ∈ I, define the variable set Vi as follows:

– Wi ∪W¬
i ⊆ Vi;

– Add two variables, ti and fi, to Vi;
– For each j ∈ I so that j �= i, add a new variable dj

i to Vi;
– For each variable w ∈ (W1 ∪W2 ∪W3)−Wi, add variables ew

i and ew
i to Vi.

To explain the roles of these new variables, it is helpful to state first the goals
of this construction.

Goals. In any truth assignment τ for the variables in V1∪. . .∪VQ which satisfies
the entire set of constraints we are about to define, we would like the following
three conditions to hold:

1. For all i ∈ I, τ(ti) = 1 and τ(fi) = 0;
2. For all l ∈ {1, 2, . . ., L}, τ(αl) ∨ τ(βl) ∨ τ(γl) = 1;
3. For each variable w ∈ W1∪W2∪W3, it is not the case that τ(w) = τ(w) = 1.

With these goals in mind, we remark that the only function of the dummy
variables {dj

i |j �= i} introduced in Definition 1 is to create constraints that will
enforce condition 1. In turn, the variables {ti, fi}Q

i=1, used together with the
variables inherited from Φ, allow us to create constraints to enforce condition 2.
The role of the variables ew

i and ew
i is to create constraints to enforce condition

3 (these constraints will also use {ti, fi}Q
i=1 and the variables inherited from Φ).

Definition 2. For i ∈ I, define pi = (di
1, . . . , d

i
i−1, ti, d

i
i+1, . . . , d

i
Q) and ni =

(di
1, . . . , d

i
i−1, fi, d

i
i+1, . . . , d

i
Q) . Define constraints g(pi) = 1 and g(ni) = 1.

Now we can use these artificial variables to “force” any desired component of a
constraint vector to have a particular value, to be specifically 0 or 1.

Observation 2. Let J ⊆ I be the set of indices corresponding to some 0-set of
g, and let K be a non-empty subset of J . Consider a = (a1, a2, . . . , aQ) ∈ {0, 1}Q

such that: 1) g(a) = 1; 2) for all i ∈ I − J , ai = 1; and 3) for all j ∈ J − K,
aj = 0. In this case, there is some k ∈ K so that ak = 1.

The analogous statement for 1-sets must therefore hold also.

Proof of Observation 2. If aj = 0 for all j ∈ J , then g(a) = 0, which is not true.
So am = 1 for some m in J ; necessarily m ∈ K. �
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Observation 3. Let J ⊆ I be the set of indices corresponding to some 0-set of
g. Then for any a so that 1) ai = 1 for each i �∈ J , and 2) there is some j ∈ J
so that aj = 1, we have that g(a) = 1. (Analogously for 1-sets.)

Proof of Observation 3. This is immediate from the minimality of 0-sets. �

Definition 3. Recall that H is the integer so that the variables of g occuring in
the 0-set M∗ are {xi}H

i=1, where H = |M∗| ≥ 3. Also recall that Φ =
∧L

l=1(αl ∨
βl ∨ γl) is our instance of the R-3SAT problem.

For l ∈ {1, 2, . . ., L}, define pQ+l = (αl, βl, γl, f4, . . . , fH , tH+1, . . . , tQ) .
Add the constraint g(pQ+l) = 1.

These constraints allow us to meet our first two goals.
For our final and most difficult goal, we will need Observations 2 and 3, as

well as theorem 5. Our method is to create a set of constraints such that, for each
w ∈ W1∪W2∪W3, we ensure the existence of a sequence (i1, i2, . . . , i2Pw) on I so
that for the corresponding sequence of variables (w, ew

i1
, ew

i2
, . . . , ew

i2Pw−1
, ew

i2Pw
, w)

we have that, for any truth assignment τ satisfying the new system:

– At least one of {τ(w), τ(ew
i1 )} is 0;

– For j ∈ {1, . . . , Pw}, at least one of each pair {τ(ew
i2j−1

), τ(ew
i2j

)} is 1;
– For j ∈ {1, . . . , Pw − 1}, at least one of each pair {τ(ei2j )w, τ(ew

i2j+1
)} is 0;

– At least one of {τ(ew
i2Pw

), τ(w)} is 0.

This sequence ensures τ(w) = 1 ⇒ τ(w) = 0; also, if τ(w) = 1, then τ(w) = 0.

Definition 4. For each pair (k, l) (where k, l ∈ I, k < l) such that xk, xl belong
to some 1-set of g, let Jk,l denote the index set of some 1-set containing {xk, xl}.
For each combination of such pair {k, l} and some w ∈ (W1 ∪W2 ∪W3)− (Wk ∪
Wl), define the vector n(k,l,w,+) = (n1, . . . , nQ) as follows. Set nk = ew

k ∈ Vk;
set nl = ew

l ∈ Vl; for each index j so that j ∈ Jk,l − {k, l}, set nj = tj; and for
each remaining index i ∈ I − Jk,l, set ni = fi.

Also define a vector n(k,l,w,−), which differs from n(k,l,w,+) only in that nk = ew
k

and nl = ew
l . Define negative constraints g(n(k,l,w,+)) = 1 and g(n(k,l,w,−)) = 1.

In the case that k ∈ {1, 2, 3} (and similarly for l ∈ {1, 2, 3}), then in addition
define the vector n(k,l,w,�), which differs from n(k,l,w,+) only in that nk = w;
and n(k,l,w,⊥), for which nk = w. Add negative constraints g(n(k,l,w,�)) = 1
and g(n(k,l,w,⊥)) = 1.

Positive constraints are defined analogously. For example, for each pair (k, l)
of variables from some 0-set of g, define p(k,l,w,+) so that pk = ek, pl = ew

l ,
pj = fj for all j ∈ Jk,l − {k, l}, and pi = ti for all i ∈ I − Jk,l. The constraint
is g(p(k,l,w,+)) = 1.

These constraints ensure the existence of the desired sequence above.

8 Satisfiability Problem SAT[g] Is NP-Complete

Let Φ be an instance of R-3SAT, and ΨΦ the instance of SAT[g] derived from Φ
as above. We claim that Φ is satisfiable if and only if ΨΦ is satisfiable.
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First suppose that there is a truth τ assignment for W1 ∪ W2 ∪ W3 which
satisfies Φ. Then we can extend this truth assignment to τ ′ for V1×V2× . . .×Vk

in such a way that the constraints of ΨΦ are satisfied as follows:

– For each i ∈ I, set τ ′(fi) = 0 and τ ′(ti) = 1.
– Because g depends on each of its variables, for each i ∈ I, we may choose

constants
{
ai

j ∈ {0, 1}|j ∈ I−{i}
}

so that g(ai
1, . . . , a

i
i−1, 0, a

i
i+1, . . . , a

i
Q) = 0

and g(ai
1, . . . , a

i
i−1, 1, a

i
i+1, . . . , a

i
Q) = 1 . For i ∈ I, j �= i, let τ ′(dj

i ) = aj
i .

– For each i ∈ I and for each variable w ∈ (W1 ∪W2 ∪W3)−Wi, set τ ′(ew
i ) =

τ(w) and τ ′(ew
i ) = 1 − τ(w).

Note that the constraints of type 1 are satisfied, and that, by Observation 3,
the constraints of type 2 are satisfied. We have extended the truth assignment
to the artificial variables ew

i and ew
i in such a way that for any cardinality two

subset {xk, xl} of a 1-set (respectively, 0-set), the only two components of the
corresponding type 3 constraint vectors which are not in {ti} ∪ {fi|i ∈ I} have
opposite truth values—so necessarily, there is at least one 1 and at least one
0. By Observation 3, this is sufficient to ensure that the constraint of type 3 is
fulfilled.

Now suppose that there is a truth assignment t for the V = V1 ∪V2 ∪ . . .∪ VQ

satisfying ΨΦ. Since all of the type 2 constraints of ΨΦ are satisfied, when we take
the restriction of V to (W1 ∪W1

¬)∪ (W2 ∪W2
¬)∪ (W3 ∪W3

¬), all of the terms
αl ∨ βl ∨ γl hold. However, it is possible that for some w ∈ W1 ∪ W2 ∪ W3 we
have both w and w with a truth assignment of 0. In such a case, we can simply
randomly choose one of {w, w} to have truth assignment 1. Each αl ∨ βl ∨ γl

must still hold.
This shows that SAT[g] is NP-complete when g ∈ M3.
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Abstract. Max-SAT is the problem of finding an assignment minimiz-
ing the number of unsatisfied clauses of a given CNF formula. We propose
a resolution-like calculus for Max-SAT and prove its soundness and com-
pleteness. We also prove the completeness of some refinements of this
calculus. From the completeness proof we derive an exact algorithm for
Max-SAT and a time upper bound.

1 Introduction

The Max-SAT problem for a CNF formula φ is the problem of finding an assign-
ment of values to variables that minimizes the number of unsatisfied clauses in
φ. Max-SAT is an optimization counterpart of SAT and is NP-hard.

The most competitive exact Max-SAT solvers [1,2,3,7,9,11,12,13] implement
variants of the following branch and bound (BnB) schema: Given a CNF formula
φ, BnB explores the search tree that represents the space of all possible assign-
ments for φ in a depth-first manner. At every node, BnB compares the upper
bound (UB), which is the best solution found so far for a complete assignment,
with the lower bound (LB), which is the sum of the number of clauses unsat-
isfied by the current partial assignment plus an underestimation of the number
of clauses that will become unsatisfied if the current partial assignment is com-
pleted. If LB ≥ UB the algorithm prunes the subtree below the current node
and backtracks to a higher level in the search tree. If LB < UB, the algorithm
tries to find a better solution by extending the current partial assignment by
instantiating one more variable. The solution to Max-SAT is the value that UB
takes after exploring the entire search tree.

The amount of inference performed by BnB at each node of the proof tree
is limited compared with DPLL-style SAT solvers. Since unit propagation is
unsound for Max-SAT,1 when branching is applied on a literal l, BnB just
� This research has been partially founded by the CICYT research projects iDEAS

(TIN2004-04343), Mulog (TIN2004-07933-C03-01/03) and SofSAT (TIC2003-
00950).

1 The multiset of clauses {a, a∨b, a∨b, a∨c, a∨c} has a minimum of one unsatisfied
clause. However, setting a to true (by unit propagation) leads to a non-optimal
assignment falsifying two clauses.
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removes the clauses containing l and deletes the occurrences of l. The new
unit clauses derived as a consequence of deleting the occurrences of l are not
propagated as in DPLL. To mitigate that problem some simple inference rules
have been incorporated into state-of-the-art Max-SAT solvers: (i) the pure literal
rule [1,6,11,13,14]; (ii) the dominating unit clause rule first proposed in [8], and
applied in [2,6,8,11]; (iii) the almost common clause rule, first proposed in [4]
and extended to weighted Max-SAT in [2]; that rule was called neighborhood
resolution in [5] and used as a preprocessing technique in [2,6,10]; and (iv) the
complementary unit clause rule [8]. All these rules, which are sound but not
complete, have proved to be useful in practice.

The main objective of this paper is to make a step forward in the study of
resolution-like inference rules for Max-SAT by defining a sound and complete
resolution rule. That rule should subsume the previous rules, and provide a gen-
eral framework that should allow us to define complete refinements of resolution
and devise faster Max-SAT solvers.

In the context of SAT, a sound rule has to preserve satisfiability, like resolution
does. However, in Max-SAT this is not enough; rules have to preserve the number
of unsatisfied clauses for every possible assignment. Therefore, the way we apply
the rule is different. To obtain a sound calculus, instead of adding the conclusion,
which would make the number of unsatisfied clauses increase, we replace the
premises of the rule by its conclusion. Then, the resolution rule x ∨ A, x ∨ B �
A∨B is not sound for Max-SAT, because an assignment satisfying x and A, and
falsifying B, would falsify one of the premises, but would satisfy the conclusion.
So the number of unsatisfied clauses would not be preserved for every truth
assignment.

The most natural variant of a sound resolution rule for Max-SAT was defined
in [5]:

x ∨A
x ∨B
A ∨B

x ∨A ∨B
x ∨A ∨B

However, two of the conclusions of this rule are not in clausal form, and the
application of distributivity:

x ∨ a1 ∨ . . . ∨ as

x ∨ b1 ∨ . . . ∨ bt

a1 ∨ . . . ∨ as ∨ b1 ∨ . . . ∨ bt

x ∨ a1 ∨ . . . ∨ as ∨ b1
· · ·

x ∨ a1 ∨ . . . ∨ as ∨ bt

x ∨ b1 ∨ . . . ∨ bt ∨ a1
· · ·

x ∨ b1 ∨ . . . ∨ bt ∨ as
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results into an unsound rule. As we show in the next section, obtaining a sound
rule requires a more sophisticated adaptation of the resolution rule.

This paper proceeds as follows. First, in Section 2 we define Max-SAT resolu-
tion and prove its soundness. Despite of the similitude of the inference rule with
the classical resolution rule, it is not clear how to simulate classical inferences
with the new rule. To obtain a complete strategy, we need to apply the new rule
widely to get a saturated set of clauses, as described in Section 3. In Section 4
we prove the completeness of the new rule, and in Section 5 we prove that this
result extends to ordered resolution. Finally, in Section 6 we deduce an exact
algorithm and give a worst-case time upper bound in Section 7.

2 The Max-SAT Resolution Rule and Its Soundness

In Max-SAT we use multisets of clauses instead of just sets. For instance, the
multiset {a, a, a, a ∨ b, b}, where a clause is repeated, has a minimum of two
unsatisfied clauses.

Max-SAT resolution, like classical resolution, is based on a unique inference
rule. In contrast to the resolution rule, the premises of the Max-SAT resolution
rule are removed from the multiset after applying the rule. Moreover, apart from
the classical conclusion where a variable has been cut, we also conclude some
additional clauses that contain one of the premises as sub-clause.

Definition 1. The Max-SAT resolution rule is defined as follows:

x ∨ a1 ∨ . . . ∨ as

x ∨ b1 ∨ . . . ∨ bt

a1 ∨ . . . ∨ as ∨ b1 ∨ . . . ∨ bt

x ∨ a1 ∨ . . . ∨ as ∨ b1
x ∨ a1 ∨ . . . ∨ as ∨ b1 ∨ b2
· · ·
x ∨ a1 ∨ . . . ∨ as ∨ b1 ∨ . . . ∨ bt−1 ∨ bt

x ∨ b1 ∨ . . . ∨ bt ∨ a1
x ∨ b1 ∨ . . . ∨ bt ∨ a1 ∨ a2
· · ·
x ∨ b1 ∨ . . . ∨ bt ∨ a1 ∨ . . . ∨ as−1 ∨ as

This inference rule is applied to multisets of clauses, and replaces the premises
of the rule by its conclusions.

We say that the rule cuts the variable x.
The tautologies concluded by the rule are removed from the resulting multiset.

Similarly, repeated literals in a clause are also removed.

Definition 2. We write C � D when the multiset of clauses D can be obtained
from the multiset C applying the rule finitely many times. We write C �x D when
this sequence of applications only cuts the variable x.
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The Max-Sat resolution rule concludes many more clauses than the classical
version. However, when the two premises share literals, some of the conclusions
are tautologies, hence removed. In particular we have x∨A, x∨A � A. Moreover,
as we will see when we study the completeness of the rule, there is no need to
cut the conclusions of a rule among themselves. Finally, we will also see that the
size of the worst-case proof of a set of clauses is similar to the size for classical
resolution.

Notice that the instance of the rule not only depends on the two clauses of
the premise and the cut variable (like in resolution), but also on the order of the
literals. Notice also that, like in classical resolution, this rule concludes a new
clause not containing the variable x, except when this clause is a tautology.

Example 1. The Max-SAT resolution rule removes clauses after using them in
an inference step. Therefore, it could seem that it can not simulate classical
resolution when a clause needs to be used more than once, like in:

a ∨ c a a ∨ b b ∨ c

c b

c

However, this is not the case. We can derive the empty clause as follows (where
already used clauses are put into boxes):

a ∨ c a a ∨ b b ∨ c

c

a ∨ c

b ∨ c

a ∨ b ∨ c

a ∨ b ∨ c

c
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More precisely, we have derived a, a ∨ b, a ∨ c, b ∨ c � , a ∨ b ∨ c, a ∨ b ∨ c,
where any truth assignment satisfying {a∨ b∨ c, a∨ b∨ c} minimizes the number
of falsified clauses in the original formula.

Notice that the structure of the classical proof and the Max-SAT resolution
proof is quite different. It seems difficult to adapt a classical resolution proof to
get a Max-SAT resolution proof, and it is an open question if this is possible
without increasing substantially the size of the proof.

Theorem 1 (Soundness). The Max-SAT resolution rule is sound. i.e. the rule
preserves the number of unsatisfied clauses for every truth assignment.

Proof: For every assignment I, we will prove that the number of clauses that
I falsifies in the premises of the inference rule is equal to the number of clauses
that it falsifies in the conclusions.

Let I be any assignment. I can not falsify both upper clauses, since it satisfies
either x or x.

Suppose I satisfies x ∨ a1 ∨ . . . ∨ as but not x ∨ b1 ∨ . . . ∨ bt. Then I falsifies
all bj ’s and sets x to true. Now, suppose that I satisfies some ai. Say ai is the
first of such elements. Then I falsifies x ∨ b1 ∨ . . . ∨ bt ∨ a1 ∨ . . . ∨ ai−1 ∨ ai and
it satisfies all the others in the set below. Suppose now that I falsifies all ai’s.
Then, it falsifies a1 ∨ . . . as ∨ b1 ∨ . . . ∨ bt but satisfies all the others.

If I satisfies the second but not the first, then it is the same argument.
Finally, suppose that I satisfies both upper clauses. Suppose that I sets x to

true. Then, for some j, bj is true and I satisfies all the lower clauses since all of
them have either bj or x.

3 Saturated Multisets of Clauses

In this Section we define saturated multisets of clauses. This definition is based
on the classical notion of sets of clauses closed by (some restricted kind of)
inference, in particular, on sets of clauses closed by cuts of some variable. In
classical resolution, given a set of clauses and a variable, we can saturate the set
by cutting the variable exhaustively, obtaining a superset of the given clauses.
If we repeat this process for all the variables, we get a complete resolution algo-
rithm, i.e. we obtain the empty clause whenever the original set was unsatisfiable.
Our completeness proof is based on this idea. However, notice that the classical
saturation of a set w.r.t. a variable is unique, whereas in Max-SAT, it is not
(see Remark 1). In fact, it is not even a superset of the original set. Moreover,
in general, if we saturate a set w.r.t. a variable, and then w.r.t. another vari-
able, we obtain a set that is not saturated w.r.t. both variables. Fortunately,
we still keep a good property: given a multiset of clauses saturated w.r.t. a
variable x, if there exists an assignment satisfying all the clauses not contain-
ing x, then it can be extended (by assigning x) to satisfy all the clauses (see
Lemma 4).
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Definition 3. A multiset of clauses C is said to be saturated w.r.t. x if for every
pair of clauses C1 = x ∨A and C2 = x ∨ B, there is a literal l such that l is in
A and l is in B.

A multiset of clauses C′ is a saturation of C w.r.t. x if C′ is saturated w.r.t.
x and C �x C′, i.e. C′ can be obtained from C applying the inference rule cutting
x finitely many times.

The following is a trivial equivalent version of the definition.

Lemma 1. A multiset of clauses C is saturated w.r.t. x if, and only if, every
possible application of the inference rule cutting x only introduces clauses con-
taining x (since tautologies get eliminated).

We assign a function P : {0, 1}n → {0, 1} to every clause, and a function P :
{0, 1}n → N to every multiset of clauses as follows.

Definition 4. For every clause C = x1 ∨ . . . ∨ xs ∨ xs+1 ∨ . . . ∨ xs+t we define
its characteristic function as PC(x) = (1 − x1) . . . (1 − xs)xs+1 . . . xs+t.

For every multiset of clauses C = {C1, . . . , Cm}, we define its characteristic
function as PC = Σm

i=1PCi(x).

Notice that the set of functions {0, 1}n → N, with the order relation: f ≤ g if
for all x, f(x) ≤ g(x), defines a partial order between functions. The strict part
of this relation, i.e. f < g if for all x, f(x) ≤ g(x) and for some x, f(x) < g(x),
defines a strictly decreasing partial order.

Lemma 2. Let PC be the characteristic function of a multiset of clauses C. For
every assignment I, PC(I) is the number of clauses of C falsified by I.

The inference rule replaces a multiset of clauses by another with the same
characteristic function.

Lemma 3. For every multiset of clauses C and variable x, there exists a multiset
C′ such that C′ is a saturation of C w.r.t. x.

Moreover, this multiset C′ can be computed applying the inference rule to any
pair of clauses x ∨ A and x ∨ B satisfying that A ∨ B is not a tautology, using
any ordering of the literals, until we can not apply the inference rule any longer.

Proof: We proceed by applying nondeterministically the inference rule cutting
x, until we obtain a saturated multiset. We only need to prove that this process
terminates in finitely many inference steps, i.e that there does not exist infinite
sequences C = C0 � C1 � . . ., where at every inference we cut the variable x and
none of the sets Ci are saturated.

At every step, we can divide Ci into two multisets: Di with all the clauses that
do not contain x, and Ei with the clauses that contain the variable x (in positive
or negative form). When we apply the inference rule we replace two clauses of Ei

by a multiset of clauses, where one of them, say A, does not contain x. Therefore,
we obtain a distinct multiset Ci+1 = Di+1 ∪ Ei+1, where Di+1 = Di ∪ {A}. Since
A is not a tautology the characteristic function PA is not zero for some value.
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Then, since PCi+1 = PCi and PDi+1 = PDi + PA, we obtain PEi+1 = PEi − PA.
Therefore, the characteristic function of the multiset of clauses containing x
strictly decreases after every inference step. Since the order relation between
characteristic functions is strictly decreasing, this proves that we can not perform
infinitely many inference steps.

Remark 1. Although every multiset of clauses is saturable, its saturation is not
unique. For instance, the multiset {a, a∨ b, a∨ c} has two possibles saturations
w.r.t. a: the multiset {b, b∨ c, a∨ b∨ c, a∨ b∨ c} and the multiset {c, b∨ c, a∨
b ∨ c, a ∨ b ∨ c}.

Another difference with respect to classical resolution is that we can not satu-
rate a set of clauses simultaneously w.r.t. two variables by saturating w.r.t. one,
and then w.r.t. the other. For instance, if we saturate {a∨ c, a∨ b∨ c} w.r.t. a,
we obtain {b ∨ c, a ∨ b ∨ c}. This is the only possible saturation of the original
set. If now we saturate this multiset w.r.t. b, we obtain again the original set
{a∨ c, a∨ b∨ c}. Therefore, it is not possible to saturate this multiset of clauses
w.r.t. a and b simultaneously.

Lemma 4. Let C be a saturated multiset of clauses w.r.t. x. Let D be the subset
of clauses of C not containing x. Then, any assignment I satisfying D (and not
assigning x) can be extended to an assignment satisfying C.

Proof: We have to extend I to satisfy the whole C. In fact we only need to set
the value of x. If x has a unique polarity in C \ D, then the extension is trivial
(x = true if x always occurs positively, and x = false otherwise). If, for any
clause of the form x∨A or x∨A, the assignment I already satisfies A, then any
choice of the value of x will work. Otherwise, assume that there is a clause x∨A
(similarly for x∨A) such that I sets A to false. We set x to true. All the clauses
of the form x ∨B will be satisfied. For the clauses of the form x ∨B, since C is
saturated, there exists a literal l such that l ∈ A and l ∈ B. This ensures that,
since I falsifies A, I(l) = false and I satisfies B.

4 Completeness of Max-SAT Resolution

Now, we prove the main result of this paper, the completeness of Max-SAT res-
olution. The main idea is to prove that we can get a complete algorithm by
successively saturating w.r.t. all the variables. However, notice that after sat-
urating w.r.t. x1 and then w.r.t. x2, we get a multiset of clauses that is not
saturated w.r.t. x1. Therefore, we will use a variant of this basic algorithm: we
saturate w.r.t x1, then we remove all the clauses containing x1, and saturate
w.r.t x2, we remove all the clauses containing x2 and saturate w.r.t x3, etc. Us-
ing Lemma 4, we prove that, if the original multiset of clauses was unsatisfiable,
then with this process we get the empty clause. Even better, we get as many
empty clauses as the minimum number of unsatisfied clauses in the original
formula.
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Theorem 2 (Completeness). For any multiset of clauses C, we have

C � , . . . ,︸ ︷︷ ︸
m

,D

where D is a satisfiable multiset of clauses, and m is the minimum number of
unsatisfied clauses of C.

Proof: Let x1, . . . , xn be any list of the variables of C. We construct two se-
quences of multisets C0, . . . , Cn and D1, . . . ,Dn such that

1. C = C0,
2. for i = 1, . . . , n, Ci ∪ Di is a saturation of Ci−1 w.r.t. xi, and
3. for i = 1, . . . , n, Ci is a multiset of clauses not containing x1, . . . , xi, and Di

is a multiset of clauses containing the variable xi.

By lemma 3, this sequences can effectively be computed: for i = 1, . . . , n, we
saturate Ci−1 w.r.t. xi, and then we partition the resulting multiset into a subset
Di containing xi, and another Ci not containing this variable.

Notice that, since Cn does not contain any variable, it is either the empty
multiset ∅, or it only contains (some) empty clauses { , . . . , }.

Now we are going to prove that the multiset D =
⋃n

i=1 Di is satisfiable by
constructing an assignment satisfying it. For i = 1, . . . , n, let Ei = Di ∪ . . .∪Dn,
and let En+1 = ∅. Notice that, for i = 1, . . . , n,

1. the multiset Ei only contains the variables {xi, . . . , xn},
2. Ei is saturated w.r.t. xi, and
3. Ei decomposes as Ei = Di ∪ Ei+1, where all the clauses of Di contain xi and

none of Ei+1 contains xi.

Now, we construct a sequence of assignments I1, . . . , In+1, where In+1 is the
empty assignment, hence satisfies En+1 = ∅. Now, Ii is constructed from Ii+1
as follows. Assume by induction hypothesis that Ii+1 satisfies Ei+1. Since Ei is
saturated w.r.t. xi, and decomposes into Di and Ei+1, by lemma 4, we can extend
Ii+1 with an assignment for xi to obtain Ii satisfy Ei. Iterating, we get that I1
satisfies E1 = D =

⋃n
i=1 Di.

Concluding, since by the soundness Theorem 1 the inference preserves the
number of falsified clauses for every assignment, m = |Cn| is the minimum num-
ber of unsatisfied clauses of C.

5 Complete Refinements

In classical resolution we can assume a given total order on the variables x1 >
x2 > . . . > xn and restrict inferences x∨A, x∨B � A∨B to satisfy x is maximal
in x ∨ A and in x ∨B. This refinement of resolution is complete, and has some
advantages: the set of possible proofs is smaller, thus its search is more efficient.
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The same result holds for Max-SAT Resolution:

Theorem 3 (Completeness of Ordered Max-SAT Resolution). Max-
SAT resolution with the restriction that the cut variable is maximal on the
premises is complete.

Proof: The proof is similar to Theorem 2. First, given the ordering x1 > x2 >
. . . > xn, we start by computing the saturation w.r.t. x1 and finish with xn.
Now, notice that, when we saturate C0 w.r.t. x1 to obtain C1 ∪ D1, we only
cut x1, and this is the biggest variable. Then, when we saturate C1 w.r.t. x2 to
obtain C2 ∪ D2, we have to notice that the clauses of C1, and the clauses that
we could obtain from them, do not contain x1, and we only cut x2 which is the
biggest variable in all the premises. In general, we can see that at every inference
step performed during the computation of the saturations (no matter how they
are computed) we always cut a maximal variable. We only have to choose the
order in which we saturate the variables coherently with the given ordering of
the variables.

Corollary 1. For any multiset of clauses C, and for every ordering x1 > . . . >
xn of the variables, we have

C �x1 C1 �x2 · · · �xn , . . . ,︸ ︷︷ ︸
m

,D

where D is a satisfiable multiset of clauses, m is the minimum number of unsat-
isfied clauses of C, and in every inference step the cut variable is maximal.

6 An Algorithm for Max-SAT

From the proof of Theorem 2, we can extract the following algorithm:

input: C
C0 := C
for i := 1 to n

C := saturation(Ci−1, xi)
〈Ci, Di〉 := partition(C, xi)

endfor
m := |Cn|
I := ∅
for i := n downto 1

I := I ∪ [xi  → extension(xi, I,Di)]
output: m, I

Given an initial multiset of clauses C, this algorithm obtains the minimum
number m of unsatisfied clauses and an optimal assignment I for C.
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The function partition(C, x) computes a partition of C into the subset of
clauses containing x and the subset of clauses not containing x.

The function saturation(C, x) computes a saturation of C w.r.t. x. As we
have already said, the saturation of a multiset is not unique, but the proof of
Theorem 2 does not depends on which particular saturation we take. Therefore,
this computation can be done with “don’t care” nondeterminism.

The function extension(x, I,D) computes a truth assignment for x such that,
if I assigns the value true to all the clauses of D containing x, then the function
returns false, if I assigns true to all the clauses of D containing x, then returns
true. According to Lemma 4 and the way the Di’s are computed, I evaluates to
true all the clauses containing x or all the clauses containing x.

The order on the saturation of the variables can be also freely chosen, i.e. the
sequence x1, . . . xn can be any enumeration of the variables.

7 Efficiency

In classical resolution, we know that there are formulas that require exponentially
long refutations on the number of variables, and even on the size of the formula,
but no formula requires more than 2n inference steps to be refuted, being n the
number of variables. We don’t have a better situation in Max-SAT resolution.
Moreover, since we can have repeated clauses, and need to generate more than
one empty clause, the number of inference steps is not bounded by the number
of variables. It also depends on the number of original clauses. The following
theorem states an upper bound on the number of inference steps, using the
strategy of saturating variable by variable:

Theorem 4. For any multiset C of m clauses on n variables, we can deduce
C � , . . . , ,D, where D is satisfiable, in less than n ·m · 2n inference steps.

Moreover, the search of this proof can be also done in time O(m 2n).

Proof: Let n be the number of variables, and m the number of original clauses.
Instead of the characteristic function of a clause, we will assign to every clause C
a weight w(C) equal to the number of assignments to the n variables that falsify
the clause. The weight of a multiset of clauses is then the sum of the weights of
its clauses. Obviously the weight of a clause is bounded by the number of possible
assignments w(C) ≤ 2n, being w(C) = 0 true only for tautologies. Therefore,
the weight of the original multiset is bounded by m 2n.

Like for the characteristic function, when C � D, we have w(C) = w(D).
A similar argument to Lemma 3 can be used to prove that we can obtain

a saturation D of any multiset C w.r.t. any variable x in less than w(C) many
inference steps. If we compute the weight of the clauses containing x and of those
not containing x separately, we see that in each inference step, the first weight
strictly decreases while the second one increases. Therefore, the saturation w.r.t.
the first variable needs no more than m 2n inference steps.

When we partition C into a subset containing x and another not containing
x, both subsets will have weight smaller than w(C), so the weight of C when we
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start the second round of saturations will also be bounded by the original weight.
We can repeat the same argument for the saturation w.r.t. the n variables, and
conclude that the total number of inference steps is bounded by nm 2n.

The proof of completeness for ordered Max-SAT resolution, does not depends
on which saturation we compute. Each inference step can be computed in time
O(n). This gives the worst-case time upper bound.

8 Conclusions

We have defined a complete resolution rule for Max-SAT which subsumes the
resolution-like rules defined so far. To the best of our knowledge, this is the
first complete logical calculus defined for Max-SAT. We have also proved the
completeness of the ordered resolution refinement, described an exact algorithm
and computed a time upper bound.

In a longer version of this paper, we have extended the contributions to
weighted Max-SAT and we have found formulas that require exponential refuta-
tions. There remain many interesting directions to follow both from a theoretical
and practical perspective. For example, define further complete refinements, and
use the rule to derive equivalent encodings of a given instance and study the im-
pact on the performance of exact and non-exact Max-SAT solvers.
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7. C. M. Li, F. Manyà, and J. Planes. Detecting disjoint inconsistent subformulas for
computing lower bounds for Max-SAT. In Proc. of the 21st National Conference
on Artificial Intelligence, AAAI’06, Boston, USA, 2006.

8. R. Niedermeier and P. Rossmanith. New upper bounds for maximum satisfiability.
Journal of Algorithms, 36(1):63–88, 2000.

9. H. Shen and H. Zhang. Study of lower bound functions for MAX-2-SAT. In Proc. of
the 19th National Conference on Artificial Intelligence, AAAI’04, pages 185–190,
San Jose, California, USA, 2004.

10. H. Shen and H. Zhang. Improving exact algorithms for MAX-2-SAT. Annals of
Mathematics and Artificial Intelligence, 44(4):419–436, 2005.

11. Z. Xing and W. Zhang. Efficient strategies for (weighted) maximum satisfiability. In
Proc. of the 10th Int. Conf. on Principles and Practice of Constraint Programming,
CP’04, number 3258 in LNCS, pages 690–705, Toronto, Canada, 2004. Springer.

12. Z. Xing and W. Zhang. An efficient exact algorithm for (weighted) maximum
satisfiability. Artificial Intelligence, 164(2):47–80, 2005.

13. H. Zhang, H. Shen, and F. Manya. Exact algorithms for Max-SAT. In 4th Int.
Workshop on First-Order Theorem Proving, FTP’03, Valencia, Spain, 2003.

14. H. Zhang, H. Shen, and F. Manya. Exact algorithms for Max-SAT. Electronic
Notes in Theoretical Computer Science, 86(1), 2003.



On Solving the Partial MAX-SAT Problem�

Zhaohui Fu�� and Sharad Malik

Department of Electrical Engineering
Princeton University

Princeton, NJ 08544, USA
{zfu, sharad}@Princeton.EDU

Abstract. Boolean Satisfiability (SAT) has seen many successful applications in
various fields such as Electronic Design Automation and Artificial Intelligence.
However, in some cases, it may be required/preferable to use variations of the
general SAT problem. In this paper, we consider one important variation, the Par-
tial MAX-SAT problem. Unlike SAT, Partial MAX-SAT has certain constraints
(clauses) that are marked as relaxable and the rest are hard, i.e. non-relaxable. The
objective is to find a variable assignment that satisfies all non-relaxable clauses
together with the maximum number of relaxable ones. We have implemented
two solvers for the Partial MAX-SAT problem using a contemporary SAT solver,
zChaff. The first approach is a novel diagnosis based algorithm; it iteratively ana-
lyzes the UNSAT core of the current SAT instance and eliminates the core through
a modification of the problem instance by adding relaxation variables. The second
approach is encoding based; it constructs an efficient auxiliary counter that con-
strains the number of relaxed clauses and supports binary search or linear scan for
the optimal solution. Both solvers are complete as they guarantee the optimality
of the solution. We discuss the relative strengths and thus applicability of the two
solvers for different solution scenarios. Further, we show how both techniques
benefit from the persistent learning techniques of incremental SAT. Experiments
using practical instances of this problem show significant improvements over the
best known solvers.

1 Introduction

In the last decade Boolean Satisfiability (SAT) has seen many great advances, includ-
ing non-chronological backtracking, conflict driven clause learning, efficient Boolean
Constraint Propagation (BCP) and UNSAT core generation. As a consequence, many
applications have been able to successfully use SAT as a decision procedure to deter-
mine if a specific instance is SAT or UNSAT. However, there are many other variations
of the SAT problem that go beyond this decision procedure use of SAT solvers. For
example, the MAX-SAT Problem [8] seeks the maximum number of clauses that can
be satisfied. This paper examines a generalization of this problem referred to as Partial
MAX-SAT [15,2].
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Partial MAX-SAT [15,2] (PM-SAT) sits between the classic SAT problem and MAX-
SAT. While the classic SAT problem requires all clauses to be satisfied, PM-SAT relaxes
this requirement by having certain clauses marked as relaxable or soft and others to be
non-relaxable or hard. Given n relaxable clauses, the objective is to find an assignment
that satisfies all non-relaxable clauses together with the maximum number of relaxable
clauses (i.e. a minimum number k of these clauses get relaxed). PM-SAT can thus be
used in various optimization tasks, e.g. multiple property checking, FPGA routing, uni-
versity course scheduling, etc. In these scenarios, simply determining that an instance
is UNSAT is not enough. We are interested in obtaining a best way to make the instance
satisfiable allowing for some clauses to be unsatisfied.

The difference between PM-SAT and MAX-SAT [8] is that every clause in MAX-SAT
can be relaxed, which clearly makes MAX-SAT a special case of PM-SAT. Though deci-
sion versions of both problems are NP-Complete [5], PM-SAT is clearly more versatile.

1.1 Previous Work

PM-SAT was first defined by Miyazaki et al. [15] during their work on optimization of
database queries in 1996. In the same year, Kautz et al. [10] proposed the first heuristic
algorithm based on local search for solving this problem. Later in 1997 Cha et al. [2]
proposed another local search technique to solve the PM-SAT problem in the the context
of university course scheduling.

In 2005, Li used two MinCostSat solvers, eclipse-stoc [12] and wpack [12], for the
transformed PM-SAT problem in FPGA routing. MinCostSat is a SAT problem which
minimizes the cost of the satisfying assignment. For example, assigning a variable to
be true usually incurs a positive cost while assigning it to be false incurs no cost. The
objective is to find a satisfying assignment with minimum total cost. By inserting a
slack variable [12] to each of the relaxable clauses, Li transforms the PM-SAT problem
into a MinCostSat problem with each slack variable having a unit cost. eclipse-stoc is a
general purpose MinCostSat solver and wpack is specialized for FPGA routing bench-
marks. Li demonstrated some impressive results using wpack in his thesis. However,
both eclipse-stoc and wpack are based on local search techniques and hence are not
complete solvers, i.e. the solver provides no guarantee on the optimality of the solution.

Argelich and Manyà uses a branch and bound approach for the over constrained
MAX-SAT problems [1]. However, as we will show in Section 4, branch and bound
based algorithms, including bsolo, do not work well on the PM-SAT problem.

1.2 Our Contribution

In this paper, we propose two practically efficient approaches to solve the PM-SAT
problem optimally. Both approaches use the state-of-the-art SAT solver zChaff [16]
with certain extensions.

1. Diagnosis Based. The first approach is based on the ability of SAT solvers to pro-
vide an UNSAT core [21] for unsatisfiable instances. This core is a subset of origi-
nal clauses that are unsatisfiable by themselves and in some sense can be considered
to be the “cause” of the unsatisfiability. This core is generated as a byproduct of the
proof of the unsatisfiability. The UNSAT core is analyzed and each relaxable clause
appearing in the core is augmented with a distinct relaxation variable. Additional
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clauses are added to the original SAT instance to ensure the one-hot property of
these relaxation variables. This augmentation essentially eliminates this core from
the SAT instance. The procedure continues until the SAT instance is satisfiable. We
give a proof of the optimality of the final solution using these relaxation variables
and the one-hot property.

2. Encoding Based. The second approach constructs an efficient auxiliary logic
counter, i.e. an adder and comparator, to constrain the number of clauses that can be
relaxed simultaneously. It then uses either binary search or linear scan techniques
to find the minimum number of k (out of n) clauses that need to be relaxed. The
logic counter is carefully designed such that maximum amount of learned informa-
tion can be re-used across different invocations of the decision procedure.

2 Diagnosis Based Approach: Iterative UNSAT Core Elimination

Being the best solver in the Certified UNSAT Track of SAT 2005 Competition, zChaff
is very efficient in generating UNSAT cores. Our diagnosis based approach takes full
advantage of this feature. It iteratively identifies the reason of the unsatisfiability of
the instance, i.e. the UNSAT core [21], and uses relaxation variables to eliminate these
UNSAT cores one by one until the instance becomes satisfiable.

Definition 1. An unsatisfiable core is a subset of the original CNF clauses that are
unsatisfiable by themselves.

Modern SAT solvers provide the UNSAT core as a byproduct of the proof of unsatisfi-
ability [21].

2.1 The Optimal Algorithm with Proof

The diagnosis based approach is illustrated in Algorithm 1. We use CNF to represent
the original SAT instance and V (CNF) is the set of all Boolean variables and C(CNF)
is the set of all clauses. An UNSAT core UC is a set of clauses, i.e. UC ⊆ C(CNF).
A clause c ∈ C(CNF) consists of a set of literals. A literal l is just a Boolean variable,
v ∈V (CNF), with positive or negative phase, i.e. l = v or l = v′.

Given an UNSAT core UC, for each relaxable clause c ∈ UC, a distinct relaxation
variable is added to this clause, i.e. c is replaced by c∪{v}. Setting this variable to true
makes the associated clause satisfied (and hence relaxed). An UNSAT core is said to be
eliminated when at least one of its clauses is satisfied (relaxed) by a relaxation variable
setting to be true.

Let S be the set of relaxation variables from UNSAT core UC, the one-hot constraint
over a set S of Boolean variables requires that one and only one of the variables in S is
assigned to be true and the other |S|−1 variables must be false. The number of clauses

added due to the one-hot constraint is |S|×(|S|−1)
2 + 1. For example, with S = {a,b,c}

and the one-hot constraint clauses are (a′ + b′)(b′ + c′)(a′ + c′)(a + b + c).
One relaxable clause is relaxed during each UNSAT iteration of the while loop

in Algorithm 1. The algorithm stops after exactly k iterations, where k is the minimum
number of clauses to be relaxed. R is the subset of S consisting of all relaxation variables
set to 1, i.e. the corresponding clauses are relaxed.
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Algorithm 1. Iterative UNSAT Core Elimination
1: S := /0
2: while SAT solver returns UNSATISFIABLE do
3: Let UC be the UNSAT core provided by the SAT solver
4: S := /0
5: for all Clause c ∈UC do
6: if c is relaxable then
7: Allocate a new relaxation variable v
8: c := c∪{v}
9: S := S∪{v}

10: end if
11: end for
12: if S = /0 then
13: Return CNF UNSATISFIABLE
14: else
15: Add clauses enforcing the One-Hot constraint for S to the SAT solver
16: S := S ∪S
17: end if
18: end while
19: R := {v | v ∈ S ,v = 1}; k := |R|
20: Return Satisfying Assignment, k, R.

Theorem 1. Algorithm 1 finds the minimum number of clauses to be relaxed.

Proof. Consider the interesting case where the original problem is always satisfiable
with relaxation of certain relaxable clauses (Otherwise Algorithm 1 returns unsatisfiable
in Line 12). Suppose Algorithm 1 stops after exactly k iterations, i.e. relaxing k clauses.
Clearly, Algorithm 1 has encountered a total number of k UNSAT cores (one in each
iteration), which we denote them by a set U, |U |= k. Note that original problem instance
contains at least k UNSAT cores, even though each iteration starts with a new modified
problem instance. Now suppose that there exists some optimal solution that relaxes a
set M, |M|< k, clauses to make the original problem satisfiable. Obviously, relaxing all
clauses in M eliminates all the UNSAT cores in U . However, since |M| < k = |U | and
by the Pigeon Hole Principle there must be at least one clause c ∈ M those relaxation
eliminates two or more UNSAT cores (u1,u2, . . .) ∈ U and c ∈ u1,c ∈ u2. Without the
loss of generality, let us assume that Algorithm 1 encounters u1 first in the while
loop. So every clause including c in u1 is added with a relaxation variable. Let v be the
relaxation variable added to c. Now there exists an assignment that can eliminate both
u1 and u2 by setting v to be true. Due to the completeness of our SAT solver, the UNSAT
core u2 should never be encountered, which leads to a contradiction. This contradiction
is caused by the assumption that |M|< k = |U |. Hence we have to conclude that |M| =
k = |U |, i.e. each relaxed clause in M can eliminate at most one UNSAT core in U . �

It is worth mentioning that the UNSAT core extraction is not compulsory. One could
add a relaxation variable to each relaxable clause and require this batch of relaxation
variables to be one-hot for every iteration in which the problem remains unsatisfiable.



256 Z. Fu and S. Malik

This naive approach is still capable of finding the minimum number of clauses to be
relaxed. However, recall that the one-hot constraint requires O(|S|2) additional clauses
where S is the set of relaxable clauses in the UNSAT core. Therefore it is impractical to
enforce the one-hot constraint on the relaxation variables for all relaxable clauses. For
example, the PM-SAT instance might have 100 relaxation clauses while only 3 appear
in the UNSAT core. The naive approach adds 100×99

2 + 1 = 4951 clauses while the

diagnosis based approach adds only 3×2)
2 +1 = 4 clauses. The diagnosis based approach

exploits the availability of the UNSAT core to keep the number of relaxation variables
and one-hot constraint clauses small.

2.2 An Illustrative Example

It is worth mentioning that Algorithm 1 does not require the UNSAT core UC to be min-
imal. Furthermore, the UNSAT cores encountered by Algorithm 1 need not be disjoint.
The following example shows a simple CNF formula that contains two overlapping
cores. Suppose we have four Boolean variables x1,x2,x3 and x4. Relaxable clauses are
shown with square brackets and , denotes the resolution operator.

(x′1 + x′2)(x
′
1 + x3)(x′1 + x′3)(x

′
2 + x4)(x′2 + x′4)[x1][x2]

This CNF formula is unsatisfiable since (x′1 + x′2)[x1][x2] form an UNSAT core because

(x′1 + x′2), [x1], [x2] = (x′2), [x2] = ()

Note that whether a clause is relaxable or not does not affect the resolution. Recall that
a UNSAT core is a set of original clauses that are unsatisfiable and they resolve to an
empty clause (), which can never be satisfied. The only relaxable clauses in this core
are [x1][x2]. So in the first iteration we add two distinct relaxation variables r1 and r2

to each of them respectively and enforce r1 and r2 to be one-hot. The resulting CNF
formula is

(x′1 + x′2)(x
′
1 + x3)(x′1 + x′3)(x

′
2 + x4)(x′2 + x′4)[x1 + r1][x2 + r2](r′1 + r′2)(r1 + r2)

Note that clauses due to the one-hot constraint are not relaxable. However, the relaxable
clauses are still marked as relaxable even after inserting relaxation variables. This is be-
cause, as we will show, one relaxation variable may not be enough to make the instance
satisfiable. The current CNF formula is still unsatisfiable as

(x′1 + x3), (x′1 + x′3), [x1 + r1], (r′1 + r′2), [x2 + r2] = (x2)
(x2), (x′2 + x′4) = (x′4)
(x2), (x′2 + x4) = (x4)

(x′4), (x4) = ()

So in the second iteration, we add another two relaxation variables r3 and r4 to the
relaxable clauses [x1 + r1][x2 + r2] in the core. Together with clauses due to the one-hot
constraint of r3 and r4, the CNF formula becomes

(x′1 + x′2)(x
′
1 + x3)(x′1 + x′3)(x

′
2 + x4)(x′2 + x′4)[x1 + r1 + r3][x2 + r2 + r4]

(r′1 + r′2)(r1 + r2)(r′3 + r′4)(r3 + r4)
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This formula is satisfiable with the following assignment

x1 = 0, x2 = 0, x3 = 1, x4 = 1,

r1 = 1, r2 = 0, r3 = 0, r4 = 1.

Based on the above satisfying assignment, both [x1][x2] should be relaxed to make the
problem satisfiable, i.e. k = n = 2. Note that there is no constraint among the relaxation
variables added in different iterations and the one-hot constraint only applies to all
relaxation variables added due to the same UNSAT core in one iteration. The number
of the relaxation variables needed only depends on the number of relaxation clauses in
the current UNSAT core1, and not the total number of relaxation clauses in the entire
SAT instance. In Section 4 we will see some cases where the total number of relaxable
clauses is large and our diagnosis based approach still performs well on these cases.

The iterative core elimination requires the SAT solver to be able to provide the UN-
SAT core (or proof) as part of answering UNSAT. This feature does incur some over-
head. For example, the SAT solver needs to record the resolution trace for each learned
clause2. Even when a learned clause is deleted, which happens very frequently in most
state-of-the-art SAT solvers, the resolution trace for that particular learned clause can-
not be deleted because it might be used to resolve other learned clauses that are not yet
deleted. In case of an unsatisfiable instance, we need all the resolution information so
that we could trace back from the conflict to the original clauses, which then form the
UNSAT core. Recording the resolution trace not only slows down the search speed, but
also uses a large amount of memory, which could otherwise be used for learned clauses.

3 Encoding Based Approach: Constructing an Auxiliary Counter

With highly optimized state-of-the-art SAT solvers like zChaff [16], Berkmin [6],
Siege [17] and MiniSat [4] , the most straightforward way is to translate the PM-SAT
problem directly into a SAT instance. Such an implementation is likely to be efficient
since the translated SAT instance takes advantages of all the sophisticated techniques
used in a contemporary SAT solver. Furthermore, this approach requires very little or
no modification to the SAT solver itself and hence could continuously benefit from the
advances in SAT.

However, conventional SAT solvers do not support integer arithmetic, which is nec-
essary in PM-SAT for expressing the constraint of≤ k clauses left unsatisfied. We use an
auxiliary logic counter [11] to represent this ≤ k condition, whose output is a Boolean
variable and the entire counter could then be translated into CNF in a straightforward
way. There are various ways of constructing such an an auxiliary logic counter [11].
Xu considers four types of these logic counters, namely chain counter, hierarchical tree
counter, routing counter and sorting counter in her work on subSAT [20]. subSAT is a

1 Recall that we assume there must exist at least one relaxation clause in every core since other-
wise the problem is unsatisfiable even if we relax all relaxable clauses.

2 Each learned clause is the result of a series of resolutions of other clauses, both learned or
original. But ultimately, each learned conflict clause is the result of a series of resolutions
using only the original clauses.
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MAX-SAT problem but with the assumption that k - n, where n here is the total num-
ber of clauses. In other words, the problem becomes satisfiable with very small number
(usually k < 5) of clauses removed (relaxed). In the subSAT implementation, one mask
variable (which is equivalent to our relaxation variable) is added to each of the n clauses
and they constrain that only≤ k mask variables can be true by using one of the four logic
counters as mentioned above. The chain counter method creates a �lgk + 1� bit adder
for each clause and concatenates them together. The final output from the last adder
is constrained to be ≤ k. The hierarchical tree counter creates a tree using �lgk + 1�
bit adders as internal nodes that sum up all n mask variables and gives a �lgk + 1� bit
output at the root of the tree. The routing counter implements k k-to-n decoders with k
inputs all set to be 1. The sorting counter uses a sorting circuit with k max operators
(range from n bit to n− k + 1 bit) to move the 1s to one side of the output and then
checks the kth bit of the output. Xu states that the first two counters (chain and tree
counters) are more efficient than the others in terms of the amount of additional logic.

3.1 An Efficient Hierarchical Tree Adder

The most significant differences between our proposed encoding based approach and
the subSAT approach are that our hierarchical tree adder is independent of k and we
do not assume k - n. In addition to the linear scan for minimum k, we also use a
binary search on [0,n] for the minimum k (subSat only uses linear scan due to their
assumption of k - n). We design our tree adder to be independent of the value k for
two obvious reasons. First, we only need to construct the adder once at the beginning
and re-use it during each iteration of the binary search, as compared to constructing the
adder lgn times for binary search and k times for linear scan. Second, using the idea of
incremental SAT [18], all clauses associated with the adder can be kept intact since they
are always consistent with the problem. Maintaining the learned information is very
important to the performance of most contemporary SAT solvers. Unfortunately, all the
above 4 types of auxiliary counters proposed by Xu are dependent on k, particularly for
the routing and sorting counters.

We propose a hierarchical tree adder that is independent of k using elementary
adders, e.g. half adder and full adders. Figure 1 gives an example of such an adder
with n = 9. It can be shown that the total number of additional 2-input logic gates is
≤ 5n as follows. Consider starting with n ≥ 3 bit input, we use a full adder to sum up
3 bits while returning a sum bit and a carry bit [9]. The sum bit needs to be added with
the other n− 3 bits left and the carry bit will only be used in next level. So each full
adder reduces the number of inputs left by 2 and . n

2/ full adders are sufficient for the
first level. Note the last sum bit becomes the least significant bit of the final sum. In the
second level, we consider all the carry bits from the previous level and there are at most
. n

2/ of them. Similar results extends to the third level and so on. So the total number of
full adders is:

.n
2
/+ .n

4
/+ .n

8
/+ . . .+ 1 ≤ n

Each full adder requires 5 2-input logic gates (2 AND, 2XOR and 1OR gate), which gives
the total number of additional logic gates ≤ 5n. Note that we can sometimes replace a
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 FA
SC

 FA
SC

 FA
SC

 FA
SC

 FA
SC

 HA
SC

 HA
SC

Fig. 1. An efficient hierarchical tree adder that sums the number of 1s from the n = 9 bit input
(top) and gives a 4 bit binary value (bottom). The first level uses 4 full adders (FA); the second
level needs 1 full adder and 1 half adder (HA); the third level just needs 1 half adder. S and C are
the sum and carry bits of the adder respectively.

full adder by a half adder due to simplification by constant value (0), as shown in the
second and third levels in Figure 1.

There is an important distinction between our hierarchical tree adder in Figure 1
and the one used by Xu [20]. Instead of using full/half adders as internal nodes of the
tree, Xu uses a �lgk + 1� bit adder for each of the internal nodes, which introduces a
large amount of redundancy with relatively large k. For example, the first level inputs
to the adder are at most 1 and in a binary representation of �lgk + 1� bits, at least
�lgk + 1�−1 bits are just 0s. Our hierarchical tree adder is free of such redundancy due
to the judicious use of full/half adders.

The hierarchical tree adder outputs a �lgn + 1� bit binary value, which is then com-
pared against a given value k using a logic comparator that outputs true if and only if
the sum is less than or equal to k. Note that this logic comparator is dependent on k
for efficiency reasons3. This hierarchical tree adder with comparator provides us an ef-
ficient platform for searching the minimum k. Generally binary search has advantages
over linear scan on the benchmarks with k > lgn.

It is worth mentioning that when this logic counter (adder with comparator) are trans-
lated into CNF clauses, the hierarchical tree adder generates many more clauses than
the comparator does. In general, the number of CNF clauses from the adder is O(n)
while from the comparator is O(lgn). For each iteration during the binary search or
linear scan, only O(lgn) original CNF clauses with related learned clauses need to be
changed. The remaining clauses include both original and learned clauses correspond-
ing to the original problem instance and the adder. The learned clauses capture the logic

3 The resulting circuit is equivalent to performing the constant propagation on a general logic
comparator with any given k.
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relationship among the Boolean variables used in the problem instance and the adder
and they cannot be learned without the adder.

One disadvantage of using an auxiliary counter is the introduction of a large number
of XOR gates. Each full adder consists of two XOR gates and the entire counter results
in 2n XOR gates. Though the number of additional logic gates is only linear in n, the
situation could get worse when many XOR gates are chained together. For example, the
least significant bit of the sum comes from an XOR chain of length �lgn�. XOR chains
are well known to cause poor performance of SAT solvers. One main reason is that
unlike AND/OR gates, Boolean constraint propagation over XOR gates is very limited.
This complication makes this approach no longer efficient for solving problems with
very large n. It is worth mentioning that a large n does not necessarily imply a large k
though obviously k ≤ n.

3.2 A Discussion on Incremental SAT

Incremental SAT was first formalized by Strichman [18]. It is the process of solving
a series of SAT instances ϕ1,ϕ2, . . . ,ϕn. The consecutive SAT instances, ϕi and ϕi+1,
are similar, i.e. only a small number of clauses (and variables) are different. Given the
solution of ϕi, we could solve ϕi+1 incrementally by only updating the different clauses
while keeping most learned clauses in ϕi, which are still consistent with ϕi+1, intact.
Maintaining the maximum amount of the learned clauses, i.e. recording the most visited
search space, is a great advantage than starting from scratch each time.

A key issue in the implementation of incremental SAT is the efficient updating
from instance ϕi to ϕi+1, which usually includes both deletion and addition of origi-
nal clauses. Addition of new original clauses is trivial. However, deletion of original
clauses implies the additional deletion of all learned clauses related to the deleted orig-
inal clauses in order to maintain the integrity of the clauses database. This deletion can
be performed efficiently with the use of group IDs. A group ID indicates a particular
group, to which the clause belongs. The group IDs of a learned clause is the union of
all the group IDs from the clauses used to generate this learned clauses (through reso-
lution). Deletion according to a particular group ID removes all clauses (both original
and learned) having this ID.

For the encoding based approach, we utilize the incremental SAT feature of zChaff
and group all CNF clauses associated with the comparator using the same group ID.
This implementation enable us to only change a very small fraction of all clauses (both
original and learned) that are related to the comparator for each different value of k dur-
ing binary search or linear scan. All clauses associated with the adder are independent
of k and hence remain unchanged throughout the entire incremental SAT. Recall that
the adder corresponds to many more clauses than the comparator does.

However, unlike the encoding based approach, the diagnosis based approach requires
us to update the original clauses by inserting some relaxation variables. This makes it
harder to use the incremental SAT algorithm. However, we can still group all the hard
constraint clauses in a group and reuse all learned clauses that are generated within this
group. In other words, we only delete the learned clauses associated with the relaxable
constraint clauses.
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4 Experimental Results

We implemented the subSat approach for PM-SAT using the chain counter and hierar-
chical tree counter proposed by Xu [20] for comparison. In addition, we translate our
PM-SAT benchmarks into MinCostSat instances so that we can have an extensive com-
parison using other general purpose solvers. Recall that a MinCostSat problem is a SAT
problem with a cost function for each satisfying assignment. We add a unique relax-
ation variable to each relaxable clause in PM-SAT and the cost of this relaxation vari-
able is 1. All other variables have a cost of 0. Non-relaxable clauses remain unchanged
in the above translation. The resulting problem is now a MinCostSat instance where
the minimum cost corresponds to the minimum number of relaxation variables setting
to be 1, which in turn implies that minimum number of clauses are relaxed. We then
use Scherzo [3], bsolo [13] and cplex [7] to solve the translated MinCostSat problem.
Scherzo is a well known branch-and-bound solver for Binate/Uniate Covering Problem
(BCP/UCP) that incorporates many state-of-the-art techniques, including Maximum In-
dependent Set [5] based lower bounding, branch variable selection and various search
pruning rules. The BCP problem is essentially a MinCostSat problem [12] with a spe-
cific cost function. UCP has the additional restriction that all variables appear in only
one phase. But unfortunately, Scherzo is not able to solve any of the benchmarks in the
following tables. bsolo is another state-of-the-art branch-and-bound BCP/UCP solver
based on the SAT solver GRASP [14]. cplex is the cutting edge commercial Linear
Programming (LP) solver that is also capable of finding integer solutions efficiently.

All the experiments are conducted on a Dell PowerEdge 700 running Linux Fe-
dora core 1.0 (g++ GCC 3.3.2) with single Pentium 4 2.8GHz, 1MB L2 cache CPU on
800MHz main bus.

