
Interpolation in Local Theory Extensions

Viorica Sofronie-Stokkermans

Max-Planck-Institut für Informatik,
Stuhlsatzenhausweg 85, Saarbrücken, Germany

sofronie@mpi-inf.mpg.de

Abstract. In this paper we study interpolation in local extensions of
a base theory. We identify situations in which it is possible to obtain
interpolants in a hierarchical manner, by using a prover and a proce-
dure for generating interpolants in the base theory as black-boxes. We
present several examples of theory extensions in which interpolants can
be computed this way, and discuss applications in verification, knowl-
edge representation, and modular reasoning in combinations of local
theories.

1 Introduction

Many problems in mathematics and computer science can be reduced to proving
satisfiability of conjunctions of (ground) literals modulo a background theory.
This theory can be a standard theory, the extension of a base theory with ad-
ditional functions, or a combination of theories. It is therefore very important
to find efficient methods for reasoning in standard as well as complex theories.
However, it is often equally important to find local causes for inconsistency.
In distributed databases, for instance, finding local causes of inconsistency can
help in locating errors. Similarly, in abstraction-based verification, finding the
cause of inconsistency in a counterexample helps to rule out spurious counter-
examples.

The problem can be formally described as follows: Let A and B be sets of
ground clauses in a theory T . Assume that A ∧ B is inconsistent with respect
to T . Can we find a ground formula I, containing only constants and function
symbols common to A and B, such that I is a consequence of A w.r.t. T , and
B ∧ I is inconsistent modulo T ? If so, I is an interpolant of A and B, and can
be regarded as a “local” explanation for the inconsistency of A ∧ B.

In this paper we study possibilities of obtaining ground interpolants in theory
extensions. We identify situations in which it is possible to do this in a hierar-
chical manner, by using a prover and a procedure for generating interpolants in
the base theory as “black-boxes”.

The main contributions of the paper are summarized below:

– First, we identify new examples of local theory extensions. In these, hierar-
chical reasoning is possible.

– Second, we present a method for generating interpolants in extensions of a
base theory by means of sets of clauses. The method is general, in the sense
that it can be applied to an extension T1 of a theory T0 provided that:

U. Furbach and N. Shankar (Eds.): IJCAR 2006, LNAI 4130, pp. 235–250, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

236 V. Sofronie-Stokkermans

(a) (i) T0 is convex; (ii) T0 is P -interpolating for a specified set P of pred-
icates (cf. the definition in Section 4.2); (iii) in T0 every inconsistent
conjunction of ground clauses A ∧ B allows a ground interpolant.

(b) the extension clauses have a special form (i.e. type (3) in Section 4.2).
The method is hierarchical : the problem of finding interpolants in T1 is
reduced to that of finding interpolants in the base theory T0. We can use the
properties of T0 to control the form of interpolants in the extension T1.

– Third, we identify examples of theory extensions with properties (a) and (b).
– Fourth, we discuss application domains such as: modular reasoning in com-

binations of local theories (characterization of the type of information which
needs to be exchanged), reasoning in distributed databases, and verification.

The existence of ground interpolants has been studied in several recent papers,
mainly motivated by abstraction-refinement based verification [3,4,5,10]. In [4]
McMillan presents a method for generating ground interpolants from proofs in
an extension of linear rational arithmetic with uninterpreted function symbols.
The use of free function symbols is sometimes too coarse (cf. the example in
Section 1.1). Here, we show that similar results also hold for other types of
extensions of a base theory, provided that the base theory has some of the prop-
erties of linear rational arithmetic. Another method for generating interpolants
for combinations of theories over disjoint signatures from Nelson-Oppen-style
unsatisfiability proofs was proposed by Yorsh and Musuvathi in [10]. Although
we impose similar conditions on T0, our method is orthogonal to theirs, as it also
allows to consider combinations of theories over non-disjoint signatures.

Structure of the paper: In Section 1.1 we provide motivation for the study. In Sec-
tion 2 the basic notions needed in the paper are introduced. Section 3 contains
results on local theory extensions. In Section 4 local extensions allowing hierar-
chical interpolation are identified and some applications (modular reasoning in
combinations of theories, reasoning in complex databases, and verification) are
presented. We end with conclusions and plans for future work.

1.1 Motivation

We present two fields of applications: knowledge representation and verification.

Knowledge representation. Consider a simple (and faulty) terminological
database for chemistry, consisting of two extensions of a common kernel Chem
(basic chemistry): AChem (anorganic chemistry) and BioChem (biochemistry).
Assume that Chem contains a set C0 = {process, reaction, substance, organic,
anorganic} of concepts and a set Γ0 of constraints:

Γ0 = {organic ∧ anorganic = ∅, organic ⊆ substance, anorganic ⊆ substance}

Let AChem be an extension of Chem with concepts C1 = {cat-oxydation,
oxydation}, a rôle R1 = {catalyzes}, terminology T1 and constraints Γ1:

T1 = {cat-oxydation = substance ∧ ∃catalyzes(oxydation)}
Γ1 = {reaction ⊆ oxydation, cat-oxydation ⊆ anorganic, cat-oxydation �= ∅}.

Interpolation in Local Theory Extensions 237

Let BioChem be an extension of Chem with a concept C2 = {enzyme}, rôles
R2 = {produces, catalyzes}, terminology T2 and constraints Γ2:
T2 = {reaction=process ∧ ∃produces(substance), enzyme = organic ∧ ∃catalyzes(reaction)}
Γ2 = {enzyme �= ∅}

The combination of Chem, AChem and BioChem is inconsistent (we wrongly
added to Γ1 the constraint reaction ⊆ oxydation instead of oxydation ⊆ reaction).
This can be proved as follows: By results in ([7], p.156 and p.166) the combination
of Chem, AChem and BioChem is inconsistent iff

Γ0 ∧ (T1 ∧ Γ1) ∧ (T2 ∧ Γ2) |=T ⊥ (1)

where T is the extension SLat ∧
⋃

f∈R1∪R2
Monf of the theory of semilattices

with first element 0 and monotone function symbols corresponding to ∃r for
each rôle r ∈ R1 ∪ R2. Using, for instance, the hierarchical calculus presented in
[8] (see also Section 3), the contradiction can be found in polynomial time. In
order to find the mistake we look for an explanation for the inconsistency in the
common language of AChem and BioChem. (Common to AChem and BioChem
are the concepts substance, organic, anorganic, reaction and of rôle catalyzes.) This
can be found by computing an interpolant for the conjunction in (1) in the
theory of semilattices with monotone operators. In this paper we show how such
interpolants can be found in an efficient way.

