
A Sufficient Completeness Checker for Linear
Order-Sorted Specifications Modulo Axioms�

Joe Hendrix1, José Meseguer1, and Hitoshi Ohsaki2

1 University of Illinois at Urbana-Champaign
{jhendrix, meseguer}@uiuc.edu

2 National Institute of Advanced Industrial Science and Technology
ohsaki@ni.aist.go.jp

Abstract. We present a tool for checking the sufficient completeness
of left-linear, order-sorted equational specifications modulo associativity,
commutativity, and identity. Our tool treats this problem as an equa-
tional tree automata decision problem using the tree automata library
CETA, which we also introduce in this paper. CETA implements a semi-
algorithm for checking the emptiness of a class of tree automata that
are closed under Boolean operations and an equational theory contain-
ing associativity, commutativity and identity axioms. Though sufficient
completeness for this class of specifications is undecidable in general, our
tool is a decision procedure for subcases known to be decidable, and has
specialized techniques that are effective in practice for the general case.

1 Introduction

An equational specification is sufficiently complete when enough equations have
been specified so that the functions defined by the specification are fully defined
on all relevant data elements. This is an important property to check, both to
debug and formally reason about specifications and equational programs. For ex-
ample, many inductive theorem proving techniques are based on the constructors
building up the data and require that the specification is sufficiently complete.

Sufficient completeness was introduced in the Ph.D. thesis of Guttag. (see [4]
for a more accessible treatment). For a good review of literature up to the late
80s, as well as some key decidability/undecidability results see [8, 9]. More recent
developments show sufficient completeness as a tree automata decision problem
(see [2] and references there). For unsorted, unconditional, weakly-normalizing,
and confluent specifications, the problem is EXPTIME-complete [3].

Over the last 20 years, there have been numerous rewriting-based program-
ming languages developed which support increasingly more expressive equational
logics, including OBJ, Maude, ELAN, and CafeOBJ. These developments lead to
a corresponding demand for reasoning tools that support these formalisms. In
particular, there is a practical need for sufficient completeness checkers support-
ing: (1) conditional rewrite rules; (2) more expressive type formalisms such as
order-sorted logic and membership equational logic; and (3) rewriting modulo
� Research supported by ONR Grant N00014-02-1-0715.

U. Furbach and N. Shankar (Eds.): IJCAR 2006, LNAI 4130, pp. 151–155, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

152 J. Hendrix, J. Meseguer, and H. Ohsaki

associativity, commutativity, and identity. Our earlier work in [5] addresses (1)
and (2) through integration with an inductive theorem prover. Other recent
work in [1] also addresses (1) using tree automata with constraints. The new
tool we present in this paper addresses (2) and (3). Our checker is publicly
available for download along with documentation and examples at the website:
http://maude.cs.uiuc.edu/tools/scc/.

In an equational specification E = (Σ, E) with rewriting modulo axioms, the
equations are partitioned into two disjoint sets A and R. The set A consists
of any combination of associativity, commutativity, and identity axioms. The
other equations l = r ∈ R are treated as rewrite rules l → r modulo A. A term
t rewrites to u modulo A, denoted t →R/A u when there is a context C and
substitution θ such that t =A C[lθ] and C[rθ] =A u.

Our checker casts the left-linear, order-sorted sufficient completeness problem
with rewriting modulo A as a decision problem for equational tree automata [10].
Equational tree automata over left-linear theories recognize precisely the equa-
tional closure of regular tree languages. However, since equational tree automata
with associative symbols are not closed under Boolean operations [10], for check-
ing properties such as inclusion, universality, and intersection-emptiness, we
found it useful to introduce a new tree automata framework in [6], called Propo-
sitional Tree Automata (PTA), that is closed with respect both to Boolean op-
erations and an equational theory.

2 Order-Sorted Sufficient Completeness

The motivation for sufficient completeness of a specification stems from the idea
that introducing a new defined function should leave the underlying data ele-
ments unchanged. From a model-theoretic perspective, the initial model of the
specification with the defined functions should be isomorphic to the initial model
with only the constructor declarations. In the order-sorted context, we want to
preserve this view of sufficient completeness, but the picture becomes more sub-
tle due to the subsort relation and overloading — a symbol may be overloaded so
that it is a constructor on one domain, and a defined symbol on another domain.
As an example, we present a specification of lists of natural numbers with an
associative append operator in Maude syntax.

fmod NATLIST is
sorts Nat List NeList . subsorts Nat < NeList < List .
op 0 : -> Nat [ctor]. op s : Nat -> Nat [ctor].
op nil : -> List [ctor].
op __ : NeList NeList -> NeList [ctor assoc id: nil].
op __ : List List -> List [assoc id: nil].
op head : NeList -> Nat . op tail : NeList -> List .
op reverse : List -> List .
var N : Nat . var L : List .
eq head(N L) = N . eq tail(N L) = L .
eq reverse(N L) = reverse(L) N . eq reverse(nil) = nil .

endfm

http://maude.cs.uiuc.edu/tools/scc/

A Sufficient Completeness Checker 153

In this specification, the signature Σ is defined by the sort, subsort, and
operator declarations. The ctor attribute specifies an operator as a construc-
tor. The operator attributes assoc and id: nil define the axioms in A. The
equations declarations define the rules in R. The append operator __ is over-
loaded: it is defined on all lists, but only a constructor on non-empty lists.