4.1 FPGA Routing Benchmarks

We conduct our experiments mainly on industrial benchmarks. Table 1 shows the results
of industrial examples resulting from a SAT based FPGA router. Each relaxable clause
corresponds to a net-arc (single source, single destination) in the routing problem. Re-
laxation of clauses in the unsatisfiable SAT instance to make it satisfiable represent
finding the fewest number of net-arcs which, if re-routed elsewhere, e.g. route-around,
would allow the remaining set of net-arcs to be routed simultaneously.

Table 1. Performance comparison on FPGA routing benchmarks. Timeout for all solvers: 1 hour.
∗ indicates server times out, the best solution found is reported.

Bench- Num. Num. Rlx. Min. Diagnosis Encoding subSat Gen. Solver
mark Vars. Cls. Cls. k Core Rmv Binary Linear Chain Tree bsolo cplex
FPGA 27 3953 13537 27 3 1.85 2.13 1.65 2.64 2.85 21.29 3∗

FPGA 31 17869 65869 31 1 380.83 88.68 309.75 393.26 860.18 4∗ 12∗

FPGA 32 2926 9202 32 3 0.89 1.10 0.95 1.12 1.18 6.56 3∗

FPGA 33 9077 32168 33 3 18.65 19.25 26.44 27.02 27.93 61.5 4∗

FPGA 39 6352 22865 39 4 31.22 7.76 7.15 8.83 8.48 59.07 6∗

FPGA 44 6566 22302 44 3 10.12 9.00 8.36 11.75 12.80 6∗ 5∗
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The benchmark name in Table 1 shows the number of net-arcs in the actual FPGA
routing problem. For example, the first row shows the result of benchmark FPGA 27,
which has 27 net-arcs to be routed. The PM-SAT instance consists of 3953 Boolean
variables with 13537 clauses. Among these clauses, 27 clauses are marked as relaxable,
which corresponds to the 27 net-arcs to be routed. The optimal solution is a relaxation
of k = 3 clauses (out of 27) that makes the entire problem satisfiable. The diagnosis
based approach takes 1.85 seconds to find the optimal solution. The binary search and
linear scan of the encoding based approach take 2.13 and 1.65 seconds respectively. The
subSat approach using linear scan with the chain counter and hierarchical tree counter
need 2.64 and 2.85 seconds respectively. For the translated MinCostSat problem, bsolo
takes 21.29 seconds. cplex only reports a solution of k = 3 but it cannot prove its opti-
mality. Scherzo could not report any solution found within the 1 hour time limit for all
our benchmarks and hence is omitted from all of our tables.

4.2 Multiple Property Checking Benchmarks

Table 2 shows the results of multiple property checking using circuits from ISCAS85
and ITC99 benchmarks. Relaxable clauses are the properties (assertions) that assume
each output signal of the entire circuit to be 1 or 0. The non-relaxable clauses are trans-
lated from the circuit structure. The corresponding PM-SAT instance is to find the max-
imum number of outputs that can be 1 or 0 (satisfying the property). Benchmarks that
are satisfiable without any relaxation are excluded from the tables. All benchmarks start
with a c are from the iscas85 family and the rests are from the itc99 family.

Table 2. Performance comparison on multiple property checking benchmarks. Benchmarks end
with 1 ( 0) are asserted to be 1 (0). Timeout for all solvers: 1 hour. ∗ indicates server times out,
the best solution found is reported.

Bench- Num. Num. Rlx. Min. Diagnosis Encoding subSat Gen. Solver
mark Vars. Cls. Cls. k Core Rmv Binary Linear Chain Tree bsolo cplex
c2670 1 1426 3409 140 7 0.05 0.07 0.06 0.25 0.34 1.05 106.40
c5315 1 2485 6816 123 10 0.09 0.18 0.13 0.83 1.13 15.35 208.80
c6288 1 4690 11700 32 2 343.71 81.98 192.27 185.67 169.94 2∗ 3∗

c7552 1 4246 10814 108 5 2.64 1.41 1.17 1.62 1.77 5∗ 1909.63
b14 1 10044 28929 245 1 0.19 0.53 0.48 0.79 0.93 4.45 1182.85
b15 1 8852 26060 449 2 0.26 1.08 1.07 1.23 1.85 7.55 1308.47
b17 1 32229 94007 1445 6 1.65 14.93 14.92 67.73 90.85 65.88 65∗

b20 1 20204 58407 512 2 0.50 2.62 2.90 1.97 5.59 10.88 5∗

b21 1 20549 59532 512 2 0.49 2.59 2.89 2.36 5.47 12.63 1522.35
b22 1 29929 86680 757 4 0.96 6.19 5.43 11.78 18.52 25.53 31∗

c7552 0 4246 10814 108 6 1.57 2.54 1.99 2.07 1.95 2369.5 6∗

b15 0 8852 26060 449 3 0.22 0.14 0.79 1.83 2.68 19.37 260.75
b17 0 32229 94007 1445 13 4.54 13.74 6.85 90.64 173.17 17∗ 13∗
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4.3 Randomized UNSAT Benchmarks

Table 3 shows the results of classic UNSAT benchmarks with randomly chosen relax-
able clauses. These benchmarks are from the fvp-unsat-2.0 (verification of super-
scalar microprocessors) family by Velev [19]. Note that all the benchmarks in Table 3
have k = 1, which makes it inefficient to use binary search.

Table 3. Performance comparison on randomized UNSAT benchmarks. The encoding based ap-
proach using binary search is inefficient since k = 1 for all benchmarks and hence omitted. Time-
out for all solvers: 1 hour. ∗ indicates server times out, the best solution found is reported.

Bench- Num. Num. Rlx. Min. Diagnosis Encoding subSat Gen. Solver
mark Vars. Cls. Cls. k Core Rmv Linear Chain Tree bsolo cplex
2pipe 892 6695 6695 1 5.12 22.34 34.82 65.54 868.34 1∗

3pipe 2468 27533 5470 1 4.96 18.18 19.97 31.43 1∗ 1∗

4pipe 5237 80213 802 1 8.45 8.65 8.81 11.32 1∗ 1∗

5pipe 9471 195452 19474 1 18.91 305.69 273.79 367.93 1∗ 1∗

6pipe 15800 394739 15828 1 107.33 383.36 463.81 424.35 1∗ 1∗

Table 1, Table 2 and Table 3 clearly show that both approaches constantly outperform
the best known solvers. For benchmarks with a large number of relaxable clauses, e.g.
b17, b20 and b22 in Table 2 and all benchmarks in Table 3, the diagnosis based ap-
proach has obvious advantage over the search approach (either binary or linear), which
suffers from the large auxiliary adder. With most other benchmarks like c6288 in Ta-
ble 2 and FPGA 39 in Table 1, whose number of relaxable clauses is small, the encoding
based search approach is faster. As we can see from the tables that there is no significant
difference between binary search and linear scan used in the encoding based approach.
However, we still believe that for instances with large k, binary search is a better option.
In addition, for the benchmarks with small k value, the performance of the subSat ap-
proach is comparable with our encoding based approach. This is because the �lgk + 1�
bit adder used in subSat is not much larger than a full adder or half adder for very small
k, e.g. k = 2. However, the performance subSat of degrades dramatically with relative
large k, e.g. benchmark b17 0 in Table 2.

It is interesting to see that all SAT based approaches (all of our approaches, subSat
and bsolo) generally outperform the non-SAT based branch-and-bound methods like
scherzo and cplex. One possible reason is that these industrial benchmarks have more
implications and conflicts, than the typical UCP/BCP or ILP instances.

Both our diagnosis based and encoding based approaches benefit from the incremen-
tal SAT and so does our implementation of the subSat. Among these three, the encoding
based approach gains the most improvements due to the incremental SAT as it solves
very similar SAT instances. However, we could not provide additional results for this
due to the page limit.

Note that though both our diagnosis based and encoding based methods use zChaff
as an underlying SAT solver, each of them has a customized zChaff solver based on the
features needed. The zChaff solver used in the encoding based approach is relatively
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faster than the one used in the diagnosis based approach as the latter one has a significant
overhead of bookkeeping the information for constructing an UNSAT core. Further,
different approaches solve different numbers of underlying SAT instances. The binary
search always makes �lgn + 1� SAT calls while the core elimination approach and the
linear search make k+1 such SAT calls. The overall time used as presented in all tables
includes the time used by these intermediate SAT instances. Usually the SAT instance
becomes more and more difficult as we approach k, which is because the corresponding
instance becomes more and more constrained.

Usually the diagnosis based approach has an advantage for instances with large n
and small k due to the absence of the overhead caused by the hierarchical adder. For
instances with relatively small n, the encoding based approach is faster and particularly
binary/linear search should be used when k is large/small.

5 Conclusions and Future Directions

We have presented two complete and efficient approaches specialized for solving the
PM-SAT problem, which arises from various situations including multiple property
checking, FPGA routing, etc. These two specialized solvers significantly outperform
the best known solvers.

Some key features about these two approaches can be summarized as follows:

1. The diagnosis based approach uses an iterative core elimination technique, which
does not require any auxiliary structure and hence is independent of the total num-
ber of relaxable clauses. This approaches iteratively identifies the UNSAT core of
the problem and relaxes it by inserting relaxation variables to the relaxable clauses
in the core. We provide a proof of optimality for this approach.

2. The encoding based approach uses an auxiliary counter implemented as an efficient
hierarchical tree adder with a logic comparator to constrain the number of true
relaxation variables, and hence the number of relaxed clauses, during the search.
The hierarchical tree adder only needs to be constructed once at the beginning and
the SAT solver can re-use most of the learned clauses for the instances generated
during each search iteration using incremental SAT techniques. Both binary and
linear search are supported in this approach.

We believe that there is still room for improvement. One such area is the further
tuning of zChaff solver according to different characteristics of the SAT instances gen-
erated by each of the two approaches. The other area is to optimize the UNSAT core
generation process, e.g. reducing overhead, minimizing UNSAT core, etc.
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Abstract. We give an exact deterministic algorithm for MAX-SAT. On
input CNF formulas with constant clause density (the ratio of the number
of clauses to the number of variables is a constant), this algorithm runs
in O(cn) time where c < 2 and n is the number of variables. Worst-case
upper bounds for MAX-SAT less than O(2n) were previously known only
for k-CNF formulas and for CNF formulas with small clause density.

1 Introduction

When solving MAX-SAT, we can search for an approximate solution or we can
search for an exact solution. Approximate algorithms are typically faster than
exact ones. In particular, there are polynomial-time approximate algorithms for
MAX-SAT, but they are limited by thresholds on approximation ratios (some of
these algorithms achieve the thresholds, e.g. [9]). There are also exponential-time
algorithms that give arbitrarily good approximation, but when a high precision
is required they are not considerably faster than exact algorithms, see e.g. [6,8].

In this paper we deal with exact algorithms for MAX-SAT and worst-case
upper bounds on their runtime. Beginning in the early 1980s [11], many such
upper bounds were obtained, and now we have a spectrum of MAX-SAT upper
bounds for various classes of input formulas such as 2-CNF, 3-CNF, k-CNF,
formulas with constant clause density, etc. The upper bounds usually depend
on the number of variables, the number of clauses, the maximum number of
satisfiable clauses, etc. Majority of exact MAX-SAT algorithms use the DPLL
approach, but other approaches are used too, for example local search.

We give exact deterministic algorithms that solve MAX-SAT for formulas with
no restriction on clause length (the general case of MAX-SAT) and prove worst-
case upper bounds on their runtime. Previously known upper bounds for this
general case were obtained in [4,10,2,12,14]. The most recent “record” bounds
are given in [5]:

O(1.3247m · |F |)
O(1.3695K + |F |)

where |F | is the size of input formula F , m is the number of clauses in F , and
K is the maximum number of satisfiable clauses (or the input parameter of
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the decision version of MAX-SAT). Note that these bounds are better than the
trivial upper bound O(2n · |F |), where n is the number of variables, only for
small values of the clause density (m/n < 3). The algorithms in [5] use DPLL
techniques; the proof of the bounds is based on case analysis and recurrence
relations.

The contribution of this paper is twofold:

– Our bounds for MAX-SAT are better than O(2n) for formulas with constant
clause density, i.e., with m/n < c where c is an arbitrary constant. Moreover,
they are better than O(2n) even if m/n is a slowly growing function.

– Our algorithms are based on a new method of solving MAX-SAT: we search
for a partial assignment that satisfies a sufficient number of clauses and then
we try to extend this assignment to satisfy more clauses.

Note that our method uses memoization which often occurs in recent algo-
rithms for SAT and MAX-SAT, e.g. [3] and [13]. In particular, the randomized
algorithm in [13] solves MAX-kSAT using DPLL combined with memoization.
Its upper bound on the expected runtime is less than O(2n) for k-CNF formulas
with constant clause density.

Structure of the paper. Basic definitions and notation are given in Sect. 2. In
Sect. 3 we discuss the idea of our algorithms and prove key lemmas. We describe
the main algorithm in Sect. 4 and we prove an upper bound on its runtime in
Sect. 5. In Sect. 6 we describe a modification of the main algorithm for the case
when K is not too large compared to m. Sect. 7 summarizes our results.

2 Definitions and Notation

We deal with Boolean formulas in conjunctive normal form (CNF formulas). By
a variable we mean a Boolean variable that takes truth values true or false. A
literal is a variable x or its negation ¬x. A clause C is a set of literals such that C
contains no complementary literals. When dealing with the satisfiability problem,
a formula is typically viewed as a set of clauses. In the contexts of (weighted)
MAX-SAT, it is more natural to view formulas as multisets. Therefore, we define
a formula to be a multiset of clauses.

For a formula F , we write |F | to denote the number of clauses in this multiset
(we use letter m for this number). We use letters V and n to denote, respectively,
the set of variables in F and its cardinality. The clause density of F is the ratio
m/n. For any positive number Δ, we write F(Δ) to denote the set of formulas
such that their clause density is at most Δ.

We assign truth values to all or some variables in F . Let U be a subset of
the variables of F . An assignment to the variables in U is a mapping from U
to {true, false}. This mapping is extended to literals: each literal ¬x is mapped
to the complement of the truth value assigned to x. We say that a clause C is
satisfied by an assignment a if a assigns true to at least one literal in C. The
formula F is satisfied by A if every clause in F is satisfied by A.
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For assignment a, we write F (a) to denote the formula obtained from F as
follows: any clause that contains a true literal is removed from F , all false literals
are deleted from the other clauses. The empty clause is false; the empty formula
is true.

The MAX-SAT problem is stated as follows: Given a formula, find an as-
signment that maximizes the number of satisfied clauses. We also consider the
decision version of MAX-SAT: given a formula F and an integer K, is there an
assignment that satisfies at least K clauses?

We use O∗ notation that extends big-Oh notation and suppresses all polyno-
mial factors. For functions f(n1, . . . , nk) and g(n1, . . . , nk) we write

f(n1, . . . , nk) = O∗(g(n1, . . . , nk))

if for some multivariate polynomial p, we have

f(n1, . . . , nk) = O(p(n1, . . . , nk) · g(n1, . . . , nk)).

We write log x to denote log2 x. The entropy function is denoted by H :

H(x) = −x log x− (1 − x) log(1 − x).

3 Idea of Algorithms and Key Lemmas

In the next sections we describe and analyze two algorithms for MAX-SAT. Both
are based on an idea outlined in this section. This idea is suggested by Lemma 2
and Lemma 3. The former is a key observation behind our approach. Its weaker
version was used by Arvind and Schuler in [1] for their quantum satisfiability-
testing algorithm. The second lemma is a well known fact that any formula has
an assignment satisfying at least a half of its clauses.

We consider the decision version of MAX-SAT. To solve this problem, we
enumerate partial assignments and try to extend them to satisfy at least K
clauses.

1. Enumeration of partial assignments. We select a set of partial assign-
ments such that for some δ
– each of them assigns truth values to δn variables;
– each of them satisfies at least δK clauses.

It follows from Lemma 2 that this set contains an assignment a that can be
extended to satisfy at least K clauses (if K clauses in F can be satisfied at
all). Lemma 2 also shows that this set (containing a) can be constructed by
processing O(2δn) partial assignments.

2. Extension of partial assignments. When processing a partial assignment,
we try to extend it to satisfy more clauses in F . There are at most m− δK
unsatisfied clauses left and we need to satisfy at least (1− δ)K of them. We
consider two possibilities:
– There are “many” unsatisfied clauses. Then (1−δ)K clauses are satisfied

due to the fact that any formula has an assignment satisfying at least a
half of its clauses.
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– There are “few” unsatisfied clauses. This case reduces to solving MAX-
SAT for “short” subformulas of F : we could test the extension if for each
“short” subformula S, we knew the maximum number M of clauses that
can be satisfied in S. We prepare all such pairs (S,M) in advance and
store them in an array. This array is sorted according to some order on
formulas. Using binary search, we look up any pair (S,M) that we need.

3. Tradeoff for δ. The runtime and space of our algorithms depend on the
choice of δ. When δ decreases, the number of assignments we need to enu-
merate decreases too. On the other hand, the larger δ is, the less time is
needed for preparing the array. Our analysis in Sect. 5 gives a good tradeoff
for δ.

Algorithm A defined in Sect. 4 implements the approach above. Algorithm B
defined in Sect. 4 is another version of this approach. Loosely speaking, in this
version we choose δ so that we do not have to build the table, i.e., for the chosen
δ we have “many” unsatisfied clauses for every partial assignment. It is natural
to apply Algorithm B when K is not too large compared to m.

Below we prove three lemmas needed for the algorithms and their analysis.
Lemma 1 is nearly obvious (a reincarnation of the well known fact that the
average of d numbers is greater than or equal to at least one of these numbers).
This lemma is used in Lemma 2 which plays a key role in our approach. Lemma 3
is well known but we include it in the paper for convenience of our exposition.

Lemma 1. Let r and r1, . . . , rd be real numbers (d ≥ 2). If

r1 + . . . + rd ≥ r (1)

then there exists i ∈ {1, . . . , d} such that

r1 + . . . + ri−1 + ri+1 + . . . + rd ≥
(

1 − 1
d

)
r (2)

Proof. The average of r1, . . . , rd is greater than or equal to at least one of these
numbers. That is, there exists a number ri such that

s

d
≥ ri where s = r1 + . . . + rd.

Using this fact and the fact that s ≥ r, we have

s−ri ≥ s− s

d
≥
(

1 − 1
d

)
s ≥

(
1 − 1

d

)
r. �

Lemma 2 (on partial assignments). Let F be a formula and A be an as-
signment that satisfies at least K clauses in F . Let V denote the set of variables
in F . Consider a partition of V into d subsets:

V = V1 ∪ . . . ∪ Vd
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where d ≥ 2 and Vi ∩Vj = ∅ for all i and j. For each i from 1 to d, let Ai denote
the restriction of A to Vi and let Fi be the multiset of clauses satisfied by Ai,
i.e.,

Fi = {C ∈ F | C is satisfied byAi}

Then there exists i ∈ {1, . . . , d} such that

|F1 ∪ . . . ∪ Fi−1 ∪ Fi+1 ∪ . . . ∪ Fd| ≥ (1 − 1/d)K

Proof. We prove this lemma using Lemma 1. Let S denote the multiset of all
clauses in F satisfied by A. This multiset can be represented as the union of d
multisets:

S = S1 ∪ . . . ∪ Sd

where Sj = Fj − (F1∪ . . .∪Fj−1). Since |S| ≥ K, we have |S1|+ . . .+ |Sd| ≥ K.
Applying Lemma 1, we obtain that there exists i such that

|S1| + . . . + |Si−1| + |Si+1| + . . . + |Sd| ≥ (1 − 1/d)K. (3)

The multisets S1, . . . , Sd are pairwise disjoint, therefore

|Si|+ . . .+ |Si−1|+ |Si+1|+ . . .+ |Sd| = |Si ∪ . . .∪Si−1 ∪Si+1 ∪ . . .∪Sd|. (4)

By the definition of multisets Sj, we have Sj ⊆ Fj for every j and consequently

S1 ∪ . . . ∪ Si−1 ∪ Si+1 ∪ . . . ∪ Sd ⊆ F1 ∪ . . . ∪ Fi−1 ∪ Fi+1 ∪ . . . ∪ Fd. (5)

Taking (3), (4), and (5) together we get

|F1 ∪ . . . ∪ Fi−1 ∪ Fi+1 ∪ . . . ∪ Fd| ≥
|Si ∪ . . . ∪ Si−1 ∪ Si+1 ∪ . . . ∪ Sd| =
|Si| + . . . + |Si−1| + |Si+1| + . . . + |Sd| ≥
(1 − 1/d)K. �

Lemma 3 (well known fact). Any formula F has an assignment that satisfies
at least a half of its clauses.

Proof. Consider an arbitrary assignment a. If a satisfies less than a half of clauses
in F , we flip the values of the variables in a. It is easy to see that the new
assignment satisfies at least a half of clauses in F . �

4 Main Algorithm

In this section we describe the main algorithm based on the approach discussed
informally in Sect. 3.
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Algorithm A
Input: Formula F with m clauses over n variables, integers K and d such that
2 ≤ d ≤ n and m/2 ≤ K ≤ m.
Output: “yes” if there is an assignment that satisfies at least K clauses, “no”
otherwise.

1. Partition. We partition the set V of variables in F into d subsets V1, . . . , Vd

of (approximately) same size. More exactly, we partition V into d subsets
such that each of them has either .n/d/ or �n/d� elements.

2. Database preparation. We prepare a “database” needed for the next
steps. Namely, we build tables (arrays) T1, . . . , Td defined as follows:
(a) Let F |Vj denote the formula obtained from F by removing all clauses

that contain no variables from Vj and deleting variables from V − Vj

in the remaining clauses. By a short subformula of F |Vj we mean any
subformula of F |Vj that has length at most 2K/d.

(b) We define Tj to be a table consisting of all pairs (S,M) where S is a
short subformula of F |Vj and M is the maximum number of satisfiable
clauses in S. For every S, we compute M by brute-force, which takes
time O∗(2n/d).

(c) Fixing an order on short subformulas of F |Vj , we sort each table Tj

according to this order. Therefore, given a short subformula, we can find
the corresponding record in logarithmic time.

3. Partial assignments. For each j ∈ {1, . . . , d} we consider all assignments
to the variables in V − Vj . Given such an assignment, we check whether it
satisfies at least (1 − 1/d)K clauses. For each assignment that passes this
test, we perform the next step.

4. Extension. Let a be a partial assignment selected at the previous step. Let
Ka denote the number of clauses satisfied by a. If Ka ≥ K, return “yes”.
Otherwise, we try to extend a to an assignment that satisfies at least K
clauses. Consider the formula F (a) obtained from F by substitution of the
truth values corresponding to a. To extend a, we need to satisfy K − Ka

clauses in F (a). Two cases are possible:
(a) Case 1. If |F (a)| ≥ 2(K −Ka) then by Lemma 3 there exists an assign-

ment that satisfies at least K − Ka clauses in F (a). Therefore, a can
be extended to an assignment that satisfies at least K clauses. Return
“yes”.

(b) Case 2. The formula F (a) is shorter than 2(K −Ka). We need to check
whether there is an assignment that satisfies at least K − Ka clauses
in F (a). Note that F (a) must occur in the table Tj . Therefore, we can
find (in logarithmic time) the maximum number of satisfiable clauses in
F (a). If this number is at least K −Ka then return “yes”.

5. “No” answer. The output is “no” if we failed to find an appropriate as-
signment as described above.

Note that the algorithm can be also implemented using DPLL combined with
memoization: partial assignments can be enumerated in the DPLL manner and
the tables can be built on the run with memoization.
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5 Runtime of Algorithm A

In this section we give a worst-case upper bound on the runtime of Algorithm A
(Theorem 1). Applying this algorithm to solve MAX-SAT, we get essentially the
same upper bound (Corollary 1). Then we show that if we restrict input formulas
to formulas with constant clause density, we have the O(cn) upper bound where
c < 2 (Corollary 2).

Theorem 1. If Algorithm A is run with d such that

d ≥ 4 and d ≥ 2
(
m

n
log
(
ed

2

)
+ 1

)
(6)

where m and n are, respectively, the number of clauses and the number of vari-
ables in the input formula, then the runtime of Algorithm A is

O∗
(
2n(1−1/d)

)
.

Proof. First, we note that for any m and n, there exists d that meets the in-
equalities in (6). Consider the execution of Algorithm A on input formula F
with any K ≥ m/2 and with d chosen according to (6). After partitioning of the
variables in F into d subsets, we build d database tables. Each table contains∑2K/d

i=1

(
m
i

)
records and can be built in time

O∗

⎛
⎝2K/d∑

i=1

(
m

i

)
· 2n/d

⎞
⎠ .

After building the tables, we take d identical steps. At each step, we enumerate
all assignments to n(1 − 1/d) variables. For each assignment a, we compute the
formula F (a) and (if needed) look it up using binary search in the corresponding
sorted table. Since the table size is 2O

∗(m), the lookup can be done in polynomial
time. Therefore, the overall runtime of Algorithm A is bounded by

O∗

⎛
⎝2K/d∑

i=1

(
m

i

)
· 2n/d

⎞
⎠ + O∗

(
2(1−1/d)n

)
. (7)

We show that for any d that meets (6), the first term in this sum is asymptotically
smaller than the second term. The sum of binomial coefficients in (7) can be
approximated using the binary entropy function, see e.g. [7, exercise 9.42], so we
can approximate the first term in (7) as

O∗
(
2H(2K/md) m + n/d

)
.

Since the function H is increasing on the interval
(
0, 1

2

]
, it follows from d ≥ 4

and K ≤ m that

H

(
2K
md

)
≤ H

(
2
d

)
.
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Using the well known inequality ln(1 + x) ≤ x, we have

H

(
2
d

)
= −2

d
log
(

2
d

)
−
(

1 − 2
d

)
log
(

1 − 2
d

)

=
2
d

log
(
d

2

)
+
(

1 − 2
d

)
log e ln

(
1 +

2
d− 2

)

≤ 2
d

log
(
d

2

)
+

2
d

log e

=
2
d

log
(
ed

2

)
.

Therefore, (7) is not greater than

O∗
(
2(2m/d) log(ed/2) + n/d

)
+ O∗

(
2(1−1/d)n

)
It remains to observe that the second term in this sum dominates over the first
term if

2m
d

log
(
ed

2

)
+

n

d
≤ n − n

d
,

which is equivalent to the condition on d in (6):

d ≥ 2
(
m

n
log
(
ed

2

)
+ 1

)
. �

Corollary 1. There is an exact deterministic algorithm that solves MAX-SAT
in O∗(2n(1−1/d)) time, where d meets condition (6).

Proof. We repeatedly apply Algorithm A to find K such that the algorithm
returns “yes” for K and returns “no” for K + 1. This can be done using either
binary search or straightforward enumeration. �
Remark 1. What value of d minimizes the upper bound in Corollary 1? We can
approximate the optimum value of d as follows:

d = O
(m
n

log
(m
n

+ 2
))

(8)

It is straightforward to check that this approximation meets condition (6).

Corollary 2. There is an exact deterministic algorithm that solves MAX-SAT
for formulas with constant clause density in O(cn) time where c < 2. More
exactly, for any constant Δ, there is a constant c < 2 such that on formulas in
F(Δ), the algorithm runs in O(cn) time.

Proof. The O∗(2n(1−1/d)) upper bound can be written as

O∗
(
2n(1− 1/d)

)
= O

(
2n−n/d +O(log n)

)
(9)

If Δ = m/n is a constant, it immediately follows from (6) that d can be taken
as a constant too. Therefore n/d is asymptotically larger than O(log n), which
yields the O(cn) upper bound. �
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Remark 2. Note that the proof above can be used to obtain the O(2n) bound
for some classes F(Δ) where Δ is not a constant. For example, we can allow Δ
to be O(

√
n). Using the approximation (8), we have

d = O(
√
n logn).

Then n/d is asymptotically larger than O(log n) and, therefore, (9) gives the
O(2n) bound.

6 Algorithm That Needs No Tables

An obvious disadvantage of Algorithm A is that the algorithm has to build
an exponential-size database. We could avoid it if we chose d so that F (a) is
always “long” enough. Then a can be extended due to Lemma 3 and no lookup
is needed. Using this observation, we define Algorithm B that does not require
building tables. Theorem 2 gives a worst-case upper bound on its runtime:

O∗
(
2n(1−m−K

K )
)
.

Algorithm B

Input: Formula F with m clauses over n variables, integer K such that

m/2 < K ≤ m
n

n + 1
. (10)

Output: “yes” if there is an assignment that satisfies at least K clauses, “no”
otherwise.

1. Partition. We take an integer d defined by

d =
⌈

K

m−K

⌉
.

Then, similarly to the partition step in Algorithm A, we partition the set
V of variables in F into d subsets V1, . . . , Vd. Note that it follows from (10)
that d ≤ n.

2. Partial assignments. This step is similar to the partial assignment step in
Algorithm A: for each j ∈ {1, . . . , d} we enumerate all assignments to the
variables in V −Vj . For each such assignment, we check whether it satisfies at
least (1− 1/d)K clauses. In Theorem 2 below we show that any assignment
a that satisfies at least (1−1/d)K clauses can be extended to an assignment
that satisfies at least K clauses. Therefore, as soon as we find a satisfying
(1 − 1/d)K clauses, we return “yes”.

3. “No” answer. If we failed to find an appropriate assignment at the previous
step, “no” is returned.
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Theorem 2. Algorithm B is correct for all K that meet (10). Its runtime is

O∗
(
2n(1−m−K

K )
)

where m and n are, respectively, the number of clauses and the number of vari-
ables in the input formula.

Proof. Let a be a partial assignment selected at Step 3 and Ka be the number of
clauses satisfied by a. Consider F (a) that has m−Ka clauses. If F (a) is “long”
enough, namely

m−Ka ≥ 2(K −Ka), (11)
then it follows from Lemma 3 that a can be extended to an assignment satisfying
at least K clauses (cf. Case 1 in Algorithm A). It remains to show that the choice
of d in the algorithm guarantees (11).

Since d = �K/(m−K)�, we have

d ≥ K/(m−K).

This inequality can be rewritten as

m − K

d
≥ K.

Adding K to both sides we get

m + K − K

d
≥ 2K.

Since Ka ≥ (1 − 1/d)K,
m + Ka ≥ 2K.

Subtracting 2Ka from both sides, we obtain (11).
Clearly, the runtime of the algorithm is determined by the time needed to

enumerate all assignments to the variables in each V − Vj . Since each such
subset of variables contains at most �(1−1/d)n� variables, we obtain the claimed
runtime. �

7 Summary of Results

1. We give an exact deterministic algorithm that solves MAX-SAT for CNF
formulas with no limit on clause length. Its runtime is

O∗
(
2n(1−1/d)

)
where d = O

(m
n

log
(m
n

+ 2
))

.

2. This algorithm solves MAX-SAT for formulas with constant clause density
in time

O(cn) where c < 2.
3. We give another exact deterministic algorithm that solves MAX-SAT in time

O∗
(
2n(1−m−K

K )
)

where K is the maximum number of satisfiable clauses. This algorithm is
faster than the first one when K is not too large compared to m.
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Average-Case Analysis for
the MAX-2SAT Problem

Osamu Watanabe and Masaki Yamamoto
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Abstract. We propose a “planted solution model” for discussing the
average-case complexity of the MAX-2SAT problem. We show that for a
large range of parameters, the planted solution (more precisely, one of the
planted solution pair) is the optimal solution for the generated instance
with high probability. We then give a simple linear time algorithm based
on a message passing method, and we prove that it solves the MAX-2SAT
problem with high probability under our planted solution model.

1 Introduction

We discuss the average-case analysis of the difficulty of MAX-2SAT problems,
the simplest variation of MAX-SAT problems, where input CNF formulas are
restricted to those consisting of only clauses with two literals. It is known that
even the MAX-2SAT problem is NP-hard (even hard to approximate) though
the 2SAT problem is in P. On the other hand, it seems that there are some
algorithms/heuristics that solve MAX-2SAT problems quite well on average.
Unfortunately, not so much theoretical investigation has been made for the
average-case complexity of the MAX-2SAT problem. One example is the theo-
retical analysis of random 2CSP instances (including 2SAT) of Scott and Sorkin
[SS03], where they showed, among other results, some deterministic algorithm
solving MAX-2CSP in polynomial-time on average for random sparse instances,
i.e., formulas with linear number of clauses, and the authors ask for algorithms
solving MAX-2SAT on dense instances. It should be remarked here that the
MAX-2SAT problem is not the same as the ordinary 2SAT problem, which is
different from kSAT problems for k ≥ 3. For example, even though it has been
proved that some algorithm performs well for certain random 2SAT instances,
this does not mean at all that it works for similar random MAX-2SAT instances.

For discussing the average-case complexity of MAX-2SAT problem, we pro-
pose one simple probability model for generating MAX-2SAT instances, thereby
giving one instance distribution for the MAX-2SAT problem. Our model is one
of the planted solution models. We also demonstrate that a simple linear-time
algorithm can solve the MAX-2SAT with high probability when input formulas
are given under this distribution with probability parameters in a certain range.
Our parameter range is for a dense regime; we could prove that our algorithm
solves the MAX-2SAT problem with high probability for random formulas with
O(n1.5 lnn) clauses; it is an interesting open problem to show some efficient
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algorithm for sparse formulas. (Note that our distribution is different from the
one considered in [SS03].)

In this short note, we explain our probability model in Section 2 and a simple
algorithm for MAX-2SAT in Section 3. Due to space constraint, we omit most
of the technical details and some references, which can be found in [WY06].

2 A Planted Solution Model for MAX-2SAT

In this section, we define a planted solution model for MAX-2SAT. We begin with
introducing some notions and notations for discussing the MAX-SAT problem.
Throughout this paper, we use n to denote the number of variables and use
x1, . . . , xn for denoting Boolean variables. A 2CNF formula we consider here is
a formula defined as a conjunction of clauses of two literals, where each clause
is “syntactically” of the form (xi ∨xj), (xi ∨xj), (xi ∨xj), or (xi ∨xj), for some
1 ≤ i < j ≤ n, and (xi ∨ xi), (xi ∨ xi), or (xi ∨ xi) for some i, 1 ≤ i ≤ n.
An assignment is a function t mapping {x1, . . . , xn} to {−1,+1}; t(xi) = +1
(resp., t(xi) = −1) means to assign true (resp., false) to a Boolean variable
xi. An assignment is also regarded as a sequence a = (a1, a2, . . . , an) of ±1’s,
where ai = t(xi) for each i, 1 ≤ i ≤ n. For a given CNF formula F , its optimal
assignment is an assignment satisfying the largest number of clauses in F . Now
our MAX-2SAT problem is, for a given 2CNF formula of the above form, to find
its optimal assignment, more precisely, any one of the optimal assignments.

We explain our probability model for generating MAX-2SAT instances, more
specifically, a way of generating a 2-CNF formula over n variables x1, . . . , xn. Our
model is a “planted solution model”, a method for generating a problem instance
so that a target solution, which is also generated in some way, is the answer to
this instance w.h.p. Here we generate a sequence a = (a1, . . . , an) uniformly
at random; let a′ be its complement assignment (−a1, . . . ,−an). Then we use
a pair of a and a′ as a planted solution pair. For constructing a formula, we
generate each clause satisfied by both assignments with probability p, and it is
added to the formula. Since there are n2 such clauses, the number of clauses of
this type added to the formula is on average pn2. In order to make the formula
unsatisfiable, we also generate each clause that is unsatisfied by a (resp., a′)
with probability r < p. Again on average the formula has rn(n + 1)/2 clauses
that are not satisfied by a (resp., by a′). Hence, the generated formula has on
average pn2 + rn(n+1) clauses and each assignment of the planted solution pair
fails to satisfy rn(n + 1)/2 clauses on average. As our first theorem we show
that one of the planted solution pair is indeed an optimal assignment w.h.p. for
random formulas if p > 4r for any sufficiently large p.

At this point, we explain our motivation for the above model and some related
works. A reason for using a planted solution pair is for producing clauses so that
each literal appears with the same probability. The same approach has been
proposed [AJM05] for generating hard sat. instances for kSAT problems. The
important difference here is the point that inconsistent clauses are also added
with probability r < p. This is for generating unsatisfiable formulas; otherwise,
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i.e., if only satisfiable formulas were generated, the problem would be trivially
easy because the 2SAT problem is in P, which is different from the other kSAT
problem k ≥ 3. (For example, even distribution on only satisfiable formulas can
be useful for analyzing MAX-3SAT algorithms; but not at all for MAX-2SAT!)
One open problem here is whether our approach can be also used for MAX-
kSAT problems for k ≥ 3 in general. Clearly, all pair of clauses would appear
with the same probability if p = r; but then we may not be able to guarantee
the optimality of planted solution pairs. The idea of adding inconsistent clauses
with smaller probability r < p has been proposed in [Yam06], where, based on
this idea, some test instance generating algorithm for MAX-2SAT is proposed.
Although the optimality of a planted solution pair is proved for p > 4r, it may
be still possible to have the same result for much closer p and r.

Now we show our first result.

Theorem 1. For any δ > 0, if probability parameters p and r satisfies p ≥ 4r
and p ≥ c1

ln(n/δ)
n , then for a randomly generated formula F under our planted

solution model with parameters p and r, with probability ≥ 1− δ, one of the two
planted solution pair is the optimal assignment for F ; furthermore, there is no
optimal solution other than the planted solution pair.

Remark. This bound for p, implying Ω(n log n) expected number of clauses,
is necessary for our model where each clause is selected independently. On the
other hand, we can consider more balanced random generation, where each literal
appears exactly pn times in clauses consistent to both planted solutions and rn
times in clauses inconsistent to one of them. In this case, we may only need
p = c/n for some sufficiently large constant c, resulting linear number of clauses.

Proof. Consider p, r, and n satisfying the condition of the theorem. Here we
explain by fixing one planted solution pair; for simplicity, consider a pair of all
+1 assignment a+ and all −1 assignment a−. Let F be a randomly generated
formula for this planted solution pair. Our goal is to show that w.h.p. either a+

or a− satisfies the most number of clauses in F , which cannot be achieved by
any other assignment.

For our discussion, we consider a directed graph G = (V,E) naturally defined
as follows: V = V+ ∪ V−, where V+ = {v+1, . . . , v+n} and V− = {v−n, . . . , v−1}.
E consists of two directed edges corresponding to a clause (�i ∨ �j), where i < j,
in F . For example, for a clause (xi ∨ xj), E has two directed edges (v−i, v+j)
and (v−j , v+i), each of which corresponds to (xi → xj) and (xj → xi); clauses
of the other type define two corresponding directed edges in E similarly. Due to
our syntactic restriction (see also a remark below), the obtained graph G has
no multiple edge nor self-loop. (Remark. In this proof, we ignore clauses like
(xi ∨ xi) because such clauses are always satisfied and has no meaning in this
analysis.)

Consider any assignment t to x1, . . . , xn. We regard this also as an assignment
to V ; i.e., t(v+i) = t(xi) and t(v−i) = −t(v+i). In general, an assignment t to V
satisfying t(v−i) = −t(v+i) for all i is called a legal assignment. It is easy to see
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that a clause (�∨�′) is unsatisfied by t if and only if its two corresponding directed
edges are, under the corresponding legal assignment, from a vetex assigned +1
to a vertex assigned −1, which we call unsatisfied edges. That is, the number
of unsatisfied clauses is the same as the half of that of unsatisfied edges. Thus,
for proving the theorem, we estimate the number of unsatisfied edges under an
arbitrary legal assignment to V .

First, we estimate the number of unsatisfied edges within G[V+] and G[V−],
which are subgraphs of G induced respectively by V+ and V−, by the well-known
fact that a random graph is almost surely an expander. Note that G[V+] (resp.,
G[V−]) can be regarded as a “random graph”, i.e., a graph with vertex set V+
(resp., V−) with a directed edge randomly generated with probability p between
every ordered pair of distinct vertices. Thus, by a standard argument, we may
assume that, for some ε′ that will be fixed at the end, H [V+] and H [V−] both
have the following “expansion property”: For each U ∈ {V+, V−} and for every
S ⊂ U , we have

‖E(S,U − S)‖ ≥ (1/2 − ε′)pn‖S‖ and ‖E(U − S, S)‖ ≥ (1/2 − ε′)pn‖S‖.

(Remark. Here we need p ≥ c ln(n/δ)/n for some constant c so that this as-
sumption holds with prob. > 1 − δ.)

Now consider any legal assignment t to V that is different from our two
planted solutions. By h we denote the number of unsatisfied edges of G under t.
On the other hand, let h0 = min{|E ∩ (V+ ×V−)|, |E ∩ (V−×V+)|}; that is, h0 is
the number of unsatisfied edges by a better assignment among our two planted
solutions. From now on, we estimate h and show that h > h0 w.h.p.

Let A+ and B+ be subsets of V+ assigned +1 and −1 respectively under t; on
the other hand, let A− and B− be subsets of V− assigned −1 and +1 respectively.
Note that |A+| = |A−| and |B+| = |B−|, and let a and b be the number of |A+|
and |B+| respectively; we may assume that a, b ≥ 1. Below we consider the case
of a ≤ b and show that h > ‖E ∩ (V− × V+)‖ holds w.h.p.

For edges in V+ and V−, we see from the above expansion property that the
number of unsatisfied edges within each of V+ and V− is respectively at least
(1/2− ε′)pn · a; that is, ‖E(B+, V+ −B+)‖, ‖E(A−, V− −A−)‖ ≤ (1/2− ε′)pna.
Consider then edges between V+ and V−; here we estimate only the number of
unsatisfied edges from V− to V+, which are exactly those from B− to B+. Thus,
we have h ≥ (1− 2ε′)pna+ |E ∩ (B− ×B+)|, where we decompose the last term
as follows.

‖E ∩ (B− ×B+)‖ = ‖E ∩ (V− × V+)‖ − ‖E ∩ (A− × V+)‖ − ‖E ∩ (B− ×A+)‖
≥ ‖E ∩ (V− × V+)‖ − ‖E ∩ (A− × V+)‖ − ‖E ∩ (V− ×A+)‖.

Hence, for our goal, it suffices to show that

(1 − 2ε′)pna− ‖E ∩ (A− × V+)‖ − ‖E ∩ (V− ×A+)‖ — (∗)

is positive. Again with an argument similar to the one showing the expansion
property, we show that both ‖E ∩ (A− ×V+)‖ and ‖E ∩ (V− ×A+)‖ are close to
their expectations w.h.p. and they are respectively less than (1+ ε′′)rna. Hence,
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procedure MPalgo for MAX2-SAT (F );
// An input F = C1 ∧ · · · Cm is a 2CNF formula over variables x1, . . . , xn.
// Let S = S+ ∪ S−, where S+ = {+1, . . . , +n} and S− = {−n, . . . , −1}.
begin

construct G = (V, E); // See the text for the explanation.
set b(vs) to 0 for all s ∈ S;
b(v+1) ← +1; b(v−1) ← −1; // This is for the assumption that x1 = +1.
repeat MAXSTEP times do {

for each i ∈ {2, . . . , n} in parallel do {
b(v+i) ←

vs∈N(v+i)

min(0, b(vs)); b(v−i) ←
vs∈N(v−i)

min(0, b(vs));

b(v+i) ← b(v+i) − b(v−i); b(v−i) ← −b(v+i); — (1)
}
if sign(b(vi)) is stabilized for all i ∈ {2, . . . , n} then break;
b(v+1) ← 0; b(v−1) ← 0; — (2)

}
output(+1, sign(b(v+2)), . . . , sign(b(v+n)) );

end-procedure

Fig. 1. A message passing algorithm for the MAX-2SAT problem

we have (∗) > ((1 − 2ε′)p− 2(1 + ε′′)r)na. Here by using ε′ = ε′′ = 1/8, we can
show that the righthand side is positive if p ≥ 4r. �

3 A Simple Algorithm

For our probability model for the average-case analysis of MAX-2SAT, we show
in this section that a simple algorithm can solve MAX-2SAT on average when
parameters p and r are in a certain but nontrivial range. The algorithm is a
message passing algorithm stated in Figure 1; this algorithm is motivated by
a modification of Pearl’s belief propagation algorithm for graph partitioning
problems [OW05].

We explain the outline of the algorithm. Below we use i and j to denote
unsigned (i.e., positive) indices in {1, . . . , n}, whereas s and t are used for
signed indices in S. The algorithm is executed on a directed graph G = (V,E)
that is constructed from a given formula F in essentially the same way as in
the proof of Theorem 1. V is a set of 2n vertices vs, s ∈ S = {−n,−(n −
1), . . . ,−1,+1, . . . ,+(n − 1),+n}, and E consists of two directed edges corre-
sponding to each clause (�i ∨ �j) of F , where i < j; on the other hand, only
one edge is added to E for each clause of type (xi ∨ xi). Note that graph G has
no multiple edge, while it may have some self-loops. Let N(u) denote the set of
vertices v having a directed edge to u.

The algorithm computes a “belief” b(vs) at each vertex vs, an integral value
indicating whether the Boolean variable x|s| should be assigned true (i.e., +1)
or false (i.e., −1). More specifically, for an optimam assignment, the algorithm
suggests, for each xi, to assign xi = +1 if the final value of b(v+i) is positive
and xi = −1 if it is negative. Note that b(v−i) = −b(v+i); we may regard b(v−i)
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as a belief for xi. These belief values are initially set to 0 except for one pair of
vertices, e.g., v+1 and v−1 that are assigned +1 or −1 initially. In the algorithm
of Figure 1, b(v+1) (resp., b(v−1)) is set to +1 (resp., −1), which considers the
case that x1 is true in the optimal assignment. Clearly we need to consider the
other case; that is, the algorithm is executed again with the initial assignment
b(v+1) = −1 and b(v−1) = +1, and one of the obtained assignments satisfying
more clauses is used as an answer. Now consider the execution of the algorithm.
The algorithm updates beliefs based on messages from the other vertices. At
each iteration, the belief of each vertex v+i (resp., v−i) is recomputed based on
the last belief values of its neighbor vertices. More specifically, if there is an edge
from v+i to vs, and b(vs) is negative, then this negative belief is sent to v+i

(from vs) and used for computing the next belief of v+i. The edge v+1 → vs

corresponds to a clause (xi → �|s|) (where �|s| is the literal corresponding to
vs), and the condition that b(vs) < 0 means that the literal �|s| is assigned false
(under the current belief). Thus, in order to satisfy the clause (xi → �|s|), we
need to assign false to xi. This is the reason for the message from vs. Belief b(v+i)
at this iteration is defined as the sum of these messages. It should be remarked
here that all belief values are updated in parallel; that is, updated beliefs are not
used when updating the other beliefs in the same iteration, but those computed
at the previous iteration are used. This update is repeated until no belief value is
changed its sign after one updating iteration or the number of iterations reaches
to a bound MAXSTEP. This is the outline of our algorithm. It is easy to see
that each iteration can be executed in time O(n + m).

Now we state our theoretical analysis. For the analysis, we modify the al-
gorithm a bit: (i) set MAXSTEP = 2; that is, beliefs are updated only twice,
(ii) execute a statement (1) only after the second iteration, and (iii) insert a
statement (2). For this algorithm, we can prove the following.

Theorem 2. For any δ > 0, if n ≥ c2 ln(n/δ)/p2, or roughly, p = Ω(n−1/2 lnn),
then the algorithm, executed with two different initial values for b(v+1) for in-
stances generated under our planted solution model, yields one of the planted
solution pair with probability 1 − δ.
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[OW05] M. Onsjö and O. Watanabge, Simple algorithms for graph partition
problems, Res. Report C-212, Dept. of Math. and Comput. Sci., Tokyo
Tech., 2005. http://www.is.titech.ac.jp/research/research-report/
C/index.html

[SS03] A.D. Scott and G.B. Sorkin, Faster algorithms for MAX CUT and MAX
CSP, with polynomial expected time for sparse instances, in Proc. APPROX
and RANDOM 2003, LNCS 2764, pp.382–395, 2003.

[WY06] O. Watanabe and M. Yamamoto, Res. Report, Dept. of Math. and Comput.
Sci., Tokyo Tech., 2006, in preparation.

[Yam06] M. Yamamoto, Generating instances for MAX2SAT with optimal solutions,
Theory of Computing Systems, to appear.



Local Search for Unsatisfiability

Steven Prestwich1 and Inês Lynce2

1 Cork Constraint Computation Centre,
Department of Computer Science, University College, Cork, Ireland

s.prestwich@cs.ucc.ie
2 IST/INESC-ID, Technical University of Lisbon, Portugal

ines@sat.inesc-id.pt

Abstract. Local search is widely applied to satisfiable SAT problems,
and on some classes outperforms backtrack search. An intriguing chal-
lenge posed by Selman, Kautz and McAllester in 1997 is to use it instead
to prove unsatisfiability. We investigate two distinct approaches. Firstly
we apply standard local search to a reformulation of the problem, such
that a solution to the reformulation corresponds to a refutation of the
original problem. Secondly we design a greedy randomised resolution
algorithm that will eventually discover proofs of any size while using
bounded memory. We show experimentally that both approaches can
refute some problems more quickly than backtrack search.

1 Introduction

Most SAT solvers can be classed either as complete or incomplete, and the com-
plete algorithms may be based on resolution or backtracking. Resolution provides
a complete proof system by refutation [24]. The first resolution algorithm was
the Davis-Putnam (DP) procedure [6] which was then modified to the Davis-
Putnam-Logemann-Loveland (DPLL) backtracking algorithm [7]. Because of its
high space complexity, resolution is often seen as impractical for real-world prob-
lems, but there are problems on which general resolution proofs are exponentially
smaller than DPLL proofs [4]. Incomplete SAT algorithms are usually based on
local search following early work by [14,26], but metaheuristics such as genetic
algorithms may also be applied. On some large satisfiable problems, local search
finds a solution much more quickly than complete algorithms, though it currently
compares rather badly with backtracking algorithms on industrial benchmarks.

An interesting question is: can local search be applied to unsatisfiable prob-
lems? Such a method might be able to refute (prove unsatisfiable) SAT problems
that defy complete algorithms. This was number five of the ten SAT challenges
posed by Selman, Kautz and McAllester in 1997: design a practical stochastic
local search procedure for proving unsatisfiability [25]. While substantial progress
has been made on several challenges, this one remains wide open [18], and we ex-
plore two distinct ways of attacking it. It was suggested in [18] that local search
could be applied to a space of incomplete proof trees, and our first approach uses
a related idea: we apply standard local search to a space of (possibly incorrect)
proof graphs each represented by a clause list. In order to exploit current local
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search technology, this is done via a new reformulation of the original SAT prob-
lem. Our second approach is a new local search algorithm that explores a space
of resolvent multisets, and aims to derive the empty clause non-systematically.

The paper is organised as follows. In Section (2) we SAT-encode the meta-
problem of finding a proof for a given SAT problem. Section (3) describes the
new local search algorithm. Section (4) discusses related work. Finally, Section
(5) concludes the paper.

2 Local Search on a Reformulated Problem

Our first approach is to apply existing local search algorithms to a reformulation
of the original SAT problem: a solution to the reformulation corresponds to a
refutation of the original problem. A potential drawback with this approach is
the sheer size of the reformulation, and it is noted in [18] that a key issue is
the need to find smaller proof objects . Much of our effort is therefore devoted to
reducing the size of the reformulation.

2.1 Initial Model

Suppose we have an unsatisfiable SAT problem with n variables v1 . . . vn and m
clauses, and we want to prove unsatisfiability using no more than r resolvents.
We can represent the proof as an ordered list of m + r clauses, with the first
m clauses being those of the problem, and each of the other clauses being a
resolvent of two earlier clauses (which we call the parents of the resolvent).
The final resolvent must be empty. This meta-problem can be SAT-encoded as
follows.

Define meta-variables xikp (where i < k and p ∈ {0, 1}) to be true (T ) iff
clause k in the list is a resolvent of clause i and another unspecified clause in the
list, using an unspecified variable occurring in i as either a positive (p = 1) or
negative (p = 0) literal. Define ukv = T iff clause k was the result of a resolution
using variable v. Define oivp = T iff literal v/p occurs in clause i: v/1 denotes
literal v, and v/0 literal v̄, and we shall refer to p as the sign of the literal. Define
dkvq = T iff variable v in resolvent k occurs in a literal v/q in the parent clause.
For example if clause 10 (v̄36 ∨ v37) is resolved with clause 12 (v36 ∨ v38) to
give clause 17 (v37 ∨ v38) then the following meta-variables are all true: o36,10,0,
o37,10,1, o36,12,1, o38,12,1, o37,17,1, o38,17,1, x10,17,0, x12,17,1, u17,36, d17,37,0, d17,38,1.
There are O(r2 + rm + rn + mn) meta-variables.

The meta-clauses are as follows, with their space complexities in terms of
number of literals. We represent the SAT problem by the following unary meta-
clauses for all literals v/p [not] occurring in clauses i:

oivp [ōivp] O(mn) (1)

Each resolvent must be the resolvent of one earlier clause in the list using a
variable positively and one negatively. We use two sets of meta-clauses to ensure
that at least one, and no more than one, earlier clause is used:
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∨
i

xikp O(r(m + r)) (2)

x̄ikp ∨ x̄jkp O(r(m + r)2) (3)

Exactly one variable is used to generate a resolvent:∨
v

ukv O(nr) (4)

ūkv ∨ ūkw O(n2r) (5)

If k is a resolvent using v then v does not occur in k:

ūkv ∨ ōkvp O(nr) (6)

If k is the resolvent of i and another clause using a variable with sign p, and k
is a resolvent using variable v, then v/p occurs in i:

x̄ikp ∨ ūkv ∨ oivp O(nr(m + r)) (7)

Every literal in k occurs in a literal of at least one of its parent clauses:

ōkvp ∨ dkv0 ∨ dkv1 O(nr) (8)
d̄kvq ∨ ōkvp ∨ x̄ikq ∨ oivp O(nr(m + r)) (9)

(Variables dkvq were introduced to avoid referring to both parent clauses of k in
a single meta-clause, which would increase the space complexity.) If i is a parent
clause of k using a variable occurring with sign p in i, v/p occurs in i, and v was
not used in the resolution generating k, then v/p occurs in k:

x̄ikp ∨ ōivp ∨ ukv ∨ okvp O(nr(m + r)) (10)

If i is a parent clause of k using a variable occurring with sign p in i, and v/p̄
occurs in i, then v/p̄ occurs in k:

x̄ikp ∨ ōivp̄ ∨ okvp̄ O(nr(m + r)) (11)

The last resolvent is empty:

ōm+r vp O(n) (12)

Tautologous resolvents are excluded (we assume that the original problem con-
tains no tautologies): ∨

p

ōkvp O(nr) (13)

Every resolvent is used in a later resolution, so for m ≤ i < k ≤ m + r:∨
k

∨
p

xikp O(r2) (14)

This meta-encoding has O(nr(m + r)2 + n2r) literals which can be reduced in
several ways as follows.
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2.2 Model Reduction by Unit Resolution

The model can be reduced by observing that many meta-variables appear in
unary meta-clauses, and can therefore be eliminated. For every variable v and
every original clause i we have a meta-variable oivp that occurs in a unary meta-
clause (either ōivp or oivp depending on whether literal v/p occurs in i). All of
these O(mn) meta-variables can be eliminated by resolving on the unary meta-
clauses (1). For any such unary clause l: any clause A ∨ l is a tautology and
can be removed; any clause A ∨ l̄ can be replaced by A via unit resolution and
subsumption; and clause l itself can then be deleted by the pure literal rule. This
leaves O(r2 +mr+nr) meta-variables. If we are searching for a short proof then
mn is the dominant term in the number of meta-variables, so we have eliminated
most of them. The complexity of some sets of meta-clauses is reduced by unit
resolution. Suppose that λ is the mean clause length divided by n, so that mnλ
is the size in literals of the original problem. Then after unit resolution (7,8,9)
become O(nr(m(1−λ)+ r) and (10,11) become O(nr(mλ+ r)). The total space
complexity of (7,8,9,10,11) is still O(nr(m + r)) but we will eliminate some of
these below.

2.3 Model Reduction by Weakening Rule

We can greatly reduce the space complexity by allowing the proof to use the
weakening rule, in which any literals may be added to a clause as long as this does
not create a tautology. This allows us to remove some of the largest sets of meta-
clauses: (7,8,9), removing the nr(m(1−λ)+ r) terms from the space complexity.
This is a significant reduction: in a SAT problem without tautologous clauses λ ≤
0.5 but a typical problem will have a much smaller value, for example in a random
3-SAT problem λ = 3

n , and the meta-encoding with r = 10 of a 600-variable
problem from the phase transition is reduced from approximately 92,000,000
to 300,000 clauses (in both cases applying all our other reduction techniques).
Removing these meta-clauses allows new literals to be added to a resolvent. For
example A ∨ x and B ∨ x̄ may be the parent clauses of A ∨ B ∨ C for some
disjunction C. The dkvq variables no longer occur in any meta-clauses and can
be removed. The total space complexity is now O(r(m+ r)2 +n2r+nr(mλ+ r))
literals.

2.4 Model Reduction by Allowing Multiple Premises

We can eliminate the r(m + r)2 complexity term by dropping meta-clauses (3),
allowing a resolvent to have more than one parent clause of a given sign. For
example A∨x, A∨x and B∨ x̄ may be parent clauses of A∨B. When combined
with the use of the weakening rule we obtain the more general: x ∨ Ai and
x̄ ∨Bj may all be parent clauses of

∨
i Ai ∨

∨
j Bj (assuming that this clause is

non-tautologous) because each of the possible resolvents can be extended to this
clause via weakening. The total space complexity is now O(n2r + nr(mλ + r))
literals.
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2.5 Model Reduction by Ladder Encoding

We can eliminate the n2r term by replacing meta-clauses (5) with a ladder encod-
ing of the at-most-one constraint, adapted from [11]. Because we are using local
search we are not concerned with the propagation properties of the encoding, so
we can omit some clauses from the original ladder encoding. Define O(nr) new
variables lkv and add ladder validity clauses lkv ∨ l̄k v−1 and channelling clauses
ūkv∨ l̄k v−1 and ūkv∨lkv . These clauses are sufficient to prevent any pair ukv, ukw

from both being true. This set of meta-clauses has only O(nr) literals instead
of the O(n2r) of (5), so the total space complexity is now O(nr(mλ + r)). In
summary, the reduced meta-encoding contains O(r2 + mr + nr) variables and
O(nr2 + rs) literals where s = mnλ is the size in literals of the original SAT
problem. We conjecture that this cannot be reduced further.

2.6 Discussion of the Meta-encoding

A useful property of the model is that we can overestimate r, which we would
not normally know precisely in advance. This is because for any proof of length
r there exists another proof of length r + 1. Suppose a proof contains a clause
i : x ∨A and a later clause j : x̄ ∨B, which are resolved to give k : A ∨B ∨ C
where A,B,C are (possibly empty) disjunctions of literals and C is introduced
by weakening. Then between j and k we can insert a new clause k′ : x∨A∨B∨C
derived from i, j and derive k from i, k′. If a appears in C then first remove it;
we can always remove literals introduced by weakening without affecting the
correctness of the proof.

