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Preface

This volume contains the papers presented at the Third International Joint Conference
on Automated Reasoning (IJCAR 2006) held on August 17–20, 2006, in Seattle, Wash-
ington as part of the Federated Logic Conference (FLoC 2006). The IJCAR series of
conferences is aimed at unifying the different research disciplines within automated
reasoning. IJCAR 2006 is the fusion of several major conferences:

– CADE: The International Conference on Automated Deduction
– FroCoS: Workshop on Frontiers of Combining Systems
– FTP: The International Workshop on First-Order Theorem Proving
– TABLEAUX: The International Conference on Automated Reasoning with Ana-

lytic Tableaux and Related Methods
– TPHOLs: The International Conference on Theorem Proving in Higher-Order

Logics

Prior versions of IJCAR were held at Cork, Ireland in 2004 and Siena, Italy in 2001.
These proceedings contain 3 contributions by invited speakers including 1 full pa-

per and 2 short abstracts, 41 research papers, and 8 system descriptions. It also includes
a short overview of the CASC-J3 competition for automated theorem proving systems
that was conducted during IJCAR 2006. In addition to the plenary CAV–IJCAR–ICLP
speaker David Dill, the invited speakers included Bruno Buchberger, Adnan Darwich,
and Dale Miller. The contributed papers were selected from 133 research paper sub-
missions and 18 system description submissions. Both the number and quality of these
submissions were exceptionally high. Each paper was reviewed by at least three refer-
ees, and decisions were reached after over two weeks of discussion through an elec-
tronic Program Committee meeting. The submissions, reviews, and discussion were
coordinated using the EasyChair conference management system. The accepted papers
spanned the entire spectrum of research in automated reasoning including formalization
of mathematics, proof theory, proof search, description logics, interactive proof check-
ing, higher-order logic, combination methods, satisfiability procedures, and rewriting.

The Herbrand Award for distinguished contributions to automated reasoning was
given to Wolfgang Bibel in recognition of his far-sighted vision and leadership for the
field, and his seminal technical contributions. The selection committee for the Her-
brand Award included previous award winners, the IJCAR 2006 Steering Committee,
the CADE Inc. trustees, and the IJCAR 2006 Program Committee. The Herbrand award
ceremony and the acceptance speech were part of the conference program.

The workshops at IJCAR 2006 were coordinated by the Workshop Chair Maria
Paola Bonacina, and included:

– ACL2: The ACL2 Theorem Prover and Its Applications
– AFM: Automated Formal Methods with PVS, ICS, and SAL
– CFV: Constraints in Formal Verification
– DISPROVING: Non-Theorems, Non-Validity, Non-Provability
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– ESCoR: Empirically Successful Computerized Reasoning
– FATES/RV: Formal Aspects of Testing and Runtime Verification
– LFMTP: Logical Frameworks and Meta-Languages: Theory and Practice
– PDPAR: Pragmatics of Decision Procedures in Automated Reasoning
– PLPV: Programming Languages meets Program Verification
– STRATEGIES: Strategies in Automated Deduction
– UITP: User Interfaces for Theorem Provers
– VERIFY: Verification Workshop

In addition to the Program Committee and the reviewers, many people contributed
to the success of IJCAR 2006. The Conference Chair John Harrison managed the phys-
ical organization of the meeting. Sergey Berezin served as the Publicity Chair. Peter
Baumgartner coordinated the Woody Bledsoe student travel awards. The IJCAR 2006
Steering Committee consisted of Franz Baader, Ulrich Furbach, Reiner Hähnle, Natara-
jan Shankar, Toby Walsh, Peter Baumgartner, John Harrison, Tobias Nipkow, Cesare
Tinelli, and Andrei Voronkov. The FLoC 2006 General Chair Moshe Vardi, the Program
Co-chairs Thomas Ball and Jakob Rehof, the FLoC Workshop Chair Gopal Gupta, and
the IJCAR representative Reiner Hähnle also assisted with many organizational issues
and questions. Special thanks go to Andrei Voronkov and his EasyChair system, which
makes many tasks of a program chair much more easier.

We would like to thank all the people involved in organizing IJCAR 2006 and FLoC
2006, as well as the sponsors of FLoC 2006, Cadence, IBM, Microsoft Research, NEC,
and The John von Neumann Minerva Center for the Development of Reactive Systems.

June 2006 Ulrich Furbach
Natarajan Shankar
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Mathematical Theory Exploration

Bruno Buchberger

Research Institute for Symbolic Computation
Johannes Kepler University Linz, Austria

Mathematics is characterized by its method of gaining knowledge, namely rea-
soning. The automation of reasoning has seen significant advances over the past
decades and, thus, the expectation was that these advances would also have
significant impact on the practice of doing mathematics. However, so far, this
impact is small. We think that the reason for this is the fact that automated
reasoning so far concentrated on the automated proof of individual theorems
whereas, in the practice of mathematics, one proceeds by building up entire the-
ories in a step-by-step process. This process of exploring mathematical theories
consists of the invention of notions, the invention and proof of propositions (lem-
mas, theorems), the invention of problems, and the invention and verification of
methods (algorithms) that solve problems. Also, in this process of mathematical
theory exploration, storage and retrieval of knowledge plays an important role.
The way how one proceeds in building up a mathematical theory in successive,
well structured, layers has significant influence on the ease of proving individual
propositions that occur in the build-up of the theory and also on the readability
and explanatory power of the proofs generated. Furthermore, in the practice of
mathematical theory exploration, different reasoning methods are used for dif-
ferent theories and, in fact, reasoning methods are expanded and changed in the
process of exploring theories, whereas traditional automated reasoning systems
try to get along with one reasoning method for large parts or all of mathematics.

We describe a methodology for the algorithmic support of mathematical the-
ory exploration. Starting from any mathematical knowledge base (collection of
formulae that may be axioms, definitions, propositions, lemmas, theorems, prob-
lem specifications, algorithms), in one exploration round, we introduce a few
new notions by axioms or definitions and then explore the possible interactions
of these notions with all existing notions as completely as possible before we
proceed to the introduction of the next notions. Achieving a certain degree
of completeness in the current exploration round is crucial for decreasing the
complexity of proving in the subsequent exploration rounds. The invention of
axioms and definitions, the invention of propositions that describe interactions
between notions, the invention of problems involving the new notions, and the
invention of algorithms that solve these problems is something which, typically,
needs a certain degree of human intervention. However, we show that significant
algorithmic support for these invention steps is possible by the use of formula
schemes. Formula schemes are formulae with higher order variables for functions
and predicates that describe fundamental properties of functions and predicates,
as for example commutativity, isomorphy, etc., that have proved to be useful in
the practice of mathematics.

U. Furbach and N. Shankar (Eds.): IJCAR 2006, LNAI 4130, pp. 1–2, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



2 B. Buchberger

The application of formula schemes provides a kind of bottom-up support in
the exploration of mathematical theories. A second idea is orthogonal to the
use of formula schemes and provides top-down support in the exploration: We
provide tools for the analysis of failing proofs. Failing proofs contain a lot of
creative information. They give us hints about missing links in the systematic
exploration of notions. For example, a failing induction proof of a conjecture
may give us a hint about which lemmas we should try to prove before going
back to the proof of the conjecture. The extraction of intermediate lemmas from
failing proofs can, however, also be applied for the synthesis of algorithms.

We illustrate the interplay between the use of formula schemes, lemma extrac-
tion from failing proofs and automated reasoning (special reasoners for special
theories) in a couple of examples. Our main example is the theory of Groebner
bases that has found numerous applications in many different areas of math-
ematics (algebraic geometry, symbolic analysis, algebraic combinatorics etc.).
Particular emphasis is put on a new method for the algorithm-supported syn-
thesis of algorithms, which we call lazy thinking method, which combines the use
of formula schemes and the extraction of conjectures from failing (automated)
proofs in the following way:

– We start from a formal specification P of the problem and try out one
algorithm scheme A after the other from a list of algorithm schemes. Such a
scheme defines A recursively in terms of unkown subalgorithms B, C, etc.

– For the chosen scheme A, we try to prove (by an automated reasoner) the
correctness theorem that states that A solves problem P . Typically, this
proof will fail because nothing is known on the subalgorithms B, C, etc.

– We analyze the failing proof object and extract properties Q, R, etc. for B,
C, etc. such that if B, C, etc. had these properties then the correctness proof
could continue and eventually succeed. (We have a couple of heuristic rules
for this extraction.)

– Properties Q, R, etc. can now be conceived as specifications for the subalgo-
rithms B, C, etc. Now we either have suitable algorithms B, C, etc. already
available in our current mathematical knowledge base (in this case we are
done) or we call the lazy thinking method recursively for B, C, etc.

We demonstrate that this seemingly simple procedure has significant inven-
tive power: It is strong enough, for example, to automatically synthesize an
algorithm for the construction of Groebner bases. This is surprising because the
construction of Groebner bases is a completely nontrivial problem which - in
the early days of computer algebra - was even conjectured to be algorithmically
unsolvable.

We also give some remarks, again in the example of Groebner bases theory,
on the use of special theorem provers and the expansion and change of provers
during the process of mathematical theory exploration and the implications of
these facts on future reasoning systems for mathematics.

All the examples are given in our Theorema system, which tries to implement
the above approach to mathematical theory exploration.



Searching While Keeping a Trace: The Evolution
from Satisfiability to Knowledge Compilation

Adnan Darwiche

Computer Science Department
University of California, Los Angeles

CA 90095-1596, USA
darwiche@cs.ucla.edu

Satisfiability testing has seen significant growth over the last decade, leading to
orders of magnitude improvements in performance over a relatively short period
of time. State of the art algorithms for satisfiability, which are based on DPLL
search, were originally meant to find a single satisfying assignment, but their
scope has been extended recently to perform exhaustive searches for the pur-
pose of counting and enumerating models. Moreover, the algorithms have been
augmented with sophisticated techniques, such as component analysis and for-
mula caching, which are critical to their performance in real–world applications.
In a parallel thread of developments, work has been commencing in the area of
knowledge compilation, which aims at converting knowledge bases into tractable
representations that allow some hard operations to be performed in polytime on
the compiled representations. Work in this area has lead to the identification of
a comprehensive taxonomy of tractable languages that explicates their relative
succinctness and the polytime operations they support.

In this talk, I will examine these two threads of developments in automated rea-
soning and show a deep connection that has evolved over the last few years. In par-
ticular, I will show that the trace of a search can be interpreted (and stored) as a
propositional sentence, leading each search algorithm to define a propositional lan-
guage consisting of sentences generated by all possible executions of the algorithm.
I will show several matches between exhaustive search algorithms in common use
today and well–known languages based on Binary Decision Diagrams (BDDs) and
Decomposable Negation Normal Form (DNNF), which currently dominate the
area of knowledge compilation. I will also discuss two implications of such matches:
(1) a uniform and practical framework in which successful search techniques can
be harnessed for the compilation of knowledge bases into various languages of in-
terest, and (2) a new methodology whereby the hidden power and limitations of
search algorithms can be unveiled by looking up the properties (tractability and
succinctness) of corresponding propositional languages.

The talk will provide an exposition to many empirical studies that reflect the
state of the art in exhaustive DPLL search and knowledge compilation. The talk
will also show how these developments have lead to automated reasoning systems
that are now forming the backbones of state of the art problem solvers in various
areas, including planning (probabilistic and deterministic), state estimation and
diagnosis, and probabilistic reasoning in graphical models.
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Representing and Reasoning with Operational
Semantics
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Abstract. The operational semantics of programming and specification
languages is often presented via inference rules and these can generally
be mapped into logic programming-like clauses. Such logical encodings
of operational semantics can be surprisingly declarative if one uses logics
that directly account for term-level bindings and for resources, such as
are found in linear logic. Traditional theorem proving techniques, such
as unification and backtracking search, can then be applied to animate
operational semantic specifications. Of course, one wishes to go a step
further than animation: using logic to encode computation should facil-
itate formal reasoning directly with semantic specifications. We outline
an approach to reasoning about logic specifications that involves view-
ing logic specifications as theories in an object-logic and then using a
meta-logic to reason about properties of those object-logic theories. We
motivate the principal design goals of a particular meta-logic that has
been built for that purpose.

1 Roles for Logic in the Specification of Computations

There are two broad approaches to using logic to specify computational systems.
In the computation-as-model approach, computations are encoded as mathemat-
ical structures, containing such items as nodes, transitions, and state. Logic is
used in an external sense to make statements about those structures. That is,
computations are used as models for logical expressions. Intensional operators,
such as the modals of temporal and dynamic logics or the triples of Hoare logic,
are often employed to express propositions about the change in state. This use
of logic to represent and reason about computation is probably the oldest and
most broadly successful use of logic for specifying computation.

The computation-as-deduction approach uses pieces of logic’s syntax (formu-
las, terms, types, and proofs) directly as elements of the specified computation.
In this much more rarefied setting, there are two rather different approaches to
how computation is modeled. The proof normalization approach views the state
of a computation as a proof term and the process of computing as normalization
(via β-reduction or cut-elimination). Functional programming can be explained
using proof-normalization as its theoretical basis [23]. The proof search approach
views the state of a computation as a sequent (a structured collection of formu-
las) and the process of computing as the search for a proof of a sequent: the
changes that take place in sequents capture the dynamics of computation. Proof

U. Furbach and N. Shankar (Eds.): IJCAR 2006, LNAI 4130, pp. 4–20, 2006.
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search has been used to provide a theoretical foundation for logic programming
[33] and to justify the design of new logic programming languages [31].

The divisions proposed above are informal and suggestive: such a classification
is helpful in pointing out different sets of concerns represented by these two broad
approaches (reduction, confluence, etc, versus unification, backtracking search,
etc). Of course, a real advance in computation logic might allow us merge or
reorganize this classification.

This classification can help to categorize the various proof systems that have
been used to reason about computation systems. For example, the computation-
as-model approach usually implies that one divides the problem of reasoning
about computation into two steps. In the first step, one implements mathematics
via some set-theory or higher-order logic (for example, HOL [14], Isabelle/ZF
[46], PVS [44]). In the second step, one reduces program correctness problems to
mathematics. Thus, data structures, states, stacks, heaps, invariants, etc, all are
represented as various kinds of mathematical objects. One then reasons directly
on these objects using standard mathematical techniques (induction, primitive
recursion, fixed points, well-founded orders, etc).

Researchers who specify computation using the proof-normalization approach
usually first implement mathematics, but this time, in a constructive mathemat-
ics, using, for example, Martin-Löf type theory [23] and higher-order intuition-
istic logic or dependent type theory (for example, Coq [9] and NuPRL [8]).

This paper describes another possibility for the construction of a prover that
takes its inspiration from the proof search approach to the specification of
computation.

2 The Proof Search Paradigm

As one builds cut-free proofs of sequents (in the sense of, say, Gentzen [12]),
sequents change and this change, reading proofs bottom-up, is used to capture
the dynamics of computation that one intends to model. The cut-rule and the
cut-elimination process do not have roles to play during this simulation of com-
putation: instead, they can play important roles in reasoning about specified
computations.

While proof search can be seen as a means of giving a broad foundation to
logic programming, there are a number of aspects of proof search (as computa-
tion) that have not been embraced by the general logic programming community.
For example, proof search relies primarily on proof theory for new designs and
analysis tools, instead of model theory as is more customarily used by logic pro-
gramming researchers. Proof search generally stresses logically correct deduction
even if non-logical techniques, such as dropping all occur-checks during unifica-
tion and using the ! pruning or “cut” operator of Prolog, can yield more effective
executions. Also, proof search design and theory also focuses on the meaning of
logical connectives and quantifiers for expressiveness and for new designs. Such
a focus is in contrast to, say, constraint logic programming [21].
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As we highlight in the rest of this section, the proof search paradigm allows
for a relatively straightforward treatments of such “intensional” aspects of com-
putation as binders, binder mobility, and resource management.

2.1 Encoding Symbolic Expression Via λ-Tree Syntax

Most human authored and readable symbolic expressions start life as strings:
such linearly organized data are full of semantically unimportant information
such as white space, infix/postfix operators, and parentheses. Before processing
such concrete syntax, one removes much of this concrete nonsense by parsing
the data into a more abstract representation we call here parse trees (often also
called abstract syntax).

Most parsing technology unfortunately leaves the names of bound variables
in the resulting parse trees. Although binders are, of course, important aspects
of the meaning of computational objects, the name of variables used to encode
binders are another form of concrete nonsense. Since dealing with bindings in
syntax is a well known problem, various techniques are available to help make
this concrete and semantically meaningless aspect of syntax more abstract. One
approach to bindings in syntax uses deBruijn numerals [5]. While such an en-
coding has proved its value within implementations, deBruijn numerals seem
too explicit and complicated to support declarative reasoning of syntax. Other
approaches involve the direct use of named variables and a version of set theory
to accommodate names and renaming [11].

The higher-order abstract syntax (hoas) [47] approach to encoding syntax pro-
poses that bindings in data should be mapped to the bindings found in whatever
programming or specification language one is using. Within functional program-
ming, term-level binders are then encoded as functional objects. While some
interesting specifications have resulted [10,18], this approach has numerous se-
mantic problems. For example, while expressions with bindings are still intended
to be finite and syntactic objects, the corresponding functions yields values that
are usually infinite in extension. Also, there are usually many more constructors
for function spaces than simply the λ-abstraction within a functional program-
ming setting: for example, recursive function definition.

In contrast, the proof search approach to the specification of computation
allows for a different approach to hoas. In that setting, λ-terms modulo various
weak subsets of λ-conversion can be used to directly encode expressions. Here,
α-conversion abstracts away from the names of bindings, β0-conversion allows for
binder mobility [28,30], and β-conversion allows for object-level substitution. We
shall use the term λ-tree syntax [29] to denote the proof search approach to hoas.
While there is a long history of using λ-tree syntax in specifying computation,
starting with Huet and Lang [20] and Miller and Nadathur [32], few computer
systems actually support it directly: the λProlog [40] programming language
and the Isabelle [43] and Twelf [48] specification languages are the best known
exceptions.

Using meta-level application to encode object-level applications is standard
practice: for example, one uses meta-level application to apply, say, cons, to two
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arguments: (cons X L). The λ-tree syntax approach is simply a dualizing of this
practice that uses meta-level abstraction to encode object-level binders.

2.2 Encoding Computational Processes as Formula or as Terms

It seems that there are two choices one can make when encoding “active” com-
ponents of a computation into proof search. Usually, these active objects, such
as computation threads, automata states, etc, which we collectively call here
as simply “processes”, are encoded as terms. In this process-as-term approach,
predicates are then used to state relationships between computational items. For
example, we have statements such as “M has value V ”, “in context Γ , M has
type σ”, “P makes an A transition and becomes Q”, etc. Given such atomic
formulas, one then encodes operational semantics as compound formulas within
either an intuitionistic or a classical logic. For an example of encoding the π-
calculus using this process-as-term approach, see [35,54] and Section 6.

With the availability of linear logic and other sub-structural logics, it seems
sensible to consider another style of encoding where processes are encoded di-
rectly as formulas. In the process-as-formula approach to encoding, formulas no
longer denote truth values: instead they denote “resources” which can change
over time. In such a setting, the combinators of a processes calculus are mapped
to logical connectives and the environment of a computation thread (includ-
ing, for example, memory and other threads) are modeled via a logical context
(within a sequent, for example). In principle, this approach requires fewer non-
logical constants than are used with the process-as-term approach. There is a
large literature of specifying programming language features in this manner us-
ing linear logic [31].

While encodings using the process-as-formula approach can often capture the
notion of process execution or of reachability, they fail to directly support rich
notions of program or process equivalences, such as bisimulation or observational
equivalence. To capture these equivalences, the process-as-term approach has
provided more successes.

3 Operational Semantics as Logic Specification

A common style of operational semantics specification is presented as inference
rules involving relations. We illustrate how such semantic specifications can be
mapped into logical specifications.

For example, some of the rules for specifying CCS [37] are given by the fol-
lowing inference rules.

P
A
−−→ R

P + Q
A
−−→ R

Q
A
−−→ R

P + Q
A
−−→ R

P
A
−−→ P ′

P |Q
A
−−→ P ′|Q

Q
A
−−→ Q′

P |Q
A
−−→ P |Q′

By viewing + and | as constructors of processes and ·
·

−−→ · as a predicate of
three arguments, it is easy to write these inference rules as the following first-
order Horn clauses.
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∀P∀Q∀A∀R[P
A
−−→ R ⊃ P + Q

A
−−→ R]

∀P∀Q∀A∀R[Q
A
−−→ R ⊃ P + Q

A
−−→ R]

∀P∀A∀P ′∀Q[P
A
−−→ P ′ ⊃ P |Q

A
−−→ P ′|Q]

∀P∀A∀Q′∀Q[Q
A
−−→ Q′ ⊃ P |Q

A
−−→ P |Q′]

For a slightly more challenging specification of operational semantics, we con-
sider a specification of call-by-name evaluation, which involves bindings and
substitution (call-by-value evaluation can also be used here just as easily). Let
the type tm denote the syntactic category of untyped λ-terms and let the two
constructors abs of type (tm → tm) → tm and app of type tm → tm → tm
denote abstraction and application within the untyped λ-calculus, respectively.
This encoding places α-equivalence classes of untyped λ-terms in one-to-one
correspondence with βη-equivalence classes of terms of type tm. To specify call-
by-name evaluation, we use an infix binary predicate ⇓ to denote evaluation
between two arguments of type tm. Call-by-name evaluation can be specified by
the following two inference rules.

(abs λx.S) ⇓ (abs λx.S)
M ⇓ (abs λx.S) (S[x/N ]) ⇓ V

(app M N) ⇓ V

To translate these inference rules into logic, one needs to explain carefully the
proper treatment of binding (here, λx) and the definition of term-level substi-
tution (here, S[x/N ]). As is often observed, these details are complex and there
are a number of different solutions. Furthermore, dealing with all those details
does not help in understanding the essential semantics of such a specification
rule. Fortunately, we can simply invoke the λ-tree approach to syntax to ad-
dress these problems. In particular, we assume that our logic contains variables
of higher-order type (in particular, of type tm → tm) and that it contains an
equality of simply types that includes βη-conversion. In this way, we can simply
reuse the careful specification done by, say, Church in [6], of how λ-abstraction
and logic interact. Given this motivation, we can now choose to write the above
specification as simply the following (higher-order) Horn clauses [41]:

∀R.[(abs R) ⇓ (abs R)]

∀M∀N∀V ∀R.[M ⇓ (abs R) ∧ (R N) ⇓ V ⊃ (app M N) ⇓ V ]

Here, R has type tm → tm and corresponds to the expression λx.S and the
substitution S[x/N ] is replaced by the expression (R N).

Various forms of static analysis, such a typing, can be specified using inference
rules as well. Consider, for example, the specification of simple typing for the
untyped λ-calculus. To specify simple typing for the untyped λ-calculus, we
introduce the logic-level type ty to denote the syntactic category of simple type
expressions and use the constructors gnd of type ty (denoting a ground, primitive
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type) and arr of type ty → ty → ty (denoting the function type constructor).
The usual rule for simple typing is given as follows:

Γ � M : (arr U T ) Γ � N : U
Γ � (app M N): T

Γ, x: T � S: U
Γ � (abs λx.S): (arr T U)

(†)

The second inference rule has the proviso (†): x must be a new variable; that is,
it is not free in T , U , nor in any of the pairs in Γ . To encode these inference rules
into logic, we first pick a binary predicate typeof, whose arguments are of type
tm and ty, respectively, to denote the colon relation above. Then the following
formulas provide an elegant encoding of these typing inference rules.

∀M∀N∀T∀U [typeof M (arr U T ) ∧ typeof N U ⊃ typeof (app M N) T ]

∀R∀T∀U [∀x.[typeof x T ⊃ typeof (R x) U ] ⊃ typeof (abs R) (arr T U)]

Notice that these formulas are no longer Horn clauses. The use of λ-tree syntax
allows for dispensing with any explicit reference to bindings. The use of the impli-
cation in the body of clauses means that the explicit context Γ is being managed
implicitly by logic. The term-level binding in λx can be seen as “moving” to the
formula-level binding ∀x. During proof search, this formula-level binding will be
replaced with an eigenvariable: thus, this formula-level binding will move to a
proof-level binding. Such binder mobility gives λ-tree syntax one of its strength:
a specification does not need to specify details about how binders are encode,
instead, binders only need to be moved from term-level to formula-level to proof-
level bindings. Details of binders need to be addressed only by implementors of
the logic.

4 What Good Is a Logic Specification Anyway?

People working in programming language specification and implementation have
a history of using declarative tools. For example, both lexical analyzers and
parsers are often generated by special tools (e.g., lex and yacc) that work from
such declarative specifications as regular expressions and context-free grammars.
Similarly, operational semantics has been turned into interpreters via logic pro-
gramming engines [4] and denotational semantics have been used to generate
compilers [45].

Given a history of interest in declarative techniques to specify programming
language systems, it seems natural to now focus on the question: why should
anyone care that we have written an operational semantic specification or a typ-
ing relation declaratively? What benefits should arise from using λ-tree syntax,
from using intuitionistic logic or linear logic?

One benefit arises from the fact that logic is a difficult discipline to follow: the
efforts of the specifier to hammer a specification into a declarative setting that
lacks, for example, side-conditions, can often lead to new ways of thinking about
what one is specifying. Such rarefied and declarative settings can also allow broad
results to be inferred from specifications: for example, the fact that bisimulation
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is a congruence can be established for process calculi (see, for example, [15,56])
or for functional programming languages [19] by checking syntactic conditions
on the declarative specification of operational semantics.

Another benefit is that an implementation of logic might provide a uniform
means to animate a wide range of logic specifications.

The benefit that concerns us here, however, is that a logic specification should
facilitate the inferring of formal properties. While this might sound obvious,
designing a “meta-logic” for reasoning about logic specifications requires some
work. We motivate via some examples one particular meta-logic.

5 Example: A Subject-Reduction Theorem

Consider again the specification of evaluation and typing given in Section 3. The
following theorem is usually called the type preservation or the subject-reduction
theorem. The informal proof of this theorem below is taken from [24].

Theorem 1. If P evaluates to V and P has type T then V has type T .

Proof. We write � B to mean that there is a uniform proof of B, where uni-
form proofs are certain kinds of cut-free proofs that have been used to formal-
ize the notion of goal-directed proof search [33]. Restricting to such uniform
proofs in this setting does not result in a loss of completeness. We proceed
by induction on the structure of a uniform proof of P ⇓ V that for all T , if
� typeof P T then � typeof V T . Since P ⇓ V is atomic, its proof must end
by backchaining on one of the formulas encoding evaluation. If the backchaining
is on the ⇓ formula for abs, then P and V are both equal to abs R, for some
R, and the consequent is immediate. If P ⇓ V is proved using the ⇓ formula
for app, then P is of the form app M N and for some R, there are shorter
proofs of M ⇓ (abs R) and (R N) ⇓ V . Since � typeof (app M N) T , this
typing relation must have been proved using backchaining and, hence, there is
a U such that � typeof M (arr U T ) and � typeof N U . Using the inductive
hypothesis, we have � typeof (abs R) (arr U T ). This atomic formula must
have been proved by backchaining on the typeof formula for abs, and, hence,
� ∀x.[typeof x U ⊃ typeof (R x) T ]. Since our meta-language is (intuitionistic)
logic, we can instantiate this quantifier with N and use cut and cut-elimination
to conclude that � typeof (R N) T . (This last step is essentially a “substitution
lemma” which comes for free given cut elimination and our use of λ-tree syntax.)
Using the inductive hypothesis a second time yields � typeof V T .

This proof is clear and natural and we would like our meta-logic to support
similarly structured proofs. This example suggests that the following features
would be valuable in the meta-logic.

1. Two distinct logics. In the above informal proof, there are clearly two distinct
logics being used. One logic is written with logical syntax and describes
some relations, e.g. typability and evaluation. The second logic is written
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with English text: atomic formulas of that logic are (provability) judgments
about the object-logic. This use of two distinct logics – one for the specifying
operational semantics and typing and one for the meta-logic – is an important
aspect of our approach to reasoning about computation.

2. Structural induction over object-level sequent calculus proofs was used. Ob-
viously induction over other structures (e.g., expressions, formulas) and co-
induction play important roles in meta-level reasoning about computation.

3. The instantiation of meta-level eigenvariables was used in this proof. In par-
ticular, the variable P was instantiated in one part of the proof to (abs R)
and in another part of the proof to (app M N). Notice that such instan-
tiation of eigenvariables within a proof does not happen in proof search in
conventional sequent calculi.

4. The inversion of assumed judgment was used in the above proof a few times,
leading, for example, from the assumption � typeof (abs R) (arr U T ) to
the assumption � ∀x[typeof x U ⊃ typeof (R x) T ]. The specification of
typeof allows the implication to go in the other direction, but given the
structure of the specification of typeof, this direction can also be justified at
the meta-level.

The system Twelf is capable of proving such type preservation properties along
rather similar lines, except that an explicit meta-logic with an explicit induction
rule is replaced by a meta-level tool that checks properties such as coverage and
termination [51].

In the example above, bindings in the object-logic and object-language played
a small role: they were treated only by instantiation. In the next section, we
consider the π-calculus since it provides a more challenging problem for dealing
with bindings in syntax and in computations.

6 Example: A π-Calculus Specification

To encode the syntax of the π-calculus, let the types p, n, and a denote the
syntactic category of processes, names, and actions, respectively. A signature for
the π-calculus can thus be listed as

0 : p, out : n→ n → p→ p, in : n→ (n→ p)→ p,
+, | : p→ p→ p, match : n→ n→ p → p, ν : (n → p)→ p.

For example, the expression x(y).P , where x is a name and y is a binding with
scope P , can be encoded using a constructor in as the expression (in x (λy.P ′)).
Similarly, the restriction operator νx.P can be encoded as ν(λx.P ).

We next introduce three constructors for actions: τ denotes the silent action
and the down arrow ↓ and up arrow ↑ encode input and output actions, resp: in
particular, the expression (↓xy) denotes an input action on channel x of value
y. Notice that the two expressions, λy.↑xy and ↑x, denoting abstracted actions,
are equal up to η-conversion and can be used interchangeably.

To specifying the operational semantics of the π-calculus, we use the horizontal
arrow −−→ to relate a process with an action and a continuation (a process),
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and the “harpoon” −−⇀ to relate a process with an abstracted action and an
abstracted continuation (of types n → a and n → p, resp.).

The following three rules (named (close), (res), (open)) are part of the
specification of one-step transitions for the π-calculus: the full specification using
λ-tree syntax can be found in, for example, [34,36].

P
↓X
−−⇀ M Q

↑X
−−⇀ N

P |Q
τ
−−→ νy.(My |Ny)

∀n(Nn
A
−−→Mn)

νn.Nn
A
−−→ νn.Mn

∀y(Ny
↑Xy
−−→My)

νy.Ny
λy.↑Xy
−−⇀ λy.My

The (close) rule describes how a bound input and bound output action can
yield a τ step with a ν-restricted continuation. The (res) rule illustrates how
λ-tree syntax and appropriate quantification can remove the need for side condi-
tions: since substitution in logic does not allow for the capture of bound variables,
all instances of the premise of this rule have a horizontal arrow in which the ac-
tion label does not contain the universally quantified variable free. Thus, the
usual side condition for this rule is treated declaratively. There is a direct trans-
lation of such inference rules into, say, λProlog [40], in such a way that one can
directly animate the operational semantics of the π-calculus.

7 Example: Bisimulation for the π-Calculus

There seems to be something questionable about the use of the universal quan-
tifier in the premises of the operational semantics for the π-calculus above. For

example, the (res) rule says that if Nn
A
−−→ Mn is provable for all instances

of the free variable n then the transition νn.Nn
A
−−→ νn.Mn is justified. This

does not seem to be a completely correct sense of what is implied by the original
specification rule of the π-calculus. A more correct sense of the rule should be

something like: if Nn
A
−−→Mn is provable for some new name n, then the above

conclusion is justified. In a proof search setting involving only positive inference
about computation (for example, judgments involving only may behavior of a
process), such a quantifier appears only positively and is instantiated with a new
(proof-level bound) variable called an eigenvariable. In this setting, the notion
of new name is supported well by the universal quantifier. If, however, negative
information is being inferred, as is possible with judgments involving must be-
haviors, then the universal quantifier is instantiated with any number of existing
names. This seems like the wrong meaning for this rule.

To illustrate this example more concretely, note that for any name x, the pro-
cess νy.[x = y]x̄z is bisimilar to 0: that is, this process can make no transitions.
This fact also seems to follow from the nature of bindings: the scope of the bind-
ings for x and for y are such that any instance of x can never equal y (a simple
consequence of that fact that sound substitutions avoid variable capture). Now,
proving this bisimulation fact should be equivalent to proving

∀x∀A∀P ′¬(νy.[x = y]x̄z
A
−−→ P ′)
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Using the above operational semantics, this should be equivalent to proving

∀x∀A∀P ′′¬∀y([x = y]x̄z
A
−−→ P ′′) and ∀x∀A∀P ′′∃y¬([x = y]x̄z

A
−−→ P ′′)

Now it seems that standard proof theory techniques will not achieve a proof:
somehow we need to have additional information that for every name there exists
another name that is distinct from it. Adopting such an axiom is often done in
many settings, but this seems to go against the usual spirit of sequent calculus
(a system usually containing no axioms) and against the idea that proof theory
is, in fact, an ideal setting to deal with notions of bindings and scope directly.

To come up with a proof theoretic approach to address this problem with using
the ∀-quantifier in operational semantics, Miller and Tiu [35,36] introduced the
∇-quantifier: the informal reading of ∇x.Bx, in both positive and negative set-
tings, is equivalent to Bx for a new name x. To support this new quantification,
sequent calculus is extended to support a notion of “generic judgments” so that
“newness” remains a (proof-level) binding and can be seen as being hypothet-
ical. That is, the truth condition of ∇x.Bx roughly reduces to the conditional
“if a new name c is created then Bc.” Notice that no assumption about whether
or not the domain of quantification is non-empty is made (this detail makes ∇
behave differently from the Gabbay-Pitts “newness quantifier” [11]). If one is in-
terested only in establishing one-step transitions (and not their negation), then
it is possible to use ∇ and ∀ in the premises of the operational semantics for the
π-calculus interchangeably.

Using ∇-quantification instead of ∀-quantification in the premise of the (res)
rule does, in fact, allow proving the formula

∀x∀A∀P ′¬(νy.[x = y]x̄z
A
−−→ P ′),

since this now reduces to ∀x∀A∀P ′′∇y¬([x = y]x̄z
A
−−→ P ′′). If one follows the

proof theory for∇ carefully [36] this negation is provable because the expressions
λy.x and λy.y do not unify (for free variable x). Notice that the binding of y is
maintained all the way to the level of unification where, in this case, it ensures
the correct failure to find an appropriate instance for x.

Using the ∇-quantifier, it is now easy and natural to specify bisimulation for
the π-calculus with the equivalence displayed in Figure 1. Notice the elegant par-

bisim P Q ≡ ∀A∀P ′ [P
A

−−→ P ′ ⇒ ∃Q′.Q
A

−−→ Q′ ∧ bisim P ′ Q′] ∧
∀A∀Q′ [Q

A
−−→ Q′ ⇒ ∃P ′.P

A
−−→ P ′ ∧ bisim Q′ P ′] ∧

∀X∀P ′ [P
↓X

−−⇀ P ′ ⇒ ∃Q′.Q
↓X

−−⇀ Q′ ∧ ∀w.bisim (P ′w) (Q′w)] ∧
∀X∀Q′ [Q

↓X
−−⇀ Q′ ⇒ ∃P ′.P

↓X
−−⇀ P ′ ∧ ∀w.bisim (Q′w) (P ′w)] ∧

∀X∀P ′ [P
↑X

−−⇀ P ′ ⇒ ∃Q′.Q
↑X

−−⇀ Q′ ∧ ∇w.bisim (P ′w) (Q′w)] ∧
∀X∀Q′ [Q

↑X

−−⇀ Q′ ⇒ ∃P ′.P
↑X

−−⇀ P ′ ∧ ∇w.bisim (Q′w) (P ′w)]

Fig. 1. A specification of bisimulation for the π-calculus
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allelism between using ∀ to quantify bisimulation of abstracted continuations for
bound inputs and using ∇ to quantify bisimulation of abstracted continuations
for bound outputs. As is shown in [54], proving this formula in intuitionistic
logic yields open bisimulation [49]. Without an inference rule for co-induction,
this equivalence is only correct for the finite π-calculus (a subset of the π-calculus
that does not contain the replication operator ! nor recursive definition of pro-
cesses). If we add the excluded-middle assumption ∀w∀z(w = z ∨w �= z) (which
is trivially true in a classical meta-theory), the resulting specification can be
used to specify late bisimulation [38] (see [54] for the precise statements regard-
ing this specification). A logic programming-style implementation of proof search
provides an immediate symbolic bisimulation checker (in the sense of [17,3]) for
the finite π-calculus [54,53].

8 The LINC Meta-logic

The three examples above allow us to now motivate the design of a meta-logic
that can be used to state properties of object-level provability and, hence, to
reason about operational semantics (via their encodings into object-logics). Our
meta-logic is called LINC, an acronym coined by Tiu [52] for “lambda, induction,
nabla, co-induction.” This logic contains the following three key features.

First, LINC is based on the predicative and intuitionistic fragment of Church
Simple Theory of Types [6] (restricted to the axioms 1 – 6). Provability for this
logic can be described as being essentially Gentzen’s LJ sequent calculus [12] to
which is added simple typing for all variables and constants, quantification at
all types (excluding the type of predicates), and an inference rule that allows
βη-conversion on any formula in a sequent. This logic provides support for λ-tree
syntax. Considering a classical logic extension of LINC is also of some interest,
as is an extension allowing for quantification at predicate type.

Second, LINC incorporates the proof-theoretical notion of definition, a simple
and elegant device for extending logic with the if-and-only-if closure of a logic
specification (similar to the closed-world assumption [7]). This notion of defini-
tion was developed by Hallnäs and Schroeder-Heister [16,50] and, independently,
by Girard [13]. This feature of definitions allows for the “inversion of assumed
judgments” mentioned at the end of Section 5 and for the ability to capture not
just may behavior but also must behavior. In particular, definitions are central to
the treatment of bisimulation mentioned in Section 7 (see also [27]) and for doing
model checking directly with operational semantics (see, for example, [53,55]).
It also allows for certain failures of proof search to be turned into successful
proofs of negations. Definitions are also a natural place to incorporate inductive
and co-inductive inference rules: for full details, see paper by McDowell, Miller,
Momigliano, and Tiu [25,26,35,39,52].

Third, LINC contains the ∇ quantifier, which, as we just illustrated, allows
for more natural and direct reasoning about syntactic encodings based on λ-tree
syntax.



Representing and Reasoning with Operational Semantics 15

As Tiu has shown in [52], under restrictions of appropriately “stratified” def-
initions (a restriction which rules out, for example, a predicate being defined as
its own negation), the LINC logic satisfies cut-elimination. The logic FOλ∆IN of
[25,26] is a subset of LINC, corresponding roughly to the fragment that results
from deleting the ∇-quantifier, removing co-induction, and limiting induction to
natural number induction.

The principal use of the ∇-quantifier is helping with the treatment of bindings
in λ-tree syntax encodings. In fact, we know of no use of ∇ in specifications that
involve only, say, first-order terms. It is also the case that ∇ is interchangeable
with ∀ when definitions are “positive”: that is, when they contain no occurrences
of implications and negations. In such Horn clause-like definitions, one can in-
terchange these two quantifiers in the body of definitions without affecting the
atomic formulas that are provable [36].

9 Formal Reasoning About Logic Specifications

Figure 2 presents an architecture for organizing the various symbolic systems in-
volved with the specification of and reasoning about computation systems. The
top level contains the many applications about which we hope to provide formal
proofs. Possible applications should include programming languages, specifica-
tions languages, security protocols, type systems, etc.

The middle layer contains a few object-level logics, such as Horn clauses (HC),
hereditary Harrop formulas (HH) [33], and linear logic (LL). These logics all have
well understood meta-theories and their operational semantics is given by proof
search following the normal forms dictated by uniform proofs and backchaining
[33] or focused proofs [1]. In fact, all of these logics can be seen as modularly
sitting inside one single logic, namely, linear logic.
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I. Applications
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Fig. 2. A three level architecture
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The bottom layer consists of the single logic LINC, where object-level prov-
ability must be encoded (as an abstracted logic programming interpreter) and
important results about object-level provability (including cut-elimination) must
be proved. Also, object-level logic specifications used to capture aspects of an
application must also be encoded into the meta-level. Since the meta-logic and
object-logic share the same application and abstraction, terms used to encode
application-level objects (for example, a π-calculus expression) are the same at
both levels.

To illustrate these three-levels, consider the proof of the subject-reduction the-
orem in Section 5. The application level contains two classes of linguistic items:
untyped λ-terms (constructed using abs and app) and simple type expressions
(constructed using gnd and arr). The formulas in Section 5 that specify eval-
uation and typing are object-level (hereditary Harrop) formulas. At the meta-
level, such formulas are simply terms, where object-level predicates, such as ⇓
and typeof, are now binary constructor in the meta-logic and where object-level
logic connectives and quantifiers are also meta-level term constructors (requiring
meta-level λ-abstraction to encode quantifiers). Formulas at the LINC (meta-
logic) level must now encode the notion of provability for the object-level logic
as well as any other judgments that are specific to the application being consid-
ering (such as, say, bisimulation). For example, provability of hereditary Harrop
formulas can be defined in LINC via a predicate, say, seq Γ B to describe when
the object-level formula B is provable from the list of object-level formulas in Γ
and the object-level formulas describing evaluation and typing (see [26, Section
4.3] for specifics on how this can be done). The meta-level formula that one
wishes to prove within LINC is then

∀P∀V [seq nil (P ⇓ V ) ⊃ ∀T [seq nil (typeof P T ) ⊃ seq nil (typeof V T )]]

This and many similar theorems are proved in [26,36].
For another example, consider again the π-calculus examples given above. In

Section 6, operational semantics was given using Horn clauses that allowed ∀ in
their bodies. When we moved to Section 7, we needed to make sure that these
∀-quantifiers were replaced by ∇-quantification. This transition is now easily
explained: when specifying at the LINC level an interpreter for object-level Horn
clauses, that interpreter will naturally translate the object-level conjunction and
existential quantifier to the meta-level conjunction and existential quantifier.
It will, however, need to translate the object-level universal quantifier to the
meta-level ∇-quantifier (for full details, see [36, Section 6]).

10 Future Work and Conclusions

We have described how logic can be used to specify operational semantics: the
logics used for this purpose are essentially logic programming languages based in
either classical, intuitionistic, or linear logic. These logics generally use higher-
type quantification in order to support λ-tree syntactic representation. Logic
is also used to reason about specifications made in this first logic. This second
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logic is thus a meta-logic for reasoning about provability in those object-logics.
A particular meta-logic, LINC, is based on intuitionistic logic and incorporates
the ∇-quantifier and principles of induction and co-induction.

Armed with the meta-logic LINC, with several interesting examples of using
it to reason about computation, and with several years of experience with im-
plementing proof search systems involving the unification of λ-term, it is now
time to build prototype theorem provers for LINC and develop larger examples.
Already, we can use λProlog [40] via its Teyjus implementation [42] to animate
specifications given in a number of object-logics. A simple model checking-style
generalization of (part of) λProlog has also been implemented and used to verify
various simple properties of, say, the π-calculus [55,53].

One of the goals of the Parsifal project at INRIA is to use this two level logic
approach to reason formally about operational semantics, say, in the context
of the POPLmark challenge [2]. We also hope to use this framework to reason
about specification logics themselves: for example, to prove soundness of logics
used to annotate programming languages for extended static checking, such as
the ESC/Java2 object logic [22]. Consistency of two simpler object-logics have
been proved in [26] by showing showing formally in (a subset of) LINC that
cut-elimination holds for them.
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Flyspeck I: Tame Graphs
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Abstract. We present a verified enumeration of tame graphs as defined
in Hales’ proof of the Kepler Conjecture and confirm the completeness of
Hales’ list of all tame graphs while reducing it from 5128 to 2771 graphs.

1 Introduction

In 1611 Kepler asserted what every cannoneer of the day must have known, that
the so-called cannonball packing is a densest arrangement of 3-dimensional balls
of the same size. In 1900 this assertion became part of Hilbert’s 18th problem. In
1998 Thomas Hales announced the first (by now) accepted proof. It involves 3 dis-
tinct large computations. After 4 years of refereeing by a team of 12 referees, an
abridged version was published only recently [5]. The referees declared that they
were 99% certain of the correctness of the proof. The programs were merely given
a “diagonal look”. Dissatisfied with this state of affairs Hales started the informal
open-to-all collaborative flyspeck project (www.math.pitt.edu/∼thales/flyspeck)
to formalize the whole proof with a theorem prover. This paper is the first defi-
nite contribution to flyspeck.

Hales’ proof goes roughly like this: any potential counter example (denser
packing) gives rise to a tame plane graph, where tameness is a very specific
notion; enumerate all (finitely many) tame graphs (by computer); for each of
them check (again by computer) that it cannot constitute a counter example.
For modularity reasons Hales provided the Archive, a collection of files with
(hopefully) all tame graphs.

We recast Hales’ Java program for the enumeration of all tame graphs in
logic (Isabelle/HOL), proved its completeness, ran it, and compared the output
to Hales’ Archive. It turns out that Hales was right, the Archive is complete,
although redundant (there are at most 2771, not 5128 tame graphs), and that
one tameness condition present in his Java program was missing from his proof
text. Apart from the contribution to Hales’ proof, this paper demonstrates that
theorem provers can not just formalize known results but can help in establishing
the validity of emerging state-of-the-art mathematical proofs.

An intrinsic feature of this proof, which it shares with Gonthier’s proof of
the Four Colour Theorem [3], is the need to perform massive computations
involving the defined functions (§1.3, §5). Hence efficiency is a concern: during
the development phase it is not very productive if, after every change, it takes a
week to rerun the proof to find that the change broke it. Part of the achievement
of our work is narrowing the gap between the specification of tameness and the
enumeration (to simplify the proof) without compromising efficiency unduly.
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Here is one motivating glimpse of where the tame graphs come from: each one
is the result of taking a cluster of balls and projecting the centers of the balls on
to the surface of the ball in the center, connecting two centers if they are within
a certain distance. For an eminently readable overview of Hales’ proof see [4],
for the details see [5], and for the full Monty read [6] and accompanying articles
in the same volume. For Hales’ Java program and his Archive see his web page
or the online material accompanying [5]. The gory details of our own work can
be found in the Isabelle theories available from the first author’s home page and
the Archive of Formal Proofs (afp.sourceforge.net). The thesis [1] also contains
full details but is a precursor to the work presented here: the enumeration and
the proof have changed considerably and the proof has been completed.

1.1 Related Work

Obua [10] and Zumkeller [11] work towards the verification of the remaining
computational parts in Hales’ proof.

Gonthier’s proof of the Four Colour Theorem [3] is very much concerned with
efficient data structures for various computations on plane graphs, a feature it
shares with our proof. At the same time he employs hypermaps as a unifying
representation of plane graphs. Potentially, hypermaps could play the same role
in the less computational but mathematically more abstract parts of flyspeck.

1.2 Basic Notation

Isabelle/HOL [9] conforms largely to everyday mathematical notation. This sec-
tion introduces further non-standard notation and in particular a few basic data
types with their primitive operations.

Types. The basic types of truth values, natural numbers and integers are called
bool, nat, and int. The space of total functions is denoted by ⇒. Type variables
are written ′a, ′b, etc. The notation t::τ means that term t has type τ .

Sets (type ′a set) come with their usual syntax. The pointwise image of set
M under a function f is written f ‘ M.

Lists (type ′a list) come with the empty list [], the infix constructor · , the
infix @ that appends two lists, and the conversion function set from lists to sets.
Function hd yields the head of a list, last the last element, and butlast drops
the last element. Variable names ending in “s” usually stand for lists, |xs | is the
length of xs, distinct xs means that the elements of xs are all distinct. Instead
of map f xs and filter P xs we frequently write [f x . x ∈ xs ] and [x∈xs . P x ].

1.3 Proof by Evaluation

Many theorem provers (ACL2, Coq and PVS) have the ability to evaluate func-
tions during proof by compilation into some efficient format followed by execu-
tion. Isabelle has been able to generate ML code for some time now [2]. Recently
this has been made available as an inference rule: given a term t, all functions
in t are compiled to ML (provided this is possible), t is reduced to u by the ML
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system, and the result is turned into the theorem t = u. Essentially, the ML
system is used as an efficient term rewriting engine. To speed things up further,
nat and int are implemented by arbitrary precision ML integers.

In order to remove constructs which are not by themselves executable, code
generation is preceded by a preprocessor that rewrites the term with speci-
fied lemmas. For example, the lemmas ∀ x∈set xs . P x ≡ list-all P xs and
∃ x∈set xs . P x ≡ list-ex P xs replace bounded quantifiers over lists with exe-
cutable functions. This is the key to bridging the gap between specification and
implementation automatically and safely.

Because lists are executable but sets are not, we sometimes phrase concepts
in terms of lists rather than sets to avoid having to define the concept twice and
having to provide a trivial implementation proof.

2 Plane Graphs

Following Hales we represent finite, undirected, plane graphs as lists (= finite sets)
of faces and faces as lists of vertices. Note that by representing faces as lists they
have an orientation. Our enumeration of plane graphs requires an additional dis-
tinction betweenfinal andnonfinal faces. This flag is attached directly to each face:

vertex = nat, face = vertex list × bool, graph = face list

The projection functions for faces are called vertices and final. The size of a face
is the length of its vertex list. Occasionally we call a list of vertices a face, too.
A graph is final if all its faces are final. Function F returns the set of faces of a
graph, i.e. is a synonym for function set. Function V returns the set of vertices
in a graph, countVertices the number of vertices. Given a graph g and a vertex
v, facesAt g v computes the list of faces incident to v.

For navigation around a face f we consider its list of vertices as cyclic and
introduce the following notation: if v is a vertex in f then f · v is the vertex
following v and f i · v is the ith vertex following v (where i may also be −1 ).
This description is ambiguous if there are multiple occurrences of v in f, but this
cannot arise in our context.

Representing faces as lists means that we want to regard two vertex lists us
and vs as equivalent if one can be obtained from the other by rotation, in which
case we write us ∼= vs. We introduce the notation

x ∈∼= M ≡ ∃ y∈M . x ∼= y, M ⊆∼= N ≡ ∀ x∈M . x ∈∼= N

Throughout most of this paper we pretend that a graph is just a face list, but
in reality it is more complicated. To avoid recomputation, countVertices and
facesAt are (hidden) components of the graph.

2.1 Enumeration of Plane Graphs

Not every list of faces constitutes a plane graph. Hence we need additional means
of characterizing planarity. We have chosen an operational characterization, i.e.
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an executable enumeration due to Hales. The reason is that we can then view
the enumeration of tame graphs as a restriction of the enumeration of plane
graphs. The justification for not starting with a more abstract traditional char-
acterization of planarity is that this is the first definite contribution to flyspeck
and it is not yet clear which notion of planarity is most suitable for the rest of
the project. In a nutshell, we wanted to concentrate on the new (and unchecked
by referees!) enumeration of tame graphs rather than the mathematically well
understood issue of planarity.

The graphs required for Hales’ proof are plane graphs with at least 2 faces
(including the outer one), where each face is a simple polygon of size ≥ 3. In the
sequel the term plane refers to this class. Hales’ enumeration of plane graphs
proceeds inductively: you start with a seed graph with two faces, the final outer
one and the (reverse) nonfinal inner one. If a graph contains a nonfinal face, it
can be subdivided into a final face and any number of nonfinal ones as shown
below. Final faces are grey, nonfinal ones white. The unbounded grey square
indicates the unbounded outer face.

Because a face can be subdivided in many ways, this process defines a tree of
graphs. By construction the leaves must be final graphs, and they are the plane
graphs we are interested in: any plane graph (in the above sense) of n faces can
be generated in n− 1 steps by this process, adding one (final) face at a time.

This definition is also meant to serve as the basis of the actual enumeration.
Hence we reduce its redundancy, i.e. the number of times each graph is generated,
by the following means:

– The enumeration is parameterized by a natural number p which controls the
maximal size of final faces in the generated graphs. The seed graph contains
two (p + 3)-gons and the final face created in each step may at most be a
(p + 3)-gon. As a result, different parameters lead to disjoint sets of graphs.
Note that the nonfinal faces may (and need to be) of arbitrary size.

– In each step we subdivide only one fixed face and the new final face always
shares one fixed edge with the subdivided face; which face and edge are
chosen is immaterial. This does not affect the set of final graphs that can be
generated but merely the order in which the final faces are created.

Formalization. Now we are ready for the top level formal specification:

PlaneGraphs ≡ ⋃
p {g | Seedp [next-planep]→∗ g ∧ final g}

where Seedp ≡ [([0 ,. . .,p+2 ],True), ([p+2 ,. . .,0 ],False)] is the seed graph de-
scribed above. Notation g0 [f ]→∗ g is simply suggestive syntax for (g0, g) ∈
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{(g, g ′) | g ′ ∈ set (f g)}∗, i.e. we can reach g from g0 in finitely many steps
via function f :: graph ⇒ graph list. In our case f is next-planep which maps a
graph to a list of successor graphs:

next-planep g ≡
let fs = [f ∈faces g . ¬ final f ]
in if fs = [] then []

else let f = minimalFace fs; v = minimalVertex g f
in

⊔
i∈ [3 ..p + 3 ] generatePolygon i v f g

If there are only final faces, we are done. Otherwise we pick a minimal nonfinal
face (in terms of size) and a minimal vertex within that face. Minimality of the
vertex refers to its distance from the vertices in the seed graph. This policy
favours compact graphs over stringy objects. Its implementation requires an
additional (hidden) component in each graph. But since the choice of vertex
(and face) is irrelevant as far as completeness of the enumeration is concerned,
so is the precise implementation.

Having fixed f and v we subdivide f in all possibleways byplacing an i-gon inside
it (along the edge from v to its predecessor vertex in f ), where i ranges from 3 to
p+3. Function generatePolygon returns a list of all possible successor graphs and
the suggestive syntax

⊔
i∈ I F i represents the concatenation of all F i for i in I.

Function generatePolygon operates and is explained in stages:

generatePolygon n v f g ≡
let enumeration = enumerator n |vertices f |;

enumeration = [is∈enumeration . ¬ containsDuplicateEdge g f v is];
vertexLists = [indexToVertexList f v is. is ∈ enumeration]

in [subdivFace g f vs. vs ∈ vertexLists]

Enumeration. We have to enumerate all possible ways of inscribing a final n-
gon inside f such that it shares the edge (f −1 · v , v) with f (which is removed).
The new n-gon can in fact share all edges with f, in which case we simply finalize
f without adding any new nonfinal faces; or it can touch f only at f −1 · v and v
and all of its other vertices are new; or anything in between. Following Hales one
can describe each of these n-gons by a list of length n of increasing indices from
the interval {0 ,. . .,|vertices f | − 1}. Roughly speaking, index i represents vertex
f i · v and a pair i ,j of adjacent list elements is interpreted as follows: if i < j
then the new polygon contains an edge from vertex f i · v to f j · v ; if i = j then
the new polygon contains a new vertex at that point. For example, given the
face [v0,. . .,v5], the index list [0 ,2 ,3 ,3 ,3 ,5 ] represents some face [v0,v2,v3,x ,y,v5]
where x and y are new vertices.

The enumeration of all these index lists is the task of function enumerator
which returns a nat list list. We have proved that enumerator n m returns all
(not necessarily strictly) increasing lists of length n starting with 0 and ending
with m − 1 :

set (enumerator n m) =
{is | |is| = n ∧ hd is = 0 ∧ last is = m − 1 ∧ last (butlast is) < last is ∧

increasing is}
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Condition last (butlast is) < last is excludes lists like [. . .,m,m] which would
insert a new vertex behind the last element, i.e. between f −1 · v and v.

The next stage in generatePolygon removes those index lists which would
create a duplicate edge: containsDuplicateEdge g f v is checks that there are no
two adjacent indices i < j in is such that (f i · v , f j · v) or (f j · v , f i · v) is
an edge in g (unless it is an edge in f, in which case no duplicate edge is created
because f is removed). Finally the index list is turned into a list of vertices as
sketched above employing

datatype ′a option = None | Some ′a

to distinguish an existing vertex Some(f i · v) from a new vertex None:

indexToVertexList f v is ≡ hideDups [f k · v . k ∈ is]
hideDups (i · is) = Some i · hideDupsRec i is
hideDupsRec a [] = []
hideDupsRec a (b · bs) =
(if a = b then None · hideDupsRec b bs else Some b · hideDupsRec b bs)

The result (in generatePolygon) is vertexLists of type vertex option list list where
each list in vertexLists describes one possibility of inserting a final face into f.

Subdivision. The last step in generatePolygon is to generate a new graph
subdivFace g f vos for each vos in vertexLists by subdividing f as specified by
vos. This is best visualized by an example. Given a face f = [1 ,. . .,8 ] and vos =
[Some 1 , Some 3 , None, Some 4 , None, Some 8 ] the result of inserting a face
specified by vos into f is shown below.
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Subdividing is an iterative process where in each step we split the (remaining)
face in two nonfinal faces; at the end we finalize the face. In the example we first
split the face along the path [1 ,3 ], then along [3 ,9 ,4 ] and finally along [4 ,10 ,8 ].
Each splitting in two is performed by splitFace g u v f newvs which returns a
new graph where f has been replaced by its two halves by inserting a list of new
vertices newvs between the existing vertices u and v in f. The straightforward
definition of splitFace is omitted.

Repeated splitting is performed by subdivFace ′ g f u n vos where u is the
vertex where splitting starts, n records how many new vertices must be inserted
along the seam, and vos is a vertex option list from vertexLists :

subdivFace ′ g f u n [] = makeFaceFinal f g
subdivFace ′ g f u n (vo · vos) =
(case vo of None ⇒ subdivFace ′ g f u (Suc n) vos
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| Some v ⇒
if f · u = v ∧ n = 0 then subdivFace ′ g f v 0 vos
else let ws = [countVertices g ..<countVertices g + n];

(f 1, f 2, g ′) = splitFace g u v f ws
in subdivFace ′ g ′ f 2 v 0 vos)

The definition is by recursion on vos. The base case simply turns f into a fi-
nal face in g. If vos starts with None, no splitting takes place but n is incre-
mented. If vos starts with Some v there are two possibilities. Either we have
merely advanced one vertex along f, in which case we keep on going. Or we
have skipped at least one vertex of f, in which case we must split f between
u and v, inserting n new vertices: the term [i ..<j ] is the list of natural num-
bers from and including i up to but excluding j. Function splitFace returns the
two new faces along with the new graph. Only f 2 is used (it is the face that is
subdivided further), but returning both faces helps to state many lemmas more
succinctly.

Function subdivFace (called from generatePolygon) simply starts subdivFace ′:

subdivFace g f (Some u · vs) ≡ subdivFace ′ g f u 0 vs

Note that because all index lists produced by enumerator are nonempty, all
vertex lists produced by indexToVertexList are nonempty and start with Some.

2.2 Invariants

Almost half the proof is concerned with verifying that PlaneGraphs satisfy cer-
tain invariants which are combined into the predicate inv :: graph ⇒ bool. Proba-
bly half that effort is caused by showing that the extended graph representation,
primarily facesAt, is kept consistent. The remaining properties are: each face
is of size ≥ 3 and all its vertices are distinct, there are at least two faces, the
faces are distinct modulo ∼= and if the graph has more than 2 faces also modulo
reversal, the edges of distinct faces are disjoint (where edges are pairs of adja-
cent vertices in an oriented face), and any nonfinal face is surrounded by final
faces.

3 Tame Graphs

Tameness is rooted in geometric considerations but for this paper it is simply a
fixed interface to the rest of Hales’ proof and should be taken as God given.

3.1 Definition of Tame Graphs

The definition relies on 4 tables a :: nat ⇒ nat, b :: nat ⇒ nat ⇒ nat, c :: nat
⇒ int, d :: nat ⇒ nat. Their precise definition is immaterial for this paper and
can be found elsewhere [1,5]. Like Hales (in his Java program) we have scaled
all rational numbers (from the paper proof) by 1000, thus turning them into
integers.
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Summing over the elements of a list (below: of faces) is written
∑

x ∈ xs f x .
Function faces returns the list of faces in a graph: in our simplified model of
graphs it is the identity but in the real model it is a projection.

Functions tri and quad count the number of final triangles and quadrilaterals
incident to a vertex. Hales calls a face f exceptional if it is a pentagon or larger,
i.e. if 5 ≤ |vertices f |. Function except returns the number of final exceptional
faces incident to a vertex. A vertex has type (p, q) if p = tri g v, q = quad g v
and except g v = 0.

A graph is tame if it is plane and satisfies 8 conditions:

1. The size of each face is at least 3 and at most 8:

tame1 g ≡ ∀ f ∈F g . 3 ≤ |vertices f | ∧ |vertices f | ≤ 8

2. Every 3-cycle is a face or the opposite of a face:

tame2 g ≡
∀ a b c.

is-cycle g [a, b, c] ∧ distinct [a, b, c] −→
(∃ f ∈F g . vertices f ∼= [a, b, c] ∨ vertices f ∼= [c, b, a])

where is-cycle g vs ≡ hd vs ∈ set (neighbors g (last vs)) ∧ is-path g vs,
function neighbors does the obvious and

is-path g [] = True
is-path g (u · vs) =
(case vs of [] ⇒ True | v ·ws ⇒ v ∈ set (neighbors g u) ∧ is-path g vs)

3. Every 4-cycle surrounds one of the following configurations:

The tame configurations are straightforward to describe:

tameConf 1 a b c d ≡ [[a, b, c, d ]]
tameConf 2 a b c d ≡ [[a, b, c], [a, c, d ]]
tameConf 3 a b c d e ≡ [[a, b, e], [b, c, e], [a, e, c, d ]]
tameConf 4 a b c d e ≡ [[a, b, e], [b, c, e], [c, d , e], [d , a, e]]

Predicate tame-quad formalizes that its parameters form one of the tame
configurations, taking rotation into account:

tame-quad g a b c d ≡
set (tameConf 1 a b c d) ⊆∼= vertices ‘ F g ∨
set (tameConf 2 a b c d) ⊆∼= vertices ‘ F g ∨
set (tameConf 2 b c d a) ⊆∼= vertices ‘ F g ∨
(∃ e∈V g − {a, b, c, d}.

set (tameConf 3 a b c d e) ⊆∼= vertices ‘ F g ∨
set (tameConf 3 b c d a e) ⊆∼= vertices ‘ F g ∨
set (tameConf 3 c d a b e) ⊆∼= vertices ‘ F g ∨
set (tameConf 3 d a b c e) ⊆∼= vertices ‘ F g ∨
set (tameConf 4 a b c d e) ⊆∼= vertices ‘ F g)
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Finally, tame3 also takes reversal of orientation into account:

tame3 g ≡
∀ a b c d .

is-cycle g [a, b, c, d ] ∧ distinct [a, b, c, d ] −→
tame-quad g a b c d ∨ tame-quad g d c b a

4. The degree of every vertex is at most 6 and at most 5 if the vertex is contained
in an exceptional face:

tame45 g ≡ ∀ v∈V g . degree g v ≤ (if except g v = 0 then 6 else 5 )

We have combined conditions 4 and 5 from [5] into one.
5. The following inequality holds:

tame6 g ≡ 8000 ≤ ∑
f ∈faces g c |vertices f |

6. There exists an admissible assignment of weights to faces of total weight less
than 14800:

tame7 g ≡ ∃w . admissible w g ∧ ∑
f ∈faces g w f < 14800

Admissibility is quite involved and discussed below. Although this is not
immediately obvious, tame7 guarantees there are only finitely many tame
graphs. It also is the source of most complications in the proofs because it
is not straightforward to check this condition.

7. There are no two adjacent vertices of type (4, 0):

tame8 g ≡ ¬ (∃ v∈V g . type40 g v ∧ (∃ w∈set (neighbors g v). type40 g w))

Now tame is the conjunction of tame1 up to tame8; the numbering follows [5].
Note that tame8 is missing in earlier versions of the proof, e.g. www.math.pitt.

edu/∼thales/kepler04/fullkepler.pdf of 13/3/2004. The second author noticed
and informed Hales of this discrepancy between the proof and his Java code,
where the test is present. As a result Hales added tame8 in the published versions
of his proof.

3.2 Admissible Weight Assignment

For w :: face ⇒ nat to be an admissible weight assignment it needs to meet the
following requirements:

1. admissible1 w g ≡ ∀ f ∈F g. d |vertices f | ≤ w f
2. admissible2 w g ≡

∀ v∈V g . except g v = 0 −→ b (tri g v) (quad g v) ≤ ∑
f ∈facesAt g v w f

3. admissible3 w g ≡
∀V . separated g (set V ) ∧ set V ⊆ V g −→∑

v∈V a (tri g v) +∑
f ∈[f ∈faces g . ∃ v∈set V . f ∈ set (facesAt g v)] d |vertices f |

≤ ∑
f ∈[f ∈faces g . ∃ v∈set V . f ∈ set (facesAt g v)] w f
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The first two constraints express that d and b yield lower bounds for w. The
last requirement yields another lower bound for w in terms of separated sets
of vertices. Separatedness means that they are not neighbours, do not lie on a
common quadrilateral, and fulfill some additional constraints:

separated1 g V ≡ ∀ v∈V . except g v = 0
separated2 g V ≡ ∀ v∈V . ∀ f ∈set (facesAt g v). f · v /∈ V
separated3 g V ≡
∀ v∈V . ∀ f ∈set (facesAt g v). |vertices f | ≤ 4 −→ V f ∩ V = {v}
separated4 g V ≡ ∀ v∈V . degree g v = 5

Note that Hales [5] lists 4 admissibility conditions, the third of which our work
shows to be superfluous.

3.3 Enumeration of Tame Graphs

The enumeration of tame graphs is a modified enumeration of plane graphs
where we remove final graphs that are definitely not tame, and cut the search
tree at nonfinal graphs that cannot lead to tame graphs anymore. Note that in
contrast to the enumeration of plane graphs, a specification we must trust, the
enumeration of tame graphs is accompanied by a correctness theorem (Theorem 3
below), the central result of the work, stating that all tame graphs are generated.
Hence it is less vital to present the tame enumeration in complete detail (except
to satisfy the curiosity of the reader and allow reproduceability).

The core of the tame enumeration is a filtered version of generatePolygon:

generatePolygonTame n v f g = [g ′∈generatePolygon n v f g . ¬ notame g ′]

In reality this is not the definition but the characteristic lemma. The actual defi-
nition replaces the repeated enumeration of lists of index lists in generatePolygon
by a table lookup. This is “merely” an optimization for speed, but an important
one. The filter notame removes all graphs that cannot lead to a tame graph:

notame g ≡ ¬ (tame45 g ∧ is-tame7 g)
is-tame7 g ≡ squanderLowerBound g < 14800

Using tame45 on nonfinal graphs is justified because the degree of a vertex can
only increase as a graph is refined and because except takes only the final faces
into account.1 Function squanderLowerBound computes a lower bound for the
total admissible weight of any final graph that can be generated from g. By
tame7 this lower bound must be < 14800.

squanderLowerBound g ≡ ∑
f ∈finals g d |vertices f | + ExcessNotAt g None

The lower bound consists of a d-sum over all final faces (justified by admissible1
and the fact that d cannot be negative) and an error correction term Excess-
NotAt. The definition of ExcessNotAt is somewhat involved and not shown.
1 tame6 on the other hand cannot be used to filter out nonfinal graphs because function

c may return both positive and negative values, i.e. summing over it is not monotone
under the addition of new faces.
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Essentially we enumerate all maximal separated sets of vertices, compute the
“excess” over and above the d-sum for each one (taking a and b into account as
justified by admissible2 and admissible3), and take the maximum. Note that the
number of separated sets can grow exponentially with the number of vertices.

On top of generatePolygonTame we have a variant of next-planep:

next-tame0p g ≡
let fs = [f ∈faces g . ¬ final f ]
in if fs = [] then []

else let f = minimalFace fs; v = minimalVertex g f
in

⊔
i∈ polysizes p g generatePolygonTame i v f g

where polysizes restricts the possible range [3 ..p + 3 ] to those sizes which can
still lead to tame graphs:

polysizes p g ≡ [n∈[3 ..p + 3 ] . squanderLowerBound g + d n < 14800 ]

The justification is that the insertion of a new n-gon into g adds at least d n to
squanderLowerBound g. Hence all these graphs would immediately be discarded
again by notame and polysizes is merely an optimization, but one which happens
to reduce the run time by a factor of 10.

The key correctness theorems for squanderLowerBound (recall inv from §2.2)
are that it increases with next-tame0 (in fact with next-plane)

Theorem 1. If g ′ ∈ set (next-tame0pg) and inv g then squanderLowerBound
g ≤ squanderLowerBound g ′.

and for (final) tame graphs squanderLowerBound is a lower bound for the total
weight of an admissible assignment:

Theorem 2. If tame g and final g and inv g and admissible w g and∑
f ∈faces g w f < 14800 then squanderLowerBound g ≤

∑
f ∈faces g w f.

These two theorems are the main ingredients in the completeness proof of next-
tame0 w.r.t. next-plane: any tame graph reachable via next-plane is still reach-
able via next-tame0.

Now we compose next-tame0 with a function makeTrianglesFinal (details
omitted) which finalizes all nonfinal triangles introduced by next-tame0 :

next-tame1p ≡ map makeTrianglesFinal ◦ next-tame0p

This step appears to be a trivial consequence of tame2 which says that all 3-
cycles must be triangles, i.e. that one should not be allowed to subdivide a
triangle further. The latter implication, however, is not completely trivial: one
has to show that if one ever subdivides a triangle, that triangle cannot be re-
introduced as a face later on. A lengthy proof yields completeness of next-tame1
w.r.t. next-tame0. The invariants (§2.2) are absolutely essential here.

As a final step we filter out all untame final graphs:

next-tamep ≡ filter (λg . ¬ final g ∨ is-tame g) ◦ next-tame1p
is-tame g ≡ tame45 g ∧ tame6 g ∧ tame8 g ∧ is-tame7 g ∧ is-tame3 g
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Tameness conditions 1 and 2 are guaranteed by construction. Conditions 45,
6 and 8 are directly executable. Condition 7 has been discussed already. This
leaves condition 3, the check of all possible 4-cycles:

is-tame3 g ≡
∀ vs∈set (find-cycles 4 g).

is-cycle g vs ∧ distinct vs ∧ |vs| = 4 −→ ok4 g vs

This implementation is interesting in that it employs a search-and-check tech-
nique: function find-cycles need not be verified at all because the rest of the
code explicitly checks that the vertex lists are actually cycles of distinct vertices
of length 4. This can at most double the execution time but reduces verifi-
cation time. In fact, find-cycles is expressed in terms of a while-functional [9]
which simplifies definition but would complicate verification. Function ok4 is a
straightforward implementation of tame-quad.

Note that this search-and-check technique is applicable only because we
merely need to ensure completeness of the enumeration of tame graphs, not
correctness. Otherwise we would need to verify that find-cycles finds all cycles.

Completeness of next-tame w.r.t. next-tame1 follows from Theorem 2 together
with the implementation proof of ok4 w.r.t. tame-quad. Putting the three indi-
vidual completeness theorems together we obtain the overall completeness of
next-tame: all tame graphs are enumerated.

Theorem 3. If Seedp [next-planep]→∗ g and final g and tame g then Seedp
[next-tamep]→∗ g.

The set of tame graphs is defined in the obvious manner:

TameEnump ≡ {g | Seedp [next-tamep]→∗ g ∧ final g}
TameEnum ≡ ⋃

p ≤ 5 TameEnump

An executable version of TameEnump is provided under the name tameEnum.
It realizes a simple work list algorithm directly on top of next-tame and need not
be shown or discussed, except for one detail. Being in a logic of total functions
we have to apply an old trick: since we want to avoid proving termination of the
enumeration process (which is bound to be quite involved), tameEnum takes two
parameters: the usual p and a counter which is decremented in each step. If it
reaches 0 prematurely, we return None, otherwise we return Some Fs where Fs
is the collected list of final graphs, the result of the enumeration. When running
tameEnum we merely need to start with a large enough counter. Because the
returned graphs are all final we reduce each graph to a list of list of vertices via

fgraph g ≡ map vertices (faces g)

before including it in the result. Hence the actual return type of tameEnum is
vertex fgraph list where

′a fgraph = ′a list list.

We merely show tameEnum’s correctness theorem, not the definition:

Theorem 4. If tameEnum p n = Some Fs then set Fs = fgraph ‘ TameEnump.
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As a final step we need to run tameEnum p n with suitably large n (such that
Some is returned) for all p ≤ 5 2 and compare the result with the contents of
the Archive.

4 The Archives

It turned out that Hales’ Archive was complete but redundant. That is, our
verified enumeration produced only 2771 graphs as opposed to Hales’ 5128. The
reason is twofold: there are many isomorphic copies of graphs in his Archive and
it contains a number of non-tame graphs (partly because for efficiency reasons
he does not enforce tame3 completely in his Java program). The new reduced
Archive can be found at the first author’s web page.

The new Archive is a constant Archive :: vertex fgraph set in the Isabelle
theories which is defined via the concatenation of 6 separate archives, one for
each p ≤ 5 :

Archive ≡ set (Tri @ Quad @ Pent @ Hex @ Hept @ Oct)

The main theorem of our work is the completeness of Archive:

Theorem 5. If g ∈ PlaneGraphs and tame g then fgraph g ∈� Archive.

Relation � is graph isomorphism (§4.1) and x ∈� M ≡ ∃ y∈M . x � y. This
theorem is a combination of the completeness of next-tame (Theorem 3) and of
fgraph ‘ TameEnum ⊆� Archive (where M ⊆� N ≡ ∀ x∈M . x ∈� N ). The
latter is a corollary of the fact that, for each p ≤ 5, tameEnum p n (for
suitable n) returns Some Fs such that Fs is equivalent to the corresponding
part of the Archive. Quite concretely, we have proved by evaluation (§1.3)
that same (tameEnum 0 800000 ) Tri, same (tameEnum 1 8000000 ) Quad,
same (tameEnum 2 20000000 ) Pent, same (tameEnum 3 4000000 ) Hex, same
(tameEnum 4 1000000 ) Hept, and same (tameEnum 5 2000000 ) Oct, where
same is an executable check of equivalence (modulo �)3 of two lists of fgraphs.
Corollary fgraph ‘ TameEnum ⊆� Archive follows by correctness of tameEnum
(Theorem 4) .

We cannot detail the definition of same (or its correctness theorem) but we
should point out that it is a potential bottleneck: for p = 2 we need to check
15000 graphs for inclusion in an archive of 1500 graphs — modulo graph iso-
morphism! Although isomorphism of plane graphs can be determined in linear
time [8], this algorithm is not very practical because of a large constant factor.
Instead we employ a hashing scheme to home in on the isomorphic graph quickly.
The graphs of each archive are stored in a search tree (a trie) indexed by a list
of natural numbers. The index is the concatenation of a number of hash values
invariant under isomorphism. The most important component is obtained by
adding up, for each vertex, the size of the faces around that vertex, and then
sorting the resulting list. This idea is due to Hales.
2 By tame1 we are only interested in graphs where all faces are of size ≤ 8 = 5+3,

the 3 being added in next-plane.
3 A check for ⊆� would suffice but it is nice to know that Archive is free of junk.
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4.1 Plane Graph Isomorphisms

For lack of space we present our definition of isomorphism but not its
implementation:

is-pr-iso ϕ Fs1 Fs2 ≡ is-pr-Iso ϕ (set Fs1) (set Fs2)
is-pr-Iso ϕ Fs1 Fs2 ≡ is-Hom ϕ Fs1 Fs2 ∧ inj-on ϕ (

⋃
F∈Fs1

set F )
is-Hom ϕ Fs1 Fs2 ≡ map ϕ ‘ Fs1 // {∼=} = Fs2 // {∼=}

Parameter ϕ is a function of type vertex ⇒ vertex. Predicate is-pr-iso compares
lists of faces (fgraphs), is-pr-Iso sets of faces; pr stands for proper. Proper iso-
morphisms assume that the faces of both graphs have the same orientation. An
isomorphism is defined as usual as an injective homomorphism. A homomor-
phism must turn one graph into the other, modulo rotation of faces: the infix //
is quotienting and the symbol {∼=} is defined as {(f 1, f 2) | f 1 ∼= f 2}.

‘Improper’ isomorphisms allow to reverse the orientation of all faces in one
graph (rev reverses a list):

is-iso ϕ Fs1 Fs2 ≡ is-Iso ϕ (set Fs1) (set Fs2)
is-Iso ϕ Fs1 Fs2 ≡ is-pr-Iso ϕ Fs1 Fs2 ∨ is-pr-Iso ϕ Fs1 (rev ‘ Fs2)

Two fgraphs are isomorphic if there exists an isomorphism between them:

g1 � g2 ≡ ∃ ϕ. is-iso ϕ g1 g2

5 Statistics

The starting point were 2200 lines of Java, the result 600 lines of executable HOL
(= ML), excluding comments, debugging aids, and libraries. This reduction is
primarily due to simplifications of the algorithm itself: not splitting the treatment
of triangle and quadrilateral seed graphs into 17 cases, dropping all symmetry
checks, dropping the special treatment of nonfinal quadrilaterals, and dropping
some complicated lower bound estimates (which are all still present in [1]). The
simplicity of the final solution belies the difficulty of arriving at it.

The whole formalization encompasses 17000 lines of definitions and proofs.
Running the complete proof takes 165 minutes on a Xeon: the completeness
proof takes 15 minutes, evaluating the enumeration 105 minutes, and comparing
the resulting graphs with the Archive (modulo graph isomorphism) 45 minutes.

During execution of the enumeration, the gargantuan number of 23 million
graphs are generated and examined, of which 35000 are final. The distribution
of graphs over the new Archive (for p = 0, . . . , 5) is (20,22,13), (923,18,12),
(1545,18,13), (238,17,12), (23,16,12), and (22,15,12), where each triple gives the
number of graphs, average number of faces, and average number of vertices for
that group of graphs.

6 Future Work

The enumeration of plane graphs needs to be connected with some abstract
notion of planarity. Hales is preparing a revised proof based on hypermaps
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that could serve as the glue — face lists are easily turned into hypermaps.
On the other end, it needs to be shown that none of the tame graphs con-
stitutes a counter example. The linear programming techniques for this step are
in place [10], but their application is nontrivial and not well documented in Hales
proof.

Finally there is the exciting prospect of modifying our proof to cover a very
similar graph enumeration in the proof of the Dodecahedral Conjecture [7].

Acknowledgments. The first author wishes to thank: Tom Hales for generously
hosting his sabbatical semester at the University of Pittsburgh and for patiently
answering all questions; Jeremy and Sean for lunches and friendship; Q & U for
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Abstract. We extend our previous study of the automatic construc-
tion of isomorphic classification theorems for algebraic domains by con-
sidering the isotopy equivalence relation, which is of more importance
than isomorphism in certain domains. This extension was not straight-
forward, and we had to solve two major technical problems, namely gen-
erating and verifying isotopy invariants. Concentrating on the domain of
loop theory, we have developed three novel techniques for generating iso-
topic invariants, by using the notion of universal identities and by using
constructions based on substructures. In addition, given the complexity
of the theorems which verify that a conjunction of the invariants form
an isotopy class, we have developed ways of simplifying the problem of
proving these theorems. Our techniques employ an intricate interplay of
computer algebra, model generation, theorem proving and satisfiability
solving methods. To demonstrate the power of the approach, we gener-
ate an isotopic classification theorem for loops of size 6, which extends
the previously known result that there are 22. This result was previously
beyond the capabilities of automated reasoning techniques.

1 Introduction

The classification of abstract algebraic objects such as groups and rings has
been a major driving force in pure mathematics. For the majority of algebraic
domains, however, full classifications have been elusive (with notable exceptions
being Abelian groups, finite simple groups and Abelian quasigroups [17]). This
is partially due to the sheer number of classes in domains such as quasigroups,
where the axioms are not particularly restrictive. Due to this volume of classes,
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automatic techniques have much potential to add to mathematical knowledge. In
particular, enumeration techniques have been used to count the instances of cer-
tain finite algebras [11] and model generating and constraint solving techniques
could solve open existence problems [19]. Moreover, using first order theorem
proving, McCune et. al have generated single axiom representations for numer-
ous algebraic domains [9].

We are more interested in qualitative rather than quantitative results. To
this end, we have developed a bootstrapping algorithm for the construction of
classification theorems in finite algebraic domains. While it is largely generic, its
power relies upon the automatic discovery of algebraic invariants which are able
to discriminate between members of different classes defined by the equivalence
relation under consideration. When considering isomorphism equivalences, we
were able to employ machine learning techniques to generate the invariants, and
this led to novel theorems which achieve classifications up to isomorphism of
quasigroups and loops of small order [4]. We provide a brief overview of the
bootstrapping algorithm in Sec. 2.

We present here the application of the bootstrapping algorithm to the produc-
tion of classification theorems up to isotopism, an equivalence relation which is of
greater importance than isomorphism in certain domains, in particular algebraic
loop theory. Unfortunately, the machine learning approach did not suffice for this
application, as finding isotopy invariants is a much more complex task. Hence,
concentrating on the domain of loop theory, we have developed new methods
for generating isotopy invariants, as described in Sec. 3. Firstly, using results
from the literature, we show how universal identities can be used to generate
invariants via an intricate interplay of model generation and theorem proving.
Secondly, we present two new sets of invariants derived by systematically ex-
amining substructures of loops, and we describe their construction, which uses
symbolic computation techniques.

As described in Sec. 4, it has also been a challenge to automatically verify that
a conjunction of invariant properties defines an isotopy class (another important
aspect of the bootstrapping algorithm). For this reason, we have developed meth-
ods for simplifying the problems with computer algebra, before providing proof
via a satisfiability solver. As a by-product, these methods significantly simplify
the task of generating non-isotopic models. Having solved the problems of gen-
erating and verifying isotopic invariants, we have employed the bootstrapping
algorithm to generate new results. In particular, in Sec. 5, we present an isotopic
classification theorem for loops of order 6, which extends the known enumeration
theorem by providing a full set of classification properties.

2 Background

As described in [4], we have developed a bootstrapping algorithm for generating
classification theorems in algebraic domains of pure mathematics. Moreover, we
have applied this approach to constructing new classification results with respect
to isomorphism mainly in the algebraic domains of quasigroups and loops. In this
section, we briefly outline this method, and summarise our previous results.
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The bootstrapping algorithm takes a set of properties, P , a cardinality, n, and
an equivalence relation, E, as input. It returns a decision tree that contains the
classification theorem for the algebraic structures of order n that satisfy P with
respect to E, as well as a set of representants for each equivalence class. During
the construction, a set of theorems are proved, which – taken together – prove
the correctness and the completeness of the classification theorem.

In detail, the method proceeds as follows. Firstly, it initialises a decision tree
with root node N labelled with the properties P . We denote the properties that
a node is labelled by as PN . The algorithm then works iteratively, starting with
the root node and moving on to successive nodes in the tree. It constructs an
example of an algebraic structure of order n satisfying PN . When no example can
be produced, the algorithm will prove that no structure of size n with properties
PN can exist. When an example does exist, one of two things happen, either: (1)
the process shows that the node represents an equivalence class with respect to
E, i.e., it proves that all structures of order n that satisfy the properties PN are
equivalent to each other under E, or (2) the process constructs another algebraic
structure satisfying PN , which is not equivalent to the first one. Note that cases
(1) and (2) are mutually exclusive and can be performed in parallel. For case
(2), the algorithm computes a discriminating property P for the two structures,
such that P holds for one structure and ¬P holds for the other. P is then used
to further expand the decision tree by adding two new nodes N ′ and N ′′ below
N , with labels PN ′ = PN ∪ {P} and PN ′′ = PN ∪ {¬P} respectively.

The algorithm then iterates over these nodes and adds to the tree accordingly.
After new nodes have been created for each of these nodes, the above steps are
carried out again. The algorithm terminates once no more expansions can be
applied. Leaf nodes either represent equivalence classes or are empty, i.e., no
structure exists with the properties given in the node. The final classification
theorem comprises the disjunction of the properties which label the leaf nodes.

The bootstrapping algorithm is a framework that combines a host of reasoning
techniques which play their part in achieving the overall goal. In particular, it
relies on third party systems to generate algebras and discriminants, and to
verify the construction of the decision tree at each step. We use the following
methodologies in the different steps of the algorithm:

Generating Algebras. We use model generation to construct algebras. In the first
step, the algorithm calls a model generator to return an algebra corresponding
to the input axioms. Throughout the process, model generators are used to con-
struct algebras which are not equivalent to a given algebra. For the experiments
described in [4], we used the model generator Mace [10], but we have replaced
this by Sem [22] and Finder [18], as they are more effective in our domain. While
Sem is generally the more powerful of the two, it has weaknesses when dealing
with function symbols of arity greater than 2, which can be introduced when we
employ Skolemisation techniques (see [12] for details).

Generating Discriminants. The approach to constructing discriminating prop-
erties varies from equivalence relation to equivalence relation. When dealing
with the isomorphism relation, we treated the generation of a discriminant
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for a pair of algebras as a machine learning problem, and successfully applied
automated theory formation [3] and inductive logic programming [5] to such
problems.

Verifying Properties. Throughout the bootstrapping procedure, all the results
coming from third party systems are independently verified by first order auto-
mated theorem provers. Thus, for a given discriminant P and two algebras Q
and Q′, we show that (1) P is a proper discriminant for the equivalence rela-
tion E [which means that if Q and Q′ differ with respect to the property, then
they cannot be members of the same equivalence class], (2) P holds for Q, and
(3) P does not hold for Q′. Proving these properties explicitly guarantees the
overall correctness of the constructed decision tree. The proofs themselves are
generally not very challenging, and we have experimented with several provers.
We generally employ Spass [21] for these tasks.

Verifying Equivalence Classes. The most difficult verification problems occur-
ring during the classification process involve showing that a given node forms
an equivalence class with respect to the equivalence relation under considera-
tion. More formally, we need to prove that, for a particular set of properties of a
node, P , all algebras of cardinality n, which satisfy P , are equivalent, and every
member of the equivalence class satisfies P . These types of proof are necessary to
fully verify the completeness of a decision tree. Although the theorems are essen-
tially second order, because we work in a finite domain, they can be expressed
as propositional logic problems by enumerating all possible equivalence map-
pings for structures of cardinality n and thus made accessible to ATP systems.
In our original experiments, described in [4], we used Spass for these problems,
as it was the only system which coped with the massive clause normalisations
required (cf. [20]). For later experiments, we replaced Spass by state of the art
SAT solvers and developed a range of encoding techniques for a diverse range
of systems (cf. [12]). Currently we have integrated zChaff [13] that can handle
pure boolean SAT problems, the DPLLT [7] system, which can handle ground
equations, and CVClite [2], which can also deal with finite quantification. While
using SAT solvers increases the power of our algorithm, if translated naively,
many of the proof problems would still be beyond the capabilities of state of the
art systems. To enable us to solve these problems, we implemented some com-
puter algebra algorithms in GAP [8] that exploit some mathematical domain
knowledge to reduce complexity.

In our experiments with isomorphism as the equivalence relation, we mainly
concentrated on the domain of quasigroups and loops. A quasigroup is a non-
empty set G together with a binary operation ◦ that satisfies the property
∀a, b∈G (∃x∈G x ◦ a = b) ∧ (∃y∈G a ◦ y = b). This property is often called
the Latin Square property and has the effect that every element of G appears
exactly once in every row and every column of the multiplication table of ◦. A
loop is a quasigroup that contains a unit element, i.e., an element e such that
∀x∈G x◦ e = e◦x = x. We generated novel isomorphism classification theorems
for quasigroups of orders 3 to 5 and loops of order 4 to 6, a partial classification of
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loops of order 7, as well as some classification theorems for quasigroups of orders
6 and 7 with additional special properties, e.g., idempotency. The largest decision
tree so far is the full isomorphism classification of quasigroups of size 5. This con-
tains 2875 nodes and 1411 isomorphism classes, but is relatively shallow, with a
maximum depth of 23. Its completion took more than four months of processing
time. For more details see http://www.cs.bham.ac.uk/˜vxs/quasigroups/.

3 Generating Isotopy Invariants

The isotopy equivalence relation is of considerable importance in quasigroup
theory, hence we concentrate on isotopy in this paper. It is defined as follows:

Definition 1. We say two quasigroups (G, ·) and (H, ∗) are isotopic to each
other — or G is an isotope of H — if there are bijective mappings α, β, γ from
G to H such that for all x, y ∈ G, α(x) ∗ β(y) = γ(x · y) holds.

Isotopy is an equivalence relation and the classes induced by it are called iso-
topism classes. It is a generalisation of isomorphism, since G and H are isomor-
phic if α = β = γ. In other words, while two quasigroups can be isotopic but
not necessarily isomorphic to each other, all members of an isomorphism class
belong to the same isotopism class. Importantly, every quasigroup is isotopic
to a loop, which we call its loop-isotope [14]. Thus, in certain respects, we can
restrict the classification of quasigroups to just the classification of loops.

As mentioned above, an important function of the bootstrapping algorithm
is to generate invariant properties which enable us to discriminate between two
algebras belonging to different equivalence classes. For instance, when dealing
with the isomorphism equivalence relation, if one example of an algebra was
commutative (i.e., ∀x, y (x∗y = y∗x)) and another was not, then they could
not belong to the same isomorphism class. Our machine learning approach was
able to generate such properties, given background concepts including the mul-
tiplication operation. Unfortunately, such simple properties do not enable us
to distinguish between members of different isotopy classes. For example, com-
mutativity is not an isotopy invariant, as the isotopism (α, ι, ι), where ι is the
identity mapping and α �= ι, can map a commutative quasigroup to a non-
commutative isotope. Due to the more complicated nature of isotopy invariants,
initial experiments with the learning system failed to identify any suitable iso-
topy invariants.

In light of this failure, we developed bespoke methods for generating three
types of isotopy invariants that are used while producing isotopic classifications
of loops. We first describe the generation of universal identities (quasigroup
isotopy invariants), which builds on a concept introduced by Falconer [6]. We
describe how we obtain these invariants using an interplay of model generation
and theorem proving. We also present two more types of invariants, which are
based on substructures, which – to the best of our knowledge – have not been
reported in the literature on loops, hence represent a novel way of characterising
loops. These invariants are derived by systematically examining substructures
of loops, and are constructed using symbolic computation techniques.
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3.1 Universal Identities

Following Falconer [6], from a given loop identity we derive a universal identity.
We first define two additional operations \ and / on a pair of elements such that:

1. x · (x\y) = y and x\(x · y) = y 2. (y/x) · x = y and (y · x)/x = y

Note that these operations are well defined because loops are quasigroups. Given
a loop identity w1 = w2, where w1, w2 are words of a loop, i.e., combinations
of elements of a loop with respect to the loop operation ·, we can obtain a
derived or universal identity w1 = w2 by recursively applying the following
transformations:

1. if w = x, then w = x; 2. if w = u · v, then w = (u/y) · (z\v)

Here y and z are arbitrary elements of a loop, i.e., new universally quantified
variables. As an example, consider the two loops below:

L4 0 1 2 3 4 5
0 0 1 2 3 4 5
1 1 2 0 5 3 4
2 2 0 1 4 5 3
3 3 5 4 1 0 2
4 4 3 5 0 2 1
5 5 4 3 2 1 0

L8 0 1 2 3 4 5
0 0 1 2 3 4 5
1 1 2 0 4 5 3
2 2 0 1 5 3 4
3 3 5 4 1 0 2
4 4 3 5 0 2 1
5 5 4 3 2 1 0

The following universal identity holds for L4 but does not hold for L8:

∀x ∀y1 ∀y2 (x/y1)·(((x/y1)·(y2\x))·(y2\x)) = ((x/y1)·(y2\x))·((x/y1)·(y2\x)).

This universal identity was derived from the following loop identity:

∀x x · ((x · x) · x) = (x · x) · (x · x)

To generate universal identities for isotopy invariants, we have to first find
an equation that holds in some loops, transform it into a derived identity,
and subsequently show that this new identity is indeed a loop invariant. In
order to get a large number of invariants we employ a process of interleaving
model generation and first order theorem proving with intermediate transfor-
mations of the respective results. We first systematically generate identities
I for which we check whether they are loop identities, by trying to gener-
ate a loop of size ≤ 8 that satisfies I using the model generator Mace. All
identities for which a loop exists are then transformed into universal identi-
ties U as described above. Each U is then passed to at least one first or-
der theorem prover in order to show that it is an isotopy invariant. We em-
ploy both Vampire [15] and E [16] for this task. Combined, these show that
around 80% of the universal identities are indeed isotopy invariants. Note that
for each universal identity, U , we show that it is an invariant under isotopy
independently of the size of a loop. We can therefore reuse these universal
identities in different classifications. Consequently, we do not have to repeat
this step in every classification, but rather perform it offline and collect uni-
versal identities in a pool of confirmed isotopy invariants. To date, we have
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generated 54, 000 confirmed loop identities, which can be translated into uni-
versal identities. From these, we have attempted to prove 8, 000 to be iso-
topy invariants and have succeeded to show this for 6, 831 using both Vampire
and E.

During the classification of loops of a particular size, n, we draw on this pool
by first filtering them again by using the model generator Finder to generate
loops of size n that satisfy the invariant. We then extract those invariants for
which at least one loop of order n exists, and we use only these as potential
discriminants. Note that the filter discards any invariants which cannot solve
any discrimination problem, as no loop of size n satisfies the invariant property.
Then, when we need to discriminate between two loops we test whether one
the invariants holds for one and not for the other, using DPLLT or CVClite.
While the model generation and theorem proving stages are ran in parallel by
distributing the problems on a large cluster of processors for both the generation
and testing of invariants, finding a discriminant can still take a very long time.
Moreover, universal identities are not necessarily sufficient to discriminate be-
tween two non-isotopic quasigroups. We therefore explore only a limited number
of randomly selected invariants, and if this is not successful, we employ two dif-
ferent methods for generating invariants, which are based on the substructures
of quasigroups, as described in Sec. 3.2 and Sec. 3.3.

3.2 Substructure Invariants

Let (G, ·) be a quasigroup, and let A and B be non-empty subsets of G. We
adopt the usual notation for the set A ·B, namely, A ·B = {a ·b : a ∈ A∧b ∈ B}.

Lemma 1. Let (G, ·) be a quasigroup and let (H, ∗) be a quasigroup that is
isotopic to (G, ·) under the bijections (α, β, γ). Then, for any non-empty subsets
A and B of G, we have |A ·B| = |α(A) ∗ β(B)|.

Proof. Observe that since γ is a bijection, then |γ(A ·B)| = |A · B|. It suffices
then to show that γ(A · B) = α(A) ∗ β(B). But this follows immediately from
the fact that for all a ∈ A and b ∈ B, we have γ(a · b) = α(a) ∗ β(b).

When G is finite, one can interpret the elements of A (resp., B) as designating
a subset of rows (resp., columns) in the multiplication table of G. The set A ·B
then consists of the elements where these rows and columns meet. The above
result thus suggests the following notation:

Notation 1. Let (G, ·) be a quasigroup of order n, and let i, j, k each be integers
such that 1 ≤ i, j, k ≤ n. Let G(i, j, k) denote the set:

G(i, j, k) = {(A, B) : A, B ⊆ G, |A| = i, |B| = j, |A ·B| = k} .

Theorem 1. Let (G, ·) and (H, ∗) be isotopic quasigroups of order n, and let
i, j, k each be integers such that 1 ≤ i, j, k ≤ n. Then |G(i, j, k)| = |H(i, j, k)|.

Proof. Note that the one-to-one correspondence between the collection of or-
dered pairs (A, B) such that A, B ⊆ G, |A| = i, |B| = j, and the corresponding
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collection of ordered pairs of subsets of H , is preserved under isotopy. The result
now follows easily from Lemma 1.

Continuing with the notation above, fix an element (A, B) ∈ G(i, j, k), and for
each gh ∈ A · B, (1 ≤ h ≤ k), let f(gh) = |{(a, b) ∈ A×B : a · b = gh}|. In
other words, f(gh) is the number of times that gh appears in the block formed
by A and B (which we will henceforth refer to as the A · B block). We let
F (A, B) = (f(g1), . . . , f(gk)), and call this the (un-ordered) frequency-tuple of
(A, B). If two such frequency-tuples F and F ′ are the same (up to order), then
we write F ≈ F ′.

Lemma 2. Let (G, ·) and (H, ∗) be isotopic quasigroups (under the bijections
(α, β, γ)) of order n, and let i, j, k each be integers such that 1 ≤ i, j, k ≤ n. If
(A, B) ∈ G(i, j, k), then F (A, B) ≈ F (α(A), β(B)).

Proof. In light of Theorem 1, it suffices to prove that, for every g ∈ A ·B, f(g) =
f(γ(g)). But this equality follows immediately from the fact that if a · b = g,
then α(a) ∗ β(b) = γ(g).

Given this latest result, we adopt the following notation:

Notation 2. Let (G, ·) be a quasigroup of order n, let i, j, k be integers such that
1 ≤ i, j, k ≤ n, and let F be a frequency-tuple for some (C, D) ∈ G(i, j, k). Then,
let G(i, j, k, F ) denote the set:

G(i, j, k, F ) = {(A, B) ∈ G(i, j, k) : F (A, B) ≈ F}

Theorem 2. Let (G, ·) be a quasigroup of order n, let i, j, k be integers such
that 1 ≤ i, j, k ≤ n, and let F be a frequency-tuple for some (C, D) ∈ G(i, j, k).
Furthermore, let (H, ∗) be a quasigroup isotopic to (G, ·). Then |G(i, j, k, F )| =
|H(i, j, k, F )|.
Proof. This is an immediate consequence of Theorem 1 and Lemma 2.

To generate isotopy invariants based on Theorems 1 and 2, we implemented
an algorithm that compares the number of elements in substructures for two
quasigroups (G, ·) and (H, ∗). This works iteratively, as follows: for i = 2, . . . , n−
1, j = 2, . . . , n − 1, and k = max(i, j), . . . , n, if |G(i, j, k)| �= |H(i, j, k)| then
return the invariant, otherwise continue. If all the possible substructures are
exhausted without yielding an invariant, we perform a frequency analysis for all
the G(i, j, k) and H(i, j, k) until we find a pair G(i, j, k, F ) and H(i, j, k, F ′),
such that F �= F ′. To keep the formulas resulting for these invariants small,
we always prefer an existence argument over the actual comparison of numbers
of substructures. That is, we give a preference to invariants, such that either
|G(i, j, k)| = 0 or |H(i, j, k)| = 0.

As an example of such an invariant, consider property P9 below that expresses
that there exists a 2× 2 substructure that contains exactly 2 distinct elements.
Note the use of the unique existence quantifier for variables v1 and v2.

P9: ∃r1, r2 ∃c1, c2 ∃!v1, v2 r1 �= r2 ∧ c1 �= c2 ∧ v1 �= v2 ∧
2∧

i=1

2∧

j=1

2∨

k=1

(ri · cj = vk)
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With respect to P9, consider these loops:

L21 0 1 2 3 4 5
0 0 1 2 3 4 5
1 1 0 4 5 2 3
2 2 3 0 1 5 4
3 3 2 5 4 0 1
4 4 5 1 0 3 2
5 5 4 3 2 1 0

Note that L21 satisfies
property P9, due to the
boxed structure, which is
a 2 × 2 structure with ex-
actly 2 elements. However,
P9 does not hold for L23,
i.e., |L23(2, 2, 2)| = 0.

L23 0 1 2 3 4 5
0 2 0 1 5 3 4
1 0 1 2 3 4 5
2 1 2 0 4 5 3
3 4 3 5 0 2 1
4 5 4 3 1 0 2
5 3 5 4 2 1 0

3.3 Patterns

Given non-empty subsets A and B of a quasigroup (G, ·), we look for patterns
amongst the numbers of distinct elements within the respective sub-blocks. By
this, we mean the following: Let |A| = i, |B| = j, and choose i′, j′ such that
1 ≤ i′ ≤ i and 1 ≤ j′ ≤ j. Now for each k, 1 ≤ k ≤ n, we let AB(i′, j′, k) =
{(A′, B′) : A′ ⊆ A, B′ ⊆ B, |A′| = i′, |B′| = j′, |A′ ·B′| = k}. Furthermore,
let pk = |AB(i′, j′, k)|. In other words, pk is the number of i′ × j′ sub-blocks of
the A ·B block, that have precisely k distinct entries. We now let Pi′,j′(A, B) =
(p1, . . . , pn), and we call Pi′,j′(A, B) the i′ × j′ pattern-tuple of (A, B).

Lemma 3. Let (G, ·), (H, ∗), (α, β, γ), i, j, k, n be as in Lemma 2, and let i′, j′

be integers such that 1 ≤ i′ ≤ i and 1 ≤ j′ ≤ j. If A, B ⊆ G such that |A| = i
and |B| = j, then Pi′,j′ (A, B) = Pi′,j′(α(A), β(B)).

Proof. Note that for each k, 1 ≤ k ≤ n, and for each (A′, B′) ∈ AB(i′, j′, k), we
have |A′ · B′| = |α(A′) ∗ β(B′)|, by Lemma 1. Now since α and β are bijections,
then (A′, B′) ∈ AB(i′, j′, k) if and only if (α(A′), β(B′)) ∈ α(A)β(B)(i′, j′, k).
The result now follows in a straightforward manner.

Following similar lines as previously, we introduce the following notation:

Notation 3. Let (G, ·) be a quasigroup of order n, and let Pi′,j′ be an i′ × j′

pattern-tuple of (C, D) for some C, D ⊆ G such that |C| = i and |D| = j
(1 ≤ i, j ≤ n), where integers i′, j′ are such that 1 ≤ i′ ≤ i and 1 ≤ j′ ≤ j. We
let G(i, j,Pi′,j′) denote the set:

G(i, j,Pi′,j′) = {(A, B) : A, B ⊆ G, |A| = i, |B| = j, Pi′,j′ (A, B) = Pi′,j′}

Theorem 3. Let (G, ·) be a quasigroup of order n, and let Pi′,j′ be an i′ × j′

pattern-tuple of (C, D) for some C, D ⊆ G such that |C| = i and |D| = j
(1 ≤ i, j ≤ n), where integers i′, j′ are such that 1 ≤ i′ ≤ i and 1 ≤ j′ ≤ j.
Furthermore, let (H, ∗) be a quasigroup isotopic to (G, ·). Then |G(i, j,Pi′,j′)| =
|H(i, j,Pi′,j′ )|.
Proof. This follows immediately from Lemma 3.

In order to generate additional invariants for a given pair of quasigroups (G, ·)
and (H, ∗), we employ Theorem 3 in a similar fashion to that used in Sec. 3.2.
That is, we successively compare the number of patterns of the same size and
the same number of distinct elements.
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4 Simplifying Problems

The most difficult verification problems which occur during the classification
process involve showing that a given node forms an isotopy class, i.e., we need
to prove that a particular set of properties is indeed classifying with respect
to isotopy. The opposite problem is to take a given node that doesn’t form an
isotopy class, and construct a representant that is not isotopic to the existing
representant of the node. To solve these two problems with automated theorem
provers and model generators requires considerable effort, as basic formalisations
of these problems are not solvable using state of the art techniques. We therefore
employ several computational methods, implemented in the computer algebra
system GAP [8], for reducing the complexity of the problems to be solved. The
methods we developed for isotopism problems make use of those we developed
for the corresponding isomorphism problems and also exploit some known results
from the isotopy theory of quasigroups. Hence, we first give a brief account of
how we handled isomorphism problems (for further details see [12]), and then
present their adaptation for isotopism, using theorems presented in [14].

4.1 Handling of Isomorphism Problems

In general, to prove that a particular set of properties associated with a node
on the decision tree is classifying with respect to isomorphism is a higher-order
problem, as it requires proving that all structures satisfying the properties are
isomorphic. However, since we are concerned with finite structures, the proof
problem can be reduced to first-order and even propositional logic by enumerat-
ing all (finitely many) possible isomorphic structures of the representant, Q, of
the node. With all isomorphic structures available, it suffices to prove that each
structure that satisfies the properties of the node equals one of the isomorphic
structures. For the construction of a non-isomorphic structure, it suffices to gen-
erate a structure that satisfies the properties of the node but differs from each
of the isomorphic structures.

A naive approach to enumerate all isomorphic structures considers all n! possi-
ble bijective mappings for structures of cardinality n. From each of these bijective
mappings, a structure can be constructed that is isomorphic to Q, and these n! are
all possible isomorphic structures of Q. This naive approach can be simplified by
the usage of generating systems. A structure Q with binary operation ◦ is said to
be generated by a set of elements {q1, . . . , qm} ⊆ Q if every element of Q can be
expressed as a combination — usually called a factorisation or word — of the qi

under the operation ◦. We call a set of generators together with the corresponding
factorisations a generating system. Given a generating system, we can exploit the
fact that each isomorphism is uniquely determined by the images of the genera-
tors, to reduce the total number of isomorphisms that we need to consider. If n is
the cardinality of the structures and m is the number of generators, then, instead
of n!, there are only n!

(n−m)! possible mappings and possible resulting structures to
consider, since only the m generators have to be mapped explicitly.

In theory, the worst case complexity resulting from the simplification with
generating systems is still n!, because there is no guarantee that a generating
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system with a small number of generators exists. In our experiments, however,
the number of generators was typically only 2, so the complexity for isomorphism
problems was reduced to n2 from n!. This approach requires additional effort in
order to compute a (minimal) generating system for Q, as well as to prove
that a computed system is indeed a generating system for Q. The former task
is performed by GAP, whereas the latter task results in an additional proof
problem, which is trivial even for large n.

4.2 Handling of Isotopism Problems

Unfortunately, we cannot directly employ the trick of using generating systems
since we now have three, instead of one, bijective mappings to consider, so the
images of the generators no longer uniquely determine isotopisms. This means a
naive approach to performing the isotopism proof or model construction would
have to consider all (n!)3 possible triples of bijective mappings to be applied to a
representant Q of a node in the classification tree. As for the case of isomorphism,
from the (n!)3 possible triples of bijective mappings, all (n!)3 structures that
are isotopic to Q can be computed. With all the isotopes of Q available, an
automated theorem prover can be used to show that each structure that satisfies
the properties of the node equals one of the isotopes. Moreover, a model generator
can be asked to compute a structure that satisfies the properties of the node
but differs from each of the isotopes. However, we have found that this naive
approach exceeds the abilities of state of the art systems, even for n = 4.

In order to simplify our problems, particularly by making use of the reduction
offered by generating systems, we exploit the following known results from the
isotopy theory of quasigroups (see [14] for details).

Definition 2. A quasigroup (G, ·) is a principal isotope of the quasigroup (G, ∗)
if there are permutations α, β, ι on G such that for all x, y ∈ G, α(x) ∗ β(y) =
ι(x · y), where ι is the identity permutation.

Theorem 4. If (G, ·) and (H, ∗) are isotopic quasigroups, then (H, ∗) is iso-
morphic to some principal isotope of (G, ·).
Definition 3. Let (G, ·) be a quasigroup. Let f and g be fixed elements of G.
Then the isotope (G, ∗) such that (x · g) ∗ (f · y) = x · y for all x, y ∈ G is called
the fg-isotope of (G, ·).
Theorem 5. Let (G, ·) and (H, ∗) be quasigroups. H is isotopic to G if and only
if it is isomorphic to an fg-isotope of G.

These results show that, for our purposes, we no longer need to consider quasi-
groups with distinct ground sets (the set G will typically suffice). Moreover, it is
easy to show that every fg-isotope is, in fact, a loop with unit element fg. Con-
sequently, every quasigroup has a loop isotope, and hence, rather than compute
all (n!)3 isotopes for a structure Q, it suffices to:
1. compute the set of all fg-isotopes of Q, FG(Q),
2. remove structures from FG(Q) that are isomorphic to other structures in
FG(Q) until the resulting set FG′(Q) contains no pair of isomorphic struc-
tures,
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3. compute the set of all structures that are isomorphic to a structure in
FG′(Q). We denote this set: Ifg(Q).

For a given representant, Q, there are n2 fg-isotopes and for each fg-isotope
there are n! isomorphic structures. Hence, our simplification reduces the com-
plexity from (n!)3 structures in the naive approach to n!n2 structures. Although
this is already a considerable improvement, the resulting complexity still exceeds
the capabilities of state of the art systems, even for small n. We now observe
that step 3 discusses isomorphisms only, which consequently allows us to exploit
the generating systems simplification developed for the isomorphism problems.
Hence, instead of step 3 above, we can perform the following alternative steps:

3a. compute a generating system for each structure in FG′(Q), respectively,
3b. for each pair of a structure in FG′(Q) and its generating system, compute

the set of isomorphic structures with respect to the generating system, re-
spectively. Then, compute the union Gfg(Q) of all resulting structures.

In theory, the worst case complexity of Gfg(Q) is still n!n2. However, in our
experiments, we found that the complexity of FG′(Q) is typically n rather than
n2, and the complexity resulting from the isomorphisms typically comes to n2

instead of n! when the generating system simplification is exploited. Hence, in
practise, the simplified isotopism proof and model generation formalisations typ-
ically require the consideration of just n3 structures. Note that additional effort
is necessary to prove that two given structures are isomorphic in step 2, and
to compute and verify generating systems in step 3a. However, these additional
problems are trivial even for large problems.

5 Results

Our primary result is a new qualitative isotopy classification theorem for loops
of order 6, in the sense that it provides a full set of classifiers for the 22 known
isotopism classes and corresponding representants. The decision tree for the the-
orem is given in Fig. 1 (for display purposes, we have broken it up into five
parts). The entire tree consists of 43 nodes, where the doubly circled leaf nodes
represent isotopy classes. The respective classifying properties correspond to the
conjunction of discriminants given along the path from the leaves to the root.
The discriminants themselves are given below the tree in Fig. 1.

Note that the top three discriminants are universal identities, while the re-
mainder are substructure invariants, with the exception of P11, which is a pat-
tern invariant. The pattern invariant and four of the substructure invariants
(P4, P5, P6, P9) use an existence argument. The reason for the relatively low
number of universal identities as discriminants is that in each step we only test
100 invariants randomly selected out of the overall pool of known invariants
before testing for discriminating substructure properties. This restriction is nec-
essary as in our current implementation, testing universal identities with respect
to discrimination still consumes a lot of search time. However, we hope that with
more advanced encoding techniques and better pre-selection criteria for universal
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P1: ∀x, y1, y2 (x/y1)·(((x/y1)·(y2\x))·(y2\x)) = ((x/y1)·(y2\x))·((x/y1)·(y2\x))
P2: ∀x, y1, y2 (x/y1)·(((x/y1)·(y2\y1))·(y2\y1)) = ((x/y1)·((x/y1)·(y2\y1)))·(y2\y1)
P3: ∀x, y1, y2 (x/y1) = ((x/y1)·(y2\y1))·(y2\y1)
P4: |G(3, 3, 4)| = 0 P5: |G(3, 3, 3)| = 0 P6: |G(2, 3, 3)| = 0
P7: |G(2, 2, 2)| = 7 P8: |G(2, 3, 3)| = 8 P9: |G(2, 2, 2)| = 0
P10: |G(2, 2, 2)| = 9 P11: |G(4, 4, P2,2)| = 0 ∧ P2,2 = (0, 2, 12, 23, 0, 0)
P12: |G(3, 3, 3)| = 8 P13: |G(2, 2, 2)| = 5 P14: |G(2, 3, 3)| = 4
P15: |G(3, 2, 3)| = 4 P16: |G(2, 2, 2)| = 4 P17: |G(2, 2, 2)| = 11

Fig. 1. Decision tree and discriminating properties for the loops 6 classification

identity invariants, we will be able to replace more substructure discriminants
in the decision tree by universal identities.

For the construction of the models in the tree, we used the Sem, Finder, and
DPLLT systems. Apart from the proof problems concerning universal identi-
ties, which were carried out by Vampire or E, the majority of the verification
proofs have been done with CVClite or DPLLT. A translation into a purely
propositional problem without equality, was prohibitive, however, as both the
number of variables and nesting depth of the quantifications led to intractably
large boolean satisfiability problems. While most properties of the tree are fully
automatically verified, we still had difficulty proving that some of the leaf nodes
are indeed isotopy classes. However, we hope to finalise this by shifting to the
new version of DPLLT in the future. Moreover, given that the number of isotopy
classes of order 6 is indeed 22 as known from the literature [11,14] and given the
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proved discriminating nature of the classifying properties, the decision tree does
indeed constitute a classification theorem.

We are currently working on the classification theorem for loops of order 7, for
which there are 564 isotopy classes. So far, we have generated 563 nodes in the
decision tree, which contains 439 substructures invariants, with an additional 7
employing frequencies, and 117 depending on pattern invariants or frequency on
patterns. We suspect that the remaining isotopy class can be discriminated by
extending the concept of patterns by a recursion depth. In many cases, the model
generation fails to produce any results, so we re-use results from our isomorphism
classification of loops of order 7, as well as enumeration results by McKay and
Myrwold [11], to search for non-isotopic models. That is, we start with a set of
isomorphism class representants of order 7 loops and search amongst those for
one that is non-isotopic to a given loop. Once we have finished the tree, we hope
to simplify it by searching for useful universal identities.

6 Conclusions and Future Work

We have shown how the bootstrapping algorithm developed in [4] has been
extended to produce isotopy classification theorems in loop theory. This involved
solving two technical problems, namely the generation of isotopic invariants, and
verifying that nodes in the classification tree define isotopy classes. To solve the
first problem, we used the notion of universal identities to generate a pool of
thousands of invariants, and we also developed new techniques for using concepts
based on substructures as invariants. To solve the second problem, we combined
facts from algebraic quasigroup theory in a novel computational way to extend
techniques we developed in the context of isomorphism classification to isotopy
problems. This not only significantly simplified the verification tasks but also
made the related task of generating non-isotopic models feasible.

However, it has become clear that it will be difficult to exceed loops of size
7 or 8 with our existing techniques. In particular, the computational techniques
to generate substructure invariants need to be improved in order to scale up to
larger sizes. This problem can be partially overcome by using more universal
identities as discriminants. To this end, it is necessary to cut down on search
time by using more intelligent pre-selection of universal identity invariants, as
well as producing better reformulations of problems involving universal identities
to make them accessible to efficient SAT solving techniques. It is also not clear
that our current set of invariants will suffice for all orders. Indeed, we have
already investigated another kind of invariant – which extends the concept of
frequency to patterns – but which has not been used in the context of the
results presented in this paper. Finding new types of isotopy invariants for loops
is certainly interesting from a mathematical viewpoint.

We plan to extract details of the bespoke invariant generation techniques
developed for isotopy into more extensive background knowledge and improved
production rules for the machine learning approach. We believe that it may
be possible to re-instate the learning approach, thus restoring a more generic
approach to invariant discovery, and possibly discovering new invariants. We
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also plan to undertake a detailed analysis of the decision trees, as well as a
comparison of classification theorems of different sizes for particular structures.
From a purely technical point of view, an efficient reimplementation of the entire
bootstrapping algorithm would be desirable to overcome some limitations of the
Lisp implementation and choice of data structures.

Historically, classification projects have been undertaken for algebras with
relatively few classes for small orders (e.g., there are only 5 groups of size 8
up to isomorphism). However, classification of other algebras are no less valid
projects, albeit ones which are possibly more suited to an automated approach,
due to the large number of classes of small order (e.g., there are 106, 228, 849
loops of size 8 up to isomorphism and 1, 676, 267 up to isotopism). We have
shown that it is possible to make progress on large classification projects, but
that this requires the combination of reasoning techniques, including theorem
proving, model generation, machine learning, satisfiability solving and symbolic
algebra. We believe that such integrated approaches will lead the way in the
application of automated reasoning to complex mathematical discovery tasks.
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Abstract. Some floating-point algorithms have been used for decades
and proved decades ago in radix-2, providing neither Underflow, nor
Overflow occurs. This includes the Veltkamp algorithm, used to split a
float into an upper part and a lower part and the Dekker algorithm, used
to compute the exact error of a floating-point multiplication.

The aim of this article is to show the difficulties of a strong justifi-
cation of the validity of these algorithms for a generic radix and even
when Underflow or Overflow occurs. These cases are usually dismissed
even if they should not: the main argument in radix 2 of the first algo-
rithm fails in other radices. Nevertheless all results still hold here under
mild assumptions. The proof path is interesting as these cases are hardly
looked into and new methods and results had to be developed.

1 Introduction

Some algorithms have been known for decades and thoroughly used. They have
been proved by different people using different paths. This can be seen enough
for the result to be considered correct [1]. Nevertheless, examples have shown
that even in this case, the proof may be wrong [2,3]. In particular, such floating-
point results can reasonably be assumed to be correct in the general case (radix
2, no Underflow, no Overflow). This assumption is usually based on a pen and
paper proof. In this kind of proof, the hypotheses and where they are used are
well hidden: it is difficult to remove a hypothesis such as “the radix is 2” and
see where the proof has to be modified. This is the reason why we use formal
methods and proof assistants that give a high guarantee in the result.

Some formalizations have already been successful including both hardware-
level [4,5,6] and high-level floating-point arithmetic [7,8]. We use the Coq proof
assistant [9] where floating-point arithmetic has already been formalized [10].
The case study we are interested in is first the Veltkamp algorithm used to
split floating-point numbers into an upper and a lower part. This algorithm
was discovered at the same period both by Veltkamp who is probably the main
author of [11,12] and by Dekker [13]. Both paternities are uncertain, that is why
we chose to use their most common denomination.
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The second case study is an algorithm by Dekker [13] that computes the exact
floating point error of a multiplication: for two floating-point numbers a and b
in a given format, we compute two floating-point numbers r1 and r2 in the same
floating-point format such that r1 is the rounding of a×b and a×b = r1+r2 (this
is an exact mathematical equality). With other similar techniques, this allows
the computation with floating-point expansions [13,14,15] to do multi-precision
computations using the floating-point unit of the processor. Such methods are
used in computational geometry [15] to give the correct answer to “is this point
to the left or to the right of this line?” or “is this point in or out of this circle?”.

This paper is organized as follows: Section 2 describes floating-point arith-
metic and our formalization of it. Section 3 describes the splitting algorithm
and its full proof. Section 4 describes the exact multiplication algorithm and its
full proof. Section 5 gives some perspectives.

2 Floating-Point Arithmetic

Floating-point formats, numbers and operations are defined by the IEEE-754
standard for binary floating-point arithmetic [16,17], that is under revision [18],
and by the IEEE-854 standard for generic radix [19]. A format is a limit on the
size of the fraction and on the size of the exponent. A floating-point number is
then composed of a sign, a fraction and an exponent within these limits. The
value of the floating-point number is then: (−1)s 1.f × 2e−B where s is the
sign bit, f is the fraction (the list of bits), e is the exponent and B is a known
bias. For special values of the exponent, we get either smaller values that are
called subnormals (their value is (−1)s0.f × 21−B) or exceptional values such
as ±∞.

As in [20], the Coq formalization of floating-point arithmetic [10] represents
a floating-point number by a pair of integers. For example, the radix-2 number
1.0012E1 is represented as (10012,−2) = (9,−2). The left part of a float is
called the significant and the right part is the exponent. Note that the exponent
is shifted compared to the exponent of the IEEE machine number. The radix is
defined as 2 in the IEEE-754 standard and can be either 2 or 10 in the IEEE-854
standard. With the increasing interest in the radix 10, we set the radix β as an
integer greater than 1. Therefore, a float can be interpreted as a real value as
follows: (n, e) ∈ Z2 ↪→ n× βe ∈ R.

We restrict ourselves to the numbers that fit in a given floating-point format,
that gives both the precision p of the format and its minimal exponent Ei. We
say that a float (n, e) is bounded if and only if |n| < βp and e ≥ −Ei.

The main characteristic of this formalization is that many floats (called a co-
hort [18]) may share the same real value: (4, 3)10 =R (40, 2)10 =R (400, 1)10 =R
(4000, 0)10. To retain uniqueness, we define a canonical representation corre-
sponding to the IEEE float. The reader does not have to bother with the canon-
icness or not of the floats in the proof. These ponderous details are handled by
the proof assistant (and the author). For a canonical float f = (nf , ef ), the ulp
(unit in the last place) has a simple expression: ulp(f) = βef .
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The rounding to nearest is denoted by ◦. It gives the bounded float that is the
closest to the real value. When in the middle, this rounding can give either of the
enclosing floats. This implies that if f = ◦(x), then |x− f | ≤ ulp(x)/2 = βef /2.
The default IEEE rounding mode is denoted by

even◦ : when in the middle, it gives
the float with the even mantissa (ending with a zero in radix 2).

All lemmas and theorems explained below are proved in Coq. The corre-
sponding files Veltkamp.v and Dekker.v can be found at the following address:
http://lipforge.ens-lyon.fr/www/pff/.

3 Splitting of Float

3.1 Algorithm and Hand-Waving Proof

Algorithm. The Veltkamp algorithm [11,12,13] splits a float x in two floats x1
and x2 such that x = x1 + x2 and x1 is the result of rounding x on a smaller
precision. More precisely, let s and t be two integers such that 2 ≤ s ≤ t− 2.

The working precision is on t bits (or digits) and we want to have x1 on
t − s bits. The remainder x2 fits on s bits. The algorithm, described below,
only contains usual floating-point operations using the working precision. The
constant C can be stored beforehand so the algorithm consists of 4 operations:

Algorithm 1 (Veltkamp) Let C = βs + 1.

p = ◦(x× C)
q = ◦(x− p)

x1 = ◦(p + q)
x2 = ◦(x− x1)

Hand-Waving Proof. We compute p ≈ (βs +1)×x and q ≈ x− p ≈ −βs×x.
Therefore p and −q are very near one from another and x1 is computed exactly.

And p+q ≈ x as q ≈ x−p, but the exponent of q is about s plus the exponent
of x so that all the bits of x lesser than this value are lost. So, we only have in
x1 the first t− s bits of x.

s bits

x

βs × x+

p = ◦(x× C)

q = ◦(x− p)

x1 = p + q

Of course, a drawing is not a proof, and especially not a formal proof. We
have to deal with many cases, including the possible values of the exponent of p
and x1 and, the main point is the values of the exponent of q.
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3.2 Proof

Lemma 1 (ImplyClosest). For a bounded float f (in precision p), if we have
βe+p−1 ≤ z ≤ βe+p and βe+p−1 ≤ f and |z − f | ≤ βe

2 , then f = ◦(z).

In this lemma, e is an integer being the exponent of f . As both z and f are
greater that βe+p−1, we do not fall into the pitfall described below. For more on
the definition of the ulp so that this pitfall does not exist, see [21].

z
◦(z) f = βe

f +
[
−ulp(f)

2 ; ulp(f)
2

]

Radix-2 Assumptions. Let us move to the proof of the Veltkamp algorithm.
We first assume the radix is 2 and that there is no Underflow: all floats are normal
floats. We assume that the rounding is any rounding to nearest in precision t.
Here are the steps taken to prove Algorithm 1:

1. x1 = p + q,
2. eq ≤ ep ≤ s + 1 + ex,
3. eq ≤ s + ex,
4. eq ≥ s + ex,
5. x1 = ◦t−s(x) using Lemma 1,
6. x = x1 + x2,
7. x2 fits on s− 1 bits.

All proofs will be described in the next subsection except Step 3’s and 7’s. As a
matter of fact, these assumptions only hold in radix 2.

Lemma 2 (eqLe2). β = 2 ⇒ eq ≤ s + ex

We bound q: |q| = ◦(|p − x|) ≤ (2s + 1)|x| + 1
2ulp(p) − |x| + 1

2ulp(q). Then
|q| ≤ 2s|x|+ ulp(p) ≤ |nx|2ex+s + 2s+1+ex = (|nx|+ 2)2ex+s.

If |nx| ≤ 2t − 3, then |q| < 2t+ex+s and we deduce that eq ≤ s + ex.
If not, then we either have |nx| equal to 2t − 2 or 2t − 1:

– if |nx| = 2t−1, then |p| = 2ex+s+1(2t−1+2t−s−1−1) and |q| = 2ex+s(2t−2),
– if |nx| = 2t−2, then |p| = 2ex+s+1(2t−1+2t−s−1−1) and |q| = 2ex+s(2t−2),

In any case, we have that eq ≤ s + ex. �
This lemma is very useful as it exactly gives the exponent of q, which is the key
point of the proof in [13,15].

Here is a counter-example when β = 10, t = 6 and s = 3. For x = 999996, we
have x × 1001 = 1000995996 that is rounded into p = 1001000000 and x − p =
−1000000004 therefore q = −10000000000 has for exponent 4 + ex = 1 + s + ex.
What fails in the previous proof is that we have |q| ≤ (nx + β)βex+s. So instead
of having 2 cases to check, we have β cases to check and when β > 2, we can
find among these cases some where the result does not hold.
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Lemma 3 (Veltkamp tail2). β = 2 ⇒ x2 fits on s− 1 bits.

It will be proved later (Lemma 13) that x2 can be represented with a mantissa
smaller or equal to βs

2 . As β = 2, this mantissa is smaller or equal to βs−1,
therefore x2 can be represented on s− 1 bits. �
This fact is well-known in radix-2, but has counter-examples in greater radices,
for example when β = 10, t = 6 and s = 3. For x = 123456, we have x1 = 123000
and x2 = 456 cannot fit in 2 digits. In radix 2, the sign is enough to compensate
one bit and x2 can be shortened by one bit.

A Proof with a Generic Radix But Still no Underflow. We assume there
is no Underflow. We want to prove that x1 = ◦t−s(x). By symmetry of the
rounding, we assume that x > 0. Therefore, we have p > 0, q < 0 and x1 > 0.

Lemma 4 (hxExact). x1 = p+ q

We use Sterbenz’s lemma [22] to prove it. First, −q = ◦(p− x) ≤ ◦(p) = p.
Second, if f = ◦(z) and f is normal, then |z| ≤ |f |

(
1 + β1−t

2

)
, so

p = (p− x) + x ≤ |q|(1 + β1−t

2 ) + xC
βs+1 ≤ |q|(1 + β1−t

2 ) + |p| 1+
β1−t

2
βs+1 .

Therefore, some computations lead to p ≤ 2|q|. �

Lemma 5 (eqLeep, epLe). eq ≤ ep ≤ s+ 1 + ex

As |q| ≤ |p|, we have eq ≤ ep. As p = ◦ ((βs + 1)× x) ≤ ◦
(
βs+1 × x

)
, we have

ep ≤ s+ 1 + ex. �

Lemma 6 (eqLe). We either have eq ≤ s + ex or both q = −βt+s+ex and
|x− x1| ≤ βex+s

2 .

The result is a disjunction: either we are in the common case (like in radix-2)
where the exponent of q will be known exactly, or we are in the exceptional case
corresponding to the counter-example of the previous section: then q is slightly
too big to have the exponent s+ ex. Nevertheless, we can bound the difference
between x and x1 as if q had a smaller exponent.
|q| = −q = ◦(p− x) ≤ p− x+ 1

2ulp(q) ≤ (βs + 1)x + 1
2ulp(p)− x + 1

2ulp(q).
Therefore, |q| ≤ βsx+ ulp(p) ≤ nxβ

ex+s + βs+1+ex ≤ (nx + β)βex+s.
If nx ≤ βt − β − 1, then |q| < βt+ex+s and we deduce that eq ≤ s+ ex.
If not, then nx ≥ βt − β, so

x× C ≤ βex
(
βt − 1

)
(βs + 1) < βs+1+ex

(
βt−1 + βt−s−1)

p ≤ βs+1+ex
(
βt−1 + βt−s−1) ≤ βt+s+ex + βt+ex

So, we have p− x < βt+s+ex and −q ≤ βt+s+ex .
If −q < βt+s+ex , the result holds. When −q = βt+s+ex , we bound x− x1:

– if p− x ≤ −q, then −q is nearer to p− x than (−q)−, therefore the distance
between p − x and −q is smaller than half the distance between q and its
predecessor: |x− x1| = |(p− x)− (−q)| ≤ −q−(−q)−

2 = ulp((−q)−)
2 = βex+s

2 .
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– if p − x ≥ −x, then |x − x1| = |(p − x) − (−q)| = p − x + q so we have
|x− x1| ≤ βt+s+ex + βex+1 − βt+s+ex ≤ βex+s

2 . �

Lemma 7 (eqGe). eq ≥ s+ ex

We bound q: |q| = ◦(p− x) ≥ p− x− 1
2ulp(q) ≥ βsx− 1

2ulp(p)− 1
2ulp(q)

Therefore |q| ≥ nxβ
s+ex − βs+1+ex ≥ (nx − β)βs+ex .

So if nx ≥ βt−1 + β, we have eq ≥ s+ ex.
If not, we may have nx = βt−1. In this case, all the computations are exact

and −q = βs+t−1+ex has a good exponent.
The last uncovered possibility is that βt−1 +1 ≤ nx ≤ βt−1 +β−1. Note that

in radix 2, there is only one such float. Here, we precisely bound p and q:
x× C ≥ βex

(
βt−1 + 1

)
(βs + 1) > βs+ex

(
βt−1 + βt−s−1 + 1

)

p ≥ βs+ex
(
βt−1 + βt−s−1 + 1

)
≥ βt+s−1+ex + βt−1+ex + βs+ex

p− x ≥ βt+s−1+ex + βt−1+ex + βs+ex − βex
(
βt−1 + β − 1

)
> βt+s−1+ex

−q ≥ βt+s−1+ex

In all cases, eq ≥ s+ ex. �

Therefore, we always have |x − x1| ≤ βex+s

2 ! Indeed, depending on the case
of Lemma 6 and the result of Lemma 7, we either have eq = s + ex or both
q = −βt+s+ex and |x − x1| ≤ βex+s

2 . But if eq = s + ex, then we also have

|x− x1| = |(x − p)− q| ≤ ulp(q)
2 = βex+s

2 .

Lemma 8 (Veltkamp aux aux). βt−1+ex ≤ x1

If nx ≥ βt−1 + βs

2 , then βt−1+ex ≤ x− βs+ex

2 ≤ x− |x− x1| ≤ x1.
If not, then we have an integer ε < βs

2 such that nx = βt−1 + ε. And we can
exactly give the values of p and q using ε: p = βs+ex

(
βt−1 + βt−1−s + ε

)
and

q = −βs+ex
(
βt−1 + ε

)
. So x1 = βt−1+ex . We proved these are the only possible

rounding to nearest of x× C and x− p using Lemma 1. �

Lemma 9 (Veltkamp pos). x1 = ◦t−s(x)

Let us apply Lemma 1 with z = x, f = x1, p = t− s and e = ex + s.
We first have to prove that x1 can be represented on t− s bits. We know that

eq = s+ ex and s+ ex ≤ ep ≤ s+ ex +1, therefore x1 = p+ q can be represented
with the exponent s+ ex. The corresponding mantissa m is then such that:
|m| = |x1|β−s−ex ≤ (|x| + |x− x1|)β−s−ex < βt−s + 1

2 .
So |m| ≤ βt−s. This implies that there exists a float v bounded on t− s bits

that is equal to x1 (it has exponent s+ex and mantissa m except when m = βt−s

where it has exponent 1 + s+ ex).
We then have βex+t−1 ≤ x ≤ βex+t as x is normal. From Lemma 8, we have

that βex+t−1 ≤ x1. Finally, we have that |x − x1| ≤ βex+s/2, that ends the
proof. �

Why Underflow Does Not Matter Here. The reason why Underflow does
not matter here is that we only deal with floating-point additions. Indeed, mul-
tiplying x by C is only adding x and xβs (which is a bounded float). When you
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perform a floating-point addition, you cannot lose precision due to Underflows:
all the only nonzero digits will be above the Underflow threshold.

Note that the Underflow threshold on precision t−s is the same as in precision
t. We then artificially create a floating-point format with an Underflow threshold
small enough to guarantee that all our floating-point numbers in the working
precision will be normal. We put Eext

i = Ei + t− 1.

Lemma 10 (bimplybplusNorm). If f is bounded and nonzero, there exists g
such that g is normal with respect to the extended format and equal to f .

We transform our subnormal x into a normal float in the extended precision. We
then have to link the rounding modes in the working and extended formats.

Lemma 11 (Closestbplusb). If f = ◦ext(z) and f is bounded in the working
format, then f = ◦(z).

Lemma 12 (Closestbbplus). Let fext be a float (possibly unbounded) such
that efext ≥ −Ei. If f = ◦(fext), then f = ◦ext(z).

When performing a floating-point addition, we are exactly in this case: the real
we want to round is an integer multiplied by the Underflow threshold. Even
when x is subnormal, we prove that the algorithm gives the expected result:

Theorem 1 (Veltkamp). If x is a bounded float, if p, q and x1 are computed
using the Algorithm 1, then

x1 = ◦t−s(x).

As for x2, we first prove

Lemma 13 (Veltkamp tail aux). The value x − x1 can be represented with
exponent ex and a mantissa smaller or equal to βs

2 .

When x is normal, as x1 ≥ βt−1+ex , we know that x1 has an exponent greater
than the exponent of x. When x is subnormal, its exponent is minimal, therefore
the exponent of x1 is greater. So in any case, x − x1 can be represented with
exponent ex. More |x− x1| ≤ βex+s

2 , so the mantissa is |x− x1|β−ex ≤ βs

2 . �

Lemma 14 (Veltkamp tail). x = x1 + x2 and x2 fits on s bits.

From Lemma 13, we know that x−x1 fits on t bits. It will therefore be computed
exactly. More, the lemma also states that x2 = x − x1 can be represented with
a mantissa strictly smaller than βs, therefore fits on s bits.

3.3 Special Rounding to Nearest Matters

Rounding to Nearest, Ties to Even. We now assume all the computations
are done using

even◦ . The goal is to prove that x1 =
even◦ t−s (x).
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Lemma 15 (ImplyClosestStrict2). For a bounded float f (in precision p),
a real z and an integer e, if we have βe+p−1 ≤ z ≤ βe+p and βe+p−1 ≤ f and
|z − f | < βe

2 , then f = ◦(z) and f is the only possible rounding to nearest.

The only difference with Lemma 1 is that the “less or equal to” βe

2 has become
a “less than” to guarantees that f is the only rounding to nearest.

Lemma 16 (ClosestImplyEven int). For a bounded float f and a real z, if
f =

even◦ (z) and f is positive, and there exists an integer n such that the real
number z = βef ×

(
n+ 1

2

)
, then f is even.

We know that |x − x1| ≤ βex+s/2. If we more have |x − x1| < βex+s/2, then
using Lemma 15 and Lemma 9, we easily prove that x1 =

even◦ t−s (x). The only
remaining case is the tie-breaking case when |x− x1| = βex+s/2. We know from
Theorem 1 that x1 = ◦t−s(x), so we only have to prove that either x1 is even
(on t− s bits) or is the only possible rounding to nearest of x.

If the radix id odd, then |x−x1| = βex+s/2 implies that there exists an integer
m such that 2×m = βs. As s ≥ 2 and β is odd, then βs is odd, therefore 2×m
is odd, which is impossible.

Let us assume the radix is even. From the proof of Lemma 9, we have two
cases: x1 either has exponent s+ex or is equal to (βt−s−1, 1+s+ex). In the second
case, x1 is even as β is even. Let us look at the first case where ex1 = s + ex.
Then we will prove that the bits at level s+ ex of both p and q are even and the
lower bits are zero. As x1 = p+ q, this will imply that x1 is even.

As s+ ex ≤ eq ≤ ep ≤ s+ ex + 1, the bits lower than s+ ex are even for both
p and q. Let us prove that the s+ ex-bits are even. As |x− x1| = βex+s/2, there
exists ε ∈ {1,−1} such that x = x1 + εβex+s/2.

If ep = s + ex + 1, then the bit at level s + ex is zero. If ep = s + ex, there
exists m ∈ Z such that x× C = βex+s(m+ ε/2). From Lemma 16, p is even.

For q, we split depending on Lemma 6. If q = −βt+s+ex , then its s + ex

bit is even. In the other case, eq ≤ s + ex, then there exists m ∈ Z such that
x− p = βex+s(m+ ε/2). From Lemma 16, this implies that q is even.

