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Abstract. Propositional canonical Gentzen-type systems, introduced in
[1], are systems which in addition to the standard axioms and structural
rules have only logical rules in which exactly one occurrence of a con-
nective is introduced and no other connective is mentioned. [1] provides
a constructive coherence criterion for the non-triviality of such systems
and shows that a system of this kind admits cut-elimination iff it is co-
herent. The semantics of such systems is provided using two-valued non-
deterministic matrices (2Nmatrices). [14] extends these results to systems
with unary quantifiers of a very restricted form. In this paper we sub-
stantially extend the characterization of canonical systems to (n, k)-ary
quantifiers, which bind k distinct variables and connect n formulas. We
show that the coherence criterion remains constructive for such systems,
and that for the case of k ∈ {0, 1}: (i) a canonical system is coherent iff
it has a strongly characteristic 2Nmatrix, and (ii) if a canonical system
is coherent, then it admits cut-elimination.

1 Introduction

An (n, k)-ary quantifier (for n > 0, k ≥ 0) is a generalized logical connective,
which binds k variables and connects n formulas. Any n-ary propositional con-
nective can be thought of as an (n, 0)-ary quantifier. For instance, the standard
∧ connective binds no variables and connects two formulas: ∧(ψ1, ψ2). The stan-
dard first-order quantifiers ∃ and ∀ are (1, 1)-quantifiers, as they bind one variable
and connect one formula: ∀xψ, ∃xψ. Bounded universal and existential quantifi-
cation used in syllogistic reasoning (∀x(p(x) → q(x)) and ∃x(p(x)∧q(x))) can be
represented as (2,1)-ary quantifiers ∀ and ∃, binding one variable and connecting
two formulas: ∀x(p(x), q(x)) and ∃x(p(x), q(x)). An example of (n, k)-ary quan-
tifiers for k > 1 are Henkin quantifiers1 ([9,10]). The simplest Henkin quantifier
QH binds 4 variables and connects one formula:

QH
∀x1 ∃y1
∀x2 ∃y2

ψ(x1, x2, y1, y2)

According to a long tradition in the philosophy of logic, established by Gentzen
in his classical paper Investigations Into Logical Deduction ([7]), an “ideal” in-
troduction rule for a logical connective is a rule which determines the meaning
1 Although the semantic interpretation of quantifiers used in this paper is not sufficient

for treating such quantifiers.

U. Furbach and N. Shankar (Eds.): IJCAR 2006, LNAI 4130, pp. 251–265, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



252 A. Zamansky and A. Avron

of the connective. In [1,2] the notion of a “canonical propositional Gentzen-type
rule” was first defined in precise terms. A constructive coherence criterion for the
non-triviality of such systems was then provided, and it was shown that a system
of this kind admits cut-elimination iff it is coherent. It was further proved that
the semantics of such systems is provided by two-valued non-deterministic ma-
trices (2Nmatrices), which form a natural generalization of the classical matrix.
In fact, a characteristic 2Nmatrix was constructed for every coherent canonical
propositional system.

In [14] the results were extended to systems with unary quantifiers. A char-
acterization of a “canonical unary quantificational rule” in such calculi was pro-
posed (the standard Gentzen-type rules for ∀ and ∃ are canonical according to
it), and a constructive extension of the coherence criterion of [1,2] for canonical
systems of this type was given. 2Nmatrices were extended to languages with
unary quantifiers, using a distribution interpretation of quantifiers ([12]). Then
it was proved that again a canonical Gentzen-type system of this type admits
cut-elimination iff it is coherent, and that it is coherent iff it has a characteristic
2Nmatrix. However, the canonical systems in [14] are of a very restricted form:
they use unary quantifiers and only one atomic (monadic) formula is allowed in
each clause.

In this paper we make the intuitive notion of a “well-behaved” introduction
rule for (n, k)-ary quantifiers formally precise. We considerably extend the scope
of the characterizations of [1,2,14] to “canonical (n, k)-ary quantificational rules”,
so that both the propositional systems of [1,2] and the restricted quantificational
systems of [14] are specific instances of the proposed definition. However, in con-
trast to the systems in [14], there are no limitations on the size of the clauses
in our formulation. It is then shown that the coherence criterion for the defined
systems remains constructive. Then we turn to the class of canonical systems
with (n, k)-ary quantifiers for k ∈ {0, 1} and show that every coherent canonical
calculus G has a characteristic 2Nmatrix and admits cut-elimination. The other
direction, however, does not hold: we shall see that in contrast to the canonical
systems of [1,14], the ability to eliminate cuts in a canonical calculus G does not
necessarily imply its coherence.

2 Preliminaries

For any n > 0 and k ≥ 0, if a quantifier Q is of arity (n, k), then Qx1...xk

(ψ1, ..., ψn) is a formula whenever x1, ..., xk are distinct variables and ψ1, ..., ψn

are formulas of L.
For interpretation of quantifiers, we use a generalized notion of distribution

functions ([12]). Given a set S, P+(S) is the set of all the nonempty subsets
of S.

Definition 1. Given a set of truth value V, a distribution of a (1,1)-ary quan-
tifier Q is a function λQ : P+(V) → V.