Whereas local search on a SAT problem can prove satisfiability but not unsat-
isfiability, local search on the meta-encoding can prove unsatisfiability but not
satisfiability. We can apply any standard local search algorithm for SAT to a
meta-encoded problem. Many such algorithms have a property called probabilis-
tic approximate completeness (PAC) [15]: the probability of finding a solution
tends to 1 as search time tends to infinity. PAC has been shown to be an im-
portant factor in the performance of practical local search algorithms [15], and
we expect it to be important also in proving unsatisfiability. If we use a PAC
local algorithm then it will eventually refute any unsatisfiable problem, given
sufficient time and assuming that we set the proof length r high enough.

2.7 Experiments

The local search algorithm we use is RSAPS [16], a state-of-the-art dynamic local
search algorithm that has been shown to be robust over a variety of problem types
using default runtime parameters. Its performance can sometimes be improved
by parameter tuning but in our experiments the difference was not great, nor did
any other local search algorithm we tried perform much better. All experiments
in this paper were performed on a 733 MHz Pentium II with Linux.
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We will make use of two unsatisfiable problems. One is derived from the well-
known pigeon hole problem: place n + 1 pigeons in n holes, such that no hole
receives more than one pigeon. The SAT model has variables vij for pigeons i
and holes j. Clauses

∨
j vij place each pigeon in at least one hole, and clauses

v̄ij ∨ v̄i′j prevent more than one pigeon being placed in any hole. The 2-hole
problem, which we denote by HOLE2, has a refutation of size 10. The other
problem is one we designed and call HIDER:

a1 ∨ b1 ∨ c1 ā1 ∨ d ∨ e b̄1 ∨ d ∨ e c̄1 ∨ d ∨ e
a2 ∨ b2 ∨ c2 ā2 ∨ d̄ ∨ e b̄2 ∨ d̄ ∨ e c̄2 ∨ d̄ ∨ e
a3 ∨ b3 ∨ c3 ā3 ∨ d ∨ ē b̄3 ∨ d ∨ ē c̄3 ∨ d ∨ ē
a4 ∨ b4 ∨ c4 ā4 ∨ d̄ ∨ ē b̄4 ∨ d̄ ∨ ē c̄4 ∨ d̄ ∨ ē

From these clauses we can derive d∨e, d̄∨e, d∨ē or d̄∨ē in 3 resolution steps each.
For example resolving (a1∨b1∨c1) with (ā1∨d∨e) gives (b1∨c1∨d∨e); resolving
this with (b̄1 ∨ d ∨ e) gives (c1 ∨ d ∨ e); and resolving this with (c̄1 ∨ d ∨ e) gives
(d∨e). From these 4 resolvents we can obtain d and d̄ (or e and ē) in 2 resolution
steps. Finally, we can obtain the empty clause in 1 more resolution step, so this
problem has a refutation of size 15. We designed HIDER to be hidden in random
3-SAT problems as an unsatisfiable sub-problem with a short refutation. All its
clauses are ternary and no variable occurs more than 12 times. In a random 3-
SAT problem from the phase transition each variable occurs an expected 12.78
times, so these clauses blend well with the problem, and a backtracker has no
obvious reason to focus on the new variables. Moreover, a resolution refutation of
HIDER requires the generation of quaternary clauses, which SATZ’s compactor
preprocessor [19] does not generate. We combine both HIDER and HOLE2 with
a random 3-SAT problem by renumbering their variables so that they are distinct
from the 3-SAT variables, then taking the union of the two clause sets. We denote
such a combination of two problems A and B by A+B, where A’s variables are
renumbered. We performed experiments to obtain preliminary answers to several
questions.

What is the effect of the weakening rule on local search perfor-
mance? To allow weakening in the refutation we may remove some meta-clauses
as described in Section 2.3. Dropping clauses from a SAT problem can increase
the solution density, which sometimes helps local search to solve the problem,
but here it has a bad effect. RSAPS was able to refute HIDER in a few seconds
(it is trivial to refute by DPLL) using the meta-encoding without weakening, but
with weakening it did not terminate in a reasonable time. This was surprising for
such a tiny problem: perhaps the meta-encoding is missing some vital ingredient
such as a good set of implied clauses.

What is the effect of allowing unused resolvents? We tested the effect
of dropping meta-clauses (14), which are optional (and do not affect the space
complexity). Removing them allows a resolvent to be added to the proof then
not used further. In experiments omitting them made HIDER much harder to
refute, presumably by not penalising the construction of irrelevant chains of
resolvents.
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What effect does the allowed proof length have on local search per-
formance? On HIDER under the original meta-encoding (without weakening)
RSAPS finds the refutation very hard with r set to its minimum value of 15.
However, as r increases the runtime decreases to a few seconds. The number of
flips decreases as r increases, but the increasing size of the model means that
using larger r eventually ceases to pay off.

Can local search on a reformulation beat DPLL on an unsatisfiable
problem? We combined HOLE2 with f600, a fairly large, satisfiable, random 3-
SAT problem from the phase transition region.1 HOLE2+f600 has a refutation of
size 10 and we set r = 20. ZChaff [21] aborted the proof after 10 minutes, whereas
RSAPS found a refutation in a median of 1,003,246 flips and 112 seconds, over
100 runs. However, SATZ refutes the problem almost instantly.

3 Local Search on Multisets of Resolvents

A drawback with the reformulation approach is that it is only practical for
proofs of relatively small size. Our second approach is to design a new local
search algorithm that explores multisets of resolvents, and can in principle find
a proof of any size while using only bounded memory. To determine how much
memory is required we begin by reviewing a theoretical result from [8].

Given an unsatisfiable SAT formula φ with n variables and m clauses, a general
resolution refutation can be represented by a series of formulae φ1, . . . , φs where
φ1 consists of some or all of the clauses in φ, and φs contains the empty clause.
Each φi is obtained from φi−1 by (optionally) deleting some clauses in φi−1,
adding the resolvent of two remaining clauses in φi−1, and (optionally) adding
clauses from φ. The space of a proof is defined as the minimum k such that each
φi contains no more than k clauses.

Intuitively each φi represents the set of active clauses at step i of the proof.
Inactive clauses are not required for future resolution, and after they have been
used as needed they can be deleted. It is proved in [8] that the space k need be
no larger than n + 1: possibly fewer clauses than in φ itself.

The width of a proof is the length (in literals) of the largest clause in the
proof. Any non-tautologous clause must have length no greater than n, so this
is a trivial upper bound for the width used for our algorithm. However, short
proofs are also narrow [3] so in practice we may succeed even if we restrict
resolvent length to some small value. This may be useful for saving memory on
large problems.

Thus we can in principle find a large refutation using a modest amount of
working memory. But finding such a proof may not be easy. We shall use the
above notions as the basis for a novel local search algorithm that performs a
randomised but biased search in the space of formulae φi. Each φi will be of the
same constant size, and derived from φi−1 by the application of resolution or
the replacement of a clause by one taken from φ. We call our algorithm ranger
(RANdomised GEneral Resolution).
1 Available at http://www.cs.ubc.ca/˜hoos/SATLIB/
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3.1 The Algorithm

The ranger architecture is shown in Figure 1. It has six parameters: the size k
of the φi, the width w, three probabilities pi, pt, pg and the formula φ.

1 RANGER(φ, pi, pt, pg, w, k):
2 i ← 1 and φ1 ← {any k clauses from φ}
3 while φi does not contain the empty clause
4 with probability pi

5 replace a random φi clause by a random φ clause
6 otherwise
7 resolve random φi clauses c, c′ giving r
8 if r is non-tautologous and |r| ≤ w
9 with probability pg

10 if |r| ≤ max(|c|, |c′|) replace the longer of c, c′ by r
11 otherwise
12 replace a random φi clause by r
13 with probability pt

14 apply any satisfiability-preserving transformation to φ,φi

15 i ← i + 1 and φi+1 ← {the new formula}
16 return UNSATISFIABLE

Fig. 1. The ranger architecture

ranger begins with any sub-multiset φ1 ⊆ φ (we shall interpret φ, φi as mul-
tisets of clauses). It then performs iterations i, each either replacing a φi clause
by a φ clause (with probability pi), or resolving two φi clauses and placing the
result r into φi+1. In the latter case, if r is tautologous or contains more than
w literals then it is discarded and φi+1 = φi. Otherwise a φi clause must be
removed to make room for r: either (with probability pg) the removed clause is
the longer of the two parents of r (breaking ties randomly), or it is randomly
chosen. In the former case, if r is longer than the parent then r is discarded
and φi+1 = φi. At the end of the iteration, any satisfiability-preserving trans-
formation may (with probability pt) be applied to φ, φi+1 or both. If the empty
clause has been derived then the algorithm terminates with the message “unsat-
isfiable”. Otherwise the algorithm might not terminate, but a time-out condition
(omitted here for brevity) may be added.

Local search algorithms usually use greedy local moves that reduce the value
of an objective function, or plateau moves that leave it unchanged. However, they
must also allow non-greedy moves in order to escape from local minima. This
is often controlled by a parameter known as noise (or temperature in simulated
annealing). But what is our objective function? Our goal is to derive the empty
clause, and a necessary condition for this to occur is that φi contains at least some
small clauses. We will call a local move greedy if it does not increase the number
of literals in φi. This is guaranteed on line 10, so increasing pg increases the
greediness of the search, reducing the proliferation of large resolvents. There may
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be better forms of greediness but this form is straightforward, and in experiments
it significantly improved performance on some problems.

3.2 A Convergence Property

We show that ranger has the PAC property, used here to mean that given
sufficient time it will refute any unsatisfiable problem:

Theorem. For any unsatisfiable SAT problem with n variables and m clauses,
ranger is PAC if pi > 0, pi, pt, pg < 1, w = n and k ≥ n + 1.

Proof. Firstly, any proof of the form in [8] can be transformed to one in
which (i) all the φi have exactly k clauses, possibly with some duplications,
and (ii) φi+1 is derived from φi by replacing a clause either by a φ clause or a
resolvent of two φi clauses. Take any proof and expand each set φi to a multiset
φ′

i by adding arbitrary φ clauses, allowing duplications. Suppose that φi+1 was
originally derived from φi by removing a (possibly non-empty) set S1 of clauses,
adding the resolvent r of two φi clauses, and adding a (possibly non-empty) set
S2 of clauses. Then φ′

i+1 can be derived from φi by removing a multiset S′
1 of

clauses, adding r, and adding another multiset S′
2. Because all the φ′

i are of the
same size k it must be true that |S′

1| + 1 = |S′
2|. Then we can derive φ′

i+1 from
φ′

i by replacing one S′
1 clause by r, then then replacing the rest by S′

2 clauses.
Secondly, any transformed proof may be discovered by ranger from an arbi-

trary state φ′
i. Suppose that the proof begins from a multiset φ∗. Then φ′

i may
be transformed into φ∗ in at most k moves (they may already have clauses in
common), each move being the replacement of a φ′

i clause by a φ∗ clause. From
φ∗ the transformed proof may then be recreated by ranger, which at each move
may perform any resolution or replacement. �

3.3 Subsumption and Pure Literal Elimination

Lines 13–14 provide an opportunity to apply helpful satisfiability-preserving
transformations to φ or φi or both. We apply the subsumption and pure lit-
eral rules in several ways:

– Randomly choose two φi clauses c, c′ containing a literal in common. If c
subsumes c′ then replace c′ by a random φ clause.

– Randomly choose two φ clauses c, c′ containing a literal in common. If c
subsumes c′ then delete c′.

– Randomly choose a φ clause c and a φi clause c′ containing a literal in
common. If c strictly subsumes c′ then replace c′ by c.

– If a randomly-chosen φi clause c contains a literal that is pure in φ then
replace c by a randomly-chosen φ clause.

– If a randomly-chosen φ clause c contains a literal that is pure in φ then delete
c from φ.
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Each of these rules is applied once per ranger iteration with probability pt.
Using φi clauses to transform φ, a feature we shall call feedback , can preserve
useful improvements for the rest of the search. (We believe that for these par-
ticular transformations we can set pt = 1 without losing completeness, but we
defer the proof until a later paper.) Note that if φ is reduced then this will soon
be reflected in the φi via line 5 of the algorithm.

The space complexity of ranger is O(n + m + kw). To guarantee the PAC
propertywe requirew = n and k ≥ n+1 so the complexity becomes at leastO(m+
n2). In practice we may require k to be several times larger, but a smaller value ofw
is often sufficient. Recall that the meta-encoding has space complexityO(nr2 +rs)
where s is the size of the original problem and r the proof length. Thus for short
proofs the meta-encoding may be economical, but ranger’s space complexity has
the important advantage of being independent of the length of the proof.

A note on implementation. We maintain a data structure that records the
locations in φ and φi of two clauses containing each of the 2n possible literals.
Two locations in this structure are randomly updated at each iteration and used
during the application of resolution, subsumption and the pure literal rule. The
implementation could no doubt be improved by applying the pure literal rule and
unit resolution as soon as possible, but our prototype relies on these eventually
being applied randomly.

3.4 Experiments

Again we performed experiments to answer some questions.
Does ranger perform empirically like a local search algorithm?

Though ranger has been described as a local search algorithm and has the
PAC property, it is very different from more standard local search algorithms.
It is therefore interesting to see whether its runtime performance is similar to
a standard algorithm. Figure 2 shows run-length distributions of the number of
iterations required for ranger to refute HIDER+f600, with pi = 0.1, pt = 0.9,
k = 10m, and 250 runs per curve. With no greed (pg = 0.00) there is heavy-
tailed behaviour. With maximum greed (pg = 1.00, not shown) a refutation
cannot be found because HIDER’s refutation contains quaternary resolvents,
which require non-greedy moves to derive from the ternary clauses. With high
greed (pg = 0.99) the median result is worse but there is no heavy tail. The best
results are with a moderate amount of greed (such as pg = 0.50): there is no
heavy-tailed behaviour and the median result is improved.

What is the effect of space on ranger’s performance? Though a low-
space proof may exist, performance was often improved by allowing more space:
10m usually gave far better results than the theoretical minimum of n + 1.

What is the effect of feedback on ranger’s performance? Feedback
was observed to accelerate refutation on some problems, especially as φ is some-
times reduced to a fraction of its original size.

Can ranger beat a non-trivial complete SAT algorithm on an unsat-
isfiable problem? It refutes HOLE2+f600 in about 0.15 seconds: recall that
RSAPS on the meta-encoding took over 100 seconds, which beat ZChaff but
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Fig. 2. Three run-length distributions for ranger

not SATZ. ranger also refutes HIDER+f600 in about 1 second, easily beating
several backtrackers which take at least tens of minutes: ZChaff, SATZ, Siege,
POSIT and Minisat (if we renumber the variables, because Minisat branches on
the variables in reverse lexicographic order). On this problem ranger performs
roughly 130,000 iterations per second.

How does ranger perform on benchmarks? It can refute the automotive
product configuration problems of [27] in seconds or minutes, depending on the
instance, but these are easier for current backtrackers. It is interesting to note
that these problems are reduced to a fraction of their original size (approximately
1
20 ) by ranger’s feedback mechanism. ranger also refutes aim-100-2 0-no-1 in
a few seconds, whereas Rish & Dechter’s DR resolution algorithm [23] takes tens
of minutes, as does the Tableau backtracker. But their resolution/backtrack hy-
brid algorithms take under 1 second, as does the compactor algorithm alone.
On unsatisfiable random 3-SAT problems ranger performs very poorly: an
interesting asymmetry, given that local search performs well on satisfiable ran-
dom problems. The DR algorithm refutes the dubois20/21 benchmarks quite
quickly while ranger finds them very hard. ranger refutes ssa0432-003 in
about 40 minutes, backtrackers take seconds, DR takes a long time, and a res-
olution/backtrack hybrid takes 40 seconds. ranger, DR and the hybrids take
a long time on bf0432-007, but current backtrackers find it easy. These results
are mixed, but in future work we hope to find a useful class of SAT problems
on which ranger is the algorithm of choice. These problems should be unsat-
isfiable, fairly large, not susceptible to backtrack search, and require resolution
proof of non-trivial width.

4 Related Work

As of 2003 no work had been done on using local search to prove unsatisfiability
[18], and we are unaware of any such work since. However, some research may be
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viewed as moving in this direction. Local search can be made complete by using
learning techniques, for example GSAT with dynamic backtracking [12], learn-
SAT [22] and Complete Local Search [9]. But the aim of these algorithms seems
to be to improve performance on satisfiable problems, not to speed up proof
of unsatisfiability. Learning algorithms may also require exponential memory in
the worst case, though in practice polynomial memory is often sufficient.

Backtracking algorithms have been modified with local search techniques, to
improve performance on both satisfiable and unsatisfiable problems. Recently
[20] proposed randomly selecting backtrack points within a complete backtrack
search algorithm. Search restarts can also be seen as a form of randomization
within backtrack search, and have been shown to be effective on hard SAT
instances [13]. The search is repeatedly restarted whenever a cutoff value is
reached. The algorithm proposed is not complete, since the restart cutoff point is
kept constant. But in [2] search restarts were combined with learning for solving
hard, real-world instances of SAT. This latter algorithm is complete, since the
backtrack cutoff value increases after each restart. Local search has also been
used to finding a good variable ordering, which is then used to speed up a DPLL
proof of unsatisfiability [5].

Hybrid approaches have also been tried for the more general class of QBF for-
mulas. WalkQSAT [10] has two main components. The first is the QBF engine,
which performs a backjumping search based on conflict and solution directed
backjumping. The second is the SAT engine, which is a slightly adapted version
of the WalkSAT local search algorithm used as an auxiliary search procedure to
find satisfying assignments quickly. The resulting solver is incomplete as it can
terminate without a definite result. WalkMinQBF [17] has also two main compo-
nents. The first is a local search algorithm that attempts to find an assignment
to the universal variables that is a witness for unsatisfiability. The second is a
complete SAT solver that tests the truth or falsity of SAT formulas that result
from assigning the universal variables. WalkMinQBF is also incomplete: it out-
puts unsatisfiable if a certificate of unsatisfiability is found, otherwise it outputs
unknown.

5 Conclusion

We proposed two distinct ways in which local search can be used to prove unsat-
isfiability, and demonstrated that there exist problems on which they outperform
backtracking (and in some cases systematic resolution) algorithms. As far as we
know, this is the first work reporting progress on the fifth SAT challenge of [25].
In experiments with both methods we noted an interesting trend: that short and
low-space proofs are harder to find by local search. It is therefore advisable to
allow greater length and space than theoretically necessary.

The more successful of our two approaches used randomised general resolution
with greedy heuristics and other techniques. It is perhaps surprising that this
relatively short-sighted algorithm beats a sophisticated dynamic local search
algorithm, though they explore different search spaces and cannot be directly
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compared. In future work we hope to improve the first approach by modifying
the reformulation, and the second by finding improved heuristics.

Powerful proof systems such as general resolution can in principle be used
to solve harder problems than more simple systems. In practice such systems
are rarely used, partly because of their excessive memory consumption, but also
because no good strategy is known for applying the inference rules in order to
find a small proof. In fact there may be no such strategy [1], and we suggest that
a non-systematic approach is an interesting research direction for such proof
systems.
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Abstract. The Local Search algorithm is one of the simplest heuristic
algothms for solving the MAX-SAT problem. The goal of this paper is
to estimate the relative error produced by this algorithm being applied
to random 3-CNFs with fixed density �. We prove that, for any �, there
is a constant c such that a weakened version of Local Search that we call
One-Pass Local Search almost surely outputs an assignment containing
cn + o(n) unsatisfied clauses. Then using a certain assumtion we also
show this for Local Search. Although the assumption remains unproved
the results well matches experiments.

1 Introduction

In the Local Search (LS) algorithm we start with a random assignment to a
CNF, and then on each step we choose at random a variable such that flipping
this variable increases the number of satisfied clauses, or stop if such a variable
does not exist. LS is one of the oldest algorithms for solving the SAT and MAX-
SAT problems. Numerous variations of this method have been proposed starting
from the late eighties, see for example [4,8].

It is well known that the worst-case performance of ‘pure’ LS is not very good:
the only known lower bound for local optima of a k-CNF is k

k+1m, m the number
of clauses [5]. Many other approximation algorithms, for example Goemans and
Williamson’s [3], Karloff and Zwick’s [6] algorithms and their improvements (see
for instance [2]), guarantee much better results than LS. However, it is also an
empirical fact that the expected performance of LS is much better than k

k+1m
bound. This is also supported by the result by Koutsoupias and Papadimitriou
[7] that for almost all satisfiable 3-CNFs LS almost surely finds a satisfying
assignment.

The goal of this paper is to study the expected performance of LS on random
3-CNFs of the form Φ(n, �n), � fixed, where n is the number of variables and
�n is the number of clauses. We consider also a weakened version of LS, the
One-Pass LS (OLS) algorithm, in which every variable is visited only once in
a certain order, and if flipping the variable increases the number of satisfied
clauses then it flipped, otherwise it is never considered again. For OLS we build
a model similar to the ‘card-game’ from [1] and then use Wormald’s theorem [9]
to show that for any � there is a constant c such that almost surely OLS finds an
assignment satisfying cn + o(n) clauses. Then we extend this framework to LS
and obtain the same result under a certain assumption that remains unproved.

A. Biere and C.P. Gomes (Eds.): SAT 2006, LNCS 4121, pp. 297–310, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Input: a random 3-CNF Φ

Output: the number of unsatisfied assignments in the resulting formula Φ′

Step 1 compute the set W of variables X such that A(X) > B(X)
Step 2 while W �= ∅ do
Step 2.1 choose a variable X from W uniformly at random
Step 2.2 for every clause C ∈ Φ containing X or ¬X replace X with ¬X and

¬X with X
Step 2.3 compute the set W of variables X such that A(X) > B(X)

endwhile
Step 3 output the number of clauses in Φ with 3 negative literals

Fig. 1. The Local Search algorithm

2 Preliminaries

2.1 MAX-SAT and Local Search

First we give formal definitions of the main objects involved.
In the MAX-SAT problem we are given a CNF Φ. The goal is to find an

assignment of the variables of Φ that satisfies maximum number of clauses. The
MAX-SAT problem restricted to k-CNFs is called the MAX-k-SAT problem.

The model of random CNF we use is the random 3-CNFs with fixed density.
Thus Φ(n,m) denotes a random CNF with m 3-clauses over n Boolean variables,
where clauses are chosen uniformly and independently among 8

(
n
3

)
clauses with-

out repetitions of variables. Repetitions of clauses are allowed.
We consider the following version of LS. Given a CNF, choose a random

assignment π and repeat the following steps while this is possible: Find the set
of variables W such that flipping a variable X from W , that is setting π′(X) =
¬π(X) keeping all other values, decreases the number of unsatisfied constraints;
choose a variable X from W uniformly at random; flip X .

The standard setting of the LS algorithm involves on the first step two ran-
dom objects — a formula and an assignment. It is easy to see that for the
purpose of studying performance one of them can be eliminated. We are going
to fix an assignment, it will be π(X) = 1 for all X and change the formula.
By AΦ(X), BΦ(X) we denote the number of unsatisfied clauses in Φ containing
¬X (this means that all literals in such clauses are negative), and the number
of clauses in Φ containing X , and therefore satisfied, such that the two other
literals are negative, respectively. As Φ is always clear from the context, we shall
omit it. A formal description of LS is given in Fig. 1.

Along with the standard LS algorithm we will study its weakened version that
we call the One-Pass Local Search algorithm (OLS), see Fig. 2. Obviously, it does
not make any difference if one chooses a predefined order on the variable set in
the very beginning of the OLS algorithm, as it is done in Fig.2, or a variable to
flip is chosen at random on every step without repetitions.
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Input: a random 3-CNF Φ with n variables

Output: the number of unsatisfied assignments in the resulting formula Φ′

Step 1 for t = 1 to n do
Step 1.1 calculate A(Xt) and B(Xt)
Step 1.2 if A(Xt) > B(Xt) then do
Step 1.2.1 for every clause C ∈ Φ containing Xt or ¬Xt replace Xt with ¬Xt

and ¬Xt with Xt

endif
endfor

Step 2 output the number of clauses in Φ with 3 negative literals

Fig. 2. The One-Pass Local Search algorithm

2.2 Wormald’s Theorem

The key stage in our analysis is the theorem by Wormald [9] that allows one
to replace probabilistic analysis of combinatorial algorithm with analysis of a
deterministic system of differential equations.

All random processes are discrete time random processes. Such a process is a
probability space Ω denoted by (Q0, Q1, . . .), where each Qi takes values in some
set S. Consider a sequence Ωn, n = 1, 2, . . ., of random processes. The elements
of Ωn are sequences (q0(n), q1(n), . . .) where each qi(n) ∈ S. For convenience the
dependence of n will usually be dropped from the notation. Asymptotics, denoted
by the notation o and O, are for n → ∞, but uniform over all other variables. For
a random X , we say X = o(f(n)) always if max{x|P(X = x) �= 0} = o(f(n)).
An event occurs almost surely (a.s.) if its probability in Ωn is 1−o(1). We denote
by S+ the set of all ht = (q0, . . . , qt), each qt ∈ S for t = 0, 1 . . .. By Ht we denote
the history of the processes, that is the n × (t + 1)-matrix with entries Qi(j),
0 ≤ i ≤ t, 1 ≤ j ≤ n.

A function f(u1, . . . , uj) satisfies a Lipschitz condition on D ⊆ Rj if a constant
L > 0 exists with the property that

|f(u1, . . . , uj) − f(v1, . . . , vj)| ≤ L

j∑
i=1

|uj − vi|

for all (u1, . . . , uj) and (v1, . . . , vj) in D.

Theorem 1 (Wormald, [9]). Let k be fixed. For 1 ≤ � ≤ k, let y(�) : S+ → R

and f� : Rk+1 → R, such that for some constant C and all �, |y(�)| < Cn for all
ht ∈ S+ for all n. Suppose also that for some function m = m(n):
(i) for all � and uniformly over all t < m, P(|Y (�)

t+1 − Y
(�)
t | > n1/5 | Ht) =

o(n−3) always;
(ii) for all � and uniformly over all t < m,

E(Y (�)
t+1 − Y

(�)
t | Ht) = f�(t/n, Y

(1)
t /n, . . . , y

(k)
t /n) + o(1) always;

(iii) for each � the function f� is continuous and satisfies a Lipschitz condi-
tion on D, where D is some bounded connected open set containing the
intersection of {(t, z(1), . . . , z(k)) | t ≥ 0} with some neighbourhood of
{(0, z(1), . . . , z(k)) | P(Y (�)

0 = z(�)n, 1 ≤ � ≤ k) �= 0 for some n}.
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Then:
(a) For (0, ẑ(1), . . . , ẑ(k)) ∈ D the system of differential equations

dz�

ds
= f�(s, z1, . . . , zk), � = 1, . . . , k, has a unique solution in D for z� : R →

R passing through z�(0) = ẑ(�), 1 ≤ � ≤ k, and which extends to points
arbitrarily close to the boundary of D.

(b) Almost surely Y
(�)
t = nz�(t/n) + o(n) uniformly for 0 ≤ t ≤ min{σn,m}

and for each �, where z�(s) is the solution in (a) with ẑ(�) = Y
(�)
0 /n, and

σ = σ(n) is the supremum of those s to which the solution can be extended.

3 One Pass Local Search

3.1 Model

To analyze the OLS algorithm we use an extended version of the ‘card game’
framework, see [1]. Every clause of CNF Φ is represented by three cards. At step
t the intermediate opens all cards with Xt or ¬Xt and also tells us the ‘polarity’
of the remaining literals in the clauses containing Xt,¬Xt (that is how many of
them are negative). Then we compare the numbers a(Xt) of clauses containing
¬Xt, the remaining literals of which are negative, and b(Xt) of clauses containing
Xt, the remaining literals of which are negative. If a(Xt) > b(Xt) then we flip Xt

replacing everywhere Xt with ¬Xt and ¬Xt with Xt. Finally we remove clauses
containing Xt and remove ¬Xt. If in the latter case a clause becomes empty we
count it as unsatisfied. Note that in contrast to the card games used in [1], in the
described game we have some information on the unopened cards, and therefore
the formula obtained on each step is not quite random. Thus a more thorough
analysis is required.

Such an analysis can be done by monitoring the dynamics of eight sets of
clauses that we define at each step of the algorithm. Let Φt denote the for-
mula obtained by step t. Variables (and the corresponding literals) from the
set {X1, . . . , Xt−1} will be called processed (they cannot change anymore), the
remainining variables will be called unprocessed. We define the following 8 sets:

– E∅ is the set of all clauses in Φt that do no contain processed literals;
– E1 is the set of all clauses in Φt containing a positive processed literal;
– E0 is the set of all clauses in Φt that contain three negated processed literals;
– E++, E−−, E+− are the sets of all clauses in Φt that contain one negated

processed literal and two positive, two negative, or a positive and negative
unprocessed literals, respectively;

– E+, E− are the sets of all clauses in Φt containing two processed negative
literals, and a positive, or a negative unprocessed literal, respectively.

We will denote sizes of these sets by e∅, e1, e0, e++, e+−, e−−, e+, e− respec-
tively, and the vector (e∅, e1, e0, e++, e+−, e−−, e+, e−) by e. These numbers will
be our random variables from Wormald’s theorem. All these values depend on
t, but we always refer to them at the current step t, and so drop t from the
notation. We also use v to denote n− t + 1.
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Fig. 3. Flow diagram

It is easy to see that clauses that once get to E0 or E1 never leave these sets,
and that at each step for each clause that doesn’t belong to E0 ∪ E1 there is a
chance to get to E1. The other possible transitions of clauses between the sets
are shown on Figure 3.

If E� and E� are some of the eight sets, then we will denote conditional
probability for a clause to move from set E� to E� by P(E� → E�), assuming a
certain particular value of vector e.

We will compute the probability that variableXt is flipped at step t. This event
happens when there are more unsatisfied clauses containing this variable (we de-
noted the set of such clauses by A(Xt)) than clauses that are satisfied only by Xt

(we denoted this set by B(xt)). Clauses from sets E−, E−− and E∅ can fall into
set A(Xt), while clauses from sets E+, E+− and E∅ can fall into B(Xt). Prob-
ability that a clause from E− belongs to A(Xt) equals 1

v , this is the probability
that Xt is written on the only card currently unrevealed in the clause. In a similar
way we compute such probabilities for clauses from E−− and E∅, it is easy to see
that they are equal to 2

v and 3
8v respectively. The probabilities that a clause from

E+, E+−, and E∅ belongs to B(Xt) equal 1
v , 1

v , and 3
8v respectively. Note that for

different clauses the considered events are independent.
Now let F (n1, n2, n3, p1, p2, p3) denote the event that exactly n1, n2, and n3

clauses from E−, E−−, and E∅ respectively belong to A(Xt), and exactly p1, p2,
and p3 clauses from E+, E+− and E∅ belong to B(Xt). By Bernoulli formula we
have

P(F (n1, n2, n3, p1, p2, p3)) =
(
e+

p1

)(
1
v

)p1 (e+−
p2

)(
1
v

)p2 (e∅

p3

)(
3
8v

)p3

×
(
e−
n1

)(
1
v

)n1 (e−−
n2

)(
2
v

)n2 (e∅

n3

)(
3
8v

)n3

As n tends to infinity, Bernoulli distribution tends to Poisson distribution and
we have

P(F (n1, n2, n3, p1, p2, p3)) =
(e+

v

)p1 (e+−
v

)p2
(

3e∅

8v

)p3 (e−
v

)n1

×
(

2e−−
v

)n2 (3e∅

8v

)n3 e
e+
v +

e+−
v +

3e∅

8v +
e−
v +

2e−−
v +

3e∅

8v

n1!n2!n3!p1!p2!p3!
+ O

(
1
n

)
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The probability that Xt is flipped can then be calculated as follows:

P(Xt is flipped) = P(|A(xt)| > |B(xt)|)

= P

( ∨
p1+p2+p3<n1+n2+n3

|A(xt)| = n1 + n2 + n3 & |B(t)| = p1 + p2 + p3

)

=
∑

n1+n2+n3>p1+p2+p3

P(F (n1, n2, n3, p1, p2, p3))

It will be convenient for us to denote the sum similar to that appearing in the
last line of the equation above, but over n1, n2, n3, p1, p2, p3 satisfying a certain
condition Ξ, by S(Ξ). Using this notation the probability that variable Xt is
flipped can be expressed as

P(Xt is flipped) = S(n1 + n2 + n3 > p1 + p2 + p3), (1)

when the parameters are clear from the context we denote this value by S.
Now we compute probability P(E∅ → E−−). A clause goes from E∅ to E−−

in two disjunctive cases. Firstly, if a clause has only negative literals, one of them
is ¬Xt, and Xt is not flipped. Secondly, if a clause has two negative literals, a
positive one, the positive literal is Xt, and Xt is flipped. The probability of the
first event equals 3

8v , and under this assumption the conditional probability that
Xt is flipped equals S(p1+p2+p3 < n1+n2+n3+1). The probability that a clause
has two negative and one positive literal Xt equals 3

8v as well, and under this
assumption the conditional probability that Xt flips equals S(p1 + p2 + p3 + 1 <
n1 + n2 + n3). We denote the two values specified in the last two sentences by
S+ and S− respectively. Thus

P(E∅ → E−−) =
3
8v

(S+ + S−) + o(
1
n

).

The other probabilities can be computed in a similar way:

P(E∅ → E+−) =
6
8v

+ o(
1
n

), P(E∅ → E++) =
3
8v

+ o(
1
n

),

P(E++ → E+) =
2
v
S + o(

1
n

), P(E+− → E+) =
1
v
(1 − S) + o(

1
n

),

P(E+− → E−) =
1
v
S− + o(

1
n

), P(E−− → E−) =
2
v
(1 − S+) + o(

1
n

),

P(E− → E0) =
1
v
(1 − S+) + o(

1
n

), P(E+ → E0) =
1
v
S− + o(

1
n

),

P(E∅ → E1) =
6S
8v

+
7(1 − S)

8v
+

3S+

8v
+

3(1 − S−)
8v

+ o(
1
n

),

P(E++ → E1) =
2
v
(1 − S) + o(

1
n

), P(E+− → E1) =
1
v
(1 − S− + S) + o(

1
n

),

P(E−− → E1) =
2
v
(S+ + o(

1
n

), P(E+ → E1) =
1
v
(1 − S−) + o(

1
n

),

P(E− → E1) =
1
v
S+ + o(

1
n

).
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The probabilities P (E� → E�) that are not mentioned above equal zero.
We are ready to check that random process (e(1), e(2), e(3), . . . ) satisfies con-

ditions (i) - (iii) of Wormald’s theorem.

(i) Let e� be a component of e. It is obvious that |e�(t+1)− e�(t)| is less than
the number of occurrences of Xt in Φ. The probability that Xt occurs in
some clause equals 3

n , therefore the probability that Xt occurs in k clauses

equals
(
n
k

) ( 3
n

)k. So assuming that n is large enough we have

P(Xt occurres in more that n1/5 clauses) =
n∑

k=n1/5

(
�n

k

)(
3
n

)k

=
n∑

k=n1/5

�n(�n− 1) . . . (�n− k + 1)3k

k!nk
≤ (3�)n1/5

n

n1/5!
= o(n−3).

(ii) Let e� be a component of e. Then we have

E(e�(t + 1) − e�(t)|Ht) =

∑
E� �=E�

⎛
⎝ ∑

C∈E�(t)

P(C ∈ E�(t + 1)) −
∑

C∈E�(t)

P(C ∈ E�(t + 1))

⎞
⎠ =

∑
e� �=e�

(e�P(E� → E�) − e�P(E� → E�)) . (2)

Thus we set s = t
n , f�(s) = 1

ne�(t) (as is easily seen, v ≈ n(1 − s)) and

p(s, n1, n2, n3, p1, p2, p3) =
(

3f∅(s)
8

)p3+n3 ( 1
1 − s

)n1+n2+n3+p1+p2+p3

× fp1
+ (s)fp2

+−(s)fn1− (s)(2f−−(s))n2
e

e+(s)+e+−(s)+e−(s)+2e−−(s)+3/4e∅(s)
1−s

n1!n2!n3!p1!p2!p3!
.

Then set

s0(s) =
∑

n1+n2+n3>p1+p2+p3

p(s, n1, n2, n3, p1, p2, p3),

s+(s) =
∑

n1+n2+n3+1>p1+p2+p3

p(s, n1, n2, n3, p1, p2, p3),

s−(s) =
∑

n1+n2+n3+1>p1+p2+p3

p(s, n1, n2, n3, p1, p2, p3).

Note that this functions are represented by series. Later we show that this
does not cause any problems. Finally, the required system of differential
equations can be obtained from equations (2) using s0(s), s+(s), s−(s) to
compute the probabilities instead of S0, S+, S−.
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(iii) The functions constructed above have two substantial deficiencies: they are
not defined when s = 1, and the series used to define them do not converge
uniformly in the naturally defined set D. However, this can be overcome
using a standard trick, namely, for each ε > 0, define set D such that it
includes only points with s ≤ 1− ε. It is not hard to see that, as the series
above are non-negative and bounded with 1, they converge uniformly in
any closed set. Then we find the required value as the limit when ε → 0.

Applying Wormald’s theorem we prove the following

Theorem 2. For any positive � and there is a constant c such that for a random
3-CNF Φ(n, �n) almost surely the OSL algorithm finds and assingment such that
the number of satisfied clauses equals cn + o(n).

4 Local Search

4.1 Model

In this section we use similar techniques to analyze the Local Search algorithm.
However, as every variable in this algorithm can be considered and flipped several
times we cannot use the card game approach; instead we have to find quite a
different set of random variables that represents properties of the problem crucial
for the performance of the algorithm. Although we were unable to carry out a
complete rigorous analysis, it turns out that such an analysis boils down to a
certain simple assumption (see Assumption 1 below). This assumption looks very
plausible, but we could not neither prove nor disprove it. Experiments show that
our model is accurate enough, this is why we believe that either Assumption 1
is true, or it can be replaced with a property that gives rise to an equivalent
model.

We need some notation. Let Φ be a 3-CNF and X a variable in Φ. By Qiα(X),
where i ∈ {0, 1, 2} and α ∈ {−,+}, we denote the set of clauses C such that
X ∈ C if α = +, ¬X ∈ C if α = −, and among the other two literals there
are exactly i positive. If C ∈ Qiα we also say that C has type iα for X , and
that variable X occupies position of type iα in the clause C. Let also qiα(X)
denote the size of Qiα(X). By Ea, a = (a0−, a0+, a1−, a1+, a2−, a2+) we denote
the set of all variables X of Φ such that qiα(X) = aiα for all i and α. By ea we
denote the size of Ea. As Φ is changing over time all these sets and numbers are
actually fuctions of the number of steps made. Thus, sometimes we use notation
Ea(t), ea(t). Functions ea(t) will be the random variables required in Wormald’s
theorem. If X ∈ Ea then variable X is said to have type a. Note that as n grows
the number of different tuples a and therefore the number of random variables
also grow. To overcome this problem we will consider only those variables that
appear in at most M clauses for some fixed M . Clearly, this does affect the
analysis, but in a certain controllable way, as we shall see.

Before checking conditions (i)–(iii) of Theorem 1 we make a simple
observation.
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Lemma 1. If Φ is a random 3-CNF of density � with n variables, then for a
variable X

P(qiα(X) = a) =

( 3
8

)a
e3/8

a!
+ o(1) if i = 0, 2,

P(qiα(X) = a) =

( 3
4

)a
e3/4

a!
+ o(1) if i = 1,

P(X ∈ Ea) =
∏
i,α

P(qiα(X) = a), E(ea) = n ·P(X ∈ Ea).

Lemma 2. If Φ is a random 3-CNF of density � with n variables, then P(|ea −
E(ea)| > n1/5) = o(n−3).

Lemma 2 provides the initial values for equations from Theorem 1. Now we are
verifying conditions (i)–(iii).

(i) Possible variations of random variables ea are bounded with 2K where K
is the degree of the flipped variable. Therefore condition (i) can be proved
in the same way as for the OLS algorithm.

(ii) Suppose that on the current step t of LS the variable to flip is X . Since X is
a variable picked uniformly at random from the set B(t) =

⋃
a

a0−>a0+

Ea(t),

we have P(X ∈ Ea(t)) = ea(t)
b(t) , where b(t) = |B(t)|. Also we have

E(qiα(X)) =
∑

a
a0−>a0+

aiα ·P(X ∈ Ea(t)).

We say that tuples a, b are adjacent if there are i, j, α such that |j − i| = 1,
aiα = biα + 1, ajα = bjα − 1, and ai′α′ = bi′α′ in all other cases. Intuitively,
adjacency means that if X ∈ Eb then it can be moved to Ea or vice versa by
flipping one literal in one of the clauses containing X . Let also a′ denote the
tuple such that a′i− = ai+ and a′i+ = ai−.

Set Ea changes in two ways. First, variable X can move to or from Ea, in
this case it moves from or to Ea′ . Second, X may happen to be in the same
clause with some other variable, Y , and then Y can move to or from Ea. Such
a variable moves then from or to Eb for some b adjacent with a.

Clearly, the expectation of change of the first type equals P(X ∈ Ea′)−P(X ∈
Ea). Further computation we carry out under the following assumption.

Assumption 1. Assuming history Ht, for a random clause C of the current
formula, any positions p, r, p �= r, in C, any tuples a, b, and any variables
X ∈ Ea, Y ∈ Eb, the events “X is in position p of clause C” and “Y is in
position r of clause C” are independent.

Let us take a variable Y ∈ Ea and calculate the probability of an event
G−:“variable Y moves from Ea to Eb”, where b is some tuple adjacent to a
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and a, b differ in components iα and jα. This happens if in some clause C con-
taining both X and Y some position occupied by Y changes its type from iα to
jα. Obviously, depending on iα the type of the position occupied by X may vary.
We use îα̂ to denote the possible type of such a position. Simple case analysis
shows that î = j if j < i and α = −, or if j > i and α = +, otherwise î = i.
Then α̂ = − if j < i and α̂ = + if j > i.

Let θa→b denote the number of positions of type îα̂ in C except the one
possibly occupied by Y . It is easy to see that θa→b = 1 if i = 1, θb→a = 1 if
j = 1, and θa→b = 2, θb→a = 2 otherwise. Thus, the number of positions in the
clauses of Φ such that if X in such a position then G happens to some variable
Y equals θa→baiα. Let also kîα̂(t) =

∑
a aîα̂ · ea(t) be the number of positions of

type îα̂ in the formula.
Suppose that variable X that is flipped belongs to Ec. Then among all kîα̂(t)

positions of type îα̂ we have cîα̂ positions occupied by X , and θa→baiα positions
such that the presence of X in one of them makes the event G− happen for some
Y . By Assumption 1, we have P(G−|X ∈ Ec) = cîα̂θa→baiα

kîα̂(t) . Therefore,

P(G−) =
∑

c
c0−>c0+

P (X ∈ Ec)
cîα̂θa→baiα

kîα̂(t)

= E(qîα̂(X)|q0−(X) > q0+(X))
θa→baiα

kîα̂(t)

Similarly, the probability of an event G+:“variable Y moves from Eb to Ea”,
where b is some tuple adjacent to a and a, b differ in components iα and jα,
equals

P(G+) = E(qĵα̂(X)|q0−(X) > q0+(X))
θb→abjα

kĵα̂(t)

Observing that the expectations of the numbers of variables that move to and
from Ea (excluding X) equal

ebP(G+) and eaP(G−),

respectively, we get

E(ea(t + 1) − ea(t) | Ht) (3)
= P(X ∈ Ea′(t) | q0−(X) > q0+(X)) − P(X ∈ Ea(t) | q0−(X) > q0+(X))

+
∑

b adjacent to a
i,j,α

(
θb→abjαeb(t)

kĵα̂(t)
− θa→bajαea(t)

kîα̂(t)
E(qîα̂(X) | q0−(X) > q0+(X))

)
.

Denoting s = t
n , za(s) = ea(sn) and

u(s) =
∑

a
a0−>a0+

za, giα =
∑

a

aiαza, hiα =
∑

a
a0−>a0+

aiα
za

u
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we get

dza

ds
=

za′ − za

u
+

∑
b adjacent to a

i,j,α

(
θb→abjαzb

gĵα̂

− θa→bajαza

gîα̂

hîα̂

)
.

(iii) We are interested in the value of g0− when u(s) becomes 0 for the first time.
Thus D can be chosen to be any open set with positive elements satisfying
the condition u > ε for some ε > 0. As before we can find the required
value as limit as ε → 0.

Theorem 3. If Assumption 1 is true then for any positive � there is a constant
c such that for a random 3-CNF Φ(n, �n) almost surely the LS algorithm finds
and assingment such that the number of satisfied clauses equals cn + o(n).

Proof. Applying Wormald’s theorem we get that, for any positive � and any
M there is a constant c′ such that for a random 3-CNF Φ(n, �n) almost surely
the SL algorithm finds and assingment such that the number of satisfied clauses
equals c′n+ o(n) not containing variables of degree higher than M . We estimate
how many clauses may contain a variable (or its negation) of degree higher than
M . It is not hard to see that almost surely the number of such clauses is no more
than

e/2 ·
∑
k>M

k

(
�n

k

)(
1

2n− 1

)k

,

which is o(1) · n where o means asymptotics as M → ∞.

4.2 Experiments

In this subsection we report on experiments aiming to estimate constant c from
Theorem 3 for different values of �. In order to do this we solve numerically the
system of differential equations built in the previous subsection. Unfortunately,
even for small M this system contains far too many equations. For example,
if M = 15 then the number of equations exceeds one million. However, while
conducting experiments we observed some properties of functions involved that
allow us to decrease the number of equations without loss of accuracy. We state
these properties later after proper definitions.

To simplify the system of equations we introduce new random variables

Eab(t) =
⋃

a
a0−=a,a0+=b

Ea(t), eab(t) =
∑

a
a0−=a,a0+=b

ea(t).

It is also clear that E(eab(t + 1) − eab(t)) =
∑

a
a0−=a,a0+=b

E(ea(t + 1) − ea(t)).

Along with eab(t) we shall use the following random variables: A(t), B(t), C(t),
and D(t) that are equal to the number of clauses with 0,1,2, and 3 positive
literals, respectively. It is not hard to see that A(t) = 1/3

∑
c,d c · ecd(t), B(t) =∑

c,d d · ecd(t), and D(t) = �n− (A(t) +B(t) +C(t)). Thus, as a matter of fact,
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we need only one extra random variable, C(t). Now we compute the sum in the
right side of this equation accordingly to the three parts of the expression (3)
for E(ea(t + 1) − ea(t)). The first part∑

a
a0−=a,a0+=b

(P(X ∈ Ea′(t) | q0−(X) > q0+(X))−P(X ∈ Ea(t) | q0−(X) > q0+(X)))

can be converted into

P(X ∈ Eba | q0−(X) > q0+(X)) − P(X ∈ Eab | q0−(X) > q0+(X))

=

{
eba(t)
G(t) , if a < b,

− eab(t)
G(t) if a > b,

where G(t) =
∑

c>d ecd(t).
It is easier to compute the second and third parts from scratch. Compute first

the third part. Function eab(t) can be decreased if for some variable Y ∈ Eab

either (a) a certain clause of type 0− for Y contains ¬X , or (b) a certain clause
of type 1− contains X , or (c) a certain clause of type 0+ contains ¬X , or (d) a
certain clause of type 1+ contains X . The probabilities of these events are

P(¬X ∈ C | C of type 0− for Y , q0−(X) = K1) =
2K1

A(t)
,

P(X ∈ C | C of type 1− for Y , q0+(X) = K2) =
2K2

B(t)
,

P(¬X ∈ C | C of type 0+ for Y , q1−(X) = K3) =
2K3

B(t)
,

P(X ∈ C | C of type 1+ for Y , q1+(X) = K4) =
2K4

C(t)
.

By Assumption 1,

P1 = P(¬X ∈ C | C of type 0− for Y ) =
K1

P(q0−(X) = K1)
2K1

A(t)
= 2

E(q0−(X))
A(t)

,

P2 = P(X ∈ C | C of type 1− for Y ) =
K2

P(q0+(X) = K2)
2K2

B(t)
= 2

E(q0+(X))
B(t)

,

P3 = P(¬X ∈ C | C of type 0+ for Y ) =
K3

P(q1−(X) = K3)
2K3

B(t)
= 2

E(q1−(X))
B(t)

,

P4 = P(X ∈ C | C of type 1+ for Y ) =
K4

P(q1+(X) = K4)
2K4

C(t)
= 2

E(q1+(X))
C(t)

.

The expectations E(q0−(X)),E(q0+(X)) can be easily found, since

P(q0−(X) = K1) =
∑

b eK1b(t)
G(t)

, P(q0+(X) = K2) =
∑

a eaK2(t)
G(t)

.

The expectations E(q1−(X)),E(q1+(X)) we find using the following empirical
observation.
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Observation 1. For a randomly chosen Y and any i, α, i �= 0, and a, b

E(qiα(Y ) | Y ∈ Eab) ≈ E(qiα(Y )).

Thus, easy computation shows that E(q1−(X)) = B(t)
n and E(q1+(X)) = C(t)

n .
Then the expectation for the third part equals

eab(t)(P1E(q0−(Y )) + P2E(q1−(Y )) + P3E(q0+(Y )) + P4E(q1+(Y )))

= 2eab(t)
(
aE(q0−(X))

A(t)
+

B(t)
n

+
b

n
+

C(t)
n

)
.

The second part of the expectation equals

2
E(q0+(X))

n
e(a−1)b +2

E(q0−(X))(a + 1)
A(t)

e(a+1)b +2
C(t)
n2 ea(b−1) +2

b+ 1
n

ea(b+1).

Similarly we have

E(C(t + 1) − C(t)) = E(q1−(X)) + E(q2+(X)) − E(q1+(X)) − E(q2−(X)).

Denoting s = t
n , zab(s)= eab(sn)

n , p(s) = A(sn)
n , q(s) = B(sn)

n , r(s) = C(sn)
n , u(s) =

D(sn)
n , g(s) = G(sn)

n , gab = zba if a < b and gab = −zab if a > b, and h1(s) =
1
g

∑
a,b
a>b

azab, h2(s) = 1
g

∑
a,b
a>b

bzab we get

dzab

ds
=

gab

g
+ 2
(
h2

g
z(a−1)b +

(a + 1)h1

g
z(a+1)b + rza(b−1) + (b + 1)za(b−1)

)

− 2zab

(
ah1

p
+ q + b + r

)
,

dr

ds
= 2q + u− 3r. (4)

As the graphs in Fig. 4 show, these equations give a very good approximation
for empirical results. The graphs show the evolution of p(s) that is the relative

Fig. 4. Empirical performance of LS and its prediction
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number of unsatisfied clauses. Thin lines are values observed when running LS for
particular random problems, and the thick lines are computed from a numerical
solution of the system above. In the examples shown � = 4,M = 30, n = 1000
for the graph on the left and n = 10000 for the graph on the right.

The following table shows the dependance between � and the constant c from
Theorem 3 both empirical and predicted by the system (4). Experimental figures
are average on 10 formulas with 1000 variables each.

� 2 3 4 4.5 5 6 7 10 15 20 25
c (experiment) 1.98 2.95 3.91 4.39 4.86 5.80 6.74 9.53 14.11 18.69 23.23
c (system (4)) 1.98 2.95 3.91 4.38 4.85 5.80 6.73 9.52 14.14 18.74 23.32
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Abstract. We show how to exploit the raw power of current graphics processing
units (GPUs) to obtain implementations of SAT solving algorithms that surpass
the performance of CPU-based algorithms. We have developed a GPU-based ver-
sion of the survey propagation algorithm, an incomplete method capable of solv-
ing hard instances of random k-CNF problems close to the critical threshold with
millions of propositional variables. Our experimental results show that our GPU-
based algorithm attains about a nine-fold improvement over the fastest known
CPU-based algorithms running on high-end processors.

1 Introduction

The Boolean satisfiability problem (SAT) has been intensely studied both from a theo-
retical and a practical point of view for about half a century. The interest in SAT arises,
in part, from its wide applicability in domains ranging from hardware and software
verification to AI planning. In the last decade several highly successful methods and
algorithms have been developed that have yielded surprisingly effective SAT solvers
such as Chaff [13], Siege [16], and BerkMin [8]. A major reason for the performance
results of recent SAT solvers is that the algorithms and data structures used have been
carefully designed to take full advantage of the underlying CPUs and their architecture,
including the memory hierarchy and especially the caches [17].

We propose using graphics processing units (GPUs), to tackle the SAT problem.
Our motivation stems from the observation that modern GPUs have peak performance
numbers that are more than an order of magnitude larger than current CPUs. In addition,
these chips are inexpensive commodity items, with the latest generation video cards
costing around $500. Therefore, there is great potential for developing a new class of
highly efficient GPU-based SAT algorithms. The challenge in doing this is that GPUs
are specialized, domain-specific processors that are difficult to program and that were
not designed for general-purpose computation.

In this paper, we show how the raw power of GPUs can be harnessed to obtain
implementations of survey propagation and related algorithms that exhibit almost an
order of magnitude increase over the performance of CPU-based algorithms. We believe
that we are the first to develop a competitive SAT algorithm based on GPUs and the
first to show that GPU-based algorithms can eclipse the performance of state-of-the-art
CPU-based algorithms.

A. Biere and C.P. Gomes (Eds.): SAT 2006, LNCS 4121, pp. 311–324, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Table 1. Performance comparison of NVIDIA’s GTX7800 and Intel’s Pentium Dual Core EE 840
processor

Pentium EE 840 3.2GHz Dual Core GeForce GTX7800

FLOPs 25.6 GFLOPs 313 GFLOPs
Memory bandwidth 19.2 GB/sec 54.4 GB/sec
Transistors 230M 302M
Process 90nm 110nm
Clock 3.2GHz 430Mz

The SAT algorithm we consider is survey propagation (SP), a recent algorithm for
solving randomly generated k-CNF formulas that can handle hard instances that are too
large for any previous method to handle [2,1]. By “hard” we mean instances whose
ratio of clauses to variables is below the critical threshold separating SAT instances
from UNSAT instances, but is close enough to the threshold for there to be a prepon-
derance of metastable states. These metastable states make it difficult to find satisfying
assignments, and it has been shown in previous work that instances clustered around
the critical threshold are hard random k-SAT problems [12,3,5].

The rest of the paper is organized as follows. In Section 2, we describe GPUs, in-
cluding their performance, architecture, and how they are programmed. In section 3,
we provide an overview of the survey propagation algorithm. Our GPU-based parallel
version of survey propagation is described in Section 4 and is evaluated in Section 5.
We discuss issues arising in the development of GPU-based algorithms in Section 6 and
conclude in Section 7.

2 Graphical Processing Units

A GPU is a specialized processor that is designed to render complex 3D scenes. GPUs
are optimized to perform the kinds of operations needed to support real-time realistic
animation, shading, and rendering. The performance of GPUs has grown at a remark-
able pace during the last decade. This growth is fueled by the video game industry, a
multi-billion dollar per year industry whose revenues exceed the total box office rev-
enues of the movie industry.

The raw power of GPUs currently far exceeds the power of CPUs. For example,
Table 1 compares a current Intel Pentium CPU and a current GPU, namely NVIDIA’s
GTX7800, in terms of floating point operations per second (FLOPs) and memory band-
width. It is worth noting that the 313 GFLOPs number for the GTX 7800 corresponds to
peak GFLOPs available in the GPU’s shader, the part of the GPU that is programmable.
The total GFLOPs of the GTX 7800 is about 1,300 GFLOPs.

In addition, the performance of GPUs is growing at a faster rate than CPU perfor-
mance. Whereas CPU speed has been doubling every eighteen months, GPU perfor-
mance has been doubling about every six months during the last decade, and estimates
are that this trend will continue during the next five years. The rapid improvements
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Fig. 1. Comparison of GPUs and CPUs with respect to peak floating point performance. The last
two CPU numbers are for dual-core machines. The figure is partly based on data from Ian Buck,
at Stanford University.

in GPU performance can been seen in Figure 1, which compares the peak floating point
performance of GPUs with CPUs over the course of about five years.

The reason why GPUs have such high peak FLOPs and memory bandwidth is that
they are architecturally quite different from CPUs; in fact, they should be thought
of as parallel stream processors providing both MIMD (Multiple Instruction Multiple
Data) and SIMD (Single Instruction Multiple Data) pipelines. For example, NVIDIA’s
GTX7800 has eight MIMD vertex processes and twenty four SIMD pixel processors.
Each of the processors provides vector operations and is capable of executing four arith-
metic operations concurrently.

There is increasing interest in using GPUs for general-purpose computation and
many successful applications in domains that are not related to graphics have emerged.
Examples include matrix computations [7], linear algebra [11], sorting [10], Bioinfor-
matics [15], simulation [6], and so on. In fact, General Purpose computation on GPUs
(GPGPU) is emerging as a new research field [9]. Owens et. al. have written a survey
paper of the field that provides an overview of GPUs and a comprehensive survey of the
general-purpose applications [14].

It is worth pointing out that there are significant challenges in harnessing the power
of GPUs for applications. Since GPUs are targeted and optimized for video game de-
velopment, the programming model is non-standard and requires an expert in computer
graphics to understand and make effective use of these chips. For example, GPUs only
support 32-bit floating point arithmetic (often not IEEE compliant). They do not pro-
vide support for any of the following: 64-bit floating point arithmetic, integers, shifting,
and bitwise logical operations. The underlying architectures are largely secret and are
rapidly changing. Therefore, developers do not have direct access to the hardware, but
must instead use special-purpose languages and libraries to program GPUs. It takes a
while for one to learn the many tricks, undocumented features (and bugs), perils, meth-
ods of debugging, etc. that are needed for effective GPU programming.
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Fig. 2. Graphics pipeline

2.1 GPU Pipeline

Nearly all current GPUs use a graphics pipeline consisting of several stages, as outlined
in Figure 2. The graphics pipeline takes advantage of the inherent parallelism found in
the kinds of computations used in 3D graphics.

An application, say a game, communicates with a GPU through a 3D API such as
OpenGL or Direct3D. The application uses the API to send commands and the vertex
data modeling of the object to be rendered to the GPU. Objects are modeled by a se-
quence of triangles, each of which is a 3-tuple of vertices. After receiving this stream of
vertices, the GPU processes each vertex using a vertex shader, an application-specific
program that runs on the vertex processor and which computes vertex-specific values,
such as position, color, normal vector, etc. These transformed vertices are then assem-
bled into triangles (by the primitive assembly stage) and the vertex information is then
used to perform interpolation and rasterization, producing a 2D raster image. Next, a
pixel shader, an application-specific program running on the pixel processor is used
to compute the color values of pixels. The pixel shader can access information stored
on textures, memories organized as cubes. (In GPGPU applications, texture memory is
used in lieu of main memory.) Finally, a color vector containing the four values R(red),
G(green), B(blue), and A(alpha) is output to the frame buffer and displayed on the
screen.