In all cases and for both p and q, the s+ ex bits are even. So x1 is even. �

Rounding to Nearest, Ties Away from Zero. An interesting fact is that
this algorithm holds for rounding to nearest and rounding to nearest, ties to
even, but not for rounding to nearest, ties away from zero [18]. This rounding
means that, when exactly in the middle of two floating-point numbers, we choose
the one with the bigger absolute value. This rounding is also known as Banker’s
rounding, since it is used in banking and phone bills: when in the middle of
two cents, you always have to pay more. When all the operations are performed
using rounding to nearest, ties away from zero, the result is not the rounding to
nearest, ties away from zero of the input: for example let β = 2, t = 6 and s = 3.
If x = 1001002, then p = 101001 0002 and q = −100101 0002 so x1 = 100 0002,
which is not the expected result (101 0002 as the rounding is away from zero).
This is a unexpected behavior as these two roundings differ in very few points.
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3.4 Conclusion on Splitting

We finally proved that this algorithm is correct whatever the radix and the
precision. Nevertheless, being generic with respect to the radix is difficult. It
easily changes assertions as authors are trained in radix-2 properties. Being
generic has a cost, and formal proofs are particularly useful here as it is hard to
guess which properties will still hold and which will not when the radix changes.

The main drawback of this algorithm is that it may overflow: when computing
p = ◦(x× C), an overflow may occur. It is the only place where it can occur as
|q| ≤ |p| and the other computed values are much smaller. This algorithm does
not overflow if x×C does not overflow. IfM is the greatest floating-point number,
in rounding to nearest, ties to even or away from zero, this exactly means that
|x|×C < M+ ulp(M)

2 . And in IEEE formats, M = (2t−1)22t−32Ei. We therefore

need |x| < (2t+1−1)2Ei+2t−4

2s+1 . A sufficient assumption is |x| ≤ 2Ei+2t−2.

4 Exact Multiplication

4.1 Algorithm and Hand-Waving Proof

Algorithm. For two bounded floats x and y, the Dekker algorithm [13] com-
putes two bounded floats r1 and r2 such that r1 = ◦(x× y) and x× y = r1 + r2.

The algorithm is described below. It only contains operations using the work-
ing precision (t bits). We use s =

⌈
t
2

⌉
to split x and y in two (near-)equal parts.

Algorithm 2 (Dekker)

(x1, x2) = Split(x)
(y1, y2) = Split(y)

r1 = ◦(x× y)
t1 = ◦(−r + ◦(x1 × y1))
t2 = ◦(t1 + ◦(x1 × y2))
t3 = ◦(t2 + ◦(x2 × y1))
r2 = ◦(t3 + ◦(x2 × y2))

Hand-Waving Proof. The idea is that there is no error in the computation of
t1, t2, t3 and r2. The multiplications are exact as the multiplicands are half-size
numbers. The additions are exact as they mostly cancel as we know r2 will fit
on t bits:

t2 = t1 + x1 × y2

r2 = t3 + x2 × y2

t1 = x1 × y1 − r

r1 = ◦(x× y)

t3 = t2 + x2 × y1



Pitfalls of a Full Floating-Point Proof 61

4.2 Proof

This algorithm seemed to be believed by Dekker to be correct whatever the
radix [13]. Nevertheless, it was discovered later by Linnainmaa [23] that this
was not the case. In fact, this algorithm perfectly works in radix-2 and works in
generic radix when the precision is even (see below).

To guarantee a computation is exact, we give a possible exponent e (meaning
that f × 2−e is an integer) and prove that |f | < βe+t. The proofs will mostly
be inequalities as possible exponents will be deduced from one code line to the
other.

We first assume there is no Underflow. In this case, we know that x1 can be
represented with exponent ex + s, that x2 can be represented with exponent ex

and that |x2| ≤ βs+ex/2. The same properties hold for y/y1/y2. As explained
before, we choose s = �t/2� so that x1 and y1 will be on �t/2� digits and x2 and
y2 on �t/2� digits.

The first inequalities needed are:

– |x2 × y2| ≤ β2s+ex+ey/4,
– |x2 × y1| < βt+s+ex+ey/2 + β2s+ex+ey/4,
– |x1 × y2| < βt+s+ex+ey/2 + β2s+ex+ey/4,
– |x×y−r| ≤ βt+ex+ey/2: as |x×y| < (βt−1)2βex+ey , we have er ≤ t+ex+ey.
– er ≥ t− 1 + ex + ey: as x and y are normal, we have |r| ≥ β2t−2+ex+ey .

As for the multiplications of halves:

– x1 × y1 will be computed exactly with exponent 2s+ ex + ey as 2�t/2� ≤ t.
– x1×y2 will be computed exactly with exponent s+ex+ey as �t/2�+�t/2� ≤ t.
– x2×y1 will be computed exactly with exponent s+ex+ey as �t/2�+�t/2� ≤ t.

Therefore the tis are computed exactly:

– t1 can be exactly represented with exponent t− 1 + ex + ey. More,
| − r + x1 × y1| ≤ |r − x× y|+ |x1 × y2|+ |x2 × y1|+ |x2 × y2|

< βt+ex+ey/2 + βt+s+ex+ey + 3β2s+ex+ey/4 < β2t−1+ex+ey .
– t2 can be exactly represented with exponent s+ ex + ey. More,
|t1 + x1 × y2| = | − r+ x1 × y1 + x1 × y2| ≤ |r− x× y|+ |x2 × y1|+ |x2 × y2|

< βt+ex+ey/2 + βt+s+ex+ey/2 + β2s+ex+ey/2 < βt+s+ex+ey .
– t3 can be exactly represented with exponent s+ ex + ey. More,
|t2 + x2 × y1| = | − r + x1 × y1 + x1 × y2 + x2 × y1| ≤ |r − x× y|+ |x2 × y2|

≤ βt+ex+ey/2 + β2s+ex+ey/4 < βt+s+ex+ey .

What is left is the last computation: if x2 × y2 is computed exactly, then r2
will be computed exactly as r2 would then be equal to x× y−◦(x× y), which is
representable when no Underflow occurs. We deduce from the inequalities that:

Lemma 17 (Dekker aux). Provided no Underflow occurs, if x2 × y2 is repre-
sentable, then x× y = r1 + r2.

The problem is that x2 × y2 fits on 2× �t/2� digits and this can outbound t by
1 in some cases. There are various solutions:
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– If some extra-precision is available, then it can be used just for the compu-
tation of x2 × y2 to guarantee the exactness of the result.

– If the radix is 2, then x2 and y2 fit on s − 1 bits, therefore x2 × y2 fits on
2× �t/2� − 2 ≤ t bits and the computation is exact.

– If the precision is even, then 2× �t/2� = t and the computation is exact.

Theorem 2 (Dekker1). Provided ex + ey ≥ −Ei, if β = 2 or t is even, then
x× y = r1 + r2.

The “no Underflow” assumption is explicit in this theorem: x and y may be
subnormal, but the requirement is that the sum of their exponent is greater than
the Underflow threshold. This is indeed a necessary and sufficient condition for
the error term to be representable [24]. This theorem means that, if the error
term can be exactly represented, it will be computed by the given algorithm.

4.3 When Underflow Happens

Underflow may happen in this algorithm and its consequences are harmful: in-
stead of a certain mathematical equality, the only possible result is a bound on
the error of the computations. Indeed, instead of all floating-point computations
being exact, they may all become error-prone and each computation has to be
taken care of and its error bounded.

The problem is then of the duality: if we are above the Underflow threshold
for one computation, then it is exact. If we are under the Underflow threshold,
then the error of the considered computation is less than β−Ei/2. If we just
bound the error on each computation, the error bound will be huge as exactness
will not be considered. Therefore, to get an error bound that is a multiple of
β−Ei , we have to take a great care of the propagation of the error.

More precisely, we define an extended format where there will be no Un-
derflow (same precision as the working format, but a small enough Underflow
threshold to be sure it will not be undertaken). We then define the following
property for the floating point numbers a and a′ and the real numbers ε and
r: Underf_Err(a, a′, r, ε) iff a = ◦(r), a′ is bounded on the extended format,
|a− a′| ≤ εβ−Ei and if the exponent of a′ is greater than the Underflow thresh-
old of the working precision, then a = a′.

We can then initialize the error computation by this lemma:

Lemma 18 (Underf Err1). If a′ fits on the extended format and a = ◦(a′),
then Underf_Err(a, a′, a′, 0.5).

Typically, the property on the computation of x1 × y2 is: if the correspond-
ing exact float on the extended format has a large enough exponent, then the
computation is error-free; if not, the error is bounded by β−Ei/2.

The most used lemma is the one corresponding to the computations of the tis:

Lemma 19 (Underf Err3). Let us assume that Underf_Err(x, x′, rx, εx) and
that Underf_Err(y, y′, ry, εy). Assume there exists a floating-point number z′

on the extended format such that z′ = x′ − y′ and ez′ ≤ min(ex′ , ey′). Now, let
z = ◦(x−y). Then, if εx+εy ≤ βp−1−1, we have Underf_Err(z, z′, x−y, εx+εy).
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If the Underflow threshold is not undertaken, the computation is exact as it
was undertaken neither for x′, nor for y′. If the Underflow threshold is under-
taken, then the accumulated error is the one on x, plus the one on y. There is
no error in the computation of x− y as both are subnormal.

The hypothesis εx + εy ≤ βp−1 − 1 is here to guarantee that the drift is not
too big. When the drift grows, it might create x and y that are greater than
the smallest normal number, and then the error could no more be bounded by
β−Ei/2. This assumption is here easily fulfilled as the final bound is 3.5β−Ei :

Lemma 20 (Dekker2). If β = 2 or t is even, then |x× y− (r1 + r2)| ≤ 7
2β

−Ei .

The Underflow problem has already been tackled in a recent paper by Ogita,
Rump and Oishi [25] where they give a bound of 5β−Ei . There is no real proof
of it and the authors confirm this bound is rough. The 7

2 bound could probably
be sharpened too. In particular, if the radix is 2, it can be reduced to 3.

Theorem 3 (Dekker)
Assume

– The radix β is greater than 1, the precision is greater than 3 and the Under-
flow threshold β−Ei is smaller than 1.

– We either have β = 2 or t is even.
– r1 and r2 are computed by Algorithm 2.

Then −Ei ≤ ex + ey implies that x× y = r1 + r2.
And anyway, |x× y − (r1 + r2)| ≤ 7

2β
−Ei .

4.4 Conclusion on Exact Multiplication

We finally proved the correctness of the algorithm under mild assumptions. Even
if the hypothesis “the radix is 2 or the precision is even” is far from elegant, it
is very easy to check. More, it is indeed the case on the decimal basic formats
of the revision of the IEEE-754 standard [18] on 64 bits (t = 16) or 128 bits
(t = 34) but not on the decimal storage format on 32 bits (t = 7). In this last
case, some extra-precision may be available, then the computation can be exact
if the result of x2 × y2 can be stored with at least one more digit.

In most real cases, the exact multiplication algorithm will work, but the other
cases should not be ignored as they might make some higher-level algorithm
fail. The study of Underflow is enlightening: it was clear from the start that the
error in that case would not be zero, but a multiple of the Underflow threshold,
but proving it was not that easy. We had to create some unintuitive property
that carried all the information we need to be sure that “no Underflow” meant
correct and “Underflow” meant a small error. Thanks to the tricky definition, we
rather easily propagated this property till the end of the computation to give us
an upper bound. This strategy was efficient but quite unusual. A more common
solution would have been to split into many subcases:
– if x1 × y1 is subnormal, then. . .
– if x1 × y1 is normal, but if x1 × y2 or x2 × y1 is subnormal, then. . .
– if x1× y1, x1× y2 and x2× y1 are normal, but x2× y2 is subnormal, then. . .
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It would probably have worked and given a similar result (the author would
not dare to guess which solution gives the better bound). The proof cost would
have been much greater. We do not think this amount of work would have been
worth it: the Underflow case must be studied, so that we can guarantee that the
error cannot become huge without warning. As soon as the error is reasonably
bounded, it does not always need to be sharpened.

As the previous algorithm, the main drawback of this exact multiplication is
that it might Overflow either in the splitting of x or y or in the computation of
◦(x × y) or ◦(x1 × y1). In any case, either r1 or r2 or both will be exceptional
values (infinities or NaNs) so this can be detected afterwards.

5 Perspectives

These algorithms are well-known, but the fact that the Veltkamp algorithm
works in rounding to nearest, ties to even and that it does not work in round-
ing to nearest, ties away from zero are new. It was never proved before as only
rounding to nearest (and an error bounded by half-an ulp) was ever consid-
ered before. Of course, it gives a rounding to nearest, but the tie-breaking case
is not as it should be. The tie-breaking is not important for the Dekker algo-
rithm but it may be decisive in other cases. The point is that it is difficult to
guess the correctness of the tie-breaking: yes when to even and no when away
from zero.

There are various striking things in this case study of floating-point algo-
rithms. The first one is that a generic radix proof is tricky. Most existing proofs
are radix-2 and are said to be “easily generalized”. We are aware of the fact that
tackling an odd radix seems excessive but many basic facts do not hold when
the radix is 10. It might change the exponent of some variables. It changes the
fact that the tail of the float may be on s − 1 or s digits. It might make the
algorithm of exact multiplication fail. This can often be looked as patches for
the proof as the differences may be small. In some cases unfortunately, it cannot:
the basic path of the proof relies on some lemma that can be contradicted or
some inequality that does not hold anymore. We were flabbergasted by the gap
that sometimes exists between a radix-2 proof and its generic counterpart.

The second one is the overall complexity of the proofs. The algorithms are
only a few lines long, but the formal proofs are above 6 600 lines. This is mostly
real computations and inequalities. Justifying that a float is a/the rounding
to nearest/ties to even is a painstaking work and computations on powers are
entirely left to the user. Some tactics could be written to prove goals such as
βp−1 + βp−3 + 1 < βp assuming β > 1.

Another perspective is the flexibility of the formal proof checker. When we
apply a theorem on a goal that does not have the exact required shape, we
would like it to be able to make it fit, even if it means an additional proof. For
example, we would like the proof assistant to be able to unfold some definitions
or to guess that, if the goal has the form |a× b− c| ≤ d and the theorem has the
form |c− a× b| ≤ d, then the theorem should be applied and an additional goal
|a× b− c| = |c− a× b| be added (or deduced). A real example is the following
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goal: let r be a real number and f a float. The theorem ClosestUlp states that
2 ∗ |r− f | ≤ ulp(f) with ulp(f) = βeN(f) where N is a known function. To prove
that 2∗ |f− r| ≤ βe, we would like to apply this theorem and just prove that e is
eN (f) (it would be enough to prove that e ≤ eN (f) but this may be too much).

The third striking aspect is the unexpected difficulty of dealing with Under-
flows. Underflow creates unpredictable behaviors and these behaviors are diffi-
cult to detect as they give no warning at the end of the computation, contrary
to Overflow here. Each theorem has a first proof “when no Underflow occur”,
usually it means that the inputs are normal floats. Then either the proof can
be extended to subnormal floats. It usually means a unintuitive proof: here, we
considered the same format with a smaller Underflow threshold. There is left to
prove that the results of the roundings are similar whatever the format used. Or
the proof fails. What can be guaranteed then is usually a bound on the error (a
small multiple of the Underflow threshold is good). Some weaker property could
also be guaranteed: a variable is non-zero, the final result is normal. . .

Dealing with Underflow is highly unintuitive as subnormal floats behave like
fixed-point numbers with a constant maximal error on each operation (note that
we have some interesting properties: for example, addition of subnormal numbers
is always exact). The theorems and methods of floating-point studies are then
highly non-adapted to these cases, especially when there might be a mix between
normal and subnormal floats: it means a mix between a fixed error term and a
proportional error term that usually do not mix well. New methods should be
considered to treat more easily the Underflow problem. This is no simple task
as the behavior of subnormal floats can go from a dream (addition is exact) to a
hell (the error is 50 % of the value of the result) and there is no way to deduce
the behavior of an algorithm when Underflow happens from its normal behavior.
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Abstract. One of the keys to the success of the TPTP and related
projects is their consistent use of the TPTP language. The ability of the
TPTP language to express solutions as well as problems, in conjunction
with the simplicity of the syntax, sets it apart from other languages used
in ATP. This paper provides a complete definition of the TPTP language,
and describes how the language should be used to write derivations and
finite interpretations.

1 Introduction

The TPTP problem library [19] is a well known standard set of test problems
for first order automated theorem proving (ATP) systems. The TSTP solution
library [18], the “flip side” of the TPTP, is becoming known as a resource for con-
temporary ATP systems’ solutions to TPTP problems. The SystemOnTPTP [16]
and associated software have been employed in a range of application projects,
e.g., [4,21,23]. One of the keys to the success of these projects is their consistent
use of the TPTP language, which enables convenient communication between
different systems and researchers.

TPTP v3.0.0 introduced a new version of the TPTP language [20]. The lan-
guage was designed to be suitable for writing both ATP problems and ATP
solutions, to be flexible and extensible, and easily processed by both humans
and computers. The entry barrier for using the TPTP language is (and has al-
ways been) very low. The syntax shares many features with Prolog, a language
that is widely known in the ATP community. Indeed, with a few operator def-
initions, units of TPTP data can be read in Prolog using a single read/1 call,
and written with a single writeq/1 call. Development, or at least prototyping,
of reasoning software in Prolog is common, and Prolog compatibility eliminates
the mundane task of writing IO routines for the reasoning software.

The key development from the old (pre-v3.0.0) TPTP language to the new one
was the addition of features for writing solutions to ATP problems. The features
were designed for writing derivations, but their flexibility makes it possible to
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write a range of DAG structures. Additionally, there are features of the language
that make it possible to conveniently specify finite interpretations. This paper
provides a complete definition of the TPTP language, and describes how the
language should be used to write derivations and finite interpretations.

The ability of the TPTP language to express solutions as well as problems, in
conjunction with the simplicity of the syntax, sets it apart from other languages
used in ATP. Some languages, e.g., the LOP format [13], were designed for writ-
ing problems, and do not support writing solutions. Some languages for writing
solutions are limited in scope, e.g., the PCL language [5] is limited to solutions
to to equational problems, and the OpenTheory language [8] is designed only
to be a computer processible form for systems that implement the HOL logic
[6]. There are some general purpose languages that have features for writing
derivations, e.g., Otter’s proof object format [11,10] and the DFG syntax [7],
but none of these (that we know of) also provide support for writing finite inter-
pretations. Mark-up languages such as OmDoc [9], OpenMath [2], and MathML
[2] are quite expressive (especially for mathematical content), but their XML
based format is not suitable for human processing. Overall, the TPTP language
is more expressive and usable than other languages. Interoperability with other
languages is supported in some cases, through translation tools.

2 The TPTP Language

The new TPTP language was first used in TPTP v3.0.0, released in November
2004. It has been taken up by a number of developers and received valuable
comments and feedback. As a consequence, since that first release there have
been some small, but significant, changes and extensions. The BNF definition of
the language has recently been thoroughly overhauled. A principal goal has been
to make it easy to translate the BNF into lex/yacc/flex/bison input, so that
construction of parsers (in languages other than Prolog) can be a reasonably
easy task. The BNF definition is in the appendix of this paper.

The TPTP language definition uses a modified BNF meta-language that sep-
arates semantic, syntactic, lexical, and character-macro rules. Syntactic rules use
the standard ::= separator, e.g.,

<source> ::= <general term>

When only a subset of the syntactically acceptable values for a non-terminal
make semantic sense, a second rule for the non-terminal is provided using a :==
separator, e.g.,

<source> :== <dag source> | <internal source> | , etc.
Any further semantic rules that may be reached only from the right hand side
of a semantic rule are also written using the :== separator, e.g.,

<dag source> :== <name> | <inference record>

This separation of syntax from semantics eases the task of building a syntac-
tic analyzer, as only the ::= rules need be considered. At the same time, the
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semantic rules provide the detail necessary for semantic checking. The rules that
produce tokens from the lexical level use a ::- separator, e.g.,

<lower word> ::- <lower alpha><alpha numeric>*

with the bottom level character-macros defined by regular expressions in rules
using a ::: separator, e.g.,

<lower alpha> ::: [a-z]

The BNF is documented with comments.
The top level building blocks of TPTP files are annotated formulae, include

directives, and comments. An annotated formula has the form:
language(name, role, formula, source, [useful info]).

The languages currently supported are fof - formulae in full first order form, and
cnf - formulae in clause normal form. The role gives the user semantics of the
formula, e.g., axiom, lemma, conjecture, and hence defines its use in an ATP
system - see the BNF for the list of recognized roles and their meaning. The
logical formula, in either FOF or CNF, uses a consistent and easily understood
notation [20] that can be seen in the BNF. The source describes where the
formula came from, e.g., an input file or an inference. The useful info is a list of
arbitrary useful information, as required for user applications. The useful info
field is optional, and if it is not used then the source field becomes optional. An
example of a FOF formula, supplied from a file, is:

fof(formula_27,axiom,
! [X,Y] :
( subclass(X,Y) <=>

! [U] :
( member(U,X) => member(U,Y) )),

file(’SET005+0.ax’,subclass_defn),
[description(’Definition of subclass’), relevance(0.9)]).

An example of an inferred CNF formula is:

cnf(175,lemma,
( rsymProp(ib,sk_c3)
| sk_c4 = sk_c3 ),
inference(factor_simp,[status(thm)],[

inference(para_into,[status(thm)],[96,78,theory(equality)])]),
[iquote(’para_into,96.2.1,78.1.1,factor_simp’)]).

A novel feature of the TPTP language, which is employed in the represen-
tation of finite interpretations, is the recognition of interpreted predicates and
functors. These come in two varieties: defined predicates and functors, whose
interpretation is specified by the TPTP language, and system predicates and
functors, whose interpretation is ATP system specific. Interpreted predicates
and functors are syntactically different from uninterpreted predicates and func-
tors. Defined predicates and functors either start with a $, or are composed
of non-alphanumeric characters. System predicates and functors start with $$.
Uninterpreted predicates and functors start with a lower case alphabetic. The
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defined predicates recognized so far are $true and $false, with the obvious
interpretations, and = and != for equality and inequality. The defined functors
recognized so far are "distinct object"s, written in double quotes, and num-
bers. A "distinct object" is interpreted as the domain element in the double
quotes. Numbers are interpreted as themselves (as domain elements). A conse-
quence of the predefined interpretations is that all different "distinct object"s
and numbers are known to be unequal, e.g., "Apple" != "Microsoft" and 1
!= 2 are implicit axioms. Such implicit axioms may be built into an ATP sys-
tem, e.g., [14], or generated. System predicates and functors are used for inter-
preted predicates and functors that are available in particular ATP tools. The
names are not controlled by the TPTP language, so they must be used with
caution.

The source field of an annotated formula is most commonly a file record or
an inference record. A file record stores the name of the file from which the
annotated formula was read, and optionally the name of the annotated formula
as it occurs in the file (this may be different from the name of the annotated
formula itself, e.g., if the ATP system renames the annotated formulae that
it reads in). An inference record stores three items of information about an
inferred formula: the name of the inference rule provided by the ATP system,
i.e., there are no standards; a list of useful information items, e.g., the semantic
status of the formula and with respect to its parents as an SZS ontology value
[20] (commonly inferred formulae are theorems of their parents, but in some
cases the semantic relationship is weaker, as in Skolemization steps); and a list of
the parents, which most commonly are parent annotated formula names, nested
inference records, and theory records. A theory record is used when the axioms
of some theory are built into the inference rule, e.g., equality axioms are built
into paramodulation.

The include directives of the TPTP language are analogous to C’s #include
directives. An include directive may include an entire file, or may specify the
names of the annotated formulae that are to be included from the file, thus
providing a more finely grained include mechanism.

Regular comments in the TPTP language extend from a % character to the
end of the line, or may be block comments within /* ...*/ bracketing. Sys-
tem comments in the TPTP language are used for system specific annota-
tions. They extend from a %$$ sequence to the end of the line, or may be
block comments within /*$$ ...*/ bracketing. System comments look like reg-
ular comments, so normally they would be discarded. However, a wily user
of the language can store/extract information from the comment before dis-
carding it. System comments should identify the ATP system, followed by a :,
e.g., /*$$Otter 3.3: Demodulator */. Comments may occur between any two
tokens.

Parsing tools written in C are available for the TPTP language, conversion of
the BNF into lex/yacc input is available [22], and the tptp2X utility distributed
with the TPTP is compatible with the language.
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3 Derivations

A derivation is a directed acyclic graph (DAG) whose leaf nodes are formulae from
the input, whose interior nodes are formulae inferred from parent formulae, and
whose root nodes are the final derived formulae. For example, a proof of a FOF
theorem from some axioms, by refutation of the CNF of the axioms and negated
conjecture, is a derivation whose leaf nodes are the FOF axioms and conjecture,
whose internal nodes are formed from the process of clausification and then from
inferences performed on the clauses, and whose root node is the false formula.

The information required to record a derivation is, minimally, the leaf formulae,
and each inferred formula with references to its parent formulae. More detailed
information that may be recorded and useful includes: the role of each formula;
the name of the inference rule used in each inference step; sufficient details of each
inference step to deterministically reproduce the inference; and the semantic rela-
tionships of inferred formulae with respect to their parents. The TPTP language is
sufficient for recording all this, and more. A comprehensively recorded derivation
provides the information required for various forms of processing, such as proof
verification [17], proof visualization [15], and lemma extraction [5].

A derivation written in the TPTP language is a list of annotated formulae.
Each annotated formula has a name, a role, and the logical formula. Each inferred
formula has an inference record with the inference rule name, the semantic
relationship of the formula to its parents as an SZS ontology value in a status
record, and a list of references to its parent formulae.

Example. Consider the following toy FOF problem, to prove the conjecture
from the axioms (not all the axioms are needed for the proof - the extra axioms
come into play when the example is used again in Section 4 to illustrate the
finite interpretation format):
%------------------------------------------------------------------------
%----All (hu)men are created equal. John is a human. John got an F grade.
%----There is someone (a human) who got an A grade. An A grade is not
%----equal to an F grade. Grades are not human. Therefore there is a
%----human other than John.
fof(all_created_equal,axiom,(

! [H1,H2] : ( ( human(H1) & human(H2) ) => created_equal(H1,H2) ) )).
fof(john,axiom,(

human(john) )).
fof(john_failed,axiom,(

grade(john) = f )).
fof(someone_got_an_a,axiom,(

? [H] : ( human(H) & grade(H) = a ) )).
fof(distinct_grades,axiom,(

a != f )).
fof(grades_not_human,axiom,(

! [G] : ~ human(grade(G)) )).
fof(someone_not_john,conjecture,(

? [H] : ( human(H) & H != john ) )).
%--------------------------------------------------------------------
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Here is a derivation recording a proof by refutation of the CNF, adapted
(removing inferences that simply copy the parent formula) from the one produced
by the ATP system EP v0.91 [12]:

%--------------------------------------------------------------------

fof(3,axiom,(

grade(john) = f ),

file(’CreatedEqual.p’,john_failed)).

fof(4,axiom,(

? [X3] : ( human(X3) & grade(X3) = a ) ),

file(’CreatedEqual.p’,someone_got_an_a)).

fof(5,axiom,(

a != f ),

file(’CreatedEqual.p’,distinct_grades)).

fof(7,conjecture,(

? [X3] : ( human(X3) & X3 != john ) ),

file(’CreatedEqual.p’,someone_not_john)).

fof(8,negated_conjecture,(

~ ? [X3] : ( human(X3) & X3 != john ) ),

inference(assume_negation,[status(cth)],[7])).

cnf(14,plain,

( grade(john) = f ),

inference(split_conjunct,[status(thm)],[3])).

fof(16,plain,

( human(esk1_0) & grade(esk1_0) = a ),

inference(skolemize,[status(sab)],[4])).

cnf(17,plain,

( grade(esk1_0) = a ),

inference(split_conjunct,[status(thm)],[16])).

cnf(18,plain,

( human(esk1_0) ),

inference(split_conjunct,[status(thm)],[16])).

cnf(19,plain,

( a != f ),

inference(split_conjunct,[status(thm)],[5])).

fof(22,negated_conjecture,(

! [X3] : ( ~ human(X3) | X3 = john ) ),

inference(fof_nnf,[status(thm)],[8])).

cnf(24,negated_conjecture,

( X1 = john | ~ human(X1) ),

inference(split_conjunct,[status(thm)],[22])).

cnf(25,negated_conjecture,

( john = esk1_0 ),

inference(spm,[status(thm)],[24,18,theory(equality)])).

cnf(28,plain,

( f = a ),

inference(rw,[status(thm)],[

inference(rw,[status(thm)],[17,25,theory(equality)]),

14,theory(equality)])).

cnf(29,plain,

( $false ),

inference(sr,[status(thm)],[28,19,theory(equality)])).

%--------------------------------------------------------------------
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4 Finite Interpretations

A finite interpretation (or “finite model” of some identified formulae) consists
of a finite domain, an interpretation of functors - a functor applied to domain
elements is interpreted as a domain element, and an interpretation of predicates
- a predicate applied to domain elements is interpreted as true or false. The
elements of the domain are known to be distinct. The interpretation of functors
and predicates is total, i.e., there is an interpretation for every functor and
predicate for every pattern of domain element arguments.

The TPTP language is sufficient for recording a finite interpretation. The
domain, interpretation of functors, and interpretation of predicates, are written
as FOF annotated formulae. A recorded interpretation provides the information
required for various forms of processing, such as model verification, interpretation
of formulae, and identification of isomorphic interpretations.

The domain of a finite interpretation is written in the form:
fof(fi name,fi domain,

! [X] : ( X = e1 | X = e2 | ... | X = en ) ).

where the ei are all "distinct object"s, or all distinct integers, or all distinct con-
stant terms. If "distinct object" or integer terms appear in the interpreted signa-
ture, then all those terms must appear in the domain. If constant terms are used
they are freely chosen constant terms that do not appear in the signature being
interpreted. The ei values then provide an exhaustive list of constant terms whose
interpretation form the domain (there is a bijection from the constant terms to the
domain, so one may think of the constant terms directly as the domain elements).
The use of "distinct object"s or integer terms for a domain is preferred over con-
stant terms, because that takes advantage of the predefined interpretation of such
terms - all such terms and corresponding domain elements are known to be distinct
(see Section 2). If the domain elements are constant terms then their inequality
must be explicitly stated in annotated formulae of the form:

fof(ei not ej,fi domain,
ei != ej ).

The interpretation of functors is written in the form:
fof(fi name,fi functors,

( f(e1,...,em) = er

& f(e1,...,ep) = es

... ) ).

specifying that, e.g., f(e1,...,em) is interpreted as the domain element er.
If "distinct object"s or integer terms appear in the interpreted signature, then
those terms are necessarily interpreted as themselves and must not be interpreted
in the fi functors.

The interpretation of predicates is written in the form:
fof(fi name,fi predicates,

( p(e1,...,em)
& ~ p(e1,...,ep)
... ) ).
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specifying that, e.g., p(e1,...,em) is interpreted as true and p(e1,...,ep) is
interpreted as false. Equality is interpreted naturally by the domain, with the
understanding that identical elements are equal.

Example. Consider again the FOF problem from Section 3, but with the conjec-
ture replaced by:

fof(equality_lost,conjecture,(

! [H1,H2] :

( created_equal(H1,H2)

<=> H1 = H2 ) )).

The resultant problem is CounterSatisfiable, i.e., there is a model for the
axioms and negated conjecture. Here is one such model, adapted (by converting
constant term domain elements to "distinct object" domain elements) from the
one found by the model finding system Paradox 1.3 [3]:

%--------------------------------------------------------------------

fof(equality_lost,fi_domain,

! [X] : ( X = "a" | X = "f" | X = "john" | X = "got_a") ).

fof(equality_lost,fi_functors,

( a = "a" & f = "f" & john = "john"

& grade("a") = "f" & grade("f") = "a"

& grade("john") = "f" & grade("got_a") = "a" ) ).

fof(equality_lost,fi_predicates,

( human("john") & human("got_a")

& ~ human("a") & ~ human("f")

& ~ created_equal("a","a") & ~ created_equal("a","f")

& ~ created_equal("a","john") & ~ created_equal("a","got_a")

& ~ created_equal("f","a") & ~ created_equal("f","f")

& ~ created_equal("f","john") & ~ created_equal("f","got_a")

& ~ created_equal("john","a") & ~ created_equal("john","f")

& created_equal("john","john") & created_equal("john","got_a")

& ~ created_equal("got_a","a") & ~ created_equal("got_a","f")

& created_equal("got_a","john") & created_equal("got_a","got_a") ) ).

%--------------------------------------------------------------------

Variations, Layout, and Verification
Normally every functor and predicate is interpreted once for every pattern of
domain element arguments. No functor or predicate may be interpreted more
than once for an argument pattern. If a functor or predicate is not interpreted
for a given argument pattern then multiple interpretations are being represented,
in which that functor or predicate applied to the argument pattern is interpreted
as each of the possible values (each domain element for a functor, both true and
false for a predicate).

It is recommended that interpretations follow a standard layout, as illustrated
by the examples above. However, the conjuncts of functor and predicate inter-
pretations may be separated into individual annotated formulae. Compact forms
are possible using universally quantified formulae, e.g.,
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fof(equality_lost,fi_predicates,

( human("john") & human("got_a")

& ~ human("a") & ~ human("f")

& ! [X] : ~ created_equal("a",X)

& ! [X] : ~ created_equal("f",X)

& ! [X] : ~ created_equal(X,"a")

& ! [X] : ~ created_equal(X,"f")

& created_equal("john","john") & created_equal("john","got_a")

& created_equal("got_a","john") & created_equal("got_a","got_a") ) ).

An interpretation can be verified as a model of a set of formulae by directly
evaluating each formula in the model. The TPTP format also provides an alter-
native approach - the interpretation is adjoined to the formulae, and a trusted
model finder is then used to find a model of the combined formula set.

5 Conclusion

Standards for writing derivations and finite interpretations have been presented.
These standards should be adopted by the ATP community, to increase the range
of ATP tools that can be seamlessly integrated into more complex and effective
reasoning systems. Increased interoperability will contribute to the usability and
uptake of ATP technology in application domains.

Current work is extending the TPTP language for higher order logic [22].
When this is available, it will be used for extending the TPTP to higher order
logic [1]. Future work will include the design of standards for representing infinite
interpretations. As a first step, it is planned to represent Herbrand interpreta-
tions by term grammars, e.g., formulae of the form:

! [X,Y] : (p(X,Y) <=> ((X != a & Y != a) | (X = a & Y = a)))

There are decision procedures for the truth of ground atoms in the context of
such formulae. Compaction of finite interpretations using normal-form theory
from relational databases is also being considered.
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Appendix

%------------------------------------------------------------------------------
%----README ... this header provides important meta- and usage information
%----
%----Intended uses of the various parts of the TPTP syntax are explained
%----in the TPTP technical manual, linked from www.tptp.org.
%----
%----Four kinds of separators are used, to indicate different types of rules:
%---- ::= is used for regular grammar rules, for syntactic parsing.
%---- :== is used for semantic grammar rules. These define specific values
%---- that make semantic sense when more general syntactic rules apply.
%---- ::- is used for rules that produce tokens.
%---- ::: is used for rules that define character classes used in the
%---- construction of tokens.
%----
%----White space may occur between any two tokens. White space is not specified
%----in the grammar, but the are some restrictions to ensure that the grammar
%----is campatible with standard Prolog: a <TPTP_file> should be readable with
%----read/1.
%----
%----The syntax of comments is defined by the <comment> rule. Comments may
%----occur between any two tokens, but do not act as white space. Comments
%----will normally be discarded at the lexical level, but may be processed
%----by systems that understand them e.g., if the system comment convention
%----is followed).
%------------------------------------------------------------------------------
%----Files. Empty file is OK.
<TPTP_file> ::= <TPTP_input>*
<TPTP_input> ::= <annotated_formula> | <include>

%----Formula records
<annotated_formula> ::= <fof_annotated> | <cnf_annotated>
%----Future languages may include ... english | efof | tfof | mathml | ...
<fof_annotated> ::= fof(<name>,<formula_role>,<fof_formula><annotations>).
<cnf_annotated> ::= cnf(<name>,<formula_role>,<cnf_formula><annotations>).
<annotations> ::= <null> | ,<source><optional_info>
%----In derivations the annotated formulae names must be unique, so that
%----parent references (see <inference_record>) are unambiguous.

%----Types for problems.
%----Note: The previous <source_type> from ...
%---- <formula_role> ::= <user_role>-<source>
%----... is now gone. Parsers may choose to be tolerant of it for backwards
%----compatibility.
<formula_role> ::= <lower_word>
<formula_role> :== axiom | hypothesis | definition | lemma | theorem |

conjecture | lemma_conjecture | negated_conjecture |
plain | fi_domain | fi_functors | fi_predicates |
unknown

%----"axiom"s are accepted, without proof, as a basis for proving "conjecture"s
%----and "lemma_conjecture"s in FOF problems. In CNF problems "axiom"s are
%----accepted as part of the set whose satisfiability has to be established.
%----There is no guarantee that the axioms of a problem are consistent.
%----"hypothesis"s are assumed to be true for a particular problem, and are
%----used like "axiom"s.
%----"definition"s are used to define symbols, and are used like "axiom"s.
%----"lemma"s and "theorem"s have been proven from the "axiom"s, can be used
%----like "axiom"s, but are redundant wrt the "axiom"s. "lemma" is used as the
%----role of proven "lemma_conjecture"s, and "theorem" is used as the role of
%----proven "conjecture"s, in output. A problem containing a "lemma" or
%----"theorem" that is not redundant wrt the "axiom"s is ill-formed. "theorem"s
%----are more important than "lemma"s from the user perspective.
%----"conjecture"s occur in only FOF problems, and are to all be proven from
%----the "axiom"(-like) formulae. A problem is solved only when all
%----"conjecture"s are proven.
%----"lemma_conjecture"s are expected to be provable, and may be useful to
%----prove, while proving "conjecture"s.
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%----"negated_conjecture"s occur in only CNF problems, and are formed from
%----negation of a "conjecture" in a FOF to CNF conversion.
%----"plain"s have no special user semantics, and can be used like "axiom"s.
%----"fi_domain", "fi_functors", and "fi_predicates" are used to record the
%----domain, interpretation of functors, and interpretation of predicates, for
%----a finite interpretation.
%----"unknown"s have unknown role, and this is an error situation.

%----FOF formulae. All formulae must be closed.
<fof_formula> ::= <binary_formula> | <unitary_formula>
<binary_formula> ::= <nonassoc_binary> | <assoc_binary>
%----Only some binary connectives are associative
%----There’s no precedence among binary connectives
<nonassoc_binary> ::= <unitary_formula> <binary_connective> <unitary_formula>
<binary_connective> ::= <=> | => | <= | <~> | ~<vline> | ~&
%----Associative connectives & and | are in <assoc_binary>
<assoc_binary> ::= <or_formula> | <and_formula>
<or_formula> ::= <unitary_formula> <vline> <unitary_formula>

<more_or_formula>*
<more_or_formula> ::= <vline> <unitary_formula>
<and_formula> ::= <unitary_formula> & <unitary_formula>

<more_and_formula>*
<more_and_formula> ::= & <unitary_formula>
%----<unitary_formula> are in ()s or do not have a <binary_connective> at the
%----top level.
<unitary_formula> ::= <quantified_formula> | <unary_formula> |

(<fof_formula>) | <atomic_formula>
<quantified_formula> ::= <quantifier> [<variable_list>] : <unitary_formula>
<quantifier> ::= ! | ?
%----! is universal quantification and ? is existential. Syntactically, the
%----quantification is the left operand of :, and the <unitary_formula> is
%----the right operand. Although : is a binary operator syntactically, it is
%----not a <binary_connective>, and thus a <quantified_formula> is a
%----<unitary_formula>.
%----Universal example: ! [X,Y] : ((p(X) & p(Y)) => q(X,Y)).
%----Existential example: ? [X,Y] : (p(X) & p(Y)) & ~ q(X,Y).
%----Quantifiers have higher precedence than binary connectives, so in
%----the existential example the quantifier applies to only (p(X) & p(Y)).
<variable_list> ::= <variable> | <variable>,<variable_list>
%----Future variables may have sorts and existential counting
%----Unary connectives bind more tightly than binary
<unary_formula> ::= <unary_connective> <unitary_formula>
<unary_connective> ::= ~

%----CNF formulae (variables implicitly universally quantified)
<cnf_formula> ::= (<disjunction>) | <disjunction>
<disjunction> ::= <literal> <more_disjunction>*
<more_disjunction> ::= <vline> <literal>
<literal> ::= <atomic_formula> | ~ <atomic_formula>

%----Atoms (<predicate> is not used currently)
<atomic_formula> ::= <plain_atom> | <defined_atom> | <system_atom>
<plain_atom> ::= <plain_term>
%----A <plain_atom> looks like a <plain_term>, but really we mean
%---- <plain_atom> ::= <proposition> | <predicate>(<arguments>)
%---- <proposition> ::= <atomic_word>
%---- <predicate> ::= <atomic_word>
%----Using <plain_term> removes a reduce/reduce ambiguity in lex/yacc.
<arguments> ::= <term> | <term>,<arguments>
<defined_atom> ::= $true | $false |

<term> <defined_infix_pred> <term>
<defined_infix_pred> ::= = | !=
%----A more general formulation, which syntactically admits more defined atoms,
%----is as follows. Developers may prefer to adopt this.
%---- <defined_atom> ::= <defined_prop> | <defined_pred>(<arguments>) |
%---- <term> <defined_infix_pred> <term>
%---- <defined_prop> ::= <atomic_defined_word>
%---- <defined_prop> :== $true | $false
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%---- <defined_pred> ::= <atomic_defined_word>
%---- <defined_pred> :==
%----Some systems still interpret equal/2 as equality. The use of equal/2
%----for other purposes is therefore discouraged. Please refrain from either
%----use. Use infix ’=’ for equality. Note: <term> != <term> is equivalent
%----to ~ <term> = <term>
%----More defined atoms may be added in the future.
<system_atom> ::= <system_term>
%----<system_atom>s are used for evaluable predicates that are available
%----in particular tools. The predicate names are not controlled by the
%----TPTP syntax, so use with due care. The same is true for <system_term>s.

%----Terms
<term> ::= <function_term> | <variable>
<function_term> ::= <plain_term> | <defined_term> | <system_term>
<plain_term> ::= <constant> | <functor>(<arguments>)
<constant> ::= <atomic_word>
<functor> ::= <atomic_word>
<defined_term> ::= <number> | <distinct_object>
%----A more general formulation, which syntactically admits more defined terms,
%----is as follows. Developers may prefer to adopt this.
%---- <defined_term> ::= <number> | <distinct_object> |
%---- <defined_constant> |
%---- <defined_functor>(<arguments>) |
%---- <term> <defined_infix_func> <term>
%---- <defined_constant> ::= <atomic_defined_word>
%---- <defined_constant> :==
%---- <defined_functor> ::= <atomic_defined_word>
%---- <defined_functor> :==
%---- <defined_infix_func> ::=
%----System terms have system specific interpretations
<system_term> ::= <system_constant> | <system_functor>(<arguments>)
<system_functor> ::= <atomic_system_word>
<system_constant> ::= <atomic_system_word>
<variable> ::= <upper_word>

%----Formula sources
<source> ::= <general_term>
<source> :== <dag_source> | <internal_source> | <external_source> |

unknown
%----Only a <dag_source> can be a <name>, i.e., derived formulae can be
%----identified by a <name> or an <inference_record>
<dag_source> :== <name> | <inference_record>
<inference_record> :== inference(<inference_rule>,<useful_info>,

[<parent_list>])
<inference_rule> :== <atomic_word>
%----Examples are deduction | modus_tollens | modus_ponens | rewrite |
% resolution | paramodulation | factorization |
% cnf_conversion | cnf_refutation | ...
<parent_list> :== <parent_info> | <parent_info>,<parent_list>
<parent_info> :== <source><parent_details>
<parent_details> :== :<atomic_word> | <null>
<internal_source> :== introduced(<intro_type><optional_info>)
<intro_type> :== definition | axiom_of_choice | tautology
%----This should be used to record the symbol being defined, or the function
%----for the axiom of choice
<external_source> :== <file_source> | <theory> | <creator_source>
<file_source> :== file(<file_name><file_info>)
<file_info> :== ,<name> | <null>
<theory> :== theory(<theory_name><optional_info>)
<theory_name> :== equality | ac
%----More theory names may be added in the future. The <optional_info> is
%----used to store, e.g., which axioms of equality have been implicitly used,
%----e.g., theory(equality,[rst]). Standard format still to be decided.
<creator_source> :== creator(<creator_name><optional_info>)
<creator_name> :== <atomic_word>

%----Useful info fields
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<optional_info> ::= ,<useful_info> | <null>
<useful_info> ::= <general_term_list>
<useful_info> :== [] | [<info_items>]
<info_items> :== <info_item> | <info_item>,<info_items>
<info_item> :== <formula_item> | <inference_item> | <general_function>
%----Useful info for formula records
<formula_item> :== <description_item> | <iquote_item>
<description_item> :== description(<atomic_word>)
<iquote_item> :== iquote(<atomic_word>)
%----<iquote_item>s are used for recording exactly what the system output about
%----the inference step. In the future it is planned to encode this information
%----in standardized forms as <parent_details> in each <inference_record>.
%----Useful info for inference records
<inference_item> :== <inference_status> | <refutation>
<inference_status> :== status(<status_value>) | <inference_info>
%----These are the status values from the SZS ontology
<status_value> :== tau | tac | eqv | thm | sat | cax | noc | csa | cth |

ceq | unc | uns | sab | sam | sar | sap | csp | csr |
csm | csb

%----The most commonly used status values are:
%---- thm - Every model (and there are some) of the parent formulae is a
%---- model of the inferred formula. Regular logical consequences.
%---- cth - Every model (and there are some) of the parent formulae is a
%---- model of the negation of the inferred formula. Used for negation
%---- of conjectures in FOF to CNF conversion.
%---- sab - There is a bijection between the models (and there are some) of
%---- the parent formulae and models of the inferred formula. Used for
%---- Skolemization steps.
%----For the full hierarchy see the SZSOntology file distributed with the TPTP.
<inference_info> :== <inference_rule>(<atomic_word>,<general_list>)
<refutation> :== refutation(<file_source>)
%----Useful info for creators is just <general_function>

%----Include directives
<include> ::= include(<file_name><formula_selection>).
<formula_selection> ::= ,[<name_list>] | <null>
<name_list> ::= <name> | <name>,<name_list>

%----Non-logical data
<general_term> ::= <general_data> | <general_data>:<general_term> |

<general_list>
<general_data> ::= <atomic_word> | <atomic_word>(<general_arguments>) |

<number> | <distinct_object>
<general_arguments> ::= <general_term> | <general_term>,<general_arguments>
<general_list> ::= [] | [<general_term_list>]
<general_term_list> ::= <general_term> | <general_term>,<general_term_list>

%----General purpose
<name> ::= <atomic_word> | <unsigned_integer>
<atomic_word> ::= <lower_word> | <single_quoted>
%----This maybe useful in the future
%---- <atomic_defined_word> ::= <dollar_word>
<atomic_system_word> ::= <dollar_dollar_word>
<number> ::= <real> | <signed_integer> | <unsigned_integer>
%----Numbers are always interpreted as themselves, and are thus implicitly
%----distinct if they have different values, e.g., 1 != 2 is an implicit axiom.
%----All numbers are base 10 at the moment.
<file_name> ::= <atomic_word>
<null> ::=

%------------------------------------------------------------------------------
%----Rules from here on down are for defining tokens (terminal symbols) of the
%----grammar, assuming they will be recognized by a lexical scanner.
%----A ::- rule defines a token, a ::: rule defines a macro that is not a
%----token. Usual regexp notation is used. Single characters are always placed
%----in []s to disable any special meanings (for uniformity this is done to
%----all characters, not only those with special meanings).
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%----These are tokens that appear in the syntax rules above. No rules
%----defined here because they appear explicitly in the syntax rules.
%----Keywords: fof cnf include
%----Punctuation: ( ) , . [ ] :
%----Operators: ! ? ~ & | <=> => <= <~> ~| ~&
%----Predicates: = != $true $false

<comment> ::- <comment_line>|<comment_block>
<comment_line> ::: [%]<printable_char>*
<comment_block> ::: [/][*]<not_star_slash>[*][*]*[/]
<not_star_slash> ::: ([^*]*[*][*]*[^/*])*[^*]*
%----System comments are a convention used for annotations that may used as
%----additional input to a specific system. They look like comments, but start
%----with %$$ or /*$$. A wily user of the syntax can notice the $$ and extract
%----information from the "comment" and pass that on as input to the system.
%----The specific system for which the information is intended should be
%----identified after the $$, e.g., /*$$Otter 3.3: Demodulator */
%----To extract these separately from regular comments, the rules are:
%---- <system_comment> ::- <sys_comment_line>|<sys_comment_block>
%---- <sys_comment_line> ::: [%]<dollar_dollar><printable_char>*
%---- <sys_comment_block> ::: [/][*]<dollar_dollar><not_star_slash>[*][*]*[/]
%----A string that matches both <system_comment> and <comment> should be
%----recognized as <system_comment>, so put these before regular comments.

<single_quoted> ::- [’]([^\\’]|[\\][’]|[\\][\\])*[’]
%----<single_quoted> ::- ’<printable_char>*’, but ’ and \ are escaped.
%----\ is used as the escape character for ’ and \, i.e., if \’ is encountered
%----the ’ is not the end of the <single_quoted>, and if \\ is encountered the
%----second \ is not an escape. Both characters (the escape \ and the following
%----’ or \) are retained and printed on output. Behaviour is undefined if the
%----escape \ is followed by anything other than ’ or \. Behaviour is undefined
%----if a non-<printable_char> is encountered. If the contents of a <single
%----quoted> constitute a <lower_word>, then the ’’s should be stripped to
%----produce a <lower_word>.
<distinct_object> ::- ["]([^\\"]|[\\]["]|[\\][\\])*["]
%----<distinct_object> ::- "<printable_char>*", but " and \ are escaped. The
%----comments for <single_quoted> apply, with ’ replaced by ".
%----Distinct objects are always interpreted as themselves, and are thus
%----implicitly distinct if they look different, e.g., "Apple" != "Microsoft"
%----is an implicit axiom.

<dollar_dollar_word> ::- <dollar_dollar><lower_word>
<upper_word> ::- <upper_alpha><alpha_numeric>*
<lower_word> ::- <lower_alpha><alpha_numeric>*

%----Numbers
<real> ::- (<signed_decimal>|<unsigned_decimal>)<fraction_decimal>
<signed_integer> ::- <sign><unsigned_integer>
<unsigned_integer> ::- <unsigned_decimal>
<signed_decimal> ::: <sign><unsigned_decimal>
<sign> ::: [+-]
<unsigned_decimal> ::: ([0]|<non_zero_numeric><numeric>*)
<fraction_decimal> ::: [.]<numeric><numeric>*

%----Character classes
<numeric> ::: [0-9]
<non_zero_numeric> ::: [1-9]
<lower_alpha> ::: [a-z]
<upper_alpha> ::: [A-Z]
<alpha_numeric> ::: (<lower_alpha>|<upper_alpha>|<numeric>|[_])
<dollar_dollar> ::: [$][$]
<printable_char> ::: .
%----<printable_char> ::: any printable ASCII character, codes 32-126
%----<printable_char> thus includes spaces, but not tabs, newlines, bells, etc.
%----This definition does not capture that.
<vline> ::: [|]
%------------------------------------------------------------------------------
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Abstract. Context Unification is the problem to decide for a given set
of second-order equations E where all second-order variables are unary,
whether there exists a unifier, such that for every second-order variable
X, the abstraction λx.r instantiated for X has exactly one occurrence of
the bound variable x in r. Stratified Context Unification is a specializa-
tion where the nesting of second-order variables in E is restricted.

It is already known that Stratified Context Unification is decidable,
NP-hard, and in PSPACE, whereas the decidability and the complex-
ity of Context Unification is unknown. We prove that Stratified Context
Unification is in NP by proving that a size-minimal solution can be rep-
resented in a singleton tree grammar of polynomial size, and then apply-
ing a generalization of Plandowski’s polynomial algorithm that compares
compacted terms in polynomial time. This also demonstrates the high
potential of singleton tree grammars for optimizing programs maintain-
ing large terms.

A corollary of our result is that solvability of rewrite constraints is
NP-complete.

1 Introduction

Higher-order logic and higher-order deduction system (see e.g. [Dow01, PS99,
Pau94, And86, Hue75]) provide very expressive frameworks and highly devel-
oped tools for deduction. One of the operations used in different variants is
higher-order unification (see [Hue75, Dow01]). A specialization is second-order
unification, which in turn is a generalization of first-order unification, where
variables (i.e., second-order variables) at the position of function symbols are
permitted in equations. In solving an equation, the second-order variables can
stand for an arbitrary first-order term, with holes for plugging in the arguments,
which must be terms. In lambda-notation, a second-order variable may be instan-
tiated with a term λx1, . . . , xn . t, where t is a first-order term, and the variables
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xi also stand for first-order terms. It is known that second-order unification is
undecidable, even under severe syntactic restrictions [Gol81, Far91, LV00, LV02].

A variant of second-order unification is context unification, which is also a gen-
eralization of string unification, which is decidable [Mak77] and known to be in
PSPACE [Pla04]. Context unification is like second-order unification, where the
arity of second-order variables is one, and the possible instantiations of second-
order variables are restricted to abstractions where the number of occurrences
of the bound variable is one. It is currently open, whether context unification
is (un)decidable. A generalization is linear second-order unification, see [Lev96],
where context variables may have arity more than one, and λ-bindings and
bound variables may occur in the terms of the equations. It’s decidability is also
unknown. A decidable specialization of context unification is stratified context
unification (SCU) [SS02], which allows only equations, where the nesting of vari-
ables obeys a stratification property: For every variable Z, every two positions
p1, p2 of Z in terms in equations, the sequences of context variables on the paths
p1, p2 must be the same. It is known that SCU is NP-hard [SSS98] and that
the corresponding matching problem is NP-complete [SSS04]. There is a large
gap in its precise complexity, since the algorithm for SCU described in [SS02] is
non-elementary.

Context unification is also of practical use in computational linguistics
[NPR97a, EN00], mainly in the field of compositional semantics of natural lan-
guage. In fact, SCU subsumes dominance constraints, a first-order language that
is used to represent scope underspecification [NPR97b, NK01], which has an
NP-complete satisfiability problem [KNT98]. Another variant of context unifica-
tion with interest in computational linguistics is well-nested context-unification
[LNV05], which restricts the overlap of context variables in the solution; it was
recently shown to be in NP.

Another, different, variant of second-order unification with a related algorith-
mic solution is bounded second-order unification (BSOU), with its specializa-
tion monadic second-order unification. Both problems were recently shown to
be NP-complete [LSSV04, LSSV06], using similar methods as in this paper. The
difference between BSOU and SCU are semantic: in BSOU the second-order vari-
ables may also be instantiated by abstractions without occurrences of the bound
variable; and syntactic: the nesting of variables in BSOU may be arbitrary.

In this paper we prove that SCU is in NP, which means that it is NP-complete,
closing this complexity gap. The proof-method is interesting in itself: it uses so-
called singleton tree grammars (STG) [SS05, BLM05, Pla94, LSSV04] as a very
general mechanism for compressing terms, i.e. solutions. The known decision
algorithm for SCU is adapted and used for showing that the construction of a
compressed representation of a size-minimal solution leads to a polynomial-sized
STG. Using non-deterministic guessing and an algorithm that can compare com-
pressed terms in polynomial time shows that SCU is in NP. One contribution
of compression is to represent Cn with a number n bounded by the exponent of
periodicity in polynomial space. The second contribution, together with the im-
plicit representation of the equation during construction of the STG, is to show
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that the number of first-order variables remains polynomial. Then “in-NP”- re-
sult also implies that the complexity of rewrite-constraints is NP-complete (see
[NTT00]). The result also demonstrates the high potential of singleton tree gram-
mars for optimizing programs maintaining large terms. The upper complexity
bound for SCU also shows the practical potential of SCU, since there is a commu-
nity that has specialized on providing optimal programs that solve NP-complete
problems (see [SAT06]). However, the available upper bound on the order of the
involved polynomials is rather high: O(size(E)16) for the size of a compressed
size-minimal solution, and the upper bound for the time-complexity is further
increased by the equality-check.

The paper is structured as follows: After an introduction and the preliminary
definitions to explain the basic notions, in Section 3 the compression method
using singleton tree grammars (STGs) is described, which permits to represent
exponentially large and also exponentially deep terms in polynomial space al-
lowing sharing of terms and contexts. We provide a road-map of the proof in
Section 4. In Section 5 we introduce generalized stratified equations. In Sec-
tions 6 and 7 it is shown, how the non-elementary SCU decision algorithm can
be adapted to the compression method. In Section 8 we summarize the estima-
tions and obtain the result that SCU is in NP.

2 Preliminary Definitions

We consider one base (first-order) type o, and second-order types with the syntax
τ ::= o→ o | o→ τ , with the usual convention that→ is associative to the right.
We use a signature Σ =

⋃
i≥0 Σi, where constants of Σi are i-ary, and a set of

variables X =
⋃

i=0,1 Xi, where variables of Xi are also i-ary. Variables of X0
are therefore first-order variables and those of X1 are second-order typed and
called context variables. We assume that the signature contains at least one 0-ary
constant. We denote variables with capital letters Z if it may be first-order as well
as context variables, and use the convention that X,Y mean context variables,
and x, y, z mean first-order variables. Constants are denoted by lower-case letters
a, b, f, g . . . respectively. Second-order terms are denoted as s, t, u, v, . . . . The set
of variables occurring in terms or other syntactic objects is denoted as FV (·).
A term without occurrences of free variables is said to be ground. The size of
a term t is denoted |t| and defined as its number of symbols when written in
βη-normal form. We use positions in terms, denoted p, q, as sequences of non-
negative integers following Dewey notation. In f(t1, . . . , tn) orX(r), respectively,
the position of the function symbol and the context variable is 0 and the position
of the ith argument is i. The symbol at position 0 is also called the head of the
term. The empty word is notated ε, p ≺ q denotes the prefix relation, p · q the
concatenation, and t|p the subterm at position p of t.

For ease of notation, we denote linear second-order terms λx.t, where x has
exactly one occurrence in t as t[·], where [·] indicates the position of the variable,
also called hole. We call these terms also contexts. We denote contexts by upper
case letters C,D. If the term s or context D, respectively, is plugged into the
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hole of C[·], we denote the result as the term C[s] or the context C[D], also
denoted as C · D. The position of the hole in a context D is called main path,
denoted mp(D), and the length of the main path is called the main depth of D.
If D1 = D2[D3] for contexts Di, then D2 is called a prefix of D1, and D3 is called
a suffix of D1. Concatenation C1[. . . [Cn] . . .] is written C1 · . . . ·Cn. The notation
Dn for a context D and n ∈ IN means concatenation of n copies of the context
D. If t = D[s], then D is a prefix context of the term t. A subcontext of a context
or term is a prefix of some suffix or a prefix context of some subterm. Second-
order substitutions denoted by greek letters σ, θ, . . . , are functions from terms
to terms, defined as usual, where we in addition assume that context variables
can only be instantiated with contexts. The application of a substitution σ to a
term t is written σ(t), where we always assume that the result is beta-reduced.

An instance of the stratified context unification problem (SCU) is a set of
equations E = {t1 ?= u1, . . . , tn

?= un} where ti and ui are second-order terms of
type o, i.e. terms not containing λ-abstractions. In addition, for every variable
Z ∈ FV (E) and every two positions p1, p2 of Z in terms in equations, the
sequence of context variables on the path p1, p2 is the same. Here we mean that
X is on the path p in t, iff for some prefix p′ of p, t|p′ is of the form X(r). The
size of an equation E is denoted as |E| and is its number of symbols. We assume
that equations are symmetric. A substitution σ is said to be a unifier of E, iff
for all i : σ(ti) = σ(ui). A unifier σ is said to be a solution of E, iff for all i :
σ(ti) and σ(ui) are ground. It is easy to see that the following holds:

Lemma 2.1. Let σ be a solution of the SCU-problem E.

– If E contains a function symbol f with ar (f) ≥ 2, then there is also a
solution σ′, such that every function symbol g with ar(g) ≥ 1 occurring in
σ′(E), also occurs in E.

– If for all function symbols f occurring in E we have ar(f) ≤ 1, if σ(E)
contains function symbols not in E and h is a function symbol with ar (h) =
2, then there is also a solution σ′, such that for every function symbol g with
ar(g) ≥ 1 occurring in σ′(E): either g = h holds, or g occurs in E.

– E is unifiable iff E is solvable.

It is reasonable to assume that the maximal arity of function symbols is not
greater than size(E). In this case the necessary transformations in the proof of
Lemma 2.1 can be done in O(size(E)). Note that the second case occurs in the
equation X(a) ?= Y (b), with a solution {X �→ f(b, [·]), Y �→ f([·], a)}, but there
is no solution using only the symbols occurring in the equation.

It is not a restriction to assume that E contains at least one binary function
symbol by adding f(x, y) = f(x, y) to E for a binary function symbol f if
necessary. This also allows to restrict E to consist of just one equation.

A solution σ of E is said to be size-minimal if it minimizes
∑

Z∈FV (E) |σ(Z)|
among all solutions of E. Size-minimal solutions of a SCU-problem satisfy the
exponent of periodicity lemma [Mak77, KP96, SSS98, SS02]:

Lemma 2.2 ([SS02]). There exists a constant α ∈ R such that, for every SCU-
problem E, every size-minimal solution σ, every variable X (or x, respectively),
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contexts u, v and term w, if σ(X) = λy . u vn(w), or if σ(x) = u vn(w), and v
is not empty, then n ≤ 2α|E|.

In the following, we denote by eop(σ) the maximal n such that for nontrivial D,
Dn([·]) is a subcontext of σ(x) or σ(X)(a) for variables x,X .

3 Singleton Tree Grammars

We define singleton tree grammars as a generalization of singleton context free
grammars (SCFG) [LSSV04, Pla94], extending the expressivity of SCFGs by
terms and contexts. This is consistent with [SS05] and [BLM05], and also with
the context free tree grammars in [CDG+97], however, it is a special case.

Definition 3.1. A singleton tree grammar (STG) is a 4-tuple G =
(T N , CN , Σ,R), where T N are tree nonterminals, CN are context nontermi-
nals, and Σ is a signature of function symbols and constants (the terminals),
such that the sets T N , CN , Σ are pairwise disjoint. The set of nonterminals N
is defined as N = T N ∪ CN . The rules in R may be of the form:

– A ::= f(A1, . . . , An), where A,Ai ∈ T N , and f ∈ Σn.
– A1 ::= C[A2] where A1, A2 ∈ T N , and C ∈ CN .
– C ::= [·].
– C1 ::= C2C3, where Ci ∈ CN .
– C ::= f(A1, . . . , Ai−1, [·], Ai+1, . . . , An), where Ai ∈ T N , C ∈ CN , [·] is the

hole, and f ∈ Σ an n-ary function symbol.

Let D′ >G D′′ for two nonterminals D′, D′′, iff D′ ::= t, and D′′ occurs in t. The
STG must be non-recursive, i.e. the transitive closure >∗

G must be terminating.
Furthermore, for every non-terminal N there is exactly one rule having N as left
hand side. Given a term t with occurrences of nonterminals, the derivation by
G is an exhaustive iterated replacement of the nonterminals by the correspond-
ing right hand sides, using the convention for second-order terms. The result is
denoted as wG,t. In this case we also say, that G defines wG,t. Ê If the grammar
G is clear, we omit the index in our notation. As a short hand for mp(wC) we
use mp(C) for context nonterminals C.

We will also allow variables Z from X0 and X1 in the grammar. The convention
is that in case there is a rule with left hand side Z, then it is a nonterminal,
otherwise we treat Z as terminal.

Definition 3.2. The size |G| of a grammar (STG) G is the number of its rules.
The depth of a nonterminal D is defined as the maximal number of >G-steps
from D. The depth of a grammar is the maximum of the depths of all nonter-
minals, denoted as depth(G).

As a generalization of the theorem in Plandowski [Pla94, Pla95], in [SS05] and
[BLM05], there are proofs of the following theorem, (where we have to simplify
away the occurrences of holes):
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Theorem 3.3. Given an STG G, and two tree nonterminals A,B from G, it is
decidable in polynomial time depending on |G| whether wA = wB.

The following lemmas state how the size and the depth of the grammar are
increased by extending the grammar with concatenations, exponentiation, pre-
fixes and suffixes of contexts. The depth/size bounds for these operations are
related to balancing conditions for trees. When using log, we mean the binary
logarithm. The proofs of the following three lemmas are easy and can be copied
from the corresponding proofs for SCFGs in the forthcoming journal version
of [LSSV04].

Lemma 3.4. Let G be an STG defining the contexts D1, . . . , Dn for n ≥ 1. Then
there exists a STG G′ ⊇ G that defines the context D1 · · · · · Dn and satisfies
|G′| ≤ |G|+ n− 1 and depth(G′) ≤ depth(G) + �logn�.

Lemma 3.5. Let G be an STG defining the context D. For any n ≥ 1, there ex-
ists an STG G′ ⊇ G that defines the context Dn and satisfies |G′| ≤ |G|+2 �logn�
and depth(G′) ≤ depth(G) + �logn�.

Lemma 3.6. Let G be an STG defining the context D or term t. For any
nontrivial prefix, suffix or subterm D′ of the context D, and for every sub-
term t′ of the term t or context D, there exists an STG G′ ⊇ G that defines
D′ or t′, respectively, and satisfies |G′| ≤ |G| + depth(G) and depth(G′) =
depth(G).

Lemma 3.7 covers the case that the main path of the desired prefix context of a
term t deviates from the paths as given in the STG. The näıve construction may
lead to an exponential blow-up. This case does not occur for words in SCFGs and
requires an extra treatment. The prefix context of a context can be constructed
as for words, whereas the same construction idea used for constructing a prefix
context of a term t may lead to an exponential blow-up for several extensions,
since too much rules are required. Hence this case requires an extra treatment.

Lemma 3.7. Let G be an STG defining the term t. For any nontrivial prefix
context D of the term t, there exists an STG G′ ⊇ G that defines D and satisfies
|G′| ≤ |G| + 2 depth(G) (log(depth(G)) + 1) and depth(G′) ≤ depth(G) + 2 +
log(depth(G)),

Proof. Let A be the non-terminal symbol defining the term t = wA and let p be
a position in wA that is the position of the hole of the desired context D. First
we show by induction that we can generate a list of context nonterminals that
can be concatenated to construct D. The induction is on depth(A).

The base case is that |p| = 0 at some depth. In this case the empty context
is the result, which is omitted in the list. For the induction step we consider the
different possibilities for rules:

1. The rule is A ::= f(A1, . . . , An) and p = kp′. Then we return the context
defined by the rule C1 ::= f(A1, . . . , [·]k, . . . , An), and the list for Ak, p

′.
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2. The rule is A ::= C[A2]. There are some subcases:
If p is a prefix of mp(C), then return C1, constructed such that p = mp(C1)
using Lemma 3.6.
If p is within A2, and p = p1p2, where p1 = mp(C), then we return C, and
the list of contexts generated for A2, p2.
The position p is within C. Then let p = p1p2p3, where p1 is the maximal
common prefix of p and mp(C), and |p2| = 1. Then construct C1 for the
prefix of wC with p1 = mp(C1) by Lemma 3.6. Let p1k with k ∈ N be a
prefix of mp(C). Let C3 be a new symbol defining the subcontext of wC

starting at position p1k using Lemma 3.6. Moreover, there is a defined rule
C2 ::= f(B1, . . . , [·]k, . . . Bn), corresponding to the subcontext of wC for
position p1, whose existence can be verified by induction. Since p2 �= k, we
have to define the following new symbols and rules: A3 ::= C3[A2], C4 ::=
f(B1, . . . , [·]p2 , . . . , Bk−1, A3, Bk+1, . . . , Bn). Then return C1, C4 and the list
generated for Bp2 , p3.

Summarizing, we obtain a list of contexts of length at most 2depth(G), which
can be concatenated defining a new symbol CD. An upper bound on the total
number of new rules is (2 log(depth(G)) + 2) ∗ depth(G), since the induction
hypothesis in case 2 is called for depth(A) − 2. Notice that the depth of all the
contexts that we build up is bounded by depth(G)+1 because of the construction
of C4, hence the depth of CD is at most depth(G) + 2 + log(depth(G)), which is
the depth contribution of the final concatenation. �

3.1 Estimations for Several Grammar Extensions

Definition 3.8. Let G,G′ be STGs, let M ∈ IR with M ≥ 2. Then we write
G→sd(M) G

′ for a grammar extension by size and depth, iff

|G′| ≤ |G|+ 3 log(depth(G))depth(G) + 2M
depth(G′) ≤ depth(G) + log(depth(G)) +M

As an abbreviation, we write G→k
sd(M) G

′, iff G→sd(M) G1 . . . Gk−1 →sd(M) G
′

for appropriate STGs Gi and an integer k ≥ 2.

Proposition 3.9. Let G,G′ be STGs, let M ∈ IR, such that G→n
sd(M) G

′. Then
with M ′ = max(M, depth(G)) and β(M,n) := (n+ 2)M ′ + n log(M ′) + n2:

|G′| ≤ |G|+ 3nβ(M ′, n) log(β(M ′, n)) + 2Mn
depth(G′) ≤ β(M ′, n)

Proof. Let G = G0, G1, . . . Gn = G′ be a sequence of STGs, such that for every
i = 0, . . . , n − 1: Gi →sd Gi+1. To verify the bound for depth(Gn), let di :=
depth(Gi), i = 1, . . . , n. Then di+1 = di+log(di)+M , which implies depth(Gn) ≤
d0+nM+

∑
(log(di)). Using log(di+a) ≤ log(di)+a/di, it follows that log(di+1)−

log(di) ≤ 1 for i ≥ 2. Then we obtain depth(Gn) ≤ d0 + nM + n(2 + log(M ′)) +
n2 ≤ (n+ 2)M ′ + n log(M ′) + n2. The bound for |Gn| can be derived from |Gn|
≤ |G0|+ 3

∑
i

(
log(β(M ′, n)) ∗ β(M ′, n)

)
+ 2Mn. �
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Corollary 3.10. Let G be an STG, and G′ be constructed from G by n gram-
mar extensions according to Lemmas 3.4, 3.5, 3.6 and 3.7. Assume M =
max (�log(eop)�, k), where k is the maximal number of concatenated nontermi-
nals in Lemma 3.4, and the exponent in 3.5 is bounded by eop. For an initial
system of equations E0, let M = O(|E0|), |G| = O(|E0|), depth(G) = O(|E0|),
and n = O(|E0|h), where h > 1. Then

4 Overview of the Proof Idea

Given a solvable stratified equation, we show that we can construct a polynomial-
sized solution and test it also in polynomial time. The second part, i.e. the test,
is delegated to STGs. Showing the first part is the new contribution: Given a
solvable stratified equation, the idea is to first fix a size-minimal solution σ, and
then to compute a compressed representation. The algorithm in [SS02] is used,
however, using a representation, where nonterminals from an STG and variables
are also allowed in equations as abbreviations for larger terms. The solution σ
will be used as a guide to perform a step-by-step computation of a representation
of the solution σ together with an STG. We do not care about the efficiency of
this algorithm, since only the size of the computed representation is of interest.

The computation will proceed as follows: After some initialization, the state
consists of three components: an equation E, an STG G, and the solution σ.
Variables from E may be terminals or non-terminals in the STG. As in [SS02],
there will be a distinction between the cases:

1. there is no chain of equations that constitutes a cycle, or
2. there is at least one cycle of equations.

If FV (E) is empty, the construction is finished. In the first case, we extend the
partial solution by using a decomposition-like detection of decomposable sube-
quations. In the second case, we use the algorithm in [SS02] and show that a
cycle allows to compute a complete instantiation of at least one context vari-
able. The algorithm will terminate and constructs an at most polynomial size
representation of σ by an STG.

5 Generalized Stratified Equations

In the following we compact partial solutions as well as equations using STGs,
where STG-symbols are permitted in equations. We also allow rules of the form
C ::= C′, which does not extend the expressive power, since it can be easily
removed later by the appropriate replacements in the STG.

5.1 Basic Definitions

Definition 5.1. Let G be an STG, and E be a single stratified equation, where
symbols from G are permitted in E. Then (E,G) is a generalized stratified equa-
tion (GSE). We denote the set of variables occurring in E after expansion of
nonterminals using G by FV G(E), where the variables that are nonterminals in
G are not considered.
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We fix a size-minimal solution σ0 for the initial stratified equation Einitial =
{u1

?= u2}, and denote its size by M0, and the exponent of periodicity bound of
σ0 according to Lemma 2.2 by eop. Let W := FV (Einitial). The partial solution,
denoted by θ, is always given by the right hand sides in G of the variables in W ,
i.e. by θ(Z) := wZ for all Z ∈ W . The corresponding initial GSE is (E0, G0),
where G0 encodes the terms u1, u2 as tree nonterminals U1, U2, and E0 := {U1

?=
U2}. The initial state of the construction is ((E0, G0), σ0). A solution σ of an
intermediate GSE (E,G) is called correct, iff σθ(Z) = σ0(Z) for all variables
Z ∈ W . The construction of the solution uses a state ((E,G), σ) where σ is a
correct solution. For all correct solutions σ, we will have eop(σ) ≤ eop, since all
concerned subcontexts are also subcontexts of σ0(Z) for Z ∈W .

A surface position in a term t is a position p in t, such that for all prefixes p′

of p: t|p′ has a function symbol as head. We denote wUi as wi for i = 1, 2 in the
following. We repeat the definitions in [SS02] adapted to our representation.

Definition 5.2 (cycles). Let (E,G) be a GSE. Let the surface equations of
(E,G) be all equations w1|p

?= w2|p, that can be derived by decomposition from
w1

?= w2, where p is a surface position of w1 and w2. We denote the surface
equations by surfE(E). Let ≈ be an equivalence relation on FV G(E) gener-
ated by all the relations x ≈ Y for surface equations x ?= Y (s), x ≈ y for
surface equations x ?= y, and X ≈ Y for surface equations X(s) ?= Y (t).
Let ! on FV G(E) be defined as follows: x ! Z if x ?= s is in surfE(E), the
head of ws is a function symbol, and Z occurs in ws at a surface position, i.e.
there is some surface position p such that ws|p = Z(r) for some r; X ! Z

if X(r) ?= s is in surfE(E) and the head of ws is a function symbol. Let "
be the smallest preorder generated by ≈ and !. If for all Z1, Z2 ∈ FV G(E):
Z1 ! Z2 implies that Z1 �# Z2, then (E,G) is cycle-free, otherwise, (E,G) is
cyclic.

A cycle is a sequence of surface equations, which in expanded form is as follows:
Z1(. . .)

?= D1(Z2(. . .)), Z2(. . .)
?= D2(Z3(. . .)), . . . , Zh(. . .) ?= Dh(Z1(. . .)), where

Zi may be context-variables or first-order variables, Di is a context for all i, and at
least one Di is a nontrivial context. The indicated occurrences directly correspond
to the definition of ≈ and!. However, note that there may be different occurrences
of the Zi on the right hand side, and that Di may not be unique. The length of the
cycle is the number of the equations occurring in it.

Lemma 5.3 (Occurs-check). In a solvable GSE (E,G), there is no cycle
where all variables Z1, . . . , Zh are first-order variables.

We define an ordering that will be reduced by mimicking the SCU-algorithm
from [SS02] and use it for the construction of a representation of σ0.

Definition 5.4. Given a GSE (E,G), the measure µ(E) is the lexicographic
combination 〈µ1(E), µ2(E), µ3(E)〉 of the following components:

1. µ1(E) = |FV G(E)|.
2. µ2(E) = 0 if (E,G) is cyclic, and 1, otherwise.
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3. µ3(E) = µ1(E)−|{[Z]≈ | Z ∈ FV G(E)}| if E is not cyclic, and 0 otherwise.
4. µ4(E) is the number of variables in FV G(E) that are not !-maximal.

The transformations will never increase |FV G(E)| and they will transform a
stratified equation into a stratified equation (see [SS02]).

6 GSE Without Cycles

The SCU-algorithm in [SS02] treats systems of equations without cycles by iter-
atedly guessing and instantiating parts of the solution σ. The potential number
of these guessing, instantiating and decomposition steps in that paper may be
exponential. We have to avoid steps that lead to unnecessary constructions of
symbols and rules in G. Hence we have to adapt the algorithm given in [SS02]
to our compressing method. Let a var-term be a term of the form x or X(r).

Algorithm 6.1 (Rule: Transform-non-cyclic GSE). Let (E,G) be a non-cyclic
GSE with E = {U1

?= U2}, wi = wUi , for i = 1, 2, and let σ be a correct
solution. Depending on E, there are several possibilities:

1. w1, w2 are ground and w1 = w2. Then stop further instantiation.
2. There is a context variable X ∈ FV G(E) with σ(X) = [·]. Then add X ::= [·]

to G.
3. Assume cases (1) and (2) are not applicable.

Let p be a surface position in w1 and w2 such that p is a position of a
first-order variable in w1 or w2 which is also in FV G(E). Also assume that
w1|p �= w2|p. W.l.o.g. let w1|p be the first order variable, say x. Add a
nonterminal A defining w2|p, and add x ::= A to the grammar.

4. Assume that the cases (1) – (3) are not applicable. Then let V be a "-
maximal ≈-equivalence class in FV G(E), that is in addition not "-minimal.
Note that V consists only of context variables. Let s be a term with a function
symbol as head (such an s must exist), such that there is a surface position
p and w1|p = s, and w2|p = X(r) for some X ∈ V .
Let q be the maximal position such that q is a prefix of all main paths of
σ(X) for all X ∈ V , and such that q is a surface position in s. There are
some subcases:
(a) q is the main path of some context σ(X) where X ∈ V . Then construct

As with wAs = s, and the symbol C for the prefix of As with main path
q. For all X ∈ V , add X ::= CX ′ or X ::= C to G, where the X ′ are
new context variables. The latter case is used iff σ(X) has main path q.

(b) If s|q is a var-term, then construct As with wAs = s, and the prefix
symbol C of As with main path q. For all X ∈ V , add X ::= CX ′ to G.

(c) Case (4a) does not apply and s|q is not a var-term. This is the sit-
uation where the contexts go into different directions. Then let V =
{X1, . . . , Xn} and for all i = 1, . . . , n let qi be a position of length 1,
such that qqi is a prefix of the main path of σ(Xi). Construct As with
wAs = s, and for every i = 1, . . . , n the prefix context Ci of As with
main path qqi. For all Xi ∈ V , add Xi ::= CiX

′
i to G where X ′

i are new
context variables.
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5. Assume that the cases (1) – (4) are not applicable. Let V = {X1, . . . , Xn}
be a "-maximal ≈ −equivalence class in FV G(E), that is in addition "-
minimal. Note that V consists only of context variables. For i = 1, . . . , n let
qi be a position of length 1 that is a prefix of σ(Xi). Minimality of σ0 implies
that |{qi | i = 1, . . . , n}| ≥ 2. Since σ(Xi) �= [·], there is a function symbol
f , also occurring in E, which is the head of all σ(Xi). Construct the context
symbols Ci with rules Ci ::= f(Ai,1, . . . , [·]qi , . . . , Ai,n), where qi is the first
integer on the main path of σ(Xi). The symbol Ai,j stands for a constant aj ,
if for all i: σ(Xi)|j = aj ∈ Σ0. Let J ⊆ {1, . . . , n} be the indices, for which
this is false. Note that |J | ≥ 2. For indices j ∈ J , let Ai,j be new first-order
variables. Define the rules Xi ::= Ci(X ′

i) for new context variables X ′
i.

Since we have added first-order variables, we apply now the decomposition
in (3) for all positions of Ai,j for j ∈ J , successively, until for every first-
order variable Ai,j , there is a rule in G. These rules are only of the form
Ai,j ::= Ai′,j or Ai,j ::= X ′

i′(r).

In every case, we define the new solution σ′(Z) := σ(r) for variables Z, if Z ::= r
is the new rule for Z, perhaps in several steps.

Case (5) is the key difference between SCU and context unification: in SCU
the context variables Xi are only at the surface, and so an instantiation can
be guessed, whereas in CU the occurrences of Xi may also be elsewhere, and
guessing and instantiating these variables in general makes no progress in solving
the equation.

Theorem 6.2. If ((E,G), σ) is a GSE with a correct solution σ, then the trans-
formations in (Transform-non-cyclic GSE) are correct. The order µ is strictly
decreased. The number of grammar extensions of a single execution can be esti-
mated for the different cases as follows:

(2) requires 1 extension step, (3) requires 2 extension steps, (4) requires at most
2+2M0 extension steps, and (5) requires at most 2M0 +M2

0 grammar extension
steps.1

Proof. The standard cases for correctness follow from [SS02]. The only non-
standard case is in case (5). If there is an equivalence class V = {X1, . . . , Xn}
that is "-maximal and "-minimal, consisting only of context variables, and
σ(Xi) is not trivial for all i, then the common prefix of the holes of all σ(Xi)
must have length 0, since σ0 was chosen as size-minimal. Hence the algorithm
part (5) covers all cases. Moreover, the class V will be replaced by at least two
≈-classes after the execution. Since also the number of variables is not increased,
in this case, µ(·) is strictly decreased. µ(·) is also strictly decreased in all other
cases: Either a cycle is introduced, or the number of variables is strictly decreased
in cases (2), (3), and (4a). In case (4b), the number of non-maximal variables is
strictly decreased, and in case (4c), the number of equivalence classes is increased,
hence µ3 is strictly decreased.
1 M0 := |E0| is defined in subsection 5.1.
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The number of grammar extensions as given in the theorem can be checked
by simply scanning the cases of the algorithm. �

7 GSE with Cycles

Given a cyclic GSE (E,G) and a solution σ, we mimic the algorithm in [SS02].
A cycle K in the expanded representation is of the form

X1(s1)
?=D1(X2(t1)), . . . , Xh−1(sh−1)

?=Dh−1(Xh(th−1)), Xh(sh) ?= Dh(X1(th))

provided there are no first-order variables in the cycle. Note that the contexts
Di are not necessarily unique, since there may be further occurrences of Xi+1,
respectively X1 in Dh.

We use the measure χ(K) = (χ1(K), χ2(K)) for a cycle K as above, where
χ1(K) is the length of the cycle K, and χ2(K) is h minus the maximal number
i, such that D1, . . . , Di are trivial contexts, perhaps after a rotation of the cycle.

Algorithm 7.1 (Rule: Solve-cycle). This step is applied to a cycle K that is min-
imal w.r.t. χ. There are four cases.

1. There is a first-order variable in the cycle. Then apply step (3) of rule 6.1.
2. There is a context-variable X with σ(X) = [·]. Then apply step (2) of rule

6.1 to eliminate one context variable.
3. Some Di for i �= h is nontrivial and (1) and (2) do not apply. Then let

k be the minimal index such that Dk is nontrivial. Let q be the maximal
common prefix of mp(Dk) and of mp(σ(Xi)) for i = 1, . . . , k. Construct C
that represents the prefix context of Dk with hole at position q, and add
Xi ::= CX ′

i for i = 1, . . . , k.
4. The cases (1) – (2) do not apply, and only Dh is nontrivial. Then let q be

the maximal common prefix of mp(Deop +1
k ) and mp(σ(Xi)) for i = 1, . . . , h.

Construct C0 as the subcontext of Deop +1
k with hole at position q.

(a) The position q is the main path of some σ(Xi) where i = 1, . . . , h. For all
i = 1, . . . , h add Xi ::= C0X

′
i or Xi ::= C0 to G; the latter if σ(Xi) = C0.

(b) Otherwise, for i = 1, . . . , h let qqi be the prefix of mp(σ(Xi)) with |qi| =
1. Note that all contexts σ(Xi)|q have the same function symbol f as
head, which also occurs in E. Construct the contexts symbols Ci with
rules Ci ::= f(xi,1, . . . , [·]qi , . . . , xi,n), and C′

i ::= C0Ci, where xi,j are
fresh first-order variables. Define the rules Xi ::= C′

i(X
′
i) for new context

variables X ′
i. Then apply the step (3) of rule 6.1 several times until all

the variables xi,j are instantiated.

Theorem 7.2. Given a GSE (E,G) with cycles and a solution σ with eop(σ) ≤
eop. Then it is possible to construct a GSE (E′, G′), such that µ1(E′, G′) <
µ1(E,G), and there are at most O(M4

0 ) grammar extension steps necessary until
this happens, and there is a correct solution σ′ with eop(σ′) ≤ eop.
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Proof. Since we have mimicked the algorithm in [SS02], we have only to check
the number of grammar-extension steps. In every step, a cycle can be chosen
that is χ-minimal. We estimate the number of applications until µ1(·) is strictly
decreased. First, the number of applications of (Solve-cycle) is at most M2

0 , since
in case µ1(·) is unchanged, χ of a minimal cycle is strictly decreased, which fol-
lows from [SS02]. The number of grammar-extension of one application can be
estimated as follows: The construction of Ci requires O(M0) grammar exten-
sions, the removal of the variables in case (4b) requires O(M2

0 ) extensions. Since
we have at most M2

0 executions and every execution requires O(M2
0 ) grammar

extensions, we have O(M4
0 ) as an upper bound. �

8 Upper Bound on the Complexity of Stratified Context
Unification

Lemma 8.1. There are at most O(M3
0 ) steps that strictly decrease the order µ.

Proof. Three components in the lexicographic ordering are at most M0, and the
remaining one is bound by a constant.

Summarizing the estimations results in a NP upper bound:

Theorem 8.2. Stratified context unification is in NP.

Proof. Given a solvable stratified context unification problem Einitial of size M0
and a size-minimal solution σ0, we know that there is an upper bound on the
exponent of periodicity, denoted as eop, which is of order O(M0). Theorem 7.2
shows that there are at most O(M0 ∗ M4

0 ) grammar extensions due to cyclic
GSE. Theorem 6.2 and Lemma 8.1 show that there are at most O(M3

0 ∗M2
0 )

grammar extensions due to non-cyclic GSE.
This means the number of grammar extensions is of order O(M5

0 ). Since the
initial grammar has size and depth of order O(M0), Corollary 3.10 shows that
the size of the final STG is of order O(M3∗5+1

0 ) = O(M16
0 ).

Now the complexity estimation is as follows: Given Einitial, we compute E0, G0
as above. Then we guess a solution θ represented by an STG that is an extension
of G0 of size at most O(M16

0 ). The variables can be used exactly as we had done
it in the computation. The final equation is of the form U1

?= U2 where U1, U2
are defined by the STG. Rules of the form C ::= [·], and C ::= C′, which may be
generated by the guessing can easily be removed by performing the appropriate
replacements in the STG. Now Theorem 3.3 (see [SS05, BLM05]) shows that
we can decide equality of U1, U2 in polynomial time. This shows that stratified
context unification is in NP. �

Corollary 8.3. Stratified context unification is NP-complete and solvability of
rewrite constraints (as defined in [NTT00]) is NP-complete.

Proof. The first claim follows from Theorem 8.2 and from NP-hardness shown
in [SSS98]. The second claim follows from the equivalence proof in [NTT00].
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It is not clear whether unifiability of generalized stratified context-unification
problems (E,G) is in NP, since the usual encoding does not produce a stratified
unification problem. However, the following is easy:

Corollary 8.4. Unifiability of generalized SCU-problems is in NEXPTIME.

Proof. We can first expand the equation to get rid of the STG, which results in
an at most exponentially large SCU-problem, and then we apply Theorem 8.2.

9 Conclusion and Further Research

We have shown that stratified context unification is NP-complete by exploiting
compaction of terms and polynomial comparison of the compactions using sin-
gleton tree grammars. This also determines the complexity of rewrite constraints
to be NP-complete. The result in this paper is a hint that the complexity of dis-
tributive unification, which was shown to be decidable in [SS98], may also be in
NP, since the algorithm can be seen as an extension of the algorithm for SCU.
The compressing mechanism via STGs deserves further investigations to obtain
better bounds for the operations on STGs.
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Abstract. The inverse method is a generalization of resolution that can be ap-
plied to non-classical logics. We have recently shown how Andreoli’s focusing
strategy can be adapted for the inverse method in linear logic. In this paper we
introduce the notion of focusing bias for atoms and show that it gives rise to
forward and backward chaining, generalizing both hyperresolution (forward) and
SLD resolution (backward) on the Horn fragment. A key feature of our charac-
terization is the structural, rather than purely operational, explanation for forward
and backward chaining. A search procedure like the inverse method is thus able
to perform both operations as appropriate, even simultaneously. We also present
experimental results and an evaluation of the practical benefits of biased atoms
for a number of examples from di erent problem domains.

1 Introduction

Designing and implementing an e cient theorem prover for a non-classical logic re-
quires deep knowledge about the structure and properties of proofs in this logic. For-
tunately, proof theory provides a useful guide, since it has isolated a number of impor-
tant concepts that are shared between many logics of interest. The most fundamental
is Gentzen’s cut-elimination property [7] which allows us to consider only subformu-
las of a goal during proof search. Cut elimination gives rise to the inverse method [6]
for theorem proving which applies to many non-classical logics. A more recent de-
velopment is Andreoli’s focusing property [1,2] which allows us to translate formu-
las into derived rules of inference and then consider only the resulting big-step de-
rived rules without losing completeness. Even though Andreoli’s system was designed
for classical linear logic, similar focusing systems for many other logics have been
discovered [10,8].

In prior work we have constructed a focusing system for intuitionistic linear logic
which is consonant with Andreoli’s classical version [5], and shown that restricting the
inverse method to work only with big-step rules derived from focusing dramatically
improves its e ciency [4]. The key feature of focusing is that each logical connective
carries an intrinsic attribute called polarity that determines its behavior under focus-
ing. In the case of linear logic, polarities are uniquely determined for each connec-
tive. However, as Andreoli noted, polarities may be chosen freely for atomic formu-
las as long as duality is consistently maintained. In this paper we prove that, despite
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the asymmetric nature of intuitionistic logic, a similar observation can be made here.
Furthermore, we show that proof search on Horn formulas with the inverse method
behaves either like hyperresolution or SLD resolution, depending on the chosen polar-
ity for atoms. If di erent atoms are ascribed di erent polarities we can obtain com-
binations of these strategies that remain complete. The focused inverse method there-
fore directly generalizes these two classical proof search strategies. We also
demonstrate through an implementation and experimental results that this choice can
be important in practical proof search situations and that the standard polarity assumed
for atoms in intuitionistic [9] or classical [14] logic programming is often the less e -
cient one.

Since focusing appears to be an almost universal phenomenon among non-classical
logics, we believe these observations have wide applicability in constructing theorem
provers. The fact that we obtain well-known standard strategies on the Horn fragment,
where classical, intuitionistic, and even linear logic coincide, provides further evidence.
We are particularly interested in intuitionistic linear logic and its extension by a monad,
since it provides the foundation for the logical framework CLF [3] which we can use
to specify stateful and concurrent systems. Theorem proving in CLF thereby provides
a means for analyzing properties of such systems.

The remainder of the paper is organized as follows. In Section 2 we present the back-
ward focusing calculus that incorporates focusing bias on atoms. In Section 2.1 we de-
scribe the derived rules that are generated with di erently biased atoms. We then sketch
the focused inverse method in Section 3, noting the key di erences between sequents
and rules in the forward direction from their analogues in the backward direction. In
Section 4 we concentrate on the Horn fragment, where we show that the derived rules
generalize hyperresolution (for right-biased atoms) and SLD resolution (for left-biased
atoms). Finally, section 5 summarizes our experimental results on an implementation
of the inverse method presented in Section 3.

2 Biased Focusing

We consider intuitionistic linear logic including the following connectives: linear im-
plication ( ), multiplicative conjunction ( , 1), additive conjunction (&, ), additive
disjunction ( , 0), the exponential (!), and the first-order quantifiers ( , ). Quantifica-
tion is over a simple term language consisting of variables and uninterpreted function
symbols applied to a number of term arguments. Propositions are written using capital
letters (A B ), and atomic propositions with lowercase letters (p q ). We use a
standard dyadic sequent calculus for this logic, having the usual nice properties: iden-
tity principle, cut-admissibility, structural weakening and contraction for unrestricted
hypotheses. The rules of this calculus are standard and can be found in [4]. In this
section we shall describe the focused version of this calculus.

In classical linear logic the synchronous or asynchronous nature of a given con-
nective is identical to its polarity; the negative connectives (&, , , , ) are asyn-
chronous, and the positive connectives ( , 1, , 0, ) are synchronous. In intuitionistic
logic, where the left- and right-hand side of a sequent are asymmetric and no convolu-
tive negation exists, we derive the properties of the connectives via the rules and phases
of search: an asynchronous connective is one for which decomposition is complete in
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the active phase; a synchronous connective is one for which decomposition is complete
in the focused phase.

symbol connectives
P left-synchronous (&, , )
Q right-synchronous ( , 1, !)

L left-asynchronous ( , 1, !)
R right-asynchronous (&, , )

As our backward linear sequent calcu-
lus is two-sided, we have left- and right-
synchronous and asynchronous connectives.
For non-atomic propositions a left-synchro-
nous connective is right-asynchronous, and
a left-asynchronous connective right-syn-
chronous; this appears to be universal in well-behaved logics. We define the notations in
the adjacent table for non-atomic propositions. The contexts in sequents contain linear
and unrestricted zones as is usual in dyadic formulations of the sequent calculus. The
unrestricted zone, written , contains propositions that may be consumed arbitrarily
often. The passive linear zone, written , contains propositions that must be consumed
exactly once. We further restrict this zone to contain only the left-synchronous proposi-
tions. We also require a third kind of zone in active rules. This zone, written , contains
propositions that must be consumed exactly once, but unlike the passive linear zone,
can contain arbitrary propositions. We treat this active linear zone as an ordered con-
text and use a centered dot ( ) instead of commas to join active zones together. As we
are in the intuitionistic setting, the right hand side must contain exactly one proposition.
If the right proposition C is asynchronous, then we write the right hand side as C ; . If
it is synchronous and not participating in any active rule, then we write it as ; C. If
the shape of the right hand side does not matter, we write it as . We have the follow-
ing kinds of sequents: right-focal sequents ; A, left-focal sequents ; ; A Q
(focus on A in both cases), and active sequents ; ; .

Active rules work on active sequents. In each case, a rule either decomposes an asyn-
chronous connective (e.g. L) or transfers a synchronous proposition into one of the
passive zones. The order in which propositions are examined is immaterial.

; ; A B

; ; A B
L

; P ;
; ; P

lact
; ; ; Q
; ; Q ;

ract

Because the ordering of propositions in is immaterial, it is then su cent to designate
a particular ordering in which these rules will are applied. We omit the standard details
here. Eventually the active sequent is reduced to the form ; ; ; Q, which we
call a neutral sequent. We will often write neutral sequents simply as ; Q.

A focusing phase is launched from a neutral sequent by selecting a proposition from
, , or the right hand side:

; ; P Q
; P Q

lf
A ; ; A Q
A ; Q

copy
; Q Q non atomic

; Q
rf

This focused formula is decomposed under focus until the proposition becomes asyn-
chronous. For example:

; A ; B
; A B

R
; ; A Q

; ; A & B Q
&L1

; ; B Q
; ; A & B Q

&L2

As mentioned before, atomic propositions are somewhat special. Andreoli observed
in [1] that it is su cient to assign arbitrarily a synchronous or asynchronous nature to
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the atoms as long as duality is preserved; here, the asymmetric nature of the intuition-
istic sequents suggests that they should be synchronous. However, we are still left with
two possibilities for the initial sequents.

; ; p p and ; q q

In previous work [4,5], we always selected the first of these two possibilities for the ini-
tial sequent. In this paper, we allow both kinds of initial sequents depending on the kind
of focusing bias with regard to specific atoms. A right-biased atom has the Horn-like
interpretation; here initial sequents have a left focus, and the right hand side is treated
like the neutral “goal” in logic programming. A left-biased atom has the state-like in-
terpretation; here initial sequents have a right focus, and the constitution of the linear
context corresponds more directly to the evolution of the state.

The full set of rules is omitted; they can be reconstructed from [5,4]. We will briefly
mention below the completeness theorem which proceeds via cut-elimination for the
focusing calculus. This kind of theorem is not a contribution of this paper; we provided
a similar proof for the right-focused system in [5]. The basic idea is to interpret every
non-focusing sequent as an active sequent in the focusing calculus, then to show that
the backward rules are admissible in the focusing calculus using cut. Because proposi-
tions have dual synchronicities based on which side of the sequent arrow they appear
in, a left-focal sequent matches only an active sequent in a cut; similarly for right-
synchronous propositions. Cuts destroy focus as they generally require commutations
spanning phase boundaries; this is not significant for our purposes as we interpret non-
focusing sequents as active sequents.

Theorem 1 (cut). If

1. ; A and:

(a) ; ; A then ; ; .
(b) ; A ; then ; ; .

2. ; A and A ; ; then ; ; .
3. ; ; A ; or ; ; ; A and:

(a) ; ; A Q then ; ; Q.
(b) ; ; A then ; ; .
(c) ; A ; then ; ; .

4. ; ; A ; or ; ; ; A and A ; ; , then ; ; .

The proof is by lexicographic induction over the structure of the two input derivations.
It has one important di erence from similar structural cut-admissibility proofs: when
permuting a cut into an active derivation, we sometimes need to reorder the input deriva-
tion in order to allow permuting the cut to the point where it becomes a principal cut.
Thus, we have to generalize the induction hypothesis to be applicable not only to struc-
turally smaller derivations, but also permutations of the smaller derivations that di er
in the order of the active rules. For lack of space, we omit the details of this proof.

Theorem 2 (completeness). If ; C in non-focused intuitionistic linear logic,
then ; ; C ; .

The proof uses cut to show that the non-focusing rules are admissible in the focusing
system.
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2.1 Derived Inference Rules

The primary benefit of focusing is the ability to generate derived “big step” inference
rules: the intermediate results of a focusing or active phase are not important. Andreoli
called these rules “bipoles” because they combine two phases with principal formulas of
opposite polarities. Each derived rule starts (at the bottom) with a neutral sequent from
which a synchronous proposition is selected for focus. This is followed by a sequence
of focusing steps until the proposition under focus becomes asynchronous. Then, the
active rules are applied, and we eventually obtain a collection of neutral sequents as
the leaves of this fragment of the focused derivation. These neutral sequents are then
treated as the premisses of the derived rule that produces the neutral sequent with which
we started.

For lack of space, we omit a formal presentation of the derived rule calculus;
instead, we will motivate it with an example. Consider the negative proposition
q n d d d1 in the unrestricted context . We start with focus on this propo-
sition, and construct the following derivation tree.

; 1 q
; 1 ; q ;

; 1 q
rb

; 2 n
; 2 ; n ;

; 2 n
rb

; 1 2 q n
R

; 3 d d d Q
; 3 ; d d d ; Q

L; L; lact 3

; 3 ; d d d Q
lb

; 1 2 3 ; q n d d d Q
L

; 1 2 3 Q
copy

Here we assume that all atoms are right-biased, so none of the branches of the deriva-
tion can be closed o with an “init” rule. Thus, we obtain the derived rule:

; 1 q ; 2 n ; 3 d d d Q
; 1 2 3 Q

(D1)

The situation is considerably di erent if we assume that all atoms are left-biased. In
this case, we get the following derivation:

; q q linit ; n n linit

; q n q n
R

; d d d ; Q
; ; d d d ; Q

L; L; lact 3

; ; d d d Q
lb

; q n ; q n d d d Q
L

; q n Q
copy

In this left-biased case, we can terminate the left branch of the derivation with a pair of
“init” rules. This rule forces the linear context in this branch of the proof to contain just
the atoms q and n. The derived rule we obtain is, therefore,

; d d d Q
; q n Q

(D2)

There are two key di erences to observe between the derived rules (D1) and (D2).
The first is that simply altering the bias of the atoms has a huge impact on the kinds of
rules that are generated; even if we completely ignore the semantic aspect, the rule (D2)
is vastly preferable to (D1) because it is much easier to use single premiss rules.

1 Standing roughly for “quarter and nickel goes to three dimes”.
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The second — and more important — observation is that the rule that was generated
for the left-biased atoms has a stronger and more obvious similarity to the proposition
q n d d d that was under focus. If we view the linear zone as the “state” of a
system, then the rule (D2) corresponds to transforming a portion of the state by replac-
ing q and n by three ds (reading the rule from bottom to top). If, as is common for linear
logic, the unrestricted context contains state transition rules for some encoding of a
stateful system, then the derived rules generated by left-biasing allows us to directly
observe the evolution of the state of the system by looking at the composition of the
linear zone.

3 The Focused Inverse Method

In this section we will briefly sketch the inverse method using the focusing calcu-
lus of the previous section. The construction of the inverse method for linear logic
is described in more detail in [4]. To distinguish forward from backward sequents,
we shall use a single arrow ( ), but keep the names of the rules the same. In the
forward direction, the primary context management issue concerns rules where the
conclusion cannot be simply assembled from the premisses. The backward R rule
has an arbitrary linear context , and the unrestricted context is also unknown in
several rules such as init and R. For the unrestricted zone, this problem is solved
in the usual (non-linear) inverse method by collecting only the needed unrestricted
assumptions and remembering that they can be weakened if needed [6]. We adapt
the solution to the linear zone, which may either be precisely determined (as in the
case for initial sequents) or subject to weakening (as in the case for R). We there-
fore di erentiate sequents whose linear context can be weakened and those whose
can not.

Definition 3 (forward sequents). A forward sequent is of the form ; [ ]w , with
w a Boolean (0 or 1) called the weak-flag, and being either empty ( ) or a single-
ton. The sequent ; [ ]w corresponds to the backward sequent ; C if

, C; and if w 0 and if w 1. Sequents with w 1 are called
weakly linear or simply weak, and those with w 0 are strongly linear or strong.

Initial sequents are always strong, since their linear context cannot be weakened. On
the other hand, R always produces a weak sequent. For binary rules, the unrestricted
zones are simply juxtaposed. We can achieve the e ect of taking their union by applying
the explicit contraction rule (which is absent, but admissible in the backward calculus).
For the linear zone we have to distinguish cases based on whether the sequent is weak
or not. We write the rules using two operators on the linear context – multiplicative
composition ( ) and additive composition ( ).

; [ ]w A ; [ ]w B
; [ ]w [ ]w A B

R
; [ ]w

w A ; [ ]w B
; [ ]w [ ]w A & B

&R

These compositions are defined as follows: For multiplicative rules, it is enough for one
premiss to be weak for the conclusion to be weak; the weak flags are therefore joined
with a disjunction ( ). Dually, for additive rules, both premisses must be weak for the
conclusion to be weak; in this case the weak flags are joined with a conjunction ( ).
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Definition 4 (context composition). The partial operators and on forward linear
contexts are defined as follows: [ ]w [ ]w def [ ]w w , and

[ ]w [ ]w def

[ ]0 if w 0 and either w 0 and , or w 1 and

[ ]0 if w 0, w 1 and

[ ]1 if w w 1

Here is the multiset union of and .

In the lifted version of this calculus with free variables, there is no longer a single con-
text represented by because two propositions might be equalized by substitution.
The approach taken in [4] was to define an additional “context simplification” proce-
dure that iteratively calculates a set of candidates that includes every possible context
represented by by means of contraction. Many of these candidates are then im-
mediately rejected by subsumption arguments. We refer to [4] for the full set of rules,
the completeness theorem, and the lifted version of this forward calculus.

3.1 Focused Forward Search

The sketched calculus in the previous section mentioned only single-step rules. We are
interested in doing forward search with derived inference rules generated by means of
focusing. We therefore have to slightly generalize the context composition operators
into a language of context expressions. In the simplest case, we merely have to add
a given proposition to the linear context, irrespective of the weak flag. This happens,
for instance, in the “lf” rule where the focused proposition is transferred to the linear
context. We write this adjunction as usual using a comma. In the more general case,
however, we have to combine two context expressions additively or multiplicatively
depending on the kind of rule they were involved in; for these uses, we appropriate the
same syntax we used for the single step compositions in the previous section.

(context expressions) [ ]w A 1 2 1 2

Context expressions can be simplified into forward contexts in a bottom-up procedure.
We write [ ]w to denote that simplifies into [ ]w; it has the following rules.

[∆]w ↪→ [∆]w

D ↪→ [∆]w

D, A ↪→ [∆, A]w

D1 ↪→ [∆1]w1 D2 ↪→ [∆2]w2

D1 +D2 ↪→ [∆1]w1 + [∆2]w2

D1 ↪→ [∆1]w1 D2 ↪→ [∆2]w2

D1 ×D2 ↪→ [∆1]w1 × [∆2]w2

The forward version of backward derived rules can be written with these context ex-
pressions in a natural way by allowing unsimplified context expressions in the place of
linear contexts in forward sequents. As an example, the negative unrestricted proposi-
tion q n d d d has the following derived rule with right-biased atoms

1 ; [ 1]w1 q 2 ; [ 2]w2 n 3 ; [ 3]w3 d d d Q

1 2 3 ; [ 1]w1 [ 2]w2 [ 3]w3 Q

After constructing the neutral sequent with a context expression we then simplify it.
Note that context simplification is a partial operation, so we may not obtain any conclu-
sions, for example, if the premisses to an additive rule are strong sequents but the linear
contexts do not match.
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3.2 Focusing in the Inverse Method

The details of the focused inverse method have been sketched in detail in [5]; here we
briefly summarize the major di erences that arise as a result of focusing bias. The key
calculation as laid out in [5] is of the frontier literals of the goal sequent, i.e., those sub-
formulas that are available in neutral sequents to be focused on. For all but the atoms the
calculation is the same as before, and for the atoms we make the following modifications.

1. A positive atom is in the frontier if it lies in the boundary of a phase transition from
active to focus, and it is left-biased.

2. A negative atom is in the frontier if it lies in the boundary of a phase transition from
active to focus, and it is right-biased.

We then specialize the inference rules to these frontier literals by computing the derived
rules that correspond to giving focus to these literals.

Although the addition of bias gives us di erent rules for focusing, the use of the
rules in the search engine is no di erent from before. The details of the implementation
of the main loop can be found in [4]. The main innovation in our formulation of the
inverse method in comparison with other descriptions in the literature is the use of a
lazy variant of the OTTER loop that both simplifies the design of the rules and performs
well in practice.

3.3 Globalization

The final unrestricted zone g is shared in all branches in a proof of g ; g g. One
thus thinks of g as part of the ambient state of the prover, instead of representing it
explicitly as part of the current goal. Hence, there is never any need to explicitly record

g or portions of it in the sequents themselves. This gives us the following global and
local versions of the copy rule in the forward direction.

; [ ]w ; A A g

; [ ]w
delete

; [ ]w ; A A g

A ; [ ]w

copy

Globalization thus corresponds to a choice of whether to add the constructed principal
formula of a derived rule into the unrestricted zone or not, depending on whether or not
it is part of the unrestricted zone in the goal sequent.

4 The Horn Fragment

In complex specifications that employ linearity, there are often significant sub-specifi-
cations that lie in the Horn fragment. Unfortunately, the straightforward inverse method
is quite ine cient on Horn formulas, something already noticed by Tammet [16]. His
prover switches between hyperresolution for Horn and near-Horn formulas and the in-
verse method for other propositions.

With focusing, this ad hoc strategy selection becomes entirely unnecessary. The fo-
cused inverse method for intuitionistic linear logic, when applied to a classical, non-
linear Horn formula, will exactly behave as classical hyperresolution or SLD resolution
depending on the focusing bias of the atomic propositions. This remarkable property
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gives further credence to the power of focusing as a technique for forward reasoning.
In the next two sections we will describe this correspondence in slightly more detail.

A Horn clause has the form p1 pn p where the pi and p are atomic pred-
icates over their free variables. This can easily be generalized to include conjunction
and truth, but we restrict our attention to this simple clausal form, as theories with con-
junction and truth can be simplified into this form. A Horn theory is just a set of Horn
clauses, and a Horn query is of the form g where g is a ground atomic “goal” for-
mula2. In the following section we use a simple translation ( )o of these Horn clauses
into linear logic where p1 pn p containing the free variables x is translated into

x p1 pn p, and the query g is translated as ( )o ; [ ]0 g. This is
a special case of a general, focusing-preserving translation from intuitionistic to intu-
itionistic linear logic [5].

4.1 Hyperresolution

The hyperresolution strategy for the Horn query g is just forward reasoning with
the following rule (for n 1):

p1 pn

p
where p1 pn p ; 1 n are renaming substs; and

mgu( 1 p1 n pn p1 pn )

The hyperresolution procedure begins with the collection of unit clauses in and g as
the initial set of facts. The proof succeeds if the empty fact (contradiction) is generated.
Because every clause in the theory has a positive literal, the only way an empty fact can
be generated is if it proves the fact g itself (note that g is ground).

Consider the goal sequent in the translation ( )o ; [ ]0 g where the atoms are all
right-biased. The frontier is every clause x p1 pn p ( )o. Focusing on
one such clause gives the following abstract derivation in the forward direction (using
lifted sequents):

1 ; [ 1]w1 p1

1 ; [ 1]w1 ; p1 ;

1 ; [ 1]w1 p1

n ; [ n]wn pn

n ; [ n]wn ; pn ;

n ; [ n]wn pn ; [ ]0 ; p p
rinit

1 n ; ; p1 pn p p
L

1 n ; [ 1]w1 [ n]wn ; x p1 pn p p
L

1 n ; [ 1]w1 [ n]wn p
delete

In other words, the derived rule is

1 ; 1 p1 n ; [ n]wn pn

1 n ; [ 1]w1 [ n]wn p

In the case where n 0, i.e., the clause in the Horn theory was a unit clause p, we
obtain an initial sequent of the form ; [ ]0 p. As this clause has an empty left hand
side, and none of the derived rules add elements to the left, we can make an immediate
observation (lem.5) that gives us an isomorphism of rules (thm.6).

Lemma 5. Every sequent generated in the proof of the goal ( )o ; [ ]0 g has an
empty left hand side.

2 Queries with more general goals can be compiled to this form by adding an extra clause to the
theory from the desired goal to a fresh ground goal literal.
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Theorem 6 (isomorphism of rules). Every hyperresolution rule for the query g is
isomorphic to an instance of a derived rule for the overall goal sequent ( )0 ; [ ]0 g
with empty left-hand sides.

These facts let us establish an isomorphism between hyperresolution and right-biased
focused derivations.

Theorem 7. Every hyperresolution derivation for the Horn query g has an iso-
morphic focused derivation for the goal sequent ( )o ; [ ]0 g with right-biased
atoms.

Proof (Sketch). For every fact p generated by the hyperresolution strategy, we have
a corresponding fact ; [ ]0 p in the focused derivation (up to a renaming of the
free variables). When matching these sequents for consideration as input for a derived
rule corresponding to the Horn clause p1 pn p, we calculate the simultane-
ous mgu of all the pi and pi for a Horn clause, which is precisely the operation also
performed in the hyperresolution rule. The required isomorphism then follows from
thm. 6.

4.2 SLD Resolution

SLD Resolution [11] is a variant of linear resolution that is complete for Horn theories.
For the Horn query g, we start with just the initial clause g, and then perform
forward search using the following rule (using to stand for a clauses).

q

( p1 p2 pn)
where p1 pn p ; is a renaming subst; and

mgu( p q)

The composition of a clause is thus a contraction-free collection of atoms. When n 0,
i.e., for unit clauses in the Horn theory, this rule corresponds to simply deleting the
member of the input clause that was unifiable with the unit clause. The search procedure
succeeds when it is able to derive the empty clause.

To show how SLD resolution is modeled by our focusing system, we reuse the trans-
lation from before, but this time all atoms are given a left bias. The derivation that
corresponds to focusing on the translation of the Horn clause p1 pn p is:

; p1 p1
linit ; pn pn

linit

; [ ]w p Q

; [ ]w ; p ; Q
; [ ]w ; p ; Q

; [ ]w p1 pn ; p1 pn p ; Q
L

; [ ]w p1 pn Q
delete

In other words, the derived rule is:
; [ p]w Q

; [ p1 pn]w Q

The frontier of the goal ( )0 ; [ ]0 g in the left-biased setting contains every mem-
ber of ( )0, so we obtain one such derived rule for each clause in the Horn the-
ory. The frontier contains, in addition, the positive atom g; assuming there is a neg-
ative instance of g somewhere in the theory, we will thus generate a single initial
sequent, ; [g]0 g. We immediately observe that:
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Lemma 8. Every sequent generated in the focused derivation of ( )0 ; [ ]0 g is of
the form ; [ ]0 g.

Theorem 9 (isomorphism of rules). Every SLD resolution rule for the Horn query
g is isomorphic to an instance of a derived inference rule for the overall goal

sequent ( )0 ; [ ]0 g with empty unrestricted zones and g on the right.

As should be clear, the interpretation of a clause is the linear zone of the forward
sequent, which also does not admit contraction.

Theorem 10. Every SLD resolution derivation for the Horn query g has an iso-
morphic focused derivation for the goal sequent ( )o ; [ ]0 g with left-biased atoms.

Proof (Sketch). Very similar argument as thm. 7, except we note that in the matching
conditions in the derived rules we rename the input sequents, whereas in the SLD res-
olution case we rename the Horn clause itself. However, this renaming is merely an
artifact of the procedure and does not itself alter the derivation.

Although the derivations are isomorphic, the focused derivations may not be as e -
cient as the SLD resolution in practice because of the need to rename (i.e., copy) the
premisses as part of the matching conditions of a derived rule– premisses might contain
many more components than the Horn clause itself.

5 Experiments

5.1 Propositional Linear Logic

The first class of experiments we performed were on propositional linear logic. We im-
plemented several minor variants of an inverse method prover for propositional linear
logic. The propositional fragment is the only fragment where we can compare with ex-
ternal provers, as we are not aware of any first order linear logic provers besides our own.
The external prover we compared against is Tammet’s Gandalf “nonclassical” distribu-
tion (version 0.2), compiled using a packaged version of the Hobbit Scheme compiler.
This classical linear logic prover comes in two flavors: resolution (Gr) and tableau (Gt).
Neither version incorporates focusing or globalization, and we did not attempt to bound
the search for either prover. Other provers such as LinTAP [13] and llprover [17] fail to
prove all but the simplest problems, so we did not do any serious comparisons against
them. Our experiments were all run on a 3.4GHz Pentium 4 machine with 1MB L1 cache
and 1GB main memory; our provers were compiled using MLTon version 20060213 us-
ing the default optimization flags; all times indicated are wall-clock times in seconds
and includes the GC time; denotes unprovability within a time limit of 1 hour. In the
following tables, iters refers to number of iterations of the lazy OTTER loop, gen the
number of generated sequents, and subs the number of subsumed sequents.

Stateful system encodings. In these examples, we encoded the state transition rules for
stateful systems such as a change machine, a Blocks World problem with a fixed number
of blocks, a few sample Petri nets. For the Blocks World example, we also compared a
version that uses the CLF monad [3] and one without.
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right-biased left-biased Gt Gr
name iters gen subs time iters gen subs time time time

20 43 18 0.001 12 84 61 0.001
27 65 26 0.002 5 24 7 0.001 N A N A
16 22 7 0.001 11 20 6 0.001 0.63 0.31
23 38 23 0.001 284 1099 921 0.062 7.08
57 133 105 0.003 393 1654 1433 0.068 7.13

Graph exploration algorithms. In these examples we encode the algorithm for explor-
ing graph for calculating Euler or Hamiltonian tours. The problems have an equal bal-
ance of proofs (i.e., a tour exists) and refutations (i.e., no tour exists).

right-biased left-biased
name iters gen subs time iters gen subs time

6291 11853 5565 9.010 6291 11853 5565 8.570
15640 34329 18689 152.12 15640 34329 18689 145.9
64360 159194 94834 3043.35 64360 159194 94834 2938.55

708 911 185 0.11 165 178 0 0.001

The Euler tour computation uses a symmetric algorithm, so both backward and for-
ward chaining generate the same facts, though, interestingly, a left-biased search per-
forms slightly better than the right-biased system. For the Hamiltonian tour examples,
the left-biased search is vastly superior.

A ne logic encoding. Linearity is often too stringent a requirement for situations where
we simply need a ne logic, i.e., where every hypothesis is consumed at most once.
A ne logic can be embedded into linear logic by translating every a ne arrow A B
as either A B or A & 1 B. Of course, one might select complex encodings; for
example choosing A & !(0 X) B (for some arbitrary fresh proposition X) instead
of A & 1 B. Even though the two translations are equivalent, the prover performs
poorly on the former. The Gandalf provers Gt and Gr fail on these examples.

right-biased left-biased
encoding iters gen subs time iters gen subs time
A B 38 108 73 0.003 34 107 73 0.002
A & 1 B 252 1103 828 0.098 62 229 126 0.019
A & !(0 X) B 264 7099 6793 2.028 235 841 578 0.042

Quantified Boolean formulas. In these examples we used two variants of the algo-
rithm from [12] for encoding QBFs in linear logic. The first variant uses exponentials
to encode reusable “copy” rules; this variant performs very well in practice, so the table
below collates the results of all the example QBFs in one entry. The second variant maps
to the multiplicative-additive fragment of linear logic without exponentials. This vari-
ant produces problems that are considerably harder, so we have divided the problems in
three sets in increasing order of complexity.
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right-biased left-biased
encodings iters gen subs time iters gen subs time

1508 1722 140 0.13 7948 17610 9590 2.69
1457 5590 4067 0.54 1581 4352 2612 0.58
15267 517551 502174 368.92 9469 49777 37716 29.55
28556 990196 961494 2807.64 21233 89542 115917 308.24

For these examples, when the number of iterations is low (i.e., the problems are
simple), the right-biased search appears to perform better than the left-biased system.
However, as the problems get harder, the left-biased system becomes dominant.

5.2 First-Order Linear Logic

We have also implemented a first-order prover for linear logic. Experiments with an
early version of the first-order were documented in [4]. Since then we have made several
improvements to the prover, including a complete reimplmentation of the focused rule
generation engine, and also increased our collection of sample problems.

First-order stateful systems. The first experiments were with first-order encodings of
various stateful systems. We selected a first-order Blocks World encoding (both with
and without the CLF monad), Dijkstra’s Urn Game, and an AI planning problem for a
certain board game. The left-biased system performs consistently better than the right-
biased system for these problems.

right-biased left-biased
problem iters gen subs time iters gen subs time

45 424 317 0.12 26 387 337 0.04
64 697 412 0.264 15 81 69 0.006
29 72 27 0.24 13 58 55 0.11

349 7021 3138 3.26 166 5296 1752 0.88

Purely intuitionistic problems. Unfortunately, we are unable to compare our imple-
mentation with any other linear provers; to the best of our knowledge, our prover is
the only first-order linear prover in existence. We therefore ran our prover on some
problems drawn from the SICS benchmark [15]. These intuitionistic problems were
translated into linear logic in two di erent ways– the first uses Girard’s original encod-
ing of classical logic in classical linear logic where every subformula is a xed with the
exponential, and the second is a focus-preserving encoding as described in [5]. We also
compared our prover with Sandstorm, a focusing inverse method theorem prover for in-
tuitionistic logic implemented by students at CMU. The focus-preserving translation is
always better than the Girard-translation; however, the complexity of linear logic, par-
ticularly the significant complexity of linear contraction, makes it uncompetitive with
the intuitionistic prover.
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right-biased left-biased SS
problem iters gen subs time iters gen subs time time

360 1948 1394 1.312 368 2897 2181 0.6
0.04

56 365 313 0.056 64 496 415 0.04
3035 16391 11732 11.04 3460 27192 20389 5.856

0.06
489 3133 2688 0.472 616 4672 3902 0.376

20958 1131823 810085 762.312 12924 1015552 761517 218.712
1.12

3377 21659 18646 33.096 2300 17464 14969 23.296

3.89
8896 57056 49047 87.184 6144 46818 39993 62.24

Horn examples from TPTP. For our last example, we selected 20 non-trivial Horn prob-
lems from the TPTP version 3.1.1. The selection of problems was not systematic, but
we did not constrain our selection to any particular section of the TPTP. We used the
translation described in sec. 4. For lack of space we omit the list of selected problems,
which can be found from the first author’s web-page.3

right-biased left-biased
iters gen subs time iters gen subs time
4911 314640 287004 462.859 6289 704482 526207 638.818

For Horn problems, the right-biased system, which models hyperresolution, per-
forms better than the left-biased system, which models SLD resolution. This observa-
tion is not unprecedented— the Gandalf system switches to a Hyperresolution strategy
for Horn theories [16]. The likely reason is that in the left-biased system, unlike in SLD
resolution system, the derived rule renames the input sequent rather than the rule itself.

6 Conclusion

We have presented an improvement of the focusing inverse method that exploits the
flexibility in assigning polarity to atoms which we call bias. This strictly generalizes
both hyperresolution and SLD resolution on (classical) Horn clauses to all of intuition-
istic linear logic. This strategy shows significant improvement on a number of example
problems. Among the future work will be to explore strategies for determining appro-
priate bias for atoms from the problem statement to optimize overall search behavior.
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Abstract. It is well-known that the connection refinement of clause
tableaux with paramodulation is incomplete (even with weak connec-
tions). In this paper, we present a new connection tableau calculus for
logic with equality. This calculus is based on a lazy form of paramodu-
lation where parts of the unification step become auxiliary subgoals in
a tableau and may be subjected to subsequent paramodulations. Our
calculus uses ordering constraints and a certain form of the basicness
restriction.

1 Introduction

The Model Elimination proof procedure was originally introduced by Loveland
as a resolution-based calculus with clauses of a special form [1]. Later it was
reconsidered as a clause tableau calculus, where proof search is guided by con-
nections between clauses [2]. In this form, the method is also referred to as
connection tableaux.

Connection tableaux are a powerful goal-directed refinement of general clause
tableaux. Moreover, strong search pruning methods and efficient implementation
techniques were developed for this calculus [3].

It is tempting to adapt connection tableaux for logic with equality by intro-
ducing paramodulation. That is, we could make a pair (equality to paramodulate
by, literal to paramodulate in) constitute a connection, too, and add rules for
paramodulation in a branch. Unfortunately, such a calculus turns out to be in-
complete. Consider the following set of clauses: {a ≈ b, c ≈ d, ¬P (f(a), f(b)),
¬Q(g(c), g(d)), P (x, x) ∨Q(y, y)}. Let us try to build a refutation of S in that
hypothetical calculus:

a ≈ b

¬P (f(a), f(b))

¬P (f(b), f(b))

P (x, x)

⊥ · (x = f(b))

Q(y, y)

?

¬Q(g(c), g(d))

c ≈ d

¬Q(g(d), g(d))

P (x, x)

?

Q(y, y)

⊥ · (y = g(d))

We cannot continue the first inference because the literal Q(y, y) does not
match Q(g(c), g(d)) and the equality c ≈ d cannot be applied to Q(y, y), either.
The second inference will fail in a similar way.

U. Furbach and N. Shankar (Eds.): IJCAR 2006, LNAI 4130, pp. 112–124, 2006.
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The fact that paramodulation works fine in resolution-style calculi [4] and
general clause tableaux [5,6] is due to a flexible order of inferences which is
impossible in a goal-directed calculus. The calculus could be made complete if we
allow paramodulation into variables and add the axioms of functional reflexivity
(f(x) ≈ f(x), g(x) ≈ g(x), etc) in order to construct new terms [7]. However,
this approach is quite inefficient in practice, since functional reflexivity allows
us to substitute an arbitrary term for any variable.

In order to solve problems with equality, existing competitive connection
tableau provers [8] employ various forms of Brand’s modification method
[9,10,11]. This method transforms a clause set with equality into an equicon-
sistent set where the equality predicate does not occur. In addition, a complete
procedure was developed upon a combination of goal-directed proof search in
tableaux and a bottom-up equality saturation using basic ordered paramodula-
tion [12].

In this paper we propose an alternative approach for equality handling in
connection tableaux which is based on lazy paramodulation. This technique was
originally introduced by J. Gallier and W. Snyder as a method for general E-
unification [13] and used later to overcome incompleteness of the set-of-support
strategy (another example of a goal-directed method) in the classical paramod-
ulation calculus [14].

So, what is lazy paramodulation? Above, we noted that the literal Q(y, y)
cannot be unified with Q(g(c), g(d)). But let us postpone unification until the
equality c ≈ d is applied to the second literal. Let us make the equality Q(y, y) =
Q(g(c), g(d)) not a constraint to solve but an additional subgoal to prove. The
clause set from the previous counter-example can be easily refuted in such a
calculus:

P (x, x)

¬P (f(a), f(b))

f(a) �≈ x

a ≈ b

f(b) �≈ x

⊥ · (f(b) = x)

a �≈ a

⊥

f(b) �≈ x

⊥ · (f(b) = x)

Q(y, y)

¬Q(g(c), g(d))

g(c) �≈ y

c ≈ d

g(d) �≈ y

⊥ · (g(d) = y)

c �≈ c

⊥

g(d) �≈ y

⊥ · (g(d) = y)

Though the approach seems to work, an unrestricted procedure will be no
better than the use of functional reflexivity. Indeed, if we postpone any unifi-
cation, we can apply any equality to any non-variable term. Can we refine the
method? Would it be complete? In what follows, we give positive answers to
these questions.

The paper is organized as follows. The next section contains preliminary ma-
terial. In Section 3 we explain the method of constrained equality elimination
[11] in a form adapted for the completeness proof in the next section. A refined
version of connection tableaux with lazy paramodulation is introduced and its
completeness is proved in Section 4. We conclude with a brief summary and
plans for future work.
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2 Preliminaries

We work in first-order logic with equality in clausal form. A clause is a disjunction
of literals; a literal is either an atomic formula or the negation of an atomic
formula. We consider clauses as unordered multisets.

The equality predicate is denoted by the symbol ≈. We abbreviate the nega-
tion ¬(s ≈ t) as s �≈ t. Negated equalities will be called disequalities to be dis-
tinguished from inequalities used in constraints (see below). We consider equal-
ities as unordered pairs of terms, i.e. a ≈ b and b ≈ a stand for the same
formula.

The symbol � will denote “pseudoequality”, a binary predicate without any
specific semantics. We use it to replace the symbol ≈ when we pass to logic
without equality. The order of arguments becomes significant here: a � b and
b � a denote different formulas. The expression s �� t stands for ¬(s � t).

In what follows, we denote non-variable terms by the letters p and q, and
arbitrary terms with the letters l, r, s, and t. Substitutions are denoted by
the letters σ and τ . The result of applying a substitution σ to an expression
(term, literal, or clause) E is denoted by Eσ. We write E[s] to indicate that s
is a subterm of E and write E[t] to denote the expression obtained from E by
replacing one occurrence of s by t. Letters in bold (s, x, etc) stand for sequences
of terms and variables.

We use constraints as defined in [11]. A constraint is a, possibly empty, con-
junction of atomic constraints s = t or s ! t or s " t. The letters γ and δ
are used to denote constraints; the symbol ' denotes the empty conjunction.
A compound constraint (a = b ∧ b ! c) can be written in an abbreviated form
(a = b ! c). An equality constraint (s = t) stands for (s1 = t1 ∧ · · · ∧ sn = tn).

A substitution σ solves an atomic constraint s = t if the terms sσ and tσ are
syntactically identical. It is a solution of an atomic constraint s ! t (s " t) if
sσ > tσ (sσ � tσ, respectively) with respect to some reduction ordering > that
is total on ground terms. We say that σ is a solution of a general constraint γ if it
solves all atomic constraints in γ; γ is called satisfiable whenever it has a solution.

A constrained clause tableau is a finite tree T. The root node of T contains
the initial set of clauses to be refuted. The non-root nodes are pairs L · γ where
L is a literal and γ is a constraint.

Any branch that contains the literal ⊥ (denoting the propositional falsum) is
considered as closed. A tableau is closed, whenever each branch in it is closed
and the overall set of constraints in it is satisfiable.

An inference starts from the single root node (the initial clause set). Each infer-
ence step expands some branch in the tableau by adding new leaves under the leaf
of the branch in question. Symbolically, we describe an inference rule as follows:

S ‖ Γ
L1 · γ1 · · · Ln · γn

where S is the initial set of clauses (the root node), Γ is the branch being
expanded (with constraints not mentioned), and (L1 · γ1), . . . , (Ln · γn) are the
added nodes (empty constraints will be omitted). Whenever we choose some
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Start rule: S , (L1 ∨ · · · ∨ Lk) ‖
L1 · · · Lk

Expansion rules:

S , (¬P (s) ∨ L1 ∨ · · · ∨ Lk) ‖ Γ, P (r)

⊥ · (s = r) L1 · · · Lk

S , (P (s) ∨ L1 ∨ · · · ∨ Lk) ‖ Γ, ¬P (r)

⊥ · (s = r) L1 · · · Lk

Termination rules:

S ‖ Γ, ¬P (s), ∆, P (r)

⊥ · (s = r)

S ‖ Γ, P (s), ∆, ¬P (r)

⊥ · (s = r)

Fig. 1. Connection tableaux CT

clause C in S to participate in the inference, we implicitly rename all variables
in C to some fresh variables.

A closed tableau built from the initial set S will be called a refutation of S.
In order to illustrate the proposed notation, we present the classical connection

tableau calculus (denoted by CT) in Figure 1.
This calculus is sound and complete in first-order logic without equality [3]:

Proposition 1. An equality-free set of clauses S is unsatisfiable if and only if
S can be expanded to a closed CT-tableau. Moreover, if S is unsatisfiable but any
proper subset of S is consistent, then for any C ∈ S, there is a CT-refutation
of S that starts with C.

3 Constrained Equality Elimination

Constrained equality elimination (CEE) was proposed by L. Bachmair et al. in
[11]. This is a variation of Brand’s modification method improved by the use of
ordering constraints. Here, we describe CEE-transformation in a slightly modi-
fied form as compared with the original explanation in [11]. First, we allow non-
equality predicate symbols. Second, we require any two different occurrences of
a non-variable subterm to be abstracted separately, introducing two different
fresh variables during monotonicity elimination (flattening). Third, we apply
the monotonicity elimination rules after symmetry elimination. Fourth, we work
with traditional clauses and incorporate the ordering constraints into the infer-
ence rules. Fifth, we handle occurrences of negated variable equality x �≈ y in a
different way. These modifications are minor and do not affect the main result
(Proposition 2).

The four groups of rewriting rules in Figure 2 are applied in the order of their
appearance to clauses from the initial set S. Let us denote the intermediate
result of transformation after the i-th group by CEEi(S). Variables with caret
are considered to be new in the corresponding clause. Recall that p and q stand
for non-variable terms, whereas l, r, s, and t denote arbitrary terms.
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1. Elimination of symmetry:

s ≈ t ∨ C

s � t ∨ C t � s ∨ C

p ≈ s ∨ C

p � s ∨ C

x ≈ q ∨ C

q � x ∨ C

2. Elimination of monotonicity:

P (s1, p, s2) ∨ C

P (s1, û, s2) ∨ p � û ∨ C

¬P (s1, p, s2) ∨ C

¬P (s1, û, s2) ∨ p � û ∨ C

f(s1, p, s2) � t ∨ C

f(s1, û, s2) � t ∨ p � û ∨ C

f(s1, p, s2) � t ∨ C

f(s1, û, s2) � t ∨ p � û ∨ C

t � f(s1, p, s2) ∨ C

t � f(s1, û, s2) ∨ p � û ∨ C

t � f(s1, p,s2) ∨ C

t � f(s1, û, s2) ∨ p � û ∨ C

3. Elimination of transitivity:

t � q ∨ C

t � û ∨ q � û ∨ C

p � q ∨ C

p � û ∨ q � û ∨ C

4. Introduction of reflexivity:
z � z

Fig. 2. Constrained equality elimination

The first group replaces the equality symbol ≈ with the non-logical predicate
symbol � and eliminates the need for explicit symmetry axioms for �. The sec-
ond group flattens the terms, thus eliminating the need for explicit monotonicity
axioms for �. The third group splits equality literals, thus eliminating the need
for explicit transitivity axioms for �. The last rule explicitly adds the reflexivity
axiom to the clause set.

In the resulting set of clauses CEE(S) (= CEE4(S)), resolutions correspond to
paramodulations in the initial set. The introduced variables are, in some sense,
“values” of the terms on the left hand side of new disequalities. By “value” we
mean the result of all paramodulations into and under the term.

Now, we assign an atomic constraint p " s to each negative literal p �� s that
occurs in CEE(S). We assign a constraint x = y to each negative literal x �� y in
CEE(S). We assign a constraint s ! t to each positive literal s � t in CEE(S),
except for the reflexivity axiom z � z which does not acquire any constraint.
A constrained ground instance of a clause C from CEE(S) is any ground clause
Cσ such that the substitution σ is a solution of all atomic ordering constraints
assigned for equalities and disequalities in C.

The following proposition is a counterpart of Theorem 4.1 from [11].

Proposition 2. A clause set S is satisfiable if and only if the set of all con-
strained ground instances of clauses from CEE(S) is satisfiable.



Connection Tableaux with Lazy Paramodulation 117

In the Start and Expansion rules, the chosen clause is not (z � z)

Start rule: Reduction rule:

S , (L1 ∨ · · · ∨ Lk) ‖
L1 · · · Lk

S , (z � z) ‖ Γ, s � t

⊥ · (s = t)

Expansion rules:

S , (¬P (s) ∨ L1 ∨ · · · ∨ Lk) ‖ Γ, P (r)

⊥ · (s = r) L1 · · · Lk

S , (P (s) ∨ L1 ∨ · · · ∨ Lk) ‖ Γ, ¬P (r)

⊥ · (s = r) L1 · · · Lk

S , (p � t ∨ L1 ∨ · · · ∨ Lk) ‖ Γ, l � r

⊥ · (p = l � r = t) L1 · · · Lk

S , (l � r ∨ L1 ∨ · · · ∨ Lk) ‖ Γ, p � t

⊥ · (p = l � r = t) L1 · · · Lk

Termination rules:

S ‖ Γ, ¬P (s), ∆, P (r)

⊥ · (s = r)

S ‖ Γ, P (s), ∆, ¬P (r)

⊥ · (s = r)

S ‖ Γ, p � t, ∆, l � r

⊥ · (p = l � r = t)

S ‖ Γ, l � r,∆, p � t

⊥ · (p = l � r = t)

Fig. 3. Connection tableaux for CEE-clauses (CT�)

Consider the calculus CT� in Figure 3. In essence, it is just an extension of CT
with ordering constraints for equality literals.

Proposition 3. A clause set S is unsatisfiable if and only if the set CEE(S)
can be refuted in the CT� calculus.

Proof. We give just an outline of the proof, since the details are quite obvious.
First, let us show the soundness of CT� with respect to CEE-transformed clause
sets. Consider a closed CT�-tableau T refuting the set CEE(S).

The substitution that solves the overall set of constraints from T, can be
completed to a ground substitution, giving us a set of ground instances of clauses
from CEE(S). This set is unsatisfiable since we can transform T to a well-formed
CT-refutation by erasing ordering constraints.

It is easy to see that these ground instances are valid constrained ground in-
stances mentioned in Proposition 2. Indeed, each positive equality literal (l � r)
(except the reflexivity axiom) that takes part in the inference acquires the cor-
responding strict inequality constraint (l ! r) during an expansion or a ter-
mination step. Each disequality (s �� t) is either reduced with the help of the
reflexivity axiom or resolved with some positive equality literal. In both cases,
the constraint (s " t) will be satisfied. A disequality (x �� y) can only be reduced
by reflexivity, so that the constraint (x = y) will be satisfied, too.

Let us prove the completeness of CT� with respect to CEE-transformed
clause sets. Consider the set S of all constrained ground instances of clauses
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from CEE(S). By Proposition 2, S is unsatisfiable, therefore we can build a
CT-refutation of S that does not start with the reflexivity axiom (z � z). Then
we simply lift the inference to the first order and transform that CT-tableau
into a CT�-refutation of CEE(S). )*

4 Connection Tableaux with Lazy Paramodulation

Now we present a refined version of the calculus sketched in the introduction.
The inference rules of the calculus LPCT are given in Figure 4. The variables
with bar are considered to be fresh in the tableau.