(1,1)-ary distribution quantifiers have been extensively studied and axiomatized
in many-valued logic. See, for instance, [5,13,8].
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In what follows, L is a language with (n, k)-ary quantifiers, that is with quanti-
fiers Q1, ..., Qm with arities (n1, k1), ..., (nm, km) respectively. Denote by Frmcl

L

the set of closed L-formulas and by Trmcl
L the set of closed L-terms.

≡α is the α-equivalence relation between formulas, i.e identity up to the re-
naming of bound variables. We use [ ] for application of functions in the meta-
language, leaving the use of ( ) to the object language. A{t/x} denotes the
formula obtained from A by substituting t for x. Given an L-formula A, Fv[A]
is the set of variables occurring free in A. We denote Qx1...xkA by Q−→x A, and
A(x1, ..., xk) by A(−→x ).

3 Canonical Systems with (n,k)-ary Quantifiers

In this section we formulate a precise definition of a “canonical (n, k)-ary quan-
tificational Gentzen-type rule”.

Using an introduction rule for an (n, k)-ary quantifier Q, we should be able
to derive a sequent of the form Γ ⇒ Qx1...xk(ψ1, ..., ψn), Δ or of the form
Γ, Qx1...xk(ψ1, ..., ψn) ⇒ Δ, based on some information about the subformu-
las of Qx1...xk(ψ1, ..., ψn) contained in the premises of the rule. For instance,
consider the following standard rules for the (1,1)-ary quantifier ∀:

Γ, A{t/w} ⇒ Δ

Γ, ∀w A ⇒ Δ
(∀ ⇒)

Γ ⇒ A{z/w}, Δ

Γ ⇒ ∀w A, Δ
(⇒ ∀)

where t, z are free for w in A and z does not occur free in the conclusion. Our
key observation is that the internal structure of A, as well as the exact term t or
variable w used, are immaterial for the meaning of ∀. What is important here is
the side of the sequent, on which A appears, as well as whether a term variable
t or an eigenvariable z is used.

Hence, the internal structure of the formulas of L can be abstracted by using
a simplified first-order language, i.e. the formulas of L in an introduction rule
of a (n, k)-ary quantifier, will be represented by atomic formulas with predicate
symbols of arity k. The case when the substituted term is any L-term, will be
signified by a constant, and the case when it is a variable satisfying the above
conditions - by a variable. In other words, constants serve as term variables,
while variables are eigenvariables.

Hence, in addition to our original language L with (n, k)-ary quantifiers we
define another, simplified language.

Definition 2. For k ≥ 0, n ≥ 1 and a set of constants Con, Ln
k(Con) is the

language with n k-ary predicate symbols p1, ..., pn and the set of constants Con
(and no quantifiers or connectives).

Definition 3 (Canonical Rules)

1. Let Con be some set of constants. A canonical quantificational rule of arity
(n, k) is an expression of the form {Πi ⇒ Σi}1≤i≤m/C, where m ≥ 0, C is
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either ⇒ Qx1...xk(p1(x1, ..., xk), ..., pn(x1, ..., xk)) or Qx1...xk(p1(x1, ..., xk),
..., pn(x1, ..., xk)) ⇒ for some (n, k)-ary quantifier Q of L and for every
1 ≤ i ≤ m: Πi ⇒ Σi is a clause2 over Ln

k(Con).
2. Let R = Θ/C be an (n, k)-ary canonical rule, where C is of one of the forms

(Q−→x (p1(−→x ), ..., pn(−→x )) ⇒) or (⇒ Q−→x (p1(−→x ), ..., pn(−→x ))).
Let ConΘ be the set of constants occurring in Θ. Let Γ be a set of L-formulas
and z1, ..., zk - distinct variables.
An 〈R, Γ, z1, ..., zk〉-mapping is any function χ from the predicate symbols
and terms of Ln

k (ConΘ) to formulas and terms of L, satisfying the following
conditions:
– For every 1 ≤ i ≤ n, χ[pi] is an L-formula.
– χ[y] is a variable of L.
– χ[x] = χ[y] for every two variables x = y.
– χ[c] is an L-term.
– For every 1 ≤ i ≤ n, every pi(t1, ..., tk) occurring in Θ and every 1 ≤

j ≤ k: χ[tj ] is a term free for zj in χ[pi], and if tj is a variable, then
χ[tj ] does not occur free in Γ ∪ {Qz1...zk(χ[p1], ..., χ[pn])}.

We extend χ to Ln
k(ConΘ)-formulas and sets of Ln

k(Con)-formulas as fol-
lows:

χ[pi(t1, ..., tk)] = χ[pi]{χ[t1]/z1, ..., χ[tk]/zk}
χ[Γ ] = {χ[ψ] | ψ ∈ Γ}

An application of a canonical quantificational rule of arity (n, k)
R = {Πi ⇒ Σi}1≤i≤m/Qx1...xk(p1(x1, ..., xk), ..., pn(x1, ..., xk)) ⇒ is any
inference step of the form:

{Γ, χ[Πi] ⇒ Δ, χ[Σi]}1≤i≤m

Γ, Qz1...zk (χ[p1], ..., χ[pn]) ⇒ Δ

where z1, ..., zk are variables, Γ, Δ are any sets of L-formulas and χ is some
〈R, Γ ∪ Δ, z1, ..., zk〉-mapping.
An application of a canonical quantificational rule of the form
{Πi ⇒ Σi}1≤i≤m/ ⇒ Qx1...xk(p1(x1, ..., xk), ..., pn(x1, ..., xk)) is defined
similarly.

