
Matrix Interpretations
for Proving Termination of Term Rewriting

Jörg Endrullis1, Johannes Waldmann2, and Hans Zantema3

1 Department of Computer Science, Vrije Universiteit Amsterdam
De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands

joerg@few.vu.nl
2 Hochschule für Technik, Wirtschaft und Kultur (FH) Leipzig

Fb IMN, PF 30 11 66, D-04251 Leipzig, Germany
waldmann@imn.htwk-leipzig.de

3 Department of Computer Science, Technische Universiteit Eindhoven
P.O. Box 513, 5600 MB Eindhoven, The Netherlands

h.zantema@tue.nl

Abstract. We present a new method for automatically proving termi-
nation of term rewriting. It is based on the well-known idea of interpre-
tation of terms where every rewrite step causes a decrease, but instead
of the usual natural numbers we use vectors of natural numbers, ordered
by a particular non-total well-founded ordering. Function symbols are
interpreted by linear mappings represented by matrices. This method
allows to prove termination and relative termination. A modification of
the latter in which strict steps are only allowed at the top, turns out to
be helpful in combination with the dependency pair transformation.

By bounding the dimension and the matrix coefficients, the search
problem becomes finite. Our implementation transforms it to a Boolean
satisfiability problem (SAT), to be solved by a state-of-the-art SAT
solver. Our implementation performs well on the Termination Problem
Data Base: better than 5 out of 6 tools that participated in the 2005
termination competition in the category of term rewriting.

1 Introduction

The annual Termination Competition [2] has given a new drive to the quest for
automated methods to obtain termination proofs for term rewriting.

The termination provers do apply established methods (path orderings, de-
pendency pairs, interpretations, labellings) as well as new methods (RFC match
bounds). Two insights are that general methods can be restricted to special
cases, gaining efficiency without loosing too much power, and combining meth-
ods may lead to strong improvements. We present here one such phenomenon:
termination proofs from interpretations into a well-founded monotone algebra.
This is a well-known general theme, but our point is

– the special choice of the algebra, and
– the special implementation of how to find suitable interpretations.

U. Furbach and N. Shankar (Eds.): IJCAR 2006, LNAI 4130, pp. 574–588, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Matrix Interpretations for Proving Termination of Term Rewriting 575

The carrier of the algebra consists of vectors of natural numbers on which we de-
fine a well-founded ordering that is not total. Each function symbol is interpreted
by a suitable linear mapping. This method allows to prove termination and rel-
ative termination. It has been proposed for string rewriting by Hofbauer and
Waldmann [11]. In the present paper, we discuss its extension to term rewriting
and a modification that allows to prove relative top-termination, i.e., a vari-
ant of relative termination where the strict steps are only allowed on top level.
The latter is very helpful when using the dependency pair transformation. In
order to cover the two-sorted nature of the dependency pair transformation, our
monotone algebra setting is presented many-sorted.

We have implemented the method by bounding the dimension and the matrix
coefficients, resulting in a search problem with a finite but typically huge search
space. This is solved by transforming this finite search problem to a SAT prob-
lem, and using the state-of-the-art SAT solver SatELiteGTI, [3]. This performs
surprisingly well on the Termination Problem Data Base, see section 7.

The main part of the paper is organized as follows. We present a many-
sorted monotone algebra framework for relative termination and relative top-
termination in Section 3, generalizing earlier results on monotone algebras. Then
we choose the matrix instance of this framework in Section 4. Later, we combine
this with the Dependency Pair method in Section 5. Our implementation is
described in Section 6 and its performance is discussed in Section 7.

Our methods are illustrated by examples. They are kept simple for the sake
of presentation. Nevertheless none of them can be proved terminating by any of
the programs that participated in the Termination Competition 2005 [2].

2 Preliminaries

Let S be a non-empty set of sorts, and let Σ be an S-sorted signature, being a
set of operation symbols each having a fixed arity in S∗ × S. An S-sorted set
A is defined to consist of a set As for every s ∈ S. For an S-sorted set X of
variable symbols let T (Σ, X) be the S-sorted set of terms over Σ and X , that
is, the smallest S-sorted set satisfying

– xs ∈ T (Σ, X)s for all xs ∈ Xs, and
– if the arity of f ∈ Σ is ((s1, . . . , sn), s) and ti ∈ T (Σ, X)si for i = 1, . . . , n,

then f(t1, . . . , tn) ∈ T (Σ, X)s.

A term rewriting system (TRS) R over Σ, X is a S-sorted set in which for
every s ∈ S the set Rs consists of pairs (�, r) ∈ T (Σ, X)s × T (Σ, X)s, for which
� �∈ Xs and all variables in r occur in �. Pairs (�, r) are called rewrite rules of
sort s and are usually written as � → r.

An S-sorted relation → over an S-sorted set A is defined to be an S-sorted
set for which →s⊆ As × As for every s ∈ S.

A substitution σ : X → T (Σ, X) is defined by a map σs : Xs → T (Σ, X)s for
every s ∈ S. These extend to terms in the obvious way.