Notice that there are two kinds of programmable processors in the graphics pipeline,
the vertex processor and pixel processor (also called the fragment processor). Both types
of processors are capable of vector processing and can read from textures. However,
the vertex processors are MIMD processors, whereas the pixel processors are SIMD
processors.

One major difference between GPUs and CPUs is that GPUs are capable of “gath-
ering” but not “scattering.” Roughly speaking, gathering means being able to read any
part of memory, while scattering means being able to write to any part of memory. The
memories we are referring to are textures. Both vertex shaders and pixel shaders are
capable of gathering, but as can be seen in Figure 2 vertex shaders cannot directly out-
put data. Instead, they output a fixed number of values to the next stage in the pipeline.
In contrast, pixel shaders are able to output data, by writing into the frame buffer. The
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output for each pixel is a 4-word value representing a color vector. Pixel shaders can also
write to textures by utilizing OpenGL extensions. A major limiting factor for GPGPU
applications is that the amount of information and its location are fixed before the pixel
is processed. In graphics applications, this is not much of a limitation because one typ-
ically knows where and what to draw first.

For general purpose computation, pixel processors are usually preferable to vertex
processors. There are several reasons for this. First, GPUs contain more pixel processors
than vertex processors. Second, pixel processors can write to texture memory, whereas
vertex processors cannot. Finally, pixel shader texturing is more highly optimized (and
thus much faster) than vertex shader texturing.

2.2 OpenGL

Recall that the architectures of GPUs are closely guarded secrets. Therefore, developers
do not have direct access to GPUs and instead have to access the chips via a software
interface. One popular choice, which is what we use in this paper, is OpenGL (Open
Graphics Library), a specification for a low-level, cross-platform, cross-language API
for writing 3D computer graphics applications.

Currently, the OpenGL specification is managed by ARB, the OpenGL Architecture
Review Board, which includes companies such as NVIDIA, ATI, Intel, HP, Apple, IBM,
etc. OpenGL is an industry standard that is independent of the operating system and
underlying hardware. Microsoft has its own API, DirectX, which is dedicated to the
Window operating system.

OpenGL is very popular for general purpose computing with GPUs, in part due to its
ability to quickly extend the specification with extensions in response to GPU hardware
developments. These extension enable developers to more fully take advantage of the
new functionality appearing in graphics chips. One example of this is the Frame Buffer
Object (FBO), an essential component for general purpose computing with GPUs. The
FBO allows shader programs to write to a specified texture, instead of writing to the
frame buffer. This is quite useful because in the graphics pipeline, no matter what value
is written to the frame buffer, it is turned into a value in the interval [0..1], which makes
writing non-graphics applications quite difficult. A further benefit of using an FBO is
that we can write to a texture and then use this texture as input in the next pass of the
rendering process.

2.3 The Cg Programming Language

Cg (C for Graphics) is a high-level language for programming vertex and pixel shaders,
developed by NVIDIA. Cg is based on C and has essentially the same syntax. How-
ever, Cg contains several features that make it suitable for programming graphics chips.
Cg supports most of the operators in C, such as the Boolean operators, the arithmetic
operators, etc., but also includes supports for vector data types and operations. For ex-
ample, it supports float4, a vector of four floating point numbers, and it supports MAD,
a vector multiply and add operator. Cg also supports several other graphic-based oper-
ations, e.g., it provides functions to access the texture, as shown in the Cg example in
Figure 3.



316 P. Manolios and Y. Zhang

float4 main(uniform samplerRECT exampletexture, float4 pos : WPOS) {
float4 color;
color = texRECT(exampletexture, pos.xy);
return color;

}

Fig. 3. This is an example of a pixel shader using Cg

void draw() {
cgGLBindProgram(UpdateEta);
glDrawBuffer(GL_COLOR_ATTACHMENT3_EXT);
cgGLSetTextureParameter(etavarParam, varTex);
cgGLEnableTextureParameter(etavarParam);
glBegin(GL_QUADS);

glVertex2f(0.0, 0.0);
glVertex2f(100, 0.0);
glVertex2f(100, 100);
glVertex2f(0.0, 100);

glEnd();
}

Fig. 4. This is an OpenGL code snippet

In addition to the features appearing in Cg that do not appear in C, there are also
limitations in Cg that do not appear in C. For example, while user-defined functions
are supported, recursion is not allowed. Arrays are supported, but array indices must be
compile-time constants. Pointers are not supported; however, by using texture memory,
which is 2-dimensional, they can be simulated by storing the 16 high-level bits and the
16 low-level bits in the in the x and y coordinates, respectively. Loops are allowed only
when the number of loop iterations is fixed. In addition, the switch, continue, and
break statements of C are not supported.

Figure 3 gives an example of a Cg program. The main entry of a Cg program can
have any name. In the above example, we have a function main that is a pixel shader
whose output is a float4 representing a 4-channel color vector. Our simple pixel shader
takes a single texture, exampletexture, and a single float4, pos, as input and samples
a color value (using the Cg function texRECT) from position pos in the texture.

In Figure 4, we provide an OpenGL example that simply draws a rectangle of size
100x100 pixels on the screen. It first installs the pixel shader program, UpdateEta
(from Figure 3); then it chooses the texture to write to, GL COLOR ATTACHMENT3 EXT;
then it selects the texture to read from, varTex; and finally it sends the rendering com-
mand (starting at glBegin(GL QUADS)). Executing the rendering command results in
running 10,000 pixel shader programs, one per pixel in the 100x100 area. Each pixel
shader program outputs a color, as described above. Notice, that to utilize the GPU,
we have to “draw” something, and this means that the position of the output has to be
fixed.
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3 Survey Propagation

Survey Propagation is a relatively new incomplete method based on ideas from statis-
tical physics and spin glass theory in particular [1]. SP is remarkably powerful, able to
solve very hard k-CNF problems, e.g., it can solve 3-CNF problems near threshold with
over 107 propositional variables.

In this section, we provide a brief overview of the algorithm. We start by recalling
that a factor graph can be used to represent a SAT problem. It is bipartite graph whose
nodes are the propositional variables and clauses appearing in the SAT instance. There
is an edge between a variable and a clause iff the variable appears in the clause. If the
clause contains a positive occurrence of variable, the edge is drawn with solid line;
otherwise, it is drawn with a dotted line. An example is shown in Figure 5.

 c 

 a  b 

 1 

 2  3  4 

Fig. 5. The factor graph for (x1 ∨ x2 ∨¬x3)∧ (¬x1 ∨ x3 ∨ x4)∧ (¬x2 ∨ x3 ∨¬x4)

Let C,V represent sets of clauses and variables, respectively. We will use a,b,c, . . .
to denote clauses and i, j,k, . . . to denote variables. We define V (a) to be the set of
variables appearing in clause a and similarly C(i) denotes the set of clauses containing
variable i. C+(i) is the subset of C(i) containing the clauses in which i appears posi-
tively; and C−(i) is the subset of C(i) containing clauses in which i appears negatively
(negated).

if a ∈C+(i) Cu
a(i) = C−(i); Cs

a(i) = C+(i)\ {a}
if a ∈C−(i) Cu

a(i) = C+(i); Cs
a(i) = C−(i)\ {a}

(3.1)

The SP algorithm is an iterative message-passing algorithm that for every edge
〈a, i〉 in the factor graph passes messages consisting of a floating point number, ηa→i,
from clause a to variable i and passes messages consisting a 3-tuple of floating point
numbers, Πi→a = 〈Πu

i→a,Πs
i→a,Π0

i→a〉, from variable i to clause a. This process is ini-
tialized by randomly assigning values to ηa→i from the interval (0..1) for all edges
〈a, i〉 in the factor graph. The process is then repeated, where each iteration is called a
cycle, as described below. As is discussed in [1], the messages can be thought of cor-
responding to probabilities of warnings. The value ηa→i, sent from a to i, corresponds
to the probability that clause a sends a warning to variable i, which it will do if it re-
ceives a “u” symbol from all of its other variables. In the other direction, the triple
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Πi→a = 〈Πu
i→a,Πs

i→a,Π0
i→a〉 sent from i to a corresponds to the probability that i sends

the “u” symbol (indicating that it cannot satisfy a) or sends the “s” symbol (indicat-
ing that it can satisfy a) or sends the “0” symbol (indicating that it is indifferent). The
formal definitions follow.

(3.2) ηa→i = ∏
j∈V (a)\{i}

[
∏u

j→a

∏u
j→a +∏s

j→a +∏0
j→a

]

(3.3)
u

∏
j→a

=
[

1− ∏
b∈Cu

a( j)
(1−ηb→ j)

]
∏

b∈Cs
a( j)

(1−ηb→ j)

(3.4)
s

∏
j→a

=
[

1− ∏
b∈Cs

a( j)
(1−ηb→ j)

]
∏

b∈Cu
a( j)

(1−ηb→ j)

(3.5)
0

∏
j→a

= ∏
b∈C( j)\{a}

(1−ηb→ j)

The message passing described above is iterated until we attain convergence, which
occurs when each of the η values changes less than some predetermined value. Such a
sequence of cycles is called a round. At the end of a round, we identify a predetermined
fraction1 of variables that the above process has identified as having the largest bias
and assign them their preferred values. Having fixed the values of the variables just
identified, we perform Boolean Constraint Propagation (BCP) to reduce current SAT
problem to simpler one. If the ratio of clauses to variables becomes small, then the
problem is under-constrained and we can use Walk-SAT or some other SAT algorithm
to quickly find a solution. Otherwise, we again apply the SP algorithm to the reduced
SAT problem. Of course, it is possible that either BCP encounters a contradiction or
that SP fails to converge, in which case the algorithm fails.2

Most of running time of SP is spent trying to converge. Notice that this part of the
algorithm requires performing a large number of memory reads and writes and also
requires a large number of floating point operations. This is exactly what GPUs excel
at doing, which is why we have chosen to develop a GPU-based SP algorithm.

4 Parallel SP on GPU

The basic idea for how to parallelize the SP algorithm is rather straightforward, because
the order in which edges in the factor graph are updated does not matter. Therefore, we

1 We use 1 percent, the same percentage used in the publicly available implementation by the
authors of survey propagation.

2 In our implementation, we say that SP fails to converge if it takes more that 1,000 cycles,
which is the same parameter used in the code by the authors of survey propagation.



Implementing Survey Propagation on Graphics Processing Units 319

can implement the SP algorithm by running a program per edge in the factor graph,
whose sole purpose is to update the messages on that edge. We can then update the
messages concurrently. That is the basic idea of the GPU algorithm. In more detail,
we ask the GPU to “draw” a quad on the screen where there is one pixel per edge.
This allows us to use a pixel shader per edge to compute and update the edge mes-
sages, and to store the result in the texture memory. Of course, the CPU and GPU
have to communicate after every round of the SP algorithm, so that the GPU can in-
form the CPU of what variables to fix, so the CPU can perform the BCP pass, and so
the CPU can then update the GPU’s data structures to reflect the implied literals. The
CPU also determines when the clause to variable ratio is such that Walk-SAT should be
used.

Given the irregular architecture of GPUs and the difficulty in programming them,
one must carefully consider the data structures used and the details of the algorithm,
something we now do.

4.1 Data Structures

When using GPUs, the textures are the only place where we can store large amounts of
data. Therefore, all of the data used by our algorithm is encoded into textures, which
are rectangular areas of memory. One read-only texture is used to represent the factor
graph. In it we store, for each clause, pointers to all the literals appearing in that clause
(i.e., pointers to all the edges in the factor graph). The pointers for a particular clause
are layed out sequentially, which make it easy for us to traverse the edges of a given
clause.

We also have three read-write textures, which are used to store information about the
variables, clauses, and edges. The variable texture has an entry per variable; similarly
the clause and edge textures have entries per clause and edge, respectively.

The main components of the variable texture for entry j include ∏b∈C+( j)(1−ηb→ j),
∏b∈C−( j)(1−ηb→ j), and a pointer to the edge texture. In the edge texture, the edges
with the same variable are layed out sequentially, so the pointer is to the first such edge
and we also store the number of edges containing variable j.

The main components of the clause texture for entry a include a pointer into the read-
only texture (which points to the first pointer in the read-only texture for that clause)

and the value ∏ j∈V (a)

[
∏u

j→a

∏u
j→a +∏s

j→a +∏0
j→a

]
.

The main components of the edge texture for entry 〈a, i〉 are a pointer to the variable
i (in the variable texture), a pointer to the clause a (in the clause texture), and ηa→i =

∏ j∈V (a)\{i}

[
∏u

j→a

∏u
j→a +∏s

j→a +∏0
j→a

]
.

In current version of OpenGL, the maximum texture size is limited to 256MB, and
this is a major restriction because it limits the size of the problems we can consider. We
note that the amount of memory available on GPUs is constantly increasing (already
GPUs with 1GB memory are available) and that it is possible to use multiple GPUs
together. Also, the OpenGL size constraints on textures will eventually be relaxed, but
for now, one can distribute the data across multiple textures.
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4.2 Algorithm

The algorithm is given as input a factor graph encoded in the textures as described
above. Also, the η values are initialized with randomly generated numbers from the in-
terval (0..1). If successful, the algorithm returns a satisfying assignment. As previously
described, the algorithm consists of a sequence of rounds, the purpose of which is to
converge on the η values. A single round of the algorithm consists of a sequence of
cycles, each of which includes four GPU passes, where we assume that we start with
the correct η values and show how to compute the η values for the next cycle. Recall
that computing on a GPU means we have to draw quads using OpenGL, which in turn
means that the computation is being performed by pixel shaders. We omit many of the
details and focus on the main ideas below.

1. For each variable j, compute ∏b∈C+( j)(1−ηb→ j) and ∏b∈C−( j)(1−ηb→ j) by iter-
ating over all of the edges that variable appears in. Recall that we have a pointer
to the first such edge in the variable texture and that we know what the number of
such edges is.

2. For each clause a, compute ∏ j∈V (a)

[
∏u

j→a

∏u
j→a +∏s

j→a +∏0
j→a

]
by iterating over all the

edges this clause appears in. Recall that that we have a pointer to the read-only tex-
ture and we know the number of such edges. The pointer to the read-only memory
points to the first such edge in the edge texture and the next pointer points to the
next edge, and so on. By iterating and following the variable pointers in the edge
texture, we can compute the above value. This is because we can use the values
stored in the variable texture to compute ∏u

j→a, ∏s
j→a, and ∏0

j→a for each variable
j occurring in a.

3. For each edge 〈a, i〉, compute ηa→i = ∏ j∈V (a)\{i}

[
∏u

j→a

∏u
j→a +∏s

j→a +∏0
j→a

]
. This can be

done by iterating over the elements in the edge texture and using the pointers to the
variable and clause of the edge. All that is required is a simple division, given the
information already stored in the textures (and after recomputing ∏u

j→a, ∏s
j→a, and

∏0
j→a).

4. Use an occlusion query to test for convergence. If so, this round is over and the
GPU and CPU communicate as described previously. Otherwise, goto step 1. An
occlusion query is a way for the GPU to determine how many of the pixel shaders
have updated the frame buffer. In our case, if the difference between consecutive
η values is below a certain threshold, the pixel shader does not update the frame
buffer. If the occlusion query returns 0, that means that all of the pixel shaders were
killed, i.e., the algorithm has converged.

We note that a GPU’s inherent limitations with respect to the support of dynamic data
structures can lead to inefficiencies. For example, after BCP, the length of clause may
be reduced. Unfortunately, due to the restrictions imposed by Cg, GPU-based programs
cannot take advantage of reduced clause sizes and will still have to scan for k literals.
Fortunately, if we lay out the literals in a clause in a sequential fashion (which we do),
then there is a negligible effect on performance.
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5 Experimental Results

We implemented our GPU-based survey propagation algorithm using Cg1.4, C++, and
OpenGL2.0. The experiments were run on an AMD 3800+ 2.4GHz machine with an
NVIDIA GTX 7900 GPU. The operating system we use is 32-bit WindowsXP. We note
that this is a 64-bit machine and we expect to get better performance numbers if we use
it for 64-bit computation, but since the NVIDIA GTX 7900 is a rather new GPU, the
only drivers we could find were for 32-bit Windows. We also note that using NVIDIA’s
SLI (Scalable Link Interface) technology, we can use two NVIDIA GPUs, which should
essentially double our performance numbers.

The CPU-based survey propagation program we used is from the authors of the sur-
vey propagation algorithm [1] and is the fastest implementation of the algorithm we
know of. We ran the survey propagation algorithm on the fastest machine we had access
to, which is an Intel(R) Xeon(TM) CPU 3.06GHz with 512 KB of cache, running Linux
Redhat. (We did not use the same machine we ran the GPU experiments on because the
Intel machine is faster.) The experimental data we used is available upon request.
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Fig. 6. A comparison between our GPU-based algorithm and the fastest CPU-based algorithm for
survey propagation on random 3-SAT instances, with a clause to variable ratio of 4.2.

In Figure 6, we compare the two algorithms on a range of 3-SAT instances, where the
clause to variable ration is 4.2; this means that the problems are hard as they are close
to the threshold separating satisfiable problems from unsatisfiable problems [12]. The
number of variables ranges from 40,000 to 400,000 and each data point corresponds to
the average running time for three problems of that size. As is evident in Figure 6, our
algorithm is over nine times as fast as the CPU based algorithm.

In Figure 7, we compare the two algorithms on a range of hard 4-SAT instances,
where the clause to variable ration is 9.5. The results for the 4-SAT instances are similar
to the results we obtained in the 3-SAT case. That is, for hard 4-SAT instances, our
GPU-based algorithm attains about a nine-fold improvement in running times over the
best known CPU-based algorithm.
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Fig. 7. A comparison between our GPU-based algorithm and the fastest CPU-based algorithm for
survey propagation on random 4-SAT instances, with a clause to variable ratio of 9.5

6 Observations on Programming With GPUs

In this section, we outline some observations about programming with GPUs that we
think are relevant to the SAT community. The currently available information on GPU
programming is mostly geared to the graphics community, and our experience has been
that it takes a while for non-specialists to understand. Hopefully, our observations will
help to speed up the process for researchers interested in applying GPUs to SAT and
similar problems. A good source of information on this topic is the GPGPU Website [9].

When considering using GPUs for general purpose computing, it is important to
choose or develop a parallel algorithm. Recall that these processors are best thought
of as parallel stream processors and all algorithms that have been successfully imple-
mented on these chips are parallel algorithms. In fact, GPUs are a poor choice for per-
forming reductions, e.g., selecting the biggest element in an integer array turns out to
be very difficult to implement efficiently on a GPU.

It is also important to be aware GPUs do not currently support integer operations.
You may have noticed that Cg does have integer operations, but these are compiled
away and are in fact emulated by floating point operations. Another important difference
between CPU and graphics processors is that GPUs do not perform well in the presence
of branch instructions, as they do not support branch prediction. Also, reading data from
the GPU to the CPU is often a bottleneck. Finally, a major limitation of GPUs is that
the per pixel output is restricted to be a four-word vector (extensions allowing sixteen
four-word vectors are also currently available), which effectively rules out the use of
GPUs for algorithms that do not fit this framework.

Since many optimization algorithms are iterative in nature, they may well be good
candidates for implementing on graphics processors. When doing this, we suggest that
one carefully encodes the problem into the texture. It is important to do this in a way
that attains as much locality as possible because GPUs have very small caches, which
means that it is crucial to read memory sequentially, as random access to memory will
have a detrimental effect on performance.
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It is also often necessary to divide algorithms into several passes. For example, recall
that each pixel shader only outputs one four-word vector; if more than four words are
needed, then multiple passes have to be used. The general idea is to partition algorithms
into several steps, each of which performs a specific function and saves intermediate
results to a texture. Subsequent passes can then use the result of the previous passes.

One optimization that is quite useful is to test convergence by using an occlusion
query. Without this, one has to use the CPU to test for convergence, which will greatly
affect performance. In contrast, an occlusion query gives precise information and can
be pipelined, so it has negligible impact on the performance of GPUs.

7 Conclusions and Future Work

In this paper, we have shown how to harness the raw power of GPUs to obtain an
implementation of survey propagation, an incomplete method capable of solving hard
instances of random k-CNF problems close to the critical threshold. Our algorithm ex-
hibits about an order of magnitude increase over the performance of the fastest CPU-
based algorithms. As far as we know, we are the first to develop a competitive SAT
algorithm based on graphics processors and the first to show that GPU-based algo-
rithms can eclipse the performance of state-of-the-art CPU-based algorithms running
on high-end processors.

We foresee many opportunities to exploit the power of GPUs in the context of
SAT solving and verification algorithms in general. Graphics processors are undergoing
rapid development and will almost certainly incorporate many new features that make
them even more suitable for general purpose computation in a few years. Consider that
programmable GPUs were first introduced in 2002 and now they support a rich in-
struction set and surpass the most powerful currently available CPUs both in terms of
memory bandwidth and peak floating point performance.

For future work, we plan to add further improvements to our algorithm and want to
explore using GPUs to help speed up complete SAT algorithms such as those based on
DPLL [4]. One simple idea is to use GPUs as coprocessors which are used to compute
better heuristics that the DPLL algorithm running on the CPU can take advantage of.
Another idea we are exploring is the use of other non-standard processors such as the
Cell processor.
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Abstract. Iterative algorithms such as Belief Propagation and Survey
Propagation can handle some of the largest randomly-generated sat-
isfiability problems (SAT) created to this point. But they can make
inaccurate estimates or fail to converge on instances whose underly-
ing constraint graphs contain small loops–a particularly strong concern
with structured problems. More generally, their behavior is only well-
understood in terms of statistical physics on a specific underlying model.
Our alternative characterization of propagation algorithms presents them
as value and variable ordering heuristics whose operation can be codi-
fied in terms of the Expectation Maximization (EM) method. Besides
explaining failure to converge in the general case, understanding the
equivalence between Propagation and EM yields new versions of such
algorithms. When these are applied to SAT, such an understanding even
yields a slight modification that guarantees convergence.

1 Introduction

The Survey Propagation (SP) algorithm [1] is one of the most exciting cur-
rent approaches to the Boolean Satisfiability problem, rapidly solving problems
with millions of variables under the most critically constrained settings of the
clauses-to-variables ratio. Other successful applications of SP include coding
and learning [2,3,4], while the older Belief Propagation (BP) framework that SP
extends has been applied to Constraint Satisfaction Problems (CSPs) [5,6,2].
Nonetheless, both SP and BP are subject to some shortcomings that make them
best-suited to large, randomly generated SAT instances.

In particular, these propagation algorithms do not always converge, or if they
do, can converge to inaccurate estimates that eliminate valid solutions–especially
on smaller or structured problems that contain short feedback cycles in their un-
derlying constraint graphs. In such cases SP and BP cannot provide useful infor-
mation to a surrounding search framework, necessitating a random restart. More
generally, their behavior on loopy graphs is not been well-understood outside of a
statistical physics interpretation [7,8] that is founded on Markov Random Fields.
Within the constraint-based reasoning field, their behavior has been partially ex-
plained in terms of discrete inference for the special case of extreme values [9],
but no more general understanding has emerged.

The contribution of this paper is to supplement existing mathematical presen-
tations of propagation methods with informal intuition, elucidating connections
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to related concepts. The most significant product is an alternative derivation
of BP and SP in terms of the Expectation Maximization (EM) framework, one
that is not dependent on the groundwork of existing physical explanations. This
allows a new version of the BP and SP algorithms that always converges.

These results are demonstrated in BP for clearer exposition, but can be ex-
pressed in SP via the transformation shown in [1]. To that end, Section 2 pro-
vides background to our approach to characterizing BP and SP, and Section 3
presents necessary notation. In Section 4 we explain the two algorithms based
on the background provided in Section 2, supplementing the equations provided
in [1]. Finally, in Section 5 we present the EM algorithm in standard form, and
then consider a formulation for SAT in Section 6. This produces a convergent
update rule for solving SAT instances. The results of implementing this process
appear in Section 7, followed by discussion in Section 8.

2 Approach

In this paper, we characterize SP in alternative terms, translating existing de-
scriptions into familiar concepts, founded on insights into its behavior in the
context of SAT. Specifically, we contend that SP works best as a variable and
value ordering heuristic within a simple search framework. It can be roughly un-
derstood as an extension of BP into ternary space, where variables are positive
in some fraction of the solutions, negative in another fraction, and recognized
as unconstrained in a third proportion of solutions [1]. (The usefulness of such
logics has been independently noted in completely different approaches [10].)
Efforts in statistical physics to battle loops by clustering nodes together tend to
parallel AI techniques for finding join-graphs, cluster-trees, etc. [11,12,13].

Familiar local search techniques find probabilistic variable settings Θ to max-
imize the probability P (SAT |Θ) that all clauses are satisfied, just as MAXSAT
approximations target an expectation E[SAT |Θ] on the number of satisfied
clauses [14,15,16]. In contrast, the BP and SP propagation algorithms can be
viewed as estimators of P (Θ|SAT ), the probability that the variables are config-
ured a certain way given that all clauses are satisfied. Thus, SP can help detect
the most prescient “backdoor” variables whose correct assignments trivialize
the remaining problem, while BP settles for “backbone variables,” which are
constrained to be always positive or always negative in the majority of solutions
[17,18]. So, propagation methods serve as heuristics that guide the search; if they
were always right (and always converged) the search would be backtrack-free.

Such insights enable a final conclusion: that propagation methods actually
perform a slightly altered version of the well-known Expectation Maximization
(EM) algorithm, which seeks out posterior likelihoods complicated by hidden
interactions [19]. This understanding engenders further comparison with La-
grangian optimization approaches to SAT, through known connections to EM
[20]. Similarly, it provides for the development of specialized propagation meth-
ods based on EM variants for sparse problems and partial optimizations [21,22].
Perhaps the most interesting observation, though, is that EM always converges.
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3 Problem and Notation

Definition 1. A SAT instance is a set C of m clauses, constraining a set V of
n Boolean variables. Each clause c ∈ C is a disjunction of literals built from the
variables in V . An assignment X ∈ {0, 1}n to the variables satisfies the instance
if it makes at least one literal true in each clause. The sets V +

c and V −
c contain

the indexes of the variables appearing positively and negatively in a clause c,
respectively. The sets C+

v and C−
v contain the indexes of the clauses that contain

positive and negative literals for variable v, respectively.

Definition 2. A variable bias θv ∈ IR, 0 ≤ θv ≤ 1, represents the probability
that variable v will be positive rather than negative. Θ ∈ IRn denotes a vector of
biases for all n variables.

In general, capitalized variables will correspond to vectors, and lower-case vari-
ables with subscript indexes will be their components.

4 The BP and SP Algorithms

BP and SP are message-passing algorithms that attempt to sample from the
space of satisfying assignments. Here we explain the algorithms at an intuitive
level, to supplement the formulas in [1]. The only concrete artifact that is nec-
essary for our purposes is the BP update rule appearing in Equation (1).

Imagine a listing of all solutions to a given SAT problem. Clearly the chance
to simply read from that list is wishful thinking for a polynomial algorithm, as
this ability would instantly provide a solution if one existed. But what if it were
possible to compile statistics over the contents of that list, despite being blind
to the list itself? This would be very useful for guiding search, and comprises
the goal of propagation methods as applied to SAT. BP and SP attempt this
by repeatedly updating estimated biases, hopefully until convergence to a local
maximum in likelihood. For BP this means a bias θv for each variable, indicating
the estimated proportion of solutions in which the variable must be positive
rather than negative. SP extends this space with a third state where a variable
is not constrained to take either value; with BP the mass for this case ends up
proportionately distributed between the positive and negative.

4.1 Sample Space for Determining Bias

In this section, we differentiate the sample space for determining the variable
biases that BP and SP are estimating. To borrow terminology from Section 6.2,
BP codifies a simplifying assumption that in any satisfying assignment, every
variable is the “sole support” of some clause. That is, each variable believes that
it is satisfying at least one clause that would otherwise be left totally unsatisfied
by all of its other variables.

Figure 1(a) is a Venn diagram depicting the bias space for a given variable,
as the shaded region. The area of the diagram as a whole spans the space of
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Fig. 1. (a) Probability Space for Variable Bias under BP; (b) Factor Graph Fragment

all satisfying assignments to the variables. The left circle, labeled “+”, denotes
those assignments where there exists some clause that is wholly dependent on
the variable being positive. That is, the considered variable appears positively in
some clause whose other literals all hold unsatisfactory values under the current
assignment. Likewise, the right circle indicates that some clause requires the
variable to be negative. Their intersection, labeled “+/−”, is eliminated from
the probability space, as no satisfying assignment could require a single variable
to be both positive and negative.

Thus BP’s goal is to determine, for each variable, the proportion of solutions
in which it lies in the positive half of the shaded area, versus the negative half.
In comparison, the power of SP lies in additionally considering region “0”, where
all clauses are already satisfied by variables other than the one under considera-
tion. Stated differently, BP determines the bias of each variable, in terms of the
chances that it would appear positively or negatively if a satisfying assignment
were randomly drawn from the otherwise inaccessible list of solutions.

4.2 Algorithmic Framework

At a high level, the BP and SP algorithms accomplish the described task by
passing messages over a given SAT problem’s factor graph representation, as
depicted in Figure 1(b).

Nodes representing variables connect to nodes representing clauses in which
they appear. Edges can be distinguished, conceptually, by whether the variables
appear as positive or negative literals in the clauses. The edges carry clause-to-
variable messages in one direction, and variable-to clause messages in the other.

Each variable is randomly seeded with an initial bias, and informs all of its
clauses by passing variable-to-clause messages along the edges. The clauses com-
pile such reports and determine whether they are poorly supported–that is, they
calculate the probability that their variables will jointly end up failing to satisfy
them. From here they signal each variable as to whether they need their support
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by passing messages back along the edges, in the opposite direction. The vari-
ables weigh such requests, and begin a new iteration by updating and reporting
their new biases. Equations (13-16) in [1] represent this process. A crucial detail
is that a variable tells a clause what its bias would be in the absence of that
clause. Likewise, clauses do not broadcast identical distress messages along all
their outgoing edges. Rather, along each edge they report whether they are un-
likely to be satisfied in the absence of the corresponding variable. This is what
makes the algorithm exactly the same as Pearl’s original BP, also known as the
Sum-Product algorithm [5,6].

Thus, consider a state for Figure 1(b) where c6 and c7 have both informed v3
that they are unlikely to be supported by their other variables. Consequently, v3
sees that they need v3’s help, and tells c1 that in its absence, v3 would probably
have to be negative. Likewise, if v2 is getting stronger messages from c4 and c5
than from c2 and c3, then v2 can report to c1 that v2 will also not be of much
help. Thus, c1 will send a strong message to v1, whether or not v1 is already
positively biased. This message could be interpreted as either “I need you to
come support me” or “don’t listen to your other clauses, I’m highly dependent
on you” depending on the strength of v1’s existing bias toward the positive.

The graph and messages are conceptual, though. After much derivation, the en-
tire dynamics can be operationalized as a single update rule. Clause-to-variable
messages can be bypassed by expressing variable-to-clause messages in terms of
other variable-to-clause messages, two edges removed. (In fact, the original SP
derivation and code happen to employ the opposite clause-to-variable representa-
tion, shown as Equations (17) and (18) [1,23].) The variables’ incoming messages
can themselves be represented as changes to the bias, culminating in the update
rule for Θ shown below as Equation (1).

Recall that Θ is a vector containing biases for each of the variables, and under-
goes this update once for each individual bias θv. The entire process is repeated
in hopes of eventual convergence. The products expressed in terms of i’s and j’s
represent the probability that a clause c will be left unsatisfied by all of its vari-
ables outside of v. Subtracting from 1 creates the negation of this proposition. So
the numerator represents the chance that none of the variable’s negative clauses
require it. In other words, it is the inverse of the proposition that some negative
clause requires the variable. Thus the rule can be understood in terms of the dia-
gram in Figure 1(a). Here the numerator represents the inverse of the entire circle
labeled “−.” Because the “+/-” region is excluded by sampling only satisfying as-
signments, and the “0” region is excluded by the BP assumption, the inverse yields
the left moon of the shaded sample space. Thus, the numerator of the update rule
denotes the area of the positive shaded region, while the sum in the denominator
constructs the complete sample space.

θ′
v ← c∈C−

v

1 −
i∈V +

c

(1 − θi)
j∈V −

c \v

θj

c∈C−
v

1 −
i∈V +

c

(1 − θi)
j∈V −

c \v

θj +
c∈C+v

1 −
i∈V +

c

(1 − θi)
j∈V −

c \v

θj

(1)
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So we represent two states with one parameter; the probability that variable v
must be negative is just 1 − θv. In the case of SP, we use two equations to rep-
resent three states. The rule for positive variables is identical to (1), but with an
added term in the denominator for including “0” in the outcome space, and extra
factors in the numerator for excluding it from the sample space. A second rule will
represent a variable’s negative bias, flipping the products for c ∈ C+ for those over
c ∈ C−. Finally, the “0” state where a variable is unbiased is left to marginaliza-
tion; it is just one minus the first two probabilities.

4.3 Applying BP/SP Via Unit Decimation

Propagation algorithms cannot solve SAT instances on their own. Rather, they
can be embedded within a simple search framework that consults them when de-
ciding which variable to fix next. Originally this was tied to a decimation algo-
rithm, where blocks of several variables are fixed all at once. This is risky because
the probabilities are not conditional: perhaps v1 and v2 both are positive in most
satisfying assignments, but often are not positive at the same time.

Conceptually and in practice, one expedient is to consider a more extreme ver-
sion of this methodology, where only one variable is fixed at a time (at a greater
cost in terms of number of surveys). The conditional probabilities are essentially
produced by re-running the survey on simplified problems where the previous
choices have already been fixed. More concretely, the rest of this paper will con-
sider BP and SP within the following framework:

Algorithm 1. BP/SP with Unit Decimation
BP/SP(SAT -instance, ttimeout)

repeat
survey ← SP(SAT -instance, ttimeout) or BP(SAT -instance, ttimeout).
assignment ← CHOOSE-ASSIGNMENT(SAT -instance, survey).
SAT -instance ← FIX(SAT -instance, assignment)
If all are clauses satisfied, return solution.

until all variables fixed
Return failure.

On each iteration, BP or SP produces a survey estimating the biases of the
variables, in either binary or ternary space respectively. If the ttimeout parameter is
reached before convergence, the entire algorithm fails. With a survey in hand, the
algorithm uses CHOOSE-ASSIGNMENT to identify a single variable to fix, and
whether to fix it to true or false. One straightforward rule is to choose the variable
with the most extreme positive or negative bias, and fix it in that direction. With
SP, the extra “0” space allows more choices, such as fixing the variable with the
smallest such bias. Next, the SAT instance is simplified to reflect the assignment
and the process repeats. This process can incorporate unit-propagation or other
such inference processes. The algorithm terminates if enough assignments have
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been made to satisfy the problem, or if all variables are assigned yet there is still
an unsatisfied clause.

Viewed as such, the surveys serve as simultaneous variable and value ordering
heuristics. If we only require a single solution, and the heuristics are always cor-
rect, then we have a complete reasoning process. For if a survey returns any bias
whatsoever for a variable, then some percentage of the solutions features the vari-
able at that value. Thus there is at least one solution remaining. If a variable must
not be fixed a certain way, it must have zero bias in that direction.

In practice, the algorithm fixes the most important variables in the first few it-
erations, and then the maximum bias drops below a certain level. At that point the
simplified problem can be passed to a regular solver like WalkSAT for improved
speed [14]. Also, completeness is not guaranteed; the algorithms converge to lo-
cal maxima in terms of survey correctness. Finally, BP and SP may simply fail
to converge. For tree networks like the excerpt in Figure 1(b) it is clear that the
algorithms converge.But for factor graphs with cycles, it is easy to visualize the al-
gorithms’ incompleteness, as feedback loops of messages being passed around and
around. Alternatively, such structure can cause the algorithm to converge, but to
the wrong answer: randomly initializing biases via a uniform distribution can tilt
the optimization process away from endless loops, but only by immediately jump-
ing into local maxima. Without a uniform understanding of the algorithms, such
behavior has historically been difficult to characterize.

5 The EM Algorithm

In this section we consider the general EM algorithm [19], so that we can later ex-
ploit its transformation into BP and derive an improved way to calculate surveys,
one that always converges. At a high level, EM accepts a vector of observations Y ,
and determines the model parameters Θ that maximize the likelihood of having
seen Y . Maximizing log P (Y |Θ) would ordinarily be straightforward, but for the
additional complication that we posit some latent variables Z that contributed to
the generation of Y , but that we did not get to observe. That is, we want to set Θ
to maximize log P (Y, Z|Θ), but cannot marginalize on Z.

So, we bootstrap by constructing P̃ (Z) to estimate P (Z|Y,Θ) and then use
this distribution to maximize the expected likelihood P (Y, Z|Θ) with respect to
Θ. The first step is called the E-Step, and the second is the M-Step. The two are
repeated until convergence, which is guaranteed.

6 Transformation from BP to EM Approaches for SAT

Operationally, the BP and the EM algorithm appear to share nothing more than
their dualized iterative dynamics. Yet even here there are differences: BP can ac-
tually be expressed in terms of just one set of messages (either function-to-variable
or variable-to-function) while EM cannot (unless it is used stochastically by up-
dating one variable at a time.) On convergence, neither algorithm can promise
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more than a local maximum, but EM is guaranteed to converge, while BP is not
in the case of graphs with cycles.

6.1 Free-Energy Characterizations of BP and EM

It turns out, though, that the two approaches are actually derived from equiva-
lent energy minimization equations, called “Variational Free Energy” and “Gibbs
Free Energy” in the EM and BP literature, respectively. Such expressions arise
from trying to minimize the Kullback-Leibler distance between two probability
distributions, meaning that the distributions are made to give similar predictions
across a common domain of outcomes. The following is a high-level overview of
this equivalence, while less germane details can be found in [24].

In the case of BP, we want our belief b(x) to match a factorized approximation
of the truth p(x), across all values of x [8]. With EM, there are two distinct steps
in getting P̃ (Z), our estimated distribution on Z, to match the true probability
P (Z|Y,Θ). During E, we adjust P̃ (Z), and during M, we adjust Θ [21].

However, the proof of equivalence, based on [8]’s Markov Random Fields repre-
sentation of factor graphs, is not necessarily constructive. In particular, pushing
a straightforward SAT formulation from BP through to EM is liable to produce
an inoperable restatement of the problem. Typical interpretations of such formu-
las produce English phrasings like “bias all variables toward 0 or 1 (by avoiding
entropy) while still satisfying all clauses (by avoiding free energy.)” Furthermore,
the generic Random Field structure relies on an approximation that breaks any
guarantee of convergence. Despite this, a BP-inspired, yet convergent, SAT so-
lution method can be reverse-engineered into the EM framework, by essentially
lying to the algorithm.

6.2 SAT Formulation for EM

The trick is to tell EM that we have seen that all the clauses are satisfied, but
not how exactly they went about choosing satisfying variables for support. We
ask the algorithm to find the variable biases that will best support our claimed
sighting, via some hypothesized support configuration. This produces the desired
P (Θ|SAT ). In this section explicitly derive this formulation from first principles,
resulting in a modification of the update rule (1), reflected in (9).

First we set the EM variables as in Table 1. Y will be a vector of all 1’s, meaning
that all clauses are satisfied, while each θv ∈ Θ represents variable v’s probability

Table 1. SAT Formulation for EM

Vector Status Interpretation Domain
Y Observed whether clauses are SAT {0, 1}m

Z Unobserved support configurations for clauses {sc,v}m c ∈ C, v ∈ V
Θ Parameters variable biases (0, 1)n
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of being positive. Finally, Z contains some value sc,v for each clause c, denoting
that “clause c is solely-supported by variable v”.

Definition 3. A variable v is the sole support to a clause c when its current as-
signment satisfies the clause, and none of the clause’s other variables satisfy it un-
der the current assignment.

The Z terms invite elaboration on the space of possible configurations for a given
clause. Under a particular variable assignment, a clause is either satisfied by mul-
tiple variables, or else by exactly one, or else by none–in which case it is unsat-
isfied. In order to sample only from the space of satisfying assignments (or more
presciently, because Y = [1]m) we eliminate the last case from the probability
space. Further, by the simplifying assumption of BP, we eliminate the first case:
all constraints are tight in that all supporting variables think that they are the
only supports. Reinstating this case yields SP, and a more unreadable derivation.
In short, v is the sole support of c when it satisfies c and all of c’s other variables
do not. For each c, exactly one sc,v must hold–these are the hidden values that
EM will weight with its artificial distribution.

6.3 Deriving a SAT Algorithm from EM

For the E-Step we derive said distribution P̃ (Z) for the latent variables, decom-
posing it into a single p̃c(zc) = p(zc|yc, Θ) for each clause:

p̃c(sc,v) =
∏

w∈V +
c \v

(1 − θw)
∏

w∈V −
c \v

θw (2)

The equation states that for sc,v (“v is the sole support of c”) to hold, all vari-
ables outside of v that were supposed to be positive turned out negative, and vice
versa–so v is the sole support. It might seem that v’s own support (θv if v ∈ V +

c ,
1 − θv if v ∈ V −

c ) should appear as a factor above. But it is precisely its exclu-
sion that guarantees that we sample from a space of satisfied clauses, maintaining
consistency with the conditioned yc = 1.

In the M-Step we use this distribution to get a lower bound on the logarithm of
the expected probability of Y . The log is crucial for maintaining convergence via
Jensen’s Inequality: log E[p(x)] ≥ E[log p(x)]. It also allows us to decompose the
set of data (clauses) into terms in a sum. So in short we will set Θ ← argmaxΘ

F (Θ), where:
F (Θ) = EP̃ [log P (Y, Z|Θ)] (3)

=
∑

c

Ep̃c [log p(zc|Θ)] (4)

This is effected by making logs of products into sums of logs, and by observing
that any valid zc, i.e. one that is given any weight by the corresponding p̃c, al-
ready signifies that its clause is satisfied by definition. In other words, zc implies
yc, enabling its removal from the joint probability.



334 E.I. Hsu and S.A. McIlraith

By similar reasoning to that in (2) we derive, after some simplification,

F (Θ) =
∑

c

∑
sc,v

p̃c(sc,v)

⎡
⎣ ∑

i∈V +
c \v

log (1 − θi) +
∑

j∈V −
c \v

log θj

⎤
⎦ (5)

To optimize, we take the first derivative with respect to each variable v:

dF

dΘv
=
∑
c∈Cv

∑
sc,w

w �=v

p̃c(sc,w)
[{ 1

θv−1 if v ∈ V +
c

1
θv

if v ∈ V −
c

]
(6)

Because the various support profiles sc,v partition the space of possible configu-
rations for c, we can marginalize out the probability that the clause is solely sup-
ported by some variable other than v:∑

sc,w

w �=v

p̃c(sc,w) = 1 − p̃c(sc,v) (7)

By substituting into (6), and splitting v’s clauses into those where it appears pos-
itively and negatively, we obtain:

dF
dΘv

= α · 1
θv

+ β · 1
θv−1

where α =
∑

c∈C−
v

(1 − p̃c(sc,v)) and
β =

∑
c∈C+

v
(1 − p̃c(sc,v))

(8)

Finally, by setting the derivative to zero, and substituting (2) for p̃c(sc,v), we arrive
at an EM update rule for the θ’s:

dF
dΘv

= 0 ⇒ α · (θv − 1) = −β · (θv) ⇒ θv = α
α+β

⇒

θ′
v ← c∈C−

v

1 −
i∈V +

c

(1 − θi)
j∈V −

c \v

θj

c∈C−
v

1 −
i∈V +

c

(1 − θi)
j∈V −

c \v

θj +
c∈C+v

1 −
i∈V +

c

(1 − θi)
j∈V −

c \v

θj

(9)

6.4 Comparison with BP

Thus we exhibit a transformation between this EM formulation for SAT, and pre-
vious approaches based on BP; the above is almost identical to (1). The sole dif-
ference, the replacement of products by sums, is the crux of ensuring convergence.
A high-level syntactic understanding is that the logarithms allow us to treat each
clause as a separate term in a sum, making the update rule into a (log) odds expres-
sion rather than a standard probability. A high-level operational understanding
is that when walking toward local maxima, we want to avoid large steps that can
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overshoot a given peak, resulting in a sort of orbiting nonconvergence. Ratios of
sums produce gentler steps than those of products.

In fact, the steps here are bounded in such a way that they are guaranteed never
to increase our distance from the nearest local maximum. This is a general prop-
erty of EM, and a more detailed (and rigorous) explanation can be found in most
introductions to the algorithm, or to related variational methods [22]. In essence,
the use of Jensen’s Inequality in formulating (3) ensures that we have a lower
bound on the local maximum, i.e. an admissible heuristic. Further, the fact that
the E step fully optimizes the energy equation ensures tightness, meaning that we
can only raise this lower bound between alternations of E and M.

7 Implementation and Empirical Results

We have examined such theoretical claims by implementing the EM-derived ver-
sion of BP (“EMBP”) within existing SP code [23]. The code also implements
regular BP, allowing comparison of the three approaches within a common in-
frastructure. (An EM version of SP is also possible, but was not implemented.)
As expected, EMBP always proceeded directly to single local maximum in likeli-
hood, and thus always converged. A second question of interest, though, concerns
the quality of such maxima. Although the EM formulation always converges, it can
still fail to find a solution when one exists. Indeed, even on convergence, all three
algorithms arrive at only a local maximizer for the log likelihood of P (Θ|SAT );
this peak might not correctly reflect the truth. Thus, even under unit decimation
it is still possible to make an incorrect decision that eliminates all remaining so-
lutions. Though they were not implemented in the proof of concept, backtracking
or restarts would be necessary at this point.

Figure 2 addresses such issues over both random and structured problems.
Across one hundred trials per test suite, the three approaches either solved (satisfi-
able) instances, failed to converge at some point during execution, or else aborted
upon fixing all variables without finding an assignment (either because of inac-
curate local maxima, or because an instance was indeed unsatisfiable.) The three
graphs represent the relative proportion of these cases on random problems as the
clause-to-variable ratio α crosses the phase transition area, while the table repre-
sents these percentages over the entirely satisfiable “Inductive Inference,” “Logis-
tics,” “Parity,” and “Quasigroup Completion” test suites of the Satlib benchmark
library. In short, EMBP always converges, but it appears to give worse answers
than BP and SP on random problems, and better answers on the selected struc-
tured problems.

As the random problems become more constrained, the traditional propagation
techniques encounter increasing risk of non-convergence, essentially on unsatisfi-
able instances. Further on, they begin to recapture the ability to converge, and
only abort due to incorrect maxima. (The maxima must be incorrect, as these
are unsatisfiable instances.) While EMBP always converges, it will begin abort-
ing with an earlier threshold than BP and SP. This is consistent with the hypoth-
esis that by overshooting their targets, traditional propagation methods are able
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(a) BP: Belief Propagation (b) SP: Survey Propagation

(c) EMBP: EM version of BP (d) Structured Problems

Fig. 2. Outcomes for (a) BP, (b) SP, and (c) BP-EM Propagation on Random Problems;
Percentage Outcomes on (d) Structured Problems

to sample a larger space of local maxima than EM methods, but at the risk of
failing to converge. All three approaches remain practical, though, with the use
of restarts–so long as there is a non-negligible probability of success, repeated
attempts will eventually cure single-mindedness and wanderlust alike. Similarly,
with the exception of logistics, the structured results are positive despite rela-
tively low success rates. Recall that the framework is backtrack-free: each run is
first randomly initialized and then continues on to success only by making an en-
tirely correct string of decisions for fixing variables. (It is this initialization that
makes BP and SP fail by abortion rather than non-convergence.) Still, within the
restart framework, EMBP is superior to BP/SP on these structured problems–it is
significantly more likely to find a solution for inductive inference and parity prob-
lems, and is the only approachwith any chance of solving a quasi-group completion
problem.

8 Summary and Discussion

The main contribution of this paper is to provide a clearer understanding of the
BP and SP algorithms by relating them to the EM algorithm. This exposition pro-
vides deeper insight into the differing performance of these algorithms on struc-
tured and unstructured problems. It also enables development of variants of these
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algorithms that were guaranteed to converge. A secondary contribution of this
paper is to provide an intuitive but nonstandard explanation of BP and SP by
characterizing unit decimation as a variable/value heuristic and relating these al-
gorithms’ purpose to finding backbones and backdoors.

We hope that relating BP and SP to EM will allow more tangible gains through
the application of related ideas. EM is widely used in statistically-inclined re-
search communities and features many variants suggested by theoretical works
like [21]. There are incremental versions that converge more quickly and enable
online processing of new clauses. Sparse versions can handle near-zero probabili-
ties symbolically, another expedient that has been used in similar form [23] with
propagation algorithms, but not systematically. Other variants alter the artificial
distribution P̃ (Z|Y,Θ), for instance by encouraging it to give more mass to fewer
possibilities; the commonly-used K-Means algorithm is an extreme example of this
idea. Finally, variational methods can be crudely viewed as developing less exact
or less convergent techniques to more efficiently operate on the Markov Random
Fields underlying BP’s energy equations [22].

Another avenue for future work is to consider P (SAT |Θ) in lieu of P (Θ|SAT ).
While there are no clear semantics for the priors P (Θ) and P (SAT ), the two con-
ditional probabilities are proportional via Bayes’ rule. The unit decimation frame-
work suggests an alternate employment of local search for finding solutions to SAT
and MAXSAT. Instead of using searches as walks to maxima, each walk can be
considered a sample to use as a variable and value ordering heuristic.

References

1. Braunstein, A., Mezard, M., Zecchina, R.: Survey propagation: An algorithm for
satisfiability. Random Structures and Algorithms 27 (2005) 201–226

2. Kask, K., Dechter, R., Gogate, V.: Counting-based look-ahead schemes for con-
straint satisfaction. In: Proc. of 10th International Conference on Constraint Pro-
gramming (CP ’04), Toronto, Canada. (2004)

3. Wang, Y., Zhang, J., Fossorier, M., Yedidia, J.: Reduced latency iterative decoding
of LDPC codes. In: IEEE Conference on Global Telecommunications (GLOBE-
COM). (2005)

4. Braunstein, A., Zecchina, R.: Learning by message passing in networks of discrete
synapses. Physics Review Letters 96(5) (2006)

5. Pearl, J.: Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann, San
Mateo (1988)

6. Kschischang, F.R., Frey, B.J., Loeliger, H.A.: Factor graphs and the sum-product
algorithm. IEEE Transactions on Information Theory 47(2) (2001)

7. Braunstein, A., Zecchina, R.: Survey propagation as local equilibrium equations.
Journal of Statistical Mechanics: Theory and Experiments PO6007 (2004)

8. Yedidia, J., Freeman, W., Weiss, Y.: Understanding belief propagation and its gen-
eralizations. In Nebel, B., Lakemeyer, G., eds.: Exploring Artificial Intelligence in
the New Millennium. Morgan Kaufmann (2003) 239–256

9. Dechter, R., Mateescu, R.: A simple insight into properties of iterative belief prop-
agation. In: Proc. of 19th International Conference on Uncertainty in Artificial In-
telligence (UAI ’03), Acapulco, Mexico. (2003)



338 E.I. Hsu and S.A. McIlraith

10. Lardeux, F., Saubion, F., Hao, J.K.: Three truth values for the SAT and MAX-SAT
problems. In: Proc. of the Nineteenth International Joint Conference on Artificial
Intelligence (IJCAI ’05), Edinburgh, Scotland. (2005)

11. Yedidia, J., Freeman, W., Weiss, Y.: Constructing free-energy approximations and
generalized belief propagation algorithms. IEEE Transactions on Information The-
ory 51(7) (2005) 2282–2312

12. Dechter, R., Kask, K., Mateescu, R.: Iterative join-graph propagation. In: Proc. of
18th International Conference on Uncertainty in Artificial Intelligence (UAI ’02),
Edmonton, Canada. (2002) 128–136

13. Kask, K., Dechter, R., Larrosa, J., Pfeffer, A.: Cluster-tree decompostitions for
reasoning in graphical models. Artificial Intelligence 166(1-2) (2005)

14. Selman, B., Kautz, H., Cohen, B.: Local search strategies for satisfiability test-
ing. DIMACS Series in Discrete Mathematics and Theoretical Computer Science
26 (1996)

15. Goemans, M., Williamson, D.: New 3/4-approximation algorithms for the maximum
satisfiability problem. SIAM Journal on Discrete Mathematics 7 (1994) 656–666

16. Goemans, M., Williamson, D.: Improved approximation algorithms for maximum
cut and satisfiability problems using semidefinite programming. Journal of the ACM
(42) (1995) 1115–1145

17. Williams, R., Gomes, C., Selman, B.: Backdoors to typical case complexity. In:
Proc. of 18th International Joint Conference on Artificial Intelligence (IJCAI ’03),
Acapulco, Mexico. (2003)

18. Gomes, C., Selman, B., Crato, N., Kautz, H.: Heavy-tailed phenomena in satisfiabil-
ity and constraint satisfaction problems. Journal of Automated Reasoning 24(1-2)
(2000) 67–100

19. Dempster, A., Laird, N., Rubin, D.: Maximum likelihood from incomplete data via
the EM algorithm. Journal of the Royal Statistical Society 39(1) (1977) 1–39

20. Shang, Y., Wah, B.: A discrete Lagrangian-based global-search method for solving
satisfiability problems. Journal of Global Optimization 12(1) (1998) 61–99

21. Neal, R., Hinton, G.: A view of the EM algorithm that justifies incremental, sparse,
and other variants. In Jordan, M., ed.: Learning in Graphical Models. Kluwer Aca-
demic Publishers (1998) 355–368

22. Jordan, M., Ghahramani, Z., Jaakkola, T., Saul, L.: An introduction to variational
methods for graphical models. In Jordan, M., ed.: Learning in Graphical Models.
MIT Press (1998)

23. Braunstein, A., Leone, M., Mezard, M., Weigt, M., Zecchina, R.: Sp-1.3 survey
propagatrion implementation. (http://www.ictp.trieste.it/~zecchina/SP/)

24. Hsu, E., McIlraith, S.: Characterizing loopy belief propagation as expectation max-
imization (2006) Manuscript in preparation.



Minimal False Quantified Boolean Formulas�
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Abstract. This paper is concerned with the minimal falsity problem
MF for quantified Boolean formulas. A QCNF formula (i.e., with CNF-
matrix) is called minimal false, if the formula is false and any proper
subformula is true. It is shown that the minimal falsity problem is
PSPACE-complete. Then the deficiency of a QCNF formula is defined
as the difference between the number of clauses and the number of exis-
tentially quantified variables. For quantified Boolean formulas with defi-
ciency one, MF is solvable in polynomial time.

1 Introduction

A propositional formula in CNF is called minimal unsatisfiable (MU) if the for-
mula is unsatisfiable and any proper subformula is satisfiable. Minimal unsatis-
fiable formulas have been studied, not only because of their theoretical interests,
but also because of their applications for example in formal verification. Now
quantified Boolean formulas QBF are gaining their importance since they are
suitable for the representation of many problems such as planning, abduction,
non-monotonic reasoning, and games. This has motivated much research activity
in the QBF area. In this paper we shall introduce and investigate the minimal
falsity problem for quantified Boolean formulas with CNF matrices and without
free variables. A QCNF formula is said to be minimal false if the formula is
false and deleting any clause results in a true formula. Since every false QCNF
formula contains a minimal false subformula, it is natural to believe that deep
understanding of minimal false formulas might be helpful for designing more
efficient QBF solvers.

For propositional CNF formulas the so called deficiency — the difference
between the number of clauses and the number of variables — has been used
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successfully for the characterization of classes of MU formulas. The problem
whether a formula is minimal unsatisfiable (MU) is known to be DP –complete
[11]. DP is the class of problems which can be described as the difference of two
NP-problems. But the problem whether for fixed k a formula with deficiency k
is minimal unsatisfiable is solvable in polynomial time [4,8,9]. For MU(1) and
MU(2) the class of minimal unsatisfiable formulas with deficiency 1, 2, natural
characterizations can be given [2,5].

The deficiency for quantified Boolean formulas with CNF matrices will be
defined as the difference between the number of clauses and the number of ex-
istential variables. It will be proved that for an arbitrary minimal false formula
Φ, any proper subformula has less deficiency than Φ and the deficiency is always
greater than or equal to 1. This gives a chance to reduce the complexity of the
minimal falsity problem by restricting the deficiency. Indeed, in section 3, it will
be shown that the minimal falsity problem is PSPACE-complete, but if we re-
strict to the QCNF formulas with deficiency one, the minimal falsity problem
becomes solvable in polynomial time (see Section 4). It remains open, whether
for fixed deficiency greater than 1 the minimal falsity problem remains solvable
in polynomial time.

The algorithms for testing minimal falsity of QCNF formulas with deficiency
1 depends essentially on the structure of MU(1) formulas. Although, formulas
HIT-MU (the class of MU formulas in which any two clauses hit each other) fail
to have these structural properties, we find that for QEHIT formulas in which
any two different clauses contain a pair of complementary existential literals, the
minimal falsity depends mainly on the position of the occurrences of universal
literals. Hence, we can show that the minimal falsity problem for QEHIT is
solvable in polynomial time. However, the minimal falsity problem for QHIT
formulas whose matrices are hitting is not solvable in polynomial time unless P
equals PSPACE.

2 Notations

A literal is a variable or a negated variable. Clauses are disjunctions of literals.
Clauses are also considered as sets of literals. A propositional formula in conjunc-
tive normal form (CNF) is a conjunction of clauses. Usually, CNF formulas are
considered as multi-sets. Thus, they may contain multiple occurrences of clauses.
A CNF formula ϕ′ is called a subformula of ϕ if ϕ′ ⊆ ϕ, i.e., ϕ′ is a subset of ϕ.
The set of all variables occurring in a formula ϕ is denoted as var(ϕ). For a set
X of variables, X := {¬x | x ∈ X}.

Suppose ϕ is a propositional formula, v is a partial truth assignment, i.e.,
dom(v) ⊆ var(ϕ). Then ϕ[v] is the formula obtained from ϕ by deleting all true
clauses and removing all false literals under v. If dom(v) = {x} and v(x) = ε,
then we just write ϕ[x/ε] instead of ϕ[v].

A CNF formula is termed minimal unsatisfiable, if the formula is unsatisfi-
able and removing an arbitrary clause leads to a satisfiable formula. The set of
minimal unsatisfiable formulas is denoted as MU.
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Any quantified Boolean formula Φ in QCNF has the form Φ=Q1x1 · · ·Qnxnϕ,
where Qi ∈ {∃, ∀} and ϕ is a CNF formula. Q1x1 · · ·Qnxn is the prefix of Φ,
and ϕ is called the matrix of Φ. Sometimes we use an abbreviation and write
Φ = Qϕ. If X = {x1, · · · , xn}, we often write ∃X (resp. ∀X) for ∃x1 · · · ∃xn

(resp. ∀x1 · · · ∀xn).
Let Φ = Q1x1 · · ·Qnxnϕ, Φ′ = Q1x1 · · ·Qnxnϕ

′ be two QCNF formulas. We
say Φ′ is a subformula of Φ, denoted as Φ′ ⊆ Φ, if ϕ′ is a subformula of ϕ, i.e.,
every clause of ϕ′ is also a clause of ϕ.