In other words, an application of an (n, k)-ary canonical rule Θ/ ⇒ Q−→z
(p1(−→z ), ..., pn(−→z )) is obtained by “instantiating” the rule, i.e. by replacing ev-
ery Ln

k (ConΘ)-formula pi(c) in Θ by some L-formula ψi{tc/z}, every pj(x) - by
some L-formula ψj{yx/z}, and Q−→z (p1(−→z ), ..., pn(−→z )) - by Qz(ψ1, ..., ψn), with
the restrictions on tc and yx which are specified above.

Below we demonstrate the above definition by a number of examples.

Example 1. The standard right introduction rule for ∧, which can be thought of as
an (2, 0)-ary quantifier is {⇒ p1, ⇒ p2}/ ⇒ p1 ∧ p2. Its application is of the form:

Γ ⇒ ψ1, Δ Γ ⇒ ψ2, Δ

Γ ⇒ ψ1 ∧ ψ2, Δ

2 By a clause we mean a sequent containing only atomic formulas.
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Example 2. The two standard introduction rules for the (1, 1)-ary quantifier ∀
can be formulated as follows:

{p(c) ⇒}/∀x p(x) ⇒ {⇒ p(y)}/ ⇒ ∀x p(x)

Applications of these rules have the forms:

Γ, A{t/w} ⇒ Δ

Γ, ∀w A ⇒ Δ
(∀ ⇒)

Γ ⇒ A{z/w}, Δ

Γ ⇒ ∀w A, Δ
(⇒ ∀)

where z is free for w in A, z is not free in Γ ∪Δ∪{∀wA}, and t is any term free
for w in A.

Example 3. Consider the bounded existential and universal (2, 1)-ary quanti-
fiers ∀ and ∃ (corresponding to ∀x.p1(x) → p2(x) and ∃x.p1(x) ∧ p2(x) used in
syllogistic reasoning). Their corresponding rules can be formulated as follows:

{p2(c) ⇒ , ⇒ p1(c)}/∀x (p1(x), p2(x)) ⇒ {p1(y) ⇒ p2(y)}/ ⇒ ∀x (p1(x), p2(x))

{p1(y), p2(y) ⇒}/∃ x(p1(x), p2(x)) ⇒ {⇒ p1(c) , ⇒ p2(c)}/ ⇒ ∃x(p1(x), p2(x))

Applications of these rules are of the form:

Γ, ψ2{t/z} ⇒ Δ Γ ⇒ ψ1{t/z}, Δ

Γ, ∀z (ψ1, ψ2) ⇒ Δ

Γ, ψ1{y/z} ⇒ ψ2{y/z}, Δ

Γ ⇒ ∀z (ψ1, ψ2), Δ

Γ, ψ1{y/z}, ψ2{y/z} ⇒ Δ

Γ, ∃z (ψ1, ψ2) ⇒ Δ

Γ, ψ1{t/x} ⇒ Δ Γ ⇒ ψ2{t/x}, Δ

Γ ⇒ ∃z (ψ1, ψ2), Δ

where t and y are free for z in ψ1 and ψ2, y does not occur free in Γ ∪ Δ ∪
{∃z(ψ1, ψ2)}.

Example 4. Consider the (2,2)-ary rule

{p1(x, z) ⇒ , p1(y, d) ⇒ p2(c, d)}/ ⇒ Qz1z2(p1(z1, z2), p2(z1, z2))

Its application is of the form:

Γ, ψ1{w1/z1, w2/z2} ⇒ Δ Γ, ψ1{w3/z1, t1/z2} ⇒ Δ, ψ2{t2/z1, t1/z2}
Γ ⇒ Δ, Qz1z2(ψ1, ψ2)

where w1, w2, w3, t1, t2 satisfy the appropriate conditions.

Henceforth, in cases where the set of constants ConΘ is clear from the context
(it is the set of all constants occurring in a canonical rule), we will write Ln

k

instead of Ln
k (ConΘ).

Definition 4. A Gentzen-type calculus G is canonical if in addition to the α-
axiom A ⇒ A′ for A ≡α A′ and the standard structural rules, G has only
canonical quantificational rules, such that the sets of constants and variables of
every two rules are disjoint.
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Although we can define arbitrary canonical systems using our simplified language
Ln

k , our quest is for systems, the syntactic rules of which define the semantic
meaning of logical connectives. Thus we are interested in calculi with a “reason-
able” or “non-contradictory” set of rules, which allows for defining a sound and
complete semantics for the system. This can be captured syntactically by the
coherence criterion of [1,14]:

Definition 5 (Coherence). 3 A canonical calculus G is coherent if for every
two canonical rules of G of the form Θ1/ ⇒ A and Θ2/A ⇒, the set of clauses
Θ1 ∪ Θ2 is classically inconsistent.

Proposition 1 (Decidability of coherence). The coherence of a canonical
calculus G is decidable.