Verification. Consider a water level controller modeled as follows: Changes in
the water level by inflow/outflow are represented as functions in, out, depending
on time t and water level L. Alarm and overflow levels Lalarm<Loverflow are known.

valve := 0

valve := 1

L > L
alarm

L > L
alarm

L:= in(out(L, t), g(t))

t:= h(g(t))

L:= in(L, t)

t:= k(t)

• If L ≥ Lalarm then a valve is opened until time g(t),
the water level changes by L′ := in(out(L, t), g(t))
and time by t′ := h(g(t)).

• If L < Lalarm then the valve is closed; the water le-
vel changes by L′ := in(L, t) and time by t′ := k(t).

We want to show that if initially L < Lalarm then
the water level always remains below Loverflow.

In [4], McMillan proposed a method in which interpolation (e.g. for linear
arithmetic + free functions) is used for abstraction refinement. If in, out are free
functions then L<Lalarm ∧ L′≈in(L, t) ∧ t′≈k(L) ∧ ¬L′≤Loverflow is satisfiable, so
there exists a path from an initial state to an error state. To prove safety, we
need to impose restrictions on in and out, e.g.:

∀L, t (L<Lalarm→in(L, t)<Loverflow), ∀L, t (L<Loverflow→out(L, t)<Lalarm) (2)

The method wepresent here allowsus to efficiently generate ground interpolants
for extensions with functions satisfying condition (2), and also for a whole class of
more general axioms. An immediate application is to verification by abstraction-
refinement; there are other potential applications (e.g. goal-directed overapproxi-
mation for achieving faster termination, or automatic invariant generation).

238 V. Sofronie-Stokkermans

2 Preliminaries

Theories and models. Theories can be regarded as sets of formulae or as sets
of models. In this paper, whenever we speak about a theory T – if not otherwise
specified – we implicitly refer to the set Mod(T) of all models of T . Let T be a
theory in a given signature Π = (Σ, Pred), where Σ is a set of function symbols
and Pred a set of predicate symbols. Let φ and ψ be formulae over the signature
Π with variables in a set X . The notion of truth of formulae and of entailment is
the usual one in logic. We say that φ is true w.r.t. T (denoted |=T φ) if φ is true
in each model M of T . φ is satisfiable w.r.t. T if there exists at least one model
M of T and an assignment β : X → M such that (M, β) |= φ. Otherwise we
say that φ is unsatisfiable. We say that φ entails ψ w.r.t. T (denoted φ |=T ψ) if
for every model M of T and every valuation β, if (M, β) |= φ then (M, β) |= ψ.
Note that φ is unsatisfiable w.r.t. T iff φ |=T ⊥.

Interpolation. A theory T has interpolation if, for all formulae φ and ψ in the
signature of T , if φ |=T ψ then there exists a formula I containing only symbols
which occur in both φ and ψ such that φ |=T I and I |=T ψ. First order logic
has interpolation but even if φ and ψ are e.g. conjunctions of ground literals I
may still be an arbitrary formula. It is often important to identify situations in
which ground clauses have ground interpolants.

We say that a theory T has the ground interpolation property (or, shorter,
that T has ground interpolation) if for all ground clauses A(c, d) and B(c, e), if
A(c, d)∧B(c, e) |=T ⊥ then there exists a ground formula I(c), containing only the
constants c occurring both in A and B, such that A(c, d) |=T I(c) and B(c, e) ∧
I(c) |=T ⊥ .

There exist results which relate ground interpolation to amalgamation or the
injection transfer property [2,1,9] and thus allow us to recognize many theories
with ground interpolation. Thus it can be proved that the following equational
classes have ground interpolation: (abelian) groups, partially-ordered sets, lat-
tices, semilattices, distributive lattices and Boolean algebras. However, in many
applications one needs to consider extensions or combinations of theories, and
proving amalgamation properties can be complicated. On the other hand, just
knowing that ground interpolants exist is not sufficient: we would like to con-
struct the interpolants fast, and to use the advantages of modular or hierarchi-
cal reasoning for constructing them. This is why in this paper we aim at giving
methods for constructing interpolants in a hierarchical way.

3 Local Theory Extensions

Let T0 be a theory with signature Π0 = (Σ0, Pred). We consider extensions T1
of T0 with signature Π = (Σ, Pred), where Σ = Σ0 ∪ Σ1 (i.e. the signature is
extended by new function symbols) and T1 is obtained from T0 by adding a set
K of (universally quantified) clauses. Thus, Mod(T1) consists of all Π-structures
which are models of K and whose reduct to Π0 is a model of T0.

Interpolation in Local Theory Extensions 239

A partial Π-structure is a structure M = (M, {fM}f∈Σ, {PM}P∈Pred), where
M �= ∅ and for every f ∈ Σ with arity n, fM is a partial function from Mn

to M . The notion of evaluating a term t with respect to a variable assignment
β : X → M for its variables in a partial structure M is the same as for total
algebras, except that this evaluation is undefined if t = f(t1, . . . , tn) and at least
one of β(ti) is undefined, or else (β(t1), . . . , β(tn)) is not in the domain of fM .
Let M be a partial Π-structure, C a clause and β : X → M . Then (M, β) |=w C
iff either (i) for some term t in C, β(t) is undefined, or else (ii) β(t) is defined
for all terms t of C, and there exists a literal L in C s.t. β(L) is true in M. M
weakly satisfies C (notation: M |=w C) if (M, β) |=w C for all assignments β.
M weakly satisfies a set of clauses K (M |=w K) if M |=w C for all C ∈ K.

3.1 Definition and Examples

Let K be a set of (universally quantified) clauses in the signature Π = (Σ, Pred),
where Σ = Σ0∪Σ1. In what follows, when referring to sets G of ground clauses
we assume they are in the signature Πc = (Σ∪Σc, Pred) where Σc is a set of new
constants. An extension T0 ⊆ T0 ∪ K is local if, in order to prove unsatisfiability
of a set G of clauses with respect to T0 ∪ K, it is sufficient to use only those
instances K[G] of K in which the terms starting with extension functions are
in the set st(G, K) of ground terms which already occur in G or K. Formally,
T0 ⊆ T1=T0 ∪ K is a local extension if it satisfies condition (Loc):

(Loc) For every set G of ground clauses, G |=T1⊥ iff there is no partial
Πc-structure P such that P|Π0 is a total model of T0, all terms
in st(K, G) are defined in P , and P weakly satisfies K[G] ∧ G.