A literal x or ¬x is called an universal resp. existential literal, if the variable x
is bound by an universal quantifier resp. existential quantifier. Sometimes univer-
sally resp. existentially quantified variables are denoted as ∀– resp. ∃–variables.
A clause without existential resp. universal variables is called an universal resp.
existential clause. All the formulas in QCNF are closed, that means any variable
is bound by a quantifier.

Suppose we have a formula Qϕ ∈ QCNF with ∃–variables x1, · · · , xn. Then
ϕ|∃ is the formula obtained from ϕ by removing all occurrences of universal
literals. Please note, that the propositional formula ϕ|∃ may contain multiple
occurrence of clauses. If a clause in ϕ contains only universal literals then the
result is the empty clause  .

3 Minimal Falsity MF and MF(k)

In this section we shall introduce and investigate the minimal falsity of QCNF
formulas. The minimal falsity problem will be shown PSPACE-complete. The
notion of deficiency will be generalized to QCNF formulas. It will be shown that
any minimal false formula has deficiency greater or equal than 1.

Definition 1. A quantified Boolean formula Φ ∈QCNF is termed minimal false,
if Φ is false and after removing an arbitrary clause the resulting formula is true.
The set of minimal false formulas is denoted as MF.

Lemma 1. (Simplification) Suppose Φ = ∀yQϕ is in MF . Then the variable
y occurs either only positively or only negatively in Φ and Qϕ[y/ε] ∈ MF , where
ε = 0, if y occurs positively and ε = 1, otherwise.

Proof. Because of the falsity of Φ, the formula is false w.l.o.g. for y = 0. In that
case no clause with occurrence of ¬y is required for the falsity. Since Φ is in MF,
¬y does not occur in any clause. �

For any subset X ⊆ QCNF, we can regard X as the decision problem of deter-
mining whether an arbitrary given QCNF formula belongs to X .

Theorem 1. The minimal falsity problem MF is PSPACE-complete.

Proof. Obviously, the minimal falsity problem is in PSPACE. Let QCNF3∃ be the
class of formulas in QCNF for which every clause contains three existential liter-
als besides the universal literals. It is well-known that the evaluation problem for
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QCNF3∃ remains PSPACE–complete [6]. The PSPACE-hardness of the minimal
falsity problem will be shown by a polynomial reduction ω : QCNF3∃ → QCNF,
for which Φ is true if and only if ω(Φ) is minimal false.

Let Φ = Q(α1 ∧ · · · ∧αm) be a QCNF3∃ formula with clauses αi = ui ∨Li,1 ∨
Li,2 ∨Li,3, here ui is the clause consisting of all universal literals in αi. For new
variables {x1, x2, · · · , xm} let πi (1 ≤ i ≤ m) be the clause

x1 ∨ · · · ∨ xi−1 ∨ xi+1 ∨ · · · ∨ xm.

Let ω(Φ) be the following formula

∃x1 · · · ∃xmQ⎛
⎜⎜⎝

(α1 ∨ π1) ∧ (α2 ∨ π2) ∧ · · · ∧ (αm ∨ πm) ∧∧
1≤i≤m((¬Li,1 ∨ πi ∨ ¬xi) ∧ (¬Li,2 ∨ πi ∨ ¬xi) ∧ (¬Li,3 ∨ πi ∨ ¬xi)) ∧∧
1≤i<j≤m(¬xi ∨ ¬xj) ∧

(x1 ∨ x2 ∨ · · · ∨ xm)

⎞
⎟⎟⎠

and λ(Φ) = ω(Φ) − {(x1 ∨ · · · ∨ xm)}. At first we show

(1) If Φ is true then ω(Φ) is minimal false.
Suppose Φ is true. We then have to prove (a) ω(Φ) is false and (b) every proper
subformula is true.

(a) Suppose on the contrary ω(Φ) is true. Then there is a truth assignment
v defined on x1, · · · , xm such that ω(Φ)[v] is true. Because of the clause (x1 ∨
· · · ∨ xm) and the clauses (¬xi ∨ ¬xj), 1 ≤ i < j ≤ m, there is exactly one xi

with v(xi) = 1. Then we have

ω(Φ)[v] = Q(αi ∧ ¬Li,1 ∧ ¬Li,2 ∧ ¬Li,3),

The formula is false in contradiction to our assumption. Hence, ω(Φ) is false.
(b) Let f be an arbitrary clause in ω(Φ). We shall prove that ω(Φ) − {f} is

true by a case distinction on the clause f .

Case 1. f = (x1 ∨ · · · ∨xm). For the truth assignment v which assigns 0 to each
xi, (ω(Φ) − {f})[v] = Φ. Thus, ω(Φ) − {f} is true.
Case 2. f = (¬xi ∨ ¬xj) for some i < j. Let v be the truth assignment which
sets xi = xj = 1 and other xk = 0. Then v satisfies the matrix of ω(Φ) − {f}.
Case 3. f = (αi ∨ πi) for some i = 1, · · · ,m. For the assignment v which sets
xi = 1 and other xk = 0, we have (ω(Φ) − {f})[v] = Q(¬Li,1 ∧ ¬Li,2 ∧ ¬Li,3),
which is true.
Case 4. f = (¬Li,j ∨ πi ∨ ¬xi) for some i = 1, · · · ,m, j = 1, 2, 3. W.l.o.g we
assume j = 1. For the assignment v which sets xi = 1 and other variables xk = 0,
we have (ω(Φ)−{f})[v] = Q(αi∧¬Li,2∧¬Li,3). The formula is true for example
for Li,1 = 1, Li,2 = Li,3 = 0.

It remains to prove: (2) If ω(Φ) is minimal false then Φ is true.
Suppose ω(Φ) is minimal false. Then λ(Φ) is true, because the formula is a proper
subformula. Let v be a truth assignment defined on x1, · · · , xm such that λ(Φ)[v]
is true. Because of the clauses (¬xi ∨ ¬xj), 1 ≤ i < j ≤ m, we have two cases.
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Case 1. v(xi) = 0 for all i = 1, · · · ,m. Then Φ is true, because of λ(Φ)[v] = Φ.
Case 2. There exists exactly one xi with v(xi) = 1. The assignment v leads to
λ(Φ)[v] = Q(αi ∧ ¬Li,1 ∧ ¬Li,2 ∧ ¬Li,3), but this formula is false. Hence, case 2
cannot occur. Altogether, Φ must be true. �

For propositional formulas in CNF, the deficiency is defined as the difference
between the number of clauses and the number of variables. It has been shown
that MU(k), the set of minimal unsatisfiable formulas with deficiency k, is solv-
able in polynomial time [4] and any minimal unsatisfiable formula has deficiency
greater than 0. For the definition of the deficiency for QCNF only the number
of existential variables will be taken into account.

Definition 2. For a formula Φ = Qϕ ∈ QCNF with t clauses, the deficiency
is defined as d(Φ) := t− |var(ϕ|∃)|. The maximum deficiency of Φ is defined as
d∗(Φ) := max{d(Φ′) | Φ′ ⊆ Φ} = max{d(ϕ′

|∃) | ϕ′ ⊆ ϕ} := d∗(ϕ|∃).
For fixed k, MF(k) is the set of MF formulas with deficiency k.

For a formula Φ in MF the existential part ϕ|∃ of the matrix ϕ is unsatisfiable.
But ϕ|∃ is not necessarily minimal unsatisfiable.

Example 1. The formula Φ = ∃x∀z∃a∃b∃c ϕ with
ϕ = (z ∨ a ∨ b) ∧ (x ∨ z ∨ ¬a) ∧ (¬x ∨ ¬z ∨ ¬a) ∧ (¬z ∨ a ∨ c) ∧ (¬b) ∧ (¬c) is in
MF, but the existential part (a∨ b)∧ (x∨¬a)∧ (¬x∨¬a)∧ (a∨ c)∧ (¬b)∧ (¬c)
of the matrix is not minimal unsatisfiable.

Theorem 2. Let Φ be a formula in QCNF without universal clauses.

1. If Φ is false then d∗(Φ) ≥ 1.
2. If Φ ∈ MF then d(Φ) ≥ 1 and d(Φ′) < d(Φ) for any proper subformula Φ′.

Proof. (1) Suppose, Φ is false and has the form Qϕ. Then the existential part
of the matrix ϕ|∃ is false and contains a minimal unsatisfiable subformula. Since
any minimal unsatisfiable formula has deficiency greater than or equal to 1 [2],
there is a subformula ϕ′ ⊆ ϕ with d(Qϕ′) ≥ 1 and therefore d∗(φ) ≥ 1.

(2) Suppose Φ := Qϕ is in MF. If d(Φ′) < d(Φ) for any proper subformula
then d∗(Φ) = d(Φ) and d(Φ) ≥ 1, because of (1). Now we suppose: There exists
a proper subformula Φ′ ⊂ Φ with d(Φ′) ≥ d(Φ). We choose a proper subfor-
mula with d(Φ′) = d∗(Φ). Let Φ′ := Qϕ′, and Φ′′ := Q(ϕ − ϕ′). Moreover, let
Φ′′
−∃var(ϕ′) be the formula obtained from Φ′′ by removing all positive and nega-

tive occurrences of existential variables occurring in ϕ′. We claim that Φ′′
−∃var(ϕ′)

is true. Otherwise, Φ′′
−∃var(ϕ′) would have a subformula with deficiency at least 1.

Combining this formula with Φ′ (and recovering the removed literals) we would
have a subformula with deficiency greater than d∗(Φ), a contradiction.

Φ′′ is true, because Φ′′
−∃var(ϕ′) is true. Since Φ′ and Φ′′

−∃var(ϕ′) have distinct
existential variables, Φ′′ is true independently of Φ′. Consequently, Φ′ must be
false. That contradicts the assumption that Φ is in MF. �

We conclude this section by explaining why we do not adopt the alternative
definition of the deficiency which takes all variables into account.



344 H. Kleine Büning and X. Zhao

Definition 3. For a formula Φ = Q(ϕ1 ∧ · · · ∧ ϕt) ∈ QCNF with s variables
we define dall(Φ) = t − s and for any fixed integer k, MFall(k) := {Φ ∈ MF
| dall(Φ) = k}.
Lemma 2. For any fixed integer k, MFall(k) is PSPACE-complete.

Proof. For any fixed integer k, MFall(k) is in PSPACE, because MF is in
PSPACE. The PSPACE-hardness will be shown by a poly-time reduction Fk :
QCNF −→ QCNF for which Φ is in MF if and only if Fk(Φ) ∈ MFall(k).

For Φ = Q(ϕ1 ∧ · · · ∧ ϕt) with s variables we have dall(Φ) = t − s. We shall
proceed by a case distinction on r := t− s.

Case 1. r = k. Then define Fk(Φ) := Φ.
Case 2. r > k. Pick new variables y, x1, · · · , xr−k and define Fk(Φ) to be the
following formula

Q∀x1 · · · ∀xr−k∃y (ϕ1 ∨ x1 ∨ · · · ∨ xr−k ∨ y) ∧ (ϕ2 ∨ ¬x1 ∨ · · · ∨ ¬xr−k ∨ y)
∧(¬y) ∧ (ϕ3 ∧ · · · ∧ ϕt).

Obviously, Φ is in MF if and only if Fk(Φ) is in MF and dall(Fk(Φ)) = t + 1 −
(s + (r − k) + 1) = k.
Case 3. r < k. Let m := k− r. One can easily construct a MF formula Σm+1 :=
∃X(σ1∧· · ·∧σ2(m+1)) such that X∩var(Φ) = ∅ and X has m+1 variables, here,
each σi is a clause. Then dall(Σm+1) = m + 1. For a new variable y we define

Fk(Φ) := ∃y∃XQ((σ1 ∨ y) ∧ σ2 ∧ · · · ∧ σ2(m+1) ∧ (ϕ1 ∨ ¬y) ∧ ϕ2 ∧ · · · ∧ ϕt).

It is not hard to see that Φ is in MF if and only if Fk(Φ) is in MF and
dall(Fk(Φ)) = 2(m + 1) + t− (m + 1 + 1 + s) = k. �

4 MF(1) Is Solvable in Polynomial Time

In this section we demand w.l.o.g. that QCNF formulas contain neither tautolog-
ical nor universal clauses. Moreover, the inner-most and the outermost quantifier
are existential quantifiers.

It is known that MU(1), the set of minimal unsatisfiable CNF formulas with
deficiency 1, can be solved in polynomial time. There are QCNF formulas Φ =
Qϕ for which ϕ|∃ is in MU(1), but Φ is not minimal false. Take for example
Φ = ∀y∃x(y ∨ x) ∧ (¬y ∨ ¬x).

Lemma 3. (MF(1) versus MU(1) ) Let Φ = Qϕ be a formula in QCNF. If
Qϕ ∈ MF(1) then ϕ|∃ ∈ MU(1) .

Proof. Suppose Φ = Qϕ ∈ MF(1) with n ∃–variables. Then ϕ|∃ is unsatisfiable,
and d(ϕ|∃) = 1. Using Theorem 2 we see that any proper subformula Φ′ of Φ
has deficiency d(Φ′) < 1. That means any proper subformula of ϕ|∃ has a defi-
ciency less than 1. That implies the satisfiability of the proper subformulas of
ϕ|∃, because any unsatisfiable propositional formula contains a minimal unsat-
isfiable formula with deficiency greater than 0 [2]. Altogether we have shown
ϕ|∃ ∈MU(1). �
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In our polynomial time algorithm for deciding MF(1) we make use of the follow-
ing definition.

Definition 4. Let α ∈MU(1), X ⊆ var(α), f, g ∈ α. We say f and g are
directly connected without X if f = g, or if there is some L �∈ X ∪ X such
that L ∈ f and ¬L ∈ g. We say f and g are connected without X if there are
in α clauses f = f1, f2, · · · , fn = g such that fi and fi+1 are directly connected
without X.

Please notice, that if X is empty, then any two clauses in α are connected without
X , because α ∈MU(1).

Whether two clauses are connected without X can be decided in polynomial
time as follows: For every clause we have a node labeled with the clause, two
clauses are connected by an edge if there is x �∈ X such that x occurs in one of
the clauses and ¬x in the other clause. Then two clauses are connected without
X if and only if there is a path between the clauses. That can be decided in
polynomial time.

Theorem 3. Let Φ = ∃X1∀Y1 · · · ∃Xm∀Ym∃Xm+1ϕ be a formula with ϕ|∃ in
MU(1). Then, Φ is false ⇔ for all variables y ∈ Yi, 1 ≤ i ≤ m, for all f, g ∈
ϕred : (y ∈ f,¬y ∈ g) ⇒ f and g are not connected without X1 ∪ · · · ∪ Xi in
ϕ|∃. Here, ϕred is the result of removing all universal literals from ϕ except y
and ¬y.

By Theorem 3, to see whether a formula Φ = ∃X1∀Y1 · · · ∃Xm∀Ym∃Xm+1ϕ
is in MF(1), first check that ϕ|∃ ∈ MU(1). If this condition holds, check for
each y ∈ Yi, i = 1, · · · ,m, and for any two clauses f, g containing y and ¬y
respectively, that f, g are not connected without X1 ∪ · · · ∪ Xi. Since there at
most quadratic many such pairs and connectivity can be tested in polynomial
time, MF(1) can be solved in polynomial time.

Example 2. Let Φ := ∃x1∀y1∀y2∃x2∃x3∃x4∃x5 ϕ, where ϕ is the following
formula (the columns are the clauses)

ϕ =

⎧⎨
⎩
x2 y1 ¬y1 ¬x3 y2 ¬x1
x4 x1 x3 ¬x4 ¬x1 ¬x5

¬x2 x5

⎫⎬
⎭

Clearly, ϕ|∃ is in MU(1). In ϕ, the second clause is directly connected without
{x1} to the first one which is directly connected without {x1} to the fourth
clause, and the fourth clause is directly connected without {x1} to the third
one. Thus, Φ is true. In fact for x1 = 0, x2 = y1, x3 = y1, and x4 = ¬y1 the
formula is true.

Example 3. Let Φ := ∃x1∃x3∀y∃x2∃x4 ϕ, where ϕ is the following formula.

ϕ =

⎧⎨
⎩

x1 ¬x1 ¬x3 x3 x4
¬x2 y x2 ¬y

¬x2 ¬x4

⎫⎬
⎭
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Clearly, ϕ|∃ is in MU(1). In ϕ, only the second clause and the fourth clause
contain a pair of complementary universal literals, and they are not connected
without {x1, x3}. Thus, the formula is false.

The proof of Theorem 3 can be divided into two parts (Lemma 4 and Lemma 5).

Lemma 4. Let Φ = ∃X1∀Y1 · · · ∃Xm∀Ym∃Xm+1ϕ be a formula with ϕ|∃ in
MU(1). Then, Φ is false ⇔ for all variables y ∈ Yi, 1 ≤ i ≤ m, the formula
∃X1 · · · ∃Xi∀y∃Xi+1 · · · ∃Xm+1ϕred is false. Here, ϕred is the result of remov-
ing all universal literals from ϕ except y and ¬y.

Lemma 5. Let Φ = ∃X∀y∃Zϕ be a formula with ϕ|∃ in MU(1). Then, Φ is
false ⇔ ∀f, g ∈ ϕ : (y ∈ f,¬y ∈ g) ⇒ f and g are not connected without X in
ϕ|∃.

Our remaining task is to prove Lemma 4 and Lemma 5. Let us first recall some
properties of MU(1) formulas. For any formula ϕ ∈ MU(1) and x ∈ var(ϕ),
ϕ[x/0] (resp. ϕ[x/1]) contains a unique minimal unsatisfiable subformula which
is also in MU(1) [2], denoted as ϕx (resp. ϕ¬x). We call (ϕx, ϕ¬x) a splitting of ϕ
over x. In general, the splitting formulas ϕx and ϕ¬x may have common clauses.
However, we have the following nice structural property.

Proposition 1. ([2]) For any formula ϕ ∈ MU(1) , there is a variable x ∈
var(ϕ) such that ϕx and ϕ¬x have distinct variables, that is, var(ϕx)∩var(ϕ¬x)
= ∅. Hence, they contain no common clause.

Let ϕ, x, ϕ¬x, ϕx be as in Proposition 1, then we call (ϕx, ϕ¬x) a disjunctive
splitting of ϕ over x.

Suppose ϕL is a splitting formula, y ∈ var(ϕL), then we can split ϕL further
and get formulas (ϕL)K with K ∈ {y,¬y}. For simplicity, we write (ϕL)K as
ϕLK . Generally, we have ϕL1···Lk

(which we still call a splitting formula) af-
ter several steps of splitting. Please notice, that when performing splitting, we
remove the occurrences of splitting literals. During the proof of the polynomial-
time solvability of MF(1) we have to recover some of the removed occurrences of
literals. Suppose θ is a splitting formula, L a literal, θL denotes the formula ob-
tained from θ by recovering the occurrences of L properly. Please notice, that if
the original clauses from which θ is obtained (by deleting some splitting literals)
does not contain L, then L will not occur in θL.

Example 4. Let ϕ be the following formula:

ϕ :=

⎛
⎜⎜⎜⎜⎜⎜⎝

x1 ¬x1
x2 ¬x2

x3 ¬x3
y ¬y ¬y

x4 ¬x4
x5 x5 ¬x5

⎞
⎟⎟⎟⎟⎟⎟⎠
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We can see

ϕy =

⎛
⎝x1 ¬x1

x2 ¬x2
x3 ¬x3

⎞
⎠ , ϕyx2 = (x1,¬x1) , ϕy¬x2 = (x3,¬x3) .

Then

ϕy
y =

⎛
⎜⎜⎝
x1 ¬x1

x2 ¬x2
x3 ¬x3
y

⎞
⎟⎟⎠ , ϕy

yx2
= ϕyx2 , ϕy

y¬x2
=
(
x3 ¬x3
y

)
.

Proposition 2. Suppose ϕ ∈MU(1), y ∈ var(ϕ) with a disjunctive splitting
(ϕy, ϕ¬y). Suppose further x ∈ ϕL for some L ∈ {y,¬y}. Then for K ∈ {x,¬x},
we have the following:

If ϕL
LK does not contain L then ϕK = ϕLK .

If ϕL
LK contains L then ϕK = ϕL

LK + ϕ¬L
¬L, moreover, ϕLK = ϕKL.

Proof. If ϕL
LK does contain L then ϕLK = ϕL

LK . That means ϕLK ⊆ ϕ[K/0].
Thus ϕK = ϕLK . Suppose ϕL

LK contains L then ϕL
LK + ϕ¬L

¬L is in MU(1), and a
subsformula of ϕ[K/0], therefore, it must be ϕK . �

In Example 4, we can see that ϕx2 = ϕyx2 , while ϕ¬x2 = ϕy
y¬x2

+ ϕ¬y
¬y.

Lemma 6. Let ϕ be a MU(1) formula, x ∈ var(ϕ). Then ϕ[L/0] − ϕL can be
satisfied by a partial truth assignment defined on var(ϕ[L/0] − ϕL) − var(ϕL),
for L ∈ {x,¬x}.

Proof. We prove the lemma by induction on the number of variables in ϕ. If ϕ
has only one variable, the lemma clearly holds. Suppose ϕ has more than one
variable. If (ϕx, ϕ¬x) is a disjunctive splitting, then the assertion follows. So, we
assume (ϕx, ϕ¬x) is non-disjunctive. By Proposition 1, there is some y �= x such
that (ϕy, ϕ¬y) is a disjunctive splitting. W.o.l.g., we assume that x ∈ var(ϕy).
There are two possibilities.

Case 1. y occurs in ϕy
yx. Then we have ϕx = ϕy

yx + ϕ¬y
¬y. Hence

ϕ[x/0] − ϕx = (ϕy[x/0] − ϕyx)y.

Now the assertion follows from the induction hypothesis.
Case 2. y does not occur in ϕy

yx. Then ϕx = ϕyx. Thus

ϕ[x/0] − ϕx = (ϕy [x/0] − ϕyx)y + ϕ¬y
¬y.

By the induction hypothesis, ϕy[x/0] − ϕyx is satisfied by a truth assignment
t defined on var(ϕy [x/0] − ϕyx) − var(ϕyx). Please note that y �∈ var(ϕx) and
var(ϕ¬y) ∩ var(ϕx) = ∅. Thus we can extend t to t′ such that t′(y) = 0 and t′

satisfies ϕ¬y¬y. Hence, the assertion is valid.
By the same argument we can show the assertion for ϕ[x/1] − ϕ¬x. �
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Suppose Φ = Qϕ is a QCNF formula such that ϕ|∃ ∈ MU(1). From a splitting
((ϕ|∃)x, (ϕ|∃)¬x) we recover the occurrences of all universal literals, the result is
denoted as (ϕx, ϕ¬x) which we still call a splitting of ϕ over x.

Corollary 1. Let Φ = ∃xQϕ be a QCNF formula with ϕ|∃ ∈ MU(1). Then
Φ[x/0] (resp. Φ[x/1]) and Qϕx (resp. Qϕ¬x) have the same truth. Moreover, Φ
is false if and only if both Qϕx and Qϕ¬x are false.

Proof of Lemma 4. We first show the direction from left to right. If Φ is false
then ∃X1 · · · ∃Xi∀y∃Xi+1 · · ·Xm+1ϕred is false, because removing some universal
literals preserves the falsity. Here, ϕred is the result of removing all universal
literals from ϕ except y and ¬y.

For the other direction, we suppose Φ is true. Pick x ∈ X1, let X ′
1 := X1−{x}.

Then w.o.l.g we assume Φ[x/0] = ∃X ′
1∀Y1 · · · ∃Xm∀Ym∃Xm+1ϕ[x/0] is true.

Then by Corollary 1, the formula Ψ := ∃X ′
1∀Y1 · · · ∃Xm∀Ym∃Xm+1ϕx is true.

If X ′
1 is empty and m = 1, then Ψ = ∀Y1∃X2ϕx. Since Ψ is true and the

existential part of ϕx is in MU(1), there must be some y ∈ Y1 occurring positively
and negatively. Then ∀y∃X2(ϕx)red is true. By Lemma 6, then ∀y∃X2(ϕ[x/0])red

is true, hence ∃X1∀y∃X2ϕred is true.
Suppose X ′

1 is empty but m > 1. Then Ψ =∀Y1∃X2∀Y2 · · · ∃Xm∀Ym∃Xm+1ϕx.
Suppose some y ∈ Y1 occurs both negatively and positively in ϕx, then it is easy
to see that ∀y∃X2 · · · ∃Xm+1ϕx is true. By Lemma 6, ∀y∃X2 · · · ∃Xm+1ϕ[x/0]
is true. Therefore, ∃X1∀y∃X2 · · · ∃Xm+1ϕ is true. Suppose no variable y ∈ Y1
occurs both negatively and positively, then ∃X2∀Y2 · · · ∃Xm∀Ym∃Xm+1(ϕx)′ is
also true, here (ϕx)′ is obtained from ϕx by removing all occurrences of y or ¬y
for all y ∈ Y1. Now Lemma 4 follows from the induction hypothesis and Lemma 6.

If X ′
1 is non-empty, Lemma 4 follows from the induction hypothesis and

Lemma 6. �

Lemma 7. Let Φ = ∃X∀y∃Zϕ be in QCNF with ϕ|∃ ∈ MU(1). Then, Φ is true
if and only if there exist L1, · · · , Ls ∈ X ∪ X such that var(ϕL1···Ls) ∩ X = ∅
and ∀y∃ZϕL1···Ls is true.

Proof. For X = {x1, · · · , xn}, we proceed by an induction on n. For n = 1 the
claim follows from Corollary 1. Suppose n > 1. Again by Corollary 1, Φ is true if
and only if either ∃x2 · · · ∃xnQϕx1 is true or ∃x2 · · · ∃xnQϕ¬x1 is true. Now the
lemma follows from the induction hypothesis. �

Before proving Lemma 5 we will show some propositions on splittings.

Proposition 3. Suppose ϕ ∈MU(1), y ∈ var(ϕ) with (ϕy, ϕ¬y) a disjunctive
splitting. We consider ϕLL1···Ls , here L ∈ {y,¬y}.

(1) Suppose ϕL
LL1···Ls

does not contain L, then ϕL1···Ls = ϕLL1···Ls.
(2) Suppose ϕL

LL1···Ls
contains L, then ϕL1···Ls = ϕL

LL1···Ls
+ ϕ¬L

¬L.
(3) Suppose ϕy

yL1···Ls
contains y, and ϕ¬y

¬yLs+1···Lm
contains ¬y, then

ϕL1···Lm = ϕy
yL1···Ls

+ ϕ¬y
¬yLs+1···Lm

.
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Proof. (1) This can be seen by induction on s. When s = 1 the assertion follows
from Proposition 2. Suppose s > 1. If ϕL

LL1
does not contain L then ϕL1 = ϕLL1 ,

and the assertion follows. So, we assume ϕL
LL1

contains L. Then by Proposition 2,
ϕLL1 = ϕL1L. Thus, ϕLL1···Ls = ϕL1LL2···Ls . Then by the induction hypothesis,
ϕL1L2···Ls = ϕL1LL2···Ls , and the assertion follows.

(2) If s = 1, the claim follows from Proposition 2. Suppose s > 1. From
Proposition 2, ϕLL1 = ϕL1L, then ϕLL1···Ls = ϕL1LL2···Ls . Thus by the induction
hypothesis, ϕL1L2···Ls = ϕL

L1LL2···Ls
+ϕ¬L

L1¬L. Since ϕL1 = ϕL
LL1

+ϕ¬L
¬L, ϕL1¬L =

ϕ¬L. The claim follows.
(3) Please notice, that for each i = 1, · · · s, ϕy

L1···Li
contains y. Thus from

Proposition 2, ϕyL1L2···Ls = ϕL1yL2···Ls = · · · = ϕL1···Lsy. Then by (2) we have

ϕL1···Ls = ϕy
yL1···Ls

+ ϕ¬y
¬y = ϕy

L1···Lsy + ϕ¬y
¬y.

Again by (2) we obtain ϕL1···Lm = ϕy
yL1···Ls

+ ϕ¬y
¬yLs+1···Lm

. �

Lemma 8. Let ϕ ∈MU(1), X ⊆ var(ϕ), f, g ∈ ϕ. f and g are connected without
X if and only if there is a splitting formula ϕL1···Lm such that (f−{L1, · · · , Lm})
and (g − {L1, · · · , Lm}) ∈ ϕL1···Lm , Li ∈ X ∪ X, i = 1, · · · ,m, and ϕL1···Lm

contains no variable in X.

Proof. (⇐) Let the splitting formula ϕL1···Lm contain the two clauses (f −
{L1, · · · , Lm}) and (g − {L1, · · · , Lm}), but contain no variable in X . Then,
(f−{L1, · · · , Lm}) and (g−{L1, · · · , Lm}) are connected without X , hence f, g
must be connected without X .

(⇒) Let f and g be connected without X . We proceed by induction on the
number of variables in ϕ. Suppose ϕ has only one variable, say x. If X is empty,
clearly the assertion is true since ϕ itself contains no variable in X . Suppose
X = {x}, then there is no variable outside X . That means, f = g, say the unit
clause x, then the empty clause f − {x} is in ϕx which contains no variable.
Hence, the assertion is true.

Suppose, ϕ has more than one variable. Let y be a variable such that (ϕy , ϕ¬y)
is a disjunctive splitting.

Case 1. y ∈ X . Since f and g are connected without X , f and g must be in the
same part. Say for example (f −{y}), (g−{y}) ∈ ϕy. Obviously, (f −{y}), (g−
{y}) are connected without X ∩ var(ϕy). Then by the induction hypothesis,
there is a splitting formula ϕyL1···Lm which do not contain any variable in X ,
but contains both (f − {y, L1, · · · , Lm}) and (g −{y, L1, · · · , Lm}). The lemma
follows.

Case 2. y �∈ X .
Subcase 2.1. f and g lie in the same part. W.o.l.g., we assume that (f −
{y}), (g − {y}) ∈ ϕy. Now (f − {y}), (g − {y}) are still connected without X ∩
var(ϕy). Then by the induction hypothesis there is a splitting formula ϕyL1,···Lm

which do not contain any variable in X , but contains both (f −{y, L1, · · · , Ls})
and (g − {y, L1, · · · , Ls}). If ϕy

yL1···Ls
contains no y, then ϕL1···Ls = ϕyL1···Ls ,

and the lemma follows. So, suppose ϕy
yL1···Ls

contains y. Let ¬y∨h ∈ ϕ which is
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connected to itself. Then by the induction hypothesis there is a splitting formula
ϕ¬yLs+1···Lm in which no variable of X occurs but the clause (h−{Ls+1 · · ·Lm})
appears. Now we can see that ϕ¬y

¬yLs+1···Lm
contains ¬y. Then

ϕy
yL1···Ls

+ ϕ¬y
¬yLs+1···Lm

is in MU(1), which is in fact ϕL1···Lm . The lemma follows.

Subcase 2.2. f and g lie in different part. Say, (f − {y}) ∈ ϕy while (g −
{¬y}) ∈ ϕ¬y. Please notice that f and g are connected without X . Thus,
f must be connected without X to a clause f ′ containing y, and g must be
connected without X to clause g′ containing ¬y. Then by the induction hy-
pothesis, there are ϕyL1···Ls and ϕ¬yLs+1···Lm such that they do not contains
variables in X , but (f −{y, L1, · · · , Ls}), (f ′ −{y, L1, · · · , Ls}) ∈ ϕyL1···Ls , and
(g−{¬y, Ls+1, · · · , Lm}), (g′−{¬y, Ls+1, · · ·Lm}) ∈ ϕ¬yLs+1···Lm . Then we can
see that ϕy

yL1···Ls
contains y and ϕ¬y

¬yLs+1···Lm
contains ¬y. Thus ϕy

yL1···Ls
+

ϕ¬y
¬yLs+1···Lm

is in MU(1), which is in fact ϕL1···Lm . The assertion follows. �

Proof of Lemma 5. For Φ = ∃X∀y∃Zϕ with ϕ|∃ in MU(1) we have

Φ is true (by Lemma 7)
⇔ there exist L1, · · · , Ls∈X ∪X such that in ϕL1···Ls no variable of X occurs

and ∀y∃z1 · · · ∀zkϕL1···Ls is true.
⇔ there exist L1, · · · , Ls∈X ∪X such that in ϕL1···Ls no variable of X occurs

and there are f, g ∈ ϕ such that y ∈ f,¬y ∈ g and
f − {L1, · · · , Lm}, g − {L1, · · · , Lm} ∈ ϕL1···Lm . (reordering)

⇔ there are f, g ∈ ϕ with y ∈ f,¬y ∈ g and there exist
L1, · · · , Ls ∈ X ∪X such that in ϕL1···Ls no variable of X occurs
and f − {L1, · · · , Lm}, g − {L1, · · · , Lm} ∈ ϕL1···Lm . (by Lemma 8)

⇔ there are f, g such that y ∈ f,¬y ∈ g and f, g are connected without X . �

5 Minimal Falsity and Quantified Hitting Formulas

For propositional formulas the class of hitting formulas is defined as HIT :=
{α1 ∧ · · · ∧ αt ∈CNF| for all i �= j, αi and αj contain a complementary pair
of literals, t ≥ 2}. Let f = x ∨ f ′ and g = ¬x ∨ g′ be two clauses, then x is
called a hitting variable for f and g. If a hitting formula α is unsatisfiable then
α is minimal unsatisfiable and for every partial truth assignment v the formula
α[v] is either the formula with only the empty clause or in HIT. Moreover, the
satisfiability problem for HIT is solvable in polynomial time [7].

Now we consider quantified hitting formulas. Let QHIT be the class of QCNF
formulas with matrix in HIT.

Theorem 4. (1) The evaluation problem and the minimal falsity problem for
QHIT formulas are PSPACE-complete.

(2) For fixed k, MF(k) ∩ QCNF and MF(k) ∩ QHIT are poly-time reducible.
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Proof. At first we introduce a poly-time reduction F : QCNF → QHIT and show
for Φ ∈CNF: (Φ is (minimal) false ⇔ F (Φ) is (minimal) false) and
(Φ is in MF(k) ⇔ F (Φ) is in MF(k)).

Let Qϕ be a QCNF formula with ϕ = (α1 ∧ · · · ∧ αm). For new variables
x = x1, · · · , xm−1, y we define F (Φ) := Q∀x1 · · · ∀xm−1∃y(α′

1 ∧ · · · ∧ α′
m+1),

where

α′
1 := α1 ∨ xm−1 ∨ · · · · · · ∨ x3 ∨ x2 ∨ x1 ∨ y,

α′
2 := α2 ∨ xm−1 ∨ · · · · · · ∨ x3 ∨ x2 ∨ ¬x1 ∨ y,

α′
3 := α3 ∨ xm−1 ∨ · · · · · · ∨ x3 ∨ ¬x2 ∨ y,

· · · · · ·
α′

m−1 := αm−1 ∨ xm−1 ∨ ¬xm−2 ∨ y,
α′

m := αm ∨ ¬xm−1 ∨ y
α′

m+1 := ¬y

The formula F (Φ) is in QHIT and obviously Φ is (minimal) false if and only
if the formula F (Φ) is (minimal) false. Moreover, both formulas have the same
deficiency. The problems are in PSPACE-complete, because the evaluation prob-
lem and the minimal falsity problem for QCNF are PSPACE-complete. �

Now we investigate a weaker notion of quantified hitting formulas for which
every pair of clauses has an existential hitting variable. Let QEHIT be the class
of QCNF formulas Qϕ for which the existential part ϕ|∃ is in HIT. A QEHIT
formula is false if and only it is minimal false, because for ϕ|∃ in HIT, ϕ|∃ is
false if and only if ϕ|∃ is minimal unsatisfiable. We will show that the minimal
falsity and the evaluation problem for QEHIT are solvable in polynomial time.

Lemma 9. For Φ = ∃X1∀Y1 · · · ∃Xm∀Ym∃Xm+1ϕ ∈QEHIT, Φ ∈MF if and
only if ϕ|∃ ∈MU and for all 1 ≤ i ≤ m, for all y ∈ Yi, any pair of clauses (y∨f)
and (¬y ∨ g) has a hitting variable x ∈ X1 ∪ · · · ∪Xi.

Proof. (⇒) Suppose, for a variable y ∈ Yi and clauses (y ∨ f) and (¬y ∨ g) in ϕ,
f and g have no hitting variable x with x ∈ X1 ∪ · · · ∪Xi. We define a partial
truth assignment v such that v(L) = 0 for any literal L such that its variable is
in X1 ∪ · · · ∪Xi and L occurs in f or g. Since under v the two clause y ∨ f and
¬y ∨ g are not true, we see that in Φ′ := ∀yQ′ϕ[v] both y and ¬y occur.

Suppose Φ is in MF, then Φ′ must be false. Further, Φ′ is minimal false because
(ϕ[v])|∃ = ϕ|∃[v] ∈ HIT. This contradicts Lemma 1 which states that y cannot
occur both positively and negatively in Φ′.

(⇐) For each i = 1, · · · ,m, and for each truth assignment v on X1 ∪ · · · ∪
Xi, no y ∈ Yi occurs both positively and negatively in ϕ[v]. Thus, Φ and
∃X1 · · · ∃Xi∃Xi+1∀Yi+1 · · · ∃Xm∀Ym∃Xm+1ϕ

′ have the same truth, here ϕ′ is
obtained from ϕ by deleting all occurrences of literals whose variables are in
Y1 ∪ · · · ∪ Yi. It follows that Φ is false since ϕ|∃ is in MU. �

Theorem 5. QEHIT-MF can be solved in polynomial time.
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Proof. Given a formula Φ in QEHIT, if the inner-most quantifies is ∀y then
remove the quantifier and remove all occurrences of y and ¬y. Iteratively ap-
plying this procedure, we get a formula such that the inner-most quantifier is
existential. If the outer-most quantifier is also ∀y, then check whether y has no
complementary occurrences. If this condition holds, then remove the occurrences
of y. Applying this procedure we obtain a formula whose prefix begins with an
existential quantifier. Next we test the condition in Lemma 9. Whether ϕ|∃ is in
MU, is decidable in polynomial time, since ϕ|∃ ∈HIT [7]. Whether the required
hitting ∃-variable exists, can be solved in cubic time. �

6 Conclusions and Future Work

In this paper, we have generalized the notion of minimal unsatisfiable CNF
formulas to that of minimal false QCNF formulas. The minimal falsity problem
is PSPACE-complete even for quantified hitting formulas. The deficiency for
CNF formulas has been also extended to QCNF formulas. The minimal falsity
for QCNF formulas with deficiency one can be solved in polynomial time. In a
forthcoming paper we will prove that MF(k) is in DP for any fixed k. However,
whether MF(k) is decidable in polynomial time remains open.
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Abstract. Binary clause reasoning has found some successful applications in
SAT, and it is natural to investigate its use in various extensions of SAT. In this
paper we investigate the use of binary clause reasoning in the context of solving
Quantified Boolean Formulas (QBF). We develop a DPLL based QBF solver that
employs extended binary clause reasoning (hyper-binary resolution) to infer new
binary clauses both before and during search. These binary clauses are used to
discover additional forced literals, as well as to perform equality reduction. Both
of these transformations simplify the theory by removing one of its variables.
When applied during DPLL search this stronger inference can offer significant
decreases in the size of the search tree, but it can also be costly to apply. We are
able to show empirically that despite the extra costs, binary clause reasoning can
improve our ability to solve QBF.

1 Introduction

DPLL based SAT solvers standardly employ only unit propagation during search. Unit
propagation has the advantage that it can be very efficiently implemented, but at the
same time it is relatively limited in its inferential power. The more powerful inferential
mechanism of reasoning with binary clauses has been investigated in [1,2]. In particular,
Bacchus [2] demonstrated that by using a rule of hyper-binary resolution, which allows
the binary clause subtheory to be clashed against its non-binary counterpart, binary
clause reasoning can be very effective in pruning the size of the search space. It can
also be dramatically effective in decreasing the time required to solve SAT problems,
but not always.

The difficulty arises from the extra time required to perform binary clause reasoning,
which tends to scale non-linearly with the size of the SAT theory. Hence, on very large
SAT formulas, binary clause reasoning is often not cost effective. QBF instances, on
the other hand, are generally much smaller than SAT instances. First, QBF allows a
much more compact representation of many problems, so problems that would be very
large in SAT can be quite small when represented in QBF. Second, QBF is in practice a
much harder problem than SAT, so it is unlikely that “solvable” instances will ever be as
large as solvable SAT instances. This makes the application of extensive binary clause
reasoning more attractive on QBF instances, since such reasoning is more efficient on
smaller theories.
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In this paper we investigate using binary clause reasoning with QBF. We find that our
intuition that such reasoning might be useful for QBF to be empirically true. However,
we also find that there are a number of issues arising from the use of such reasoning.
First, there are some issues involved in employing such reasoning soundly in a QBF
setting. We describe these issues and show how they can be resolved. Second we have
found that such reasoning does not universally yield an improvement. Instead one has
to be careful about when and where one employs such reasoning.

We have found that binary clause reasoning to be almost universally useful prior to
search when used in a QBF preprocessor (akin to the SAT preprocessor of [3]), and we
present a more detailed description of preprocessing in [4]. To study the dynamic use of
binary clause reasoning during search we have implemented a QBF solver that performs
binary clause reasoning at every node of the search tree. Our empirical results indicate
that binary clause reasoning can be effective when used dynamically. However, it is not
as uniformly effective as it is in a preprocessor context. We provide some insights as to
when it can be most useful applied dynamically.

In the rest of the paper we first provide some background, then we discuss how binary
clause reasoning can be soundly employed in QBF. We then demonstrate that binary
clause reasoning is effective in improving our ability to solve QBF instances. Part of
that improvement actually occurs prior to search, and we briefly discuss our findings
on this point. These empirical observations lead to the development of a preprocessor
for QBF that we describe in [4]. Then we investigate the dynamic use of binary clause
reasoning, and show that it also can be effective in the dynamically, but not universally
so. Our overall conclusion is that binary clause reasoning does have an important role to
play in solving QBF but that further investigation is required to isolate more precisely
where it can be most effectively applied.

2 Background

2.1 QBF

A quantified boolean formula (QBF) has the form Q.F , where F is a propositional
formula expressed in CNF and Q is a sequence of quantified variables (∀x or ∃x). We
require that no variable appear twice in Q, that F contains no free variables, and that
Q contains no extra or redundant variables.

A quantifier block qb of Q is a maximal contiguous subsequence of Q where every
variable in qb has the same quantifier type. We order the quantifier blocks by their
sequence of appearance in Q: qb1 ≤ qb2 iff qb1 is equal to or appears before qb2 in
Q. Each variable x in F appears in some quantifier block qb(x), and the ordering of
the quantifier blocks imposes a partial order on the variables. For two variables x and y
we say that x ≤q y iff qb(x) ≤ qb(y). The variables in the same quantifier block are
unordered. We also say that x is universal (existential) if its quantifier in Q is ∀ (∃).

For example, ∃e1e2.∀u1u2.∃e3e4.(e1,¬e2, u2, e4)∧ (¬u1,¬e3) is a QBF with Q =
∃e1e2.∀u1u2.∃e3e4 and F = (e1,¬e2, u2, e4) ∧ (¬u1,¬e3). The quantifier blocks in
order are ∃e1e2, ∀u1u2, and ∃e3e4, the ui variables are universal while the ei variables
are existential, and e1 ≤q e2 <q u1 ≤q u2 <q e3 ≤q e4.
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The restriction of a formula Q.F by a literal � (denoted by Q.F |�) is the new for-
mula Q′.F ′ where F ′ is F with all clauses containing � removed and �̄, the negation
of �, removed from all remaining clauses, and Q′ is Q with the variable of � and its
quantifier removed. For example,

(
∀xz.∃y.(ȳ, x, z) ∧ (x̄, y)

)
|x̄ = ∀z.∃y(ȳ, z).

Semantics. A SAT model Ms of a CNF formula F is a truth assignment π to the
variables of F that satisfies every clause in F . In contrast a QBF model (Q-model)
Mq of a quantified formula Q.F is a tree of truth assignments in which the root is the
empty truth assignment, and every node n assigns a truth value to a variable of F not yet
assigned by one of n’s ancestors. The tree Mq is subject to the following conditions:

1. For every node n in Mq , n has a sibling if and only if it assigns a truth value to a
universal variable x. In this case it has exactly one sibling that assigns the opposite
truth value to x. Nodes assigning existentials have no siblings.

2. Every path π in Mq (π is the sequence of truth assignments made from the root to
a leaf of Mq) must assign the variables in an order that respects <q . That is, if n
assigns x and one of n’s ancestors assigns y then we must have that y ≤q x.

3. Every path π in Mq must be a SAT model of F .

Thus a Q-model has a path for every possible setting of the universal variables of Q,
and each of these paths is a ≤q ordered SAT model of F . We say that Q.F is QSAT iff
it has a Q-model. The QBF problem is to determine whether or not Q.F is QSAT.

A more standard way of defining QSAT is the recursive definition: (1) ∀xQ.F is
QSAT iff both Q.F |x and Q.F |x̄ are, and (2) ∃xQ.F is QSAT iff at least one of Q.F |x
and Q.F |x̄ is. By removing the quantified variables one by one, in ≤q order, we arrive
at either a QBF with an empty clause in its body F (which is not QSAT) or a QBF with
an empty body F (which is QSAT). These two definitions are provably equivalent.

The advantage of our “tree-of-models” definition is that it makes the following ob-
servations more apparent.

A. If F ′ has the same satisfying assignments (SAT models) as F then Q.F will have
the same satisfying models (Q-models) as Q.F ′. Proof: Mq is a Q-model of Q.F
iff each path in Mq is a SAT model of F iff each path is a SAT model of F ′ iff
Mq is a Q-model of Q.F ′. This observation allows us to transform F with any
model preserving SAT transformation. Note that the transformation must be model
preserving, i.e., it must preserve all SAT models of F . Simply preserving whether
or not F is SAT is not sufficient.

B. A Q-model preserving (but not SAT model preserving) transformation that can be
performed on Q.F is universal reduction (UR) [5]. A universal variableu is called
a tailing universal in a clause c if for every existential variable e ∈ c we have that
e <q u. The universal reduction of a clause c is the process of removing all tailing
universals from c. UR preserves the set of Q-models. This can be seen by observing
that any path in a Q-model must satisfy the universally reduction of every clause in
the theory: if it doesn’t then another path of the Q-model will falsify c contradicting
the fact that it is a Q-model.
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2.2 Hyper-binary Resolution and Equality Reduction

Now we recall the techniques for binary clause reasoning in SAT first presented in [2,3].
We first define the hyper-binary resolution (HypBinRes) rule of inference that generates
new binary unit clauses.

Definition 1 (HypBinRes). Given a single n-ary clause c = (l1, l2, ..., ln), D a subset
of c, and the set of binary clauses {(�, l̄)|l ∈ D}, infer the new clause b = (c−D)∪{�}
if b is either binary or unary.

For example, from (a, b, c, d), (h, ā), (h, c̄) and (h, d̄), we infer the new binary clause
(h, b), similarly from (a, b, c) and (b, ā) the rule generates (b, c). The rule also covers
the standard case of resolving two binary clauses (from (l1, l2) and (l̄1, �) infer (�, l2))
and it can generate unit clauses (e.g., from {(l1, �), (l̄1, �)} we infer (�, �) ≡ (�)). Hyp-
BinRes is a hyper-resolution step because it collapses in one step a sequence of ordinary
resolution steps.

The advantage of HypBinRes inference is that it does not blow up the theory (it
can only add binary or unary clauses to the theory) and it can discover a lot of new
unit clauses. These unit clauses can then be used to simplify the formula by doing
unit propagation which in turn might allow more applications of HypBinRes. Applying
HypBinRes and unit propagation until closure (i.e., until nothing new can be inferred)
uncovers all failed literals. That is, in the resulting reduced theory there will be no literal
� such that forcing � to be true followed by unit propagation results in a contradiction.
This and other results about HypBinRes are proved in the above references.

In addition to uncovering unit clauses we can use the binary clauses to perform equal-
ity reductions. In particular, if we have two clauses (x̄, y) and (x, ȳ) we can replace all
instances of y in the formula by x (and ȳ by x̄) or all instances of x by y. This might
result in some tautological clauses which can be removed, and some clauses which are
reduced in length because of duplicate literals. Such reductions might enable further
HypBinRes inferences.

Taken together HypBinRes and equality reduction (HypBinRes+eq) can significantly
reduce a SAT formula removing many of its variables and clauses. Such inference can
be applied prior to search in a preprocessor, and as shown in [3] this can yield sig-
nificant reductions in the number of variables and clauses in a theory. One can also
incrementally maintain HypBinRes+eq closure during search as it is done in [2].

To maintain HypBinRes+eq closure during search we must trigger the HypBinRes in-
ference step incrementally. It would be too expensive to continually search exhaustively
for possible new applications of HypBinRes. During search the formula is restricted by
literals that we choose to make true, or that are forced by unit propagation. This gives
rise to only two different opportunities for additional applications of HypBinRes. First,
if a k-ary clause is reduced to a binary clause the new binary clause might enable new
HypBinRes steps. Second, when k-ary clauses are reduced in size it is possible that a
previously existing set of binary clauses can generate an HypBinRes inference that was
not available on the longer clause. For example, if we have the n-ary clauses (h, d̄, x)
(a, b, c, d) and the binary clauses (h, ā), (h, c̄) no HypBinRes inference is possible. A
new HypBinRes inference could be applied if either we make x false generating a new
binary clause (h, d̄), or if we make d false reducing the clause (a, b, c, d) to (a, b, c)
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against which the existing binary clauses can be resolved. The dynamic HypBinRes
solver described in [2] kept track of these two types of situations, testing only these
situations for new possible HypBinRes steps.

2.3 Hyper-binary Resolution and Equality Reduction in QBF

There are two problems with employing HypBinRes+eq in the context of QBF. First, it
is not sound for QBF unless some additional restrictions are applied. Second, it misses
out on some important additional inferences that can be achieved through universal
reduction. We elaborate on these two issues.

Given a QBF Q.F applying HypBinRes+eq and unit propagation to F results in a
formula F ′. However, the new QBF formula Q′.F ′ might not be Q-equivalent to Q.F
(where Q′ is Q with all variables not in F ′ removed), so this straightforward approach
to using HypBinRes is not sound. The problem here is that F ′ does not have exactly the
same SAT models as F so condition A above does not apply. In particular, the models
of F ′ do not make assignments to variables that have been removed by unit propagation
and equivalence reduction. Hence, a Q-model of Q′.F ′ might not be extendable to a Q-
model of Q.F . For example, if a universal variable in F was forced, then Q′.F ′ might
be QSAT, but Q.F is not—no Q-model of Q.F can exist since no path that sets the
forced universal to its opposite value can be a SAT model of F .

Making unit propagation sound for QBF is quite simple. In particular, unit propaga-
tion only causes a problem when a universal variable is forced. We can deal with this
by regarding the unit propagation of a universal variable as the derivation of a failure
(i.e., the derivation of an empty clause).

Making equality reduction sound for QBF is a bit more subtle. Consider a formula
F in which we have the two clauses (x, ȳ) and (x̄, y). Since every path in any Q-
model satisfies F , this means that along any path x and y must have the same truth
value. However, in order to soundly replace all instances of one of these variables by
the other in F , we must respect the quantifier ordering. In particular, if x <q y then
we must replace y by x. We call this <q -preferred equality reduction. It would be
unsound to do the replacement in the other direction. For example, say that x appears
in quantifier block 3 while y appears in quantifier block 5 with both x and y being
existential. The binary clauses above will enforce the constraint that along any path
of any Q-model once x is assigned y must get the same value. In particular, y will be
invariant as we change the assignments to the universal variables in quantifier block
4. This constraint will continue to hold if we replace y by x in all of the clauses of
F . However, if we perform the opposite replacement, we would be able to make y
vary as we vary the assignments to the universal variables in block 4: i.e., the opposite
replacement would weaken the theory perhaps changing the formula’s Q-SAT status.
The same reasoning holds if x is universal and y is existential. However, if y is universal
the two binary clauses imply that we will never have the freedom to assign y both of its
values irrespective of the assignment of x. That is, in this case the QBF is UNQSAT,
and we can again treat this case as if the empty clause has been derived.

These considerations suffice to make HypBinRes+eq sound for QBF. However, they
remain weaker than they should be. To achieve more powerful inference we must take
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2clsQ(Q.F,Level )
if F contains an [empty clause/is empty]

Compute a new [clause/cube] and backtrack level btL by [conflict/solution] analysis
return([FALSE/TRUE], btL)

Pick a variable v from the outermost quantifier block
for � ∈ {v, v̄}

Q′.F ′ = Q.F |� reduced by HypBinRes+UR, equality reduction, unit propagation,
and universal reduction

(Succ, btL) = 2clsQ(Q′.F ′,Level + 1)
if btL < Level return(Succ, btL)

if v is [universal/existential]
Compute new [cube/clause] from the [cubes/clauses] learned from v and v̄ by resolution
Compute backtrack level btL from new [cube/clause]
return([TRUE/FALSE], btL)

Fig. 1. 2clsQ Algorithm. Invoked with original QBF and Level=1. Returns (TRUE, 0) indicating
QSAT or (FALSE, 0) indicating UNQSAT.

into account universal reduction. In particular, we can apply the following modification
of HypBinRes that “folds” UR into the inference rule.

Definition 2 (HypBinRes+UR). Given a single n-ary clause c = (l1, l2, ..., ln), D a
subset of c, and the set of binary clauses {(�, l̄)|l ∈ D}, infer the universal reduction of
the clause (c−D) ∪ {�} if this reduction is either binary or unary.

For example, from (u1, e3, u4, e5, u6, e7), (e2, ē7), (e2, ē5) and (e2, ē3) we infer the
new binary clause (u1, e2) when u1 ≤q e2 ≤q e3 ≤q u4 ≤q e5 ≤q u6 ≤q e7. This ex-
ample also shows that HypBinRes+UR is able to derive clauses that HypBinRes cannot.
Since clearly HypBinRes+UR can derive anything HypBinRes can, HypBinRes+UR is
a more powerful rule of inference. It should be noted that UR cannot be applied after
HypBinRes as HypBinRes can only generate binary clauses. Instead UR must be folded
into the HypBinRes rule as we have specified here.

Interestingly, once we add UR to HypBinRes many of the issues we had with sound-
ness automatically resolve themselves, and we obtain the following result:

PROPOSITION 1 . Let F ′ be the result of applying HypBinRes+UR, unit propagation,
UR (i.e., UR outside of HypBinRes as well as inside), and <q preferred equality reduc-
tion to F until closure. Then the Q-models of Q′.F ′ are in 1-1 correspondence with the
Q-models of Q.F .

The only further constraint is that UR must be applied prior to unit propagation. In
particular, if we have a unit clause containing a single universal variable, we should not
unit propagate that universal. Rather we should immediately apply UR to obtain the
empty clause.

As an example of how applying UR resolves some of the soundness issues mentioned
above, consider the case where we have the two binary clauses (x, ȳ) and (x̄, y) with
x <q y. As pointed out above, when y is universal we have an immediate failure. In fact,
applying universal reduction detects this failure: after UR we obtain the two clauses (x)
and (x̄) which immediately resolve to the empty clause. Hence, this proposition tells us
that we can apply HypBinRes+UR+eq in QBF quite cleanly: we simply have to restrict
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equality reduction to respect the quantifier ordering and give precedence to UR over
unit propagation.

3 2clsQ

We have implemented HypBinRes+UR+eq in a DPLL based QBF solver by modify-
ing the 2clsEq SAT solver [2]. The resulting QBF solver, 2clsQ, performs HypBin-
Res+UR+eq reasoning at every node of the search tree. An abstract outline of its
algorithm is shown in Figure 1. The following changes were made to the 2clsEq SAT
solver to make it into a QBF solver. First, branching had to be constrained so that the
quantifier ordering is respected. Second, equality reduction had to be modified so that
it respects the quantifier ordering. In the 2clsEq implementation an entire set of vari-
ables could be detected to be equivalent at once, so we must pick a variable v from the
outermost quantifier block among that set and then replace all of the other variables
with v.

Third, we had to modify the code that tested for possible new applications of Hyp-
BinRes to account for universal reduction. When a new binary clause (x, y) is generated
we can continue to test all clauses containing x̄ as well as all clauses containing ȳ to see
if this new binary clause triggers any new applications of HypBinRes+UR. For example,
if x̄ ∈ c, we determine the set S of other literals � ∈ c that can be resolved away from c
by binary clauses of the form (y, �̄). Then we check if c−S can be universally reduced
to a clause of length 2 or less. The other trigger for new applications of HypBinRes oc-
curs when a k-ary clause has been reduced in size, as discussed above. Unfortunately,
this situation is relatively expensive to extend to HypBinRes+UR. With just HypBinRes
when a clause c has just been reduced in size to length i, we only need to look for a
literal x such that there are i−1 binary clauses (x, �̄) with � ∈ c. From these clauses we
can then infer a new binary clause (x, y), where y ∈ c is the single literal not covered in
the set of clauses (x, �̄). This can be accomplished relatively efficiently by first taking
any two literals of c, l1 and l2 and examining the set of literals L = {y| either (y, l̄1)
or (y, l̄2) exists}. We then know that any literal x satisfying the above condition must
be in L—any such literal must have a binary clause with one of l̄1 or l̄2—and we can
restrict our attention to the literals in L.

Unfortunately, this strategy for limiting the set of literals to examine for potential
new HypBinRes steps against a clause breaks down when we move to HypBinRes+UR.
For example, consider the clauses c = (e1, u1, u2, u3, e2, u4, u5, e3), (e, ē2), (e, ē3)
with e <q e1 <q u1, u2, u3 <q e2 <q u4, u5 <q e3. We can infer the new binary
clause (e1, e) by applying HypBinRes+UR. In this case, the literal e has only two binary
clauses that can resolve against c, and so it does not fall into the set L defined above.
Hence, it is not possible to limit our attention to the literals in L. It is still possible to
detect all possible HypBinRes+UR inferences available from c in polynomial time, but
it becomes more expensive to do so. Hence, in our implementation we do only a partial,
and cheaper, test for new HypBinRes+UR inference on k-ary clauses that have been
reduced in size. That is, we do not achieve HypBinRes+UR closure in 2clsQ.

Fourth, the algorithm employs both conflict and solution analysis for learning new
clauses and solution cubes. Since literals can be forced from an extensive combination
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of binary clause reasoning and equality reduction, it was very difficult to implement 1-
UIP clause learning. Instead, 2clsQ learns ‘all decision clauses’ [6]. The learned clauses
are used to enhance unit propagation. However, we do not perform HypBinRes+UR or
equality reduction against them as this appears to be too expensive. Solution analysis
(cube learning) is done in the manner introduced in [6,7]. The learned cubes are also
used to prune branches in the search. In particular, when a universal variable is set this
might trigger a cube making search below that setting unnecessary.