Start rule: Reduction rule:

S , (L1 ∨ · · · ∨ Lk) ‖
L1 · · · Lk

S ‖ Γ, s ≈ t

⊥ · (s = t)

Expansion rules:

S , (¬P (s) ∨ L1 ∨ · · · ∨ Lk) ‖ Γ, P (r)

⊥ · (v̄ = r) s1 ≈ v̄1 · · · sn ≈ v̄n L1 · · · Lk

S , (P (s) ∨ L1 ∨ · · · ∨ Lk) ‖ Γ, ¬P (r)

⊥ · (v̄ = r) s1 ≈ v̄1 · · · sn ≈ v̄n L1 · · · Lk

Equality expansion rules:

S , (z ≈ r ∨ L1 ∨ · · · ∨ Lk) ‖ Γ, L[p]

L[w̄] · (p = z � w̄) r ≈ w̄ L1 · · · Lk

S , (f(s) ≈ r ∨ L1 ∨ · · · ∨ Lk) ‖ Γ, L[p]

L[w̄] · (p = f(v̄) � w̄) r ≈ w̄ s1 ≈ v̄1 · · · sn ≈ v̄n L1 · · · Lk

S , (L[f(s)] ∨ L1 ∨ · · · ∨ Lk) ‖ Γ, l ≈ r

L[w̄] · (f(v̄) = l � r = w̄) s1 ≈ v̄1 · · · sn ≈ v̄n L1 · · · Lk

Paramodulation rules:

S ‖ Γ, L[p], ∆, l ≈ r

L[w̄] · (p = l � r = w̄)

S ‖ Γ, l ≈ r, ∆, L[p]

L[w̄] · (p = l � r = w̄)

Termination rules:

S ‖ Γ, ¬P (s), ∆, P (r)

⊥ · (s = r)

S ‖ Γ, P (s), ∆, ¬P (r)

⊥ · (s = r)

Fig. 4. Connection tableaux with lazy paramodulation LPCT
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The proposed calculus contains several improvements in comparison with
what was sketched at the beginning of the paper. First of all, we use lazy
paramodulation only in expansion steps; paramodulation and termination steps
do not postpone unification. Second, the “laziness” itself is more restricted now:
any two non-variable terms whose unification is postponed should have the same
functional symbol at the top. Third, we use ordering constraints. Fourth, we use
basic paramodulation.

It should be noted that there are two different forms of the basicness restric-
tion. The first one forbids paramodulation into terms introduced by instanti-
ation. The corresponding refinement of lazy paramodulation was described by
M. Moser [15]. This restriction is fully adopted in LPCT, since we work with
constrained literals and do not apply substitutions in the course of inference.

The second, stronger form additionally prevents paramodulation into terms
introduced by the earlier paramodulation steps [16]. In this form, basicness is
used in LPCT, too (note the variables with bar), though not everywhere: two
of the three equality expansion rules leave the inserted term “on the surface”,
allowed for subsequent paramodulations.

The soundness of LPCT can be shown directly, by checking that inference rules
generate only what follows from the initial clause set and the current branch.

We prove completeness of LPCT by transforming a CT�-refutation of the
set of CEE-rewritten clauses into an LPCT-refutation of the initial clause set.

Proposition 4. For any unsatisfiable clause set S there exists a refutation of
S in LPCT.
Proof. We begin by introducing an intermediate calculus LPCT�, whose infer-
ence rules are those of LPCT with the equality symbol ≈ replaced with �.

At the first stage we build a closed CT�-tableau refuting the set CEE(S)
(by Proposition 3) and transform it into an LPCT�-refutation T of CEE3(S).
In Figure 5, we show how the termination and expansion rules of CT� can be
simulated in LPCT�, so that leaves in open branches and generated constraints
stay the same. Recall that every equality or disequality in CEE(S) has a variable
on the right hand side (by definition of CEE).

At the second stage we unflatten the clauses. We will call suspicious those
variables with caret which were introduced by CEE-transformation. We will
call a clause suspicious if a suspicious variable occurs in it. We will call an
LPCT�-inference step suspicious if it is a start step or expansion step or equality
expansion step that involves a suspicious initial clause.

Let S(0) be CEE3(S) and T(0) be T. We are going to construct a sequence of
clause sets and LPCT�-refutations such that the following statements will hold
for every i > 0:

– T(i) is a well-formed refutation of S(i) in LPCT�;
– there are fewer different suspicious variables in T(i) than in T(i−1);
– any suspicious variable û occurs exactly twice in a clause from S(i): once in

a disequality of the form (p �� û) and once in some other literal (but never
as the left argument of a (dis)-equality);

– any non-suspicious clause in S(i) belongs to CEE1(S).
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CT�-Termination =⇒ LPCT-Paramodulation:

S ‖ Γ, f(x) � y, ∆, l � u

⊥ · (f(x) = l � u = y)

=⇒ S ‖ Γ, f(x) � y,∆, l � u

w̄ � y · (f(x) = l � u = w̄)

⊥ · (w̄ = y)

CT�-Expansion =⇒ LPCT-Expansion:

S , (¬P (x) ∨ L1 ∨ · · · ∨ Lk) ‖ Γ, P (y)

⊥ · (x = y) L1 · · · Lk

=⇒

S , (¬P (x) ∨ L1 ∨ · · · ∨ Lk) ‖ Γ, P (y)

⊥ · (v̄ = y) x1 � v̄1

⊥ · (x1 = v̄1)

· · · xn � v̄n

⊥ · (xn = v̄n)

L1 · · · Lk

CT�-Expansion =⇒ LPCT-EqualityExpansion:

S , (f(x) � y ∨ L1 ∨ · · · ∨ Lk) ‖ Γ, l � u

⊥ · (f(x) = l � u = y) L1 · · · Lk

=⇒

S , (f(x) � y ∨ L1 ∨ · · · ∨ Lk) ‖ Γ, l � u

w̄ � y · (f(v̄) = l � u = w̄)

⊥ · (w̄ = y)

x1 � v̄1

⊥ · (x1 = v̄1)

· · · xn � v̄n

⊥ · (xn = v̄n)

L1 · · · Lk

S , (z � u ∨ L1 ∨ · · · ∨ Lk) ‖ Γ, f(x) � y

⊥ · (f(x) = z � u = y) L1 · · · Lk

=⇒

S , (z � u ∨ L1 ∨ · · · ∨ Lk) ‖ Γ, f(x) � y

w̄ � y · (f(x) = z � w̄)

⊥ · (w̄ = y)

u � w̄

⊥ · (u = w̄)

L1 · · · Lk

S , (f(z) � u ∨ L1 ∨ · · · ∨ Lk) ‖ Γ, f(x) � y

⊥ · (f(x) = f(z) � u = y) L1 · · · Lk

=⇒

S , (f(z) � u ∨ L1 ∨ · · · ∨ Lk) ‖ Γ, f(x) � y

w̄ � y · (f(x) = f(v̄) � w̄)

⊥ · (w̄ = y)

u � w̄

⊥ ·
(u = w̄)

z1 � v̄1

⊥ ·
(z1 = v̄1)

· · · zn � v̄n

⊥ ·
(zn = v̄n)

L1 · · · Lk

Fig. 5. Transforming CT� to LPCT�

Consider a lowermost suspicious inference I in T(i−1) (i.e. there are no sus-
picious steps under that one). Let û be a suspicious variable that comes into
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the tableau with this step. The corresponding suspicious clause is of the form
(L[û] ∨ p �� û ∨ C). Let S(i) be S(i−1) ∪ {L[p] ∨ C }.

Note that one of these two literals (containing an occurrence of û) may be an
“active literal” in I. This literal will not appear in T(i−1) in its original form.
Nevertheless, we can affirm that T(i−1) contains two disjoint subtrees, T◦ and
T•, such that the following holds:

– T◦ and T• are introduced at the step I;
– û does not occur outside of T◦ and T•;
– the root literal of T• is of the form s �� û and û does not occur in s;
– moreover, û occurs in T• only in disequalities (t �� û) and constraints (t = û)

introduced by a reduction step; û does not occur in these t (indeed, all we
can do with (t �� û) is to reduce it or to paramodulate in t);

– û occurs exactly once in the root literal of T◦;
– û does not occur in the root node constraint of T◦.

Let T◦ have the form:
M [û] · δ

T1 · · · Tn

Below, Tk[û← t] denotes the tree Tk where all occurrences of û (both in literals
and constraints) are replaced with t. It is easy to see that this substitution does
not make Tk ill-formed, provided that û and t are equal with respect to the
constraints in T(i−1). A tree transformation [T ]T

◦
is defined as follows:

[
t �� û · γ
⊥ · (t = û)

]T◦

=⇒ M [t] · γ
T1[û← t] · · · Tn[û← t]

[
t �� û · γ

T1 · · · Tn

]T◦

=⇒ M [t] · γ
[T1]T

◦ · · · [Tn]T◦

[
L · γ

T1 · · · Tn

]T◦

=⇒ L · γ
[T1]T

◦ · · · [Tn]T◦

Consider the tableau [T•]T
◦
. We can affirm the following:

– The suspicious variable û does not occur in [T•]T
◦
.

– Given that (s �� û) is the root literal of T•, the literal M [s] is the root literal
of [T•]T

◦
.

– Every paramodulation made in a literal of the form (t �� û) in T• was made
in the term t. Therefore it can also be made in the corresponding literal M [t]
in [T•]T

◦
.

– Every literal (t �� û) reduced in T• becomes the literal M [t] in [T•]T
◦

and is
extended further with the subtrees Ti[û ← t]. Since û and t are equal with
respect to the constraints of T(i−1), the tree [T•]T

◦
is closed.

Then we add the constraint δ to the root node constraint of [T•]T
◦

and replace
T◦ and T• in T(i−1) with that tree. Also, we replace S(i−1) with S(i) in the root.
The resulting well-formed closed LPCT�-tableau will be T(i).
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In T(i), the step I is made with the clause L[p]∨C. Then we make all paramod-
ulations in p that were made in T• and proceed where needed with the inferences
that were made in T◦. The variable û disappeared from T(i) and no other sus-
picious variables were introduced. It is not difficult to verify that other required
conditions are satisfied, too.

By repeating this procedure, we will eventually get a closed tableau T(N)

where suspicious variables do not occur at all. This tableau is, essentially, an
LPCT�-refutation of the set CEE1(S). It remains to undo the symmetry elim-
ination step. We replace the symbol � with ≈ and reorient equalities to their
initial form in S.

Altogether, we obtain an LPCT-refutation of S. )*

Despite the way in which we prove completeness of the calculus, LPCT is not
just a reformulation of the CEE method. In fact, there is an essential difference
between flattening and lazy paramodulation. We said above that variables with
caret introduced in CEE-clauses can be considered as “values” of the terms they
replace. That is, the term that is finally substituted for a variable û, in fact, is the
result of all paramodulations made under and in the term t which was replaced
with û by CEE. Therefore, in a given CEE-clause, each term has exactly one
“value”. It is not the case for LPCT.

Let S be the set { x ≈ c ∨ x ≈ g(h(x)), f(c) ≈ d, f(g(z)) ≈ d, f(a) �≈ d }.
The following tableau built in a simplified version of LPCT cannot be obtained
from any CT�-refutation of CEE(S).

S
f(a) �≈ d

x ≈ c

f(c) �≈ d

f(c) ≈ d

d �≈ d

⊥
f(c) �≈ f(c)

⊥

x �≈ a

⊥ · (x = a)

x ≈ g(h(x))

f(g(h(x))) �≈ d

f(g(z)) ≈ d

d �≈ d

⊥
f(g(z)) �≈ f(g(h(x)))

⊥ · (z = h(x))

x �≈ a

⊥ · (x = a)

Here, we replace the constant a in the starting clause with two different terms,
c and g(h(x)). If we make inferences with CEE-clauses, we should take two
different instances of the starting clause. Based on this example, one can show
that LPCT can give an exponential shortening of the minimal inference size as
compared with CT� (but at the same time the number of possible inferences
increases).

Another noteworthy point is the weakness of unification. The lazy unification
procedure used in LPCT which matches top functional symbols immediately
and postpones the rest is the one proposed for lazy paramodulation in [13].
This form of unification is much weaker than top unification (introduced in
[17] and used in [14]) which descends down to variables. Top unification allows
us to restrict drastically the weight of postponed “unification obligations”. In
particular, top unifiability of two ground terms is decided immediately.
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Unfortunately, top unification and ordering constraints cannot be used to-
gether in the framework of connection tableaux. Consider the ordering a > b > c
and the set S = {P (c)∨Q(c),¬P (a),¬Q(b), b ≈ c, a ≈ c }. Ordering constraints
prohibit paramodulations into c. The only way to refute S in LPCT is to resolve
P (c) with ¬P (a) or Q(c) with ¬Q(b). However, these pairs are not top unifiable.

It is unclear whether ordered inferences for a stronger kind of lazy unification
is a good trade-off. The author is not aware about any adaptation of connection
tableaux for lazy paramodulation with top unification. One of the directions for
further research is to develop and study one.

5 Conclusion

We have presented a new connection tableau calculus for first-order clausal logic
with equality. This calculus employs lazy paramodulation with ordering con-
straints and a restricted form of basicness. The refutational completeness of the
calculus is demonstrated by transforming proofs given by the (almost) tradi-
tional connection tableau calculus applied to a set of flattened clauses (in the
spirit of Brand’s modification method). Thus a connection is established between
lazy paramodulation and equality elimination via problem transformation.

For the future, we plan to investigate the compatibility of the proposed calcu-
lus with various refinements of connection tableaux; first of all, with the regular-
ity restriction. Unfortunately, the existing completeness proof is not well-suited
for this task, some semantic argument would be useful here. It is also interesting
to study more restricted forms of laziness, probably, giving up orderings and
basicness.

Finally, we hope to implement the proposed calculus and compare it in prac-
tice with other methods of equality handling in tableau calculi.

Acknowledgment. The author is grateful to Alexander Lyaletski and Kon-
stantin Verchinine for their guidance and expertise through the course of this
work.
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Abstract. In this paper we introduce several new improvements to the bottom-
up model generation (BUMG) paradigm. Our techniques are based on non-trivial
transformations of first-order problems into a certain implicational form, namely
range-restricted clauses. These refine existing transformations to range-restricted
form by extending the domain of interpretation with new Skolem terms in a more
careful and deliberate way. Our transformations also extend BUMG with a block-
ing technique for detecting recurrence in models. Blocking is based on a concep-
tually rather simple encoding together with standard equality theorem proving
and redundancy elimination techniques. This provides a general-purpose method
for finding small models. The presented techniques are implemented and have
been successfully tested with existing theorem provers on the satisfiable prob-
lems from the TPTP library.

1 Introduction

The bottom-up model generation (BUMG) paradigm encompasses a wide family of cal-
culi and proof procedures that explicitly try to construct a model of a given (first-order)
clause set by reading clauses as rules and applying them in a bottom-up way until com-
pletion. For instance, variants of hyperresolution and certain tableau calculi belong to
this family. BUMG methods have been known for a long time to be refutationally com-
plete. Comparably little effort has however been undertaken to exploit them for the dual
task of refutational theorem proving, namely, computing models for satisfiable prob-
lems. This is somewhat surprising, as computing models is recognized as being impor-
tant in software engineering, model checking, and other applications, and is becoming
increasingly important for building and maintaining web ontologies. The BUMG meth-
ods we develop and study in this paper are intended to be used for consistency testing
of ontologies and software specifications, and for aiding with the debugging through
the generation of (counter-)models. Our techniques are partially inspired by techniques
already successfully used in the area. For instance, we show how blocking techniques
of description and modal logic tableau-based theorem provers can be generalized to full
first-order logic. In our approach blocking is encoded on the clausal level and is com-
bined with standard resolution techniques. In this way, suitable provers can be utilised
to construct (small) models which can be easily read off from the derived clauses. Our
other contributed techniques are significant improvements to the well-known “transfor-
mation to range-restricted form” as introduced in the context of the SATCHMO prover
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in the eighties [15] and later improved in e.g. [4]. The existing transformations have the
disadvantage that they force BUMG methods to enumerate the entire Herbrand universe
and are therefore non-terminating except in the simplest cases. Our method extends and
combines the transformation introduced in [21] for reducing first-order formulae and
clauses into range-restricted clauses, which was used to develop general-purpose reso-
lution decision procedures for the Bernays-Schönfinkel class. Our approach is similar in
spirit to the methods in e.g. [10,13], by capitalizing on available first-order (equational)
automated reasoning technology.

Other methods for model computation can be classified as methods that directly search
for a finite model, like the extended PUHR tableau method [7], the method in [6] and the
methods in the SEM-family [22,26,17]. In contrast, MACE-style model builders [9,16,
e.g.] reduce model search to testing of propositional satisfiability. Being based on trans-
lation, the MACE-style approach is conceptually related, but different, to our approach.
Both SEM- and MACE-style methods search for finite models, essentially, by search-
ing the space of interpretations with domain sizes 1,2, . . ., in increasing order, until a
model is found. Our method operates significantly differently, as it is not parametrized
by a domain size. Consequently, there is no iterative deepening over the domain size,
and the search for finite models works differently. This way, we address a problem often
found with models computed by these methods: from a pragmatic perspective, they tend
to identify too many terms. For instance, for the two unit clauses P(a) and Q(b) there is a
model that identifies a and b with the same object. Such models can be counterintuitive,
for instance, in a description logic setting, where unique names are often assumed. Our
transformations are careful at identifying objects than the methods mentioned and thus
work closer to a Herbrand semantics. The difference in operation also shows up experi-
mentally. Our methods can solve an overlapping, but disjoint set of the satisfiable TPTP
problems solvable by the state-of-the-art MACE-style model builder Paradox.

The structure of the paper is as follows. Sections 1.1 and 2 give basic definitions and
recall the characteristic properties of BUMG methods. Section 3 defines new techniques
for generating small models and generating them more efficiently. The techniques are
based on a series of transformations which include an improved range-restricting trans-
formation (Section 3.1), instances of standard renaming and flattening (Section 3.2),
and the introduction of blocking through an encoding and standard saturation-based
equality reasoning (Section 3.3). In Section 4 we present and discuss results of ex-
periments carried out with our methods on all satisfiable TPTP problems. Details and
proofs, which are omitted due to lack of space, can be found in the long version [5].

1.1 Preliminaries

We use standard terminology from automated reasoning. We assume as given a sig-
nature Σ = Σ f ∪ΣP of function symbols Σ f (including constants) and predicate sym-
bols ΣP. As we are working (also) with equality, we assume ΣP contains a distinguished
binary predicate symbol ≈, which is used in infix form. Terms, atoms, literals and for-
mulas over Σ and a given (denumerable) set of variables V are defined as usual.

A clause is a (finite) implicitly universally quantified disjunction of literals. We write
clauses in a logic-programming style, i.e. we write H1∨·· ·∨Hm ← B1∧·· ·∧Bk rather
than H1 ∨ ·· · ∨Hm ∨¬B1 ∨ ·· · ∨¬Bk, where m,k ≥ 0. Each Hi is called a head atom,
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and each B j is called a body atom. When writing expressions like H ∨H ← B∧B
we mean any clause whose head literals are H and those in the disjunction of literals
H , and whose body literals are B and those in the conjunction of literals B . A clause
set is a finite set of clauses. A clause H ← B is said to be range-restricted iff the
body B contains all the variables in it. A clause set is range-restricted iff it contains only
range-restricted clauses. For a given atom P(t1, . . . ,tn) the terms t1, . . . ,tn are also called
the top-level terms of P(t1, . . . ,tn) (P being ≈ is permitted). This notion generalizes to
clause bodies, clause heads and clauses as expected. E.g., for a clause H ← B the top-
level terms of its body B are exactly the top-level terms of its body atoms. A proper
functional term is a term which is neither a variable nor a constant.

With regards to semantics, we use the notions of (first-order) satisfiability and E-
satisfiability in a completely standard way.

2 BUMG Methods

Proof procedures based on model generation approaches establish the satisfiability of a
problem by trying to build a model for the problem. In this paper we are interested in
bottom-up model generation approaches (BUMG). BUMG approaches use a forward
reasoning approach where implications, or clauses, H ← B are read as rules and are
repeatedly used to derive (instances of) H from (instances of) B until a completion is
found. The family of BUMG includes many familiar calculi and proof procedures, such
as SATCHMO [15,12], PUHR [8,7], MGTP [11] and hyper tableaux [3]. The oldest and
perhaps most widely known BUMG method is hyperresolution [19].

Hyperresolution consists of two inference rules, hyperresolution and factoring. The
hyperresolution rule applies to a non-positive clause H ← B1∧ . . .∧Bn and n positive
clauses C1∨B′1←', . . . , Cn∨B′n←', and derives (C1∨. . .∨Cn∨H)σ←', where σ is
the most general unifier such that B′iσ = Biσ for every i ∈ {1, . . . ,n}. The factoring rule
derives the clause (C∨B)σ←' from a positive clause C∨B∨B′ ← ', where σ is the
most general unifier of B and B′. A crucial requirement for the effective use of blocking
(Section 3.3) is support of equality reasoning, for example, ordered paramodulation or
superposition [18], in combination with simplification techniques based on orderings.

Our experiments show that a certain form of the splitting rule, or the β-rule, is quite
useful for our approach. For the blocking transformation, splitting on the positive part
of (ground) clauses is in fact mandatory to make it effective. This type of splitting will
replace the branch of a derivation containing the positive clause C∨D←', say, by two
copies of the branch in which the clause is replaced by C←' and D←', respectively,
provided that C and D do not share any variables. Most BUMG procedures support this
splitting technique, in particular the provers that we used do.

3 Transformations

3.1 Range-Restriction

Existing transformations to range-restricted form follow Manthey and Bry [15] (or are
variations of it). The transformation can be defined by a procedure carrying out the
following steps on a given set M of clauses.
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(0) Initialization. Initially, let crr(M) := M.
(1) Add a constant. Let dom be a “fresh” unary predicate symbol not in ΣP, and let c

be some constant. Extend crr(M) by the clause dom(c)← . (The constant c can be
“fresh” or belong to Σ f .)

(2) Range-restriction. For each clause H ← B in crr(M), let {x1, . . . ,xk} be the set of
variables occurring in H but not in B . Replace H ← B by the clause

H ← B ∧dom(x1)∧·· ·∧dom(xk).

(3) Enumerate the Herbrand universe. For each n-ary f ∈ Σ f , add the clauses:

dom( f (x1, . . . ,xn))← dom(x1)∧·· ·∧dom(xn).

We refer to the computed set crr(M) as the classical range-restricting transformation
of M. It is not difficult to see that crr(M) is indeed range-restricted for any clause set M.
The transformation is sound and complete, i.e. M is satisfiable iff crr(M) is satisfi-
able [15,8]. Clearly, the size of crr(M) is linear in the size of M and can be computed
in linear time.

Perhaps the easiest way to understand the transformation is to imagine we use a
BUMG method, e.g. hyperresolution. The idea is to build the model(s) during the
derivation. The clause added in Step (1) ensures that the domain of interpretation given
by the domain predicate dom is non-empty. Step (2) turns clauses into range-restricted
clauses by shielding variables in the head that do not occur negatively within the added
negative domain literals. Clauses that are already range-restricted are unaffected by this
step. Step (3) ensures that all elements of the Herbrand universe of the (original) clause
set are added to the domain via hyperresolution inference steps. As a consequence a
clause set M with at least one non-nullary function symbols causes hyperresolution
derivations to be unbounded for crr(M), unless M is unsatisfiable. This is a distinct
drawback of the classical range-restricting transformation. However, the method has
been shown to be useful for (domain-)minimal model generation when combined with
other techniques [8,7].

In Section 4 we consider the combination of the classical range-restricting transfor-
mation crr with the blocking transformation which is introduced in Section 3.3.

Let us first turn to a new transformation to range-restricted form which aims to
help avoid the brute-force enumeration of the entire Herbrand universe by BUMG ap-
proaches. The transformation involves extracting the non-variable top-level terms in an
atom. Let P(t1, . . . ,tn) be an atom and suppose x1, . . . ,xn are fresh variables. For all
i ∈ {1, . . . ,n} let si = ti, if ti is a variable, and si = xi, otherwise. The atom P(s1, . . . ,sn)
is called the term abstraction of P(t1, . . . ,tn). Let the abstraction substitution α be
defined by α = {xi �→ ti | 1≤ i≤ n and ti is not a variable}. Hence, P(s1, . . . ,sn)α =
P(t1, . . . ,tn), i.e. α reverts the term abstraction. Now, the new range-restricting trans-
formation, denoted by rr, of a clause set M is the clause set obtained by carrying out the
following steps (explanations and an example are given afterwards):

(0) Initialization. Initially, let rr(M) := M.
(1) Add a constant. Same as Step (1) in the definition of crr.
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(2) Domain elements from clause bodies. For each clause H ← B in M and each
atom P(t1, . . . ,tn) from B , let P(s1, . . . ,sn) be the term abstraction of P(t1, . . . ,tn)
and let α be the corresponding abstraction substitution. Extend rr(M) by the set

{dom(xi)α← P(s1, . . . ,sn) | 1≤ i≤ n and xi �→ ti ∈ α}.

(3) Range-restriction. Same as Step (2) in the definition of crr.
(4) Domain elements from ΣP. For each n-ary P in Σp, extend rr(M) by the set

{dom(xi)← P(x1, . . . ,xn) | i≤ i≤ n}.

(5) Domain elements from Σ f . For each n-ary f in Σ f , extend rr(M) by the set

{dom(xi)← dom( f (x1, . . . ,xn)) | i≤ i≤ n}.

The intuition of the transformation reveals itself if we think of what happens when
using hyperresolution. The idea is again to build the model(s) during the derivation, but
this time terms are added to the domain only as necessary. Steps (1) and (3) are the
same as Steps (1) and (2) in the definition of crr. The clauses added in Step (2) cause
functional terms that occur negatively in the clauses to be inserted into the domain.
Step (4) ensures that positively occurring functional terms are added to the domain, and
Step (5) ensures that the domain is closed under subterms.

To illustrate the steps of the transformation consider the following clause.

q(x,g(x,y))∨ r(y,z)← p(a, f(x,y),x) (†)

The term abstraction of the body literal is p(x1,x2,x) and the abstraction substitution is
α = {x1 �→ a,x2 �→ f(x,y)}. The clauses added in Step (2) are thus:

dom(a)← p(x1,x2,x) dom(f(x,y))← p(x1,x2,x) (‡)

Notice that among the clauses so far the clauses (†) and (‡) are not range-restricted, but
are turned into range-restricted clauses in Step (3), yielding the following.

q(x,g(x,y))∨ r(y,z)← p(a, f(x,y),x)∧dom(z)
dom(f(x,y))← p(x1,x2,x)∧dom(y)

Step (4) generates clauses responsible for inserting the terms that occur in the heads of
clauses into the domain. I.e. for each i ∈ {1,2,3} and each j ∈ {1,2}:

dom(xi)← p(x1,x2,x3) dom(x j)← q(x1,x2) dom(x j)← r(x1,x2)

For instance, when a model assigns true to the instance q(a,g(a, f(a,a))) of one of the
head atoms of the clause above, then dom(a) and dom(g(a, f(a,a))) will also be true.
It is not necessary to insert the terms of the instance of the other head atom into the
domain. The reason is that it does not matter how these (extra) terms are evaluated, or
whether the atom is evaluated to true or false in order to satisfy the disjunction. The
clauses added in Step (4) alone are not sufficient, however. For each term in the domain
all its subterms have to be in the domain, too. This is achieved with the clauses obtained
in Step (5). I.e. for each j ∈ {1,2}:

dom(x j)← dom(f(x1,x2)) dom(x j)← dom(g(x1,x2))
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Proposition 3.1 (Completeness of range-restriction (wrt. E-interpretations)). Let
M be a clause set. (i) If rr(M) is satisfiable then M is satisfiable. (ii) If rr(M)∪{x ≈
x← dom(x)} is E-satisfiable then M is E-satisfiable.

Consider the clause r(x)← q(x)∧ p(f(x)) which might be part of the translation of a
modal logic formula or a description logic knowledge base. Applying Steps (2) and (3)
of our transformation give us a clause,

dom(f(x))← dom(x)∧p(y), (∗)

which is splittable into dom(f(x))← dom(x) and ⊥← p(y). The first split component
clause is unpleasant, because it is an example of an “enumerate the Herbrand universe”
clause from existing standard transformations (Step (2) in the definition of crr). Such
clauses cause the entire Herbrand universe to be enumerated with BUMG approaches.
One solution is to switch off splitting when using a BUMG approach, but this is not nec-
essarily the best or the only solution. (Indeed, our experiments below demonstrate that
splitting is advisable.) Before describing a solution let us analyze the problem further.

The main rationale of our rr transformation is to constrain the generation of domain
elements and limit the number of inference steps. The general form of clauses produced
by Step (2), followed by Step (3), is the following, where y⊆ x, x⊆ y∪ z and u⊆ z.

dom( f (x))← dom(y1)∧ . . .∧dom(yn)∧P(z) dom( f (u))← P(z)

Clauses of the first form are often splittable (as in the example above), and can produce
clauses of the unwanted form dom( f (y))← dom(y1)∧ . . .∧dom(yn). Suppose therefore
that splitting of any clause is forbidden when this splits the negative part of the clause
(neither (M)SPASS nor hyper tableaux prover do this anyway). Although, compared to
the classical range-restricting transformation methods, the two types of clauses above
both do reduce the number of possible inferences, the constraining effect of the first
type of clauses is a bit limited. Terms f (s) are not generated, only when no fact P(t) is
present or has been derived. When a clause P(t) is present, or as soon as such a clause
is derived (for any (ground) terms t), then terms are freely generated from terms already
in the domain with f as the top symbol. Here is an example of a clause set for which
the derivation is infinite on the transformation.

p(b)←' r(x)← q(x)∧p(f(x))

Notice the derivation will be infinite on the classical range-restricting transformation as
well, due to the generated clauses dom(b)←' and dom( f (x))← dom(x).

The second type of clauses, dom( f (u))← P(z), are less problematic. Here is a con-
crete example. For ⊥ ← r(x, f(x)), Step (2) produces the clause dom(f(x)) ← r(x,y).
Although this clause, and the general form, still cause larger terms to be built with
hyperresolution type inferences, the constraining effect is larger.

In the next two sections we discuss ways of improving the transformation further.

3.2 Shifting

The clauses introduced in Step (2) of the new transformation rr to range-restricted form
insert instantations of terms occurring in the clause bodies into the domain. This is
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sometimes unnecessary and can lead to non-termination of BUMG procedures. The
shifting transformation addresses this problem. It consists of two sub-transformations,
basic shifting and partial flattening.

If A is an atom P(t1, . . . ,tn) then let not A denote the atom not P(t1, . . . ,tn), where
not P is a fresh predicate symbol which is uniquely associated with the predicate sym-
bol P. If P is the equality symbol ≈ we write not P as �≈ and use infix notation. Now,
the basic shifting transformation of a clause set M is the clause set bs(M) obtained
from M by carrying out the following steps.

(0) Initialization. Initially, let bs(M) := M.
(1) Shifting deep atoms. Replace each clause in bs(M) of the form H ← B1 ∧ ·· · ∧

Bm ∧B , where each atom B1, . . . ,Bm contains at least one proper functional term
and B contains no proper functional term, by the clause

H ∨not B1∨·· ·∨not Bm ← B .

Each of the atoms B1, . . . ,Bm is called a shifted atom.
(2) Shifted atoms consistency. Extend bs(M) by the clause set

{⊥← P(x1, . . . ,xn)∧not P(x1, . . . ,xn) |
P is the n-ary predicate symbol of a shifted atom}.

Notice that we do not add clauses complementary to the “shifted atoms consistency”
clauses, i.e., P(x1, . . . ,xn)∨not P(x1, . . . ,xn)←'. They could be included but are evi-
dently superfluous.

Let us continue the example given at the end of the previous section. We can use basic
shifting to move negative occurrences of functional terms into heads. In the example,
instead of the clause (∗) we get the following.

dom(x)← not p(x) r(x)∨not p(f(x))← q(x) (∗∗)
dom(x)← r(x) ⊥← not p(x)∧p(x)

This gets rid of the problematic clause (∗). Even in the presence of an additional
clause, say, q(x) ←', which leads to the clauses dom(a) ←' and q(x)← dom(x),
termination of BUMG can be achieved. For instance, in a hyperresolution-like setting
and with splitting enabled the MSPASS prover [20] splits the derived clause r(a)∨
not p(f(a)), considers the case with the smaller literal r(a) first and terminates with
a model. This is because a finite completion is found without considering the case of
the bigger literal not p(f(a)), which would have added the deeper term f(a) to the do-
main. The same behaviour can be achieved for example with the KRHyper BUMG
prover.

As can be seen in the example, the basic shifting transformation trades the gener-
ation of new domain elements for a smaller clause body (by removing literals from
it). Of course, a smaller clause body is undesirable for BUMG methods, as then the
clause can be used as a premise more often. To (partially) avoid this effect, we propose
an additional transformation to be performed prior to the basic shifting transformation.
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For a clause set M, the partial flattening transformation is the clause set pf(M) obtained
by applying the following steps.

(0) Initialization. Initially, let pf(M) := M.
(1) Reflexivity. Extend pf(M) by the unit clause x≈ x←'.
(2) Partial flattening. For each clause H ← B in pf(M), let t1, . . . ,tn be all top-level

terms occurring in the non-equational literals in the body B that are proper func-
tional terms, for some n ≥ 0. Let x1, ...,xn be fresh variables. Replace the clause
H ← B [t1, . . . ,tn] by the clause

H ← B [x1, . . . ,xn]∧ t1 ≈ x1∧·· ·∧ tn ≈ xn.

It should be noted that the equality symbol ≈ need not be interpreted as equality, but
could. (Un-)satisfiability (and logical equivalence) is preserved even when reading it
just as “unifiability”. This is achieved by the clause x≈ x←'.

In our running example, applying the transformations pf, bs and rr, in this order,
yields the following clauses (among other clauses, which are omitted because they are
not relevant to the current discussion).

r(x)∨ f(x) �≈ u← q(x)∧p(u) dom(x)← x �≈ y dom(x)← r(x)
⊥← x �≈ y∧ x≈ y dom(y)← x �≈ y

Observe that the first clause is more restricted than the clause (∗∗) above because of the
additional body literal p(u).

The reason for not extracting constants during partial flattening is that adding them
to the domain will not cause non-termination of BUMG methods. It is preferable to
leave them in place in the body literals because they have a stronger constraining ef-
fect than the variables introduced otherwise. Extracting top-level terms from equations
has no effect at all. Consider the unit clause ⊥ ← f (a) ≈ b, and its partial flattening
⊥← x≈ b∧ f (a)≈ x. Applying basic shifting yields f (a) �≈ x← x≈ b, and, hyperres-
olution with x≈ x←' gives f (a) �≈ b←'. This is the same result as obtained by the
transformations as defined. This explains why top-level terms of equational literals are
excluded from the definition. (One could consider using “standard” flattening, i.e. re-
cursively extracting terms, but this does not lead to any improvements over the defined
transformations.)

Finally, combine basic shifting and partial flattening to give the shifting trans-
formation, formally defined by sh := pf ◦ bs, i.e. sh(M) = bs(pf(M)), for any clause
set M.

Proposition 3.2 (Completeness of shifting (wrt. E-interpretations)). Let M be a
clause set. (i) If sh(M) is satisfiable then M is satisfiable. (ii) If sh(M) is E-satisfiable
then M is E-satisfiable.

3.3 Blocking

Our final transformation is intended to be a mechanism for detecting periodicity in the
derived models. By definition, the blocking transformation of a clause set M is the
clause set bl(M) obtained from M by carrying out the following steps.
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(0) Initialization. Initially, let bl(M) := M.
(1) Axioms describing the subterm relationship. Let sub be a “fresh” binary predi-

cate symbol not in ΣP. Extend bl(M) by sub(x,x)← dom(x) and, for every n-ary
function symbol f ∈ Σ f and all i ∈ {1, . . . ,n}, add the clauses

sub(x, f (x1, . . . ,xn))← sub(x,xi)∧dom(x)∧dom( f (x1, . . . ,xn)).

(2) Subterm equality case analysis. Extend bl(M) by these clauses.

x≈ y∨ x �≈ y← sub(x,y) ← x≈ y∧ x �≈ y

The blocking transformation preserves range-restrictedness. In fact, because the dom
predicate symbol is mentioned in the definition, the blocking transformation can be
applied meaningfully only in combination with range-restricting transformations.

Reading sub(s, t) as “s is a subterm of t”, the Step (1) in the blocking transformation
might seem overly involved, because an apparently simpler specification of the subterm
relationship for the terms of the signature Σ f can be given. Namely:

sub(x,x)← dom(x) sub(x, f (x1,x2 . . . ,xn))← sub(x,xi)

for every n-ary function symbol f ∈ Σ f and all i ∈ {1, . . . ,n}. This clause set is range-
restricted. Yet, this specification is not suitable for our purposes. For example, for a
given constant a and a unary function symbol f, when just dom(a) alone has been de-
rived, a BUMG procedure derives an infinite sequence clauses: sub(a,a), sub(a, f(a)),
sub(a, f(f(a))), . . . . This does not happen with the specification in Step (1). It ensures
that conclusions of BUMG inferences involving sub are about terms currently in the
domain, and the domain is always finite.

To justify the clauses added in Step (2) we continue this example and suppose an in-
terpretation that contains dom(a) and dom(f(a)). These might have been derived earlier
in the run of a BUMG prover. Then, from the clauses added by blocking, the (necessar-
ily ground) disjunction f(a)≈ a∨ f(a) �≈ a←' is derivable. Now, it is important to use a
BUMG prover with support for splitting and to equip it with an appropriate search strat-
egy. In particular, when deriving a disjunction like the one above, the ≈-literal should
be split off and the clause set obtained in this case should be searched first. The reason
is that the (ground) equation f(a) ≈ a thereby obtained can then be used for simplifi-
cation and redundancy testing purposes. For example, should dom(f(f(a))) be derivable
now (in the current branch), then any prover based a modern, saturation-based theory of
equality reasoning will be able to prove it redundant from f(a)≈ a and dom(a). Conse-
quently, the domain will not be extended explicitly. The information that dom(f(f(a)))
is in the domain is however implicit via the theory of equality.

The blocking transformation was designed to realize a “loop check” for the con-
struction of a domain, by capitalizing on available, powerful equality reasoning tech-
nology and redundancy criteria from saturation-based theorem proving. To be suitable,
a resolution-based prover, for instance, should support hyperresolution-style inference,
strong equality inference e.g. superposition, splitting, and the possibility to search for
split-off equations first and standard redundancy elimination techniques. Among the
well-known, current resolution theorem provers splitting is not standard, but it is avail-
able in the saturation-based prover SPASS (and the extension MSPASS) and VAMPIRE.
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Unfortunately, the hyper tableau prover KRHyper does not include suitable equality in-
ference rules. Otherwise its splitting could easily be configured to meet our needs.

The blocking transformation is inspired by a technique with the same name (and same
purpose) implemented in tableau provers for description and modal logics. Indeed, when
comparing these techniques in detail it becomes clear that our transformation rr◦bl, when
applied to a knowledge base of a description logic with the finite model property, in con-
junction with a suitable BUMG method (see above), is powerful enough to simulate var-
ious forms of blocking techniques, including (dynamic and static) subset blocking and
equality blocking [1]. But notice that our transformation applies to any first-order clause
set, not only to clauses from the translation of description logic problems. This makes our
approach more widely applicable. For instance, our approach makes it possible to extend
description logics with arbitrary (first-order expressible) “rule” languages. “Rules” pro-
vide a connection to (deductive) databases and are being used to represent information
that is currently not expressible in the description logics associated with OWL DL.

Proposition 3.3 (Completeness of blocking wrt. E-interpretations). Let M be any
clause set. If bl(M) is E-satisfiable then M is E-satisfiable.

Our main theoretical result is the following.

Theorem 3.4 (Completeness of the combined transformations with respect to E-
interpretations). Let M be a clause set and suppose tr is any of the transformations
in {rr,sh ◦ rr,rr ◦ bl,sh ◦ rr ◦ bl}. Then: (i) tr(M) is range-restricted. (ii) tr(M) can be
computed in quadratic time. (iii) If tr(M)∪{x ≈ x← dom(x)} is E-satisfiable then M
is E-satisfiable.

By carefully modifying the definition of rr it is possible to compute the reductions in
linear time. The reverse directions of (iii), i.e. soundness of the respective transforma-
tions, hold as well. The theorem is also true if rr is replaced by crr.

4 Experiments

We have implemented the transformations described in the previous section and carried
out experiments on problems from the TPTP library, Version 3.1.1. (The implementa-
tion, in SWI-Prolog, is available from the first author’s website.) Since the emphasis in
this paper is on disproving theorems, i.e. on reporting whether a given clause set is sat-
isfiable, we have selected for the experiments only satisfiable (clausal) problems from
the TPTP suite, yet all 514 of them. The test were carried out with the BUMG systems
MSPASS (Version 2.0g.1.4+) [20],1 using ordered resolution with maximal selection of
negative literals, and to a lesser extent the KRHyper theorem prover [25]. Both were run
on a Linux PC with an Intel Pentium 4 3.80GHz processor and 1 GByte main memory.

Table 1 is a summary of the results of the MSPASS runs. The column with the head-
ing “#” gives the number of problems in the listed TPTP categories. The subsequent

1 MSPASS is an extension of the prover SPASS [24], but except for a small modification in
the code we did not use any of the extra features of MSPASS. We used MSPASS because it
satisfies the suitability criteria (see previous section), the source code is available, the options
are documented and we are familiar with it.
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Table 1. Result summary of MSPASS runs on the satisfiable clausal TPTP problems

rr rr sh◦ rr sh◦ rr rr◦bl sh◦ rr◦bl crr◦bl
Category # −sp +sp −sp +sp +sp +sp +sp

ALG 1 0 0 0 0 1 0 0
BOO 13 0 0 0 0 2 3 2
COL 5 0 0 0 0 0 0 0
GEO 1 0 0 0 0 0 0 0
GRP 25 7 7 7 8 15 14 12
KRS 8 1 1 4 8 4 6 4
LAT 1 0 0 0 0 1 1 0
LCL 4 0 1 1 1 1 1 1
MGT 10 1 1 3 4 4 5 0
MSC 1 1 1 1 1 1 1 1
NLP 236 49 79 68 96 87 160 68
NUM 1 1 1 1 1 1 1 1
PUZ 20 6 6 6 6 10 10 9
RNG 4 0 0 0 0 0 0 0
SWV 8 0 0 0 0 1 1 0
SYN 176 20 50 20 52 124 125 120
All 514 86 147 111 177 252 328 218

columns give the number of problems solved within the given time limit of five minutes
(CPU time) and 300 MByte main memory consumption (which was not a bottleneck).
Results are presented for the different transformations that were used. For example,
sh ◦ rr◦ bl means that shifting, the new range-restriction and blocking was used; +sp,
respectively −sp, indicate whether splitting was enabled or disabled. The last column,
crr◦ bl, contains the results for the classical range-restricting transformation in combi-
nation with blocking. (For the reasons mentioned before, evaluating the classical range-
restricting transformation without blocking is not of interest for satisfiable problems.)
Testing the crr◦bl setting is interesting because it allows us to assess the significance of
the shifting and our new range-restricting transformations in comparison with classical
range-restriction. As can be seen from the number of problems solved, the sh, rr, and
in particular, the sh◦ rr transformations performed much better than crr in combination
with bl. This demonstrates the need for all our new transformations. The runtimes for
the problems solved spanned the whole range, from less than one second to almost all
of the time allowed. It is not a mistake that no results are given for transformations with
blocking but no splitting; this would not make sense.

Let us now compare the individual combinations and discuss our observations from
the experiments conducted with MSPASS. Broadly, the results indicate that the per-
formance for the combination (rr,−sp) was inferior to that for (rr,+sp) and for (sh ◦
rr,−sp), and each of these was inferior to the performance for (sh ◦ rr,+sp). There
were only very few problems that were solved by an “inferior” combination alone. This
suggests that switching splitting on is advisable, and that shifting is an effective im-
provement, in particular in combination with splitting. In that combination, splitting
helps in particular to “forget” those atoms in the head of a clause that were introduced
by shifting, which otherwise generates new domain elements.
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The combination (sh ◦ rr,−sp) was inferior to (rr◦ bl,+sp). Our explanation is that
shifting without splitting often generates many deep and long clauses in the search space
which are not redundant according to standard redundancy criteria. Nevertheless, these
clauses are redundant in the sense that they are satisfied by a finite model.

The results obtained for the combinations (sh ◦ rr,+sp) and (rr◦bl,+sp) are incom-
parable. There were many problems over all categories that were solved by either ap-
proach. This confirms our expectation that the shifting and range-restriction techniques
are orthogonal. Shifting tries to avoid the generation of domain elements, but it is some-
times not strong enough. Blocking, by contrast, is a strong technique, which helps to
discover finite models more often, but creates a larger search space.

The combination (sh ◦ rr,+sp) was strictly inferior to (sh ◦ rr◦ bl,+sp). It suggests
that adding blocking to shifting is advisable. This result is somewhat surprising. We ex-
pected that the additional search space introduced by blocking renders some examples
unsolvable that can be solved with shifting alone. Interestingly, not even time-wise did
blocking cause a penalty when shifting alone was sufficient.

The combination (rr ◦ bl,+sp) was in most cases inferior to (sh ◦ rr◦ bl,+sp). The
result was not as uniform as in the previous case, though. There were some satisfiable
problems that were solved with the (rr◦bl,+sp) combination alone (but no other com-
bination). It is not entirely clear, why. On the other hand, there were also some problems
that were not solved with rr ◦ bl, but were solved with most other transformations. For
these problems the search overhead when using blocking seems too big.

We also used KRHyper [25], which is an efficient implementation of the hyper tableau
calculus [3]. On range-restricted clause sets, the hyper tableau calculus is closely related
to resolution with maximal selection and splitting, the instance of MSPASS that we
used. KRHyper, as a tableau calculus, has splitting “built-in”, but it does not include
equality inference rules. It therefore lacks the refinements needed to support the blocking
transformation effectively. We therefore selected all satisfiable TPTP problems without
equality for the tests. There are 309 of these (out of a total of 514).

The results were as follows. The performance of KRHyper for the transformation rr
was inferior to sh ◦ rr. The latter was better on almost all problems, over all categories.
The results parallel those above obtained with MSPASS. This was expected.

Perhaps the most interesting comparison is between KRHyper equipped with the
transformation sh◦ rr and MSPASS equipped with the combination (sh◦ rr,+sp). With
these settings 134 problems were solved by KRHyper and 121 problems were solved
by MSPASS. Specifically, there are 17 problems that were solved by KRHyper but not
by MSPASS, in any combination. The rating of these problems is between 0.00 and
0.80. Most of them are from the NLP category. The reason why KRHyper performed
better than MSPASS lies in its splitting strategy, which is more suitable for our purposes
than the one utilized in MSPASS. (Due to lack of space we do not give details.) It would
therefore be interesting to modify the way splitting is done in MSPASS so that it mimics
KRHyper’s splitting. Other (probably) significant differences are the non-chronological
backtracking schemes employed in KRHyper and MSPASS.

Table 2 summarizes the results with respect to problem rating. The column with the
heading “MSPASS” reflects how many problems were solved, among all the combina-
tions mentioned in Table 1 except crr◦bl. The “KRHyper additional” column says how
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Table 2. Result summary wrt. problem rating

Rating # MSPASS
KRHyper
additional Rating # MSPASS

KRHyper
additional

1.00 4 0 0.40 47 26 1
0.80 57 24 4 0.33 8 4 1
0.67 26 5 0.20 70 50
0.60 44 23 10 0.17 31 10
0.50 5 0 0.00 223 198 1

many problems were solved by KRHyper (using the transformation sh ◦ rr) that were
not solvable in any combination with MSPASS. As far as we know, problems with rat-
ing 0.80 have so far been solved by one theorem prover only. It was notable that each
problem with a rating 0.80 or 0.67 solvable by MSPASS required blocking. On the other
hand, there were several unsolvable “easy” problems.

Together, this indicates that the approach presented here and the more established
methods are orthogonal. This finding was confirmed by a comparison with MSPASS (in
autonomous mode) and Paradox [9], a state-of-the-art MACE-style finite model builder.
We ran Paradox on the same problem set, with the same time limit of five minutes (CPU
time) and a limit on 400 MByte main memory consumption. There were several prob-
lems that were solved by Paradox but not with our methods. On the other side, there
were 21 problems, all of the NLP category, that were be solved with our methods but
not by Paradox. Each of these problems required shifting (and splitting) to be solv-
able by our methods. In about half of the cases blocking was essential, while the other
half were solved by shifting alone. Without shifting (with or without splitting), none of
these problems were solved. The runtimes varied between two and at most 15 seconds.
Memory consumption was not an issue at all. By contrast, for 13 of these 21 problems
Paradox was stopped prematurely because the memory limit was exceeded before the
time limit was reached. We sampled some of these problems and re-ran Paradox with-
out artificial limits. For the problem NLP049-1, for instance, about 10 million (ground)
clauses were generated for a domain size of 8 elements, consuming about 1 GByte of
main memory, and the underlying SAT solver did not complete its run within 15 min-
utes (we stopped it then). This picture seems typical for these problems. Regarding the
comparison with MSPASS in autonomous mode, the differences in which problems
were solvable were more pronounced.

5 Conclusions

We have presented and tested a number of enhancements for BUMG methods. An im-
portant aspect is that our enhancements exploit the strengths of readily available BUMG
system without any, or only little modifications. Our techniques have the advantage over
existing approaches based on transformations to range-restricted clauses that terms are
added to the domain of interpretation on a “by need” basis. Moreover, we present meth-
ods that allow us to extend BUMG methods with a blocking technique, which has only
been used in more the specialized setting for non-classical logics (with tree model prop-
erties). Related research in automated theorem proving has concentrated on developing



138 P. Baumgartner and R.A. Schmidt

refinements of resolution, mainly ordering refinements, for deciding numerous frag-
ments of first-order logic. These fragments are complementary to the fragments that
can be decided by refinements using the techniques presented in this paper. We thus
extend the set of techniques available for resolution methods to turn them into more
effective and efficient (terminating) automated reasoning methods. For example, based
on the results of [21] we can use our transformations to decide the Bernays-Schönfinkel
(BS) class. In particular, we can show that all procedures based on hyperresolution or
BUMG can decide the class of BS formulae and the class of BS clauses (with equality).

Our approach is especially suitable for generating small models and we believe the
approach allows us to compute finite models when they exist. The generated models do
not need to be Herbrand models. It follows from how the transformations work that the
generated models are quasi-Herbrand models, in the following sense. Whenever dom(s)
and dom(t) hold in the (Herbrand) model constructed by the BUMG method, then (as in
Herbrand interpretations) the terms s and t are mapped to themselves in the associated
(possibly non-Herbrand) model. Reconsidering the example in the Introduction of the
two unit clauses P(a) and Q(b), the associated model will map a and b to themselves,
regardless as to which transformations are applied (as long as it includes rr). In this
way, more informative models are produced than those computed by, e.g., MACE- and
SEM-style finite model searchers.

We have implemented the approach and tested it with existing first-order logic the-
orem provers. The results demonstrate that our transformations are quite effective and
many difficult TPTP problems can now be solved by BUMG methods, especially reso-
lution with maximal selection or hyperresolution in MSPASS, and KRHyper. However,
the results are far from conclusive, and we plan to develop and evaluate variants of
our transformations, and experiment with alternative splitting strategies (particularly
for MSPASS). Studying how well the ideas and techniques discussed in this paper can
be exploited and behave in BUMG provers, and also tableau-based provers and other
provers (including resolution-based provers) is very important but is beyond the scope
of the present paper. We have started experimenting with another prover, Darwin [2],
and first results are very encouraging. An in-depth comparison and analysis of BUMG
approaches with our techniques and MACE-style or SEM-style model generation would
also be of interest. Another source for future work is to combine our transformations
with available BUMG techniques and improvements, such as magic sets transforma-
tions [14,23], a typed version of range-restriction [4], and minimal model computation.
We speculate that our transformations carry over to the case with default negation, thus
advancing, for example, answer-set programming beyond its current limitations.

Acknowledgement. Thanks to U. Furbach for comments on the paper and discussions.
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1 Introduction

In recent years, formal verification of hardware and software components has in-
creasingly attracted interest from both academia and industry. The widespread
use of automated reasoning techniques requires tools that are easy to use and
support standardised protocols and data exchange formats. In [1] the first au-
thor presented the MathWeb Software Bus, a first step towards re-usable rea-
soning services. The MathWeb-SB had several drawbacks which limited its us-
ability. For example, it had no service brokering capabilities and the user had
to know exactly which reasoning system to use to solve a problem and how to
access it.

Here we present the MathServe system that overcomes the limitations of the
MathWeb-SB. MathServe offers reasoning systems as Semantic Web Services
described in OWL-S [2]. MathServe’s service broker can automatically find suit-
able services (and compositions of services) to solve a given reasoning problem.
The use of Semantic Web technology allows applications and humans to au-
tomatically retrieve and access reasoning services via the Internet. MathServe
complements similar projects, such as the MathBroker project [3], which describe
computational services as Semantic Web Services. We provide and overview of
the MathServe system in § 2 and describe the evaluation of the system at CASC-
20 in § 3. We conclude and discuss future work in § 4.

2 The MathServe System

The MathServe system is based on state-of-the-art technologies for Semantic
Web Services: It integrates reasoning systems as Web Services. The seman-
tics of these Web Services is described in the OWL-S upper ontology for Web
Services [2]. OWL-S service profiles define the inputs and outputs as well as
the preconditions and effects of Web Services. MathServe services and the ser-
vice broker are accessed by means of standard Web Service languages and
protocols.

Client applications can interact with MathServe in two principal ways: All
reasoning services can be invoked individually with reasoning problems. Com-
plex queries can be sent to the MathServe broker which can perform service
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matchmaking and automated service composition. Given a query containing a
reasoning problem, service matchmaking returns a list of standalone services
that can potentially answer that query. So far, service matchmaking simply per-
forms class subsumption tests on the types of input and output parameters of
available services and the query provided. If no single service can answer a query,
MathServe’s service composer can automatically combine services using classical
AI planning and decision-theoretic reasoning.

Reasoning problems and their solutions are encoded in OWL/RDF format [4].
The primary interface to MathServe is the standard Web Service interface de-
fined in the Web Service Description Language (WSDL). Services are invoked
via the Simple Object Access Protocol (SOAP). Tools and libraries for WSDL
and SOAP are available in many mainstream programming languages. Next to
the SOAP interface, the MathServe broker offers an XML-RPC interface with
convenient interface methods similar to the ones described in [1].

Reasoning Services in MathServe. MathServe provides several reasoning
systems for classical first-order logic with equality as Semantic Web Services: 1)
Services for clause normal form transformation of first-order problems are pro-
vided by the tptp2X utility and the FLOTTER system (available with
SPASS [5]). 2) A problem analysing service can determine the Specialist Prob-
lem Class of a theorem proving problem (see below). 3) Deduction services are
provided by state-of-the-art Automated Theorem Proving (ATP) systems. 4)
Transformations of formal proofs are performed by the systems Otterfier [6]
and TRAMP [7]. We cannot describe all these services in this paper. Detailed
descriptions of the services provided by Otterfier and TRAMP can be found
in [6]. In this paper, we focus on first-order ATP services. With respect to ATP
services, MathServe is similar to the SSCPA system1, which has been devel-
oped for human users, while MathServe’s services can be consumed by software
applications.

The latest version of MathServe offers the ATP systems DCTP 10.21p, EP
0.91, Otter 3.3, SPASS 2.2, Vampire 8.0 and Waldmeister 704 as Semantic Web
Services (see [5] for ATP system descriptions). All theorem proving services
support the same Web Service interface and can be invoked with a theorem
proving problem, a CPU time limit, and (optionally) prover-specific options.
The answers provided by ATP services specify unambiguously what has been
established by the underlying system. For this, we developed an ontology of 18
well-defined ATP statuses [8]. Furthermore, results of ATP services contain the
complete output of the prover, a reference to the problem submitted, the CPU
and wall-clock time used, and, if available, resolution proofs in the new TPTP
format.

OWL-S Descriptions of ATP Services. The performance of an ATP sys-
tem depends on the computational resources given to the prover as well as the
type of the problem to solve. Sutcliffe and Suttner [9] identified six “objective
problem features” that have an impact on the performance of ATP systems. The
1 Accessible via the TPTP web site (http://www.tptp.org).
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profile VampireATP:
inputs: tptp problem :: mw#TptpProblem

time res :: mw#TimeResource
outputs: atp result :: mw#FoAtpResult
preconds:
effects: resultFor(atp result , tptp problem)
categs:
params: problemClass(tptp problem, mw#FOF NKC EPR)

⇒ status(atp result , stat#Theorem) (0.93) (4755ms)
problemClass(tptp problem, mw#CNF NKS RFO SEQ NHN)
⇒ status(atp result , stat#Unsatisfiable) (0.52) (20984ms)

. . .
stat = http://www.mathweb.org/owl/status.owl

mw = http://www.mathweb.org/owl/mathserv.owl

Fig. 1. The OWL-S service profile of VampireATP

meaningful combinations of these features define 21 Specialist Problem Classes
(SPCs) [9]. 2 All OWL-S service profiles for the above-mentioned ATP systems
are annotated with data reflecting the performance of the system on the TPTP
Library v3.1.1. For every SPC and every ATP system we have calculated the
ratio of (TPTP Library) problems in that SPC solved by the system. We assume
this ratio to be a good estimate for the system’s probability of success on that
SPC. The average CPU time for solved problems represents the average cost of
the ATP service on that SPC. The performance data is modelled as conditional
probabilistic effects of ATP service profiles and is used by the MathServe broker
to choose the most suitable service for given proving problems.

Fig. 1 shows the OWL-S service profile of the service for Vampire 8.0.3 Like
all ATP services VampireATP takes a problem in the new TPTP format and
a TimeResouce as inputs. It returns a first-order ATP result as described above.
The service parameters contain the performance information, which indicates, for
instance, that the service can prove the input problem with probability 93% if the
problem is in the SPC FOF NKC EPR. The average time for proving conjectures
in this SPC is 4.8 secs. For CNF NKS RFO SEQ NHN the probability of success is
only 52% and the average CPU time for proving is 21 secs. The service profile
contains similar statements for the remaining 19 SPCs.

Automated Reasoning Service Composition. Service composition in
MathServe is a two-stage process. In the first stage the classical AI planning
system PRODIGY [10] is used to find suitable sequences of reasoning services
that can potentially answer a given query. In the second stage, the plans found
by PRODIGY are combined and the probabilistic effects of a service (e.g., the

2 For instance, CNF NKS RFO SEQ NHN is the SPC of problems in clause normal form
that are potential “theorems” (not known to be satisfiable, NKS), are real first-order
problems (RFO), contain some equality literals (SEQ) and non-Horn clauses (NHN).

3 The XML namespaces stat and mw refer to MathServe’s domain ontologies.
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performance data in Fig. 1) are taken into account. A decision-theoretic rea-
soner computes an optimal policy, i.e. a program with conditional statements
that maximises the probability of success by choosing different (parts of) plans
in the context of a particular reasoning problem. In the case of ATP services, for
instance, the optimal policy first analyses the problem at hand and then chooses
the most promising ATP service depending on the SPC of the problem.

3 System Evaluation

MathServe participated in the demonstration division of the 20th CADE ATP
System Competition (CASC-20) [5]. We evaluated MathServe’s brokering capa-
bilities for theorem proving services. Since MathServe does not constitute a new
ATP system, but employs other ATP systems, it participated in the demon-
stration division in which systems are not formally ranked. As a preparation
for the system competition we measured the performance of the ATP systems
EP 0.82, Otter 3.3, SPASS 2.1 and Vampire 7.0 on the TPTP Library (v3.0.1)
with a CPU time limit of 300 seconds per problem. The OWL-S profiles were
annotated with the resulting performance information as described in the previ-
ous section. The MathServe broker computed an optimal policy from this data.
The problem set of CASC-20 was composed of 660 randomly chosen problems
from the TPTP Library (v3.1.0). 147 of these problems had not been seen by
the competition participants before. A MathServe client was run sequentially
on all 660 problems with a 600sec CPU time limit. The broker’s optimal policy
determined the SPC of each problem and chose the most promising ATP ser-
vice according to the performance data recorded before. MathServe could solve
392 problems. Table 1 shows that MathServe could not solve as many prob-
lems as the leading ATP systems EP (409) and Vampire (430). This was due
to the significant improvements made to the most recent versions of these ATP
systems. These improved systems were not available to MathServe at the time
of the competition. Furthermore, MathServe could not handle six problems of
extraordinary size (> 2MB). If MathServe had used the competition versions of
EP and Vampire (and the corresponding optimal policy) it would have solved
440 problems. After CASC-20 we improved MathServe by integrating the latest
versions of the ATP systems EP and Vampire as well as the specialised provers
DCTP and Waldmeister. We also changed the problem processing of MathServe
such that it can now handle large problems.

Table 1. MathServe’s performance at CASC-20 compared to EP and Vampire

System Problems Problems Percentage Percentage
given solved of given complete

MathServe 0.62 660 392 59.4% 59.4%
Ep 0.9pre3 660 409 62.0% 62.0%
Vampire 8.0 540 430 79.6% 65.2%



144 J. Zimmer and S. Autexier

4 Conclusions and Future Work

We described the MathServe system which offers several reasoning systems as
Semantic Web Services. All services are accessible via standard Web Service
protocols. MathServe’s service broker can automatically find suitable services
(and service compositions) for a given reasoning problem. The evaluation of
MathServe in CASC-20 showed that the system performs well in a competition
environment. In the future we will extend MathServe with services provided
by finite model finding systems and decision procedures. Furthermore, we are
planning to enhance the semantic descriptions of composite services by allowing
parallel execution (as offered by the SCCPA system) and explicit time resource
assignments.

The MathServe system is free software available under the GNU Public Li-
cense. A binary distribution of the MathServe system is available from the system
web page at http://www.ags.uni-sb.de/∼jzimmer/mathserve.html. The system
sources can be obtained via anonymous CVS.
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1 Introduction

Dynamic geometry tools (e.g., Cinderella, Geometer’s Sketchpad, Cabri, Euklei-
des1) visualise geometric objects, allow interactive work, and link formal, ax-
iomatic nature of geometry (most often — Euclidean) with its standard models
(e.g., Cartesian model) and corresponding illustrations. These tools are used in
teaching and studying geometry, some of them also for producing digital illus-
trations. The common experience is that dynamic geometry tools significantly
help students to acquire knowledge about geometric objects. However, despite
the fact that geometry is an axiomatic theory, most (if not all) of these tools
concentrate only on concrete models of some geometric constructions and not
on their abstract properties — their properties in deductive terms. The user can
vary some initial objects and parameters and test if some property holds in all
checked cases, but this still does not mean that the given property is valid.

We have extended GCLC, a widely used dynamic geometry package,2 with
a module that allows formal, deductive reasoning about constructions made in
the main, drawing module. The built-in theorem prover (GCLCprover in the
following text), is based on the area method [1,2,6]. It produces proofs that are
human-readable (in LATEX form), and with a justification for each proof step. It
is also possible, via a conversion tool, to reason about constructions made with
Eukleides [7,9]. Hence, the prover can be used in conjunction with other dynamic
� This work was partially supported by the programme POSC, by the Centro Inter-

national de Matemática (CIM), under the programme “Research in Pairs”, while
visiting Coimbra University under the Coimbra Group Hospitality Scheme. Also,
partially supported by Serbian Ministry of Science and Technology grant 144030.

�� This work was partially supported by programme POSC.
1 See http://www.cinderella.de, http://www.keypress.com/sketchpad/,
http://www.cabri.com, http://www.eukleides.org

2 GCLC (originally a tool for producing geometrical illustrations for LATEX, hence its
name — Geometrical Constructions → LATEX Converter) [3,4] provides support for
a range of geometrical constructions, isometric transformations, parametric curves,
but also for symbolic expressions, and program loops. The basic idea behind GCLC
is that constructions are formal procedures, rather than drawings. Thus, producing
illustrations is based on “describing figures” rather than of “drawing figures”.
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geometry tools, which demonstrates the flexibility of the developed deduction
module. Closely linked to the mentioned tools is GeoThms — a web tool that
integrates dynamic geometry tools, geometry theorem provers, and a repository
of geometry theorems and proofs. This integrated framework for constructive ge-
ometry, provides an environment suitable for new ways of studying and teaching
geometry at different levels.

2 GCLCprover

Automated theorem proving in geometry has two major lines of research: syn-
thetic proof style and algebraic proof style (see, for instance, [5] for a survey).
Algebraic proof style methods are based on reducing geometric properties to
algebraic properties expressed in terms of Cartesian coordinates. These methods
are usually very efficient, but the proofs they produce do not reflect the geo-
metric nature of the problem and they give only a yes/no conclusion. Synthetic
methods attempt to automate traditional geometry proof methods.

The area method. This method (in the core of the prover built into GCLC) is a
synthetic method providing traditional (not coordinate-based), human-readable
proofs [1,2,6]. The proofs are expressed in terms of higher-level geometric lemmas
and expression simplifications. The main idea of the method is to express hypothe-
ses of a theorem using a set of constructive statements, each of them introducing
a new point, and to express a conclusion by an equality of expressions in geomet-
ric quantities (e.g., signed area of a triangle), without referring to Cartesian co-
ordinates. The proof is then based on eliminating (in reverse order) the points in-
troduced before, using for that purpose a set of appropriate lemmas. After elim-
inating all introduced points, the current goal becomes an equality between two
expressions in quantities over independent points. If it is trivially true, then the
original conjecture was proved valid, if it is trivially false, then the conjecture was
proved invalid, otherwise, the conjecture has been neither proved nor disproved.
In all stages, different simplifications are applied to the current goal. Some steps
require proving some lemmas (giving proofs on different levels).

Geometrical quantities. In our implementation of the area method, we deal with
the following basic geometric quantities: ratio of directed segments (AB

CD
), signed

area (SABC — signed area of a triangle ABC) and Pythagoras difference (PABC

= AB2 + CB2 − AC2) (for details see [8]). The conjecture is built from these
geometric quantities (over points already introduced within the current construc-
tion), eventually combined together by standard arithmetic operators. A wide
range of geometric conjectures can be simply stated in that way.

Properties of the area method. The procedure based on the area methods is
terminating, sound, and complete: it can prove any geometry theorem expressed
in terms of geometric quantities, and involving only points introduced by using
a specific set of constructions (see below). Therefore, the procedure is a decision
procedure for the described fragment of geometry. This fragment can be defined
as axiomatic quantifier-free theory with the set of axioms equal to the set of all
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simplification and elimination rules (taken as not-oriented equalities). It can be
easily shown that this theory is a sub-theory of Euclidean geometry augmented
by the theory of real numbers. The method does not have any branching, which
makes it very efficient for many non-trivial geometry theorems. The method can
transform a conjecture given as a geometry quantity of a degree d, involving n
constructed points, to a quantity not involving constructed points, and with a
degree at most 5d35n [1], while this number is usually much less, and not reached,
also thanks to the used simplification steps.

Primitive steps. Our theorem prover is a sort of rational reconstruction of the
area method. The proofs are built from primitive steps: elimination steps and
simplification steps. Simplifications are made explicit and based on rewrite rules.
We divide simplification steps into two groups: (i) algebraic simplifications —
apply simplification rewrite rules (not directly related to geometry, but to the
properties of reals ) such as: x + 0 → x, x

y + u
v →

x·v+u·y
y·v , etc; (ii) geometric

simplifications — apply simplification rewrite rules, directly related to geometric
quantities such as: PAAB → 0, SABC → SBCA. All simplifications and elimina-
tion lemmas are proved in full details in [8].

Integration. It is often the case that an application providing different function-
alities is built around a theorem prover. In GCLC, we have faced the challenging
problem of integrating a theorem prover into well-developed tool with well de-
fined set of functionalities, and we have succeeded in building a system where
the prover is tightly integrated. This means that one can use the prover to rea-
son about a GCLC construction (i.e., about objects introduced in it), without
adapting it for the deduction process — the user only needs to add the conclusion
he/she wants to prove. GCLC and GCLCprover share (only) the parsing module,
which is responsible for processing the input file and passing to GCLCprover the
construction steps performed. These steps are internally transformed into prim-
itive constructions of the area method, and in some cases, some auxiliary points
are introduced. The constructions accepted by GCLCprover are: construction of
a line given two points; an intersection of two lines; the midpoint of a segment; a
segment bisector; a line passing through a given point, perpendicular to a given
line; a foot from a point to a given line; a line passing through a given point,
parallel to a given line; an image of a point in a given translation; an image of
a point in a given scaling transformation; a random point on a given line.

3 GeoThms

GeoThms is a framework that links dynamic geometry tools (GCLC, Eukleides),
geometry theorem provers (GCLCprover), and a repository of geometry prob-
lems (geoDB). GeoThms provides a Web workbench in the field of constructive
problems in Euclidean geometry. Its tight integration with dynamic geometry
software and automatic theorem provers (GCLC, Eukleides, and GCLCprover,
for the moment) and its repository of theorems, figures and proofs, gives the
user the possibility to easily browse through the list of geometric problems,
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their statements (both in natural-language form and as GCLC/Eukleies code),
illustrations and proofs, and also to interactively use the drawing and proving
programs.

4 Implementation and Experiences

The GCLCprover was implemented in C++ (having around 7000 lines of code)
and is very efficient. The theorem prover produces proofs in LATEX form and a re-
port about the proving process: whether the conjecture was proved or disproved,
data about CPU time spent, and the number of proof steps performed (in several
categories). At the beginning of the proof, auxiliary points are defined. For each
proof step, there is a justification, and (optionally) its semantics counterpart
(not used in the proof itself, but it can be used for testing conjectures). The
prover can prove many complex geometric problems in milliseconds, producing
short and readable proofs.3 Results shown in Table 1 were obtained on a PC
Intel Pentiun-IV, 3.2GHz, 1GB RAM. Let us consider, as a simple example, the
Midpoint’s theorem, which can be expressed and proved within GCLC. The proof
produced in 0.002s is very small and readable (see Figure 1).

Table 1. Experimental results

Theorem elimination steps geometric steps algebraic steps time (sec)
Ceva 3 6 23 0.001
Gauss line 14 51 234 0.029
Midpoint 8 19 45 0.002
Thales 6 18 34 0.001
Menelaus 5 9 39 0.002
Pappus’ Hexagon 24 65 269 0.040
Areas of Parallelograms 62 152 582 0.190

GeoThms is implemented in MySQL and PHP and uses LATEX (and some
other auxiliary tools) to format the output and show data in a web-page.

GCLC is available from: http://www.matf.bg.ac.yu/~janicic/gclc/, and
GeoThms is accessible from: http://hilbert.mat.uc.pt/~geothms.

5 Future Work and Conclusion

The GCLCprover and GeoThms are parts of an integrated framework for con-
structive geometry, providing an environment suitable for studying and teaching
geometry. In this system, the axiomatic nature of geometric objects is tightly
linked to their standard representation (in Cartesian plane) and the formal rea-
soning is linked to human intuition. We believe that such a system brings new

3 Some theorems need more then 10000 steps to be proved.
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Fig. 1. Midpoint’s Theorem: the GCLC code with the conjecture (AB‖A1B1, expressed
as SA1B1A=SA1B1B) (left), the corresponding illustration and a part of the proof (right)

dimension in teaching and studying geometry. This system, and the GEX tool4

(new version is currently under development) are, to our knowledge, the only
dynamic geometry tools with automated deduction modules (however, unlike
GCLCprover, the GEX prover implements an algebraic proof method).

We are planning to extend the prover with support for additional sets of con-
structions and additional heuristics, and to use the prover for run-time control
of correct geometric constructions. We are also considering implementing (and
linking to dynamic geometry tools) other methods for automated proving of
geometry theorems. Regarding GeoThms, we are planning to work on further
integration of the visualisation tools and proving tools, and on further function-
alities for interactive work.
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Abstract. We present a tool for checking the sufficient completeness
of left-linear, order-sorted equational specifications modulo associativity,
commutativity, and identity. Our tool treats this problem as an equa-
tional tree automata decision problem using the tree automata library
CETA, which we also introduce in this paper. CETA implements a semi-
algorithm for checking the emptiness of a class of tree automata that
are closed under Boolean operations and an equational theory contain-
ing associativity, commutativity and identity axioms. Though sufficient
completeness for this class of specifications is undecidable in general, our
tool is a decision procedure for subcases known to be decidable, and has
specialized techniques that are effective in practice for the general case.

1 Introduction

An equational specification is sufficiently complete when enough equations have
been specified so that the functions defined by the specification are fully defined
on all relevant data elements. This is an important property to check, both to
debug and formally reason about specifications and equational programs. For ex-
ample, many inductive theorem proving techniques are based on the constructors
building up the data and require that the specification is sufficiently complete.

Sufficient completeness was introduced in the Ph.D. thesis of Guttag. (see [4]
for a more accessible treatment). For a good review of literature up to the late
80s, as well as some key decidability/undecidability results see [8, 9]. More recent
developments show sufficient completeness as a tree automata decision problem
(see [2] and references there). For unsorted, unconditional, weakly-normalizing,
and confluent specifications, the problem is EXPTIME-complete [3].

Over the last 20 years, there have been numerous rewriting-based program-
ming languages developed which support increasingly more expressive equational
logics, including OBJ, Maude, ELAN, and CafeOBJ. These developments lead to
a corresponding demand for reasoning tools that support these formalisms. In
particular, there is a practical need for sufficient completeness checkers support-
ing: (1) conditional rewrite rules; (2) more expressive type formalisms such as
order-sorted logic and membership equational logic; and (3) rewriting modulo
� Research supported by ONR Grant N00014-02-1-0715.
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associativity, commutativity, and identity. Our earlier work in [5] addresses (1)
and (2) through integration with an inductive theorem prover. Other recent
work in [1] also addresses (1) using tree automata with constraints. The new
tool we present in this paper addresses (2) and (3). Our checker is publicly
available for download along with documentation and examples at the website:
http://maude.cs.uiuc.edu/tools/scc/.

In an equational specification E = (Σ,E) with rewriting modulo axioms, the
equations are partitioned into two disjoint sets A and R. The set A consists
of any combination of associativity, commutativity, and identity axioms. The
other equations l = r ∈ R are treated as rewrite rules l → r modulo A. A term
t rewrites to u modulo A, denoted t →R/A u when there is a context C and
substitution θ such that t =A C[lθ] and C[rθ] =A u.

Our checker casts the left-linear, order-sorted sufficient completeness problem
with rewriting modulo A as a decision problem for equational tree automata [10].
Equational tree automata over left-linear theories recognize precisely the equa-
tional closure of regular tree languages. However, since equational tree automata
with associative symbols are not closed under Boolean operations [10], for check-
ing properties such as inclusion, universality, and intersection-emptiness, we
found it useful to introduce a new tree automata framework in [6], called Propo-
sitional Tree Automata (PTA), that is closed with respect both to Boolean op-
erations and an equational theory.

2 Order-Sorted Sufficient Completeness

The motivation for sufficient completeness of a specification stems from the idea
that introducing a new defined function should leave the underlying data ele-
ments unchanged. From a model-theoretic perspective, the initial model of the
specification with the defined functions should be isomorphic to the initial model
with only the constructor declarations. In the order-sorted context, we want to
preserve this view of sufficient completeness, but the picture becomes more sub-
tle due to the subsort relation and overloading — a symbol may be overloaded so
that it is a constructor on one domain, and a defined symbol on another domain.
As an example, we present a specification of lists of natural numbers with an
associative append operator in Maude syntax.

fmod NATLIST is
sorts Nat List NeList . subsorts Nat < NeList < List .
op 0 : -> Nat [ctor]. op s : Nat -> Nat [ctor].
op nil : -> List [ctor].
op __ : NeList NeList -> NeList [ctor assoc id: nil].
op __ : List List -> List [assoc id: nil].
op head : NeList -> Nat . op tail : NeList -> List .
op reverse : List -> List .
var N : Nat . var L : List .
eq head(N L) = N . eq tail(N L) = L .
eq reverse(N L) = reverse(L) N . eq reverse(nil) = nil .

endfm
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In this specification, the signature Σ is defined by the sort, subsort, and
operator declarations. The ctor attribute specifies an operator as a construc-
tor. The operator attributes assoc and id: nil define the axioms in A. The
equations declarations define the rules in R. The append operator __ is over-
loaded: it is defined on all lists, but only a constructor on non-empty lists.

In the unsorted context, sufficient completeness forweakly-normalizing and con-
fluent specifications is usually checked by showing that every term containing a de-
fined symbol at the root is reducible. In an order-sorted context in which the same
symbol can be both a constructor and defined symbol, this check is too strong. In-
stead, we need to check that that for each term f(t1, . . . , tn) where f : s1 . . . sn → s
is a defined symbol and every ti is a constructor term of sort si, either f(t1, . . . , tn)
is reducible, or f(t1, . . . , tn) is itself a constructor term of sort s. For details on
why this property implies sufficient completeness, see [6] (which shows this in an
even more general membership-equational context). It should be noted that there
is an additional requirement for order-sorted specifications: the equations should
be sort-decreasing. By this we mean that applying an equation l = r to a term lθ
of sort s should yield a term rθ whose sort is less than or equal to s.

Our paper [6] shows in detail how to convert the sufficient completeness property
into a propositional tree automata emptiness problem. The key idea is that given
an order-sorted specification E = (Σ,A ∪ R) with sorts S, we can construct the
following automata for each sort s ∈ S: (1) an automatonAc

s accepting construc-
tor terms of sort s; (2) an automaton Ad

s accepting terms whose root is a defined
symbol of sort s and whose subterms are constructor terms; and (3) an automa-
tonAr accepting any term reducible by equations inR. If E is weakly-normalizing,
ground confluent, and ground sort-decreasingmoduloA, then E is sufficiently com-
plete iff. L(Ad

s ) ⊆ L(Ar)∪L(Ac
s) for each sort s ∈ S. Using our propositional tree

automata framework,we in turn translate this problem into checking the emptiness
of

⋃
s∈S L(Ad

s )− (L(Ar) ∪ L(Ac
s)).

This emptiness problem is decidable when the axioms in the specification are
any combination of associativity, commutativity, and identity, except when a sym-
bol is associative but not commutative. For the case of commutativity alone, this
was shown in [10]. For symbols that are both associative and commutative, this
was shown in [11]. Identity equations are transformed into identity rewrite rules
using a specialized completion procedure along the lines of coherence completion
in [13]. Our emptiness test identifies terms that are in normal form with respect to
the identity rewrite rules. For symbols that are associative and not commutative,
the emptiness problem is undecidable. For these symbols, our tool uses the semi-
algorithm in [7], which we have found works well in practice. Collectively, these
results allow our tool to handle specifications with any combination of associativ-
ity, commutativity, and identity axioms.

3 The Sufficient Completeness Checker (SCC)

The SCC has two major components: an analyzer written in Maude that generates
the tree automaton emptiness problem from a Maude specification; and a C++
library called CETA that performs the emptiness check.
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Analyzer: The analyzer accepts commands from the user, generates PTA from
Maude specifications, forwards the PTA decision problems to CETA, and presents
the user with the results. If the specification is not sufficiently complete, the tool
shows the user a counterexample illustrating the error.The analyzer consists of ap-
proximately 900 lines of Maude code, and exploits Maude’s support for reflection.
The specifications it checks are also written in Maude.

If the user asks the tool to check the sufficient completeness of a specification
that is not left-linear and unconditional, the tool transforms the specificationby re-
naming variables and dropping conditions in to a checkable order-sorted left-linear
specification. Even if the tool is able to verify the sufficient completeness of the
transformed specification, it warns the user that it cannot show the sufficient com-
pleteness of the original specification. However, any counterexamples found in the
transformed specification are also counterexamples in the original specification.
We have found this feature quite useful to identify errors in Maude specifications
falling outside the decidable class — including the sufficient completeness checker
itself.

CETA: The propositional tree automaton generated by the analyzer is forwarded
to the tree automata library CETA which we have developed. CETA is a complex
C++ library with approximately 10 thousand lines of code. Emptiness checking
is performed by a subset construction algorithm extended with support for asso-
ciative and commutativity axioms as described in [7]. The reason that CETA is so
large is that the subset construction algorithm relies on quite complex algorithms
on context free grammars, semilinear sets, and finite automata. We have found that
CETA performs quite well for our purposes. Most examples can be verified in sec-
onds. The slowest specification that we have checked is the sufficient completeness
analyzer itself — the library requires just under a minute on a Pentium 4 desktop to
check the 900 lines of Maude code in the analyzer. As an example, we present a tool
session in which we check two specifications: NATLIST from the previous section;
and NATLIST-ERRORwhich updates NATLIST to change the operator declaration of
head from op head : NeList -> Nat to op head : List -> Nat.

Maude> in natlist.maude
==========================================
fmod NATLIST
==========================================
fmod NATLIST-ERROR
Maude> load scc.maude
Maude> loop init-scc .
Starting the Maude Sufficient Completeness Checker.
Maude> (scc NATLIST .)
Checking sufficient completeness of NATLIST ...
Success: NATLIST is sufficiently complete under the assumption that it is

weakly-normalizing, ground confluent, and sort-decreasing.
Maude> (scc NATLIST-ERROR .)
Checking sufficient completeness of NATLIST-ERROR ...
Failure: The term head(nil)is a counterexample as it is an irreducible

term with sort Nat in NATLIST-ERROR that does not have sort Nat in
the constructor subsignature.
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4 Conclusions

Our work in developing sufficient completeness checkers for more complex equa-
tional specifications has already led to two complementary approaches, each able
to handle specifications outside classes that could be handled by previous appr-
oaches. Although significant progress has been made, there is a great deal of oppor-
tunity both to develop new techniques and to improve the performance of
existing techniques. Additionally, the tools and techniques we have developed are
not restricted to sufficient completeness. Recently, the CETA library has been in-
tegrated into the reachability analysis tool ACTAS [12]. For more details on this,
see CETA’s website at: http://formal.cs.uiuc.edu/ceta/.
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Abstract. A stable proposal for extending the first-order TPTP (Thou-
sands of Problems for Theorem Provers) language to higher-order logic,
based primarily on lambda-calculus expressions, is presented. The pur-
pose of the system is to facilitate sharing of theorem-proving problems
in higher-order logic among many researchers. Design goals are dis-
cussed. BNF2, a new specification language, is presented. Unix/Linux
scripts translate the specification document into a lex scanner andyacc
parser.

1 Introduction

The goal of this work is to extend the current TPTP (Thousands of Problems
for Theorem Provers) language [9] to include adequate support for higher-order
logic, while continuing to recognize the existing first-order language. It was mo-
tivated by a panel discussion at the Workshop on Experimentally Successful
Automated Reasoning in Higher-Order Logic held in conjunction with LPAR-
12, December 2005. The panel discussion conveyed the desire to have a com-
mon language in which various researchers could express benchmark problems
in higher-order logics that would be contributed to a common library along the
lines of the TPTP problem library [8].

The new language developed in this project is tentatively named HOTPTP.
Some of the design goals were

1. The rules of the language should be simple and regular, so that humans can
understand them without too much trouble.

2. The rules of the language should be presented in a specification document
that has sufficient formality and rigor to be unambiguous, yet is not so
technical and complicated that its meaning is obscured.

3. The language should be amenable to straightforward automated parser gen-
eration, with established tools such as lex and yacc, or flex and bison. These
tools accept LALR-1 languages. It would be undesirable to rely on tricks
and extensions that might be supported in one tool and not another.

4. It should be straightforward to set up a Prolog parser for the language, using
Prolog’s read() procedure to accomplish most of the parsing drudgery.
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The rules of the TPTP language, as released with TPTP v3.0.0, already achieved
goals (1), (2), and (4) above quite well. The first step of the project was to
achieve goal (3). During this initial phase, a few ambiguities were discovered
in the existing language, and minor revisions of the rules were implemented to
remove these ambiguities without changing the underlying language. Following
that work, the task of extending the language to accommodate higher order
constructs began.

Briefly, the contributions arising from this project are:

1. The development of BNF2, a new variant of Backus-Naur form. BNF2 is
oriented toward the modern practice of two-level syntax for programming
languages and is easy for humans to read.

2. Unix/Linux scripts to translate BNF2 into input readable by lex and yacc.
3. Stable BNF2 rules that extend the TPTP language and accept a variety of

higher-order logic expressions in a human-readable language.

Software and documents are at http://www.cse.ucsc.edu/~avg/TPTPparser.

2 Specifications with BNF2

The TPTP language was specified in TPTP v3.0.0 using the original stan-
dard Backus-Naur form (BNF) [6], with informal explanations to get over some
rough spots. In this simple and easy-to-read format, which is found in many
programming-language texts, grammar symbols are enclosed in < >, and the
only meta-symbols are the production symbol “::=”, the alternative symbol
“|”, and the repetition symbol “*”; any other character sequence stands for it-
self, and is called a self-declared token. More sophisticated variants have been
proposed over the years; see Section 5.

While trying to write scripts to translate BNF into inputs for lex and yacc
it was realized that standard BNF is ill-suited for specifying tokens. That is,
the modern two-level style of programming-language specification defines tokens
using regular expressions, and defines grammar symbols using context-free pro-
duction rules. A lexical analyzer parses the raw input into tokens, while the
production rules treat tokens as terminal symbols. This distinction is blurred
in standard BNF. Another aspect of the TPTP language that was observed
was that some production rules went beyond specifying the form of the input,
and specified a list of acceptable words. This presented a conflict in that such
words became self-declared tokens. Without making a context-sensitive lexical
analyzer, such words became unavailable for user identifiers.

To overcome these limitations of standard BNF we designed BNF2, a simple
extension of BNF that preserves the easy-to-read format for production rules
and adds different formats to specify semantic rules, tokens, and macros for
tokens. Semantic production rules are ignored for purposes of syntactic parsing,
but are available to specify more detail about the semantic content of certain
sentential forms. All the extensions are implemented by using additional meta-
symbols to specify various rule types, according to the following table. As the
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Meta- Rule
Symbol Type Examples (some are simplified from the TPTP language)
::= Grammar <TPTP input> ::= <annotated formula> | <comment>

<nonassoc op> ::= <=> | => | <= | <~>

<formula role> ::= <lower word>

:== Semantic <formula role> :== axiom | conjecture | lemma |

theorem | negated_conjecture

::- Token <lower word> ::- <lower><alphanum>*

::= Macro <lower> ::: [a-z]

<alphanum> ::: [A-Za-z0-9_]

table shows, a symbol that has a semantic rule must also have a normal grammar
rule if it appears on the right side of any normal grammar rule. The string “<=>”
and following strings are self-declared tokens: grammar symbols must consist of
alphanumerics. The right sides of token and macro rules are lex -ready regular
expressions, except that “< >” need to be converted to “{ }”.

3 System Description

This section describes the system that evaluates a proposed HOTPTP language,
based on a BNF2 specification document produced manually. The system in-
cludes both manual and automated elements. This is not a system to process
an arbitrary BNF2 document; its main purpose is to support TPTP-related
development. Figure 1 provides an overview.

The primary automated part of the system generates an executable parser
from a BNF2 specification document for HOTPTP, following the right branch
of the diagram. This parser is extremely simple, to ensure that the input being
checked is really in the language of the specification document. The first step to
generate a parser is to translate the (ASCII text) BNF2 specification document,
say hotptp-bnf2.txt, into a pair of files, hotptp-1.lex0 and hotptp-1.y,
which are input files for lex (or flex ) and yacc (or bison). Unix/Linux scripts
accomplish this translation, invoking sed, awk, grep, sort, etc. No errors are de-
tected during this step. There is a clear correspondence between grammar rules
in hotptp-bnf2.txt and hotptp-1.y. Tokens have mnemonic names and are
easy to locate in hotptp-1.lex0.

The analysis and compilation of hotptp-1.y by yacc or bison is a critical
step. Grammar errors and ambiguities are often located here after the BNF2
document has passed human inspection. The default library routines are used for
all procedures that are expected to be supplied by the programmer. A standard
semantic action is attached to each grammar rule, which builds a naive parse
tree for each sentence, which may be printed in verbose mode. A syntax error
causes “syntax error” on the stderr stream and a nonzero exit code; the exit
code is zero upon success.

Testing against the full TPTP Problem library requires several minutes. All
files with extension “.p” should be accepted, whereas the TSTP library con-
tains files that are known to have syntax errors. The most volatile files are the
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Design
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Specification
in BNF2

Inputs to
lex, yacc
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Source
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Prolog
Parser
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Semantics

hand-codeErrors, Revise

Test on HOL Examples,
TPTP Library,

and TSTP Library

DONE
(for now)

Errors, Revise

Fig. 1. Overview of the system evaluate a proposed HOTPTP language. Human
activities are shown in italics.

HOL examples, which use the higher order extensions. When a syntax error
or unexpected parse tree occurs, analysis is needed to determine if fault lies
with the formula or the language specification. Based on available examples, the
HOTPTP language has stabilized after about ten iterations of the left branch of
the system diagram.

4 The HOTPTP Syntax Proposal

The complete BNF2 document for the proposed HOTPTP syntax is available as
hotptp-bnf2.txt at the URL given at the end of Section 1. The following ex-
ample illustrates many of the features added to express higher order constructs.
TPTP follows the Prolog convention that variables begin with capital letters,
and uses “?” for ∃ and “!” for ∀.
hof(1, definition,

set_union := lambda [A: $type]: lambda [D: ((A-> $o)-> $o), X: A]:

? [S: (A-> $o)]: ( (D @ S) & (S @ X) ) ).

The new operator “:=” permits a definition at the top level of a “formula”
(Hudak uses “≡” [5]). Other new operators are: “lambda” for lambda abstrac-
tion, “@” for application, and “->” for type mappings. The colon “:” operator
has several new meanings, for typing and lambda expressions. Also, “^” is a syn-
onym for lambda and “>” is a synonym for “->”. We call these new operators
the HOF operators.

Logical operators and HOF operators can be mixed in λ/@ expressions,,
subject to using parentheses as needed. Following the general principle in the
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TPTP language, an apply expression, using one or more binary “@” opera-
tors, must be parenthesized; however, the unary operator λX and its argument
need not be. Note that “@” is left-associative, “->” is right-associative, and
“:” is right-associative, following usual lambda-calculus conventions. Associa-
tivities of existing TPTP operators carry over. The lambda expression shown is:
λA:τ. λD:((A→o)→o). λX :A. ∃S:(A→o). ((D @ S) ∧ (S @ X)).

Variables can be typed at the point where they are bound, but not elsewhere.
Typing is not required. Builtin base types are $type (the set of types), $i (the
set of individuals), and $o (the set of truth values). User-defined base types
can be constants or functional terms. Compound types may be built from base
types with “->”. Constants can be typed where they occur in a formula; the
syntax is (c: (int-> int)) or (c: A), etc. Other expressions cannot be typed.
For example, (g(U, V) : (int-> int-> int)) is impossible (but the apply
expression (g: (int-> int-> int)) @ U @ V is accepted).

Operators other than the HOF operators can be treated as constants by
enclosing them in parentheses, as in (&) or (~) or (=) etc. The expression
( (&) @ X @ Y ) is accepted.

A first-order style functional term can appear where a λ/@ expression is
needed, but λ/@/→ expressions cannot appear inside a functional term. That is,
p((S @ X)) is impossible, but (S @ p(X)) is accepted.

5 Related Work and Acknowledgments

Other variants of BNF have been proposed before BNF2. Extended BNF (EBNF)
was designed by a standards committee to have great generality but is quite
complicated, with about a dozen meta-symbols, and does not distinguish tokens
from grammar symbols. Labeled BNF (LBNF) is designed to generate parsers
automatically [3], and distinguishes tokens from grammar symbols, but is even
more complicated than EBNF.

HOTPTP requirements were culled from Hudak’s exposition of lambda cal-
culus [5], and descriptions of Coq [2], LF [4], and ELF [7]. We thank Chad
Brown and Chris Benzmüller for contributing examples of formulas that should
be expressible in HOTPTP syntax, based on their work [1].
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Abstract. Church’s Higher Order Logic is a basis for proof assistants
— HOL and PVS. Church’s logic has a simple set-theoretic semantics,
making it trustworthy and extensible. We factor HOL into a construc-
tive core plus axioms of excluded middle and choice. We similarly factor
standard set theory, ZFC, into a constructive core, IZF, and axioms of
excluded middle and choice. Then we provide the standard set-theoretic
semantics in such a way that the constructive core of HOL is mapped
into IZF. We use the disjunction, numerical existence and term existence
properties of IZF to provide a program extraction capability from proofs
in the constructive core.

We can implement the disjunction and numerical existence properties
in two different ways: one modifying Rathjen’s realizability for CZF and
the other using a new direct weak normalization result for intensional
IZF by Moczyd�lowski. The latter can also be used for the term existence
property.

1 Introduction

Church’s Higher-Order logic [1] has been remarkably successful at capturing the
intuitive reasoning of mathematicians. It was distilled from Principia Mathemat-
ica, and is sometimes called the Simple Theory of Types based on that legacy. It
incorporates the λ calculus as its notation for functions, including propositional
functions, thus interfacing well with computer science.

One of the reasons Higher-Order logic is successful is that its axiomatic basis
is very small, and it has a clean set-theoretic semantics at a low level of the
cummulative hierarchy of sets (up to ω + ω) and can thus be formalized in a
small fragment of ZFC set theory . This means it interfaces well with standard
mathematics and provides a strong basis for trust. Moreover, the set theory
semantics is the basis for many extensions of the core logic; for example, it is
straightforward to add arrays, recursive data types, and records to the logic.

Church’s theory is the logical basis of two of the most successful interactive
provers used in hardware and software verification, HOL and PVS. This is due
in part to the two characteristics mentioned above in addition to its elegant
automation based on Milner’s tactic mechanism and its elegant formulation in
the ML metalanguage.
� This research was supported by NSF grants DUE-0333526 and 0430161.
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Until recently, one of the few drawbacks of HOL was that its logical base did not
allow a way to express a constructive subset of the logic. This issue was considered
by Harrison for HOL-light [2], and recently Berghofer implemented a constructive
version of HOL in the Isabelle implementation [3,4] in large part to enable the
extraction of programs from constructive proofs. This raises the question of finding
a semantics for HOL that justifies this intuitively sound extraction.

The standard justification for program extraction is based on logics that em-
bedded extraction deeply into their semantics; this is the case for the Calculus
of Inductive Constructions (CIC) [5,6], Minlog [7], Computational Type Theory
(CTT) [8,9] or the closely related Intuitionistic Type Theory (ITT) [10,11]. The
mechanism of extraction is built deeply into logic and the provers based on it,
e.g. Agda [12] on ITT, Coq [13] on CIC, MetaPRL [14] and Nuprl [15] on CTT.

In this paper we show that there is a way to provide a clean set-theoretic
semantics for HOL and in the same stroke use it to semantically justify program
extraction. The idea is to first factor HOL into its constructive core, say Con-
structive HOL, plus the axioms of excluded middle and choice. The semantics
for this language can be given in ZFC set theory, and if that logic is factored
into its constructive core, called IZF, plus excluded middle and choice (choice is
sufficient to give excluded middle), then in the standard semantics, IZF provides
the semantics for Constructive HOL. Moreover, we can base program extraction
on the IZF semantics.

The constructive content of IZF is not as transparent as in the constructive
set theories of Aczel, introduced in [16], however, in these set theories it is
not possible to express the impredicative nature of Higher-Order Logic. Also,
IZF is not as expressive as Howe’s ZFC [17,18] with inaccessible cardinals and
computational primitives, but this makes IZF a more standard theory.

Our semantics is appealing not only because it factors so elegantly, but also
because the computational issues and program extraction can be reduced to the
standard constructive properties of IZF — the disjunction, numerical existence
and term existence properties.

We can implement the disjunction and numerical existence properties in two
different ways: one modifying Rathjen’s realizability for CZF [19] and the
other using a new direct weak normalization result for intensional IZF by
Moczyd�lowski [20]. The latter can also be used for the term existence property.

In this paper, we provide a set-theoretic semantics for HOL which has the
following properties:

– It is as simple as the standard semantics, presented in Gordon and Melham’s
[21].

– It works in constructive set-theory.
– It provides a semantical basis for program extraction.
– It can be applied to the constructive version of HOL recently implemented

in Isabelle-HOL as a means of using constructive HOL proofs as programs.

This paper is organized as follows. In section 2 we present a a version of HOL.
In section 3 we define set-theoretic semantics. Section 4 defines constructive set
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theory IZF and states its main properties. We show how these properties can be
used for program extraction in section 5.

2 Higher-Order Logic

In this section, we present in detail higher-order logic. There are two syntactic
categories: terms and types. The types are generated by the following abstract
grammar:

τ ::= nat | bool | prop | τ → τ | (τ, τ)

The distinction between bool and prop corresponds to the distinction between
the two-element type and the type of propositions in type theory, or between
the two-element object and the subobject classifier in category theory or, as
we shall see, between 2 and the set of all subsets of 1 in constructive set
theory.

The terms of HOL are generated by the following abstract grammar:

t ::= xτ | cτ | (tτ→σ uτ )σ | (λxτ . tσ)τ→σ | (tτ , sσ)(τ,σ)

Thus each term tα in HOL is annotated with a type α, which we call the type
of t. We will often skip annotating of terms with types, this practice should not
lead to confusion, as the implicit type system is very simple. Terms of type prop
are called formulas.

The free variables of a term t are denoted by FV (t) and defined as usual.
We consider α-equivalent terms equal. Our version of HOL has a set of builtin
constants. To increase readability, we write c : τ instead of cτ to provide the
information about the type of c. If the type of a constant involves α, it is a
constant schema, there is one constant for each type τ substituted for α. There
are thus constants =bool, =nat and so on.

⊥ : prop ' : prop =α: (α, α) → prop

→: (prop, prop) → prop ∧ : (prop, prop) → prop ∨ : (prop, prop) → prop

∀α : (α→ prop) → prop ∃α : (α→ prop) → prop εα : (α→ prop) → α

0 : nat S : nat→ nat false : bool true : bool

We present the proof rules for HOL in a sequent-based natural deduction
style. A sequent is a pair (Γ, t), where Γ is a list of formulas and t is a formula.
Free variables of a context are the free variables of all its formulas. A sequent
(Γ, t) is written as Γ � t. We write binary constants (equality, implication, etc.)
using infix notation. We use standard abbreviations for quantifiers: ∀a : τ. φ
abbreviates ∀τ (λaτ . φ), similarly with ∃a : τ. φ. The proof rules for HOL are:

Γ � t t ∈ Γ Γ � t = t
Γ � t = s

Γ � λxτ . t = λxτ . s
xτ /∈ FV (Γ )

Γ � t Γ � s
Γ � t ∧ s

Γ � t ∧ s
Γ � t

Γ � t ∧ s
Γ � s Γ � '
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Γ � t
Γ � t ∨ s

Γ � s
Γ � t ∨ s

Γ � t ∨ s Γ, t � u Γ, s � u
Γ � u

Γ, t � s
Γ � t→ s

Γ � s→ t Γ � s
Γ � t

Γ � s = u Γ � t[u]
Γ � t[s]

Γ � fα→prop tα

Γ � ∃α(fα→prop)
Γ � ∃α(fα→prop) Γ, fα→prop xα � u

Γ � u
xα new

Finally, we list HOL axioms.

1. (FALSE) ⊥ = ∀b : prop. b.
2. (FALSENOTTRUE) false = true→ ⊥.
3. (BETA) (λxτ . tσ)sτ = tσ[xτ := sτ ].
4. (ETA) (λxτ . fτ→σ xτ ) = fτ→σ.
5. (FORALL) ∀α = λPα→prop. (P = λxα. ').
6. (P3) ∀n : nat. (0 = S(n)) → ⊥.
7. (P4) ∀n,m : nat. S(n) = S(m) → n = m.
8. (P5) ∀P : nat→ prop. P (0)∧(∀n : nat. P (n)→ P (S(n))) → ∀n : nat. P (n).
9. (BOOL) ∀x : bool. (x = false) ∨ (x = true).

10. (EM) ∀x : prop. (x = ⊥) ∨ (x = ').
11. (CHOICE) ∀P : α→ prop. ∀x : α. P x→ P (ε(α→prop)→α(P )).

Our choice of rules and axioms is redundant. Propositional connectives, for ex-
ample, could be defined in terms of quantifiers and bool. However, we believe
that this makes the account of the semantics clearer and shows how easy it is to
define a sound semantics for such system.

The theory CHOL (Constructive HOL) arises by taking away from HOL ax-
ioms (CHOICE) and (EM).

We write �H φ and �C φ to denote that HOL and CHOL, respectively, proves
φ. We will generally use letters P,Q to denote proof trees. A notation P �C φ
means that P is a proof tree in CHOL of φ.

3 Semantics

3.1 Set Theory

The set-theoretic semantics needs a small part of cumulative hierarchy — Rω+ω

is sufficient to carry out all the constructions. The Axiom of Choice is necessary
in order to define the meaning of the ε constant. For this purpose, C will denote
a1 blatantly non-constructive function such that for any X,Y ∈ Rω+ω, if X is
non-empty, then C(X,Y ) ∈ X , and if X is empty then C(X,Y ) = Y .

Recall that in the world of set theory, 0 = ∅, 1 = {0} and 2 = {0, 1}. Classically
P (1), the set of all subsets of 1, is equal to 2. This is not the case constructively;
there is no uniform way of transforming an arbitrary subset A of 1 into an
element of 2.
1 Note that if we want to pinpoint C, we need to assume more than AC, as the

existence of a definable choice function for Rω+ω is not provable in ZFC.
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The following helpful lemma, however, does hold in a constructive world:

Lemma 1. If A ∈ P (1), then A = 1 iff 0 ∈ A.
We will use lambda notation in set theory to define functions: λx ∈ A. B(x)
means {(x,B(x)) | x ∈ A}.

3.2 The Definition of the Semantics

We first define a meaning [[τ ]] of a type τ by structural induction on τ .

– [[nat]] = N.
– [[bool]] = 2.
– [[prop]] = P (1).
– [[(τ, σ)]] = [[τ ]] × [[σ]], where A × B denotes the cartesian product of sets A

and B.
– [[τ1 → τ2]] = [[τ1]] → [[τ2]], where A→ B denotes the set of all functions from
A to B.

The meaning of a constant cα is denoted by [[cα]] and is defined as follows.

– [[=α]] = λ(x1, x2) ∈ ([[α]] × [[α]]). {x ∈ 1 | x1 = x2}.
– [[→]] = λ(b1, b2) ∈ [[prop]] × [[prop]]. {x ∈ 1 | x ∈ b1 → x ∈ b2}.
– [[∨]] = λ(b1, b2) ∈ [[prop]]× [[prop]]. b1 ∪ b2.
– [[∧]] = λ(b1, b2) ∈ [[prop]]× [[prop]]. b1 ∩ b2.
– [[false]] = [[⊥]] = 0.
– [[true]] = [[']] = 1.
– [[∀α]] = λf ∈ [[α]] → [[prop]].

⋂
a∈[[α]] f(a).

– [[∃α]] = λf ∈ [[α]] → [[prop]].
⋃

a∈[[α]] f(a).
– [[εα]] = λP ∈ [[α]] → [[prop]]. C(P−1(1), [[α]]).
– [[0]] = 0.
– [[S]] = λn ∈ N. n+ 1

Standard semantics, presented for example by Gordon and Melham in [21],
uses a truth table approach — implication φ → ψ is false iff φ is true and ψ is
false etc. It is easy to see that with excluded middle, our semantics is equivalent
to the standard one.2

To present the rest of the semantics, we need to introduce environments.
An environment is a partial function from HOL variables to sets such that
ρ(xτ ) ∈ [[τ ]]. We will use the symbol ρ exclusively for environments. The meaning
[[t]]ρ of a term t is parameterized by an environment ρ and defined by structural
induction on t:

– [[cτ ]]ρ = [[cτ ]].
– [[xτ ]]ρ = ρ(xτ )
– [[s u]]ρ = App([[s]]ρ, [[u]]ρ).
– [[λxτ . u]] = {(a, [[u]]ρ[xτ :=a]) | a ∈ [[τ ]]}.
– [[(s, u)]]ρ = ([[s]]ρ, [[u]]ρ).

2 For the interested reader, our definition of the meaning of logical constants is essen-
tially a combination of the fact that any complete lattice with pseudo-complements
is a model for higher-order logic and that P (1) is a complete lattice with pseudo-
complement defined in the clause for →.
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3.3 Properties

There are several standard properties of the semantics we have defined. The
following two lemmas are proved by induction on t:

Lemma 2 (Substitution lemma). For any terms t, s and environments ρ,
[[t]]ρ[x:=[[s]]ρ] = [[t[x := s]]]ρ.

Lemma 3. For any ρ, [[tα]]ρ ∈ [[α]].

In particular, this implies that for any formula t, [[t]] ⊆ 1. So if we want to prove
that [[t]] = 1, then by Lemma 1 it suffices to show that 0 ∈ [[t]].

3.4 Soundness

The soundness theorem establishes validity of the proof rules and axioms with
respect to the semantics.

Definition 1. ρ |= Γ � t means that ρ is defined for xτ ∈ FV (Γ ) ∪ FV (t).

By the definition of environments, if ρ |= Γ � t, then for all xτ ∈ FV (Γ )∪FV (t),
ρ(xτ ) ∈ [[τ ]].

Definition 2. We write [[Γ ]]ρ = 1 if [[t1]]ρ = 1, . . ., [[tn]]ρ = 1, where Γ =
t1, t2, . . ., tn.

Theorem 1 (Soundness). If Γ � t, then for all ρ |= Γ � t, if [[Γ ]]ρ = 1, then
[[t]] = 1.

Proof. Straightforward induction on Γ � t. We show some interesting cases.
Case Γ � t of:

–
Γ � t = s

Γ � λxτ . t = λxτ . s

Take any ρ |= Γ � λxτ . t = λxτ . s. We need to show that {(a, [[t]]ρ[xτ :=a]) | a ∈
[[τ ]]} = {(a, [[s]]ρ[xτ :=a] | a ∈ [[τ ]]}. That is, that for any a ∈ [[τ ]], [[t]]ρ[xτ :=a] =
[[s]]ρ[xτ :=a]. Let ρ′ = ρ[xτ := a]. Since ρ′ |= Γ � t = s, by the inductive
hypothesis we get the claim.

–
Γ, t � s
Γ � t→ s

Suppose [[Γ ]]ρ = 1. We need to show that 0 ∈ {x ∈ 1 | x ∈ [[t]]ρ → x ∈ [[s]]ρ}.
Since 0 ∈ 1, assume 0 ∈ [[t]]ρ. Then [[Γ, t]]ρ = 1, so by the inductive hypothesis
[[s]]ρ = 1 and 0 ∈ [[s]]ρ.

–
Γ � t→ s Γ � t

Γ � s
Suppose [[Γ ]]ρ = 1. By the inductive hypothesis, 0 ∈ {x ∈ 1 | x ∈ [[t]]ρ → x ∈
[[s]]ρ} and 0 ∈ [[t]]ρ, so easily 0 ∈ [[s]]ρ.
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–
Γ � s = u Γ � t[x := u]

Γ � t[x := s]

The proof is straightforward, using the Substitution Lemma.
–

Γ � f tα
Γ � ∃α(fα→prop)

Assume [[Γ ]]ρ = 1. We have to show that 0 ∈
⋃

a∈[[α]][[f ]]ρ(a), so that there is
a ∈ [[α]] such that 0 ∈ f(a). By Lemma 3, [[tα]]ρ ∈ [[α]], so taking a = [[tα]]ρ
we get the claim by the inductive hypothesis.

–
Γ � ∃α(fα→prop) Γ, f xα � u

Γ � u
xα new

Suppose [[Γ ]]ρ = 1. By the inductive hypothesis, there is a ∈ [[α]] such that
0 ∈ [[f ]]ρ(a). Let ρ′ = ρ[xα := a]. Then ρ′ |= Γ, f xα � u, so by the inductive
hypothesis we get 0 ∈ [[u]]ρ, which is what we want.

Having verified the soundness of the HOL proof rules, we proceed to verify the
soundness of the axioms.

Theorem 2. For any axiom t of HOL and any ρ, 0 ∈ [[t]]ρ.

Proof. We proceed axiom by axiom and sketch the respective proofs.

– (FALSE) [[⊥]]ρ = ∅ =
⋂

a∈P (1) a = [[∀b : prop. b]]ρ. The second equality
follows by 0 ∈ P (1).

– (BETA) Follows by the Substitution Lemma.
– (ETA) Follows by the fact that functions in set theory are represented by

their graphs.
– (FORALL) We have:

[[∀α]]ρ = {(P,
⋂

a∈[[α]]

P (a)) | P ∈ [[α]] → P (1)}

Also:

[[(λPα→prop. P =λxα.')]]ρ ={(P, {x ∈ 1 | P =λx∈ [[α]]. 1}) | P ∈ [[α]]→P (1)}

Take any P ∈ [[α]] → P (1). It suffices to show that
⋂

a∈[[α]] P (a) = {x ∈
1 | P = λy ∈ [[α]]. 1}. But x ∈

⋂
a∈[[α]] P (a) iff for all a ∈ [[α]], x ∈ P (a) and

x = 0. This happens if and only if x = 0 and for all a ∈ [[α]], P (a) = 1 which
is equivalent to x ∈ {x ∈ 1 | P = λy ∈ [[α]]. 1}. The sets in question are
therefore equal.

– The axioms P3, P4, P5 follow by the fact that natural numbers satisfy the
respective Peano axioms.
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– (BOOL) We need to show that [[∀bool. (λxbool. x = false∨ x = true)]]ρ = 1.
Unwinding the definition, this is equivalent to

⋂
x∈2({z ∈ 1 | x = 0} ∪ {z ∈

1 | x = 1}) = 1. and furthermore to: for all x ∈ 2, x ∈ {z ∈ 1 | x =
0}∪{z ∈ 1 | x = 1}. If x ∈ 2, then either x = 0 or x = 1. In the former case,
0 ∈ {z ∈ 1 | x = 0}, in the latter 0 ∈ {z ∈ 1 | x = 1}.

– (EM) We need to show that [[∀prop. (λxprop. x = ⊥∨x = ')]]ρ = 1. Reasoning
as in the case of (BOOL), we find that this is equivalent to: for all x ∈ P (1),
x ∈ {z ∈ 1 | x = 0} ∪ {z ∈ 1 | x = 1}. Suppose x ∈ P (1). At this point, it is
impossible to proceed further constructively, all we know is that x is a subset
of 1, which doesn’t provide enough information to decide whether x = 0 or
x = 1. However, classically, using the rule of excluded middle, P (1) = 2 and
we proceed as in the previous case.

– (CHOICE) Straightforward.

Corollary 1. HOL is consistent: it is not the case that �H ⊥.

Proof. Otherwise we would have [[⊥]] = [[']], that is 0 = 1.

4 IZF

The essential advantage of the semantics in the previous section over a standard
one is that for the constructive part of HOL this semantics can be defined in
constructive set theory IZF.

An obvious approach to creating a constructive version of ZFC set theory is
to replace the underlying first-order logic with intuitionistic first-order logic. As
many authors have explained [22,23,24], the ZF axioms need to be reformulated
so that they don’t imply the law of excluded middle.

In a nutshell, to get IZF from ZFC, the Axiom of Choice and Excluded Middle
are taken away and Foundation is reformulated as ∈-induction. The axioms of
IZF are thus Extensionality, Union, Infinitiy, Power Set, Separation, Replace-
ment or Collection3 and ∈-Induction. The detailed account of the theory can
be found for example in Friedman’s [25]. Besoon’s book [23] contains a lot of
information on metamathematical properties of IZF and related set theories. For
convenience, we assume that the first-order logic has built-in terms and bounded
quantifiers.

The properties of IZF important for us, proven for the first time by Myhill in
[22], are:

– Disjunction Property (DP) : If IZF � φ ∨ ψ, then IZF � φ or IZF � ψ.
– Numerical Existence Property (NEP) : If IZF � ∃x ∈ N. φ(x), then there

is a natural number n such that IZF � φ(n), where n = S(S(. . .(0))) and
S(x) = x ∪ {x}.

– Term Existence Property (TEP) : If IZF � ∃x. φ(x), then for some term t,
IZF � φ(t).

3 There is a difference, in particular the version with Collection doesn’t satisfy TEP.
A concerned reader can replace IZFz with IZFR whenever TEP is used.
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Moreover, the semantics and the soundness theorem for CHOL work in IZF,
as neither Choice nor Excluded Middle were necessary to carry out these devel-
opments. Note that the existence of P (1) is crucial for the semantics.

All the properties are constructive — there is a recursive procedure extracting
a natural number, a disjunct or a term from a proof. A trivial one is to look
through all the proofs for the correct one. For example, if IZF � φ∨ψ, a procedure
could enumerate all theorems of IZF looking for either φ or ψ; its termination
would be ensured by DP. We discuss more efficient alternatives in section 5.3.

5 Extraction

We will show that the semantics we have defined can serve as a basis for pro-
gram extraction for proofs. All that is necessary for program extraction from
constructive HOL proofs is provided by the semantics and the soundness proof.
Therefore, if one wants to provide an extraction mechanism for the construc-
tive part of the logic, it may be sufficient to carefully define set-theoretic se-
mantics, prove the soundness theorem and the extraction mechanism for IZF
would take care of the rest. We speculate on practical uses of this approach in
section 6.

5.1 IZF Extraction

We first describe extraction from IZF proofs. To facilitate the description, we
will use a very simple fragment of type theory, which we call TT 0.

The types of TT 0 are generated by the following abstract grammar. They
should not be confused with HOL types; the context will make it clear which
types we refer to.

τ ::= ∗ | Pφ | nat | bool | (τ, τ) | τ + τ | τ → τ

We associate with each type τ of TT 0 a set of its elements, which are finitistic
objects. The set of elements of τ is denoted by El(τ) and defined by structural
induction on τ :

– El(∗) = {∗}.
– El(Pφ) is the set of all IZF proofs of formula φ.
– El(nat) = N, the set of natural numbers.
– El(bool) = {true, false}.
– M ∈ El((τ1, τ2)) = El(τ1)× El(τ2).
– M ∈ El(τ1 + τ2) iff either M = inl(M1) and M1 ∈ El(τ1) or M = inr(M1)

and M1 ∈ El(τ2).
– M ∈ El(τ1 → τ2) iff M is a method which given any element of El(τ1)

returns an element of El(τ2).

In the last clause, we use an abstract notion of “method”. It will not be
necessary to formalize this notion, but for the interested reader, all “methods“
we use are functions provably recursive in ZF + Con(ZF ).
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The notation M : τ means that M ∈ El(τ).
We call a TT 0 type pure if it doesn’t contain ∗ and Pφ. There is a natural

mapping of pure types TT 0 to sets. It is so similar to the meaning of the HOL
types that we will use the same notation, [[τ ]]:

– [[nat]] = N.
– [[bool]] = 2.
– [[(τ, σ)]] = [[τ ]] × [[σ]].
– [[τ + σ]] = [[τ ]] + [[σ]], the disjoint union of [[τ ]] and [[σ]].
– [[τ → σ]] = [[τ ]] → [[σ]].

If a set (and a corresponding IZF term) is in a codomain of the map above, we
call it type-like. If a set A is type-like, then there is a unique pure type τ such
that [[τ ]] = A. We denote this type Type(A).

Before we proceed further, let us extend TT 0 with a new type Qτ , where
τ is any pure type of TT 0. The members of El(Qτ ) are pairs (t,P) such that
P �IZF t ∈ [[τ ]] (P is an IZF proof of t ∈ [[τ ]]). Note that there is a natural
mapping from HOL terms M of type τ into Qτ — it is easy to construct using
Lemma 3 a proof P of the fact that [[M ]]∅ ∈ [[τ ]], so the pair ([[M ]]∅, P ) : Qτ .
In particular, any natural number n can be injected into Qnat. The set of pure
types stays unchanged.

We first define a helper function T , which takes a pure type τ and returns
another type. Intuitively, T (τ) is the type of the extract from a statement ∃x ∈
[[τ ]]. T is defined by induction on τ :

– T (bool) = bool.
– T (nat) = nat.
– T ((τ, σ)) = (T (τ), T (σ))
– T (τ + σ) = T (τ) + T (σ).
– T (τ → σ) = Qτ → T (σ) (in order to utilize an IZF function from [[τ ]] to [[σ]]

we need to supply an element of a set [[τ ]], that is an element of Qτ )

Now we assign to each formula φ of IZF a TT 0 type φ, which intuitively
describes the computational content of an IZF proof of φ. We do it by induction
on φ:

– a ∈ b = ∗.
– a = b = ∗ (atomic formulas carry no useful computational content).
– φ1 ∨ φ2 = φ1 + φ2.
– φ1 ∧ φ2 = (φ1, φ2).
– φ1 → φ2 = Pφ1 → φ2.
– ∃a ∈ A. φ1 − (T (Type(A)), φ1), if A is type-like.
– ∃a ∈ A. φ1 = ∗, if A is not type-like.
– ∃a. φ1 = ∗.
– ∀a ∈ A. φ1 = QType(A) → φ1, if A is type-like.
– ∀a ∈ A. φ1 = ∗, if A is not type-like.
– ∀a. φ1 = ∗.
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The definition is tailored for HOL logic and could be extended to allow mean-
ingful extraction from a larger class of formulas, i.e. we could extract a term
from ∃a. φ1 using TEP. We present some natural examples of this translation in
action:

1. ∃x ∈ N. x = x = 〈nat, ∗〉.
2. ∀x ∈ N∃y ∈ N. φ = Qnat → 〈nat, φ〉.
3. ∀f ∈ N → N∃x ∈ N. f(x) = 0 = Qnat→nat → 〈nat, ∗〉.

These types are richer than what we intuitively would expect — nat in the
first case, nat→ nat in the second and (nat→ nat)→ nat in the third, because
any HOL term of type nat or nat→ nat can be injected into Qnat or Qnat→nat.
The extra ∗ can be easily discarded from types (and extracts).

Lemma 4. For any natural number n, φ[a := n] = φ.

Proof. Straightforward induction on φ.

Lemma 5 (IZF). (∃a ∈ 2. φ(a)) iff φ(0) ∨ φ(1).

We are now ready to describe the extraction function E, which takes an IZF proof
P of a formula φ and returns an object of TT 0 type φ. We do it by induction
on φ, checking on the way that the object returned is of type φ. Recall that DP,
TEP and NEP denote Disjunction, Term and Numerical Existence Property,
respectively. Case φ of:

– a ∈ b — return ∗. We have ∗ : ∗.
– a = b — return ∗. We have ∗ : ∗, too.
– φ1 ∨ φ2. Apply DP to P to get a proof P1 of either φ1 or φ2. In the former

case return inl(E(P1)), in the latter return inr(E(P1)). By the inductive
hypothesis, E(P1) : φ1 (or E(P1) : φ2), so E(P) : φ follows.

– φ1 ∧ φ2. Then there are proofs P1 and P2 such that P1 � φ1 and P2 � φ2.
Return a pair (E(P1), E(P2)). By the inductive hypothesis, E(P1) : φ1 and
E(P2) : φ2, so (E(P1), E(P2)) : φ1 ∧ φ2.

– φ1 → φ2. Return a function G which takes an IZF proof Q of φ1, applies P
to Q (using the modus-ponens rule of the first-order logic) to get a proof R
of φ2 and returns E(R). By the inductive hypothesis, any such E(R) is in
El(φ2), so G : Pφ1 → φ2.

– ∃a ∈ A. φ1(a), where A is type-like. Let T = Type(A). We proceed by
induction on T , case T of:
• bool. By Lemma 5, we have φ1(0) ∨ φ1(1). Apply DP to get a proof Q

of either φ1(0) or φ1(1). Let b be false or true, respectively. Return a
pair (b, E(Q)). By the inductive hypothesis, E(Q) : φ1([[b]]). By Lemma
4, E(Q) : φ1.

• nat. Apply NEP to P to get a natural number n and a proof Q of φ1(n).
Return a pair (n,E(Q)). By the inductive hypothesis, E(Q) : φ1(n), by
Lemma 4, E(Q) : φ1, so (n,E(Q)) : (nat, φ1).
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• (τ, σ). Construct a proof Q of ∃a1 ∈ [[τ ]]∃a2 ∈ [[σ]]. a = 〈a1, a2〉 ∧ φ1.
Let M = E(Q). By the inductive hypothesis M is a pair 〈M1,M2〉 such
that M1 : T (τ) and M2 : ∃a2 ∈ [[σ]]. a = 〈a1, a2〉 ∧ φ1. Therefore M2 is
a pair 〈M21,M22〉, M21 : T (σ) and M22 : a = 〈a1, a2〉 ∧ φ1. Therefore
M22 is a pair 〈N,O〉, where O : φ1. Therefore 〈M1,M21〉 : T ((τ, σ)), so
〈〈M1,M21〉, O〉 : (T ((τ, σ)), φ1) and we are justified to return
〈〈M1,M21〉, O〉.

• τ + σ. Construct a proof Q of (∃a1 ∈ [[τ ]]. φ1) ∨ (∃a1 ∈ [[σ]]. φ1). Apply
DP to get the proof Q1 of (without loss of generality) ∃a1 ∈ [[τ ]]. φ1. Let
M = E(Q1). By the inductive hypothesis, M = 〈M1,M2〉, where M1 :
T (τ) and M2 : φ1. Return 〈inl(M1),M2〉, which is of type (T (τ+σ), φ1).

• τ → σ. Use TEP to get a term f such that (f ∈ [[τ ]] → [[σ]]) ∧ φ1(f).
Construct proofs Q1 of ∀x ∈ [[τ ]]∃y ∈ [[σ]].f(x) = y and Q2 of φ1(f). By
the inductive hypothesis and Lemma 4, E(Q2) : φ. Let G be a function
which works as follows: G takes a pair t,R such that R � t ∈ [[τ ]],
applies Q1 to t,R to get a proof R1 of ∃y ∈ [[σ]]. f(t) = y ∧ φ1(f)
and calls E(R1) to get a term M . By inductive hypothesis, M : ∃y ∈
[[σ]]. f(t) = y, so M = 〈M1,M2〉, where M1 : T (σ). G returns M1. Our
extraction procedure E(P) returns 〈G,E(Q2)〉. The type of 〈G,E(Q2〉)
is 〈Qτ → T (σ), φ1〉 which is equal to 〈T (τ → σ), φ1〉.

– ∃a ∈ A. φ1(a), where A is not type-like. Return ∗.
– ∃a. φ1(a), ∀a. φ1(a). Return ∗.
– ∀a ∈ A. φ1(a), where A is type-like. Return a function G which takes an

element (t,Q) of QType(A), applies P to t and Q to get a proof R of φ1(t),
and returns E(R). By the inductive hypothesis and Lemma 4, E(R) : φ1, so
G : QType(A) → φ1.

– ∀a ∈ A. φ1(a), where A is not type-like. Return ∗.

5.2 HOL Extraction

As in case of IZF, we will show how to do extraction from a subclass of CHOL
proofs. The choice of the subclass is largely arbitrary, our choice illustrates the
method and can be easily extended.

We say that a CHOL formula is extractable if it is generated by the
following abstract grammar, where τ varies over pure TT 0 types and ⊕ ∈
{∧,∨,→}.

φ ::= ∀x : τ. φ | ∃x : τ. φ | φ⊕ φ | ⊥ | t = t,

We will define extraction for CHOL proofs of extractable formulas. By Theo-
rem 2, if CHOL � φ, then IZF � 0 ∈ [[φ]]. We need to slightly transform this
IZF proof in order to come up with a valid input to E from the previous section.
To this means, for any extractable φ (with possibly free variables) we define a
formula φ′ such that IZF � 0 ∈ [[φ]] ↔ φ′. The formula φ′ is essentially φ with
type membership information replaced by set membership information. We de-
fine φ′ by induction on φ. The correctness follows trivially in each case. In all
the cases we work in IZF. Case φ of:
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– ⊥. Then φ′ = 0 ∈ [[⊥]].
– t = s. Then φ′ = 0 ∈ [[t = s]].
– φ1∨φ2. 0 ∈ [[φ1∨φ2]] iff 0 ∈ [[φ1]] or 0 ∈ [[φ2]]. By the inductive hypothesis we

get φ′1 and φ′2 such that 0 ∈ [[φ1]]↔ φ′1 and 0 ∈ [[φ2]]↔ φ′2. Take φ′ = φ′1∨φ′2.
– φ1 ∧ φ2. Then 0 ∈ [[φ]] iff 0 ∈ [[φ1]] and 0 ∈ [[φ2]]. Take φ′1 and φ′2 from the

inductive hypothesis and set φ′ = φ′1 ∧ φ′2.
– φ1 → φ2. Then 0 ∈ [[φ1 → φ2]] iff 0 ∈ {x ∈ 1 | x ∈ [[φ1]] → x ∈ [[φ2]]}

iff 0 ∈ [[φ2]] → 0 ∈ [[φ2]]. By the inductive hypothesis get φ′1 such that
0 ∈ [[φ1]]↔ φ′1 and φ′2 such that 0 ∈ [[φ2]]↔ φ′2. Set φ′ = φ′1 → φ′2.

– ∀a : τ. φ1. Then 0 ∈ [[φ]] iff for all A ∈ [[τ ]], 0 ∈ App([[λa : τ. φ1]], A) iff for
all A ∈ [[τ ]], 0 ∈ App({(x, [[φ1]]ρ[a:=x]) | x ∈ [[τ ]]}, A) iff for all A ∈ [[τ ]] 0 ∈
[[φ1]]ρ[a:=A] iff, by the Substitution Lemma, for all A ∈ [[τ ]], 0 ∈ [[φ1[a := A]]]
iff for all A ∈ [[τ ]], 0 ∈ [[φ1]]. Take φ′1 from the inductive hypothesis and set
φ′ = ∀a ∈ [[τ ]]. 0 ∈ φ′

1.
– ∃a : τ. φ1. Then 0 ∈ [[φ]] iffA ∈ [[τ ]] iff 0 ∈ [[φ1[a := A]]]. Just as in the previous

case, get φ′1 from the inductive hypothesis and set φ′ = ∃a ∈ [[τ ]]. φ′1.

Now we can finally define the extraction process. Suppose CHOL � φ, where
φ is extractable. Using the soundness theorem, construct an IZF proof P that
0 ∈ [[φ]]. Use the definition above to get φ′ such that IZF � 0 ∈ [[φ]] ↔ φ′ and
using P obtain a proof R of φ′. Finally, apply the extraction function E to R to
get the computational extract.

5.3 Implementation Issues

The extraction process is parameterized by the implementation of NEP, DP and
TEP for IZF. Obviously, searching through all IZF proofs to get a witnessing
natural number, term or a disjunct would not be a very effective method. We
discuss two alternative approaches.

The first approach is based on realizability. Rathjen defines a realizability re-
lation in [19] for weaker, predicative constructive set theory CZF. For any CZF
proof of a formula φ, there is a realizer e such that the realizability relation e � φ
holds, moreover, this realizer can be found constructively from the proof. Realiz-
ers provide the information for DP and NEP — which of the disjuncts holds and
the witnessing number. They could be implemented using lambda terms. Adapt-
ing these results to IZF should be a straightforward matter and according to [19]
the proof will appear in the forecoming paper. This approach has the drawback of
not providing the proof of TEP, which would restrict the extraction process from
statements of the form ∃x ∈ [[τ ]]. φ to atomic types τ . Moreover, the gap between
the existing theoretical result and possible implementation is quite wide.

The second, more direct approach is based on Moczyd�lowski’s proof in [20] of
weak normalization of the lambda calculus λZ corresponding to proofs in IZF.
The normalization is used to prove NEP, DP and TEP for the theory and the
necessary information is extracted from the normal form of the lambda term
corresponding to the IZF proof. Thus in order to provide the implementation of
DP, NEP and TEP for IZF, it would suffice to implement λZ, which is specified
completely in [20].
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6 Conclusion

We have presented a computational semantics for HOL via standard interpreta-
tion in intuitionistic set theory. The semantics is clean, simple and agrees with
the standard one.

The advantage of this approach is that the extraction mechanism is com-
pletely external to Constructive HOL. Using only the semantics, we can take
any constructive HOL proof and extract from it computational information. No
enrichment of the logic in the normalizing proof terms is necessary.

The separation of the extraction mechanism from the logic makes the logic very
easily extendable. For example, inductive datatypes and subtyping have clean set-
theoretic semantics, so can easily be added to HOL preserving consistency, as wit-
nessed in PVS. As the semantics would work constructively, the extraction mech-
anisms from section 5 could be easily adapted to incorporate them. Similarly, one
could define a set-theoretic semantics for the constructive version of HOL imple-
mented in Isabelle ([3,4]) in the same spirit, with the same advantages.

The modularity of our approach and the fact that it is much easier to give
set-theoretic semantics for the logic than to prove normalization, could make
the development of new trustworthy provers with extraction capabilities much
easier and faster.

We would like to thank anonymous reviewers for their helpful comments.
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Abstract. The HOL Light prover is based on a logical kernel consisting
of about 400 lines of mostly functional OCaml, whose complete formal
verification seems to be quite feasible. We would like to formally verify
(i) that the abstract HOL logic is indeed correct, and (ii) that the OCaml
code does correctly implement this logic. We have performed a full veri-
fication of an imperfect but quite detailed model of the basic HOL Light
core, without definitional mechanisms, and this verification is entirely
conducted with respect to a set-theoretic semantics within HOL Light
itself. We will duly explain why the obvious logical and pragmatic diffi-
culties do not vitiate this approach, even though it looks impossible or
useless at first sight. Extension to include definitional mechanisms seems
straightforward enough, and the results so far allay most of our practical
worries.

1 Introduction: Quis Custodiet Ipsos Custodes?

Mathematical proofs are subjected to peer review before publication, but there
are plenty of cases where published results turned out to be faulty [13,4]. Such
errors seem more likely in mathematical correctness proofs of algorithms, proto-
cols etc. These tend to be more messy and intricate than (most) proofs in pure
mathematics, and those performing the proofs are often not primarily trained
as mathematicians. So while there are still some voices of dissent [6], there is a
general consensus in the formal verification world that correctness proofs should
be at least checked, and perhaps partly or wholly generated, by computer. In
pure mathematics a similar opinion is still controversial, but we expect it to
slowly percolate into the mathematical mainstream over the coming decades.

One obvious and common objection to computer-checked proofs is: why should
we believe that they are any more reliable than human proofs? Well, for most
practical purposes, computers can be considered mechanically infallible. Though
‘soft errors’ resulting from particle bombardment are increasingly significant as
miniaturization advances, techniques for controlling these and other related ef-
fects are well-established and already in widespread use for high-integrity sys-
tems. The issue is not so much one of mechanical reliability, but rather the
correctness of the proof-checking program itself, as well as potentially the stack
of software it runs on. We may be willing to accept a machine-checked proof
that we couldn’t conceivably ‘survey’ ourselves, provided we understand and
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have confidence in the checking program — in this sense a proof checker pro-
vides intellectual leverage [16]. But how can we, or why should we? Who checks
the checker?

2 LCF

Many practitioners consider worries about the fallibility of provers somewhat
pointless. Experience shows unambiguously that typical mainstream proof check-
ers are far more reliable than human hand proofs, and abstract theorizing to the
contrary is apt to look like empty chatter. Yet bugs in proof checkers are far
from being unknown, and on at least one occasion, there was an announcement
that an open problem had been solved by a theorem prover, later traced to a
bug in the prover. For example, versions of HOL [9] have in the past had errors
of two kinds:1

– Errors in the underlying logic, e.g. early versions allowed constant definitions
with type variables occurring in the definiens but not the constant.

– Errors in the implementation, e.g. functions implementing logical operations
were found not to rename variables to avoid free variable capture.

So what if we want to achieve the highest levels of confidence? We have no fully
satisfactory answer to the thoroughgoing skeptic who doubts the integrity of the
implementation language, compiler, operating system or hardware.But at least let
us assume those are correct and consider how we might reassure ourselves about
the proof checker itself, proving the absence of logical or implementation errors.

Since serious proof checkers are large and complex systems of software, their
correctness is certainly open to doubt. However, there are established approaches
to this problem. Some systems satisfy the de Bruijn criterion [2]: they can output
a proof that is checkable by a much simpler program. Others based on the LCF
approach [10] generate all theorems internally using a small logical kernel: only this
is allowed to create objects of the special type ‘theorem’, just as only the kernel
of an operating system is allowed to execute in privileged mode. From a certain
point of view, one can say that an LCF prover satisfies the de Bruijn criterion,
except that the proof exists only ephemerally and is checked by the kernel as it
is created. And it is straightforward to instrument an LCF kernel so that it does
actually output separately checkable proofs [22].

The original Edinburgh LCF system was designed to support proofs in a spe-
cial ‘Logic of Computable Functions’ [19], hence the name LCF. But the key idea,
as Gordon [8] emphasizes, is equally applicable to more orthodox logics support-
ing conventional mathematics, and subsequently many ‘LCF-style’ proof checkers
have been designed using the same principles. In particular, the original HOL sys-
tem [9] and its descendant HOL Light [11] are LCF-style provers. HOL Light is
constructed on top of a logical kernel consisting of only around 400 lines of Objec-
tive CAML. Thus, if we accept that the interface to the trusted kernel is correct,
1 In the absence of a highly rigorous abstract specification of the logic, it’s not always

easy to categorize errors in this way, but these examples seem clear.
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we need only verify those 400 lines of code. In the present paper, we describe sig-
nificant though imperfect progress towards this goal.

3 On Self-verification

Tarski’s theorem on the undefinability of truth tells us that no logical system (ca-
pable of formalizing a certain amount of arithmetic) can formalize its own
semantics, and Gödel’s second incompleteness theorem tells us that it cannot prove
its own consistency in any way at all — unless of course it isn’t consistent, in which
case it can prove anything [21]. So, regardless of implementation details, if we want
to prove the consistency of a proof checker, we need to use a logic that in at least
some respects goes beyond the logic the checker itself supports.

The most obvious approach, therefore, would be to verify HOL Light using a
system whose logic is at least strong enough to formalize HOL Light’s semantics,
e.g. Mizar [18] based on Tarski-Grothendieck set theory. Instead, simply on the
grounds of personal expertise with it, we have chosen to verify HOL Light in it-
self. Of course, in the light of the above observations, we cannot expect to prove
consistency of HOL in itself, �HOL Con(HOL). Instead, we have proven two simi-
lar results: consistency of HOL within a stronger variant of HOL, and of a weaker
variant of HOL within ordinary HOL:2

– I �HOL Con(HOL) for a new axiom I about sets.
– �HOL Con(HOL− {∞}) where HOL− {∞} is HOL with no axiom of infinity.

One can still take the view that these results are pointless, but they covermost of
the problems we worry about. Almost all implementation bugs in HOL Light and
other versions of HOL have involved variable renaming, and manifest themselves
in a contradiction regardless of whether we assume the axiom of infinity. So having
a correctness proof of something close to the actual implementation of HOL−{∞},
rather than merely the abstract logic, is a real reassurance.

Naturally, it is possible that a soundness bug in HOL Light could mean that
these correctness statements themselves are not true, but have only been ‘proved’
by means of this bug! There are two counterarguments. Intuitively, it seems un-
likely that some logical or implementation bug, never spotted in any other domain,
should just happen to manifest itself in the proof of consistency. And HOL Light
is able to generate proof logs that can be checked in Isabelle/HOL, thanks to work
by Steven Obua. Thus, having a proof in HOL Light, we effectively have a proof in
Isabelle/HOL too, which implements a similar logic but is quite different in terms
of internal organization and so unlikely to feature the same implementation bugs.

4 HOL Light Foundations and Axioms

HOL Light’s logic is simple type theory [3,1] with polymorphic type variables. The
terms of the logic are those of simply typed lambda calculus, with formulas being
2 Thanks to Rob Arthan for pointing out this kind of possibility.
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terms of boolean type, rather than a separate category. Every term has a single
welldefined type, but each constant with polymorphic type gives rise to an infinite
family of constant terms. There are just two primitive types: bool (boolean) and
ind (individuals), and given any two types σ and τ one can form the function type
σ → τ .3

For the core HOL logic, there is essentially only one predefined logical constant,
equality (=) with polymorphic type α → α → bool. However to state one of the
mathematical axioms we also include another constant ε : (α → bool) → α,
explained further below. For equations, we use the conventional concrete syntax
s = t, but this is just surface syntax for the λ-calculus term ((=)s)t, where jux-
taposition represents function application. For equations between boolean terms
we often use s⇔ t, but this again is just surface syntax.