576 J. Endrullis, J. Waldmann, and H. Zantema

For a TRS R the (S-sorted) top rewrite relation top→R on T (Σ, X) is defined
by t

top→R,s u if and only if there is a rewrite rule � → r ∈ Rs and a substitution
σ : X → T (Σ, X) such that t = �σ and u = rσ. The (S-sorted) rewrite relation
→R is defined to be the smallest S-sorted relation satisfying

– if t
top→R u then t →R u, and

– if ti →R,si ui and tj = uj for j �= i, then f(t1, . . . , tn) →R,s f(u1, . . . , un)
for every f ∈ Σ of arity ((s1, . . . , sn), s) and every i = 1, . . . , n.

For S-sorted binary relations we write · for sort-wise relation composition,
and ∗ for sort-wise transitive reflexive closure.

An S-sorted relation → is called well-founded or terminating if for no s ∈ S
an infinite sequence t1, t2, t3, . . . exists such that ti →s ti+1 for all i = 1, 2, 3,

A TRS R is called terminating if →R is well-founded. Termination is also
called strong normalization; therefore the property of R being terminating is
written as SN(R).

A binary relation →1 is called terminating relative to a binary relation →2,
written as SN(→1 / →2), if for no s ∈ S an infinite sequence t1, t2, t3, . . . exists
such that

– ti →1,s ti+1 for infinitely many values of i, and
– ti →2,s ti+1 for all other values of i.

We use the notation →1 / →2 to denote →∗
2 · →1 · →∗

2; it is easy to see that
SN(→1 / →2) coincides with well-foundedness of →1 / →2. We write SN(R/S)
as a shorthand for SN(→R / →S), and we write SN(Rtop/S) as a shorthand for

SN(
top→R / →S).

3 Monotone Algebras

A Σ-algebra (A, [·]) is defined to consist of a S-sorted set A, and for every f ∈ Σ
a function [f] : As1 × · · · × Asn → As, where ((s1, . . . , sn), s) is the arity of f .
This function [f] is called the interpretation of f .

Let αs : Xs → As for every s ∈ S; this collection of maps αs is written as
α : X → A. We define the term evaluation [·, α] : T (Σ, X) → A inductively by

[x, α] = αs(x),
[f(t1, . . . , tn), α] = [f]([t1, α], . . . , [tn, α])

for f ∈ Σ and x ∈ Xs.

Definition 1. An operation [f] : As1 ×· · ·×Asn → As is monotone with respect
to an S-sorted binary relation → on A if for all ai, bi ∈ Asi for i = 1, . . . , n with
ai →si bi for some i and aj = bj for all j �= i we have

[f](a1, . . . , an) →s [f](b1, . . . , bn).

A weakly monotone Σ-algebra (A, [·], >, �) is a Σ-algebra (A, [·]) equipped
with two S-sorted relations >, � on A such that

Matrix Interpretations for Proving Termination of Term Rewriting 577

– > is well-founded;
– > · � ⊆ >;
– for every f ∈ Σ the operation [f] is monotone with respect to �.

An extended monotone Σ-algebra (A, [·], >, �) is a weakly monotone Σ-
algebra (A, [·], >, �) in which moreover for every f ∈ Σ the operation [f] is
monotone with respect to >.

The combination >, � is closely related to the notion of reduction pair in the
dependency pair framework, e.g. in [8]. A crucial difference is that the relations
in a reduction pair are relations on terms that are closed under substitutions,
while in our setting they are relations on the arbitrary (many-sorted) set A.

In the sequel we often omit sort information, e.g. writing [t, α] > [u, α] rather
than [t, α] >s [u, α]. A TRS given without sort information is assumed to be
one-sorted, i.e., S consists of one element.

The one-sorted version of extended monotone algebra where � is left implicit
by defining it as the union of > and equality is called well-founded monotone
algebra in [14,15]. A main theorem states that a TRS is terminating if and only
if there is a well-founded monotone algebra (A, [·], >) such that [�, α] > [r, α]
for every rule � → r and every α : X → A. First we show that for relative
termination we have a similar characterization based on extended monotone
algebras, but not on this earlier version of well-founded monotone algebras.

Theorem 1. Let R, S be TRSs over a signature Σ. Then

1. SN(R/S) if and only if there exists an extended monotone Σ-algebra
(A, [·], >, �) such that [�, α] > [r, α] for every rule � → r in R and [�, α] �
[r, α] for every rule � → r in S, for every α : X → A.

2. SN(Rtop/S) if and only if there exists a weakly monotone Σ-algebra
(A, [·], >, �) such that [�, α] > [r, α] for every rule � → r in R and [�, α] �
[r, α] for every rule � → r in S, for every α : X → A.

Proof. For the ‘if’-part of part 1 assume such an extended monotone algebra
(A, [·], >, �) exists; we have to prove SN(R/S). So assume an infinite reduction

t1 →R∪S t2 →R∪S t3 →R∪S · · ·

containing infinitely many R-steps. Choose α : X → A arbitrary. Due to mono-
tonicity with respect to > we obtain [ti, α] > [ti+1, α] if ti →R ti+1, and due
to monotonicity with respect to � we obtain [ti, α] � [ti+1, α] if ti →S ti+1.
Since > · � ⊆ > we obtain > · �∗ ⊆ >, hence for ti →R ti+1 →∗

S tj we ob-
tain [ti, α] > [tj , α]. Since there are infinitely many R-steps this gives rise to an
infinite decreasing sequence with respect to >, contradicting well-foundedness.