Proof. The question of classical consistency of a finite set of clauses without
quantifiers can be easily shown to be equivalent to satisfiability of a finite set of
universal formulas in a language with no function symbols, which is decidable.

Notation. (Following [1], notations 3-5.) Let −t = f, −f = t and ite(t, A, B) = A,
ite(f, A, B) = B. Let Φ, As (where Φ may be empty) denote ite(s, Φ ∪ {A}, Φ).
For instance, the sequents A ⇒ and ⇒ A are denoted by Aa ⇒ A−a for a = t
and a = f respectively.

According to this notation, a (n, k)-ary canonical rule is of the form

{Σj ⇒ Πj}1≤j≤m/

Q−→z (p1(−→z ), ..., pn(−→z ))s ⇒ Q−→z (p1(−→z ), ..., pn(−→z ))−s

for s ∈ {t, f}. For further abbreviation, we denote such rule by
{Σj ⇒ Πj}1≤j≤m/Q(s).

4 The Semantic Framework

4.1 Non-deterministic Matrices

Our main semantic tool are non-deterministic matrices (Nmatrices), first in-
troduced in [1] and used in [2,14]. These structures are a generalization of the
standard concept of a many-valued matrix, in which the truth-value of a for-
mula is chosen non-deterministically from a given non-empty set of truth-values.
Thus, given a set of truth-values V , we can generalize the notion of a distri-
bution function of an (n, k)-ary quantifier Q (from Definition. 1) to a function
λQ : P+(Vn) → P+(V). In other words, given some distribution Y of n-ary vec-
tors of truth values, the interpretation function non-deterministically chooses
the truth value assigned to Q−→z (ψ1, ..., ψn) out from λQ[Y ] .
3 Strongly related coherence criterions are defined in [11], where linear logic is used

to reason about various sequent systems, and in [6], where a characterization of
cut-elimination is given for a general class of propositional single-conclusion sequent
calculi.
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Definition 6 (Non-deterministic matrix). A non-deterministic matrix
(henceforth Nmatrix) for L is a tuple M =< V , G, O >, where:

– V is a non-empty set of truth values.
– G (designated truth values) is a non-empty proper subset of V.
– O is a set of interpretation functions: for every (n, k)-ary quantifier Q of L,

O includes the corresponding distribution function Q̃M : P+(Vn) → P+(V).

At this point a remark on our treatment of propositional connectives is in order.
In [1,14], an Nmatrix includes an interpretation function �̃ : Vn → P+(V) for
every n-ary connective of the language; given a valuation v, the truth value
v[�(ψ1, ..., ψn)] is chosen non-deterministically from �̃[〈v[ψ1], ..., v[ψn]〉]. In the
definition above, the interpretation of a propositional connective � is a function
of another type: �̃ : P+(Vn) → P+(V). This can be thought as a generalization of
the previous definition, identifying the tuple 〈v[ψ1], ..., v[ψn]〉 with the singleton
{〈v[ψ1], ..., v[ψn]〉}. The advantage of this generalization is that it allows for a
uniform treatment of both quantifiers and propositional connectives.

Definition 7 (L-structure). Let M be an Nmatrix for L. An L-structure for
M is a pair S = 〈D, I〉 where D is a (non-empty) domain and I is a function
interpreting constants, predicate symbols and function symbols of L, satisfying
the following conditions: I[c] ∈ D, I[pn] : Dn → V is an n-ary predicate, and
I[fn] : Dn → D is an n-ary function.
I is extended to interpret closed terms of L as follows:

I[f(t1, ..., tn)] = I[f ][I[t1], ..., I[tn]]

Definition 8 ( L(D)). Let S=〈D, I〉 be an L-structure for an Nmatrix M.
L(D) is the language obtained from L by adding to it the set of individual con-
stants {a | a ∈ D}. S′ = 〈D, I ′〉 is the L(D)-structure, such that I ′ is an
extension of I satisfying: I ′[a] = a.

Given an L-structure S = 〈D, I〉, we shall refer to the extended L(D)-structure
〈D, I ′〉 as S and to I ′ as I when the meaning is clear from the context.

Definition 9 (Congruence of terms and formulas). Let S be an L-structure
for an Nmatrix M. The relation ∼S between terms of L(D) is defined inductively
as follows:

– x ∼S x
– For closed terms t, t′ of L(D): t ∼S t′ when I[t] = I[t′].
– If t1 ∼S t′1, ..., tn ∼S t′n, then f(t1, ..., tn) ∼S f(t′1, ..., t

′
n).

The relation ∼S between formulas of L(D) is defined as follows:

– If t1 ∼S t′1, t2 ∼S t′2, ..., tn ∼S t′n, then p(t1, ..., tn) ∼S p(t′1, ..., t
′
n).

– If ψ1{−→z /−→x } ∼S ϕ1{−→z /−→y }, ..., ψn{−→z /−→x } ∼S ϕn{−→z /−→y }, where −→x =
x1...xk and −→y = y1...yk are distinct variables and −→z = z1...zk are new dis-
tinct variables, then Q−→x (ψ1, ..., ψn) ∼S Q−→y (ϕ1, ..., ϕn) for any (n, k)-ary
quantifier Q of L.
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Lemma 1. Let S be an L-structure for an Nmatrix M. Let ψ, ψ′ be formulas
of L(D). Let t, t′ be closed terms of L(D), such that t ∼S t′.