In the unsorted context, sufficient completeness forweakly-normalizing and con-
fluent specifications is usually checked by showing that every term containing a de-
fined symbol at the root is reducible. In an order-sorted context in which the same
symbol can be both a constructor and defined symbol, this check is too strong. In-
stead, we need to check that that for each term f(t1, . . . , tn) where f : s1 . . . sn → s
is a defined symbol and every ti is a constructor term of sort si, either f(t1, . . . , tn)
is reducible, or f(t1, . . . , tn) is itself a constructor term of sort s. For details on
why this property implies sufficient completeness, see [6] (which shows this in an
even more general membership-equational context). It should be noted that there
is an additional requirement for order-sorted specifications: the equations should
be sort-decreasing. By this we mean that applying an equation l = r to a term lθ
of sort s should yield a term rθ whose sort is less than or equal to s.

Our paper [6] shows in detail how to convert the sufficient completeness property
into a propositional tree automata emptiness problem. The key idea is that given
an order-sorted specification E = (Σ, A ∪ R) with sorts S, we can construct the
following automata for each sort s ∈ S: (1) an automaton Ac

s accepting construc-
tor terms of sort s; (2) an automaton Ad

s accepting terms whose root is a defined
symbol of sort s and whose subterms are constructor terms; and (3) an automa-
ton Ar accepting any term reducible by equations in R. If E is weakly-normalizing,
ground confluent, and ground sort-decreasingmodulo A, then E is sufficiently com-
plete iff. L(Ad

s) ⊆ L(Ar) ∪ L(Ac
s) for each sort s ∈ S. Using our propositional tree

automata framework,we in turn translate this problem into checking the emptiness
of

⋃
s∈S L(Ad

s) − (L(Ar) ∪ L(Ac
s)).

This emptiness problem is decidable when the axioms in the specification are
any combination of associativity, commutativity, and identity, except when a sym-
bol is associative but not commutative. For the case of commutativity alone, this
was shown in [10]. For symbols that are both associative and commutative, this
was shown in [11]. Identity equations are transformed into identity rewrite rules
using a specialized completion procedure along the lines of coherence completion
in [13]. Our emptiness test identifies terms that are in normal form with respect to
the identity rewrite rules. For symbols that are associative and not commutative,
the emptiness problem is undecidable. For these symbols, our tool uses the semi-
algorithm in [7], which we have found works well in practice. Collectively, these
results allow our tool to handle specifications with any combination of associativ-
ity, commutativity, and identity axioms.

3 The Sufficient Completeness Checker (SCC)

The SCC has two major components: an analyzer written in Maude that generates
the tree automaton emptiness problem from a Maude specification; and a C++
library called CETA that performs the emptiness check.

154 J. Hendrix, J. Meseguer, and H. Ohsaki

Analyzer: The analyzer accepts commands from the user, generates PTA from
Maude specifications, forwards the PTA decision problems to CETA, and presents
the user with the results. If the specification is not sufficiently complete, the tool
shows the user a counterexample illustrating the error.The analyzer consists of ap-
proximately 900 lines of Maude code, and exploits Maude’s support for reflection.
The specifications it checks are also written in Maude.

If the user asks the tool to check the sufficient completeness of a specification
that is not left-linear and unconditional, the tool transforms the specificationby re-
naming variables and dropping conditions in to a checkable order-sorted left-linear
specification. Even if the tool is able to verify the sufficient completeness of the
transformed specification, it warns the user that it cannot show the sufficient com-
pleteness of the original specification. However, any counterexamples found in the
transformed specification are also counterexamples in the original specification.
We have found this feature quite useful to identify errors in Maude specifications
falling outside the decidable class — including the sufficient completeness checker
itself.

CETA: The propositional tree automaton generated by the analyzer is forwarded
to the tree automata library CETA which we have developed. CETA is a complex
C++ library with approximately 10 thousand lines of code. Emptiness checking
is performed by a subset construction algorithm extended with support for asso-
ciative and commutativity axioms as described in [7]. The reason that CETA is so
large is that the subset construction algorithm relies on quite complex algorithms
on context free grammars, semilinear sets, and finite automata. We have found that
CETA performs quite well for our purposes. Most examples can be verified in sec-
onds. The slowest specification that we have checked is the sufficient completeness
analyzer itself — the library requires just under a minute on a Pentium 4 desktop to
check the 900 lines of Maude code in the analyzer. As an example, we present a tool
session in which we check two specifications: NATLIST from the previous section;
and NATLIST-ERRORwhich updates NATLIST to change the operator declaration of
head from op head : NeList -> Nat to op head : List -> Nat.