The proof of the ‘if’-part of part 2 is similar; now all →R-steps in the assumed
infinite reduction are

top→R-steps, by which monotonicity with respect to > is not
required.

For the ‘only if’-part assume SN(R/S), respectively SN(Rtop/S), holds.
Choose A = T (Σ, X), and [f](t1, . . . , tn) = f(t1, . . . , tn) for all f ∈ Σ. De-
fine > = (→R / →S)+ and � = (→R∪S)∗, respectively > = (

top→R / →S)+ and

578 J. Endrullis, J. Waldmann, and H. Zantema

� = →∗
S . Then (A, [·], >, �) satisfies all requirements; where well-foundedness

of > is concluded from the assumption SN(R/S), respectively SN(Rtop/S). ��

For the relations >, � we typically have in mind some more properties, like
transitivity of both > and �, reflexivity of �, and � · > · � ⊆ > ⊆ �. However,
from the proof of Theorem 1 we see that these properties are not essential.

For this characterization of relative termination the general notion of extended
monotone algebra is essential: it does not hold for the restricted case where �
coincides with the union of > and equality. For instance, if R consists of the rule
f(f(x)) → f(g(f(x))) and S consists of the rule f(x) → g(f(x)) then SN(R/S)
holds, but no extended monotone algebra exists in which � coincides with the
union of > and equality and the properties of Theorem 1 hold.

Now we arrive at the theorem for extended monotone algebras as we will use
it for proving (relative) termination by matrix interpretations.

Theorem 2. Let R, S be TRSs over a signature Σ.

1. Let (A, [·], >, �) be an extended monotone Σ-algebra such that [�, α] � [r, α]
for every rule � → r in R ∪ S and every α : X → A. Let R′ consist of all
rules � → r from R ∪ S satisfying [�, α] > [r, α] for every α : X → A.
Then SN((R \ R′)/(S \ R′)) implies SN(R/S).

2. Let (A, [·], >, �) be a weakly monotone Σ-algebra such that [�, α] � [r, α] for
every rule � → r in R ∪ S and every α : X → A. Let R′ consist of all rules
� → r from R satisfying [�, α] > [r, α] for every α : X → A.
Then SN((R \ R′)top/S) implies SN(Rtop/S).

Proof. For part 1 assume SN((R \ R′)/(S \ R′)). Take any infinite reduction
with respect to R ∪ S. From Theorem 1 part 1 we conclude SN(R′/(R ∪ S)), so
this infinite reduction contains only finitely many R′-steps. So after removing
a finite initial part, this reduction only consists of (R ∪ S) \ R′-steps. Since
SN((R \ R′)/(S \ R′)) this remaining part contains only finitely many R \ R′-
steps. So the original infinite reduction contains only finitely many R-steps.
Hence we proved SN(R/S).

For part 2 assume SN((R\R′)top/S). Take any infinite reduction with respect

to
top→R ∪ →S . From Theorem 1 part 2 we conclude SN(R′

top/(R ∪ S)), so this

infinite reduction contains only finitely many
top→R′ -steps. So after removing a

finite initial part, this reduction only consists of
top→R\R′ -steps and →S-steps.

Since SN((R \R′)top/S) this remaining part contains only finitely many
top→R\R′ -

steps. So the original infinite reduction contains only finitely many
top→R-steps,

proving SN(Rtop/S). ��

The basic way to apply Theorem 2 is as follows. If SN(R/S) (or SN(Rtop/S))
has to be proved then try to find an extended (or weakly) monotone Σ-algebra
satisfying the conditions for which R′ is not empty. Then the proof obligation
is weakened to SN((R \ R′)/(S \ R′)) (or SN((R \ R′)top/S)). For this we again
apply Theorem 2 in the same way. This is repeated until R \ R′ = ∅, for which

Matrix Interpretations for Proving Termination of Term Rewriting 579

the remaining proof obligation SN((R \ R′)/(S \ R′)) (or SN((R \ R′)top/S))
trivially holds. Proving termination rather than relative termination is a special
case of this approach: then S is empty in SN(R/S).

Application of Theorem 2 is well-known for the case where A consists of the
natural numbers, or natural numbers ≥ 2, and all functions [f] are polynomials,
and > and � have their usual meaning. For part 1 strict monotonicity is required,
while for part 2 weak monotonicity is sufficient. In this polynomial case � coin-
cides with the union of > and equality. In the matrix interpretations in the vector
algebras considered in this paper, this is not the case for dimensions > 1.

4 Matrix Interpretations

In this paper we focus on interpretations based on matrices. For the basic ver-
sion this means that we fix a dimension d and construct a one-sorted extended
monotone algebra (A, [·], >, �) in which A = Nd. Without any complication this
extends to the many-sorted setting in which every sort has its own dimension. To
keep the presentation simple here we restrict to the one-sorted case.