The HOL Light deductive system governs the deducibility of one-sided sequents
Γ � p where p is a term of boolean type and Γ is a set (possibly empty) of terms
of boolean type. There are ten primitive rules of inference, rather similar to those
for the internal logic of a topos [12].

� t = t
REFL

Γ � s = t ∆ � t = u
Γ ∪∆ � s = u

TRANS

Γ � s = t ∆ � u = v
Γ ∪∆ � s(u) = t(v)

MK COMB

Γ � s = t
Γ � (λx. s) = (λx. t)

ABS

� (λx. t)x = t
BETA

{p} � p ASSUME

Γ � p⇔ q ∆ � p
Γ ∪∆ � q EQ MP

Γ � p ∆ � q
(Γ − {q}) ∪ (∆− {p}) � p⇔ q

DEDUCT ANTISYM RULE

Γ [x1, . . . , xn] � p[x1, . . . , xn]
Γ [t1, . . . , tn] � p[t1, . . . , tn]

INST

Γ [α1, . . . , αn] � p[α1, . . . , αn]
Γ [γ1, . . . , γn] � p[γ1, . . . , γn]

INST TYPE

3 In Church’s original notation, also used by Andrews, these are written o, ι and τσ
respectively. Of course the particular concrete syntax has no logical significance.
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In MK COMB it is necessary for the types to agree so that the composite terms are
well-typed, and in ABS it is required that the variable x not be free in any of the
assumptions Γ . Our notation for term and type instantiation assumes capture-
avoiding substitution, which we discuss in detail later.

All the usual logical constants are defined in terms of equality — see below for
exactly what we mean by defined. The conventional syntax ∀x.P [x] for quantifiers
is surface syntax for (∀)(λx. P [x]), and we also use this ‘binder’ notation for the ε
operator.

' =def (λp. p) = (λp. p)
∧ =def λp. λq. (λf. f p q) = (λf. f ' ')

=⇒ =def λp. λq. p ∧ q ⇔ p

∀ =def λP. P = λx.'
∃ =def λP. ∀q. (∀x. P (x) =⇒ q) =⇒ q

∨ =def λp. λq. ∀r. (p =⇒ r) =⇒ (q =⇒ r) =⇒ r

⊥ =def ∀p. p
¬ =def λp. p =⇒ ⊥
∃! =def λP. ∃P ∧ ∀x. ∀y. P x ∧ P y =⇒ x = y

These definitions allow us to derive all the usual (intuitionistic) natural deduc-
tion rules for the connectives in terms of the primitive rules above. All of the core
‘logic’ is derived in this way. But then we add three mathematical axioms:

– The axiom of extensionality, in the form of an eta-conversion axiom ETA AX:
� (λx. t x) = t. We could have considered this as part of the core logic rather
than a mathematical axiom; this is largely a question of taste.

– The axiom of choice SELECT AX, asserting that the Hilbert operator ε is a
choice operator: � P x =⇒ P ((ε)P ). It is only from this axiom that we can
deduce that the HOL logic is classical [5].

– The axiom of infinity INFINITY AX, discussed further below.

In addition, HOL Light includes two principles of definition, which allow one
to extend the set of constants and the set of types in a way guaranteed to pre-
serve consistency. The rule of constant definition allows one to introduce a new
constant c and an axiom � c = t, subject to some conditions on free variables and
polymorphic types in t, and provided no previous definition for c has been intro-
duced. All the definitions of the logical connectives above are introduced in this
way. Note that this is ‘object-level’ definition: the constant and its defining axiom
exist in the object logic. However, in our verification we don’t formalize the rule
of definition, instead regarding the definitions of the connectives as ‘meta-level’
definitions. When we write, say,⊥, it is merely an abbreviation for the term ∀p. p
and so on. We took this path to avoid technical complications over the changing
signature of the logic, but eventually we want to generalize our proof to cover the
actual HOL definitional principles. Neither do we presently formalize the rule of
type definition, though we would eventually like to do so.
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5 Added and Removed Axioms

Since in our self-verifications we either remove the axiom of infinity ‘∞’ or add
a new axiom I, we will explain these carefully. The HOL Light axiom of infinity
asserts that the type ind of individuals is Dedekind-infinite, i.e. that there is a
function from ind to itself that is injective but not surjective:

|- ∃f:ind->ind. ONE_ONE f ∧ ¬ONTO f

where the subsidiary concepts are defined as follows:

|- ∀f. ONE_ONE f ⇔ (∀x1 x2. f x1 = f x2 =⇒ x1 = x2)
|- ∀f. ONTO f ⇔ (∀y. ∃x. y = f x)

This is the only rule or axiom that says anything specifically about ind. If we
exclude it, we can find a model for the HOL logic where ind is modelled by (say)
a 1-element set, and bool as usual by a 2-element set. Then any type we can con-
struct from those using the function space constructor will also have an interpre-
tation as a finite set. Thus we can find a model for the entire type hierarchy inside
any infinite set, which we have in the full HOL logic.

But to model all of HOL including its axiom of infinity, we must take an infinite
set, say N, to model the type of individuals. We then need to be able to model at
least the infinite hierarchy of types ind, ind→ bool, (ind → bool) → bool and so
on, so we need a set for the universe of types that can contain ℘n(N), the n-fold
application of the power set operation to N, for all n ∈ N. Since for successive n
these have cardinality ℵ0, 2ℵ0 , 22ℵ0 and so on, we cannot prove in HOL that there
is any set large enough. So we add a new axiom I that gives us a ‘larger’ universe
of sets. In the traditional terminology of cardinal arithmetic it asserts that there
is a cardinal ι with the property that it is strictly larger than the cardinality of N
and is closed under exponentiation applied to smaller cardinals: ℵ0 < ι∧ (∀κ. κ <
ι =⇒ 2κ < ι). This is unproblematic in ZF set theory (e.g. take ι to be the cardinal
of Vω+ω in the hierarchy of sets) so there is nothing dubious or recherché about our
new axiom.

In order to deal with the two cases of removing and adding an axiom almost
entirely uniformly, we start each proof by defining a type ind_model to model the
type ind, as well as the type I that will model the whole type universe. In proving
I � Con(HOL), we introduce such types and assert our higher axiom of infinity
for them:

|- (:ind_model) <_c (:I) ∧
(∀s:A->bool. s <_c (:I) =⇒ {t | t SUBSET s} <_c (:I)

Here ‘(:I)’ is a HOL Light shorthand for the universal set on type I, and ‘<c’
is strict cardinal comparison, defined as the irreflexive form of non-strict cardinal
comparison, itself defined in terms of the existence of an injective map from one
set to the other.4

4 In simple type theory, it is problematic defining a general type of cardinals, but many
arguments can be rephrased in terms of cardinal comparison and set operations [7].
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In the case of proving �HOL Con(HOL− {∞}), we just define a type ind_model
in bijection with a finite nonempty set and I in bijection with N. In this case we
can easily prove the statement about cardinal closure, instead of taking it as an
axiom. The subsequent proofs are all completely identical based on this cardinality
property, except that right at the end we need in one case to show how we can
model the axiom of infinity.

6 Formalized Syntax

The various OCaml types representing logical entities of types and terms are for-
malized inside the HOL logic using analogous recursive type definitions. How-
ever, there is an important difference, which we will explain for types first. In the
code, the type of HOL types is declared by the following OCaml recursive type
definition:

type hol_type = Tyvar of string
| Tyapp of string * hol_type list

The second clause allows a type constructor with any name and arity. How-
ever, the constructors themselves are hidden by an abstract type interface, which
permits only types using type constructors that have been declared. In the initial
state these amount to just the base types bool, ind and the binary function space
constructor fun, but later type definitions can extend the list. In the HOL for-
malization, we do not consider the potentially extensible type signature, and just
‘hardwire’ the base types we will consider:

define_type "type = Tyvar string
| Bool
| Ind
| Fun type type";;

Similarly, the basic type of HOL terms is defined in OCaml without any
well-typedness restriction, with any term as the “bound variable” of a lambda-
abstraction, with these restrictions imposed by the abstract type interface.

type term = Var of string * hol_type
| Const of string * hol_type
| Comb of term * term
| Abs of term * term

In the HOL formalization, we wire in the two primitive constants, where
‘Equal α’ represents (=) : α → α → bool and ‘Select α’ represents (ε) : (α →
bool)→ α, and we syntactically force the bound variable of a lambda-abstraction
to be a (typed) variable and not any other kind of term:

define_type "term = Var string type
| Equal type | Select type
| Comb term term
| Abs string type term";;
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This allows ill-typed terms that could not be constructed using the abstract
type interface of HOL Light, so we often need to state side-conditions connected
with well-typedness on our theorems. This notion is defined as

|- welltyped tm ⇔ ∃ty. tm has_type ty

where the typing judgement, written infix, is defined inductively as follows; every
welltyped term then has a unique type, extracted by a function typeof.

|- (∀n ty. (Var n ty) has_type ty) ∧
(∀ty. (Equal ty) has_type (Fun ty (Fun ty Bool))) ∧
(∀ty. (Select ty) has_type (Fun (Fun ty Bool) ty)) ∧
(∀s t dty rty. s has_type (Fun dty rty) ∧ t has_type dty

=⇒ (Comb s t) has_type rty) ∧
(∀n dty t rty. t has_type rty =⇒ (Abs n dty t) has_type (Fun dty rty))‘;;

Subject to these systematic differences, we model much of the OCaml code in
the core faithfully. Most syntax functions are purely functional, and we “naively”
transcribe them into corresponding definitional theorems in the logic, following
[20]. In general, recursive functions in OCaml may fail to terminate, and this as-
pect is not adequately modelled by our encoding.5 In practice all the functions we
use do terminate, and without some inductive argument we would not be able to
prove anything non-trivial about them. So this distinction is somewhat academic,
and generally speaking the structural similarity is very clear. (It’s particularly im-
portant to emphasize this point, since most of our discussion here is devoted to
differences.) For example, the function that performs a union of term lists modulo
alpha-equivalence in OCaml is:

let rec term_union l1 l2 =
match l1 with

[] -> l2
| (h::t) -> let subun = term_union t l2 in

if exists (aconv h) subun then subun else h::subun;;

and the HOL formalization is:

|- (TERM_UNION [] l2 = l2) ∧
(TERM_UNION (CONS h t) l2 =

let subun = TERM_UNION t l2 in
if EX (ACONV h) subun then subun else CONS h subun)

At the other end of the spectrum, the worst case for the correspondence between
code and HOL formalization is the type instantiation function, which replaces type
variables α1, . . . , αn with other types σ1, . . . , σn in some term. The OCaml code
involves exceptions and pointer-equality tests:

5 HOL Light’s derived rules can prove consistency of various recursive definitions, in
particular all tail-recursive ones (I owe the observation that these are always consistent
to J Moore). This does not imply termination of the analogous functional program.



Towards Self-verification of HOL Light 185

let rec inst env tyin tm =
match tm with

Var(n,ty) -> let ty’ = type_subst tyin ty in
let tm’ = if ty’ == ty then tm else Var(n,ty’) in
if rev_assocd tm’ env tm = tm then tm’
else raise (Clash tm’)

| Const(c,ty) -> let ty’ = type_subst tyin ty in
if ty’ == ty then tm else Const(c,ty’)

| Comb(f,x) -> let f’ = inst env tyin f and x’ = inst env tyin x in
if f’ == f & x’ == x then tm else Comb(f’,x’)

| Abs(y,t) -> let y’ = inst [] tyin y in
let env’ = (y,y’)::env in
try let t’ = inst env’ tyin t in

if y’ == y & t’ == t then tm else Abs(y’,t’)
with (Clash(w’) as ex) ->
if w’ <> y’ then raise ex else
let ifrees = map (inst [] tyin) (frees t) in
let y’’ = variant ifrees y’ in
let z = Var(fst(dest_var y’’),snd(dest_var y)) in
inst env tyin (Abs(z,vsubst[z,y] t))

The tyin argument is an association list [σ1, α1; · · · ;σn, αn] specifying the de-
sired instantiation, tm is the term to instantiate, and env is used to keep track of
correspondences between original and instantiated variables to detect name clash
problems. Note first that the recursive cases are optimized to avoid rebuilding the
same term. For example, the case for Comb(f,x) checks if the instantiated sub-
terms f’ and x’ are pointer identical (‘==’) to the originals, and if so just returns
the full original term. This optimization is not, and cannot be, reflected in our
naive model.

The main complexity in this function is detecting and handling variable cap-
ture. For example, the instantiation of α to bool in the constant function λx :
bool. x : αwould, if done naively, result in the identity function λx : bool. x : bool.
We want to ensure instead that we get something like λx′ : bool. x : bool. So each
time a variable is type-instantiated (first clause) we check that it is consistent with
the list env, which roughly means that if after instantiation it is bound by some
abstraction, it was already bound by the same one before. If this property fails, an
exception Clash is raised with the problem term. This exception is supposed to
be caught by exactly the outer recursive call for that abstraction, which renames
the variable appropriately and tries again (last line).

Exceptions also have no meaning in our naive model. Instead, we include the
possibility of exceptions by extending the return type of the function in our HOL
formalization to a disjoint sum type defined by:

define_type "result = Clash term | Result term";;

In all expressions we manually ‘propagate’ the Clash exception with the help of
discriminator (IS_RESULTand IS_CLASH) and extractor (RESULT and CLASH) func-
tions. These are also used at the end to take us back to a simple analog INST of the
OCaml code’s main inst function.6 With all these caveats, the overall structure
should faithfully model the OCaml code:
6 The main recursion for inst shown above is used internally in the definition of the

main inst, which simply provides the empty list as the initial env argument. The
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|- (INST_CORE env tyin (Var x ty) =
let tm = Var x ty
and tm’ = Var x (TYPE_SUBST tyin ty) in

if REV_ASSOCD tm’ env tm = tm then Result tm’ else Clash tm’) ∧
(INST_CORE env tyin (Equal ty) = Result(Equal(TYPE_SUBST tyin ty))) ∧
(INST_CORE env tyin (Select ty) = Result(Select(TYPE_SUBST tyin ty))) ∧
(INST_CORE env tyin (Comb s t) =

let sres = INST_CORE env tyin s in
if IS_CLASH sres then sres else
let tres = INST_CORE env tyin t in
if IS_CLASH tres then tres else
let s’ = RESULT sres and t’ = RESULT tres in
Result (Comb s’ t’)) ∧

(INST_CORE env tyin (Abs x ty t) =
let ty’ = TYPE_SUBST tyin ty in
let env’ = CONS (Var x ty,Var x ty’) env in
let tres = INST_CORE env’ tyin t in
if IS_RESULT tres then Result(Abs x ty’ (RESULT tres)) else
let w = CLASH tres in
if ¬(w = Var x ty’) then tres else
let x’ = VARIANT (RESULT(INST_CORE [] tyin t)) x ty’ in
INST_CORE env tyin (Abs x’ ty (VSUBST [Var x’ ty,Var x ty] t)))

The termination of this function needs a careful argument. The last line can
result in a recursive call on a term of the same size, but the choice of new variable
means that the subcall will then not raise the same exception that would lead to
yet another subcall from this level.

We now introduce a handy abbreviation for equations (an exact counterpart to
a function mk_eq in the OCaml code):

|- (s === t) = Comb (Comb (Equal(typeof s)) s) t

and are ready to model the HOL Light deductive system using an inductively de-
fined ‘is provable’ predicate ‘|-’. For reasons of space, we only show clauses for
rules REFL, TRANS and INST_TYPE, but none of them are complex or surprising:

|- (∀t. welltyped t =⇒ [] |- t === t) ∧
(∀asl1 asl2 l m1 m2 r.

asl1 |- l === m1 ∧ asl2 |- m2 === r ∧ ACONV m1 m2
=⇒ TERM_UNION asl1 asl2 |- l === r) ∧

...
(∀tyin asl p. asl |- p =⇒ MAP (INST tyin) asl |- INST tyin p) ∧
...

7 Set Theory

We next develop a HOL type V of ‘sets’ big enough to model all types. The sets
are arranged in levels somewhat analogous to the Zermelo-Fraenkel hierarchy, each
containing all subsets of the levels below it. The membership symbol in V is written
as an infix <:, and has type V → V → bool. (This is quite distinct from the
usual HOL set/predicate membership operation IN with type α→ (α→ bool) →
α.) Many of the axioms and constructs familiar from ZF set theory appear, e.g
‘s suchthat p’ is the subset of elements of s satisfying p, whose existence is assured
by the ZF separation axiom:

choice of names is a bit confusing: this is used in the inference rule INST TYPE; the rule
INST is term instantiation and the corresponding term operation is called VSUBST.
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|- (level(s suchthat p) = level s) ∧ ∀x. x <: s suchthat p ⇔ x <: s ∧ p x

Similarly we have a choice function ch satisfying:

|- ∀s. (∃x. x <: s) =⇒ ch(s) <: s

But we have no need of ‘mixed level’ sets like {∅, {∅}}, so we make the hierarchy
non-cumulative, with the levels all distinct. This means that there are multiple
empty sets at all levels of the hierarchy, so we don’t have simple extensionality. We
also have a primitive notion of pairing (it is not defined as is usually done in ZF set
theory), and we start with two basic sets of ‘ur-elements’ boolset (with elements
true and false) and indset to model the base HOL types. We will not show the
technical details of the construction, since they are not particularly interesting or
challenging. We just observe some notation for later use.

The set of functions from set s to set t (constructed much as in ZF set theory, as
a certain set of ordered pairs) is denoted by funspaces t, and function application
is apply. We also define a set-theoretic analog abstract of lambda-abstraction to
allow us to construct certain functions explicitly. Here are a few relevant lemmas
to help the reader to get a picture of the setup.

|- x <: s ∧ f(x) <: t =⇒ (apply(abstract s t f) x = f(x))

|- x <: s ∧ f <: funspace s t =⇒ apply f x <: t

|- (∀x. x <: s =⇒ f(x) <: t) =⇒ abstract s t f <: funspace s t

Note that everything in the construction of this set-theoretic hierarchy is based
on the key cardinality property we noted earlier; no other axioms are used. Of
course, this property was designed exactly to allow the construction of such a type.

8 Formalized Semantics

HOL is a fairly simple logic, and it isn’t so difficult to give it a set-theoretic seman-
tics. However, the presence of polymorphic type variables makes it a bit trickier
than it first appears. Our approach is inspired by the semantics given by Andy
Pitts [9], though we use more traditional valuation-based formulation rather than
using contexts, since it seems (to us) technically simpler. The semantics is param-
eterized throughout by a valuation τ : string → V of the type variables. We
require only that it always returns a nonempty set:

|- type_valuation tau ⇔ ∀x. (∃y. y <: tau x)

Given such a type valuation, each HOL type is allocated a corresponding set in
V using the following straightforward definition:

|- (typeset tau (Tyvar s) = tau(s)) ∧
(typeset tau Bool = boolset) ∧
(typeset tau Ind = indset) ∧
(typeset tau (Fun a b) = funspace (typeset tau a) (typeset tau b))
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Now we come to the semantics of terms. As well as the valuation τ of type vari-
ables, this has as another parameter a valuation σ of term variables, or more pre-
cisely of name-type pairs. This should always be consistent with τ , i.e. should map
each variable-type pair into the set corresponding to that type:

|- term_valuation tau sigma ⇔ ∀n ty. sigma(n,ty) <: typeset tau ty

The definition of the semantics is:

|- (semantics sigma tau (Var n ty) = sigma(n,ty)) ∧
(semantics sigma tau (Equal ty) =

abstract (typeset tau ty) (typeset tau (Fun ty Bool))
((λx. abstract (typeset tau ty) (typeset tau Bool)

(λy. boolean(x = y)))) ∧
(semantics sigma tau (Select ty) =

abstract (typeset tau (Fun ty Bool)) (typeset tau ty)
(λs. if ∃x. x <: ((typeset tau ty) suchthat (holds s))

then ch ((typeset tau ty) suchthat (holds s))
else ch (typeset tau ty))) ∧

(semantics sigma tau (Comb s t) =
apply (semantics sigma tau s) (semantics sigma tau t)) ∧

(semantics sigma tau (Abs n ty t) =
abstract (typeset tau ty) (typeset tau (typeof t))

(λx. semantics (((n,ty) |-> x) sigma) tau t))

The first clause is easy: just apply the valuation σ. The fourth and fifth clauses
are also fairly natural: they just map application and abstraction into their set-
theoretic counterparts. The semantics of a term λn : ty. t is a function taking an
argument x that recursively evaluates the semantics of t in a modified valuation
with n : ty mapped to x but which is otherwise the same as σ. (The modification is
done by an infix function update ‘|->’.) The second and third clauses look involved
only because we actually need to interpret = and ε as functions of the appropriate
type, but they just give the right sets for the obvious equality and choice functions.
(If it would otherwise be applied to an empty set, we force the choice operator to
pick any element of the right type.) When the equality constant is actually used
in an equation in the usual way, the semantics, with reasonable side-conditions, is
about what we would expect. Note that here and above boolean just maps a HOL
boolean into the corresponding member of boolset in V:7

|- (s === t) has_type Bool ∧ type_valuation tau ∧ term_valuation tau sigma
=⇒ (semantics sigma tau (s === t) =

boolean(semantics sigma tau s = semantics sigma tau t))

We proceed with various lemmas about how the semantics interacts with syn-
tactic operations. The most complex governs the type instantiation operation
whose definition we considered earlier:

|- ∀tyin tm sigma tau.
welltyped tm ∧ type_valuation tau ∧ term_valuation tau sigma
=⇒ (semantics sigma tau (INST tyin tm) =

semantics
(λ(x,ty). sigma(x,TYPE_SUBST tyin ty))
(λs. typeset tau (TYPE_SUBST tyin (Tyvar s))) tm)

7 The typing condition is a shorthand for saying that both subterms are welltyped; an
equation always has boolean type if so.
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where TYPE_SUBST is substitution of types for type variables within a type, defined
by straightforward recursion. Finally, we define the semantic notion of entailment:

|- asms |= p ⇔ ALL (λa. a has_type Bool) (CONS p asms) ∧
∀sigma tau. type_valuation tau ∧ term_valuation tau sigma ∧

ALL (λa. semantics sigma tau a = true) asms
=⇒ (semantics sigma tau p = true)

and hence by induction, considering the various inference rules, we deduce that
HOL is sound:

|- ∀asl p. asl |- p =⇒ asl |= p

and consistent in the sense that there is an unprovable formula:

|- ∃p. p has_type Bool ∧ ¬([] |- p)

9 Conclusions and Related Work

We believe that this is the first time anything close to the implementation of a
‘real’ theorem prover has been verified against a semantic model, though syntac-
tic features of the HOL logic have been formalized before [23], and full correctness
for a first-order proof checker [14] and a simple first-order tableau prover [17] have
been verified. We believe that a proof based on a semantics is more valuable than
one relative to an abstract description of the same deductive system: even the ab-
stract definitions of notions like capture-avoiding substitution are somewhat in-
volved, and it is much more satisfactory to characterize them by their (relatively)
simple semantics — cf. the key theorem about the semantics of INST above. On
the other hand, it might be a fruitful separation of concerns to use a more abstract
description of the logic as an intermediate step between the implementation and
the semantics.

As for practical consequences,we are genuinely pleased to have finally convinced
ourselves that the variable renaming methods (notably the rather involved mech-
anism in type instantiation) are correct. This is where our practical worries lay.
Still, we view the present work only as a proof of concept: we have shown that all
the key things can be made to work as we would wish; there is not much intellec-
tual work involved in taking it further. But there are many obvious shortcomings
in the work so far that need to be addressed. First of all, we need to properly model
the full extensible signatures and the definitional principles that extend them. It
would also be desirable to use a more detailed model of the implementation lan-
guage. Our present work certainly does little to guard against language issues. In
fact there is one that we know about: OCaml’s strings are mutable, and this leads
to imperfect protection of the abstract types of types and terms.

Another avenue for future work would be to extend the semantics to cover ex-
tensions to the logic, such as the introduction of quantifiers over type variables
suggested in [15]. Tom Ridge has already updated large parts of HOL Light to in-
corporate them, and we believe the extension of the semantics is straightforward.
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Abstract. We define an interpretation of the Isabelle/HOL logic in
HOL Light and its metalanguage, OCaml. Some aspects of the Isabelle
logic are not representable directly in the HOL Light object logic. The
interpretation thus takes the form of a set of elaboration rules, where
features of the Isabelle logic that cannot be represented directly are
elaborated to functors in OCaml. We demonstrate the effectiveness of
the interpretation via an implementation, translating a significant part
of the Isabelle standard library into HOL Light.

1 Introduction

The vast advances in computer technology of the last century facilitated the con-
struction of computer programs that could check logical proofs in full detail. These
programs, called proof assistants or interactive theorem provers, were an exten-
sion of, and improvement upon, formal logical reasoning in the spirit of Russell
and Whitehead [33] and Landau [17]. Such proof assistants, from the pioneer De-
Bruijn’s Automath [5] to its modern counterparts (e.g., Coq [4], HOL4 [10], HOL
Light [16], Isabelle [25], Nuprl [6], PVS [24]), seek fully foundational proofs of deep
mathematical and scientific problems. While the technical challenges of such de-
velopments can be significant, many important theorems have been fully checked
in these systems. Some recent examples are the Four Color Theorem [9], the Prime
Number Theorem [2], and the Jordan Curve Theorem [12].

Unfortunately, each system has its own library of theorems. The extensive effort
involved in constructing a proof in one system must be duplicated to prove the the-
orem in another. For instance, the three examples cited above are all constructed
in different proof assistants, and as of this writing, none have been ported to an-
other system. Indeed, little infrastructure exists to support the sharing of proofs
between proof assistants. This dissonance is a serious concern for large verification
efforts. For example, the Flyspeck Project [11] seeks to formally prove the Kepler
Conjecture [13] in HOL Light. Recently, Nipkow verified an important algorithm
in the proof using Isabelle/HOL [22]. Researchers elsewhere are working on other
parts of the project using the Coq proof assistant. For the Kepler Conjecture to
exist as a single HOL Light theorem, there must be a way to import the Isabelle
and Coq developments.

This paper describes a mechanism and provides an implementation for inter-
preting formulas and proofs of Isabelle/HOL in HOL Light. The interpretation is
interesting because Isabelle/HOL supports features not found in ordinary higher
order logic. These include axiomatic type classes and constant overloading. We
therefore do not attempt a direct translation into HOL Light logic. Instead, we
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elaborate Isabelle’s types, terms, and proofs to functors in the HOL Light meta-
language, Objective Caml (OCaml) [31]. We demonstrate the effectiveness of this
interpretation via an implementation, translating a significant portion of the Is-
abelle/HOL standard library into HOL Light, including many proofs which rely
on overloading and axiomatic type classes.

We use the term interpretation to mean a systematic translation from one logic
to another. Because HOL Light is simply a set of OCaml types and functions, a
proof in Isabelle corresponds to an OCaml value. More precisely, we show below
how some proofs of Isabelle actually correspond to a family of OCaml values in
HOL Light. This gives rise to our use of functors for representing these families.

A note on fonts: Isabelle text appears in sans serif font. OCaml keywords appear
in bold. OCaml identifiers, which are also HOL Light inference rules and types,
appear in small capital letters. Meta-functions, such as tvwhich returns the
free type variables of a term, are in typewriter face.

2 Related Work

There are two different approaches to the sharing of formal theories. In one view,
which we will call the trusting view, we interpret the logic of one proof assistant
in another, prove (on paper) some semantic properties of the translation, verify
that the axioms of the source system hold in the target interpretation, and finally
accept the interpreted formulas that correspond to theorems in the source logic
as theorems in the target logic. No translation of proof objects is attempted or,
indeed, is necessary. The user of such a translation supposes the soundness of the
source theorem prover.

In the other view, which we call the skeptical view, a given proof assistant is
the final arbiter of correct reasoning. Relying on other systems, which are possibly
unsound, is undesirable. Indeed, the very raison d’être of the given assistant is to
distill the essential axioms and to build rich mathematical structures from these
axioms alone. Trusting a large body of computer code would be anathema. To
import theorems we check their proofs. There is no need to rely upon a model
theory because the proof theory of the target system will guarantee the correctness
of the translation.

Examples of the trusting view include work by Howe[7] and Naumov [20]. This
work imports formulas of HOL and Isabelle/HOL, respectively, into Nuprl. Felty
and Howe [8] show how the connection described in [7] can be used in a larger
example. The skeptical outlook can be seen in the work of Naumov [21], Stehr
[30] and the author [18]. Obua and Skalberg [23] describe an analogue to our work
in the opposite direction, translating HOL Light proofs into Isabelle/HOL. There
is also some related work involving general translation infrastructure, which we
discuss in section 7.

3 Isabelle/HOL in HOL Light

HOL Light is an interactive prover in the LCF style based on Church’s simple
theory of types. Isabelle is a logical framework for defining logics [26]. The most
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well-developed instantiation is the interpretation of higher-order logic,
Isabelle/HOL. In addition, Isabelle is extended with axiomatic type classes and
constant overloading [32]1. Though the logics are very similar, these additional
features make the Isabelle logic more expressive, in the sense that a single the-
orem in Isabelle/HOL corresponds to a set of theorems in HOL Light. We thus
appeal to the metalanguage to support type classes and overloading.

Note that in the following exposition we give a syntax for Isabelle that is conve-
nient for our purposes. We do not present the actual concrete syntax of Isabelle.
We take similar liberties with the OCaml syntax.

3.1 Type Class Example

Reasoning with type classes can be seen as a generalization of polymorphism. In a
logic with polymorphism we avoid constructing similar theorems at different types
and instead simply instantiate a polymorphic theorem at any type. In a logic with
type classes we do the same, except that we also assert axiomatic properties of the
type. An example is the class of partial orders.

axclass order [] =
[ ≤: α→ α→ bool]
[refl is x : α :: order ≤ x,

antisym is x ≤ y ∧ y ≤ x ⊃ x = y,

trans is x ≤ y ∧ y ≤ z ⊃ x ≤ z]

An axclass declaration consists of an Isabelle name (order), a list of ancestor
classes, a list of constants that should be defined at that type, and a list of named
axioms that hold on the universe of α and the constants. The syntax x : α :: order
means x is a variable of type α where α is an instance of the class order. A type
is an instance of a class if the constants of the class are defined on the type and
satisfy the class axioms. More generally, x : α :: [c1, . . . , cn] means that x is a vari-
able of type α where α is an instance of all of c1, . . . , cn. The collection [c1, . . . , cn]
is called a sort. In this case the class has no ancestors.

We can now prove theorems with free type variables α :: order. For instance,
we can prove the theorem called order eq refl :

∀x : α :: order. x = y ⊃ x ≤ y.

The proof term makes use of the class axioms.
To use theorems involving type classes, we must prove that concrete types are

instances of the class. We prove that such a concrete type satisfies the class axioms,
and then we instantiate the free type variables.

1 Isabelle also includes a locale mechanism that extends the genericity of its reasoning
capabilities [3]. Locales are eliminated in the construction of proof terms in Isabelle,
however, and thus we needn’t account for them in our interpretation, where we work
directly with the proof terms.
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instance real :: [order] . . .
instance nat :: [order] . . .
∀x : real. x = y ⊃ x ≤ y

∀x : nat. x = y ⊃ x ≤ y

where the . . . stand for an Isabelle proof that the real, nat types satisfy the axioms.
Then we may instantiate order eq refl twice to get the specific theorems Since HOL
Light does not have such capabilities, we use the OCaml module system to emu-
late this behavior. The class order corresponds to an OCaml signature, while the
Isabelle types real and nat correspond to modules containing the HOL Light types
real and nat.

signature Order =
sig

val α : type
val ≤: term
val refl : thm
val antisym : thm
val trans : thm

end

module Real =
struct

let α = real
let ≤= real le
let refl = real le refl
let antisym = real le antisym
let trans = real le trans

end

It is understood that real le is a predefined HOL Light constant, and that
real le refl, etc. are predefined theorems. We can assume a similar definiton
of a Nat module (though the HOL Light name of the type of natural numbers is
num).

The Isabelle proof of order eq refl becomes a functor, encapsulating the reason-
ing involved.

functor Order eq refl(A : Order) =
struct

let thm = (proof involving A. ≤,A.refl, etc.)
end

To instantiate the proof, we apply the functor to a module containing a type and
the necessary constants and axioms on that type. Functor application “replays”
the proof on the new type. The applications followed by projections evaluate to
the HOL Light theorems

Order eq refl(Real).thm = ∀x : real. x = y ⊃ x ≤ y,

Order eq refl(Nat).thm = ∀x : num. x = y ⊃ x ≤ y.

4 Elaboration

The translation from Isabelle/HOL to HOL Light is a set of syntax-directed elab-
oration rules. Many of the cases are routine. We give some illustrative cases here.
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A complete list, along with a complete abstract syntax for Isabelle/HOL and HOL
Light, can be found in an extended version of this paper at [1].

Our judgments have the form Ctx � X � Y , understood to mean “X elabo-
rates to Y in contextCtx,” where it is understood thatCtx andX are input argu-
ments and Y is an output argument. We define such a judgment for each syntactic
class of Isabelle/HOL. In the following sections we explain the various contexts of
the judgments and their elaboration rules.

Note that we introduce judgments in their order of importance, and thus some
judgments of lesser interest will be used before they are defined. The curious reader
may consult the extended paper for the full definitions of the judgments.

4.1 The Module System

While in fact Isabelle/HOL theorems are elaborated to OCaml functors, for clar-
ity of presentation we are taking some liberties with the notation. In particular, we
allow projections from functor applications. Such functors are called applicative in
the literature. This is in contrast to the generative functors of OCaml [15]. Because
our modules save no state, such projections are unproblematic and have the same
semantics in both views. We can easily convert these functors to a generative form
accepted by OCaml by inventing a new module identifierM (which does not bind
anything seen so far in the OCamlenvironment), binding the functor application
to that name, and projecting directly from M . E.g. Order eq refl(A).thm
becomes

module X = Order eq refl(A)
X.thm

For clarity, we also use the keyword signature instead of OCaml’s module type.
We assume that before elaboration begins, the following signatures are defined.

These represent HOL Light types, terms and theorems.

signature Type =
sig

val type : type
end

signature Term =
sig

val term : term
end

signature Thm =
sig

val thm : thm
end

Name Mapping. There is some amount of bookkeeping involved in mapping
Isabelle identifiers to their OCaml counterparts. The details are not interesting.
We assume the existence of a function �x� mapping the Isabelle identifier x to its
counterpart. For example, �order eq refl� = Order eq refl. In some cases �x�
requires additional arguments. We note such places explicitly. An example is type
constructors that are indexed in HOL Light by the sorts of their arguments.

An Isabelle theory is a sequence of declarations that introduce new names into
a global environment. To ease the notational burden of frequently inventing new
names, we extend the definition of �x� to generate a fresh name for the HOL Light
counterpart of a declaration x, that will thereafter be returned by �x�. For in-
stance,when we elaborate order eq refl, �order eq refl� generates the name
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Order eq refl and from the point of that declaration on, �order eq refl� =
Order eq refl.

4.2 Contexts

The elaborator manages a number of distinct contexts during elaboration.

∆ is a map from Isabelle type variables to OCaml functor arguments. In the ex-
ample above, ∆ would consist of the single pair 〈α,A〉, where α is the type vari-
able from the Isabelle theorem order eq refl and A is the argument of the OCaml
functor Order eq refl. The type variable α is elaborated toA.type in the Or-
der eq refl functor. We often look up a block of type variables in ∆. Thus,
∆(α1, . . . , αk) = (T1, . . . , Tk) means ∆(α1) = T1, . . . , ∆(αk) = Tk.

Γ maps Isabelle term variables to types, and Isabelle proof variables to Isabelle
terms.

Σ As we wish to make no reference to a global data structure, Σ simply main-
tains the state of the elaboration process, mapping Isabelle declarations to their
previously elaborated OCaml functors.

4.3 Functions

We assume the existence of a function tv which returns the free type variables in
a term with their sorts, and a predicate (A1, . . . , An) fresh indicating that the
names A1, . . . , An are new.

4.4 Classes

The elaboration of type classes is one of the the most interesting parts of the trans-
lator. The Isabelle abstract syntax for a class is

axclass c < [c1, . . . , ck] = [con1, . . . , conl],
[name1 is axm1, . . . , namem is axmm]

where c is a new Isabelle class identifier, the ci are previously defined type classes,
the coni are new constants of the class, and the axmi are formulas representing
type class axioms referred to by namei. The evidence for a type τ being an instance
of the class c is a proof that, for each i, τ has constants of the class ci (in addition
to con1, . . . , conl) and that those constants satisfy the axioms of ci (in addition to
axm1, . . . , axmm).

Σ �axclass c < [c1, . . . , ck] = [con1, . . . , conl],
[name1 is axm1, . . . , namem is axmm] �

signature �c� =
sig

include �c1� . . . include �ck�
val �con1� : term . . . val �conl� : term
val �name1� : thm . . . val �namem� : thm

end, Σ



198 S. McLaughlin

The include statements textually replace the �ci� with their definitions, thus
capturing the semantics of the Isabelle class hierarchy. Note how the formulas
axmi are totally ignored. Here we make note of the phase distinction between
elaborating the Isabelle theories and using the elaborated theorems. During the
elaboration stage, the inability to specify the form of the axioms of a class is un-
problematic. Both the signatures and the concrete types are created directly from
Isabelle declarations, and, barring a bug in Isabelle, the concrete theorems match
the declared class axioms. After the elaboration, however, when attempting to use
these theorems with new types not defined by Isabelle, it is the HOL Light user’s
responsibility to ensure the well-formedness of the theorems she supplies. If the
theorem supplied to a user-created module is not well-formed, a run-time error
occurs during the functor application.

4.5 Instance

In Isabelle, instance declarations allow theorems with type variables of a class to
be instantiated with concrete classes. The abstract syntax is

instance τ :: (〈α1, σ1〉 , . . . , 〈αn, σn〉) c = 〈[con1, . . . , conk], p〉

which means that type constructor τ , when given arguments of sort σi is an in-
stance of class c, where coni are the constants required by c, and p is a proof that
the axioms of c are satisfied by the type τ(α1, . . . , αn), where αi has sort σi.

fresh(A1, . . . , Ak) ∆ = (〈α1, A1〉 , . . . , 〈αk, Ak〉)
∆, · � con1 � c1 . . . ∆, · � conn � cn

∆, · � p � thm thm = (thm1 ∧ . . . ∧ thmm)

signature �c� =
sig

val �con1� : term . . . val �conl� : term
val axm1 : thm . . . val axmm : thm

end






∈ Σ

A = �τ(σi, . . . , σn)�
Σ �instance τ :: (〈α1, σ1〉 , . . . , 〈αn, σn〉) c = 〈[con1, . . . , conk], p〉�

functor A(A1 : �σ1�) . . . (Ak : �σn�) =
struct

let �con1� = c1 . . . let �conk� = ck

let axm1 = thm1 . . . let axmm = thmm

end, Σ

To elaborate an instance, we begin by creating∆ from the free sorted type vari-
ables α. Then we translate the required constants and the proof of the axioms.
Finally, we look up the definition of the class to get the signature identifiers for
constants and axioms.
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Note that the name of the generated functor depends on the sorts of the in-
stance declaration. This is inevitable. Consider the Isabelle product type α × β.
The generated functor for the type definition would be

functor �×�(A1 : Type)(A2 : Type) : Type = . . .

In Isabelle we can declare

instance × :: (〈α1, order〉 , 〈α2, order〉) order = . . .

where we use the lexicographic ordering from α1 and α2. The elaboration of this
instance declaration becomes

functor �×�(A1 : Order)(A2 : Order) : Order = . . . .

If �×� were not indexed by sorts, the first functor would be shadowed by the sec-
ond, and thus inaccessible. Since not all types are instances of order, in such a
situation it would be impossible to create product types of unordered types.

4.6 Theorems

Theorems in Isabelle are a name together with a formula and a proof. The abstract
syntax is Thm(id, t, p). Because in general the free type variables have nontrivial
sorts, we abstract the type variables into functor arguments of the appropriate
signature.

tv(t) = (〈α1, σ1〉 , . . . , 〈αk, σk〉) fresh(A1, . . . , Ak)
∆ = (〈α1, A1〉 , . . . , 〈αk, Ak〉) ∆, · � p � thm

Σ �Thm(id, t, p) �
functor �id�(A1 : �σ1�) . . . (Ak : �σk�) : Thm =
struct
val thm = thm

end, Σ

4.7 Types

As both Isabelle/HOL and HOL Light have their basis in classical higher order
logic, translating terms and proofs is straightforward. We include the rules in the
extended paper for completeness. Translating types has one complication, which
is that a type variable corresponds to a functor argument instead of a specific HOL
Light type. In order to make type translation syntax directed (in the sense that
to translate a type constructor, it is enough to translate its arguments) we elabo-
rate types to module variables. When the types themselves are needed, we simply
project the type component.

∆(α) = A

∆ � α :: σ � A

∆ � τ1 � A1 . . . ∆ � τk � Ak

∆ � con(τ1, . . . , τk) � �con�(A1) . . . (Ak)
This completes our overview of the elaboration rules. A complete list can be found
in the extended paper.
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5 Name Mapping

The name map �x� from Isabelle identifiers to HOL Light identifiers plays an im-
portant role in many of the elaboration judgments. Some declarations, e.g., ax-
ioms, refer to HOL Light identifiers that are assumed already to be mapped be-
fore the translation begins. In order for the user to extend the translator without
modifying the source code, we include a simple specification language that allows
a user to include these identifier maps in �x�. In addition, the systems have a num-
ber of types and constants in common. The language allows a user to specify map-
pings between them. This avoids creating a second copy of the type or constant in
HOL Light. For instance, both Isabelle/HOL and HOL Light have a type of natu-
ral numbers nat and num respectively. They are both similarly constructed from
an axiom of infinity. Instead of having two separate developments of the natural
numbers in HOL Light, we can map one to the other with the typemap declara-
tion, followed by a number of thmmap declarations mapping the peano axioms.

typemap : nat � num
thmmap : Suc not zero � not suc . . .

The complete language definition and description can be found at [1].

6 Implementation

While we believe that the elaboration makes novel use of the OCaml module sys-
tem, the real contribution of this work is not theoretical, but practical. We have
a working implementation of the elaboration rules written in Standard ML [19].
We have used the implementation to translate approximately 2000 theorems of
the Isabelle/HOL standard library. While this is only about a third of more than
6000 theorems in the library, we foresee no difficulties in translating the rest. Al-
ready included in the first 2000 are all the difficulties of type classes, type defini-
tions, and instances. Most of the effort of translation goes into carefully defining
the theory in the given specification language and in proving the necessary HOL
Light theorems corresponding to an Isabelle theory.

A typical example is mapping the definition of the propositional connective ∧.
In HOL Light, P ∧ Q def= λf. f P Q = λf. f T rue T rue. In Isabelle, P ∧ Q def=
∀R. (P ⊃ Q ⊃ R) ⊃ R). We map the two notions of ∧ by first proving their
equivalence, eg,

let ISA_AND_DEF = prove
(‘(P /\ Q) <=> (!R. (P ==> Q ==> R) ==> R)‘,
ASM_MESON_TAC[AND_DEF]);;

and declaring the mapping to the elaborator in a configuration file.

constmap : "op &" ~~> "(/\)" [And]
defmap : HOL.and_def ~~> ISA_AND_DEF

We expect the rest of the library to be completed in the near future. The trans-
lated libraries and the SML source code of the elaborator are available on the web
at [1].
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7 Future Work

7.1 More Libraries, More Logics

The most natural direction for this work is to translate more libraries. Indeed, we
would like to import the rest of the standard library2 and continue on to Avigad’s
prime number theorem. We also intend to use the implementation to translate
the Isabelle portions of the Flyspeck project. Nipkow’s algorithm verification re-
lies on a reflection mechanism, whereby an algorithm is verified formally, code is
extracted, and the code is run directly. There is no analogue to this mechanism
in HOL Light, so this too presents a challenge for future work. We would also like
to perform similar translations for more diverse deductive systems. An interpre-
tation of Coq will be essential for Flyspeck, though the logics are so different that
this will be a significant challenge.

7.2 Formalizing the Translation in LF

As effective as it is in practice, the interpretation given is unsatisfying in a num-
ber of ways. To begin, the elaboration of classes includes no information about
what formula the declared axioms should prove. This is no oversight, as it would
require OCaml to allow dependently typed terms. We therefore do not discover
an error when using the functors until run-time. Given the length of time required
to load a library into OCaml, this is a significant disadvantage. The problem oc-
curs both in the elaboration phase when the HOL Light programmer must
supply translations of the Isabelle axioms and in the usage phase when instan-
tiating functors at concrete types. (cf. Section 4.4). HOL Light inference rule calls
fail for many reasons, for instance, when the supplied theorem does not have
exactly the right form. It would be much better to catch such errors at
compile-time.

Moreover, the interpretation given has no obvious metatheoretic properties. For
one, there is not an obvious relationship between the formula of an imported proof
to the translation of the initial Isabelle/HOL formula. We would hope, for exam-
ple, that if a proof p of t elaborates to p′, then t elaborates to concl(p′). Another
such property is completeness. We believe that the translation is total in the sense
that every Isabelle/HOL theorem could be translated to an OCaml functor that,
when run on any “correctly” implemented type modules, would yield the desired
theorem instance. A formal proof of these facts, though, would involve reasoning
about the operational semantics of the OCaml module system in addition to the
logics involved. While we may convince ourselves on paper that our reasoning is
correct, the full details of the proof would be overwhelming.

These concerns can be addressed by modeling the translation in LF [14], via
the Twelf [27] implementation. Using the Twelf methodology, and that generally
espoused by the Logosphere Project [28], we could formalize the Isabelle/HOL
and HOL Light logics and give an operational semantics to a subset of the OCaml
module language. We could then hope to prove theorems about the interpretation.
2 What I call the standard library is the contents of the theories included in Main.



202 S. McLaughlin

An example of this kind of formalization, from HOL to Nuprl, can be found in
Schurmann [29].

8 Conclusion

The usefulness and importance of sharing libraries between proof assistants is
abundantly clear. As a step in this direction, we presented an interpretation of
the Isabelle/HOL logic in HOL Light and demonstrated its effectiveness through
an implementation that produces executable OCaml functors. These functors con-
struct HOL Light proofs. A significant part of the Isabelle/HOL standard library
was translated in this way. In addition we provide a specification language that al-
lows the translator to be extended easily to new theories. We hope that our work
will be useful to the formal mathematics community.
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Abstract. We describe a dependent type theory with proof irrelevance.
Within this framework, we give a representation of a form of Mac Lane
set theory and discuss automated support for constructing proofs within
this set theory. One of the novel aspects of the representation is that
one is allowed to use any class (in the set theory) as a type (in the type
theory). Such class types allow a natural way of representing partial
functions (e.g., the first and second operators on the class of Kuratowski
ordered pairs). We also discuss how automated search can be used to
construct proofs. In particular, the first-order prover Vampire can be
called to solve a challenge problem (the injective Cantor Theorem) which
is notoriously difficult for higher-order automated provers.

1 Introduction

In order to resolve mathematical conjectures, either a person or a system must
know enough mathematics. Very few conjectures can be resolved by going back
to first principles. One can imagine having a large library of mathematical defi-
nitions and theorems. An automated prover for mathematics should be able to
make effective use of this library. First-order provers are designed to deal with
large numbers of clauses. On the other hand, it is often difficult and unnatural
to force higher-order or set-theoretic concepts into first-order logic.

What is the best language for automated reasoning in mathematics? We sketch
two answers:

1. Experience shows first-order logic is the appropriate language for automated
reasoning. Some forms of set theory such as von Neumann-Bernays-Gödel
(NBG) are finitely axiomatizable in first-order logic and sufficient for repre-
senting much of mathematics. The best language is first-order logic with a
finitely axiomatized set theory as in [6,18,5].

2. Higher-order logic (e.g., Church’s type theory) allows more natural repre-
sentations of mathematical propositions. In particular, λ-terms allow a more
computational treatment of sets and functions than first-order set theory.
Furthermore, higher-order logic supports type distinctions mathematicians
make implicitly. While automated reasoning in higher-order logic is more
complicated than in first-order logic, systems such as Tps can automatically
prove some theorems which are difficult to even represent in first-order [2].

Of course, a third answer is simply that we do not yet know.
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We introduce a new alternative for automated reasoning in mathematics. In-
stead of trying to force mathematics into first-order logic, we use an LF-style
dependent type theory (or, logical framework) with proof irrelevance. This type
theory is implemented in a mathematical assistance system Scunak.

The Scunak type theory itself is too weak to represent interesting mathe-
matics. We must “axiomatize” (give a signature for) a theory strong enough to
represent mathematical propositions and proofs. The axiomatic theory presented
here is a form of Mac Lane set theory (as advocated by Mac Lane in [13]). If we
insisted on implementing this set theory in first-order logic, then we would need
to use axiom schemes.

Another advantage of using a logical framework is that one can use proof
terms to naturally represent partial functions by insisting that a proof of a
certain condition is required for a term to be well-typed. One can further improve
the treatment of partial functions by including certain (very restricted) product
types and the notion of proof irrelevance in the logical framework. Essentially,
one can make any predicate (or, in semantic terms, “class”) into a type at the
meta-level.

By noting certain properties of the language, we can argue that automated
reasoning is possible in this setting. However, the implementation of Scunak does
not currently include an automated theorem prover. Instead, we have written
an interface between Scunak and the first-order prover Vampire [20] which has
been able to find a proof of a challenge problem discussed in [3].

2 A Type Theory with Proof Irrelevance

The type theory of Scunak is a modified version of the type theory LF (also
called λP ) as implemented in Twelf [17]. A thorough development of the LF
meta-theory can be found in [11] and of a similar version of Martin-Löf type
theory can be found in [15]. We conjecture that the type theory we are pre-
senting can be interpreted in the presumably more generally setting with proof
irrelevance investigated in [19]. The Scunak type theory is not intended to be
used as a logical framework, but as a type theory for encoding foundational sys-
tems for mathematics. A more thorough investigation of the Scunak type theory
is planned for future work. Here, we define terms, types, and give algorithmic
typing judgments. These correspond closely to the implementation. Afterwards,
we consider a denotational semantics for terms and types.

Let V be an infinite set of variables and C be a set of constants. We use
x, y, z, x1, . . . to denote variables and c, d, c1, . . . to denote constants. We define
terms and types as follows:

Terms. M,N,P,Q,R, φ, . . . := x|c|(λx.M)|(M N)|〈M,N〉|π1(M)|π2(M)
Types. A,B,C, . . . := obj|prop|(pf P )|(class φ)|(Πx : A.B)

Intuitively, P should have type prop in the type (pf P ), and φ should have
type (Πx : obj.prop) in the type (class φ). These conditions are checked in
the typing rules.
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As usual we identify terms and types up to α-conversion. We assume all
the usual notions of λ-calculus: substitution, β-reduction, η-reduction and the
following pairing reductions:

(π1) : π1(〈M,N〉) →π1 M (π2) : π2(〈M,N〉)→π2 N
(π) : 〈π1(M), π2(M)〉 →π M

We say a term or type is normal if it contains no redexes. We write W ↓ for
the normal form of W , if a unique normal form of W exists. In practice we will
consider terms and types which are of a certain class (respecting simple types)
which satisfy strong normalization and the Church-Rosser property. For such
terms and types, W ↓ exists (see, for example, [12]). For this purpose, we define
the set of simple types as follows:

Simple Types. α, β, γ, . . . := obj|prop|pf−|(obj× pf−)|(α→ β)

Note that we allow one product type (obj× pf−).
For some rules in the typing judgment we will η- or π-expand on the fly. We

introduce some notation to facilitate this.
If M is a term of the form (λxN), then let xM

λ denote x and BM
λ denote N .

If M is any other term, then let xM
λ be a variable not occurring in M and BM

λ

denote (MxM
λ ). Note that in the first case, (λxM

λ BM
λ ) is identical to M . In the

second case, (λxM
λ BM

λ ) η-reduces to M .
If M is a term of the form 〈N,P 〉, then let fstM denote N and sndM denote P .

If M is any other term, then let fstM denote π1(M) and sndM denote π2(M). In
the first case, 〈fstM , sndM 〉 is identical to M . In the second case, 〈fstM , sndM 〉
π-reduces to M .

A signature Σ is a list of distinct constants associated with types, and a type
context Γ is a list of distinct variables associated with types. A simple type
signature Ξ is a list of distinct constants associated with simple types, and a
simple type context ∆ is a list of distinct variables associated with simple types.

The dependencies of types on objects can be erased to obtain a simple type
as follows: �obj� := obj, �prop� := prop, �pf M� := pf−, �class M� :=
(obj × pf−), and �(Πx : A.B)� := (�A� → �B�). We can use this operation to
obtain a simple type signature Ξ (resp., simple type context ∆) from a signature
Σ (resp., type context Γ ).

In Scunak, terms and types are always given in βπ1π2-normal form, so that
the types of λ-abstractions and pairs can be inferred from the given intended
type.

We assume two simple typing judgments are given:

• “∆ �Ξ M : α” In words, M has simple type α. The rules for this judgment
are standard and omitted here. The main reason to consider this judgment
is to guarantee strong normalization and Church-Rosser.

• “∆ �Ξ A sv” In words, A is simply valid. The rules are omitted. The idea
is that if A is pf P (resp., class φ), then ∆ �Ξ P : prop (resp., ∆ �Ξ φ :
obj→ prop) must hold.
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x : A ∈ Γ
xv

Γ � x ∼ x ↓ A

c : A ∈ Σ
xs

Γ � c ∼ c ↓ A

Γ � M ∼ N ↓ class φ
xpi2

Γ � π2(M) ∼ π2(N) ↓ pf (φ π1(M))

Γ � M ∼ P ↓ (Πx : A.B) Γ � N ∼ Q ↑ A
xa

Γ � (MN) ∼ (PQ) ↓ ([N/x]B)

Γ � M ∼ N ↓ class φ
xpi1

Γ � π1(M) ∼ π1(N) ↓ obj

Γ, z : A � [z/xM
λ ]BM

λ ∼ [z/xN
λ ]BN

λ ↑ [z/x]B z ∈ V fresh
cλz

Γ � M ∼ N ↑ (Πx : A.B)

Γ �Σ fstM ∼ fstN ↑ obj Γ �Σ sndM ∼ sndN ↑ pf (φ fstM )
cp

Γ �Σ M ∼ N ↑ class φ

Γ � M ∼ N ↓ B B ∈ {obj, prop}
coerce

Γ � M ∼ N ↑ B

Γ � M ∼ M ↓ pf Q
Γ � N ∼ N ↓ pf R

�Γ� ��Σ� Q : prop
�Γ� ��Σ� R : prop

Γ � Q↓ ∼ P ↑ prop
Γ � R↓ ∼ P ↑ prop

coercepf
Γ �Σ M ∼ N ↑ pf P

Γ � A : Type Γ, z : A � [z/x]B : Type z ∈ V fresh
vtΠ

Γ � (Πx : A.B) : Type
vto

Γ � obj : Type

vtp
Γ � prop : Type

Γ � M ∼ M ↑ prop
vtpf

Γ � pf M : Type

Γ � M ∼ M ↑ (obj → prop)
vtcl

Γ � class M : Type

Fig. 1. Rules for Algorithmic Typing Judgments

The main algorithmic typing judgments are as follows:

• “� Σ sig” Intuitively, Σ is a valid signature. The idea is to ensure �Σ A :
Type before adding c : A to Σ. We omit the rules. Note, however, that unlike
LF, new families are never added to the signature.

• “�Σ Γ ctx” Intuitively, Γ is a valid context. The idea is to ensure Γ �Σ A :
Type holds before adding x : A to Γ . We omit the rules.

• “Γ �Σ M ∼ N ↑ A” Intuitively, M can be checked to be A-related to N .
The rules are given in Figure 1.

• “Γ �Σ M ∼ N ↓ A” Intuitively, the type A can be extracted as a type in
which M is A-related to N . The rules are given in Figure 1.

• “Γ �Σ A : Type” In words, A is a valid type. The rules are given in Figure 1.

We usually omit the dependence on Σ in the judgments. Note that the rule
coercepf which normalizes terms includes premisses to ensure the terms are
simply typable, hence that unique normal forms exist. Under certain conditions,
one can eliminate these premisses.

In order to clarify the type theory above and prepare for the set theory in the
next section, we consider a particular model for terms and types. Since we only
consider terms which can be given a simple type, we start by giving domains
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corresponding to the simple types. Intuitively, obj contains all the (untyped)
mathematical objects of interest, prop contains propositions, and pf− contains
proofs. We takeDobj to be Vω2 in the usual von Neumann heirarchy of sets: V∅ =
∅, Vε+1 = P(Vε) and Vγ =

⋃
ε<γ Vε for each limit ordinal γ. In set theory, the

important properties of sets are given by the membership and equality relations.
Fix four distinct values ∈̇, /̇∈, =̇, ˙�=. We take Dprop to be the set

{(R, x, y)|R ∈ {∈̇, /̇∈, =̇, ˙�=}, x, y ∈ Vω2}

Intuitively, for any x, y ∈ Vω2 , ( /̇∈, x, y) represents the proposition that x /∈ y.
Only some propositions should be “true” and true propositions should have
“proofs”. Since we wish to model proof irrelevance, a true proposition should
have exactly one proof. An easy way to model this is to take the set of proofs to
be a subset of the set of propositions. We take Dpf− to be the subset

{(∈̇, x, y)|x, y ∈ Vω2 , x ∈ y} ∪ {( /̇∈, x, y)|x, y ∈ Vω2 , x /∈ y}
∪{(=̇, x, x)|x ∈ Vω2} ∪ {( ˙�=, x, y)|x, y ∈ Vω2 , x �= y}.

of Dprop. The intention is that p ∈ Dpf− is a (the) proof of p. Taking Dobj×pf−
to be Dobj ×Dpf− and Dα→β to be the set of all functions from Dα to Dβ for
any α and β we obtain a standard frame for these simple types. The frame D is
sufficient to evaluate simply typed λ-terms (with pairing between obj and pf−).

We can interpret any simply valid type as a binary relation over some Dα.
The interpretation of valid types should be pers. For each α, let Rα denote the
set of all binary relations over Dα. For a relation R, let |R| be {x|〈x, x〉 ∈ R}.

We will interpret pf P using a function pf from Dprop to Rpf− taking a

proposition p to the per {〈p, p〉} if p ∈ Dpf− and to the empty per otherwise.

Hence pf(p) is a per with one equivalence class if p has a proof, and pf(p) is
empty if p has no proof.

The type (class φ) depends on φ ∈ Dobj→prop. Note that such a φ deter-
mines a subset {x ∈ Dobj|φ(x) ∈ Dpf−} of Dobj. Intuitively, this is the “class”
(relative to Vω2) of x ∈ Vω2 such that φ(x) has a proof. This subset is isomorphic
to the set {〈x, p〉 ∈ Dobj × Dpf− |p = φ(x)}. This set is the domain of the per
on Dobj × Dpf− given by {〈〈x, φ(x)〉, 〈x, φ(x)〉〉|x ∈ Dobj, φ(x) ∈ Dpf−}. We

take class(φ) to be this per.
The remaining dependent types correspond to Π-types. Semantically, given

R ∈ Rα and F : Dα → Rβ , we define Π(R,F ) ∈ Rα→β by f(Π(R,F ))g iff
f(x)F (x) g(y) for all xRy.

We can interpret c : α ∈ Ξ by giving �c� ∈ Dα. We can interpret �∆� as
{0}×Dα1×· · ·×Dαn . when ∆ is x1 : α1, . . . , xn : αn. (Special Case: �·� := {0}.)

Semantically, assume we have fixed �c� ∈ Dα for each c : α ∈ Ξ. Then, when
∆ �Ξ M : α holds, we can define �∆|M : α� to be a function from �∆� to Dα (in
the obvious way). For d ∈ �∆�, we write �∆|M : α�d instead of �∆|M : α�(d).
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When ∆ �Ξ A sv holds, we can define �∆|A� to be a function from �∆� to
R�A�. In particular, �∆|obj� and �∆|prop� are the identity relations on Dobj
and Dprop, �∆|pf P �(d) is pf(�∆|P : prop�d), class types are interpreted using
class, and function types are interpreted using Π . For d ∈ �∆�, we write �∆|A�d

instead of �∆|A�(d).
We have described how to interpret simply typed terms and simply valid

dependent types in the model. We can further interpret dependently typed con-
texts Γ by taking �Γ � to be a binary relation over ��Γ ��. Let �·� be the identity
relation over {0} and let �Γ, x : A� be {〈〈d, y〉, 〈e, z〉〉|d(�Γ �)e and y��Γ �|A�dz}.

An interpretation of constants respects Σ if for all c : A ∈ Σ, �c� ∈ |�·|A�0|.
Assume we have an interpretation which respects Σ. We conjecture the following
soundness results:

1. If �Γ � ��Σ� M : �A�, �Γ � ��Σ� N : �A�, and �Γ � ��Σ� A sv hold, and either
Γ �Σ M ∼ N ↑ A or Γ �Σ M ∼ N ↓ A holds, then for all d�Γ �e, we have
〈��Γ �|M : �A��d, ��Γ �|N : �A��e〉 ∈ ��Γ �|A�d.

2. If �Γ � ��Σ� A sv and Γ �Σ A : Type hold, then for all d�Γ �e, ��Γ �|A�d is a
per on D�A� and ��Γ �|A�d = ��Γ �|A�e.

3. If �Σ Γ ctx holds, then �Γ � is a per over ��Γ ��.

3 Mac Lane Set Theory with Universes

The axiomatic kernel of Mac Lane set theory with Universes (abbreviated MU)
is implemented in Scunak using a signature of 29 constants. (In particular, the
signature is finite.) There are three constants for constructing propositions.

– ¬ : prop→ prop, i.e., ¬M is a proposition whenever M is a proposition.
– ∈: obj→ obj→ prop, i.e., if x and y are objects (sets), then (x ∈ y) (infix

for (∈ y x)) is a proposition.1

– =: obj→ obj→ prop, i.e., if x and y are objects (sets), then (x = y) (infix
for (= x y)) is a proposition.

Note that we take negation as the only logical connective. The other connectives
will be definable (making use of sets). Bounded quantifiers will also be definable.

There are six constants corresponding to basic set constructors.

– ∅ : obj, the empty set is a set.
– dsetconstr : ΠA : obj.(class (∈ A)→ prop)→ obj, i.e., if A is a set and
φ is a predicate on the set A, then (dsetconstrAφ) (informally written
{x ∈ A|φ(x)}) is a set. In the future, we will often simply write A for the
class type class (∈ A) induced by the set A. The constant dsetconstr
corresponds to the separation axiom.

– setadjoin : obj→ obj→ obj, i.e., if A and B are sets, then {A} ∪B is a
set. We take this operation of adjoining to sets as primitive instead of the
more common primitive: unordered pair.

1 The order of the arguments are reversed so that (∈ y), representing the predicate
version of the set y, has a nice η-short form.
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– P : obj→ obj, i.e., if A is a set, then the powerset P(A) of A is a set.
–

⋃
: obj→ obj, i.e., if A is a set, then the union

⋃
A of A is a set.

– univ : obj → obj, i.e., if A is a set then the “universe” of A is a set.
A universe of a set A is a set containing A and closed under dsetconstr,
setadjoin, P and

⋃
. We expect universes to be useful when one begins to

represent so-called “large” categories.

Note that one can easily represent any finite enumeration {x1, . . . , xn} using the
empty set and the setadjoin operation: ({x1} ∪ · · · ({xn} ∪ ∅) · · · ).

While one could take more constructors for propositions and objects as prim-
itive, there is a very important reason to prefer a minimal set: primitive sub-
stitutions. When forming a complete automated reasoning procedure, it seems
inevitable that sometimes one will need to “guess” the use of one of the basic
constants in an instantiation. In higher-order theorem proving, such guessing is
performed by primitive substitutions (or, primsubs). In Church’s type theory,
the set of possible primsubs is infinite since there is a logical constant Πα for
each type α. In formulating MU, we have attempted to keep this set not only
finite but also as small as possible.

We can easily interpret the constants above in our model. Briefly,

�¬�(∈̇, x, y) := ( /̇∈, x, y) �¬�( /̇∈, x, y) := (∈̇, x, y) �¬�(=̇, x, y) := ( ˙�=, x, y)
�¬�( ˙�=, x, y) := (=̇, x, y) �∈�(y)(x) := (∈̇, x, y) �=�(x)(y) := (=̇, x, y)

�∅� := ∅ �P�(A) := P(A) �
⋃

�(A) :=
⋃

(A).

Also, �setadjoin�(A)(B) := {A} ∪ B. Interpreting dsetconstr requires a bit
more explanation. Let A ∈ Dobj and φ ∈ Dobj×pf−→prop be given. The
intention is that φ is a property of the set A. As such, φ depends on an object
x ∈ Dobj and a proof that x is in A. In our frame, (∈̇, x, A) is the only possible
proof, and is only a proof if (∈̇, x, A) ∈ Dpf− (i.e., x is actually in A). We let

�dsetconstr�(A)(φ) := {x ∈ A|φ(〈x, (∈̇, x, A)〉) ∈ Dpf−}. Also, we interpret

�univ�(A) to be Vδ+ω ∈ Vω2 where δ < ω2 is an ordinal such that A ∈ Vδ.
Finally, there are 20 constants corresponding to natural deduction proof rules.

These are shown in natural deduction style in Figure 2. To ease the presentation,
some of the rules in Figure 2 are simplified. For example, the premiss Γ �
P,Q : prop of the rule xmcases stands for two premisses: Γ � P : prop and
Γ � Q : prop. Variables named A, B, C and D are always of type obj and
variables named P and Q are always of type prop. When we add these variables
to the context Γ , we do not explicitly write the type. Also, we sometimes write
a : φ for a : class φ and we write b : A for b : class (∈ A). These rules are
“sound” in our intended semantics. That is, there is an obvious interpretation
(respecting the relevant pers). For example, we can interpret setunionI so that
�setunionI�(A)(B)(C)(∈̇, B, C)(∈̇, C,A) := (∈̇, B,

⋃
A) for A,B,C ∈ Vω2 and

(∈̇, B, C), (∈̇, C,A) ∈ Dpf− . Note that given these arguments, (∈̇, B,
⋃
A) ∈

Dpf− precisely because B ∈ C and C ∈ A and so B ∈
⋃
A. Given arguments

from Dpf− which do not fall into the pattern above, setunionI can be arbitrary
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Γ � P, Q : prop Γ, P � Q Γ, ¬P � Q
xmcases

Γ � Q

Γ � P, Q : prop Γ � P Γ � ¬P
notE

Γ � Q

Γ, A � (φA) : prop Γ � a, b : φ Γ, c : φ � (ψc) : prop Γ � π1(a) = π1(b) Γ � ψa
eqCE

Γ � ψb

Γ � A, B : obj Γ, C, C ∈ A � C ∈ B Γ, D, D ∈ B � D ∈ A
setext

Γ � A = B

Γ � A : obj Γ � A ∈ ∅ Γ � P : prop
emptysetE

Γ � P

Γ � A : obj Γ, a : A � (φa) : prop Γ � b : A Γ � φb
dsetconstrI

Γ � π1(b) ∈ {x ∈ A|φx}

Γ � A : obj Γ, a : A � (φa) : prop Γ � B : obj Γ � B ∈ {x ∈ A|φx}
dsetconstrEL

Γ � B ∈ A

Γ � A : obj Γ, a : A � (φa) : prop Γ � B : obj Γ � u : (B ∈ {x ∈ A|φx})
dsetconstrER

Γ � φ〈B, (dsetconstrELA φ B u)〉

Γ � A, B : obj
setadjoinIL

Γ � A ∈ {A} ∪ B

Γ � A, B : obj Γ � C : obj Γ � C ∈ B
setadjoinIR

Γ � C ∈ {A} ∪ B

Γ � A, B, C : obj Γ � C ∈ {A} ∪ B Γ � P : prop Γ, C = A � P Γ, C ∈ B � P
setadjoinE

Γ � P

Γ � A, B : obj Γ, C, C ∈ B � C ∈ A
powersetI

Γ � B ∈ P(A)

Γ � A, B, C : obj Γ � B ∈ P(A) Γ � C ∈ B
powersetE

Γ � C ∈ A

Γ � A, B, C : obj Γ � B ∈ C Γ � C ∈ A
setunionI

Γ � B ∈
[

A

Γ � A, B : obj Γ � B ∈
[

A Γ � P : prop Γ, C, B ∈ C, C ∈ A � P

setunionE
Γ � P

Γ � A : obj
univHas

Γ � A ∈ univ(A)

Γ � A : obj Γ � a : univ(A) Γ, b : π1(a) � (φb) : prop
univSep

Γ � {x ∈ π1(a)|φx} ∈ univ(A)

Γ � A : obj Γ � a : univ(A) Γ � b : univ(A)
univAdj

Γ � {π1(a)} ∪ π1(b) ∈ univ(A)

Γ � A : obj Γ � a : univ(A)
univPow

Γ � P(π1(a)) ∈ univ(A)

Γ � A : obj Γ � a : univ(A)
univSU

Γ �
[

π1(a) ∈ univ(A)

Fig. 2. Basic Set Theory Deduction Rules
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in Dpf− . Only the pattern above is used to check �setunionI� is in the domain
of the per determined by the type

ΠA : obj.ΠB : obj.ΠC : obj.pf (B ∈ C) → pf (C ∈ A) → pf (B ∈
⋃

A)

so that the interpretation will respect the signature.
The rules xmcases and notE are natural deduction rules for classical negation.

Consider the typed constants corresponding to these rules:

xmcases: ΠP : prop.ΠQ : prop.(pf P → pf Q)→ (pf (¬P ) → pf Q)→ pf Q
notE: ΠP : prop.ΠQ : prop.pf P → pf (¬P )→ pf Q

One can use these two basic rules to derive a natural deduction rule for negation
introduction notIp as well as the classical double negation rule dnegE. That is,
we can make two abbreviations using terms of the appropriate types:

notIp: (ΠP : prop.(pf P → ΠQ : prop.pf Q)→ pf (¬P ))
= (λPλu(xmcasesP (¬P ) (λv(u v (¬P ))) (λww)))

dnegE: (ΠP : prop.pf (¬¬P ) → pf P )
= (λPλu(xmcasesP P (λvv)(λw(notE (¬P )P wu))))

This demonstrates how one represents MU theorems and proofs in Scunak. A
“theorem” is a function type which returns a proof type and a “proof” is a term
which can be judged to be a member of this type.

The rule eqCE allows one to replace equals by equals even when the objects
are used in a “typed” way. Suppose φ is a predicate and a and b are in the class
type of φ. Technically, a is a pair of an untyped set π1(a) and a proof π2(a) of
(φπ1(a)). The “typed” object b is a similar pair. We cannot directly represent
the proposition that a and b are equal, since we only have equality between
objects (i.e., untyped sets). The proposition that a and b are equal as untyped
sets is π1(a) = π1(b) (one of the premisses of eqCE). Suppose ψ is a predicate
that is only defined relative to the class φ. If we know ψ is true for the φ-object a,
and we know a and b are equal as untyped sets, then eqCE allows us to conclude
ψ is true for the φ-object b.

The only other rules which may require any explanation are dsetconstrI,
dsetconstrEL and dsetconstrER for introducing and eliminating the (depen-
dent) set constructor. In each case we have premisses indicating A is an object
(i.e., untyped set) in context and φ is a predicate on A. Since φ can only be
applied to members of the class type class (∈ A), we must take care.

In the introduction rule dsetconstrI, we assume we have b as a member of
this class type and a proof that (φ b) holds. In such a case we wish to conclude
that b is in the set {x ∈ A|(φx)}. This is not quite correct since ∈ is a relation
between objects, and b is a pair. Hence we recover the object using π1 and
conclude π1(b) ∈ {x ∈ A|(φx)}.

The elimination rules dsetconstrEL and dsetconstrER form a kind of con-
verse. Assume we have an untyped set B and a proof that B is in {x ∈ A|(φx)}.
The first rule dsetconstrEL allows us to conclude B ∈ A. The second rule
dsetconstrER intuitively allows us to conclude B satisfies φ. However, φ can-
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not be simply applied to B. Instead we coerce the untyped object B to be in
the class determined by A using the previous rule dsetconstrEL. The term
(dsetconstrELAφB) takes a proof of B ∈ {x ∈ A|(φx)} (the premiss named
by u in dsetconstrER) to a proof of B ∈ A. Hence 〈B, (dsetconstrELAφB u)〉
is in the class type (class (∈ A)).

The basic set theoretic concepts and rules satisfy a kind of logical purity.
Unlike most presentations of set theory, the basic rules only mention the basic
concepts. In particular, all “axioms” are given before any definitions are made.

Although one starts with negation, one can define the other logical connectives
and derive the appropriate rules. For example, for any propositions P and Q,
one can define disjunction of P and Q using the term

{∅} ∈ {{x ∈ {∅}|P}, {x ∈ {∅}|Q}}.

Once the appropriate rules for disjunction are proven, one need not unfold this
definition of disjunction.

One can also define bounded quantifiers. For example, for a set A and pred-
icate φ(x) depending on an element x ∈ A, ∀x ∈ A.φ(x) can be defined by
({x ∈ A.φ(x)} = A). Note that the predicate φ is relative to the set A. That is,
φ(x) is only defined for x in the class type corresponding to A. Thus one could
sensibly represent a proposition such as ∀x ∈ Positive. 1x > 0 where Positive
represents the set of positive real numbers. Forming the term 1

x would require
a proof that x is nonzero and such a proof would depend on the assumption
x ∈ Positive.

Note that two common set theory axioms, choice and foundation, are omitted
from MU.

Starting from the basic concepts and rules defining the theory MU, we can
make new definitions using terms of certain types. If the type returns a proof
type, then we can interpret the type as a derived rule (or theorem) and we can
interpret the term as a proof. We briefly outline some definitions which have
been constructed interactively in Scunak. After getting starting, this follows the
usual development of basic mathematics in an axiomatic set theory.

– Propositional connectives and bounded quantifiers are defined and corre-
sponding rules are derived.

– The usual set theoretic notions are defined (⊂, binary union and intersection,
etc.) are defined and relevant rules are derived.

– A description operator is defined on the class of singleton sets.
– Ordered pairs (as Kuratowski pairs) are defined, along with “first” and “sec-

ond” operations which are only defined on the class of Kuratowski pairs. (To
prevent confusion with pairing in the Scunak type theory, we write 〈〈x, y〉〉
for the Kuratowski pair of x and y.)

– Using Kuratowski pairs, Cartesian products (A × B) of sets A and B are
defined.

– Given any sets A and B and (meta-level) relation φ : A→ B → prop, we can
define the subset of A×B of Kuratowski pairs 〈〈a, b〉〉 such that (φab) holds.
In Scunak, we include notation of the form {<<x,y>>:A \times B|...} for
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specifying such sets of pairs. This is especially useful when defining construc-
tors for functions and relations.

– Using Cartesian products, binary relations are defined.
– For any two sets A and B, a function from A to B is defined as a functional

(untyped) binary relation on A and B.
– For sets A and B, we define the set BA of functions from A to B.
– Using the description operator, an application operator ap2 can be defined

taking an element f of the set BA and an element a of A to (intuitively)
f(a) in B.

– Given a “meta-level” function g from A to B (i.e., a term g of type A→ B),
we can obtain an “object-level” function (lam2AB g) from A to B (i.e.,
a member of BA) by {〈〈x, y〉〉 ∈ (A × B)|(π1(gx) = π1(y))}. This is an
internalized λ binder and (along with ap2) allows us to internalize standard
models of Church’s type theory.

Of particular note are the operations that are “partial” (i.e., only defined
on subclasses of the untyped universe). Consider first the description operator.
The predicate singleton is defined in the obvious way. One can easily prove
if U is in the class of singletons, then (

⋃
U) ∈ U . Using the previous fact, we

define a description operator the taking a singleton U : (class singleton) into
(the class determined by) U . The important fact is that the description operator
is defined precisely on the class of singleton sets. The type of the is ΠU :
(class singleton).U . The definition of the is (λU〈

⋃
U, (thepropU)〉) where

theprop is an abbreviation for the proof, given a singleton U , that (
⋃
U) ∈ U .

Two other examples of such “partial” functions are given by the first and
second operators for Kuratowski pairs. Both kfst and ksnd take an argument
u of type (class iskpair) and return an object (i.e., an element of type obj).

4 Proving the Injective Cantor Theorem

A common example which has been considered many times is Cantor’s Theorem.
Intuitively, Cantor’s Theorem states that P(A) is bigger than A. One way to
formally state this property is that there is no surjection from A onto P(A).
This is the surjective Cantor Theorem which was one of the earliest interesting
theorems proven automatically by Tps [3]. The relevant diagonal set can be
constructed by Tps using higher-order unification.

Otter was also able to prove the surjective Cantor theorem formalized in NBG.
As discussed in [18], the diagonal set was defined by the user and certain lemmas
about this diagonal set were explicitly given. For this reason, Quaife describes
the proof as “semi-automatic.”

An alternative formulation of Cantor’s Theorem states that there is no in-
jection from P(A) into A. This is the injective Cantor Theorem. As discussed
in [3], this is a very challenging problem for higher-order theorem provers. The
only known cut-free proofs of the injective Cantor Theorem are of quantifica-
tional depth at least 3. (Roughly speaking, one must do a primsub for a variable
introduced by a quantifier which itself was introduced by a primsub.)
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A different approach was suggested by Dana Scott: reduce the injective version
to the surjective version by using the fact that an injection h from P(A) to A
induces a surjection g from A to P(A). It is not reasonable to expect a theorem
prover to “guess” such a lemma, but it may be reasonable for a theorem prover
to find such a lemma in a library and use it, along with the surjective Cantor
Theorem, to prove the injective Cantor Theorem. This is the “semi-automatic”
approach we have taken here.

First we must represent the main lemma about one-sided inverse functions. A
general version is not true: there can be an injection from A to B without there
existing a surjection from B onto A. The counterexample is when A is empty
and B is nonempty. We could formulate the lemma as follows: If A is nonempty
and there is an injection from A to B, then there is a surjection from B onto A.
Given a default value a ∈ A and an injection h from A to B, we can actually
define the relevant surjection g as follows:

{〈〈y, x〉〉|〈〈x, y〉〉 ∈ h} ∪ {〈〈y, a〉〉|¬∃x ∈ A.〈〈x, y〉〉 ∈ h}. (1)

That is, g(y) = x if h(x) = y and g(y) is the default value a if no such x
exists.

Let iF (A,B) denote the set of injective functions fromA to B and let sF (A,B)
denote the set of surjective functions from A to B. We can represent the construc-
tion above in Scunak by defining an abbreviation leftInvOfInjwhich takes two
sets A and B, a member h of the set iF (A,B) and a member a of the set A and
returns a member of the set sF (B,A). Since leftInvOfInj returns a member of
a class type, it returns a pair. The object part of the pair is defined as indicated
by (1) above. The proof part of the pair is a proof that (1) defines a member of
sF (B,A) (a surjective function from B to A). Instead of representing the main
lemma as a proposition, we define an operation, which we can denote by (h)−1

a ,
taking h ∈ iF (A,B) and a ∈ A to a member of sF (B,A).

By the time we state the injective Cantor Theorem in Scunak, we have defined
57 concepts and proven 222 lemmas. Furthermore, 15 of the defined concepts
are functions which return elements of class types and hence have proof content
(namely, the proof that the resulting untyped object belongs to the class). For
each definition (not counting lemmas), there are two rules for folding and un-
folding abbreviations, giving 114 more facts. Combining this with the 20 basic
proof rules from Figure 2, we have 371 facts which can be used to prove the
injective Cantor Theorem.

Among these facts, we only send 114 to Vampire. We do not translate any fact
which depends on variables of propositional type. This filters out, for example,
the basic rules xmcases, notE and eqCE for negation and equality. However,
since we translate negation and equality in Scunak to negation and equality
in Vampire, these rules need not be translated. We also only translate types
which are first-order (in the λ-calculus sense). This is more restrictive than
necessary and filters out some important facts such as the basic set extensionality
rule setext. Of course, the fewer clauses we send to Vampire, the less likely it
becomes that there is a proof, but the more likely it becomes that Vampire will
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find a proof if one exists. Dependence of object terms on proof terms are deleted
in the translation.

In addition to the 114 facts, two formulas corresponding to the injective Can-
tor theorem are sent to Vampire. Namely, the “axiom” that a constant h is in
the set AP(A) and the “conjecture” that h is not injective.

Vampire (version 8.0) was called with 116 first-order formulas and a five
minute time limit. In less than 5 seconds, Vampire generated over 80, 000 clauses
and found a refutation. Most of the given 116 clauses are not used in the refu-
tation. We describe the relevant clauses used by Vampire:

1. h ∈ AP(A).
2. h is injective (the negation of the conclusion).
3. (Surjective Cantor Theorem) If g ∈ P(X)X , then g is not surjective.
4. (Main Lemma) If f ∈ iF (X,Y ) and a ∈ X , then (f)−1

a ∈ sF (Y,X).
5. For any X , ∅ ∈ P(X).
6. If g ∈ sF (X,Y ), then g is surjective.
7. If g ∈ sF (X,Y ), then g ∈ Y X .
8. If an element f is in Y X and is injective from X to Y , then f ∈ iF (X,Y ).
9. If X ⊆ Y and x ∈ X , then x ∈ Y .

10. For any X ,
⋃
{X} ⊆ X .

11. (Basic rule setunionI) If x ∈ X and X ∈ Y , then x ∈
⋃
Y .

12. (Basic rule setadjoinIL) For any x and Y , x ∈ {x} ∪ Y .

The first facts (1-4) are at the heart of the refutation. Fact 5 is used so that the
empty set can act as the necessary default value in P(A).Facts (6-8) must be
used to pass from the sets iF (X,Y ) or sF (X,Y ) to the properties defining these
sets. The remaining facts (9-12) are not strictly necessary for the proof, but are
used by Vampire. If one modifies the input file for Vampire to include only facts
(1-8), then Vampire finds a simpler refutation after generating only 16 clauses.

Upon inspection, the original refutation found by Vampire is a bit roundabout.
Part of the refutation is clear: By the surjective Cantor theorem, nothing is in
sF (X,P(X)) for any X . Using this with main lemma, if something is in P(X),
then nothing is in iF (P(X), X). At this point, we could finish the refutation
using ∅ ∈ P(A) (from 5) and h ∈ iF (P(A), A) (from 1, 2 and 8). However, the
actual refutation found by Vampire proceeds as follows.

Using 8 and 11, if f ∈ Y X is injective and iF (X,Y ) ∈ Z, then f ∈
⋃
Z. Hence

(using our assumptions 1 and 2), we conclude h ∈
⋃
Z whenever iF (P(A), A) ∈

Z. Since iF (P(A), A) ∈ {iF (P(A), A)}∪Y by 12, we have h ∈
⋃

({iF (P(A), A)}
∪ Y ). In particular, h ∈

⋃
{iF (P(A), A)}. Using 9 and 10, h ∈ iF (P(A), A).

Hence nothing is in P(A), contradicting ∅ ∈ P(A).

5 Related Work

A similar idea of axiomatizing set theory in higher-order logic, as well as an
internalization of higher-order logic within the set theory, was explored in [10].
The ZF-theory in Isabelle also encodes set theory within a form of simple type
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theory [16]. More recently, a variety of foundational systems including ZFC
(Zermelo-Fraenkel set theory with the axiom of choice) were finitely represented
and compared in Automath [22]. Decidable fragments of set theory have been
studied extensively (see, e.g., [7]). Several different forms of mechanized set the-
ory have been formulated and investigated in recent years, including [8], [9],
[21], [4] and [22].

The idea of calling a first-order theorem prover to solve subgoals has been
explored in several papers, including [14,1]. The work in [14] describes extensive
experiments with a connection between Vampire and Isabelle-ZF. The work in [1]
connects a first-order prover with a logical framework.

6 Conclusion

We have presented a type theory with proof irrelevance and class types imple-
mented in the system Scunak. This type theory is designed with the intention
of supporting both the construction of a large mathematical library and auto-
mated search using the library. Within this type theory, a form of Mac Lane
set theory has been implemented. We argue this is a reasonably practical repre-
sentation language for mathematics. Enough of a library has been interactively
constructed to define function spaces as well as object-level versions of appli-
cation and abstraction. In particular, we have represented the injective Cantor
theorem and mapped this representation (along with much of the previously
constructed theory) to the first-order prover Vampire. Vampire proves this chal-
lenge problem quickly. Hopefully, in the future we will have a larger library of
mathematics in Scunak which can be used effectively during automated search.
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of Automated Reasoning, 2:287–327, 1986.

7. Domenico Cantone, Calogero G. Zarba, and Rosa Ruggeri-Cannata. A tableau-
based decision procedure for a fragment of set theory with iterated membership.
Journal of Automated Reasoning, 34(1):49–72, 2005.

8. Gilles Dowek. Collections, sets and types. Mathematical Structures in Computer
Science, 9(1):109–123, 1999.

9. William M. Farmer. Stmm: A set theory for mechanized mathematics. J. Autom.
Reasoning, 26(3):269–289, 2001.

10. Michael J. C. Gordon. Set theory, higher order logic or both? In Joakim von Wright,
Jim Grundy, and John Harrison, editors, TPHOLs, volume 1125 of Lecture Notes
in Computer Science, pages 191–201. Springer, 1996.

11. Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defining logics.
Journal of the Association for Computing Machinery, 40(1):143–184, January 1993.

12. J. Lambek and P. Scott. Introduction to Higher Order Categorial Logic. Cambridge
University Press, Cambridge, UK, 1986.

13. Saunders Mac Lane. Mathematics, Form and Function. Springer-Verlag, 1986.
14. Jia Meng. Integration of interactive and automatic provers. In Manuel

Carro and Jesus Correas, editors, Second CologNet Workshop on Imple-
mentation Technology for Computational Logic Systems, 2003. http://www.
cl.cam.ac.uk/users/jm318/papers/integration.pdf.

15. Bengt Nordström, Kent Petersson, and Jan Smith. Martin-löf’s type theory. In
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Abstract. We investigate cut-elimination and cut-simulation in impred-
icative (higher-order) logics. We illustrate that adding simple axioms
such as Leibniz equations to a calculus for an impredicative logic — in
our case a sequent calculus for classical type theory — is like adding cut.
The phenomenon equally applies to prominent axioms like Boolean- and
functional extensionality, induction, choice, and description. This calls
for the development of calculi where these principles are built-in instead
of being treated axiomatically.

1 Introduction

One of the key questions of automated reasoning is the following: “When does a
set Φ of sentences have a model?” In fact, given reasonable assumptions about
calculi, most inference problems can be reduced to determining (un)-satisfiability
of a set Φ of sentences. Since building models for Φ is hard in practice, much
research in computational logic has concentrated on finding sufficient conditions
for satisfiability, e.g. whether there is a Hintikka set H extending Φ.

Of course in general the answer to the satisfiability question depends on the
class of models at hand. In classical first-order logic, model classes are well-
understood. In impredicative higher-order logic, there is a whole landscape of
plausible model classes differing in their treatment of functional and Boolean
extensionality. Satisfiability then strongly depends on these classes, for instance,
the set Φ := {a, b, qa,¬qb} is unsatisfiable in a model class where the universes
of Booleans are required to have at most two members (see property b below),
but satisfiable in the class without this restriction.

In [5] we have shown that certain (i.e. saturated) Hintikka sets always have
models and have derived syntactical conditions (so-called saturated abstract con-
sistency properties) for satisfiability from this fact. The importance of abstract
consistency properties is that one can check completeness for a calculus C by
verifying proof-theoretic conditions (checking that C-irrefutable sets of formu-
lae have the saturated abstract consistency property) instead of performing
model-theoretic analysis (for historical background of the method in first-order
logic, cf. [10,13,14]). Unfortunately, the saturation condition (if Φ is abstractly
consistent, then one of Φ ∪ {A} or Φ ∪ {¬A} is as well for all sentences A)
is very difficult to prove for machine-oriented calculi (indeed as hard as cut
elimination).
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In this paper we investigate further the relation between the lack of the sub-
formula property in the saturation condition (we need to “guess” whether to
extend Φ by A or ¬A on our way to a Hintikka set for all sentences A) and
the cut rule (where we have to “guess, i.e. search for in an automated reason-
ing setting” the cut formula A). A side result is the insight that there exist
“cut-strong” formulae which support the effective simulation of cut in calculi for
impredicative logics.

In Section 2, we will fix notation and review the relevant results from [5]. We
define in Section 3 a basic sequent calculus and study the correspondence be-
tween saturation in abstract consistency classes and cut-elimination. In Section 4
we introduce the notion of “cut-strong” formulae and sequents and show that
they support the effective simulation of cut. In Section 5 we demonstrate that
the pertinent extensionality axioms are cut-strong. We develop alternative ex-
tensionality rules which do not suffer from this problem. Further rules are needed
to ensure Henkin completeness for this calculus with extensionality. These new
rules correspond to the acceptability conditions we propose in Section 6 to en-
sure the existence of models and the existence of saturated extensions of abstract
consistence classes.

2 Higher-Order Logic

In [5] we have re-examined the semantics of classical higher-order logic with the
purpose of clarifying the role of extensionality. For this we have defined eight
classes of higher-order models with respect to various combinations of Boolean
extensionality and three forms of functional extensionality. We have also devel-
oped a methodology of abstract consistency (by providing the necessary model
existence theorems) needed for instance, to analyze completeness of higher-order
calculi with respect to these model classes. We now briefly summarize the main
notions and results of [5] as required for this paper. Our impredicative logic of
choice is Church’s classical type theory.

Syntax: Church’s Simply Typed λ-Calculus. As in [9], we formulate higher-order
logic (HOL) based on the simply typed λ-calculus. The set of simple types T is
freely generated from basic types o and ι using the function type constructor →.

For formulae we start with a set V of (typed) variables (denoted by Xα, Y, Z,
X1

β, X
2
γ . . .) and a signature Σ of (typed) constants (denoted by cα, fα→β , . . .).

We let Vα (Σα) denote the set of variables (constants) of type α. The signature
Σ of constants includes the logical constants ¬o→o, ∨o→o→o and Πα

(α→o)→o for
each type α; all other constants in Σ are called parameters. As in [5], we assume
there is an infinite cardinal ℵs such that the cardinality of Σα is ℵs for each type
α (cf. [5](3.16)). The set of HOL-formulae (or terms) are constructed from typed
variables and constants using application and λ-abstraction. We let wffα(Σ) be
the set of all terms of type α and wff(Σ) be the set of all terms.

We use vector notation to abbreviate k-fold applications and abstractions as
AUk and λXk A, respectively. We also use Church’s dot notation so that stands
for a (missing) left bracket whose mate is as far to the right as possible (consistent
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with given brackets). We use infix notation A ∨ B for ((∨A)B) and binder
notation ∀Xα A for (Πα(λXα Ao)). We further use A ∧ B, A ⇒ B, A ⇔ B
and ∃Xα A as shorthand for formulae defined in terms of ¬, ∨ and Πα (cf. [5]).
Finally, we let (Aα

.=α Bα) denote the Leibniz equation ∀Pα→o (PA) ⇒ PB.
Each occurrence of a variable in a term is either bound by a λ or free. We use

free(A) to denote the set of free variables of A (i.e., variables with a free occur-
rence in A). We consider two terms to be equal if the terms are the same up to the
names of bound variables (i.e., we consider α-conversion implicitly). A term A is
closed if free(A) is empty. We let cwffα(Σ) denote the set of closed terms of type
α and cwff(Σ) denote the set of all closed terms. Each term A ∈ wffo(Σ) is called
a proposition and each term A ∈ cwffo(Σ) is called a sentence.

We denote substitution of a term Aα for a variable Xα in a term Bβ by
[A/X ]B. Since we consider α-conversion implicitly, we assume the bound vari-
ables of B avoid variable capture.

Two common relations on terms are given by β-reduction and η-reduction.
A β-redex (λX A)B β-reduces to [B/X ]A. An η-redex (λX CX) (where X /∈
free(C)) η-reduces to C. For A,B ∈ wffα(Σ), we write A≡βB to mean A can
be converted to B by a series of β-reductions and expansions. Similarly, A≡βηB
means A can be converted to B using both β and η. For each A ∈ wff(Σ) there
is a unique β-normal form (denoted A↓β) and a unique βη-normal form (denoted
A↓βη). From this fact we know A≡βB (A≡βηB) iff A↓β ≡ B↓β (A↓βη ≡ B↓βη).

A non-atomic formula in wffo(Σ) is any formula whose β-normal form is of
the form [cAn] where c is a logical constant. An atomic formula is any other
formula in wffo(Σ).

Semantics: Eight Model Classes. For each ∗ ∈ {β,βη,βξ,βf,βb,βηb,βξb,βfb} (the
latter set will be abbreviated by in the remainder) we define M∗ to be the class
of all Σ-models M such that M satisfies property q and each of the additional
properties {η, ξ, f, b} indicated in the subscript ∗ (cf. [5](3.49)). Special cases of
Σ-models are Henkin models and standard models (cf. [5](3.50 and 3.51)). Every
model in Mβfb is isomorphic to a Henkin model (see the discussion following
[5](3.68)).

Saturated Abstract Consistency Classes and Model Existence. Finally, we review
the model existence theorems proved in [5]. There are three stages to obtain-
ing a model in our framework. First, we obtain an abstract consistency class
ΓΣ (usually defined as the class of irrefutable sets of sentences with respect to
some calculus). Second, given a (sufficiently pure) set of sentences Φ in the ab-
stract consistency class ΓΣ we construct a Hintikka set H extending Φ. Third,
we construct a model of this Hintikka set (and hence a model of Φ).

A Σ-abstract consistency class ΓΣ is a class of sets of Σ-sentences. An abstract
consistency class is always required to be closed under subsets (cf. [5](6.1)).
Sometimes we require the stronger property that ΓΣ is compact, i.e., a set Φ is
in ΓΣ iff every finite subset of Φ is in ΓΣ (cf. [5](6.1,6.2)).

To describe further properties of abstract consistency classes, we use the no-
tation S ∗ a for S ∪ {a} as in [5]. The following is a list of properties a class ΓΣ
of sets of sentences can satisfy with respect to arbitrary Φ ∈ ΓΣ (cf. [5](6.5)):
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∇c If A is atomic, then A /∈ Φ or ¬A /∈ Φ.
∇¬ If ¬¬A ∈ Φ, then Φ ∗A ∈ ΓΣ .
∇β If A≡βB and A ∈ Φ, then Φ ∗B ∈ ΓΣ .
∇η If A≡βηB and A ∈ Φ, then Φ ∗B ∈ ΓΣ .
∇∨ If A ∨B ∈ Φ, then Φ ∗A ∈ ΓΣ or Φ ∗B ∈ ΓΣ .
∇∧ If ¬(A ∨B) ∈ Φ, then Φ ∗ ¬A ∗ ¬B ∈ ΓΣ .
∇∀ If ΠαF ∈ Φ, then Φ ∗ FW ∈ ΓΣ for each W ∈ cwffα(Σ).
∇∃ If ¬ΠαF ∈ Φ, then Φ ∗ ¬(Fw) ∈ ΓΣ for any parameter wα ∈ Σα which does

not occur in any sentence of Φ.
∇b If ¬(A .=o B) ∈ Φ, then Φ ∗A ∗ ¬B ∈ ΓΣ or Φ ∗ ¬A ∗B ∈ ΓΣ .
∇ξ If ¬(λXα M .=α→β

λXα N) ∈ Φ, then Φ ∗ ¬([w/X ]M .=β [w/X ]N) ∈ ΓΣ for
any parameter wα ∈ Σα which does not occur in any sentence of Φ.

∇f If ¬(G .=α→β H) ∈ Φ, then Φ ∗ ¬(Gw
.=β Hw) ∈ ΓΣ for any parameter

wα ∈ Σα which does not occur in any sentence of Φ.
∇sat Either Φ ∗A ∈ ΓΣ or Φ ∗ ¬A ∈ ΓΣ .

We say ΓΣ is an abstract consistency class if it is closed under subsets and satis-
fies∇c,∇¬,∇β ,∇∨,∇∧,∇∀ and∇∃. We let Accβ denote the collection of all abstract
consistency classes. For each ∗ ∈ we refine Accβ to a collection Acc∗ where the
additional properties {∇η,∇ξ,∇f,∇b} indicated by ∗ are required (cf. [5](6.7)).
We say an abstract consistency class ΓΣ is saturated if ∇sat holds.

Using ∇c (atomic consistency) and the fact that there are infinitely many
parameters at each type, we can show every abstract consistency class satisfies
non-atomic consistency. That is, for every abstract consistency class ΓΣ , A ∈
cwffo(Σ) and Φ ∈ ΓΣ , we have either A /∈ Φ or ¬A /∈ Φ (cf. [5](6.10)).

In [5](6.32) we show that sufficiently Σ-pure sets in saturated abstract con-
sistency classes extend to saturated Hintikka sets. (A set of sentences Φ is suffi-
ciently Σ-pure if for each type α there is a set Pα of parameters of type α with
cardinality ℵs and such that no parameter in P occurs in a sentence in Φ.)

In the Model Existence Theorem for Saturated Sets [5](6.33) we show that
these saturated Hintikka sets can be used to construct modelsM which are mem-
bers of the corresponding model classes M∗. Then we conclude (cf. [5](6.34)):

Model Existence Theorem for Saturated Abstract Consistency
Classes: For all ∗ ∈ , if ΓΣ is a saturated abstract consistency class in Acc∗
and Φ ∈ ΓΣ is a sufficiently Σ-pure set of sentences, then there exists a model
M ∈ M∗ that satisfies Φ. Furthermore, each domain of M has cardinality at
most ℵs.

In [5] we apply the abstract consistency method to analyze completeness for
different natural deduction calculi. Unfortunately, the saturation condition is
very difficult to prove for machine-oriented calculi (indeed as we will see in
Section 3 it is equivalent to cut elimination), so Theorem [5](6.34) cannot be
easily used for this purpose directly.

In Section 6 we therefore motivate and present a set of extra conditions for
Accβfb we call acceptability conditions. The new conditions are sufficient to
prove model existence.
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Basic Rules
A atomic (and β-normal)

G(init)
∆ ∗ A ∗ ¬A

∆ ∗ A G(¬)
∆ ∗ ¬¬A

∆ ∗ ¬A ∆ ∗ ¬B G(∨−)
∆ ∗ ¬(A ∨ B)

∆ ∗ A ∗ B G(∨+)
∆ ∗ (A ∨ B)

∆ ∗ ¬ (AC)
�

β
C ∈ cwffα(Σ)

G(ΠC
− )

∆ ∗ ¬ΠαA

∆ ∗ (Ac)
�

β
cα ∈ Σ new

G(Π c
+)

∆ ∗ ΠαA

Inversion Rule
∆ ∗ ¬¬A G(Inv¬)

∆ ∗ A

Weakening and Cut Rules
∆ G(weak)

∆ ∪ ∆′
∆ ∗ C ∆ ∗ ¬C G(cut)

∆

Fig. 1. Sequent Calculus Rules

3 Sequent Calculi, Cut and Saturation

We will now study cut-elimination and cut-simulation with respect to (one-sided)
sequent calculi.

Sequent Calculi G. We consider a sequent to be a finite set ∆ of β-normal
sentences from cwffo(Σ). A sequent calculus G provides an inductive definition
for when ��G ∆ holds. We say a sequent calculus rule

∆1 · · · ∆n
r

∆

is admissible in G if ��G ∆ holds whenever ��G ∆i for all 1 ≤ i ≤ n. For any
natural number k ≥ 0, we call an admissible rule r k-admissible if any instance
of r can be replaced by a derivation with at most k additional proof steps. Given
a sequent ∆, a model M, and a class M of models, we say ∆ is valid for M (or
valid for M), if M |= D for some D ∈ ∆ (or ∆ is valid for every M ∈ M). As
for sets in abstract consistency classes, we use the notation ∆ ∗A to denote the
set ∆ ∪ {A} (which is simply ∆ if A ∈ ∆). Figure 1 introduces several sequent
calculus rules. Some of these rules will be used to define sequent calculi, while
others will be shown admissible (or even k-admissible).

Abstract Consistency Classes for Sequent Calculi. For any sequent calculus G
we can define a class ΓG

Σ of sets of sentences. Under certain assumptions, ΓG
Σ is

an abstract consistency class. First we adopt the notation ¬Φ and Φ↓β for the
sets {¬A|A ∈ Φ} and {A↓β |A ∈ Φ}, resp., where Φ ⊆ cwffo(Σ). Furthermore,
we assume this use of ¬ binds more strongly than ∪ or ∗, so that ¬Φ∪∆ means
(¬Φ) ∪∆ and ¬Φ ∗A means (¬Φ) ∗A.
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Definition 1. Let G be a sequent calculus. We define ΓG
Σ to be the class of all

finite Φ ⊂ cwffo(Σ) such that ��G ¬ Φ↓β does not hold.

In a straightforward manner, one can prove the following results (see [7]).

Lemma 2. Let G be a sequent calculus such that G(Inv¬) is admissible. For any
finite sets Φ and ∆ of sentences, if Φ ∪ ¬∆ /∈ ΓG

Σ , then ��G ¬ Φ↓β ∪ ∆↓β holds.

Theorem 3. Let G be a sequent calculus. If the rules G(Inv¬), G(¬), G(weak),
G(init), G(∨−), G(∨+), G(Π C

− ) and G(Π c
+) are admissible in G, then ΓG

Σ ∈ Accβ.

We can furthermore show the following relationship between saturation and cut
(see [7]).

Theorem 4. Let G be a sequent calculus.

1. If G(cut) is admissible in G, then ΓG
Σ is saturated.

2. If G(¬) and G(Inv¬) are admissible in G and ΓG
Σ is saturated, then G(cut)

is admissible in G.

Since saturation is equivalent to admissibility of cut, we need weaker conditions
than saturation. A natural condition to consider is the existence of saturated
extensions.

Definition 5 (Saturated Extension). Let ∗ ∈ and ΓΣ , Γ
′

Σ ∈ Acc∗ be ab-
stract consistency classes. We say Γ ′

Σ is an extension of ΓΣ if Φ ∈ Γ ′
Σ for every

sufficiently Σ-pure Φ ∈ ΓΣ . We say Γ ′
Σ is a saturated extension of ΓΣ if Γ ′

Σ is
saturated and an extension of ΓΣ .

There exist abstract consistency classes Γ in Accβfb which have no saturated
extension.

Example 6. Let ao, bo, qo→o ∈ Σ and Φ := {a, b, (qa),¬(qb)}. We construct an
abstract consistency class ΓΣ from Φ by first building the closure Φ′ of Φ under
relation ≡β and then taking the power set of Φ′. It is easy to check that this ΓΣ is
in Accβfb. Suppose we have a saturated extension Γ ′

Σ of ΓΣ in Accβfb. Then Φ ∈ Γ ′
Σ

since Φ is finite (hence sufficiently pure). By saturation, Φ ∗ (a .=o
b) ∈ Γ ′

Σ or
Φ ∗¬(a .=o

b) ∈ Γ ′
Σ. In the first case, applying ∇∀ with the constant q, ∇∨ and ∇c

contradicts (qa),¬(qb) ∈ Φ. In the second case, ∇b and ∇c contradict a, b ∈ Φ.

Existence of any saturated extension of a sound sequent calculus G implies ad-
missibility of cut. The proof uses the model existence theorem for saturated
abstract consistency classes (cf. [5](6.34)). The full proof is in [7].

Theorem 7. Let G be a sequent calculus which is sound for M∗. If ΓG
Σ has a

saturated extension Γ ′
Σ ∈ Acc∗, then G(cut) is admissible in G.

Sequent Calculus Gβ. We now study a particular sequent calculus Gβ defined by
the rules G(init), G(¬), G(∨−), G(∨+), G(Π C

− ) and G(Π c
+) (cf. Figure 1). It is

easy to show that Gβ is sound for the eight model classes and in particular for
class Mβ .
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The reader may easily prove the following Lemma.

Lemma 8. Let A ∈ cwffo(Σ) be an atom, B ∈ cwffα(Σ), and ∆ be a sequent.
In Gβ

1. ∆ ∗A⇔ A := ∆ ∗ ¬(¬(¬A ∨A) ∨ ¬(¬A ∨A)) is derivable in 7 steps and
2. ∆ ∗B .=α B := ∆ ∗Πα(λPα→o ¬(PB) ∨ (PB) is derivable in 3 steps.

The proof of the next Lemma is by induction on derivations and is given in [7].

Lemma 9. The rules G(Inv¬) and G(weak) are 0-admissible in Gβ .

Theorem 10. The sequent calculus Gβ is complete for the model class Mβ and
the rule G(cut) is admissible.

Proof. By Theorem 3 and Lemma 9, ΓGβ

Σ ∈ Accβ. Suppose ��Gβ
∆ does not

hold. Then ¬∆ ∈ Accβ by Lemma 2. By the model existence theorem for Accβ
(cf. [6](8.1)) there exists a model for ¬∆ in Mβ . This gives completeness of Gβ .
We can use completeness to conclude cut is admissible in Gβ .

Andrews proves admissibility of cut for a sequent calculus similar to Gβ in [1].
The proof in [1] contains the essential ingredients for showing completeness.

We will now show that G(cut) actually becomes k-admissible in Gβ if certain
formulae are available in the sequent ∆ we wish to prove.

4 Cut-Simulation

Cut-Strong Formulae and Sequents. k-cut-strong formulae can be used to effec-
tively simulate cut. Effectively means that the elimination of each application of
a cut-rule introduces maximally k additional proof steps, where k is constant.

Definition 11. Given a formula A ∈ cwffo(Σ), and an arbitrary but fixed num-
ber k > 0. We call formula A k-cut-strong for G (or simply cut-strong) if the
cut rule variant

∆ ∗C ∆ ∗ ¬C G(cutA)
∆ ∗ ¬A

is k-admissible in G.

Our examples below illustrate that cut-strength of a formula usually only weakly
depends on calculus G: it only presumes standard ingredients such as β-normal-
ization, weakening, and rules for the logical connectives.

We present some simple examples of cut-strong formulae for our sequent calcu-
lus Gβ . A corresponding phenomenon is observable in other higher-order calculi,
for instance, for the calculi presented in [1,4,8,11].

Example 12. Formula ∀Po P := Πo(λPo P ) is 3-cut-strong in Gβ. This is jus-
tified by the following derivation which actually shows that rule G(cutA) for this
specific choice of A is derivable in Gβ by maximally 3 additional proof steps. The
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only interesting proof step is the instantiation of P with formula D := ¬C∨C in
rule G(Π D

− ). (Note that C must be β-normal; sequents such as ∆∗C by definition
contain only β-normal formulae.)

∆ ∗C
∆ ∗ ¬¬C G(¬)

∆ ∗ ¬C
∆ ∗ ¬(¬C ∨C)

G(∨−)

∆ ∗ ¬Πo(λPo P )
G(Π D

− )

Clearly, ∀Po P is not a very interesting cut-strong formula since it implies false-
hood, i.e. inconsistency.

Example 13. The formula ∀Po P ⇒ P := Πo(λPo ¬P ∨ P ) is 3-cut-strong in
Gβ. This is an example of a tautologous cut-strong formula. Now P is simply
instantiated with D := C in rule G(Π D

− ). Except for this first step the derivation
is identical to the one for Example 12.

Example 14. Leibniz equationsM .=α N := Πα(λP ¬PM∨PN) (for arbitrary
formulae M,N ∈ cwffα(Σ) and types α ∈ T ) are 3-cut-strong in Gβ. This includes
the special cases M .=α M. NowP is instantiated with D := λXα C in rule G(Π D

− ).
Except for this first step the derivation is identical to the one for Example 12.

Example 15. The original formulation of higher-order logic (cf. [12]) contained
comprehension axioms of the form C := ∃Pα1→···→αn→o∀Xn PXn ⇔ Bo where
Bo ∈ wffo(Σ) is arbitrary with P /∈ free(B). Church eliminated the need for such
axioms by formulating higher-order logic using typed λ-calculus. We will now
show that the instance CI := ∃Pι→o ∀Xι PX ⇔ X

.=ι
X is 16-cut-strong in Gβ

(note that G(weak) is 0-admissible). This motivates building-in comprehension
principles instead of treating comprehension axiomatically.

3 steps; see Lemma 8....
∆ ∗ ¬(pa ⇒ a

.=ι
a) ∗ a

.=ι
a

∆ ∗ ¬(pa ⇒ a
.=ι

a) ∗ ¬¬(a .=ι
a)

G(¬)
D

∆ ∗ ¬(pa ⇒ a
.=ι

a) ∗ ¬(¬(a .=ι
a) ∨ pa)

G(∨−)

∆ ∗ ¬(pa ⇒ a
.=ι

a) ∨ ¬(a .=ι
a ⇒ pa)

G(∨+)

∆ ∗ ¬¬(¬(pa ⇒ a
.=ι

a) ∨ ¬(a .=ι
a ⇒ pa))

G(¬)

∆ ∗ ¬Πι(λXι pX ⇔ X
.=ι

X)
G(Π aι

− )

∆ ∗ Πι→o(λP ι→o ¬Πι(λXι pX ⇔ X
.=ι

X))
G(Π pι→o

+ )

∆ ∗ CI
G(¬)

Derivation D is:

∆ ∗ pa ∗ ¬pa G(init)

∆ ∗ ¬¬pa ∗ ¬pa G(¬)

∆ ∗C ∆ ∗ ¬C.... 3 steps; see Example 14
∆ ∗ ¬(a .=o

a)
∆ ∗ ¬(a .=ι

a) ∗ ¬pa
G(weak)

∆ ∗ ¬(¬pa ∨ a .=ι
a) ∗ ¬pa

G(∨−)
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As we will show later, many prominent axioms for higher-order logic also
belong to the class of cut-strong formulae.

Next we define cut-strong sequents.

Definition 16. A sequent ∆ is called k-cut-strong (or simply cut-strong) if
there exists a a k-cut-strong formula A ∈ cwffo(Σ) such that ¬A ∈ ∆.

Cut-Simulation. The cut-simulation theorem is a main result of this paper. It
says that cut-strong sequents support an effective simulation (and thus elimina-
tion) of cut in Gβ . Effective means that the size of cut-free derivation grows only
linearly for the number of cut rule applications to be eliminated.

We first fix the following calculi: Calculus Gcut
β extends Gβ by the rule G(cut)

and calculus GcutA

β extends Gβ by the rule G(cutA) for some arbitrary but fixed
cut-strong formula A.

Theorem 17. Let ∆ be a k-cut-strong sequent such that ¬A ∈ ∆ for some k-
cut-strong formula A. For each derivation D: ��Gcut

β
∆ with d proof steps there

exists an alternative derivation D′: ��GcutA
β

∆ with d proof steps.

Proof. Note that the rules G(cut) and G(cutA) coincide whenever ¬A ∈ ∆.
Intuitively, we can replace each occurrence of G(cut) in D by G(cutA) in order
to obtain a D′ of same size. Technically, in the induction proof one must weaken
to ensure ¬A stays in the sequent and carry out a parameter renaming to make
sure the eigenvariable condition is satisfied.

Theorem 18. Let ∆ be a k-cut-strong sequent such that ¬A ∈ ∆ for some k-
cut-strong formula A. For each derivation D: ��GcutA

β

∆ with d proof steps and

with n applications of rule G(cut) there exists an alternative derivation D′: ��Gβ

∆ with maximally d+ nk proof steps.

Proof. A is k-cut-strong so by definition G(cutA) is k-admissible in Gβ . This
means that G(cutA) can be eliminated in D and each single elimination of
G(cutA) introduces maximally k new proof steps. Now the assertion can be
easily obtained by a simple induction over n.

Corollary 19. Let ∆ be a k-cut-strong sequent. For each derivation D: ��Gcut
β

∆

with d proof steps and n applications of rule G(cut) there exists an alternative
cut-free derivation D′: ��Gβ

∆ with maximally d+ nk proof steps.

5 The Extensionality Axioms Are Cut-Strong

We have shown comprehension axioms can be cut-strong (cf. Example 15). Fur-
ther prominent examples of cut-strong formulae are the Boolean and functional
extensionality axioms. The Boolean extensionality axiom (abbreviated Bo in the
remainder) is

∀Ao ∀Bo (A⇔ B)⇒ A
.=o

B
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The infinitely many functional extensionality axioms (abbreviated Fαβ) are pa-
rameterized over α, β ∈ T .

∀Fα→β ∀Gα→β (∀Xα FX
.=β

GX)⇒ F
.=α→β

G

These axioms usually have to be added to higher-order calculi to reach Henkin
completeness, i.e. completeness with respect to model class Mβfb. For example,
Huet’s constrained resolution approach as presented in [11] is not Henkin com-
plete without adding extensionality axioms. For instance, the need for adding
Boolean extensionality is actually illustrated by the set of unit literals
Φ := {a, b, (qa),¬(qb)} from Example 6. As the reader may easily check, this
clause set Φ, which is inconsistent for Henkin semantics, cannot be proven by
Huet’s system without, e.g, adding the Boolean extensionality axiom. By relying
on results in [1], Huet essentially shows completeness with respect to model class
Mβ as opposed to Henkin semantics.

We will now investigate whether adding the extensionality axioms to a
machine-oriented calculus in order to obtain Henkin completeness is a suitable
option.

Theorem 20. The Boolean extensionality axiom Bo is a 14-cut-strong formula
in Gβ.

Proof. The following derivation justifies this theorem (ao is a parameter).

7 steps; see Lemma 8....
∆ ∗ a⇔ a

∆ ∗ ¬¬(a⇔ a)
G(¬)

∆ ∗C ∆ ∗ ¬C.... 3 steps; see Example 14
∆ ∗ ¬(a .=o

a)
∆ ∗ ¬(¬(a⇔ a) ∨ a .=o

a)
G(∨−)

∆ ∗ ¬Bo
2× G(Π a

−)

Theorem 21. The functional extensionality axioms Fαβ are 11-cut-strong for-
mulae in Gβ.

Proof. The following derivation justifies this theorem (fα→β is a parameter).

3 steps; see Lemma 8....
∆ ∗ fa .=β

fa

∆ ∗ (∀Xα fX
.=β

fX)
G(Π aα

+ )

∆ ∗ ¬¬∀Xα fX
.=β

fX
G(¬)

∆ ∗C ∆ ∗ ¬C.... 3 steps; see Example 14

∆ ∗ ¬(f .=α→β
f)

∆ ∗ ¬(¬(∀Xα fX
.=β

fX) ∨ f .=α→β
f)

G(∨−)

∆ ∗ ¬Fαβ
2× G(Π f

−)

In [4] and [8] we have already argued that the extensionality principles should
not be treated axiomatically in machine-oriented higher-order calculi and there
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∆ ∗ ¬Fαβ α → β ∈ T
G(Fαβ)

∆

∆ ∗ ¬Bo G(B)
∆

Fig. 2. Axiomatic Extensionality Rules

we have developed resolution and sequent calculi in which these principles are
built-in. Here we have now developed a strong theoretical justification for this
work: Theorems 20, 21 and 19 tell us that adding the extensionality principles
Bo and Fαβ as axioms to a calculus is like adding a cut rule.

In Figure 2 we show rules that add Boolean and functional extensionality in an
axiomatic manner to Gβ . More precisely we add rules G(Fαβ) and G(B) allowing
to introduce the axioms for any sequent ∆; this way we address the problem
of the infinitely many possible instantiations of the type-schematic functional
extensional axiom Fαβ. Calculus Gβ enriched by the new rules G(Fαβ) and G(B)
is called GE

β . Soundness of the the new rules is easy to verify: In [5](4.3) we show
that G(Fαβ) and G(B) are valid for Henkin models.

Replacing the Extensionality Axioms. In Figure 3 we define alternative exten-
sionality rules which correspond to those developed for resolution and sequent
calculi in [4] and [8]. Calculus Gβ enriched by G(f) and G(b) is called G−

βfb. Sound-
ness of G(f) and G(b) for Henkin semantics is again easy to show.

Our aim is to develop a machine-oriented sequent calculus for automating
Henkin complete proof search. We argue that for this purpose G(f) and G(b) are
more suitable rules than G(Fαβ) and G(B).

Our next step now is to show Henkin completeness for GE
β . This will be rel-

atively easy since we can employ cut-simulation. Then we analyze whether cal-
culus G−

βfb has the same deductive power as GE
β .

First we extend Theorem 3. The proof is given in [7].

Theorem 22. Let G be a sequent calculus such that G(Inv¬) and G(¬) are ad-
missible.

1. If G(f) and G(Π c
+) are admissible, then ΓG

Σ satisfies ∇f.
2. If G(b) is admissible, then ΓG

Σ satisfies ∇b.

Theorem 23. The sequent calculus GE
β is Henkin complete and the rule G(cut)

is 12-admissible.

Proof. G(cut) can be effectively simulated and hence eliminated in GE
β by com-

bining rule G(Fαβ) with the 11-step derivation presented in the proof of Theo-
rem 21.

Let Γ
GE

β

Σ be defined as in Definition 1. We prove Henkin completeness of GE
β by

showing that the class Γ
GE

β

Σ is a saturated abstract consistency class in Accβfb. We
here only analyze the crucial conditions ∇b, ∇f and ∇sat. For the other conditions
we refer to Theorem 3. Note that 0-admissibility of G(Inv¬) and G(weak) can
be shown for GE

β by a suitable induction on derivations as in Lemma 9.
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∆ ∗ (∀Xα AX
.=β BX)

�
β

G(f)
∆ ∗ (A .=α→β B)

∆ ∗ ¬A ∗ B ∆ ∗ ¬B ∗ A G(b)
∆ ∗ (A .=o B)

Fig. 3. Proper Extensionality Rules

∇f G(Π c
+) is a rule of GE

β and thus admissible. According to Theorem 22 it is
thus sufficient to ensure admissibility of rule G(f) to show ∇f. This is justified
by the following derivation where N := A .=α→β B and M := (∀Xα AX

.=β

BX)
�

β
(for β-normal A,B).

∆ ∗ (∀Xα AX
.=β BX)

�
β

∆ ∗N ∗M
G(weak)

∆ ∗N ∗ ¬¬M G(¬)

derivable....
∆ ∗N ∗ ¬N

∆ ∗N ∗ ¬(¬M ∨N)
G(∨−)

∆ ∗N ∗ ¬Fαβ
G(Π A

− ),G(Π B
− )

∆ ∗A .=α→β B
G(Fαβ)

∇b With a similar derivation using G(B) we can show that G(b) is admissible.
We conclude ∇b by Theorem 22.

∇sat Since G(cut) is admissible we get saturation by Theorem 4.

Does G−
βfb have the same deductive strength as GE

β ? I.e., is G−
βfb Henkin complete?

We show this is not yet the case.

Theorem 24. The sequent calculus G−
βfb is not complete for Henkin semantics.

We illustrate the problem by a counterexample.

Example 25. Consider the sequent ∆ := {¬a,¬b,¬(qa), (qb)} where ao, bo,
qo→o ∈ Σ are parameters. For any M≡ (D,@, E , υ) ∈ Mβfb, either υ(E(a)) ≡ F,
υ(E(b)) ≡ F or E(a) ≡ E(b) by property b. Hence sequent ∆ is valid for every
M ∈ Mβfb. However, ��G−

βfb
∆ does not hold. By inspection, ∆ cannot be the

conclusion of any rule.

In order to reach Henkin completeness and to show cut-elimination we thus need
to add further rules. Our example motivates the two rules presented in Figure 4.
G(Init

.=) introduces Leibniz equations such as qa
.=o

qb as is needed in our
example and G(d) realizes the required decomposition into a .=o

b.
We thus extend sequent calculus G−

βfb to Gβfb by adding the decomposition
rule G(d) and the rule G(Init

.=) which generally checks if two atomic sentences
of opposite polarity are provably equal (as opposed to syntactically equal).

Is Gβfb complete for Henkin semantics? We will show in the next Section that
this indeed holds (cf. Theorem 28).

With GE and Gβfb we have thus developed two Henkin complete calculi and
both calculi are cut-free. However, as our exploration shows “cut-freeness” is
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∆ ∗ (A .=o B) (†)
G(Init

.=)
∆ ∗ ¬A ∗ B

∆ ∗ (A1 .=α1 B1) · · · ∆ ∗ (An .=αn Bn) (‡)
G(d)

∆ ∗ (hAn .=β
hBn)

(†) A,B atomic (‡) n ≥ 1, β ∈ {o, ι}, hαn→β ∈ Σ parameter

Fig. 4. Additional Rules G(Init
.=) and G(d)

not a well-chosen criterion to differentiate between their suitability for proof
search automation: GE inherently supports effective cut-simulation and thus
cut-freeness is meaningless.

The criterion we propose for the analysis of calculi in impredicative logics is
“freeness of effective cut-simulation”.

Other Rules for Other Model Classes. In [6] we developed respective complete
and cut-free sequent calculi not only for Henkin semantics but for five of the eight
model classes. In particular, no additional rules are required for the β, βη and
βξ case. Meanwhile, the βf case requires additional rules allowing η-conversion.
The limited space does not allow us to present and analyze these cases here.

6 Acceptability Conditions

We now turn our attention again to the existence of saturated extension of
abstract consistency classes.

As illustrated by the Example 6, we need some extra abstract consistency
properties to ensure the existence of saturated extensions. We call these extra
properties acceptability conditions. They actually closely correspond to ad-
ditional rules G(Init

.=) and G(d).

Definition 26 (Acceptability Conditions). Let ΓΣ be an abstract consis-
tency class in Accβfb. We define the following properties:

∇m If A,B ∈ cwffo(Σ) are atomic and A,¬B ∈ Φ, then Φ ∗ ¬(A .=o B) ∈ ΓΣ .
∇d If ¬(hAn .=β

hBn) ∈ Φ for some types αi where β ∈ {o, ι} and hαn→β ∈ Σ is

a parameter, then there is an i (1 ≤ i ≤ n) such that Φ∗¬(Ai .=αi

Bi) ∈ ΓΣ.

We now replace the strong saturation condition used in [5] by these acceptability
conditions.

Definition 27 (Acceptable Classes). An abstract consistency class ΓΣ ∈
Accβfb is called acceptable in Accβfb if it satisfies the conditions ∇m and ∇d.

One can show a model existence theorem for acceptable abstract consistency
classes in Accβfb (cf. [6](8.1)). From this model existence theorem, one can con-
clude Gβfb is complete for Mβfb (hence for Henkin models) and that cut is ad-
missible in Gβfb.

Theorem 28. The sequent calculus Gβfb is complete for Henkin semantics and
the rule G(cut) is admissible.
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Proof: The argumentation is similar to Theorem 10 but here we employ the
acceptability conditions ∇m and ∇d.

One can further show the Saturated Extension Theorem (cf. [6](9.3)):

Theorem 29. There is a saturated abstract consistency class in Accβfb that is
an extension of all acceptable ΓΣ in Accβfb.

Given Theorem 7, one can view the Saturated Extension Theorem as an abstract
cut-elimination result.

The proof of a model existence theorem employs Hintikka sets and in the
context of studying Hintikka sets we have identified a phenomenon related to
cut-strength which we call the Impredicativity Gap. That is, a Hintikka set
H is saturated if any cut-strong formula A (e.g. a Leibniz equation C .= D)
is in H. Hence we can reasonably say there is a “gap” between saturated and
unsaturated Hintikka sets. Every Hintikka set is either saturated or contains no
cut-strong formulae.

7 Conclusion

We have shown that adding cut-strong formulae to a calculus for an impredica-
tive logic is like adding cut. For machine-oriented automated theorem proving
in impredicative logics — such as classical type theory — it is therefore not rec-
ommendable to naively add cut-strong axioms to the search space. In addition
to the comprehension principle and the functional and Boolean extensionality
axioms as elaborated in this paper the list of cut-strong axioms includes:

Other Forms of Defined Equality. Formulas A ..=α B are 4-cut-strong in Gβ

where ..=α is λXα λYα ∀Qα→α→o (∀Zα (Q Z Z)) ⇒ (Q X Y ) (cf. [3]).
Proof. Instantiate Q with λXα λYα C.

Axiom of Induction. The axiom of induction for the naturals ∀Pι→o P0 ∧
(∀Xι PX ⇒ P (sX))⇒ ∀Xι PX is 18-cut-strong in Gβ . (Other well-founded
ordering axioms are analogous.)
Proof. Instantiate P with λXι a

.=o
a for some parameter ao.

Axiom of Choice. ∃I(α→o)→o ∀Qα→o ∃Xα QX ⇒ Q(IQ) is 7-cut-strong in Gβ .
Proof. Instantiate Q with λXα C.

Axiom of Description. The description axiom ∃I(α→o)→o ∀Qα→o (∃1Yα QY )
⇒ Q(IQ) (see [2]), where ∃1Yα QY stands for ∃Yα QY ∧(∀Zα QZ ⇒ Y

.= Z)
is 25-cut-strong in Gβ .
Proof. Instantiate Q with λXα a

.=α
X for some parameter aα.

As Example 15 shows, comprehension axioms can be cut-strong. Church’s for-
mulation of type theory (cf. [9]) used typed λ-calculus to build comprehension
principles into the language. One can view Church’s formulation as a first step in
the program to eliminate the need for cut-strong axioms. For the extensionality
axioms a start has been made by the sequent calculi in this paper (and [6]),
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for resolution in [4] and for sequent calculi and extensional expansion proofs
in [8]. The extensional systems in [8] also provide a complete method for us-
ing primitive equality instead of Leibniz equality. For improving the automation
of higher-order logic our exploration thus motivates the development of higher-
order calculi which directly include reasoning principles for equality, extension-
ality, induction, choice, description, etc., without using cut-strong axioms.
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Abstract. In this paper we study interpolation in local extensions of
a base theory. We identify situations in which it is possible to obtain
interpolants in a hierarchical manner, by using a prover and a proce-
dure for generating interpolants in the base theory as black-boxes. We
present several examples of theory extensions in which interpolants can
be computed this way, and discuss applications in verification, knowl-
edge representation, and modular reasoning in combinations of local
theories.

1 Introduction

Many problems in mathematics and computer science can be reduced to proving
satisfiability of conjunctions of (ground) literals modulo a background theory.
This theory can be a standard theory, the extension of a base theory with ad-
ditional functions, or a combination of theories. It is therefore very important
to find efficient methods for reasoning in standard as well as complex theories.
However, it is often equally important to find local causes for inconsistency.
In distributed databases, for instance, finding local causes of inconsistency can
help in locating errors. Similarly, in abstraction-based verification, finding the
cause of inconsistency in a counterexample helps to rule out spurious counter-
examples.

The problem can be formally described as follows: Let A and B be sets of
ground clauses in a theory T . Assume that A ∧ B is inconsistent with respect
to T . Can we find a ground formula I, containing only constants and function
symbols common to A and B, such that I is a consequence of A w.r.t. T , and
B ∧ I is inconsistent modulo T ? If so, I is an interpolant of A and B, and can
be regarded as a “local” explanation for the inconsistency of A ∧B.

In this paper we study possibilities of obtaining ground interpolants in theory
extensions. We identify situations in which it is possible to do this in a hierar-
chical manner, by using a prover and a procedure for generating interpolants in
the base theory as “black-boxes”.

The main contributions of the paper are summarized below:

– First, we identify new examples of local theory extensions. In these, hierar-
chical reasoning is possible.

– Second, we present a method for generating interpolants in extensions of a
base theory by means of sets of clauses. The method is general, in the sense
that it can be applied to an extension T1 of a theory T0 provided that:

U. Furbach and N. Shankar (Eds.): IJCAR 2006, LNAI 4130, pp. 235–250, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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(a) (i) T0 is convex; (ii) T0 is P -interpolating for a specified set P of pred-
icates (cf. the definition in Section 4.2); (iii) in T0 every inconsistent
conjunction of ground clauses A ∧B allows a ground interpolant.

(b) the extension clauses have a special form (i.e. type (3) in Section 4.2).
The method is hierarchical : the problem of finding interpolants in T1 is
reduced to that of finding interpolants in the base theory T0. We can use the
properties of T0 to control the form of interpolants in the extension T1.

– Third, we identify examples of theory extensions with properties (a) and (b).
– Fourth, we discuss application domains such as: modular reasoning in com-

binations of local theories (characterization of the type of information which
needs to be exchanged), reasoning in distributed databases, and verification.

The existence of ground interpolants has been studied in several recent papers,
mainly motivated by abstraction-refinement based verification [3,4,5,10]. In [4]
McMillan presents a method for generating ground interpolants from proofs in
an extension of linear rational arithmetic with uninterpreted function symbols.
The use of free function symbols is sometimes too coarse (cf. the example in
Section 1.1). Here, we show that similar results also hold for other types of
extensions of a base theory, provided that the base theory has some of the prop-
erties of linear rational arithmetic. Another method for generating interpolants
for combinations of theories over disjoint signatures from Nelson-Oppen-style
unsatisfiability proofs was proposed by Yorsh and Musuvathi in [10]. Although
we impose similar conditions on T0, our method is orthogonal to theirs, as it also
allows to consider combinations of theories over non-disjoint signatures.

Structure of the paper: In Section 1.1 we provide motivation for the study. In Sec-
tion 2 the basic notions needed in the paper are introduced. Section 3 contains
results on local theory extensions. In Section 4 local extensions allowing hierar-
chical interpolation are identified and some applications (modular reasoning in
combinations of theories, reasoning in complex databases, and verification) are
presented. We end with conclusions and plans for future work.

1.1 Motivation

We present two fields of applications: knowledge representation and verification.

Knowledge representation. Consider a simple (and faulty) terminological
database for chemistry, consisting of two extensions of a common kernel Chem
(basic chemistry): AChem (anorganic chemistry) and BioChem (biochemistry).
Assume that Chem contains a set C0 = {process, reaction, substance, organic,
anorganic} of concepts and a set Γ0 of constraints:

Γ0 = {organic ∧ anorganic = ∅, organic ⊆ substance, anorganic ⊆ substance}

Let AChem be an extension of Chem with concepts C1 = {cat-oxydation,
oxydation}, a rôle R1 = {catalyzes}, terminology T1 and constraints Γ1:

T1 = {cat-oxydation = substance ∧ ∃catalyzes(oxydation)}
Γ1 = {reaction ⊆ oxydation, cat-oxydation ⊆ anorganic, cat-oxydation = ∅}.
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Let BioChem be an extension of Chem with a concept C2 = {enzyme}, rôles
R2 = {produces, catalyzes}, terminology T2 and constraints Γ2:
T2 = {reaction=process ∧ ∃produces(substance), enzyme = organic ∧ ∃catalyzes(reaction)}
Γ2 = {enzyme = ∅}

The combination of Chem, AChem and BioChem is inconsistent (we wrongly
added to Γ1 the constraint reaction ⊆ oxydation instead of oxydation ⊆ reaction).
This can be proved as follows: By results in ([7], p.156 and p.166) the combination
of Chem, AChem and BioChem is inconsistent iff

Γ0 ∧ (T1 ∧ Γ1) ∧ (T2 ∧ Γ2) |=T⊥ (1)

where T is the extension SLat ∧
⋃

f∈R1∪R2
Monf of the theory of semilattices

with first element 0 and monotone function symbols corresponding to ∃r for
each rôle r ∈ R1 ∪ R2. Using, for instance, the hierarchical calculus presented in
[8] (see also Section 3), the contradiction can be found in polynomial time. In
order to find the mistake we look for an explanation for the inconsistency in the
common language of AChem and BioChem. (Common to AChem and BioChem
are the concepts substance, organic, anorganic, reaction and of rôle catalyzes.) This
can be found by computing an interpolant for the conjunction in (1) in the
theory of semilattices with monotone operators. In this paper we show how such
interpolants can be found in an efficient way.

Verification. Consider a water level controller modeled as follows: Changes in
the water level by inflow/outflow are represented as functions in, out, depending
on time t and water level L. Alarm and overflow levels Lalarm<Loverflow are known.

valve := 0

valve := 1

L > L
alarm

L > L 
alarm

L:= in(out(L, t), g(t)) 

t:= h(g(t)) 

L:= in(L, t) 

t:= k(t) 

• If L ≥ Lalarm then a valve is opened until time g(t),
the water level changes by L′ := in(out(L, t), g(t))
and time by t′ := h(g(t)).

• If L < Lalarm then the valve is closed; the water le-
vel changes by L′ := in(L, t) and time by t′ := k(t).

We want to show that if initially L < Lalarm then
the water level always remains below Loverflow.

In [4], McMillan proposed a method in which interpolation (e.g. for linear
arithmetic + free functions) is used for abstraction refinement. If in, out are free
functions then L<Lalarm ∧L′≈in(L, t) ∧ t′≈k(L) ∧ ¬L′≤Loverflow is satisfiable, so
there exists a path from an initial state to an error state. To prove safety, we
need to impose restrictions on in and out, e.g.:

∀L, t (L<Lalarm→in(L, t)<Loverflow), ∀L, t (L<Loverflow→out(L, t)<Lalarm) (2)

The method wepresent here allowsus to efficiently generate ground interpolants
for extensions with functions satisfying condition (2), and also for a whole class of
more general axioms. An immediate application is to verification by abstraction-
refinement; there are other potential applications (e.g. goal-directed overapproxi-
mation for achieving faster termination, or automatic invariant generation).
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2 Preliminaries

Theories and models. Theories can be regarded as sets of formulae or as sets
of models. In this paper, whenever we speak about a theory T – if not otherwise
specified – we implicitly refer to the set Mod(T ) of all models of T . Let T be a
theory in a given signature Π = (Σ,Pred), where Σ is a set of function symbols
and Pred a set of predicate symbols. Let φ and ψ be formulae over the signature
Π with variables in a set X . The notion of truth of formulae and of entailment is
the usual one in logic. We say that φ is true w.r.t. T (denoted |=T φ) if φ is true
in each model M of T . φ is satisfiable w.r.t. T if there exists at least one model
M of T and an assignment β : X → M such that (M, β) |= φ. Otherwise we
say that φ is unsatisfiable. We say that φ entails ψ w.r.t. T (denoted φ |=T ψ) if
for every model M of T and every valuation β, if (M, β) |= φ then (M, β) |= ψ.
Note that φ is unsatisfiable w.r.t. T iff φ |=T⊥.

Interpolation. A theory T has interpolation if, for all formulae φ and ψ in the
signature of T , if φ |=T ψ then there exists a formula I containing only symbols
which occur in both φ and ψ such that φ |=T I and I |=T ψ. First order logic
has interpolation but even if φ and ψ are e.g. conjunctions of ground literals I
may still be an arbitrary formula. It is often important to identify situations in
which ground clauses have ground interpolants.

We say that a theory T has the ground interpolation property (or, shorter,
that T has ground interpolation) if for all ground clauses A(c, d) and B(c, e), if
A(c, d)∧B(c, e) |=T⊥ then there exists a ground formula I(c), containing only the
constants c occurring both in A and B, such that A(c, d) |=T I(c) and B(c, e)∧
I(c) |=T⊥ .

There exist results which relate ground interpolation to amalgamation or the
injection transfer property [2,1,9] and thus allow us to recognize many theories
with ground interpolation. Thus it can be proved that the following equational
classes have ground interpolation: (abelian) groups, partially-ordered sets, lat-
tices, semilattices, distributive lattices and Boolean algebras. However, in many
applications one needs to consider extensions or combinations of theories, and
proving amalgamation properties can be complicated. On the other hand, just
knowing that ground interpolants exist is not sufficient: we would like to con-
struct the interpolants fast, and to use the advantages of modular or hierarchi-
cal reasoning for constructing them. This is why in this paper we aim at giving
methods for constructing interpolants in a hierarchical way.