Finally, we modified the original 2clsEq branching heuristics to take into account
the varying nature of QBF search. In our implementation we combined two branching
heuristics in the following way. Whenever 2clsQ encounters a conflict we try to gen-
erate more conflicts by branching on variables that cause the largest number of unit
propagations (under HypBinRes this number is equal to the number of binary clauses
the variable appears in). On the other hand when 2clsQ finds a solution we try to gen-
erate more solutions by branching on variables that will satisfy the most clauses. Thus
the branching heuristic switches dependent on what “mode” the search is in.

4 Empirical Results

To evaluate the empirical effect of binary clause reasoning we considered all of the
non-random benchmark instances from QBFLib (2005) [8] (508 instances in total). We
discarded the instances from the benchmark families von Neumann and Z since these
can all be solved very quickly by any state of the art QBF solver (less than 10 sec. for the
entire suite of instances). We also discarded the instances in benchmark families Uclid,
Jmc, and Jmc-squaring. None of these instances can be solved within a time bound of
5,000 seconds by any of the QBF solvers we tested. This left us with 465 instances from
18 different benchmark families. We tested all of these instances.

We tested 2clsQ [9] along with five other state of the art QBF solvers Quaffle [7]
(version as of Feb. 2005), Quantor [10] (version as of 2004), Qube (release 1.3) [11],
Skizzo [12] (release 0.82) and SQBF [13]. Quaffle, Qube and SQBF are based on
search, whereas Quantor is based on variable elimination. Skizzo uses mainly a com-
bination of variable elimination and search, but it also applies a variety of other kinds
of reasoning on the symbolic and the ground representations of the instances.1 All tests
were run on a Pentium 4 3.60GHz CPU with 6GB of memory. The time limit for each
run of any of the solvers was set to 5,000 seconds.

Table 1 shows the performance of 2clsQ and the other five solvers on the 465 problem
instances we tested. The table is broken down by benchmark family as the structural
properties of the families can be quite distinct. This structural distinctions are reflected
in fact that the “best” solver for each family varies widely, where we measure best by
the success rate of the solver on that families’ instances breaking ties by CPU time
consumed. By this measurement 2clsQ is best on 3 families, which is better than any
other search based solver (Quaffle, Qube, and SQBF), but not as good as Skizzo which
is best on 8 families. Another comparison is to examine the average success rate over

1 Skizzo also employs some binary clause reasoning and equality reduction. But hyper binary
resolution is not used, non-binary clauses are not involved in the inference steps ([12] incor-
rectly claims that hyper-binary resolution is used).
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Table 1. Percentage of each Benchmark family solved and time taken for solved instances in
CPU seconds (5,000 sec. consumed by each unsolved instances is not counted). For each family
the solver with highest success rate is show in bold, where ties are broken by time required
to solve these instances. The summary line shows the average success rate over all benchmark
families and the total time taken (on solved instances only).

Benchmark
Families

2clsQ Quaffle Qube SQBF Quantor Skizzo

(# instances) Succ.
%

time Succ.
%

time Succ.
%

time Succ.
%

time Succ.
%

time Succ.
%

time

ADDER (16) 44% 5,267 13% 1 19% 72 13% 3 25% 25 50% 955

adder (16) 19% 0 44% 5 44% 0 38% 2,677 25% 30 44% 454

Blocks (16) 50% 46 75% 1,284 69% 1,774 75% 2,043 100% 308 69% 2,068

C (24) 21% 16 21% 5,356 8% 4 17% 4,741 21% 140 25% 1,070

Chain (12) 100% 0 67% 6,075 83% 4,990 58% 4,192 100% 0 100% 1

Connect (60) 100% 7 70% 254 75% 7,013 67% 0 67% 14 68% 802

Counter (24) 33% 4,319 38% 5 33% 2 38% 9 50% 217 54% 1,035

EV-Pursuer(38) 26% 2,836 26% 1,963 18% 4,401 32% 4,759 3% 74 29% 1,450

FlipFlop (10) 100% 4 100% 0 100% 1 80% 5,027 100% 3,260 100% 6

K (107) 35% 20,575 35% 18,451 37% 25,397 33% 5,563 64% 3,855 88% 2,081

Lut (5) 100% 19 100% 1 100% 3 100% 1,246 100% 3 100% 9

Mutex (7) 43% 22 29% 43 43% 64 43% 1 43% 0 100% 1

Qshifter (6) 33% 59 17% 0 33% 29 33% 1,108 100% 26 100% 8

S (52) 8% 9 2% 0 4% 401 2% 1 25% 910 27% 643

Szymanski (12) 67% 2,741 0% 0 8% 0 8% 1,203 25% 7 41% 1,147

TOILET (8) 75% 528 75% 61 63% 496 100% 1,308 100% 4,135 100% 1

toilet (38) 84% 47 97% 115 100% 58 97% 395 100% 684 100% 84

Tree (14) 100% 296 100% 37 100% 0 93% 1,051 100% 0 100% 0

Summary 58% 36,793 50% 33,653 52% 44,708 51% 35,326 64% 10,432 71% 11,817

all benchmark families, shown in the final row of the table. A high average displays
fairly robust performance across structurally distinct instances. On this measure 2clsQ
is again superior to the other search based solvers with an average success rate of 58%,
higher than any of the other search based solvers, but again not as good as Skizzo or
Quantor. In terms of CPU time, the search based solvers are roughly comparable over
their solvable instances, but both Quantor and Skizzo are notably faster.

Our first results lead to the following conclusions. Binary clause reasoning improves
search based solvers, but the non-search solver Quantor and the mixture of search and
variable elimination employed in Skizzo often have superior performance. The superior
performance of Skizzo indicates that mixing search and variable elimination (as done by
Skizzo) is very effective. We also observe that both Quantor and Skizzo are still inferior
to some search based solver on 43% of the families. Furthermore, if we examine those
cases where a solver is able to achieve a strictly higher success rate than any other solver
(indicating that it can solve some instances not solvable by any of the other solvers),
we see that 2clsQ achieves this on 2 families, Quaffle on zero, Qube on zero, SQBF on
one, Quantor on one, and Skizzo on 6 families. Thus we conclude that binary clause
reasoning as embodied in 2clsQ has some potential in increasing our ability to solve
QBF (as to the techniques embedded in SQBF, Quantor, and Skizzo).
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Table 2. Experiments from Table 1 repeated except that the other solvers are supplied with in-
stances preprocessed by binary clause reasoning. Again unsolved instances consumed 5,000 sec.,
and for each family the solver with highest success rate is show in bold, where ties are broken by
time required to solve these instances. The summary line shows the average success rate over all
benchmark families and the total time taken (on solved instances only).

Benchmark
Families

2clsQ Quaffle Qube SQBF Quantor Skizzo

(# instances) Succ.
%

time Succ.
%

time Succ.
%

time Succ.
%

time Succ.
%

time Succ.
%

time

ADDER (16) 44% 5,267 13% 1 19% 26 13% 1 25% 26 50% 792

adder (16) 19% 0 44% 4 44% 1 38% 1,546 25% 27 44% 550

Blocks (16) 50% 46 88% 1,025 69% 242 82% 3,434 100% 79 88% 11

C (24) 21% 16 25% 4,947 21% 683 25% 20 29% 5,189 29% 1,483

Chain (12) 100% 0 100% 0 100% 0 100% 0 100% 0 100% 0

Connect (60) 100% 7 100% 7 100% 7 100% 7 100% 7 100% 7

Counter (24) 33% 4,319 38% 5 33% 1 38% 20 50% 141 54% 731

EV-Pursuer(38) 26% 2,836 26% 1,961 18% 2,537 32% 4,508 5% 4,809 39% 5,753

FlipFlop (10) 100% 4 100% 4 100% 4 100% 4 100% 4 100% 4

K (107) 35% 20,575 36% 21,446 42% 30,606 35% 12,859 83% 6,898 91% 5,333

Lut (5) 100% 19 100% 1 100% 6 100% 66 100% 3 100% 9

Mutex (7) 43% 22 29% 49 43% 71 43% 6 43% 1 100% 100

Qshifter (6) 33% 59 17% 0 33% 29 33% 2,103 100% 29 100% 8

S (52) 8% 9 8% 9 10% 452 8% 9 31% 1,538 37% 1,538

Szymanski (12) 67% 2,741 0% 0 25% 199 0% 0 25% 109 75% 4,680

TOILET (8) 75% 528 75% 84 63% 325 100% 621 100% 3 100% 3

toilet (38) 84% 47 97% 221 100% 90 97% 3,061 100% 243 100% 50

Tree (14) 100% 296 100% 8 100% 1 93% 1,251 100% 0 100% 0

Summary 58% 36,793 55% 29,772 56% 35,281 57% 29,518 69% 19,108 81% 23,895

4.1 Dynamic Binary Clause Reasoning

In SAT it was observed that binary clause reasoning could be very beneficial even when
done prior to search, in a preprocessing phase [3]. Hence, a natural question was to
investigate the difference between dynamic and static (i.e., before search) application
of binary clause reasoning. As part of that investigation we constructed a QBF pre-
processor that applies HypBinRes+UR+eq to simplify a QBF instance. We found that
this yielded a very consistent speedup for all of the other QBF solvers, and we describe
those results in more detail in [4].

Without getting into the details of our preprocessor results, we can still use our pre-
processor to throw light on the effect of dynamic binary clause reasoning. In particular,
we are interested in the question of how much of 2clsQ’s benefits accrue from the dy-
namic application of binary clause reasoning. Is utilizing binary clause reasoning solely
in a preprocessor sufficient, or is it also useful to use such reasoning dynamically during
search? To answer this question we compare the performance of 2clsQ with the other
solvers on preprocessed instances. By using the preprocessed instances, 2clsQ’s only
“advantage” over the other solvers is its dynamic application of binary clause reasoning.
Our results are shown in Table 2.
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These results show that a significant part of the gains achieved from binary clause
reasoning occurs statically prior to search. In terms of average success rate, 2clsQ still
at 58% is now closer in performance to the other search based solvers all of which have
gained, and still inferior to Quantor and Skizzo which have gained significantly from bi-
nary clause preprocessing. We also see that two of the families where 2clsQ was achiev-
ing superior performance, Chain and Connect, have been so reduced by preprocessing
that all solvers now achieve similar performance on them. In fact, all instances of Con-
nect are completely solved by preprocessing, and all instances of Chain are reduced to
simple SAT problems by preprocessing.

Nevertheless, the results do show that dynamic binary clause reasoning improves
the efficiency of search in QBF solvers. In particular, 2clsQ remains more effective
than other other purely search based solvers even when the effect of inference prior
to search is factored out. The question now is whether or not these improvements to
search are useful, given the effectiveness of variable elimination used by Quantor and
Skizzo.

4.2 Filtering Out Instances Best Solved by Variable Elimination

To address this question we look more closely at how effective dynamic binary clause
reasoning is on instances that are more suitably solved by search. In particular, it does
not really matter much if (dynamic) binary clause reasoning improves the efficiency of
solving by search instances that are more easily solved by variable elimination.

We examined those instances that would be solved very quickly by variable elimi-
nation, and to factor out the effect of binary clause reasoning prior to search we first
preprocessed these instances. In particular, we found that a large number of instances
(approximately 285) could be solved by Quantor after preprocessing in 25 seconds or
less. In fact Quantor and Skizzo are obtaining a significant head start in their average
success rate over the search base solvers from these “easy” instances.

After filtering out these instances a number of benchmark families were completely
eliminated. That is, all of their instances were best suited for variable elimination af-
ter preprocessing. This left us with the benchmark families Adder, adder, C, Connect,
Counter, EV-Pursue, K, Mutex, S, Toilet and Szymanski. However, even among these
families several instances were eliminated as being easy. In this analysis we also elim-
inated all instances that could not be solved by any of the solvers as such instances are
not useful when comparing solvers. In total we ended up with 72 instances remaining
in 10 different benchmark families.

In Table 3 we show the results of the solvers on these remaining preprocessed in-
stances. In the table a ’-’ is used to indicate that the particular solver could not solve
the instances within a 5,000 CPU second time bound. These results show that dynamic
binary clause reasoning as performed in 2clsQ is effective on these harder instances.
2clsQ solves more of these instances than any other solver (27) except Skizzo. We also
see that Quantor (i.e., pure variable elimination with 20 solved instances is less effec-
tive on these remaining instances than the improved search achieved by dynamic binary
clause reasoning in 2clsQ. We also see that Skizzo, with its combination of search and
variable elimination remains by far the most effective approach on these remaining in-
stances with 57 instances solved.
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Table 3. Solver performance on “non-easy” preprocessed instances (i.e., instances that could not
be solved in 25 seconds by Quantor after preprocessing. Uniquely solved instances shown in
bold.

Family Instance 2clsQ Quaffle Qube SQBF Quantor Skizzo

ADDER Adder2-4-c 0 - 26 - - 111

Adder2-6-c 7 - - - - -

Adder2-8-s - - - - - 12

Adder2-8-c 16 - - - - -

Adder2-10-s - - - - - 437

Adder2-10-c 3,812 - - - - -

Adder2-12-s - - - - - 230

Adder2-12-c 1,432 - - - - -

adder adder-8-sat - - - - - 12

adder-8-unsat - 0 0 0 - -

adder-10-unsat - 0 0 935 - -

adder-12-sat - - - - - 314

adder-12-unsat - 0 0 191 - -

adder-14-unsat - 0 0 419 - -

adder-16-unsat 0 2 0 - - -

C C6288-10-1-1-out - - - - - 1,436

C880-10-1-1-inp 1 4 3 3 905 23

Counter counter-16 - - - - - 721

counter-r-8 - - - - 60 1

counter-re-8 - - - - 79 3

EV-Pursue ev-pr-4x4-5-3-1-lg 1 1 0 1 82 24

ev-pr-4x4-5-3-1-s - - - - - 6

ev-pr-4x4-7-3-1-lg 17 3 16 1 - 1,469

ev-pr-4x4-7-3-1-s - - - - - 973

ev-pr-4x4-9-3-1-lg 180 65 2,174 2 - -

ev-pr-4x4-9-3-1-s - - - - - 1,679

ev-pr-4x4-11-3-1-lg 390 990 - 3 - -

ev-pr-4x4-13-3-1-lg - - - 4 - -

ev-pr-4x4-15-3-1-lg - - - 5 - -

ev-pr-4x4-17-3-1-lg - - - 7 - -

ev-pr-6x6-5-5-1-2-lg 4 5 2 24 - 2

ev-pr-6x6-5-5-1-2-s - - - - - 258

ev-pr-6x6-7-5-1-2-lg 60 67 44 172 - 2

ev-pr-6x6-7-5-1-2-s - - - - - 462

ev-pr-6x6-9-5-1-2-lg 823 784 - 3,708 - 235

ev-pr-6x6-11-5-1-2-s - - - - - 606

ev-pr-8x8-5-7-1-2-lg 3 2 3 2 4,727 3

ev-pr-8x8-7-7-1-2-lg 68 9 298 578 - 8

ev-pr-8x8-9-7-1-2-lg 1,292 34 - - - 12
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Table 3. (continued)

Family Instance 2clsQ Quaffle Qube SQBF Quantor Skizzo

ev-pr-8x8-11-7-1-2-lg - - - - - 18

K k-branch-n-4 141 - 93 1,190 - 12

k-branch-n-8 - - - - - 40

k-branch-p-4 1,858 389 20 147 32 0

k-branch-p-8 - - - - - 0

k-branch-p-12 - - - - - 52

k-d4-n-8 - - - - - 0

k-d4-n-12 - - - - - 0

k-d4-n-16 - - - - - 0

k-d4-n-20 - - - - - 1

k-d4-n-21 - - - - - 1

k-lin-n-20 1,493 - 1,370 - 66 74

k-lin-n-21 1,511 - 1,593 - 82 87

k-ph-n-16 287 261 4,729 4,334 198 198

k-ph-n-20 2,636 2,204 - - 1,790 1,806

k-ph-n-21 4,254 3,668 - - 2,950 2,977

k-ph-p-12 - - - - 1,689 -

Mutex mutex-16s - - - - - 1

mutex-32s - - - - - 9

mutex-64s - - - - - 22

mutex-128s - - - - - 70

S s499-d4-s - - - - 228 107

s499-d8-s - - - - - 1,878

s641-d2-s - - - - 294 18

s713-d2-s - - - - 448 29

s820-d2-s - - - - 429 33

s3330-d2-s - - - - 107 11

Szymanski szymanski-12-s 221 - - - 105 1,183

szymanski-14-s 677 - - - - 954

szymanski-16-s 1,780 - - - - 1,992

szymanski-18-s - - - - - 373

Toilet toilet-a-10-01.16 - 59 37 - 103 32

toilet-c-10-01.16 - 72 46 655 110 9

Solved Instances 27 21 22 20 20 57

Total time on solved instances 23,238 11,884 10,628 13,019 14,534 21,252

Number of Uniquely solved
Instances

3 0 0 3 1 22

Finally, if we look at the number of uniquely solved instances we see that both 2clsQ
and SQBF can solve 3 instances not solvable by any other solver. These include in-
stances that to the best our knowledge have never been solved before, e.g.,‘Adder2-10-
c’ and ‘Adder2-12-c’. These two solver embed techniques for improving search, and we
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see that these techniques can be useful for improving our ability to solve QBF. Skizzo
can 20 instances not solvable by any other solver, so we see that combining variable
elimination and search appears to be the most powerful current technique for solving
QBF. However, the search employed by Skizzo does not include the innovations of
SQBF or 2clsQ. Hence, our results point to at least one direction for building a QBF
solver superior to any that currently exists.

It is also worth noting that 2clsQ and SQBF implement many of the techniques of
Quaffle and Qube, so it is hardly surprising that all of the instances solved by these
two solvers are also solved by some other search based solver. This does not detract
from the techniques pioneered in these solvers, like clause and cube learning, which are
essential for search based solvers. The uniquely solved instances speaks instead to the
value of the new techniques utilized in other solvers: variable elimination in Quantor,
binary clause reasoning in 2clsQ, SAT solving lookahead in SQBF, and the mixture of
variable elimination and search in Skizzo. The data indicates that these new techniques
all have some value in improving our ability to solve QBF.

5 Conclusion

Our main conclusion is that extended binary clause reasoning is effective for QBF. If
used prior to search in a preprocessor it is able to speed up both search based and
variable elimination based solvers, as shown in [4]. Our empirical results also show
that such reasoning can also be useful in a dynamic context, and that certain problem
instances can be solved with such reasoning that do not seem to be otherwise solvable.

However, although our empirical results identify binary clause reasoning as being
useful techniques for solving QBF, understanding more clearly how to best to combine
this reasoning with other kinds of inference, especially variable elimination, remains an
open question. In future work we plan to investigate this question more fully to see if
we can find ways of applying binary clause reasoning in a more focused manner that
can cooperate with other kinds of inference.
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Abstract. Traditionally the propositional part of a Quantified Boolean
Formula (QBF) instance has been represented using a conjunctive nor-
mal form (CNF). As with propositional satisfiability (SAT), this is mo-
tivated by the efficiency of this data structure. However, in many cases,
part of or the entire propositional part of a QBF instance can often
be represented as a combinational logic circuit. In a logic circuit, the
limited observability of the internal signals at the circuit outputs may
make their assignments irrelevant for specific assignments of values to
other signals in the circuit. This circuit observability don’t care (ODC)
information has been used to advantage in circuit based SAT solvers.
A CNF encoding of the circuit, however, does not capture the signal
direction and this limited observability, and thus cannot directly take
advantage of this. However, recently it has been shown that this don’t
care information can be encoded in the CNF description and taken ad-
vantage of in a DPLL based SAT solver by modifying the decision heuris-
tics/Boolean constraint propagation/conflict-driven-learning to account
for these don’t cares. Thus far, however, the use of these don’t cares
in the CNF encoding has not been explored for QBF solvers. In this
paper, we examine how this can be done for QBF solvers as well as
evaluate its practical benefits through experimentation. We have devel-
oped and implemented the usage of circuit ODCs in various parts of
the DPLL-based procedure of the Quaffle QBF solver. We show that
DPLL search based QBF solvers can use circuit ODC information to
detect satisfying branches earlier during search and make satisfiability
directed learning more effective. Our experiments demonstrate that sig-
nificant performance gain can be obtained by considering circuit ODCs
in checking the satisfiability of QBFs.

1 Introduction

Checking the satisfiability of QBFs has been an important research topic in re-
cent years. Many problems in real-world applications such as AI planning [1],
formal verification [2,3] and games [4,5,6] can be formulated as QBF instances. A
QBF is a Boolean formula with its variables quantified by either universal or ex-
istential quantifiers. Evaluating QBF belongs to the class of P-SPACE complete
problems, widely considered harder than NP-complete problems like SAT. Since
QBF is more expressive and able to offer more compact problem encodings, in
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recent years, there has been an increasing interest in using QBF as an alternative
to SAT and Binary Decision Diagram (BDD) based techniques for automated
Boolean reasoning. As a result, many QBF solvers have been developed. These
QBF solvers take CNF as the standard input format for the propositional part
of the QBF formulas since CNF has been proved to be an efficient data structure
for implementing various techniques used in most contemporary SAT solvers.

Many QBF instances are derived from circuit application domains such as
equivalence checking [7] and bounded model checking [8]. Translating a combi-
national circuit into its corresponding CNF is done by introducing one Boolean
variable for each circuit node and conjuncting the logic consistency conditions
of all the gates in that circuit [9]. However, since any Boolean function can
be implemented using a multi-level circuit structure consisting of simple logic
gates, it may be preferable to use a circuit representation for the logic formula.
Structural information of circuits has been proved to be quite useful for solv-
ing SAT instances [10,11]. In particular, circuit ODC information can accelerate
SAT evaluation through either improved encodings of SAT instances or mod-
ifying SAT solver algorithms to utilize this information [12,13,14,15,16]. Since
QBF is a natural extension of SAT, techniques that are helpful for solving SAT
instances are often adapted in QBF evaluations. However, we are not aware of
any published research that deals with circuit ODCs in QBF evaluations. In this
paper, we address the issue of using the circuit ODC information in solving QBF
instances. Our approach of handling circuit ODCs extends the basic framework
of considering circuit ODCs in CNF-based SAT solvers [16] where the don’t
care information is propagated during the learning process. Further utilization
of circuit ODCs in the context of solving QBF instances adds additional possi-
bilities due to the existence of universal variables. We focus on managing circuit
ODCs during satisfiability directed backtrack and learning which are the main
element that distinguishes search based QBF algorithms and SAT algorithms.
We also discuss the impact of different encodings of QBF instances on the per-
formance of QBF solvers and usage of don’t care information. We demonstrate
that exploiting circuit ODCs can provide significant speedup in search based
QBF solvers.

2 Encoding Circuit ODC Conditions in CNFs

In a combinational circuit, a signal is said to be unobservable under a par-
tial/total assignments to the inputs if its value does not affect the outcome of
any primary output. Consider the circuit in Figure 1(a). If a and b are both
assigned to 1, then the value of e is 1, which further implies that g is 1. This is
true regardless of the assignment to c, d, and f , which means c, d and f are all
unobservable in this case. To convert a logic circuit into its CNF representation,
each circuit node is represented by a Boolean variable and each logic gate is
encoded as a set of clauses consistent with the logic function of that gate. Ad-
ditional constraints on the circuit can also be translated into clauses which are
conjuncted with the original CNF representation for that circuit to form a new
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CNF. For example, for the circuit in Figure 1(a), if the output signal g is fixed
to 1, then the CNF describing the circuit consistency condition and the output
constraint is shown in Figure 1(b). Note that we use the QDIMACS format for
CNFs in the figure. The QDIMACS format is the standard input format of CNF
based SAT and QBF solvers. If at some point e is assigned to be 1, then g is
1 independent of the value of f . In another words, f and all the signals that
fan-out only to the logic cone of f , namely c and d, is not observable at the
output g. Therefore, there is no need to consider clauses corresponding to gate
G2, which are the shaded clauses in Figure 1(b). To incorporate the unobserv-
ability condition of c, d and f in the circuit CNF representation, we encode the
assignment e = 1 as a don’t care literal e and add it to the clauses corresponding
to the gates whose input and output signals are made unobservable due to this
assignment. The resulting augmented CNF is shown in Figure 1(c). Note that for
an arbitrary gate, a total ordering of the gate inputs must be maintained such
that only a lower order signal can appear in the ODC condition of a higher order
one. This issue is discussed in the context of using ODCs in logic synthesis [17].
We will consider those unobservability conditions of a circuit signal s that are
individual signal assignments, and represent them as a set of don’t care literals
and add them to the corresponding clauses [16]. A clause can be ignored at a
certain branch in the search when at least one of its don’t care literals is assigned
to be 1. An alternative approach introduces unobservability variables to account
for the don’t care conditions in which case these new variables appear as normal
literals in clauses [13]. However, this approach is unable to completely exploit
the unobservability in decision making and learning.
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G1

G3
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Fig. 1. Circuit ODC example

An arbitrary Boolean function f can be implemented using a multi-level cir-
cuit structure consisting of simple logic gates. The primary inputs of the circuit
are the variables of f . Boolean logic functions are represented by simple logic
gates such as AND, OR, and NOT. For example, a conjunction function is rep-
resented by an AND gate, a disjunction function is represented by an OR gate,
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an equivalence function is represented by an XNOR gate (an XNOR gate can
be decomposed as combinations of simple gates), etc. A propositional formula is
true if and only if the output of its corresponding circuit evaluates to 1. As an
example, the propositional formula (a∧ b)∨ (c ∧ d) is represented by the circuit
shown in Figure 1(a). Since translating any combinational circuit into its CNF
is straightforward and requires only a single traversal of the circuit, a Boolean
function can be translated into its CNF representation by first converting it to
a logic circuit and then translating this circuit into a CNF. A Boolean formula
can also be translated into CNF forms by using the distributive law, the De-
Morgan’s law and other rules of Boolean logic. For example, the propositional
formula (a∧ b)∨ (c∧d) is equivalent to (a∨ c)∧ (b∨ c)∧ (a∨ d)∧ (b∨ d) in CNF
by the distributive law. In general, the conjunction of two CNFs is still a CNF;
the disjunction of two CNFs can be converted to CNF using the distributive
law; the negation of a CNF is a DNF which can also be converted to a CNF by
applying the distributive law.

Direct CNF translation using Boolean algebra properties can eliminate the
need to consider circuit ODCs. For example, for the formula (a ∧ b) ∨ (c ∧ d)
described previously, when a and b are both assigned to 1, all clauses in the CNF
(a ∨ c) ∧ (b ∨ c) ∧ (a ∨ d) ∧ (b ∨ d) are satisfied. Yet for the CNF in Figure 1(b),
all the possible implications from the assignment a = 1 and b = 1 is e = 1 and
g = 1, which makes the clauses for G2 still undecided. Only when the don’t
care literal e is added to the undecided clauses to indicate that these clauses can
be ignored, can we declare that all the clauses are satisfied. In general, suppose
we have two CNFs fA = C1AC2A · · ·CmA and fB = C1BC2B · · ·CnB , where
CiA(i = 1, 2, · · · ,m) are clauses of fA and CjB(j = 1, 2, · · · , n) are clauses of fB.
For fA ∧ fB, if we consider fA and fB as inputs to an AND gate, then either
fA = 0 or fB = 0 makes the other CNF unobservable. Since a CNF is 0 if and
only if at least one of its clauses is 0, either fA or fB being 0 makes fA ∧ fB be
0. This means that the don’t care conditions for conjunctions are taken care of
naturally in CNFs. Similarly, for fA ∨ fB, if we consider fA and fB as inputs to
an OR gate, then either fA = 1 or fB = 1 makes the other CNF unobservable.
By the distributive law, the CNF for fA ∨ fB is fAorB =

∏
i,j(CiA +CjB) where

i = 1, 2, · · · ,m and j = 1, 2, · · · , n. If fA = 1, then every clause CiA is 1, which
implies that every clause in fAorB is 1. We can derive the same for fB = 1
similarly. Thus, the distributive law takes care of the don’t care conditions for
disjunctions of CNFs. Therefore, for CNFs obtained from Boolean functions by
iteratively applying the Boolean algebra rules, we do not need to consider cir-
cuit ODCs. However, this approach of converting Boolean functions to CNFs
can possibly result in an exponential growth of the formula size. Although the
approach of converting Boolean functions to circuit implementations first and
then translating the circuits to CNFs involves introduction of additional vari-
ables corresponding to the internal nodes of the circuits, it is easy to implement
and guarantees linear complexity for translation. In this case, to take circuit
ODC conditions present in Boolean functions into account during the satisfiabil-
ity search, we encode these conditions as don’t care literals in CNFs as described
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previously. Note that we assume a conventional circuit to CNF translation. That
is, every circuit node is a variable in the resulting CNF. Adjacent logic gates in a
circuit can be merged to eliminate some of the internal circuit node variables and
be represented by a unified set of clauses, which can be viewed as a local CNF
translation by Boolean algebra rules, thus the local don’t care conditions are
already taken into account in the unified set of clauses [14]. It is worth empha-
sizing that the circuit encoding approach works not only for Boolean functions
derived from applications with circuit structures, but also for the Boolean func-
tions where auxiliary variables are used during the CNF translations to avoid
the exponential growth of the CNF formulas. For the latter case, the auxiliary
variables introduced in the CNF translations are essentially internal nodes of
circuits and thus possible sources for don’t care literals.

3 SAT Evaluation with Circuit ODCs

Several research efforts on SAT evaluation have exploited the fact that the search
procedure does not need to branch on the variables that appear only in the don’t
care regions and can ignore the clauses corresponding to the don’t care regions of
circuits [12,15,16]. Since contemporary SAT solvers spend most of their time on
the Boolean Constraint Propagation (BCP) procedure which is used to deduce
new assignments of variables from existing assignments, reducing the number
of variables and clauses in consideration means decreasing the time spent on
BCP and therefore less time for SAT solving. Moreover, by considering circuit
ODCs, the search is guided away from the don’t care regions, which implies fewer
assignments before conflicts.

Encoding circuit ODC conditions in CNFs, as described in Section 2, enables
CNF-based SAT solvers to avail of the don’t care information without keeping
the circuit structure information during search. If the ODC information is kept as
don’t care literals which are separated from normal literals in clauses, a slightly
modified CNF format is used. To handle this modified CNF format, several
changes were made to the ZChaff SAT solver [18]:

1. The two literal watching BCP strategy needs to be modified to handle the
don’t care literals. When a don’t care literal is found to be true, the clause
where this literal is present is satisfied. Unlike normal literals, a don’t care
literal cannot be watched since it cannot be implied a value by the BCP
process.

2. The set of don’t care literals of a conflict driven learned clause is the union
of the sets of don’t care literals of the clauses involved in generating the
learned clause by resolution. In this way, don’t care information is propagated
during the conflict driven learning process and used for future search space
pruning.

3. The VSIDS decision heuristic can also accommodate the presence of don’t
care literals such that a variable is more likely to be branched on if it appears
more often as don’t care literals as well as normal literals.
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4 Exploiting Circuit Oberservability Don’t Cares in
Quaffle

4.1 Quaffle’s Basic Framework

Quaffle is based on the DPLL algorithm [19], which is the most widely used
search based algorithm for QBF solvers. Quaffle evaluates the QBF by branching
on the variables according to their quantification order. This decision strategy
is in natural correspondence with the semantics of the formula. There is no
restriction of the decision order for variables within the same quantification level.
The deduction engine propagates further assignments to unassigned variables
through implications. Implication rules of QBF solvers are more complicated
than those for SAT solvers due to the mixing of existential and universal variables
and the different quantification levels of the literals in a clause [20]. Decisions
and implications on a subset of variables generate a partial assignment. Let f
denote the propositional part of a QBF. For a partial assignment of the variables,
the valuation of f can be undetermined, satisfied (f is true) or conflicting (f is
false). Similar to most DPLL based SAT algorithms, if f is undetermined, Quaffle
continues the search by deciding and implying values for unassigned variables;
if f is false, Quaffle analyzes the conflict, derives learned clauses and backtracks
from the current branch. Our treatment of don’t care literals in these two cases
are the same as that used in the ZChaff SAT solver. Thus the benefits gained
by considering circuit ODCs in CNF-based SAT solvers can also potentially
be obtained by exploiting circuit ODCs in Quaffle. In the case of f being true
under a partial assignment, Quaffle has to backtrack to search for other satisfying
assignments until all combinations of universal variable assignments have been
covered. This is an important difference between solving SAT and QBF instances.
In SAT, once a complete or partial assignment is found to make f true, the
solving process is completed. Yet a satisfying assignment in QBF does not mean
the end of the search. Similar to backtracking from a conflict, backtracking
from a satisfying leaf can also be non-chronological. Satisfying assignments can
be recorded as cubes in Quaffle. Satisfiability directed learning derives learned
cubes by performing selected consensus on existing cubes in the same way that
conflict driven learning derives learned clauses by performing selected resolution
on existing clauses[20,21,22].

4.2 Using ODCs for Early Detection of Satisfying Branches

Due to the existence of universally quantified variables, a potentially exponen-
tial number of satisfying assignments need to be enumerated by QBF solvers
in the search tree. The earlier the satisfying branches are detected, the better
the satisfying space is pruned. A major advantage of considering circuit ODCs
in search based QBF solvers is the possibility of early detection of satisfying
branches. A conventional CNF formula is satisfied when all the clauses in this
CNF are satisfied. In a CNF augmented with circuit ODC encoding by adding
don’t care literals, a clause can be satisfied with either a normal literal or a don’t
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care literal. If a clause is satisfied by a don’t care literal, then there is no need to
consider assignments to normal literals of that clause. Thus fewer assignments
may be needed to satisfy all the clauses in such augmented CNFs, which means
more satisfying leafs are pruned by the current branch. Once a satisfying branch
is detected, the solver can backtrack and explore new search space. Consider the
example in Figure 1. Suppose we have a QBF where the propositional part is
implemented by the combinational circuit in Figure 1(a) with its output con-
strained to one. The quantifications of the variables in this QBF is shown at the
bottom of Figure 1(a). Suppose that the first two decisions of the QBF procedure
are a = 1 and b = 1, then e = 1 and g = 1 by deduction. With these assign-
ments, all the clauses in Figure 1(c) are satisfied due to the addition of don’t
care literals. The solver can then flip the assignment of variable b and explore
new search space. This is not the case for the conventional CNF in Figure 1(b).
In this case, the solver has to continue branching on variable c, d and f until all
clauses are satisfied, and then the value of c is flipped while b’s value remains
the same if chronological backtracking is used. After both values of c are tried,
can we backtrack to flip the value of b. In practice, it is not uncommon for QBF
instances to have several levels of both universal and existential quantifications
and a large number of variables. Thus, it is particularly important to derive and
backtrack from the satisfying branch early during the search to avoid explor-
ing the sub-trees of this branch. Suppose at a certain point during the search,
all unassigned variables are in the don’t care regions of the circuit, then those
clauses corresponding to the don’t care regions can be satisfied by the don’t care
literals. If there are n unassigned universal variables at this branch, then the
QBF solver could potentially save the effort of exploring 2n satisfying leafs by
exploiting the circuit ODC encoding.

Note that for any two inputs of the same gate, although it is possible that each
signal can have a controlling value that makes the other signal unobservable, only
one signal can appear as the don’t care condition of the other signal in the circuit
ODC enhanced CNF encoding. This is because the encoding of the circuit ODC
condition is static and at least one input with a controlling value of a gate should
be responsible for the unobservability of other inputs of that gate [17]. Therefore,
a total ordering of all the gate inputs is used so that only a lower ordered signal
can appear in the circuit ODC condition of a higher ordered one. Note also that
QBF variables are decided in accordance with their quantification orders and
assigned variables can satisfy clauses via both normal true literals and don’t
care true literals. Thus, we propose the ordering heuristic of using quantification
levels to order variables. The intuition behind this heuristic is to satisfy as many
clauses as early during search as possible. Specifically, for two variables x and y,
if y or primary input variables that fanin to y have higher quantification order
than x or primary input variables that fanin to x, then it is very likely that x
is assigned prior to y since decision order is restricted by quantification order.
Thus there is a greater chance that x is assigned a controlling value that makes
y unobservable than vice versa. If x is assigned a controlling value prior to y,
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then giving x a higher priority as don’t care literals in the total ordering, we
satisfy the clauses representing the unobservable region that fans into y.

4.3 Using ODCs for Deriving Larger Satisfying Cubes

Conflict driven learning is an important technique for both SAT and QBF
solvers [23,24]. Learned clauses generated by conflict driven learning are very
useful for preventing certain conflicting search space to be revisited. Combina-
tions of conflicting assignments that have been seen previously during search will
make corresponding learned clauses unsatisfying and thus cannot appear again.
Similar to conflict driven learning, satisfiability directed learning is the technique
used in QBF solvers to prevent revisiting an already satisfied space. Combina-
tions of satisfying assignments are recorded as satisfying cubes. Satisfiability
directed learning is the process of selected consensus on cubes, just as conflict
driven learning is the process of selected resolution on clauses. When a satisfying
leaf is reached, at least one true literal from each clause in a CNF representation
is chosen to form a cover set of the satisfying assignment. A satisfying cube is
the conjunction of the literals in a cover set. For augmented CNFs with don’t
care literals, since there may exist clauses that are satisfied by don’t care literals,
we may potentially get cover sets consisting of fewer literals. which means the
satisfying cubes are bigger and a larger satisfying space is pruned. Let us again
consider the example in Figure 1. With the augmented CNF with don’t care
literals as shown in Figure 1(c), a partial assignment a = 1, b = 1, e = 1, g = 1
satisfies all the clauses, therefore the satisfying cube is a ∧ b ∧ e ∧ g. On the
contrary, suppose that no circuit information is used and we only have the CNF
in Figure 1(b). After the partial assignment a = 1, b = 1, e = 1, g = 1, we need
to continue the search since not all clauses are satisfied. If we continue to assign
c = 1, d = 1, f = 1, then the whole CNF is satisfied. The satisfying cube in this
case is a∧b∧c∧d∧e∧f ∧g, which is larger (has more literals) than the cube we
get from considering ODCs in CNF. Note that we maintain a total ordering of
the circuit nodes when generating the don’t care literals. The higher the priority
of one circuit node is in the total ordering, the more likely literals corresponding
to that circuit node appear as don’t care literals in other clauses. This implies
that the total ordering can be a good criterion for choosing literals in cover sets.
Among all the true literals in a clause, the literal that has the highest priority
in the total ordering is chosen to be included in the cover set first. In fact, if we
always choose the true literal that has the highest priority in the total ordering
in a clause to be included in the cover set, then we only need to consider to cover
all the clauses that have no true don’t care literal while ignoring the clauses that
contain true don’t care literals. The following is an informal proof for this claim.
A cover set is a set of variable assignments that makes the propositional part of
a QBF satisfiable. Clauses that are satisfied by the don’t care literals represent
the logic condition of the unobservable part of the circuit, where a satisfying
assignment AS always exist. Moreover, since the unobservable part of the circuit
does not share variables with other parts of the circuit, AS will not conflict with
the cover set variable assignments. The observable part of the circuit corresponds



376 D. Tang and S. Malik

to clauses where no don’t care literal is true. Since we always choose among the
true normal literals in a clause the one literal that has the highest priority in
the total ordering, we make sure that the controlling variable is in the cover set.
Therefore, our selection of the cover set makes sure that the observable part of
the circuit is satisfied.

4.4 Comparison with the Conditional QBF Solver

A recent work explored QBF encodings of adversarial games and proposed condi-
tional QBF solvers to solve such problems [6]. In the QBF encodings of adversar-
ial games between two players, one player corresponds to the existential variables
and the other player corresponds to the universal variables. The interleaving of
the existential and universal quantifications corresponds to the interleaved ac-
tions of the two players. The resulting QBF formula is true if and only if the
existential player has a winning strategy. For this problem, many combinations
of universal variable assignments correspond to ”illegal” actions that violate the
rules of the game. These combinations of universal variable assignments make
the propositional formula f of the QBF true. Once a partial assignment is identi-
fied as an illegal action of the universal player, f must be satisfied by this partial
assignment. Therefore, a set of indicator variables is used to indicate such oc-
currences of actions that are known to make f true. The conditional QBF solver
keeps tracking the values of the indicator variables. If at least one of the indica-
tor variables is true, the solver backtracks from current branch and searches for
other satisfying assignments. This can potentially save a lot of search effort since
an indicator variable being true can happen much earlier during search than the
whole propositional CNF being satisfied.

In the above two-player adversarial games, if we use AU and AE to represent
the characteristic functions of the legal actions of the universal and existential
players respectively and G to represent the condition that the existential player
wins, then the propositional formula of the game QBF is AU → AE ∧G which is
equivalent to ¬AU ∨(AE∧G). It is easy to see that if this formula is implemented
using a circuit, then the circuit node for ¬AU is an input of the OR gate whose
output is the primary output of the circuit. Therefore, if AU evaluates to 0, then
¬AU is the controlling value of the OR gate, which makes the value of (AE ∧G)
unobservable. Let vAU denote the variable representing the output of the function
AU in the circuit. If vAU = 0, then the rest of the variable assignments become
don’t cares. Thus we can add ¬vAU as don’t care literals for clauses representing
(AE ∧G). In general, such illegal combinations of universal variable assignments
is disjuncted with the rest of the propositional formula in QBF. Therefore, the
indicator variables are essentially don’t care literals for clauses of the other part
of the disjunction. An indicator variable being 1 means that the corresponding
don’t care literal is true. If the circuit ODC condition is encoded in CNF, then
the QBF solver that handles don’t care enhanced CNF can also detect that
the CNF is true when one of the indicator variables is 1. Thus solving QBF
with circuit ODCs can potentially achieve the same performance gain as that
obtained by the conditional QBF solver. Our experiments prove that manually
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adding indicator variables as don’t care literals for the formulas makes Quaffle
perform exactly the same as the conditional QBF solver.

Conditional QBF solver requires the identification of the indicator variables
before the actual solving begins. In practice, identifying such variables requires
familiarity with the problem at hand and its encoding. Moreover, if a variable is
falsely identified as an indicator variable, the result returned by the conditional
QBF solver might be wrong. On the other hand, QBF solvers that handle circuit
ODCs require the circuit ODC augmented CNFs. This means that the circuit
structure information needs to be properly identified, which is facilitated by a
recent development of the CNF to circuit converter [25]. Given a CNF where
part of it or the entire formula is constructed from combinational circuits, this
converter can generate the original structure of the circuits. Therefore, don’t
care literals can be extracted automatically from CNFs originating from circuits
and then added to the original CNF formula. Compared to the conditional QBF
solver, this approach is less error prone and more robust. In addition, it is more
general in the sense that indicator variables are global don’t care conditions
while don’t care literals can capture local circuit ODC information as well.

5 Experimental Results

We implemented a Quaffle-based QBF solver that is able to handle the circuit
ODC augmented CNF. For our experiments, we implemented generators for
three categories of QBF instances. The first category is a two-player game where
each player takes turns to mark an element in a one dimensional array at each
time step. A marked element cannot be marked again. A player wins if it marked
n consecutive elements in the array, where n is an integer that is greater than one.
The generated QBF instance is true if and only if the first player has a winning
strategy against the second player for all its possible moves. We call this game
consecutive-n. The second category is a simplified Evader/Pursuer chess prob-
lem [6]. The third category is the sequential circuit state space diameter prob-
lem [26,27]. For all these problems, we first generate the circuit implementation
of the propositional formula, then convert the formula to its CNF representation.
We use the CNF to circuit converter to reconstruct the circuit structure infor-
mation from the CNF and automatically identify the ODC information and then
generate the circuit ODC augmented CNF. The reason that we chose to write
our own generators for these QBF instances is that most QBF benchmarks avail-
able are not built from circuit structures. Thus it is hard to extract circuit ODC
information from these benchmarks. Note that our encodings are not the most
optimal encodings for these problems. In practice, deriving an optimal encoding
requires a lot of effort and an understanding of the underlying algorithms and im-
plementations of the QBF solvers. Moreover, our purpose is to use these testcases
to evaluate the QBF solver performance in the presence of circuit ODC infor-
mation instead of providing an optimal solution for a certain class of problems.

All of our experiments were run on a workstation with Intel Pentium IV 2.8
GHz Processor and 1GB physical memory running Linux Fedora Core 1. We
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Table 1. Performance summary

Quaffle Quaffle-DC-A Quaffle-DC-M
Testcase T/F Time(s) #SAT Time(s) #SAT Time(s) #SAT
s27-3 T - - - - 1.59 78748
s27-4 T - - - - 41.79 1423282
s27-5 T - - - - 1054.37 26450250
chess-6-5-0 F 149.52 51394 2.55 44594 0.14 394
chess-6-5-1 T 184.88 65536 4.64 58736 4 14536
chess-8-5-0 F 1081.67 156399 550.75 156399 0.34 544
chess-8-5-1 T 1118.98 262144 836.21 262144 33 61832
chess-8-7-0 F - - - - 0.79 915
chess-8-7-1 T - - - - 60.89 61832
cont-4-4-0 F 3 610530 0.7 146050 0.03 2323
cont-4-4-1 T 5.1 1048934 1.49 328143 0.09 5514
cont-4-6-1 T - - - - 1.1 45467
cont-6-6-1 T - - - - 232.43 7013225

imposed a one hour time limit on each QBF solving run. We call the modified
Quaffle that handles the circuit ODC augmented CNFs Quaffle-DC. Table 1
shows the performance comparison of using Quaffle on the original testcases
(columns 3 and 4), using Quaffle-DC for the testcases with automatically gener-
ated don’t care literals (columns 5 and 6) and using Quaffle-DC for the testcases
with manually generated don’t care literals (columns 7 and 8). Manually gen-
erated don’t care literals are exactly the indicator variables for the conditional
QBF solver. These literals are identified through understanding the QBF en-
coded problems. If these literals are true, then the propositional part of the
QBF is true. We use ”-” to indicate timeout of the one hour time limit. The
label #SAT indicates the number of satisfying solutions enumerated for each
QBF solving. For these experiments, we turned off the satisfiability directed non-
chronological backtracking and learning which slowed both Quaffle and Quaffle-
DC down significantly for these testcases. The result shows that exploiting the
circuit ODC information greatly improves the performance of the Quaffle QBF
solver. Moreover, Quaffle-DC runs faster on instances with manually generated
ODC information than those with automatically extracted ODC information.
The number of SAT solutions enumerated is far less in the case of manually ex-
tracted ODC information. But automatically extracted ODC information does
not necessarily reduce the number of SAT leaves due to the chronological na-
ture of satisfiability backtracking. Yet the run time is reduced significantly with
automatically extracted ODC information. The reason for this is that early de-
tection of satisfiability in a certain branch saves a huge amount of deduction
effort for the QBF solver. The better performance of Quaffle-DC on manually
extracted ODCs than automatically generated ODCs is likely because of the
following two reasons: automatic extraction of the circuit ODC information gen-
erates far more don’t care literals than actually needed for early satisfaction of
the CNF and these extra don’t care literals slow down the deduction procedure;
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Table 2. Performance Comparison with Satisfiability Directed Learning

Quaffle Quaffle-DC-A
Testcase T/F Time(s) #SAT Cube Length Time(s) #SAT Cube Length
chess-4-5-0 F 47.48 11226 4285 14.37 6066 882
chess-4-5-1 T 31.45 7577 4284 17.95 7805 1002
chess-6-5-0 F 350.18 28943 10462 150.51 28970 2018
chess-6-5-1 T 626.42 51904 10462 293.3 53462 2467
cont-4-4-0 F 168.54 315190 495 0.36 1234 265
cont-4-4-1 T 564.09 1049230 495 2.59 8101 268

the automatically generated don’t care literals may not capture the global don’t
care condition which result in more satisfied clauses than the local don’t care lit-
erals, while the global don’t care condition can be recognized by humans during
the encoding process. Since we used chronological backtracking and no learn-
ing when a satisfying assignment is reached, the performance gain obtained by
considering circuit ODCs is mostly the result of early detection of the satisfying
partial assignments.

To evaluate how the presence of the circuit ODC information influences the
satisfiability directed learning, we conducted another set of experiments with
the satisfiability directed non-chronological backtracking and learning in Quaffle
and Quaffle-DC turned on. We measured the average length (in terms of the
number of literals) of the satisfying induced cubes. The manually generated
global don’t care literals are added to every clause, they do not correspond to
the actual controlling signals of the entire circuit. Thus we cannot use these
don’t care literals for satisfiability directed learning. Therefore, we only use the
automatically generated ODCs for this set of experiments. Table 2 shows that
with don’t care literals, the average length of the satisfying induced cubes is
shorter, which means that satisfiability directed learning is more effective when
considering circuit ODCs.

6 Conclusions

We have considered exploiting circuit ODC information in solving QBF instances
in CNFs. We discussed the effects of the CNF encoding approaches on the valu-
ation of a CNF under a partial assignment. The circuit ODC information needs
to be explicitly encoded in the CNF if auxiliary variables are introduced while
translating a Boolean formula into its CNF. Search based QBF solvers can use
this information to backtrack early from a satisfying branch. If satisfiability di-
rected learning is incorporated, then using the circuit ODC information may
result in shorter satisfying cubes which better prune the satisfying search space.
Our experimental results show that the circuit ODC information is very helpful
for solving QBF instances where many combinations of small subsets of variables
lead to satisfying assignments for the propositional parts of the formulas.
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Abstract. Quantified Boolean Formulas (QBFs) present the next big
challenge for automated propositional reasoning. Not surprisingly, most
of the present day QBF solvers are extensions of successful proposi-
tional satisfiability algorithms (SAT solvers). They directly integrate the
lessons learned from SAT research, thus avoiding re-inventing the wheel.
In particular, they use the standard conjunctive normal form (CNF)
augmented with layers of variable quantification for modeling tasks as
QBF. We argue that while CNF is well suited to “existential reasoning”
as demonstrated by the success of modern SAT solvers, it is far from
ideal for “universal reasoning” needed by QBF. The CNF restriction im-
poses an inherent asymmetry in QBF and artificially creates issues that
have led to complex solutions, which, in retrospect, were unnecessary
and sub-optimal. We take a step back and propose a new approach to
QBF modeling based on a game-theoretic view of problems and on a
dual CNF-DNF (disjunctive normal form) representation that treats the
existential and universal parts of a problem symmetrically. It has several
advantages: (1) it is generic, compact, and simpler, (2) unlike fully non-
clausal encodings, it preserves the benefits of pure CNF and leverages the
support for DNF already present in many QBF solvers, (3) it doesn’t use
the so-called indicator variables for conversion into CNF, thus circum-
venting the associated illegal search space issue, and (4) our QBF solver
based on the dual encoding (Duaffle) consistently outperforms the best
solvers by two orders of magnitude on a hard class of benchmarks, even
without using standard learning techniques.

1 Introduction

The automated propositional reasoning community has come a long way since
the development of the first practical propositional satisfiability algorithms (SAT
solvers) nearly a decade ago. SAT solvers have been successfully used on real-
world problems from a variety of areas like hardware and software verification,
planning, and scheduling. Quantified Boolean Formula (QBF) reasoning extends
the scope of SAT to domains requiring adversarial analysis, like conditional plan-
ning [17], unbounded model checking [16, 3], and discrete games [7]. In the sim-
plest case, consider a two-player game. Here a winning strategy is a partial game
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tree that, for every possible game play of the opponent, indicates how to proceed
so as to guarantee a win. This is more complex than the single-agent reasoning
SAT solvers offer, and requires modeling and analyzing adversarial actions of an-
other agent with competing interests. The QBF approach thus supports a much
richer setting. However, it also poses new and sometimes unforeseen challenges.
In terms of worst-case complexity, deciding the truth of a QBF is PSPACE-
complete [18] whereas SAT is “only” NP-complete.1 Even with very few quan-
tification levels, the explosion in the search space is tremendous in practice.
Further, as the winning strategy example indicates, even a solution to a QBF
may require exponential space to describe, causing practical difficulties [2].

Nonetheless, several tools for deciding the truth of a given QBF (QBF solvers)
have been developed, such as Quaffle [20], sKizzo [3], Quantor [4], QuBE [8],
Semprop [10], Evaluate [5], Decide [15], and QRSat [13]. Most of these tools
extend the concepts underlying many successful SAT solvers, which use the
DPLL procedure [6] as their backbone. As a result, they inherit conjunctive
normal form (CNF) as the input representation, which has been the standard
for SAT solvers for over a decade. Internally, many solvers also employ disjunctive
normal form (DNF) in order to cache partial solutions for efficiency [21].

While the performance of QBF solvers has been promising, translating a QBF
into a (much larger) SAT specification and using a good SAT solver is often
faster in practice — a fact well-recognized and occasionally exploited [4, 3]. This
motivates the need for further investigation into the design of QBF solvers and
possible fundamental weaknesses in the modeling methods used.

The main contribution of this paper is a new generic QBF modeling technique
that uses a dual CNF-DNF representation and, with a fairly straightforward
adaptation of a modern QBF solver, improves the state of the art by two orders
of magnitude on a set of computationally challenging benchmarks. The dual
representation splits problem constraints into a CNF and a DNF part in a natural
manner based on a game-theoretic view. Note that we do not go to fully non-
clauses encodings, which also have promise but are unable to directly exploit
rapid advances in CNF-based SAT solvers. We also differ from an independent
dual CNF-DNF approach recently proposed [19] in that we do not convert a
full CNF encoding into a logically equivalent full DNF encoding and provide
both to the solver. Our approach exploits the representational power of DNF
to simplify the model while addressing the issues associated with pure CNF
representations.

We think of a problem P as a two-player game G with a bounded number
of turns. This is different from the standard interpretation of a QBF as a game
[14]; in our approach, one must formulate the higher level problem P as a game
G before modeling it as a QBF. The sets of “rules” to which the players of G are
bound may differ from one player to the other. In general, any QBF reasoning
task has a natural game playing interpretation at a high level, which we exploit.
We illustrate this correspondence with a circuit minimization problem [cf. 14]

1 Assuming P �= NP, PSPACE-complete problems are significantly harder than
NP-complete problems; cf. [14].
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that underlies practical QBF benchmarks involving adder circuits and sorting
networks [12], a graph coloring problem, and a chess-like problem [11, 1].

The key idea underlying our approach is to exploit a dichotomy between the
players: we model rules for the existential player as CNF clauses, (the negations
of) rules for the universal player as DNF terms, and split game state informa-
tion equally into clauses and terms. This symmetric dual format places “equal
responsibility” on the two players, in stark contrast with current QBF encodings
which tend to leave most work for the existential player. We are able to avoid
many pitfalls of current techniques while increasing the reasoning efficiency. In
particular, we bring to QBF solvers unit propagation across quantifiers which
has been a stumbling block so far. We are also able to completely avoid the use of
the so-called auxiliary indicator variables and the associated illegal search space
issue inherent in the translation of QBF problems into pure CNF form [1].2

We evaluate our approach with Duaffle (short for dual-Quaffle), our QBF
solver for the dual encoding. It is an adaptation of the solver Quaffle, which
already supports DNF terms for solution learning. Our empirical evaluation on
computationally difficult chess-based instances shows that Duaffle consistently
outperforms the best solvers by several orders of magnitude. More generally, this
paper demonstrates that by taking a step back and re-thinking basic modeling
techniques, one can significantly extend the reach of QBF reasoning systems.

2 Preliminaries

We begin by discussing how adversarial tasks can be treated as games, and then
describe our QBF notation and a systematic way of encoding games as QBF.

2.1 Treating Adversarial Tasks as Games

Most discrete adversarial tasks have a natural albeit somewhat non-traditional
game playing interpretation with an existential and a universal player. Interest-
ingly, the rules for the existential player are often different from those of the
universal player. We illustrate this with two simple but concrete examples.

Example 1. The Circuit Minimization Problem: Given a Boolean circuit C,
is there a smaller circuit that computes the same function as C? Observe that
the answer is yes iff there exists a circuit CE such that size(CE) < size(C) and
for all inputs ρ, CE(ρ) = C(ρ). This problem lies in the complexity class ΣP

2 ,
which is believed to be beyond NP and is characterized by QBFs with exactly
two levels of quantification beginning with the existential [cf. 14].

We can think of circuit minimization as a game with two turns. First, the
existential player E commits to a circuit CE by specifying the type its gates,
their connections, and the output line. The rules for E are that CE must be a
legal circuit with size(CE) < size(C). Second, the universal player U produces
2 While this can also be handled by providing semantic information about auxiliary

variables as additional input [1], this has the undesirable effect of mixing the declara-
tive nature of problem specification with the procedural nature of solution technique.
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an input ρ and the polynomial-size computations of CE and C on ρ. The rule
for U is that it must correctly compute CE(ρ) and C(ρ). The goal of E is to
ensure that CE(ρ) = C(ρ) no matter how ρ is chosen. �

Example 2. The Chromatic Number Problem: Given a graph H and a pos-
itive integer k, does H have chromatic number k? The chromatic number of a
graph is the minimum number of colors needed to color its vertices so that no
two adjacent vertices have the same color [cf. 14]. Observe that the answer is yes
iff H has a legal coloring with k colors but no legal coloring with k − 1 colors.

We can again think of this as a game between E and U . First, E produces a
coloring σ of the vertices of H. The rule for E is that σ must be a legal k-coloring
respecting the edges of H. Second, U produces a second coloring τ of the vertices
of H. The rule for U is that τ must be a legal (k − 1)-coloring of H. E wins iff
she is able to produce a valid σ and U is not able to produce a valid τ . �

2.2 Quantified Boolean Formulas

Let V = {x1, . . . , xn} be a set of n propositional (Boolean, true-false, 1-0)
variables. A conjunctive normal form or CNF formula over V is a conjunction of
clauses, where each clause is a disjunction of literals, and a literal is a variable
or its negation. A disjunctive normal form or DNF formula is a disjunction of
terms (sometimes called cubes), where each term is a conjunction of literals.

A Quantified Boolean Formula (QBF) is a Boolean formula in which variables
are quantified as existential (∃) or universal (∀). We will use the term QBF for
totally quantified Boolean formulas in prenex form beginning with ∃:

F = ∃x1
1 . . .∃x

t(1)
1 ∀x1

2 . . .∀x
t(2)
2 . . . Qx1

k . . . Qx
t(k)
k M

where M is a Boolean formula referred to as the matrix of F , xj
i above are

distinct and include all variables appearing in M , and Q is ∃ if k is odd and ∀ if
k is even. Defining Vi =

{
x1

i , . . . x
t(i)
i

}
and using associativity within each level

of quantification, we can simplify the notation to F = ∃V1 ∀V2 ∃V3 . . . QVk M . A
QBF solver is an algorithm that determines the truth value of such formulas F ,
i.e., whether there exist values of variables in V1 such that for every assignment
of values to variables in V2, and so on, M is satisfied (set to true).