1. If ψ ≡α ψ′, then ψ ∼S ψ′.
2. If ψ ∼S ψ′, then ψ{t/x} ∼S ψ′{t′/x}.

Definition 10 (Legal valuation). Let S = 〈D, I〉 be an L-structure for an
Nmatrix M. An S-valuation v : Frmcl

L → V is legal in M if it satisfies the
following conditions: v[ψ] = v[ψ′] for every two sentences ψ, ψ′ of L(D), such
that ψ ∼S ψ′, v[p(t1, ..., tn)] = I[p][I[t1], ..., I[tn]], and:

v[Qx1, ..., xk(ψ1, ..., ψn)] ∈

Q̃M[{〈v[ψ1{a1/x1, ..., ak/xk}], ..., v[ψn{a1/x1, ..., ak/xk}]〉 | a1, ..., ak ∈ D}]

for every (n, k)-ary quantifier Q of L.

Note that in case Q is a propositional connective (for k = 0), the function Q̃ is
applied to a singleton, as was explained above.

Definition 11 (Model, M-validity,�M). Let S = 〈D, I〉 be an L-structure
for an Nmatrix M.

1. An M-legal S-valuation v is a model of a sentence ψ in M, denoted by
S, v |=M ψ, if v[ψ] ∈ G.

2. A formula ψ is M-valid in S if for every S-substitution σ and every M-legal
S-valuation v, S, v |=M σ[ψ]. A formula ψ (a set of formulas Γ ) is M-valid
if ψ (every ψ ∈ Γ ) is M-valid in every L-structure for M.

3. A sequent Γ ⇒ Δ is M-valid in S if for every M-legal S-valuation v and
every S-substitution σ: S, v |=M σ[Γ ] implies that there exists some ψ ∈ Δ,
such that S, v |=M σ[ψ]. A sequent is M-valid if it is M-valid in every
structure.

4. The consequence relation �M induced by M is defined as follows: Γ �M Δ
if Γ ⇒ Δ is M-valid.

5. An Nmatrix M is sound for a system G if �G⊆�M. An Nmatrix M is
complete for a system G if �M⊆�G.

Definition 12 (Strong soundness). An Nmatrix M is strongly sound for a
system G if: (i) M is sound for G, and (ii) for every inference rule R of G and
every L-structure S: if the premises of R are M-valid in S, the conclusion of R
is M-valid in S.

Definition 13. An Nmatrix M is a characteristic Nmatrix for a canonical sys-
tem G if �M=�G.

A characteristic Nmatrix M for G is strongly characteristic if it is strongly
sound for G.
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4.2 Semantics for Simplified Languages Ln
k

In addition to L-structures for languages with (n, k)-ary quantifiers, we also use
Ln

k -structures for the simplified languages Ln
k , using which the canonical rules are

formulated. To make the distinction clearer, we shall use the metavariable S for
the former and N for the latter. Since the formulas of Ln

k are always atomic, the
specific 2Nmatrix for which N is defined is immaterial, and can be omitted. We
may even speak of classical validity of sequents over Ln

k . Furthermore, instead
of speaking of M-validity of a set of clauses Θ over Ln

k , we may speak simply of
validity.

Next we define the notion of a distribution of Ln
k -structures.

Definition 14. Let N be a structure for Ln
k . DistN , the distribution of N is

defined as follows:

DistN = {〈I[p1][a1, ..., ak], ..., I[pn][a1, ..., ak]〉 | a1, ..., ak ∈ D}

We say that an Ln
k-structure is E-characteristic if DistN = E.

Note that the distribution of an Ln
0 -structure N is DistN = {〈I[p1], ..., I[pn]〉}

and so it is always singleton. Furthermore, the validity of a set of clauses over
Ln

0 can be reduced to propositional satisfiability as stated in the following
lemma.

Lemma 2. For every Ln
0 -structure N , such that DistN = {〈a1, ..., an〉}, let

vDistN be any propositional valuation satisfying v[pi] = ai. A set of clauses
Θ is valid in a DistN -characteristic Ln

0 -structure N iff vDistN propositionally
satisfies Θ.

Now we turn to the case k = 1. In this case it is convenient to define a special
kind of Ln

1 -structures which we call canonical structures, which will be sufficient
to reflect the behavior of all possible Ln

1 -structures.

Definition 15. Let E ∈ P+({t, f}n). A Ln
1 -structure N = 〈D, I〉 is E-canonical

if D = E and for every b = 〈a1, ..., an〉 ∈ D and every 1 ≤ i ≤ n: I[pi][b] = ai.

Clearly, every E-canonical Ln
1 -structure is E-characteristic.

Lemma 3. Let Θ be a set of clauses over Ln
1 , which is valid in a structure

N = 〈D, I〉. Then there exists a DistN -canonical structure N ′ in which Θ is
valid.

Proposition 2. Let E ∈ P+({t, f}n). For a finite set of clauses Θ over Ln
k , the

question whether Θ is valid in a E-characteristic structure is decidable.