The relations > and � on A are defined as follows:

(v1, . . . , vd) > (u1, . . . , ud) ⇐⇒ v1 > u1 ∧ vi ≥ ui for i = 2, 3, . . . , d,

(v1, . . . , vd) � (u1, . . . , ud) ⇐⇒ vi ≥ ui for i = 1, 2, . . . , d.

All requirements for > and � from Definition 1 trivially hold. Note that � does
not coincide with the union of > and equality.

For the interpretation [c] of a symbol c ∈ Σ of arity 0 we choose any element of
A. For the interpretation [f] of a symbol f ∈ Σ of arity n ≥ 1 we choose n matrices
F1, F2, . . . , Fn over N, each of size d × d, such that the upper left elements (Fi)1,1
are positive for all i = 1, 2, . . . , n, and a vector f ∈ Nd. Now we define

[f](v1, . . . , vn) = F1v1 + · · · + Fnvn + f

for all v1, . . . , vn ∈ A. One easily checks that f is monotonic with respect to �.
Due to positiveness of the upper left matrix elements we also conclude that f is
monotonic with respect to >. So by choosing all [f] of this shape all requirements
of an extended monotone algebra are fulfilled.

In order to apply Theorem 2, part 1, we should be able to check whether [�, α] �
[r, α] or [�, α] > [r, α] for all α : X → A, for given rewrite rules � → r. Let
x1, . . . , xk be the variables occurring in �, r. Then due to the linear shape of the
functions [f] we can compute matrices L1, . . . , Lk, R1, . . . , Rk and vectors l, r such
that

[�, α] = L1x1 + · · · + Lkxk + l

and
[r, α] = R1x1 + · · · + Rkxk + r

where α(xi) = xi for i = 1, . . . , k.
For matrices B, C ∈ Nd×d write

B � C ⇐⇒ ∀i, j : (B)i,j ≥ (C)i,j .

580 J. Endrullis, J. Waldmann, and H. Zantema

The following lemma states how the conditions of Theorem 2 can be checked.

Lemma 1. Let L1, . . . , Lk, R1, . . . , Rk and l, r correspond to a rewrite rule � → r
as described above. Then

– [�, α] � [r, α] for every α : X → A if and only if

Li � Ri for i = 1, . . . , k, and l � r,

– [�, α] > [r, α] for every α : X → A if and only if

Li � Ri for i = 1, . . . , k, and l � r, and l1 > r1.

So for applying Theorem 2, part 1, we fix a dimension d and choose matrices Fi

and vectors f for all f ∈ Σ. Next for every rule � → r ∈ R ∪ S we check whether
Li � Ri for i = 1, . . . , k and l � r. If so, then we may remove all rules more-
over satisfying l1 > r1. After having done so we may continue by choosing new
matrices, or by any other technique for proving (relative) termination.

Note that for our matrix interpretations after choosing the interpretation check-
ing whether a left hand side is greater (or greater or equal) than a right hand side
is decidable due to Lemma 1, in contrast to non-linear polynomial interpretations.

Example 1. Consider the TRS consisting of the following rule.

h(g(s(x), y), g(z, u)) → h(g(u, s(z)), g(s(y), x))

We choose A = N2 together with the symbol interpretations:

[h](x0, x1) =
(

3 1
1 0

)
· x0 +

(
1 3
0 1

)
· x1 +

(
0
2

)

[g](x0, x1) =
(

2 1
1 0

)
· x0 +

(
1 0
2 1

)
· x1

[s](x0) =
(

1 0
0 1

)
· x0 +

(
0
2

)

Let α : X → A be arbitrary; write α(x) = x, α(y) = y, α(z) = z and α(u) = u.
Then we obtain

[h(g(s(x), y), g(z, u)), α]

=(
7 3
2 1

)
· x +

(
5 1
1 0

)
· y +

(
5 1
1 0

)
· z +

(
7 3
2 1

)
· u +

(
6
4

)

>(
7 3
2 1

)
· x +

(
5 1
1 0

)
· y +

(
5 1
1 0

)
· z +

(
7 3
2 1

)
· u +

(
4
2

)

=

[h(g(u, s(z)), g(s(y), x)), α].

By Theorem 2 we conclude that the system is terminating.

Matrix Interpretations for Proving Termination of Term Rewriting 581

Just as in this example, in general we conclude [�, α] > [r, α] for arbitrary α :
X → A if we have a strict decrease in the first vector coefficient, and ≥ for all
matrix coefficients and all other vector coefficients.

We conclude this section by an example of relative termination.

Example 2. Define R, S as follows; we want to prove SN(R/S).

R = { f(a, g(y), z) → f(a, y, g(y)), f(b, g(y), z) → f(a, y, z), a → b }

S = { f(x, y, z) → f(x, y, g(z)) }.