In [8] we gave several examples of local theory extensions: any extension of a
theory with free functions; extensions with selector functions for a constructor
which is injective in the base theory; extensions of R with a Lipschitz function
in a point x0; extensions of partially ordered theories – in a class Ord consisting
of the theories of posets, (dense) totally-ordered sets, semilattices, (distributive)
lattices, Boolean algebras, or R

∞ – with a monotone function f , i.e. satisfying:

(Monf)
n∧

i=1

xi ≤ yi → f(x1, . . . , xn) ≤ f(y1, . . . , yn),

Below, we give some additional examples with particular relevance in
verification.

Theorem 1. The following theory extensions are local:

(1) Extensions of any theory T0 for which ≤ is reflexive with functions satisfying
boundedness (Boundt

f) or guarded boundedness (GBoundt
f) conditions

(Boundt
f) ∀x1, . . . , xn(f(x1, . . . , xn) ≤ t(x1, . . . , xn))

(GBoundt
f) ∀x1, . . . , xn(φ(x1, . . . , xn) → f(x1, . . . , xn) ≤ t(x1, . . . , xn)),

where t(x1, . . . , xn) is a term in the base signature Π0 and φ(x1, . . . , xn) a con-
junction of literals in the signature Π0, whose variables are in {x1, . . . , xn}.

240 V. Sofronie-Stokkermans

(2) Extensions of any theory in Ord with Monf ∧ Boundt
f , if t(x1, . . . , xn) is

monotone in the variables x1, . . . , xn.
(3) Extensions of any theory in Ord with functions satisfying Leq(f, g) ∧ Monf .

(Leq(f, g)) ∀x1, . . . , xn(
∧n

i=1 xi ≤ yi → f(x1, . . . , xn) ≤ g(y1, . . . , yn))
(4) Extensions of any totally-ordered theory in Ord with functions satisfying

SGc(f, g1, . . . , gn) ∧ Mon(f, g1, . . . , gn).
(SGc(f, g1, . . . , gn)) ∀x1, . . . , xn, x(

∧n
i=1 xi ≤ gi(x) → f(x1, . . . , xn) ≤ x)

(5) Extensions of theories in Ord with functions satisfying SGc(f, g1)∧Mon(f, g1).

3.2 Hierarchic Reasoning in Local Theory Extensions

Let T0 ⊆ T1=T0 ∪ K be a local theory extension. To check the satisfiability of a
set G of ground clauses w.r.t. T1 we can proceed as follows (for details cf. [8]):

Step 1: Use locality. By the locality condition, we know that G is unsatisfiable
w.r.t. T1 iff K[G] ∧ G has no weak partial model in which all the subterms of
K[G] ∧ G are defined, and whose restriction to Π0 is a total model of T0.

Step 2: Flattening and purification. As in K[G] and G the functions in Σ1 have
as arguments only ground terms, K[G] ∧ G can be purified and flattened by
introducing new constants for the arguments of the extension functions as well
as for the (sub)terms t = f(g1, . . . , gn) starting with extension functions f ∈ Σ1,
together with new corresponding definitions ct ≈ t. The set of clauses thus
obtained has the form K0 ∧ G0 ∧ D, where D is a set of ground unit clauses of
the form f(c1, . . . , cn) ≈ c, where f ∈ Σ1 and c1, . . . , cn, c are constants, and
K0, G0 are clauses without function symbols in Σ1.

Step 3: Relational translation. We represent the function symbols in Σ1 as par-
tial, but functional relations. We thus obtain a relational translation D∗ of D,
in which each literal f(c1, . . . , cn) ≈ c is replaced by rf (c1, . . . , cn, c), and corre-
sponding functionality axioms Fun(D∗) are added.

Step 4: Reduction to testing satisfiability in T0. We reduce the problem of testing
satisfiability of G w.r.t. T1 to a satisfiability test in T0 as shown in Theorem 2.

Theorem 2 ([8]). With the notation above, the following are equivalent:

(1) T0 ∧ K ∧ G has a model.
(2) T0∧K[G]∧G has a weak partial model where all terms in st(K, G) are defined.
(3) T0∧K0∧G0∧D has a weak partial model with all terms in st(K, G) defined.
(4) T0 ∧ K0 ∧ G0 ∧ Fun(D∗) ∧ D∗ has a relational model, where

Fun(D∗) = {
n∧

i=1

ci ≈ di ∧ rf (c1, . . . , cn, c) ∧ rf (d1, . . . , dn, d) → c ≈ d |
f ∈ Σ1, rf (c1, . . . , cn, c), rf (d1, . . . , dn, d) ∈ D∗}.

(5) T0∧K0∧G0∧N0 has a (total) Σ0-model, where

N0 =
∧

{
n∧

i=1

ci≈di→c≈d | f(c1, . . . , cn)≈c, f(d1, . . . , dn)≈d ∈ D}.

Interpolation in Local Theory Extensions 241

Example 1. Let T1 = SLat ∪ SGc(f, g) ∪ Mon(f, g) be the extension of the the-
ory of semilattices with two monotone functions f, g satisfying the semi-Galois
condition SGc(f, g). Consider the ground formulae A,B in the signature of T1:

A : d ≤ g(a) ∧ a ≤ c B : b ≤ d ∧ f(b) �≤ c.

where c and d are shared constants. By Theorem 1(5), T1 is a local extension of
the theory of semilattices. To prove that A ∧ B |=T1⊥ we proceed as follows:

We purify and flatten the formula A ∧ B by replacing the ground terms start-
ing with f and g with new constants. The clauses are separated into a part
containing definitions for terms starting with extension functions, DA ∧ DB,
and a conjunction of formulae in the base signature, A0 ∧ B0. As the extension
SLat ⊆ T1 is local, A ∧ B |=T1⊥ iff A0 ∧ B0 ∧ N0 ∧ Mon0 ∧ SGc0 is unsatisfiable
w.r.t. SLat, where N0 consists of the flattened form of those instances of the
congruence axioms containing only f - and g-terms which occur in DA or DB,
and Mon0 ∧ SGc0 consists of those instances of axioms in Mon(f, g) ∧ SGc(f, g)
containing only f - and g-terms which occur in DA or DB.