For two Boolean formulas G and G′, G = G′ will denote syntactic equality
(they “look” the same) and G ≡ G′ will denote semantic equality (they evaluate
to the same truth value for every variable assignment). For two QBFs F and
F ′, F = F ′ will denote syntactic equality, while F ≡ F ′ will denote semantic
equality between the matrices (i.e., the Boolean parts) of F and F ′.

2.3 QBF and Two-Player Games

A QBF F = ∃V1 ∀V2 . . . QVk M has a natural interpretation as a two-player
game G (see standard texts, e.g. [14]). The idea is to have an existential player
E and a universal player U , who take turns setting variables in V1, V2, . . . , Vk in
order. If M is satisfied after all variables are set, E wins. Otherwise, U wins.
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Our interest in this work, however, is in going the other direction, that is,
treating arbitrary adversarial tasks as discrete games and modeling them as
QBF. Given a discrete two-player game G with players E and U , a bound k on
the total number of turns, and the guarantee that after k turns either E or U
will be declared a winner (i.e., there is no “draw”), we can construct a QBF
F = ∃V1 ∀V2 . . . QVk M that models G in the following manner.3

We will follow the systematic framework described by Ansotegui et al. [1]. It
is based on a highly successful technique used in SAT-based planning [9] and
can be applied to any well-defined discrete game G without draws. The variables
of F model the possible moves of E and U as well as global state information
maintained about the game as it is played. The possible moves in the ith turn
naturally correspond to variables in Vi. The rules and goal of G are formulated
as follows: (1) precondition and effect axioms for each move in relation to the
game state before and after the move, (2) mutual exclusion axioms restricting a
player to one move per turn, (3) frame axioms ensuring that parts of the game
state not affected by the current move stay unchanged, (4) initial state axioms,
and (5) goal axioms stating the winning conditions for one of the players chosen
arbitrarily. With no draws, it clearly suffices to describe one player’s goals.

The transition axioms for the ith turn are the conjunction of the precondition,
effect, mutual exclusion, and frame axioms for that turn, denoted by Tr i =
Pr i ∧ Mf i ∧ Mei ∧ Fr i. With a bound k on the total number of turns in G,
all transition axioms for the existential player E and the universal player U
can be grouped together as TrE = Tr1 ∧ Tr3 ∧ . . . ∧ Trodd(k) and TrU =
Tr2∧Tr4∧ . . .∧Treven(k), where odd(k) and even(k) denote the largest odd and
even integers up to k, respectively. Let I denote the initial state axioms and GE

the goal axioms for E. The following Boolean formulas represent two alternative
formulations of G:

M1 = I ∧ TrE ∧ (TrU → GE) M2 = TrU → (I ∧ TrE ∧GE) (1)

In general, the choice of the formulation is dictated by the requirements of
the game being modeled. Formulation M1 has the property that it evaluates to
true on a variable assignment iff (a) E adheres to all her rules and (b) either
E achieves her goal or U violates his rules. This fits the game interpretations
of the circuit minimization and graph coloring examples we saw in Sect. 2.1. In
graph coloring, for instance, E must adhere to her rules of producing a valid
k-coloring of H irrespective of whether U is able to produce a (k − 1)-coloring.
On the other hand, M2 evaluates to true iff either (a) E adheres to all her
rules and achieves her goal, or (b) U violates his rules. This relieves E of all
responsibility if U violates a rule. This formulation fits games like chess where
E doesn’t even need to continue playing the game according to her rules if U
3 Interestingly, without the possibility of a draw, exactly one of E and U is guaranteed

to have a winning strategy even before they start playing the game. This is because if
E does not have a choice of moves that will make her win irrespective of the moves of
U , then U ’s winning strategy is simply the “witness” of this fact. This corresponds
to the only two possible evaluations of the QBF F , namely, true and false.
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makes an illegal move; she is immediately declared the winner. While chess may
also be formulated as M1, using M2 increases the reasoning efficiency.

Let Si denote the state variables for G during the ith turn, Ai the move or
action variables, and Ii a set of auxiliary “indicator” variables [1] used to detect
when the formula may be declared satisfiable. Assuming k is odd, the complete
CNF-based QBF formulation of G is given by:

∃S1A1S2︸ ︷︷ ︸ ∀A2︸︷︷︸ ∃I2S3A3S4︸ ︷︷ ︸ . . . ∀Ak−1︸ ︷︷ ︸ ∃Ik−1SkAkSk+1︸ ︷︷ ︸ Mi (2)

where i ∈ {1, 2} is chosen based on the requirements of G.

3 A New QBF Modeling Technique

In this section, we present a new QBF modeling technique based on a game-
theoretic view of the underlying problem and a dual CNF-DNF representation.
We also describe a QBF solver that uses this dual representation. We begin with
the motivation behind using DNF.

CNF is the generally accepted input format for SAT solvers, and for two good
reasons. First, many problems of interest are naturally expressed as a conjunction
of several constraints. Second, before SAT solvers reach their goal of finding any
one satisfying assignment, they typically encounter many falsifying assignments.
It is therefore extremely beneficial for them to be able to deduce locally from
a single CNF clause that all extensions of the current partial assignment will
be falsifying. This forms the basis of DPLL-based backtrack search as well as
heuristics for local search. On the other hand, due to universal quantification,
a QBF solver must continue its search even after one satisfying assignment is
found. It must therefore also detect satisfiability quickly. While the satisfaction of
a CNF formula is a global property (all clauses must be satisfied), the satisfaction
of a DNF formula can be guaranteed locally by evaluating an individual term.

This fact is exploited by QBF solvers that implement “solution learning”
[21]. We take this observation a step further, using a combination of CNF and
DNF as part of the input formula itself. Interestingly, adding DNF-based solu-
tion learning to the solver Quaffle, while theoretically natural and desirable,
has limited practical impact on many problem instances over and above what
“conflict clause” learning already achieves. In fact, the “conditional” variant of
Quaffle called QuaffleC [1], which outperforms all state-of-the-art QBF solvers
on our benchmarks, doesn’t even use solution learning and DNF because of tech-
nical reasons. On the other hand, using DNF as part of the problem specification
itself, as we will see, can be extremely effective.

Our modeling technique is based on the interpretation of adversarial tasks as
games as discussed in Sect. 2.1. For modeling games as QBF, recall the generic
framework of Sect. 2.3 and, in particular, the matrices M1 = I ∧TrE ∧ (TrU →
GE), M2 = TrU → (I ∧ TrE ∧ GE) in Eqn. (1) and the variable quantifica-
tion in Eqn. (2). Two crucial observations about this representation of games
motivate our modeling approach. (A) The implications TrU → . . . in M1 and
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M2 must be translated into a CNF formula by either expanding it out, which is
typically costly, or adding new auxiliary variables, which cause problems with
unit propagation and lead to the illegal search space issue. This is discussed in
detail by Ansotegui et al. [1] and is handled using a fairly intricate machinery of
individual and grouped “indicator” variables that flag the violation of any rule
by U and “propagate” this information globally to all clauses. This makes the
model undesirably complex. (B) The variable quantification in Eqn. (2) clearly
depicts the “unequal treatment” of E and U . While U only decides actions at
even-numbered turns, E is left with the responsibility of deciding actions at odd-
numbered turns, maintaining the correct game state at every turn, and setting
and propagating appropriate indicator variables when U violates a rule.

3.1 Modeling Games in a Dual CNF-DNF Form

Representing games as QBF in the framework of Sect. 2.3 boils down to specify-
ing the initial state, the rules of the game, and the goal for a player as a Boolean
formula, and quantifying appropriately over its variables. In our approach, we
model the rules for the existential player E as a CNF formula G and, unlike
existing encoding techniques, model (the negations of) the rules for the universal
player U as a DNF formula H , respecting the following behavior: violation of
a rule by E should directly falsify a clause of G and violation of a rule by U
should directly satisfy a term of H . The dual formula will encode the winning
conditions for E.

Before going into the details for the general setting, we illustrate the complete
dual encoding for the chromatic number problem described earlier.

Example 3. Dual Encoding of the Chromatic Number Problem: Let
(H, k) be the problem input. Let n = |V (H)| and [m] denote {1, 2, . . . ,m}. Recall
the game playing interpretation of this problem from Sect. 2.1. The correspond-
ing dual QBF encoding has nk existential variables xi,j with i ∈ [n], j ∈ [k] for
the rules of the existential player E, and n(k − 1) universal variables yi,j with
i ∈ [n], j ∈ [k − 1] for the rules of the universal player U . Semantically, xi,j (or
yi,j) is true iff E (or U , respectively) assigns color j to vertex i.

We construct a CNF formula FCNF such that it is satisfied by a variable
assignment iff the x variables form a legal k-coloring of H. The first set of clauses
in FCNF will say that every vertex must be assigned some color by x, the second
set will say that a vertex can get only one color, and the third set will say that
if two vertices share an edge, then they do not get the same color. Formally,

FCNF =
∧

i∈[n]

(xi,1 ∨ . . . ∨ xi,k) ∧
∧

i∈[n]
j �=j′∈[k]

(xi,j ∨ xi,j′) ∧
∧

(i,i′)∈E(H)
j∈[k]

(xi,j ∨ xi′,j)

We now construct a DNF formula FDNF which is satisfied by an assignment iff
the y variables do not form a legal (k − 1)-coloring of H. The first set of terms
in FDNF will say that some vertex is not assigned any color by y, the second set
will say that two different colors are assigned to a single vertex, and the third
set will say that two adjacent vertices are assigned the same color. Formally,
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FDNF =
∨

i∈[n]

(yi,1 ∧ . . . ∧ yi,k−1) ∨
∨

i∈[n]
j �=j′∈[k−1]

(yi,j ∧ yi,j′ ) ∨
∨

(i,i′)∈E(H)
j∈[k−1]

(yi,j ∧ yi′,j)

Finally, the dual QBF encoding of the chromatic number problem is given by

Fchr-num(H, k) = ∃xi,1xi,2 . . . xn,k ∀yi,1yi,2 . . . yn,k−1 FCNF ∧ FDNF

The game playing interpretation implies that Fchr-num(H, k) is true iff the chro-
matic number of H is k. �

More generally, we begin by thinking of the rules for E and U as standard clauses
encoding various axioms like preconditions and effects for each turn, as defined
in Sect. 2.3. For E, these directly become part of the CNF portion. For U , we
negate each of these clauses to obtain DNF terms, which directly become part of
the DNF portion. The overall QBF encoding is created from the perspective of E
by encoding conditions under which E would win. We illustrate the translation
of rules into clauses and terms with a simple example.

Example 4. The Game of Chess: We use standard chess notation, with board
columns a-g and rows 1-8. A typical set of precondition axioms would be: if the
white player moves a rook from square b2 to square b4 at step s, then (a) that
rook must be at b2 to begin with, (b) b3 must be empty, and (c) there must not
be a white piece at b4. Treated as clauses, these translate into:

C1 = (NOT move-wRook-b2-b4-s OR at-wRook-b2-s)

C2 = (NOT move-wRook-b2-b4-s OR empty-b3-s)

C3 = (NOT move-wRook-b2-b4-s OR NOT at-wPiece1-b4-s)

C4 = (NOT move-wRook-b2-b4-s OR NOT at-wPiece2-b4-s)

The clause C1, for instance, says that the CNF formula is immediately falsified if
a white rook tries to move from square b2 to b4 without actually being there at
step s. When modeling the white player as the existential player E, we use the
above set of clauses. The axioms for the black player modeled as the universal
player U state the converse, i.e., the conditions under which it violates a rule or
fails to reach its goal, causing E to win. These are the negations of the standard
axiom clauses, and are modeled as DNF terms of the form:

D1 = (move-bRook-b2-b4-s AND NOT at-bRook-b2-s)

D2 = (move-bRook-b2-b4-s AND NOT empty-b3-s)

D3 = (move-bRook-b2-b4-s AND at-bPiece1-b4-s)

D4 = (move-bRook-b2-b4-s AND at-bPiece2-b4-s)

The term D2, e.g., says that the DNF formula is satisfied if a black rook attempts
to move from b2 to b4 and the intermediate square b3 is non-empty. �

Given this symmetric way of encoding the rules for E and (the negations of)
the rules for U as a collection of clauses and terms, respectively, we are ready to
state the complete new encoding in the generic framework of Sect. 2.3. Recall
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Eqn. (1) describing two possible matrices M1 and M2 of the QBF formulation of
a game G. Note that since there is no draw, GU ≡ ¬GE . We rewrite M1 and M2
in the following manner, which immediately suggests a natural split into CNF
and DNF parts and how to logically combine them. We use M ′

i to emphasize
the syntactic difference with Mi, i ∈ {1, 2}; semantically M ′

i ≡ Mi.

M ′
1 = (I ∧ TrE︸ ︷︷ ︸

CNF

) ∧ (¬TrU ∨ ¬GU︸ ︷︷ ︸
DNF

) M ′
2 = (I ∧ TrE ∧GE︸ ︷︷ ︸

CNF

) ∨ ¬TrU︸ ︷︷ ︸
DNF

(3)

We see that while M ′
1 combines the CNF and DNF parts with the and operator,

M ′
2 uses the or operator. Which one of M ′

1 and M ′
2 is chosen for a particular

game G at hand is dictated by the requirements of G as discussed in Sect. 2.3.
Particularly, if the game stops as soon as U violates a rule, M ′

2 is preferred.
Recall that TrU is the conjunction of transition clauses for even-numbered

turns, so that ¬TrU is naturally expressed as a DNF formula with terms corre-
sponding to negated original clauses:

¬TrU = ¬Tr2 ∨ ¬Tr4 ∨ . . . ∨ ¬Treven(k)

¬Tr i = ¬Pr i ∨ ¬Mf i ∨ ¬Me i ∨ ¬Fr i

}
DNF

Similarly for ¬GU . Equation (3) is the heart of our dual representation. All that
remains to be specified is variable quantification. As in Sect. 2.3, we use Si for
state variables and Ai for move or action variables during the ith turn. (Indicator
variables Ii are not used.) The complete dual CNF-DNF encoding of G is:

∃S1 ∃A1S2 ∀A2S3 ∃A3S4 ∀A4S5 . . . QAkSk+1 M ′
i (4)

where i ∈ {1, 2}. Intuitively, this quantification says that given the initial state,
E makes her move A1 and brings G to state S2 while obeying her rules, U then
makes his move A2 and brings G to state S3 while obeying his rules, and so
on, for k turns. Contrasting this with the original quantification in Eqn. (2)
immediately highlights our symmetric treatment of the two players.

3.2 Duaffle: A QBF Solver Using the Dual Encoding

We adapted the QBF solver Quaffle to create a new solver Duaffle (short for
dual-Quaffle) that determines the truth value of QBF formulas in the dual
CNF-DNF form described above. The input format for Duaffle is a straight-
forward extension of the standard QDIMACS format [cf. 12]. Specifically, the
formula is specified as a collection of CNF clauses and DNF terms along with
variable quantification, as defined in Eqns. (3)-(4) and illustrated in Example 3.
In addition, Duaffle takes as input a parameter specifying which of M ′

1 and M ′
2

in Eqn. (3) is used in the problem formulation. We identify these two formula-
tions with the Boolean operator that is used to combine the corresponding CNF
and DNF parts, namely, and and or.

In general, the behavior of a QBF solver with a mix of CNF and DNF as
input is defined by what we call its solver policy: the actions it takes when
it encounters any of the nine combinations of the CNF and DNF parts being
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Fig. 1. Solver policies of Duaffle and the optimization for pure games

undetermined (denoted U), falsified (F), or satisfied (T) by a partial variable
assignment. The possible actions include declaring the current branch unsatis-
fiable (UNS), declaring it satisfiable (SAT), or continuing to branch further by
setting more variables (BRN). Duaffle implements two policies that correspond
to the and and or dual formulations. These are given in Figure 1(a)-(b).

Implementation: Modern QBF solvers such as Quaffle already have the data
structures and reasoning methods to support the DNF format we need. These
are used for solution learning. The input format of Quaffle is pure CNF with
quantification. Duaffle is created by adapting Quaffle so as to receive a dual
CNF-DNF input, follow the solver policies in Fig. 1(a)-(b), and use a modified
constraint propagation mechanism necessary for our dual formulation.

Quaffle assumes certain restrictions on the CNF and DNF formulas it oper-
ates on, most notably that the DNF part logically implies the CNF part (because
DNF terms are added only through solution learning). Besides resulting in a dif-
ferent solver policy than what we need, this also makes Quaffle’s constraint
propagation mechanism unsuitable for Duaffle. Consider a simple quantified
DNF term: ∀x∃y (x ∧ y). Let F = FCNF ∧ FDNF be the complete formula. In
the game-playing interpretation, the goal of the universal player U is to make F
false. If U sets x = true, the existential player E can set y = true, so that
FDNF = true. When FDNF → FCNF (the working assumption of Quaffle), this
implies FCNF = true, so that F itself is satisfied and U loses. Therefore, U can
safely infer from the DNF term (x ∧ y) that x must be set to false. In general,
Quaffle can ignore variables with deeper existential (universal) quantification
when performing standard unit propagation on a universal (existential, resp.)
variable in a term (clause, resp.), achieving faster propagation.

In Duaffle, where FDNF �→ FCNF, such inference by U would be incorrect.
When x = true and E sets y = true to satisfy the DNF term (x ∧ y), this
could make a clause in FCNF false, so that F is falsified and U still wins. One
must therefore ignore quantification levels and revert back to a simpler SAT-type
notion of unit propagation: a universal (or existential) variable is implied by a
term (or clause, resp.) iff all other literals in it are true (or false, resp.). Fortu-
nately, the cost incurred by the removal of quantifier-sensitive unit propagation is
more than paid off by the benefits of the dual model, such as propagation across
quantifiers (see Sect. 4). Partly due to these reasons, the experimental results we
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report are based on Duaffle−, a restricted version of Duaffle with no conflict
learning or solution learning. If today’s SAT and QBF solvers are any indication,
the performance of Duaffle− can only improve by re-integrating learning.

Optimization: Figure 1(c) depicts an optimization to Duaffle when using the
or formulation (i.e., matrix M ′

2) on “pure” games. Recall that M ′
2 can be used for

any game in which E immediately wins as soon as U violates a rule. Such games
are typically pure in the sense that they also follow the converse: U immediately
wins if E violates a rule. This converse is not captured by the or connective in
M ′

2. The optimization for the solver policy is the following: if the DNF part is
still undetermined but the CNF part is false, declare the branch to be UNS and
backtrack. The correctness of this relies on the top-down structure of Quaffle,
which sets variables respecting the quantification order. As a result, the DNF
part being undetermined and the CNF part being false imply that the game
has indeed already been played according to the rules till the current turn.

4 Experimental Results

We evaluated our approach on a challenging set of QBF formulas encoding a
rich variant of the game of chess. This game fits well in the M ′

2 dual formulation
using the or connective.

The Game xChess: xChess is based on Evader-Pursuer, a chess-like game
introduced as a QBF benchmark by Madhusudan et al. [11] and later extended to
several pieces [1]. We generalize it further by introducing more refined movements
of various pieces. The input is an n×n chess board with an initial configuration
consisting of some white and black pieces, the rules defining legal moves of each
piece, the maximum number k of turns, and the goal square g. The players take
alternating turns as usual, starting with white. The white player wins iff the
white king, Kw, is placed at g at or before step k. Kw is always part of the
initial board configuration. We assume that k is odd.

The rules for the moves, which are part of the problem input for xChess, are
defined as follows. The sets of legal moves for pawns and knights are defined as
an arbitrary subset of their possible moves in standard chess. The set of legal
moves for every other piece is defined by an 8-tuple, which denotes the maximum
number of squares the piece can move in each of the eight directions (horizontal,
vertical, and diagonal). Thus, one can create new kinds of pieces by appropriately
defining the rules for their moves, yielding a fairly rich setting.

Table 1 summarizes the results obtained on several xChess instances on a 550
MHz 8 processor Intel Pentium III Linux machine with 4 GB shared memory. The
first set of instances encode an unreachability argument based on the number of
moves (details in Sect. 5). The second and third sets have a mix of wins for white
and black, and range in hardness from being solved in a few seconds to several
minutes to hours. These instances have an average of 7 quantifier alternations.
We compare the performance of five state-of-the-art QBF solvers on a pure CNF
encoding against Duaffle− (Duafflewithout solution- or conflict-learning) with
the pure games optimization on the dual encoding with the or formalism. The
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Table 1. QBF solvers on xChess instances. T/F indicates formula is true (white wins)
or false (black wins). Run-time is in seconds. — denotes time-out after 1 hour, -m-
denotes out of memory, and -e- denotes runtime error related to stack overflow.

Pure CNF Encoding New Dual Encoding
xChess

Qu
an
to
r

Se
mp
ro
p

sK
iz
zo

Qu
af
fl
e

Qu
af
fl
eC

Du
af
fl
e

−

instance

name T/F
vars cls vars cls trms

(×103) (×103)
conf-r1 F 5 42 — 12 4.0 15 1.3 3 22 14 0.01
conf-r2 F 7 60 — 25 5.8 33 2.5 5 29 22 0.02
conf-r3 F 10 77 — 55 9.3 62 4.1 6 36 29 0.03
conf-r4 F 12 94 — 85 26 124 6.4 7 43 36 0.04
conf-r5 F 23 207 — 985 84 676 34 13 88 75 0.08
conf-r6 F 27 239 — 2042 73 713 49 15 101 88 0.10
conf1a T 13 155 — 627 83 — 161 7 55 63 1.8
conf1b F 13 155 — 682 176 2939 124 7 55 63 1.3
conf1c T 13 155 -e- 659 804 — 156 7 55 63 2.1
conf1d F 13 155 — 706 1930 1473 148 7 55 63 2.2
conf2a T 9 83 — — — — 438 4 24 35 65.9
conf2b F 9 83 — — — — 275 4 24 35 56.9
conf3a T 17 176 — — -m- — 653 12 94 62 5.2
conf3b F 16 162 — — — 2128 327 11 79 62 2.2
conf4 F 17 163 — — — — 274 11 73 74 32.0
conf5 F 8 77 — 1018 427 142 11 5 41 26 0.1
conf01 F 19 210 -e- 1225 492 — 539 9 61 99 6.4
conf02 F 12 100 -e- 93 30 6.0 1.0 7 12 69 0.0
conf03 T 9 88 — — 1532 — 83 6 47 31 1.4
conf04 T 10 92 — — -e- 2352 100 7 47 37 3.5
conf05 F 15 181 -e- 3290 448 510 196 9 94 66 0.1
conf06 F 12 123 — — -m- — 633 7 47 54 30.6
conf07 F 10 84 -e- 261 42 78 3.5 6 12 48 0.0
conf08 T 13 142 — — 1509 — 1088 8 59 64 31.2

solvers used are the conditional solver QuaffleC [1], Quaffle [20], sKizzo version
0.8.1 [3], Semprop version 010604 [10], and Quantor version 2004.01.25 [4]. These
were among the top five solvers in QBF Evaluation 2005 [12].

The results clearly show that the benchmark suite of xChess instances is
challenging for the best available QBF solvers. While Semprop, sKizzo, and
Quaffle solve many of the instances in a few minutes, QuaffleC performs the
best on the pure CNF encoding. Surprisingly, Quantor was unable to solve any
of the instances of xChess we considered. As the last column of the table shows,
by using the dual encoding along with Duaffle− optimized for pure games, we
consistently achieve two orders of magnitude improvement even over QuaffleC.

The first set of xChess instances, conf-r1 to conf-r6, highlight an important ben-
efit of the dual encoding, namely, fast unit propagation across quantifiers, which
previous approaches did not achieve. The net effect is that while QuaffleC needs
thousands of branching decisions and conflict-learning to solve these instances,
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Duaffle solves them during its preprocessing stage by simple constraint propa-
gation without even a single explicit branch. This is explained as follows. These in-
stances are based on an “unreachability” argument, namely, the white player sim-
ply has one too few steps to make the white king, Kw, reach the goal square g, and
therefore must lose. In our framework, this can be inferred by constraint propaga-
tion across quantifiers: if the distance between Kw and g after the white player’s
turn t is d (denoted dist(Kw, g, t) = d), then dist(Kw, g, t+1) = d, dist(Kw, g, t+
2) ≥ d − 1, dist(Kw, g, t + 3) ≥ d − 1, dist(K2, g, t + 4) ≥ d − 2, and so on, till
dist(Kw, g, k) ≥ 1, where k is the total number of allowed turns. These distance
inequalities manifest themselves in the sets of falsified location variables capturing
squares at which Kw cannot be after t turns.

For the above inference to work, state information from turn t to t + 2 to
t + 4, and so on, must be carried across intermediate turns of the black player
through frame axioms (Sect. 2.3), which involve universal variables. Technically,
a CNF clause can never imply and fix the value of universal variables at steps
t+1, t+3, etc., hindering the process of determining the locations not reachable
by Kw. With pure CNF, a solver must branch on intermediate universal variables
and later learn that this was irrelevant. In the dual encoding, universal state
variables for Kw are instead implied and set by DNF terms encoding frame
axioms, bridging state information between consecutive existential layers.

Note also that the number of variables in the dual encodings of xChess in-
stances is roughly a half of pure CNF encodings because auxiliary variables are
not needed. Variables in the dual encoding correspond precisely to the set of
possible moves and locations for each piece, making the QBF model very clean.
The “rules” are split into CNF clauses and DNF terms in proportion to the
richness of the sets of pieces the two players have in each instance.

5 Conclusion

This paper demonstrates that by using a well-designed combination of CNF and
DNF formulas as the input for QBF solvers, one can avoid many issues tradition-
ally associated with QBF reasoning. Most tasks one intends to model as QBF
have natural interpretations as generalized two-player games. Such tasks fit well
into our game-theoretic formalism and translate into our dual representation. In
addition to being simpler and avoiding the illegal search space issue, the dual
model enhances in QBF solvers an essential technique that has made SAT solvers
highly successful, namely, constraint propagation, which is now achieved across
quantifiers. Our solver Duaffle outperforms state-of-the-art solvers by orders of
magnitude. Finally, we believe that the full potential of solution learning tech-
niques, which were inhibited by a pure CNF input highly biased towards conflict
learning, will be unveiled once learning is re-integrated into Duaffle−.
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Abstract. We propose an exact algorithm for counting the models of
propositional formulas in conjunctive normal form (CNF). Our algorithm
is based on the detection of strong backdoor sets of bounded size; each
instantiation of the variables of a strong backdoor set puts the given
formula into a class of formulas for which models can be counted in
polynomial time. For the backdoor set detection we utilize an efficient
vertex cover algorithm applied to a certain “obstruction graph” that
we associate with the given formula. This approach gives rise to a new
hardness index for formulas, the clustering-width. Our algorithm runs in
uniform polynomial time on formulas with bounded clustering-width.

It is known that the number of models of formulas with bounded
clique-width, bounded treewidth, or bounded branchwidth can be com-
puted in polynomial time; these graph parameters are applied to formu-
las via certain (hyper)graphs associated with formulas. We show that
clustering-width and the other parameters mentioned are incompara-
ble: there are formulas with bounded clustering-width and arbitrarily
large clique-width, treewidth, and branchwidth. Conversely, there are for-
mulas with arbitrarily large clustering-width and bounded clique-width,
treewidth, and branchwidth.

1 Introduction

#SAT is the problem of determining the number of satisfying truth assignments
or models of a given propositional formula in conjunctive normal form (CNF).
This problem is computationally equivalent to several problems that arise in
automatic reasoning and artificial intelligence. However, since the problem is #P-
complete (Valiant [27]), it is very unlikely that it can be solved in polynomial
time. #SAT remains #P-hard even for monotone 2CNF formulas and Horn
2CNF formulas, and it is NP-hard to approximate the number of models of a
formula with n variables within 2n1−ε

for ε > 0. This approximation hardness
holds also for monotone 2CNF formulas and Horn 2CNF formulas [23].
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An alternative to restricting the language of formulas is to impose structural
restrictions in terms of certain (hyper)graphs associated with formulas. In par-
ticular, graph parameters that restrict the structure of associated primal graphs,
incidence graphs, and formula hypergraphs have been considered; see Sect. 8 for
definitions of the various graphs and graph parameters. Bacchus, Dalmao, and
Pitassi [1] propose an algorithm that solves #SAT in time nO(1)2O(k) for for-
mulas with n variables whose formula hypergraphs have branchwidth k. The
algorithm is based on the DPLL procedure and uses caching techniques for an
efficient reuse of solutions for subproblems. A similar time complexity can be
achieved by restricting the treewidth of primal graphs and by dynamic program-
ming on tree-decompositions; this approach is described by Gottlob, Scarcello,
and Sideri [12] for SAT and can be extended to #SAT in a straight-forward way.
Bounding the clique-width of directed incidence graphs yields larger classes of
formulas for which #SAT is tractable: Fisher, Makowsky, and Ravve [8] obtain
an algorithm for #SAT by combining Oum and Seymour’s approximation algo-
rithm for clique-width [21] with a general result of Courcelle, Makowsky, and
Rotics [4] on counting problems expressible in a certain fragment of Monadic
Second Order Logic. The algorithm solves #SAT in time nO(1)O(f(k)) for for-
mulas with n variables whose directed incidence graphs have clique-width k; here
f denotes a simply exponential function. The latter result is more general than
the results for bounded treewidth and branchwidth in the sense that every class
of formulas with bounded treewidth or bounded branchwidth also has bounded
clique-width; however, there are classes of formulas with bounded clique-width
but unbounded treewidth and unbounded branchwidth, see Sect. 8. Practical
application of the clique-width based algorithm is, however, very limited due to
a huge hidden constant in the estimation of its running time.

Note that the algorithms considered above are so-called fixed-parameter al-
gorithms, since the bound on the running time is, although exponential in the
parameter k, uniformly polynomial in n. The main advantage of fixed-parameter
algorithms is that the running time increases moderately when n becomes large,
in contrast to algorithms with running time nO(k). We will review the basic
concepts of parameterized complexity in Sect. 2.2.

1.1 Our Approach: Backdoor Sets

The concept of strong backdoor sets with respect to a base class C of formulas
was introduced by Williams, Gomes, and Selman [28] as a tool for analyzing
the performance of local search SAT algorithms. Backdoor sets have recently
received a lot of attention in satisfiability research [14,16,18,20,24,26].

A set B of variables of a formula F is a strong C-backdoor set if for all truth
assignments τ : B → {0, 1}, the restriction F [τ ] of F to τ belongs to the base
class C. Note that if a strong C-backdoor set of size k is found, then we can decide
the satisfiability of the given formula by deciding the satisfiability of 2k formulas
that belong to the base class C. Based on this concept, Nishimura, Ragde, and
Szeider [20] propose algorithms for SAT that search for strong backdoor sets of
bounded size with respect to the base classes HORN and 2CNF. The detection
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of strong backdoor sets is based on the fact that a set B of variables is a strong
HORN-backdoor set (strong 2CNF-backdoor set) of a formula F if and only if
F −B is a Horn formula (2CNF formula, respectively); here F −B denotes the
formula obtained from F by removing all the literals x, x for x ∈ B from the
clauses of F . We also say that B is a deletion C-backdoor set if F − B ∈ C.
In general, deletion C-backdoor sets are not necessarily strong C-backdoor sets.
However, if all subsets of a formula in C also belong to C (C is clause-induced),
then indeed deletion C-backdoor sets are strong C-backdoor sets.

In this paper we extend the algorithmic use of backdoor sets for SAT to the
counting problem #SAT. It is easy to see that the number of models of a formula
F equals the sum over the number of models of the restrictions F [τ ] for all truth
assignments τ : B → {0, 1} for a set B of variables of F . Hence, if we can
solve #SAT for the elements of a base class C in polynomial time, then we can
solve #SAT for a formula F in time O(2knO(1)) provided that we know a strong
C-backdoor set of F of size at most k. Hence, to convert the above considerations
into an algorithm for #SAT, we need to identify a base class C for which the
following holds:

1. #SAT can be solved in polynomial time for formulas in C, and
2. for a given formula F we can find strong C-backdoor sets of bounded size

efficiently.

The second condition can be relaxed to deletion C-backdoor sets if C is clause-
induced.

To this end, we introduce the clause-induced class CLU of cluster formulas. A
cluster formula is a variable-disjoint union of so-called hitting formulas; any two
clauses of a hitting formula clash in at least one literal. The known polynomial-
time algorithm for computing the number of models of a hitting formula can
be extended in a straight-forward way to compute the number of models of a
cluster formula.

A strong CLU-backdoor set of size k of a formula F with n variables can
obviously be found by exhaustive search, considering all O(nk) sets of k vari-
ables. This approach does not yield a fixed-parameter algorithm and becomes
inefficient for large n even if k is small. We show in Sect. 5 that under a cer-
tain complexity theoretic assumption, there is no algorithm that is significantly
faster than exhaustive search. We overcome this limitation by restricting by k
the size of a smallest deletion CLU-backdoor set. We propose a fixed-parameter
algorithm that either finds for a given formula a strong CLU-backdoor set of size
at most k or decides that the given formula has no deletion CLU-backdoor set
of size at most k.

To develop such an algorithm, we proceed as follows. We associate with every
formula F a certain graph G(F ), the obstruction graph of F , which can be
obtained in polynomial time. The vertex set of G(F ) is the set of variables of F .
We show that every vertex cover of G(F ) is a strong CLU-backdoor set of F ;
recall that a vertex cover is a set S of vertices such that every edge is incident
with a vertex in S. Now we can apply known vertex cover algorithms, e.g., the
algorithm of Chen, Kanj, and Xia [3] for the detection of strong CLU-backdoor
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sets. Of related interest is Gramm et al.’s work [11] on a graph editing problem
involving cluster graphs (i.e., disjoint unions of cliques).

1.2 Clustering-Width

We define the clustering-width of a formula F as the size of a smallest ver-
tex cover of the obstruction graph of F . It follows from our results that the
clustering-width of a formula F is a lower bound on the size of a smallest dele-
tion CLU-backdoor set of F and an upper bound on the size of a smallest strong
CLU-backdoor set of F .

Finally, we exhibit a class of formulas of bounded clustering-width for which
all the parameters clique-width, branchwidth, and treewidth are unbounded. We
also exhibit a class of formulas with unbounded clustering-width for which all
the parameters clique-width, branchwidth, and treewidth are bounded. In other
words, there are formulas that are easy for our algorithm and arbitrarily hard
for the known algorithms, and formulas where the converse prevails.

It would be interesting to complement our theoretical results with empiri-
cal evidence on the significance of our new parameter. In particular, it would
be interesting to know the clustering-width of CNF formulas that encode real-
world instances from different domains. However, one must choose the encoding
carefully in order to avoid a large clustering-width caused by the gadgets of the
encoding itself. On the other hand, as indicated above, it can be checked very
efficiently whether a CNF formula has small clustering-width. Hence, any other
#SAT algorithm can be extended by a subroutine that checks the clustering-
width and performs our algorithm if the clustering-width is small.

2 Preliminaries

2.1 SAT and #SAT

We consider propositional formulas in conjunctive normal form (CNF), repre-
sented as sets of clauses. That is, a literal is a (propositional) variable x or a
negated variable x; a clause is a finite set of literals not containing a comple-
mentary pair x and x; a formula is a finite set clauses. For a literal � = x we
write � = x; for a clause C we put C = { � : � ∈ C }. For a clause C, var(C)
denotes the set of variables x with x ∈ C or x ∈ C. Similarly, for a formula F
we write var(F ) =

⋃
C∈F var(C).

We say that two clauses C,D overlap if C ∩ D �= ∅; we say that C and D
clash if C and D overlap. Note that two clauses can clash and overlap at the
same time.

A truth assignment (or assignment, for short) is a mapping τ : X → {0, 1}
defined on some set X of variables. We extend τ to literals by setting τ(x) =
1 − τ(x) for x ∈ X . F [τ ] denotes the formula obtained from F by removing
all clauses that contain a literal x with τ(x) = 1 and by removing from the
remaining clauses all literals y with τ(y) = 0; F [τ ] is the restriction of F to τ .
Note that var(F [τ ]) ∩ X = ∅ holds for every assignment τ : X → {0, 1} and
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every formula F . A truth assignment τ : X → {0, 1} satisfies a formula F if
F [τ ] = ∅. A truth assignment τ : var(F ) → {0, 1} that satisfies F is a model of
F . We denote by #(F ) the number of models of F . A formula F is satisfiable if
#(F ) > 0. The satisfiability problem SAT is the problem of deciding whether a
given formula is satisfiable. #SAT, the counting version of SAT, is the problem of
determining #(F ) for a given formula F . SAT and #SAT are complete problems
for the complexity classes NP and #P, respectively.

The following concept of connectedness of formulas will be useful below. We
call a formula F connected if for any two clauses C,D ∈ F there exists a sequence
of clauses C1, . . . , Cr ∈ F such that C1 = C, Cr = D, and var(Ci)∩var(Ci+1) �= ∅
holds for all i ∈ {1, . . . , r − 1}. A maximal connected subset of a formula is a
connected component.

2.2 Parameterized Complexity

Next we give a brief and rather informal review of the most important concepts
of parameterized complexity. For an in-depth treatment of the subject we refer
the reader to other sources [7,19].

The instances of a parameterized problem can be considered as pairs (I, k)
where I is the main part of the instance and k is the parameter of the instance;
the latter is usually a non-negative integer. A parameterized problem is fixed-
parameter tractable if instances (I, k) of size n can be solved in time O(f(k)nc)
where f is a computable function and c is a constant independent of k.

The framework of parameterized complexity offers a completeness theory, sim-
ilar to the theory of NP-completeness, that allows the accumulation of strong the-
oretical evidence that a parameterized problem is not fixed-parameter tractable.
This completeness theory is based on the weft hierarchy of equivalence classes
W[1],W[2], . . . ,W[P] of certain parameterized decision problems under parame-
terized reductions. A parameterized reduction is a straightforward extension of a
polynomial-time many-one reduction that ensures a parameter for one problem
maps into a parameter for another (see [7] for details).

Below we will refer to the following parameterized decision problem, which is
known to be W[2]-complete [7].

hitting set
Instance: A family S of finite sets S1, . . . , Sm.
Parameter: An integer k ≥ 0.
Question: Is there a subset R ⊆

⋃m
i=1 Si of size at most k such that

R ∩ Si �= ∅ for all i = 1, . . . ,m? (R is a hitting set of S)

3 Backdoor Sets

Consider a base class C of formulas for which the problems #SAT and recognition
can be solved in polynomial time. Furthermore, consider a formula F and a set
B of variables of F . A set B ⊆ var(F ) is a strong backdoor set of F with respect
to C (or strong C-backdoor set, for short) if B ⊆ var(F ) and for every truth
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assignment τ : B → {0, 1} we have F [τ ] ∈ C. For every formula F and every
set B ⊆ var(F ) we have #(F ) =

∑
τ :B→{0,1} #(F [τ ]). Thus, if B is a strong

C-backdoor set of a formula F , then determining #(F ) reduces to determining
the number of satisfying assignments for 2|B| formulas of the base class C. Thus,
when we have found a small strong C-backdoor set of F , we can compute #(F )
efficiently. A key question is whether we can find a small backdoor set if it
exists. To study this question, we define for every base class C the following
parameterized problem.

strong C-backdoor
Input: A formula F .
Parameter: A positive integer k.
Question: Does F have a strong C-backdoor set of size at most k?

For base classes that have a certain property, we can relax the problem strong
C-backdoor as follows. For a formula F and a set X of variables let F − X
denote the formula obtained from F by removing all literals x and x from the
clauses of F . We call a set B ⊆ var(F ) a deletion backdoor set with respect to a
base class C (or deletion C-backdoor set, for short) if F −B ∈ C. Furthermore, we
define a base class C to be clause-induced if for every F ∈ C and every F ′ ⊆ F ,
also F ′ ∈ C.

Lemma 1. Let F be a formula and C a clause-induced base class. Every deletion
C-backdoor set of F is also a strong C-backdoor set.

Proof. The result follows directly from the fact that F [τ ] ⊆ F − X holds for
every truth assignment τ : X → {0, 1}. �

For a base class C, deletion backdoor sets can be larger than strong backdoor
sets. However, if the detection of strong C-backdoor sets is fixed-parameter in-
tractable, we can still hope that the detection of deletion C-backdoor sets is
fixed-parameter tractable. We state the corresponding parameterized problem:

deletion C-backdoor
Input: A formula F .
Parameter: A positive integer k.
Question: Does F have a deletion C-backdoor set of size at most k?

4 Hitting Formulas and Cluster Formulas

A formula is a hitting formula if any two of its clauses clash (see [17]). A cluster
formula is the variable-disjoint union of hitting formulas. In other words, a for-
mula is a cluster formula if and only if all its connected components are hitting
formulas. We denote the class of all hitting formulas by HIT and the class of all
cluster formulas by CLU.



402 N. Nishimura, P. Ragde, and S. Szeider

The next lemma is due to an observation of Iwama [15].

Lemma 2. A hitting formula F with n variables has exactly 2n −
∑

C∈F 2n−|C|

models.

Proof. Let F be a hitting formula with n variables. For a clause C ∈ F let TC

denote the set of all truth assignments τ : var(F ) → {0, 1} that do not satisfy
C. Obviously |TC | = 2n−|C| since TC contains exactly those assignments that
set all literals in C to 0. Since F is a hitting formula, the sets TC and TC′ are
disjoint for any two distinct clauses C,C′ ∈ F . Hence the lemma follows. �

Lemma 3. #SAT can be solved in polynomial time for cluster formulas.

Proof. If a formula F is the variable-disjoint union of formulas F1, . . . , Fq, then
#(F ) =

∏q
i=1 #(Fi). Thus the result follows directly from Lemma 2. �

By means of the previous lemma we can consider CLU as the base class for a
backdoor set approach to #SAT. Observe that CLU is clause-induced.

5 Finding Smallest Strong CLU-Backdoor Sets

In this section we show that the detection of strong CLU-backdoor sets is fixed-
parameter intractable.

We shall use the following construction. Let D be a directed graph. We asso-
ciate with D a formula FD where every arc a of D corresponds to a variable xa

of F , and every vertex v of D corresponds to a clause Cv of F . The clause Cv

contains the literals xa for outgoing arcs a of v, and the literals xb for incoming
arcs b of v. Note that if D is the orientation of a complete graph, then FD is a
hitting formula.

Theorem 1. The problem strong CLU-backdoor is W[2]-hard.

Proof. (Sketch.) We give a parameterized reduction from the W[2]-complete
problem hitting set as defined in Sect. 2.2. Let S = S1, . . . , Sm be an in-
stance of hitting set;

⋃m
i=1 Si = {x1, . . . , xn}. Let D be an orientation of a

complete graph with r = (m + 1)(k + 1) vertices. Consider the hitting formula
FD. We partition FD into formulas F1, . . . , Fm, H such that each of the partite
sets contains exactly k + 1 clauses. For i = 1, . . . ,m we put

F ′
i = {C ∪ Si : C ∈ Fi }.

Finally, we put C∗ = {x1, . . . , xn} and

F = {C∗} ∪
m⋃

i=1

F ′
i ∪H.

We can show that S has a hitting set of size at most k if and only if F has a
strong CLU-backdoor set of size at most k. �
The NP-hardness of the non-parameterized version of strong CLU-backdoor
(where the parameter is taken as part of the input) follows from the proof of
Theorem 1.
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We will show in sections below that the concept of deletion backdoor sets can
be used to find small strong backdoor sets with respect to CLU. Next we give
an example that shows that for the base class CLU, smallest deletion backdoor
sets can be larger that smallest strong backdoor sets.

Consider the formula

F = {{x1, . . . , xn}, {x1, . . . , xn, y1, . . . , yn}, {y1, . . . , yn}}.

Note that each of the variables of F forms a strong CLU-backdoor set of F ;
e.g., B = {x1} is a strong CLU-backdoor set. However, we need to delete at
least n variables in order to obtain a cluster formula. Thus a smallest strong
CLU-backdoor set of F has size 1, but every deletion CLU-backdoor set of F
has size at least n.

6 Obstructions

In the following results, it is helpful to characterize cluster formulas in terms
of obstructions. An overlap obstruction is a formula {C1, C2} consisting of two
clauses that overlap but do not clash. With an overlap obstruction we associate
the following pair of sets of variables:

{var(C1 ∩ C2), var(C1 1C2)}.

Here C1 1C2 denotes the symmetric difference (C1 \ C2) ∪ (C2 \ C1) of C1 and
C2. A clash obstruction is a formula {C1, C2, C3} where C1 and C2 clash such
that (C1 \ C3) ∩ C2 �= ∅, C2 and C3 clash such that (C3 \ C1) ∩C2 �= ∅, and C1
and C3 do not clash. (Any two of the three clauses may overlap.) With a clash
obstruction we associate the following pair of sets of variables:

{var((C1 \ C3) ∩ C2), var((C3 \ C1) ∩C2)}.

We say that an overlap or clash obstruction F ′ is an obstruction of a formula F
if F ′ is a subset of F . A pair {X,Y } of sets of variables is a deletion pair of F if
the pair is associated with an overlap or clash obstruction of F . It follows from
the definitions of overlap and clash obstructions that the two sets in a deletion
pair are nonempty and disjoint.

Lemma 4. A formula is a cluster formula if and only if it has no overlap or
clash obstruction.

Proof. If a formula F contains an overlap or clash obstruction, then there are
two clauses C,D ∈ F that belong to the same connected component of F but
do not clash. Hence F is not a cluster formula.

Conversely, consider a formula F that does not contain any overlap or clash
obstructions. We show that F is a cluster formula. Consider a connected compo-
nent F ′ of F . If |F | = 1 then F ′ is a hitting formula; hence assume |F | > 1. We
show that any two clauses of F ′ clash. Choose two arbitrary clauses C,D ∈ F ′.
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Since F ′ is connected, there is a sequence of clauses C1, . . . , Cr ∈ F such that
C1 = C, Cr = D, and var(Ci) ∩ var(Ci+1) �= ∅ holds for all i ∈ {1, . . . , r − 1}.
We observe that Ci and Ci+1 clash for all and i ∈ {1, . . . , r− 1} since otherwise
Ci and Ci+1 would form an overlap obstruction. It now follows inductively that
the clauses C1 and Ci clash for all i ∈ {3, . . . , r} since otherwise C1, Ci−1, and
Ci would form a clash obstruction. Thus, indeed, C and D clash. Whence F ′ is
a hitting formula. �

The next result is a consequence of Lemma 4. We omit the proof due to space
limitations.

Lemma 5. Let F be a formula and B ⊆ var(F ). If F −B is a cluster formula,
then X ⊆ B or Y ⊆ B holds for every deletion pair {X,Y } of F .

7 Finding Backdoor Sets Using Vertex Covers

For a formula F let GF denote the graph with vertex set var(F ); two variables x
and y are joined in GF by an edge if and only if there is a deletion pair {X,Y }
of F with x ∈ X and y ∈ Y . We call GF the obstruction graph of F . Note that
the obstruction graph of a formula can be constructed in polynomial time.

We consider vertex covers of obstruction graphs. Recall that a vertex cover
of a graph is a set of vertices that contains at least one end of every edge of
the graph. It is NP-hard to determine, given a graph and an integer k, whether
the graph has a vertex cover of size at most k. Parameterized by the size of
the vertex cover, however, the problem is fixed-parameter tractable. In fact,
vertex cover is the best studied problem in parameterized complexity with a
long history of improvements. The current best worst-case time complexity for
the parameterized vertex cover problem is due to Chen, Kanj, and Xia [3]:

Theorem 2. Given a graph G on n vertices, one can find in time O(1.273k+nk)
(and in polynomial space) a vertex cover of G of size at most k, or determine
that no such vertex cover exists.

The next two lemmas relate backdoor sets and vertex covers of obstruction
graphs. The first is a direct consequence of Lemma 5.

Lemma 6. Every deletion CLU-backdoor set of a formula F is a vertex cover
of the obstruction graph of F .

Lemma 7. Every vertex cover of the obstruction graph of a formula F is a
strong CLU-backdoor set of F .

Proof. (Sketch.) Let B be a vertex cover of the obstruction graph of a formula
F . Assume to the contrary that B is not a strong CLU-backdoor set of F . Thus,
there is an assignment τ : B → {0, 1} such that F [τ ] /∈ CLU. Let B0 = { y ∈
B ∪ B : τ(y) = 0 }; i.e., B0 is the set of all literals over variables of B that are
mapped to 0 under τ . By Lemma 4, F [τ ] contains overlap or clash obstructions.
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We assume that F [τ ] contains an overlap obstruction; for clash obstructions
the argument is similar. Let C1, C2 be two clauses of F [τ ] that overlap but do
not clash. For the associated obstruction pair {X,Y } with X = var(C1 ∩ C2)
and Y = var(C1 1C2) choose x ∈ X and y ∈ Y . By definition of F [τ ] it follows
that F contains clauses C′

1, C
′
2 with C1 = C′

1 \ B0 and C2 = C′
2 \ B0. It follows

that C′
1 and C′

2 overlap but do not clash, thus {C′
1, C

′
2} is an overlap obstruction

of F . We have x ∈ X ⊆ var(C′
1 ∩ C′

2) and y ∈ Y ⊆ var(C′
1 1C′

2). Thus xy is an
edge of GF . Since B is a vertex cover of GF , either x or y must belong to B.
This contradicts the fact that var(F [τ ]) ∩ B = ∅. Whence it follows that B∗ is
indeed a strong CLU-backdoor set of F . �

From Theorem 2 and the previous two lemmas we get immediately the main
result of this section.

Theorem 3. Given a formula with n variables together with its obstruction
graph and an integer k, in time O(1.273k +nk) we can find a strong CLU-back-
door set of F of size at most k, or decide that the size of every deletion CLU-back-
door set of F exceeds k.

8 Comparison with Other Parameters

In this section we introduce a general framework for comparing parameters that
allow fixed-parameter algorithms for #SAT. Here we consider as a parameter
any computable function p that assigns to each formula F a non-negative
integer p(F ). We assume that the parameter is invariant under changing the
names of variables.

The following three parameters arise from the considerations of this paper.
We denote by strCLU(F ) the size of a smallest strong backdoor set of a formula F
with respect to CLU, and we denote by delCLU(F ) the size of a smallest deletion
backdoor set of F with respect to CLU. The clustering-width clu(F ) of F is the
size of a smallest vertex cover of the obstruction graph of F . Consequently, HIT
is the class of formulas with clustering-width 0. From Lemmas 1 and 6 we know
that for every formula F the following holds:

strCLU(F ) ≤ clu(F ) ≤ delCLU(F ). (1)

For a parameter p we consider the following generic parameterized problem.

#SAT(p)
Instance: A formula F and a non-negative integer k such that p(F ) ≤ k.
Parameter: The integer k.
Question: What is the total number of models of F? (I.e., what is the
number #(F )?)

The definition of fixed-parameter tractability carries over from decision problems
to counting problems in a natural way. Flum and Grohe [9] provide a framework
of intractability of parameterized counting problems.
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Note that the above formulation of #SAT(p) is a “promise problem” in the
sense that we only need to consider instances (F, k) for which we can take as
granted that p(F ) ≤ k holds. However, for most parameters p considered in
the sequel for which #SAT(p) is fixed-parameter tractable, deciding whether
p(F ) ≤ k actually holds is also fixed-parameter tractable with respect to the
parameter k. An exception is the parameter delCLU; however, also in that case
we do not depend on the promise as will be discussed below.

By Theorem 2, deciding whether clu(F ) ≤ k is fixed-parameter tractable;
if clu(F ) ≤ k, then it is also fixed-parameter tractable to produce a strong
CLU-backdoor set B of F of size at most k. We then compute #(F ) as the
sum of #(F [τ ]) over all truth assignments τ : B → {0, 1}. Whence we have the
following corollary to Theorem 2.

Corollary 1. The problem #SAT(clu) is fixed-parameter tractable.

Note that the algorithm outlined above also checks whether the promise
clu(F ) ≤ k is true. Furthermore, from (1) it follows that every instance (F, k)
of #SAT(delCLU) is also an instance of #SAT(clu). Whence Corollary 1 also
implies fixed-parameter tractability of #SAT(delCLU).

Corollary 2. The problem #SAT(delCLU) is fixed-parameter tractable.

Although we do not know whether deletion C-backdoor is fixed-parameter
tractable, we emphasize that the algorithm for Corollary 2 will not produce an
incorrect solution, even if the promise delCLU(F ) ≤ k does not hold. Consider
F and k with delCLU(F ) > k. The algorithm checks whether clu(F ) ≤ k. If
clu(F ) ≤ k, then the algorithm outputs the correct solution #SAT(F ). If, how-
ever, clu(F ) > k, then we know by (1) that also delCLU(F ) > k, hence the
algorithm can reject the input.

8.1 Treewidth, Branchwidth, and Clique- Width

Several parameters are defined in terms of the following directed and undirected
graphs associated with a formula F . The primal graph P (F ) is the graph whose
vertices are the variables of F , and where two variables x and y are joined by
an edge if and only if F contains a clause C with x, y ∈ var(C). The incidence
graph I(F ) is the bipartite graph where one vertex class consists of the variables
of F , the other vertex class consists of the clauses of F ; a variable x and a
clause C are joined by an edge if and only if x ∈ var(C). The directed or signed
incidence graph Id(F ) arises from I(F ) by orienting edges from C to x if x ∈
C, and from x to C if x ∈ C. The underlying graph GD of a directed graph
D is the undirected graph obtained from D by “forgetting” the orientation of
edges and by identifying possible parallel edges. Thus I(F ) is the underlying
graph of Id(F ). For an undirected graph G we consider its treewidth tw(G), its
branchwidth bw(G), and its clique-width cwd(G); clique-width is also defined for
directed graphs. For definitions of these graph parameters we refer the reader to
related work [2,6,5,1,13,25]. By means of primal, incidence and directed incidence
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graphs, these graph parameters apply to formulas as follows: For a formula F
we call tw(F ) = tw(P (F )) the primal treewidth of F , tw∗(F ) = tw(I(F )) the
incidence treewidth of F , bw(F ) = bw(P (F )) the branchwidth of F , cwd(F ) =
cwd(Id(F )) the clique-width of F .

For two formula parameters p and q we say that p dominates q if there is a
computable function f such that p(F ) ≤ f(q(F )) holds for all formulas F . We
say that p and q are incomparable if neither p dominates q nor q dominates p.
Note that if #SAT(p) is fixed-parameter tractable and p dominates q, then also
#SAT(q) is fixed-parameter tractable. From known results it follows that clique-
width dominates incidence treewidth, and that, in turn, incidence treewidth
dominates primal treewidth and branchwidth [25]. Whence, clique-width can be
considered as the most general parameter considered so far. Fischer, Makowsky,
and Ravve [8] show that #SAT(cwd) is fixed-parameter tractable, combining an
earlier result of Courcelle, Makowsky, and Rotics [5] and a recent result of Oum
and Seymour [21]. By the above relationships among the various parameters, this
result also implies the fixed-parameter tractability of #SAT(tw∗), #SAT(tw),
and #SAT(bw):

Theorem 4. The problems #SAT(cwd), #SAT(tw∗), #SAT(tw), and
#SAT(bw), are fixed-parameter tractable.

The question arises how our new parameter, the clustering-width, is related to
the other parameters. Does any of the above parameters dominate clustering-
width, or does clustering-width dominate any of the other parameters? We will
show that the answer to both questions is ‘no’: clustering-width is incomparable
with any of the other parameters.

Lemma 8. The class HIT has unbounded clique-width.

Proof. Let n ≥ 3 be an integer and let G denote an n × n grid. That is, G is
a bipartite graph with n2 vertices vi,j , i, j ∈ {1, . . . , n}, where two vertices vi,j

and vi′,j′ are joined by an edge if and only if either i = i′ and |j − j′| = 1, or
|i − i′| = 1 and j = j′. Let V1, V2 be a bipartition of the vertex set of G. We
obtain a formula F with I(F ) = G by considering vertices in V1 as variables and
putting F = {N(vi,j) : vi,j ∈ V2 }; here N(vi,j) denotes the set of neighbors of
vi,j in G.

Consider a directed graph D whose underlying graph is the complete graph
Km for m = |V2|. We construct the hitting formula FD as described at the begin-
ning of Sect. 5; we assume that F and FD do not share variables. Observe that
|FD| = m; thus we can write F = {C1, . . . , Cm} and FD = {C1,D, . . . , Cm,D},
ordering the clauses arbitrarily.

Let H be the formula {C1 ∪ C1,D, . . . , Cm ∪ Cm,D}. Clearly H is a hitting
formula since FD is a hitting formula. Golumbic and Rotics [10] show that the
clique-width of n×n grids, n ≥ 3, is exactly n+ 1, hence cwd(G) = n+ 1. Note
that I(F ) = G is isomorphic to a vertex-induced subgraph of I(H); this implies
that cwd(H) ≥ cwd(G) = n + 1 (see Courcelle and Olariu [6]). Moreover, also
noted by Courcelle and Olariu, the clique-width of a directed graph is at least as
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large as the clique-width of its underlying graph; hence we have cwd(Id(H)) ≥
cwd(I(H)) ≥ cwd(I(F )) = cwd(G) = n+1. We conclude that for every positive
integer n there exists a hitting formula H with cwd(H) > n. �

Lemma 9. The class of formulas with primal treewidth 1 has unbounded
clustering-width.

Proof. Let C denote the class of formulas with primal treewidth 1. Let n be an
even positive integer and consider the formula

F = {{x0, x1}, {x1, x2}, . . . , {xn−1, xn}}.

The primal graph of F is a path. Since paths have treewidth 1, F ∈ C follows.
For every i = 1, . . . , n − 1, the formula F contains the overlap

obstruction {{xi−1, xi}, {xi, xi+1}} with the corresponding deletion pair
{{xi}, {xi−1, xi+1}}. There are no clash obstructions. The obstruction graph
is therefore a path P on the vertices x1, . . . , xn. Any vertex cover of P contains
at least n/2 vertices, hence clu(F ) ≥ n/2 follows.

As we can choose arbitrarily large n, C has unbounded clustering-width. �

In view of the relationships omong the parameters cwd, tw∗, tw, and bw stated
above, the last two lemmas imply the following result.

Theorem 5. The parameters cwd, tw∗, tw, and bw, are all incomparable with
clustering-width.
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Abstract. This paper addresses the problem of counting models in in-
teger linear programming (ILP) using Boolean Satisfiability (SAT) tech-
niques, and proposes two approaches to solve this problem. The first
approach consists of encoding ILP instances into pseudo-Boolean (PB)
instances. Moreover, the paper introduces a model counter for PB con-
straints, which can be used for counting models in PB as well as in ILP.
A second alternative approach consists of encoding instances of ILP into
instances of SAT. A two-step procedure is proposed, consisting of first
mapping the ILP instance into PB constraints and then encoding the
PB constraints into SAT. One key observation is that not all existing
PB to SAT encodings can be used for counting models. The paper pro-
vides conditions for PB to SAT encodings that can be safely used for
model counting, and proves that some of the existing encodings are safe
for model counting while others are not. Finally, the paper provides ex-
perimental results, comparing the PB and SAT approaches, as well as
existing alternative solutions.