We choose the following symbol interpretations:

[a] =
(

1
0

)
[b] =

(
0
0

)

[f](x0, x1, x2) =
(

1 0
0 0

)
· x0 +

(
1 2
0 0

)
· x1 +

(
1 0
0 0

)
· x2 +

(
0
0

)

[g](x) =
(

1 0
1 1

)
· x +

(
0
1

)

Thereby all rules in R ∪ S are weakly decreasing, i.e. all matrix coefficients in
the left hand side are greater or equal to the corresponding coefficients in the right
hand side. Moreover, all upper left matrix coefficients are nonzero and the rules
in R are strictly decreasing in the first coefficient. Hence by Theorem 2 all rules
from R may be removed proving SN(R/S).

5 Top Reduction and Dependency Pairs

For a one-sorted TRS R a symbol f ∈ Σ is called a defined symbol if f is the
root symbol of a left hand side of a rule of R. For every defined symbol f ∈ Σ a
new marked symbol f# is added having the same arity as f . If f(s1, . . . , sn) →
C[g(t1, . . . , tm)] is a rule in R and g is a defined symbol of R, then the rewrite
rule f#(s1, . . . , sn) → g#(t1, . . . , tm) is called a dependency pair of R. The TRS
consisting of all dependency pairs of R is denoted by DP(R). We consider these
TRSs R and DP(R) to be S-sorted for S = {s, #}, and every f ∈ Σ has arity
((s, . . . , s), s) and its marked version f# has arity ((s, . . . , s), #).

The main theorem about dependency pairs is the following, due to Arts and
Giesl, [1].

Theorem 3. Let R be a one-sorted TRS. Then SN(R) if and only if
SN(DP(R)top/R).

We will use this theorem for proving SN(R) by proving SN(DP(R)top/R) using
part 2 of Theorem 2.

For doing so by matrix interpretations we fix a dimension d as before and con-
struct a weakly monotone algebra (A, [·], >, �) in which As = Nd and A# = N.
The relation � on As = Nd is defined as before:

(v1, . . . , vd) � (u1, . . . , ud) ⇐⇒ vi � ui for all i = 1, 2, . . . , d;

582 J. Endrullis, J. Waldmann, and H. Zantema

the relation � on A# = N is the usual ≥ on N. However, for > on As = Nd we
now choose another relation as before: we choose > to be the empty relation. The
relation > on A# = N is the usual > on N. All requirements for > and � from
Definition 1 trivially hold.

For the interpretation [f] of a symbol f ∈ Σ of arity n ≥ 0 we define

[f](v1, . . . , vn) = F1v1 + · · · + Fnvn + f

for n matrices F1, F2, . . . , Fn over N of size d× d, and a vector f ∈ Nd. Note that
now we do not require any more that the upper left elements of the matrices are
positive. For the interpretation [f#] of a marked symbol f# corresponding to f of
arity n ≥ 0 we define

[f#](v1, . . . , vn) = f1v1 + · · · + fnvn + cf

for n row vectors f1, . . . , fn over N of size d, and a constant cf ∈ N. Here fivi

denotes the inner product, corresponding to matrix multiplication of a row vector
by a column vector.

As before [f] is monotonic with respect to �, and monotonicity with respect to
> is trivial since > is empty. The same holds for f#. By choosing all [f] and f# of
this shape all requirements of a weakly monotone algebra are fulfilled.

In order to apply Theorem 2, part 2, for rules in R we check whether [�, α] �
[r, α] for all α : X → A for given rewrite rules as before. Checking whether [�, α] >
[r, α] for all α is only required for rules � → r in DP(R) being of sort #. This
restriction can be written as lx + cl > rx + cr for every vector x over N, being
equivalent to l � r ∧ cl > cr. Similarly, for rules � → r in DP(R) the requirement
[�, α] � [r, α] for all α is equivalent to l � r ∧ cl � cr.

It is also possible to keep the treatment of SN(DP(R)top/R) one-sorted on vec-
tors of size d, choosing > to be the strict part of �. However, then the search space
is much bigger since for every f# n matrices of size d × d plus a vector have to be
chosen, instead of n vectors of size d plus a constant, where n is the arity of f .
Every termination proof in this one-sorted setting also yields a termination proof
in the two-sorted setting as presented here, with the same bound on matrix- and
vector elements. This can be seen as follows. If there is a proof in the one-sorted
setting then for at least one dependency pair the interpretation of the lhs strictly
exceeds the interpretation of the rhs. Since > is the strict part of �, there is at
least one dimension in which strict inequality appears. Then by eliminating all
other dimensions an interpretation in our two-sorted setting is found by which
this particular dependency pair can be removed. By repeating the argument, the
full termination proof in the one-sorted setting can be mimicked in our two-sorted
setting. So the two-sorted approach is as powerful but yields much smaller search
spaces, by which this two-sorted approach is preferred.