3 Local Theory Extensions

Let T0 be a theory with signature Π0 = (Σ0,Pred). We consider extensions T1
of T0 with signature Π = (Σ,Pred), where Σ = Σ0 ∪ Σ1 (i.e. the signature is
extended by new function symbols) and T1 is obtained from T0 by adding a set
K of (universally quantified) clauses. Thus, Mod(T1) consists of all Π-structures
which are models of K and whose reduct to Π0 is a model of T0.
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A partial Π-structure is a structure M = (M, {fM}f∈Σ, {PM}P∈Pred), where
M �= ∅ and for every f ∈ Σ with arity n, fM is a partial function from Mn

to M . The notion of evaluating a term t with respect to a variable assignment
β : X → M for its variables in a partial structure M is the same as for total
algebras, except that this evaluation is undefined if t = f(t1, . . . , tn) and at least
one of β(ti) is undefined, or else (β(t1), . . . , β(tn)) is not in the domain of fM .
LetM be a partial Π-structure, C a clause and β : X →M . Then (M, β) |=w C
iff either (i) for some term t in C, β(t) is undefined, or else (ii) β(t) is defined
for all terms t of C, and there exists a literal L in C s.t. β(L) is true in M. M
weakly satisfies C (notation: M |=w C) if (M, β) |=w C for all assignments β.
M weakly satisfies a set of clauses K (M |=w K) if M |=w C for all C ∈ K.

3.1 Definition and Examples

Let K be a set of (universally quantified) clauses in the signature Π = (Σ,Pred),
where Σ = Σ0∪Σ1. In what follows, when referring to sets G of ground clauses
we assume they are in the signature Πc = (Σ∪Σc,Pred) where Σc is a set of new
constants. An extension T0 ⊆ T0 ∪K is local if, in order to prove unsatisfiability
of a set G of clauses with respect to T0 ∪ K, it is sufficient to use only those
instances K[G] of K in which the terms starting with extension functions are
in the set st(G,K) of ground terms which already occur in G or K. Formally,
T0 ⊆ T1=T0 ∪ K is a local extension if it satisfies condition (Loc):

(Loc) For every set G of ground clauses, G |=T1⊥ iff there is no partial
Πc-structure P such that P|Π0 is a total model of T0, all terms
in st(K, G) are defined in P , and P weakly satisfies K[G] ∧G.

In [8] we gave several examples of local theory extensions: any extension of a
theory with free functions; extensions with selector functions for a constructor
which is injective in the base theory; extensions of R with a Lipschitz function
in a point x0; extensions of partially ordered theories – in a class Ord consisting
of the theories of posets, (dense) totally-ordered sets, semilattices, (distributive)
lattices, Boolean algebras, or R∞ – with a monotone function f , i.e. satisfying:

(Monf )
n∧

i=1

xi ≤ yi → f(x1, . . . , xn) ≤ f(y1, . . . , yn),

Below, we give some additional examples with particular relevance in
verification.

Theorem 1. The following theory extensions are local:

(1) Extensions of any theory T0 for which ≤ is reflexive with functions satisfying
boundedness (Boundt

f ) or guarded boundedness (GBoundt
f ) conditions

(Boundt
f ) ∀x1, . . . , xn(f(x1, . . . , xn) ≤ t(x1, . . . , xn))

(GBoundt
f ) ∀x1, . . . , xn(φ(x1, . . . , xn) → f(x1, . . . , xn) ≤ t(x1, . . . , xn)),

where t(x1, . . . , xn) is a term in the base signatureΠ0 and φ(x1, . . . , xn) a con-
junction of literals in the signature Π0, whose variables are in {x1, . . . , xn}.
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(2) Extensions of any theory in Ord with Monf ∧ Boundt
f , if t(x1, . . . , xn) is

monotone in the variables x1, . . . , xn.
(3) Extensions of any theory in Ord with functions satisfying Leq(f, g) ∧Monf .

(Leq(f, g)) ∀x1, . . . , xn(
∧n

i=1 xi ≤ yi → f(x1, . . . , xn) ≤ g(y1, . . . , yn))
(4) Extensions of any totally-ordered theory in Ord with functions satisfying

SGc(f, g1, . . . , gn) ∧Mon(f, g1, . . . , gn).
(SGc(f, g1, . . . , gn)) ∀x1, . . . , xn, x(

∧n
i=1 xi ≤ gi(x) → f(x1, . . . , xn) ≤ x)

(5) Extensions of theories in Ord with functions satisfying SGc(f, g1)∧Mon(f, g1).

3.2 Hierarchic Reasoning in Local Theory Extensions

Let T0 ⊆ T1=T0 ∪ K be a local theory extension. To check the satisfiability of a
set G of ground clauses w.r.t. T1 we can proceed as follows (for details cf. [8]):

Step 1: Use locality. By the locality condition, we know that G is unsatisfiable
w.r.t. T1 iff K[G] ∧ G has no weak partial model in which all the subterms of
K[G] ∧G are defined, and whose restriction to Π0 is a total model of T0.

Step 2: Flattening and purification. As in K[G] and G the functions in Σ1 have
as arguments only ground terms, K[G] ∧ G can be purified and flattened by
introducing new constants for the arguments of the extension functions as well
as for the (sub)terms t = f(g1, . . . , gn) starting with extension functions f ∈ Σ1,
together with new corresponding definitions ct ≈ t. The set of clauses thus
obtained has the form K0 ∧ G0 ∧D, where D is a set of ground unit clauses of
the form f(c1, . . . , cn) ≈ c, where f ∈ Σ1 and c1, . . . , cn, c are constants, and
K0, G0 are clauses without function symbols in Σ1.

Step 3: Relational translation. We represent the function symbols in Σ1 as par-
tial, but functional relations. We thus obtain a relational translation D∗ of D,
in which each literal f(c1, . . . , cn) ≈ c is replaced by rf (c1, . . . , cn, c), and corre-
sponding functionality axioms Fun(D∗) are added.

Step 4: Reduction to testing satisfiability in T0. We reduce the problem of testing
satisfiability of G w.r.t. T1 to a satisfiability test in T0 as shown in Theorem 2.

Theorem 2 ([8]). With the notation above, the following are equivalent:

(1) T0 ∧ K ∧G has a model.
(2) T0∧K[G]∧G has a weak partial model where all terms in st(K,G) are defined.
(3) T0∧K0∧G0∧D has a weak partial model with all terms in st(K,G) defined.
(4) T0 ∧ K0 ∧G0 ∧ Fun(D∗) ∧D∗ has a relational model, where

Fun(D∗) = {
n∧

i=1

ci ≈ di ∧ rf (c1, . . . , cn, c) ∧ rf (d1, . . . , dn, d) → c ≈ d |
f ∈ Σ1, rf (c1, . . . , cn, c), rf (d1, . . . , dn, d) ∈ D∗}.

(5) T0∧K0∧G0∧N0 has a (total) Σ0-model, where

N0 =
∧
{

n∧

i=1

ci≈di→c≈d | f(c1, . . . , cn)≈c, f(d1, . . . , dn)≈d ∈ D}.
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Example 1. Let T1 = SLat ∪ SGc(f, g) ∪Mon(f, g) be the extension of the the-
ory of semilattices with two monotone functions f, g satisfying the semi-Galois
condition SGc(f, g). Consider the ground formulae A,B in the signature of T1:

A : d ≤ g(a) ∧ a ≤ c B : b ≤ d ∧ f(b) �≤ c.

where c and d are shared constants. By Theorem 1(5), T1 is a local extension of
the theory of semilattices. To prove that A ∧B |=T1⊥ we proceed as follows:

We purify and flatten the formula A ∧ B by replacing the ground terms start-
ing with f and g with new constants. The clauses are separated into a part
containing definitions for terms starting with extension functions, DA ∧ DB,
and a conjunction of formulae in the base signature, A0 ∧ B0. As the extension
SLat ⊆ T1 is local, A ∧B |=T1⊥ iff A0 ∧B0 ∧N0 ∧Mon0 ∧ SGc0 is unsatisfiable
w.r.t. SLat, where N0 consists of the flattened form of those instances of the
congruence axioms containing only f - and g-terms which occur in DA or DB,
and Mon0 ∧ SGc0 consists of those instances of axioms in Mon(f, g) ∧ SGc(f, g)
containing only f - and g-terms which occur in DA or DB.

Extension Base
DA ∧ DB A0 ∧ B0 ∧ N0 ∧ Mon0 ∧ SGc0

a1 ≈ g(a) A0 = d ≤ a1 ∧ a ≤ c NA ∧ MonA = a � a → a1 � a1, � ∈ {≈, ≤}
b1 ≈ f(b) B0 = b ≤ d ∧ b1 ≤ c NB ∧ MonB = b � b → b1 � b1, � ∈ {≈, ≤}

SGc0 = b ≤ a1 → b1 ≤ a

It is easy to see that A0 ∧ B0 ∧ N0 ∧Mon0 ∧ SGc0 is unsatisfiable w.r.t. T0:
A0 ∧ B0 entails b ≤ a1, together with SGc0 this yields b1 ≤ a, which together
with a ≤ c and b1 �≤ c leads to a contradiction.

4 A Hierarchical Interpolation Procedure

Let T0 ⊆ T1 = T0 ∪ K be a theory extension by means of a set of clauses K.
Assume that A ∧ B |=T1⊥, where A and B are two sets of ground clauses. Our
goal is to find a ground interpolant, that is a ground formula I containing only
constants and extension functions which are common to A and B such that

A |=T1 I and I ∧B |=T1 ⊥.

Flattening and purification do not influence the existence of ground
interpolants:

Lemma 3. Let A and B be two sets of ground clauses in the signature Πc. Let
A0∧DA and B0∧DB be obtained from A resp. B by purification and flattening.
If I is an interpolant of (A0 ∧ DA) ∧ (B0 ∧ DB) then the formula I, obtained
from I by replacing, recursively, all newly introduced constants with the terms
in the original signature which they represent, is an interpolant for A ∧B.
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Therefore we can restrict without loss of generality to finding interpolants for
the purified and flattened conjunction of formulae (A0 ∧DA) ∧ (B0 ∧DB).

We focus on interpolation in local theory extensions. Let T0 ⊆ T1 = T0 ∪ K
be a local theory extension. From Theorem 2 we know that in such extensions
hierarchical reasoning is possible [8]: if A and B are sets of ground clauses in a
signature Πc, and A0 ∧DA (resp. B0 ∧DB) are obtained from A (resp. B) by
purification and flattening then:

(A0 ∧DA)∧(B0 ∧DB) |=T1⊥ iff K0 ∧A0 ∧B0 ∧N0 |=T0⊥,

where K0 is obtained from K[DA ∧ DB] by replacing the Σ1-terms with the
corresponding constants contained in the definitions DA and DB and

N0 =
∧
{

n∧

i=1

ci≈di → c≈d | f(c1, . . . , cn)≈c, f(d1, . . . , dn)≈d ∈ DA ∪DB}.

In general we cannot use Theorem 2 for generating a ground interpolant because:

(i) K[DA ∧DB] (hence also K0) may contain free variables.
(ii) The clauses in K[DA ∧ DB] and the instances of congruence axioms (and

therefore the clauses in K0 ∧ N0) may contain combinations of constants
and extension functions from A and B.

(iii) If some clause in K contains two or more different extension functions, it is
unlikely that these extension functions can be separated in the interpolants.

To solve (iii), we define a relation ∼ between extension functions, where f ∼ g
if f and g occur in the same clause in K. This defines an equivalence relation ∼
on Σ1. We henceforth consider that a function f ∈ Σ1 is common to A and B if
there exist g, h ∈ Σ1 such that f ∼ g, f ∼ h, g occurs in A and h occurs in B.

Example 2. Consider the reduction to the base theory in Example 1. Ad (ii): The
clause b≤a1 → b1≤a of SGc0 is mixed, i.e. contains combinations of constants
from A and B. Ad (iii): As SGc(f, g) contains occurrences of both f and g, it is
not likely to find an interpolant with no occurrence of f and g, even if g only
occurs in A and f only occurs in B. We assume that both f and g are shared.

4.1 Main Idea

The idea of our approach is to separate mixed instances of axioms in K0, or of
congruence axioms in N0, into an A-part and a B-part. This is, if A∧B |=T1⊥ we
find a set T of Σ0∪Σ1-terms containing only constants and extension functions
common to A and B, such that K[A ∧B] can be separated into a part K[A, T ]
consisting of instances with extension terms occurring in A and T , and a part
K[B, T ] containing only instances with extension terms in B and T , such that:

K[A, T ]∧A0∧Fun((DA ∧DT )∗) ∧ K[B, T ]∧B0∧Fun((DB ∧DT )∗)

has no weak partial model where all ground terms in K, DA, DB, T are defined.
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Example 3. Consider the conjunction A0 ∧DA ∧ B0 ∧DB ∧N0 ∧Mon0 ∧ SGc0
in Example 1. We obtain a separation for the clause b ≤ a1 → b1 ≤ a of SGc0
as follows: Note that A0 ∧B0 |= b ≤ a1. We can find an SLat-term t containing
only shared constants of A0 and B0 such that A0 ∧B0 |= b ≤ t∧ t ≤ a1. (Indeed,
such a term is t = d.) We show that, instead of the axiom a ≤ g(b)→ f(a) ≤ b,
whose flattened form is in SGc0, we can use, without loss of unsatisfiability:

(1) an instance of the monotonicity axiom for f : b ≤ d→ f(b) ≤ f(d), and
(2) another instance of SGc, namely: d ≤ g(a)→ f(d) ≤ a.

We introduce a new constant cf(d) for f(d) (its definition, cf(d) ≈ f(d), is stored
in a set DT ), and the corresponding instances Hsep = HA

sep∧HB
sep of the congru-

ence, monotonicity and SGc(f, g)-axioms, which are now separated into an A-
part (d ≤ a1 → cf(d) ≤ a) and a B-part (b ≤ d→ b1 ≤ cf(d)). We thus obtain a
separated conjunction A0∧B0 (where A0 = HA

sep∧A0 and B0 = HB
sep∧B0), which

can be proved to be unsatisfiable in T0 = SLat. To compute an interpolant in SLat
for A0∧B0 note that A0 is logically equivalent to the conjunction of unit literals
d≤a1 ∧ a≤c ∧ cf(d)≤a and B0 is logically equivalent to b≤d ∧ b1 �≤c ∧ b1≤cf(d).
An interpolant is I0 = cf(d) ≤ c. By replacing the new constants with the terms
they denote we obtain the interpolant I = f(d) ≤ c for A ∧B.

4.2 Examples of Theory Extensions with Hierarchic Interpolation

We identify a class of theory extensions for which interpolants can be computed
hierarchically (and efficiently) using a procedure for generating interpolants in
the base theory T0. This allows us to exploit specific properties of T0 for obtaining
simple interpolants in T1. We make the following assumptions about T0:

Assumption 1: T0 is convex with respect to the set Pred of all predicates (in-
cluding equality ≈), i.e., for all conjunctions Γ of ground atoms, relations
R1, . . . , Rm ∈ Pred and ground tuples of corresponding arity t1, . . . , tn, if
Γ |=T0

∨m
i=1Ri(ti) then there exists j ∈ {1, . . . ,m} such that Γ |=T0 Rj(tj).

Assumption 2: T0 is P -interpolating, i.e. for all conjunctions A and B of
ground literals, all binary predicates R ∈ P and all constants a and b such
that a occurs in A and b occurs in B (or vice versa), if A ∧B |=T0 aRb then
there exists a term t containing only constants common to A and B with
A ∧ B |=T0 aRt ∧ tRb. (If we can always guarantee that A |=T0 aRt and
B |=T0 tRb we say that T0 is strongly P -interpolating.)

Assumption 3: T0 has ground interpolation.

Some examples of theories satisfying these properties are given below.

Theorem 4. The following theories have ground interpolation and are convex
and P -interpolating w.r.t. the indicated set P of predicate symbols:

(1) The theory of EQ of pure equality without function symbols (for P = {≈}).
(2) The theory PoSet of posets (for P = {≈,≤}).
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(3) Linear rational arithmetic LI(Q) and linear real arithmetic LI(R) (convex
w.r.t. P = {≈}, strongly P -interpolating for P = {≈,≤}).

(4) The theories Bool of Boolean algebras, SLat of semilattices and DLat of dis-
tributive lattices (strongly P -interpolating for P = {≈,≤}).

For the sake of simplicity we only consider sets A, B of unit clauses, i.e. con-
junctions of ground literals. This is not a restriction, since if we can obtain inter-
polants for conjunctions of ground literals then we also can construct interpolants
for conjunctions of arbitrary clauses by using standard methods1 discussed e.g.
in [4] or [10]. By Lemma 3, we can restrict w.l.o.g. to finding an interpolant for
the purified and flattened conjunction of unit clauses A0 ∧B0 ∧DA ∧DB.

By Theorem 2, A0∧DA∧B0∧DB |=T1⊥ iff K0 ∧ A0 ∧ B0 ∧N0 |=T0⊥, where K0
is obtained from K[DA ∧DB] by replacing the Σ1-terms with the corresponding
constants contained in the definitions DA ∧DB and

N0 =
∧
{

n∧

i=1

ci≈di → c≈d | f(c1, . . . , cn)≈c, f(d1, . . . , dn)≈d ∈ DA ∪DB}.

In general, N0 = NA
0 ∧ NB

0 ∧ Nmix and K0 = KA
0 ∧ KB

0 ∧ Kmix, where NA
0 ,KA

0
only contain extension functions and constants which occur in A, NB

0 ,KB
0 only

contain extension functions and constants which occur in B, and Nmix, Kmix

contain mixed clauses with constants occurring in both A and B. Our goal is to
separate Nmix and Kmix into an A-local and a B-local part. We show that, under
Assumptions 1 and 2, Nmix can always be separated, and Kmix can be separated
if K contains the following type of combinations of clauses:

{
x1R1 s1 ∧ · · · ∧ xn Rn sn → f(x1, . . . , xn)Rg(y1, . . . , yn)
x1R1 y1 ∧ · · · ∧ xn Rn yn → f(x1, . . . , xn)Rf(y1, . . . , yn) (3)

where n ≥ 1, x1, . . . , xn are variables, R1, . . . , Rn, R are binary relations with
R1, . . . , Rn ∈ P and R transitive, and each si is either a variable among the
arguments of g, or a term of the form fi(z1, . . . , zk), where fi ∈ Σ1 and all the
arguments of fi are variables occurring among the arguments of g. 2

Example 4. The following local extensions are in the class above:

(a) Any extension with free functions (K = ∅).
(b) Extensions of any theory in Ord (cf. Section 3.1) with monotone functions.
(c) Extensions of any totally-ordered theory in Ord with functions satisfying

SGc(f, g1, . . . , gn) ∧Mon(f, g1, . . . , gn).
(d) Extensions of theories in Ord with functions satisfying SGc(f, g1)∧Mon(f, g1).
(e) Extensions of theories in Ord with functions satisfying Leq(f, g) ∧Monf .

1 E.g. in a DPLL-style procedure partial interpolants are generated for the unsatisfi-
able branches and then recombined using ideas of Pudlák.

2 More general types of clauses, in which instead of variables we can consider arbitrary
base terms, can be handled if T0 has a P -interpolation property for terms instead of
constants. Due to space limitations, such extensions are not discussed here.
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Note: If the clauses in K are of type (3), then (i) the cardinality of K0 ∪ N0
is quadratic in the size of A ∧ B, (ii) all clauses in K0 are of the form C =∧n

i=1 ciRi di→cR d, where Ri ∈ P , R is transitive, and ci, di, c, d are constants.

Proposition 5. Assume that T0 satisfies Assumptions 1 and 2. Let H be a
set of Horn clauses

∧n
i=1 ciRidi → cRd in the signature Πc

0 (with R transitive
and Ri ∈ P ) which are instances of flattened and purified clauses of type (3)
and of congruence axioms. Let A0 and B0 be conjunctions of ground literals
in the signature Πc

0 such that A0 ∧ B0 ∧ H |=T0⊥. Then there exists a set T
of Σ0 ∪ Σc-terms containing only constants common to A0 and B0 such that
A0 ∧B0 ∧ (H\Hmix) ∧Hsep |=T0⊥, where

Hmix = {∧n
i=1 ciRidi → cRd ∈ H | ci, c constants in A, di, d constants in B}∪

{∧n
i=1 ciRidi → cRd ∈ H | ci, c constants in B, di, d constants in A}

Hsep = {(∧n
i=1 ciRiti → cRcf(t1,...,tn)) ∧ (

∧n
i=1 tiRidi → cf(t1,...,tn)Rd) |∧n

i=1 ciRidi → cRd ∈ Hmix, di ≈ si(e1, . . . , en), d ≈ g(e1, . . . , en) ∈ DB ,
c ≈ f(c1, . . . , cn) ∈ DA or vice versa } = HA

sep ∧ HB
sep

and cf(t1,...,tn) are new constants in Σc (considered common to A0, B0) intro-
duced for the terms f(t1, . . . , tn).

Proof (Sketch). Proof by induction on the number of clauses in H. Convexity
and P -interpolation ensure that for each clause C =

∧
ciRidi → cRd ∈ Hmix,

e.g. obtained from the following instance of a clause of type (3):
c1R1s1(e1, . . . , em) ∧ · · · ∧ cnRnsn(e1, . . . , em)→ f(c1, . . . , cn)Rg(e1, . . . , em)

there exist terms t1, . . . , tn containing only constants common to A0 and B0
such that A0∧B0∧(H\{C}) |=T0 ciRiti∧ tiRidi. We thus can replace C with the
conjunction of an instance of the monotonicity axiom, CA :

∧n
i=1 ciRiti→

cRcf(t1,...,tn) and an instance of the clause of type (3), CB :
∧n

i=1 tiRidi→
cf(t1,...,tn)Rd. �

In what follows we assume that K only contains combinations of clauses of
type (3). An immediate consequence of Proposition 5 is Theorem 6.

Theorem 6. Assume T0 satisfies Assumptions 1, 2 and K0∧A0∧B0∧N0|=T0
⊥.

Then there exists a set T of Σ0∪Σc-terms containing only constants common to
A0 and B0 such that (if ND

0 =NDA
0 ∧NDB

0 =N0sep and KD
0 =KDA

0 ∧KDB
0 =K0sep):

KA
0 ∧ KB

0 ∧ KD
0 ∧A0 ∧B0 ∧NA

0 ∧NB
0 ∧ND

0 |=T0 ⊥. (4)

(As before, Σc contains the new constants cf(t1,...,tn), considered to be common
to A0 and B0, introduced for terms f(t1, . . . , tn), with t1, . . . , tn ∈ T .)

Corollary 7. Assume T0 satisfies Assumptions 1–3 and K0∧A0∧B0∧N0|=T0
⊥.

(1) There exists aΠc
0-formula I0 containing only constants common toA0,B0 with

KA
0 ∧KDA

0 ∧A0∧NA
0 ∧NDA

0 |=T0
I0 and KB

0 ∧KDB
0 ∧B0∧NB

0 ∧NDB
0 ∧I0|=T0

⊥.
(2) There exists a ground Πc-formula I containing only constants and function

symbols which occur both in A and B such that A |=T1 I and B ∧ I |=T1⊥ .
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Proof . If T0 has ground interpolation, (1) is a direct consequence of Theorem 6,
since KA

0 ,KAD
0 ,KB

0 ,KBD
0 are ground. (2) Let I be obtained from I0 by recursively

replacing each constant ct introduced in the separation process with the term t.
Then I is an interpolant of (A0∧DA)∧(B0∧DB). �

We obtain the following procedure for computing interpolants for A ∧B:

Preprocess: Using locality, flattening and purification we obtain a set
H ∧ A0 ∧ B0 of formulae in the base theory, where H is as in Prop. 5.
Let ∆ := T.
Repeat as long as possible: Let C∈H whose premise is entailed by
A0∧B0∧∆. If C is mixed, compute terms ti which separate the premises
in C, and separate the clause into an instance C1 of monotonicity and an
instance C2 of a clause in K as in Prop. 5. Remove C from H, and add
C1, C2 to Hsep and their conclusions to ∆. Otherwise move C to Hsep

and add its conclusion to ∆.
Compute interpolant: in T0 for the separated formula obtained this
way, and construct an interpolant for the extension as explained in Corol-
lary 7(2).

Theorem 8. Assume that the cycle of the procedure above stops after moving
the processed clauses Hproc into the set Hsep. The following are equivalent:

(1) A0 ∧DA ∧B0 ∧DB |=T1⊥. (2) A0 ∧B0 ∧ (H\Hproc)∧Hsep |=T0⊥.

Proof . (1)⇒(2) is a consequence of Theorems 2 and 6. As the conjunction in (2)
corresponds to a subset of instances of K∧A0∧DA∧B0∧DB, (2) imples (1). �

Note. If K0∧A0∧B0∧N0|=T0⊥ then no matter which terms are chosen for sep-
arating mixed clauses in N0 ∧ K0, we obtain a separated conjunction of clauses
unsatisfiable w.r.t. T0. Theorem 8 shows that if the set of clauses obtained when
the procedure stops is satisfiable then A ∧ B was satisfiable, and conversely, so
the procedure can be used to test satisfiability and to compute interpolants at
the same time. (However, it is more efficient to first test A∧B|=T1

⊥.)

Complexity. Assume that in T0 for a formula of length n (a) interpolants can
be computed in time g(n), (b) P -interpolating terms can be computed in time
h(n), (c) entailment can be checked in time k(n). The size n of the set of clauses
obtained after the preprocessing phase is quadratic in the size of the input. The
procedure above computes an interpolant in time of order n · (k(n)+h(n))+g(n).

Remark 9. If T0 satisfies Assumptions 1,3 and is strongly P -interpolating, the
procedure above can be changed to separate all clauses in H and store the con-
clusions of the separated clauses in ∆ = ∆A∪∆B . If K0∧A0∧B0∧N0|=T0

⊥ then
there exists a set T of Σ0 ∪ Σc-terms containing only constants common to A0
and B0, and common new constants in a set Σc such that the terms in T can be
used to separate N0 ∪ K0 into Hsep = (KDA

0 ∧NDA
0 ) ∧ (KDB

0 ∧NDB
0 ), where:

Hsep = {(
∧n

i=1 ciRiti → cRcf(t1,...,tn)) ∧ (
∧n

i=1 tiRidi → cf(t1,...,tn)Rd) |∧n
i=1 ciRidi → cRd ∈ N0 ∪ K0} = (KDA

0 ∧NDA
0 ) ∧ (KDB

0 ∧NDB
0 )
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such that for each premise ciRidi of a rule in N0 ∪ K0, at some step in the
procedure A0∧B0∧∆A∧∆B |= ciRidi and there exists ti ∈ T such that A0∧∆A |=
ciRiti and B0∧∆B |= tiRidi. In this case A0∧KDA

0 ∧NDA
0 is logically equivalent

to A0, and B0 ∧KDB
0 ∧NDB

0 is logically equivalent to B0, where A0, B0 are the
following conjunctions of literals:

A0 = A0 ∧ ∧{cRcf(t) | conclusion of some clause (Γ → cRcf(t)) ∈ KDA
0 ∪ NDA

0 }
B0 = B0 ∧ ∧{cf(t)Rd | conclusion of some clause (Γ → cf(t)Rd) ∈ KDB

0 ∪ NDB
0 }.

Thus, if for instance in T0 interpolants for conjunctions of ground literals are
again conjunctions of ground literals, the same is also true in the extension.

Example 5. The following theory extensions have ground interpolation:
(a) Extensions of any theory in Theorem 4(1)–(4) with free function symbols.
(b) Extensions of the theories in Theorem 4(2),(4) with monotone functions.
(c) Extensions of the theories in Theorem 4(2),(4) with Leq(f, g) ∧Monf .
(d) Extensions of the theories in Theorem 4(2),(4) with SGc(f, g1) ∧Mon(f, g1).
(e) Extensions of any theory in Theorem 4(1)–(4) with Boundt

f or GBoundt
f

(where t is a term and φ a set of literals in the base theory).
(f) Extensions of the theories in Theorem 4(2),(4) with Monf ∧ Boundt

f , if t is
monotone in its variables.

(g) R∪ (Lλ
f ), the extension of the theory of reals with a unary function which is

λ-Lipschitz in a point x0, where (Lλ
f ) is ∀x |f(x)− f(x0)| ≤ λ · |x− x0|.

Proof . (a)–(d) are direct consequences of Corollary 7, since all sets of extension
clauses are of type (3). For extensions of linear arithmetic note that due to the
totality of ≤ we can always assume that A and B are positive, so convexity w.r.t.
≈ is sufficient (cf. proof of Proposition 5). (e)–(g) follow from Corollary 7 and
the fact that if each clause in K contains only one occurrence of an extension
function, no mixed instances can be generated when computing K[A ∧B]. �

4.3 Applications

Modular Reasoning in Local Combinations of Theories. Let Ti=T0∪Ki,
i=1, 2 be local extensions of a theory T0 with signature Π0=(Σ0,Pred), where
Σ0 = Σ1∩Σ2. Assume that (a) all variables in Ki occur below some extension
function, (b) the extension T0 ⊆ T0∪K1∪K2 is local3, and (c) T0 has ground
interpolation.

Let G be a ground clause in the signature Πc = (Σ0 ∪ Σ1 ∪ Σ2 ∪ Σc,Pred).
G can be flattened and purified, so we assume w.l.o.g. that G = G1 ∧G2, where
G1, G2 are flat and linear sets of clauses in the signatures Π1, Π2 respectively,
i.e. for i = 1, 2, Gi = G0

i ∧ G0 ∧ Di, where G0
i and G0 are clauses in the base

theory and Di conjunctions of unit clauses of the form f(c1, . . . , cn) = c, f ∈ Σi.

Theorem 10. With the notations above, assume that G1∧G2 |=T1∪T2⊥. Then
there exists a ground formula I, containing only constants shared by G1 and G2,
with G1 |=T1∪T2 I and I ∧G2 |=T1∪T2⊥.
3 If T0 is a ∀∃ theory then (b) is implied by (a) and the locality of T1, T2 [6].
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Proof . By Theorem 2, the following are equivalent:

(1) T0 ∪ K1 ∪K2 ∪ (G0
1 ∧G0 ∧D1) ∧ (G0

2 ∧G0 ∧D2) |=⊥,
(2) T0 ∪ K1[G1] ∧ K2[G2] ∧ (G0

1 ∧G0 ∧D1) ∧ (G0
2 ∧G0 ∧D2) |=⊥,

(3) K0
1 ∧ K0

2 ∧ (G0
1 ∧G0) ∧ (G0

2 ∧G0) ∧N1 ∧N2 |=T0⊥, where, for j = 1, 2,

Nj =
∧
{

n∧

i=1

ci ≈ di → c = d | f(c1, . . . , cn) ≈ c, f(d1, . . . , dn) ≈ d ∈ Dj},

and K0
i is the formula obtained from Ki[Gi] after purification and flattening,

taking into account the definitions from Di. Let A = K0
1 ∧ (G0

1 ∧ G0) ∧N1 and
B = K0

2∧(G0
2∧G0)∧N2. By assumption (a), A and B are both ground. As A and

B have no function symbols in common and only share the constants which G1
and G2 share, there exists an interpolant I0 in the signature Π0, containing only
Σ0-function symbols and only constants shared by G1, G2, such that A |=T0 I0
and B ∧ I0 |=T0⊥. An interpolant for G1 ∧G2 w.r.t. T1 can now be obtained by
replacing the newly introduced constants by the terms they replaced. �

By Remark 9, if T0 is strongly P -interpolating and has equational interpolation
then I is a conjunction of literals, so for modularily proving G1 ∧G2 |=T1⊥ only
conjunctions of ground literals containing constants shared by G1, G2 need to
be exchanged between specialized provers for T1 and T2.

Verification. Consider the example presented in the verification example in
Section 1.1. We illustrate our method for generating interpolants for a formula
corresponding to a path of length 2 from an initial state to an unsafe state:

G = l<Lalarm ∧ l′≈in(l, t) ∧ t′≈k(l) ∧
l′≥Lalarm ∧ l′′≈in(out(l′, t′), g(t′)) ∧ t′′≈h(g(t′)) ∧ ¬l′′≤Loverflow

Hierarchic reasoning. The extension T1 of linear arithmetic with the clauses (2)
in Section 1.1 is local, so to prove G |=T1⊥ it is sufficient to consider ground
instances K[G] of (2) in which all extension terms already occur in G: After
flattening and purifying K[G] ∧ G, we separate the problem into an extension
part Ext and a base part Base. By Theorem 2 [8], the problem can be reduced
to testing the satisfiability in the base theory of the conjunction Base ∧N0. As
this conjunction is unsatisfiable w.r.t. T0, G is unsatisfiable.

Ext Base ∧N0

c ≈ in(l, t) d ≈ k(t) l < Lalarm l′ ≈ c K0 : l < Lalarm → c < Loverflow

lo ≈ out(l′, t′) to ≈ g(t′) l′ ≥ Lalarm t′ ≈ d lo < Lalarm → c′ < Loverflow

c′ ≈ in(lo, to) d′ ≈ h(to) ¬l′′ ≤ Loverflow l′′ ≈ c′ l′ < Loverflow → lo < Lalarm

t′′ ≈ d′ N0 : l ≈ lo ∧ t ≈ to → c ≈ c′

Interpolation. Let A = l<Lalarm ∧ l′≈in(l, t) ∧ t′≈k(l) and B = l′≥Lalarm ∧
l′′≈in(out(l′, t′), g(t′))∧t′′≈h(g(t′))∧¬l′′≤Loverflow. To generate an interpolant for
A∧B, we partition the clauses in Base as A0 ∧B0, where A0 = l<Lalarm∧ l′≈c∧
t′≈d∧KA

0 and B0 = l′≥Lalarm∧ l′′≈c′∧ t′′≈d′∧¬l′′≤Loverflow ∧KB
0 . The clause in



Interpolation in Local Theory Extensions 249

N0 is mixed. Since already the conjunction of the formulae in Base is unsatisfi-
able, N0 is not needed to prove unsatisfiability. The conjunction of the formulae
in Base is equivalent to A′

0∧B′
0, where A′

0 = l<Lalarm∧l′ ≈ c∧t′ ≈ d∧c < Loverflow

and B′
0 = l′ > Lalarm∧ l′′ ≈ c′∧t′′ ≈ d′∧¬l′′≤Loverflow∧c′ < Loverflow∧ lo < Lalarm.

The interpolant for A′
0∧B′

0 is L′ < Loverflow, which is also an interpolant for A∧B.

For the database example in Section 1.1 the interpolant is computed similarily.

5 Conclusions

We presented a method for obtaining simple interpolants in theory extensions.
We identified situations in which it is possible to do this in a hierarchical manner,
by using a prover and a procedure for generating interpolants in the base theory
as “black-boxes”. This allows us to use the properties of T0 (e.g. the form of
interpolants) to control the form of interpolants in the extension T1. We discussed
applications of interpolation in verification and knowledge representation.

The method we presented is more general than the results of McMillan [4]
on interpolation in extension of linear rational arithmetic with uninterpreted
function symbols. Our method is orthogonal to the method for generating inter-
polants for combinations of theories over disjoint signatures from Nelson-Oppen-
style unsatisfiability proofs proposed by Yorsh and Musuvathi in [10], as it allows
us to consider combinations of theories over non-disjoint signatures.

The hierarchical interpolation method presented here (for the special case of
the extension of linear arithmetic with free function symbols) was implemented
by Andrey Rybalchenko in Prolog. First tests suggest that our method is con-
siderably faster than other existing methods. Details about the implementation
and benchmarks for the special case of linear arithmetic + free function symbols
are the subject of a separate joint paper.
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This work was partly supported by the German Research Council (DFG) as part
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Abstract. Propositional canonical Gentzen-type systems, introduced in
[1], are systems which in addition to the standard axioms and structural
rules have only logical rules in which exactly one occurrence of a con-
nective is introduced and no other connective is mentioned. [1] provides
a constructive coherence criterion for the non-triviality of such systems
and shows that a system of this kind admits cut-elimination iff it is co-
herent. The semantics of such systems is provided using two-valued non-
deterministic matrices (2Nmatrices). [14] extends these results to systems
with unary quantifiers of a very restricted form. In this paper we sub-
stantially extend the characterization of canonical systems to (n, k)-ary
quantifiers, which bind k distinct variables and connect n formulas. We
show that the coherence criterion remains constructive for such systems,
and that for the case of k ∈ {0, 1}: (i) a canonical system is coherent iff
it has a strongly characteristic 2Nmatrix, and (ii) if a canonical system
is coherent, then it admits cut-elimination.

1 Introduction

An (n, k)-ary quantifier (for n > 0, k ≥ 0) is a generalized logical connective,
which binds k variables and connects n formulas. Any n-ary propositional con-
nective can be thought of as an (n, 0)-ary quantifier. For instance, the standard
∧ connective binds no variables and connects two formulas: ∧(ψ1, ψ2). The stan-
dard first-order quantifiers ∃ and ∀ are (1, 1)-quantifiers, as they bind one variable
and connect one formula: ∀xψ, ∃xψ. Bounded universal and existential quantifi-
cation used in syllogistic reasoning (∀x(p(x) → q(x)) and ∃x(p(x)∧q(x))) can be
represented as (2,1)-ary quantifiers ∀ and ∃, binding one variable and connecting
two formulas: ∀x(p(x), q(x)) and ∃x(p(x), q(x)). An example of (n, k)-ary quan-
tifiers for k > 1 are Henkin quantifiers1 ([9,10]). The simplest Henkin quantifier
QH binds 4 variables and connects one formula:

QH
∀x1 ∃y1
∀x2 ∃y2

ψ(x1, x2, y1, y2)

According to a long tradition in the philosophy of logic, established by Gentzen
in his classical paper Investigations Into Logical Deduction ([7]), an “ideal” in-
troduction rule for a logical connective is a rule which determines the meaning
1 Although the semantic interpretation of quantifiers used in this paper is not sufficient

for treating such quantifiers.

U. Furbach and N. Shankar (Eds.): IJCAR 2006, LNAI 4130, pp. 251–265, 2006.
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of the connective. In [1,2] the notion of a “canonical propositional Gentzen-type
rule” was first defined in precise terms. A constructive coherence criterion for the
non-triviality of such systems was then provided, and it was shown that a system
of this kind admits cut-elimination iff it is coherent. It was further proved that
the semantics of such systems is provided by two-valued non-deterministic ma-
trices (2Nmatrices), which form a natural generalization of the classical matrix.
In fact, a characteristic 2Nmatrix was constructed for every coherent canonical
propositional system.

In [14] the results were extended to systems with unary quantifiers. A char-
acterization of a “canonical unary quantificational rule” in such calculi was pro-
posed (the standard Gentzen-type rules for ∀ and ∃ are canonical according to
it), and a constructive extension of the coherence criterion of [1,2] for canonical
systems of this type was given. 2Nmatrices were extended to languages with
unary quantifiers, using a distribution interpretation of quantifiers ([12]). Then
it was proved that again a canonical Gentzen-type system of this type admits
cut-elimination iff it is coherent, and that it is coherent iff it has a characteristic
2Nmatrix. However, the canonical systems in [14] are of a very restricted form:
they use unary quantifiers and only one atomic (monadic) formula is allowed in
each clause.

In this paper we make the intuitive notion of a “well-behaved” introduction
rule for (n, k)-ary quantifiers formally precise. We considerably extend the scope
of the characterizations of [1,2,14] to “canonical (n, k)-ary quantificational rules”,
so that both the propositional systems of [1,2] and the restricted quantificational
systems of [14] are specific instances of the proposed definition. However, in con-
trast to the systems in [14], there are no limitations on the size of the clauses
in our formulation. It is then shown that the coherence criterion for the defined
systems remains constructive. Then we turn to the class of canonical systems
with (n, k)-ary quantifiers for k ∈ {0, 1} and show that every coherent canonical
calculus G has a characteristic 2Nmatrix and admits cut-elimination. The other
direction, however, does not hold: we shall see that in contrast to the canonical
systems of [1,14], the ability to eliminate cuts in a canonical calculus G does not
necessarily imply its coherence.

2 Preliminaries

For any n > 0 and k ≥ 0, if a quantifier Q is of arity (n, k), then Qx1...xk

(ψ1, ..., ψn) is a formula whenever x1, ..., xk are distinct variables and ψ1, ..., ψn

are formulas of L.
For interpretation of quantifiers, we use a generalized notion of distribution

functions ([12]). Given a set S, P+(S) is the set of all the nonempty subsets
of S.

Definition 1. Given a set of truth value V, a distribution of a (1,1)-ary quan-
tifier Q is a function λQ : P+(V)→ V.

(1,1)-ary distribution quantifiers have been extensively studied and axiomatized
in many-valued logic. See, for instance, [5,13,8].
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In what follows, L is a language with (n, k)-ary quantifiers, that is with quanti-
fiers Q1, ...,Qm with arities (n1, k1), ..., (nm, km) respectively. Denote by Frmcl

L

the set of closed L-formulas and by Trmcl
L the set of closed L-terms.

≡α is the α-equivalence relation between formulas, i.e identity up to the re-
naming of bound variables. We use [ ] for application of functions in the meta-
language, leaving the use of ( ) to the object language. A{t/x} denotes the
formula obtained from A by substituting t for x. Given an L-formula A, Fv[A]
is the set of variables occurring free in A. We denote Qx1...xkA by Q−→x A, and
A(x1, ..., xk) by A(−→x ).

3 Canonical Systems with (n,k)-ary Quantifiers

In this section we formulate a precise definition of a “canonical (n, k)-ary quan-
tificational Gentzen-type rule”.

Using an introduction rule for an (n, k)-ary quantifier Q, we should be able
to derive a sequent of the form Γ ⇒ Qx1...xk(ψ1, ..., ψn), ∆ or of the form
Γ,Qx1...xk(ψ1, ..., ψn) ⇒ ∆, based on some information about the subformu-
las of Qx1...xk(ψ1, ..., ψn) contained in the premises of the rule. For instance,
consider the following standard rules for the (1,1)-ary quantifier ∀:

Γ,A{t/w} ⇒ ∆

Γ, ∀wA⇒ ∆
(∀ ⇒)

Γ ⇒ A{z/w}, ∆
Γ ⇒ ∀wA,∆ (⇒ ∀)

where t, z are free for w in A and z does not occur free in the conclusion. Our
key observation is that the internal structure of A, as well as the exact term t or
variable w used, are immaterial for the meaning of ∀. What is important here is
the side of the sequent, on which A appears, as well as whether a term variable
t or an eigenvariable z is used.

Hence, the internal structure of the formulas of L can be abstracted by using
a simplified first-order language, i.e. the formulas of L in an introduction rule
of a (n, k)-ary quantifier, will be represented by atomic formulas with predicate
symbols of arity k. The case when the substituted term is any L-term, will be
signified by a constant, and the case when it is a variable satisfying the above
conditions - by a variable. In other words, constants serve as term variables,
while variables are eigenvariables.

Hence, in addition to our original language L with (n, k)-ary quantifiers we
define another, simplified language.

Definition 2. For k ≥ 0, n ≥ 1 and a set of constants Con, Ln
k(Con) is the

language with n k-ary predicate symbols p1, ..., pn and the set of constants Con
(and no quantifiers or connectives).

Definition 3 (Canonical Rules)

1. Let Con be some set of constants. A canonical quantificational rule of arity
(n, k) is an expression of the form {Πi ⇒ Σi}1≤i≤m/C, where m ≥ 0, C is
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either ⇒ Qx1...xk(p1(x1, ..., xk), ..., pn(x1, ..., xk)) or Qx1...xk(p1(x1, ..., xk),
..., pn(x1, ..., xk)) ⇒ for some (n, k)-ary quantifier Q of L and for every
1 ≤ i ≤ m: Πi ⇒ Σi is a clause2 over Ln

k(Con).
2. Let R = Θ/C be an (n, k)-ary canonical rule, where C is of one of the forms

(Q−→x (p1(−→x ), ..., pn(−→x )) ⇒) or (⇒ Q−→x (p1(−→x ), ..., pn(−→x ))).
Let ConΘ be the set of constants occurring in Θ. Let Γ be a set of L-formulas
and z1, ..., zk - distinct variables.
An 〈R,Γ, z1, ..., zk〉-mapping is any function χ from the predicate symbols
and terms of Ln

k (ConΘ) to formulas and terms of L, satisfying the following
conditions:
– For every 1 ≤ i ≤ n, χ[pi] is an L-formula.
– χ[y] is a variable of L.
– χ[x] �= χ[y] for every two variables x �= y.
– χ[c] is an L-term.
– For every 1 ≤ i ≤ n, every pi(t1, ..., tk) occurring in Θ and every 1 ≤
j ≤ k: χ[tj ] is a term free for zj in χ[pi], and if tj is a variable, then
χ[tj ] does not occur free in Γ ∪ {Qz1...zk(χ[p1], ..., χ[pn])}.

We extend χ to Ln
k(ConΘ)-formulas and sets of Ln

k(Con)-formulas as fol-
lows:

χ[pi(t1, ..., tk)] = χ[pi]{χ[t1]/z1, ..., χ[tk]/zk}
χ[Γ ] = {χ[ψ] | ψ ∈ Γ}

An application of a canonical quantificational rule of arity (n, k)
R = {Πi ⇒ Σi}1≤i≤m/Qx1...xk(p1(x1, ..., xk), ..., pn(x1, ..., xk)) ⇒ is any
inference step of the form:

{Γ, χ[Πi]⇒ ∆,χ[Σi]}1≤i≤m

Γ,Qz1...zk (χ[p1], ..., χ[pn])⇒ ∆

where z1, ..., zk are variables, Γ,∆ are any sets of L-formulas and χ is some
〈R,Γ ∪∆, z1, ..., zk〉-mapping.
An application of a canonical quantificational rule of the form
{Πi ⇒ Σi}1≤i≤m/ ⇒ Qx1...xk(p1(x1, ..., xk), ..., pn(x1, ..., xk)) is defined
similarly.

In other words, an application of an (n, k)-ary canonical rule Θ/ ⇒ Q−→z
(p1(−→z ), ..., pn(−→z )) is obtained by “instantiating” the rule, i.e. by replacing ev-
ery Ln

k (ConΘ)-formula pi(c) in Θ by some L-formula ψi{tc/z}, every pj(x) - by
some L-formula ψj{yx/z}, and Q−→z (p1(−→z ), ..., pn(−→z )) - by Qz(ψ1, ..., ψn), with
the restrictions on tc and yx which are specified above.

Below we demonstrate the above definition by a number of examples.

Example 1. The standard right introduction rule for∧, which can be thought of as
an (2, 0)-ary quantifier is {⇒ p1,⇒ p2}/⇒ p1 ∧ p2. Its application is of the form:

Γ ⇒ ψ1, ∆ Γ ⇒ ψ2, ∆

Γ ⇒ ψ1 ∧ ψ2, ∆

2 By a clause we mean a sequent containing only atomic formulas.
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Example 2. The two standard introduction rules for the (1, 1)-ary quantifier ∀
can be formulated as follows:

{p(c)⇒}/∀x p(x) ⇒ {⇒ p(y)}/⇒ ∀x p(x)
Applications of these rules have the forms:

Γ,A{t/w} ⇒ ∆

Γ, ∀wA⇒ ∆
(∀ ⇒)

Γ ⇒ A{z/w}, ∆
Γ ⇒ ∀wA,∆ (⇒ ∀)

where z is free for w in A, z is not free in Γ ∪∆∪{∀wA}, and t is any term free
for w in A.

Example 3. Consider the bounded existential and universal (2, 1)-ary quanti-
fiers ∀ and ∃ (corresponding to ∀x.p1(x) → p2(x) and ∃x.p1(x) ∧ p2(x) used in
syllogistic reasoning). Their corresponding rules can be formulated as follows:

{p2(c) ⇒ , ⇒ p1(c)}/∀x (p1(x), p2(x)) ⇒ {p1(y) ⇒ p2(y)}/ ⇒ ∀x (p1(x), p2(x))

{p1(y), p2(y) ⇒}/∃ x(p1(x), p2(x)) ⇒ {⇒ p1(c) , ⇒ p2(c)}/ ⇒ ∃x(p1(x), p2(x))

Applications of these rules are of the form:

Γ, ψ2{t/z} ⇒ ∆ Γ ⇒ ψ1{t/z}, ∆
Γ, ∀z (ψ1, ψ2) ⇒ ∆

Γ,ψ1{y/z} ⇒ ψ2{y/z}, ∆
Γ ⇒ ∀z (ψ1, ψ2), ∆

Γ, ψ1{y/z}, ψ2{y/z} ⇒ ∆

Γ, ∃z (ψ1, ψ2)⇒ ∆

Γ,ψ1{t/x} ⇒ ∆ Γ ⇒ ψ2{t/x}, ∆
Γ ⇒ ∃z (ψ1, ψ2), ∆

where t and y are free for z in ψ1 and ψ2, y does not occur free in Γ ∪ ∆ ∪
{∃z(ψ1, ψ2)}.

Example 4. Consider the (2,2)-ary rule

{p1(x, z) ⇒ , p1(y, d)⇒ p2(c, d)}/⇒ Qz1z2(p1(z1, z2), p2(z1, z2))

Its application is of the form:

Γ, ψ1{w1/z1, w2/z2} ⇒ ∆ Γ,ψ1{w3/z1, t1/z2} ⇒ ∆,ψ2{t2/z1, t1/z2}
Γ ⇒ ∆,Qz1z2(ψ1, ψ2)

where w1, w2, w3, t1, t2 satisfy the appropriate conditions.

Henceforth, in cases where the set of constants ConΘ is clear from the context
(it is the set of all constants occurring in a canonical rule), we will write Ln

k

instead of Ln
k (ConΘ).

Definition 4. A Gentzen-type calculus G is canonical if in addition to the α-
axiom A ⇒ A′ for A ≡α A′ and the standard structural rules, G has only
canonical quantificational rules, such that the sets of constants and variables of
every two rules are disjoint.
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Although we can define arbitrary canonical systems using our simplified language
Ln

k , our quest is for systems, the syntactic rules of which define the semantic
meaning of logical connectives. Thus we are interested in calculi with a “reason-
able” or “non-contradictory” set of rules, which allows for defining a sound and
complete semantics for the system. This can be captured syntactically by the
coherence criterion of [1,14]:

Definition 5 (Coherence). 3 A canonical calculus G is coherent if for every
two canonical rules of G of the form Θ1/ ⇒ A and Θ2/A⇒, the set of clauses
Θ1 ∪Θ2 is classically inconsistent.

Proposition 1 (Decidability of coherence). The coherence of a canonical
calculus G is decidable.

Proof. The question of classical consistency of a finite set of clauses without
quantifiers can be easily shown to be equivalent to satisfiability of a finite set of
universal formulas in a language with no function symbols, which is decidable.

Notation. (Following [1], notations 3-5.) Let −t = f,−f = t and ite(t, A,B) = A,
ite(f,A,B) = B. Let Φ,As (where Φ may be empty) denote ite(s, Φ ∪ {A}, Φ).
For instance, the sequents A ⇒ and ⇒ A are denoted by Aa ⇒ A−a for a = t
and a = f respectively.

According to this notation, a (n, k)-ary canonical rule is of the form

{Σj ⇒ Πj}1≤j≤m/

Q−→z (p1(−→z ), ..., pn(−→z ))s ⇒ Q−→z (p1(−→z ), ..., pn(−→z ))−s

for s ∈ {t, f}. For further abbreviation, we denote such rule by
{Σj ⇒ Πj}1≤j≤m/Q(s).

4 The Semantic Framework

4.1 Non-deterministic Matrices

Our main semantic tool are non-deterministic matrices (Nmatrices), first in-
troduced in [1] and used in [2,14]. These structures are a generalization of the
standard concept of a many-valued matrix, in which the truth-value of a for-
mula is chosen non-deterministically from a given non-empty set of truth-values.
Thus, given a set of truth-values V , we can generalize the notion of a distri-
bution function of an (n, k)-ary quantifier Q (from Definition. 1) to a function
λQ : P+(Vn)→ P+(V). In other words, given some distribution Y of n-ary vec-
tors of truth values, the interpretation function non-deterministically chooses
the truth value assigned to Q−→z (ψ1, ..., ψn) out from λQ[Y ] .
3 Strongly related coherence criterions are defined in [11], where linear logic is used

to reason about various sequent systems, and in [6], where a characterization of
cut-elimination is given for a general class of propositional single-conclusion sequent
calculi.
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Definition 6 (Non-deterministic matrix). A non-deterministic matrix
(henceforth Nmatrix) for L is a tuple M =< V ,G,O >, where:

– V is a non-empty set of truth values.
– G (designated truth values) is a non-empty proper subset of V.
– O is a set of interpretation functions: for every (n, k)-ary quantifier Q of L,
O includes the corresponding distribution function Q̃M : P+(Vn)→ P+(V).

At this point a remark on our treatment of propositional connectives is in order.
In [1,14], an Nmatrix includes an interpretation function 5̃ : Vn → P+(V) for
every n-ary connective of the language; given a valuation v, the truth value
v[5(ψ1, ..., ψn)] is chosen non-deterministically from 5̃[〈v[ψ1], ..., v[ψn]〉]. In the
definition above, the interpretation of a propositional connective 5 is a function
of another type: 5̃ : P+(Vn) → P+(V). This can be thought as a generalization of
the previous definition, identifying the tuple 〈v[ψ1], ..., v[ψn]〉 with the singleton
{〈v[ψ1], ..., v[ψn]〉}. The advantage of this generalization is that it allows for a
uniform treatment of both quantifiers and propositional connectives.

Definition 7 (L-structure). Let M be an Nmatrix for L. An L-structure for
M is a pair S = 〈D, I〉 where D is a (non-empty) domain and I is a function
interpreting constants, predicate symbols and function symbols of L, satisfying
the following conditions: I[c] ∈ D, I[pn] : Dn → V is an n-ary predicate, and
I[fn] : Dn → D is an n-ary function.
I is extended to interpret closed terms of L as follows:

I[f(t1, ..., tn)] = I[f ][I[t1], ..., I[tn]]

Definition 8 ( L(D)). Let S=〈D, I〉 be an L-structure for an Nmatrix M.
L(D) is the language obtained from L by adding to it the set of individual con-
stants {a | a ∈ D}. S′ = 〈D, I ′〉 is the L(D)-structure, such that I ′ is an
extension of I satisfying: I ′[a] = a.

Given an L-structure S = 〈D, I〉, we shall refer to the extended L(D)-structure
〈D, I ′〉 as S and to I ′ as I when the meaning is clear from the context.

Definition 9 (Congruence of terms and formulas). Let S be an L-structure
for an NmatrixM. The relation ∼S between terms of L(D) is defined inductively
as follows:

– x ∼S x
– For closed terms t, t′ of L(D): t ∼S t′ when I[t] = I[t′].
– If t1 ∼S t′1, ..., tn ∼S t′n, then f(t1, ..., tn) ∼S f(t′1, ..., t

′
n).

The relation ∼S between formulas of L(D) is defined as follows:

– If t1 ∼S t′1, t2 ∼S t′2, ..., tn ∼S t′n, then p(t1, ..., tn) ∼S p(t′1, ..., t
′
n).

– If ψ1{−→z /−→x } ∼S ϕ1{−→z /−→y }, ..., ψn{−→z /−→x } ∼S ϕn{−→z /−→y }, where −→x =
x1...xk and −→y = y1...yk are distinct variables and −→z = z1...zk are new dis-
tinct variables, then Q−→x (ψ1, ..., ψn) ∼S Q−→y (ϕ1, ..., ϕn) for any (n, k)-ary
quantifier Q of L.
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Lemma 1. Let S be an L-structure for an Nmatrix M. Let ψ, ψ′ be formulas
of L(D). Let t, t′ be closed terms of L(D), such that t ∼S t′.

1. If ψ ≡α ψ′, then ψ ∼S ψ′.
2. If ψ ∼S ψ′, then ψ{t/x} ∼S ψ′{t′/x}.

Definition 10 (Legal valuation). Let S = 〈D, I〉 be an L-structure for an
Nmatrix M. An S-valuation v : Frmcl

L → V is legal in M if it satisfies the
following conditions: v[ψ] = v[ψ′] for every two sentences ψ, ψ′ of L(D), such
that ψ ∼S ψ′, v[p(t1, ..., tn)] = I[p][I[t1], ..., I[tn]], and:

v[Qx1, ..., xk(ψ1, ..., ψn)] ∈

Q̃M[{〈v[ψ1{a1/x1, ..., ak/xk}], ..., v[ψn{a1/x1, ..., ak/xk}]〉 | a1, ..., ak ∈ D}]

for every (n, k)-ary quantifier Q of L.

Note that in case Q is a propositional connective (for k = 0), the function Q̃ is
applied to a singleton, as was explained above.

Definition 11 (Model, M-validity,�M). Let S = 〈D, I〉 be an L-structure
for an Nmatrix M.

1. An M-legal S-valuation v is a model of a sentence ψ in M, denoted by
S, v |=M ψ, if v[ψ] ∈ G.

2. A formula ψ is M-valid in S if for every S-substitution σ and every M-legal
S-valuation v, S, v |=M σ[ψ]. A formula ψ (a set of formulas Γ ) is M-valid
if ψ (every ψ ∈ Γ ) is M-valid in every L-structure for M.

3. A sequent Γ ⇒ ∆ is M-valid in S if for every M-legal S-valuation v and
every S-substitution σ: S, v |=M σ[Γ ] implies that there exists some ψ ∈ ∆,
such that S, v |=M σ[ψ]. A sequent is M-valid if it is M-valid in every
structure.

4. The consequence relation �M induced by M is defined as follows: Γ �M ∆
if Γ ⇒ ∆ is M-valid.

5. An Nmatrix M is sound for a system G if �G⊆�M. An Nmatrix M is
complete for a system G if �M⊆�G.

Definition 12 (Strong soundness). An Nmatrix M is strongly sound for a
system G if: (i) M is sound for G, and (ii) for every inference rule R of G and
every L-structure S: if the premises of R are M-valid in S, the conclusion of R
is M-valid in S.

Definition 13. An Nmatrix M is a characteristic Nmatrix for a canonical sys-
tem G if �M=�G.

A characteristic Nmatrix M for G is strongly characteristic if it is strongly
sound for G.
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4.2 Semantics for Simplified Languages Ln
k

In addition to L-structures for languages with (n, k)-ary quantifiers, we also use
Ln

k -structures for the simplified languages Ln
k , using which the canonical rules are

formulated. To make the distinction clearer, we shall use the metavariable S for
the former and N for the latter. Since the formulas of Ln

k are always atomic, the
specific 2Nmatrix for which N is defined is immaterial, and can be omitted. We
may even speak of classical validity of sequents over Ln

k . Furthermore, instead
of speaking of M-validity of a set of clauses Θ over Ln

k , we may speak simply of
validity.

Next we define the notion of a distribution of Ln
k -structures.

Definition 14. Let N be a structure for Ln
k . DistN , the distribution of N is

defined as follows:

DistN = {〈I[p1][a1, ..., ak], ..., I[pn][a1, ..., ak]〉 | a1, ..., ak ∈ D}

We say that an Ln
k-structure is E-characteristic if DistN = E.

Note that the distribution of an Ln
0 -structure N is DistN = {〈I[p1], ..., I[pn]〉}

and so it is always singleton. Furthermore, the validity of a set of clauses over
Ln

0 can be reduced to propositional satisfiability as stated in the following
lemma.

Lemma 2. For every Ln
0 -structure N , such that DistN = {〈a1, ..., an〉}, let

vDistN be any propositional valuation satisfying v[pi] = ai. A set of clauses
Θ is valid in a DistN -characteristic Ln

0 -structure N iff vDistN propositionally
satisfies Θ.

Now we turn to the case k = 1. In this case it is convenient to define a special
kind of Ln

1 -structures which we call canonical structures, which will be sufficient
to reflect the behavior of all possible Ln

1 -structures.

Definition 15. Let E ∈ P+({t, f}n). A Ln
1 -structure N = 〈D, I〉 is E-canonical

if D = E and for every b = 〈a1, ..., an〉 ∈ D and every 1 ≤ i ≤ n: I[pi][b] = ai.

Clearly, every E-canonical Ln
1 -structure is E-characteristic.

Lemma 3. Let Θ be a set of clauses over Ln
1 , which is valid in a structure

N = 〈D, I〉. Then there exists a DistN -canonical structure N ′ in which Θ is
valid.

Proposition 2. Let E ∈ P+({t, f}n). For a finite set of clauses Θ over Ln
k , the

question whether Θ is valid in a E-characteristic structure is decidable.

5 Canonical Systems with (n,k)-ary Quantifiers for
k ∈ {0, 1}

Now we turn to the class of systems with (n, k)-ary quantifiers for k ∈ {0, 1}
and n ≥ 1. Henceforth, unless stated otherwise, assume that k ∈ {0, 1}. For a
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uniform treatment of both k = 0 and k = 1, we use the following notation. For
any variable x and any constant c, let x0 and c0 denote the empty string, and
x1, c1 denote the strings ‘x’ and ‘c’ respectively. When we write Qxk(ψ1, ..., ψn),
we mean Qx(ψ1, ..., ψn) if k = 1 and Q(ψ1, ..., ψn) if k = 0; when we write
ψ{t/xk}, we mean ψ{t/x} for k = 1, and ψ for k = 0.

In this section we show that any coherent canonical calculus G has a charac-
teristic 2Nmatrix and admits cut-elimination. We start by defining the notion
of suitability for G.

Definition 16 (Suitability for G). Let G be a canonical calculus over L. A
2Nmatrix M is suitable for G if for every (n, k)-ary canonical rule Θ/A−s ⇒ As

of G, where s ∈ {t, f} and A = Qxk(p1(xk), ..., pn(xk)) it holds that for every
Ln

k -structure N in which Θ is valid: Q̃M[DistN ] = {s}.
Next we prove that any 2NmatrixM suitable for G is strongly sound for G. But
first we transform G into a canonical calculus G′, satisfying a certain property
defined below.

Lemma 4 (Elimination of constants). Let G be a canonical calculus with
a canonical (1,n)-ary rule R = Θ/Q(s) for some s ∈ {t, f}, where there are
two clauses of the form Σ1, pi(c) ⇒ Π1 and Σ2 ⇒ pi(c), Π2 in Θ. Let R′ =
Θ′/Q(s), where Θ′ is obtained from Θ by replacing these two clauses for the
clause Σ1, Σ2 ⇒ Π1, Π2. Let G′ be the calculus obtained from G by replacing
R for R′. Then any 2Nmatrix strongly sound for G′, is also strongly sound
for G.

Corollary 1. Let G be a canonical calculus. Then there exists a calculus G′,
such that (i) any 2Nmatrix strongly sound for G′, is also strongly sound for G,
and (ii) for every (n,1)-ary rule Θ/Q(s) of G′ and every clause Σ1, pi(c)r ⇒
Π1, pi(c)−r ∈ Θ: there is no clause of the form Σ2, pi(c)−r ⇒ Π2, pi(c)r in Θ.

Proof. Easily follows by repeatedly applying lemma 4.

Theorem 1. Let G be a canonical calculus over L and M - a 2Nmatrix suitable
for G. Then M is strongly sound for G.

Proof. Clearly, we may assume that G satisfies condition (ii) from corollary 1.
Let S be an L-structure. Let R be an (n, k)-ary rule R = {Σj ⇒ Πj}1≤j≤m/⇒
Qxk(p1(xk), ..., pn(xk)) of G′. Consider an application of R:

{Γ, χ[Σj ]⇒ χ[Πj ], ∆}1≤j≤m

Γ ⇒ ∆,Qzk(χ[p1], ..., χ[pn])

where χ is some 〈R,Γ ∪∆, zk〉-mapping. It suffices to show that if the premises
areM-valid in S, then the conclusion isM-valid in S. Let σ be an S-substitution
and v an M-legal valuation, such that S, v |=M σ[Γ ] and for every ψ ∈ ∆:
S, v �|=Mσ[ψ]. Denote by

−→
ψ the L-formula obtained from a formula ψ by substi-

tuting every free occurrence of w ∈ Fv[ψ]− {zk} for σ[w]. Let

E = {〈v[
−−−→
χ[p1]{a/zk}], ..., v[

−−−→
χ[pn]{a/zk}]〉 | a ∈ D}
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Define the Ln
k -structure N = 〈D′, I ′〉: D = D′ and I ′ is defined as follows:

– For every pi(c) ∈ ite(s,Σj, Πj) for some 1 ≤ j ≤ m and s ∈ {t, f}: if there
is some a ∈ D, such that v[

−−→
χ[pi]{a/z}] = −s, choose I ′[c] to be any such a

(note that in this case Πj ⇒ Σj becomes valid); otherwise, choose I ′[c] to
be any a ∈ D. It is important to stress that this is well-defined due to the
special property of G′, namely that pi(c) cannot occur on two different sides
of a clause.

– For every a ∈ D: I ′[pi][ak] = v[
−−→
χ[pi]{a/zk}]

It is easy to show that {Σj ⇒ Πj}1≤j≤m is valid in N . Obviously, DistN = E
and since M is suitable for G: Q̃M[E ] = {t} and so v[σ[Qz(χ[p1], ..., χ[pn])]] = t
and the conclusion of the application is M-valid in S. )*
Now we come to the construction of a characteristic 2Nmatrix for a coherent
canonical calculus.

Definition 17. Let G be a coherent canonical calculus. The Nmatrix MG for
L is defined as follows. For every (n, k)-ary quantifier Q of L, every s ∈ {t, f}
and every E ∈ P+({t, f}n):

Q̃MG [E ] =






{s} if Θ/Q(s) ∈ G and
Θ is valid in some E − characteristic structure

{t, f} otherwise

First let us show that MG is well-defined. Assume by contradiction that there
are two rules Θ1/⇒ A and Θ2/A⇒, such that both Θ1 and Θ2 are valid in some
E-characteristic structures N1 = 〈D1, I1〉,N2 = 〈D2, I2〉 respectively. If k = 0,
by lemma 2, the set of clauses Θ1 ∪Θ2 is propositionally satisfiable by vE and is
thus classically consistent, in contradiction to the coherence of G.

If k = 1, by lemma 3 there are E-canonical structures N ′
1,N ′

2 in which Θ1, Θ2
are valid. Recall that the only difference between different E-canonical structures
is in the interpretation of constants, and since the sets of constants occurring in
Θ1 and Θ2 are disjoint, an E-canonical structure N ′ = 〈D′, I ′〉 (for the extended
language containing the constants of both Θ1 and Θ2) can be constructed, in
which Θ1 ∪ Θ2 are valid. Thus the set Θ1 ∪ Θ2 is classically consistent, in con-
tradiction to the coherence of G.

Let us demonstrate the construction of a characteristic 2Nmatrix for some
simple coherent canonical calculi.

Example 5. It is easy to see that for any canonical coherent calculus G including
the standard (1,1)-ary rules for ∀ and ∃ from Example 2:

∀̃MG [{t, f}] = ∀̃MG [{f}] = ∃̃MG [{f}] = {f}

∀̃MG [{t}] = ∃̃MG [{t, f}] = ∃̃MG [{t}] = {t}



262 A. Zamansky and A. Avron

Example 6. Consider the canonical calculus G′ consisting of the following two
(1, 2)-ary rules from Example 3:

{p1(y) ⇒ p2(y)}/⇒ ∀x (p1(x), p2(x))

and
{⇒ p1(c) , ⇒ p2(c)}/⇒ ∃x(p1(x), p2(x))

It is easy to see that G′ is coherent. The 2Nmatrix MG′ is defined as follows for
every H ∈ P+({t, f}2):

∀̃[H ] =

{
{t} if 〈t , f 〉 �∈ H
{t, f} otherwise

∃̃[H ] =

{
{t} if 〈t , t〉 ∈ H
{t, f} otherwise

Remark. The construction of MG above is much simpler than the construc-
tions carried out in [1,14]: a canonical calculus there is first transformed into an
equivalent normal form calculus, which is then used to construct the character-
istic Nmatrix. The idea is to transform the calculus so that each rule dictates
the interpretation for only one E . However, the above definitions show that the
transformation into normal form is actually not necessary and we can construct
MG directly from G.

Now we come to the main theorem, establishing that MG is sound and com-
plete for any coherent calculus G.

Theorem 2 (Soundness and cut-free completeness). Let G be a coherent
canonical calculus. Then a sequent Γ ⇒ ∆ satisfying the free-variable condition4

has a cut-free proof in G iff Γ �MG ∆.

Proof. Soundness: It is easy to see that MG is suitable for G. By theorem 1,
MG is strongly sound for G, and thus �G⊆�MG .

Cut-free completeness: Let Γ ⇒ ∆ be a sequent satisfying the free-variable
condition. Suppose that Γ ⇒ ∆ has no cut-free proof in G. We will show that
it is not MG-valid.

It is easy to see that we can limit ourselves to the language L∗, which is a
subset of L, consisting of all the constants and predicate and function symbols,
occurring in Γ ⇒ ∆. Let T be the set of all the terms in L∗ which do not
contain variables occurring bound in Γ ⇒ ∆. It is a standard matter to show
that Γ,∆ can be extended to two (possibly infinite) sets Γ ′, ∆′ (where Γ ⊆ Γ ′

and ∆ ⊆ ∆′), satisfying the following properties:

1. For every Γ1 ⊆ Γ ′ and ∆1 ⊆ ∆′, Γ1 ⇒ ∆1 does not have a cut-free proof in
G.

2. There are no A ∈ Γ ′ and B ∈ ∆′, such that A ≡α B.
3. If {Πj ⇒ Σj}1≤j≤m/Q(r) is an (n, k)-ary rule of G and
Qzk (A1, ..., An) ∈ ite(r,∆′, Γ ′), then there is some 1 ≤ j ≤ m, such that:

4 By the free-variable condition we mean that the set of bound variables of Γ ∪ ∆ is
disjoint from its set of free variables.
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– If pi(ck) ∈ ite(r,Πj , Σj) for some 1 ≤ i ≤ n, then
Ai{t/zk} ∈ ite(r, Γ ′, ∆′) for every t ∈ T.

– If pi(yk) ∈ ite(r,Πj, Σj) for some 1 ≤ i ≤ n, then there exists some
t ∈ T, such that Ai{t/zk} ∈ ite(r, Γ ′, ∆′).

Note that for the case of k = 1, t is free for z in Ai by the free-variable
condition.

Let S = 〈T, I〉 be the L∗-structure defined as follows:

– I[c] = c for every constant c of L∗.
– I[p][t1, ..., tn] = t iff p(t1, ..., tn) ∈ Γ ′ for every n-ary predicate symbol p.
– I[f ][t1, ..., tn] = f(t1, ..., tn) for every n-ary function symbol f .

Let σ∗ be any S-substitution satisfying σ∗[x] = x for every x ∈ T. (Note that
every x ∈ T is also a member of the domain and thus has an individual name
referring to it in L∗(D).)

It is easy to show that (i) I∗[σ∗[t]] = t for every t ∈ T, and (ii) for every
A,B ∈ Γ ′ ∪∆′: if σ∗[A] ∼S σ∗[B], then A ≡α B.

Define the S-valuation v as follows:

– v[p(t1, ..., tn)] = I[p][I[t1], ..., I[tn]].
– For every (n, k)-ary quantifier Q, if there is some C ∈ Γ ′ ∪ ∆′, such that
σ∗[C] ≡α Qxk(ψ1, ..., ψn), then v[Qxk(ψ1, ..., ψn)] = t iff C ∈ Γ ′. Otherwise
v[Qxk(ψ1, ..., ψn)] = t iff Q̃[{〈v[ψ1{a/xk}], ..., v[ψn{a/xk}]〉 | a ∈ D}] = {t}.

Lemma 5. 1. v is legal in MG.
2. For every ψ ∈ Γ ′ ∪∆′: v(σ∗[ψ]) = t iff ψ ∈ Γ ′.

Since v is legal in MG, Γ ⊆ Γ ′ and ∆ ⊆ ∆′, by the above lemma v refutes
Γ ⇒ ∆. )*

Corollary 2. If G is coherent, then MG is strongly characteristic for G.

Corollary 3. For any canonical calculus G, the following two statements are
equivalent:

1. G has a strongly characteristic 2Nmatrix.
2. G is coherent.

Proof. The proof of (1⇒2) is easy and is left to the reader. (2⇒1) follows from
corollary 2.

Corollary 4. The existence of a strongly characteristic 2Nmatrix for a canon-
ical calculus G is decidable.

Remark. It is important to note that the coherence of G is not a necessary
condition for the existence of a characteristic 2Nmatrix for G and, consequently,
for cut-elimination. Consider, for instance the canonical calculus G1 consisting
of the following two inference rules:
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(1) {p1(y)⇒ p2(y) , p1(c1)⇒ , p2(c1)⇒ ,

p1(c2)⇒ , ⇒ p2(c2) , ⇒ p1(c3) , ⇒ p2(c3)}/⇒ Qz(p1(z), p2(z))

(2) {p1(y)⇒ p2(y) , p1(c4)⇒ , p2(c4)⇒ ,

p1(c5)⇒ , ⇒ p2(c5) , ⇒ p1(c6) , ⇒ p2(c6)}/Qz(p1(z), p2(z))⇒
It is easy to see that G1 is not coherent, but the only sequents provable in it
are logical axioms, and so G1 has a characteristic 2Nmatrix and admits cut-
elimination. This is in contrast to the systems in [1,14], where the fact that a
canonical calculus admits cut-elimination implies that G is coherent.

6 Summary and Further Research

In this paper we have considerably extended the characterization of canonical
calculi of [1,14] to (n, k)-ary quantifiers. For the case of k ∈ {0, 1}, we have
shown that any coherent calculus admits cut-elimination and has a characteris-
tic 2Nmatrix, but the converse does not necessary hold (unlike in [1,14]). In fact,
a calculus is coherent iff it has a strongly characteristic 2Nmatrix. In addition to
some proof-theoretical results for a natural type of multiple conclusion Gentzen-
type systems with (n, 1)-ary quantifiers, our work also provides further evidence
for the thesis that the meaning of a logical constant is given by its introduc-
tion (and “elimination”) rules . We have shown that at least in the framework
of multiple-conclusion consequence relations, any “reasonable” set of canonical
quantificational rules completely determines the semantics of the quantifier.

Some of the most immediate research directions are:

1. Defining an exact criterion for the ability to eliminate cuts in canonical
systems and developing a syntactic method for cut-elimination for the case
of k ∈ {0, 1}, i.e. a stepwise transformation of any derivation of a canonical
calculus into a cut-free derivation, possibly along the lines of [3].

2. Developing a general theory, extending the results of the previous section to
the case of k > 1. This might lead to new insights on Henkin quantifiers and
other important extensions, such as Transitive Closure operations. However,
already for the simplest quantifiers this is not straightforward. First of all, the
coherence of a canonical calculus G with general quantifiers does not imply
that a 2Nmatrix suitable for G exists. For instance, consider the calculus G,
consisting of the following two (1,2)-ary rules:

{p(c, x)⇒}/⇒ Qz1z2p(z1, z2) {⇒ p(y, d)}/Qz1z2p(z1, z2)⇒

G is coherent, but it is easy to see that MG is not well-defined in this case.
Secondly, even if a 2Nmatrix M suitable for G does exist, it is not neces-
sarily sound for G. Therefore, a more complex interpretation of quantifiers
is needed, which in its turn will lead to various extensions of the simpli-
fied language Ln

k (e.g. adding function symbols), and the cost of losing the
decidability of the coherence criterion in this case seems inevitable.
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Abstract. We introduce a dynamic logic that is enriched by non-rigid
functions, i.e., functions that may change their value from state to
state (during program execution), and we present a (relatively) complete
sequent calculus for this logic. In conjunction with dynamically typed
object enumerators, non-rigid functions allow to embed notions of object-
orientation in dynamic logic, thereby forming a basis for verification of
object-oriented programs. A semantical generalisation of substitutions,
called state update, which we add to the logic, constitutes the central
technical device for dealing with object aliasing during function modifica-
tion. With these few extensions, our dynamic logic captures the essential
aspects of the complex verification system KeY and, hence, constitutes a
foundation for object-oriented verification with the principles of reason-
ing that underly the successful KeY case studies.

Keywords: Dynamic logic, sequent calculus, program logic, software
verification, logical foundations of programming languages, object-orien-
tation.

1 Introduction

Overview. Dynamic logic serves two purposes: (a) theoretical investigations of
programs, programming languages, and verification calculi; and (b) formal verifi-
cation of particular programs. Deductive verification of real-world object-oriented
programs requires the use of a program logic that is suitable for object-orientation
instead of a logic for a simple While language (e.g. [11]). In this paper, we add
a succinct set of features to a dynamic logic for While, which forms a basis for
handling object-oriented programming languages; and we present a sound and
(relatively) complete sequent calculus for the extended logic. The logic that we
introduce, called ODL, is a minimal extension of dynamic logic [11], i.e., only very
few essential notions of object-orientation are directly included.

For inclusion in ODL, we have identified the following essentials: (1) an object
type system; (2) object creation; and, most importantly, (3) non-rigid functions
that can be used to represent object attributes. Using such a minimal exten-
sion that is not cluttered with too many constructs is necessary for theoretical
investigations (a). A case in point are the soundness and completeness proofs
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for the ODL calculus, which are—though not trivial—still readable, understand-
able and, hence, accessible to investigation. Furthermore, ODL is sufficient for
verifying programs written in real-world programming languages (b), because
they can be transformed into ODL programs uniformly (as practical experience
with the KeY prover implementation shows, see below). ODL thus serves both
purposes of a dynamic logic. In this paper, Java-like languages are considered
for transformation into ODL programs.

In addition to providing a sound and complete calculus for ODL, a prime
contribution of this paper is the logic ODL itself, which forms a coherent basis
for object-oriented verification.

The KeY Project and ODL. The work reported in this paper has been carried out
as part of the KeY project [2], the goal of which is to develop a comprehensive
tool supporting formal specification and verification of Java Card programs
within a commercial platform for UML/JML-based software development. This
approach is based on the design-by-contract paradigm. In KeY, contracts are
verified statically using a semi-automatic, interactive theorem prover on the
basis of a dynamic logic for 100% Java Card [5].

ODL captures the essence of reasoning underlying the KeY approach. Here,
we consolidate the foundational principles of KeY into this concise logic, which
is not only (relatively) complete in theory but also provides sufficient means for
practical object-oriented verification. Practical applicability has been demon-
strated in successful case studies (e.g. [15]) with the KeY prover. Now, using
ODL, we focus on more theoretical aspects in this paper.

Dynamic Logic. The principle of dynamic logic (DL) is to facilitate the for-
mulation of statements about program behaviour by integrating programs and
formulas within a single specification language (see e.g. [11] for a general ex-
position of DL). By permitting arbitrary programs α as actions of a labelled
multi-modal logic, dynamic logic provides formulas of the form [α]φ and 〈α〉φ,
where [α]φ expresses that all (terminating) executions of programα lead to states
in which φ holds, whereas 〈α〉φ expresses that there is at least one terminating
execution of α after which φ holds. A Hoare-style specification {φ}α{ψ} can be
expressed as φ→ [α]ψ. In contrast to Hoare logic and temporal logic approaches,
dynamic logic further permits to express structural relationships between differ-
ent programs, for example, 〈α〉φ→ 〈α′〉φ and [α](c ≥ 0 → 〈α〉′c ≤ d · d).

Object-orientation. Typical features of object-oriented programming languages
include structured object data types with inheritance and subtyping, resolving
method invocation by dynamic dispatch, overloading, hiding of fields, object
creation, exception handling (as well as other means of abrupt completion) and
side-effects during expression evaluation. There is no general consensus on the
question which of these features constitute the heart of object-orientation and
which are just contingent features of object-oriented languages (see, e.g., [14] for
a discussion why exception handling is orthogonal to object-orientation). We
are not trying to answer this question by including some features into ODL and
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others not. Instead, our choice was to include those features that are (a) fre-
quently used in object-oriented languages and (b) cannot be removed easily by
program transformation. We put more emphasis on the latter criterion (b) than
on a general philosophy of what should be considered object-oriented.

Related Work. Stärk and Nanchen [20] define a dynamic logic for single steps of
abstract state machines and develop a calculus. Their dynamic logic has some
features in common with ODL; it uses a related but distinct notion of parallel
updates. Their calculus, however, is unwieldy as it uses a multitude of axioms
and necessitates several successive translations with complicated reasoning on
termination conditions and the absence of clashes. Due to the limitation to single
steps, their logic is not suitable for verification of proper algorithms.

Von Oheimb and Nipkow [22] describe a Hoare calculus for NanoJava, which
has many more native language features than ODL. Their calculus, that is ac-
cordingly more complicated and harder to use than ours, has been formulated in
Isabelle/HOL and proven sound and complete relative to a semantics of Nano-
Java specified in Isabelle. In [16], Nipkow defines a programming language to
capture the essentials of object-orientation (without giving a calculus). Yet, this
language keeps more built-in features than ODL, like exceptions and casts.

Pierik and de Boer [17] present a wp-calculus for a moderate abstraction of
an object-oriented programming language with a fairly rich set of features (with-
out exceptions) and a focus on method invocation, using an assertion language
with quantification over sequences of objects. Their calculus uses a complicated
treatment of object creation and is proven complete only relative to the strongest
postconditions of programs, which is a comparably weak notion of completeness.

Abadi and Leino [1] present a logic for reasoning about a programming lan-
guage with prototype-based object inheritance. Their logic resembles a formal
type system enriched with pre- and postconditions.

Igarashi et al. [12] define a λ-calculus for functional Java (without assign-
ments) and use it to investigate type-safety as well as parametric type genericity.

Other approaches [2,9,13,19,3], which aim to define and use calculi for veri-
fying full (or large fragments of) Java or C# are too complex for our second
goal (besides verification) of a small and easy to understand basis that allows
theoretical investigations of programs, program languages, and calculi.

The strength of the ODL approach compared to others lies primarily in an
(even) smaller amount of language features and a simple language semantics
building on classical first-order dynamic logic. With this basis, the ODL calculus
is straightforward and behaves reasonably in practical application scenarios. On
a proof-theoretical level, a noteworthy difference is that ODL completeness is
even proven relative to first-order arithmetic.

Structure of this Paper. After introducing syntax and semantics of the logic
ODL in Section 2, the transformation from existing object-oriented languages
into ODL is surveyed in Section 3. As the central contribution of this paper,
Section 4 introduces a sound and relatively complete calculus for ODL. Finally,
in Section 5 we draw conclusions and discuss future work.
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2 Syntax and Semantics of ODL

Overview. In addition to dynamic logic for a standard While programming
language [11], we use three important concepts.

Type System. The ODL type system needs to represent types of existing object-
oriented programming languages. Since classes are a central concept of object-
orientation, ODL uses a proper type system rather than an indirect encoding of
types as formulas or numbers. Program constructs whose behaviour depends on
dynamic typing (like method invocation) can be translated into ODL code with
instanceof formulas (see Section 4) to access the dynamic type of expressions.

Dynamic Object Creation. ODL needs to have a way to represent object creation
and dynamic types. We introduce object enumerators: for each natural number n
there is one distinct object, denoted by the term objC(n), of each object-type C.
Then, dynamic type-checks simply amount to checking from which of these free
type generators an object originates. As opposed to memory models [21], each
type has a disjoint set of created objects. Hence, objects of different types are
never aliased. The prover can profit from this higher level of abstraction and the
resulting simplicity. This design prohibits arbitrary pointer arithmetic, though.

State Updates. Object-oriented programming languages allow to modify ob-
ject attributes. ODL represents attributes as non-rigid function symbols, i.e.,
functions that may change their value during program execution. Changes to
such non-rigid functions are promoted throughout a formula by means of state
updates, which can be seen as a “semantical” generalisation of syntactic sub-
stitutions. The update mechanism of ODL provides a means for handling sym-
bol aliasing and for applying state updates to modalities. Moreover, bundling
changes of multiple locations to one parallel update of simultaneous effect, ac-
celerates the prover considerably.

Modelling object attributes as non-rigid function symbols emphasises the
logical properties of object states. This avoids encoding objects states in mem-
ory structures and improves readability (as compared to memory-model-based
approaches). For ODL, the usual object access o.x is a notational variant of x(o).

Syntax of ODL. A (nearly) arbitrary type system can be plugged into ODL.
For simplicity, it is assumed to form a lattice (which is no real restriction as any
type structure can be embedded into a lattice) satisfying additional conditions.

Definition 1. The type system Typ is a (decidable) lattice with sub-type re-
lation ≤. Within Typ, there is a designated subset of object-types (which are
subject to object creation). The type lattice conforms to the following restrictions:
(a) the type nat of natural numbers is an element of Typ; (b) object-types have
only finitely many subtypes; (c) the bottom type ⊥ is not an object-type; (d) all
subtypes of an object type (except ⊥) are object-types; (e) there is an object-type
Null, which is a subtype of all object-types.



270 B. Beckert and A. Platzer

Note that function and tuple types are not part of the object-level type
system Typ. Instead, the typing of a function symbol with n parameters of types
σ1, . . . , σn ∈ Typ and result type τ ∈ Typ is σ1 × · · · × σn → τ . Despite (b),
Typ may contain infinitely many object-types (that are not subtypes of each
other). Assumptions (c–e) are not essential but simplify notation in the sequel.

�
���� ����

nat Object

�� �� int

Date�� String
��

Null

⊥
Fig. 1. Lattice for
part of Java

Figure 1 shows part of an ODL type system embed-
ding Java types. Of the types shown, Object, Date, and
String, are object-types. Unlike the Java-type int, they
permit object creation during program execution. The spe-
cial object-type Null represents the type of the single Java
null-pointer, which is a possible value for expressions of
any object-type but not for those of integer types. In the
case of Java, nat will not occur in the original programs
but emerge during the transformation in Section 3.

Terms and Formulas. The formulas of ODL are built over a set V of variables
and a signature Σ of function and predicate symbols, which have a fixed static
type. Function symbols are either rigid or non-rigid, with only non-rigid symbols
being subject to assignment during program execution (program variables are
represented by non-rigid constants, object attributes by non-rigid functions).
Our calculus assumes the presence of sufficiently many symbols of each kind.

The signature Σ is assumed to contain the traditional rigid function and
predicate symbols for type nat, such as 0, 1,+, ·,≤,≥, as well as the rigid symbol
null of type Null. For object-types C ∈ Typ, in addition to a non-rigid symbol
nextC of type nat (the number of the next object to be created), Σ contains a
rigid function symbol objC of the typing nat → C. The intended semantics of
such an object enumerator objC is to enumerate all objects of type C.

The set Trm(Σ∪V )τ of terms of type τ (or subtypes thereof) is defined as in
classical many-sorted first-order logic. Additionally, we use conditional terms of
the form (ifφ then t else t′ fi). They evaluate to the value of t if φ is true and to
the value of t′ otherwise (conditional terms are no essential ingredient of ODL,
primarily used to simplify concepts and notation).

The formulas of ODL are defined as common in first-order dynamic logic.
That is, they are built using the connectives ∧,∨,→,¬, equality .= and the
quantifiers ∀, ∃ (first-order part). In addition, if φ is a formula and α a program,
then [α]φ, 〈α〉φ are formulas (dynamic part). Refer to [18] for a detailed definition
of the syntax and semantics of ODL. For enhanced readability, we sometimes
use the notation ∀x : τ φ for quantification when x is of type τ .

Programs. The control structures of ODL are those commonly found in a While
programming language: ODL programs are constructed using (a) sequential com-
position α; γ, (b) conditional execution if(φ)α else γ, and (c) loops while(φ)α,
with quantifier-free first-order formulas φ as conditions. The atomic programs
of ODL are state updates :

Definition 2 (State updates). Let n ∈ N and, for 1 ≤ i ≤ n, let fi a non-
rigid function symbol of type σ1

i × · · · × σki

i →τi, fi(t1i , . . . , t
ki

i ) ∈ Trm(Σ∪V )τi ,
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and ti ∈ Trm(Σ∪V )τi with types σj
i , τi. Then, a (state) update has the form

f1(t11, . . . , t
k1
1 ) := t1, . . . , fn(t1n, . . . , t

kn
n ) := tn.

The intended effect of f(t) := t′ is to change the interpretation of f at loca-
tion t to t′, with multiple modifications (n > 1) working in parallel, i.e., the tji
and ti are all evaluated prior to the (parallel) modifications.

Method calls can be added to ODL by permitting c := m(t0, . . . , tn) as an
atomic program that represents an invocation of the method m on parameters
ti ∈ Trm(Σ∪V ) and assignment of the result (if any) to c. For most programming
languages, t0 is the object on which m is invoked. Fixed-point semantics then
defines the effect of a method invocation. For simplicity, the particularities of
method calls are not formally investigated further here.

Semantics. The interpretations of ODL consist of worlds (states) that are first-
order structures, associating total functions and relations of appropriate type
with function and predicate symbols.

Definition 3 (Interpretation). An interpretation I is a non-empty set of
(typed) first-order structures, called states, over a signature Σ such that: (1) all
states have the same interpretation of rigid symbols; (2) the set of states of I is
closed under the modification (see below) of finitely many non-rigid symbols at
finitely many locations; (3) for each type τ , all states share the same set I(τ) as
the set of objects of type τ ; the universe of all states is the union of the I(τ);
(4) for all types σ, τ : if σ ≤ τ then I(σ) ⊆ I(τ); (5) objC is interpreted as a
bijection from N into the set of objects having C as their most-specific type, i.e.,
that are of type C but not of any subtype of C; (6) the interpretations of the
objC symbols have disjoint ranges; (7) nat is interpreted as the set of natural
numbers, with operators as usual; (8) the interpretation of the Null type is a
singleton; that of ⊥ is empty.

In the following, s denotes a state of I and β an assignment of variables, i.e., a
mapping from V to the universe of I that respects types. Non-rigid symbols, like
program variables or attributes, are allowed to assume different interpretations
in different states. Logical variable symbols, however, are rigid in the sense that
their value is determined by β alone and does not depend on the state. We use
s[f(e) �→ d] to denote the semantic modification of state s that is identical to s
except for the interpretation of the non-rigid symbol f at position e, which is d.

Definition 4 (Valuation of terms and formulas). For terms and formulas,
the valuation valI,β(s, ·) with respect to I, β, s is defined as usual for first-order
modal logic [10], i.e., using the following definitions for the modal operators:
valI,β(s, [α]φ) = true iff valI,β(s′, φ) = true for all s′ with (s, s′) ∈ ρI,β(α) and
valI,β(s, 〈α〉φ) = true iff valI,β(s′, φ) = true for some s′ s.t. (s, s′) ∈ ρI,β(α).

With the exception of state updates, the semantics—ρI,β(α)—of programs is as
customary. In order to demonstrate how concise and simple the ODL language
semantics is devised, the full formal definition is provided.



272 B. Beckert and A. Platzer

Definition 5 (Semantics of programs). The valuation ρI,β(α) of a pro-
gram α is a relation on the states of I. It specifies which state s′ (if any) is
reachable from a state s by executing program α and is defined as follows:

1. (s, s′)∈ ρI,β(f1(t11, . . . , t
k1
1 ) := t1, . . . , fn(t1n, . . . , tkn

n ) := tn) iff s = s0, s
′ = sn,

and si = si−1[fi(valI,β(s, t1i ), . . . , valI,β(s, tki

i )) �→ valI,β(s, ti)] (1 ≤ i ≤ n).
2. (s, s′) ∈ ρI,β(α; γ) iff (s, u) ∈ ρI,β(α) and (u, s′) ∈ ρI,β(γ) for some state u.
3. (s, s′) ∈ ρI,β(if(φ)α elseγ) iff (1) valI,β(s, φ) = true and (s, s′) ∈ ρI,β(α),

or (2) valI,β(s, φ) = false and (s, s′) ∈ ρI,β(γ).
4. (s, s′) ∈ ρI,β(while(φ)α) iff there are n ∈ N and s=s0, . . . , sn=s′ such

that (1) for 0 ≤ i < n, valI,β(si, φ) = true and (si, si+1) ∈ ρI,β(α), and
(2) valI,β(sn, φ) = false.

Note that according to this definition, the modifications of a state update are
executed simultaneously in the sense that the terms tji , ti are evaluated in the
initial state s = s0. However, if there is a clash, i.e., if two modifications as-
sign different values to the same location, then the rightmost modification wins,
which turns out to be more natural for sequential programs than alternative
approaches to clash semantics [18]. Like classical dynamic logic, ODL focuses
on the input/output behaviour of programs and program parts. Hence it cannot
be used to express properties of programs during an infinite run, which would
require an extension of ODL to trace semantics (versions of DL with trace se-
mantics are described in [7] for classical DL and in [6] for Java Card).

3 ODL as a Basis for Handling Real-World Languages

In this section, we survey the transformation from real-world object-oriented
programs into ODL as a basis for their verification. The particular transforma-
tion that we consider here is implemented by schematic inference rules in the
KeY deduction engine. It transforms Java Card programs into a sublanguage
of Java that corresponds to ODL, except for notation. Experience with KeY in
practice shows that the transformation leads to a linear increase in the size of
the program and that the time complexity of the transformation is linear in the
size of the program. The resulting program retains the structure of the original,
as the transformation only locally replaces language features that are not part
of ODL. Hence, the relation between Java and ODL programs is easy to grasp
for users. Due to space limitations, we have to restrict this presentation to the
key ideas enriched with illustrative examples; see [5,18] for more details.

Type Transformations. As the subtype relation of the class hierarchy is in-
tegrated directly, fields and methods undergo a simple translation. An attribute
f :σ1× . . .×σn → τ of class ζ is represented as a non-rigid function symbol
f : ζ × σ1× . . .×σn → τ , which stores at position (o, a1, . . . , an) the value that
field f of object o has at position (a1, . . . , an) (for array types n > 0).
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Code Transformations. Most features of current programming languages have
a simple uniform transformation into ODL, which accomplishes their effects with
more elementary means and without introducing memory or machine models.

Object Creation. Object creation has to support dynamic type-checks, establish
object identity and maintain the current type extension. Because of the proper-
ties of ODL object enumerators, these demands are fulfilled by translating occur-
rences of c := new C() into the state update c := objC(nextC), nextC := nextC + 1.

Two objects created by distinct invocations of new are always different, which
is achieved by means of the disjoint bijection constraints on objC and the incre-
ment of nextC. Maintaining the extension, i.e., a set of all objects created by pro-
gram execution so far, is needed in order to express properties φ of all objects that
have already been created with an invocation of new. As nextC counts the number
of objects created of type C, this corresponds to: ∀n (n < nextC → φ(objC(n))).
Using object enumerators, it is further possible to express dynamic type-checks.
For a term t and object-type C, we define the type-check formula t instanceofC
to be an abbreviation of ∃n : nat

∨
Null<τ≤C t

.= objτ (n).
Despite the static typing of symbols in Σ, ODL needs dynamic type-checks

because the interpretation of a constant symbol c of (static) type τ in Σ can
have any subtype σ ≤ τ depending on the current state.

The ODL treatment of object creation is still safe in the presence of garbage
collection due to the absence of pointer arithmetics and resource limitations [18].
A further advantage of object enumerators is the simplicity of the contribution of
natural numbers—which are already part of ODL for completeness reasons—to
object identity without the need to use Skolem symbols for object creation.

Side-effects. Expressions with side-effects can be replaced by a sequence of state
updates to temporary program variables, each of which encapsulates one effect
of the original expression. Therefore, the order of assignments has to respect
the evaluation order constraints of the investigated real-world language. For
example, the Java fragment a[ i++] = b−− + b can be schematically translated
into an ODL program vi := i; i := i+ 1; vb := b; b := b− 1; a(vi) := vb+ b that
does not have side-effects. This ODL program can be condensed to a single
parallel update using our simplification rules (see Section 4), which results in
i := i+ 1, b := b− 1, a(i) := b+ (b− 1). ODL updates can be more verbose than
side-effecting Java expressions, but they are also more explicit. For the purpose
of verification, it is beneficial to have the actual effects readily identifiable.

Exception Handling. Exceptions are not built into ODL, but have to be emulated
by preprocessing program transformations. Exception raising can be simulated
by introducing appropriate conditions on a (local) program variable that stores
the raised exception (which is passed up the call trace when it is not caught).
Consider the following example with exception raising and handling:

try { while (d != 0)
{ i f (d < 0) {throw new RangeEx (d ) ; } else {d=d−1;}}

/∗ do something ∗/
} catch (RangeEx r ) {/∗ handle range ∗/}
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It can be transformed into a program that uses exception polling instead:

Exception r = null ;
while ( r == null && d != 0)

{ i f (d < 0) { r = new RangeEx (d ) ; } else {d=d−1;}}
i f ( r == null ) {/∗ do something ∗/}
else i f ( r instanceof RangeEx ) {/∗ handle range ∗/}
else {return r ; /∗ pass up the c a l l t race ∗/}

In favour of a simple logic and calculus, ODL compromises on readability when
handling exceptions by program transformation. This is non-crucial in the sense
that exceptions are not an inherently object-oriented feature.

The main advantage of banning exceptions and undefinedness from ODL is
that no special features like, e.g., a third truth value, have to be introduced to
handle partiality. For example, with built-in exception handling, a logic would
have to promote the exceptional case of values being null throughout the in-
ductive valuation, which clutters both semantics and inference rules. In contrast,
ODL just considers null as an ordinary—though designated—object. Further,
the truth-value of an expression like c.a .= c.a + 2 is always consistently false,
even in the case of c .= null, whereas c.a .= c.a is consistently true.

Dynamic Dispatch. Dynamic dispatch of method calls can be reduced to static
method calls by dynamic type-check cascades with instanceof along the reverse
topological order of the type lattice (which also works for multiple inheritance).
An important advantage of the ODL way of dynamic dispatch is its simplicity:
the basic idea is to implement dispatch “tables” from classical compiler construc-
tion technology with ODL primitives. Dynamic dispatch occurs in situations like
the one sketched in the following Java fragment:

class Car { int f o l l ow (Car d) { . . . } }
class Van extends Car { int f o l l ow (Car d) { . . . } }
. . . return b . f o l l ow (d ) ;

Having renamed the methods follow that are subject to overriding to Car follow
or Van follow, respectively, this code snippet is transformed as follows (type casts
are expressible in ODL using existential quantification: ∃v : Van v

.= b):

class Car { int Car fo l l ow (Car d) { . . . } }
class Van extends Car { int Van fol low (Car d) { . . . } }
. . . i f (b instanceof Van) {return ( (Van)b ) . Van fo l low (d ) ; }
else i f (b instanceof Car ) {return ( ( Car )b ) . Car fo l l ow (d ) ; }
else {/∗ cannot happen when a l l t ypes are known ∗/}

Built-in Operators. From a theoretical perspective, extending ODL by built-
in operators is straightforward when assuming a suitable axiomatisation of the
operator semantics. For example, modular arithmetic can be axiomatised as [8]:
r
.= a mod n ↔ ∃z : nat a .= z · n+ r ∧ r < n.
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Running Example. Consider the following Java fragment that illustrates se-
quence number generation in object database applications and also is a typical
part of the implementation of enumeration types in Java (sequence numbers are
assumed to be multiples of 5, for example):

class E { static int g ; int id ;
E c r ea t e ( ) {E r=new E( ) ; r . id=g ; g=g+5; return r ;}}

With return-value r, the method body of create() has the ODL representa-
tion α = r := objE(nextE), nextE := nextE+1; r.id := g; g := g + 5 (using Java
notation for field access). An important property of class E is that sequence
numbers in the field id are unique identifiers for E-objects, which is expressed
by the global state invariant ∀x : E ∀y : E (x.id .= y.id → x

.= y). In this con-
text, a typical conjecture is that two objects generated with successive invoca-
tions of α have distinct identifiers, which is represented by the ODL formula:
∀x [α](x .= r → [α] (x.id < r.id)).

Discussion. Assignment to non-rigid function symbols cannot be removed from
ODL without losing the operational basis for object-oriented programming that
permits the change of structured and dynamically typed data or terms.

Likewise, object creation constitutes an essential ingredient to the dynamics
of object-oriented systems. Allocating objects at run-time is characteristic of
object-oriented programming. With the presence of object enumerator symbols,
ODL does not need a native allocation operator. Both the axiomatisation and the
translation are convincing and the practical performance achieved with object
enumerators is appropriate [18] (similar reasons apply for dynamic dispatch).

4 A Sequent Calculus for ODL

Overview. In this section, we present a sound and (relatively) complete sequent
calculus for ODL. The basic idea of the ODL calculus is to perform a symbolic
program execution, thereby successively analysing programs and transforming
them into logical formulas describing their effects. Yet, rule applications for first-
order reasoning and program reasoning are not separated but intertwined.

For first-order and propositional logic standard rule schemata are listed in
Table 1, including an integer induction scheme. Within the rules for the program
logic part (Table 2), state update rules R29–R30 constitute a peculiarity of
ODL and will be discussed after defining rule applications. Essentially, the ODL
inference rules have the effect of reducing more complex formulas to simpler ones.
Prior to handling loops by R27 or R22, they transform formulas to the normal
form 〈U〉〈while(e)α〉φ or [U ][while(e)α]φ with some update U . The rules for
treating control structures work similar to the case of the While programming
language.

Rules of the Calculus. A sequent is of the form Γ � ∆, where Γ and ∆ are sets
of formulas. Its informal semantics is the same as that of

∧
φ∈Γ φ →

∨
ψ∈∆ ψ.
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Table 1. First-order logic part of the ODL calculus

(R1)
� A

¬A �

(R2)
A �
� ¬A

(R3)
� AX

x

� ∀x A

(R4)
A, B �

A ∧ B �

(R5)
� A � B

� A ∧ B

(R6)
At

x, ∀x A �
∀x A �

(R7)
A � B �
A ∨ B �

(R8)
� A, B

� A ∨ B

(R9)
AX

x �
∃x A �

(R10)
� A B �
A → B �

(R11)
A � B

� A → B

(R12)
� At

x, ∃x A

� ∃x A

(R13)
A � A

(R14)
A � � A

�

(R15)
Γ t′

t , t
.= t′ � ∆t′

t

Γ, t
.= t′ � ∆

(R16)
Γ t′

t , t′ .= t � ∆t′
t

Γ, t′ .= t � ∆

(R17) � t
.= t

(R18)
� φ(0) φ(X) � φ(X+1)

� ∀n φ(n)

ODL inference rules use substitutions that replace terms (not only variables)
by terms and take effect within formulas and programs. The result of applying
to φ the substitution that replaces s by t is defined as usual; it is denoted by φt

s.
Yet, only admissible substitutions are applicable, which is crucial for soundness:

Definition 6 (Admissible substitution). An application of a substitution θ
is admissible if no replaced term s occurs (a) in the scope of a quantifier binding
a variable of θ(s) or s, nor (b) in the scope of a modality in which an update to
a non-rigid function symbol of θ(s) or s occurs.

As common in sequent calculus, although the direction of entailment is from
premisses (sequents above bar) to conclusion (sequent below), the order of rea-
soning is converse in practice. Rules are applied analytically, starting with the
proof obligation at the bottom. To highlight the logical essence of inference rules,
the ODL calculus provides the rule schemata R1–R30 to which the following def-
inition associates the inference rules that are applicable during an ODL proof.

Definition 7 (Rules). The rule schemata in Tables 1 and 2 induce rules by:

1. If Φ1 � Ψ1 . . . Φn � Ψn / Φ � Ψ is an instance of one of the rule schemata
R1–R26, then

Γ, 〈U〉Φ1 � 〈U〉Ψ1, ∆ . . . Γ, 〈U〉Φn � 〈U〉Ψn, ∆

Γ, 〈U〉Φ � 〈U〉Ψ,∆
is an inference rule of the ODL calculus, where U is an arbitrary (or empty)
state update, and Γ,∆ are finite sets of context formulas. The formulas
within the schemata R19–R22 can occur on either side of the sequent.

2. Instances of the rule schemata R27 and R28 can be applied as an inference
rule of the ODL calculus.

3. If (a) s � t is an instance of term rewrite rule R29 or R30, (b) Φ′ � Ψ ′

results from a sequent Φ � Ψ by substituting t for s, and (c) that substitution
is admissible, then the ODL calculus contains the rule Φ′ � Ψ ′ / Φ � Ψ .
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Table 2. Program logic part of the ODL sequent calculus

(R19)
〈[α]〉〈[γ]〉φ
〈[α; γ]〉φ

(R20)
(e → 〈[α]〉φ) ∧ (¬e → 〈[γ]〉φ)

〈[if(e)α else γ]〉φ

(R21)
(e → φ(t)) ∧ (¬e → φ(t′))

φ(if e then t else t′ fi)

(R22)
〈[if(e) {α; while(e)α}]〉φ

〈[while(e)α]〉φ

(R23)
A � B

∃x A � ∃xB

(R24) � objC(i)
.= objC(j) → i

.= j

(R25) � ¬(objC(i)
.= objD(j))

(R26) � ∀o : C (o instanceof C ∨ o
.= null)

(R27)
Γ � 〈U〉p,∆ p, e � [α]p p,¬e � φ

Γ � 〈U〉[while(e)α]φ, ∆

(R28)
A � B

〈[α]〉A � 〈[α]〉B

(R29) 〈[U ]〉f(u) �
if sir

.= 〈[U ]〉u then tir else . . . if si1
.= 〈[U ]〉u then ti1 else f(〈[U ]〉u) fi . . . fi

where i1 < · · · < ir are all those indices with fij = f , for some r ≥ 0

(R30) 〈[Ũ ]〉〈[U ]〉φ �
〈[
Ũ , f1(〈Ũ〉s1) := 〈Ũ〉t1, . . . , fn(〈Ũ〉sn) := 〈Ũ〉tn

]〉
φ

In the rule schemata, t, t′ are terms, X is a new logical variable, C �= D are object-
types and 〈U〉, 〈Ũ〉 are updates. All substitutions are admissible, in particular the
(implicit) substitution that inserts t into φ(t) must be admissible. In R29 and
R30, 〈U〉 is of the form 〈f1(s1) := t1, . . . , fn(sn) := tn〉, working accordingly for
other arities of f . Moreover, in all rule schemata, the schematic modality 〈[·]〉
can be instantiated with both [·] and 〈·〉. The same modality instance has to be
chosen within a single schema instantiation, though.

It is of utmost importance for soundness that only the rule schemata R1–R26
allow to add an update prefix U and a sequent context Γ,∆ (case 1 in the above
definition), while that is not possible for rule schemata R27 and R28 (case 2)
because of their global form of reasoning.

Rule R26 expresses that all objects, except null, that will ever exist are
generated by object creation expressions. In addition to the standard treatment
of equalities, it can be used to discharge proof obligations depending on dynamic
types, which typically occur during object-oriented verification. Similarly, R24
and R25 directly express the disjoint bijection restrictions on object enumerators
(see Section 3) that are needed to reflect the impact of the type system.

The rewrite schema R29 symbolically executes a state update. Besides pro-
moting the effect of updates to the arguments inductively, R29 basically unfolds
changes to the top-level symbol in the order appearing within update U . Thereby,
it respects the last-win semantics that ODL uses for clashing updates. In case
of a singleton state update U of the form f(s) := t, the rewrite simplifies to
〈U〉f(u) � if s .= 〈U〉u then t else f(〈U〉u)fi. The conditional terms introduced
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Table 3. Proof of sequence number generation (with o ≡ objE and n ≡ nextE)

∗
R17 X.id < g, ¬o(n) .= X � X.id < g

. . .
X.id < g, o(n) .= X � g < g

R5 X.id < g � (¬o(n) .= X → X.id < g) ∧ (o(n) .= X → g < g)
R21 X.id < g � (if o(n) .= X then g else X.id fi) < g
R29 X.id < g � [r := o(n), n := n+1, o(n).id := g, g := g + 5] (X.id < r.id)
R30 X.id < g � [r := o(n), n := n+1, o(n).id := g][g := g + 5] (X.id < r.id)
R30 X.id < g � [r := o(n), n := n+1][r.id := g][g := g + 5] (X.id < r.id)
R19 X.id < g � [r := o(n), n := n+1][r.id := g; g := g + 5] (X.id < r.id)
R19 X.id < g � [α] (X.id < r.id)
R11 � X.id < g → [α] (X.id < r.id)
R3 � ∀x : E (x.id < g → [α] (x.id < r.id))

herewith can, in turn, vanish according to schema R21 once the substitution is
admissible. Deferring R21 avoids branching until necessary for progress.

The rules R23 and R28, which are required for completeness but are rarely
used in practice, characterise a global consequence relation.

Definition 8 (Provability, derivability). A formula ψ is provable from a
set Φ of formulas, denoted by Φ �ODL ψ iff there is a finite subset Φ0 ⊆ Φ for
which the sequent Φ0 � ψ is derivable. In turn, a sequent Φ � Ψ is derivable iff
there is an inference rule of the ODL calculus (Definition 7) with conclusion
Φ � Ψ such that all premisses of the rule are derivable.

Verification Example. Continuing the example of Section 3, we consider
a specification of the body α (with return value r) of the create() method:
∀x : E (x.id < g → [α] (x.id < r.id)). On this basis, uniqueness of E-identifiers is
due to the fact that create() is the only source for E-objects and that identifiers
do not change after object creation (which needs to be proven separately).

Table 3 shows (part of) the proof for the above formula (the right branch
remains open). Apart from reducing object creation to object enumerators, the
proof essentially consists in update merging and applying the final update
U = [r := o(n), n := n+1, o(n).id := g, g := g + 5], which involves rewriting:
[U ]X.id � if o(n) .= [U ]X then g else ([U ]X).id fi � if o(n) .= X then g elseX.id fi.

With results about reasoning with created objects [18], the proof can be ex-
tended such that the right branch closes as well. That makes use of the fact
that X—when it is restricted to objects that have already been created—must
differ from the newly created r=o(n). This manifests as an additional antecedent
∃k (X .=o(k)∧ k<n), which contradicts o(n) .=X in the right branch using R24.

Soundness and Completeness. With the usual notions of soundness and rela-
tive completeness, the ODL calculus is proven sound and a complete extension of
first-order arithmetic [18]. Using the proof technique from [11], a central lemma
is that all ODL formulas have an equivalent first-order arithmetic formula. This
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requires Gödelisation of sequences, which is more complicated in the presence of
non-rigid functions of finite but unbounded change.

Theorem 1 (Soundness and relative completeness). (1) The ODL calcu-
lus (Definition 8) is sound, i.e., derivable formulas are valid (true in all states
of all interpretations).

(2) The ODL calculus is complete with respect to first-order arithmetic, i.e.,
if an ODL formula is valid, then it can be derived from a set of tautologies of
first-order arithmetic.

Moreover, we have shown that relative completeness is preserved for conserva-
tive extensions of ODL with language features that so-called locally equivalent
inference rules can reduce to original ODL [18].

Example 1 (Relatively complete coverage of for loops). Adding to ODL the
rule “ � 〈U ; while(χ) {α; γ}〉φ / � 〈for(U ;χ; γ)α〉φ ” yields a calculus for ODL
extended with for loops that is complete w.r.t. first-order arithmetic. Similarly,
constructor calls and side-effecting expression evaluation can be added to ODL
without loss of relative completeness.

5 Conclusions and Future Work

We have introduced a dynamic logic, ODL, with non-rigid functions, and pre-
sented a sound and relatively complete calculus. The conceptual design of the
logic ODL is guided by the ambition to capture the essence of reasoning for a
coherent basis of object-oriented verification at an adequate level of abstraction.

ODL provides dynamically typed object enumerators and state updates, i.e.,
operations to change the interpretation of non-rigid function symbols. State up-
dates work in parallel for multiple pointwise changes at once. With these exten-
sions, notions of object-orientation can be embedded in ODL.

The ODL calculus is based on a classical sequent calculus for the While
programming language [11]. In order to deal with function modification, rewrite
rules have been introduced that promote the effect of a state update throughout
the affected formula, with case distinctions to resolve potential aliasing. State
update applications can be delayed to defer branching of the proof.

The completeness proof for our ODL calculus in [18] has revealed and fixed
a flaw in the classical completeness proofs for dynamic logic (for While) [11,7]
concerning the treatment of multiple variables.

Future work includes a closer investigation of the pragmatic effects of the ODL
approach to software verification. It is useful to build a modular set of verification
components for object-oriented calculi by providing add-on inference rules for
additional language features on the basis of the extension theorem in [18]. An
investigation of the impact of parametric genericity for the type system seems
worthwhile to a similar degree.

To sum up, the feasibility of defining an insightful essentials-only verification
calculus for object-oriented programming, which is sound and complete relative
to classical first-order arithmetic, has been demonstrated.
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Abstract. AProVE 1.2 is one of the most powerful systems for auto-
mated termination proofs of term rewrite systems (TRSs). It is the first
tool which automates the new dependency pair framework [8] and there-
fore permits a completely flexible combination of different termination
proof techniques. Due to this framework, AProVE 1.2 is also the first
termination prover which can be fully configured by the user.

1 Introduction

AProVE 1.2 (Automated Program Verification Environment) is a system for
automated termination and innermost termination proofs of TRSs. Its prede-
cessor AProVE 1.0 [7] already offered a variety of termination proof techniques.
However, there the techniques were applied in a fixed order which could not be
influenced by the user. AProVE 1.2 has been totally re-structured (and partly
re-implemented) to permit a completely modular combination of the available
termination techniques. This increase in modularity of the termination tech-
niques also increases the power of AProVE substantially. The theoretical basis
for this re-design is the new dependency pair (DP) framework which is briefly
recapitulated in Sect. 2. Sect. 3 explains AProVE’s structure and shows how the
user can configure the tool in order to experiment with self-defined strategies. We
conclude in Sect. 4 and describe how to use AProVE in a fully automatic way.

2 The Dependency Pair Framework

The DP framework [8] (which was inspired by the cycle analysis algorithm of
[12] and which is related to the constraint-based approach of [2, Chapter 7]) is
a modular reformulation and improvement of Arts and Giesl’s dependency pair
approach [1,5]. Here, root symbols of left-hand sides of rules are called defined
and all other symbols are constructors. For each defined symbol f we introduce
a fresh tuple symbol F . Then for each rule f(s1, . . . , sn) → r and each subterm
g(t1, . . . , tm) of r with defined root g, we build a dependency pair F (s1, . . . , sn)→
G(t1, . . . , tm). DP (R) denotes the set of dependency pairs of a TRS R.

In the following screenshot, the Source window (A) contains the TRS R
under consideration. Here, minus and quot are defined symbols and s and 0 are
� Supported by the Deutsche Forschungsgemeinschaft DFG under grant GI 274/5-1.

U. Furbach and N. Shankar (Eds.): IJCAR 2006, LNAI 4130, pp. 281–286, 2006.
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constructors. Therefore, we have DP (R) = {MINUS(s(x), s(y)) → MINUS(x, y),
QUOT(s(x), s(y))→MINUS(x, y),QUOT(s(x), s(y))→QUOT(minus(x, y), s(y))}.

The DP framework operates on DP problems (P ,R) where initially, P =
DP (R).1 A DP problem (P ,R) is called finite if there is no infinite (P ,R)-chain,
i.e., no infinite sequence of pairs s1 → t1, s2 → t2, . . . from P with substitutions
σi such that tiσi is terminating w.r.t.R and such that tiσi →∗

R si+1σi+1 for all i.
As shown in [1], a TRS R is terminating iff there is no infinite chain of its
dependency pairs. So our goal is to prove that the problem (DP (R),R) is finite.

Termination techniques now operate on DP problems instead of TRSs and
are called DP processors. Formally, a DP processor Proc takes a DP problem
as input and returns a new set of DP problems which then have to be solved
instead. Alternatively, it can also return “no”. A processor Proc is sound if for
all DP problems d, d is finite whenever Proc(d) is not “no” and all DP problems
in Proc(d) are finite. Proc is complete if for all DP problems d, d is infinite
whenever Proc(d) is “no” or when Proc(d) contains an infinite DP problem.

Soundness of a DP processor Proc is required to prove termination (in partic-
ular, to conclude that d is finite if Proc(d) = ∅). Completeness is needed to prove
non-termination (in particular, to conclude that d is infinite if Proc(d) = no).

So termination proofs in the DP framework start with the initial DP problem
(DP (R),R). Then this problem is transformed repeatedly by sound DP proces-

1 For efficiency, AProVE uses a slightly simpler notion of DP problems than [8].



AProVE 1.2 : Automatic Termination Proofs 283

sors. If the final processors return empty sets of DP problems, then termination
is proved. If one of the processors returns “no” and all processors used before
were complete, then one has disproved termination of the TRS R. So in contrast
to AProVE 1.0, AProVE 1.2 can also prove non-termination, cf. [9].

3 Structure of AProVE 1.2

Our description of AProVE’s structure is based on the windows (A) – (G) in
the screenshot. AProVE 1.2 offers 22 different DP processors. These include vir-
tually all recent techniques and improvements for termination analysis with de-
pendency pairs [6,8,9,10,12,17] (whereas no other tool implements all of these
refinements) as well as processors based on other termination techniques like the
size-change principle [15,16], semantic labeling [20], and match-bounds [4].

In the Processor Configuration window (B), the user can select which
processors should be used in which order. Whenever AProVE has to solve a
DP problem, it first tries the first processor from the list in this window. So
in the screenshot, one first applies the Dependency Graph processor. Only if a
processor does not modify the current problem (i.e., if Proc(P ,R) = {(P ,R)}),
then AProVE tries the next processor in the list.

In our example, the dependency graph processor determines that any poten-
tially infinite chain either contains infinitely many occurrences of the MINUS- or
of the QUOT-dependency pair. Therefore, it transforms the initial DP problem
(DP (R),R) into two new problems (1) ({MINUS(s(x), s(y)) → MINUS(x, y)},R)
and (2) ({QUOT(s(x), s(y)) → QUOT(minus(x, y), s(y))},R). Now finiteness of
the problems (1) and (2) can be proved separately.

This is reflected in the Results window (C) which depicts the correspond-
ing proof tree. Nodes in the tree (marked with ) represent proof obligations.
Edges (marked with ) represent proof techniques that transform a proof obli-
gation into new proof obligations. In the screenshot, the node “TRS2” is the
proof obligation which corresponds to the TRS R and the edge “Dependency
Pair Analysis” is the proof technique which transforms R into the initial DP
problem (DP (R),R) and immediately applies the dependency graph processor.
All further nodes in the resulting subtrees are DP problems and all further edges
are applications of DP processors. So “DP Problem 1” and “DP Problem 2” are
the MINUS- and QUOT-problems (1) and (2) above.

If one clicks on a node or on an edge of the proof tree, then more information
on the respective proof obligation or proof technique is displayed in the win-
dows on the right. In the screenshot, the Proof Obligationwindow (D) depicts
DP Problem 2 and the Proof Techniquewindow (E) provides details on the DP
processor which was used to transform DP Problem 2 further. Here, a reduction
pair processor based on polynomial orders was applied (called “Solver with
Polynomial Order”).2 For a DP problem (P ,R), this processor tries to find a
polynomial order such that all rules in P and R are at least weakly decreasing
(i.e., l � r for all l→ r ∈ P∪R) and it removes all pairs from P which are strictly
2 AProVE also offers RPOS, KBO, or polynomial orders with negative coefficients [11].
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decreasing (i.e., all l → r ∈ P with l ! r). Moreover, under some conditions,
it is sufficient if just certain “usable” rules in R are weakly decreasing. In the
screenshot, AProVE found a polynomial order where the only dependency pair
of DP Problem 2 is strictly decreasing. Hence, applying this processor results in
DP Problem 4, which is (∅,R). Finally, another application of the dependency
graph processor to DP Problem 4 results in no remaining proof obligations. DP
Problem 1 can be solved in a similar way. Therefore, termination of this ex-
ample is proved. The generated proof can then be exported as an html- or
LaTeX-file.

AProVE 1.2 is indeed fully configurable by the user, since the user can compose
the list of processors in the Processor Configuration window (B). Moreover,
for each processor, the user can determine its parameters in window (F). So for
the Solver with Polynomial Order, the user can impose a timeout, choose
the method to compute the usable rules and the algorithm for finding strictly
decreasing dependency pairs, and determine the degree of the polynomials and
the range for their coefficients (by clicking on “Configure POLO”).

For particularly challenging examples and to develop new heuristics, one can
include an “Interactive Component” processor in the Processor Configura-
tion window (B). The interactive component displays the current DP problem
together with all available DP processors. Then the user can select a processor
manually and apply it. Afterwards, the list of processors in the Processor
Configuration window is applied again on the resulting DP problems. Thus,
to use the interactive component only if all other DP processors fail, this compo-
nent should be at the end of the list in the Processor Configuration window.

For efficiency, it is often recommendable to simplify the initial TRS before
transforming it into a DP problem. Suitable simplification techniques can be
chosen in the TRS Configuration window (G). Here, the user can select which
simplifications should be applied in which order. AProVE starts with applying
the first technique in the list to the given TRS. In contrast to the application of
DP processors, AProVE does not start with the first technique in the list again
when the TRS has been modified by one of the simplifications. Instead, then the
second technique is applied to the modified TRS, etc.

One of the most important simplifications is the Overlay and Trivial Cri-
tical Pairs Check. Under certain conditions, the obligation to prove termina-
tion of a TRS can be relaxed to prove only innermost termination. The advantage
is that innermost termination is often easier to show than termination. There-
fore, DP problems also have a flag which indicates whether one wants to prove
full or just innermost termination. Depending on this flag, the DP processors
behave differently and they are often more powerful for innermost termination.

Finally, AProVE has an extensive online Help (by clicking on ) and a context-
dependent help (by clicking on and selecting any item in the GUI).

4 Using AProVE 1.2

For users who do not want to configure AProVE themselves, the “User Defined
Mode” in the top right corner can be changed into a fully “Automatic Mode”,
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where AProVE runs with a fixed list of DP processors. In this setting, proces-
sors are even applied in parallel. This mode of AProVE 1.2 corresponds to the
one used in the International Competition of Termination Tools 2005. In this
competition, AProVE 1.2 was the most powerful system for termination analy-
sis of TRSs.3 The reason is that AProVE is the only tool which features most
modern termination techniques for TRSs and which permits to combine them
in a completely flexible way. This combination can even be determined and con-
figured by the user. In addition to ordinary TRSs, AProVE 1.2 also analyzes
the termination of several other formalisms, e.g., of conditional TRSs and logic
programs. In contrast to AProVE 1.0 it also handles TRSs modulo AC and
context-sensitive TRSs. Its power in these areas is again demonstrated by the
respective competitions. AProVE 1.2 is written in Java and can be downloaded
from http://aprove.informatik.rwth-aachen.de/. At this URL one can also
run AProVE in fully “Automatic Mode” directly via the web on a parallel
computer.
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Abstract. CEL (Classifier for EL) is a reasoner for the small description
logic EL+ which can be used to compute the subsumption hierarchy in-
duced by EL+ ontologies. The most distinguishing feature of CEL is that,
unlike all other modern DL reasoners, it is based on a polynomial-time
subsumption algorithm, which allows it to process very large ontologies
in reasonable time. In spite of its restricted expressive power, EL+ is
well-suited for formulating life science ontologies.

1 The Description Logic Underlying CEL

The system CEL1 is a first step towards realizing the dream of a description
logic system that offers both sound and complete polynomial-time algorithms
and expressive means that allow its use in real-world applications. It is based
on recent theoretical advances that have shown that the description logic (DL)
EL, which allows for conjunction and existential restrictions, and some of its
extensions have a polynomial-time subsumption problem even in the presence
of concept definitions and so-called general concept inclusions (GCI) [1]. The
DL EL+ handled by CEL extends EL by so-called role inclusions (RI). On the
practical side, it has turned out that the expressive power of EL+ is sufficient
to express several large life science ontologies. In particular, the Systematized
Nomenclature of Medicine (Snomed) [4] employs EL with RIs and acyclic con-
cept definitions. The Gene Ontology (Go) [3] can also be expressed in EL with
acyclic concept definitions and one transitive role (which is a special case of an
RI). Finally, large parts of the Galen Medical Knowledge Base (Galen) [5] can
be expressed in EL with GCIs and RIs.

Because of the space limitations, we cannot introduce the syntax and seman-
tics of EL+ in detail. We just mention the syntax elements, and illustrate their
use by a small example. Full definitions can be found in [1,2]. Like in other DLs,
EL+ concepts are inductively defined starting with the sets of concept names NC

and role names NR. Each concept name A is a concept, and so are the top con-
cept ', conjunction C )D, and existential restriction ∃r.C. An EL+ ontology is
a finite set of general concept inclusions (GCI) of the form C 6 D for concepts
C,D, and complex role inclusions (RI) of the form r1 ◦ · · · ◦ rn 6 s for roles
r1, . . . , rn, s. A primitive concept definition (PCDef) A 6 D is a GCI with the

1 CEL can be downloaded from http://lat.inf.tu-dresden.de/systems/cel/
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Endocardium � Tissue � ∃cont-in.HeartWall �
∃cont-in.HeartValve

HeartWall � BodyWall � ∃part-of.Heart
HeartValve � BodyValve � ∃part-of.Heart

Endocarditis � Inflammation � ∃has-loc.Endocardium
Inflammation � Disease � ∃acts-on.Tissue
HeartDisease ≡ Disease � ∃has-loc.Heart

part-of � cont-in
has-loc ◦ cont-in � has-loc

Fig. 1. An example EL+ ontology (motivated by Galen)

left-hand side a concept name, while a (non-primitive) concept definition (CDef)
A ≡ D can be expressed using two GCIs. It is worthwhile to note that RIs gen-
eralize at least three expressive means important in bio-medical applications:
role hierarchy, transitive role, and so-called right-identity axioms [4]. One of the
most prominent inference problems for DL ontologies is classification: compute
the subsumption hierarchy of all concept names occurring in the ontology.

As an example, we consider the EL+ ontology in Fig. 1, where all capital-
ized words are concept names and all lowercase words are role names. This
small ontology contains 5 GCIs (which are indeed PCDefs), a CDef, and 2 RIs
(more precisely a role hierarchy and a right-identity axiom) expressing a piece
of clinical knowledge about endocarditis and related concepts and roles. It is not
hard to infer from this ontology that endocarditis is classified as heart disease,
i.e., Endocarditis 6O HeartDisease. In fact, (i) Endocarditis implies Inflammation
and thus Disease, which yields the first conjunct in the definition of HeartDisease.
Moreover, (ii) ∃has-loc.Endocardium implies ∃has-loc.∃cont-in.HeartWall and thus
∃has-loc.∃cont-in.∃part-of.Heart, which, in the presence of both RIs, implies
∃has-loc.Heart, satisfying the second conjunct in the definition of HeartDisease.

2 The CEL System

The algorithm implemented in CEL is based on the restriction to EL+ of the
polytime classification algorithm for the more expressive DL EL++ introduced
in [1]. To classify an ontology, the algorithm first transforms it into normal form,
which requires all GCIs and RIs to be in one of the forms shown in the left part
of Fig. 2. By introducing new concept and role names and applying a number
of straightforward rewriting rules, any EL+ ontology O can be transformed into
a normalized one such that subsumption between the concept names occurring
in O is preserved. The normalization can be carried out in linear time, yield-
ing an ontology whose size is linear in the size of the original one [1]. After
normalization, the algorithm computes two mappings: S : N�

C −→ 2N�
C and

R : NR −→ 2(N�
C ×N�

C ) where N�
C is NC augmented by '. The intuition is that

these mappings make implicit subsumption relationships explicit in the sense
that B ∈ S(A) implies A 6O B, and (A,B) ∈ R(r) implies A 6O ∃r.B. The
mappings are initialized by setting S(A) := {A,'} and R(r) := ∅. Then the sets
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A1 � · · · � An � B CR1 If {A1, . . . , An} ⊆ S(X), A1 � · · · � An � B ∈ O,
and B /∈ S(X)

then S(X) := S(X) ∪ {B}
A � ∃r.B CR2 If A ∈ S(X), A � ∃r.B ∈ O, and (X, B) /∈ R(r)

then R(r) := R(r) ∪ {(X, B)}
∃r.A � B CR3 If (X, Y ) ∈ R(r), A ∈ S(Y ), ∃r.A � B ∈ O,

and B /∈ S(X)
then S(X) := S(X) ∪ {B}

r � s CR4 If (X, Y ) ∈ R(r), r � s ∈ O, and (X, Y ) /∈ R(s)
then R(s) := R(s) ∪ {(X, Y )}

r ◦ s � t CR5 If (X, Z) ∈ R(r), (Z, Y ) ∈ R(s), r ◦ s � t ∈ O,
and (X, Y ) /∈ R(t)

then R(t) := R(t) ∪ {(X, Y )}

Fig. 2. Normal Form and Completion Rules

S(A) and R(r) are extended by applying the completion rules shown in the right
part of Fig. 2 until no more rule applies. As a result, the mapping S computed
this way satisfies B ∈ S(A) iff A 6O B, i.e., S(A) contains all subsumers of A.
Note that this algorithm computes the subsumption relationships between all
pairs of concept names.

It is obvious that, when implementing this algorithm, an efficient approach
for finding an applicable rule must be developed. To avoid searching for such
rules, we use a set of queues, one for each concept name appearing in the input
ontology, to guide the application of completion rules. Intuitively, the queues
list modifications to S(A) and R(A) that still have to be carried out. The fact
that such an addition triggers other rules is taken into account by appropriately
extending the queues when the addition is performed (see [2] for a detailed de-
scription). With a relatively straightforward implementation (in Common LISP)
of this idea, we were able to classify the large Snomed ontology (see below) in
less than 4 hours (see [2] for this and other experimental results). Since then,
however, we have further improved the implementation by changing the strategy
of rule applications, changing the encoding of concept and role names, and low-
level optimizations on the data structures. These optimizations have enhanced
the performance of CEL on large real-world ontologies. In particular, CEL can
now classify Snomed in less than half an hour (see below).

The CEL Interface. CEL currently accepts input based on a small extension
of the KRSS syntax.2 It is currently equipped with a very simple shell-like inter-
face that provides users with all essential functionalities, including a simple in-
teractive help command. The user can either load an EL+ ontology formulated in
KRSS syntax into the system from a file by calling (load-ontologyfilename) or
enter interactively at the prompt each axiom of the ontology. The normalization
is carried out while the ontology is being loaded, and once normalization is fin-
ished, (classify-ontology) can be invoked to classify all concept names occur-

2 See http://dl.kr.org/krss-spec.ps
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ring in the ontology (eager subsumption approach). We have modified the algo-
rithm described above to a goal-directed variant such that a single subsumption
query between 2 concept names (subsumes? B A) can be answered without need-
ing to classify the whole ontology first (lazy subsumption approach). After hav-
ing classified the whole ontology, CEL allows the user to output the classification
results in different formats: (output-supers) to output the sets S(A) for all con-
cept names A occurring in O; (output-taxonomy) to output the Hasse diagram
of the subsumption hierarchy, i.e., just the direct parent-child relationships; and
(output-hierarchy) to output the hierarchy as a graphical indented tree.

Through its command-line options, CEL can also work as a stand-alone rea-
soner without interaction from users. For instance, the command line:

$cel -l filename -c -outputHierarchy -q

can be entered to load and classify an ontology from filename , and then output
the hierarchy. For a more detailed description of the CEL interface, we refer to
the CEL user manual (available on the CEL homepage).

Performance Evaluation. The empirical results for the performance of CEL
described below show that it can compete with, and often outperforms, the
fastest tableau-based DL systems. We have compared the performance of CEL
with three of the most advanced DL systems: FaCT++ (v1.1.0), RacerMaster
(v1.9.0), and Pellet (v1.3b). These systems implement tableau-based decision
procedures for expressive DLs in which subsumption is ExpTime-complete. All
experiments have been performed on a PC with 2.8GHz Intel Pentium 4 proces-
sor and 512MB memory running Linux v2.6.14. For Pellet, we used JVM v1.5
and set the Java heap space to 256MB (as recommended by the implementers).

Our experiments are based on three important bio-medical ontologies: Go,
Galen, and Snomed. Since Galen uses some expressivity that CEL cannot
handle, we have simplified it by removing inverse role axioms and treating func-
tional roles as ordinary ones, and obtained an EL+ ontology OGalen. (Of course,
also the other reasoners, which could have handled inverse and functional roles,
were applied to OGalen rather than full Galen.) We have obtained two other
benchmarks,OGo andOSnomed, from the other two ontologies. However, Snomed
has one right-identity rule similar to the last axiom in our example (see Fig. 1).
This axiom is passed to CEL, but not to the other reasoners, as the latter do
not support right identities. Additionally, to get a smaller version of Snomed
that can be dealt with by standard DL reasoners, we also consider a fragment
obtained by keeping only CDefs, and call it OSnomed

core . Some information on the
size and structure of these benchmarks is given in the upper part of Table 1,
where the first row shows the numbers of PCDef, CDef, and GCI axioms, re-
spectively. The results of our experiments are summarized in the lower part of
Table 1, where all classification times are shown in seconds and unattainable
means that the reasoner failed due to memory exhaustion. Notable, CEL out-
performs all the reasoners in all benchmarks except OGalen, where RacerMaster
is as fast. CEL and FaCT++ are the only reasoners that can classify OSnomed,
whereas RacerMaster and Pellet fail. Pellet and the original version of FaCT (not
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Table 1. Benchmarks and Evaluation Results

OGo OGalen OSnomed
core OSnomed

concept axioms 20,465/0/0 2,041/699/1,214 0/38,719/0 340,972/38,719/0
role axioms 1 438 0 11 + 1
|NC| 20,465 2,740 53,234 379,691
|NR| 1 413 52 52

CEL 5.8 14 95 1,782
FaCT++ 6.9 50 740 3,859
RacerMaster 19 14 34,709 unattainable
Pellet 1,357 75 unattainable unattainable

shown in the table) even fail to classify OSnomed
core . It seems worth noting that the

performance of FaCT++ degrades dramatically if OSnomed is extended with real
GCIs. For instance, FaCT++ needs about 3,000 more seconds to classify OSnomed

for each additional GCI of the form ∃r.C 6 D, whereas the performance of CEL
does not change noticeably if we add such GCIs.

3 Conclusion

We view these results as a strong argument for the use of tractable DLs based
on extensions of EL. As illustrated by the above performance evaluation, CEL is
suitable for practical reasoning on very large life science ontologies. Developing
CEL is ongoing work. We plan to extend its capabilities to the DL EL++ [1], with
which one can express, among other things, nominals and disjoint concepts. We
also plan to implement the DIG and OWL interface, so that CEL can be used as
a backend reasoner for ontology editors such as OilEd and Protégé, which would
also make their sophisticated user-interfaces available to users of CEL.
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Abstract. This is a system description of the Description Logic reasoner
FaCT++. The reasoner implements a tableaux decision procedure for the well
known SHOIQ description logic, with additional support for datatypes, includ-
ing strings and integers. The system employs a wide range of performance en-
hancing optimisations, including both standard techniques (such as absorption
and model merging) and newly developed ones (such as ordering heuristics and
taxonomic classification). FaCT++ can, via the standard DIG interface, be used
to provide reasoning services for ontology engineering tools supporting the OWL
DL ontology language.

1 Introduction

Description Logics (DLs) are a family of logic based knowledge representation for-
malisms [1]. Although they have a range of applications, they are perhaps best known as
the basis for widely used ontology languages such as OIL, DAML+OIL and OWL [5].

A key motivation for basing ontology languages on DLs is that DL systems can then
be used to provide computational services for ontology tools and applications [8,9].
The increasing use of ontologies, along with increases in their size and complexity,
brings with it a need for efficient DL reasoners. Given the high worst case complexity
of the satisfiability/subsumption problem for the DLs in question (at least ExpTime-
complete), optimisations that exploit the structure of typical ontologies are crucial to
the viability of such reasoners.

FaCT++ is a new sound and complete DL reasoner designed as a platform for exper-
imenting with new tableaux algorithms and optimisation techniques.1 It incorporates
most of the standard optimisation techniques, including those introduced in the FaCT
system [3], but also employs many novel ones. This includes a new “ToDo list” archi-
tecture that is better suited to more complex tableaux algorithms (such as those used to
reason with OWL ontologies), and allows for a wider range of heuristic optimisations.

2 Tableaux Reasoning and Architecture

DL systems take as input a knowledge base (equivalently an ontology) consisting of a
set of axioms describing constraints on the conceptual schema (often called the TBox)

1 FaCT++ is available at http://owl.man.ac.uk/factplusplus.
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and a set of axioms describing some particular situation (often called the ABox). They
are then able to answer both “intensional” queries (e.g., regarding concept satisfiability
and subsumption) and “extensional” queries (e.g., retrieving the instances of a given
concept) w.r.t. the input knowledge base (KB). For the expressive DLs implemented in
modern systems, these reasoning tasks can all be reduced to checking KB satisfiability.