5 Canonical Systems with (n,k)-ary Quantifiers for
k ∈ {0, 1}

Now we turn to the class of systems with (n, k)-ary quantifiers for k ∈ {0, 1}
and n ≥ 1. Henceforth, unless stated otherwise, assume that k ∈ {0, 1}. For a
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uniform treatment of both k = 0 and k = 1, we use the following notation. For
any variable x and any constant c, let x0 and c0 denote the empty string, and
x1, c1 denote the strings ‘x’ and ‘c’ respectively. When we write Qxk(ψ1, ..., ψn),
we mean Qx(ψ1, ..., ψn) if k = 1 and Q(ψ1, ..., ψn) if k = 0; when we write
ψ{t/xk}, we mean ψ{t/x} for k = 1, and ψ for k = 0.

In this section we show that any coherent canonical calculus G has a charac-
teristic 2Nmatrix and admits cut-elimination. We start by defining the notion
of suitability for G.

Definition 16 (Suitability for G). Let G be a canonical calculus over L. A
2Nmatrix M is suitable for G if for every (n, k)-ary canonical rule Θ/A−s ⇒ As

of G, where s ∈ {t, f} and A = Qxk(p1(xk), ..., pn(xk)) it holds that for every
Ln

k -structure N in which Θ is valid: Q̃M[DistN ] = {s}.

Next we prove that any 2Nmatrix M suitable for G is strongly sound for G. But
first we transform G into a canonical calculus G′, satisfying a certain property
defined below.

Lemma 4 (Elimination of constants). Let G be a canonical calculus with
a canonical (1,n)-ary rule R = Θ/Q(s) for some s ∈ {t, f}, where there are
two clauses of the form Σ1, pi(c) ⇒ Π1 and Σ2 ⇒ pi(c), Π2 in Θ. Let R′ =
Θ′/Q(s), where Θ′ is obtained from Θ by replacing these two clauses for the
clause Σ1, Σ2 ⇒ Π1, Π2. Let G′ be the calculus obtained from G by replacing
R for R′. Then any 2Nmatrix strongly sound for G′, is also strongly sound
for G.

Corollary 1. Let G be a canonical calculus. Then there exists a calculus G′,
such that (i) any 2Nmatrix strongly sound for G′, is also strongly sound for G,
and (ii) for every (n,1)-ary rule Θ/Q(s) of G′ and every clause Σ1, pi(c)r ⇒
Π1, pi(c)−r ∈ Θ: there is no clause of the form Σ2, pi(c)−r ⇒ Π2, pi(c)r in Θ.

Proof. Easily follows by repeatedly applying lemma 4.

Theorem 1. Let G be a canonical calculus over L and M - a 2Nmatrix suitable
for G. Then M is strongly sound for G.

Proof. Clearly, we may assume that G satisfies condition (ii) from corollary 1.
Let S be an L-structure. Let R be an (n, k)-ary rule R = {Σj ⇒ Πj}1≤j≤m/ ⇒
Qxk(p1(xk), ..., pn(xk)) of G′. Consider an application of R:

{Γ, χ[Σj ] ⇒ χ[Πj ], Δ}1≤j≤m

Γ ⇒ Δ, Qzk(χ[p1], ..., χ[pn])

where χ is some 〈R, Γ ∪ Δ, zk〉-mapping. It suffices to show that if the premises
are M-valid in S, then the conclusion is M-valid in S. Let σ be an S-substitution
and v an M-legal valuation, such that S, v |=M σ[Γ ] and for every ψ ∈ Δ:
S, v |=Mσ[ψ]. Denote by

−→
ψ the L-formula obtained from a formula ψ by substi-

tuting every free occurrence of w ∈ Fv[ψ] − {zk} for σ[w]. Let

E = {〈v[
−−−→
χ[p1]{a/zk}], ..., v[

−−−→
χ[pn]{a/zk}]〉 | a ∈ D}
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Define the Ln
k -structure N = 〈D′, I ′〉: D = D′ and I ′ is defined as follows:

– For every pi(c) ∈ ite(s, Σj, Πj) for some 1 ≤ j ≤ m and s ∈ {t, f}: if there
is some a ∈ D, such that v[

−−→
χ[pi]{a/z}] = −s, choose I ′[c] to be any such a

(note that in this case Πj ⇒ Σj becomes valid); otherwise, choose I ′[c] to
be any a ∈ D. It is important to stress that this is well-defined due to the
special property of G′, namely that pi(c) cannot occur on two different sides
of a clause.

– For every a ∈ D: I ′[pi][ak] = v[
−−→
χ[pi]{a/zk}]

It is easy to show that {Σj ⇒ Πj}1≤j≤m is valid in N . Obviously, DistN = E
and since M is suitable for G: Q̃M[E ] = {t} and so v[σ[Qz(χ[p1], ..., χ[pn])]] = t
and the conclusion of the application is M-valid in S. ��
Now we come to the construction of a characteristic 2Nmatrix for a coherent
canonical calculus.