Extension Base
DA ∧ DB A0 ∧ B0 ∧ N0 ∧ Mon0 ∧ SGc0

a1 ≈ g(a) A0 = d ≤ a1 ∧ a ≤ c NA ∧ MonA = a � a → a1 � a1, � ∈ {≈, ≤}
b1 ≈ f(b) B0 = b ≤ d ∧ b1 �≤ c NB ∧ MonB = b � b → b1 � b1, � ∈ {≈, ≤}

SGc0 = b ≤ a1 → b1 ≤ a

It is easy to see that A0 ∧ B0 ∧ N0 ∧ Mon0 ∧ SGc0 is unsatisfiable w.r.t. T0:
A0 ∧ B0 entails b ≤ a1, together with SGc0 this yields b1 ≤ a, which together
with a ≤ c and b1 �≤ c leads to a contradiction.

4 A Hierarchical Interpolation Procedure

Let T0 ⊆ T1 = T0 ∪ K be a theory extension by means of a set of clauses K.
Assume that A ∧ B |=T1⊥, where A and B are two sets of ground clauses. Our
goal is to find a ground interpolant, that is a ground formula I containing only
constants and extension functions which are common to A and B such that

A |=T1 I and I ∧ B |=T1 ⊥.

Flattening and purification do not influence the existence of ground
interpolants:

Lemma 3. Let A and B be two sets of ground clauses in the signature Πc. Let
A0 ∧DA and B0 ∧DB be obtained from A resp. B by purification and flattening.
If I is an interpolant of (A0 ∧ DA) ∧ (B0 ∧ DB) then the formula I, obtained
from I by replacing, recursively, all newly introduced constants with the terms
in the original signature which they represent, is an interpolant for A ∧ B.

242 V. Sofronie-Stokkermans

Therefore we can restrict without loss of generality to finding interpolants for
the purified and flattened conjunction of formulae (A0 ∧ DA) ∧ (B0 ∧ DB).

We focus on interpolation in local theory extensions. Let T0 ⊆ T1 = T0 ∪ K
be a local theory extension. From Theorem 2 we know that in such extensions
hierarchical reasoning is possible [8]: if A and B are sets of ground clauses in a
signature Πc, and A0 ∧ DA (resp. B0 ∧ DB) are obtained from A (resp. B) by
purification and flattening then:

(A0 ∧ DA)∧(B0 ∧ DB) |=T1⊥ iff K0 ∧ A0 ∧ B0 ∧ N0 |=T0⊥,

where K0 is obtained from K[DA ∧ DB] by replacing the Σ1-terms with the
corresponding constants contained in the definitions DA and DB and

N0 =
∧

{
n∧

i=1

ci≈di → c≈d | f(c1, . . . , cn)≈c, f(d1, . . . , dn)≈d ∈ DA ∪ DB}.

In general we cannot use Theorem 2 for generating a ground interpolant because:

(i) K[DA ∧ DB] (hence also K0) may contain free variables.
(ii) The clauses in K[DA ∧ DB] and the instances of congruence axioms (and

therefore the clauses in K0 ∧ N0) may contain combinations of constants
and extension functions from A and B.

(iii) If some clause in K contains two or more different extension functions, it is
unlikely that these extension functions can be separated in the interpolants.

To solve (iii), we define a relation ∼ between extension functions, where f ∼ g
if f and g occur in the same clause in K. This defines an equivalence relation ∼
on Σ1. We henceforth consider that a function f ∈ Σ1 is common to A and B if
there exist g, h ∈ Σ1 such that f ∼ g, f ∼ h, g occurs in A and h occurs in B.

Example 2. Consider the reduction to the base theory in Example 1. Ad (ii): The
clause b≤a1 → b1≤a of SGc0 is mixed, i.e. contains combinations of constants
from A and B. Ad (iii): As SGc(f, g) contains occurrences of both f and g, it is
not likely to find an interpolant with no occurrence of f and g, even if g only
occurs in A and f only occurs in B. We assume that both f and g are shared.

4.1 Main Idea

The idea of our approach is to separate mixed instances of axioms in K0, or of
congruence axioms in N0, into an A-part and a B-part. This is, if A∧B |=T1⊥ we
find a set T of Σ0∪Σ1-terms containing only constants and extension functions
common to A and B, such that K[A ∧ B] can be separated into a part K[A, T]
consisting of instances with extension terms occurring in A and T , and a part
K[B, T] containing only instances with extension terms in B and T , such that:

K[A, T]∧A0∧Fun((DA ∧ DT)∗) ∧ K[B, T]∧B0∧Fun((DB ∧ DT)∗)

has no weak partial model where all ground terms in K, DA, DB, T are defined.

Interpolation in Local Theory Extensions 243

Example 3. Consider the conjunction A0 ∧ DA ∧ B0 ∧ DB ∧ N0 ∧ Mon0 ∧ SGc0
in Example 1. We obtain a separation for the clause b ≤ a1 → b1 ≤ a of SGc0
as follows: Note that A0 ∧ B0 |= b ≤ a1. We can find an SLat-term t containing
only shared constants of A0 and B0 such that A0 ∧B0 |= b ≤ t∧ t ≤ a1. (Indeed,
such a term is t = d.) We show that, instead of the axiom a ≤ g(b) → f(a) ≤ b,
whose flattened form is in SGc0, we can use, without loss of unsatisfiability:

(1) an instance of the monotonicity axiom for f : b ≤ d → f(b) ≤ f(d), and
(2) another instance of SGc, namely: d ≤ g(a) → f(d) ≤ a.

We introduce a new constant cf(d) for f(d) (its definition, cf(d) ≈ f(d), is stored
in a set DT), and the corresponding instances Hsep = HA

sep∧HB
sep of the congru-

ence, monotonicity and SGc(f, g)-axioms, which are now separated into an A-
part (d ≤ a1 → cf(d) ≤ a) and a B-part (b ≤ d → b1 ≤ cf(d)). We thus obtain a
separated conjunction A0∧B0 (where A0 = HA

sep∧A0 and B0 = HB
sep∧B0), which

can be proved to be unsatisfiable in T0 = SLat. To compute an interpolant in SLat
for A0∧B0 note that A0 is logically equivalent to the conjunction of unit literals
d≤a1 ∧ a≤c ∧ cf(d)≤a and B0 is logically equivalent to b≤d ∧ b1 �≤c ∧ b1≤cf(d).
An interpolant is I0 = cf(d) ≤ c. By replacing the new constants with the terms
they denote we obtain the interpolant I = f(d) ≤ c for A ∧ B.