Example 3. Consider the TRS consisting of the following rule.

g(g(s(x), y), g(z, u)) → g(g(y, z), g(x, s(u)))

Matrix Interpretations for Proving Termination of Term Rewriting 583

Using the dependency pairs transformation we get 3 dependency pairs:

1. g#(g(s(x), y), g(z, u)) → g#(g(y, z), g(x, s(u)))
2. g#(g(s(x), y), g(z, u)) → g#(y, z)
3. g#(g(s(x), y), g(z, u)) → g#(x, s(u))

The dependency pairs 2 and 3 can easily be removed by counting the symbols.
That is using [g#](x, y) = [g](x, y) = 1 + x + y and [s](x) = x + 1 as polyno-
mial interpretation over N. So the original rule and the first dependency pair re-
main. We choose the following interpretation with dimension d = 2 (i.e. As = N2,
A# = N).

[g#](x0, x1) = (1, 0) · x0 + (0, 1) · x1

[g](x0, x1) =
(

1 0
1 0

)
· x0 +

(
1 0
0 1

)
· x1

[s](x0) =
(

1 0
0 0

)
· x0 +

(
1
0

)

For the original rule g(g(s(x), y), g(z, u)) → g(g(y, z), g(x, s(u))) we obtain
(

1 0
1 0

)
· x +

(
1 0
1 0

)
· y +

(
1 0
1 0

)
· z +

(
1 0
0 1

)
· u +

(
1
1

)

�(
1 0
1 0

)
· x +

(
1 0
1 0

)
· y +

(
1 0
1 0

)
· z +

(
1 0
0 0

)
· u +

(
1
0

)

and for the remaining dependency pair g#(g(s(x), y), g(z, u)) → g#(g(y, z),
g(x, s(u))) we obtain

(1, 0) · x + (1, 0) · y + (1, 0) · z + (0, 1) · u + (1)

>

(1, 0) · x + (1, 0) · y + (1, 0) · z + (0, 0) · u + (0).

So all rules are weakly decreasing and the dependency pair is strictly decreasing
and thus can be removed. Hence the system is terminating.

Note that the given interpretation cannot be used to prove termination directly
by Lemma 1. All the upper left matrix elements are nonzero, but (1, 1)T �> (1, 0)T .
In Section 7 we will see that in experiments it often happens similarly that this
dependency pair approach succeeds where the basic matrix approach from Section
4 fails.

6 Implementation

The method described in the previous sections has been implemented as follows.
The basic algorithm finds a matrix interpretation that allows to remove rules

from a termination problem. It is called repeatedly until all rules have been
removed.

584 J. Endrullis, J. Waldmann, and H. Zantema

Algorithm Remove:

– inputs
• a pair of rewrite systems (R, S) over signature Σ
• a flag f ∈ {Full, Top}
• numbers d, b, b′

– outputs a matrix interpretation [·] such that
• if f = Full, then the interpretation fulfills the conditions of Theorem 2,

part 1, for a non-empty TRS R′;
• if f = Top, then the interpretation fulfills the conditions of Theorem 2,

part 2, for a non-empty TRS R′;
• the interpretation [·] uses matrices of dimension d × d;
• all the coefficients in the matrices in the interpretations of operation sym-

bols are in the range 0 . . . 2b − 1;
• all the coefficients in the in the matrices in the interpretations of rules are

in the range 0 . . . 2b′ − 1.

It may be useful to choose b < b′. For instance, if b = 2 and b′ = 3 then the
algorithm searches for matrices with coefficients < 4 as the interpretations of the
operation symbols, but allows coefficients up to 7 in the matrices obtained by mul-
tiplying these basic matrices guided by the shape of the rules.

As described in Sections 4 and 5 the conditions for Theorem 2 give rise to con-
straints on coefficients in vectors and matrices that constitute the interpretations
of the rules.

The implementation of the algorithm has two stages: the first stage produces
a system I of inequalities, representing these constraints. The second stage solves
this constraint system I by translation to a boolean satisfiability problem F .

We stress that the constraint system I consists of inequalities between polyno-
mials of the unknowns. The maximal degree of these polynomials is the maximal
depth of a term in a rewrite rule. The number of unknowns depends linearly on
the size of the alphabet and quadratically on the dimension of the vector space we
use. The number of the inequalities is quadratic in the dimension and linear in the
number of rules. Because of the size and the non-linearity of this system, there is
no hope for a feasible exact algorithm that solves it.

By putting the bounds b, b′ on the range of the variables, the problem has be-
come finite. This finite problem is translated into propositional logic. Each vari-
able from I is then represented by a list of b boolean variables, giving its binary
representation. To represent intermediate results (partial sums and products), we
need additional constraint variables (translated into bit strings of length b′).

Then the formula F is transformed into conjunctive normal form, and we call a
SAT solver to find a satisfying assignment. We use SatELiteGTI, [3], the winner
of last year’s SAT competition. But our translators are not specific to that solver
since we use a system-independent data exchange format. E. g. we checked with
ZChaff ([12]) and got nearly identical results. Information about the 2005 SAT
competition and these tools is obtained via http://www.satcompetition.org/.

From the satisfying assignment for F a satisfying assignment for the original
system I is constructed. This gives the matrices and vectors for the symbol in-
terpretations. The rule interpretations are re-calculated to double-check that all

Matrix Interpretations for Proving Termination of Term Rewriting 585

constraints do really hold and that indeed a nonempty set R′ of rules can be re-
moved according to Theorem 2.