Definition 17. Let G be a coherent canonical calculus. The Nmatrix MG for
L is defined as follows. For every (n, k)-ary quantifier Q of L, every s ∈ {t, f}
and every E ∈ P+({t, f}n):

Q̃MG [E ] =

⎧
⎪⎨

⎪⎩

{s} if Θ/Q(s) ∈ G and
Θ is valid in some E − characteristic structure

{t, f} otherwise

First let us show that MG is well-defined. Assume by contradiction that there
are two rules Θ1/ ⇒ A and Θ2/A ⇒, such that both Θ1 and Θ2 are valid in some
E-characteristic structures N1 = 〈D1, I1〉, N2 = 〈D2, I2〉 respectively. If k = 0,
by lemma 2, the set of clauses Θ1 ∪Θ2 is propositionally satisfiable by vE and is
thus classically consistent, in contradiction to the coherence of G.

If k = 1, by lemma 3 there are E-canonical structures N ′
1, N ′

2 in which Θ1, Θ2
are valid. Recall that the only difference between different E-canonical structures
is in the interpretation of constants, and since the sets of constants occurring in
Θ1 and Θ2 are disjoint, an E-canonical structure N ′ = 〈D′, I ′〉 (for the extended
language containing the constants of both Θ1 and Θ2) can be constructed, in
which Θ1 ∪ Θ2 are valid. Thus the set Θ1 ∪ Θ2 is classically consistent, in con-
tradiction to the coherence of G.

Let us demonstrate the construction of a characteristic 2Nmatrix for some
simple coherent canonical calculi.

Example 5. It is easy to see that for any canonical coherent calculus G including
the standard (1,1)-ary rules for ∀ and ∃ from Example 2:

∀̃MG [{t, f}] = ∀̃MG [{f}] = ∃̃MG [{f}] = {f}

∀̃MG [{t}] = ∃̃MG [{t, f}] = ∃̃MG [{t}] = {t}
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Example 6. Consider the canonical calculus G′ consisting of the following two
(1, 2)-ary rules from Example 3:

{p1(y) ⇒ p2(y)}/ ⇒ ∀x (p1(x), p2(x))

and
{⇒ p1(c) , ⇒ p2(c)}/ ⇒ ∃x(p1(x), p2(x))

It is easy to see that G′ is coherent. The 2Nmatrix MG′ is defined as follows for
every H ∈ P+({t, f}2):

∀̃[H ] =

{
{t} if 〈t , f 〉 ∈ H
{t, f} otherwise

∃̃[H ] =

{
{t} if 〈t , t〉 ∈ H
{t, f} otherwise

Remark. The construction of MG above is much simpler than the construc-
tions carried out in [1,14]: a canonical calculus there is first transformed into an
equivalent normal form calculus, which is then used to construct the character-
istic Nmatrix. The idea is to transform the calculus so that each rule dictates
the interpretation for only one E . However, the above definitions show that the
transformation into normal form is actually not necessary and we can construct
MG directly from G.

Now we come to the main theorem, establishing that MG is sound and com-
plete for any coherent calculus G.

Theorem 2 (Soundness and cut-free completeness). Let G be a coherent
canonical calculus. Then a sequent Γ ⇒ Δ satisfying the free-variable condition4

has a cut-free proof in G iff Γ �MG Δ.

Proof. Soundness: It is easy to see that MG is suitable for G. By theorem 1,
MG is strongly sound for G, and thus �G⊆�MG .

Cut-free completeness: Let Γ ⇒ Δ be a sequent satisfying the free-variable
condition. Suppose that Γ ⇒ Δ has no cut-free proof in G. We will show that
it is not MG-valid.

It is easy to see that we can limit ourselves to the language L∗, which is a
subset of L, consisting of all the constants and predicate and function symbols,
occurring in Γ ⇒ Δ. Let T be the set of all the terms in L∗ which do not
contain variables occurring bound in Γ ⇒ Δ. It is a standard matter to show
that Γ, Δ can be extended to two (possibly infinite) sets Γ ′, Δ′ (where Γ ⊆ Γ ′

and Δ ⊆ Δ′), satisfying the following properties:

1. For every Γ1 ⊆ Γ ′ and Δ1 ⊆ Δ′, Γ1 ⇒ Δ1 does not have a cut-free proof in
G.

2. There are no A ∈ Γ ′ and B ∈ Δ′, such that A ≡α B.
3. If {Πj ⇒ Σj}1≤j≤m/Q(r) is an (n, k)-ary rule of G and

Qzk (A1, ..., An) ∈ ite(r, Δ′, Γ ′), then there is some 1 ≤ j ≤ m, such that:

4 By the free-variable condition we mean that the set of bound variables of Γ ∪ Δ is
disjoint from its set of free variables.
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– If pi(ck) ∈ ite(r, Πj , Σj) for some 1 ≤ i ≤ n, then
Ai{t/zk} ∈ ite(r, Γ ′, Δ′) for every t ∈ T.

– If pi(yk) ∈ ite(r, Πj, Σj) for some 1 ≤ i ≤ n, then there exists some
t ∈ T, such that Ai{t/zk} ∈ ite(r, Γ ′, Δ′).

Note that for the case of k = 1, t is free for z in Ai by the free-variable
condition.

Let S = 〈T, I〉 be the L∗-structure defined as follows:

– I[c] = c for every constant c of L∗.
– I[p][t1, ..., tn] = t iff p(t1, ..., tn) ∈ Γ ′ for every n-ary predicate symbol p.
– I[f ][t1, ..., tn] = f(t1, ..., tn) for every n-ary function symbol f .