4.2 Examples of Theory Extensions with Hierarchic Interpolation

We identify a class of theory extensions for which interpolants can be computed
hierarchically (and efficiently) using a procedure for generating interpolants in
the base theory T0. This allows us to exploit specific properties of T0 for obtaining
simple interpolants in T1. We make the following assumptions about T0:

Assumption 1: T0 is convex with respect to the set Pred of all predicates (in-
cluding equality ≈), i.e., for all conjunctions Γ of ground atoms, relations
R1, . . . , Rm ∈ Pred and ground tuples of corresponding arity t1, . . . , tn, if
Γ |=T0

∨m
i=1 Ri(ti) then there exists j ∈ {1, . . . , m} such that Γ |=T0 Rj(tj).

Assumption 2: T0 is P -interpolating, i.e. for all conjunctions A and B of
ground literals, all binary predicates R ∈ P and all constants a and b such
that a occurs in A and b occurs in B (or vice versa), if A ∧ B |=T0 aRb then
there exists a term t containing only constants common to A and B with
A ∧ B |=T0 aRt ∧ tRb. (If we can always guarantee that A |=T0 aRt and
B |=T0 tRb we say that T0 is strongly P -interpolating.)

Assumption 3: T0 has ground interpolation.

Some examples of theories satisfying these properties are given below.

Theorem 4. The following theories have ground interpolation and are convex
and P -interpolating w.r.t. the indicated set P of predicate symbols:

(1) The theory of EQ of pure equality without function symbols (for P = {≈}).
(2) The theory PoSet of posets (for P = {≈, ≤}).

244 V. Sofronie-Stokkermans

(3) Linear rational arithmetic LI(Q) and linear real arithmetic LI(R) (convex
w.r.t. P = {≈}, strongly P -interpolating for P = {≈, ≤}).

(4) The theories Bool of Boolean algebras, SLat of semilattices and DLat of dis-
tributive lattices (strongly P -interpolating for P = {≈, ≤}).

For the sake of simplicity we only consider sets A, B of unit clauses, i.e. con-
junctions of ground literals. This is not a restriction, since if we can obtain inter-
polants for conjunctions of ground literals then we also can construct interpolants
for conjunctions of arbitrary clauses by using standard methods1 discussed e.g.
in [4] or [10]. By Lemma 3, we can restrict w.l.o.g. to finding an interpolant for
the purified and flattened conjunction of unit clauses A0 ∧ B0 ∧ DA ∧ DB.

By Theorem 2, A0∧DA∧B0∧DB |=T1⊥ iff K0 ∧ A0 ∧ B0 ∧ N0 |=T0⊥, where K0
is obtained from K[DA ∧DB] by replacing the Σ1-terms with the corresponding
constants contained in the definitions DA ∧ DB and

N0 =
∧

{
n∧

i=1

ci≈di → c≈d | f(c1, . . . , cn)≈c, f(d1, . . . , dn)≈d ∈ DA ∪ DB}.

In general, N0 = NA
0 ∧ NB

0 ∧ Nmix and K0 = KA
0 ∧ KB

0 ∧ Kmix, where NA
0 , KA

0
only contain extension functions and constants which occur in A, NB

0 , KB
0 only

contain extension functions and constants which occur in B, and Nmix, Kmix

contain mixed clauses with constants occurring in both A and B. Our goal is to
separate Nmix and Kmix into an A-local and a B-local part. We show that, under
Assumptions 1 and 2, Nmix can always be separated, and Kmix can be separated
if K contains the following type of combinations of clauses:

{
x1 R1 s1 ∧ · · · ∧ xn Rn sn → f(x1, . . . , xn)R g(y1, . . . , yn)
x1 R1 y1 ∧ · · · ∧ xn Rn yn → f(x1, . . . , xn)R f(y1, . . . , yn) (3)

where n ≥ 1, x1, . . . , xn are variables, R1, . . . , Rn, R are binary relations with
R1, . . . , Rn ∈ P and R transitive, and each si is either a variable among the
arguments of g, or a term of the form fi(z1, . . . , zk), where fi ∈ Σ1 and all the
arguments of fi are variables occurring among the arguments of g. 2

Example 4. The following local extensions are in the class above:

(a) Any extension with free functions (K = ∅).
(b) Extensions of any theory in Ord (cf. Section 3.1) with monotone functions.
(c) Extensions of any totally-ordered theory in Ord with functions satisfying

SGc(f, g1, . . . , gn) ∧ Mon(f, g1, . . . , gn).
(d) Extensions of theories in Ord with functions satisfying SGc(f, g1)∧Mon(f, g1).
(e) Extensions of theories in Ord with functions satisfying Leq(f, g) ∧ Monf .

1 E.g. in a DPLL-style procedure partial interpolants are generated for the unsatisfi-
able branches and then recombined using ideas of Pudlák.

2 More general types of clauses, in which instead of variables we can consider arbitrary
base terms, can be handled if T0 has a P -interpolation property for terms instead of
constants. Due to space limitations, such extensions are not discussed here.

Interpolation in Local Theory Extensions 245

Note: If the clauses in K are of type (3), then (i) the cardinality of K0 ∪ N0
is quadratic in the size of A ∧ B, (ii) all clauses in K0 are of the form C =∧n

i=1 ci Ri di→c R d, where Ri ∈ P , R is transitive, and ci, di, c, d are constants.