Most modern DL systems are based on tableaux decision procedures, as first intro-
duced by Schmidt-Schauß and Smolka [10], and subsequently extended to deal with
ever more expressive logics [1]. Many systems now implement the SHIQ or SHOIQ
DLs, tableaux algorithms for which were presented in [7,6]; these logics are very ex-
pressive, and correspond closely to the OWL ontology language. In spite of the high
worst case complexity of the KB satisfiability problem for these logics (ExpTime-
complete and NExpTime-complete respectively), highly optimised implementations
have been shown to work well in many realistic (ontology) applications [3].

When reasoning with a KB, FaCT++ proceeds as follows. A first preprocessing stage
is applied to the KB when it is loaded into reasoner; it is normalised and transformed
into an internal representation. During this process several optimisations (that can be
viewed as a syntactic re-writings) are applied.

The reasoner then performs classification, i.e., computes and caches the subsumption
partial ordering (taxonomy) of named concepts. Several optimisations are applied here,
mainly involving choosing the order in which concepts are processed so as to reduce
the number of subsumption tests performed.

The classifier uses a KB satisfiability checker in order to decide subsumption prob-
lems for given pairs of concepts. This is the core component of the system, and the most
highly optimised one.

3 FaCT++ Optimisations

3.1 Preprocessing Optimisations

Lexical normalisation and simplification is a standard rewriting optimisation primarily
designed to promote early clash (inconsistency) detection, although it can also simplify
concepts and even detect relatively trivial inconsistencies [4]. The basic idea is that all
concepts are transformed into a simplified normal form (SNF), where the only operators
allowed in SNF are negation (¬), conjunction ()), universal restriction (∀) and (quali-
fied) at-most restriction (≤). In FaCT++, the translation into SNF is performed on the
fly, during the parsing process. At the same time, some simplifications are applied to
concept expressions, including constant elimination (e.g., C ) ⊥ → ⊥), expression
elimination (e.g., ¬¬C → C), and subsumer elimination (e.g., C ) D → C for D a
known subsumer of C).

Absorption is a widely used rewriting optimisation that tries to eliminate General
Concept Inclusion axioms (GCIs, axioms in the form C 6 D, where both C and D
are complex concept expressions), as GCIs left in the TBox invariably lead to a signif-
icant decrease in the performance of tableaux based satisfiability/subsumption testing
procedures [3]. In FaCT++, GCIs are eliminated by absorbing them into either concept
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definition axioms (concept absorption) or role domain axioms (role absorption). Role
absorption is particularly beneficial from the point of view of the CD-classification
optimisation (see Section 3.3), as it eliminates GCIs without reducing the number of
concepts to which CD-classification can be applied.

Told Cycle Elimination is a technique that we assume is used in most modern rea-
soners, although we know of no reference to it in the literature. Definitional cycles
in the TBox can lead to several problems, and in particular cause problems for algo-
rithms that exploit the told subsumer hierarchy (see Section 3.3). These cycles are,
however, often quite easy to eliminate. Assume, for example, that A1 . . . An are con-
cept names, C1 . . . Cn are arbitrary concept expressions, and !" is either 6 or ≡. The
axiomsA1 !" A2)C2, A2 !" A3)C3, . . . , An !" A1)C1 include a definitional cycle,
because the r.h.s. of the first axiom (indirectly) refers to the name on its l.h.s. The cy-
cle can, however, be eliminated by transforming the axioms into A2 ≡ A1, . . . , An ≡
A1, A1 6 C1 )C2 . . . ) Cn.

Synonym Replacement is used to extend simplification possibilities and improve
early clash detection. If the only axiom with C on the left hand side is C ≡ D, then
C is called a synonym of D. For a set of concept names, all of which are synonymous,
FaCT++ uses a single “canonical” name in all concept expressions in the KB.

FaCT++ first translates all input concepts into SNF, with subsequent transforma-
tions being designed to preserve this form. After simplification and absorption, FaCT++
repeatedly performs cycle and synonym elimination steps until there are no further
changes to the KB.

3.2 Satisfiability Checking Optimisations

The FaCT++ system was designed with the intention of implementing DLs that include
inverse roles, and of investigating new optimisation techniques, including new ordering
heuristics. In order to deal more easily with inverse roles, and to allow for more flexible
ordering of the tableaux expansion, FaCT++ uses a ToDo list, instead of the usual top-
down approach, to control the application of the expansion rules [13]. The basic idea
behind this approach is that rules may become applicable whenever a concept is added
to a node label. When this happens, the relevant node/concept pair is added to the ToDo
list. The ToDo list sorts entries according to some order, and gives access to the “first”
element in the list. The tableaux algorithm repeatedly removes and processes list entries
until either a clash occurs or the list becomes empty.

Dependency-directed backtracking (Backjumping) is a crucial and widely used op-
timisation. Each concept in a completion tree label is labelled with a dependency set
containing information about the branching decisions on which it depends. In case of
a clash, the system backtracks to the most recent branching point where an alternative
choice might eliminate the cause of the clash.

Boolean constant propagation (BCP) is another widely used optimisation. As well
as the standard tableau expansion rules, additional inference rules can be applied to the
formulae occurring in a node label, usually with the objective of simplifying them and
reducing the number of nondeterministic rule applications. BCP is probably the most
commonly used simplification, the basic idea being to apply the inference rule
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¬C1, . . . ,¬Cn, C1 * . . . *Cn * C
C

to concepts in a node labels.
Semantic Branching is another rewriting optimisation, the idea being to rewrite dis-

junctions of the form C *D as C * (¬C )D). If choosing C leads to clash, then the
¬C in the second disjunct (along with BCP) ensures that C will not be added to the
node label again by some other nondeterministic expansion.

Ordering Heuristics can be very effective, and have been extensively investigated in
FaCT++ [13]. Changing the order in which nondeterministic expansions are explored
can result in huge (up to several orders of magnitude) differences in reasoning perfor-
mance. Heuristics can be used to choose a “good” order in which to try the different
possible expansions. In practise, this usually means using heuristics to select the way
in which expansion rules are applied to the disjunctive concepts in a node label, with
a heuristic function being used to compute the relative “goodness” of each candidate
expansion.

Heuristics may select an expansion-ordering based on, e.g., (ascending or descend-
ing order of) concept size, maximum quantifier depth, or frequency of usage. In order
to reduce the cost of computing the heuristic function, FaCT++ computes and caches
relevant values for each concept as the KB is loaded. As no one heuristic performs well
in all cases, FaCT++ also selects the heuristics to be used based on an analysis of the
structure of the input KB.

3.3 Classification Optimisations

As mentioned above, the focus here is on reducing the number of subsumption tests
performed during classification. In FaCT++, this is achieved by both reducing the num-
ber of comparisons and by substituting cheaper (but incomplete) comparisons where
possible.

Definitional Ordering is a well known technique that uses the syntactic structure of
TBox axioms to optimise the order in which the taxonomy is computed. E.g., given an
axiom C 6 D, with C a concept name, FaCT++ will delay adding C to the taxonomy
until all of the concepts occurring in D have been classified. In some cases this tech-
nique allows the taxonomy to be computed “top down”, thereby avoiding the need to
check for subsumees of newly added concepts.

Similarly, the structure of TBox axioms can be used to avoid (potentially) expensive
subsumption tests by computing a set of (trivially obvious) told subsumers and told
disjoints of a concept C. E.g., if the TBox contains an axiom C 6 D1 ) D2, then
FaCT++ treats both D1 and D2, as well as all their told subsumers, as told subsumers
of C, and if the TBox contains an axiom C 6 ¬D ) . . ., then D is treated as a told
disjoint ofC. The classification algorithm can then exploit obvious (non-) subsumptions
between concepts an their told subsumers (disjoints).

Model Merging is a widely used technique that exploits cached partial models in
order to perform a relatively cheap but incomplete non-subsumption test. If the cached
models for D and ¬C can be merged to give a model of D)¬C, then the subsumption
C 6 D clearly does not hold.
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Completely Defined Concepts is a novel technique used in FaCT++ to deal more
effectively with wide (and shallow) taxonomies [12]. In this case, some concepts in
the taxonomy may have very many direct subsumees, rendering classification ordering
optimisations ineffective. It is often possible, however, to identify a significant subset
of concepts whose subsumption relationships are completely defined by told subsump-
tions. FaCT++ computes a taxonomy for these concepts without performing any sub-
sumption tests.

Clustering is another technique that addresses the same problem [2]. The idea here is
to introduce new “virtual concepts” into the taxonomy in order to produce a deeper and
more uniform structure. These concepts are asserted to be equivalent to the union of a
number of sibling concepts and are inserted in the taxonomy in between these concepts
and their common parent.

4 Discussion and Future Directions

We have presented FaCT++, a sound and complete reasoner for SHOIQ (and so OWL
DL) which uses a new ToDo list architecture and incorporates a wide range of optimi-
sations, including several novel ones.

Future directions for FaCT++ include both algorithmic and technological improve-
ments. The next version of FaCT++ will support the more expressive SROIQ DL
needed by the OWL 1.1 ontology language (see http://owl-workshop.man.
ac.uk/OWL1 1.html). Some new optimisations, including optimised reasoning
with nominals [11] and more elaborate heuristics are also planned. Regarding tech-
nological improvements, we plan to add direct support for OWL’s XML syntax, and to
parallelise the reasoning process.
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Abstract. We developed an importer from both HOL 4 and HOL-
light into Isabelle/HOL. The importer works by replaying proofs within
Isabelle/HOL that have been recorded in HOL 4 or HOL-light and
is therefore completely safe. Concepts in the source HOL system, that is
types and constants, can be mapped to concepts in Isabelle/HOL; this
facilitates a true integration of imported theorems and theorems that are
already available in Isabelle/HOL. The importer is part of the standard
Isabelle distribution.

1 Introduction

The idea of sharing theorems between different proof-assistants is not new; there
has been previous work on translating from HOL to NuPRL [1,2,3], from Isabelle
to NuPRL [4] and from HOL to Coq [5,6]. Only [1,3,4,5] provide implementa-
tions; of these implementations only [3,5] translate proofs instead of just theo-
rems. Both implementations can deal only with a subset of the HOL inference
rules and have not been used for large developments.

Our translator from HOL 4 [10] and HOL-light [11] to Isabelle/HOL [9] is
therefore the first one that fulfills both of the following two criteria:

– The translation process is safe relative to the correctness of the destina-
tion system, in this case Isabelle/HOL. This is achieved by replaying proofs
that have been recorded in the source system (HOL 4 or HOL-light) in the
destination system (Isabelle/HOL).

– Large developments have been translated with our translator, in fact almost
all of the entire HOL 4 distribution and all of base HOL-light.

In contrast to previous work is also that our translation is basically between
systems, not between logics. Although some complications result from the fact
that Isabelle/HOL is an object logic instance of the Isabelle framework, and
HOL 4 and HOL-light directly implement higher-order logic, all these systems
still share the same logic: classical simply-typed polymorphic higher-order logic
(HOL). The HOL community has always profited from the fact that while the
implementations of their systems has been relatively stable, a large database of
proven theorems has been developed in each of the systems. Now the time has
come to go a step further and to make theorems in one HOL system available in
� Supported by the Ph.D. program “Logik in der Informatik” of the “Deutsche

Forschungsgemeinschaft”.
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the other systems, thus unifying these large databases. Other work sharing this
vision is that of McLaughlin who translates Isabelle/HOL to HOL-light [7].

Our translator consists of two components. First there is the proof-recording
component which resides in HOL 4 and HOL-light and which records the theo-
rems together with their proofs so that they can be saved as a collection of XML
files. Second there is the importer component which takes this collection as input
and uses it to re-prove the exported theorems in Isabelle/HOL. The importer
component can be configured to map imported concepts to concepts that are
already available in Isabelle/HOL. This makes it for example possible to map
the type of real numbers of HOL 4 or HOL-light to the type of real numbers of
Isabelle, because they represent the same abstract concept independent of their
specific construction. Another example of this versatility is that the importer
can also be configured to map HOL 4’s LET constant to Isabelle’s Let constant
although the constants differ in their names (different capitalization) and the
order in which they take their arguments.

The importer component is part of the standard Isabelle distribution since
2004; the proof-recording component for HOL-light is part of the HOL-light
distribution since release 2.0; the proof-recording component for HOL 4 can
currently only be obtained by contacting the authors of this paper. There is
also a simple importer implementation available which has been written in Java;
although this implementation misses some features it can be used to check all of
HOL-light; it can be downloaded [12].

2 The Proof-Recording Component

Each HOL system is based on the central idea of an abstract datatype thm.
Instances of thm can be created and manipulated only according to the rules of
the logic. The part of the HOL system that implements this abstract datatype,
together with theory extension mechanisms like constant and type definition, is
called the kernel of the system. The rest of the system is built on top of it.

Thanks to the concept of a kernel, adding proof-recording to an HOL sys-
tem is relatively easy: first one adds a new component proof to the internal
representation of thm, then one modifies the functions that manipulate thm to
record these manipulations in the new component. Basically, each constructor
of the proof component corresponds to an inference rule of the kernel. In HOL
4, which is implemented in Standard ML, these changes were transparent to
the rest of the system; in HOL-light, whose implementation language is OCaml,
unexpected problems arose from the fact that the built-in equality on theorems
leaked through the abstractness of the datatype; this equality had changed, of
course, because now for two theorems to be equal they have to have the same
proof, too! Therefore all places in the HOL-light system had to be found and
modified that made use of equality on theorems.

A proof can be considered a tree consisting of other proofs, terms and types.
Saving this tree to disk naively is not feasible in practice; it is simply just to
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big. This might come as a surprise: after all, the proof has to fit into the main
memory of the computer! The solution to this puzzle is that a proof in main
memory is not a tree, but a DAG; unfolding this DAG into a tree when saving
can lead to exponential blow-up. Therefore we go through the following steps
during saving a collection of proofs:
– Apply αβη-normalization to all terms; therefore we need no proof construc-

tors for the β and η inference rules, which degenerate to reflexivity.
– Simplify proofs that involve reflexivity; the proof TRANS (REFL t) p for

example can be simplified to just p.
– Identify all proofs that are shared in main memory; each shared proof is

saved into a separate XML file. When saving a proof A that has a shared
proof B as its child, instead of B only a link to the XML file of B is saved
in the XML file of A.

– For each proof that is saved into a separate XML file, share all the terms
and types within that proof, using a DAG representation.

These simple measures yield manageable proof-on-disk sizes: The base HOL 4
distribution results in 80,000 files, taking up 350MB disk space (13MB when
gzipped). The base HOL-light system results in 130,000 files, taking up 229MB
disk space (21MB when gzipped).

One extreme case is the proof of the Jordan Curve theorem in HOL-light by
Thomas Hales. It produces about 1,000,000 files; unix commands like ls broke
down when used naively. Therefore it would be better not to shift the proof
sharing to the file system, but design an own file format for this purpose. This
format could also deal with gzip-like compression issues.

Note that we use a first-order representation of proofs with sharing as our
compression technique; Berghofer [8] uses another approach where proofs are
represented as higher-order terms. It is not clear which approach is superior, or
whether a combination of both approaches would be beneficial.

Adding proof-recording to the kernel of an HOL system does not change the
runtime of this HOL system significantly. Saving the recorded proofs to disk is a
time-consuming task, though: the base HOL 4 system needs 50 minutes, the base
HOL-light system about 30 minutes. Saving the Jordan Curve theorem took a
couple of hours.

The semantics of the proof constructors establishes an abstract HOL kernel 1

which is the union of the HOL 4 and HOL-light kernel, but operates not only
modulo α-, but also modulo β- and η-equivalence. One inefficiency of this kernel
is its current storage format, as mentioned before. Another improvement of it
would be to incorporate higher inference rules such as rewriting which would
certainly reduce the size of proofs considerably. Taking this one step further,
a “golden” kernel should also provide the possibility of coding higher rules and
storing this code along with the proof objects. Such a kernel could then serve as a
standard kernel for exchanging theorems between HOL systems, and find also its
applications in areas such as proof-carrying code, where the size of proof objects
is regarded an important factor.
1 For a description of this kernel, see [12].
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3 The Importer Component

The import of the recorded proofs is done in two phases:

1. A configuration Isabelle theory transforms a set of XML proof files into a set
of Isabelle/HOL theories.

2. The generated Isabelle/HOL theories can now be used just as other Isabelle
theories; because the statements in these theories are proven with the help
of the recorded proofs, the XML proof files must still be present when using
these generated theories.

The critical phase is the first one; here it is decided via the configuration file how
the imported concepts are mapped onto already existing ones. The importer does
not accept axioms; this means that all constants that are specified via axioms
in the source HOL system must be mapped onto existing Isabelle constants,
and statements must be proven in Isabelle about these existing constants that
correspond to the imported axioms. Further mappings are desirable for a better
integration of the imported theories with already existing theories, but these
additional mappings are not required.

There are mainly three mapping constructs: the command const-maps which
maps constants, the command type-maps which maps types, and the attribute
hol4rew which can be attached to Isabelle theorems. Furthermore there is the
additional command ignore-thms which is currently also essential for the map-
ping process; its purpose is to ignore certain theorems and to not import them.
Unfortunately one currently has to make explicit use of ignore-thms when map-
ping constants or types: the defining theorems/proofs for these constants and
types have to be ignored. This is bound to confuse particularly the novice user,
and is still annoying also the experienced one.

The importing process can be described as follows:

– A list is fetched from the collection of XML proof files that describes all
named theorems in that collection; theorems that are not named occur also
among the proof files, they have been created because of proof sharing.

– All entries of the list are imported one after another. If the entry corre-
sponds to a theorem flagged by ignore-thms, it is skipped. Otherwise first
the statement S of the theorem is fetched from the file. Then the types
and constants of that statement are mapped according to const-maps and
type-maps, yielding a statement S′ = map (S).

– After this, the shuffler is applied to S′, yielding a statement S′′ = shuffle (S′).
The shuffler makes a statement more “Isabelle-like”, converting for example
quantified variables into unquantified schematic variables. The shuffler also
applies all rewriting rules to the statement that have been defined via the
hol4rew attribute.

– If S′′ can be looked up in the Isabelle theorem database, then the import of
the theorem has been successful. For mapped constants, this is very often
the case. Otherwise the proof P is fetched from the XML proof file; mapping
yields P ′ = map (P ). Then P ′ is replayed in Isabelle, mimicking the inference
rules of the abstract HOL kernel, yielding a theorem T . The theorem T is
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stored so that other proofs referencing this proof can access it. Furthermore
T ′ = shuffle (T ) is stored and dumped to the generated theories.

– Thus, all shared proofs are replayed at most once. While this is desirable for
obvious performance reasons, there is also a functional aspect to it. Certain
proofs do have side-effects, because definition of constants and types are also
encoded as proofs. The side-effect of replaying a constant definition is that
this constant is now defined in the generated Isabelle theory; the same holds
for type definitions. Replaying a proof at most once ensures that a side-effect
is executed at most once.

4 Conclusion

We have described an importer/translator from HOL 4 and HOL-light to Is-
abelle/HOL; other source systems can be supported given that they adhere to
the contract of the abstract kernel. The translator has been used to import
large developments like the real analysis libraries of HOL 4 and base HOL-light
and facilitates an integration of imported and already existing theories; thus it
sets new standards for safe interoperability between HOL systems, though its
user-friendliness could be improved.

Acknowledgments. Thanks to John Harrison for including the proof-recorder
in his HOL-light distribution and for putting time and effort into making that
inclusion as smooth as possible; also thanks to Virgile Prevosto for OCaml-
related help.
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Abstract. We present a proof procedure that is complete for first-order
logic, but which can also be used when searching for finite models. The
procedure uses a normal form which is based on geometric formulas. For
this reason we call the procedure geometric resolution. We expect that
the procedure can be used as an efficient proof search procedure for first-
order logic. In addition, the procedure can be implemented in such a way
that it is complete for finding finite models.

1 Introduction

For many applications of automated theorem proving, knowing a counter model
to a wrong conjecture is as useful as knowing that a conjecture is true. When a
theorem prover fails to find a proof, the user might try to give more resources to
the prover, tune the settings of the prover, or try to get another theorem prover.
When the prover returns a model, the user will concentrate on trying to correct
the conjecture.

Variants of resolution [11,1] are quite succesful in finding proofs. Although
resolution can be modified into decision procedures for many decidable fragments
[6,7,8], there is no general way of extracting models from these procedures. Also
there exists no known general method for making resolution complete in finding
finite models.

The model evolution calculus of [2] is complete and is guaranteed to terminate
on clause sets without function symbols. However, because the model evolution
calculus operates on Skolemized formulas, this not include formulas with exis-
tential quantifiers in the scope of universal quantifiers. In contrast, our proof
procedure can be implemented in such a way that it terminates on all formulas
that have a finite model.

There exist various approaches to searching for finite models: One approach is
based on guessing a possible size of the domain, instantiating the clauses within
the domain, and applying propositional reasoning on the result. If the result is
satisfiable, then a model has been found. Otherwise, the size of the domain has
to be increased. Approaches among this line are the systems MACE [10] and
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ModGen [9]. Alternatively, one can search for a model by direct search. This
approach is followed for example in [12], [13] and [14].

Our algorithm is somewhat related to this last approach but it has also ele-
ments from other approaches. It consists of a search algorithm which is almost
identical to the algorithm in [5], but enhanced with lemma generation. In [5],
the algorithm searches for a model by exhaustive search. When a disjunction is
encountered, all members of the disjunction are tried. When an existential quan-
tifier is encountered, first all existing elements in the interpretation are tried. If
this fails, a new element is tried.

This naive model search algorithm is refutationally complete, and also guaran-
teed to find finite models when breadth-first search is used, but very inefficient.
The major source of inefficiency are the existential quantifiers. Every time, when
a subformula of form ∃y P (d, y) needs to be made true, all elements in the in-
terpretation have to be tried as candidates for y.

In order to reduce the search complexity, we add lemma learning to the pro-
cedure. We introduce a calculus with which it is always possible, at each choice
point, after all subbranches have been refuted, to derive a new formula which
closes the search attempt before the choice point. Because the derived lemmas
contain variables, the lemmas give a most general reason why the branch has
been closed. In this way, repetition of identitical work can be largely reduced.
In particular, we will show that in many cases enumeration of domain elements
can be avoided.

The way we use lemma generation is related to lemma generation in DPLL
[15]. The main difference with lemma generation in DPLL is that our calculus
operates on formulas with variables. In fact, one could say that our calculus for
lemma generation relates to the naive model search algorithm in the same way as
resolution with superposition relates to the model construction procedure of [1].
The essential difference is that we actually run the naive search algorithm and
use the lemma calculus to improve its efficiency. For superposition, the model
construction procedure is used only as a tool for proving completeness. Our
lemma calculus could also be used in this way (i.e. as a saturation-based proof
search method), but one would loose the ability to find finite models.

2 Geometric Formulas

The model search algorithm and the lemma calculus operate on what we call
geometric formulas. The formulas are related to the formulas used in [4], but
not exactly the same. In [4], the right hand side of a formula is a disjunction of
existentially quantified conjunctions. Here we simplified the right hand sides by
allowing only one operator at the same time.

Geometric formulas play a role similar to clauses in saturation-based theorem
proving. The main difference is that geometric formulas do not contain constant
and function symbols. Instead they may contain existential quantifiers. We show
in Section 3 that every first-order formula (possibly containing equality) can be
transformed to a set of geometric formulas, so that no generality is lost.
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Definition 1. We assume an infinite set of variables V . A variable atom is
defined by one of the following two forms:

– x1 �≈ x2, with x1, x2 ∈ V and x1 �= x2.
– p(x1, . . . , xn) with n ≥ 0 and the xi ∈ V .

There are no constants and no function symbols in variable atoms. There are
no positive equalities. In principle, one could allow disequalities of form v �≈ v,
but since these are known to be false, there is no need to keep such equalities.
Geometric formulas are built from variable atoms. We give the definition:

Definition 2. A geometric formula has form

∀x A1(x) ∧ · · · ∧Ap(x) ∧ x1 �≈ x′1 ∧ · · · ∧ xq �≈ x′q → Z(x),

in which p ≥ 0, q ≥ 0, and the x1, x
′
1, . . . , xq, x

′
q ∈ x ⊆ V .

The right hand side Z(x) must have one of the following three forms:

1. The false constant ⊥.
2. A non-empty disjunction of atoms B1(x) ∨ · · · ∨Br(x) with r > 0.
3. An existential formula of form ∃y B(x, y) with y ∈ V but y �∈ x. The variable

y must occur in B(x, y).

A formula of the first type is called lemma. A formula of the second type is called
disjunctive. A formula of the third type is called existential.

Our notations can be clarified as follows:

– In ∀x, x denotes an enumeration of x, in arbitrary order, mentioning each
variable of x exactly once. The scope of ∀x is the complete geometric formula.

– In A(x), x denotes a sequence of variables from x. Variables may be re-
peated, and variables may be omitted.

– Latin letters A,B denote variables atoms that are not disequalities.
– In later sections, we will use expressions of form Φ(x) or φ1(x) ∧ · · · ∧ φp(x)

for conjunctions of variable atoms of both types with variables in x.

Note that in each of the three cases, the free variables of Z(x) are within x.
However, since A1(x) ∧ · · · ∧Ap(x) need not contain all variables of x, this does
not imply that geometric formulas are range restricted. (An implication is range
restricted if each variable occurring in the right hand side also occurs in the left
hand side) Types 1 and 2 could be merged if we would allow r = 0 in type 2.
We prefer to keep the types distinct, because the roles of the formulas will be
different in the calculus.

Example 1. Propositional clauses can be replaced by geometric formulas of
type 1 or type 2 with empty x. For example, A ∨ B ∨ ¬C can be replaced
by C → A ∨ B. The clause A ∨ B is already a geometric formula. The clause
¬A ∨ ¬B can be replaced by A ∧B → ⊥.
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Example 2. Equalities can be translated into geometric formulas. Consider the
positive equality f(a) ≈ f(b). First one introduces relations A,B, F and geomet-
ric formulas: ∃y A(y), ∃y B(y), ∀x ∃y F (x, y). Using those, the equality can be
expressed by ∀x1, x2, x3, x4 A(x1)∧F (x1, x2)∧B(x3)∧F (x3, x4)∧x2 �≈ x4 → ⊥.

The negative equality f(a) �≈ f(b) can be expressed by the geometric formula
∀x1, x2, x3 A(x1) ∧ S(x1, x2) ∧B(x3) ∧ S(x3, x2)→ ⊥.

3 Conversion from FOL to Geometric Logic

The conversion from first-order logic to geometric logic is analogous to the clause
transformation that is used for resolution. The main difference is that functions
are replaced by existential quantifiers, instead of replacing existential quantifiers
by functions.

Theorem 1. There exists a transformation from first-order formulas to finite
sets of geometric formulas, which can be efficiently computed. For each non-
empty set D holds: The formula F has a model D as domain iff the translation
G1, . . . , Gm (read as conjunction) has a model with D as domain.

It is possible to obtain a polynomial transformation, but we prefer not to stress
this, because a polynomial transformation need not be the best in practical
cases. We stress the domain of the interpretations (instead of simply stating
equisatisfiability) because we are interested both in models and in proofs.

As a starting point of the transformation, we assume that F is a formula in
negation normal form. Because geometric formulas do not allow function sym-
bols, we will replace functions by serial relations, somewhat similar to the trans-
formation in [9]. The difference is that here we use only seriality axioms, while
there also functionality axioms are needed.

When removing functions, constants are treated as 0-arity functions, these will
be also deleted. We call the removal operation anti Skolemization. In the trans-
formation, we assume that F is standardized apart. (A formula is standardized
apart if there are no two quantifiers that quantify the same variable)

Definition 3. Let F be a formula in negation normal form. We assume that
for each function symbol f occurring in F with arity a, there exists a unique
predicate symbol Pf with arity (a + 1). We define Sf as the seriality axiom
for Pf ,

∀x1, . . . , xa ∃y Pf (x1, . . . , xa, y).

We define a replacement sequence F1, F2, . . . , Fn which starts with F1 = F, and
which eliminates occurrences of function symbols one-by-one.

Let f(x1, . . . , xa) be a term which occurs in Fi, and in which the x1, . . . , xa

are variables. (not necessarily distinct)
Let A be the smallest subformula of Fi containing all occurrences of f(x1,. . . ,

xa). Write Fi in the form Fi[ A[ f(x1, . . . , xa) ] ].
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Let Pf be the predicate symbol assigned to f. Let α be a variable that does not
occur in Fi. Then Fi+1 is defined as

Fi[ ∀α (¬Pf (x1, . . . , xa, α) ∨A[α] ) ].

At some point, the sequence will reach a formula Fn which has no remaining
function symbols. Then the anti-Skolemization of F equals

Sf1 ∧ · · · ∧ Sfq ∧ Fn.

Theorem 2. We use the term D-model for a model with D as domain.
Let F be a formula. Let Fn be its anti-Skolemization. Let D be a non-empty

set. Then F has a D-model iff Fn has a D-model.

Proof. Let the seriality axioms Sf and the sequence F1, F1, . . . , Fn with F = F1
be defined as in Definition 3.

First assume that F1 has a D-model. We need to show that Sf1 ∧ · · · ∧
Sfq ∧ Fn has a D-model. In order to do this, one can interpret each predicate
Pf (x1, . . . , xa, y) as f(x1, . . . , xa) ≈ y. Then the seriality axioms Sf1 , . . . , Sfq are
provable.For each i with 1 ≤ i < n,we have Fi ↔ Fi+1, because A[ f(x1, . . . , xn) ]
is equivalent to( ∀α f(x1, . . . , xn) ≈ α→ A[α] ). Iterating n− 1 times, it follows
that Sf1 ∧ · · · ∧ Sfq ∧ Fn has a D-model.
Now assume that Sf1 ∧ · · · ∧Sfq ∧Fn has a D-model. We first Skolemize the for-
mulas of Sf . Because Fn contains no function symbols, we may assume without
losing generality, that the Skolem function for Sf is f. Write Skf for the formula
∀x1, . . . , xa Pf (x1, . . . , xa, f(x1, . . . , xa)).

From the soundness of Skolemization, it follows that Skf1 ∧ · · · ∧ Skfq ∧ Fn

has a D-model. Assume that the term being replaced at stage i is f(x1, . . . , xa).
It is easily seen (using resolution) that

Skf , ∀α (¬Pf (x1, . . . , xa, α) ∨A[α] ) � A[ [f(x1, . . . , xa) ].

Iterating n− 1 times, it follows that Skf1 ∧ · · · ∧ Skfq ∧ F0 has a D-model.

Definition 4. A formula is in CUDEN normal form if the operator path to
each atom has form ∧∗∀∗ ∨∗ ∃?¬?. (CUDEN stands for Conjunction, Universal
quantifier, Disjunction, Existential quantifier, Negation. )

Theorem 3. The following replacements transform a formula from NNF to CU-
DEN normal form:

1.
∀x(A ∧B) ⇒ (∀x A) ∧ (∀x B),
(A ∧B) ∨ C ⇒ (A ∨ C) ∧ (B ∨ C),
A ∨ (B ∧ C) ⇒ (A ∨B) ∧ (A ∨ C),

(∀x A) ∨B ⇒ ∀x (A ∨B),
A ∨ (∀x B)⇒ ∀x (A ∨B).

2. If F contains a subformula ∃y A(x1, . . . , xa, y) in which A(x1, . . . , xa, y) is
either an equality, a disequality, or not an atom, then let p be a new predicate
symbol with arity a+ 1 Replace F [ ∃y A(x1, . . . , xa, y) ] by

F [ ∃y p(x1, . . . , xa, y) ]∧∀x1, . . . , xa, y ( ¬p(x1, . . . , xa, y)∨A(x1, . . . , xa, y) ).
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Finally, a function-free formula in CUDEN normal form can be transformed into
a set of geometric formulas by the following replacements:

1. Delete negative equalities from disjunctions as follows: Replace
∀x1, . . . , xp ( ¬(x ≈ x′) ∨A1 ∨ · · · ∨Aq ) by
∀x1, . . . , xp ( A1[x := x′] ∨ · · · ∨Aq[x := x′] ).

2. Replace positive equalities x ≈ x′ by negative disequalities ¬(x �≈ x′).
3. If there is a disjunction of form ∀x1, . . . , xp A1∨· · ·∨Aq in which one of the Ai

has form ∃y B(x′1, . . . , x
′
r, y), and another Aj is a positive non-equality atom,

then replace ∃y B(x′1, . . . , x′r, y) by q(x′1, . . . , x′r) and add a new disjunction

∀x′1, . . . , x′r ¬q(x′1, . . . , x′r) ∨ ∃y B(x′1, . . . , x
′
r, y).

4 Model Search Without Lemma Generation

We present the model search algorithm without lemma generation. It is closely
related to the methods in [4] and [5]. The main difference is that our method is
able to handle equality. The algorithm with lemma generation will be presented
in Section 5.

Definition 5. We assume an infinite set of elements E . A ground atom is an
object of form p(e1, . . . , ea), with a ≥ 0 and e1, . . . , ea ∈ E .

If for some E ⊆ E , all e1, . . . , en are in E, then we call p(e1, . . . , en) a ground
atom over E.

In contrast to variable atoms, ground atoms have no disequalities. Ground dis-
equalities e �≈ e′ can always be evaluated.

Definition 6. An interpretation is a pair (E,M) in which E ⊆ E is a set of
elements, and M is a set of ground atoms over E.

We will + both for insertion of elements to E, and for insertion of atoms to M.
If we want to add an element e to a set of elements E, we can write E + e. If
E = {e1, e2, e3} we can write E = e1 + e2 + e3. Similarly, if we add an atom
p(e1, e2) to M, we can write M + p(e1, e2). A complete interpretation can be
written as ( 0 + 1, p(0) + q(1) + p(0, 1) ).

Definition 7. A ground substitution Θ is a substitution from V to E . We write
A(x)Θ or A(xΘ) for the application of Θ on A(x). Let (E,M) be an interpre-
tation, let Θ be a ground substitution:

1. If Θ is defined for x1, . . . , xa, then Θ makes a variable atom of form
p(x1, . . . , xa) true in (E,M) if p(x1, . . . , xa)Θ ∈M.

2. If Θ is defined for x, x′, then Θ makes the disequality (x �≈ x′) true if
xΘ �= x′Θ.

If Θ is defined for all variables in x, then Θ makes a conjunction φ1(x) ∧ · · · ∧
φp(x) of variable atoms true in (E,M) if Θ makes all φi(x) true in (E,M).
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Definition 8. Let r = ∀x Φ(x)→ Z(x) be a geometric formula. Let (E,M) be
an intepretation. We say that (E,M) makes r true if every ground substitution
Θ that is defined for x, either does not make Φ(x) true in (E,M), or

1. Z(x) has form B1(x) ∨ · · · ∨ Bq(x) and Θ makes one of the Bj(x) true in
(E,M).

2. Z(x) has form ∃y B(x, y) and there exists an element e ∈ E such that the
ground substitution Θ + (y := e) makes B(x, y) true in (E,M).

Definition 9. Let r = ∀x φ1(x) ∧ · · · ∧ φp(x) → Z(x) be a geometric rule. Let
(E,M) be an interpretation, and let Θ be a substitution which is defined on x.
If Θ makes φ1(x)∧ · · · ∧φp(x) true in (E,M), then we call the rule r applicable
on (E,M) with substitution Θ, if one the following conditions is met, depending
on the type of r :

1. Z(x) = ⊥. In this case we call r a closing lemma of (E,M).
2. Z(x) has form B1(x) ∨ · · · ∨ Bq(x) and Θ makes none of the Bj(x) true in

(E,M).
3. Z(x) has form ∃y B(x, y) and there exists no e ∈ E, for which Θ + (y := e)

makes B(x, y) true in (E,M).

Lemma 1. An interpretation (E,M) makes a set of rules G true if and only if
there there is no applicable rule in G.

We present the model search algorithm. It starts with an empty model. At each
stage it looks for a rule r that is applicable with some substitution Θ. If there is
no applicable rule, then the interpretation makes all rules true. Otherwise, the
interpretation is extended in such a way that r is not applicable anymore with
Θ. In case the interpretation can be extended in more than one possible way, the
algorithm has to attempt all possibilities. When applicable rules are explored in
a fair fashion, the search algorithm is refutationally complete.

Definition 10. Let G be a set of geometric formulas. St(G) is initially defined
as St(G, ∅, ∅).
St(G,E,M) returns either ⊥ or an interpretation (E′,M ′), s.t. E ⊆ E′, M ⊆

M ′, and (E′,M ′) makes all rules in G true. St(G,E,M) is defined by the fol-
lowing cases:

1. If G contains a lemma ∀x φ1(x) ∧ · · · ∧ φp(x) → ⊥, which is applicable on
(E,M) with ground substitution Θ, then St(G,E,M) returns ⊥.

2. If G contains a disjunctive rule ∀x φ1(x)∧ · · ·∧φp(x)→ B1(x)∨ · · · ∨Bq(x)
which is applicable on (E,M) with ground substitution Θ, then compute, for
each j with 1 ≤ j ≤ q, λj := St(G,E,M +Bj(x)Θ). If λ1 = · · · = λq = ⊥,
then St(G,E,M) returns ⊥. Otherwise St(G,E,M) returns one of the λj

which is different from ⊥.
3. If G contains an existential rule ∀x φ1(x)∧· · ·∧φp(x)→ ∃y B(x, y), which is

applicable in (E,M) with ground substitution Θ, then define, for each e ∈ E,
Θe = Θ+ (y := e), and recursively compute λe := St(G,E,M +B(x, y)Θe).
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In addition, define Θê = Θ + (y := ê) for some ê �∈ E, and compute
λê := St(G,E + ê,M +B(x, y)Θê ).
If, for each e ∈ E, λe = ⊥, and also λê = ⊥, then St(G,E,M) returns ⊥.
Otherwise, St(G,E,M) returns one of the λe or λê which is different
from ⊥.

4. If there exists no applicable rule, then St(G,E,M) returns (E,M).

It is easily seen that the algorithm St(G) is complete, as long as applicable rules
are expanded in a fair way. Due to the way existential quantifiers are treated,
St(G) also has a reasonable chance of finding finite models, but it is not guar-
anteed to find a finite model in case there exists one. As an example consider
the set of formulas A ∨ B, ∀x A → ∃y P (x, y), ∀xyz P (x, y) ∧ P (y, z) →
P (x, z), ∀x P (x, x) → ⊥. The interpretation (∅, B) makes all rules true. How-
ever, St(G) will probably first attempt A in the first disjunction, after which it
has to construct an infinite P -chain. Completeness for finite models can be ob-
tained by using breadth-first search, but this would make search for refutations
less efficient. Although complete in theory, St(G) is of course inefficient.

5 The Algorithm with Lemma Generation

We modify the algorithm of the previous section in such a way that it is able
to learn in the following way: Whenever it cannot extend (E,M) to a model of
G, the improved algorithm will not simply return ⊥, but a lemma that closes
(E,M). The lemma ensures that, whenever the algorithm enters a similar situ-
ation again, it will not search another time for a refutation, but instead reuse
the lemma. It will be also possible to avoid enumerating the complete domain
for an existential quantifier, in case the lemma does not depend on the actual
witness chosen. Another advantage of learning is that the algorithm will be able
to output proofs which can be verified in a formal calculus.

Definition 11. A variable substitution Σ is a substitution from V to V . Most
general unifiers between non-disequality variable atoms are defined as usual.

Note that, because we consider only variable atoms, atoms with the same predi-
cate symbol are always unifiable. We define the rules with which lemmas are de-
rived. Variable merging and disjunction resolution are standard. The existential
resolution rules are different from the standard paramodulation/superposition
rules.

We assume that premises in geometric formulas can be freely permuted. As
a consequence, in disjunction resolution, the resolved atoms are not necessarily
the first atoms in the lemmas. We always assume that lemmas are normalized
in the following ways:

1. Quantified variables that do not occur in the body are removed.
2. Repeated quantifications over the same variable are removed.
3. Identical copies of atoms are removed. This includes the case where the

formula contains two orientations v �≈ w and w �≈ v of a disequality.
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Definition 12. We the rules of the lemma calculus. When a rule has more than
one premise, we implictly assume that variables in the premises are renamed, s.t.
no two premises have a variable in common.

Variable merging: Let λ = ∀x A1(x) ∧ · · · ∧ Ap(x) ∧ x1 �≈ x′1 ∧ · · · ∧ xq �≈
x′q → ⊥. Let Σ be a substitution of form x := x′, for two distinct x, x′ ∈ x.
Then the following lemma is a variable merging of λ :

∀ xΣ A1(x)Σ ∧ · · · ∧Ap(x)Σ ∧ x1Σ �≈ x′1Σ ∧ · · · ∧ xqΣ �≈ x′qΣ → ⊥.

Disjunction resolution: Let ρ = ∀x Φ(x) → B1(x) ∨ B2(x) ∨ · · · ∨ Bq(x) be
a disjunctive formula. Let

λ = ∀y D1(y) ∧D2(y) ∧ · · · ∧Dr(y) ∧ y1 �≈ y′1 ∧ · · · ∧ ys �≈ y′s → ⊥

be a lemma. Assume that B1(x) and D1(y) are unifiable with mgu Σ. Then

∀ xΣ yΣ Φ(x)Σ ∧D2(y)Σ ∧ · · · ∧Dr(y)Σ∧

y1Σ �≈ y′1Σ ∧ · · · ∧ ysΣ �≈ y′sΣ → B2(x)Σ ∨ · · · ∨Bq(x)Σ

is a disjunction resolvent of ρ with λ.
Existential resolution: Let ρ = ∀x Φ(x) → ∃y B(x, y) be an existential for-

mula. Let

λ = ∀z ∀v Ψ(z) ∧B(z, v) ∧ v �≈ z1 ∧ · · · ∧ v �≈ zs → ⊥

be a lemma, such that z1, . . . , zs ∈ z, and v �∈ z. Assume that B(x, y)
and B(z, v) have most general unifier Σ. Furthermore, assume that yΣ =
vΣ, yΣ �∈ xΣ, vΣ �∈ zΣ. Then

∀ xΣ zΣ Φ(x)Σ ∧ Ψ(z)Σ → B(z, z1)Σ ∨ · · · ∨B(z, zs)Σ

is an existential resolvent of ρ with λ. Note that in case s = 0, the existential
resolvent is a lemma. Otherwise it is a disjunctive rule.

Existential resolution (degenerated): Let ρ = ∀x Φ(x) → ∃y B(x, y) be an
existential formula. Let

λ = ∀z ∀v Ψ(z) ∧ v �≈ z1 ∧ · · · ∧ v �≈ zs → ⊥

be a lemma, such that z1, . . . , zs ∈ z, and v �∈ z. Then

∀ x z Φ(x) ∧ Ψ(z) → B(x, z1) ∨ · · · ∨B(x, zs)

is a (degenerated) existential resolvent of ρ with λ. In case s = 0, the degen-
erated existential resolvent is a lemma. Otherwise, it is a disjunctive rule.

Disjunction resolution will be used only as hyperresolution rule. For a given rule
ρ, the algorithm will find q lemmas, and resolve all the conclusions away at once.
Note that it is not possible to resolve upon a disequality. Variable merging will
be used only in combination with the other rules. In existential resolution, the
conjunction Φ(z) may contain disequalities. However, these disequalities are not
allowed to contain v, because v cannot occur in Φ(z) at all. We give examples
of disjunction resolution:
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Example 3. ∀x A(x) → ∃y P (x, y), ∀z∀t B(z) ∧ P (z, t)→ ⊥⇒
∀z A(x) ∧B(x) → ⊥.

∀x A(x) → ∃y P (x, y), ∀z∀t B(z) ∧ P (z, t) ∧ z �≈ t→ ⊥⇒
∀z A(x) ∧B(x) → P (x, x).

∀x1x2 ∃y F (x1, y, x2, y),
∀z1z2∀t G(z1, z2) ∧ F (z1, t, z2, t) ∧ z1 �≈ t ∧ z2 �≈ t→ ⊥⇒
∀x1x2 G(x1, x2)→ F (x1, x1, x2, x1) ∨ F (x1, x2, x2, x2).

Theorem 4. The rules of Definition 12 are sound.

Proof. Lemma factoring and disjunction resolution are standard rules. The cor-
rectness of existential resolution can be seen as follows: The lemma λ is equiv-
alent to λ′ = ∀z Ψ(z) → ∀v[ B(z, v) → v ≈ z1 ∨ · · · ∨ v ≈ zs]. This implies
λ′′ = ∀z Ψ(z) → [∃v B(z, v)] → B(z, z1) ∨ · · · ∨ B(z, zs). Now ∃v B(z, v) can
resolve with ∃y B(x, y) in ρ.

In the case of degenerated existential resolution, λ is equivalent to λ′ =
∀z Ψ(z) → ∀v[v ≈ z1 ∨ · · · ∨ v ≈ zs]. From this, the conclusion can be derived
by case analysis.

We call the improved algorithm Sm. It uses the rules of Definition 12 in order to
compute closing lemmas. Whenever an interpretation (E,M) cannot be extended
to an interpretation that makes G true, Sm(G,E,M) returns a closing lemma
of (E,M).

We explain how the algorithm of Definition 10 is modified: In case 1,
Sm(G,E,M) can simply return the lemma ∀x φ1(x) ∧ · · · ∧ φp(x) → ⊥. In
case 4, nothing needs to be changed. For cases 2 and 3, we will show that when
the recursive calls have returned closing lemmas, Sm(G,E,M) is able to con-
struct a closing lemma for (E,M). In case 2, it uses disjunction resolution. In
case 3, it uses one step of (possibly degenerated) existential resolution and sev-
eral steps of disjunction resolution. Before we can prove this, we need to establish
two properties of variable merging.

Lemma 2. Let ∀x Φ(x) → ⊥ be a lemma. Let Θ be a ground substitution,
for which there exist distinct variables x1, . . . , xm ∈ x, such that x1Θ = · · · =
xmΘ. Then one can obtain in m − 1 variable merging steps, a lemma of form
∀ (xΣ) Φ(x)Σ → ⊥, for which there exists a ground substitution Θ′, such that
Θ = Σ ·Θ′ and the new lemma contains exactly one variable x′ for which x′Θ′ =
x1Θ = · · ·xmΘ.

Proof. It follows from the definition of most general unifier, because Σ is the
mgu of x and x′.

Lemma 3. Let ∀x Φ(x) → ⊥ be a lemma. Let Θ be a ground substitution,
for which there exist some non-disequality atoms A1(x), . . . , Am(x) ∈ Φ(x), s.t.
A1(x)Θ = · · · = Am(x)Θ. Then one can obtain, by iterated variable mergings, a
lemma ∀ (xΣ) Φ(x)Σ → ⊥, for which there exists a ground substitution Θ′, s.t.
Θ = Σ ·Θ′, and Φ(x)Σ contains exactly one atom B, s.t.
BΘ′ = A1(x)Θ = · · · = Am(x)Θ.
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Proof. The proof is by induction on the number of distinct variables in
A1(x), . . . , Am(x). If m = 1, then there is nothing to prove. Otherwise, we have
m > 1, and there exists a position on which A1(x) and A2(x) contain a different
variable. Call the variables x1 and x2 (So one can write A1(x) = A1(. . . , x1, . . .) )
and A2(x)=A2(. . . , x2, . . .). Apply Lemma 2 with x1 and x2. In the resulting vari-
able merging, the number of variables has decreased by one.

The following theorem guarantees that St can be modified to return a closing
lemma in case 2.

Theorem 5. Suppose that we have:

1. An interpretation (E,M).
2. A disjunctive formula r = ∀x Φ(x) → B1(x)∨· · ·∨Bq(x), which is applicable

to (E,M) with ground substitution Θ.
3. For each j, 1 ≤ j ≤ q, a closing lemma λj of ( E, M +Bj(x)Θ ).

Then one can construct a closing lemma for (E,M) using at most q applications
of disjunction resolution. (and possibly several variable mergings)

Proof. If we are lucky, one of the closing lemmas λj also closes (E,M). Other-
wise, we show by induction on q that a closing lemma of (E,M) can be con-
structed in at most q disjunction resolution steps.

First consider λ1. Write λ1 in the form ∀y Ψ(y) → ⊥. Let Θ1 be the ground
substitution with which λ1 closes ( E,M + B1(x)Θ ). Because λ1 does not
close (E,M), there must be some atoms A1(y), . . . , Am(y) in Ψ(y), such that
Aj(y)Θ1 = B1(x)Θ. According to Lemma 3, one can obtain by repeated variable
merging a lemma λ′1 of form ∀y′ A(y′) ∧ Ψ ′(y) → ⊥, for which there exists a
ground substitution Θ′

1, s.t.

A(y′)Θ′
1 = B1(x)Θ and Ψ ′(y′)Θ′

1 ⊆M.

Because A(y′) and B1(x) are unifiable with mgu Σ, one can construct the fol-
lowing disjunction resolvent from r and λ′1 :

ρ = ∀ xΣ y′Σ Φ(x)Σ ∧ Ψ ′(y′)Σ → B2(x)Σ ∨ · · · ∨Bq(x)Σ.

Because Σ is the mgu of A(y′) and B1(x), there is a ground substitution Θ′
1,

s.t. Θ1 = Σ ·Θ′
1. As a consequence ρ is applicable to (E,M). If q = 1, then ρ is

a closing lemma. Otherwise, it can be checked that ρ and λ2, . . . , λq satisfy the
conditions (1) · · · (3) with q − 1, so that it is possible to apply induction.

The following guarantees that St can be modified to return a closing lemma in
case 3.

Theorem 6. Suppose that we have:

1. An interpretation (E,M).
2. An existential formula r = ∀x Φ(x) → ∃y B(x, y), which is applicable to

(E,M) with ground substitution Θ.
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3. For each e ∈ E, a closing lemma λe of (E,M + B(x, y)Θe), with Θe =
Θ + (y := e).

4. For some ê �∈ E, a closing lemma λê of (E + ê, M + B(x, y)Θê), with
Θê = Θ + (y := ê).

Then it is possible to construct a closing lemma for (E,M) using at most one
application of existential resolution (possibly degenerated) and at most |E| ap-
plications of disjunction resolution.

Proof. Again, if we are lucky, one of the closing lemmas λe with e ∈ E, or λê

with ê �∈ E already closes (E,M).
Otherwise consider λê. Let Θλ be the substitution with which λê closes (E +

ê, B(x, y)Θê). Write λê in the form λê = ∀z v Ψ(z, v) → ⊥, where v are the
variables v for which vΘλ = ê and z are the remaining variables.

Because λê closes (E + ê,M + B(x, y)Θê) but not (E,M), the sequence of
variables v is not empty.

In case v contains more than one variable, one can apply Lemma 2 and obtain
a new closing lemma λê = ∀zv Ψ(z, v) → ⊥, which closes (E+ ê,M+B(x, y)Θê)
with a ground substitution Θλ for which v is the only variable with vΘ′

λ = ê.
The sequence of atoms Ψ(z, v) contains at least one atom containing v. We

show that atoms containing v are either disequalities, or atoms of form B(z, v)
with B(z, v)Θλ = B(x, y)Θê. Let A(z, v) be a non-disequality atom that contains
v. Then the instance A(z, v)Θλ contains ê. Since M does not contain ê, and
A(z, v)Θλ ∈M +B(x, y)Θê, it must be the case that B(z, v)Θλ = B(x, y)Θê.

In case there is more than one atom A(z, v) containing v, for all of them holds
that A(z, v)Θλ = B(x, y)Θê. Therefore, we can apply Lemma 3 and obtain a
new lemma λê which contains only one non-disequality atom which contains v.
We distinguish two cases, dependent on whether Ψ(z, v) contains a non-
disequality atom B(z, v) which is matched into B(x, y)Θê.

1. λê can be written in the form ∀z v Ψ(z)∧B(z, v)∧v �≈ z1∧· · ·∧v �≈ zs → ⊥.
We have assumed that the existential rule r and the lemma λê have no
variables in common. Hence we can define Θλ,r = Θλ +Θê. We have

Φ(x)Θλ,r ⊆M, Ψ(z)Θλ,r ⊆M,

B(x, y)Θλ,r = B(x, y)Θê, B(z, v)Θλ,r = B(x, y)Θê.

Let Σ be the mgu of B(x, y) and B(z, v). There exists a ground substitution
Θrest, s.t. Θλ,r = Σ ·Θrest.

We know thatB(x, y) contains y, and that yΘλ,r = ê. Because v is the only
variable in B(z, v) with vΘλ,r = ê, it must the case that B(z, v) contains v at
every position where B(x, y) contains y. From this it follows that vΣ = yΣ.
In order to show that yΣ �∈ xΣ and vΣ �∈ zΣ, it is sufficient to observe that
yΘλ,r �∈ xΘλ,r and vΘλ,r �∈ zΘλ,r.

We can apply existential resolution, and obtain the rule

∀ xΣ zΣ Φ(x)Σ ∧ Ψ(z)Σ → B(z, z1)Σ ∨ · · · ∨B(z, zs)Σ.
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Because of the fact that Θλ,r = Σ ·Θrest, we have

( Φ(x)Σ )Θrest ⊆M, ( Ψ(z)Σ )Θrest ⊆M.

In case that s = 0, we already have a closing lemma. Otherwise, we will
show that it is possible to apply Theorem 5.

First we show that for each j, 1 ≤ j ≤ s, there is an e ∈ E, such that
B(z, zj)Θλ = B(x, y)Θe.

The left hand side B(z, zj)Θλ equals B(zΘλ, zjΘλ). This in turn is equal
to B(xΘ, zjΘλ). If we define e = zjΘλ, (which is in E), then B(xΘ, zjΘλ) is
equal to B(xΘ, y[y := e]). Because y �∈ x, this equals B(x, y)(Θ + (y := e)),
which in tuern equals B(x, y)Θe.

As a consequence each B(z, zj)Θλ,r is not true in (E,M). Hence the
existential resolvent is applicable in (E,M). Because for each zj , there is an
e ∈ E, such that B(z, zj)Θλ,r = B(x, y)Θe, and we have a closing lemma
λe of (E,M +B(z, zj)Θλ,r). This ensures that we can apply Theorem 5 and
obtain a closing lemma for (E,M).

2. λê can be written in the form ∀z v Ψ(z) ∧ v �≈ z1 ∧ · · · ∧ v �≈ zs → ⊥. We
have assumed that the existential rule r and the lemma λê have no variables
in common. We can construct the degenerated existential resolvent

∀ x z Φ(x) ∧ Ψ(z)→ B(x, z1) ∨ · · · ∨B(x, zs).

It is easily checked that this rule is applicable on (E,M) with ground sub-
stitution Θλ +Θê.

By similar reasoning as in the the previous case, we can see that Theorem 5
can be applied.

Note that the fact that Sm(G,E,M) can always return a closing lemma, as a
side effect implies that the calculus of Definition 12 is complete when used as a
saturation calculus. The algorithm Sm(G,E,M) can be made complete for finite-
models by applying depth-first search. Because the learnt lemmas are kept, the
loss in efficiency can be expected to be much less than the loss of efficiency that
St(G,E,M) would have. We give an example that shows that Sm(G) improves
over St(G).

Example 4. Consider the set of rules G = ∃x P0(x), ∃x P1(x), ∃x P2(x),
∃x P3(x), ∀x0x1x2x3 P0(x0) ∧ P1(x1) ∧ P2(x2) ∧ P3(x3)→ ⊥.
St(G) will consider a large sequence of interpretations of form:

( e0, P0(e0) + P1(e0) + P2(e0) + P3(e0) ),
( e0 + e1, P0(e0) + P1(e0) + P2(e0) + P3(e1) ),
( e0 + e1, P0(e0) + P1(e0) + P2(e1) + P3(e0) ),
( e0 + e1, P0(e0) + P1(e0) + P2(e1) + P3(e1) ),
. . .
( e0 + e1 + e2, P0(e0) + P1(e1) + P2(e2) + P3(e0) ),
( e0 + e1 + e2, P0(e0) + P1(e1) + P2(e2) + P3(e1) ),
( e0 + e1 + e3, P0(e0) + P1(e1) + P2(e2) + P3(e2) ),
. . .
( e0 + e1 + e2 + e3, P0(e0) + P1(e1) + P2(e2) + P2(e3) ).
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The algorithm Sm(G) will close the first interpretation (e0, P0(e0) + P1(e0) +
P2(e0) + P3(e0)) with rule ∀x0x1x2x3 P0(x0) ∧ P1(x1) ∧ P2(x2) ∧ P3(x3) →
⊥. Using existential resolution with ∃x P3(x) it will derive the lemma η1 =
∀x0x1x2 P0(x0) ∧ P1(x1) ∧ P2(x2) → ⊥. Since η1 closes (e0, P0(e0) + P1(e1) +
P2(e2)), it will apply one more time existential resolution, and derive η2 =
∀x0x1 P0(x0) ∧ P1(x1) → ⊥. Continuing, it will derive η4 = ' → ⊥ which
closes (∅, ∅).
How many elements actually need to be tried, in addition to the first one, depends
on the number s of disequalities in the first closing lemma ∀xy Ψ(x)∧B(x, y)→
y �≈ x1∧· · ·∧y �≈ xs → ⊥. Only those elements for which one of the disequalities
is false, need to be tried. In the example, we always had s = 0.

6 Conclusions and Future Work

We have introduced a calculus, which is refutationally complete for first-order
logic with equality. It can be implemented in such a way (using breadth-first
search) that it is complete for finding finite models. In addition, it can be ex-
pected that our calculus will be good at handling problems containing partial
functions.

We are in the process of implementing the calculus and studying refinements.
The most successful refinement is functional reduction. It is best explained from an
example. If one has a rule r of form r = ∀x Φ(x) → ∃y P (x, y), and there are no
other positive occurrences ofP in the set of formulasG, then P will be always func-
tional in all attempted interpretations, because∃y P (x, y) is extended only when it
is false. As a consequence, whenever some lemma contains among its premises two
occurrences ofP of formP (x, y1) andP (x, y2), one can unify y1 and y2 without los-
ing possible applications. This has turned out a good refinement, which improves
performance by a factor of one hundred, especially on harder problems.

Another refinement that we tried is lemma subsumption. In analogy to reso-
lution, one can define that λ1 subsumes λ2 if there exists a variable substitution
Σ, s.t. λ1Σ ⊆ λ2. Due to the way Sm(G) operates, only backward subsumption
needs to be considered. Our experiments show that approximately one fourth of
the lemmas can be deleted with backward subsumption.

In future work, we intend to study other refinements, prove that they do not
increase proof length whenever this is possible, and extend our experiments. We
intend to take part in CASC with our implementation.

In addition, we would also like to obtain theoretical results that compare our
calculus to superposition.
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Abstract. We propose a general-purpose technique, called DASH (De-
cision Assignment Scheme Heuristic), to eliminate isomorphic subspaces
when generating finite models. Like LNH, DASH is based on inherent iso-
morphism in first order clauses on finite domains. Unlike other methods,
DASH can completely eliminate isomorphism during the search. There-
fore, DASH can generate all the models none of which are isomorphic.
And DASH is an efficient technique for finite model enumeration. The
main idea is to cut the branch of the search tree which is isomorphic to a
branch that has been searched. We present a new method to describe the
class of isomorphic branches. We implemented this technique by modify-
ing SEM1.7B, and the new tool is called SEMD. This technique proves to
be very efficient on typical problems like the generation of finite groups,
rings and quasigroups. The experiments show that SEMD is much faster
than SEM on many problems, especially when generating all the models
and when there is no model. SEMD can generate all the non-isomorphic
models with little extra cost, while other tools like MACE4 will spend
more time.

Keywords: Isomorphism; scheme; symmetry breaking; LNH; DASH.

1 Introduction

Many problems from various application domains can be regarded as deciding
the satisfiability of certain logical formulas. In fact, the satisfiability problem in
the propositional logic, known as SAT, is a fundamental problem in computer
science and artificial intelligence. Many researchers have been working on SAT,
and many algorithms have been proposed to solve the problem. In the 1980’s,
the algorithms are typically analyzed theoretically. Recently, tool development
and empirical evaluation received more attention. Several efficient SAT solvers
have been implemented, such as SATO [6], MiniSat [17] and zchaff [3].

However, practical problems are often more naturally described by a set of
first-order formulas. In the problem library TPTP [5], fewer than 1% of the prob-
lems are described in pure propositional logic. The satisfiability problem in the
first-order logic is undecidable in general. But we can try to satisfy first-order
formulas in finite domains. This problem is known as finite model generation or
finite model searching. Of course, it can be transformed into SAT. But it can

U. Furbach and N. Shankar (Eds.): IJCAR 2006, LNAI 4130, pp. 318–331, 2006.
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also be solved directly, through exhaustive search. During the past 15 years, sev-
eral efficient finite model searchers have been developed, such as FINDER [11],
FALCON [12], SEM [14], Mace4 [22], MACE [21] and Paradox [15]. Although
these tools are quite successful in solving some open problems in mathematics,
we can still do something to improve their performances. In particular, we can
eliminate more symmetric subspaces in the search space. This paper describes
such an attempt.

2 Preliminaries and Notations

2.1 Finite Models

A model of a set of first-order formulas is an interpretation that gives a value
to constant and every entry of function or predicate. A finite model of size n is
often defined on the domain Dn = {0, 1, . . . , n− 1}.

When the arity of a function (predicate) is no more than 2, the function
(predicate) can be described by a table. We call an entry of the table a cell.
Syntactically a cell is given by a term whose arguments are elements of the
domain. For example, both f(0, 2) and P (1) denote cells, if P is a unary predicate
and f is a binary function. A model gives a value to all the cells.

A partial model gives values to some cells. We use Pmod to denote a partial
model.

2.2 Basic Search Procedure

Finite model searchers often work on a set of ground formulas, which are obtained
by instantiating the input formulas over the domain Dn. For example, suppose
n = 2 and the input contains the formula f(x, y) = x. We get the following set
of ground formulas:

f(0, 0) = 0; f(0, 1) = 0; f(1, 0) = 1; f(1, 1) = 1.

To search for a model, we can use the following backtrack search procedure:

Algorithm 1. The standard search function

Srh(S: set of assignments, G: set of ground formulas): Boolean;
{
for each assignment a in S, Propagate(a,G,S);
if S contains incompatible assignments then return(FALSE);
if G has been satisfied then return(TRUE);
select one unassigned cell c;
forall v in Dn
if Srh(S and (c=v), G) then return(TRUE);

return FALSE;
}

We can regard the execution of the search procedure as a search tree. In each
node of the tree, we try to choose a value for a cell. Every choice correspomds
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to a decision, and every branch of the search tree correspomds to a decision
sequence. Each decision sequence leads to a partial model, which also includes
the cell assignments derived from the sequence by constraint propagation.

The depth of a cell assignment is the depth of the search tree at which the
cell is assigned its value.

3 Isomorphism Elimination

Two models can be isomorphic to each other. This is due to symmetries on the
domain elements.

Definition 1. A permutation of Dn is a one to one mapping (bijection) from
Dn onto itself. Such a permutation is called a symmetry if it maps models to
models.

Definition 2. A set G of ground clauses is symmetric with respect to a subset
of Dn, if G remains the same under any permutation of that subset.

Because symmetry leads to isomorphism, we use symmetry breaking and iso-
morphism elimination for the same meaning.

There are two ways of eliminating isomorphism. The first is adding constraints
of isomorphism elimination, and the second is eliminating isomorphism during
search.

Adding constraints of isomorphism elimination is a kind of preprocessing. It
changes the original problem to a new problem by constraining the search path.
Paradox [15] uses this static way. Usually it does not get the minimal search
space because adding full constraints to eliminate isomorphism will cost too
much time to check those constraints.

For the second way, the disadvantage is that if we do not implement a quick
symmetry detection method, the time cost by eliminating isomorphism may be
more than the time we save. In [9], the authors point out that the computational
complexity of the symmetry detection problem is equivalent (within a polynomial
factor) to that of the graph isomorphism problem.

When generating finite models of first order logic, some isomorphic branches
in the search tree can be cut based on the following observation: all individual
values in Dn that are not used as a cell index or as a cell value in previous
decisions are interchangeable. This intuition led to the idea of the Least Number
Heuristic (LNH) [12]. When implementing this technique, we can use a special
variable mdn to denote the maximal designated number. All elements in the
subset {mdn+ 1, . . . , n− 1} should be interchangeable.

Definition 3. Let imdn denote the initial maximal designated number in
the input file. If the input problem does not contain constants, imdn = −1.

However, the LNH alone may not cut all unwanted search branches. And it has
been extended in various ways, such as [4]. The current paper also focuses on
this issue. We examine each new branch to find out whether it is isomorphic to
a branch searched before, and cut all such branches.
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4 Decision Assignment Scheme Heuristic

Now we describe a new isomorphism elimination technique: DASH (which stands
for Decision Assignment Scheme Heuristic). All that DASH does is to eliminate
branches which are isomorphic to some searched branches.

Definition 4. There are two meanings of branch in the paper. One is the orig-
inal meaning for the search tree, and the other is the partial model which is
derived from the decision sequence on the branch.

Let Pmod1 stand for a branch that has been searched, and Pmod2 stand for the
current branch which is isomorphic to a sub-branch Pmod′1 of Pmod1. In this
situation, we call Pmod1 as scheme branch, and Pmod2 as iso-branch.

Given a decision sequence, for each domain element in the sequence which is
larger than imdn, we introduce a distinct auxiliary variable.We call these variables
schemevariables. Usually we name a scheme variable by one letter, which stands
for the sort, and use the integer corresponding to the domain element as its index.

Then we substitute each domain element by the auxiliary variable. The deci-
sion (cell assignment) after the substitution is called a decision scheme, and
the conjunction of all such schemes is called a scheme. The number of decision
schemes in a scheme is called the length of the scheme.

For example, suppose imdn = 0, and there is a branch of the search tree which
corresponds to the decision sequence: g(1) = 1, g(2) = 4, f(1, 2) = 3, f(2, 2) = 4.
We can introduce 4 scheme variables: x1, x2, x3, x4, and get the scheme g(x1) =
x1 ∧ g(x2) = x4 ∧ f(x1, x2) = x3 ∧ f(x2, x2) = x4. The length of this scheme is 4.

Definition 5. For every decision sequence α, there is a scheme denoted by α̂
and a partial model denoted by ᾱ which is derived from α by through constraint
propagation.

Remarks
We should remember that distinct scheme variables can’t have the same value
and they can’t have values smaller than or equal to imdn.

In this paper, we assume there is only one sort to simplify the presentation. If
there are more than one sorts, we can name the scheme variables as x1, y2 and
so on. Every different sort has a different letter.

Example 1
Consider the following axioms for the Abelian Group:

g(0) = 0
g(x) �= y ∨ g(y) = x

f(x, 0) = x
f(0, x) = x

f(x, g(x)) = 0
f(g(x), x) = 0

f(f(x, y), z) = f(x, f(y, z))
f(x, y) = f(y, x)
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Fig. 1. The search tree for AG6

We can see that imdn = 0. Set the order to 6 (i.e., let n = 6). If a decision
sequence is g(1) = 1, g(2) = 4, f(1, 2) = 3, f(2, 2) = 4, then after the substitu-
tion, we get four decision schemes, namely g(x1) = x1, g(x2) = x4, f(x1, x2) =
x3, f(x2, x2) = x4. The scheme constructed from them is g(x1) = x1 ∧ g(x2) =
x4 ∧ f(x1, x2) = x3 ∧ f(x2, x2) = x4.

The whole search tree using DASH is shown in Fig.1. It is found that there is
only one non-isomorphic model of Abelian group of order 6.

In Fig.1, there are three schemes used in the search, namely S1, S2, S3:

S1 : g(x1) = x1 ∧ g(x2) = x4 ∧ f(x1, x2) = x3 ∧ f(x2, x2) = x4
S2 : g(x1) = x1
S3 : g(x1) = x2 ∧ f(x1, x1) = x2

Though there are many other schemes that can be added, they are redundant
for our method.

The search tree is a depth-first search tree, from left to right. In the figure, the
� means that there exists a contradiction when doing constraint propagation.
And the arrows point out the trace of search. M1 means we got a model at that
node. DASH S1 means we will backtrack at this node because of the current
partial model satisfies S1.
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In the rest of this section, we shall discuss how to use the above concepts
to describe the branches in the search tree and how to use them to eliminate
isomorphism.

First, we realize that we can use some schemes to describe all the branches we
have searched. Then when we are exploring a new branch, we would like to know
whether it is isomorphic to some previous branch. This can be done by checking
whether the partial model derived from the new decision sequence satisfies some
existing scheme.

Definition 6. If there is a series of assignments to all the scheme variables in a
scheme such that the scheme becomes a series of assignments in the partialmodel, we
say that “the partial model which is derived from the new decision sequence satisfies
the scheme”, or in short, “a decision sequence satisfies the scheme”.

Please see Example 2 below.

Proposition 4.1. Consider a decision sequence α , the scheme α̂ which is de-
rived from α and the partial model ᾱ which is extended from α by constraint
propagation. If we don’t consider the symmetry between the values not bigger
than imdn, the scheme represents all the branches which are isomorphic to some
branch ᾱ′ extended from ᾱ.

That is, for any branch β̄ which is isomorphic to ᾱ′ and the isomorphism
preserves the values which are not bigger than imdn, the isomorphism mapping
θ leads to one assignment σ to all the scheme variables in the scheme α̂ such
that σ(α̂) is consistent with β̄.

For any assignment σ to the scheme variables in α̂ which gives distinct values
to distinct scheme variables, the scheme becomes a decision sequence which is
isomorphic to α.

Proof. By the definition of scheme, obviously the original decision sequence
satisfies the scheme. The assignment σ just gives every variable’s index as the
variable’s value.

For any branch β̄ which is isomorphic to ᾱ′ and the isomorphism preserves
the values which are not bigger than imdn, denote the isomorphism mapping as
θ. Here θ is a mapping: Dn → Dn, such that θ(ᾱ′) equals to β̄.

Then θ can derive an assignment σ such that σ(α̂) is consistent with β̄. Here
for any scheme variable xi in α̂, σ(xi) = θ(i).

And for any assignment σ to the scheme variables in α̂ which gives distinct
values to distinct scheme variables, the scheme becomes a decision sequence β
which is isomorphic to α.

The isomorphism mapping θ : Dn → Dn is defined as follows:

– for any scheme variable xi in α̂, θ(i) = σ(xi).
– for other undefined j in Dn, θ(j) = j.

It is easy to check that θ(α) = β.

Proposition 4.2. If the partial model which is derived from the current decision
sequence satisfies some scheme, then we can cut the current branch to eliminate
isomorphism.
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Proof. By Proposition 4.1 and Definition 6, the partial model (also called a
branch) is isomorphic to some sub-branch of the branch which the scheme is
derived from. Therefore, cutting the current branch can eliminate isomorphism.

Example 2
Consider the Abelian Group of order 6 in Example 1. We have the scheme
g(x1) = x1 ∧ g(x2) = x4 ∧ f(x1, x2) = x3 ∧ f(x2, x2) = x4. When we come to a
decision sequence which is g(1) = 1, g(2) = 4, f(1, 2) = 3, f(2, 2) = 5, g(3) = 5,
we will find that the partial model which is derived from this sequence satisfies
the scheme by assignments x1 = 1, x2 = 3, x3 = 2, x4 = 5, x5 = 4, so we get the
isomorphic bijection (23)(45) which maps the partial model to some sub-branch
of g(1) = 1, g(2) = 4, f(1, 2) = 3, f(2, 2) = 4.

After the assignments x1 = 1, x2 = 3, x3 = 2, x4 = 5, x5 = 4, the scheme
becomes a series of assignments, namely, g(1) = 1, g(3) = 5, f(1, 3) = 2, f(3, 3) =
5. Here, f(1, 3) = 2 and f(3, 3) = 5 don’t occur in the current decision sequence
g(1) = 1, g(2) = 4, f(1, 2) = 3, f(2, 2) = 5, g(3) = 5, but these two assignments
are obtained by constraint propagation.

Thus the partial model which is derived by g(1) = 1, g(2) = 4, f(1, 2) =
3, f(2, 2) = 5, g(3) = 5 satisfies the scheme g(x1) = x1∧g(x2) = x4∧f(x1, x2) =
x3 ∧ f(x2, x2) = x4.

So the current branch which is derived from g(1) = 1, g(2) = 4, f(1, 2) =
3, f(2, 2) = 5, g(3) = 5 can be eliminated.

4.1 When to Add and Delete Schemes

In this subsection, we discuss how to use schemes to detect and eliminate iso-
morphism. In particular, we will show how to use as few schemes as possible to
describe the searched branches and when to add or delete schemes.

If we add all the schemes, the number of schemes is too large. But if we only
add the necessary ones, the experiments show that the number is much smaller.

Generally speaking, the number of schemes increases during the search. But
in fact, if the original problem has many isomorphic subspaces, the number is
small. Because many schemes can be simplified and the branches which satisfy
some scheme do not lead to any new scheme.

In many experiments, the maximum number of schemes is not bigger than
several hundred. If there is not plenty of isomorphism, using isomorphism elim-
ination techniques is not a good choice.

First of all, every searched branch can lead to a scheme. We should eliminate
the redundant ones. Because the schemes are used to eliminate isomorphism, we
need not add the scheme derived from the current branch. When we will choose
a value for a new cell, we add a scheme derived from the past branch unless that
branch is backtracked due to the conflict obtained from constraint propagation.

For instance, consider Example 1. After we have searched the branch derived
from the sequence g(1) = 1, g(2) = 4, f(1, 2) = 3, f(2, 2) = 4, before we try
the case f(2, 2) = 5, we add the scheme g(x1) = x1 ∧ g(x2) = x4 ∧ f(x1, x2) =
x3 ∧ f(x2, x2) = x4.
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Obviously if the past branch already satisfies some scheme, we need not add
a new scheme.

When we get a model, we must add a scheme to describe the model.
After all possible values of a cell have been tried, we must backtrack. Before

backtracking we will delete all the schemes which are derived from trying values
of the current cell.

Consider the above example, after we tried the case f(2, 2) = 5, we must
backtrack. Then we delete the scheme g(x1) = x1 ∧ g(x2) = x4 ∧ f(x1, x2) =
x3 ∧ f(x2, x2) = x4. Because after backtracking, we will add a new scheme
g(x1) = x1, and this scheme includes the above one.

Proposition 4.3. Using DASH will not lose any non-isomorphic model, and the
generated models are all non-isomorphic ones.

Proof. By using DASH, we only cut the branches which are isomorphic to some
searched branches. The models in those branches must be isomorphic to some
model which we obtained. So we do not lose any non-isomorphic model.

If there are two generated models which are isomorphic to each other, then the
second one must satisfy the scheme derived from the first one. This contradicts
with the DASH process.

Therefore, the proposition holds. �

So by the above propositions, we can cut all the iso-branches, and at the same
time, without losing any isomorphic class of models.

4.2 The Scheme Checking Process

The time used for adding and deleting schemes is so small that it can be ignored.
Almost all the time of the DASH process is spent on checking whether a branch
satisfies some scheme. In our implementation, we just use a simple backtracking
process for scheme checking. When we check an iso-branch, the depth of the
checked branch is not smaller than the length of any scheme. And we check from
the earliest scheme to the latest one.

After we select one scheme, we use backtracking search on the scheme vari-
ables, trying to find whether there is a set of assignments of the scheme variables
such that the scheme becomes a set of assignments which is a subset of the cur-
rent partial model. Please also see Example 2.

4.3 Adjustable Parameters

Eliminating all the isomorphism during search is not the most efficient way,
since as the depth of search becomes bigger, the cost of eliminating isomorphism
increases significantly and the benefit of doing so decreases. Thus, we can improve
the efficiency by avoiding some improper checking of isomorphism.

We can adjust some parameters to achieve this goal. The most important
parameter is the checking depth (i.e., using DASH up to a certain depth). This
is easy to understand, since as the checking depth increases, the cost of checking
increases greatly.
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So in our implementation, we use a variable maxD to record the current
maximum depth of the search tree. And we can adjust three parameters, de-
noted by factor1, factor2, factor3. When the current depth is not larger than
factor1∗maxD, we check all the schemes to find out whether the current branch
satisfies some scheme.

When the current depth is larger than factor1 ∗ maxD and smaller than
factor2 ∗ maxD, we check all the schemes whose lengths are not bigger than
factor3 ∗maxD .

Through our experiments, we found that it is often good to set the parameters
factor1, factor2, factor3 to the values 0.6, 0.9, 0.3, respectively.

Because the cost of adding and deleting schemes is very small, we still do these
things. If we only want to get the non-isomorphic models, we can use DASH to
check whether the new model is isomorphic to some existing model which has
already been generated.

4.4 The New Algorithm

In this subsection, we describe an abstract procedure about DASH. We shall use
the notations introduced earlier. The new search procedure is shown in Fig 2.
It is extended from the basic search procedure of SEM [14]. We use upper-case
letters to denote the new statements.

Void srh() {
forward = TRUE;
while (TRUE) {
if (forward) {

choose one cell whose value has not been fixed;
if (all cells are assigned values) {

Number_Mod++;
if (Number_Mod == Max_N_Mod) return;
else forward = FALSE;

}
}
if (forward) push stack;
else {

if (stack is empty) return;
ADD a scheme for the current decision sequence;
restore stack;

}
forward = FALSE;
for each of current cell’s possible values do {

assign the value to the cell;
propagate the effect of this assignment;
if (contradiction does not occur ) {

CHECK all schemes;
if (the current partial model satisfies some scheme)

{ restore stack; continue; }
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else {
forward = TRUE;
break;

}
}
else restore stack;

}
if (forward == FALSE) {

DELETE schemes of current depth;
pop stack;

}
}

}

Fig. 2. The Search Procedure with DASH

5 Experimental Results

Using the above ideas, we have implemented an automatic tool, called SEMD,
based on SEM [14]. We have tested the tool on a number of well-known problems
and compared it with SEM, newSEM [4], Mace4 [22] and Paradox [15]. The
problems include:

– Logic and abstract algebra: the problems “Finite Abelian Groups”. We try to
find all the finite Abelian Groups of every order. In Table 1, we set factor1 =
factor2 = factor3 = 1. Table 2 shows that adjusting factors can improve
the efficiency. We denote factor1, factor2, factor3 by t1, t2, t3 respectively,
in Table 2. From the fundamental theorem on finite Abelian groups, we

Table 1. Abelian Groups

SEM + LNH SEM + DASH newSEM + XLNH Mace 4
n m t r m t r Cuts m t r m t

6 6 0 30 1 0 23 5 2 0 40 6 0
16 135 0.68 2347 5 0.21 479 71 44 0.41 696 135 1.79
26 16 8.90 10480 1 2.25 1291 178 2 7.87 3308 16 98.28
32 2295 133.72 76483 7 12.55 2623 404 529 63.92 11313 2295 802.24
33 15 71.85 48659 1 8.95 2527 351 15 11.57 3347 + +
34 20 78.96 51306 1 9.76 2611 356 2 66.75 12786 + +
35 13 185.86 95009 1 16.81 3097 457 13 14.55 3711 + +
36 2142 309.79 146386 4 22.26 3524 553 321 145.07 21601 + +
37 1 239.30 112003 1 20.01 3407 478 1 23.35 4779 + +
38 22 240.40 115528 1 22.51 3533 511 2 175.14 23366 + +
39 17 397.98 174819 1 29.20 4017 600 17 34.82 5811 + +
40 2220 589.14 233198 3 35.61 4407 671 282 303.37 39124 + +
49 + + + 2 78.77 6420 874 8 188.26 12858 + +
50 + + + 2 87.58 6570 934 + + + + +
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Table 2. Abelian Groups with Different DASH Factors

t1 = t2 = t3 = 1 t1 = 0.6, t2 = 0.9, t3 = 0.3 newSEM + XLNH
n m t r Cuts m t r Cuts m t r

43 1 43.62 4929 708 1 40.01 7443 669 1 61.35 7781
44 2 50.83 5188 750 2 45.98 7858 699 31 662.61 66025
45 2 56.34 5494 801 2 52.78 8930 749 180 93.24 9024
46 1 57.41 5498 786 1 53.31 8602 733 + + +
47 1 61.88 5795 803 1 58.49 8103 784 1 86.70 9329
48 5 106.08 6913 1058 5 91.65 14082 912 + + +
49 2 78.77 6420 874 2 73.29 9673 829 8 188.26 12858
50 2 87.58 6570 934 2 83.30 10547 867 + + +

know that the number of nonisomorphic Abelian groups of order n, where
n = pe1

1 . . . pen
n , is f(e1) . . . f(en), where f(x) denotes the number of out-of-

order partitions of x. Thus we can verify that the number of models obtained
by SEMD is just the number of nonisomorphic Abelian groups.

– Combinatorics: Quasigroup existence problems described in [16]. For this
problem, we only compare SEMD with SEM. Since there is no unary function
in this problem and newSEM is based on unary functions, newSEM can not

Table 3. Quasigroup Existence Problem

SEM +LNH SEM + DASH
Order Time Rounds Time Rounds Cuts

10 62.44 18423609 33.02 6717481 35
11 190.46 69742027 113.97 25427909 33

speed up in this problem. In Table 3, we only search for one quasigroup for
each different order. For an order which is less than 10, DASH can not cut
any branch for the first model. In Table 4, we search for one quasigroup
which satisfies the QG5 identity. Though we can cut some branches, the
scheme checking process costs too much time and the total time used by
SEMD is a little longer than that for SEM.

Table 4. QG5 Existence Problem

SEM +LNH SEM + DASH
Order Models Time Rounds Models Time Rounds Cuts

9 0 0 66 0 0 52 1
10 0 0 166 0 0 134 2
11 1 0.01 421 1 0.01 297 4
12 0 0.05 2878 0 0.05 1770 79
13 0 0.51 27764 0 0.68 14894 834
14 0 8.66 430040 0 11.91 182304 10060
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Table 5. HSI Problem

SEM +LNH SEM + DASH
Order Models Time Rounds Models Time Rounds Cuts

2 5 0 15 5 0 15 0
3 68 0 228 44 0 182 15
4 2199 0.05 7867 657 0.23 3259 375

– HSI problem [13]: This problem also comes from Algebra, and there are some
results about order 2 and order 3 in [19].

In these tables, all running times (“t”) are given in seconds. We use “+” to indi-
cate that the running time is more than 600 seconds. “Rounds” (“r”) means the
number of rounds of the search loop, and “Cuts” means the number of branches
which are cut by DASH, while “n” means the size of the model, “m” means the
number of models. The experimental results are obtained on a personal computer
with Pentium 4 2.6G, 512M memory.

We can see that, when using SEMD (SEM+DASH), the numbers of models
are quite small, and the running times are acceptable. It should be noted that
SEMD gets all the non-isormorphic models, while the other tools just find out
all models without eliminating the redundant ones.

Paradox is quite slow on this type of problems, because it is weak in symmetry
breaking and when the order increases, the SAT instance generated by Paradox
becomes too large. So we do not give the experimental data for Paradox.

6 Related Works and Conclusions

During the past several years, symmetry breaking and isomorphism elimination
have attracted much attention from researchers. It was shown that they can play
a key role in the solution of many problems. Sophisticated symmetry breaking
methods have been developed, such as the addition of symmetry breaking con-
straints (see for example [10]), symmetry breaking during search (SBDS) [7], or
symmetry breaking by dominance detection (SBDD) [20]. Especially the latter
is quite interesting.

SBDD works by checking whether the current choice point under investiga-
tion represents a symmetric variant of a part of the search space that has been
investigated completely before. The core of an SBDD symmetry breaking code
is dominance detection which was automated in [8] by using the generic compu-
tational group theory tool, yielding a method named GAP-SBDD.

The basic idea of this paper is similar to that of SBDS and SBDD. But
the latter deals with constraint satisfaction problems (CSPs) and they mainly
consider the symmetries among variables in a CSP. We try to solve the finite
model generation problem, in which the symmetries are different.

For finite model enumeration, there are some isomorphism elimination meth-
ods which are similar to the Least Number Heuristic (LNH) or are extensions to
the LNH, see for example, [1,18,4]. It is worth mentioning that the tool newSEM
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[4] is quite close to ours. But it requires that the problem has a unary function,
so it is useless for some problems. For instance, in QG problems, SEMD can work
well, but newSEM does not work. From Table 1, we can see that SEMD is almost
always better than newSEM on the Abelian group problem. More recently, Boy
de la Tour and Countcham [2] investigated the integration of SEM-style search
procedure and McKay’s general method of isomorph-free exhaustive enumera-
tion. But their tool SEMK is not available yet.

One of the advantages of DASH is that we can get all the nonisomorphic mod-
els with just a little overhead. We can tell the program to find all the models
and use DASH to eliminate all the models which are isomorphic to some noni-
somorphic model. We have tried to do this by using other tools such as Mace4.
They check isomorphism after all the models are generated. And much more
time is needed. Therefore, DASH becomes an efficient technique for finite model
enumeration.

The most important contribution of our work is presenting a new method of
describing the isomorphism class. The experiments show that it is efficient. But
we still have something to do in the future. Most importantly, we need to find a
more efficient scheme checking method.
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Abstract. Semantic labelling is a transformational technique for prov-
ing termination of Term Rewriting Systems (TRSs). Only its variant
with finite sets of labels was used so far in tools for automatic termi-
nation proving and variants with infinite sets of labels were considered
not to be suitable for automation. We show that such automation can
be achieved for semantic labelling with natural numbers, in combination
with recursive path ordering (RPO). In order to do so we developed al-
gorithms to deal with recursive path ordering for these infinite labelled
systems. Using these techniques TPA, a tool developed by the first au-
thor, is the only current tool that can prove termination of the SUBST
system automatically.

1 Introduction

Semantic labelling ([12]) is a well-known transformational termination technique
for TRSs. The core of the idea is to interpret the function symbols in some model
and use this interpretation to label the system. After this labelling all function
symbols are equipped with a label and the resulting TRS is terminating if and
only if the original one is terminating. This approach is often successful in the
sense that proving termination for the labelled system is easier than for the
original one. Typically, non simply terminating systems are often transformed
to systems for which termination is easily proved by polynomials or recursive
path ordering (RPO).

In recent years research in this area has focussed towards the automation
of the termination proving process. Any termination technique, to be regarded
successful, apart from being widely applicable needs to be suitable for automa-
tion. The best evidence of that is the annual termination competition ([1]) where
termination tools written by different authors compete on a set of termination
problems.

Automation of semantic labelling can be done straightforwardly if the models
contain only finitely many elements, or in particular only 2 elements. For in-
stance, this technique is used by the tools AProVE [6], TORPA [14] and TeParLa.
However if we consider labelling with infinite sets of labels, like natural num-
bers, some complications show up as then the labelled system has an infinite
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signature and contains infinitely many rules. For that reason such variants of
semantic labelling were regarded as not feasible for automation and were not
used in termination tools before 2005.

The main claim of this paper is that semantic labelling with a model consist-
ing of the infinite set of natural numbers can be automated in combination with
extending RPO implementation to the corresponding infinite signatures. By do-
ing so, in the setting we are about to describe, one gets a widely applicable new
termination technique. We give examples where this technique easily yields a
termination proof whereas all other known techniques fail.

Apart from developing the theory we also implemented this technique in TPA1

(Termination Proved Automatically), a termination tool developed by the first
author, for which semantic labelling with natural numbers in combination with
RPO is one of the main techniques.

Before presenting the details of this technique, we give a motivating example.

Example 1. Consider the following TRS:

(1) λ(x) ◦ y → λ(x ◦ (1 # (y ◦ ↑)))
(2) (x # y) ◦ z → (x ◦ z) # (y ◦ z)
(3) (x ◦ y) ◦ z → x ◦ (y ◦ z)
(4) id ◦ x→ x
(5) 1 ◦ id → 1
(6) ↑ ◦ id → ↑
(7) 1 ◦ (x # y)→ x
(8) ↑ ◦ (x # y)→ y

This system, named σ0 in [4] and essentially equivalent to system SUBST in
[7] describes the process of substitution in combinatory categorical logic with ‘λ’
corresponding to currying, ‘◦’ to composition, ‘id’ to identity, ‘#’ to pairing and
‘1’ and ‘↑’ to projections.

Termination of this system (implying termination of the process of explicit
substitution in un-typed λ-calculus) is non-trivial and was the main result of [4]
and [7]. However in [12,13] a very simple proof was given using only semantic
labelling with natural numbers followed by an application of RPO on the trans-
formed system. Ability to reproduce this proof completely automatically was a
first goal of this work, while a next goal was to make this approach fruitful in
general. Both goals have been achieved.

This TRS will be a running example in this paper.

The outline of this paper is as follows. In Section 2 we present the required
preliminaries on RPO. We continue in Section 3 by briefly introducing the
technique of semantic labelling with natural numbers. Section 4 concentrates
on adopting the recursive path ordering (RPO) to deal with infinite labelled
systems. In section 5 we present practical evaluation of this technique along
with two examples for which it is particularly suitable. We conclude in
Section 6.
1 For more information about TPA see http://www.win.tue.nl/tpa.
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2 Recursive Path Ordering

Recursive path ordering (RPO) is an ordering introduced by Dershowitz [5]
for proving termination of TRSs. We will briefly present it here. For a general
introduction to term rewriting we refer to [2].

Let Σ be any signature, possibly infinite. Let ! be a well-founded order on
Σ, called a precedence. Let τ be a status function on Σ, i.e., for every f ∈
Σ the status τ(f) describes how to compare sequences of arguments of f : by
multiset ordering or by lexicographic comparison in some direction. Then the
corresponding recursive path ordering !RPO is defined as:

s !RPO t ⇐⇒ s = f(s1, . . . , sn) and
(1) si = t or si !RPO t for some 1 ≤ i ≤ n, or
(2) t = g(t1, . . . , tm), s !RPO ti for all 1 ≤ i ≤ m, and either

(a) f ! g, or
(b) f = g and 〈s1, . . . , sn〉 !τ(f)

RPO 〈t1, . . . , tm〉.

The main property of this ordering is the following:

If $ !RPO r for every rule $→ r of a TRS R, then R is terminating.

So for proving termination by RPO one has to find a well-founded precedence
! and a status function τ such that $ !RPO r for every rule $ → r. In tools
this is typically done by collecting constraints on ! and checking whether these
constraints give rise to a well-founded precedence !. In searching for these col-
lections of constraints often choices are possible, also choices on τ , giving rise to
back-tracking. The crucial algorithm required in this back-tracking procedure is
to check whether a set of constraints on ! gives rise to a well-founded precedence
!. For finite signatures this coincides with checking whether the corresponding
graph is acyclic. For the infinite signatures, as we consider in this paper, it is
more involved, but the basic frame of the algorithm remains the same. We will
concentrate on the question of how to construct a well-founded precedence out
of a collection of constraints on such a precedence.

3 Semantic Labelling with Natural Numbers

First we recall the main theory of semantic labelling.
A Σ-algebra (A,ΣA) is defined to be a non-empty set A together with a map

[f ] : An → A for every f ∈ Σ, where n is the arity of f . Let V be a set of
variables. For α : V → A we inductively define [x, α] = α(x) for x ∈ V , and
[f(t1, . . . , tn), α] = [f ]([t1, α], . . . , [tn, α]).

A Σ-algebra (A,ΣA) equipped with a partial order ≥ is called a quasi-model
for a TRS R if [$, α] ≥ [r, α] for all rules $ → r in R and all α : V → A, and [f ]
is weakly monotone in all arguments for all f ∈ Σ.

In case the partial order ≥ coincides with equality then weak monotonicity
holds for every operation, and the only requirement is [$, α] = [r, α] for all rules
$→ r in R and all α : V → A. In this case the quasi-model is called a model.
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For labelling here we do not introduce an arbitrary labelling function as in
[12,13], but choose the particular case where this labelling function is the identity.
This means that given a quasi-model (A,ΣA,≥) for a TRS R overΣ, the labelled
TRS R is defined as follows. The signature Σ consists of n-ary symbols fa1,...,an ,
where f is an n-ary symbol from Σ and a1, . . . , an ∈ A. Given α : V → A, the
labelling function lab is defined inductively by

lab(x, α) = x,

lab(f(t1, . . . , tn), α) = f[t1,α],...,[tn,α](lab(t1, α), . . . , lab(tn, α))

for x ∈ V and f ∈ Σ. Now R is defined to consist of the rules

lab($, α) → lab(r, α)

for all α : V → A and all rules $ → r of R. The TRS Decr is defined to consist
of the rules

fa1,...,an(x1, . . . , xn)→ fb1,...,bn(x1, . . . , xn)

for all f ∈ Σ and a1, . . . , an, b1, . . . , bn satisfying ai > bi for some i and aj = bj
for all j �= i. Here > denotes the strict part of ≥. Note that Decr is empty in the
model case, i.e., if ≥ coincides with equality.

The main property of semantic labelling is the following:

R is terminating if and only if R ∪ Decr is terminating.

In this paper we focus on the case where A = N, the natural numbers. The
approach is as follows: for a TRS R for which we want to prove termination,
search for interpretations in A such that (A,ΣA,≥) is a quasi-model, and next
try to prove termination of the infinite TRS R ∪Decr by means of RPO. If this
succeeds, then according to the main property of semantic labelling we have
proved termination of R. In case (A,ΣA,≥) happens to be a model, i.e., for all
rules we have equality, then we choose ≥ on A = N to be equality, by which Decr
is empty. In the other case we choose ≥ to be the usual order on N. In this case
Decr is not empty, but we may and shall restrict Decr to all rules of the shape

fa1,...,an(x1, . . . , xn)→ fb1,...,bn(x1, . . . , xn)

for f ∈ Σ and a1, . . . , an, b1, . . . , bn satisfying ai = bi + 1 for some i and aj = bj
for all j �= i. This is valid since if ai > bi then ai can be obtained from bi by
taking the successor a number of times, so the rewrite relation →+

Decr is not
changed by this modification of Decr. In the sequel we refer to R ∪ Decr as the
labelled system.

Example 2. As an example, we apply this approach to the TRS R from Exam-
ple 1 and the following interpretation in N:

[λ](x) = x+ 1 [1] = 0
[#](x, y) = max(x, y) [↑] = 0
[◦](x, y) = x+ y [id] = 0
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This interpretation is a quasi-model and after application of semantic labelling
we obtain R consisting of the rules

(1) λi(x) ◦i+1,j y → λi+j(x ◦i,j (1 #0,j (y ◦j,0 ↑)))
(2a) (x #i,j y) ◦i,k z → (x ◦i,k z) #i+k,j+k (y ◦j,k z) for i ≥ j
(2b) (x #i,j y) ◦j,k z → (x ◦i,k z) #i+k,j+k (y ◦j,k z) for i < j
(3) (x ◦i,j y) ◦i+j,k z → x ◦i,j+k (y ◦j,k z)
(4) id ◦0,i x→ x
(5) 1 ◦0,0 id → 1
(6) ↑ ◦0,0 id → ↑
(7a) 1 ◦0,i (x #i,j y)→ x for i ≥ j
(7b) 1 ◦0,j (x #i,j y)→ x for i < j
(8a) ↑ ◦0,i (x #i,j y)→ y for i ≥ j
(8b) ↑ ◦0,j (x #i,j y)→ y for i < j

and Decr consisting of the rules

(D1) λi+1(x) → λi(x)
(D2a) x ◦i+1,j y → x ◦i,j y
(D2b) x ◦i,j+1 y → x ◦i,j y
(D3a) x #i+1,j y → x #i,j y
(D3b) x #i,j+1 y → x #i,j y.

Here variables i, j, k run over N.

The goal now is to represent such an infinite labelled system R ∪Decr in such a
way that we can search systematically for a suitable RPO proving its termina-
tion. Before doing so first we say something about the search for
(quasi-)models.

As long as all basic interpretations are polynomials, checking whether this
interpretation is a model coincides with checking whether [$, α] = [r, α] for all
rules $ → r and all α. This is simply checking whether polynomials are equal.
Checking whether an interpretation is a quasi-model coincides with checking
whether [$, α] ≥ [r, α]; this can be done along the lines of the standard way of
checking for polynomial interpretations as described in [3,9].

In TPA as an initial step symbols of arity > 2 are transformed to a number
of binary symbols, so no symbols of arity > 2 occur anymore. Then in the basic
setting the functions used as interpretations for constant, unary and binary
symbols, respectively, are as follows2:

{0, 1}
{λx.0, λx.1, λx.x, λx.x+ 1, λx.max(0, x− 1), λx.2x, λx.7x}

{λx y.0, λx y.1, λx y.x+ y, λx y.x + y + 3, λx y.xy,
λx y.x, λx y.y, λx y.max(0, x− y), λx y.max(x, y), λx y.min(x, y)}

2 Note that, for technical reasons, TPA actually uses A = N \ {0, 1} not A = N hence
the actual functions being used are slight variants of those presented here.
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So we may also want to use non-polynomial functions like min or max. Check-
ing whether the required (in-)equalities hold is accomplished by first removing
min and max functions by simple case analysis and then using the standard
approach for polynomials.

Note however that while doing this case analysis we introduce side conditions,
just like in Example 2. For F being a polynomial over N in n variables a1, . . . , an

let us abbreviate ∀a1, . . . , an ∈ N.F (a1, . . . , an) > 0 by F > 0. So now the
problem of comparing polynomials is not to check whether F > 0, as in the
standard setting, but to check whether {Fi ≥ 0}i =⇒ F > 0 where the
premise is a set of side conditions introduced by case analysis. This problem is
undecidable as it is a generalization of polynomial comparison which is already
undecidable. TPA uses a very simple and naive approximation of this problem
and concludes {Fi ≥ 0}i =⇒ F > 0 only if F > 0∨ ∃i ∈ {1, . . . , n}.F −Fi > 0.
For instance comparison of function symbols ◦i,k and ◦j,k in rule (2a) may require
comparing polynomials i + k and j + k if the two indices of ◦ are added. For
that we have to use the side condition of this rule, i ≥ j. We cannot conclude
i + k ≥ j + k in general but by using the side condition and subtracting i
from the left hand side of this inequality and j from the right hand side we get
i+ k − i ≥ j + k − j which is trivially satisfied.

4 RPO for Infinite Labelled Systems

In this section we describe how RPO can be adapted to deal with labelled systems,
more precisely, for infinite systems over infinite signatures obtained by labelling
with natural numbers. In fact we do not change the definition of RPO, but we
restrict the search space for possible precedences on the labelled symbols in such a
way that this search can be automated and we have algorithms checking whether
constraints on the precedence give rise to a well-founded precedence or not.

First in 4.1 we present theoretical foundations of those results and then in 4.2
we discuss the algorithmic approach for searching for a precedence satisfying
given set of constraints.

4.1 Well-Foundedness of a Precedence

The final precedence ! we search for will be of the following shape:

Definition 1 (Precedence description). A precedence description consists
of:

– for every f ∈ Σ of arity n, φf : Nn → N (we will call those functions label
synthesis functions) and

– pd : Σ ×Σ → {⊥, >,≥,'}.
These ingredients give rise to the following relation !:

fk1,...,kn ! gl1,...,lm ⇐⇒ pd(f, g) = ' ∨
(pd(f, g) = ≥ ∧ φf (k1, . . . , kn) ≥ φg(l1, . . . , lm)) ∨
(pd(f, g) = > ∧ φf (k1, . . . , kn) > φg(l1, . . . , lm)).
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So pd(f, g) indicates when we can conclude fk1,...,kn ! gl1,...,lm with: ⊥ indi-
cating that this can never be the case; ' that it is always the case regardless
of the labels of f and g; and ≥ and > let us conclude fk1,...,kn ! gl1,...,lm if
φf (k1, . . . , kn) is, respectively, greater equal/strictly greater than φg(l1, . . . , lm).

Typically this relation ! will not be an ordering as it may not be transitive
but then it may be replaced by its transitive closure so by abuse of terminology
we will call it a precedence.

We need criteria under which in the above setting we can conclude well-
foundedness of !. If these criteria hold then termination of the labelled system,
and hence of the original TRS, can be concluded if $ !RPO r for all rules $→ r
in the labelled system. So our approach can be summarized as follows: collect
constraints on pd and the label synthesis functions φf from the requirement
that $ !RPO r for all rules $ → r, and then check whether this gives rise to a
well-founded precedence !.

This well-foundedness criterion is captured by the following theorem. A func-
tion pd : Σ ×Σ → {⊥, >,≥,'} gives rise to a precedence graph having Σ as its
node set, and having three kinds of directed edges:

– an unconditional edge from f to g if pd(f, g) = ', denoted by a double arrow
�� ;

– a strict edge from f to g if pd(f, g) = >, denoted by a single arrow �� ;
– a non-strict edge from f to g if pd(f, g) = ≥, denoted by a dotted arrow

�� ;

Theorem 1 (Well-foundedness of a precedence). In the above setting a
precedence description pd gives rise to a well-founded precedence ! if every cycle
in the corresponding precedence graph

(1) contains no unconditional edge, and
(2) contains at least one strict edge.

Proof. Suppose that the precedence is not well-founded. This means that there
is an infinite sequence fk1,...,kn ! gl1,...,lm ! . . .. Every step in this reduction
corresponds to an edge in the precedence graph. Since this sequence is infinite
it must traverse some cycle in the precedence graph (which is finite) infinitely
often. Every cycle contains only strict and non-strict edges due to (1), which
gives rise to the inequalities on φ functions as depicted below.

. . . �� f �� g �� . . .

. . . ≥ φf (k1, . . . , kn) ≥ φg(l1, . . . , lm) ≥ . . .

Due to (2) at least one of those inequalities is strict which gives rise to a de-
creasing weight along a cycle. Hence no cycle can be traversed infinitely often.
Contradiction, we conclude well-foundedness of !. )*

To make the approach feasible, but still applicable to interesting examples, it
is natural to restrict the choice for the label synthesis functions. In TPA the
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choice has been made to choose φ to always be identity for unary symbols. For
binary symbols φ is chosen to be one of the three functions: summation +, left
projection π1 and right projection π2. This set of synthesis functions may seem
quite restricted but it works reasonably well in practice whereas a bigger set
would lead to a bigger search space.

One of the constraints implied by the rule

λi(x) ◦i+1,j y → λi+j(x ◦i,j (1 #0,j (y ◦j,0 ↑)))

where i, j runs over the naturals, will be ◦i+1,j ! λi+j , for all i, j. Since φλ is fixed
to be the identity, according to the definition of ! this gives three possibilities:

1. pd(◦, λ) = ',
2. pd(◦, λ) = ≥ ∧ φ◦(i+ 1, j) ≥ i+ j for all i, j,
3. pd(◦, λ) = > ∧ φ◦(i+ 1, j) > i+ j for all i, j.

By re-using the algorithm for comparing polynomials it can be determined that
among the three possibilities for φ◦ cases 2 and 3 only hold if φ◦ = +, from which
case 3 is preferred since by Theorem 1 strict edges are preferred over non-strict
edges.

4.2 Algorithm for Computing a Well-Founded Precedence

In general for every pair (f, g) the RPO constraints will give rise to a list of
cases. Each case consists of a choice for pd(f, g) being ', ≥ or >, and in case
this is not ', also a choice for φf and φg. Now the question is whether for every
pair (f, g) a choice can be made in such a way that conditions of Theorem 1 are
satisfied so that this choice gives rise to a well-founded precedence. Note that for
every f ∈ Σ in a precedence there is a single, global function φf corresponding
to it. However in the search procedure we do not know what this φf should be
and hence during the search we allow using different functions for comparison
with different symbols and only at the end we conclude which one should be
chosen for every function symbol. We will express all those choices for φ and pd,
in, what we call, a precedence description scheme.

Definition 2 (Precedence description scheme). We define a precedence
description scheme as a function pds from pairs of function symbols to the set
of precedence description possibilities, more precisely,

pds(f, g) ⊆ {⊥} ∪ ({>,≥}× NNn × NNm

) ∪ {'}

where n is the arity of f and m arity of g.
We say that a precedence description ({φf}f∈Σ, pd) is compatible with a

precedence description scheme pds if:

∀f, g ∈ Σ .






pd(f, g) = ' =⇒ ' ∈ pds(f, g)
pd(f, g) = ≥ =⇒ (≥, φf , φg) ∈ pds(f, g)
pd(f, g) = > =⇒ (>,φf , φg) ∈ pds(f, g)
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Let us illustrate the notion of precedence description scheme on an example.

Example 3. Consider the labelled system from Example 2. A possible branching
of an application of RPO to that system gives the following sets of constraints for
respective rules; note that for ◦ a lexicographic left-to-right status is essential.

(1) {◦i+1,j > λi+j , ◦i+1,j > ◦i,j, ◦i+1,j > #0,j ,
◦i+1,j > 1, ◦i+1,j > ◦j,0, ◦i+1,j >↑}

(2a) {◦i,k > #i+k,j+k, ◦i,k ≥ ◦j,k} with i ≥ j
(2b) {◦j,k > #i+k,j+k, ◦j,k ≥ ◦i,k} with i < j
(3) {◦i+j,k = ◦i,j+k, ◦i+j,k > ◦j,k}

(D1) {λi+1 > λi}
(D2a) {◦i+1,j > ◦i,j}
(D2b) {◦i,j+1 > ◦i,j}
(D3a) {#i+1,j > #i,j}
(D3b) {#i,j+1 > #i,j}

Now with a finite set of label synthesis function, transformation of those con-
strains to a precedence description scheme can be easily accomplished. For in-
stance for pds(◦, #) we need to consider the following three constraints:

◦i+1,j > #0,j ◦i,k > #i+k,j+k with i ≥ j ◦j,k > #i+k,j+k with i < j

Given a finite set of label synthesis functions we can consider all possible com-
binations of synthesis functions for ◦ and # and analyze the resulting polynomial
constraints. In TPA the set of label synthesis functions for binary symbols con-
sists of π1, π2 and +. If ◦ always bigger than # then we trivially have those
inequalities, so ' ∈ pds(◦, #). For remaining conditional cases we easily observe
that only + is possible as a label synthesis function for ◦ whereas only projections
are allowed for #. We get (≥,+, π1) ∈ pds(◦, #) because (i + 1) + j ≥ π1(0, j),
i + k ≥ π1(i + k, j + k) and i < j =⇒ j + k ≥ π1(i + k, j + k). Similarly
(≥,+, π2) ∈ pds(◦, #). Continuing such analysis we end up with the following
precedence description scheme. For all f and g for which pds(f, g) is not listed
in the table below we have pds(f, g) = {⊥}.

pds(◦, 1) = {'} pds(◦, λ) = {(>,+, id),'}
pds(◦, ↑) = {'} pds(◦, #) = {(≥,+, π1), (≥,+, π2),'}
pds(◦, ◦) = {(>,+,+)} pds(λ, λ) = {(>, id, id)}
pds(#, #) = {(>,+,+)}

To summarize our approach: given TRS find an interpretation that is a
(quasi-)model and label the system. Now find a RPO termination proof for that
system. This proof gives rise to a number of constraints on precedence that can
be transformed to a precedence description scheme pds as in Example 3. Now our
task is to find a precedence that satisfies those constraints and is well-founded.
That is we are looking for a precedence description pd which is: (a) compatible
with pds and (b) satisfies conditions of Theorem 1.
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Before presenting an appropriate algorithm we first observe that a simpler
problem of finding any precedence description compatible with a given prece-
dence description scheme is NP-complete.

Theorem 2. Suppose at least three different φ functions are allowed. Then given
a precedence description scheme pds, the problem of finding a precedence descrip-
tion compatible with it is NP-complete.

Proof. Reduction to the 3-coloring problem of graphs; for details see [11]. )*

Before we present the algorithm let us put the problem in a more practical
light by discussing it in the context in which it occurs in TPA. As mentioned
before TPA uses precisely three different φ functions for binary symbols mean-
ing that we are on the border of conditions posted in Theorem 2. If it had
two the problem would correspond to 2-coloring which can be solved in poly-
nomial time. But we believe that all three functions are important and we do
not want to get rid of any of them. Moreover we are about to describe an
algorithm that in practice performs very well and takes negligible time in the
whole search procedure.

First let us observe that from the precedence description scheme pds we can
already determine the structure of the precedence graph for a precedence de-
scription pd compatible with pds. Let us note that due to the construction of
the precedence description scheme for any f and g we either have pds(f, g) = {⊥}
or ' ∈ pds(f, g) ∧ ⊥ /∈ pds(f, g). Now if pds(f, g) = {⊥} then we can simply
choose pd(f, g) = ⊥ and hence there is no edge from f to g in the precedence
graph. Otherwise f and g are connected with an edge although at this point we
do not know yet what is the type of this edge.

The key to get an efficient algorithm is the observation that we can detect
strongly connected components (SCCs) in the precedence graph and treat them
separately. Since precedence graphs are typically spare, meaning that SCCs are
small, by doing so we increase the efficiency greatly. Note that all the edges
between f and g belonging to different SCCs do not lie on any cycle and hence
cannot violate conditions of the Theorem 1. Thus they can safely be changed to
unconditional edges (as then ' ∈ pds(f, g)). On the other hand there cannot be
an unconditional edge connecting two nodes from the same SCC since all the
edges within SCC belong to some cycle, so all such options can be dropped from
the precedence description scheme.

So now we can localize further reasoning to a single SCC and we can limit to
strict and non-strict edges only. We still need to find φ functions for all function
symbols and the appropriate ordering of those symbols.

Firstly for all function symbols we compute their predecessors and successors
in the precedence graph:

INf = {g | pds(g, f) �= {⊥}, g in the same SCC as f}
OUTf = {g | pds(f, g) �= {⊥}, g in the same SCC as f}
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Now we can compute possible label synthesis functions for every function
symbol:

PSFf =
⋂

g∈OUTf

{φf | (≥ / >, φf , φg) ∈ pds(f, g)} ∩

⋂

g∈INf

{φf | (≥ / >, φg, φf ) ∈ pds(g, f)}

If for any f , PSFf = ∅ then we can finish with a negative answer. Otherwise
we refine ps in the following way:

pds′(f, g) := {(≥ / >, φf , φg) ∈ pds(f, g) | φf ∈ PSFf , φg ∈ PSFg}

We continue this procedure as long as there are some changes in the refinement
of pds. If at any point for any f and g, pds(f, g) = ∅ we finish with negative
answer. Hopefully we arrive at pds with all entries being singletons in which
case we have only one potential solution; otherwise we need to consider all the
possible choices. At the end we check whether condition (2) of Theorem 1 is
satisfied that is whether there are no cycles containing non-strict edges only.

For a more detailed summary of the whole procedure we refer the reader
to [11].

5 Practical Evaluation

The technique of semantic labelling with natural numbers has been implemented
in TPA. In Section 5.1 we discuss the role of this technique in TPA and in
Section 5.2 we discuss two examples.

5.1 TPA - Termination Proved Automatically

The results presented below come from the evaluation of TPA on the database
of 773 TRSs, which is used for the Termination Competition and is available at
the following address: http://www.lri.fr/∼marche/tpdb.

Semantic labelling with natural numbers is one of the techniques implemented
in TPA. For a recent version of the tool out of 432 successful proofs in 85 this tech-
niques has been applied. Moreover after semantic labelling with natural numbers
has been switched off32 of those systems could not be proven terminating anymore.

Another interesting experiment is the evaluation of the claim we made in
Section 4.2, namely that typically SCCs in the precedence graph are small and
hence the algorithm is efficient. For 115 systems for which semantic labelling
with natural numbers was applicable we calculated the size of the biggest SCC
occurring in the analysis of that system (note that often many different labellings
are tried resulting in many applications of the algorithm from Section 4.2). The
average of those values was less than 5 confirming the claim that in practice
SCCs are very small. Also the time spent on the execution of the algorithm
in question on average summed up to less than 1% of the total running time
of TPA.
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5.2 Examples

In this section we would like to finish our analysis of the SUBST system in-
troduced in Example 1 and also present one new example. We will show that
using our approach both those systems can be easily proved terminating. Indeed
TPA produces termination proof for them whereas, at the time being, no other
termination tool can deal with those systems.

Example 4. Let us continue with Example 3, where we presented a precedence
description scheme for this system. Below we depict the precedence graph cor-
responding to this scheme.

#�� �� ◦
��

λ ����

1
��

�������

�������
↑

��

�������

�������

Using algorithm from Section 4.2 we first observe that all nodes are in separate
SCCs. So first we replace all edges between different nodes by unconditional edges.
Then we are left with no choice and we end up with the following precedence:

pd(◦, λ) = '
pd(◦, #) = '
pd(◦, 1) = ' φ◦ = +
pd(◦, ↑) = ' φλ = id
pd(◦, ◦) = > φ� = +
pd(λ, λ) = >
pd(#, #) = >

which can be written down as:

◦i,j > λk for all i, j, k
◦i,j > #k,l for all i, j, k, l
◦i,j > 1 for all i, j
◦i,j >↑ for all i, j
◦i,j > ◦k,l if i+ j > k + l
λi > λk if i > k
#i,j > #k,l if i+ j > k + l

One can easily check that all the rules of the SUBST TRS can be oriented
using RPO with this precedence. This is also essentially the same solution as
presented in [13].

In the termination competition it is allowed that tool authors submit up to
5 TRS, the so-called secret problems. Those problems are then merged into
the main database and all the tools compete on them trying to prove their
termination. All 5 systems submitted by TPA in the 2005 competition could be
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proven terminating using semantic labelling with natural numbers and RPO and
for 4 of those systems TPA was the only tool that could prove their termination.
Below we present one of those systems. Please note that this is a very natural
TRS and not some artificial, cooked-up system.

Example 5. Consider the following TRS describing a GCD (Greatest common
divisor) computation in a straightforward way.

min(x, 0) → 0
min(0, y)→ 0

min(s(x), s(y)) → s(min(x, y))
max(x, 0) → x
max(0, y)→ y

max(s(x), s(y)) → s(max(x, y))
x− 0 → x

s(x) − s(y)→ x− y
gcd(s(x), 0) → s(x)
gcd(0, s(y))→ s(y)

gcd(s(x), s(y)) → gcd(max(x, y)−min(x, y), s(min(x, y)))

Consider the following interpretation of function symbols in N:

[s](x) = x+ 1 [0] = 0
[min](x, y) = min(x, y) [max](x, y) = max(x, y)

[−](x, y) = x [gcd](x, y) = x+ y

This interpretation is a quasi-model and after application of semantic labelling
it gives the following TRS:

mini,0(x, 0) → 0
min0,j(0, y)→ 0

mini+1,j+1(si(x), sj(y)) → sj(mini,j(x, y)) for i ≥ j
mini+1,j+1(si(x), sj(y)) → si(mini,j(x, y)) for i < j

maxi,0(x, 0) → x
max0,j(0, y)→ y

maxi+1,j+1(si(x), sj(y)) → si(maxi,j(x, y)) for i ≥ j
maxi+1,j+1(si(x), sj(y)) → sj(maxi,j(x, y)) for i < j

x−i,0 0 → x
si(x) −i+1,j+1 sj(y) → x−i,j y

gcdi+1,j+1(si(x), sj(y)) → gcdi−j,j(maxi,j(x, y)−i,j mini,j(x, y), for i ≥ j
sj(mini,j(x, y)))

gcdi+1,j+1(si(x), sj(y)) → gcdj−i,i(maxi,j(x, y)−j,i mini,j(x, y), for i < j
sj(mini,j(x, y)))

Termination of the union of the above rules and decreasing rules can be proved
with RPO. This time the description scheme leaves more choice for the label
synthesis functions for different symbols but again all nodes are in separate



Automation of Recursive Path Ordering 345

SCCs and our algorithm easily yields the following precedence description:

min
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φmin = π1
φmax = π1
φs = id
φ− = id
φgcd = +

which corresponds to the following well-founded precedence:

mini,j > mink,l if i > k gcdi,j > gcdk,l if i+ j > k + l
mini,j > sk for all i, j, k gcdi,j > mink,l for all i, j, k, l
maxi,j > maxk,l if i > k gcdi,j > sk for all i, j, k
maxi,j > sk for all i, j, k gcdi,j > maxk,l for all i, j, k, l
−i,j > −k,l if i > k gcdi,j > −k,l for all i, j, k, l

Another option to tackle this system would be to use predictive labelling [8].
Roughly speaking that would allow us not to give an interpretation for gcd sym-
bol and ignore the rules defining gcd while checking the quasi-model conditions.

6 Conclusions and Further Research

In this paper we presented a way of automating RPO extended to infinite sys-
tems. This allows its use for systems that were transformed using semantic la-
belling with natural numbers. We explained how the combination of those two
techniques can be employed for proving termination of rewriting and presented
examples where it is successful whereas all other techniques seem to fail. Our
description of automation makes it possible to use this technique in termination
tools. Finally we briefly described the way in which it has been implemented
and its evaluation in a termination tool TPA, developed by the first author.

Several extensions are possible. There is quite a lot of choice and questions that
arise while employing this technique: what functions to use for interpretations?
And for label synthesis functions? How to deal with case analysis and correspond-
ing extended problem of comparing polynomials? Those questions can be studied
further in order to make the most out of this technique. Another interesting is-
sue is investigation of combination of other standard techniques, like for instance
Knuth-Bendix order (KBO, [10]), with semantic labelling with natural numbers.

Acknowledgments

Authors would like to thank Gerhard Woeginger for his valuable ideas and re-
marks that contributed to the material presented in Section 4.2.



346 A. Koprowski and H. Zantema

References

1. The termination competition.
http://www.lri.fr/∼marche/termination-competition.

2. F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University
Press, 1998.

3. A. B. Cherifa and P. Lescanne. Termination of rewriting systems by polynomial in-
terpretations and its implementation. Sci. Comput. Program., 9(2):137–159, 1987.
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Abstract. Inspired by the Curry-Howard correspondence, we study
normalisation procedures in the depth-bounded intuitionistic sequent
calculus of Hudelmaier (1988) for the implicational case, thus strength-
ening existing approaches to Cut-admissibility. We decorate proofs with
terms and introduce various term-reduction systems representing proof
transformations. In contrast to previous papers which gave different ar-
guments for Cut-admissibility suggesting weakly normalising procedures
for Cut-elimination, our main reduction system and all its variations
are strongly normalising, with the variations corresponding to different
optimisations, some of them with good properties such as confluence.

1 Introduction

The sequent calculus G4ip (as it is called in [TS00]) for intuitionistic proposi-
tional logic was independently developed in [Hud89, Hud92] and [Dyc92]; see
also [LSS91]; it has the strong property of being depth-bounded, in that proofs
are of bounded depth and thus (for root-first proof search) no loop-checking is
required. This contrasts with other calculi for this logic such as Kleene’s G3ip,
where proofs can be of unbounded depth. Its essential ingredients appeared al-
ready in 1952 work of Vorob’ev, published in detail in [Vor70].

Its completeness can be shown by various means, either indirectly, using
the completeness of another calculus and a permutation argument [Dyc92],
or directly, such as in [DN00] where cut-admissibility is proved without ref-
erence to the completeness of any other sequent calculus. This admissibility
proof could be seen, via the Curry-Howard correspondence, as a weakly
normalising proof-reduction system. Developing this idea, this paper presents
a formulation of implicational G4ip with derivations represented by terms;
strong (instead of weak) normalisation is proved by the use of a multi-set path
ordering. Several variations, all of them being strongly normalising, are
considered.

The merits of G4ip for proof-search and automated reasoning have been dis-
cussed in many papers (see [ORK05] for some recent pointers; note its use of an
old name LJT for G4ip). However, a question that has been less investigated
is the following: what are the proofs expressed in G4ip and what is their se-
mantics ? Here we investigate operational, rather than denotational, semantics
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because it is more directly related to inductive proofs of cut-admissibility (such
as in [DN00]). Further work will investigate denotational semantics, by relating
these proofs and their reductions to the simply-typed λ-calculus.

This paper presents G4ip with a term syntax, so sequents are of the form
Γ ⇒ M :A where A is a type, M is a term and Γ is a consistent finite set of
“declarations” of the form x :B, where x is a variable and B a type. Results about
such sequents translate directly to results about traditional “logical sequents”.

Our approach to cut-elimination using terms differs from that in [DN00],
which showed (using logical sequents) first the admissibility of Contraction and
then the admissibility of “context-splitting” (or “multiplicative”) Cut. Given our
interest in term calculi, it is appropriate to use rather a “context-sharing” (or
“additive”) Cut; admissibility of Contraction then follows as a special case of
that of Cut.

To some extent, Matthes [Mat02] also investigated terms and reductions cor-
responding to cut-elimination in G4ip, with a variety of motivations, such as
that of understanding better Pitts’ algorithm [Pit92] for uniform interpolation.
His work is similar to ours in using terms to represent derivations; but it dif-
fers conceptually from ours by considering not the use of explicit operators for
the Cut-rule but the closure of the syntax under (implicit) substitution, as in
pure λ-calculus, where the general syntax of λ-terms may be regarded as the
extension of the normal λ-terms by such a closure. His reduction rules are global
(using implicit substitutions) rather than local (using explicit operators); strong
normalisation is shown for a subset of the reductions, but unfortunately not for
all that are required.

Structure of the Paper. The paper is organised as follows. Section 2 presents the
term syntax and typing rules of our calculus for G4ip and its auxiliary (admis-
sible) rules. Section 3 studies proof transformations and reduction rules of the
calculus. Section 4 shows a translation from the calculus to a first-order syntax
and Section 5 shows that every reduction step satisfies subject reduction and
decreases first-order terms associated to derivations with respect to a multi-set
path ordering, thus proving strong normalisation. In Section 6 we give different
variants for the reduction system introduced in Section 3, some of them being
confluent. Finally we conclude and give some ideas for further work. We refer
the reader to the full version [DKL06] of this paper for further details such as
complete proofs.

2 Syntax

2.1 Grammar

We assume we are given an infinite set of base types P (known as proposition
variables or atomic formulae in the logical interpretation) and an infinite set
of variables x. We consider the following grammars for types (also known as
formulae) and terms:
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Definition 1 (Grammar of Types and Terms)

A,B ::= P | A⊃B
M,N ::= x | λx.M | x(y, z.M) | x(u.v.M, z.N) |

inv(x, y.M) | of(M,x) | dec(x, y, z.M) | cut(M,x.N)

In this definition, the first line defines the syntax for types, the second gives the
syntax for normal or constructor terms (corresponding to primitive derivations)
and the third gives the extra syntax for auxiliary terms, which may be built
up using also the “auxiliary constructors” that appear in bold teletype font,
such as cut. Six of the eight term constructors use variable binding: in λx.M ,
x binds in M ; in x(y, z.M), z binds in M ; in x(u.v.M, z.N), u and v bind in
M and z binds in N ; in inv(x, y.M), y binds in M ; in dec(x, y, z.M), z binds
in M ; and in cut(M,x.N), x binds in N . Lack of space here does not allow
a formal treatment of variable binding using e.g. De Bruijn indices or nominal
logic [Pit03].

Barendregt’s convention is used to avoid confusion of free and bound variables,
and α-convertible terms are, as usual, regarded as identical.

Certain constraints on the use of the term syntax will be evident once we
present the typing rules; these constraints are captured by the following notion
of well-formed term:

Definition 2. A term L is well-formed if in any sub-term of the form

– x(y, z.M), we have x �= y, with x not free in M ;
– x(u.v.M, z.N), we have u �= v, with x not free in M and not free in N ;
– inv(x, y.M), we have x not free in M ;
– of(M,x), we have x not free in M ;
– dec(x, y, z.M), we have x �= y, with both of them not free in M .

Definition 3 (Ordering on (multi-sets of) types). The weight w(A) of a
type A is defined by: w(P ) = 1 for any base type P and w(A⊃B) = 1 + w(A) +
w(B). Types are compared by their weight, i.e. we say that A is smaller than B
iff w(A) < w(B).

We shall then compare multi-sets of types, equipped with the traditional multi-
set ordering [DM79, BN98], denoted <mul, generated by the order relation on
types.

The weight is chosen to ensure that, for every rule of the logical sequent calculus
G4ip, the multi-set of types appearing in the conclusion is greater than that of
each premiss. Hence, we say that G4ip is depth-bounded. See [Dyc92] or [TS00]
for details, and see the next section for the corresponding property in our version
of G4ip with terms.

2.2 Typing

A context Γ is a finite mapping from variables to types. The variable x is declared
in Γ when Γ (x) is defined. When we write a context in the form Γ, x :A (i.e. the
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extension of Γ with x �→ A), it is always implicit that x is not declared in Γ .
We denote by m(Γ ) the range (considered as a multi-set) of a context Γ .

A sequent consists of a context Γ , a term M and a type A; it is written
Γ ⇒ M :A.

The next definition adds term notation to the rules for implication of G4ip;
another view is that it shows how the untyped normal terms of the above gram-
mar may be typed.

Definition 4 (Typing Rules for Normal Terms)

Ax
Γ , x :A ⇒ x :A

Γ, x :A ⇒ M :B
R⊃

Γ ⇒ λx.M :A⊃B

Γ, y :A, z :B ⇒ M :E
L0⊃

Γ, x :A⊃B, y :A ⇒ x(y, z.M) :E

Γ , u :C, v :D⊃B ⇒ M :D Γ, z :B ⇒ N :E
L⊃⊃

Γ, x : (C⊃D)⊃B ⇒ x(u.v.M, z.N) :E

These rules only construct well-formed terms; e.g. the notation Γ , x :A⊃B, y :A
in the conclusion of L0⊃ forces x �= y and x to be not already declared in Γ
(hence not free in M).

These rules are the extensions with terms of the logical rules of G4ip
in [TS00] (note a slight difference of the L⊃⊃ rule from that of [Dyc92]), with
the variation that both in Ax and in L0⊃ the type A need not be atomic. In the
rules R⊃, L0⊃ and L⊃⊃ the types A⊃B,A⊃B and (C⊃D)⊃B respectively are
principal; in L0⊃ the type A is auxiliary. (This use of “auxiliary” is not to be
confused with its use in Definition 1 to describe certain kinds of term.)

Note that in every instance of a rule in Definition 4 with conclusion
Γ ⇒ M :A, each premiss Γ ′ ⇒ N :B is such that m(Γ ) ∪ A >mul m(Γ ′) ∪ B,
where ∪ denotes the union of multi-sets. As a consequence, given Γ and A, there
are finitely many derivations concluding, for some (normal) term M , the sequent
Γ ⇒ M :A.

Definition 5 (Typing Rules for Auxiliary Terms)

Γ, y :C⊃D ⇒ M :E
Inv

Γ , x :D ⇒ inv(x, y.M) :E

Γ ⇒ M :A⊃B
Of

Γ, x :A ⇒ of(M,x) :B

Γ, z : (C⊃D)⊃B ⇒ M :A
Dec

Γ , x :C, y :D⊃B ⇒ dec(x, y, z.M) :A

Γ ⇒ M :A x :A,Γ ⇒ N :B
Cut

Γ ⇒ cut(M,x.N) :B

These rules only construct well-formed terms; e.g. the notation Γ , x :A in the
conclusion of Inv forces x to be not declared in Γ and hence not free in M .

In the Cut-rule, we say that A is the cut-type. Derivations are built as usual
from the rules (Definitions 4 and 5). A derivation is normal if it uses only the
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primitive rules, i.e. those of Definition 4. The height of a derivation is just its
height as a tree; so a tree with one node has height 0.

We will occasionally find it necessary to rename free variables. The renaming
by the variable y of all the free occurrences of x in M , written {y/x}M , is
defined whenever y and x are distinct variables, M is a well-formed term and
y is not free in M . This is an implicit substitution rather than explicit (i.e. a
meta-notation rather than a term constructor). Renaming is sound with respect
to typing, as shown by the first of the two following results of admissibility, in
the standard sense [TS00].

Lemma 1. The following rules are admissible both in the system of normal
derivations and in the full system with auxiliary terms, with the proviso that
y �= x in the (Ren) rule. (We use dashed lines and parenthesize the names of the
rules to emphasise their admissibility in these systems.)

Γ , x :B ⇒ M :A
−−−−−−−−− − (Ren)
Γ , y :B ⇒ {y/x}M :A

Γ ⇒ M :A
−−−−−−−− (W )
Γ, y :B ⇒ M :A

Proof. Routine induction on the height of the derivation of the premiss. Some
swapping of bound variable names may be necessary. Note that the notation
Γ, y :B forces y to be not declared in Γ and hence not free in M . �

Remark 1. Note that for each proved sequent Γ ⇒ M :A there is a unique
derivation tree (up to renaming, in sub-derivations, of the variables bound in
M), which can be reconstructed using the structure of the term M that repre-
sents the proof (hence the notion of proof-term).

3 Proof Transformations and Reduction Rules

The starting point of this section is the admissibility in the logical sequent
calculus G4ip of the following inference rules (i.e. the logical counter-part of the
typing rules for auxiliary terms given in Definition 5):

Γ,C⊃D ⇒ E
Inv

Γ ,D ⇒ E

Γ ⇒ A⊃B
Of

Γ ,A ⇒ B

Γ, (C⊃D)⊃B ⇒ A
Dec

Γ ,C,D⊃B ⇒ A

Γ ⇒ A A,Γ ⇒ B
Cut

Γ ⇒ B

The admissibility of Inv and Of in G4ip can be proved, independently, by
induction on the heights of the derivations of the premisses. For the admissibility
ofDec and Cut we can use a simultaneous induction, the admissibility of one rule
being recursively used for the admissibility of the other. The measure now uses
the multi-set of types appearing in the unique premiss for Dec and in the second
premiss for Cut. In other words, the induction can be done on {{Γ, (C⊃D)⊃B,A}}
for Dec and on {{Γ,A,B}} for Cut.
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We do not include here the detail of these proofs of admissibility, because the
property turns out to be a consequence (Corollary 2) of our strong normalisation
result for our calculus with terms.

Indeed, the admissibility property means, in our framework with terms, that
a term M with auxiliary constructors inv, of, dec or cut can be transformed
into another term M ′ with the same type in the same context that does not use
these constructors.

This motivates the notion of term-irrelevant admissibility in a system with
terms:

Definition 6. A rule R is term-irrelevantly admissible in system S if, given
an instance with conclusion Γ ⇒ M :A and derivations in system S of its pre-
miss(es), there exists a derivation in S of Γ ⇒ M ′ :A for some term M ′.

Remark that this notion corresponds to the standard notion of admissibility
when term annotations are erased.

Moreover, the inductive arguments of admissibility above can be seen as weakly
normalising term reduction systems that specify how to eliminate the auxiliary
constructors inv, of, dec and cut.

The reduction systems, given hereafter, must satisfy the following properties:

1. A term containing an auxiliary constructor is reducible by these systems.
2. They satisfy the Subject Reduction property, i.e. preservation of typing.
3. They satisfy some termination property.

Concerning point 3, the weak normalisation property of these systems suf-
fices to prove the results of admissibility, and the proofs suggested above can
be expressed as a terminating innermost strategy for these reduction systems.
Nevertheless, we give in this paper reduction systems that are in fact strongly
normalising. While this might be inferred for the orthogonal systems that we
present in Section 6 (since weak innermost normalisation is equivalent to strong
normalisation for orthogonal first-order systems [O’D77]), the result is certainly
not so straightforward for the non-orthogonal ones. However, the measures for
induction mentioned above can be taken as part of a Multi-Set Path Ordering
[KL80, BN98] in order to conclude strong normalisation as well (see Section 4).

We give in Tables 1, 2 and 3 the reduction systems that eliminate the auxiliary
constructors of, inv and dec. All these rules that we call system oid will be part
of the different variants that we are going to introduce.

In order to reduce the cuts we now suggest a general system called cegs for
cut-elimination in Tables 4 and 5 (variants are presented in Section 6). The
whole system is called gs and contains the reduction rules in cegs (Tables 4 and
5) plus the ones in oid (Tables 1, 2 and 3).

Summing up :

Name of the System Reduction Rules
oid Tables 1, 2 and 3
cegs Tables 4, 5
gs oid ∪ cegs
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Table 1. Reduction Rules for of-terms

of(y, x) −→o1 y(x, z.z)
of(λy.M, x) −→o2 {x/y}M
of(y(z, w.N), x) −→o3 y(z, w.of(N, x))
of(y(u.v.M, w.N), x) −→o4 y(u.v.M, w.of(N, x))

Table 2. Reduction Rules for inv-terms

inv(x, y.z) −→i1 z
inv(x, y.y) −→i2 λz.x
inv(x, y.λz.M) −→i3 λz.inv(x, y.M)
inv(x, y.y(w, z.N)) −→i4 {x/z}N
inv(x, y.y(u.v.M, z.N)) −→i5 {x/z}N
inv(x, y.w(y, z.N)) −→i6 w(u.v.x, z.inv(x, y.N))
inv(x, y.y′(w, z.N)) −→i7 y′(w, z.inv(x, y.N))
inv(x, y.y′(u.v.M, z.N)) −→i8 y′(u.v.inv(x, y.M), z.inv(x, y.N))

Table 3. Reduction Rules for dec-terms

dec(x, y, z.w) −→d1 w
dec(x, y, z.z) −→d2 λv.v(x,w.y(w, u.u))
dec(x, y, z.λw.M) −→d3 λw.dec(x, y, z.M)
dec(x, y, z.w(u.v.M, w′.N)) −→d4 w(u.v.dec(x, y, z.M), w′.dec(x, y, z.N))
dec(x, y, z.w(y′, z′.M)) −→d5 w(y′, z′.dec(x, y, z.M))
dec(x, y, z.z(y′, z′.M)) −→d6 y′(x, z′′.y(z′′, z′.inv(z′′, y′.M)))
dec(x, y, z.x′(z, z′.M)) −→d7 x(u.v.v(x, z′′.y(z′′, w.w)), z′.dec(x, y, z.M))
dec(x, y, z.z(u.v.M, z′.N)) −→d8 cut({x/u}{y/v}M, y′.y(y′, z′.N))

Table 4. Cut Elimination Rules cegs (Kind1 and Kind2)

Kind1

cut(M, x.x) −→c1 M
cut(M, x.y) −→c2 y
cut(M, x.λy.N) −→c3 λy.cut(M, x.N)
cut(M, x.y(z,w.N)) −→c4 y(z,w.cut(inv(w, y.M), x.N))
cut(M, x.y(u.v.N ′, w.N)) −→c5 y(u.v.P, w.cut(inv(w, y.M), x.N))

where P = cut(dec(u, v, y.M), x.N ′)
cut(λz.M, x.y(x,w.N)) −→c6 y(u.v.P, w.cut(inv(w, y.λz.M), x.N))

where P = cut(u, z.dec(u, v, y.M))
cut(z, x.y(x,w.N)) −→c7 y(z,w.cut(z, x.N))
Kind2

cut(y(z,w.M), x.N) −→c8 y(z,w.cut(M, x.inv(w, y.N)))
cut(y(u.v.M ′, w.M), x.N) −→c9 y(u.v.M ′, w.cut(M, x.inv(w, y.N)))

As in most cut-elimination systems, the cut-reduction rules can be split into
three kinds (Kind1,Kind2,Kind3), according to whether they push cuts to the
right, to the left, or they break a cut into cuts on smaller types.



354 R. Dyckhoff, D. Kesner, and S. Lengrand

Table 5. Cut Elimination Rules cegs (Kind3)

Kind3

cut(M, x.x(z, w.N)) −→A cut(cut(z, y.of(M, y)), w.N)
cut(M, x.x(u.v.N ′, w.N)) −→B cut(P, w.N)

where P = cut(λu.cut(λz.inv(z, y.of(M, y)), v.N ′), y.of(M, y))

Here, owing to the particular inference rules of G4ip and the well-formedness
constraints they impose on terms, the first two kinds must use the auxiliary
constructs inv and dec, rather than just propagate the cuts.

For the third kind of cut-reduction rules, we usually expect both sub-proofs of
the cut to introduce the cut-type (on the right and on the left, respectively). In
particular, this requires the first argument of the cut-constructor to be a value,
i.e. a variable or an abstraction, with a functional type, i.e. an implication A⊃B.
However, just as any λ-term can be turned into a value by an η-expansion, here
any term can be turned into a value by the use of the of constructor, with the
following rule, which we also call η:

M −→η λx.of(M,x) if x /∈ FV (M)

Note that in both cases this is only sound with respect to typing if the type of
the original term is an implication.

Lemma 2. All rules of system gs are such that well-formed terms reduce to
well-formed terms.

Proof. Routine.

4 A First-Order Syntax for Typed G4ip-Terms

Termination of the above rewrite systems on typed terms will be proved by the
decrease of a measure associated to typing derivations. The latter are mapped
to a first-order syntax with the following infinite signature:

Σ = {#/0, I/1,K/2, J/1} ∪ {Dm/1,Cm/2 | m is a multiset of types}

where the notation f/n is used to say that the symbol f has arity n, and the
symbols have the following precedence relation:

Cn ! Dn ! · · · ! · · · ! Cm ! Dm ! J ! K ! I ! # if n >mul m

The precedence relation on symbols provides a Multi-set Path Ordering
8mpo (mpo) on first-order terms [KL80, BN98].