If the solver does not find a satisfying assignment within a given time bound,
the process is repeated by either giving larger bounds for the coefficients or larger
dimension for the vector space.

While this gives the general idea, quite some effort has to be invested to orga-
nize the repeated attempts in such a manner that all potentially successful param-
eter combinations are actually tried within the given time bound. For instance,
we start with the direct matrix method using dimension one with 5 bits for co-
efficients, followed by dimension two with 3 bits for coefficients, both 5 seconds
time-out. Afterward we do a dependency pairs transformation and use matrix in-
terpretations of dimension one, up to dimension 4, with 2 bits for coefficients, 3
bits for intermediates, increasing the time-out stepwise.

To give an impression of this search and the size of the resulting formula, con-
sider the TRS consisting of the following rules.

h(x, c(y, z)) → h(c(s(y), x), z)

h(c(s(x), c(s(0), y)), z) → h(y, c(s(0), c(x, z)))

For smaller dimensions no solution is found, but by choosing dimension d = 3
and 2 bits per coefficient suitable interpretations are found by which the second
rule can be removed. Termination of the remaining rule is easily shown by a one-
dimensional interpretation.

For the main step in this proof, i.e., removing the second rule, the translation
of the constraint problem needs 8.000 boolean variables and 40.000 propositional
clauses. A satisfying assignment is found by SatELiteGTI in around 5 seconds on
a current personal computer.

The translation of one binary multiplication (where the arguments have 3 bits
and the result has 6 bits) needs about 150 clauses. One can exchange variables for
clauses, to a certain extent.

We developed two independent implementations:

– as part of Matchbox [13], by Waldmann, written in Haskell, and
– as part of Jambox, [4], by Endrullis, written in Java.

This allows to double-check our results. We each use slightly different algorithms
that produce formulas of different sizes. It is not automatically the case that the
smaller formula is better for the solver. In some cases, the solver will find a solution
for a larger formula earlier than for a smaller one.

7 Performance Measurements

In this section we will analyze the performance of the matrix method under various
setting on the TRS part of the Termination Problem Database 2005 (TPDB). This
problem set was the basis of the 2005 Termination Competition and is available
via [2]. It consists of 773 TRS, among which 588 could be proved to be terminating

586 J. Endrullis, J. Waldmann, and H. Zantema

by any of the six participating tools; the rest both contains non-terminating TRSs
and TRSs for which the termination behavior is unknown or only established by
a human.

By direct method we mean pure matrix interpretations, i.e. without usage of
any other termination methods like dependency pairs. Likewise the method with
dependency pairs stands for the combination of matrix interpretations with the
dependency pairs framework. A huge amount of methods has been developed for
the dependency pairs framework. In our implementation we restrict to the most
basic methods, since our goal is to analyze the strength of the matrix method. In
particular, we use dependency graph approximation and the usable rules criterion
[5,8], the sub-term criterion [8], and compute strongly connected components as
in [9]. Finally, dependency pairs + stands for the extension by the transformation
of applicative TRSs into functional form as described in [6], and rewriting of right
hand sides [16]. Both techniques are non-branching syntactic transformations, to
be used as preprocessing.

We want to emphasize that we did not apply any of the following techniques:
recursive path order, argument filtering and semantic labelling, as they were con-
sidered sometimes to be essential for any serious termination tool.

The following table presents our results.

method dimension initial bits result bits cumulative
d b b′ YES score

direct 1 4 5 141
direct 2 2 3 219
direct 3 3 4 225

dependency pairs 1 4 5 433
dependency pairs 2 1 2 503
dependency pairs 2 2 3 505
dependency pairs 3 2 3 507
dependency pairs 4 2 3 509

dependency pairs + 4 2 3 538

For these results we took the time limit of 1 minute, just like in the Termination
Competition. However, this time was hardly ever consumed; the average compu-
tation time for all proofs is around 1 second. The full results, including all proofs
generated by Jambox, are available via

http://joerg.endrullis.de/ijcar06/.

For the following 6 systems our approach found termination proofs where all
participating tools in the 2005 competition failed: TRCSR-Ex1-2-Luc02c-GM,
TRCSR-Ex14-AEGL02-C, TRCSR-Ex1-GL02a-C, TRCSR-Ex4-7-15-Bor03-C,
TRCSR-Ex49-GM04-C and TRCSR-Ex6-9-Luc02c-GM. So by adding our approach
the total score of 588 for all tools would increase to 594.

We also applied our approach the subcategory of relative termination in TPDB,
on which the 2005 competition also run. The winner in this subcategory was TPA
with a score of 23; our approach would have yielded a second place with a score

Matrix Interpretations for Proving Termination of Term Rewriting 587

of 20. Among these 20 proofs 10 are done with dimension one, 8 with dimension
two and 2 with dimension three.

8 Conclusions

The idea of using matrix interpretations for termination proofs for string rewriting
was developed by Hofbauer and Waldmann [11]. It allowed them to prove termi-
nation for {aa → bc, bb → ac, cc → ab}. In this paper we showed how to extend
this approach to term rewriting successfully. A crucial ingredient is taking linear
combinations of matrix interpretations for symbols of arity > 1.