Proposition 5. Assume that T0 satisfies Assumptions 1 and 2. Let H be a
set of Horn clauses

∧n
i=1 ciRidi → cRd in the signature Πc

0 (with R transitive
and Ri ∈ P) which are instances of flattened and purified clauses of type (3)
and of congruence axioms. Let A0 and B0 be conjunctions of ground literals
in the signature Πc

0 such that A0 ∧ B0 ∧ H |=T0⊥. Then there exists a set T
of Σ0 ∪ Σc-terms containing only constants common to A0 and B0 such that
A0 ∧ B0 ∧ (H\Hmix) ∧ Hsep |=T0⊥, where

Hmix = {
∧n

i=1 ciRidi → cRd ∈ H | ci, c constants in A, di, d constants in B}∪
{
∧n

i=1 ciRidi → cRd ∈ H | ci, c constants in B, di, d constants in A}
Hsep = {(

∧n
i=1 ciRiti → cRcf(t1,...,tn)) ∧ (

∧n
i=1 tiRidi → cf(t1,...,tn)Rd) |∧n

i=1 ciRidi → cRd ∈ Hmix, di ≈ si(e1, . . . , en), d ≈ g(e1, . . . , en) ∈ DB ,
c ≈ f(c1, . . . , cn) ∈ DA or vice versa } = HA

sep ∧ HB
sep

and cf(t1,...,tn) are new constants in Σc (considered common to A0, B0) intro-
duced for the terms f(t1, . . . , tn).

Proof (Sketch). Proof by induction on the number of clauses in H. Convexity
and P -interpolation ensure that for each clause C =

∧
ciRidi → cRd ∈ Hmix,

e.g. obtained from the following instance of a clause of type (3):
c1R1s1(e1, . . . , em) ∧ · · · ∧ cnRnsn(e1, . . . , em) → f(c1, . . . , cn)Rg(e1, . . . , em)

there exist terms t1, . . . , tn containing only constants common to A0 and B0
such that A0∧B0∧(H\{C}) |=T0 ciRiti ∧ tiRidi. We thus can replace C with the
conjunction of an instance of the monotonicity axiom, CA :

∧n
i=1 ciRiti→

cRcf(t1,...,tn) and an instance of the clause of type (3), CB :
∧n

i=1 tiRidi→
cf(t1,...,tn)Rd. �

In what follows we assume that K only contains combinations of clauses of
type (3). An immediate consequence of Proposition 5 is Theorem 6.

Theorem 6. Assume T0 satisfies Assumptions 1, 2 and K0∧A0∧B0∧N0|=T0
⊥.

Then there exists a set T of Σ0 ∪Σc-terms containing only constants common to
A0 and B0 such that (if ND

0 =NDA
0 ∧NDB

0 =N0sep and KD
0 =KDA

0 ∧KDB
0 =K0sep):

KA
0 ∧ KB

0 ∧ KD
0 ∧ A0 ∧ B0 ∧ NA

0 ∧ NB
0 ∧ ND

0 |=T0 ⊥. (4)

(As before, Σc contains the new constants cf(t1,...,tn), considered to be common
to A0 and B0, introduced for terms f(t1, . . . , tn), with t1, . . . , tn ∈ T .)

Corollary 7. Assume T0 satisfies Assumptions 1–3 and K0∧A0∧B0∧N0|=T0
⊥.

(1) There exists a Πc
0-formula I0 containing only constants common to A0, B0 with

KA
0 ∧KDA

0 ∧A0∧NA
0 ∧NDA

0 |=T0
I0 and KB

0 ∧KDB
0 ∧B0∧NB

0 ∧NDB
0 ∧I0|=T0

⊥.
(2) There exists a ground Πc-formula I containing only constants and function

symbols which occur both in A and B such that A |=T1 I and B ∧ I |=T1⊥ .

246 V. Sofronie-Stokkermans

Proof . If T0 has ground interpolation, (1) is a direct consequence of Theorem 6,
since KA

0 , KAD
0 , KB

0 , KBD
0 are ground. (2) Let I be obtained from I0 by recursively

replacing each constant ct introduced in the separation process with the term t.
Then I is an interpolant of (A0∧DA)∧(B0∧DB). �

We obtain the following procedure for computing interpolants for A ∧ B:

Preprocess: Using locality, flattening and purification we obtain a set
H ∧ A0 ∧ B0 of formulae in the base theory, where H is as in Prop. 5.
Let Δ := T.
Repeat as long as possible: Let C∈H whose premise is entailed by
A0∧B0∧Δ. If C is mixed, compute terms ti which separate the premises
in C, and separate the clause into an instance C1 of monotonicity and an
instance C2 of a clause in K as in Prop. 5. Remove C from H, and add
C1, C2 to Hsep and their conclusions to Δ. Otherwise move C to Hsep

and add its conclusion to Δ.
Compute interpolant: in T0 for the separated formula obtained this
way, and construct an interpolant for the extension as explained in Corol-
lary 7(2).

Theorem 8. Assume that the cycle of the procedure above stops after moving
the processed clauses Hproc into the set Hsep. The following are equivalent:

(1) A0 ∧ DA ∧ B0 ∧ DB |=T1⊥. (2) A0 ∧ B0 ∧ (H\Hproc) ∧ Hsep |=T0⊥.

Proof . (1)⇒(2) is a consequence of Theorems 2 and 6. As the conjunction in (2)
corresponds to a subset of instances of K∧A0∧DA∧B0∧DB, (2) imples (1). �

Note. If K0∧A0∧B0∧N0|=T0⊥ then no matter which terms are chosen for sep-
arating mixed clauses in N0 ∧ K0, we obtain a separated conjunction of clauses
unsatisfiable w.r.t. T0. Theorem 8 shows that if the set of clauses obtained when
the procedure stops is satisfiable then A ∧ B was satisfiable, and conversely, so
the procedure can be used to test satisfiability and to compute interpolants at
the same time. (However, it is more efficient to first test A∧B|=T1

⊥.)

Complexity. Assume that in T0 for a formula of length n (a) interpolants can
be computed in time g(n), (b) P -interpolating terms can be computed in time
h(n), (c) entailment can be checked in time k(n). The size n of the set of clauses
obtained after the preprocessing phase is quadratic in the size of the input. The
procedure above computes an interpolant in time of order n · (k(n)+h(n))+g(n).