Remark 2.

1. The order on types (Def. 3) is well-founded, so >mul is well-founded [DM79].
2. The order >mul is well-founded, so ! is also well-founded.
3. The order ! is well-founded, so the Multi-Set Path Ordering 8mpo is also

well-founded.
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Derivations are mapped to this first-order syntax. In particular, since each
sequent Γ ⇒ M :A has at most one derivation, we write Γ ⇒ M :A for such a
translation, and even M when the context and type are clear from the text, as
in the right-hand sides of the following definition.

Γ, x :A ⇒ x :A = #

Γ ⇒ λx.M :A⊃B = I(M)
Γ, x :A⊃B, y :A ⇒ x(y, z.M) :E = I(M)
Γ, x : (C⊃D)⊃B ⇒ x(u.v.M, z.N) :E = K(M,N)
Γ, x :D ⇒ inv(x, y.M) :E = J(M)
Γ, x :A ⇒ of(M,x) :B = J(M)
Γ, x :C, y :D⊃B ⇒ dec(x, y, z.M) :A = Dk(Γ , z : (C⊃D)⊃B ⇒ M :A)

where k = {{Γ, (C⊃D)⊃B,A}}
Γ ⇒ cut(M,x.N) :B = Ck(Γ ⇒ M :A, x :A,Γ ⇒ N :B)

where k = {{Γ,A,B}}

Observe that M = {x/y}M for any renaming of M .

5 Subject Reduction and Strong Normalisation

In this section we show two fundamental properties of system gs. The first one
is subject reduction and it guarantees that types are preserved by the reduction
system. The second one is strong normalisation and it guarantees that there is
no infinite reduction sequence starting from a typed term. Strong normalisa-
tion is shown by a decreasing measure given by the Multi-Set Path Ordering of
Section 4.

Theorem 1. If Γ ⇒ L :E and L −→gs L′, then Γ ⇒ L′ :E and L8mpo L′.

Proof. By induction on the derivation of Γ ⇒ L :E. For brevity we show only
the most important case of rule B, which reduces cut(M,x.x(u.v.N, z.N ′)) to
cut(cut(λu.cut(λy′.inv(y′, y.of(M, y)), v.N), y.of(M, y)), z.N ′).

The derivation

. . .

Γ ⇒ M : (C⊃D)⊃B

. . .

u :C, v :D⊃B,Γ ⇒ N :D

. . .

z :B,Γ ⇒ N ′ :E
L⊃⊃

x : (C⊃D)⊃B,Γ ⇒ x(u.v.N, z.N ′) :E
Cut

Γ ⇒ cut(M,x.x(u.v.N, z.N ′)) :E

rewrites to

D
Γ ⇒ M ′ :C⊃D

. . .

Γ ⇒ M : (C⊃D)⊃B
Of

Γ , y :C⊃D ⇒ of(M, y) :B
Cut

Γ ⇒ cut(M ′, y.of(M, y)) :B

. . .

z :B,Γ ⇒ N ′ :E
Cut

Γ ⇒ cut(cut(M ′, y.of(M, y)), z.N ′) :E
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where M ′ = λu.cut(λy′.inv(y′, y.of(M, y)), v.N) and D is the following
derivation:

. . .

Γ ⇒ M : (C⊃D)⊃B
Of

Γ, y :C⊃D ⇒ of(M, y) :B
−−−−−−−−−−−−−−− (W )
Γ , u :C, y :C⊃D ⇒ of(M, y) :B

Inv
Γ , u :C, y′ :D ⇒ inv(y′, y.of(M, y)) :B

R⊃
Γ, u :C ⇒ λy′.inv(y′, y.of(M, y)) :D⊃B

. . .

u :C, v :D⊃B,Γ ⇒ N :D
Cut

Γ , u :C ⇒ cut(λy′.inv(y′, y.of(M, y)), v.N) :D
R⊃

Γ ⇒ λu.cut(λy′.inv(y′, y.of(M, y)), v.N) :C⊃D

Let k = {{(C⊃D)⊃B,Γ ,E}} and j = {{B,Γ,E}} and i = {{Γ,C⊃D,B}} and
h = {{C,D⊃B,Γ ,D}}. Since k >mul j, i, h, we have Ck ! I, J,Cj ,Ci,Ch and

L = Ck(M,K(N,N ′))8mpo Cj(Ci(I(Ch(I(J(J(M))), N )), J(M)), N ′) = L′

Full details can be found in [DKL06]. �

Corollary 1 (Strong Normalisation). System gs is strongly normalising on
typed terms.

Proof. This is a consequence of Theorem 1 and Remark 2. �

Corollary 2. Rules Inv,Of,Dec, and Cut are term-irrelevantly admissible in
the system of Definition 4.

Proof. Every term with an auxiliary constructor is reducible by system gs. �

6 Variants of Reduction Systems

We investigate in this section some variants of the cut-elimination system of
Section 3.

We discuss in Section 6.1 the rules of Kind3, noticing that the of-constructor
is only introduced by the reductions of gs in order to include η-conversion in the
system. We present two variations without η-conversion, called system rs and
system ars, that no longer use the of-constructor.

Without η-conversion, the only critical pairs of those variations are between
the rules of Kind1 and those of Kind2, so in Section 6.2, which only concerns rules
of Kind1 and Kind2, we present two ways of removing those critical pairs, i.e. of
making systems rs and ars orthogonal.

6.1 Avoiding the of-Constructor

In this section we remove η-expansion from the reduction system so that the of-
constructor is no more used by the cut elimination rules. We obtain two variants,



Strong Cut-Elimination Systems for G4ip 357

depending on whether we want variables to behave like their η-expansions or we
want the elimination of a cut with a variable to be simpler and closer to renaming.

The rules A and B of system gs (Table 5) introduce the of-constructor to
model η-expansion, turning the first argument of the cut into an abstraction.

Theorem 2. Rule A (resp. B) can be factorised into an η-expansion followed
by rule C (resp. D) below:

cut(λy.M, x.x(z, w.N)) −→C cut(cut(z, y.M), w.N)
cut(λy.M, x.x(u.v.N ′, w.N))

−→D cut(cut(λu.cut(λz.inv(z, y.M), v.N ′), y.M), w.N)
Proof.

Rule A: cut(M,x.x(z, w.N))
−→η cut(λy.of(M, y), x.x(z, w.N))
−→C cut(cut(z, y.of(M, y)), w.N)

Rule B: cut(M,x.x(u.v.N ′, w.N))
−→η cut(λy.of(M, y), x.x(u.v.N ′, w.N))
−→D cut(cut(λu.cut(λz.inv(z, y.of(M, y)), v.N ′), y.of(M, y)), w.N)

�

Note that the η-expansion of an abstraction reduces, by direct elimination of the
of, to the abstraction itself:

λy.M −→η λx.of(λy.M, x) −→o2 λx.{x/y}M =α λy.M with x /∈ FV (M)

This justifies the following theorem:

Theorem 3. Rules C and D can be respectively derived from rules A and B
using system oid.

Proof. Similar to Theorem 2. �

Similarly, direct elimination of the of-constructor is allowed by rule o1 in the
case of a variable (y −→η λx.of(y, x) −→o1 λx.y(x, z.z) with x /∈ FV (M)), so
this suggests that two rules E and F , treating the case of a variable, can also be
derived from rules A and B:

Theorem 4. The following rules E and F can be respectively derived from A
and B using system gs:

cut(y, x.x(z, w.N)) −→E y(z, w′.cut(w′, w.inv(w′, y.N)))
cut(y, x.x(u.v.N ′, w.N))−→F y(u′.v′.cut(u′, u.P ), w′.cut(w′, w.inv(w′, y.N)))

where P = dec(u′, v′, y.cut(λy′′.y(u.v.y′′, z.z), v.N ′))

Proof. Similar to Theorem 2. �

Now, by construction, rules E and F make variables have the same functional
behaviour as their η-expansion.
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Note also that the new rules C, D, E and F (together with rules c8 and c9)
can now replace any use of rules A and B, thus forming a system, called cers,
that is still complete for cut-elimination and makes no use of the of-constructor.
We show in Table 6 only the cut reduction rules of Kind3, in which cegs and
cers differ, the rules of Kind1 and Kind2 being the same. System cegs can thus
be seen as system cers to which η-expansion has been integrated by the use of
the auxiliary constructor of.

Table 6. Cut Elimination Rules in System cers (Kind3)

Kind3

cut(λy.M, x.x(z, w.N)) −→C cut(cut(z, y.M), w.N)
cut(λy.M, x.x(u.v.N ′, w.N))−→D cut(cut(λu.cut(λz.inv(z, y.M), v.N ′), y.M), w.N)
cut(y, x.x(z, w.N)) −→E y(z, w′.cut(w′, w.inv(w′, y.N)))
cut(y, x.x(u.v.N ′, w.N)) −→F y(u′.v′.cut(u′, u.P ), w′.cut(w′, w.inv(w′, y.N)))

where P = dec(u′, v′, y.cut(λy′′.y(u.v.y′′, z.z), v.N ′))

The behaviour of functionals is interesting in G4ip, because it is a depth-
bounded calculus: for instance, among all Church’s numerals only 0 and 1 can
be represented in G4ip. So when reducing the term that represents (using cuts)
“1 + 1”, we should expect some semantical anomaly in the reductions (which is
quite similar to the one reported by Vestergaard in [Ves99]). Such an anomaly is
to be found in rules B and D, and for abstractions we have no alternative choice.
However in system rs we have made the choice of making variables have the same
functional behaviour as their η-expansions, hence rule F inherits the anomaly.
But instead we might rather follow the intuition that cutting a variable with a
another variable is almost renaming, and replace rule F with a new rule G, thus
forming system cears presented in Table 7 (again we only show rules of Kind3,
but rules of Kind1 and Kind2 are the same as in cegs or cers). This new rule
is simpler and more natural than rule F ; however the reducts are semantically
different and thus the choice of rule G breaks the property that a variable and
its η-expansion have the same behaviour.

Table 7. Cut Elimination Rules in System cears (Kind3)

Kind3

cut(λy.M, x.x(z, w.N)) −→C cut(cut(z, y.M), w.N)
cut(λy.M, x.x(u.v.N ′, w.N))−→D cut(cut(λu.cut(λz.inv(z, y.M), v.N ′), y.M), w.N)
cut(y, x.x(z, w.N)) −→E y(z, w′.cut(w′, w.inv(w′, y.N)))
cut(y, x.x(u.v.N ′, w.N)) −→G y(u′.v′.cut(u′, u.P ′), w′.cut(w′, w.inv(w′, y.N)))

where P ′ = cut(v′, v.dec(u′, v′, y.N ′))

Since all the rules of system rs are derived from system gs, it is clear that the
former inherits from the latter the Subject Reduction property as well as the
Strong Normalisation of typed terms. However, for system ars, those properties
are not inherited, even if it is easy to check that rule G satisfies the Subject
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Reduction property and decreases with respect to the multi-set path ordering in
Section 4.

The systems presented so far in this paper can be summarised in the following
table:

of, inv and dec cut = (Kind1 + Kind2) + Kind3 Whole system
oid cegs = Table 4 + Table 5 gs
oid cers = Table 4 + Table 6 rs
oid cears = Table 4 + Table 7 ars

6.2 Orthogonal Systems

In this section we suggest two ways of restricting the rules of Kind1 and Kind2
to make systems rs and ars orthogonal, and hence confluent.

In the restricted systems gs and ars there are overlaps between the right
and left propagation sub-systems, i.e. there is a critical pair between any rule
in {c1, c2, c3, c4, c5} and any rule in {c8, c9}. This is shown in Table 8, where
column headers represent the different cases concerning the first premiss of the
cut, while row headers represent the different cases for the second one (marking
inside parentheses the status of the cut-type).

Table 8. Overlaps of reduction rules

Axiom R⊃ L0⊃ L⊃⊃
Axiom (Principal) c1 c1 c1, c8 c1, c9
Axiom (Non-Principal) c2 c2 c2, c8 c2, c9
R⊃ c3 c3 c3, c8 c3, c9
L0⊃ (Non-Principal, Non-Auxiliary) c4 c4 c4, c8 c4, c9
L⊃⊃ (Non-Principal) c5 c5 c5, c8 c5, c9
L0⊃ (Non-Principal, Auxiliary) c7 c6 c8 c9
L0⊃ (Principal) E C c8 c9

L⊃⊃ (Principal)
F (rs)

or G (ars) D c8 c9

The overlaps pointed out in Table 8 are well-known in sequent calculus, and
correspond to the choice of whether to push a cut into the proof of its left premiss
or into the proof of its right premiss. The former corresponds to a call-by-value
strategy and the latter corresponds to a call-by-name strategy.

Since the overlaps only concerns cut-reduction rules of Kind1 and Kind2, we
discuss in the following possible ways to make them non-overlapping.

Call-By-Name. One way to make the system orthogonal is to give preference
to rules c1-c2-c3-c4-c5 over rules c8-c9, thus restricted to the case when N is an
x-covalue Q, i.e. is of the form x(y, w.N) or x(u.v.M,w.N).

Note that in order to reduce a term like cut(M,x.y(x,w.N)), there is no choice
other than left-propagation (rules c8 and c9) until a similar redex is found in
which M is a value, and then only rules c6 or c7 can be applied.
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Call-By-Value. Alternatively, preference might be given to rules c8 and c9,
which we can formalise as restricting rules c1-c2-c3-c4-c5 to the case when M is
a value V (variable or abstraction).

The choice of call-by-value is more natural than that of call-by-name because
the two rules of right-propagation c6 and c7 only apply to cuts whose first argu-
ment is a value. This suggests that G4ip has an inherent call-by-value flavour,
echoing the idea that it is somehow based on the call-by-value sequent calculus
LJQ. Indeed, completeness of LJQ gives a short proof of the completeness of
G4ip [DL06].

We finish this section by stating the following property of cbn and cbv.

Theorem 5. Reduction systems cbn and cbv are confluent.

Proof. Systems cbn and cbv can be seen as particular orthogonal CRS, so they
enjoy confluence (see [vOvR94] for details). �

7 Conclusion

This paper defines various term calculi for the depth-bounded intuitionistic se-
quent calculus of Hudelmaier. Using standard techniques of rewriting, we prove
subject-reduction and strong normalisation for all of them, so Cut -admissibility
turns out to be a corollary. The cbn and cbv systems presented in this paper are
also orthogonal, which guarantees confluence (and uniqueness of normal forms).

Some relations between G4ip and other calculi for intuitionistic logic are
studied in [DL06]. Also, from our term calculi for G4ip, which use explicit
operators, we could extract term calculi with implicit operators (as in λ-calculus).
This would bring our calculus closer to that of Matthes [Mat02], and with a
strong normalising cut-elimination procedure. As mentioned in the introduction,
defining a denotational semantics for our calculi as well as investigating the
connexions with the simply-typed λ-calculus would reveal more properties of
the proofs in G4ip.
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Abstract. In this paper, we discuss a lightweight approach to eliminate
the overhead due to implicit type arguments during higher-order unifica-
tion of dependently-typed terms. First, we show that some implicit type
information is uniquely determined, and can therefore be safely skipped
during higher-order unification. Second, we discuss its impact in prac-
tice during type reconstruction and during proof search within the logical
framework Twelf. Our experimental results show that implicit type ar-
guments are numerous and large in size, but their impact on run-time is
between 10% and 20%. On the other hand optimizations such as elim-
inating the occurs check are shown to be crucial to achieve significant
performance improvements.

1 Introduction

In recent years, logical frameworks which support formalizing language specifi-
cations together with their meta-theory have been pervasively used in small and
large-scale applications, from certifying code [1] to advocating a general infras-
tructure for formalizing language meta-theory and semantics [2]. In particular,
the logical framework LF [6], based on the dependently typed lambda-calculus,
and light-weight variants of it like LFi [11] have played a major role in these
applications. While the acceptance of logical framework technology has grown
and they have matured, one of the most criticized points is concerned with the
run-time performance. To address this problem, we concentrate in this paper
on one of the most common operations in type reconstruction and proof search:
higher-order unification. In prior work, we have proposed to optimize higher-
order pattern unification by eliminating unnecessary occurs checks during proof
search [16]. This optimization leads to significant performance improvements
in many example applications. In this work, we consider a different optimiza-
tion where we skip some redundant implicit type arguments during unification.
Unlike our prior optimization which is restricted to proof search, skipping some
redundant type arguments during unification is a general optimization and hence
impacts not only the proof search performance, but also any other algorithm re-
lying on unification such as type-reconstruction, coverage checking, termination
checking etc. Our approach is light-weight in the sense that we do not translate
or change our internal representation of terms and types. This has the advantage
that it can be seamlessly incorporated into the current implementation of the
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Twelf system [14] and it can be easily compared to other existing optimizations.
Adapting this lightweight approach is not just a matter of practical engineering
convenience. A change to a different internal representation of terms impacts the
foundation of LF itself and it remains unclear whether other algorithms such as
mode, termination, and coverage checking would still remain correct.

Our work is motivated by Necula and Lee’s [11] observation that the amount of
implicit type arguments can be substantial when representing terms with a deep
dependent type structure. Their main concern [11] however was in compactly
representing terms in a fragment of LF called LFi by allowing some implicit
type arguments to be omitted. Reed [17] has proposed an extension of their idea
to full LF. In contrast, we are interested in investigating the run-time overhead
due to implicit type arguments during higher-order unification and its impact on
type reconstruction and proof search in logical frameworks. In an early empirical
study, Michaylov and Pfenning [7] have conjectured that the impact of redundant
types during run-time may be significant. This paper investigates this question in
theory and practice. The contributions of this paper are two-fold: 1) We identify
arguments which can be safely omitted during higher-order unification based on
a static analysis of the declared type of constants. This information is then taken
into account during run-time by looking up the relevant information for each con-
stant and exploiting it when unifying its arguments. We justify this optimization
theoretically using a contextual modal type theory. 2) We have implemented this
optimization as part of the Twelf system [14], and discuss its impact in practice.
Our experimental results show that although the size of redundant arguments is
large and there is a substantial number of them, their impact on run-time per-
formance is surprisingly limited (roughly 20% improvement). Our experimental
results also demonstrate that optimizations such as eliminating the occurs checks
are more important than previously thought. These results provide interesting
insights into efficient implementations of dependently typed systems in general,
and can provide guidance for future implementations.

The paper is organized as follows: First, we give an example to illustrate the
idea, and present some background on dependent type theory and type checking
algorithm. Our presentation follows ideas discussed in [10], where meta-variables
are first-class objects. Next, we present a formal algorithm which identifies re-
dundant type arguments and show the correctness of optimized higher-order
pattern unification where redundant type arguments are skipped. Finally, we
present experimental results and discuss related work.

2 Example: Translating Natural Deduction Proofs

To illustrate the problem of redundant arguments in dependently typed sys-
tems, let us consider the following example, where we translate natural de-
duction proofs into Hilbert-style proofs. We only consider a subset containing
rules for implication and universal quantification and provide an implementation
within the logical framework Twelf. Assuming o and i represent the type family
for propositions and individuals respectively, we declare implication and uni-
versal quantification as imp:o->o->o. and all:(i->o)->o. using higher-order
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abstract syntax. The judgment for natural deduction is then implemented via
a type family nd which is indexed by propositions. Following the judgements-
as-types principle, we define constants impi, impe, alli, and alle whose types
correspond to introduction and elimination rules for implication and universal
quantifiers.

nd: o -> type.
impi:(nd A -> nd B) -> nd (A imp B).
impe:nd (A imp B) -> nd A -> nd B.

alli:({a}nd A a) -> nd (all [x] A x).
alle:nd (all [x] A x) -> nd (A T).

The lambda-abstraction λx.M is denoted by [x] M and the dependent func-
tion type Πx:A1.A2 is represented as {x:A1}A2. Using higher-order abstract
syntax we have define the type of all:(i->o)->o. As a consequence, the con-
stant all takes a function as an argument. We typically use capital letters to
denote meta-variables (or schematic variables), while small letters denote ordi-
nary bound variables and meta-variables are assumed to be implicitly quantified
at the outside. For example, the type of impi is in fact {A:o}{B:o}(nd A ->
nd B) -> nd (A imp B). Following similar ideas, we define constants k, s, mp,
f1, and f2 for the Hilbert-style formulation.

hil: o -> type.
k : hil (A imp B imp A).
s : hil ((A imp B imp C) imp (A imp B) imp A imp C).
mp: hil (A imp B) -> hil A -> hil B.
f1: hil ((all [x] A x) imp (A T)).
f2: hil ((all [x] (B imp A x)) imp (B imp all [x] A x)).

Note that in the axiom f2 bound variable dependencies are crucial, since we are
only allowed to move the universal quantifier inside an implication iff the formula
B does not depend on the bound variable x. Next, we define the translation of
natural deduction proofs into Hilbert-style proofs using the type family hildn.
We refer the reader not familiar with representing derivations in the logical
framework LF to [13].

hilnd :hil A -> nd A -> type.
hnd k :hilnd k (impi [u] impi [v] u).
hnd s :hilnd s (impi [u] impi [v] impi [w] impe (impe u w) (impe v w)).
hnd mp:hilnd H2 D2 -> hilnd H1 D1 -> hilnd (mp H1 H2) (impe D1 D2).

The code only reflects the explicit arguments describing the natural deduc-
tion and Hilbert-style derivations respectively. To illustrate, consider the second
clause where we translate the Hilbert axiom s to a natural deduction derivation.
The correctness of this translation hinges on the underlying dependent type
structure and the translation hilnd takes in fact three arguments: the actual
proposition being considered, a constant k representing the Hilbert-style proof
and the natural deduction proof. Similarly, when we build the natural deduc-
tion derivation, we record how we instantiate the implication introduction and
elimination rules. This leads to the following explicit representation of the clause
hnd s, where we marked implicit type arguments X with brackets �X�.
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hilnd �((A imp (B imp C)) imp ((A imp B) imp (A imp C)))� (s �A� �B� �C�)
(impi �(A imp (B imp C))� �((A imp B) imp (A imp C))�
([u] impi �(A imp B)� �(A imp C)�
([v] impi �A� �C�

([w] impe �B� �C� (impe �A� �(B imp C)� u w) (impe �A� �B� v w))))).

When we execute this translation via a proof search interpretation, we must
unify a goal with a given clause head. This will involve unifying not only its
explicit arguments, but also all its implicit type arguments. In this paper, we
investigate how much type computation can be eliminated during unification,
and what its effect and impact is on run-time performance. We exploit and
make precise a simple idea that some of the implicit type arguments in a term
M are uniquely determined by the type of the object M and therefore may be
skipped during unification.

3 Contextual Modal Type Theory

In this section we present the foundation for logical frameworks. We will follow
our development in [10] where we present a contextual modal dependent type
theory with first-class meta-variables. The presentation exploits a recent pre-
sentation technique for logical frameworks due to Watkins et al. [18] in which
only canonical forms are well-typed. The key idea underlying is to introduce
hereditary substitutions which always yields terms in canonical form after the
substitution has been applied. In the object calculus, we distinguish between
atomic objects R and normal objects M . Meta-variables together with a me-
diating substitution σ are in this presentation first-class and denoted by u[σ].
They are declared in the modal context ∆ and carry their own context of bound
variables Ψ and type A. Note that the substitution σ is part of the syntax
of meta-variables. This eliminates the need of pre-cooking [4] which raises ex-
istential variables to the correct context. This is a conservative extension of
LF [6] so we suppress some routine details such as signatures. For a full exten-
sion of this fragment as a contextual dependent type theory we refer the reader
to [10].

Normal Kinds K ::= type | Πx:A.K Contexts Γ, Ψ ::= · | Γ, x:A
Atomic Types P, Q ::= a · S Modal Context ∆ ::= · | ∆, u::A[Ψ ]
Normal Types A,B ::= P | Πx:A.B Substitution σ ::= · | σ, M/x
Atomic Objects R ::= x · S | c · S | u[σ] · S Modal subst. θ ::= · | θ, M/u
Normal Objects M, N ::= λx. M | R
Spines S ::= nil |M ; S

Typing at the level of objects is divided into the following three judgments:

∆; Γ �M ⇐ A Check object M against canonical A
∆; Γ � R ⇒ A Synthesize canonical A for atomic object R
∆; Γ � S : A⇒ P Synthesize a canonical P by checking a spine S against type A
∆; Γ � σ ⇐ Ψ Check substitution σ against context Ψ
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The central idea is based on two observations: First, we can characterize
canonical forms via bi-directional type-checking. Second, we can formalize nor-
malization as a primitive recursive functional exploiting the structure of types
and objects. The key idea is to replace ordinary substitution operation with
one which will always yield a canonical term, i.e. in places where the ordinary
substitution operation would create a redex, we must make sure to normalize
during substitutions. In particular, when applying the substitution [M/x] to a
term x · S, we must apply the substitution [M/x] to the spine S, but we also
must reduce the redex (M · [M/x]S) which would be created, since it is not
meaningful in the defined setting. Since when applying [M/x] to the spine S, we
again may encounter situations which require us to contract a redex, the sub-
stitution [M/x] must be hereditary. We therefore call this operation hereditary
substitution. Before we discuss this substitution operation further, let us first
present the bi-directional type checking rules.

Check normal object M against type

∆;Γ, x:A �M ⇐ B

∆;Γ � λx.M ⇐ Πx:A.B

∆;Γ � R⇒ P ′ P = P ′

∆;Γ � R⇐ P

Synthesize atomic type P for atomic object R

∆;Γ � S : A⇒ P Σ(c) = A

∆;Γ � c · S ⇒ P

∆;Γ � S : A⇒ P Γ (x) = A

∆;Γ � x · S ⇒ P

(∆1, u::A[Ψ ], ∆2);Γ � σ ⇐ Ψ (∆1, u::A[Ψ ], ∆2);Γ � S : [σ]aΨ (A) ⇒ P

(∆1, u::A[Ψ ], ∆2);Γ � u[σ] · S ⇒ P

Synthesize atomic type P from spine S and type A

∆;Γ � nil : P ⇒ P

∆;Γ �M ⇐ A ∆;Γ � S : [M/x]aA(B) ⇒ P

∆;Γ � (M ;S) : Πx:A.B ⇒ P

Next we will describe the hereditary substitution operation. As we mentioned
above, we must carefully design it such that it also ensures that the result of
applying a substitution σ to a canonical object M yields again a canonical ob-
ject. We define hereditary substitutions as a primitive recursive functional where
we pass in the type of the variable we substitute for. This will be crucial in de-
termining termination of the overall substitution operation. If we hereditarily
substitute [λy.M/x](x ·S), then if everything is well-typed, x:A1 → A2 for some
A1 and A2 and we will write [λy.M/x]A1→A2(x · S) indexing the substitution
with the type of x. These will all be total operations since any side condition
can be satisfied by α-conversion. It is worth pointing out that it suffices for the
type annotation A of the substitution [M/x]A to be “approximately” correct1.

1 In [10] we define approximate types as dependent types where dependencies have
been erased. This is not necessary for the correctness of substitution, but it clarifies
the role of the type annotation of substitutions.
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The definition for [R/x]nP (M) is straightforward, and we omit it here, since
no redices will be produced. Instead we concentrate on the ordinary substitution
[M/x]nA(N) where potentially redices are created. We define substitution as a
primitive recursive functional [M/x]nA(N), and [M/x]rA(R). Similar operations
can be defined for [M/x]lA(S), [M/x]sA(σ), [M/x]gA(Γ ) and [M/x]aA(B).

[M/x]nA(λy.N) = λy.N ′ where N ′ = [M/x]nAN , y �∈ FV(M) and y �= x
[M/x]nA(R) = R′ where R′ = [M/a]rAR

[M/x]rA(c · S) = c · S′ where S′ = [M/x]lAS
[M/x]rA(x · S) = R where S′ = [M/x]lAS and R = reduce(M : A,S′)
[M/x]rA(y · S) = y · S′ if y �= x and S′ = [M/x]lAS
[M/x]nA(u[σ] · S) = u[σ′] · S′ where σ′ = [M/x]sAσ and S′ = [M/x]lA

The interesting case is when we substitute a term M for a variable x in the
term x ·S. As we outlined above, we need to possibly reduce the resulting redex
to maintain canonical forms. Hence we define the reduce(M : A,S) = R next.

reduce(λy.M : Πx:A1.A2, (N ;S)) = M ′′ where [N/y]nA1
M = M ′

and reduce(M ′ : A2, S) = M ′′

reduce(R : P, nil) = R
reduce(M : A,S) fails otherwise

Substitution may fail to be defined only if substitutions into the subterms
are undefined. The side conditions y �∈ FV(M) and y �= x do not cause failure,
because they can always be satisfied by appropriately renaming y. However,
substitution may be undefined if we try for example to substitute an atomic
term R for x in the term x · S where the spine S is non-empty. Similarly, the
reduce operation is undefined. The substitution operation is well-founded since
recursive appeals to the substitution operation take place on smaller terms with
equal type A, or the substitution operates on smaller types (see the case for
reduce(λy.M : A1 → A2, (N ;S))).

Hereditary substitution operations terminate, independently of whether the
terms involved are well-typed or not. The operation may fail, in particular if we
have ill-typed terms, or yield a canonical term as a result.

Theorem 1 (Substitution on Terms)

1. If ∆;Γ �M ⇐ A and ∆;Γ, x:A,Γ ′ � N ⇐ B and
[M/x]nAN = N ′, [M/x]aAB = B′ and [M/x]gA(Γ ′) = Γ ′′

then ∆;Γ, Γ ′′ � N ′ ⇐ B′.
2. If ∆;Γ �M ⇐ A and ∆;Γ, x:A,Γ ′ � R⇒ P and

R′ = [M/x]rAR, [M/x]aAP = P ′ and [M/x]gA(Γ ′) = Γ ′′

then ∆;Γ, Γ ′ � R′ ⇒ P ′.

Substitutions for meta-variables u are a little more difficult. Recall that meta-
variables u are always associated with a postponed substitution and u[σ] forms
a closure. As soon as we know which term u stands for we can apply σ to it.
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Moreover, because of α-conversion, the ordinary variables occurring in the
term M being substituted and the domain of σ may be different. As a result,
substitution for a meta-variable must carry a context, written as [Ψ.M/u]N
and [Ψ.M/u]σ where Ψ binds all free variables in M . This complication can be
eliminated in an implementation of our calculus based on de Bruijn indexes.

Finally, just as with ordinary substitutions we must be careful to only con-
struct canonical terms. In particular, when we substitute M into the term u[σ]·S
the resulting term [σ]M · S is not in canonical form. Hence similar to ordinary
hereditary substitutions we will define a primitive recursive functional for con-
textual substitutions which is indexed by the type of the contextual variable and
ensure that the result is always in normal form.

[[Ψ.M/u]]nA[Ψ ](λy.N) = λy.N ′ where N ′ = [[Ψ.M/u]]nA[Ψ ]N

[[Ψ.M/u]]nA[Ψ ](R) = R′ where R′ = [[Ψ.M/u]]rA[Ψ ](R)
[[Ψ.M/u]]rA[Ψ ](c · S) = c · S′ where S′ = [[Ψ.M/u]]rA[Ψ ]S

[[Ψ.M/u]]rA[Ψ ](x · S) = x · S′ where S′ = [[Ψ.M/u]]rA[Ψ ]S

[[Ψ.M/u]]rA[Ψ ](u[τ ] · S) = R where τ ′ = [[Ψ.M/u]]sA[Ψ ](τ), M
′ = [τ ′/Ψ ]nΨ (M)

S′ = [[Ψ.M/u]]lA[Ψ ](S) and reduce(M ′ : A,S′) = R

[[Ψ.M/u]]rA[Ψ ](v[τ ] · S) = v[τ ′] · S′ where v �= u, τ ′ = [[Ψ.M/u]]sA[Ψ ]τ

and S′ = [[Ψ.M/u]]lA[Ψ ]S

Applying [[Ψ.M/u]] to the term u[τ ] ·S will first apply [[Ψ.M/u]] to the closure
u[τ ]. This will yield the simultaneous substitution τ ′ = [[Ψ.M/u]]τ , but instead
of returning M [τ ′], it proceeds to eagerly apply τ ′ to M . Before τ ′ can be carried
out, however, it’s domain must be renamed to match the variables in Ψ , denoted
by τ ′/Ψ . In addition, the substitution [[Ψ.M/u]] must be applied to the spine S
yielding S′. Since the result M ′ ·S′ may not be canonical, we again must call the
reduce operation. Contextual substitutions are compositional, and contextual
substitution properties hold. We only show the one for normal terms but the
other can be stated similarly.

Theorem 2 (Contextual Substitution on Terms)
If ∆;Ψ �M : A and (∆,u::A[Ψ ], ∆′);Γ � N : B and
[[Ψ.M/u]]nA[Ψ ]N = N ′, [[Ψ.M/u]]aA[Ψ ]B = B′, and [[Ψ.M/u]]gA[Ψ ]Γ = Γ ′

then (∆,∆′);Γ ′ � N ′ : B′.

Remark 1. Although our theory allows for meta-variables u[σ] · S, it is often
convenient to require that meta-variables are lowered and their spine S is there-
fore empty. This optimization is based on the observation that meta-variables
u::(Πx:A1.A2)[Ψ ] must always be instantiated with λ-abstractions, because λ-
abstractions are the only canonical objects of function type. We can therefore
anticipate part of the structure of the instantiation of u and create a new vari-
able u′::A2[Ψ, x:A1]. Note that u′ has a simpler type, although a longer context.
In this way we can always lower existential variables until they have atomic
type, v::P [Ψ ]. As a consequence, the only occurrences of meta-variables are as
u[σ] · nil and we often abbreviate this term simply by writing u[σ]. Finally it
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is worth pointing out that any instantiation of u must be an atomic object R,
and applying a substitution [[Ψ.R/u]] to a term M will always directly yield a
canonical object.

Remark 2. Often it is convenient to refer to the pattern fragment [8,12]. We call
a normal term M an atomic pattern, if all the subterms of the form u[σ] · nil are
such that u::Q[Ψ ] and σ = y1/x1, . . . yk/xk where y1, . . . , yk are distinct bound
variables. This is already implicitly assumed for x1, . . . , xk because all variables
defined by a substitution must be distinct. Such a substitution is called a pattern
substitution. In addition, the type of any occurrence of u[σ] is atomic and we
will write Q for atomic types. Finally, we can show that pattern substitutions
and contextual substitutions commute [15].

To illustrate the use of meta-variables and ordinary variables, let us briefly re-
consider the previous example of translating natural deduction proofs to proofs
in Hilbert-style. Recall that bound variable dependencies are crucial when defin-
ing in f2:hil ((all [x:i] (B imp A x)) imp (B imp all [x:i] A x)), since we
are only allowed to move the universal quantifier inside an implication if the
formula B does not depend on the bound variable x. Our contextual modal type
theory, will give us an elegant way of distinguishing between meta-variables and
ordinary variables, and describing possible dependencies between them. We can
represent these clauses as follows: A, B, and T are meta-variables and will be
represented by contextual variables u, v, t.

f1: hil ((all λx.u[x/x’]) imp (u[t[·]/x’])).
f2: hil ((all λx.(v[·] imp u[x/x’])) imp (v[·] imp (all λx.u[x/x’]))).

Note that meta-variables u and v are associated with a substitution which
precisely characterizes their dependencies. Since v cannot depend on the bound
variable x, it is associated with the empty substitution. The instantiation for
meta-variable u on the other hand may refer to the bound variable x, which is
characterized by the associated substitution [x/x’]. In this example the type
of the constant f1 is not a higher-order pattern since it contains a subterm
u[t[·]/x’] where the substitution associated with the modal variable u is not
a pattern substitution. On the other hand the type of the constants f2 is a
higher-order pattern, since both meta-variable occurrences are patterns.

4 Synthesizing Spine Arguments from Types

As we saw in the previous section, typing proceeds in a bi-directional way where
the type of atomic objects is synthesized. The central idea behind bi-directional
type-checking is to distinguish between objects whose type is uniquely deter-
mined and hence can be synthesized and objects whose type we already know
and we may not be able to uniquely determine from the surrounding information
and hence need to be checked against a given type. In this section, we will take
a slightly different view. In particular, we ask what information in the object is
uniquely determined, if we know its type. For example in the rule for the object
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c · S we always synthesize the type P , by first looking up the type A of the
constant c and then inferring P from the spine S and the type A. Switching
perspectives we ask what information in the spine S can be synthesized if we
know the type A and its final target type P . In other words, we will think of the
object c ·S as a normal object and we can check it against a given type P . Intu-
itively, we can always recover argument Mi occurring in a spine S if [Mi/xi]P is
injective in the argument Mi. Therefore some information already present in P
is duplicated in S. Hence we will target the rule for checking a term c ·S and the
rules for type checking spines. In particular, we will introduce a new judgment
which says that we can synthesize a substitution θ by checking a canonical P
against the type A and a spine S:

∆;Θ;Γ � S : A⇐ P/θ

The context Θ characterizes the holes in the type A which can be uniquely
inferred from target type P . θ is a contextual substitution with domain Θ. Holes
are described by meta-variables and we will ensure that only A can refer to these
meta-variables characterized by Θ. Hence we will replace the rule for synthesizing
an atomic type P for c · S with the following rule which checks c · S against an
atomic type P .

∆; ·;Γ � S : A⇐ P/· Σ(c) = A

∆;Γ � c · S ⇐ P

Next, we show the rules for synthesizing a substitution θ by checking the spine
S and the type A against the atomic type P .

∆; Θ; Γ � P
.= P ′/θ

∆; Θ; Γ � nil : P ′ ⇐ P/θ

∆; Θ; Γ � strict (x,B) ∆; Θ, u::A[Γ ]; Γ � S : [u[idΓ ]/x]aA(B)⇐ P/(θ, Γ.M/u)

∆; Θ; Γ � (M ; S) : Πx:A.B ⇐ P/θ

∆; Θ; Γ �� ( strict (x,B) ∆; Γ �M ⇐ [[θ]]aΘ(A) ∆; Θ; Γ � S : [M/x]aA(B)⇐ P/θ

∆; Θ; Γ � (M ; S) : Πx:A.B ⇐ P/θ

Assume S = M1; . . . ;Mn; nil, A = Πx1:A1. . . .Πxn:An.P
′, and atomic type

P . Then for every xi where xi occurs strict in P ′, we can retrieve Mi from P . θ
will exactly keep track of those Mi which we can synthesize from P . When we
encounter Πxi:Ai.B where xi is strict in the target type of B, we will introduce
a fresh meta-variable u which will later be instantiated by higher-order pattern
matching Note that the criteria of xi being strict in P is crucial because only
for those xi can we ensure that higher-order pattern matching will find a unique
instantiation.

If u occurs strict in the target type of [u[idΓ ]/x]aA(B) and u occurs as a
higher-order pattern, then we can always reconstruct M , the information which
is present in the spine (M ;S). Otherwise, we will continue to type check the spine
S and infer an instantiation for all the meta-variables occurring in Θ. Next, we
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can show that the new type-checking algorithm which skips over some elements
is correct. The crucial lemma needed is the following:

Lemma 1

1. If ∆;Θ;Γ � S : B ⇐ P/θ then ∆;Γ � S : [[θ]]aΘB ⇒ P
2. If ∆;Γ � S : [[θ]]aΘB ⇒ P then ∆;Θ;Γ � S : B ⇐ P/θ.

The type A of a constant c determines therefore which arguments in the spine of
the term c ·S can be omitted. Therefore, we generate a simple binary recipe from
the type A which is associated with the constant c. Let A = Πx1:A1 . . . xn:An.P .
If xi occurs strict as a higher-order pattern in P , then we record 0 at the i-th
position in the recipe b. If xi does not occur strict as a higher-order pattern in P ,
then we record 1 at the i-th position in the recipe b. Consider the constant f1:hil
((all λx.u[x/x’]) imp (u[t[·]/x’])). The type has one occurrence of the
meta-variable u which is not a pattern, namely u[t[·]/x’]. As a consequence,
every time we encounter a term of type P with head f1, we must also consider
the instantiations for u and t, because their instantiation cannot be uniquely
determined from the type P . The recipe associated with f1 is therefore 11. On
the other hand the type of constant f2 only contains occurrences of the meta-
variable u which are higher-order patterns. If we encounter a term of type P
with head f2, we can uniquely recover the instantiations for u and v. The recipe
associated with f2 will be 00.

We will then modify higher-order unification as follows: when we are unifying
two terms c · S and c · S′, we will first lookup the recipe b associated with c,
and then unify the spines S and S′ taking into account the recipe b. If the i-th
position in the recipe lists 0 then the i-th position in the spine S and S′ will
be skipped. If the i-th position in the recipe lists 1 then the i-th position in the
spine S and S′ must be unified. Crucial to the correctness of this optimization
is the fact that the synthesized modal substitution θ is uniquely determined by
the target type P and the type of the spine A.

Lemma 2. If ∆;Θ;Γ � S : A⇐ P/θ and ∆;Θ;Γ � S′ : A⇐ P/θ′ then θ = θ′.

Therefore, we already know that the spine S and S′ agree on some of its argu-
ments, and those arguments must not be unified..

5 Experimental Evaluation

The optimization of skipping some redundant type arguments during higher-
order unification is a general optimization which can affect any algorithm relying
on it. In this section, we discuss the impact of unifying redundant type arguments
during proof search and report on our experience in type reconstruction. All
experiments are done on a machine with the following specifications: 3.40GHz
Intel Pentium Processor, 1024 MB RAM. We are using SML of New Jersey 110.55
under the Linux distribution Gentoo 16.14. Times are measured in seconds. For
the timing analysis, we have done five runs, and we report on the average over
these runs as well as the standard deviation observed.
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5.1 Proof Search

Unification is a central operation during proof search and its performance di-
rectly impacts the overall run-time performance. In previous work [16], we in-
vestigated optimizing higher-order pattern unification by linearizing terms and
delaying the occurs check together with other expensive checks concerning bound
variable occurrences. This optimization is called linear head compilation, since
the head of a logic programming clause is translated into a linear term and
constraints during compilation. This optimization can only be exploited during
proof search since it relies on the fact that the meta-variables in the head of
a clause and the meta-variables in the query are distinct. Here, we will first
compare the impact of eliminating the need to unify redundant type arguments
when no optimization of unification is done. Next, we will compare it to linear
head compilation, and finally we will report results of combining linear head
compilation with eliminating the need to unify redundant type arguments.

Labeling of table: The first column NO describes the runtime in seconds when
no optimization is done to unification. The second column TE describes the
runtime when we skip redundant type arguments. LH describes the time using
linear head compilation, and TELH gives the time when we combine linear head
compilation with skipping redundant type arguments. The column #op refers to
the number of skipped arguments during unification, and the column Av(size)
refers to the average size of the omitted arguments.

Compiler translations for MiniML. We consider some examples from compiler
verification [5]. When given an evaluation of some programs using a big-step
semantics, we translate this evaluation to a sequence of transitions on an abstract
machine and vice versa. The implicit type arguments denote the actual program
being evaluated, and hence depending on the size of the program, this may be
large. The standard deviation on the reported examples was less than 1%.

The first set of examples uses a continuation based machine, and the example
programs being translated are simple programs involving multiplication, addi-
tion, square, and minus.

CPM – Proof search
NO TE LH TELH no-te no-lh lh-telh #op Av(size)

addMin1 134.61 133.32 12.26 12.21 1% 91% 0% 829 31.02
square4b 779.55 766.23 153.62 121.73 2% 80% 21% 488 28.20
squmin3a 435.52 423.91 69.92 62.10 3% 84% 11% 1128 33.74
squmin4a 743.83 622.08 140.03 130.21 16% 81% 7% 1496 30.75

Unifying redundant type arguments has limited impact on the overall perfor-
mance compared to no optimization. The last example shows an improvement
by 16%. This can be substantial if we consider the absolute runtime. However, in
many cases, the improvement is almost negligible given the standard deviation
of 1%. The results clearly demonstrate that linear head optimization is crucial
to achieve good performance. Redundant type elimination combined with linear
head compilation, can give an additional improvement between 0% and 21%.
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In our examples many redundant type arguments were skipped (up to 1496),
the average size of the skipped argument was around 30 constructors, and the
maximum size of argument skipped was 185. Given this set-up, we expected a
much stronger impact on run-time performance. We believe that the reason for
the limited impact is that at the time when we need to unify redundant type
arguments they are syntactically equal. This means it is very cheap to unify two
arguments which are already syntactically equal.

The second set of examples uses a CLS abstract machine. Examples are similar
to the CPM machine involving programs with addition, multiplication, square
and minus. We are interested in translating evaluations of terms to reductions of
their de Bruijn representation. Since de Bruijn representations can be very large
in size, our examples exhibit very large redundant arguments. On average the
size of omitted arguments was up to 549.38, and the maximum size of omitted
argument was 75218. In the examples considered there was also a substantial
number of omitted terms (up to 6219). If the time limit of 3h had been exceeded
and no solution was found, this is indicated by – in the table below.

CLS – Proof search
NO TE LH TELH no-te no-lh lh-telh #op Av(size) max

cls01 4044.18 3821.47 1.94 1.72 5.51% 99.95% 11.48% 1875 121.90 240
cls02 – – 30.29 23.67 – – 21.87% 1852 214.30 596
cls03 4450.01 4417.17 1.35 1.20 0.74% 99.97% 11.19% 1741 121.90 240
cls04 – – 482.61 413.28 – – 14.36% 6219 549.38 75218

Again there is almost no impact of skipping redundant arguments when we
compare it to no optimization at all. Linear head optimization is however cru-
cial to execute some examples. If we combine skipping over redundant type
arguments with linear head optimization, we can see an additional improvement
between 8% and 22%.

Translating classical proofs into cut-free proofs. The next few examples exploit a
translation of proofs in classical logic into cut-free sequent calculi proofs. Relative
standard deviation was up to 2.7%.

Cut-elimination – Proof search producing cut-free proofs
NO TE LH TELH no-te no-lh lh-telh #op Av(size)

ndcf01 13.26 13.16 6.39 6.22 1% 52% 3% 97687 1.305
ndcf02 30.24 29.65 17.16 15.45 2% 43% 10% 264387 7.15

Due to space constraints, we only show here two significant examples. Al-
though there may be many redundant type arguments (up to 264,387) their size
may not be very large, and their impact on runtime behavior is limited.

Summary of results. Redundant type arguments occur often as we can see by the
large number of arguments skipped and they are substantial in size. Their impact
on runtime in the current Twelf implementation ranges up to 20% especially if
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we combine it with linear head compilation. Surprisingly optimizations such as
linear head compilation are crucial to overcome some performance barriers, even
in examples with a deeply nested dependent type structures.

5.2 Type Reconstruction

Higher-order unification does not only play an important role during proof
search, but is used in many algorithms, such as type reconstruction, termination,
and totality checking. Skipping redundant type arguments during unification
therefore impacts these algorithms.

We have experimented with a wide variety of type reconstruction examples,
from Kolmogoroff proof translation, Hilbert-style proof translations, typed as-
sembly language [3]. Similar to proof search, we observe that although there is
quite a large number of redundant implicit type arguments (< 1488) in some
of these test-suites), the impact on the performance during type reconstruc-
tion is up to 13% on our examples. In the CPM compilation examples for
example, we observe between 2% and 13% runtime improvement, The maxi-
mum size of omitted argument was 159, and the average size was between 13.37
and 32.33.

6 Related Work

J. Reed [17] investigates a bi-directional type checking algorithm for the log-
ical framework LF where some implicit type arguments can be omitted. The
motivation for his work is to compactly represent proofs and check them.
However the price is a complicated meta-theory, and a different dependently
typed lambda calculus where some terms are explicitly annotated with types.
The motivation of his work lies in generalizing Necula and Lee’s work on
compact proof representations to the full power of dependent types. If we would
want to adopt his approach as a foundation for optimizing unification, proof
search and type-reconstruction, we would need to abandon our current
representation of terms. This could be not only a bothersome and daunting
engineering task, but it is also not clear whether other algorithms such as
mode, termination, and coverage checking would still continue to work on this
variant of LF. In contrast, we propose a lightweight approach which does not
impact our foundations itself, but can be employed locally to optimize
unification.

Although the problem of index arguments is due to the dependent type struc-
ture of LF, a similar problem arises in λProlog due to polymorphism [9]. A
similar criteria as the one described in this paper, has been exploited by Na-
dathur and Qi [9] in recent work on optimizing λProlog. They explore optimiza-
tions such as eliminating typing annotations at lambda-labels and some implicit
type arguments due to polymorphism within the WAM for λProlog. However,
their proposal does not provide a high-level justification for this optimization
and no experimental comparison or discussion is given how much impact these
optimizations have in practice.
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7 Conclusion

We have presented a lightweight approach to eliminate overhead of redundant
type information during unification. We have presented a clean theoretical foun-
dation for it based on contextual modal types, and evaluated the impact of
redundant type arguments in practice. Although redundant arguments arise fre-
quently and they are large in size, their impact on run-time is in the current Twelf
implementation between 10% and 20%. This may seem surprising at first, since
it is commonly believed that redundant type arguments can yield up to a fac-
tor of two improvement. Our experimental results however seem to indicate that
unifying two arguments which are syntactically the same is very cheap. A few in-
teresting lessons we have learned from this work is that we have underestimated
the impact of linearization and delaying the occurs check during unification and
proof search. Linearization allows for quick failure, and more importantly re-
duces the overhead of trailing during runtime, which can substantially improve
the performance. As our results indicate, the size of omitted arguments is in fact
substantial, and reducing the overall size of terms may yield better run-time
performance, since most computation seems to be memory bound. This seems
to suggest that generating compact representations of terms for proof search
may be desirable in order to improve performance. On the other hand, choosing
a different more compact representation of terms as a basis of the implemen-
tation could be a bothersome and daunting engineering task. In addition, it is
also not clear whether other algorithms such as mode, termination, and coverage
checking would still continue to work on this dependently typed variant of LF.
Nevertheless, it may be worthwhile to consider a compact term representation
if a system is newly designed and is specialized towards proof search.

References

1. Andrew Appel. Foundational proof-carrying code. In J. Halpern, editor, Pro-
ceedings of the 16th Annual Symposium on Logic in Computer Science (LICS’01),
pages 247–256. IEEE Computer Society Press, June 2001.

2. B. Aydemir et. al. Mechanized metatheory for the masses: The poplmark challenge.
In J. Hurd and T. F. Melham, editors, Eighteenth International Conference on
Theorem Proving in Higher Order Logics (TPHOLs), Oxford, UK, August, volume
3603 of Lecture Notes in Computer Science(LNCS), pages 50–65. Springer, 2005.

3. Karl Crary and Susmit Sarkar. Foundational certified code in a metalogical
framework. In F. Baader, editor, 19th International Conference on Automated
Deduction, Lecture Notes in Artificial Intelligence (LNAI) 2741, pages 106–120.
Springer-Verlag, July 2003.
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Abstract. We present DFOL, an extension of classical first-order logic
with dependent types, i.e., as in Martin-Löf type theory, signatures may
contain type-valued function symbols. A model theory for the logic is
given that stays close to the established first-order model theory. The
logic is presented as an institution, and the logical framework LF is used
to define signatures, terms and formulas. We show that free models over
Horn theories exist, which facilitates its use as an algebraic specifica-
tion language, and show that the classical first-order axiomatization is
complete for DFOL, too, which implies that existing first-order theo-
rem provers can be extended. In particular, the axiomatization can be
encoded in LF.

1 Introduction and Related Work

Classical first-order logic (FOL) and its variations are folklore knowledge. Lots
of variations classify the elements of a model into different sorts, e.g., many-
sorted or order-sorted FOL. Type theory may also be viewed as an extension
of FOL, introducing function sorts. Further extensions of type theory include
type operators, type polymorphism and dependent types. All these extensions
have varying advantages and disadvantages and various implementations exist.
Surprisingly, not much work has been undertaken to extend FOL with just de-
pendent types.

PVS ([ORS92]) is a classical verification system that extends simply-typed
higher order logic with dependent function, record and product types and other
concepts. Its type system is undecidable, and a set theoretic semantics for an
idealized language exists ([OS97]). Coq ([BC04]), Nuprl ([CAB+86]) and LF
([Pfe01]) implement Martin-Löf’s intuitionistic type theory with dependent types
([ML74]); while the first two add further concepts and are directed at general
mathematics, the main purpose of LF is the specification of logics. A seman-
tics for Martin-Löf type theory was introduced in [Car86], where also algebraic
theories are treated. It was linked with locally cartesian closed categories as
analogues of FOL structures in [See84] (see also [Hof94] and [Dyb95] for related
approaches). However, these concepts are mathematically very complex and not
tightly connected to research on theorem proving. Neither are they easy to spe-
cialize to FOL, even if intuitionistic FOL is used.
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We could only locate one attempt at combining FOL with just dependent
types ([Mak], never published), which is mainly directed at studying equivalence
of categories. It adds connectives and quantifiers to the treatment in [Car86]
and gives an axiomatization, but does not allow general equality and function
symbols (without which dependent types are significantly less interesting). Their
type hierarchy is similar to ours, but the chosen notation is completely different
from the usual one.

Our motivation in defining DFOL is to add as little as possible to FOL, keeping
not only notation and intuition but also the results and applications. Thus,
both researchers and implementations can use DFOL more easily. Therefore,
we deliberately dispense with one feature of dependent types, namely circular
dependencies, which greatly simplifies the model theory while hardly excluding
interesting applications.

DFOL is presented as an institution. Institutions were introduced in [GB92]
as a unifying concept for model theory. Examples for institutional definitions of
logics are OBJ ([GWM+93]) and Maude ([CELM96]). The syntax of DFOL is
presented directly in LF (see [HST94] for other logic specifications in LF) be-
cause even in our special case the inherent complexity of dependent types makes
any independent introduction inconvenient. We introduce DFOL in section 2,
sections 3 to 5 treat free models, axiomatization and examples.

2 Syntax and Semantics

2.1 Preliminary Definitions

Institutions. An institution is a tuple (Sig, Sen,Mod, |=) where Sig is a cate-
gory of signatures; signature morphisms are notation changes, usually mappings
between the symbols of the signatures; Sen : Sig → Set is a functor that as-
signs to each signature its set of formulas and with each signature morphism the
induced formula translation; Mod : Sig → Catop is a functor that assigns to
every signature its category of models, and with every signature morphism the
induced model reduction; and for every signature Σ, the satisfaction relation
|=Σ ⊆ |Mod(Σ)| × Sen(Σ) between models and sentences determines truth.
Institutions must satisfy the satisfaction condition which can be paraphrased as
”Truth is invariant under change of notation.”. We refer to [GB92] for a thorough
introduction.

LF. The logical framework LF and its implementation Twelf ([Pfe01], [PS99])
implement Martin-Löf type theory ([ML74]). LF will be used as a meta-language
to define the syntax of DFOL. An LF signature1 consists of a sequence c : T of
declarations, where c is a new symbol, and T is its type, which may depend on
the previously declared symbols. T is of the form Π x1 :T1. . . . .Π xn :Tn. Tn+1,
which means that c is a function symbol taking arguments of the types T1, . . . , Tn,
called x1, . . . , xn, and returning an argument of the type Tn+1; dependent types
means that xi may occur in Ti+1, . . . , Tn+1. If Tn+1 = type, c is not a function
1 Readers familiar with LF will notice that our introduction is highly simplified.
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symbol but returns a new dependent type for every argument tuple. If x does
not occur in B, Π x :A. B is abbreviated by A→ B.

To illustrate this, look at the signature ΣB which represents our meta-
language:

S : type. Univ : S → type. o : type.
true, false : o. ∧ , ∨ , ⇒ : o → o → o. ¬ : o → o.
∀, ∃ : Π S :S. (Univ S → o) → o.

.=: Π S :S. Univ S → Univ S → o.

In this signature, S is a type, the type of sorts declared in a DFOL signature.
Univ is a dependent type family that returns a new type for each sort S, namely
the type of terms of sort S; models will interpret the type Univ S as the universe
for the sort S. o is the type of formulas. The remainder of the signature encodes
the usual grammar for FOL formulas. Higher-order abstract syntax is used, i.e.,
λ is used to bind the free variables in a formula, and quantifiers are operators
taking a λ expression as an argument.2 Quantifiers and the equality symbol take
the sort they operate on as their first argument; we will omit this argument if
no ambiguities arise. When we refer to sorts, terms or formulas, we always mean
objects with the respective type that do not contain any lambda abstractions
except for those preceded by quantifiers.

A context for a signature Σ is a sequence of typed variables x : Univ S, where
previously declared variables and symbols declared in Σ may occur in S. Sorts,
terms and formulas in context C may contain the variables declared in C.

We introduce abbreviations to make the LF syntax more familiar: The usual
infix notation and bracket conventions of FOL are used, and conjunction binds
stronger than implication; ∀λx :Univ S. F is abbreviated as ∀x : S. F , and we
write ∀x, y : S, z : S′ instead of ∀x : S. ∀y : S. ∀z : S′, and similarly for ∃. Note
that application is written as f t1 . . . tn instead of the familiar f(t1, . . . tn) and
that substitution is written as β-reduction.

We allow a harmless3 extension of LF: Contexts and signatures need not be
finite but may contain infinitely many declarations of the form c : Univ S.
The reason for this is purely technical: It allows to have an infinite reservoir
of names c for elements that occur in the universe of S, which facilitates some
proofs.

2.2 Signatures

We are now ready to introduce DFOL signatures as certain LF signatures. A
DFOL signature will consist of ΣB followed by declarations of the form

c : Π x1 :Univ S1. . . . .Π xm :Univ Sm. T

where m ∈ N, T = S, T = Univ S or T = o, and S1, . . . , Sm, S are sorts. c is
called a sort symbol if T = S, a function symbol with target S if T = Univ S,
2 The reflexivity of LF is used to encode the sort dependencies. Alternatively, S could

be replaced with type and Univ omitted everywhere. But then sorts could not be
used as arguments since LF does not support polymorphism.

3 It is not harmless in general, only in our setting as explained below.
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and a predicate symbol if T = o. The sorts Si are called arguments of c. If we
only allow sort symbols without arguments, we obtain the usual many-sorted
FOL. Sort symbols with arguments construct dependent sorts.

Definition 1 (Signatures). Let Σi be partial LF signatures such that Σ =
ΣB Σ0 . . . Σd is an LF signature, and let Σn abbreviate ΣB Σ0 . . . Σn for
n ≤ d. Σ is called a DFOL signature if

1. only sort, function or predicate symbols are declared in Σ0 . . . Σd,
2. all sort symbol declarations in Σn have only arguments from Σn−1,
3. the target of a function symbol declaration in Σn is not an LF term over

Σn−1 (i.e., only over Σn).

Condition 1 prevents the use of more expressive LF declarations4. Condition
2 establishes an acyclic sort dependency: Every sort declared in Σn may only
depend on sorts that have been declared in Σn−1. d is called the depth of Σ.
A sort, term or formula has depth n if it is defined over Σn (for some context)
but not over Σn−1. Condition 3 is the most important one: It requires that a
function symbol that takes a sort of depth n as an argument may not return an
element of a smaller depth.5

Condition 3 is rather restrictive to ensure the existence of free models. It
excludes, e.g., projection functions π from a sort T n of n-tuples (at depth 1)
over B to B (at depth 0). A weaker restriction that is still sufficient for free
models could allow π if there are equality axioms that identify every term π x
with a term of depth 0, i.e., if π does not generate new objects.

We have the following property.

Lemma 1. Let Σ be a DFOL signature of depth d. Then Σn, for 0 ≤ n ≤ d,
is a DFOL signature such that the sorts of Σn are precisely the sorts of Σ that
have depth at most n; and such that the terms of a sort S of Σn are precisely
the terms of sort S over Σ.

Proof. Trivial but note how condition 3 is needed. )*
This ensures that infinitely many declarations of the form c : Univ S are indeed
harmless: S may depend on the previously declared symbols but these must
have strictly smaller depth than S and so on; therefore, S can only depend on
finitely many symbols. From now on let the word signature only refer to DFOL
signatures.

In general every sort symbol in Σn has a type of the form

Π x1 :Univ S1. . . . .Π xm :Univ Sm. S (F 1)

where S1, . . . , Sm have depth smaller than n. Without loss of generality, we can
assume that every function symbol in Σn has a type of the form

Π x1 :Univ S1. . . . .Π xr :Univ Sr. Univ Sr+1 → . . .→ Univ Sm → Univ S
(F 2)

4 In particular, function types may not occur as arguments.
5 In the terminology of [Vir96], this corresponds to dependence relations between sort

symbols given by s ≺ t iff s has at most the depth of t.
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where S1, . . . , Sr have depth smaller than n and Sr+1, . . . , Sm have depth n.
Similarly, we can assume that every predicate symbol in Σn has a type of the
form

Π x1 :Univ S1. . . . .Π xr :Univ Sr. Univ Sr+1 → . . .→ Univ Sm → o. (F 3)

A signature morphism σ : Σ → Σ′ is a mapping of Σ symbols to Σ′ symbols
such that (i) σ is the identity for symbols declared in ΣB; (ii) σ respects types
and depths of all mapped symbols. We omit the formal definition. For example,
the identity mapping is a signature morphism from ΣB Σ0 . . . Σc to Σ =
ΣB Σ0 . . . Σd for c ≤ d. These morphisms are called extensions.

Running Example. We will use a running example. Consider the signature Σ

t : S. i : Univ t. j : Univ t. d : Univ t → S.
f : Π x :Univ t. Univ d x. c : Univ d i. p : Π x :Univ t. Univ d x → o

Σ has depth 1 (Σ0 consists of the declarations for t, i and j.) and declares three
sorts, t, d i and d j, and five terms, i and j with sort t, f i and c with sort d i,
and f j with sort d j, and one predicate.

2.3 Sentences and Models

Definition 2 (Sentences). Sen(Σ), the set of formulas over Σ, is the set of
LF objects F = λx1 : Univ S1. . . . . .λ xn :Univ Sn. G where G is of type o and
all λ’s in G are preceded by ∀ or ∃. For a signature morphism σ, Sen(σ) is the
mapping between formulas induced by σ.

Taking the above lambda closure over the free variables in G is not needed in
FOL. In DFOL, however, it is helpful to keep track of the sorts of the free
variables in G because xi may occur in Si+1, . . . , Sn. For simplicity, we identify
G and F if it does not cause confusion. We do not distinguish between, e.g., F
and λx : Univ S. F if x does not occur in F . Closed and atomic formulas are
defined in the obvious way.

Running Example. Examples for closed formulas are E1 = ∀x : t. (i .= x ⇒
p x f x) and E2 = ∀x : t. ∃y : d x. (p x y).

Definition 3 (Models, Assignments). Let Σ have depth d. We define Σ-
models and assignments by induction on d. If d = 0, Mod(Σ) is the category of
many-sorted FOL models of Σ, i.e., interpretation functions M given by

– a universe sM for every sort symbol s : S ∈ Σ,
– a function fM : sM

1 × . . . × sM
m → sM for every function symbol f with m

arguments,
– a mapping pM : sM

1 × . . .× sM
m → {0, 1} for every predicate symbol p with m

arguments.

If d > 0 and Mod is defined for signatures of depth d − 1, the objects M ∈
Mod(Σ) are interpretation functions ·M that interpret the sort, function and
predicate symbols of Σ in the following way.
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1. ·M restricted to Σd−1 (which has depth d− 1) is a Σd−1-model. We denote
this restriction by N .

2. Let C = (xi : Univ Si)i=1,...,n be a context over Σd−1. We define assign-
ments and model extensions through two entwined recursions:
– An assignment from C into N is a mapping u that assigns to every xi :

Univ Si in C an element u(xi) ∈ SN
i (u). Here, SN

i (u) is the extension
of ·N to sorts induced by the assignment u.

– The extension of ·N to sorts and terms for an assignment u from the
respective free variables into N , is defined recursively by xN

i (u) = u(xi)
and

(c t1 . . . tm)N (u) = cN (tN1 (u), . . . , tNm(u))

for a sort or function symbol c and terms ti.
3. For every sort symbol of the form (F 1) declared in Σd and every assignment

u from (xi : Univ Si)i=1,...,m into N ,

sM (u(x1), . . . , u(xm)) is a set.

4. Note that at this point, ·M is defined for all sort symbols in Σd and all terms
of depth at most d− 1. As in step 2, we define assignments into M and the
extension ·M to sorts of depth d.

5. For every function symbol f of the form (F 2) declared in Σd and every
assignment u from (xi : Univ Si)i=1,...,m into M ,

fM (u(x1), . . . , u(xm)) ∈ SM .

6. As in step 2, we define ·M for all terms of depth n.
7. For every predicate symbol p of the form (F 3) declared in Σd and every

assignment u from (xi : Univ Si)i=1,...,m into M ,

pM (u(x1), . . . , u(xm)) ∈ {0, 1}.

For a sort S, SM is called the universe of M . A model morphism φ : M → N
for Σ-models M and N maps from each universe of M to some universe of N
as follows.6 For every assignment u from (xi : Univ Si)i=1,...,m into M , we put
u = (u(x1), . . . , u(xm)); then φ(u) = (φ(u(x1)), . . . , φ(u(xm)) is an assignment
into N . We require that for every d and every appropriate assignment u into M

1. for every sort symbol s declared in Σd, φ is a mapping from sM (u) to
sN (φ(u)),

2. for every function symbol f declared in Σd, φ(fM (u)) = fN(φ(u)),
3. for every predicate symbol p declared in Σd, pM (u) ≤ pN (φ(u)). 7

Note that for d = 0, this reduces to the usual first-order definition of
homomorphisms.
6 Since the universes of M are not required to be pairwise disjoint, φ should be indexed

with the universes to distinguish these mappings. We omit these indexes and rely
on the context.

7 Using ≤ means that truth of atomic formulas is preserved along homomorphisms.
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For a signature morphism σ : Σ → Σ′, Mod(σ) is the usual model reduction
functor from Mod(Σ′) to Mod(Σ), i.e., Mod(σ) maps a Σ′-model N to a Σ-
model M defined by cM = σ(c)N for every symbol c of Σ (Thus every universe
of M is also a universe of N .); and Mod(σ) maps a Σ′-model morphism from
N to N ′ to its restriction to the universes of Mod(σ)(N). We omit the formal
proof that Mod is indeed a functor.

In particular for an extension φ : Σn → Σd for n ≤ d, Mod(φ) maps every
Σd-model M to its restriction Mn over Σn.

Running Example. A model M for the example signature is given by tM = N \
{0}, iM = 2, jM = 3, dM (n) = Nn, f(n) = (1, . . . , n), and p(n, (m1, . . . ,mn)) =
1 ⇔ m1 = n. Note how all interpretations must be defined for all elements
regardless of whether they can be named by terms.

2.4 Satisfaction

Satisfaction M |=Σ F is defined in the usual way: M |=Σ F ⇔ FM (u) = 1 for
all assignments u from the free variables in F into M , where ·M is extended to
all formulas by

– if F = p t1 . . . tm for a predicate symbol p, then
FM (u) = pM (tM1 (u), . . . , tMm (u)),

– if F = t1
.= t2, then FM (u) = 1 ⇔ tM1 (u) = tM2 (u),

– the usual definition for propositional connectives,
– if F = ∀x : S. G, then FM (u) = inf{GM (u{x �→ v}) | v ∈ SM (u)},
– if F = ∃x : S. G, then FM (u) = sup{GM (u{x �→ v}) | v ∈ SM (u)},

where u{x �→ v} is as u but with u(x) = v. We omit the formal proof of the
satisfaction condition.

Running Example. We haveM �|=Σ E1 since for u(x) = 2, we have (i .= x)M (u) =
1 but (f x)M (u) = (1, 2) and therefore, (p x f x)M (u) = 0. And we have
M |=Σ E2 since for every n ∈ tM there is an m ∈ dM (n) such that pM (n,m) = 1,
for example m = (n, 1, . . . , 1).

3 Free Models

A theory K = (Σ, T ) consists of a signature Σ and a set T of closed Σ-formulas.
Sen and Mod are extended to theories by putting Sen(Σ, T ) = Sen(Σ) and
Mod(Σ, T ) = {M ∈Mod(Σ) |M |= F for all F ∈ T }.

For many-sorted first-order logic there is the standard result (see for example
[Tar85]) that for a Horn theory (Σ, T ) and sets As of generators for all sort sym-
bols s, there is a Σ-model FreeΣ(A)/T of T such that for every M ∈Mod(Σ, T )
and every family of mappings φs : As → sM there is a unique Σ-morphism
φ : FreeΣ(A)/T →M that extends φ.

The purpose of this section is to establish the corresponding result for DFOL.
Horn formulas over a DFOL signature Σ are defined in the usual way (i.e., a
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universally closed implication T ⇒ H in which the tail T is a conjunction of
atomic formulas and the head H is an atomic formula except for false). A Horn
formula is hierarchic if the depth of its head is at least as big as the depth of its
tail. We can allow only hierarchic Horn formulas because, informally, otherwise
axioms of a greater depth could influence the interpretation of symbols of a lower
depth. As generators, we might use a family AS where S runs over all sorts, but
a stronger result is possible that also allows generators for sorts that depend
on other generators. The most elegant way to describe such generators is by
using signatures that contain arbitrarily many constant declarations of the form
a : Univ S.8 Then DFOL has free models over hierarchic Horn theories in the
following sense.

Lemma 2. For a hierarchic Horn theory K = (Σ, T ), there is a K-model
FreeΣ/T such that for every K-model M there is a unique Σ-morphism from
FreeΣ/T to M .

Proof. Let Σ and T be as stated. Let T n be the restriction of T to depth at
most n. We define FreeΣ/T by induction on the depth of Σ, say d. If d = 0,
F 0 = FreeΣ0/T 0 is the classical result; note that the universes of F 0 arise by
taking equivalence classes of terms.

By the induction hypothesis, we assume

F d−1 = FreeΣd−1/T d−1 ∈Mod(Σd−1, T d−1)

all universes of which consist of equivalence classes of terms, let [·] denote these
equivalence classes. We define Herbrand models to be (Σd, T d)-models M that
satisfy the following conditions:

– M agrees with F d−1 for all symbols in Σd−1,
– for all sort symbols s of the form (F 1) in Σd: sM ([t1], . . . , [tm]) = U/ ≡

where U contains those terms that have any of the sorts s b1 . . . bm for
bi ∈ [ti], and ≡ is some equivalence relation9; let 〈·〉 denote the equivalence
classes of ≡; clearly, all universes are disjoint, so that we can use the symbols
≡ and 〈·〉 for all universes,

– for a function symbol f of the form (F 2) in Σd:

fM ([t1], . . . , [tr], 〈tr+1〉, . . . , 〈tm〉) = 〈f t1 . . . tm〉,

– for a predicate symbol p of the form (F 3) in Σd:

pM ([t1], . . . , [tr], 〈tr+1〉, . . . , 〈tm〉) = 1 ⇔M |=Σd p t1 . . . tm.

We put F d to be the Herbrand model that satisfies the least atomic formu-
las. By definition, it is a (Σd, T d)-model in which all universes arise by taking
equivalence classes of terms.
8 This is why we allow infinite signatures.
9 Note that ≡ identifies more terms than the relation (t .= t′)M = 1: Term identi-

fication in F d−1 may lead to sort identification at depth d, thus causing terms of
different sorts to become equal.



First-Order Logic with Dependent Types 385

We have to prove that the above F d exists. This is done in essentially the same
way as for the FOL case. Informally, a Herbrand model is uniquely determined
by the equivalence ≡ and the set P of atomic formulas of depth d that it satisfies.
Let (≡i, Pi)i∈I be all Herbrand models. This family is not empty: It contains the
model in which all atomic formulas of depth d are true. Then it is easy to show
that this family also contains the model determined by

⋂
i∈I

≡i and
⋂
i∈I

Pi, which

we can put to be F d. This completes the induction.
The unique morphism into M simply maps the equivalence class of a term t

to tM . This is well-defined because M satisfies T and by the definition of F d.

Running Example. The free model F for the example signature with the axioms
∀x : t. (p x f x) and c

.= f i is given by tF = {{i}, {j}}, dF ({i}) = {{c, f i}},
dF ({j}) = {{f j}} and (p x y)F (u) = 1 for both possible assignments u.

Generators. Since we allow infinite signatures, Lem. 2 contains the result where
there are arbitrarily many generators. We make this more precise: Let Σ(A) be
the signature Σ enriched with the declarations from a context A over Σ. Then
every Σ-model M and every assignment u from A into M induce a Σ(A)-model,
which we call (M,u).

Theorem 1. For a signature Σ, a context A over Σ, and a set T of hierarchic
Horn formulas over Σ(A), there is a Σ(A)-model FreeΣ(A)/T of T such that
for every Σ-model M and every assignment u from A into M such that (M,u)
models T , there is a unique Σ(A)-morphism u : FreeΣ(A)/T → (M,u) that
extends u.

Proof. Simply put FreeΣ(A)/T to be FreeΣ(A)/T . )*

Of particular interest is the case where T does not depend on A. Then
FreeΣ(A)/T is a (Σ, T )-model and every assignment u from A into a (Σ, T )-
model M has a unique extension to a Σ-morphism, namely the extension of the
interpretation function M under the assignment u.

We abstain from a categorical interpretation in terms of adjoint functors and
simply remark that FreeΣ(∅)/T is initial in the category Mod(Σ, T ).

Running Example. The free model F for the example signature with the genera-
tors A = a1 : t, a2 : f a1 with the axioms E1 (from the running example above)
and i .= a1 is given by: tF = {{i, a1}, {j}}, dF ({i, a1}) = {{f i, f a1}, {c}, {a2}},
dF ({j}) = {{f j}} and (p x y)F (u) = 1 precisely for u(x) = {i, a1}, u(y) =
{f i, f a1}.

4 Axiomatization

Completeness. To enhance readability, we omit the operator Univ completely
from now on. We show that the classical axiomatizations are sufficient for DFOL.
We use the common Gentzen style notation for sequents and rules. For simplic-
ity, we only give the completeness result for the case that empty universes are
forbidden. The general case is similar.
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� A
for every A ∈ T

Γ � A , ∆

Γ , ¬A � ∆

Γ , A � ∆

Γ � ¬A , ∆

Γ � true , ∆

Γ , A , B � ∆

Γ , A ∧ B � ∆

Γ � A , ∆ Γ � B , ∆

Γ � A ∧B , ∆

Γ , A � ∆

Γ , ∃x : S. A � ∆

Γ � (λ x :S. A) t , ∆

Γ � ∃x : S. A , ∆

� ∀x1 : S1, . . . xr : Sr, xr+1, x
′
r+1 : Sr+1, . . . , xm, x′

m : Sm.
xr+1

.= x′
r+1 ∧ . . . ∧ xm

.= x′
m ⇒

f x1 . . . xr xr+1 . . . xm
.= f x1 . . . xr x′

r+1 . . . x′
m

for all f of the form (F 2)

In the ∃left rule, we assume that x does not occur free in Γ or ∆. In the ∃right rule, t
is a term of sort S in which the free variables from Γ , S, A and ∆ may occur. We
omit the structural rules (axioms, cut, weakening, contraction and exchange), the
remaining equality rules (reflexivity, symmetry and transitivity) and the rules for

definable connectives and quantifiers.

Fig. 1. Axiomatization for SC(Σ, T )

Theorem 2. Let K = (Σ, T ) be a finite theory (i.e., Σ and T are finite), and
let the rules of SC(K) be as in classical sequent style axiomatizations for FOL
with equality (see [Gal86]) with slight modifications as given in Fig. 1. Then
SC(K) is sound and complete for Mod(K).

The modifications mainly serve to account for free variables. Only the congruence
axiom has an unfamiliar form and may even look incomplete, but note that the
putatively underivable formulas are not well-typed in the first place.

Proof. We only sketch the completeness proof since it is almost the same as the
classical Henkin style proof (see [Hen49]). There are only a few minor technical
differences in the notation of free variables and quantifiers. Firstly, a set of
formulas Γ such that Γ ∪ T is consistent is extended to a maximal consistent
set Γ with witnesses. To do that, we use a context A containing infinitely many
declarations for each sort over Σ and A.

Then M = FreeΣ(A)/T , where T is the set of atomic formulas in Γ , is
a (Σ(A), T )-model of Γ . The proof proceeds by induction on the number of
occurrences of logical symbols in F ∈ Γ .

Then the Σ(A)-model M yields a Σ-model M ′ by forgetting the interpreta-
tions of the symbols from A (formally M ′ = Mod(σ)(M) where σ : Σ → Σ(A)
is the injection). M ′ is a model of Γ ∪ T because no symbols from A occur in
Γ ∪ T . From this model existence result, the theorem follows as in the classical
case. )*

As in the classical case, Thm. 2 yields the compactness theorem and the
Löwenheim-Skolem result that any consistent set of sentences has a countable
model.
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Running Example. Let an axiom for Σ be given by i
.= j. This implies that the

sorts d i and d j are equal, it also implies (f i)M = (f j)M in every model M .
Note, however, that f i .= f j cannot be derived because it is not a well-formed
formula. It cannot be well-formed because it only makes sense in the presence
of the axiom i

.= j. If equations between terms of the same depth but different
sorts were allowed, and if equations in this broader sense were forbidden to occur
in the axioms of a theory, the completeness result would still hold.

Implementation. It follows that a Gentzen style theorem prover of FOL can be
turned into one for DFOL, if its syntax is extended to support DFOL signatures.
In the case of the existing implementation of FOL in LF, which is part of the
Twelf distribution, only rules for equality need to be added.

Completeness results for resolution based proving as in Vampire ([RV02])
require additional work. The transformation into conjunctive normal form is as
for FOL with the exception of skolemization, which transforms

λx1 :S1. . . . .λ xn :Sn. ∃x : S. G to λx1 :S1. . . . .λ xn :Sn.(λx :S. G)(fx1 . . . xn).

Here x1, . . . , xn also contain the free variables of S, and the substitution must
also operate on S. If paramodulation (see for example [NR01]) is used to replace
a subterm s of F with t, both the sorts of s and t as well as s and t themselves
must be unified (see [PP03] for unification with dependent types in LF).

5 Examples

In the examples, we use infix notation for some symbols without giving the
corresponding Twelf declarations. And we use the implicit arguments notation
of Twelf, i.e., if a free variable X which, due to the context, must have type T
occurs in a declaration, it is assumed that the type is prefixed with ΠX : T.
If such a free variable occurs in an axiom, we assume an implicit universal
quantification.

Categories. Let Cat be the following theory of depth 1 (where we leave a blank
line between signature and axioms)

Ob : S.
Mor : Π A,B :Ob. S.
id : Π A :Ob. Mor A A.
◦ : Mor A B → Mor B C → Mor A C.

∀f : Mor A B. f
.= f ◦ id B

∀f : Mor A B. f
.= id A ◦ f

∀f : Mor A B, g : Mor B C, h : Mor C D. (f ◦ g) ◦ h .= f ◦ (g ◦ h)

Then Mod(Cat) is the category of small categories. For example the formula
λX :Ob. ∀A : Ob. ∃f : Mor A X. ∀g : Mor A X. f

.= g expresses the property
that X : Ob is a terminal element.
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The free category over a generating graph G can be obtained by applying
Thm. 1 to Cat where A contains declarations N : Ob for every node N and
E : Mor N N ′ for every edge E = (N,N ′) of G. Note that the theorem also
allows to impose specific equalities, e.g., an axiom E = E1◦E2 if the composition
of E1 and E2 is already part of G.

A theory extension consists of additional declarations and additional axioms;
it is simple, if it does not add sort declarations. Let 2Cat be the following
extension of Cat

2cell : Π f, g :Mor A B. S.
Id2 : Π f :Mor A B. 2cell f f.
◦vert : Π f, g, h :Mor A B. 2cell f g → 2cell g h → 2cell f h.
◦hor : Π f, g :Mor A B. Π f ′, g′ :Mor B C.

2cell f g → 2cell f ′ g′ → 2cell f ◦ f ′ g ◦ g′.
If we also add appropriate axioms, Mod(2Cat) becomes the category of small
2-categories. Bi-categories can be specified similarly, e.g., using the axiom
∀f : Mor A B, g : Mor B C , h : Mor C D, k, l : Mor A D.

k
.= (f ◦ g) ◦ h ∧ l

.= f ◦ (g ◦ h) ⇒ ∃α : 2cell k l. ∃β : 2cell l k.
α ◦vert β

.= Id2 k ∧ β ◦vert α
.= Id2 l.

Under the Curry-Howard-Tait correspondence, a 2-category corresponds to a
logic with formulas, proofs and rewrites. If a simple extension of 2Cat declares
function symbols for connectives, proof rules and conditional rewrite rules of a
logic, Thm. 1 yields its free 2-category of proofs.

Let OCat be the extension of Cat with

�: Mor A B → Mor A B → o.

∀f : Mor A B. f � f
∀f, g, h : Mor A B. (f � g ∧ g � h ⇒ f � h)

where we interpret � as rewritability between morphisms. Let K be a simple
extension of OCat, and let K ′ be as K but with the additional axioms
∀X1 : S1 . . . X

′
m : Sm.

X1 � X ′
1 ∧ . . . ∧ Xm � X ′

m ⇒ f X1 . . . Xm � f X ′
1 . . . X ′

m

for every function symbol f of depth 1. We call Mod(K ′) the category of small
order-enriched K-categories. The added axioms in K ′ are simply the congruence
conditions for all function symbols with respect to rewriting. The arising axiom-
atization of rewriting is the same as in rewriting logic (see [BM03], which also
allows frozen arguments).

In particular, this yields free order-enriched K-categories over Horn theories,
and a complete axiomatization of this category. This allows a succinct view of
logics under the Curry-Howard-Tait correspondence.10

10 Having a simple meta-language that supports dependent types while allowing axiom-
atization and free models was the original motivation to introduce DFOL. The idea
for these specifications and the introduction of DFOL is due to Till Mossakowski
and discussions with him and others.
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Linear Algebra. Let Σ be the following signature of depth 1

N : S.
one : N
succ : N → N.
Mat : N → N → S.
0 : R.
1 : R.
RowAppend : Mat m one → R → Mat succ m one.
ColAppend : Mat m n → Mat m one → Mat m succ n.
E : Mat m m.
+ : Mat m n → Mat m n → Mat m n.
− : Mat m n → Mat m n → Mat m n.
· : Mat l m → Mat m n → Mat l n.
det : Mat m m → R.
inv : Mat m m → o.
eigenvalue : Mat m n → R → o.

(where we use R to abbreviate Mat one one). Clearly, Σ can be used to axiom-
atize linear algebra over any ring that can be axiomatized in first-order logic.
Examples for axioms are

∀M : Mat m m. (inv M ⇔ ¬ det M .= 0) and
∀M : Mat m n, r : R. (eigenvalue M r ⇔ ∃v : Mat n one. M · v .= v · r)
(with the usual abbreviation ⇔).

6 Conclusion

We have introduced an extension of FOL with dependent types such that the
generalization of definitions, results and implementations is very natural. The
formulation of DFOL as an institution allows to apply the established institution-
independent results (see the book [Dia05]). The formulation of the syntax in LF
immediately yields implementations of type checking, proof checking and simple
theorem proving.

Of course, DFOL does not permit anything that has not been possible before.
For example, category theory has been specified in Coq ([HS98]) or simply using
FOL.11 However, the simple model theory and the performance of automated
theorem provers provide good arguments to stick to FOL if possible. The research
presented here is targeted at those situations where specifications in (partial)
FOL are desirable but awkward. In the examples, we demonstrated that only
one or two dependent sort constructors can allow an elegant specification of a
mathematical theory that would be awkward in FOL, but for which tools like
Coq are far more powerful than necessary.
11 DFOL cannot in general be encoded in partial many-sorted FOL since there may be

more universes in a DFOL model then there are closed sort terms in the language.
An encoding in FOL is straightforward and can provide an alternative completeness
result but is very awkward.
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It can be argued that signatures of depth greater than 1 or 2 are not inter-
esting. And in fact, the general case was not our original goal. But it turned
out that the step from depth 0 to depth 1 is already almost as complex as the
induction step for the general case so that no simplifications are to be expected
from restricting the depth.

Although further work is needed (e.g., on resolution or Craig interpolation), it
turned out that crucial classical results can be extended to DFOL. Free models
make DFOL valuable as an algebraic specification language, and we plan to
integrate it into CASL ([BM04]). And the axiomatization indicates that existing
provers can be extended for DFOL. The FOL encoding in Twelf can be adapted
easily so that both pure LF and the Twelf meta-theorem prover ([SP96]) can be
applied.
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Abstract. We introduce a semi-automated proof system for basic cate-
gory-theoretic reasoning. It is based on a first-order sequent calculus
that captures the basic properties of categories, functors and natural
transformations as well as a small set of proof tactics that automate proof
search in this calculus. We demonstrate our approach by automating the
proof that the functor categories Fun[C× D, E] and Fun[C, Fun[D, E]]
are naturally isomorphic.

1 Introduction

Category theory is a popular framework for expressing abstract properties of
mathematical structures. Since its invention in 1945 by Samuel Eilenberg and
Saunders Mac Lane [12], it has had a wide impact in many areas of mathematics
and computer science. The beauty of category theory is that it allows one to be
completely precise about general mathematical concepts. Abstract algebraic no-
tions such as free constructions, universality, naturality, adjointness, and duality
have precise formulations in the theory. Many algebraic constructions become
exceedingly elegant at this level of abstraction.

However, there are some disadvantages too. Many basic facts, although easy to
state, can be quite tedious to verify formally. Diagrams can be used to illustrate
essential insights, but complete proofs based on precise definitions often involve
an enormous number of low-level details that must be checked. In many cases, it
is not considered worth the effort to carry out such a detailed verification, and
readers are frequently asked to accept “obvious” assertions on faith.

Another issue is that category theory is considerably more abstract than many
other branches of mathematics. Because of this abstraction, it is easy to lose
sight of the connection with concrete motivating examples. One works in a rar-
ified atmosphere in which much of the intuition has been stripped away, so the
verification at the lowest level becomes a matter of pure symbol manipulation,
devoid of motivating intuition.

On the other hand, precise proofs in category theory often rely on standard
patterns of reasoning that may lend themselves well to automation. Provid-
ing such an automation serves two purposes. It enables users to generate com-
pletely formal proofs of elementary category-theoretic facts without having to go
through all the details themselves, thus providing assurance that the statement
is in fact true and allowing them to inspect details if desired. It also demon-
strates that the proofs that many authors do not bother to provide, which may
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be considered trivial from an intellectual point of view, actually may contain
a tremendous amount of hidden detail, and may identify conditions that for-
mally should be checked, but that the author might have taken for granted or
overlooked entirely.

In this paper we introduce a proof system for automating basic category-
theoretic reasoning. We first give a formal first-order axiomatization of
elementary category theory that is amenable to automation in Section 2. This
axiomatization is a slight modification of a system presented in [18]. We then
describe an implementation of this calculus within the proof environment of the
Nuprl system [9,1] in Section 3 and strategies for automated proof search in
Section 4. These strategies attempt to capture the general patterns of formal
reasoning that we have observed in hand-constructed proofs using this calculus.
These patterns were alluded to in [18], but the description there was quite vague
and there was no attempt at implementation.

We demonstrate the feasibility of our approach by giving a completely au-
tomated proof of the statement that the functor categories Fun[C× D,E] and
Fun[C,Fun[D,E]] are naturally isomorphic. The process of automating this
proof has given us significant insights into the formal structure of category-
theoretic proofs and has taught us much about how to streamline the au-
tomation. We describe these technical insights below in the context of the
proof itself.

1.1 Related Work

The published approaches to a formalization of category theory essentially aim
at three different purposes. The first is a formal reconstruction of mathemati-
cal knowledge in a computer-oriented environment. This is done in the Mizar
project of Bialystok University [29]. Mizar statements are formulated in first or-
der logic and proved using a declarative proof language. Mizar’s library contains
a comprehensive collection of theorems mostly proved already in 1990-1996, but
is still under active research. The last entries concerning special functor behav-
ior and duality of categories were done in 2001 [3,4,5]. One disadvantage of the
Mizar approach is that it has only little automation: although Mizar’s basic infer-
ence steps are quite expressive, it does not provide a mechanism for automating
domain-specific reasoning tasks.

A second purpose is to provide calculi for category theory to use its machin-
ery in several domains of computer science (for example denotational semantics).
One of these approaches is Caccamo’s and Winskel’s Higher order calculus for
categories [10]. The authors present a second order calculus for a fragment of
category theory. Their approach is at a level higher than ours. Their basic types
are (small) categories and the syntactic judgments describe functorial behav-
ior of expressions. The rules allow the construction of new functors. A conse-
quence of this approach is that for example Yoneda’s lemma occurs as a rule
rather than a theorem. Another approach to be mentioned here is Rydeheard’s
and Burstall’s Computational Category Theory [24]. This work is a program-
ming language representation of the subject, i.e., a collection of structures and
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functions that represent the main concepts of category theory. One of the merits
of the book is that it emphasizes the constructive flavor of categorial concepts.
The representation is mainly regarded a basis for the use of category theory in
program design.

A third group consists of formalizations of category theory in interactive proof
systems. In these formalizations, practical issues like feasibility, automation and
elegance of the design (in the sense of [15]) play an important role. There are
at least two formalizations of category theory in Isabelle/HOL that should be
mentioned here. Glimming’s 2001 master thesis [13] describes a development of
basic category theory and a couple of concrete categories. As HOL does not admit
the definition of partial functions, Glimming had to address the problem of the
composition of uncomposable arrows. This problem is solved by the introduction
of an error object, which is never a member of any set of arrows. Since his
interests lie in a formalization of the Bird-Meertens formalism [7], there are no
attempts to improve automation beyond Isabelle’s generic prover.

Another formalization of category theory in Isabelle is O’Keefe’s work de-
scribed in [22]. His main focus is on the readability of the proofs, aiming at
a representation close to one in a mathematical textbook. Therefore he uses a
sectioning concept provided by Isabelle. This saves a lot of repetition and is
an elegant way to emulate informal mathematical reasoning. Although this for-
malization contains definitions of functors and natural transformations, it does
not include functor categories. O’Keefe mentions another formalization of cat-
egory theory in HOL by Lockwood Morris whose focus is on automation, but
unfortunately neither a description nor the sources have been published.

In the Coq library there are two contributions concerning category theory. The
development of Säıbi and Huet [16,26] contains definitions and constructions
up to cartesian closed categories, which are then applied to the category of
sets. The authors formulate the theory of functors including Freyd’s adjoint
functor theorem, i.e., their work covers nearly all of chapters I–V of [20]. The
formalization of Säıbi and Huet is directly based on the constructive type theory
of Coq. Simpson [27], on the other hand, makes only indirect use of it. Instead,
his formalization is set up in a ZFC-like environment. In addition to some basic
set theory and algebra, he develops category theory including functors, natural
transformations, limits and colimits, functor categories, and a theorem about the
existence of (co)limits in functor categories. Simpson has written some tactics
to improve the automation, but, as for the work of Säıbi and Huet, there are no
official papers available.

A key difference between these works and our approach is that we have iden-
tified an independent calculus for reasoning about category theory and given a
full implementation in Nuprl. In addition, we have provided a family of tactics
that allow many proofs to be automated. None of the other extant implementa-
tions we have encountered make any attempt to isolate an independent formal
axiomatization of the elementary theory. Instead, they embed category theory
into some other logic, and reasoning relies mostly on the underlying logic.
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2 An Axiomatization of Elementary Category Theory

2.1 Notational Conventions

We assume familiarity with the basic definitions and notation of category theory
[6,20]. To simplify notation, we will adhere to the following conventions.
– Symbols in sans serif, such as C, always denote categories. The categories Set

and Cat are the categories of sets and set functions and of (small) categories
and functors, respectively.

– If C is a category, we use the symbol C to denote both the category C and
the set of objects of C.

– We write A : C to indicate that A is an object of C. Composition is denoted
by the symbol ◦ and the identity on object A : C is denoted 1A. The use of a
symbol in sans serif, such as C, implicitly carries the type assertion C : Cat.

– We write h : C(A,B) to indicate that h is an arrow of the category C with
domain A and codomain B.

– Fun[C,D] denotes the functor category whose objects are functors from C
to D and whose arrows are natural transformations on such functors. This is
the same as the category denoted DC in [20]. Thus F : Fun[C,D] indicates
that F is a functor from C to D and ϕ : Fun[C,D](F,G) indicates that ϕ is
a natural transformation with domain F and codomain G.

– Cop denotes the opposite category of C.
– f : X⇒Y indicates that f : Set(X,Y ), that is, f is a set function from set
X to set Y . We use the symbol ⇒ only in this context. Function application
is written as juxtaposition and associates to the left.

– F 1 and F 2 denote the object and arrow components, respectively, of a functor
F . Thus if F : Fun[C,D], A,B : C, and h : C(A,B), then F 1A,F 1B : D and
F 2h : D(F 1A,F 1B).

– Function application binds tighter than the operators 1 and 2. Thus the
expression F 1A2 should be parsed (F 1A)2.

– C× D denotes the product of categories C and D. Its objects are pairs
(A,X) : C× D, where A : C and X : D, and its arrows are pairs (f, h) :
(C× D)((A,X), (B, Y )), where f : C(A,B) and h : D(X,Y ). Composition
and identities are defined componentwise; that is,

(g, k) ◦ (f, h) def= (g ◦ f, k ◦ h) (1)

1(A,X)
def= (1A, 1X). (2)

2.2 Rules

The rules involve sequents Γ � α, where Γ is a type environment (set of type
judgments on atomic symbols) and α is either a type judgment or an equation.
There is a set of rules for functors and a set for natural transformations, as well as
some rules covering the basic properties of categories and equational reasoning.

The rules for functors and natural transformations are the most interesting.
They are divided into symmetric sets of rules for analysis (elimination) and
synthesis (introduction).
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Categories. There is a collection of rules covering the basic properties of cat-
egories, which are essentially the rules of typed monoids. These rules include
typing rules for composition and identities

Γ � A, B, C : C, Γ � f : C(A, B), Γ � g : C(B, C)
Γ � g ◦ f : C(A,C)

(3)

Γ � A : C
Γ � 1A : C(A, A)

, (4)

as well as equational rules for associativity and two-sided identity.

Functors. A functor F from C to D is determined by its object and arrow
components F 1 and F 2. The components must be of the correct type and must
preserve composition and identities. These properties are captured in the follow-
ing rules.
Analysis

Γ � F : Fun[C, D], Γ � A : C
Γ � F 1A : D

(5)

Γ � F : Fun[C, D], Γ � A, B : C, Γ � f : C(A, B)
Γ � F 2f : D(F 1A, F 1B)

(6)

Γ � F : Fun[C, D], Γ � A, B, C : C, Γ � f : C(A, B), Γ � g : C(B, C)
Γ � F 2(g ◦ f) = F 2g ◦ F 2f

(7)

Γ � F : Fun[C, D], Γ � A : C
Γ � F 21A = 1F1A

(8)

Synthesis

Γ, A : C � F 1A : D
Γ, A,B : C, g : C(A, B) � F 2g : D(F 1A, F 1B)
Γ, A,B, C : C, f : C(A,B), g : C(B, C) � F 2(g ◦ f) = F 2g ◦ F 2f
Γ, A : C � F 21A = 1F1A

Γ � F : Fun[C, D]
(9)

Natural Transformations. A natural transformation ϕ : Fun[C,D](F,G) is a
function that for each object A : C gives an arrow ϕA : D(F 1A,G1A), called the
component of ϕ at A, such that for all arrows g : C(A,B), the following diagram
commutes:

F 1A
F 2g� F 1B

G1A

ϕA

�
G2g� G1B

ϕB

�

(10)

Composition and identities are defined by

(ϕ ◦ ψ)A def= ϕA ◦ ψA (11)

1FA
def= 1F 1A. (12)
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The property (10), along with the typing of ϕ, are captured in the following rules.

Analysis

Γ � ϕ : Fun[C,D](F,G)
Γ � F,G : Fun[C,D]

(13)

Γ � ϕ : Fun[C,D](F,G), Γ � A : C
Γ � ϕA : D(F 1A,G1A)

(14)

Γ � ϕ : Fun[C,D](F,G), Γ � A,B : C, Γ � g : C(A,B)
Γ � ϕB ◦ F 2g = G2g ◦ ϕA (15)

Synthesis
Γ � F,G : Fun[C,D]
Γ, A : C � ϕA : D(F 1A,G1A)
Γ, A,B : C, g : C(A,B) � ϕB ◦ F 2g = G2g ◦ ϕA

Γ � ϕ : Fun[C,D](F,G)
(16)

Equational Reasoning. Besides the usual domain-independent axioms of
typed equational logic (reflexivity, symmetry, transitivity, and congruence), cer-
tain domain-dependent equations on objects and arrows are assumed as axioms,
including the associativity of composition and two-sided identity rules for ar-
rows, the equations (1) and (2) for products, and the equations (11) and (12)
for natural transformations.

We also provide extensionality rules for objects of functional type:

Γ � F, G : Fun[C, D], Γ, A : C � F 1A = G1A

Γ � F 1 = G1 (17)

Γ � F, G : Fun[C, D], Γ, A, B : C, g : C(A, B) � F 2g = G2g

Γ � F 2 = G2 (18)

Γ � F, G : Fun[C, D], Γ � F 1 = G1, Γ � F 2 = G2

Γ � F = G
(19)

Γ � F, G : Fun[C, D], Γ � ϕ, ψ : Fun[C, D](F, G), Γ, A : C � ϕA = ψA

Γ � ϕ = ψ
(20)

Finally, we also allow equations on types and substitution of equals for equals
in type expressions. Any such equation α = β takes the form of a rule

Γ � A : α
Γ � A : β

. (21)

Other Rules. There are also various rules for products, weakening, and other
structural rules for manipulation of sequents. These are all quite standard and
do not bear explicit mention.
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3 Implementation of the Formal Theory

As a platform for the implementation of our proof calculus we have selected
the Nuprl proof development system [9,2,19,1]. Nuprl is an environment for the
development of formalized mathematical knowledge that supports interactive
and tactic-based reasoning, decision procedures, language extensions through
user-defined concepts, and an extendable library of verified formal knowledge.
Most of the formal theories in this library are based on Nuprl’s Computational
Type Theory, but the system can accommodate other logics as well.

One of the key aspects of the implementation of a formal theory is faithfulness
with respect to the version on paper. Although Nuprl supports a much more
expressive formalism, reasoning mechanisms should be restricted to first-order
logic and the axiomatization of category theory given in the previous section.
To accomplish this we proceeded as follows.

Encoding Semantics and Syntax. We have used Nuprl’s definition mechanism to
implement the vocabulary of basic category theory. For each concept we have
added an abstraction object to the library that defines the semantics of a new
abstract term in terms of Nuprl’s Computational Type Theory. For instance,
the product of two categories C and D, each consisting of a set of objects, a
set of arrows, a domain and a codomain function, and composition and iden-
tity operations, is defined by an abstraction which states that objects and ar-
rows are the cartesian products of the respective sets for C and D, domain
and codomain functions are paired, and composition and identity are computed
pointwise.
CatProd(C,D) == < C×D, ArrC×ArrD, λ(f,h).<dom(f),dom(h)>,

λ(f,h).<cod(f),cod(h)>, λ((f,h),(g,k)).<f◦g,h◦k>, λ(A,X).<1A,1X> >

The outer appearance of abstract terms (display syntax) is defined separately
through display forms, which enable us to adjust the print and display represen-
tations of abstract terms to conform to a specific style without modifying the
term itself. Following [20], for instance, we denote the set of objects of a category
by the name of the category. For the product category, we use the same notation
as for the cartesian product.
C×D == CatProd(C,D)

Since the abstract terms are different, the proof system can easily distinguish
terms that look alike but have a different meaning. Display forms can also be
used to suppress information that is to be considered implicit. The composition
of two arrows f and g, for instance, depends on the category C to which f and
g belong, but it would be awkward to write down this information every time
the composition operator is used.

Currently, Nuprl’s display is restricted to a single 8-bit font. This limits the
use of symbols, subscripts and superscripts to the characters defined in this
font. Identities, usually written as 1A or 1(A,X), have to be presented as 1A and
1<A,X>. Apart from these restrictions, all the basic category-theoretic vocabulary
appears in the system as described in Section 2.



Automating Proofs in Category Theory 399

Inference rules. Given the formal representation of basic category theory, there
are several ways to implement the rules.

The standard approach would be to encode rules as tactics based on elemen-
tary inference rules. However, it is difficult to prove that these tactics actually
represent a specific category-theoretic rule. Furthermore, the tactics may require
executing hundreds of basic inferences for each category-theoretic inference step.
A more efficient way is to write tactics based on formal theorems that establish
properties of the fundamental concepts. For instance, rule (14) corresponds to
the theorem

∀C,D:Categories. ∀F,G:Fun[C,D]. ∀ϕ:Fun[C,D](F,G). ∀X:C. ϕ X ∈ D(F1X,G1X)

To apply the rule, one would instantiate the theorem accordingly. But this would
lead to proof obligations that do not occur in the original rule, such as showing
that C and D are categories and F and G are functors in Fun[C,D].

The Nuprl system supports a more direct approach to encoding formal theo-
ries. Experienced users can add rule objects to the system’s library that directly
represent the inference rules of the theory, then prove formal theorems like the
one above to justify the rules. Apart from the fact that rules have to be formu-
lated as top-down sequent rules to accommodate Nuprl’s goal-oriented reasoning
style, the representation of the rules in the system is identical to the version on
paper, which makes it easy to check its faithfulness. Rule (14), for instance, is
represented by a rule object NatTransApply with the following contents.

Nuprl’s rule compiler converts rule objects into rules that match the first line
of the object against the actual goal sequent and create the subgoal sequents by
instantiating the two lower lines. Note that the rule requires the category C to
be given as parameter, since it occurs in a subgoal but not in the main goal.

Since equalities in Nuprl are typed, we added types to all the inference rules
that deal with equalities. For example, rule (15) is represented as follows:

We have generated rule objects for all the rules described in Section 2, as
well as rules for dealing with products. Logical rules and rules dealing with
extensional equality and substitution are already provided by Nuprl.
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For each inference rule, we have also proved formally that it is correct with re-
spect to our formalization of basic category theory. Although this is not strictly
necessary if one is mainly interested in automating proofs, it validates the consis-
tency of the implemented inference system relative to the consistency of Nuprl.

4 Proof Automation

The implementation of the proof calculus described above enables us to create
formal proofs for many theorems of basic category theory. But even the simplest
such theorems lead to proofs with hundreds or even thousands of inference steps,
as illustrated in [18]. Since most of these statements are considered mathemati-
cally trivial, it should be possible to find their proofs completely automatically.

We have developed strategies for automated proof search in basic category
theory that attempt to capture the general patterns of reasoning that we have
observed in hand-constructed proofs. In this section we discuss the key compo-
nents of these strategies and some of the issues that had to be reckoned with.

Automated Rule Application. Most of the inference rules are simple refinements
that describe how to decompose a proof obligation into simpler components.
Given a specific proof goal, there are only few rules that can be applied at all.
Thus to a large extent, proof search consists of determining applicable rules and
their parameters from the context, applying the rule, and then continuing the
search on all the subgoals.

To make this possible, all the basic inference rules had to be converted into
simple tactics that automatically determine their parameters. Generating names
for new variables in the subgoals, as in the case of the extensionality rules (17)–
(20), is straightforward. All other parameters occur as types in one of the sub-
goals of a rule and are determined through an extended type inference algorithm.

An important issue is loop control. Since the synthesis rules for functors and
natural transformations are the inverse of the corresponding analysis rules, we
have to avoid applying analysis rules if they create a subgoal that has already
been decomposed by a synthesis rule. Synthesis rules decrease the depth of func-
tor types in a proof goal. It is therefore sufficient to keep track of proof goals
to which a synthesis rule had been applied and block the application of analysis
rules that would generate one of these as a subgoal.

Performance Issues. One of the disadvantages of refinement style reasoning is
that proof trees may contain identical proof goals in different branches. This is
especially true after the application of synthesis and extensionality rules, which
must be used quite often in complex proofs. The first subgoal of rule (9) even-
tually reappears in the proof of the second, since F 1A occurs within the type
of that goal and both subgoals reappear in the proofs of the third and fourth
subgoals. In a bottom-up proof, one would prove these goals only once and reuse
them whenever they are needed to complete the proof of another goal, while a
standard refinement proof forces us to prove the same goal over and over again.

Obviously we could optimize the corresponding rules for top-down reasoning
and drop the redundant subgoals. To retain faithfulness of the implemented
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inference system, however, we decided to leave the rules unchanged. Instead, we
have wrapped the corresponding tactic with a controlled application of the cut
rule: we assert the first two subgoals of rule (9) before applying the rule. As a
result they appear as hypotheses of all subgoals and have to be proved only once.

Although this method is a simple trick, it leads to a significant reduction in
the size of automatically generated proofs. A complete proof of the isomorphism
between Fun[C× D,E] and Fun[C,Fun[D,E]] without cuts consists of almost
30,000 inference steps. Using the wrapper reduces this number to 3,000.

Equality Reasoning. Equality reasoning is a key component in formal category-
theoretic proofs. Ten of the inference rules deal with equalities and can be used
to replace a term by one that is semantically equal.

Since equalities can be used both ways, they can easily lead to infinite loops
in an automated search for a proof. Our automated reasoning strategy therefore
has to assign a direction to each of the equalities and attempt to rewrite terms
into some normal form. Furthermore, it has to keep track of the types involved in
these equalities, which are sometimes crucial for finding a proper match and, as
in the case of rule (15), for determining the right-hand side of an equality from
the left-hand side. The inference rules described in Section 2, including those
dealing with associativity and identity, lead to the following typed rewrites.

Rewrite Type Rule
<g, k>◦<f, h> �→ <g◦f, k◦h> C×D(<A1, X1>,<A3, X3>) (01)
1<A,X> �→ <1A, 1X> C×D(<A, X>,<A, X>) (02)
1Y ◦f �→ f C(X, Y ) (2a)
f◦1X �→ f C(X, Y ) (2b)
h◦(g◦f) �→ (h◦g)◦f C(X, T ) (2c)
F 2(g◦f) �→ F 2g◦F 2f D(F 1X, F 1Z) (07)
F 21X �→ 1F1X D(F 1X, F 1X) (08)
(ψ◦ϕ)A �→ ψA◦ϕA D(F 1X, H1X) (11)
1F X �→ 1F1X D(F 1X, F 1X) (12)
ϕY ◦F 2g �→ G2g◦ϕX D(F 1X, G1Y ) (15)

Each rewrite is executed by applying a substitution, which is validated by ap-
plying the corresponding equality rule mentioned in the table above.

The above rewrite system is incomplete, as it cannot prove the equality of
some terms that can be shown equal with the inference rules. We have used the
superposition-based Knuth-Bendix completion procedure [17] to generate the
following additional typed rewrites.

Rewrite Type Rules
F 2<1A, 1X> �→ 1F1<A,X> E(F 1<A,X>,F 1<A,X>) (02),(08)

F 2<g, k>◦F 2<f, h> �→ F 2<g◦f, k◦h> E(F 1<A,X>,F 1<C,X>) (01),(07)

(ϕY A)◦(F 2gA) �→ (G2gA)◦(ϕXA) E(F 1X1A, G1Y 1A) (15),(11)

(ϕY ◦ψY )◦F 2g �→ (G2g◦ϕX)◦ψX E(F 1X, G1Y ) (11),(15)

H2(ϕY )◦H2(F 2g) �→ H2(G2g)◦H2(ϕX) E(H1F 1X, H1G1Y ) (2c),(15)

(h◦ϕY )◦F 2g �→ (h◦G2g)◦ϕX D(F 1X, Z) (07),(15)

((h◦G2g)◦ϕX)◦ψX �→ ((h◦ϕY )◦ψY )◦F 2g E(F 1X, Z) (2c),(11),(15)

(h◦H2(ϕY ))◦H2(F 2g) �→ (h◦H2(G2g))◦H2(ϕX) E(H1F 1X, Z) (07),(07),(15)
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First-Order Reasoning. One important aspect of our approach is demonstrating
that reasoning in basic category theory is essentially first-order although some
of its concepts are not. This means that functors and natural transformations
can only be treated as abstract objects whose properties can only be described
in terms of their first-order components.

For example, proving two categories C and D isomorphic (formally denoted
by C =̂ D) requires showing the existence of two functors θ : Fun[C,D] and
η : Fun[D,C] that are inverses of each other. In the formal proof, we cannot
simply introduce θ as closed object, because this would be a pair of λ-terms
mapping C-objects onto D-objects and C-arrows onto D-arrows. Instead we have
to specify its object and arrow components θ1A and θ2f for A an object of
C and f an arrow of C through first-order equations. If these components are
again functors or natural transformations, we have to specify subcomponents un-
til we have reached a first-order level. In our proof of the isomorphism between
Fun[C× D,E] and Fun[C,Fun[D,E]], we need four equations to specify θ:

θ1G1X1X1 ≡ G1<X, X1> θ1G2f X ≡ G2<f, 1X>
θ1G1X2h ≡ G2<1X, h> θ2 ϕ X X1 ≡ ϕ <X, X1>

Mathematically speaking, these four equations are sufficient for the proof, since
any functor satisfying these equations can be used to complete the proof. How-
ever, the embedding of basic category theory into Nuprl’s formal logic requires
the existence of a functor satisfying these equations to be verified (this require-
ment could, of course, be turned off by providing a special rule). Constructing
the functor from the equations is straightforward if it is uniquely specified by
them. Since this part of the proof is higher-order and has nothing to do with
basic category theory, it is generated automatically in the background.

Guessing Witnesses for Existential Quantifiers. The mechanisms described so
far are sufficient to verify properties of given functors and natural transforma-
tions. But many proofs in basic category theory require proving the existence of
functors or transformations with certain properties. For a trained mathematician
this is a trivial task if there are only few “obvious” choices. Since the purpose
of proof automation is automating what is considered obvious, we have devel-
oped a heuristic that attempts to determine specifications for functors or natural
transformations that are most likely to make a proof succeed.

The most obvious approach is to start developing a proof where the functor
or natural transformation has been replaced by a free variable and proceed until
the decomposition cannot continue anymore. At this point we have generated
typing subgoals for all first-order components of the functor. For the functor θ in
our isomorphism proof we get (up to α-equality) four different typing conditions

θ1G1X1X1 ∈ E θ1G2f X ∈ E(θ1G1A1X, θ1G1B1X)
θ1G1X2h ∈ E(θ1G1X1X1, θ1G1X1Y) θ2 ϕ X X1 ∈ E(θ1F1X1X1, θ1G1X1X X1)

The heuristic then tries to determine the simplest term that is built from the
component’s parameters (whose types are known) and satisfies the given typing
requirements. For this purpose it tries to identify parameters that are declared
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to be functors or natural transformations and to find a match between some
part of their range type and the typing requirement for the component. Once
the match has been found, the remaining parameters will be used to determine
the arguments needed by the functor or natural transformation.

To solve the first of the above typing conditions, the heuristic finds the decla-
rations G : Fun[C× D,E], X : C, and X1 : D. The simplest term that has type
E and is built from these parameters is the term G1<X,X1>.

Determining the arguments of a functor or natural transformation is not al-
ways straightforward. In some cases like the above, the remaining parameters
are of the right type and can be used as arguments. In other cases we have an
object where an arrow is needed or vice versa. The most obvious choice is turn-
ing an object into an identity arrow and an arrow into its domain or codomain,
depending on the typing requirements.

To solve the second of the above conditions, the heuristic has to use the
declarations G : Fun[C× D,E], X : C, h : D(X1, Y ), and X1, Y : D. To create
a term of type E(θ1G1X1X1, θ

1G1X1Y ), one has to use G2 and arrows from
C(X,X) and D(X1, Y ). For the latter, we can pick h, while the only arrow in
C(X,X) that can be built from the object X is the identity 1X .

In some cases, none of the above choices satisfy the typing conditions, but a
composition of natural transformation and functor as in rule (15) would do so.
In this case, the heuristic will use the functor and its arguments twice in different
ways. This choice is less obvious, but still considered standard.

5 An Application

To demonstrate the feasibility of our approach, we have generated a completely
formal proof that the functor categories Fun[C× D,E] and Fun[C,Fun[D,E]]
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are naturally isomorphic. The structure of the proof is similar to the hand-
constructed proof described in [18], which required several hours to complete
and more than 10 pages to write down. Using our strategies, the creation of the
proof was fully automated and took only a few seconds.

The screenshot above shows that the proof consists of only six proof steps.
First we unfold the definition of isomorphisms and decompose the proof goal. We
then ask the tactic to guess values for the functors θ and η. Finally, we unfold
the definition of inverse functors and use the automated proof search procedure
to validate that θ and η are indeed functors of the appropriate types and that
they are inverse to each other.

This top-level version of the proof reveals the key idea that was necessary
to solve the problem, but hides the tedious details involved in validating the
solution. Users interested in proof details can inspect the complete proof tree
that Nuprl will display on demand. However, one should be aware that the
complete proof is huge. It takes 1046 and 875 basic inferences to prove that θ
and η are indeed functors of the appropriate types and another 1141 inferences
to prove that they are inverse to each other.

It should be noted that all six steps are straightforward when it comes to
dealing with isomorphism problems. One could combine them into a single tactic
IsoCAT, which would then give us the following proof.

* ∀C,D,E:Categories. Fun[C×D,E] =̂ Fun[C,Fun[D,E]]
BY IsoCAT

However, little insight is gained from such a proof, except that it has in fact
been completed automatically.

Proving the naturality of the isomorphism is more demanding, since we have to
show θ and η to be elements of Fun[Catop × Catop × Cat,Cat](U, V ) for suitable
functors U, V , that are inverse for every choice of categories C, D, and E. Guessing
specifications for U , V , θ, and η automatically is now less trivial. Currently, our
automated strategy (extended for dealing with categories of categories) can only
validate U , V , θ, and η after they have been specified by hand.

6 Conclusion

We have presented a Gentzen-style deductive system for elementary category
theory involving a mixture of typing and equational judgments. We have imple-
mented this logic in Nuprl along with relevant proof tactics that go a long way
toward full automation of elementary proofs. We have demonstrated the effec-
tiveness of this approach by automatically deriving proofs of several nontrivial
results in the theory, one example of which is presented in detail above. The
system works very well on the examples we have tried.

We have found that careful planning in the order of application of tactics
makes the proof search mostly deterministic. However, the proofs that are gen-
erated tend to be quite large because of the overwhelming amount of detail. Many
of the necessary steps, especially those that involve basic typing judgments, are
quite tedious and do not lend much insight from a human perspective. For this
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reason, they are typically omitted in the literature. Such arguments are never-
theless essential for automation, because they drive the application of tactics.

There are a number of technical insights that we have observed in the course
of this work.

– Most of the ideas that we have applied in this work are in fact fairly standard
and not too sophisticated. This shows that our calculus is well designed and
integrates well with existing theorem proving technology.

– Formal proofs, even of quite elementary facts, have thousands of inferences.
As mentioned, many of these steps are quite tedious and do not lend much
insight. This indicates that the theory is a good candidate for automation.

– Almost all proof steps can be automated. Forward steps such as decom-
position using the analysis rules and directed rewriting for equations tend
to be quite successful. Since the proof system is normalizing and confluent
(we did not show this), the time is mostly spent building the proof. Apart
from guessing witnesses, there is virtually no backtracking involved and the
bulk of the development is completely deterministic, being driven by typing
considerations.

– Lookahead improves the performance of our strategy. Since inference rules
may generate redundant subgoals, lemma generation can allow proof reuse.

– Display forms are crucial for comprehensibility. It is often very difficult to
keep track of typing judgments currently in force. Judicious choice of the
display form can make a great difference in human readability.

For the future, we plan to gain more experience by attempting to automate
more of the basic theory. We need more experience with the different types
of arguments that arise in category theory so that we will be better able to
design those parts of the mechanism involved with the guessing of witnesses.
Preliminary investigations show that automating the application of the Yoneda
lemma will be key to many of the more advanced proofs.

Since our proof strategies can be viewed as encodings of proof plans for cat-
egory theory, our approach may benefit from using generic proof planning tech-
niques [8] to make these proof plans explicit.

Finally, we would like to mention an intriguing theoretical open problem.
The proof of the result that we have described, namely that Fun[C× D,E] and
Fun[C,Fun[D,E]] are naturally isomorphic, breaks down into two parts. The
first partargues that the functor categories Fun[C× D,E] and Fun[C,Fun[D,E]]
are isomorphic, and the second part argues that the isomorphism is natural. As
Mac Lane describes it [20, p. 2], naturality, applied to a parameterized con-
struction, says that the construction is carried out “in the same way” for all
instantiations of the parameters. Of course, there is a formal definition of the
concept of naturality in category theory itself, and it involves reparameterizing
the result in terms of functors in place of objects, natural transformations in
place of arrows. But any constructions in the formal proof π of the first part of
the theorem, just the isomorphism of the two parameterized functor categories,
would work “in the same way” for all instantiations of the parameters, by virtue
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of the fact that the formal proof π is similarly parameterized. This leads us to
ask: Under what conditions can one extract a proof of naturality automatically
from π? That is, under what conditions can a proof in our formal system be au-
tomatically retooled to additionally establish the naturality of the constructions
involved? Extracting naturality in this way would be analogous to the extraction
of programs from proofs according to the Curry–Howard isomorphism.
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Formal Global Optimisation with Taylor Models
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Abstract. Formal proofs and global optimisation are two research ar-
eas that have been heavily influenced by the arrival of computers. This
article aims to bring both further together by formalising a global optimi-
sation method based on Taylor models: a set of functions is represented
by a polynomial together with an error bound. The algorithms are imple-
mented in the proof assistant Coq’s term language, with the ultimate goal
to obtain formally proven bounds for any multi-variate smooth function
in an efficient way. To this end we make use of constructive real numbers,
interval arithmetic, and polynomial bounding techniques.

1 Introduction

Global optimisation, as it shall be understood in this article, is concerned with
finding the minimum and maximum value of a given objective function f : Rn →
R on a certain domain [a1; b1] × . . . × [an; bn]. Since this is generally difficult,
we will in practice content ourselves with a bounding interval [c;d] such that
∀x ∈ [a1; b1] × . . . × [an; bn]. f x ∈ [c; d], of course desiring [c; d] as narrow as
possible.

Problems of this kind arise in a wide spectrum of science, ranging from engi-
neering (aeronautics [4], robotics [16]), over experimental physics (particle mo-
tion in accelerators [12]) to geometry. A prominent instance of the last class is
the proof of the Kepler conjecture given by Thomas Hales [10], in which some
thousand lemmata asserting bounds on geometric functions occur.

1.1 From Extremum Criteria to Global Optimisation Algorithms

In 1755 Euler gave (based on previous work by Fermat) the well-known necessary
condition ∇fx = 0 for f to assume an extremum at x [5]. However, in most
interesting cases effectively solving this equation is an equally difficult problem.
During the following centuries a lot of more sophisticated criteria have been
developed, but like Euler’s most of them reduced the original problem to another
difficult one.

The arrival of computers changed this situation: Previously intractable opti-
misation problems entered the scope of what could be solved. Moreover, this led
mathematicians to develop new methods to treat this kind of problems. In 1962
Ramon E. Moore described the use of interval arithmetic on a computer, refined
by a branch-and-bound algorithm to optimise a function over an interval [18].
This work has been the basis for many sophisticated refinements, making up the
core of numerous current global optimisation algorithms [11].
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1.2 From Formal Proof in Principle to Formal Proof in Fact

In 1879 Frege was first to introduce the notion of formal proof. With his Begriffs-
schrift he gave a language to express propositions and rules to reason on them
in a purely syntactical manner. While this work showed how formal proofs can
in principle be constructed, its usefulness remained limited by practical con-
straints: The amount of detail required to formally prove even relatively simple
statements was unacceptably large for a human equipped only with pencil and
paper.

Again, the arrival of computers changed this situation: In 1967, after mathe-
matical logic had become a more thoroughly studied topic, Nicolaas G. de Bruijn
developed the Automath system [3], which could syntactically verify that a given
proof indeed demonstrates a given theorem. The fact that formal proofs could
now be constructed and checked on a machine made their development more
practical, and a certain amount of mathematics has been formalised in different
systems since.

1.3 Formal Global Optimisation

The aim of the work described in this article is to apply formal proof techniques
to global optimisation. More precisely, we are going to formalise an algorithm
based on Taylor models [12] in the Coq system. Taylor models are the basis of
one of the more recent global optimisation methods in the tradition of interval
arithmetic, while Coq is a state-of-the-art proof assistant in the tradition of de
Bruijn’s system.

Solutions to other computationally difficult problems have already been for-
malised: a formal proof of the Four Colour Theorem has been given by Georges
Gonthier and Benjamin Werner [6]. Also, a verification algorithm for Pocklington
certificates of prime numbers has been proven correct [7]. In a slightly different
setting, other computational parts of the Kepler conjecture proof have been
formalised, namely a large graph enumeration problem [20] and linear prog-
rams [22].

Computational proofs are supported by an important characteristic of type
theory: The so-called conversion rule identifies terms modulo β-conversion (com-
putation). In fact, functional programs written in type theory can be referred
to in proofs. For example assume that test : term → intvl → bool implements
a global optimisation method which attempts to prove that a certain function
(described by its term) is positive on a given interval. Its correctness lemma
states:

∀f : term, X : intvl. test f X = true→ ∀x : R. x ∈ X → �f�x > 0

If the method used is reasonably good test (1
2 +X+X2) [−1; 1] will evaluate to

true. Then we can prove ∀x : R. x ∈ [−1; 1]→ 1
2 +x+x2 > 0 simply by applying

the correctness lemma. The attractive feature of this technique, called proof by
reflection, is that the computation steps do not have to be made explicit. It
suffices in fact to refer to the decision procedure test, whose computational trace
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can be reproduced if the proof needs to be re-checked. Therefore the trace does
not need to be stored, which can dramatically reduce the size of certain proofs.

The rest of this article presents an implementation of Taylor models in Coq.
Its description has to remain on a rather abstract level, due to the number of
different concepts involved. However, the implementation follows quite closely
the theoretical presentation given here. Our ultimate goal is to entirely prove
correct the Taylor model algorithm and to refine our implementation sufficiently,
so that it can treat all of the above-mentioned lemmata appearing in the proof
of the Kepler conjecture.

1.4 Outline

Section 2 presents interval arithmetic and its traditional use for global optimisa-
tion. The dependency problem and the loss of sharpness of the united extension
are discussed. A solution to the latter is suggested in section 3 where we explain
how constructive reals can be used as interval bounds. In particular, a generali-
sation of Moore’s sign-based interval multiplication is given. In section 4 Taylor
models are presented according to [12]. We simplify it by giving a new technique
for composing smooth functions with Taylor models, not requiring the manual
insertion of an addition theorem (4.2). Besides, it is shown that the choice of
reference points for the development of smooth functions can be improved (4.3).
Finally, we give some examples of our implementation’s performance (section 5)
before reaching the conclusions (section 6).

2 Interval Arithmetic

As mentioned, interval arithmetic on computers has been developed by Moore
in the early 1960s. We will briefly describe its traditional use for global optimi-
sation, thereby summarising its elementary notions. While we are not going to
follow this approach here, Taylor models themselves make careful use of interval
arithmetic.

Definition 1. Given a set of bounds B ⊆ R the set of associated intervals is
defined as IB := {[a; b] | a, b ∈ B} where [a; b] := {x ∈ R | a ≤ x ≤ b}. We also
note the set of n-dimensional boxes as In

R := {X1 × . . .×Xn | X1, . . . , Xn ∈ I},
and [x1, . . . , xk] the smallest interval containing all of x1, . . . , xk, each one of
which is either a bound or an interval.

Definition 2. For any B ⊆ R the function f̂ : In
B → IB is a B-interval exten-

sion of f : Rn → R iff:

∀X ∈ In
B . f̂ X ⊇ {f x | x ∈ X}

If ⊇ can be replaced by = in the preceding line, f̂ is called B-sharp.

We will first develop interval arithmetic on IR. The problems to which other
choices for the bounds lead will be discussed in section 2.3. However, in section 3
we will show that, in spite of tradition, a choice different from R is not mandatory
for an implementation.
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2.1 Operations

Interval extensions of some basic real functions are given in table 1. They are
all sharp, as can be easily verified. Extensions of more complicated functions
can be obtained by structural recursion on the term describing them. The result
is referred to as the natural interval extension. Note that it is in general not
sharp.

Table 1. Interval extensions of some real functions

[a; b] +̂ [c; d] := [a + c; b + d]

−̂ [a; b] := [−b;−a]

[a; b] ·̂ [c; d] := [min{ac, ad, bc, cd}; max{ac, ad, bc, cd}]
1/̂ [a; b] := [1/b; 1/a] if 0 �∈ [a; b]

ˆarctan[a; b] = [arctan a; arctan b]
ˆ√
[a; b] = [

√
a;
√

b] if 0 ≤ a

The extension of multiplication is inefficient if implemented as suggested by
the formula given in table 1, because all of ac, ad, bc, and bd are computed
before determining their minimum and maximum. In fact this can be accelerated
[17] by looking at the signs of a, b, c, and d, using the fact that a ≤ b and
c ≤ d.

Definition 3. An interval [a; b] has sign + if a > 0, sign − if b < 0 and sign
± if a ≤ 0 ≤ b.

Given the signs of the two intervals [a; b] and [c; d] we can compute the extension
of multiplication as described in the following table:

[a; b] [c; d] min{ac, ad, bc, bd} max{ac, ad, bc, bd}
+ + ac bd
+ ± bc bd
± ± min{ad, bc} max{ac, bd}

The other six cases can be reduced to these by the two equations:

[a; b] ·̂ [c; d] = [c; d] ·̂ [a; b] = −([−b;−a] ·̂ [c; d])

2.2 Global Optimisation with Interval Arithmetic

In order to obtain bounds for a given function f on a domain X , it is now
sufficient to construct an interval extension f̂ of f (e.g. the natural one). Then,
by the extension property, computing the interval f̂ X provides bounds for f
on X .

However, and this is why the story does not end here, these bounds are
in general quite crude. Optimising x �→ x − x on [a; b] by this method yields
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[a − b; b − a], although it is easy to see that [0; 0] is a bound here. One might
object that x − x could easily be recognised and rewritten to 0. This is correct
(and even helpful), but there are many other similar cases, e.g. (sinx)2+(cosx)2.
No general procedure is known to cover all of them.

It might seem surprising that the interval extension of the subtraction given
in table 1 is sharp, while the result that it yields on the above example is not
optimal. This point merits some study. To begin with, the extension property
for −̂ states that for any X,Y ∈ I:

∀x ∈ X, y ∈ Y. x− y ∈ X −̂ Y

Furthermore, sharpness asserts that for any X,Y the interval X−̂Y is the
narrowest one satisfying this statement. By setting Y to X we obtain:

∀x, y ∈ X. x− y ∈ X −̂ X

This shows the problem clearly: An argument to an interval extension does not
contain any reference to the variable it represents. The term X −̂ X represents
not only x− y, but of course also the less general x− x. It cannot be evaluated
to [0; 0] because the information that both its arguments are the same has been
lost. This phenomenon is often referred to as the dependency problem.

A simple strategy to improve the quality of the bounds is based on interval-
splitting. In one dimension the united extension f̂n of f is given by:

f̂n [a; b] =
n⋃

i=1

f̂

[
a+ (i− 1)

b− a

n
; a+ i

b− a

n

]

Moore showed in his thesis [18] that [a; b] �→ limn→∞ f̂n[a; b] is a sharp ex-
tension of f . This can – with exponential complexity – easily be generalised to
the multi-dimensional case. Although important, this technique is not yet suf-
ficient for most applications, which is why numerous other refinements [11,19]
have been developed. In section 4 we are going to see how Taylor models address
the dependency problem more directly and are able to overcome it in part.

2.3 The Set of Interval Bounds

Traditionally some set of “machine-representable” numbers B ⊂ R has been
used to implement interval bounds. However, note that even when we are able
to obtain a basic set of B-sharp functions (such as in table 1), the B-sharpness
of the united extension can be lost, as shows the following example:

Example 1. Let B = { k
1000 | k ∈ N}. Denote �x� = max{b ∈ B | b ≤ x} and

�x� = min{b ∈ B | x ≤ b}. We then have the B-sharp extensions:

[a; b] −̂B [c; d] = [a− d; b − c]
√

[a; b]B =
[⌊√

a
⌋
;
⌈√

b
⌉]



Formal Global Optimisation with Taylor Models 413

Now consider the function f = x �→ √
x−√x. Its natural B-interval extension

is f̂ = [a; b] �→
[
�
√
a� −

⌈√
b
⌉

;
⌈√

b
⌉
− �
√
a�

]
. For its united extension we have

f̂n [0; 1] =
n⋃

i=1

[−δi,n; δi,n] = [−δ1,n; δ1,n] where δi,n =

⌈√
i

n

⌉
−

⌊√
i− 1
n

⌋

Note that δ1,n =
⌈√

1
n

⌉
≥ 1

1000 for any n. Thus limn→∞ f̂n [0; 1] = [0; 1
1000 ] �=

[0; 0], which means that f̂n is not B-sharp. )*

The same phenomenon occurs with floating-point numbers. As an alternative,
taking rational numbers allows us to have sharp interval extensions of basic
arithmetic to IQ. However, for the irrational functions (e.g. square root) there
are no sharp extensions. In order to refine bounds for f obtained by computing
f̂n for some n we thus have two options:

– Recompute f̂n for a larger n.
– Use a more precise set of bounds B ⊂ R. In practice this can mean to increase

some precision parameter.

The first option would be a good choice for f x = x − x, the second one for
f x =

√
x on [0; 2]. However, it is not easy to say which choice is better in general.

Making the wrong one will lead to unnecessary computations.

3 Constructive Real Numbers

No solution has been given to the loss of sharpness for the united extension oc-
curring when using numbers that are “machine-representable” in the traditional
sense. We will explain how constructive analysis can be used to represent the
whole of (constructively defined) R on a machine. This approach allows us to
regain sharpness of the united extension.

Real numbers can be seen as equivalence classes of Cauchy sequences. x : N →
Q is a Cauchy sequence if:

∀ε > 0. ∃n. ∀k1, k2 ≥ n.
∣∣ xk1 − xk2

∣∣ < ε

By the Curry-Howard-isomorphism constructively proving this property for a
given x amounts to providing a function m : Q → N (referred to as the modulus)
such that

∀ε > 0. ∀k1, k2 ≥ mε.
∣∣xk1 − xk2

∣∣ < ε

A real number can thus be defined as a pair (x,m) ∈ (N → Q) × (Q →
N) verifying this property. They are equipped with two families of ε-indexed
relations:

(x1,m1) =ε (x2,m2) :⇔
∣∣ (x1 ◦m1) ε− (x2 ◦m2) ε

∣∣ ≤ 2ε
(x1,m1) <ε (x2,m2) :⇔ (x1 ◦m1) ε+ 2ε ≤ (x2 ◦m2) ε
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We also note:

a < b :⇔ ∃ε. a <ε b and a = b :⇔ ∀ε. a =ε b

Note that =ε and <ε are decidable for a given ε, whereas = and < are not.
We give here only a few examples of functions on constructive reals:

(x1,m1) + (x2,m2) :=
(
k �→ x1 k + x2 k, ε �→ max

{
m1

(ε
2

)
,m2

(ε
2

)})

min (x1,m1) (x2,m2) := (k �→ min (x1 k) (x2 k), ε �→ max (m1 ε) (m2 ε))

sgnε (x,m) :=






1 if x ε < −ε
−1 if ε < x ε
0 otherwise

More details on constructive real numbers and their implementations can be
found in [25,21,23,2,15]. Irrational functions (square root, trigonometry etc.) can
be computed without rounding. This means that in order to obtain an approxi-
mation for a larger formula we have to provide only one precision argument.

Real numbers defined in this way are termed “constructive” because they serve
as the basis of constructive analysis, in which every proof induces an algorithm.
However, when one does not care for algorithms, it is of course acceptable to use
the excluded middle to reason about them.

3.1 Interval Multiplication

When using constructive real numbers as interval bounds, the undecidability of
their sign is not entirely harmless. For the multiplication of two intervals Moore’s
procedure (section 2.1) cannot be applied since it requires sign information for
all four bounds involved. If sgn ε yields 0 for one of the two intervals, we would
have to fall back to the more inefficient version of table 1.

In order to avoid this, we propose a generalisation of Moore’s efficient interval
multiplication to intervals with constructive real numbers as bounds. It performs
a finer case analysis, able to eliminate candidates among {ac, ad, bc, cd} based
on only partial sign information.

We note (x−1, x1, y−1, y1) := (a, b, c, d). Under the assumptions x−1 < x1 and
y−1 < y1 (which happens to be an invariant of all interval operations) we have
for any ε:

min {xiyj | i, j ∈ {−1, 1}} = min {xiyj | i, j ∈ {−1, 1} ∧ ¬(0 <ε jxi ∨ 0 <ε iyj)}

Proof. We have to show that for the smallest element xiyj the property ¬(0 <ε

jxi ∨ 0 <ε iyj) holds. If 0 <ε jxi then xiy−j < xiyj . Symmetrically, if 0 <ε iyi

then x−iyj < xiyj . Both conclusions contradict the assumption that xiyj is
minimal. )*
What ε should be chosen? Note that this choice does not affect the result of
the given procedure but only its performance. If ε is chosen too small, the cost
of determining 0 <ε jxi and 0 <ε iyj becomes high, if chosen too large the set
which the min function is applied to is more likely to contain more than one
element. Experiments show that this choice is in most cases not critical.
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3.2 Partial Functions

Looking at table 1 we notice that the extension of the multiplicative inverse has
0 �∈ [a; b] as a side condition. If it is not satisfied then the inverse function in our
implementation returns the special interval [−∞;∞], conveying the information
that nothing can be pe proved about the result.

Because the condition is undecidable on constructive reals we can only give
an ε-indexed family of interval extensions:

1/̂ε[a; b] :=
{

[1/b; 1/a] if 0 <ε a ∨ b <ε 0
[−∞;∞] otherwise

Once a function has returned the interval [−∞;∞] this result is propagated
(e.g. [−∞;∞]+ [a; b] = [−∞;∞]) and the computation thus aborted. Except for
this error case the sharpness of the united extension remains ensured.

4 Taylor Models

The dependency problem described in section 2.2 gave rise to many refinements
of interval arithmetic, such as variable centring, domain-splitting, domain pro-
jections, or gradient checks [11,19]. All of these provide a certain remedy, but
they do not actually solve the problem. It has often been observed that Tay-
lor expansions of the function to optimise can be used to obtain better results
with interval arithmetic. Taylor models [12] exploit this fact systematically and
combine it with methods for the efficient computation of derivatives.

As we have seen, the dependency problem stems from the fact that the in-
formation that x − x is different from x − y is lost on the interval level. This
is because interval arithmetic is a calculus of number sets, unable to represent
this kind of information. In contrast to this, Taylor models provide a calculus of
function sets.

We note R[X1, . . . ,Xk] the set of k-variate polynomials with real coefficients
in the variables X1, . . . ,Xk. Their addition and multiplication are assumed.

Definition 4. The set of k-variate Taylor models is defined as T := Ik ×
R[X1, . . . ,Xk] × I. For a Taylor model (X,P,∆) ∈ T the box X is called its
domain, P its polynomial, and ∆ its error bound. The set of all Taylor models
over some given domain X is denoted by TX .

A Taylor model represents a set of functions:

�(X,P,∆)� = {f : X → R | ∀x. f x− P x ∈ ∆}

4.1 Arithmetic on Taylor Models

A polynomial bounder B : R[X1, . . . ,Xk] → Ik → I is assumed to be available,
e.g. by a Horner evaluation in interval arithmetic. (P )≤n denotes the polynomial
P up to the nth coefficient, and (P )>n the remaining part.
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A binary operation on Taylor models :T correctly reflects :R on reals iff:

�T1 :T T2� ⊇ {x �→ f x:R g x | f ∈ �T1�, g ∈ �T2�}

This condition is satisfied by the following definitions, valid for two Taylor
models with identical domain [12]:

(X,P1, ∆1) +̃ (X,P2, ∆2) = (X,P1 + P2, ∆1+̂∆2)
(X,P1, ∆1) ·̃ (X,P2, ∆2) = (X, (P1 · P2)≤n, B X (P1 · P2)>n +̂

B P1 X ·̂∆2 +̂∆1 ·̂B P2X +̂∆1 ·̂∆2)

For multiplication the degree n can be arbitrarily chosen. Higher values will
lead to better accuracy, but also to a higher computational cost.