Let σ∗ be any S-substitution satisfying σ∗[x] = x for every x ∈ T. (Note that
every x ∈ T is also a member of the domain and thus has an individual name
referring to it in L∗(D).)

It is easy to show that (i) I∗[σ∗[t]] = t for every t ∈ T, and (ii) for every
A, B ∈ Γ ′ ∪ Δ′: if σ∗[A] ∼S σ∗[B], then A ≡α B.

Define the S-valuation v as follows:

– v[p(t1, ..., tn)] = I[p][I[t1], ..., I[tn]].
– For every (n, k)-ary quantifier Q, if there is some C ∈ Γ ′ ∪ Δ′, such that

σ∗[C] ≡α Qxk(ψ1, ..., ψn), then v[Qxk(ψ1, ..., ψn)] = t iff C ∈ Γ ′. Otherwise
v[Qxk(ψ1, ..., ψn)] = t iff Q̃[{〈v[ψ1{a/xk}], ..., v[ψn{a/xk}]〉 | a ∈ D}] = {t}.

Lemma 5. 1. v is legal in MG.
2. For every ψ ∈ Γ ′ ∪ Δ′: v(σ∗[ψ]) = t iff ψ ∈ Γ ′.

Since v is legal in MG, Γ ⊆ Γ ′ and Δ ⊆ Δ′, by the above lemma v refutes
Γ ⇒ Δ. ��

Corollary 2. If G is coherent, then MG is strongly characteristic for G.

Corollary 3. For any canonical calculus G, the following two statements are
equivalent:

1. G has a strongly characteristic 2Nmatrix.
2. G is coherent.

Proof. The proof of (1⇒2) is easy and is left to the reader. (2⇒1) follows from
corollary 2.

Corollary 4. The existence of a strongly characteristic 2Nmatrix for a canon-
ical calculus G is decidable.

Remark. It is important to note that the coherence of G is not a necessary
condition for the existence of a characteristic 2Nmatrix for G and, consequently,
for cut-elimination. Consider, for instance the canonical calculus G1 consisting
of the following two inference rules:
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(1) {p1(y) ⇒ p2(y) , p1(c1) ⇒ , p2(c1) ⇒ ,

p1(c2) ⇒ , ⇒ p2(c2) , ⇒ p1(c3) , ⇒ p2(c3)}/ ⇒ Qz(p1(z), p2(z))

(2) {p1(y) ⇒ p2(y) , p1(c4) ⇒ , p2(c4) ⇒ ,

p1(c5) ⇒ , ⇒ p2(c5) , ⇒ p1(c6) , ⇒ p2(c6)}/Qz(p1(z), p2(z)) ⇒
It is easy to see that G1 is not coherent, but the only sequents provable in it
are logical axioms, and so G1 has a characteristic 2Nmatrix and admits cut-
elimination. This is in contrast to the systems in [1,14], where the fact that a
canonical calculus admits cut-elimination implies that G is coherent.

6 Summary and Further Research

In this paper we have considerably extended the characterization of canonical
calculi of [1,14] to (n, k)-ary quantifiers. For the case of k ∈ {0, 1}, we have
shown that any coherent calculus admits cut-elimination and has a characteris-
tic 2Nmatrix, but the converse does not necessary hold (unlike in [1,14]). In fact,
a calculus is coherent iff it has a strongly characteristic 2Nmatrix. In addition to
some proof-theoretical results for a natural type of multiple conclusion Gentzen-
type systems with (n, 1)-ary quantifiers, our work also provides further evidence
for the thesis that the meaning of a logical constant is given by its introduc-
tion (and “elimination”) rules . We have shown that at least in the framework
of multiple-conclusion consequence relations, any “reasonable” set of canonical
quantificational rules completely determines the semantics of the quantifier.

Some of the most immediate research directions are:

1. Defining an exact criterion for the ability to eliminate cuts in canonical
systems and developing a syntactic method for cut-elimination for the case
of k ∈ {0, 1}, i.e. a stepwise transformation of any derivation of a canonical
calculus into a cut-free derivation, possibly along the lines of [3].

2. Developing a general theory, extending the results of the previous section to
the case of k > 1. This might lead to new insights on Henkin quantifiers and
other important extensions, such as Transitive Closure operations. However,
already for the simplest quantifiers this is not straightforward. First of all, the
coherence of a canonical calculus G with general quantifiers does not imply
that a 2Nmatrix suitable for G exists. For instance, consider the calculus G,
consisting of the following two (1,2)-ary rules:

{p(c, x) ⇒}/ ⇒ Qz1z2p(z1, z2) {⇒ p(y, d)}/Qz1z2p(z1, z2) ⇒

G is coherent, but it is easy to see that MG is not well-defined in this case.
Secondly, even if a 2Nmatrix M suitable for G does exist, it is not neces-
sarily sound for G. Therefore, a more complex interpretation of quantifiers
is needed, which in its turn will lead to various extensions of the simpli-
fied language Ln

k (e.g. adding function symbols), and the cost of losing the
decidability of the coherence criterion in this case seems inevitable.
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