1 Introduction

Besides its well-known theoretical relevancy, the problem of counting models of
Boolean Satisfiability (SAT) formulas (#SAT) has a large number of key applica-
tion areas [2,18]. Recent years have seen significant improvements in algorithms
for #SAT, which include the utilization of well-known SAT techniques as well
as the identification of connected components and component caching, but also
variable lifting and blocking clauses [6,12,17,18]. Nevertheless, model counting is
also extremely important in non-Boolean domains, including Integer Linear Pro-
gramming (ILP) [5,11] and Linear Integer Arithmetic (LIA) [7,16]. This paper
focus on ILP, but the techniques proposed can be extended to LIA.

Existing algorithms for counting models in ILP [5,11] are extremely sensi-
tive to the number of variables in the problem formulation, being able to solve
instances with a very small number of variables. Hence, in many practical ap-
plications, existing algorithms are ineffective.

This paper proposes two alternative solutions to counting models in ILP, by
considering the utilization of SAT-based techniques. The first approach consists
of encoding instances of ILP into instances of pseudo-Boolean (PB) constraints.

A. Biere and C.P. Gomes (Eds.): SAT 2006, LNCS 4121, pp. 410–423, 2006.
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Moreover, the paper introduces a model counter for PB constraints, which can be
used for counting models in PB as well as in ILP. A second alternative approach
consists of encoding instances of ILP into instances of SAT. A two-step procedure
is proposed, consisting of first mapping the ILP instance into PB constraints
and then encoding the PB constraints into SAT. One key concern is that not
all existing PB to SAT encodings can be used for counting models. The paper
provides conditions for encodings that can be safely used for model counting,
and proves that some of the existing PB to SAT encodings are safe for model
counting. Finally, the paper provides experimental results, comparing the PB and
the SAT approaches, as well as existing alternative solutions. The results provide
interesting insights into the problem of counting models in ILP. First, the PB
counter, albeit a preliminary prototype, is competitive with SAT counters, which
integrate more sophisticated techniques including the identification of connected
components and component caching. Second, the very effective SAT-techniques
used in Cachet [18] may not scale for integer domains.

The paper is organized as follows. Section 2 presents the notation used through-
out the paper. Afterwards, the paper addresses the encoding of ILP into PB con-
straints, and describes a model counter for PB formulations. Section 5 details the
second approach to model counting in ILP, based on encoding ILP into SAT. This
section proves that some existing encodings will yield correct results, whereas oth-
ers can overestimate the number of integer models. Section 6 compares the two ap-
proaches and also evaluates an alternative solution [11]. Section 7 surveys related
work, and the paper concludes in Section 8.

2 Definitions

An Integer Linear Programming (ILP) problem with n variables and m con-
straints can be defined as follows [14]:

n∑
j=1

aijxj ≤ bi,

xj , aij , bi ∈
j ∈ {1, . . . , n}, i ∈ {1, . . . ,m}

(1)

where aij denote the coefficients of the problem variables xj in the set of m linear
constraints. Note that all ILP problem instances can be rewritten as defined
in (1). ILP problem instances are usually defined with a cost function to minimize
or maximize. However, for the purpose of counting the number of models, the cost
function is irrelevant. Hence, for simplification, we focus solely on the constraints.

An ILP problem instance is said to be a Linear Pseudo-Boolean (PB) problem
instance (also known as 0-1 ILP) if the variable domain of the ILP variables is
Boolean. In this case, all constraints correspond to pseudo-Boolean constraints.
A particular type of pseudo-Boolean constraints are propositional clauses and a
problem instance where all constraints are propositional clauses is an instance
of the Propositional Satisfiability (SAT) problem.
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In a propositional formula, a literal lj denotes either a variable xj or its
complement x̄j . If a literal lj = xj and xj is assigned value 1 or lj = x̄j and xj

is assigned value 0, then the literal is said to be true. Otherwise, the literal is
said to be false.

A propositional clause is a disjunction of literals such as l1∨ l2∨ . . .∨ lk where
lj is a literal representing either xj or x̄j . We should observe that propositional
clauses can also be represented as linear inequalities, e.g.

∑k
j=1 lj ≥ 1. One

can obtain a linear inequality as in (1) if we replace literals x̄j by 1− xj . In the
context of SAT we will represent propositional clauses as a disjunction of literals,
instead of linear inequalities. However, in the context of ILP or pseudo-Boolean,
we use the linear inequalities formalism.

Whenever an assignment to all problem variables is found such that all prob-
lem constraints become satisfied, we say that a model has been found. However, it
may occur that a partial assignment (i.e. not all problem variables are assigned)
is able to satisfy all problem constraints. In this case, the partial assignment
represents a set of models for the problem instance.

We say that an ILP instance defines a convex polytope if the number of integer
solutions (models) to the ILP constraints is finite. Note that all PB and SAT
problem instances define rational convex polytopes since the value of the problem
variables is bounded. Hence, the number of solutions is O(2n) for both PB and
SAT instances, where n is the number of problem variables. However, not all
ILP instances define convex polytopes. For example, the following ILP has an
infinite number of solutions:

x1 − x2 ≤ 10, x1 − x3 ≤ 5
x1, x2, x3 ∈ (2)

In section 3 we discuss how to determine if a set of ILP constraints define a
convex polytope by finding lower and upper bounds on the value of all problem
variables.

3 Encoding ILP into Pseudo-Boolean

This section presents a procedure to encode an Integer Linear Programming (ILP)
problem instance into a Linear Pseudo-Boolean (PB) problem instance. The re-
sulting PB instance can then be solved using specific Boolean techniques [1,8]. A
key aspect of this encoding is to determine lower and upper bounds on the possible
values of the integer valued variables in the ILP. We assume that the ILP instance
defines a convex polytope; otherwise the number of integer solutions would be in-
finite. Hence, every integer variable is guaranteed to have a lower and an upper
bound.

Given an ILP instance as presented in section 2, let lower(xj) and upper(xj)
denote respectively the lower and upper bound on the value of variable xj in the
ILP. If specified in the problem instance, the values of lower(xj) and upper(xj)
can be determined directly from the instance bounds or by constraints of the
type xj ≥ l and xj ≤ u.
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In general, the lower and upper bounds of an integer valued variable xj can
be determined by solving a linear programming relaxation (LPR) as follows:

minimize/maximize xj

subject to
n∑

j=1
aijxj ≤ bi,

xj ∈ , aij , bi ∈

(3)

where we use minimize or maximize depending on whether we are interested in
obtaining a lower or a upper bound, respectively. Note that in this formulation
all problem variables are no longer integer and there are known polynomial time
algorithms for solving these formulations [14].

Let zm
j and zM

j denote respectively the solutions of (3) in the minimization and
maximization formulations. By relaxing the variable integer constraints we can
obtain a lower and upper bound on the value of xj , since no integer solution to (1)
can be obtained such that xj < zm

j or xj > zM
j . Hence, we have lower(xj) =

�zm
j � and upper(xj) = .zM

j /, where �zm
j � denotes the smallest integer value not

lower than zm
j and .zM

j / denotes the largest integer value not higher than zM
j .

Observe that in order to obtain lower bounds on the problem variables, the
well-known replacement of each problem variable xj with x

′
j − x

′′
j , where x

′
j ≥

0 and x
′′
j ≥ 0, cannot be used. For example, suppose we have the following

constraints for variable x1:
x1 ≥ −1, x1 ≤ 3 (4)

In this formulation, x1 is clearly bounded. However, if we replace x1 with x
′
1−x

′′
1 ,

we would get:

x
′
1 − x

′′
1 ≥ −1, x

′
1 − x

′′
1 ≤ 3

x
′
1 ≥ 0, x

′′
1 ≥ 0

(5)

For this new formulation, both variables x
′
1 and x

′′
1 are not bounded, since we

can always find arbitrary large values for x
′
1 and x

′′
1 such that the constraints

are satisfied.
One should also note that if (3) is unbounded for any given problem variable

xj , then the original ILP does not define a convex polytope. Otherwise, if (3) is
bounded for all problem variables, then the ILP is a convex polytope and there
is a finite number of integer solutions to (1).

Since all integer variablesxj of (1) are limited between lower(xj) and upper(xj)
in a convex polytope, we can apply a substitution of all variables xj with yj −
lower(xj) so that in the new ILP we have all new problem variables yj bounded
between 0 and upper(yj) where upper(yj) = upper(xj) − lower(xj). Afterwards,
we can encode each integer variable yj as a set of weighted bits as follows:

yj =
bj∑

i=0
2iyi

j

yi
j ∈ {0, 1}

(6)
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where bj is the number of bits necessary to represent upper(yj) and variables yi
j

are Boolean. Additionally, we can also add the following constraints:

bj∑
i=0

2iyi
j ≤ upper(yj) (7)

As a result of integer variable replacements from (6) and the addition of upper
bound constraints from (7), we get a pseudo-Boolean instance that encodes the
convex polytope defined by the original ILP.

It is important to ensure that the number of solutions of the PB instance is
the same as in the original ILP. Indeed, for this encoding, every unique satisfiable
assignment for the ILP instance corresponds to a unique satisfiable assignment
for the PB instance, because the integer variables are encoded as a set of weighted
bits as it is represented in the computer memory.

4 Model Counting in Pseudo-Boolean Formulations

One way for performing model counting in Pseudo-Boolean (PB) formulations is
to implicitly enumerate all possible variable assignments using a backtrack search
PB solver. Moreover, current state-of-the-art PB solvers are able to perform con-
flict learning [1,8] and thus prevent entering areas of the search space where no
satisfiable assignment exists. This technique has been found particularly useful
when the solver has to implicitly visit the complete search space.

It is possible to modify backtrack search PB solvers to count models in PB
formulations. Basically, whenever a new solution is found, a propositional clause
is added such that it prevents accounting for the same solution later in the
search. In the context of model counting, these clauses are known as blocking
clauses [12,17].

The most straightforward way of generating a new blocking clause is to con-
sider the negation of the search path when a new satisfiable assignment is
found. Therefore, if the search path corresponds to the decision assignments
{x1 = v1, x2 = v2, . . . , xk = vk}, then the blocking clause is defined by:

k∑
j=1

lj ≥ 1 (8)

where lj = xj if xj = 0 in the search path or lj = x̄j if xj = 1. Observe that this
blocking clause prevents the current search path to occur later in the search.
Hence, the models corresponding to the partial solution will not be counted
twice. Note that a partial assignment of k problem variables that satisfies all
problem constraints implicitly represents a set of models. Therefore, whenever a
PB solver finds a new solution considering only k variables, it has in fact found
2n−k possible ways of satisfying the problem constraints.
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Simplification of Satisfying Partial Assignments. It is well-known that the
problem of computing the satisfying partial assignment with the smallest num-
ber of specified variables can be formulated as an integer linear program [15].
However, we are just interested in simplifying satisfying partial assignments com-
puted by a PB solver.

Variable lifting denotes a number of techniques used for the elimination of
assignments that can be declared redundant [12,17]. A simple variable lifting
technique consists of removing from a satisfying partial assignment all variable
assignments that are not used to satisfy any constraint. Moreover, these vari-
able assignments cannot also be used in constraints that imply other variable
assignments. When using this technique, we can immediately conclude that all
implied assignments cannot be removed from the partial assignment since they
are necessary to satisfy at least one constraint. Otherwise, these assignments
would not be implied. Hence, we only have to check decision assignments.

Suppose we have the following decision assignment x1 = x2 = x3 = 0 and
that x5 = 0 is an implied assignment. Consider also the following constraints:

(x1 + x2 + x3 ≤ 1) ∧ (x2 + x3 ≤ 1) ∧ (x2 + x4 ≤ 1) ∧ (−x3 + x5 ≤ 0) (9)

Clearly, the assignment to x1 is not relevant to satisfy the problem constraints.
Note that x3 cannot be considered irrelevant, since it is necessary to imply
the value of x5. Hence, the resulting blocking clause would be x2 + x3 ≥ 1.
Since there are two variables (x1 and x4) that are not relevant to satisfy the
constraints in this partial assignment, then we conclude that 4 models have been
found. In [12,17] other lifting techniques are presented. However, they require a
significant computational overhead.

Additional SAT Techniques. The identification of connected components [6]
and component caching [18] are among the most effective techniques for model
counting instances of SAT. These techniques are not yet integrated in the PB
model counter described above, since they will require significant re-implemen-
tation effort, and our objective is first to evaluate whether these techniques are
effective for ILP and PB model counting.

5 Encoding Pseudo-Boolean Constraints as SAT

Several algorithms exist that are based on modifying a SAT solver in order to deal
with pseudo-Boolean constraints [1,8], as well as generalizing other techniques like
conflict analysis. A different approach is based on encoding all pseudo-Boolean
constraints into propositional clauses and use a SAT solver directly [1,3,4,9,19].
Some of these encodings are polynomial whereas others are exponential in the
worst case. The objective of encoding PB constraints into SAT is to take advantage
of the powerful techniques of SAT solvers in dealing with propositional clauses.
This section defines counting safety, and shows that not all encodings are count-
ing safe. Moreover, this section also shows that some encodings are counting safe
and so can be used for model counting.
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Definition 1 (Counting Safety). A PB formulation to SAT encoding is count-
ing safe iff the number of models in the PB formulation and in the encoded SAT
formulation are the same.

5.1 Unsafe Encodings

The vast majority of PB to SAT encodings solely aim the discovery of one
solution and may introduce auxiliary variables. These variables may lead to
double counting of the same solution in pseudo-Boolean. For example, consider
the following PB constraints:

2x0 + 4x1 + 8x2 + 3y0 + 6y1 + 12y2 ≤ 18
−2x0 − 4x1 − 8x2 + 1y0 + 2y1 + 4y2 ≥ −10

If any of the encodings proposed in [9] is used with this example, and the re-
sulting CNF formula is given to model counter, e.g. cachet [18], the number of
models reported will be at least 38. However, the correct number of models for
this example is 31. Hence, the encodings proposed in [9] do not satisfy the count-
ing safety property, and cannot be used for model counting. The next section
addresses encodings which are counting safe.

5.2 Safe Encodings

Both the well-known Warners PB to SAT encoding [19] as well as the more recent
arc-consistency encoding of Bailleux, Boufkhad and Roussel (BBR) [4] can be
shown to be counting safe. Due to space constraints, this section addresses solely
the BBR encoding; a detailed analysis of Warners encoding is available in [13].
Next, we provide a brief description of the BBR PB to SAT encoding [4].

Consider a pseudo-Boolean constraint ω with the constraint literals lj sorted
according to their coefficients aj :

ω =
n∑

j=1
ajlj ≤ b,

where 0 < a1 ≤ a2 ≤ . . . ≤ an

(10)

Let ωi,k represent the constraint ω considering only the first i literals (0 ≤ i ≤ n)
with the right-hand side value k, i.e. ωi,k :

∑i
j=1 aj lj ≤ k. Therefore, the original

constraint ω corresponds to ωn,b.
In order to generate the CNF encoding for a given constraint ω, we need to

introduce new Boolean variables Di,k which represent the satisfaction of con-
straints ωi,k obtained from ω. Hence, we have Di,k = 1 iff constraint ωi,k is
satisfied. As a result, Dn,b = 1 represents the satisfaction of the original pseudo-
Boolean constraint ω in the CNF encoding.

When building the CNF encoding, variables Di,k are said to be terminal if
k ≤ 0 or if

∑i
j=1 aj ≤ k. Otherwise, variables Di,k are said to be non-terminal.
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The CNF encoding for a pseudo-Boolean constraint ω proceeds as follows:

1. Start with a set of variables containing variables xj in constraint ω, as well as
variable Dn,b, and an empty set of propositional clauses. Mark all variables
xj .

2. Consider an unmarked variable Di,k.
3. IfDi,k is a non-terminal variable, add two new variablesDi−1,k and Di−1,k−ai

to the set of variables, if they are not already in this set. Moreover, mark se-
lected variable Di,k and add the following propositional clauses:

D̄i−1,k−ai + Di,k ≥ 1 (11)
D̄i,k + Di−1,k ≥ 1 (12)

D̄i,k + l̄i + Di−1,k−ai ≥ 1 (13)
D̄i−1,k + li + Di,k ≥ 1 (14)

4. If Di,k is a terminal variable, and if k �= 0, then:

Di,k =

⎧⎨
⎩

0 if k < 0. Add D̄i,k ≥ 1 to the clause set.

1 if
i∑

j=1
aj ≤ k. Add Di,k ≥ 1 to the clause set. (15)

Otherwise, if k = 0, then add the following set of clauses:

D̄i,k + l̄j ≥ 1, 1 ≤ j ≤ i (16)
i∑

j=1

lj + Di,k ≥ 1 (17)

5. If there are any unmarked variables, go to step 2. Otherwise, the proposi-
tional clause set contains the CNF encoding of constraint ω and the proce-
dure terminates.

The following example illustrates how the proposed CNF encoding works:

ω : 2x̄1 + 3x2 + 3x3 ≤ 5 (18)

Figure 1 presents the new variables created for the CNF encoding. For each
non-terminal variable, two new additional variables are created whereas terminal
variables are represented as leaf nodes. The full encoding for constraint ω as a
set of propositional clauses is as follows:

D3,5 ≥ 1 D̄1,−1 + D2,2 ≥ 1 D̄1,−1 ≥ 1
D̄2,2 + D3,5 ≥ 1 D̄2,2 + D1,2 ≥ 1 D1,2 ≥ 1
D̄3,5 + D2,5 ≥ 1 D̄2,2 + x̄2 + D1,−1 ≥ 1
D̄3,5 + x̄3 + D2,2 ≥ 1 D̄1,2 + x2 + D2,2 ≥ 1
D̄2,5 + x3 + D3,5 ≥ 1 D2,5 ≥ 1

(19)

One should note that in addition to the propositional clauses added by the
encoding procedure, it is also necessary that variable D3,5 be assigned value 1.
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D1,−1 D1,2

D2,2 D2,5

D3,5

Fig. 1. Additional variables in CNF encoding

This is required since D3,5 represents the satisfaction of the original pseudo-
Boolean constraint.

Finally, we refer to [4] for details, namely proofs of correction of the encoding
and of the maintenance of generalized arc consistency in the resulting CNF
encoding, as well as examples of constraints for which this encoding provides
exponential increase in the size of the CNF encoding.

Theorem 1. The BBR arc-consistency encoding [4] is counting safe.

Proof:
We want to prove that to each model for the PB constraints there is a corre-
sponding unique model for the SAT encoding, and that to each model for the
SAT encoding there is a unique corresponding model for the PB constraints.

(←) If we have a model for the SAT encoding then we can only have one model
for the PB constraints, which is the model for the SAT encoding restricted to
the variables for the PB constraints.

(→) Suppose we have a model for the PB constraints. We know that the
encoding is correct [4], so we already know that there exists at least one model
for the SAT encoding corresponding to the model for the PB constraints. What
we want to show is that this model is unique. We also know that the model
in SAT corresponds to the same assignments made to the variables of the PB
constraints plus the assignments to the variables introduced by the encoding. In
order to show that the model is unique all we have to prove is that these new
variables Di,b can only have one possible assignment for satisfying the created
instance. We are going to prove this claim by induction on n. Let us first consider
a PB constraint

∑n
j=1 ajxj ≤ k and the corresponding variable node Dn,k.

Base: n = 1:
There can be two cases, depending on whether D1,k is terminal. If D1,k is ter-
minal we may have k �= 0 or k = 0. If k �= 0, due to the definition of a terminal
node, either k < 0 and the value of D1,k is 0, or a1 ≤ k and the value of D1,k is
1. Otherwise, if k = 0, then the encoding adds clauses (D̄1,0 ∨ x1), (D1,0 ∨ x̄1).
Since x1 has a determined value it implies the unique value of D1,k.

We now consider the case when D1,k is not terminal. In this case, the encoding
adds the following clauses: (D̄0,k−a1 ∨D1,k), (D1,k ∨D0,k), (D̄1,k ∨ x̄1 ∨D0,k−a1),
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and (D̄0,k ∨ x1 ∨ D1,k). Since D1,k is not terminal, then if k > 0 we have
D0,k = 1 or if k < a1 we have D0,k−a1 = 0. The first and the second clauses
added by the encoding are trivially satisfied. By removing the false literals of
the third and fourth clauses we get (D̄1,k ∨ x̄1), (x1 ∨ D1,k). Since x1 has a
determined value both clauses imply the unique value of D1,k.
Step:
Hypothesis: For i < n, Di,b has only one possible assignment that satisfies the
created instance.

We now consider node Dn,k. If the node is terminal with k < 0, then the
encoding adds the clause (D̄n,k) and Dn,k can only be assigned value false.

If the node is terminal with k �= 0 and k ≥
∑n

j=1 aj , then the encoding adds
the clause (Dn,k) and Dn,k can only be assigned value true.

If the node is terminal with k = 0, then the encoding adds the clauses
(D̄n,0 ∨ x̄j), 1 ≤ j ≤ n and (x1 ∨ x2 ∨ . . . ∨ xi ∨ Dn,0). Two situations may
occur. If all the variables xj , 1 ≤ j ≤ n, are false, then (17) implies the value of
Dn,0 to true. If at least one xj , 1 ≤ j ≤ n is true, then (16) implies the value of
Dn,0 to false and xj satisfies (17).

If the node is non-terminal, then we apply the hypothesis to Dn−1,k and to
Dn−1,k−an−1 . We get that these variable nodes have a fixed known value. We
have four cases depending on the value of the variable nodes:

– If Dn−1,k and Dn−1,k−an−1 are false, then from (12) Dn,k can only be false
and the other clauses are all satisfied.

– If Dn−1,k is false and Dn−1,k−an−1 is true, then from (11) and (12) there is
a contradiction, and the encoded instance is unsatisfiable. This situation is
acceptable since we cannot have (

∑n−1
j=1 ajxj ≤ k − an−1) being satisfiable

and at the same time being unable to satisfy the same left hand side of the
equation with a higher right hand side (

∑n−1
j=1 ajxj ≤ k).

– If Dn−1,k is true and Dn−1,k−an−1 is false, then we can have two cases:
xn is false , then from (14) Dn,k can only be true and the other clauses are

all satisfied;
xn is true , then from (13) Dn,k can only be false and the other clauses are

all satisfied.
– If Dn−1,k = 1 and Dn−1,k−an−1 = 1, then from (11) Dn,k = 1 and all the

other clauses are satisfied.

Finally, the results holds for any constraint, and so necessarily holds for all
constraints in an instance of PB.

6 Experimental Results

This section presents experimental results for model counting in integer domains.
Instances from different problems are considered. Moreover, different model
counting approaches are evaluated. The existing implementation of Barvinok’s
algorithm, LattE [11], is evaluated. A prototype PB model counter, described
in Section 4 is evaluated. Finally, SAT model counters are evaluated. In order
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to use the SAT model counters, we use the counting safe encodings of Warn-
ers [19] as well as the arc-consistency encoding proposed by Bailleux, Boufkhad
and Roussel (BBR) [4]. All CPU times presented are for a AMD Athlon 1.9GHz
processor with 1GB of physical memory. The time limit for each instance was
set to one hour. If the time limit was reached, we provide a partial solution
when one is available, i.e. the number of models found when the search was
stopped. This is preceded by the sign ≥ since the total number of models must
be higher than or equal to the ones already found. If all models are found, we
provide the total time in seconds. In cases where time limit was reached and the
counter did not provide any count of the number of models, TO (Time Out) is
shown. All processes were run with 900MB of allowed memory. MO (Memory
Out) is shown for the cases where the counter reached the allowed memory limit.
On some instances of Table 1 MO* is shown because it was the translator of
pseudo-Boolean to SAT that reached the memory limit instead of the counter.
Observe that MO* can only take place with the BBR encoding.

The experimental results are shown in Table 1, and are organized in three
parts, according to the source of the problem instances. The first part of Table 1
presents results for instances of finding the Frobenius number plus 1 in knapsack
problems [11]. For these instances, Latte is the only solver able to count the
number of models. The underline numerical problem proved to be very difficult
for pseudo-Boolean or SAT counters. Nevertheless, our solver pb counter was
able to find partial solutions for some instances, while both cachet and relsat (in
both encodings) were unable to do so.

The second part of Table 1 presents results for ILP benchmarks, generated
from well-known graph coloring benchmarks. Since the optimum number of col-
ors is known for these instances, a constraint was added in order to count the
number of optimum solutions. For these instances Latte performed poorly. In
fact, our experience is that Latte performs better for numerical problems with
very few variables. On the other hand, both relsat and pb counter were able to
solve some instances, as well as providing partial solutions for most instances.
It can also be observed from the number of partial solutions found, that better
results were obtained using relsat with the BBR encoding. Like relsat, cachet
was also able to solve completely 3 instances (using the BBR encoding), but on
all others no solution was found because cachet exhausted the available memory.

Finally, the third part of Table 1 presents results for benchmarks which en-
code the problem of finding the minimum-size prime implicant [15] for several
instances from the DIMACS [10] benchmark suite. As in the graph coloring in-
stances, the optimum value for these instances is also known. For each instance,
a constraint was added in order to only allow models with the optimum value.
Hence, for each instance, the number of models corresponds to number of differ-
ent minimum-size prime implicants. Observe that Latte was unable to solve any
of these instances, while the other model counters were able to find the total
number of models for most instances. In fact, it was surprising that pb counter
was able to outperform the other counters on these instances, since most of the
constraints are originally propositional clauses.
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Table 1. Results on several benchmark instances

relsat cachet
Benchmark # Models Latte Warners BBR Warners BBR pb counter
cuww1 1 0.11 TO MO MO MO TO
cuww2 1 0.40 TO MO* MO MO* TO
cuww3 2 0.35 TO MO* MO MO* TO
cuww4 1 0.55 TO MO* MO MO* TO
cuww5 1 4.51 TO MO* MO MO* TO
prob1 8.592e8 22.14 TO MO* MO MO* TO
prob2 2.047e6 13.51 TO MO* MO MO* TO
prob3 0 27.01 TO TO MO MO TO
prob4 6.319e7 19.68 TO MO* MO MO* TO
prob5 2.178e10 18.65 TO MO* MO MO* ≥ 4.337e4
prob6 2.188e5 96.12 TO MO* MO MO* ≥ 7
prob7 4.198e12 81.20 TO MO* MO MO* ≥ 3.812e4
prob8 6.743e6 257.77 TO MO* MO MO* TO
prob10 1.024e17 145.83 TO MO* MO MO* ≥ 764
1-FullIns 3 5.069e7 – ≥ 8.448e6 2701.56 MO 67.73 ≥ 5.194e6
2-FullIns 3 – – ≥ 3.061e7 ≥ 5.381e8 MO MO ≥ 1.067e7
2-Insertions 3 – – ≥ 4.156e7 ≥ 4.625e8 MO MO ≥ 9.006e6
3-FullIns 3 – – ≥ 5.542e6 TO MO MO ≥ 5.217e6
3-Insertions 3 – – ≥ 6.291e7 ≥ 2.527e10 MO MO ≥ 3.094e7
4-Insertions 3 – – ≥ 6.753e7 ≥ 1.307e12 MO MO ≥ 1.501e7
games120 – – ≥ 1.296e4 ≥ 1.407e6 MO MO ≥ 1.194e6
mug100 1 – – ≥ 2.967e13 ≥ 2.725e23 MO MO ≥ 2.476e7
mug88 1 – – ≥ 9.834e6 ≥ 1.138e23 MO MO ≥ 1.513e7
myciel3 12480 – 4.75 1.27 0.41 0.26 0.96
myciel4 – – ≥ 2.995e6 ≥ 7.215e7 MO MO ≥ 5.065e6
myciel5 – – ≥ 1.150e9 ≥ 3.637e11 MO MO ≥ 1.134e7
queen5 5 240 – 1123.32 151.69 71.31 29.78 4.38
queen6 6 – – TO ≥ 2 MO MO ≥ 1.251e4
queen7 7 – – TO TO MO MO ≥ 1.447e3
aim-100-1 6-yes1-2 1 – 0.19 9.04 3.58 2.27 0.02
aim-100-2 0-yes1-3 1 – 0.19 9.59 2.73 2.61 0.03
aim-100-3 4-yes1-4 1 – 0.2 9.95 2.37 4.98 0.04
aim-100-6 0-yes1-1 1 – 0.2 9.76 0.70 1.31 0.05
aim-200-1 6-yes1-3 1 – 0.42 185.29 30.67 20.42 0.04
aim-200-2 0-yes1-4 1 – 0.44 181.01 15.89 41.97 0.07
aim-200-3 4-yes1-1 1 – 0.42 172.86 13.16 MO 0.08
aim-200-6 0-yes1-2 1 – 0.51 169.77 6.67 24.55 0.14
ii8a1 1056 – 17.41 45.77 18.67 7.35 7.25
jnh1 12 – 2.26 1079.66 7.52 8.12 0.53
jnh12 1 – 0.21 1.95 0.97 0.81 0.07
jnh17 35 – 0.42 6.13 1.19 2.49 0.20
jnh7 26 – 1.37 6.09 4.18 1.75 0.26
ssa7552-038 – – TO TO MO MO ≥ 1.853e4
ssa7552-158 – – ≥ 1.319e13 TO MO MO ≥ 5.183e4
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7 Related Work

Besides the work on model counting and enumeration in SAT [6,12,17,18], there
has been work on model counting in non-Boolean domains, including Integer
Linear Programming (ILP) [5,11] and Linear Integer Arithmetic (LIA) [7,16].

Existing work on model counting in LIA is described in [7,16]. The work
of [7] is based binary decision diagrams and does not scale to large number of
variables. The work of [16] enumerates a large number of applications for model
counting in LIA. The proposed algorithm is also only suitable for a small number
of variables, or when most variables have fixed values.

The most well-known work on model counting in ILP is Barvinok’s algo-
rithm [5]. An existing implementation, LattE [11], which incorporates a number
of improvements, has been extensively used. As the results of Section 6 confirm,
Barvinok’s algorithm is adequate for instances of ILP with a small number of
variables which may have larger domains. Observe that the algorithms for model
counting in LIA can also be used for ILP (a special case of LIA) but current
solutions can only handle small instances.

8 Conclusions

This paper proposes two alternative approaches for counting models in ILP
instances. The first approach is based on encoding ILP into Pseudo-Boolean (PB)
and using a PB counter. A PB counter was developed for this purpose. A second
approach is based on encoding ILP into SAT, using an intermediate encoding
into PB. The paper shows that some PB to SAT encoding may overestimate
the number of models, whereas others are shown to yield the correct number
of models. As a result, counting models in integer domains can be achieved
by encoding ILP constraints into SAT and directly using SAT model counters,
thus taking advantage of the techniques already incorporated into SAT counters.
Experimental results indicate that the PB counter is competitive with the SAT
counters. Moreover, an existing alternative to SAT-based model counters, using
Barvinok’s algorithm [5,11], provides essentially orthogonal results, being more
efficient for problem instances having few variables with large domains, and being
inadequate for problem instances having many variables with small domains.

Despite the interesting insights, many challenges still remain. The PB counter
is a prototype, aiming to prove the concept of counting models for PB con-
straints. A more sophisticated algorithm is expected to provide significant gains,
for example if connected components are identified for PB constraints. There
is also a clear gap between LattE (the implementation of Barvinok’s algorithm)
and the SAT-based solutions. Work on closing this gap is also an interesting chal-
lenge. Finally, the utilization of the model counter in instances of linear integer
arithmetic [7,16], one of the motivations for this work, will require significantly
more optimized ILP counters.

Acknowledgments. This work is partially supported by FCT under research
projects POSI/SRI/41926/2001 and POSC/EIA/61852/2004.
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sharpSAT – Counting Models with Advanced
Component Caching and Implicit BCP
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Abstract. We introduce sharpSAT, a new #SAT solver that is based
on the well known DPLL algorithm and techniques from SAT and #SAT
solvers. Most importantly, we introduce an entirely new approach of cod-
ing components, which reduces the cache size by at least one order of
magnitude, and a new cache management scheme. Furthermore, we apply
a well known look ahead based on BCP in a manner that is well suited
for #SAT solving. We show that these techniques are highly beneficial,
especially on large structured instances, such that our solver performs
significantly better than other #SAT solvers.

Introduction

The appearance of highly optimized SAT solvers [7,5,8] encouraged applying
these SAT solvers to the closely related problem of counting the solutions of a
propositional formula, known as #SAT. Applying the DPLL algorithm [4] to
model counting was proposed in [3]. relsat 2 (cf. [2]) combined clause learning
[11,12] with component decomposition. Recently, Cachet by Sang et al. [9,10]
provided component caching and new branching heuristics.

We introduce sharpSAT - a new #SAT solver that inherits these techniques,
improves upon them and contributes new ideas, such that it is able to outperform
the best #SAT solvers (its source code is available at [1]).

After some basic definitions we will give a brief overview of our #SAT solver.
Then we will discuss a new way of component caching that differs significantly
from the scheme known so far (see [9]). It reduces cache sizes by at least by one
order of magnitude. In the course of this, we will propose a cache management
scheme which bounds the cache size explicitly and deletes old cache entries by
means of a simple utility function.

Section 2 provides a discussion of implicit BCP - an adaptation of a well known
”look ahead” technique based on boolean constraint propagation (BCP) (cf.[6]).
Implicit BCP is built to integrate this technique well with other common #SAT
solving techniques. This frequently results a smaller search space and reduces
the cache size even further.

Eventually, in section 3, we will compare sharpSAT to the sate-of-the-art
#SAT solver Cachet. This will reveal that the new techniques perform excep-
tionally well especially on very large instances, such as those from bounded model
checking, which often contain several thousands of variables.

A. Biere and C.P. Gomes (Eds.): SAT 2006, LNCS 4121, pp. 424–429, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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We consider propositional formulas F in conjunctive normal form (CNF ). Let
F |σ denote the residual formula under an assignment σ, where satisfied literals
(and clauses) evaluate to 1 and unsatisfied ones to 0. If 0 ∈ F |σ, i.e F |σ contains
the empty clause 0 we say that σ conflicts with F . F |σ is satisfied if all clauses
evaluate to 1.

A short outline of the basic techniques. From SAT solvers sharpSAT inherits
clause learning (cf. [11], [12]) and a fast BCP algorithm, based on the ”Two
Watched Literal” scheme (see [7]). Recall the notion of BCP: Whenever F |σ
contains a unit clause C = λ then λ must be satisfied, i.e. σ(λ) = 1. BCP
performs these assignments until either no unit clause is left or a conflict occurs.

From #SAT solvers we adopted bounded component analysis and caching -
these techniques and their correctness were discussed in [9]. For selecting branch
variables sharpSAT applies the VSADS heuristic from Cachet (cf. [10]).

1 Component Caching

As is done in Cachet, components can be identified by strings, omitting satis-
fied clauses and assigned literals. Let, for example F = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨
x̄4 ∨ x̄5) ∧ (x6 ∨ x2 ∨ x3) ∧ (x6 ∨ x̄4 ∨ x̄5), then a string coding this would be
(1, 2, 3, 0, 1,−4,−5, 0, 6, 2, 3, 0, 6,−4,−5, 0) (zeros denote ends of clauses). Call
this the Standard scheme (STD).

sharpSAT codes the components differently. First of all, only sound compo-
nents are cached, i.e. those which contain only clauses with at least two unas-
signed literals. This is reasonable as length zero clauses (i.e. the empty clause)
denote conflicts and unit clauses are handled by BCP.

Let var(F ) (cl(F )) be the set of variables (clauses, resp.) in F and varid(F )
(clid(F )) the corresponding sets of indices. Let id(λ) (id(C)) denote the index
of a literal λ (clause C). With F as in the example above we have cl(F ) =
{{x1, x2, x3}, {x1, x̄4, x̄5}, {x6, x2, x3}, {x6, x̄4, x̄5}} but clid(F ) = {1, 2, 3, 4}.
We code components G by writing varid(G) and clid(G) to strings a and b in
increasing order of the indices, which yields a code (a, b). For F as above we have
a = (1, 2, 3, 4, 5, 6) and b = (1, 2, 3, 4). Call this the Hybrid coding scheme (HC).
The correctness of HC is displayed by the following lemma.

Lemma 1. Given F ∈ CNF , (partial) assignments σ, τ and components G of
F |σ and B of F |τ then (var(B) = var(G) and cl(B) = cl(G)) iff (varid(B) =
varid(G) and clid(B) = clid(G)).

Proof. The forward direction is trivial. For the reverse let varid(B) = varid(G)
and clid(B) = clid(G). Obviously, var(B) = var(G) holds, but suppose for
contradiction, that cl(B) �= cl(G). As clid(B) = clid(G), there is a clause γB ∈
cl(B) for which γG ∈ cl(G) exits with id(γB) = id(γG) but γB �= γG.

As B and G are components of restrictions of F , there is a clause γ ∈ F
with id(γ) = id(γB) = id(γG). Now, as γB �= γG, there is a literal λ such that
w.l.o.g. λ ∈ γB \ γG. Since λ /∈ γG we have that λ is assigned in G but not in B,
contradicting var(B) = var(G).
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Note that STD is more general than HC. For example, for F as above, σ =
[x1 ← 0, x6 ← 1] and τ = [x1 ← 1, x6 ← 0] we have F |σ = F |τ = (x2 ∨ x3) ∧
(x̄4∨ x̄5) which could be recognized by STD but not by HC as clid(F |σ) = {1, 2}
and clid(F |τ ) = {3, 4}. However, our experimental results (see sect. 3) show the
effectiveness of HC and hence suggest that this case is not very likely.

We can reduce the sizes of the codes even further. As only sound components
G are cached, storing the ids of binary clauses is redundant. Why is this so?
Consider a formula F , an assignment σ and a sound component G of F |σ with
code (a, b). Assume that G contains C|σ for a binary clause C = (λ ∨ κ) ∈ F .
Suppose that at least one of κ and λ is assigned in σ. If exactly one is assigned,
C|σ is satisfied (otherwise BCP could be applied). If both are assigned, C|σ is
satisfied as well, as G is sound. Thus, C|σ occurs in G iff κ and λ are unassigned,
and the occurrence of clid(C|σ) in the code b can be reconstructed by the presence
of id(λ) and id(κ) in a. Hence, we can omit storing the identifiers of binary clauses
in the component codes. Call this scheme Omitting binary clauses.

We can do even better. Each code (a, b) of a component G is packed before
caching and before cache look-up. To obtain the packed form (â, b̂), we determine
n := �log2|var(F )|� and m := �log2|cl(F )|�. Identifiers in a contain information
only in the n least significant bits, thus a is packed into â by bitshifting. b is
treated analogously. Call this the Packing scheme.

Table 1 illustrates the coding schemes when applied to formulas from SATLIB.
HCO is HC omitting binary clauses, and HCOP shows this in its packed form.

Table 1. Comaring codes sizes in bytes (∗= unit clauses removed via BCP)

Problems vars clauses STD HC HCO HCOP
flat200 600 2237 27644 11348 3200 950
uf200 200 860 13760 4240 4240 1075

logistics.a.cnf 828 6718 98532 30184 16964 5301
logistics.b.cnf 843 7301 105300 32576 16576 6006
bmc-ibm-1.cnf 7085∗ 35419∗ 822420 170016 49484 20104

bmc-galileo-8.cnf 43962∗ 183532∗ 4079 KB 884 KB 302 KB 151 KB

We compare sizes of the different codes of the input formulas. Experiments
show that this gives a good estimate of the relative cache sizes. The starred
numbers denote a preprocessing before forming the codes: all unit clauses in
the input formula had to be propagated via BCP, as the hybrid scheme does not
cache formulas with unit clauses. Observe that the efficiency of HC in comparison
to STD increases with clause-to-variable ratio. HCO is futile on formulas without
binary clauses (see uf200) but it is highly beneficial for example on the flat200
formulas. Clearly, packing shows the least advantages on large instances (ibm-
galileo-8) but still reduces the code size to about 50%.

Cache Management. On hard formulas the cache size quickly exceeds any
reasonable bound, which necessitates a good cache management. In our
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experiments, we observed drawbacks of bounding the cache size by an oldest
age bound: a good bound depends highly on the formula size and has to be set
manually.

In sharpSAT an absolute bound maxSize in bytes on the cache size is set.
Furthermore, we keep scores for each cache entry in a way reminiscent of the
VSIDS heuristic (cf. [7]). If an entry is hit its score is increased. All scores are
divided periodically. The cache is cleared only if it exceeds a fixed fraction (0.9,
say) of maxSize, if so all entries with a score lower than minScore are deleted.
Directly after cleanup we try to keep the cache size at about 0.5 ·maxSize. To
achieve this, we increase or decrease minScore accordingly.

This quickly stabilizes the cache size after cleanup to about the desired value.
Furthermore, this scheme is quite fast, as entries are deleted only when necessary
and updating scores creates almost no time overhead.

2 Implicit BCP

BCP plays a central role in the performance of SAT and #SAT solvers. Branch-
ing heuristics based on BCP, called Unit Propagation (UP) heuristics (cf. [6])
try to maximize the possible effect of BCP by applying a form of ”look ahead”.

UP heuristics determine branch variables by estimating the effect an assign-
ment has for BCP. To achieve this, for each variable x of a certain set S of free
variables the assignments x ← 0 and x ← 1 are made independently and BCP
is applied in each case. If any of these cases, say x ← 0, causes a conflict, a failed
literal (x̄) is found and x is chosen directly as branch variable. Otherwise, the vari-
ables in S are evaluated according to their effect on BCP and one of these is chosen.

sharpSAT applies an algorithm for finding failed literals. It deviates from the
traditional UP heuristics approach, as for example pursued in Cachet, in at least
two ways. First, it is applied independently of the branching heuristics and only
failed literals are sought. If a failed literal, say λ = x̄ is found, a conflict clause
Cλ is learned directly and the algorithm proceeds as if x ← 1 was found by BCP
via Cλ. The process stops either if a conflict occurs, or no failed literals are found
anymore. In SAT solvers this might show no big difference to UP heuristics, but
in our #SAT solver a large amount of component analysis and cache look up
and storing is avoided by this procedure as in the course of implicit BCP these
operations are not applied.

Furthermore, the set S of candidates for failed literals is computed differently.
We only consider literals from original clauses that have become binary in the
most recent call of BCP. Thus in instances that allow for few implications only,
S is small and thus implicit BCP induces almost no overhead. In cases of many
implications S is larger but failed literals are more likely as well.

3 Comparison

We compare sharpSAT with and without implicit BCP and Cachet (version
1.22) on instances from SATLIB, to wit, the flat200, uf200, bmc and logistics
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suite. Tests were run on a 3GHz Pentium 4 with 1GB of main memory, a time
bound of 10 hours and a maximum cache size of 512MB. Table 2 displays the re-
sults, entries for bmc-ibm-6,7,10,13 and logistics.d are missing as neither Cachet
nor sharpSAT solved them. In contrast to the model counts shown in scientific
number form, the solvers used BigNum packages for exact model counting.

Note the effect of implicit BCP. Comparing the savings in terms of the run
time to the reduced number of decisions reveals the overhead of implicit BCP,
e.g. in the uf200 suite, a reduction by a factor of 7 in the decisions is reflected
only in a factor of 1.5 in the actual running time. However, there is a benefit
in time as a lot of component analysis as well as cache look-up and storing is
avoided. Each of these operations is performed once per decision. Hence, less
decisions are always beneficial, as irrespective of decreased running times, the
cache size is always reduced by about the same factor as the number of decisions.

The footnotes on the running times for Cachet refer to oldest age bounds on
the cache entries, which were adjusted manually. Where these are given, Cachet
could not solve the instances without them due to out-of-memory errors. For
sharpSAT the maximum cache size was set to 512MB for all the instances given.

sharpSAT dominates especially on structured instances. However, a general
link between small running time and exactly one of the new techniques is not
obvious. On some instances with very low model counts (e.g. galileo-8 and 9)
(see table 2) the dominance is clearly due to implicit BCP. On the other hand,
for ibm-bmc-5 and logistics.c the dominance is based solely on the new caching

Table 2. Comparing sharpSAT with and without implicit BCP and Cachet (X = time
out after 10 hours; 1−5 oldest age bounds: 1 = 500; 2 = 50; 3 = 30; 4 = 15; 5 = 3000)

Problems vars clauses solutions implicit BCP w/o implicit BCP Cachet
decisions secs decisions secs secs

flat200 600 2,237
avg. 2.22e+13 3,378 1.77 14,141 2.18 3.98
uf200 200 860
avg. 1.57e+09 9,597 7.36 70,448 10.9 6.63
bmc
ibm-1 9,685 55,870 7.33e+300 11,991 16 37,808 32 47
ibm-2 2,810 11,683 1.33e+19 148 0.09 584 0.11 0.09
ibm-3 14,930 72,106 2.47e+19 2,657 64.5 14,705 72.2 58
ibm-4 28,161 139,716 9.73e+79 59,334 111 1.6e+6 1,346 X
ibm-5 9,396 41,207 2.46e+171 191,558 152 198,464 64.5 4861

ibm-11 32,109 150,027 3.53e+74 429,575 3,331 2.3e+6 15,204 26,8232

ibm-12 39,598 194,778 2.1e+112 25,456 833 – X 9773

galileo-8 58,074 294,821 8.14e+40 12,945 326 168,748 1,716 6283

galileo-9 63,624 326,999 3.46e+44 15,798 392 313,474 3,688 7864

logistics
a 828 6,718 3.78e+14 4,412 0.8 19,176 2.14 5.31
b 843 7,301 4.53e+23 15,711 7.15 93,885 11.8 17.8
c 1,141 10,719 3.98e+24 2.3e+6 426 3.9e+6 480 1,0035
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scheme. In all other instances we claim that the effect is due to the combination
of both techniques.

4 Conclusion

We introduced sharpSAT - a #SAT solver that outperforms the current state-of-
the-art solver Cachet on a wide range of structured instances. This is due to new
techniques which comprise a highly optimized way of coding the components for
caching and the implicit BCP algorithm that performs well in practice.
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Abstract. The emerging large-scale computational grid infrastructure
is providing an interesting platform for massive distributed computa-
tions. In this paper a novel distribution method called scattering is in-
troduced for solving SAT problem instances in grid environments. The
key advantages of scattering are that it can be used in conjunction with
any sequential SAT solver (including industrial black box solvers), the
distribution heuristic is strictly separated from the heuristic used in se-
quential solving, and it requires no communication between processes
solving subproblems but still allows coordination of such processes. An
implementation of the method has been developed for NorduGrid, a large
widely distributed production-level grid running in Scandinavia.

1 Introduction

We study the propositional satisfiability problem (SAT) of determining whether a
given propositional formula has a satisfying truth assignment. Decision methods
for SAT and their implementation techniques have advanced considerably during
the last decade and SAT based techniques have been applied successfully in
several areas such as planning [1] and model checking [2].

An interesting approach to boosting the applicability of SAT based problem
solving is to exploit parallel computation to solve SAT problem instances. In
particular, the emerging large scale computational grids make this approach in-
creasingly attractive. For example, the largest software project currently funded
by the European Union is the EGEE project (Enabling Grids for E-sciencE;
http://public.eu-egee.org/).

In this paper we study how to exploit the grid infrastructure in solving chal-
lenging SAT instances. Compared to more tightly coupled parallel computing
architectures, grids have properties that need to be taken into account when
designing distributed algorithms. In particular, (i) the available resources can be
quite heterogeneous in a grid, (ii) no shared memory is available and commu-
nication delays to grid nodes are significant, (iii) inter-node communication is
very limited and often not available, (iv) individual jobs executed in grid nodes
have non-negligible failure rates. The goal is an approach where we can exploit
the best SAT solving techniques and the grid resources.

Several techniques for distributed SAT solving have been proposed [3,4,5,6,7,
8,9,10,11,12]. However, in these approaches it is not possible to exploit a chosen
sequential SAT solver directly but they are based on developing a special purpose
distributed SAT solver. Moreover, distribution of work and load balancing are

A. Biere and C.P. Gomes (Eds.): SAT 2006, LNCS 4121, pp. 430–435, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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fairly tightly coupled with the decisions made in the SAT solver and a significant
amount of inter-process communication is needed.

A straightforward way to use grid computing to solve SAT problems is to
employ an approach we call Simple Distributed SAT (SDSAT) where a SAT
instance is solved by running a number of SAT solvers on the same instance
as independent jobs and waiting until one of them solves the problem. If a
randomized SAT solver is available, this solver can be used with different seeds.
This approach has potential as results, e.g., in [13, 14] indicate.

However, the natural way of running SDSAT by starting jobs without re-
source bounds and waiting until one of them succeeds is not available in grids.
This is because each process needs to be given resource bounds (CPU time,
memory) when the process is sent to a grid. Moreover, grid job management
typically takes into account the resource requirements of a job, implying lower
priority to jobs with substantial resource demands and, thus longer delays.

In this paper we present a novel distributed SAT solving method called scat-
tering. The basic idea is to divide a given SAT instance gradually to increasingly
more constrained subproblems which are sent to the grid to be solved using
practically any available SAT solver. While this is somewhat similar to SDSAT,
there are substantial differences. (i) The subproblems to be solved become easier
to solve as the computation proceeds. (ii) Learning techniques used in sequen-
tial solvers can be exploited when dividing a problem to subproblems. (iii) The
division of a problem to subproblems is based on estimating the computational
cost of the subproblems in order to achieve better load balancing.

Scattering has similar modest communication requirements as SDSAT and
is thus different from typical guiding path based approaches, like [3], which
need inter-process communication and special customized solvers for dynamic
load balancing (and failure recovery). In scattering dynamic load balancing (and
failure recovery) is handled without inter-process communication by (i) dividing
a running job into subproblems and starting jobs on them even before the result
of the running job is available and (ii) setting at job construction time resource
bounds (time and memory) which when exceeded terminate the job.

Scattering is implemented in SATU, a SAT solver designed to work with Nor-
duGrid [15] (http://www.nordugrid.org/), a widely distributed Scandinavian
grid. SATU is available at http://www.tcs.hut.fi/Software/satu/.

2 The Algorithm

The goal is to develop an algorithm for solving challenging SAT instances on
a wide range of grids. In order to support this, we make minimal assumptions
regarding the Distributed Execution Environment (DEE) provided by a grid.
DEE is assumed to offer a simple interface between the client sending executions
(executable programs together with their inputs), and the environment receiving
and running the executions. The only functionalities available to the client are
(i) Send, sending an execution to the environment, (ii) Monitor, reporting the
state of the execution, and (iii) Receive, returning the result of an execution.
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We assume that the executions are not able to communicate directly with
each other. We also assume that DEE has some maximum of simultaneous exe-
cutions it can hold. If this limit is reached, the environment is saturated, and any
new executions may fail without a result. The executions must finish when some
condition given at construction time is triggered, e.g, a CPU time or memory
limit is exceeded.

The simple distributed SAT (SDSAT) scheme is not optimal for solving re-
source intensive problems in a grid because of the resource bounds and job
management policies explained in the introduction. In order to address deficien-
cies of SDSAT we have developed a distribution method called scattering. The
basic ideas underlying scattering are quite straightforward.

– A SAT problem instance is divided to a set of subproblems by adding new
clauses to the original problem to make the subproblems easier to solve.

– The division of a problem to subproblems (a scattering step) is done so that
(i) if all subproblems have been solved, we get a solution to the original
problem, and (ii) solution spaces of the subproblems are disjoint.

– Until a computed answer is obtained, subproblems are further divided by
scattering steps whenever possible, i.e., when DEE is below the saturation
limit. This means that the execution of a subproblem exceeding a given re-
source bound can be interrupted (or a grid node can suffer a failure) without
compromising the completeness of the method.

2.1 The Basic Scattering Rule and the Scattering Tree

The scattering rule takes as input a formula F and a number sf (≥ 2) (scattering
factor) and constructs sf scattered formulas F1, . . . , Fsf from F such that

Fi =

⎧⎨
⎩
F ∧ T1 if i = 1
F ∧ ¬T1 ∧ · · · ∧ ¬Ti−1 ∧ Ti if 1 < i < sf
F ∧ ¬T1 ∧ · · · ∧ ¬Tsf−1 if i = sf .

(1)

Each Ti is a conjunction li1∧· · ·∧ lidi
of di literals heuristically selected (Sect. 2.3)

and each number di is selected to yield comparably sized subproblems (Sect. 2.2).
The expression ¬Ti = l̄i1 ∨ · · · ∨ l̄idi

is the negation of the conjunction Ti. Thus
constructed propositional formulas have the properties that (i) the disjunction
F1 ∨ · · · ∨ Fsf is logically equivalent to the formula F , and (ii) no two formulas
Fi, Fj , i �= j, share a satisfying truth assignment.

We solve a SAT instance Fr by performing a distributed search in a scattering
tree with root Fr . The nodes are formulas obtained by the scattering rule so that
the children of a node F are the scattered formulas F1, . . . , Fsf . The search is
implemented by sending formulas associated to nodes as jobs to be solved in
DEE. A part of a possible scattering tree is given in Fig. 1.

A node of the tree is computed satisfiable if the corresponding job returns
with this answer, or if at least one of the children is computed satisfiable. The
node is computed unsatisfiable if the corresponding job returns unsatisfiable, or if
all children have been computed unsatisfiable. The scattering tree is constructed
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incrementally according to the chosen search strategy while sending jobs to DEE
whenever DEE is below its saturation limit until Fr is computed satisfiable or
unsatisfiable.

The correctness of the com-
F

F ∧ ((x1)
∧(x̄2))

F ∧ ((x̄1 ∨ x2)
∧(x̄3) ∧ (x4))

F ∧ ((x̄1 ∨ x2)
∧(x3 ∨ x̄4)
∧(x1))

F ∧ ((x̄1 ∨ x2)
∧(x3 ∨ x̄4)
∧(x̄1))

F ∧ ((x1) ∧ (x̄2)
∧(x3) ∧ (x̄6))

F ∧ ((x1) ∧ (x̄2)
∧(x̄3 ∨ x6)
∧(x4) ∧ (x6))

F ∧ ((x1) ∧ (x̄2)
∧(x̄3 ∨ x6)
∧(x̄4 ∨ x̄6)
∧(x3))

F ∧ ((x1) ∧ (x̄2)
∧(x̄3 ∨ x6)
∧(x̄4 ∨ x̄6)
∧(x̄3))

Fig. 1. A part of a scattering tree

puted answer follows from the
following observations. Since
scattered formulas of F are
more constrained than F by (1),
a satisfying truth assignment
for one of the scattered formu-
las satisfies F as well. More-
over, since the disjunction of
the scattered formulas is logi-

cally equivalent to F , if all scattered formulas are unsatisfiable, F is also unsatis-
fiable. Furthermore, if a formula is computed unsatisfiable, all possible scattered
formulas, being more constrained, are also unsatisfiable.

An ancestor of a formula in the scattering tree is less constrained than the
child. As a result, all clauses which are logical consequences of the ancestor are
also logical consequences of the child. Learned clauses from formula F can thus
be included to the formula F ′ if F is ancestor of F ′ in the scattering tree.

2.2 Balancing the Subproblems

The goal in a scattering step is to divide a given formula F to scat- Table 1.
di (sf = 7)

ri di

1

7
3 0.125

1

6
3 0.109

1

5
2 0.191

1

4
2 0.144

1

3
2 0.108

1

2
1 0.161

1 0 0.161

tered formulas F1, . . . , Fsf that have comparable estimated com-
putational costs by choosing di fixed literals for each Fi. This is
done by selecting for each i = 1, . . . , sf − 1, the number di such
that |2−di − ri| is minimized, where ri = (sf − i + 1)−1.

An example for sf = 7 is given in Table 1. The first column
shows values of ri for i = 1, . . . , 7, the second shows the values
of di minimizing |2−di − ri|, and the third the resulting estimated
fractions of the full problem.

The idea behind this approach is to divide the solution space
of F to sf portions of equal size. The solution spaces of different
Fis are disjoint by construction. Hence, for each i, if F1, . . . , Fi−1
already cover i − 1 of these portions, then an equal size portion
is obtained by taking the fraction ri from the remaining solution
space. By fixing di literals a fraction 2−di of the solution space can
be chosen. Hence, for each i, the numbers di are chosen so that
2−di is as close as possible to ri.

2.3 The Heuristic

The selection of literals for the scattered formulas in (1) is a heuristic process
which we have implemented on top of a SAT solver implementation [16] similar
to zChaff [17]. The SAT solver is run first on the formula F until a given number
of conflicts is reached to initialize the heuristic scores of the literals as in zChaff
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and the initialization is continued as long as DEE is above the saturation limit.
When selecting the di literals for the scattered formula Fi, the procedure takes
as input F ∧ ¬T1 ∧ · · · ∧ ¬Ti−1, runs the zChaff type algorithm until it reaches
the decision level di + 1 and then selects as the literals li1, . . . , lidi

the di decision
literals chosen on levels 1, . . . , di. If the decision level di + 1 cannot be reached,
this produces a computed solution for Fi, . . . , Fsf .

We use a modification of the original zChaff VSIDS heuristic [17] which
aims at finding variables that divide the remaining search space into parts of
comparable size. In contrast to the greedy VSIDS heuristic, we rank each variable
x with the scores of literals x and ¬x and choose the variable which has the best
lower score, and finally select the literal corresponding to the higher score of this
variable as the decision literal.

3 Experimental Results and Conclusions

Some results, obtained with NorduGrid and SATU 0.2 having zChaff as the SAT
solver, are shown in Table 2. The scatter results are with scattering factor sf = 7,
per job timeout ranging randomly between 60 and 90 minutes, memory limit of
1 GB and saturation limit of 64. The times are compared to the minimum time of
64 runs of randomized zChaff, simulating idealized SDSAT. The fourth column
indicates the number of cases where the run time of randomized zChaff was
smaller than the wall clock time of SATU. We run randomized zChaff on 2 GHz
AMD Athlon(tm) 64 Processor 3200+ with 2 GB of memory. Note that the
results of randomized zChaff do not include the very substantial communication
and management delays of a widely distributed grid. More experimental results
are available in [18].

Scattering differs from other distributed SAT solving methods, such as [3,
4, 5, 6, 7, 8, 9, 10, 11, 12] in a number of ways: (i) any SAT solver, including in-
dustrial black box solvers, can be used with no modifications, (ii) it has modest
requirements for communication but still allows process coordination, (iii) when
the solving of a problem needs to be distributed, it is possible to divide the
problem to an arbitrary number of subproblems, and (iv) heuristic for dividing
a problem to subproblems is separated from the heuristic for solving individual
subproblems.

Table 2. Run times with SATU on formulas from SAT2002 competitions

Name scatter (s) zChaffmin (s) # result

cnt10 1121 540 57 sat
dp10u09 586 149 19 unsat
f2clk_40 8078 4831 34 unsat
lisa20_1_a 240 1 20 sat
lisa21_3_a 1017 206 5 sat
Mat26 1503 4151 0 unsat
vda_gr_rcs_w8 1160 1 5 sat
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Interesting topics of future work include the optimization of the scattering
algorithm and job management. Also a more thorough comparison between scat-
tering and other methods is needed.
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