Remark 9. If T0 satisfies Assumptions 1,3 and is strongly P -interpolating, the
procedure above can be changed to separate all clauses in H and store the con-
clusions of the separated clauses in Δ = ΔA ∪ΔB . If K0∧A0∧B0∧N0|=T0

⊥ then
there exists a set T of Σ0 ∪ Σc-terms containing only constants common to A0
and B0, and common new constants in a set Σc such that the terms in T can be
used to separate N0 ∪ K0 into Hsep = (KDA

0 ∧ NDA
0) ∧ (KDB

0 ∧ NDB
0), where:

Hsep = {(
∧n

i=1 ciRiti → cRcf(t1,...,tn)) ∧ (
∧n

i=1 tiRidi → cf(t1,...,tn)Rd) |∧n
i=1 ciRidi → cRd ∈ N0 ∪ K0} = (KDA

0 ∧ NDA
0) ∧ (KDB

0 ∧ NDB
0)

Interpolation in Local Theory Extensions 247

such that for each premise ciRidi of a rule in N0 ∪ K0, at some step in the
procedure A0∧B0∧ΔA∧ΔB |= ciRidi and there exists ti ∈ T such that A0∧ΔA |=
ciRiti and B0∧ΔB |= tiRidi. In this case A0∧KDA

0 ∧NDA
0 is logically equivalent

to A0, and B0 ∧ KDB
0 ∧ NDB

0 is logically equivalent to B0, where A0, B0 are the
following conjunctions of literals:

A0 = A0 ∧
∧

{cRcf(t) | conclusion of some clause (Γ → cRcf(t)) ∈ KDA
0 ∪ NDA

0 }
B0 = B0 ∧

∧
{cf(t)Rd | conclusion of some clause (Γ → cf(t)Rd) ∈ KDB

0 ∪ NDB
0 }.

Thus, if for instance in T0 interpolants for conjunctions of ground literals are
again conjunctions of ground literals, the same is also true in the extension.

Example 5. The following theory extensions have ground interpolation:
(a) Extensions of any theory in Theorem 4(1)–(4) with free function symbols.
(b) Extensions of the theories in Theorem 4(2),(4) with monotone functions.
(c) Extensions of the theories in Theorem 4(2),(4) with Leq(f, g) ∧ Monf .
(d) Extensions of the theories in Theorem 4(2),(4) with SGc(f, g1) ∧ Mon(f, g1).
(e) Extensions of any theory in Theorem 4(1)–(4) with Boundt

f or GBoundt
f

(where t is a term and φ a set of literals in the base theory).
(f) Extensions of the theories in Theorem 4(2),(4) with Monf ∧ Boundt

f , if t is
monotone in its variables.

(g) R ∪ (Lλ
f), the extension of the theory of reals with a unary function which is

λ-Lipschitz in a point x0, where (Lλ
f) is ∀x |f(x) − f(x0)| ≤ λ · |x − x0|.

Proof . (a)–(d) are direct consequences of Corollary 7, since all sets of extension
clauses are of type (3). For extensions of linear arithmetic note that due to the
totality of ≤ we can always assume that A and B are positive, so convexity w.r.t.
≈ is sufficient (cf. proof of Proposition 5). (e)–(g) follow from Corollary 7 and
the fact that if each clause in K contains only one occurrence of an extension
function, no mixed instances can be generated when computing K[A ∧ B]. �

4.3 Applications

Modular Reasoning in Local Combinations of Theories. Let Ti=T0∪Ki,
i=1, 2 be local extensions of a theory T0 with signature Π0=(Σ0, Pred), where
Σ0 = Σ1∩Σ2. Assume that (a) all variables in Ki occur below some extension
function, (b) the extension T0 ⊆ T0∪K1∪K2 is local3, and (c) T0 has ground
interpolation.

Let G be a ground clause in the signature Πc = (Σ0 ∪ Σ1 ∪ Σ2 ∪ Σc, Pred).
G can be flattened and purified, so we assume w.l.o.g. that G = G1 ∧ G2, where
G1, G2 are flat and linear sets of clauses in the signatures Π1, Π2 respectively,
i.e. for i = 1, 2, Gi = G0

i ∧ G0 ∧ Di, where G0
i and G0 are clauses in the base

theory and Di conjunctions of unit clauses of the form f(c1, . . . , cn) = c, f ∈ Σi.

Theorem 10. With the notations above, assume that G1∧G2 |=T1∪T2⊥. Then
there exists a ground formula I, containing only constants shared by G1 and G2,
with G1 |=T1∪T2 I and I ∧ G2 |=T1∪T2⊥.
3 If T0 is a ∀∃ theory then (b) is implied by (a) and the locality of T1, T2 [6].

248 V. Sofronie-Stokkermans

Proof . By Theorem 2, the following are equivalent:

(1) T0 ∪ K1 ∪ K2 ∪ (G0
1 ∧ G0 ∧ D1) ∧ (G0

2 ∧ G0 ∧ D2) |=⊥,
(2) T0 ∪ K1[G1] ∧ K2[G2] ∧ (G0

1 ∧ G0 ∧ D1) ∧ (G0
2 ∧ G0 ∧ D2) |=⊥,

(3) K0
1 ∧ K0

2 ∧ (G0
1 ∧ G0) ∧ (G0

2 ∧ G0) ∧ N1 ∧ N2 |=T0⊥, where, for j = 1, 2,

Nj =
∧

{
n∧

i=1

ci ≈ di → c = d | f(c1, . . . , cn) ≈ c, f(d1, . . . , dn) ≈ d ∈ Dj},

and K0
i is the formula obtained from Ki[Gi] after purification and flattening,

taking into account the definitions from Di. Let A = K0
1 ∧ (G0

1 ∧ G0) ∧ N1 and
B = K0

2∧(G0
2∧G0)∧N2. By assumption (a), A and B are both ground. As A and

B have no function symbols in common and only share the constants which G1
and G2 share, there exists an interpolant I0 in the signature Π0, containing only
Σ0-function symbols and only constants shared by G1, G2, such that A |=T0 I0
and B ∧ I0 |=T0⊥. An interpolant for G1 ∧ G2 w.r.t. T1 can now be obtained by
replacing the newly introduced constants by the terms they replaced. �

By Remark 9, if T0 is strongly P -interpolating and has equational interpolation
then I is a conjunction of literals, so for modularily proving G1 ∧ G2 |=T1⊥ only
conjunctions of ground literals containing constants shared by G1, G2 need to
be exchanged between specialized provers for T1 and T2.