In the results on the benchmark database TPDB we see a big jump when in-
creasing the dimension from 1 (representing linear polynomial interpretations)
to 2. Increasing the dimension from 2 to higher values only yields a minor im-
provement, while then the sizes of the satisfiability formulas strongly increase. By
adding the dependency pairs approach an enormous jump is achieved: then us-
ing only linear polynomial interpretations (d = 1) already reaches a score of 433
points. In the Termination Competition 2005 this would have been a remarkable
third place. Finally, our highest score of 538 for dependency pairs + would have
yielded a second place in this competition: still below the winning score of 576 for
AProVE [7], but significantly better than the second score of 509 for TTT [10].

We like to stress that among the 538 TRSs for which termination was proved
by our tool, for several (6) of them all six tools from the 2005 competition failed.

References

1. T. Arts and J. Giesl. Termination of term rewriting using dependency pairs. The-
oretical Computer Science, 236:133–178, 2000.

2. Termination Competition. http://www.lri.fr/~marche/termination-
competition/.

3. N. Eén and A. Biere. Effective preprocessing in sat through variable and clause
elimination. In F. Bacchus and T. Walsh, editors, Proc. 8th Int. Conf. Theory and
Applications of Satisfiability Testing SAT 2005, volume 3569 of Lecture Notes in
Computer Science, pages 61–75, Berlin, 2005. Springer-Verlag.

4. J. Endrullis. Jambox: Automated termination proofs for string rewriting.
http://joerg.endrullis.de/, 2005.

5. J. Giesl, R. Thiemann, and P. Schneider-Kamp. The dependency pair framework:
Combining techniques for automated termination proofs. In Proceedings of the 11th
International Conference on Logic for Programming, Artificial Intelligence, and Rea-
soning (LPAR 2004), volume 3452 of Lecture Notes in Computer Science, pages 301–
331. Springer, 2005.

6. J. Giesl, R. Thiemann, and P. Schneider-Kamp. Proving and disproving termina-
tion of higher-order functions. In Proceedings of the 5th International Workshop on
Frontiers of Combining Systems (FroCoS 2005), volume 3717 of Lecture Notes in
Computer Science, pages 216–231. Springer, 2005.

7. J. Giesl, R. Thiemann, P. Schneider-Kamp, and S. Falke. Automated termination
proofs with AProVE. In V. van Oostrom, editor, Proceedings of the 15th Conference
on Rewriting Techniques and Applications (RTA), volume 3091 of Lecture Notes in
Computer Science, pages 210–220. Springer, 2004.

http://www.lri.fr/~{}marche/termination-competition/
http://www.lri.fr/~{}marche/termination-competition/
http://joerg.endrullis.de/

588 J. Endrullis, J. Waldmann, and H. Zantema

8. N. Hirokawa and A. Middeldorp. Dependency pairs revisited. In V. van Oostrom,
editor, Proceedings of the 15th Conference on Rewriting Techniques and Applications
(RTA), volume 3091 of Lecture Notes in Computer Science, pages 249–268. Springer,
2004.

9. N. Hirokawa and A. Middeldorp. Automating the dependency pair method. Infor-
mation and Computation, 199:172–199, 2005.

10. N. Hirokawa and A. Middeldorp. Tyrolean termination tool. In J. Giesl, editor, Pro-
ceedings of the 16th Conference on Rewriting Techniques and Applications (RTA),
volume 3467 of Lecture Notes in Computer Science, pages 175–184. Springer, 2005.

11. D. Hofbauer and J. Waldmann. Proving termination with matrix interpretations.
In F. Pfenning, editor, Proceedings of the 17th Conference on Rewriting Techniques
and Applications (RTA), Lecture Notes in Computer Science. Springer, 2006.

12. M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engineering
an efficient SAT solver. In Proceedings of the 38th Design Automation Conference
DAC 2001, pages 530–535. ACM, 2001.

13. J. Waldmann. Matchbox: A tool for match-bounded string rewriting. In V. van
Oostrom, editor, Proceedings of the 15th Conference on Rewriting Techniques and
Applications (RTA), pages 85–94, Berlin, 2004. Springer-Verlag.

14. H. Zantema. Termination of term rewriting: Interpretation and type elimination.
Journal of Symbolic Computation, 17:23–50, 1994.

15. H. Zantema. Termination. In Term Rewriting Systems, by Terese, pages 181–259.
Cambridge University Press, 2003.

16. H. Zantema. Reducing right-hand sides for termination. In A. Middeldorp, V. van
Oostrom, F. van Raamsdonk, and R. de Vrijer, editors, Processes, Terms and Cycles:
Steps on the Road to Infinity:Essays Dedicated to Jan Willem Klop on the Occasion
of His 60th Birthday, volume 3838 of Lecture Notes in Computer Science, pages 173–
197, Berlin, 2005. Springer-Verlag.

	Introduction
	Preliminaries
	Monotone Algebras
	Matrix Interpretations
	Top Reduction and Dependency Pairs
	Implementation
	Performance Measurements
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