Maude> in natlist.maude
==
fmod NATLIST
==
fmod NATLIST-ERROR
Maude> load scc.maude
Maude> loop init-scc .
Starting the Maude Sufficient Completeness Checker.
Maude> (scc NATLIST .)
Checking sufficient completeness of NATLIST ...
Success: NATLIST is sufficiently complete under the assumption that it is

weakly-normalizing, ground confluent, and sort-decreasing.
Maude> (scc NATLIST-ERROR .)
Checking sufficient completeness of NATLIST-ERROR ...
Failure: The term head(nil)is a counterexample as it is an irreducible

term with sort Nat in NATLIST-ERROR that does not have sort Nat in
the constructor subsignature.

A Sufficient Completeness Checker 155

4 Conclusions

Our work in developing sufficient completeness checkers for more complex equa-
tional specifications has already led to two complementary approaches, each able
to handle specifications outside classes that could be handled by previous appr-
oaches. Although significant progress has been made, there is a great deal of oppor-
tunity both to develop new techniques and to improve the performance of
existing techniques. Additionally, the tools and techniques we have developed are
not restricted to sufficient completeness. Recently, the CETA library has been in-
tegrated into the reachability analysis tool ACTAS [12]. For more details on this,
see CETA’s website at: http://formal.cs.uiuc.edu/ceta/.

Bibliography

[1] A. Bouhoula and F. Jacquemard. Automatic verification of sufficient completeness
for conditional constrained term rewriting systems. Technical Report LSC-05-17,
ENS de Cachan, 2006. Available at: http://www.lsv.ens-cachan.fr/Publis/.

[2] H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, S. Tison, and
M. Tommasi. Tree automata techniques and applications. Available at:
http://www.grappa.univ-lille3.fr/tata, 1997. release October, 1st 2002.

[3] H. Comon and F. Jacquemard. Ground reducibility is EXPTIME-complete. Infor-
mation and Computation, 187(1):123–153, 2003.

[4] J. V. Guttag and J. J. Horning. The algebraic specification of abstract data types.
Acta Informatica, 10:27–52, 1978.

[5] J. Hendrix, M. Clavel, and J. Meseguer. A sufficient completeness reasoning tool
for partial specifications. In J. Giesl, editor, Proc. of RTA, volume 3467 of Lecture
Notes in Computer Science, pages 165–174. Springer, 2005.

[6] J. Hendrix, H. Ohsaki, and J. Meseguer. Sufficient completeness check-
ing with propositional tree automata. Technical Report UIUCDCS-R-
2005-2635, University of Illinois at Urbana-Champaign, 2005. Available at:
http://maude.cs.uiuc.edu/tools/scc/.

[7] J. Hendrix,H.Ohsaki, and M.Viswanathan. Propositional tree automata. Technical
Report UIUCDCS-R-2006-2695, University of Illinois at Urbana-Champaign, 2006.
Available at: http://maude.cs.uiuc.edu/tools/scc/.

[8] D. Kapur, P. Narendran, D. J. Rosenkrantz, and H. Zhang. Sufficient-completeness,
ground-reducibility and their complexity. Acta Informatica, 28(4):311–350, 1991.

[9] D. Kapur, P. Narendran, and H. Zhang. On sufficient-completeness and related
properties of term rewriting systems. Acta Informatica, 24(4):395–415, 1987.

[10] H. Ohsaki. Beyond regularity: Equational tree automata for associative and com-
mutative theories. In L. Fribourg, editor, Proc. of CSL, volume 2142 of Lecture Notes
in Computer Science, pages 539–553. Springer, 2001.

[11] H. Ohsaki and T. Takai. Decidability and closure properties of equational tree lan-
guages. In S. Tison, editor, Proc. of RTA, volume 2378 of Lecture Notes in Computer
Science, pages 114–128. Springer, 2002.

[12] H. Ohsaki and T. Takai. ACTAS : A system design for associative and commutative
tree automata theory. In Proc. of RULE, volume 124 of ENTCS, pages 97–111.
Elsevier, 2005.

[13] P. Viry. Equational rules for rewriting logic. Theoretical Computer Science,
285(2):487–517, 2002.

http://formal.cs.uiuc.edu/ceta/
http://www.lsv.ens-cachan.fr/Publis/
http://www.grappa.univ-lille3.fr/tata
http://maude.cs.uiuc.edu/tools/scc/
http://maude.cs.uiuc.edu/tools/scc/

	Introduction
	Order-Sorted Sufficient Completeness
	The Sufficient Completeness Checker (SCC)
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