Verification. Consider the example presented in the verification example in
Section 1.1. We illustrate our method for generating interpolants for a formula
corresponding to a path of length 2 from an initial state to an unsafe state:

G = l<Lalarm ∧ l′≈in(l, t) ∧ t′≈k(l) ∧
l′≥Lalarm ∧ l′′≈in(out(l′, t′), g(t′)) ∧ t′′≈h(g(t′)) ∧ ¬l′′≤Loverflow

Hierarchic reasoning. The extension T1 of linear arithmetic with the clauses (2)
in Section 1.1 is local, so to prove G |=T1⊥ it is sufficient to consider ground
instances K[G] of (2) in which all extension terms already occur in G: After
flattening and purifying K[G] ∧ G, we separate the problem into an extension
part Ext and a base part Base. By Theorem 2 [8], the problem can be reduced
to testing the satisfiability in the base theory of the conjunction Base ∧ N0. As
this conjunction is unsatisfiable w.r.t. T0, G is unsatisfiable.

Ext Base ∧ N0

c ≈ in(l, t) d ≈ k(t) l < Lalarm l′ ≈ c K0 : l < Lalarm → c < Loverflow

lo ≈ out(l′, t′) to ≈ g(t′) l′ ≥ Lalarm t′ ≈ d lo < Lalarm → c′ < Loverflow

c′ ≈ in(lo, to) d′ ≈ h(to) ¬l′′ ≤ Loverflow l′′ ≈ c′ l′ < Loverflow → lo < Lalarm

t′′ ≈ d′ N0 : l ≈ lo ∧ t ≈ to → c ≈ c′

Interpolation. Let A = l<Lalarm ∧ l′≈in(l, t) ∧ t′≈k(l) and B = l′≥Lalarm ∧
l′′≈in(out(l′, t′), g(t′))∧t′′≈h(g(t′))∧¬l′′≤Loverflow. To generate an interpolant for
A∧B, we partition the clauses in Base as A0 ∧B0, where A0 = l<Lalarm ∧ l′≈c∧
t′≈d∧KA

0 and B0 = l′≥Lalarm ∧ l′′≈c′ ∧ t′′≈d′ ∧¬l′′≤Loverflow ∧KB
0 . The clause in

Interpolation in Local Theory Extensions 249

N0 is mixed. Since already the conjunction of the formulae in Base is unsatisfi-
able, N0 is not needed to prove unsatisfiability. The conjunction of the formulae
in Base is equivalent to A′

0∧B′
0, where A′

0 = l<Lalarm∧l′ ≈ c∧t′ ≈ d∧c < Loverflow

and B′
0 = l′ > Lalarm∧ l′′ ≈ c′∧t′′ ≈ d′∧¬l′′≤Loverflow ∧c′ < Loverflow ∧ lo < Lalarm.

The interpolant for A′
0∧B′

0 is L′ < Loverflow, which is also an interpolant for A∧B.

For the database example in Section 1.1 the interpolant is computed similarily.

5 Conclusions

We presented a method for obtaining simple interpolants in theory extensions.
We identified situations in which it is possible to do this in a hierarchical manner,
by using a prover and a procedure for generating interpolants in the base theory
as “black-boxes”. This allows us to use the properties of T0 (e.g. the form of
interpolants) to control the form of interpolants in the extension T1. We discussed
applications of interpolation in verification and knowledge representation.

The method we presented is more general than the results of McMillan [4]
on interpolation in extension of linear rational arithmetic with uninterpreted
function symbols. Our method is orthogonal to the method for generating inter-
polants for combinations of theories over disjoint signatures from Nelson-Oppen-
style unsatisfiability proofs proposed by Yorsh and Musuvathi in [10], as it allows
us to consider combinations of theories over non-disjoint signatures.

The hierarchical interpolation method presented here (for the special case of
the extension of linear arithmetic with free function symbols) was implemented
by Andrey Rybalchenko in Prolog. First tests suggest that our method is con-
siderably faster than other existing methods. Details about the implementation
and benchmarks for the special case of linear arithmetic + free function symbols
are the subject of a separate joint paper.

Acknowledgements. I thank Andrey Rybalchenko for interesting discussions.
This work was partly supported by the German Research Council (DFG) as part
of the Transregional Collaborative Research Center “Automatic Verification and
Analysis of Complex Systems” (SFB/TR 14 AVACS). See www.avacs.org for
more information.

References

1. P.D. Bacsich. Amalgamation properties and interpolation theorem for equational
theories. Algebra Universalis, 5:45–55, 1975.

2. B Jónsson. Extensions of relational structures. In J.W. Addison, L. Henkin, and
A. Tarski, editors, The Theory of Models, Proc. of the 1963 Symposium at Berkeley,
pages 146–157, Amsterdam, 1965. North-Holland.

3. K.L. McMillan. Interpolation and SAT-based model checking. In CAV’2003: Com-
puter Aided Verification, LNCS 2725, pages 1–13. Springer, 2003.

4. K.L. McMillan. An interpolating theorem prover. In TACAS’2004: Tools and
Algorithms for the Construction and Analysis of Systems, LNCS 2988, pages
16–30. Springer, 2004.

250 V. Sofronie-Stokkermans

5. K.L. McMillan. Applications of Craig interpolants in model checking. In
TACAS’2005: Tools and Algorithms for the Construction and Analysis of Systems,
LNCS 3440, pages 1–12. Springer, 2005.

6. V. Sofronie-Stokkermans. On combinations of local theory extensions. Submitted.
7. V. Sofronie-Stokkermans. Automated theorem proving by resolution in non-classi-

cal logics. In 4th Int. Conf. Journees de l’Informatique Messine: Knowledge Dis-
covery and Discrete Mathematics (JIM-03), pages 151–167, 2003.

8. V. Sofronie-Stokkermans. Hierarchic reasoning in local theory extensions. In
R. Nieuwenhuis, editor, 20th International Conference on Automated Deduction
(CADE-20), LNAI 3632, pages 219–234. Springer, 2005.

9. A. Wroński. On a form of equational interpolation property. In Foundations of
logic and linguistics (Salzburg, 1983), pages 23–29, New York, 1985. Plenum.

10. G. Yorsh and M. Musuvathi. A combination method for generating interpolants.
In R. Nieuwenhuis, editor, 20th International Conference on Automated Deduction
(CADE-20), LNAI 3632, pages 353–368. Springer, 2005.

	Introduction
	Motivation

	Preliminaries
	Local Theory Extensions
	Definition and Examples
	Hierarchic Reasoning in Local Theory Extensions

	A Hierarchical Interpolation Procedure
	Main Idea
	Examples of Theory Extensions with Hierarchic Interpolation
	Applications

	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