4.2 Composing Smooth Functions with Taylor Models

After having defined addition and multiplication in the previous section we are
able to evaluate any polynomial in TX . The natural next step is to construct
Taylor model versions for the square root or trigonometric functions (the multi-
plicative inverse will be treated along with them).

We show how, given any smooth function g : Y → R (where Y ⊆ R) and a
Taylor model F ∈ TX (where X ∈ Ik) we can construct a new Taylor model
H ∈ TX such that:

{g ◦ f | f ∈ �F �} =: g ◦ �F � ⊆ H

The proposed solution of this problem is not going to use the fact that F is
represented by a Taylor model. It would work as well for any other representation
of function sets.

The idea is to apply Taylor’s theorem to develop g around a freely chosen
reference point y0 ∈ Y . We thus have for any f ∈ F :

∀x ∈ X. g (f x) ∈
n∑

k=0

g(k) y0

k!
(f x− y0)k +

g(n+1)[y0, f x]
(n+ 1)!

(f x− y0)(n+1) (1)

The left summand can be written in notation of functions arithmetic, while
we make the right summand an interval independent of x (by taking the union
of all possibles values of f on X). (1) thus implies:

g ◦ f ∈
n∑

k=0

g(k) y0

k!
(f − y0)k +

g(n+1)[y0, f X ]
(n+ 1)!

(f X − y0)(n+1)

The last step is to include all possible choices within F and to bound it on X :

g ◦ F ⊆
n∑

k=0

g(k) y0

k!
(F − y0)k +

g(n+1)[y0, B F X ]
(n+ 1)!

(B F X − y0)(n+1) =: H (2)

We’re now done with the construction of H . It can actually be implemented:
The left summand is a polynomial of Taylor models (or any other structure
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representing function sets), for which we have already defined the arithmetic op-
erations. The right summand relies on the bounding of F and interval arithmetic.
It contributes to the resulting Taylor model’s error interval.

This construction is inspired by the strategy for composing smooth functions
with Taylor models given in [12]: Note c the constant part of F (i.e. the first coef-
ficient of its polynomial) and F̄ := F − c. Use an addition theorem for g to split
g ◦ F = g ◦ (c +̃ F̄ ) into two parts. Then apply Taylor’s theorem with reference
point 0 to the part including F̄ . For the logarithm this strategy gives us:

log ◦F = log ◦(c+ F̄ ) = log ◦
{
c ·

(
1 +

F̄

c

)}
= log c+ log ◦

(
1 +

F̄

c

)
(3)

∈ log c+
n∑

k=1

(−1)k−1

k

(
F̄

c

)k

+
(−1)n

(
B F̄ X

c

)n+1

(n+ 1)
(
1 +

[
0, B F̄ X

c

])n+1 (4)

This kind of reasoning does of course not represent any difficulty for the working
mathematician. However, finding an appropriate addition theorem for a given g re-
quires a certain amount of creativity, which can only be provided by a human. This
is why in [14] this strategy has been applied to many different functions manually:
x �→ 1

x , sin, cos, arctan, log etc., so that they could be implemented. In contrast,
our construction (2) can entirely be carried out by a machine and is still general
enough to cover all these functions. The idea was to apply Taylor’s theorem imme-
diately (i.e. without invocation of an addition theorem) with some carefully chosen
y0 (instead of 0) as reference point. For the logarithm (2) yields:

log ◦F ⊆ log y0 +
n∑

k=1

(−1)k−1

kyk
0

(F − y0)
k +

(−1)n (B F X − y0)
n+1

(n+ 1)[y0, B F X ]n+1

Choosing y0 = c makes this equivalent to (4). The “creative part” of apply-
ing a function-dependent addition theorem, done in step (3), has been made
superfluous, so a machine can entirely perform the task. Our Coq implementa-
tion actually contains a generic function that provides a Taylor model extension
given only a function’s Taylor coefficients as arguments.

4.3 What Reference Point to Choose?

With this procedure established, a point that merits some more study is the
choice to be made for the reference point y0. As mentioned, the strategy described
in [13] is equivalent to setting y0 = c. However Taylor’s theorem can be applied
with any y0 ∈ Y as reference point. A good choice is one that minimises the width
of the resulting Taylor model’s error interval. In fact, there are cases where a
better choices for y0 than the Taylor model’s constant part can be made. We
illustrate this by the following example:

Example 2

1
(1 + X2, [0; 0])

⊆
n∑

k=0

(−1)k

yk+1
0

(1 + X2, [0; 0])k +
(−1)n+1

[y0, 1 +X2]n+2 (1 +X2 − y0)n+1
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At order n = 2 we obtain (assuming y0 ∈ 1 +X2):
(

1− 3y0 + 3y2
0

y3
0

+
2− 3y0

y3
0

X2,
X4

y3
0
− (1 +X2 − y0)3

(1 +X2)4

)

Let us further fix X := [− 1
2 ; 1

2 ]. For this example the optimal (i.e. minimising
the width of the error interval) choice for the reference point is not y0 = c = 1.
For y0 = 1 the error interval has the width 0.078125, and for y0 = 5

4 the width
is 0.047625. Careful study shows that the latter is optimal. )*

This example is limited to the multiplicative inverse and also to the case where
the error part of the Taylor model given as an argument is zero. It is not obvious
how to obtain an optimal value for y0 in general. However, there are cases where
better choices than c can be made. It would be interesting to see if a general
procedure can be derived.

4.4 Implementation of Taylor Models

In Coq we represent a Taylor model as a record of two fields:

Record TaylorModel (degree : nat) (X : list intvl) : Type := TM {
approx : Poly R (length X);
error : intvl

}

This type is parameterised by the degree at which Taylor operations will
be carried out (section 4.1) and the domain X. The field approx contains a
polynomial with real coefficients in length X (the dimension of the domain)
variables. The field error is the Taylor model’s error interval.

Polynomials. An (n+1)-variate polynomial can be represented as a polyno-
mial with n-variate polynomials as coefficients. This is justified by the canonical
polynomial isomorphism:

R[X1, . . . ,Xn+1] � R[X1, . . . ,Xn][Xn+1]

This can be translated to Coq as follows [9]:

Fixpoint PolyN (n:nat) struct n : Type :=
match n with
| O => C
| S m => list (PolyN m)
end.

The coefficients of the Taylor models’ polynomials are represented by con-
structive real numbers because they can become irrational. Other choices have
different consequences:

– Floating-point numbers: Their usage as coefficients will only yield approxi-
mations without error bounds, which is unacceptable for formal proof. An
explicit treatment of rounding errors is possible, as has been shown for ad-
dition and multiplication [24]. However this approach can be expected to be
much more difficult for the Taylor development of general smooth functions.
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– Intervals: Using intervals with rational or floating-point number bounds as
coefficients is feasible, but they add to the complexity of proofs. Furthermore,
they force the user to give a precision for the enclosure of irrational values,
thereby affecting sharpness in a way difficult to control.

Bounding. Taylor models make use of polynomial bounding for multiplication
(section 4.1) and composition with smooth functions (section 4.2 ). A simple way
to bound polynomials is to evaluate their interval extension. However there are
much better strategies yielding narrower bounds. For example it is well-known
that a univariate quadratic function can be rewritten by:

c2x
2 + c1x+ c0 = c2

(
x+

c1
2c2

)2

− c21
4c2

+ c0

The natural interval extension of the right hand side will then yield sharp
bounds. There are much more sophisticated techniques for multi-variate polyno-
mials of several degrees, as described in section 5.4.3 of [12]. Our implementation
does not include them yet.

Computing Taylor Coefficients. As we have seen, in order to apply a smooth
function to a Taylor model it is necessary to compute the coefficients of its Taylor
series. Doing this by symbolic derivation is prohibitively expensive, so we use
combinatoric formulas to obtain the derivatives. For example:

inv(k)y = (−1)k k!
yk+1 log(k)y = inv(k−1)y = (−1)(k−1) (k − 1)!

yk

A perhaps less well-known formula is [1]:

arctan(k)y =
n!

(1 + y2)n

n∑

k=0, n+k odd

(−1)
n+k+1

2

(
n

k

)
yk

These formulas are evaluated both in real numbers and in the interval arith-
metic, as required by equation 2.

5 Examples

Example 3. As a first example [13] we study the function f x = 1
x + x on the

domain [1.9; 2.1]. Our implementation yields the following results (the last line
of the table shows the actual bound):

order of ∆ width of ∆ bound interval
0 5.0125313 · 10−2 [2.3761905; 2.6263158]
1 5.5401662 · 10−2 [2.3722992; 2.6277008]
2 1.4579385 · 10−3 [2.4250000; 2.5764579]
3 1.5346721 · 10−4 [2.4236733; 2.5763267]
4 4.0386107 · 10−6 [2.4236875; 2.5763165]
∞ 0 [2.4263158; 2.5761905]
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All these results have been obtained in less than a second using Coq’s comp-
iler [8]. )*

Example 4. Lemma I_751442360 in Thomas Hales’ proof of the Kepler conjec-
ture [10] states that

−x1x3 − x2x4 + x1x5 + x3x6 − x5x6 +
x2(−x2 + x1 + x3 − x4 + x5 + x6)√√√√√√√4x2





x2x4(−x2 + x1 + x3 − x4 + x5 + x6) +
x1x5(x2 − x1 + x3 + x4 − x5 + x6) +
x3x6(x2 + x1 − x3 + x4 + x5 − x6)

− x1x3x4 − x2x3x5 − x2x1x6 − x4x5x6





< tan
(π

2
− 0.74

)
≈ 1.09518

for all x ∈ X751442360, which is a 6-dimensional box given in the proof. We bound
the left-hand side on a sub-domain of X751442360 which is smaller (of width ≈ 1

10
in every dimension), but still contains the global maximum. The results are:

order of ∆ width of ∆ bound interval
0 ∞ [−∞;∞]
1 1.3025929 [0.36246433; 1.6650572]
2 1.6105738 · 10−2 [0.94291234; 1.0905563]
∞ 0 [0.95253193; 1.0849205]

The result for order 3 has been obtained in about ten minutes1 . Further
work needs to be done in order to improve this performance. However, it is
already sufficiently tight for proving the required statement on the given small
sub-domain. )*

6 Conclusion

The global optimisation problems included in Thomas Hales’ proof of the Ke-
pler are the most complex to have been included in a mathematical proof so
far. Having shown that they are not entirely out of reach for current proof assis-
tants encourages us to further pursue our direction of work. Many paths can be
followed to improve our implementation, two of which we find worth mentioning:

– In order to bound the multi-variate polynomials appearing in the Taylor
models our current implementation evaluates them in interval arithmetic
using the Horner-scheme induced by the canonical polynomial isomorphism.
However, many better methods are available, which should considerably
tighten the resulting bounds.

– Implementations of constructive real numbers in a style of pure functional
programming suffer from an important performance problem: the cost of
evaluating x + x to precision ε is twice that of evaluating x to precision ε

2 .
The same computation is actually carried out twice. This problem could be
avoided by stocking previously computed results in a global cache.

1 On an Intel Pentium 4 running at 2.80GHz.
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It should be kept in mind that we have to pay a certain performance penalty
for the maximal security achieved by implementing algorithms inside a proof
assistant. However, the speed of machines has been increasing at an exponential
rate for a long time. Besides, algorithms become more and more efficient. As a
consequence, today we are able to treat problems in a formal setting that twenty
years ago were only in reach for implementations on machine level.

In order to diminish this gap, work on proof assistants itself is necessary:
a more efficient mechanism for computation has recently been added to Coq
[8]. A second step in this direction would be the usage of machine numbers for
computations inside proofs. With such tools at hand, our implementation could
become a powerful system performing verified optimisation for a large class of
functions.
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Modular Arithmetic and Its Application

to Certifying Large Prime Numbers
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Abstract. Computing efficiently with numbers can be crucial for some
theorem proving applications. In this paper, we present a library of mod-
ular arithmetic that has been developed within the Coq proof assistant.
The library proposes the usual operations that have all been proved cor-
rect. The library is purely functional but can also be used on top of some
native modular arithmetic. With this library, we have been capable of
certifying the primality of numbers with more than 13000 digits.

1 Safe Computation and Theorem Proving

Recent formalisations such as the four colour theorem [9] and the Flyspeck
project [17] have shown all the benefits one can get from having a formal sys-
tem where both proving and computing are possible. In the Coq proof assis-
tant [18], computation is provided by the logic. A direct application of having
computation inside the logic is the so-called two-level approach [4]. To illus-
trate it, let us consider the problem of proving the primality of some natural
numbers. Suppose that we have defined a predicate prime: a number is prime
if it has exactly two divisors, 1 and itself. How do we now prove that 17 is
prime? The usual approach is to interactively build a proof object using tac-
tics. Of course, this task can be automated by writing an ad-hoc tactic. Still,
behind the scene, the system will have to build a proof object and the larger the
number to be proved prime is, the larger the proof term will be. The two-level
approach proposes an alternative strategy in two steps. In the first step, one
writes a semi-decision procedure for the problem in the programming language
of Coq. In our case, it amounts to writing a function test from natural numbers
to booleans such that if the function returns true then the number is prime.
For example, if the natural number is n, the function can check that there is no
divisor between 2 and

√
n by a simple iteration. In the second step, one proves

that the function meets its specification. This means proving for our function
test that

∀n, test n = true→ prime n

Note that implication is sufficient for the two-level approach to work. Proving
equivalence would not be of much interest here. A better way of proving that

U. Furbach and N. Shankar (Eds.): IJCAR 2006, LNAI 4130, pp. 423–437, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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a number n is not prime is to find externally a factor p of n and only check
internally that p divides n.

Once the second step has been completed, for 17 to be certified as prime, it
is sufficient to prove that the function test applied to 17 returns true. As the
function test directly evaluates inside Coq, this last proof is simply the reflexivity
of equality. Using the two-level approach, we have just transformed the problem
of building a large proof object into a conversion problem: showing that test 17
is convertible to true. The size of the proof object is then independent of the
number to be proved prime.

A recent improvement of the evaluation mechanism [10] has made the two-
level approach much more attractive. The evaluation inside Coq is now as fast
as the bytecode evaluation of the Ocaml language [15]. The only restriction
when writing programs inside Coq is that programs must be purely functional,
i.e. side effects are not allowed, and must always terminate. This is the price to
pay to safely combine proofs and computations. Obviously, for this approach to
be used, the Coq system should provide efficient functional implementations for
the usual data structures: numbers, strings, vectors, hash tables, . . .

The contribution of this paper is to propose a purely functional library to
compute efficiently with large numbers inside Coq. The key idea of the library
is to implement a representation of numbers that accommodates the divide and
conquer strategy to speed up computation. The paper is organised as follows.
In Section 2, we present the current arithmetic of Coq and explain why a new
representation of numbers is needed in order to compute efficiently with large
numbers. In Section 3, we give an overview of our new library based on this new
representation. In Section 4, we detail two possible instantiations of the library.
Finally, Section 5 presents an application of the library to the particular problem
of certifying large prime numbers.

2 Linear Versus Tree Representation of Numbers

In the standard library of Coq, strictly positive numbers are represented as
linear structures, low bits first.

Inductive positive : Set :=
| xI : positive -> positive
| xO : positive -> positive
| xH : positive.

xH is 1, (xO p) is two times the value of p and (xI p) is two times plus one the
value of p. For example, 17 and 18 are represented as xI (xO (xO (xO (xH))))
and xO (xI (xO (xO (xH)))) respectively. The choice of the representation has
some direct impact on the way operations are implemented. To illustrate this on
an example, let us consider the comparison function Pcmp. It takes two positive
numbers and returns a comparison value

Inductive comparison: Set := Eq | Lt | Gt.
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As numbers are represented low bits first, to compare two numbers one needs
to walk down both numbers keeping track of what the current status of the
comparison is. This is what the auxiliary function Pcompare does. The main
function Pcomp starts the computation with the initial status being equality.

Fixpoint Pcompare (x y: positive) (r: comparison): comparison :=
match x, y with
| xH, xH => r
| xH, _ => Lt
| _ , xH => Gt
| xI x’, xI y’ => Pcompare x’ y’ r
| xO x’, xO y’ => Pcompare x’ y’ r
| xI x’, xO y’ => Pcompare x’ y’ Gt
| xO x’, xI y’ => Pcompare x’ y’ Lt
end.

Definition Pcmp x y := Pcompare x y Eq.

This is clearly not optimal but is the best one can do with this representation:
recursive calls only skip a single bit. Efficient algorithms for large numbers, like
Karatsuba multiplication [14], use a divide and conquer strategy. They require
to be able to split numbers in parts efficiently. This motivates our representation
based on a tree-like structure. Given an arbitrary one-word set w, we define the
two-word set w2 w as follows

Inductive w2 (w: Set): Set := WW : w -> w -> w2 w.

For example, (WW true false) is of type (w2 bool). We choose in an arbitrary
way that high bits are the first argument of WW, low bits the second one. Now we
use a recursive type definition and define the type of numbers of height n as

Fixpoint word (w: Set) (n:nat): Set :=
match n with
| O => w
| S n => w2 (word w n)
end.

An object of type (word w n) is a complete binary tree that contains 2n objects
of type w. Given a number, one has to choose an appropriate height to represent it
exactly. For example, taking the usual booleans for base words, a minimum height
of 2 is necessary to represent the number 13. With this height, numbers have
type (word bool 2) and (WW (WW true true) (WW false true)) denotes the
number 13.

Arithmetic operations are not going to be defined on the type word directly.
We use a technique similar to the one in [11]. A functor is first defined that allows
to build a two-word modular arithmetic on top of a single-word one. The functor
is then applied iteratively to get the final implementation. In the following, x, y
are used to denote one-word variables and xx, yy to denote two-word variables.
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When defining a new function f , we just need to explain how to compute the
result on two-word values knowing how to compute it on one-word values. We
use the notation w f for the single-word version of f and ww f for the two-word
version. For example, let us go back to our comparison function Pcompare and
try to define it on our trees. We first suppose the existence of the comparison on
single words

Variable w_compare: w -> w -> comparison -> comparison.

and then define the function for two-word values

Definition ww_compare (xx yy: w2 w) (r: comparison) :=
match xx, yy with
WW xH xL, WW yH yL => w_compare xH yH (w_compare xL yL r)

end.

This is not the function that is in our library. Instead, we can take advantage of
the tree-like structure and compare high bits first.

Variable w_cmp: w -> w -> comparison.

Definition ww_cmp (xx yy: w2 w) :=
match xx, yy with
WW xH xL, WW yH yL =>
match w_cmp xH yH with Eq => w_cmp xL yL | cmp => cmp end

end.

The key property of our representation is that splitting number in two is for
free. The next section details why this property is crucial to implement efficient
algorithms for functions like multiplication, division and square root. Note that,
in term of memory allocation, having a tree structure does not produce any
overhead. In a functional setting, building a binary tree structure or building
the equivalent linear list of words requires the same number of cells.

One main drawback of our representation is that we manipulate only complete
binary trees. So, even if we choose carefully the appropriate height, half of the
words could be unnecessary to compute the final result. To soften this problem,
we have extended the definition of w2 to include an empty word W0.

Inductive w2 (w: Set): Set :=
| W0: w2
| WW: w -> w -> w2.

For example, the number 13 can be represented at height 3 as

WW W0 (WW (WW true true) (WW false true))

With this extension, we lose uniqueness of representation. Still, there is a notion
of canonicity, W0 should always be preferred to a sub-tree full of zeros. Note
that, in our development, all functions have been carefully written in order to
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preserve canonicity, but canonicity is not part of their specification since it is
not necessary to ensure safe computations. Using w_0 to represent the one-word
zero, the final version of the comparison function is then

Definition ww_cmp (xx yy: w2 w) :=
match xx, yy with
| W0, W0 => Eq
| W0, WW yH yL =>

match w_cmp w_0 yH with Eq => w_cmp w_0 yL | _ => Lt end
| WW xh xl, W0 =>

match w_cmp xH w_0 with Eq => w_cmp xL w_0 | _ => Gt end
| WW xH xL, WW yH yL =>

match w_cmp xH yH with Eq => w_cmp xL yL | cmp => cmp end
end.

3 The Certified Library

Our library includes the usual functions: comparison, successor, predecessor, op-
posite, addition, subtraction, multiplication, square, Euclidean division, modulo,
integer square root, gcd, and power. It is a modular library: we manipulate trees
(or words) of the same height (resp. of the same size). For addition and sub-
traction, we also provide an exact version that returns a word and a carry. For
multiplication, we also provide an exact version returning two words.

Since we want to use our library in the context of the two-level approach, we
must carefully choose the algorithms we implement. Furthermore, semi-decision
procedures must also be certified, so every function of our library must come
along with its proof of correctness.

Specifications are expressed using predicates over integers. For this, we use
two interpretation functions [| |] and [[ ]]. Given a one-word element x, its cor-
responding integer value is [|x|]. Given a two-word element xx, its corresponding
integer value is [[xx]]. The base of the arithmetic, i.e. one plus the maximum
value that fits in a single-word, is wB. We write w_0 (resp. w_1) for the word with
corresponding integer value 0 (resp. 1). From these definitions, the following
statement holds

∀x y, [[WW x y ]] = [|x|] ∗ wB+ [|y|]
Once a function is defined, its correctness has to be proved. For example, for
the comparison defined in the previous section, one needs to prove that if the
function w_cmp meets its specification

∀x y, match w_cmp x y with
| Eq → [|x|] = [|y|] | Lt → [|x|] < [|y|] | Gt → [|x|] > [|y|]
end

so does the function ww_cmp

∀xx yy, match ww_cmp xx yy with
| Eq → [[xx ]] = [[yy ]] | Lt → [[xx ]] < [[yy ]] | Gt → [[xx ]] > [[yy ]]
end
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3.1 Words and Carries

Carries are important for operations like addition and subtraction. In our func-
tional setting, carries encapsulate words

Inductive carry (w: Set): Set :=
| C0: w -> carry
| C1: w -> carry.

Two interpretation functions [+| |] and [–| |] are associated with carries. One
interprets the carry positively: [+|C1 x|] = wB + [|x|] and [+|C0 x|] = [|x|]. The
other interprets it negatively (i.e. a borrow): [–|C1 x|] = [|x|]−wB and [–|C0 x|] =
[|x|]. To illustrate how carries are manipulated, let us consider the successor
function. In our library, it is represented by two functions

w_succ: w -> w
w_succ_c: w -> carry w

The first function represents the modular version, the second the exact version.
With these two functions, it is possible to define the version for two-word ele-
ments. For example, the definition for the modular version is

Definition ww_succ xx :=
match xx with
| W0 => WW w_0 w_1
| WW xH xL =>
match w_succ_c xL with
| C0 l => WW xH l
| C1 l => WW (w_succ xH) w_0
end

end.

Note that, unlike what happens in imperative languages, returning a carry al-
locates a memory cell. So in our implementation we avoid as much as possible
to create them. When we know in advance that the result always returns (resp.
does not return) a carry, we can call the modular function instead. An example
of such a situation is a naive implementation of the exact function that adds 2
to a one-word element by calling twice the successor function:

Definition w_add2 x :=
match w_succ_c x with
| C0 y => w_succ_c y
| C1 y => C1 (w_succ y)
end.

In the case when the first increment has created a carry, we are sure that the
second increment cannot raise any carry, so we can directly call the function
w_succ. Also, we use a combination of partial evaluation and continuation pass-
ing style to get shorter definitions. This has proved to ease considerably the
proving phase without changing the efficiency of functions.
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3.2 Shifting Bits

If most of the operations work at word level, some functions (like the shifting
operation) require to work at a lower level, i.e. the bit level. Surprisingly, all the
operations we had to perform at bit level can be built using a single function

w_add_mul_div : positive -> w -> w -> w

Evaluating (w_add_mul_div p x y) returns a new word that is composed for
its last p bits by the first bits of y and for the remaining bits by the last bits of
x. Its specification is

∀p x y, 2p < wB⇒
[|w_add_mul_divp x y|] = ([|x|] ∗ 2p + ([|y|] ∗ 2p)/wB)mod wB

Two degenerated versions of this function are of direct interest. Calling it with
w_0 as second argument implements the shift left. Calling it with w_0 as first
argument implements the shift right.

3.3 Divide and Conquer Algorithms

Karatsuba Multiplication. Speeding up the multiplication was the main mo-
tivation of our tree representation for numbers. The multiplication is represented
in our library by the function

w_mul_c: w -> w -> w2 w

and its specification is

∀x y, [[w_mul_cx y]] = [|x|] ∗ [|y|]

The naive implementation on two-word elements follows the simple equation

[[WW xh xl ]] ∗ [[WW yh yl ]] =
[|xh|] ∗ [|yh|] ∗ wB2 + ([|xh|] ∗ [|yl|] + [|xl|] ∗ [|yh|]) ∗ wB+ [|xl|] ∗ [|yl|]

Thus, performing a multiplication requires four submultiplications. Karatsuba
multiplication [14] saves one of these submultiplications

[[WW xh xl ]] ∗ [[WW yh yl ]] =
let h = [|xh|] ∗ [|yh|] in
let l = [|xl|] ∗ [|yl|] in
h ∗ wB2 + ((h+ l)− ([|xh|]− [|xl|]) ∗ ([|yh|]− [|yl|])) ∗ wB + l

Karatsuba multiplication is more efficient than the naive one only when numbers
are large enough. So our library includes both implementations for multiplica-
tion. They are used separately to define two different functors. The functor with
the naive multiplication is only used for trees of “small” height.
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Recursive Division. The general Euclidean division algorithm that we have
used is the usual schoolboy method that iterates the division of two words by
one word. It is then crucial to perform this two-by-one division efficiently. The
algorithm we have implemented is the one presented in [6]. The idea is to use the
recursive call on high bits to guess an approximation of the quotient and then
to perform an appropriate adjustment to get the exact quotient.

In our development, the two-by-one division takes three words and returns a
pair composed of the quotient and the remainder

Variable w_div21: w -> w -> w -> w * w

and its specification is

∀x1 x2 y, let q, r = w_div21x1 x2 y in
[|x1|] < [|y|]⇒ wB/2 ≤ [|y|]⇒ [[WW x1 x2 ]] = [|q|] ∗ [|y|] + [|r|] ∧ 0 ≤ [|r|] < [|y|]

The two conditions deserve some explanation. The first one ensures that the
quotient fits in one word. The second one ensures that the recursive call computes
an approximation of the quotient that is not too far from the correct value.

Before defining the function ww_div21 for two-word elements, we need to
define the intermediate function w_div32 that divides three one-word elements
by two one-word elements. Its specification is

∀x1 x2 x3 y1 y2, let q, rr = w_div32 x1 x2 x3 y1 y2 in
[[WW x1 x2 ]] < [[WW y1 y2 ]]⇒ wB/2 ≤ [|y1|]⇒

[|x1|] ∗ wB2 + [|x2|] ∗ wB+ [|x3|] = [|q|] ∗ [[WW y1 y2 ]] + [[rr]] ∧
0 ≤ [[rr]] < [[WW y1 y2 ]]

The two conditions play the same roles as the ones in the specification of
w_div21. As the code is a bit intricate, here we just explain how the function
proceeds. It first calls w_div21 to divide x1 and x2 by y1. This gives a pair (q, r)
such that

[|x1|] ∗ wB + [|x2|] = [|q|] ∗ [|y1|] + [|r|]
q is considered as the approximation of the final quotient. The condition wB/2 ≤
[|y1|] ensures that if this approximation is not exact, then it exceeds the real
value of at most two units. So the quotient can only be q, q − 1 or q − 2. As we
have

[|x1|] ∗ wB2 + [|x2|] ∗ wB+ [|x3|] = [|q|] ∗ [[WW y1 y2 ]] + ([[WW r x3 ]]− [|q|] ∗ [|y2|])

we know in which situation we are by testing the sign of the candidate remainder.
In our modular arithmetic, it amounts to checking whether or not the subtraction
of (w_mul_c q y2) from (WW r x3) produces a borrow. If it is positive or zero (no
borrow), the quotient is q. If it is negative (a borrow), we have to consider q− 1
and add in consequence (WW y1 y2) to the candidate remainder. We test again
the sign of this new candidate. If it is positive, the quotient is q − 1, otherwise
is q − 2. The definition of ww_div21 is now straightforward. Forgetting the W0
constructor, we have
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Definition ww_div21 xx1 xx2 yy :=
match xx1, xx2, yy with
....
| WW x1H x1L, WW x2H x2L, WW yH yL =>

let (qH, rr) := w_div32 x1H x1L x2H yH yL in
match rr with
| W0 => (WW qH w_0, WW w_0 x2L)
| WW rH rL =>
let (qL, s) := w_div32 rH rL x2L yH yL in
(WW qH qL, s)

end
end.

These two divisions can only be used if the divisor y is greater than equal to
wB/2. This is not restrictive because, if y is too small, we can always find an n
such that y ∗ 2n ≥ wB/2. If we have x ∗ 2n = q ∗ (y ∗ 2n) + r for some x and r,
then r can be written as r = 2n ∗ r′, so x = q ∗ y + r′. Hence, to perform the
division of two numbers of the same size, we first shift divisor and dividend by
n. The shifted dividend fits in two words and its high part is smaller than the
shifted divisor. Then, we use the two-by-one division. The resulting quotient is
correct and we just have to unshift the remainder.

Recursive Square Root. The algorithm for computing the integer square root
is similar to the one for division. It was first described in [19] and has already
been formalised in a theorem prover [3]. It requires the number to be split in
four. For this reason it is represented by the following function in our library

w_sqrt2: w -> w -> w * carry w;

The function returns the integer square root and the rest. Its specification is

∀x y, let s, r = w_sqrt2 x y in
wB/4 ≤ [|x|]⇒ [[WW x y ]] = [|s|]2 + [+|r|] ∧ [+|r|] ≤ 2 ∗ [|s|]

As for division, the input must be large enough so that the recursive call that
computes the approximation is not too far from the exact value.

The definition of the square root needs a support function that implements a
division by twice a number

w_div2s: carry w -> w -> w -> carry w * carry w

with its specification

∀x1 x2 y, let q, r = w_div2s x1 x2 y in
wB/2 ≤ [|y|]⇒ [+|x1|] ≤ 2 ∗ [|y|]⇒

[+|x1|] ∗ wB+ [|x2|] = [+|q|] ∗ (2 ∗ [|y|]) + [+|r|] ∧ 0 ≤ [+|r|] < 2 ∗ [|y|]
The idea of the algorithm is summarised by the following equation

let qh, r = w_sqrt2 xh xl in
let ql, r1 = w_div2s r yh qh in
[[WW xh xl ]] ∗ wB2 + [[WW yh yl ]] = [[WW qh ql ]]2 + ([+|r1|] ∗ wB+ [|yl|]− [|ql|]2)
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(WW qh ql) is a candidate for the square root of (WW (WW xh xl) (WW yh yl)).
Because of the condition on the input, we are sure that the integer square root
is either (WW qh ql) or (WW qh ql) − 1. It is the sign of [+|r1|] ∗ wB + [|yl|] − [|ql|]2
that indicates which one to choose.

4 Implementing Base Word Arithmetic

The final step to complete our library is to define the arithmetic for the base
words. Once defined, we get the modular arithmetic for the desired size by apply-
ing an appropriate number of times our functors on top of this base arithmetic.
In a classical implementation, these base words would be machine words. Unfor-
tunately, machine words are not yet accessible from the Coq language.

4.1 Defined Modular Arithmetic

For the moment, the only way to have a modular arithmetic for base words
inside Coq is to define base words as a datatype. For example, we have for
two-bit words

Inductive word2 : Set := OO | OI | IO | II.

The functions are then defined by simple case analysis. For example, the exact
successor function is defined as

Definition word2_succ_c x :=
match x with
| OO => C0 OI
| OI => C0 IO
| IO => C0 II
| II => C1 OO
end.

We also need to give the proofs that every function meets its specification. These
proofs are also done by case analysis.

Rather than writing by hand functions and proofs, we have written an Ocaml
program instead. This program takes the word size as argument and generates
the desired base arithmetic with all its proofs. It is a nice application of meta-
proving. Unfortunately, functions and their corresponding proofs grow quickly
with the word size. For example, the addition for word8 is a pattern matching
of 65536 cases. word8 is actually the largest size Coq can handle.

The main benefit of this approach is to get an arithmetic library that is entirely
expressed in the logic of Coq. The library is portable: no extension of the Coq
kernel is needed.

4.2 Native Modular Arithmetic

To test our library with some machine word arithmetic, we use the extraction
mechanism that converts automatically Coq functions into Ocaml functions.
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It is then possible to run the resulting program with the 31-bit native Ocaml
arithmetic or a simulated 64-bit arithmetic. Not all the functions that we have
implemented have their corresponding functions in the native modular arith-
metic, so some native code had to be developed for these functions. The formal
verification of this code is also possible and we did it for some of these functions.
Running the extracted library with machine word arithmetic gives an idea of the
speed-up we could get if we had a native arithmetic in Coq.

5 Evaluating the Library

A way of applying the two-level approach for proving primality has been pre-
sented in [12]. It is based on the notion of prime certificate and more precisely
of Pocklington certificate. A prime certificate is an object that witnesses the pri-
mality of a number. The Pocklington certificates we have been using are justified
by the following theorem given in [5]:

Theorem 1. Given a number n, a witness a and some pairs of natural numbers
(p1, α1), . . . , (pk, αk) where all the pi are prime numbers, let

F1 = pα1
1 . . . pαk

k
R1 = (n− 1)/F1
s = R1/(2F1)
r = R1mod (2F1)

it is sufficient for n to be prime that the following conditions hold:

F1 is even, R1 is odd, and F1R1 = n− 1 (1)
(F1 + 1)(2F 2

1 + (r − 1)F1 + 1) > n (2)
an−1 = 1(mod n) (3)

∀i ∈ {1, . . . , k} gcd(a
n−1
pi − 1, n) = 1 (4)

r2 − 8s is not a square or s = 0 (5)

For a prime number n, the list [a, p1, α1, p2, α2, . . . , pk, αk] represents its Pock-
lington certificate. Even if generating a certificate for a given n can be cpu-
intensive, verifying conditions (1)-(5) is an order of magnitude simpler than
evaluating (test n) (computing an−1(mod n) requires a maximum of 2log2 n mod-
ular multiplications). In fact, only the verification of conditions (1)-(5) is crucial
for asserting primality. This requires safe computation and is done inside Coq.
The generation of the certificate is delegated to an external tool. This is a direct
application of the skeptic approach described in [2,13]. Note that this method
of certifying prime numbers is effective only if the prime number n is such that
n− 1 can be easily partially factorised.

With respect to the usual approach for the same problem [7], the two-level
approach gives a significant improvement in terms of size of the proof object
and in terms of time. Figure 1 illustrates this on some examples (P150 is a
random prime number with 150 digits and the millennium prime is a prime
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size time
prime digits standard two-level standard two-level
1234567891 10 94K 0.453K 3.98s 0.50s
74747474747474747 17 145K 0.502K 9.87s 0.56s
1111111111111111111 19 223K 0.664K 17.41s 0.66s
(2148 + 1)/17 44 1.2M 0.798K 350.63s 2.77s
P150 150 1.902K 75.62s
millennium prime 2000

Fig. 1. Some verifications of certificates with the standard and two-level approaches

digits positive word8
1234567891 10 0.50s 0.10s
74747474747474747 17 0.56s 0.12s
1111111111111111111 19 0.66s 0.20s
(2148 + 1)/17 44 2.77s 0.36s
P150 150 75.62s 8.44s
millennium prime 2000 5320.05s

Fig. 2. Some verifications of certificates with the standard and our Coq arithmetics

number with 2000 digits discovered by John B. Cosgrave). However, due to
the limitations of the linear representation of numbers in Coq, even with the
two-level approach, we were not capable of certifying large prime numbers (>
1000 digits) as illustrated by the millennium prime. The same occurred when
applying the Lucas-Lehmer test for proving the primality of Mersenne numbers,
i.e. numbers that can be written as 2p − 1.

Theorem 2. Let (Sn) be recursively defined by S0 = 4 and Sn+1 = S2
n − 2. For

p > 2, 2p − 1 is prime if and only if (2p − 1)|Sp−2.

The largest Mersenne number we could certify was 24423−1 that has 1332 digits.
The idea is then to use our new library based on a tree-like representation of

numbers. The complete library with the corresponding contribution for prime
numbers is available at http://gforge.inria.fr/projects/coqprime/. It con-
sists of 9000 lines of hand-written definitions and proofs. The automatically
generated word8 arithmetic is much bigger, 95 Mb: 41 Mb are used to define
functions and 54 Mb for the proofs. This is the largest ever contribution that
has been verified by Coq. With this new library, we have been capable of prov-
ing that the Mersenne number 244497 − 1 was prime using Coq with the Lucas-
Lehmer test. As far as we know, it is the largest prime number that has been
certified by a theorem prover.

The certification with our library is faster even for small numbers. This is
illustrated in Figure 2 and the fifth and sixth columns of Figure 3. There is a
maximum speed-up of 70. These benchmarks have been run on a Pentium 4 with
1 Gigabyte of RAM.
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# n digits year positive word8 w31 w64 Big int
12 127 39 1876 0.73s 0.04s 0.01s 0.s 0.s
13 521 157 1952 53.00s 1.85s 0.02s 0.02s 0.s
14 607 183 1952 84.00s 2.78s 0.03s 0.03s 0.s
15 1279 386 1952 827.00s 20.21s 0.25s 0.16s 0.02s
16 2203 664 1952 4421.00s 89.1s 1.1s 0.8s 0.08s
17 2281 687 1952 4964.00s 97.59s 1.21s 0.82s 0.09s
18 3217 969 1957 14680.00s 237.65s 2.85s 2.14s 0.22s
19 4253 1281 1961 35198.00s 494.09s 6.4s 4.58s 0.6s
20 4423 1332 1961 39766.00s 563.27s 6.99s 4.99s 0.67s
21 9689 2917 1963 5304.08s 56.1s 39.98s 5.89s
22 9941 2993 1963 5650.63s 60.5s 42.53s 6.32s
23 11213 3376 1963 7607.00s 80.56s 57.47s 11.25s
24 19937 6002 1971 34653.12s 377.24s 268.09s 45.75s
25 21701 6533 1978 43746.21s 463.02s 338.04s 58.56s
26 23209 6987 1979 51210.56s 538.33s 403.48s 88.43s
27 44497 13395 1979 282784.09s 3282.23s 2208.45s 476.75s

Fig. 3. Times to verify Mersenne numbers

Comparing word8 with the 31-bit Ocaml integer w31 shows all the benefit
we could get from having machine words in Coq. There is a maximum speed-up
of 95 with respect to word8. This means a speed-up of 6650 with respect to the
standard Coq library.

The 64-bit Ocaml integer w64 is a simulated arithmetic (our processor has
only 32 bits). This is why there is not such a gap between w31 and w64. Big int
[16] is the standard exact library for Ocaml. It has a purely functional interface
but is written in C. The comparison is not bad. For the last Mersenne, w64 is
only 4.6 times slower than Big int. It is also very interesting that this gap is
getting smaller as numbers get larger. On individual functions, random tests on
addition give a ratio of 4 and on multiplication a ratio of 10.

We are still far away from getting the performance of the gmp [1] library.
This library is written in C and uses in-place computation instead. This min-
imises considerably the number of memory allocations. Unfortunately, in-place
computation is not compatible with the logic of Coq.

6 Conclusions

The main contribution of our work is to present a certified library for performing
modular arithmetic. Individual arithmetic functions have already been proved
correct, see for example [3]. To our knowledge, it is the first time verification
has been applied successfully to a complete library with non-trivial algorithms.
Our motivation was to improve integer arithmetic inside Coq. The figures given
in Section 5 show that this goal has been reached: we are now capable of ma-
nipulating numbers with more than 13000 digits. These tests also show all the
benefit we could get from a native base arithmetic. We hope this will motivate
researchers to integrate machine word arithmetic inside Coq.
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Expressing the arithmetic in the logic has a price: no side effect is possible, also
numbers are allocated progressively, not in one block. A natural continuation of
our work would be to prove the correctness of a library with side effects. This
would require a much more intensive verification work since in-place computing
is known to be much harder to verify. Note that directly integrating an existing
library inside the prover with no verification would go against the philosophy of
Coq to keep its trusted computing base as small as possible.

From the methodological point of view, the most interesting aspect of this
work has been the use of the meta-proving technique to generate our base arith-
metic. This has proved to be a very powerful technique. Files for the base arith-
metic are generated in an ad-hoc manner by concatenating strings. Developing a
more adequate support for meta-proving inside the prover seems a very promis-
ing future work. Note that meta-proving could also be a solution to get more
flexibility in the proof system. Slightly changing our representation, for example
adding not only WO but also W1 and W-1 to the w2 type, would break most of
our definitions and proofs. Meta-proving could be a solution for having a formal
development for a family of data structures rather than just a single one.

Finally, on December 2005, a new prime Mersenne number has been discov-
ered: 230402457−1. It took five days to perform its Lucas-Lehmer test on a super
computer. The program uses a very intriguing algorithm for multiplication [8].
Proving the correctness of such an algorithm seems a very challenging task.
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Abstract. We describe here a formal proof in the Coq system of the
structure theorem for subresultants, which allows to prove formally the
correctness of our implementation of the subresultants algorithm. Up to
our knowledge it is the first mechanized proof of this result.

1 Introduction

Automation in formal proofs can greatly benefit from the marriage of proof
assistants and computer algebra tools. Unfortunately these two kinds of tools,
both intending to do mathematics on a computer, were not designed to talk to
each other and importing the art of computer algebra inside a proof assistant
can become a challenging problem. There are at least two different approaches to
bridge this gap. One is to use (but not to trust!) skillful oracles like Maple and to
prove correct the result of each computation [13,6]. An orthogonal solution is to
integrate computer algebra algorithms inside the proof assistant and to provide
a machine-checked correctness proof of the procedures [21]. The work we present
here goes in this last direction.

We are using the Coq system [20,2], which is a proof assistant based on type
theory : it contains a strongly typed programming language which we will use
for computations. In fact, we first implement computer algebra algorithms us-
ing this language, and these programs will be executed inside Coq by the
reduction mechanism of the system. Later we will state correctness theorems
about these objects and build formal proofs of these statements. This approach,
called computational reflection, contrasts with the one adopted for example
by Théry in [21], where algorithms are formalized in the proof assistant and
then extracted to a functional programming language like Ocaml, before being
executed.

The recent introduction of a compiler [9] to the Coq system allows to expect a
reasonable efficiency from these programs executed by Coq, taking into account
that the average user of a proof assistant does not seek for the same level of
performance as the one of a computer algebra system. The latter will expect
from the system fast computations that are beyond human reach because they
involve large entries, while the former will need a proof producing automated
tool for small, but very tedious goals.
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We present here an algorithm for computing efficiently greatest common di-
visors (gcd) for polynomials with coefficients in a unique factorization domain
(UFD) (see for example Geddes et al. [7]). A UFD is a ring where it makes sense
to define gcd but may be less than a field, like it is the case for integers or poly-
nomial rings on a UFD. Computing polynomial gcds is a fundamental concern of
algebraic manipulations: simplification of polynomial expressions, computation
of partial fraction expansions, mechanization of proofs in geometry...

The algorithms for polynomial gcd computations implemented in computer
algebra systems merely fall into three main classes. First come pseudo-remainder
sequences based algorithms whose most efficient variant is called the subresul-
tant algorithm, introduced by Collins [5]. Sparse modular algorithms are based
on Hensel lemma (see Geddes et al. [7]), including probabilistic versions like in
the work of Zippel [24]. Many heuristics are also used, taking benefit from triv-
ial factorizations, using tricks based again on finite field decompositions or on
reduction to integer gcds.

Choosing which algorithm will be the most efficient, even on a given entry, is
quite tricky and there is no decision procedure for that problem. Most systems
implement several methods, and define a default behavior with customization
possibilities. According to Liao and Fateman [16], Maple will apply sparse modu-
lar methods when its heuristic fails, and Macsyma as well as Mathematica attempt
a Zippel’s approach [24] before calling a subresultant algorithm. This paper also
points out that the subresultant algorithm turns out to be the fastest in half of
the benchmarking problems. Moreover, a subresultant algorithm can be defined
and used on arbitrary UFDs, whereas the two other kinds of procedures apply
for polynomials with integer base constants.

The algorithm we have chosen to implement is a subresultant algorithm, as
described by Basu et al. [1].

Up to our knowledge the only directly related work has been the preliminary
study of Boulmé [3], which did not lead to a formalization, and it seems that there
is no available mechanized proof of this result. Our feeling is that this well-known
computer algebra algorithm had not been formalized before because, despite an
abundant computer algebra literature on this topic (see for example the survey of
von zur Gathen and Lücking [22]), pen and paper proofs are technical and seemed
to require a large amount of preliminary formalizations. Our first contribution
is to provide a guideline, which is certainly not a new proof from a computer
algebra point of view since it essentially combines the two approaches of Brown
and Traub [4] and Basu et al. [1]. Describing how to make the formal proofs
tractable is on the other hand an original work.

Our second contribution is an implementation in Coq of this algorithm, on
top of a certified library for polynomial arithmetic. Our last contribution is a
formal proof in Coq of the fundamental theorem of subresultant, leading to the
correctness of the algorithm implemented.

The paper is organized as follows : in section 2 we introduce our representation
of polynomials and defined pseudo-remainder sequences (PRS). Then section 3,
after pointing out the complexity trade-off in polynomial gcd computations, de-
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fines polynomial determinants, studies their links with PRS and describes the
corresponding formalization. Finally, in section 4 we define subresultant polyno-
mials and state the fundamental theorem. We will finally discuss complexity and
formalization issues, before concluding with section 5.

For the sake of readability we try to avoid Coq syntax as much as possible.
Coq files can however be retrieved from:

http://www-sop.inria.fr/marelle/Assia.Mahboubi/rech-eng.html

2 Preliminary Definitions and Formalizations

2.1 Formalization of Polynomials

In the sequel, we will work with polynomials in D[X ], where D is a UFD with
characteristic 0. In fact, our motivation is to implement these algorithms for
polynomials in Q[X1, . . . , Xn], which are represented as univariate polynomials
in Xn with coefficients in Q[X1] . . . [Xn−1]. In this latter case, Q being a field,
the polynomial ring D = Q[X1] . . . [Xn−1] is be a unique factorization domain.

Polynomials of D[X ] are implemented in the sparse Horner representation.
Given the set D of coefficients, elements of D[X ] are inductively defined as being
either constants, built from an element of D, or of the form P ×Xn + p where
P is an element of D[X ], n is a positive integer and p is an element of D. Here
is the Coq syntax for this definition:

Inductive Pol(D : Set) : Set :=
|Pc : D → Pol D
|PX : Pol D → N+ → D → Pol D.

The positive integer n in the non constant case allows more compact repre-
sentations for sparse polynomials, but at the same time enables even more terms
to represent the same mathematical object. For example, X2 can be represented
as ((1) ×X) ×X + 0 or as (1) ×X2 + 0. It is however possible to choose as a
normal form the most compact of these representations, which has no head zeros
and is factorized as much as possible.

Now we assume that D is equipped with a ring structure, and a decidable
equivalence relation which is taken as an equality relation over D. Moreover all
the operations on D are compatible with it. It is possible to endow (Pol D) with
a decidable equality, equating all the representations of a polynomial, and with a
ring structure. We also implement usual operations on polynomials like degree,
leading coefficient.

We suppose now that a partial operation of division is available on D. Given
two elements x and y of D we suppose that if there exist a ∈ D such that y = ax
then div(y, x) = a. Partiality is a sensitive issue in type theory : we choose
here to make div total, and div(y, x) will be 0 if the division fails. Therefore
div(y, x) fails iff div(y, x) = 0 and y �= 0. From now on it is possible to program
a (partial) euclidean division over D[X ], in the usual way, but again returning
zero for the quotient and the remainder as soon as one of the divisions performed
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on coefficients fails. This choice is the one made for the integer division in the
proof assistants HOL-Light [12] and Isabelle [18].

Remark 1. A nice property of our representation is that it allows the definition of
euclidean division by structural induction over the divisor. We would otherwise
have provided a termination proof for the definition of the division. In fact, the
representation chosen is very close to the representation of numbers in a formal
basis X .

2.2 Pseudo-remainder and Pseudo-remainder Sequences

In the sequel, given P ∈ D[X ], its degree is denoted by deg(P ) and its leading
coefficient by lcoef(P ). In the process of the euclidean division of P by Q, the
only “denominators” we may introduce are powers of the leading coefficient of
Q and in fact the process of euclidean division of lcoef(Q)deg(P )−deg(Q)+1P by
Q, performed in D[X ], will never fail. This was already observed and used by
Jacobi in 1836 [14] and we call lcoef(Q)deg(P )−deg(Q)+1 the Jacobi factor.

Definition 1 (Pseudo-division). Let P = p0 + · · ·+ pnX
n and

Q = q0 + . . . qmX
m, with pn, qm �= 0 and n ≥ m, be two elements of D[X ].

The unique remainder (resp. the quotient) of the euclidean division of
qn−m+1
m P by Q is called the pseudo-remainder (resp. pseudo-quotient) of P

by Q and denoted by prem(P,Q) (resp. pquo(P,Q)). This operation is called
pseudo-division of P by Q, and prem(P,Q), pquo(P,Q) ∈ D[X ].

Example 1. P = X2, Q = 2X + 1: pquo(P,Q) = 2X − 1, prem(P,Q) = 1.
P = 2X2 + 2X , Q = 2X + 2: pquo(P,Q) = 4X , prem(P,Q) = 0.

Definition 2 (Similar elements). Let P,Q ∈ D[X ]. P and Q are similar
(P ∼ Q) if there exists a, b ∈ D such that aP = bQ.

The Euclidean algorithm computes the gcd of two polynomials with coefficients
in a field by a sequence of euclidean divisions. We can now generalize this al-
gorithm to the case of a ring. Each step of euclidean division is replaced by a
step of pseudo-euclidean division, but since the correcting factors we have intro-
duced to be able to perform the division may not be the smallest possible, we
introduce the possibility of scalar factorizations in the polynomials by requiring
only similarity to the pseudo-remainders:

Definition 3 (Pseudo-remainder sequences (PRS)). Let F1, F2 ∈ D[X ],
with deg(F1) > deg(F2). Let F1, . . . , Fk ∈ D[X ] be a sequence of non-zero poly-
nomials such that:

Fi ∼ prem(Fi−2, Fi−1) for i = 3 . . . k and prem(Fk−1, Fk) = 0

This sequence is called a pseudo-remainder sequence. From the definitions above,

∀i = 3 . . . k, ∃αi, βi ∈ D and ∃Qi ∼ pquo(Fi−2, Fi−1) such that

βiFi = αiFi−2 −QiFi−1 deg(Fi) < deg(Fi−1)
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Informally, α ensures that we can perform a euclidean division inside D[X ], and
β is a scalar factor we can remove from the remainder. Again to circumvent
the problem of partiality, such sequences of polynomials are encoded in Coq as
infinite sequences in (D[X ])n∈N, whose elements are zero after some index k. We
even know thanks to the decreasing of the degree that k ≤ deg(Q) + 2.

2.3 Reduction to Primitive Polynomials

Finally, given P ∈ D[X ], its content (cont(P )) is defined as a gcd of its coeffi-
cients. It is unique up the multiplication by units of D. If the coefficients of P
are relatively prime, P is said to be primitive. If not, the primitive part pp(P )
of P is defined by P = cont(P )pp(P ).

The gcd of two elements of D[X ] is the product of their contents by the
gcd of their primitive parts. Moreover, if two polynomials F1 and F2 in D[X ]
are primitive, so is their gcd, hence with the notations of the definition 3,
gcd(F1, F2) = pp(Fk). We suppose that we are able to compute gcd on D (we are
interested in the case where D is a polynomial ring Q[X1, . . . Xn]).Subsequently
from now on we study the problem of computing the gcd and subresultants of
two primitive polynomials, with distinct degrees.

3 Polynomial Determinants and PRS

In this section, we consider F1 = p0 + · · ·+ pnX
n and F2 = q0 + . . . qmX

m with
pn, qm > 0 and n > m, two polynomials in D[X ] and (Fi)i=1...k a PRS, such
that for i = 3...k :

βiFi = αiFi−2 −QiFi−1 deg(Fi) < deg(Fi−1) (1)

We denote ni = deg(Fi) and ci = lcoef(Fi) for i = 1...k and call (1) a pseudo-
euclidean relation.

3.1 Control over the Growth of Coefficients

Computing efficiently the gcd of two polynomials is computing efficiently the
last non zero element of a PRS. The naivest way of computing a PRS is to
choose Fi = prem(Fi−2, Fi−1). This PRS is called the Euclidean PRS after
Collins [5]. Unfortunately this may lead to a dramatical increase in the size
of the coefficients of the polynomials in the PRS. In fact, the bit-size of the
coefficients grows exponentially: an exponential lower bound is given by Yap [23]
and Knuth describes this phenomenon [15]:”Thus the upper bound [...] would
be approximately N0.5(2.414)n

and experiments show that the simple algorithm
does in fact have this behavior, the number of digits in the coefficients grows
exponentially at each step!”. However according to von zur Gathen and Lücking
[22] : “In a single division, say with random inputs, one cannot do much better
than Jacobi’s pseudo-division in trying to keep the remainder integral. But the
results in Euclid’s algorithm are so highly dependent that there are always large
factors that can be extracted”.
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On the other hand, choosing Fi = pp(prem(Fi−2, Fi−1)) minimizes the growth
of theses coefficients. This PRS is called the primitive PRS, again after Collins
[5]. But recursive computations of gcds for each division step is in the general
case too expensive.

The Subresultant PRS algorithm we are going to present is a compromise
between the two preceding solutions, removing at each pseudo-division step a
significant factor which is easier to compute than the content. This means it
predicts suitable values for the αi’s and βi’s (using notations of definition 3),
which ensure a reasonable (bit-size linear) growth for the coefficients of the
polynomials (see section 4.3).

3.2 An Example of Computations

We reprint here the example of von zur Gathen and Lücking [22] to compare
these three approaches. The αi’s are always the Jacobi factor of the pseudo-
division, and the βi’s are factors we can extract from the pseudo-remainder.

i αi βi Fi

1 9X6 − 27X4 − 27X3 + 72X + 18X − 45
2 3X4 − 4X2 − 9X + 21
3 33 = 27 1 −297x2 − 729X + 1620
4 −26198073 1 3245333040X − 4899708873
5 10532186540515641600 1 −1659945865306233453993

Euclidean PRS : no factorization (βi = 1), exponential growth.

i αi βi Fi

1 9X6 − 27X4 − 27X3 + 72X + 18X − 45
2 3X4 − 4X2 − 9X + 21
3 33 = 27 3 −11X − 27X + 60
4 −1331 9 18320X − 27659
5 335622400 1959126851 −1

Primitive PRS : optimal factorization, expensive recursive computations.

i αi βi Fi

1 9X − 27X4 − 27X3 + 72X + 18X − 45
2 3X − 4X2 − 9X + 21
3 27 3 297X2 + 729X − 1620
4 26198073 −243 13355280X − 20163411
5 178363503878400 2910897 9657273681

Subresultant PRS : a compromise, we remove smaller factors than in the Prim-
itive case but computations are much cheaper.

3.3 Polynomial Determinants

We now roughly follow the presentation of Basu et al. [1] to introduce polynomial
determinants. Let Fn be the set of polynomials in D[X ] whose degrees are less
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than n. It is a finitely generated free module, equipped with the usual monomial
basis B = Xn−1 . . . X, 1.

Proposition 1 (Polynomial determinant definition). Let m ≤ n, two in-
tegers. There exists a unique multi-linear antisymmetric mapping, denoted pdet,
from (Fn)m to Fn−m+1 such that for every n > i1 > . . . im−1 > i:

{
pdetn,m(X i1 , . . . , X im−1 , X i) = X i if for every j < m ij = n− j
pdetn,m(X i1 , . . . , X im−1 , X i) = 0 otherwise

Proof. Uniqueness comes from antisymmetry and multilinearity, after decom-
posing the arguments on the basis B.

Let Mat′(P) be the square matrix whose m− 1 first lines are the m− 1 first
lines of Mat(P), and the last line is built with the polynomials P1, . . . , Pm:

Mat′(P) =





p1
n−1 . . . pm

n−1

...
...

p1
n−m+1 . . . pm

n−m+1
P1 . . . Pm





Now pdetn,m = det(Mat′(P)), where det is the usual determinant of matrices,
here with polynomial coefficients. )*

3.4 Formalization of Multilinear Applications in Coq

To date there exists no distributed contribution for multilinear algebra in the
Coq system. Building such a formal theory of multilinear algebra on top of the
existing Coq contributions on linear algebra finally appeared as a very costly
solution for our purpose. One of the difficulties was to handle the hierarchy of
coercions between the fields of dependent records, which underly these previ-
ous contributions. This piled and intricate structure representing inheritance in
mathematical structures is tricky to handle and type-checking can become quite
inefficient. Since we did not need the whole theory leading to the construction of
determinants over rings, we have chosen to define determinants as (computable)
functions and to prove on demand their required properties.

To fit the usual definition of multilinear applications, like determinants, let us
consider temporarily a field K and EK a vector space over K. Let l be the list of
elements of EK , we will compute the multilinear application by recursion over the
length of l. We need to specify how to extract coordinates on the basis we have
chosen, and therefore assume an extra parameter coord : nat→ EK → K, which
is global and depends on n, the dimension of the vector space considered. The
recursion will transform the problem into the same but with determinants of size
one less. Now if n is the length of l, under the assumption that we know how to
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compute det for arguments of size n−1,we can compute (det l) recursively and this
job will be performed by the rec det function (whose description we postpone).

Definition. det l := det aux (length l) l.
let rec det aux(n:nat)(l:list EK):K :=

match n with
|O ⇒ 1K

|n1 + 1 ⇒ rec det (coord n) (det aux n1) l nil
end.

To compute the determinant, we will develop along, say one line, recursively
compute the cofactors, and finally build the appropriate linear combination of the
cofactors, with alternate signs. Cofactors are determinants of the sublists of length
n−1 of l. The line along which the development is performed is chosen by the values
of coord. Now rec det is defined by induction on the structure of l.

let rec rec det(f:EK → K)(rec : list EK → K)(l1l2:list EK):K:=
match l1 with
|nil⇒ 0K

|a :: l3 ⇒ f(a)*[rec (app l2 l3)] - [rec det f rec l3 (app l2 (a::nil))]
end.

The assumptions we have made on K and EK were only for the sake of clarity
: in fact the only requirements of our formalization are that:

– K is a commutative integral ring
– EK is a set equipped with an internal additive law, an external linear product
EK → K → EK and linear coord operator.

Proving that we can develop a determinant along the line determined by coord
is granted from the definition of det. We also prove formally that det is multilinear,
antisymmetric, and alternate, by proving it successively for det rec and det aux,
of course under the assumption that coord is linear. We also formalize the notion
of triangular system, and obtain the value of such a determinant as a product of
diagonal values.

Taking K = Z and EK = list Z, we encode the usual determinant of a square
matrix of integers, just by taking:
Definition. coord n l := nth (n - 1) l 0.
where (nth k l a) computes the k-th element of the list l and returns a if n is out
of bounds.

We would like to define the polynomial determinant as an application of type
(list D[X ]) → D[X ], and this definition of det makes it possible. Here are the
signatures of the auxiliary functions:

coord : nat→ D[X ]→ D[X ]
det aux : nat→ (list D[X ])→ D[X ]
rec det : (D[X ]→ D[X ])→ ((list D[X ])→ D[X ])→ (list D[X ])→ D[X ]

We need to clarify the definition of coord. It corresponds to the development of
the matrix Mat′(P) along the penultimate line, because this is the way to get a
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definition of pdet by induction on the number of polynomials. We also need to give
as a parameter max degree (it was n − 1 in definition 1), the maximal degree of
the polynomials involved, which determines the number of possible zero lines on
top of Mat′(P). This leads to the following definition:

Definition. coord max degree j :→ D[X ]→ D[X ]:=
if max degree + 2 ≤ j

then (fun P : Pol ⇒ P0)
else

match j with
|O ⇒ (fun P : Pol ⇒ P0)
|1 ⇒ (fun P : Pol ⇒ P )
| ⇒ (fun P : Pol⇒ (−1)j+1pmax degree−j+2))
end.

where pk is the coefficient of P on Xk, here viewed as a constant polynomial.
Now we are ready to define subresultant polynomials.

4 Structure of Subresultant Polynomials

4.1 Definition and First Properties

Definition 4 (Subresultant polynomials). Let P,Q ∈ D[X ] be two polyno-
mials with deg(P ) = n, deg(Q) = m and n > m. Then for i = 0 . . . n, the i-th
subresultant polynomial Si(P,Q) is defined by:

– Sn(P,Q) = P

– Si(P,Q) = 0 for m < i < n

– Si(P,Q) = pdetn+m−i,n+m−2i(Xm−i−1, . . . , XP, P,Q,XQ, . . . ,Xn−i−1Q) oth-
erwise

Going back to the interpretation of pdet as a determinant of a matrix of poly-
nomials (section 3.3), we can observe that:

Si(P,Q) = detMni
where Mni

=





pn 0 qm 0
...

. . .
...

. . .
pn−m+i+1 . . . pn

qm−n+i+1 . . . qm

...
...

...
...

p2i+2−m . . . pi+1 q2i+2−n . . . qi+1
Xm−i−1P . . . P Xn−i−1Q . . . Q





Using the notations of section 3 and considering a PRS F1, . . . , Fk, from the re-
lation (1) we can obtain Bezout-like relations by induction on i. Indeed for all
i = 3 . . . k, there exists γi ∈ D and Ui, Vi in D[X ] such that :

Ui × F1 + Vi × F2 = γiFi deg(Ui) < m− ni−1, deg(Vi) < n− ni−1

Reversing the problem, this relation can be seen as a system of linear equations in
the coefficients of Ui and Vi, considering the relations equating coefficients of like
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powers on both sides. Gathering the last ni + 1, inhomogeneous, equations in a
single linear polynomial equation, this system can be described by

Mni × V =





0
...
0

γiFi





where V is the column vector of the coefficients of Ui and Vi, in decreasing order
of subscript. There are in fact relations between the subresultant polynomials of
two polynomials P and Q and the polynomials of a PRS starting with P and Q.
From now on, we drop both subscripts of pdet ; unless otherwise specified, n + 1
will always be the maximal degree of the polynomials given in arguments.

The following lemma (see [4]) shows that Sj(P,Q) is a multiple of
Sj(Q, prem(P,Q)), and this shift will be the elementary step of our main proof.

Lemma 1. Let F , G, H, B be non zero polynomials in D[X ], of degree φ, γ, η, β,
respectively, such that :

F +BG = H with φ ≥ γ > η and β = φ− γ
Then,

(i) Sj(F,G) = (−1)(φ−j)(γ−j)gφ−η
γ Sj(G,H) 0 ≤ j < η

(ii) Sη(F,G) = (−1)(φ−η)(γ−η)gφ−η
γ hγ−η−1

η H
(iii) Sj(F,G) = 0 η < j < γ − 1
(iv) Sγ−1(F,G) = (−1)φ−γ+1gφ−γ+1H

Proof. Recall that for j < γ:
Sj(F,G) = pdet(Xγ−j−1F, . . . , XF, F,G,XG, . . . , Xφ−j−1G)

In the right hand side, replacing each F by H is adding to each one of the γ − i
first arguments a linear combination of the φ−i last ones. IndeedXkF+XkBG =
XkH with β + k ≤ φ− j − 1. The polynomial determinant being multilinear and
alternate, this replacement does not alter the value of the pdet. Notice that these
operations mimic the euclidean division of F by G. We have then:

Sj(F,G) = pdet(Xγ−j−1H, . . . ,XH,H,G,XG, . . . , Xφ−j−1G)
We now come back to the matrix representation of this pdet. We denote gk (resp.
hk) the coefficient of G (resp. H) on the monomialXk and swap the two blocks of
columns:

Sj(F,G) = (−1)(φ−j)(γ−j)det





gγ 0 hφ 0
...

...
. . .

...
. . .

...
... hφ

...
...

...
...

gγ−φ+j+1 . . . gγ hj+1 . . . hγ

...
...

...
...

g2i+2−φ . . . gj+1 h2j+2−γ . . . hj+1
Xφ−i−1G . . . G Xγ−j−1H . . . H







448 A. Mahboubi

If j ≥ η, then the matrix is triangular, and
Sη(F,G) = (−1)(φ−η)(γ−η)gφ−η

γ hγ−η−1
η H for η ≤ j ≤ γ − 1

This proves (ii)− (iv). Now if j < η, the determinant has the block form:

Sj(F,G) = (−1)(φ−j)(γ−j)det

[
A 0
B Sj(G,H)

]

where A is a triangular square block of size φ − η, with all elements on its main
diagonal equal to gφ, which proves (i). )*

Remark 2. The formal proof of this lemma relies on the fact that every polyno-
mial inD[X ] of degree less than d is equal to a linear combination of monomials of
degree less than d. Due to the choice of our representation (see section 2), we pro-
vide a theorem of equivalence of representations. Hereafter we can switch at any
moment to the most convenient representation for the current goal to be proved.

4.2 Subresultants and PRS

The lemma 1 was describing the behavior of subresultant polynomials under with
euclidean division. This result can be iterated to establish the link between sub-
resultants and PRS. The multilinearity of pdet will lead to similarity relations be-
tween polynomials in the PRS and subresultant polynomials.

The fundamental theorem describes the structure of the sequence of subresul-
tant polynomials : once the possible zero polynomials occurring in the subresultant
polynomials sequence have been removed, polynomials in the sequence obtained
are pairwise similar to the ones of the PRS.

Theorem 1 (Fundamental theorem). Let F1, F2, . . . , Fk be a PRS in D[X ]
and ni = deg(Fi). Using the notations of section 4.1:

(i) Sj(F1, F1) = 0, for 0 ≤ j < nk

(ii) Sni(F1, F2) and Fi are similar.
(iii) Sj(F1, F1) = 0 for ni < j < ni−1 − 1
(iv) Sni−1−1(F1, F2) and Fi are similar, for i = 3, . . . k.

Proof. The proof we have formalized is exactly the one published by Brown and
Traub [4]. )*

The similarity coefficients only depend on the values chosen for the αi’s and βi’s.
The idea of a subresultants algorithm is to choose these values such that the non
zeros subresultant polynomials are exactly the Fi of a PRS, which will be called
the subresultant PRS. Fine customizations are possible in the choice of these αi’s
and βi’s and this leads to several algorithms, which are all called subresultant algo-
rithms. Here we have followed the presentation of Basu at al., [1] (see pp. 279 and
281) and we have implemented the corresponding algorithm, which computes suc-
cessive subresultant polynomials by euclidean divisions using recursively defined
appropriate αi and βi.
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4.3 Complexity Issues

The unique factorization domain can in particular be instantiated by integers. Go-
ing back to our example in the section 3.2, we define P := 9X6− 27X4− 27X3 +
72X + 18X − 45 and Q := 3X4 − 4X2 − 9X + 21 , here is the output (instantly)
computed by our Coq implementation:

Eval compute in (Pol_subres_list P Q).
= PX (PX (PX (PX (PX (Pc 9) 2 -27) 1 -27) 1 72) 1 18) 1 -45
:: PX (PX (PX (Pc 3) 2 -4) 1 -9) 1 21
:: PX (PX (Pc -33) 1 -81) 1 180
:: PX (Pc 18320) 1 -27659
:: Pc -1471921 :: nil : list Pol

Note that this result is slightly better than the one given in the former example,
we are indeed here not very far from the primitive PRS, thanks to a more accurate
choice of αi’s.

Basu et al. also give in [1] a detailed complexity analysis of their algorithm (see
p. 298,Prop. 8.43).

Roughly speaking, the bit-size of the coefficients involved in the computation is
linear in the sum of the degrees of the entries and in the bit-size of their coefficients.
The theoretical (word operations) runtime complexity is quadratic in the degree
of the entries.

Benchmarking Coq’s output to get runtime results is not easy, because Coq’s
time measurement tool is not precise enough. Anyway, our implementation run-
ning in Coq is never slower that 20 times the implementation in Maple described
by Liao and Fateman [16] on the 4 case problems where the subresultant algo-
rithm wins the competition. This means for example that gcds of relatively prime
polynomials of degree 10 with 5 variables are computed in Coq in less than one
second.

4.4 Implementation and Formal Proofs

This formalization can be considered as a test case for the integration of a non-
trivial computer algebra algorithm inside a proof assistant using computational
reflection. Here is a review of the steps of such a development.

Implementation of the computational part. Working by computational reflection
means here that we are using the proof assistant as a programming language to im-
plement and execute programs, and not as a formal mirror of extracted programs.
This can only be legitimated by a satisfactory efficiency in the reduction mecha-
nism of the proof assistant. In this setting, formalizations have to be designed as
efficient functional programs. For our purpose, one of the main gaps between the
computer algebra on one hand and the context of a proof assistant on the other
hand was the status of primitive computations on numbers. The integers we are
computing with are Coq objects as well and not the machine integers a CAS has
at its disposal. Fortunately, it is possible to work in Coq with a library for large
numbers arithmetics [11], and this leads to the nice performances described above.
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Ring structure for the polynomials. Dealing with real functional programsmay lead
to more intricate proofs than reasoning on an ad-hoc representation of mathemat-
ical objects like polynomials. Here the choice of the equality relation over polyno-
mials is one of the most influential on the style of the formal proofs. We have chosen
an inductive predicate describing all the possible degeneracies of the normal form
of a given polynomial, which constitute its class. This equality is parametrized by
the equality relation defined on coefficients. Such a non-syntactic equality is rep-
resented in Coq thanks to setoid structures [8].

Remark 2 shows that the computational representation we have chosen may
not be the most appropriate for the proofs. One could have adopted this point of
view from scratch, defining a second representation for polynomials, dedicated to
the proofs (like streams of coefficients), together with an embedding of the Horner
form in this non optimized representation. The Coq proofs of the ring structure for
Horner polynomials is completed, but we are currently investigating this direction,
since it could solve remaining problems due to setoid rewritings and provide and
abstract formalization for further implementations of polynomials in the system.

Polynomial determinants, algebraic identities, automation. This part of the for-
malization was the most tedious of the development. The proofs of the fundamen-
tal properties of the determinant, like the development of a trigonal determinant
along its diagonal, chain setoid rewritings at several levels and ring identities in
quite large terms.We make here a heavy use of the re-shaped tactic for automat-
ing normalization and proofs of ring identities [10], which enhances the previously
available tactic, specially by providing an efficient and convenient tool on abstract
(axiomatically defined) structures. The proof of the fundamental theorem 1 in-
volves a bunch of identities of the form:

Sni−1−1(F1, F2)
∏i

l=3 α
nl−1−ni−1+1
l =

Fic
1−ni−1+ni

i−1
∏i

l=3[β
nl−1−ni−1+1
l c

nl−2−nl

l−1 (−1)(nl−2−ni−1+1)(nl−1−ni−1+1)]

The work of Sacerdoti [19], which has considerably enhanced setoid rewriting,
has been a prerequisite for our formalization. For example, Coq now allows, after
having defined the above

∏
: nat → nat → (nat → Coef) → Coef , to fix

an equality relation for each argument, and once the compatibility lemma auto-
matically generated is proved, to rewrite any of the arguments in a transparent
way. Unfortunately setoid rewriting becomes even so a limiting factor: automatic
search of rewritable occurrences is very slow, and may even fail unexpectedly, de-
manding the user to program small ad-hoc tactics using the toplevel metalanguage
Ltac [2] of Coq. Efficient equational reasoning may be one of the next challenge to
handle the quotient structures (inducing setoid rewriting) which are pervasive in
formalization of mathematics.

5 Conclusion

It is a common situation is formalizations of mathematics that no pen and paper
proof available in the literature is literally adapted to a formal treatment. The
case of the correction of the subresultant algorithm is yet another example of this
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gap. The historical paper [4] does not use the convenient definition of polynomial
determinants and Basu et al. [1] use the fraction field of a UFD, which requires
further non trivial developments in Coq.

This work is still in progress: the correctness proof of the implemented algo-
rithm is not finished and we rely on axiomatic specifications of our euclidean divi-
sion. Yet majors steps of the formalization are completed since we have formally
proved Theorem 1. The code also needs to be cleaned up in order to be reusable
as a stand-alone library for polynomial arithmetic and a reusable definition of de-
terminants.

The approach we have chosen here is self-contained: programs are implemented,
executed and checked by the same system. Thanks to the performances we ob-
tain with such computations, we hope will be able to transpose the experiments
described by Delahaye and Mayero [6], who were making the most of Maple’s ex-
pertise in computation (of polynomial gcds), but spent time to the the answers of
the CAS. We could compute less efficiently but the correctness proof of the gcd
ensures once and for ever the correctness of all the outputs : time of computing is
time of proving.

Computing polynomial gcds is at heart of several procedures which can autom-
atize formal proofs. The most immediate byproduct we would like to get is a tactic
for the simplification of field expressions, using factorizations of rational fractions.

This algorithm is a small piece of a decision procedure we have implemented in
the Coq system, for the theory of real numbers [17]. This algorithm is a cylindrical
algebraic decomposition [5,1], which uses extensively subresultant computations.
Today, this procedure is completely programmed and our long-term goal is to pro-
vide a correctness proof for this program, which would then constitute a powerful
tactic for real number arithmetic.

Acknowledgments. I would like to thank Laurent Théry for very fruitful discus-
sions and in particular for his suggestions in the formalization of determinants,
Laurence Rideau for her significant help in the pedestrian proofs of the ring ax-
ioms for polynomials and Marie-Françoise Roy for her detailed explanations on
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11. B. Grégoire and L. Théry. A Purely Functional Library for Modular Arithmetic and
its Application for Certifying Large Prime Numbers. In IJCAR’06: Third Interna-
tional Joint Conference on Automated Reasoning, 2006. to appear.

12. J. Harrison. The HOL-Light System 2.20. University of Cambrige, DSTO, SRI
International, May 2006. http://www.cl.cam.ac.uk/∼jrh/hol-light/.
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Abstract. We define the Subclass of Unrollable List Formulas in ACL2
(SULFA). SULFA is a subclass of ACL2 formulas based on list struc-
tures that is sufficiently expressive to include invariants of finite state
machines (FSMs). We have extended the ACL2 theorem prover to in-
clude a new proof mechanism, which can recognize SULFA formulas
and automatically verify them with a SAT-based decision procedure.
When this decision procedure is successful, a theorem is added to the
ACL2 system database as a lemma for use in future proof attempts.
When unsuccessful, a counter-example to the SULFA property is
presented.

We are using SULFA and its SAT-based decision procedure as part
of a larger system to verify components of the TRIPS processor. Our
verification system translates Verilog designs automatically into ACL2
models. These models are written such that their invariants are SULFA
properties, which can be verified by our SAT-based decision procedure,
traditional theorem proving, or a mixture of the two.

1 Introduction

Formal methods can be divided into several important areas, including theo-
rem proving and model checking. Theorem proving scales to large systems, but
requires human guidance. Model checking is more automatic, but the state ex-
plosion problem prevents it from verifying large systems. The integration of these
two complementary techniques is an area of active research.

The ACL2 theorem prover has been used to formally verify large hardware de-
signs, including the elementary floating-point operations on AMD’s
AthlonTMprocessor [1]. It has the advantage of having a fast execution engine
and a relative high degree of automation. The integration of model checking
techniques within ACL2, however, has proven challenging. Due to ACL2’s ex-
pressiveness, model checking techniques cannot apply to all ACL2 properties
and since ACL2 is typeless, one cannot narrow its expressiveness through type
restrictions.

In this paper, we present a new approach to integrating fully automatic tech-
niques within ACL2. Our main contribution is the definition of the Subclass of
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Unrollable List Formulas in ACL2 (SULFA). SULFA is decidable, making it an
ideal application for fully automatic techniques. Furthermore, SULFA is extend-
able, allowing restricted calls to user-defined recursive functions. This extensi-
bility allows hardware models and their invariants to be succinctly described.
Furthermore, SULFA is typeless and defined over an infinite domain—variables
in a SULFA property can be instantiated with any ACL2 constant.

We added a recognizer for SULFA to the ACL2 theorem prover, which we
describe in Sect. 3. We also extended the theorem prover to include the SAT-
based decision procedure for SULFA described in Sect. 4. In Sect. 5 we apply this
decision procedure to the verification of components of the TRIPS processor.

2 Background

2.1 Satisfiability Solving

Satisfiability (SAT) solving is the problem of determining whether there exists
an instantiation of Boolean variables that satisfies a formula, typically in Con-
junctive Normal Form (CNF). The following is an example of a CNF formula:

(x0 ∨ x1 ∨ x2) ∧ (¬x0 ∨ ¬x1) ∧ (x0 ∨ ¬x2)

SAT solving is known to be NP-Complete. Nevertheless, there are SAT-based
tools that can solve a wide array of practical problems [2].

2.2 ACL2

ACL2, A Computation Logic for Applicative Common Lisp, is a functional
subset of Common Lisp. For a thorough description of it, see the book by
Kaufmann et al. [3]. In this paper, some understanding of Common Lisp is
assumed.

ACL2 includes a large array of constants, including numbers, characters,
strings, symbols, and ordered pairs (also referred to as list structures). In this
paper, we focus mostly on the symbol nil, which represents both false and
the empty list; the symbol t, which represents true; and ordered pairs, which
are recognized by consp and created by cons. A fundamental axiom of ACL2 is
that the different types of constants are disjoint. Therefore (cons x y) �=nil is

[1] (consp (cons x y))�=nil [6] (car (cons x y))=x
[2] (consp x)=nil→ (car x)=nil [7] (cdr (cons x y))=y
[3] (consp x)=nil→ (cdr x)=nil [8] t�=nil
[4] ((consp x)=t) ∨ ((consp x)=nil) [9] x=nil→ (if x y z)=z
[5] (consp x)�=nil→ (cons (car x) (cdr x))=x [10] x�=nil→ (if x y z)=y

Fig. 1. Some relevant ACL2 axioms. Note that the axioms [1], [5], [6], and [7] also form
the axioms of Nelson and Oppen’s Theory of List Structure [4]. The axioms [2], [3],
and [4] make car, cdr, and consp total functions.
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an ACL2 theorem, where the unbound variables x and y are implicitly univer-
sally quantified. Other axioms regarding ACL2’s ordered pair functions and if
functions are shown in Fig. 1.

Fig. 2 illustrates a few example ACL2 definitions. Here concat concatenates
two bit vectors and uand returns the conjunction of the bits in a bit vector. We
also make use of the built in ACL2 function (zp N), which returns nil if N is a
positive integer and t otherwise.

The functions uand and concat are defined recursively. ACL2 requires that
these functions terminate on all inputs. This obligation is relieved by finding a
measure that maps the function’s inputs to an ordinal (up to ε0), and proving
that this measure decreases on each recursive call. In this case, a measure is
found and proven to decrease without user guidance. A reasonable measure for
both these functions is (nfix n), which returns n if n is a natural number, and
zero otherwise. A function defined in this manner is total and ACL2 can execute
the function to determine its value given any constant inputs.

(defun concat (n a b)
(if (zp n)

b
(cons (car a) (concat (1- n) (cdr a) b))))

(defun uand (n a)
(if (zp n)

t
(if (car a)

(uand (1- n) (cdr a))
nil)))

(defthm uand-concat
(iff (uand (+ x y) (concat x a b)) (and (uand x a) (uand y b))))

Fig. 2. Some example ACL2 definitions and an example ACL2 theorem

Fig. 2 also illustrates an ACL2 theorem. This theorem states that the unary-
and of the concatenation of two bit vectors is equivalent to the conjunction of
the unary-and of each individual bit vector. Note that in ACL2 terms are used
in place of formulas, where the implied formula is that the term is not equal
to nil.

3 The Definition of SULFA

SULFA has the same syntax as ACL2, but places two semantic restrictions on
function applications. First, all functions in a SULFA property must be exe-
cutable. Second, all the non-list arguments to a function must be constant. A
function is executable if it is a primitive or it is introduced using the lisp defun
construct, rather than as an uninterpreted constrained function. The non-list ar-
guments of a function are defined by considering the function’s body, as follows:



456 E. Reeber and W.A. Hunt Jr.

– The non-list arguments of a function, intuitively, is the subset of formal argu-
ments that must be constant in order for a function application to be unrolled
into the primitives car, cdr, cons, consp, and if. For these primitives, the
non-list arguments is their entire set of formals. For other primitives, the
non-list arguments is the empty set. For non-primitives, the non-list argu-
ments is defined as the minimal fix point that includes all unbound variables
in the function’s measure and all unbound non-list variables occurring in the
function’s body.

– An unbound variable in an expression is an unbound non-list variable if it
occurs in any expression used to calculate the non-list argument of a function
application.

Consider the example design of the 3-digit decimal counter shown in Fig. 3 and
its corresponding ACL2 model in Fig. 4. The n argument of step-n-counter is

++++
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++

01
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4

01
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0

Register

4

01
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0

Register

4

01
SEL

0

Register

A0A1A2

3 Digit Decimal Counter

=9? =9? =9?

Fig. 3. A schematic for a 3-Digit Decimal Counter. Each individual digit is represented
as a four bit, bit vector.

(defun step-n-counter (n count-state)
(let ((digit (car count-state)))

(if (zp n)
nil

(if (bv-eq 4 digit (bv-const 4 9))
(cons (bv-const 4 0) (step-n-counter (1- n) (cdr count-state)))

(cons (bv++ 4 digit) (cdr count-state))))))

(defun step-3-counter (count-state)
(step-n-counter 3 count-state))

Fig. 4. An ACL2 model of the 3-Digit counter in Fig. 3. The function bv-eq determines
if two n-bit, bit vectors are equal; the function bv-const returns the n-bit, bit vector
representing a natural number; and the function bv++ increments an n-bit, bit vector.
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a non-list argument, because of its use within the termination justifying measure
of step-n-counter and its use in the applications of zp, 1-, and the recursive
call. The other formal arguments in Fig. 4 are list arguments.

The digits of step-3-counter always are intended to represent numbers be-
tween zero and nine. This invariant can be written as the ACL2 property:

(defthm counter-invariant-3
(implies (all-3-below-tenp init-state)

(all-3-below-tenp (Tth-3-count-state tao init-state))))

Here the function Tth-3-count-state produces the state of the counter after
tao time steps and the function all-below-ten-p has the following definition,
where bv< determines whether one n-bit, bit vector is less than another.

(defun all-below-ten-p (n count-state)
(if (zp n)

t
(if (bv< 4 (car count-state) (bv-const 4 10))

(all-below-ten-p (1- n) (cdr count-state))
nil)))

This property follows by induction from the following ACL2 property:

(defthm counter-step-3
(implies (all-below-ten-p 3 count-state)

(all-below-ten-p 3 (step-3-counter count-state)))
:hints (("Goal" :sat default)))

Note that the above property is proven with the :sat hint. ACL2 contains many
hints to guide the theorem prover. Our SAT-based decision procedure is imple-
mented as a new hint, :sat, which verifies valid SULFA properties automatically.
If a SULFA property is invalid, our procedure gives a counter example.

4 A SAT-Based Decision Procedure

In this section we present a SAT-Based decision procedure for SULFA. We then
discuss the optimizations needed to make this procedure practical, before show-
ing how our procedure performs on some examples.

4.1 Conversion Algorithm

Our goal is to translate a SULFA formula into the negation of a formula in
Boolean Conjunctive Normal Form (CNF). Therefore the CNF formula is un-
satisfiable if and only if the SULFA formula is valid.

The first step is to create a negated-conjunction, by performing double-
negation on the SULFA formula. Throughout the rest of the algorithm the
formula is maintained as a negated conjunction. We refer to arguments of the
conjunction as clauses and arguments to each clause’s disjunction as literals.
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Each literal is a leaf expression or its negation, where a leaf expression is a
SULFA expression. Note that the validity of any such negated conjunction is
not changed if every leaf expression X is mapped to the Boolean expression
X �= nil.

Our procedure starts with a single leaf expression, which is the negation of the
original formula. For an example, we illustrate how our procedure finds a coun-
terexample to the invalid SULFA formula (implies (car a) (uand 2 a)),
where uand has the definition given in Fig. 2. The initial negated-conjunction is
(nand (not (implies (car a) (uand 2 a)))). Our decision procedure con-
tinues by executing the following phases:

Function Expansion. If a function application has constant arguments, it
is evaluated. Otherwise, unless it is an application of if, cons, car, cdr, or
consp, it is expanded according to its definition. If the function is recursive,
ACL2 contains an associated ordinal measure. Since the function application is
in SULFA, the measure is constant. If the measure fails to decrease on a recursive
call, then it follows from the proof of termination that the value returned by the
recursive call is irrelevant. To prevent further expansion, irrelevant recursive calls
are replaced with arbitrary constants. In our example, let the measure of (uand n
x) be equal to n when n is a natural number, and zero otherwise. Therefore when
expanding (uand 0 x), the recursive call is replace with an arbitrary constant.
This process leads to the following formula:

(nand
(not
(if (car a) (if nil t

(if (car a) (if nil t
(if (car (cdr a))

(if t t (if (car (cdr (cdr a))) ’arbitrary-constant nil))
nil))

nil))
t)))

IF Removal. Any if with a constant condition is simplified to either its true
or false branch. Any other clause of the form (or (f (if a b c)) x), where f
is car, cdr, or consp is replaced with two clauses: (or (f b) (not a) x) and
(or (f c) a x). For our example, this process leads to the following formula:

(nand (or (not t) (not (car (cdr a))) (not (car a)) (not (car a)))
(or (not nil) (car (cdr a)) (not (car a)) (not (car a)))
(or (not t) (not (car (cdr a))) (car a) (not (car a)))
(or (not nil) (car (cdr a)) (car a) (not (car a)))
(or (not t) (not (car (cdr a))) (not (car a)) (car a))
(or (not t) (car (cdr a)) (not (car a)) (car a))
(or (not t) (not (car (cdr a))) (car a) (car a))
(or (not t) (car (cdr a)) (car a) (car a)))

Cons Simplification. Occurrences of (car (cons a b)) are replaced with a,
(cdr (cons a b)) with b, and (consp (cons a b)) with true. Any remaining
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cons must appear at the top-level of a leaf expression. Such expressions are
reduced to true by the theorem (not (equal (cons x y) nil)), since any leaf
expression X can be substituted with X �= nil without affecting the validity of
the negated-CNF formula. Our example formula does not contain cons, so this
phase has no effect on it.

Local Simplification. Simplifications local to a clause are now performed.
Occurrences of (car (consp X)) and (cdr (consp X)) are reduced to nil,
constants are evaluated, false literals are removed, and redundant literals are
removed. Also a clause is removed if it contains a true literal or a literal and its
negation. In our example, most of the clauses are now removed, leading to the
following:

(nand (or (not (car (cdr a))) (not (car a)))
(or (not (car (cdr a))) (car a))
(or (car (cdr a)) (car a)))

List Accessor Removal. At this point, every leaf expression contains only
applications of car and cdr, with a possible top-level application of consp. Let
Γ be the set of unique leaf expressions occurring in the formula. Next for each
ACL2 expression X such that (car X) is in Γ , the clause (or (not (car X))
(consp X)) is added to the formula, and (consp X) is added to Γ if it is
not already present. Similarly for each (cdr X) in Γ the clause (or (not
(cdr X)) (consp X)) is added, and for each (consp X) in Γ the clause (or
(not (consp X)) X) is added. In our example, the following new clauses are
created:

(or (not (car (cdr a))) (consp (cdr a)))
(or (not (car a)) (consp a))
(or (not (consp (cdr a))) (cdr a))
(or (not (consp a)) a)
(or (not (cdr a)) (consp a))

Since these clauses are instantiations of ACL2 theorems, they are always satis-
fied. Their addition though allows the removal of the functions car, cdr, and
consp. A new formula is created by substituting new Boolean variables for each
each element of Γ . In our example, we create the variable y0 for (car a), y1 for
(car (cdr a)), y2 for a, y3 for (cdr a), y4 for (consp (cdr a)), and y5 for
(consp a). This leads to the following formula:

(nand (or (not y1) (not y0)) (or (not y1) y0)
(or y1 y0) (or (not y1) y4)
(or (not y0) y5) (or (not y4) y3)
(or (not y5) y2) (or (not y3) y5))

Note that the five new clauses ensure that a satisfying instance of the new
variables does not correspond to an invalid ACL2 list structures in the original
formula. For example, y0 = t and y5 = nil is not allowed because there is no
ACL2 list structure that satisfies both (car a) �= nil and (consp a) = nil.
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Counter Example Generation. We now use a SAT solver to find a satisfying
instance of the conjunction. If there is no such instance, then the original SULFA
formula is valid; otherwise, we construct a counterexample. For our example, the
SAT solver finds the following instance:

y0 = (car a) : true, y3 = (cdr a) : true,
y1 = (car (cdr a)) : false, y4 = (consp (cdr a)) : true,
y2 = a : true, y5 = (consp a) : true

Each of these variables represents a leaf expression X that is equivalent to X �=
nil; therefore any variable that is true may be a cons structure.

To choose a counterexample, we define the function CE(expr, Γ, µ), where expr
is an ACL2 expression, and µ is the mapping of expressions in Γ to values in the
SAT instance. If expr is not in Γ or if expr is false in µ, then CE(expr, Γ, µ) =
nil. Otherwise if (consp expr) is false in µ, then CE(expr, Γ, µ) = t. Other-
wise, CE(expr, Γ, µ) is a cons structure whose car is CE((car expr), Γ, µ) and
whose cdr is CE((cdr expr), Γ, µ). CE terminates since expr cannot expand in-
definitely while staying in Γ .

We construct a counterexample by using CE to find a value for each variable
in our original formula. For our example CE(a, Γ, µ) returns the counterexample
(cons (cons nil nil) (cons nil nil)).

4.2 Correctness

The conversion algorithm cannot be verified by the ACL2 theorem prover, since
it depends on meta-theoretical arguments, such as any function’s body is equal
to its definition and the measure of any recursive function decreases on each
relevant recursive call. We could verify the algorithm on a case-by-case basis,
but in practice these formulas are too large for the ACL2 theorem prover to
handle. We therefore sketch a proof of the correctness of our algorithm by hand.
In the interest of brevity, some details are skipped.

First we prove the equivalence of the original formula and the negated con-
junction output by the Local Simplification Phase. For the most part, this equiv-
alence follows from the definitional axioms and the axioms of Fig. 1. The only
exception is the replacement of certain recursive function calls with arbitrary
constants, which we already justified. Note that this fact is enough to prove
the decidability of SULFA, since the formula output by the Local Simplification
Phase is in the Theory of List Structure, shown decidable by Nelson and Oppen
[4] (their theory usually does not include axioms [2] and [3] in Fig. 1, but their
paper shows that the addition of these axioms does not affect decidability).

Next we prove that if the formula F output by the Local Simplification Phase
is invalid, then there exists a satisfying instance to the final Boolean CNF for-
mula. This represents the most important component of correctness, since it
means that unsatisfiable CNF formulas correspond to valid ACL2 properties.
Given that F is invalid, it must have a counterexample that satisfies all its
clauses. This example also satisfies the clauses added during the Boolean Vari-
able Creation Phase, since these are instantiations of valid ACL2 theorems, fol-
lowing from the axioms in Fig. 1. A counterexample to the formula output
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by the List Accessor Removal Phase can thus be created by mapping each
variable in the output formula to the value of the expression it represents in
the input formula under its counterexample. Replacing nil with false and any
other value with true, then creates a satisfying instance to the Boolean CNF
formula.

All that remains to be proven is that, given a satisfying instance to the Boolean
CNF formula, the output of CE is a counterexample to the original formula. It
is sufficient to show that each leaf expression in Γ is nil under the output of
CE if and only if its corresponding Boolean CNF variable in µ is false. By the
definition of CE, the value of any expression explicitly evaluated during coun-
terexample generation has this characteristic. Furthermore CE is defined so that
any expression not explicitly evaluated by it evaluates to nil. The corresponding
values of these expressions in µ are false since the clauses added by the List
Accessor Removal Phase force a variable representing (car x), (cdr x), and
(consp x) to false if the variable representing x is false.

4.3 Optimization

The above procedure is too inefficient to be used directly, since the formula size
quickly explodes. To a certain extent this explosion is unavoidable. Unrolling re-
cursion creates a worst case explosion corresponding to the worst case complexity
of any function one can prove terminates in ACL2, since any such function can
be used to calculate the non-list argument on which a function recurs.

In practice, however, formula explosion can be greatly reduced by creating
new variables, in a manner similar to that used by Tseitin [5]. Our optimized
procedure creates new variables to avoid copying arguments during the Function
Expansion Step and to avoid copying if conditions in the If Removal Step. New
variables are initially constrained by clauses containing a positive literal of the
form (equal x y), where x is a new variable. Then, through a mechanism similar
to an outside-in cone-of-influence reduction, a finite number of relevant Boolean
components of each variable is discovered. Then, without loss of generality, each
clause containing (equal x y) is replaced with multiple clauses relating Boolean
components of x with corresponding Boolean components of y.

Another optimization avoids adding new leaf expressions to Γ in the List
Accessor Removal Phase by anticipating the application of the new clauses. For
example, if a and (car (cdr a)) are in Γ , but not (cdr a), we create the clause
(or (not (car (cdr a))) a), rather than adding clauses containing (cdr a).

Table 1 shows the performance of our optimized procedure on eight examples.
First the associativity of 4 bit, 32 bit, and 200 bit ripple carry adders is verified.
Next the commutativity of a 4 by 4 and a 8 by 8 multiplier is proven. Finally the
invariant of the 10 and 100 digit instantiation of the decimal counter described in
Sect. 3 is verified. For each example we show the number of lines of code required
to write the model and specification, the time spent on the conversion to CNF,
the number of variables and clauses in the CNF formula, the time spent SAT
solving, and the total time required for the process (including I/O and other
overhead). For this analysis the SAT solver zChaff, version 2004.11.15, was used
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Table 1. The performance of the decision procedure on eight examples

N Example lines Conv(s) vars clauses SAT(s) Total(s)
1 4-bit Adder Assoc 25 0.01 81 254 0.01 0.05
2 32-bit Adder Assoc 25 0.15 641 2298 2.08 2.29
3 200-bit Adder Assoc 25 2.82 4001 14562 144.62 147.80
4 4x4 Mult Commute 32 0.02 233 970 0.03 0.05
5 8x8 Mult Commute 32 0.09 913 4050 89.40 89.49
6 10 Digit Decimal Inv 44 0.04 300 1494 0.01 0.10
7 100 Digit Decimal Inv 44 6.70 2820 50454 3.69 13.13

on a 1.8GHz Intel XEONTM processor with 512 MB of RAM running ACL2
v2.9.1 on Allegro Common Lisp 6.2.

Table 1 shows that many interesting properties can be verified fully automat-
ically through our approach. Note that it is common, but not universally true,
that the conversion of a valid formula to CNF requires less time than the corre-
sponding proof of unsatisfiability. This was also usually the case when verifying
the TRIPS components described in Sect. 5. However, when an invalid prop-
erty is converted to CNF, the SAT solver usually requires little time to find a
satisfying instance to the corresponding CNF formula.

We have tried three other approaches within ACL2 to verify these examples:
induction, clausification, and BDD comparison.

– The induction approach generalizes the problem and uses ACL2’s induction
proof engine. This approach scales well to large problems, but requires a
significant amount of human guidance.

– The clausification approach expands the property into calls of if and relies
on ACL2’s internal clausification system to simplify if. This approach is
nearly automatic, but has poor performance. The only example in Table 1
that can be verified by this approach is the associativity of a 4 bit adder.

– The BDD comparison approach reduces the problem to a finite domain and
uses ACL2’s built-in BDD system. The performance of the BDD system
is similar to the performance of our SAT-based system, but is much less
automatic. The BDD system often requires user guidance to expand recursive
functions, detect relevant Boolean list structures, and provide a variable
ordering for creating compact BDDs. For example, this approach requires
202 lines to model and specify the associativity of the 200 bit adder and 404
seconds to verify it. The BDD system also required 280 lines to model and
specify the 100 digit decimal invariant, and 2.5 seconds to verify it.

5 Verifying TRIPS Processor Components

We are applying our SAT-based decision procedure to the verification of the
TRIPS processor, which is a prototype of a next-generation processor that has
been designed at the University of Texas [6] and is being built by IBM. One novel
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aspect of the TRIPS processor is that its memory is divided into four pieces;
each piece has its own memory control tile, with its own cache and Load Store
Queue (LSQ), as described by Sethumadhavan et al. [7]. We verified the protocol,
implemented in Verilog, that manages communication between the four LSQs.

The LSQ protocol is illustrated in Fig. 5. The LSQs are arranged in a column,
with each communicating with the one above it and below it. A tile communi-
cates at the beginning of each cycle, sending information calculated in the pre-
vious cycle. Therefore, information input to tile 3 reaches tile 0 after a minimum
of three cycles. The protocol is implemented in Verilog and uses the same design
for each tile. Two tasks are accomplished:

1. Generation of Exception Mask. There are eight instruction blocks, each
of which may generate an exception. A local exception is input to each tile as
a three bit block address with an extra enable bit. Each tile sends all known
exceptions to the tile above it and the top tile reports its exception mask to
the rest of the processor. Eventually an exception should lead to a flush of
the corresponding instruction block.

2. Generation of Global Store Masks. The protocol generates a global
256 bit mask of arrived stores, which is needed for the waking of deferred
loads and completion detection. At most one new store is input to each LSQ
each cycle, which is denoted by an eight bit address plus an enable bit. To
generate the global store mask, each tile reports up to three recently-arrived
stores to its neighbors.
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We compile Verilog into a cycle-accurate ACL2 model, using DE2 as an inter-
mediate hardware description language, as described in previous work [8].

To verify that the protocol produces the correct exception mask, an equiva-
lence is proven between the exception mask produced by the four-tile machine
and one produced by the single-tile machine shown in Fig. 6. This equivalence
has a safety and a liveness component. The safety property is that any ex-
ception reported by the four-tile machine is also reported by the single-tile
machine. The liveness property is that eventually any exception reported by
the single-tile machine will either be reported by the four-tile machine or be
flushed.

We prove the safety property by proving three SULFA properties:

(defthm initial-except-inv
(except-inv (initial-ext-state) (initial-4T-state) (initial-1T-state)))

(defthm implies-except-inv
(and (inputs-good-p ext-state 4T-state 1T-state in)

(except-inv ext-state 4T-state 1T-state))
(submask-p 8

(4T-except_out *tile-0* 4T-state in)
(1T-except_out 1T-state in)))

(defthm step-except-inv
(implies
(and (inputs-good-p ext-state 4T-state 1T-state in)

(except-inv ext-state 4T-state 1T-state))
(except-inv (ext-step ext-state in)

(4T-step 4T-state in)
(1T-step 1T-state in))))

Note that a third machine, with the state ext-state, stores information needed
to constrain the inputs and define the invariant except-inv. The first theo-
rem initial-except-inv states the invariant is true of the initial state. This
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theorem is proven by evaluation. The second theorem implies-except-inv
states that the invariant implies that the exceptions produced by tile 0 in the
four-tile machine are a subset of the exceptions produced by the single-tile
machine. This theorem is proven directly with our SAT-based decision pro-
cedure. The final theorem step-except-inv states that the invariant implies
itself in the next time step, given valid inputs in. This theorem is in
SULFA, but requires too much time and memory to be proven directly with
our SAT-based decision procedure. Instead the theorem prover is used to break
it up into a number of lemmas, each of which is proven with our decision
procedure.

To verify the liveness property we prove that after three cycles the top tile’s
exception mask includes all exceptions in the single-tile machine, which reduces
to three SULFA properties, just as its safety counterpart did.

The verification of the global store mask is more difficult, but follows the same
basic approach. We defined a single-tile machine and verified safety and liveness
equivalence properties, similar to those used in the exception mask verification.
The safety property reduced to three SULFA properties, which were proven
using a mixture of theorem proving and the SAT-based decision procedure. To
verify the liveness property, we used a different approach. We defined an ordinal
measure that decreases whenever a store produced by the single-tile machine
is not in a mask produced by the four-tile machine. Using this theorem we
are able to prove the liveness property that a store output by the single-tile
machine is eventually output by the four-tile machine. Although the ordinal
property is not in SULFA, many of the lemmas used to complete its proof are
in SULFA.

The use of SULFA properties significantly reduces the necessary human guid-
ance in a proof effort, because once a property can be proven by the deci-
sion procedure no more guidance is needed. Furthermore, errors are immedi-
ately found and reported as counter-examples. Also note that many imple-
mentation details are only viewed by the decision procedure. If these details
change, the design can be recompiled and the proof can be rerun without
modification.

6 Related Work

The complementary techniques of theorem proving and model checking have
been combined previously on many occasions. Issabelle, for example, incorpo-
rates a number of decision procedures inspired by model checking, including a
SAT-based decision procedure for propositional logic. The general-purpose the-
orem prover PVS was designed with the combination of model-checking and
theorem proving in mind [9]. Intel’s FORTE system uses a HOL-based theorem
prover built on top of an efficient procedure for symbolic trajectory evaluation
[10]. The most general combination of theorem proving and model-checking of
which we know is implemented by the SyMP model prover [11].
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Fewer attempts have been made to integrate model checking with ACL2.
A BDD-based engine has been built into the theorem prover for some time
[12], but uses a significantly different approach. The BDD-based engine is not
fully automatic over any clearly defined subclass of ACL2 formulas, but in-
stead, with some human guidance, attempts to operate on a wider set of ACL2
formulas.

Other work incorporating fully automatic tools with ACL2 includes the def-
inition in ACL2 of a simple model checker for the Mu-Calculus [13] and the
partial integration of ACL2 with UCLID [14]. The main difference between our
work and this work is the relative simplicity of the logic used by SAT solvers,
which allows us to create a more natural embedding into the ACL2 logic. We
also have used UCLID [15] to verify some of our examples from Sect. 4.3, but
found that it was not designed with low-level hardware models in mind. When
used with the zChaff SAT solver, UCLID required 6.33 seconds to verify the
invariant of the ten digit decimal counter and after ten minutes was unable to
verify the invariant of the hundred digit decimal counter. It may be possible to
improve on these results, however, with the help of an experienced UCLID user.

7 Conclusion

We have defined a subclass of ACL2 formulas, SULFA, and shown that it is decid-
able. SULFA includes a variant of Nelson and Oppen’s Theory of List Structure
[4]. Unlike the Theory of List Structure, however, SULFA can be extended with
user-defined functions, which allows hardware models and their invariants to be
written succinctly. We implemented a SULFA recognizer and a SAT-based deci-
sion procedure for SULFA as an extension to the ACL2 theorem prover, which
is publicly available [16].

Our work makes a number of contributions. We are the first to define a decid-
able subclass of ACL2 formulas that can succinctly express hardware invariants.
To our knowledge, we are also the first to expand the hint mechanism of the
ACL2 theorem prover to use an external tool. SAT solvers make an ideal exter-
nal tool since the logic of SAT solvers embeds easily into ACL2. We are also the
first to apply theorem proving techniques to the TRIPS processor. The TRIPS
processor is unique in that it is not only a pipelined, out-of-order processor, but
also has multiple memory and execution tiles.

Our approach represents a solid improvement over the verification of hardware
with pure ACL2 theorem proving and has potential for greater improvement. We
plan to apply our approach to a larger portion of the TRIPS processor and to ex-
plore the application of our approach to the verification of hardware generators.
We are working with the authors of the ACL2 theorem prover to develop a more
general mechanism for extending it. Once this mechanism is in place we will be
able to include our SAT-based decision procedure as a dynamically-loaded book
available with the standard ACL2 system. We also plan to further optimize our
SAT-based decision procedure and explore the use of techniques other than SAT
solving, such as BDD-based techniques.
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Abstract. Linear arithmetic decision procedures form an important
part of theorem provers for program verification. In most verification
benchmarks, the linear arithmetic constraints are dominated by simple
difference constraints of the form x ≤ y + c. Sparse linear arithmetic
(SLA) denotes a set of linear arithmetic constraints with a very few
non-difference constraints. In this paper, we propose an efficient deci-
sion procedure for SLA constraints, by combining a solver for differ-
ence constraints with a solver for general linear constraints. For SLA
constraints, the space and time complexity of the resulting algorithm
is dominated solely by the complexity for solving the difference con-
straints. The decision procedure generates models for satisfiable formu-
las. We show how this combination can be extended to generate implied
equalities. We instantiate this framework with an equality generating
Simplex as the linear arithmetic solver, and present preliminary exper-
imental evaluation of our implementation on a set of linear arithmetic
benchmarks.

1 Introduction

Many program analysis and verification techniques involve checking the satis-
fiability of formulas containing linear arithmetic constraints. These constraints
appear naturally when reasoning about integer variables and array operations
in programs. As such, there is a practical need to develop solvers that effectively
check the satisfiability of linear arithmetic constraints.

It has been observed [21] that many of the arithmetic constraints that arise
in verification or program analysis comprise mostly of difference constraints.
These constraints are of the form x ≤ y + c, where x and y are variables and
c is a constant. Although efficient polynomial algorithms exist for checking the
satisfiability of such constraints, these algorithms cannot be directly used if non-
difference constraints, albeit few, are present in the input. In practice, this makes
it hard to exploit the efficiency of difference constraints in arithmetic solvers.

Motivated by this problem, we propose a mechanism for solving general linear
arithmetic constraints that exploits the presence of difference constraints in the
input. We define a set of linear arithmetic constraints as sparse linear arith-
metic(SLA) constraints, when the fraction of non-difference constraints is very
small compared to the fraction of difference constraints.

The main contribution of this paper is a framework for solving linear arith-
metic constraints that combines a solver for difference constraints with a general
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linear arithmetic constraint solver. The former analyzes the difference constraints
in the input while the latter processes only the non-difference constraints. These
solvers then share relevant facts to check the satisfiability of the input con-
straints. When used to solve SLA constraints, the time and space complexity of
our combination solver is determined solely by the complexity of the difference
constraint solver. As a result, our algorithm retains the efficiency of the difference
constraint solvers with the completeness of a linear arithmetic solver. Addition-
ally, the combined solver can also generate models (satisfying assignments) for
satisfiable formulas.

The second key contribution of this paper is an efficient algorithm for gen-
erating the set of implied variable equalities from the combined solver. Gener-
ating such equalities is essential when our solver is used in the Nelson-Oppen
combination framework [19]. We show that for rationals, the difference and the
non-difference solvers only need to exchange equalities with offsets (of the form
x = y + c) over the shared variables to generate all the implied equalities.

We provide an instantiation of the framework by combining a solver for dif-
ference constraints based on negative cycle detection algorithms, and a solver
for general linear arithmetic constraints based on Simplex [6]. We show that we
can modify the Simplex implementation in Simplify [7] (that already generates
all implied equalities of the form x = y) to generate implied equalities of the
form x = y+c without incurring any more overhead. Finally, we provide prelim-
inary experimental results on a set of linear arithmetic benchmarks of varying
complexity.

The rest of the paper is organized as follows: In Section 2, we describe the
background work including solvers for difference logic. In Section 3, we formally
describe the SLA constraints and provide a decision procedure. We extend the
decision procedure to generate implied equalities in Section 4.1, and provide a
concrete implementation with Simplex in Section 4.2. We present the results in
Section 5. In Section 6, we present the related work. Details of the proofs can
be found in an extended technical report [16].

2 Background

For a given theory T , a decision procedure for T checks if a formula φ in the
theory is satisfiable, i.e. it is possible to assign values to the symbols in φ that
are consistent with T , such that φ evaluates to true.

Decision procedures, nowadays, do not operate in isolation, but form a part
of a more complex system that can decide formulas involving symbols shared
across multiple theories. In such a setting, a decision procedure has to support
the following operations efficiently: (i) Satisfiability Checking: Checking if a for-
mula φ is satisfiable in the theory. (ii) Model Generation: If a formula in the
theory is satisfiable, find values for the symbols that appear in the theory that
makes it satisfiable. This is crucial for applications that use theorem provers for
test-case generation. (iii) Equality Generation: The Nelson-Oppen framework for
combining decision procedures [19] requires that each theory (at least) produces
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the set of equalities over variables that are implied by the constraints. (iv) Proof
Generation: Proof generation can be used to certify the output of a theorem
prover [18]. Proofs are also used to construct conflict clauses efficiently in a lazy
SAT-based theorem proving architecture [8].

2.1 Linear Arithmetic

Linear arithmetic is the first-order theory where atomic formulas (also called
linear constraints) are of the form

∑
i ai.xi !" c, where xi is a variable from the

set X , each of ai and c is a constant and !"∈ {≤, <,=}. When the variables
in X range over integers Z, and each of the constants ai and c is a integer
constant, we refer to the theory as integer linear arithmetic. Otherwise, if the
variables and the constants range over rationals Q, we refer to it as simply linear
arithmetic.

An assignment ρ maps each variable in X to either an integer or a ra-
tional value, depending on the underlying theory. A set of linear constraints
{li|li .=

∑
j ai,j .xj !" ci} is satisfiable, if there is an assignment ρ such that

each li evaluates to true. Otherwise, the set of linear constraints is said to be
unsatisfiable.

Given two assignments ρA and ρB over set of variables A and B respectively
(A and B need not be disjoint), we define the resulting assignment ρ .= ρA ◦ ρB

obtained by composing ρA and ρB as follows for any x ∈ A ∪B:

ρA ◦ ρB(x) =
{
ρA(x) if x ∈ A
ρB(x) otherwise

Deciding the satisfiability of a set of integer linear arithmetic constraints is
NP-complete [20]. For the rational counterpart, there exists polynomial algo-
rithms for deciding satisfiability [13]. However, in spite of the polynomial com-
plexity, these algorithms have large overhead that make them infeasible on large
problems. Instead, Simplex [6] algorithm (that has worst-case exponential com-
plexity) has been found to be efficient for most practical problems. We will
describe more about the workings of Simplex in Section 4.2.

2.2 Difference Constraints and Negative Cycle Detection

A particularly useful fragment of linear arithmetic is the theory of difference
constraints, where the atomic formulas are of the form x1 − x2 !" c. Constraints
of the forms x !" c are converted to the above form by introducing a special vertex
xorig to denote the origin, and expressing the constraint as x − xorig !" c. The
resultant system of difference constraints is equisatisfiable with the original set
of constraints. Moreover, if ρ satisfies the resultant set of difference constraints,
then a satisfying assignment ρ′ to the original set of constraints (that include
x !" c constraints) can be obtained by simply assigning ρ′(x) .= ρ(x) − ρ(xorig ),
for each variable. A set of difference constraints (both over integers and rationals)
can be decided in polynomial time using negative cycle detection algorithms.

Given a weighted graph G(V,E), the problem of determining if G has a cycle
C, such that sum of the (weight on the) edges along the cycle is negative, is
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called the negative cycle detection problem. Various algorithms can be used to
determine the existence of negative cycles in a graph [4]. Negative cycle detection
(NCD) algorithms have two properties:

1. The algorithm determines if there is a negative cycle in the graph. In this
case, the algorithm produces a particular negative cycle as a witness.

2. If there are no negative cycles, then the algorithm generates a feasible so-
lution δ : V → Q, such that for every (u, v) ∈ E, δ(v) ≤ δ(u) + w(u, v).
Moreover, if all the weights w(u, v) ∈ Z for any (u, v) ∈ E, then δ assigns
integral values to all vertices.

For example, the Bellman-Ford [3,9] algorithm for single-source shortest path
in a graph can be used to detect negative cycles in a graph. If the graph contains
n vertices and m edges, the Bellman-Ford algorithm can determine in O(n.m)
time and O(n+m) space, if there is a negative cycle in G, and a feasible solution
otherwise.

In this paper, we assume that we use one such NCD algorithm. We will define
the complexity O(NCD) as the complexity of the NCD algorithm under consid-
eration. This allows us to leverage all the advances in NCD algorithms in recent
years [4], which have complexity better than the Bellman-Ford algorithm.

Given a set of difference constraints, we can construct a weighted directed
graph by creating a vertex for each variable in the set of constraints, and creating
an edge from a vertex x to vertex y with a weight c for each constraint y − x ≤
c. We will refer to the set of difference constraints and the underlying graph
interchangeably in the rest of the paper.

3 Sparse Linear Arithmetic (SLA) Constraints

Pratt [21] observed that most queries that arise in software verification are dom-
inated by difference constraints. Recently, more evidence has been presented
strengthening the hypothesis [24], where the authors found more than 95% of
the linear arithmetic constraints were restricted to difference constraints for a
set of program verification benchmarks. Hence, it is crucial to construct decision
procedures for linear arithmetic that can exploit the sparse nature of general
linear constraints.

Let φ .=
∧

i

(∑
j ai,j .xj ≤ ci

)
be the conjunction of a set of (integer or ra-

tional) linear arithmetic constraints over a set of variables X . Let us partition
the set of constraints in φ into the set of difference constraints φD and the non-
difference constraints φL, such that φ = φD ∧ φL. Let D be the set of variables
that appear in φD, L be the set of variables that appear in φL, and let Q be
the set of variables in D ∩ L. We assume that the variable xorig to denote the
origin, always belong to D , and any x !" c constraint has been converted to
x !" xorig + c.

We define a set of constraints φ to be sparse linear arithmetic (SLA) con-
straints, if the fraction |L|/|D | ; 1. Observe this also implies that |Q |/|D | ; 1.
Our goal is to devise an efficient decision procedure for SLA constraints, such
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that the complexity is polynomial in D but (possibly) exponential only over L.
This would be particularly appealing for solving integer linear constraints, where
the complexity of the decision problem is NP-complete. For rational linear arith-
metic, the procedure will still retain its polynomial complexity, but will improve
the robustness on practical benchmarks by mitigating the effect of the general
linear arithmetic solver.

In this section, we describe one such decision procedure for SLA constraints.
In Section 4, we show how to generate implied equalities between variable pairs
from such a decision procedure and describe its integration with Simplex, for
rational linear arithmetic.

3.1 Checking Satisfiability of SLA

We provide an algorithm for checking the satisfiability of a set of SLA con-
straints that has polynomial complexity in the size of the difference constraints.
Moreover, the space complexity of the algorithm is almost linear in the size of
the difference constraints. Finally, assuming we have a decision procedure for
integer linear arithmetic that generates satisfying assignments, the algorithm
can generate an integer solution when the input SLA formula is satisfiable over
integers.

Let φ be a set of linear arithmetic constraints as before, and let Q be the set of
variables common to the difference constraints φD and non-difference constraints
φL. The algorithm (SLA-SAT) is simple, and operates in four steps:

1. Check the satisfiability of φD using a negative cycle detection algorithm.
2. If φD is unsatisfiable, return unsatisfiable. Else, let SP(x , y) be the weight

of the shortest path from the (vertices corresponding to) variable x to y in
the graph induced by φD. Generate the set of difference constraints

φQ
.=
∧
{y − x ≤ d | x ∈ Q , y ∈ Q ,SP(x , y) = d}, (1)

over Q .
3. Check the satisfiability of φL ∧ φQ using a linear arithmetic decision proce-

dure. If φL ∧ φQ is unsatisfiable, then return unsatisfiable. Else, let ρL be a
satisfying assignment for φL ∧ φQ over L.

4. Generate a satisfying assignment ρD to the formula φD ∧
∧

x∈Q (x = ρL(x)),
using a negative cycle detection algorithm. Return ρX

.= ρD ◦ ρL as a satis-
fying assignment for φ.

It is easy to see that the algorithm is sound. This is because we report unsatis-
fiable only when a set of constraints implied by φ is detected to be unsatisfiable.
To show that the algorithm is complete (for both integer and rational arith-
metic), we show that if φD and φQ∧φL are each satisfiable, then φ is satisfiable.
This is achieved by showing that a satisfying assignment ρL for φL ∧ φQ can be
extended to an assignment ρX for φ, such that φ is satisfiable.

Lemma 1. If the assignment ρL over L satisfies φL ∧ φQ, then the assignment
ρX over X satisfies φ.
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Since a model for φQ can be extended to be a model for φD, Lemma 1 also shows
another useful fact, which we will utilize later:

Corollary 1. Let P .= D \ Q be the set of variables local to φD. Then φQ is
equivalent to (∃P : φD), denoted as φQ ⇔ (∃P : φD).

The corollary says that φQ is the result of quantifier elimination of the variables
D \ Q local to φD. Hence, for any constraint ψ over Q , φD implies ψ (denoted
as φD ⇒ ψ) if and only if φQ ⇒ ψ. We will make use of this fact throughout the
paper.

Theorem 1. The algorithm SLA-SAT is a decision procedure for (integer and
rational) linear arithmetic. Moreover, it also generates a satisfying assignment
when the constraints are satisfiable.

Complexity of SLA-SAT: Given m difference constraints over n variables, we
denote NCD(n,m) as the complexity of the negative cycle detection algorithm.
The space complexity for NCD(n,m) is O(n+m), and the upper bound of the
time complexity is O(n.m), although many algorithms have a much better com-
plexity [4]. Similarly, with m constraints over n variables, we denote LAP(n,m)
as the complexity of the linear arithmetic procedure under consideration. For ex-
ample, if we use Simplex as the (rational) linear arithmetic decision procedure,
then the space complexity for LAP(n,m) is O(n.m) and the time complexity
is polynomial in n and m in practice. Finally, for a set of constraints ψ, let |ψ|
denote the the number of constraints in ψ.

Let us try to analyze the complexity of the procedure SLA-SAT described in
the previous section. Step 1 takes NCD(|D |, |φD|) time and space complexity.
Step 2 requires generating shortest paths between every pair of variables x ∈ Q
and y ∈ Q . This can be obtained by using a variant of Johnson’s algorithm for
generating all-pair-shortest-paths [5] for a graph. For a graph with n nodes and
m vertices, this algorithm has linear space complexity of O(n+m). Assuming we
have already performed a negative cycle detection algorithm, the time complexity
of the algorithm is only O(n2. log(n)).

Instead of generating all-pair-shortest-paths for every pair of vertices using
Johnson’s algorithm, we adapt the algorithm to compute the shortest paths only
for vertices in Q, the set of shared variables. This makes the time complexity of
Step 2 of the algorithm O(|Q|.|D|. log(|D|)). The space complexity of this step
is O(|φQ|) which is bounded by O(|Q|2).

The complexity of Step 3 is LAP(|L|, |φQ| + |φL|). Finally, Step 4 incurs
another NCD(|D |, |φD|) complexity, since at most |Q | constraints are added as
x = ρL(x) constraints to φD.

4 Equality Generation for SLA

In this section, we consider the problem of generating equalities between vari-
ables implied by the constraint φ. Equality generation is useful for combining
the linear arithmetic decision procedure with other decision procedures in the
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Nelson-Oppen combination framework. In Section 4.1, we describe the require-
ments from the difference and the non-difference decision procedures in SLA-SAT
to generate all equalities implied by φ. In Section 4.2, we describe how to instan-
tiate the framework when combining a negative cycle detection algorithm (as
the decision procedure for difference constraints) with Simplex (as the decision
procedure for non-difference constraints).

4.1 Equality Generation from SLA-SAT

In this section, we extend the basic SLA-SAT algorithm to generate all the
equalities between pairs of variables, implied by the input formula φ. We will
describe the procedure in an abstract fashion, without providing an implemen-
tation of the individual steps. The algorithm described in this section has only
been proved complete for the case when the variables are interpreted over Q; we
are currently working on the case of Z.

Throughout this section, we assume that φ is satisfiable. We carry the nota-
tions (e.g. φD, φL etc.) from Section 3. The key steps of the procedure are:

1. Assuming φD is satisfiable, generate φQ and solve φQ ∧ φL using linear
arithmetic decision procedure.

2. Generate the set of equalities (with offsets) implied by φQ ∧ φL

E1 .= {x = y + c | x ∈ L, y ∈ L, and (φQ ∧ φL) ⇒ x = y + c}, (2)

from the linear arithmetic decision procedure.
3. Let E2 ⊆ E1 be the set of equalities over the variables in Q :

E2
.= {x = y + c | x ∈ Q , y ∈ Q , x = y + c ∈ E1 }, (3)

4. Generate all the implied equalities (with offset) from E2 (interpreted as a
formula by conjoining all the equalities in E2) and φD:

E3 .= {x = y + c | x ∈ D , y ∈ D , (φD ∧ E2)⇒ x = y + c}, (4)

5. Finally, the set of equalities implied by E1 and E3 is the set of equalities
implied by φ:

E .= {x = y | x ∈ X , y ∈ X , (E1 ∧ E3)⇒ x = y} (5)

Before proving the correctness of the equality generating algorithm (Theo-
rem 2), we first state and prove a few intermediate lemmas.

For a set of linear arithmetic constraints A .= {e1, . . . , en}, we define a linear
combination of A to be a summation

∑
ej∈A cj .ej , such that each cj ∈ Q and

non-negative.

Lemma 2. Let φA and φB be two sets of linear arithmetic constraints over
variables in A and B respectively. If u is a linear arithmetic term over A \ B
and v is a linear arithmetic term over B such that φA ∧φB ⇒ u !" v, then there
exists a term t over A ∩B such that
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1. φA ⇒ u !" t, and
2. φB ⇒ t !" v,

where !" is either ≤ or ≥.

For the set of satisfiable difference constraints φD
.= {e1, . . . , en}, we say a linear

combination
∑

ej∈φD
cj .ej contains a cycle (respectively, a path from x to y), if

there exists a subset of constraints in φD with positive coefficients (i.e. cj > 0),
such that they form a cycle (respectively, a path from x to y) in the graph
induced by φD.

Lemma 3. For any term t over D, if φD ⇒ t ≤ 0, then there exists a linear
derivation of t ≤ 0 that does not contain any cycles.

Lemma 4 (Difference-Bounds Lemma). Let x, y ∈ D \Q, t be a term over
Q, and φD a set of difference constraints.

1. If φD ⇒ x !" t, then there exists terms u1, u2, . . . , un such that all of the
following are true
(a) Each ui is of the form xi + ci for a variable xi ∈ Q and a constant ci,
(b) φD ⇒

∧
i x !" ui, and

(c) φD ⇒ 1/n.
∑

i ui !" t
2. If φD ⇒ x− y !" t, then there exists terms u1, u2, . . . , un such that all of the

following are true
(a) Each ui is either of the form ci or xi − yi + ci for variables xi, yi ∈ Q

and a constant ci,
(b) φD ⇒

∧
i x− y !" ui, and

(c) φD ⇒ 1/n.
∑

i ui !" t

where !" is one of ≤ or ≥.

The proof makes use of a novel trick to split a linear combination of difference
constraints to yield the desired results.

Lemma 5 (Sandwich Lemma). Let l1, l2, . . . lm and u1, u2, . . . un be terms
such that

∧
i,j li ≤ uj. Let lavg = 1/m.

∑
i li and uavg = 1/n.

∑
j uj be the

respective average of these terms. If l and u are terms such that l ≤ lavg and
uavg ≤ u, then

l = u⇒
∧

i,j

li = uj = l

Now, we can prove the correctness of the equality propagation algorithm.

Theorem 2. For two variables x ∈ X and y ∈ X , φ ⇒ x = y if and only if
x = y ∈ E.

Proof. Case 1: The easiest case to handle is the case when both x, y ∈ L. Thus,
(∃D \ L : φ) = φQ ∧ φL ⇒ x = y. Therefore, the equality x = y is present in E1
and thus in E.
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Case 2: Consider the case when one of the variables, say, x ∈ D \ L while y ∈ L.
We have φ⇒ x ≤ y∧x ≥ y. Applying Lemma 2 twice, there exist terms t, t′ ∈ Q
such

φD ⇒ x ≤ t ∧ x ≥ t′ (6)
φL ⇒ t ≤ y ∧ t′ ≥ y (7)

However, φD ∧ φL ⇒ x = y = t = t′. As t, t′ ∈ Q , we have

φQ ∧ φL ⇒ t = t′ = y (8)

Using Lemma 4.1 twice on Equation 6, there exist terms u1, . . . , um and terms
l1, . . . , ln all of the form v + c for a variable v ∈ Q and a constant c such that

φD ⇒
(
∧

i

x ≤ ui ∧ 1/m.
∑

i

ui ≤ t

)
∧




∧

j

x ≥ lj ∧ 1/n.
∑

j

lj ≥ t′





As the terms ui and lj are terms over Q , we have

φQ ⇒




∧

i,j

lj ≤ ui



 ∧
(

1/m.
∑

i

ui ≤ t

)
∧



1/n.
∑

j

lj ≥ t′





Using Lemma 5 and Equation 8, we have

φQ ∧ φL ⇒
∧

i,j

lj = ui = t = t′ = y

All of the above equalities belong to E1. Moreover, the equalities between lj and
ui are present in E2. Thus, the equality x = lj = ui is present in E3. Thus x = y
is in E.
Case 3: The final case involves the case when x, y are both in D \ L. The proof
is similar to Case 2. We have φ ⇒ x − y ≤ 0 ∧ x − y ≥ 0. Applying Lemma 2
twice, there exists terms t, t′ ∈ Q such

φD ⇒ x− y ≤ t ∧ x− y ≥ t′ (9)
φL ⇒ t ≤ 0 ∧ t′ ≥ 0 (10)

However, φD ∧ φL ⇒ x− y = 0 = t = t′. As t, t′ ∈ Q , we have

φQ ∧ φL ⇒ t = t′ = 0 (11)

Using Lemma 4.2 twice on Equation 9, there exists terms u1, . . . , um and terms
l1, . . . , ln all of the form u − v + c for variables u, v ∈ Q and a constant c such
that

φD ⇒
(
∧

i

x− y ≤ ui ∧ 1/m.
∑

i

ui ≤ t

)
∧




∧

j

x− y ≥ lj ∧ 1/n.
∑

j

lj ≥ t′
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As the terms ui and lj are terms over Q , we have

φQ ⇒




∧

i,j

lj ≤ ui



 ∧
(

1/m.
∑

i

ui ≤ t

)
∧



1/n.
∑

j

lj ≥ t′





Using Lemma 5 and Equation 11, we have

φQ ∧ φL ⇒
∧

i,j

lj = ui = t = t′ = 0

All of the above equalities belong to E1. Moreover, the equalities between lj and
ui are present in E2. Thus, the equality x = lj = ui is present in E3. Thus x = y
is in E.

4.2 Equality Generation with NCD and Simplex

In this section,wedescribe an instantiation of the SLA framework,whereweuse the
Simplex algorithm for solving general linear arithmetic constraints. The Simplex
algorithm [6] (although has a worst case exponential complexity) remains one of
the most practicalmethods for solving linear arithmetic constraints,when the vari-
ables are interpreted over rationals. Although Simplex is incomplete for integers,
various heuristics have been devised to solve most integer queries in practice [7].

The main contribution of this section is to show how to generate all equalities
with offsets between a pair of variables, i.e. all the x = y + c equalities implied
by a set of linear constraints. The implementation of Simplex in Simplify [7]
can generate all possible x = y equalities implied by a set of constraints. We
show that the same Simplex implementation also allows generating all x = y+c,
without any additional overhead.1 Due to space constraints, we only provide an
informal high-level description of the algorithm. Details and proofs can be found
in an extended technical report [16]. Finally, we also mention how to derive
x = y + c equalities from a set of difference constraints using NCD algorithms.
Proof generation (for contradictions and the implied equalities with offsets) in
Simplex is an easy adaptation of existing proof-generating Simplex [18].

Simplex Tableau. A Simplex tableau is used to represent a set of linear arith-
metic constraints. Each linear inequality is first converted to linear equality by
the introduction of a slack variable, which is restricted to be non-negative. The
Simplex tableau is a two-dimensional matrix that consists of the following:

– Natural numbers n and m for the number of rows and columns for tableau
respectively,

– The identifiers for the rows y[0], . . . , y[n] and the columns x [1], . . . , x [m]. The
column 0 corresponds to the constant column. We use u, u1 etc. to range over
the row and column identifiers.

– A two dimensional array of rational numbers a[0, 0], . . . , a[n,m].
1 In fact, readers familiar with the Simplify work [7] can see that Lemma 4 in Section

8 of [7], almost immediately generalizes to give us the desired result.
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– A subset of identifiers (representing the slack variables) in y[0], . . . , y[n],
x [1], . . . , x [m] have a sign ∈ {≥, ∗}, and are called restricted. A variable u
with sign of ∗ is called ∗-restricted, and denotes that u = 0; otherwise a
restricted variable u with sign ≥ denotes u ≥ 0.

– The y[0] of the Simplex tableau is a special row Zero to denote the value 0,
and has 0 in all columns.

Each row in the tableau represents a row constraint of the form:

y[i] = a[i, 0] + Σ1≤j≤ma[i, j].x [j] (12)

A feasible tableau is one where the solution obtained by setting each of the
column variables x [j] to 0 and setting each of the y[i] to a[i, 0], satisfies all
the constraints (row constraints and sign constraints). A set of constraints is
satisfiable iff such a feasible tableau exists. We will not go into the details of
finding the feasible tableau, as it is a well-known method [6,7].

Equality Generation from Simplex Tableau. To generate equalities implied
by the set of constraints, the tableau has to be constrained further in addition
to being feasible. The tableau has to be constrained such that for any restricted
variable u, the set of constraints imply u = 0, if and only if u is ∗-restricted in the
tableau. Such a tableau is called a minimal tableau. The Simplex implementation
in Simplify [7] provides a procedure for obtaining a minimal tableau for a set of
constraints. The set of all implied variable equalities (of the form u1 = u2) can be
simply read off the minimal tableau. We show that, in fact, the set of all implied
offset equalities (of the form u1 = u2 + c) can also be read off such a minimal
tableau. The basic idea is that in a minimal tableau, the implied equalities do
not depend on the ≥ sign constraints.

We now state the generalization of Lemma 2 (Section 8.2 [7]) to include offset
equalities:

Lemma 6 (Generalization of Lemma 2 in Section 8.2 [7]). For any two
variables u1 and u2 in a feasible and minimal tableau, the set of constraints
imply u1 = u2 + c, where c is a rational constant, if and only if at least one of
the following conditions hold:

1. u1 and u2 are both ∗-restricted columns (here c is 0), or
2. both u1 and u2 are row variables y[i] and y[j] respectively, and apart from

the ∗-restricted columns only (possibly) differ in the constant column, such
that a[i, 0] = a[j, 0] + c, or

3. u1 is a row variable y[i], u2 is a column variable x [j], and the only non-
zero entries in the row i outside the ∗-restricted columns are a[i, 0] = c and
a[i, j] = 1.

4. u2 is a ∗-restricted column, and u1 is a row variable y[i], such that a[i, 0] = c
is the only non-zero entry outside ∗-restricted columns in row i.

Therefore, obtaining the minimal tableau is sufficient to derive even x = y + c
facts from Simplex. This is noteworthy because the Simplex implementation does
not incur any more overhead in generating these more general equalities than
simple x = y equalities.
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Inferring Equalities from NCD. The algorithm for SLA equality generation
described in Section 4.1 requires generating equalities of the form x = y+c from
the NCD component of SLA. Lemma 2 in [15] provides such an algorithm. The
lemma is provided here.

Lemma 7 (Lemma 2 in [15]). For an edge e in Gφ representing y ≤ x+ c, e
can be strengthened to represent y = x+ c (called an equality-edge), if and only
if e lies in a cycle of weight zero.

Hence, using Lemma 6, Theorem 2 and Lemma 7, we obtain a complete equality
generating decision procedure over rationals.

Theorem 3. The SLA implementation by combining NCD and Simplex is an
equality generating decision procedure for linear arithmetic over rationals.

5 Implementation and Results

In this section, we describe our implementation of the SLA algorithm in the
Zap [1] theorem prover and report preliminary results from our experiments.
The implementation uses the Bellman-Ford algorithm as the NCD algorithm
and the Simplex implementation (described in Section 4.2) for the non-difference
constraints. We are currently working on the implementation of the proof gen-
eration from the SLA algorithm (namely, the proof of implied equalities from
NCD [15]) , to integrate it into the lazy proof-generating theorem prover frame-
work [2,8]. Hence, we are currently unable to evaluate our algorithm on more
realistic benchmarks (such as the SMT-LIB benchmarks [26]), where we need the
proofs to generate conflict clauses to reason about the Boolean structure in the
formula. Instead, we evaluate on a set of randomly generated linear arithmetic
benchmarks.

We report preliminary results comparing our algorithm with two different im-
plementations for solving linear arithmetic constraints: (i) Simplify-Simplex: the
linear arithmetic solver in the Simplify [7] theorem prover, and (ii) Zap-UTVPI:
an implementation of Unit Two Variable Per Inequality (UTVPI) decision pro-
cedure [10,12] in Zap.2 Even though Zap-UTVPI is not complete for general
linear arithmetic, we chose this implementation to compare a transitive closure
based decision procedure (as used by Sheini and Sakallah [25]) to a one based
on NCD algorithms.

We generated the random benchmarks as follows. For different values for the
total number of variables lying between 100 and 1000, we generated benchmarks
with the number of constraints varying from half to five times the number of
variables. To measure the effect of the sparseness of the constraints, we varied the
ratio of non-difference constraints to difference constraints from 2% to 50%. For
each difference constraint we picked the two variables at random. For each non-
difference constraint we randomly picked 2 to 5 variables and chose a random
2 UTVPI constraints are of the form a.x + b.y ≤ c, where a and b ∈ {−1, 0, 1} and c

is an integer constant.



480 S.K. Lahiri and M. Musuvathi

Execution Times (secs)

0.01

0.1

1

10

100

1000

0.01 0.1 1 10 100 1000

SLA

S
im

p
lif

y
Execution Times (secs)

0.01

0.1

1

10

100

1000

0.01 0.1 1 10 100 1000

SLA

U
T

V
P

I

Fig. 1. Comparison of SLA with (a) Simplify-Simplex and (b) Zap-UTVPI on a set of
randomly generated benchmarks

coefficient between −2 and 2. We ensured that the set of benchmarks when run
on the SLA implementation involved all of the following: instances where the
difference constraints alone were unsatisfiable, instances where the non-difference
constraints alone were unsatisfiable, instances that required both difference and
non-difference reasoning, and finally instances that were satisfiable.

Figure 1 (a) shows the comparison of the execution times of the SLA algo-
rithm against Simplify-Simplex. In the graph, we indicate both the runs that
took greater than 200 seconds and runs that incurred a crash due to an integer-
overflow exception, as timeouts with 200 seconds. The overflow exception hap-
pens in Simplex (both in Simplify and Zap) due to the use of machine integers
to represent large coefficients in the tableau. The following observations are ev-
ident from this graph. On those instances for which Simplify finished within a
second, the SLA algorithm also finished within a second, but performed worse
than Simplify. This is a result of the constant overhead Zap (implemented in
C#) incurs loading the virtual machine of the C# language on every run. On
the other hand, SLA solved instances within seconds for which Simplify required
orders of magnitude longer time or timed out at 200 seconds. To our surprise,
Simplify incurred an integer-overflow exception on many benchmarks for which
pure difference reasoning was sufficient to prove the unsatisfiability of the query.
The SLA implementation did incur an integer-overflow on certain instances for
which Simplify completed successfully. This could be due to the fact that our
Simplex implementation is not as optimized as the one in Simplify as we have
not implemented the many pivot heuristics of Simplify.

Figure 1 (b) shows the execution time of the UTVPI decision procedure on
these benchmarks. SLA performs better than the UTVPI decision procedure on
a greater proportion of the instances. The transitive-closure based algorithm for
the UTVPI decision procedure has a quadratic space complexity, resulting in
orders of magnitude slowdown. There are instances, however, where the SLA
algorithm results in an integer-overflow for which the UTVPI algorithm termi-
nates. (Note, the UTVPI algorithm is incomplete for general linear arithmetic.)
This suggests a possibility of combining the linear-space UTVPI algorithm [14]
with a general linear arithmetic solver, along the lines of SLA. While this is an
interesting problem for future work, we are unsure about its value in practice.
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6 Related Work

Checking the satisfiability of a set of linear arithmetic constraints over integers
is NP-complete [20]. Various algorithms based on branch-and-bound heuris-
tics are implemented in various integer linear programming (ILP) solvers like
LP SOLVE [17] and commercial tools like CPLEX [11] to solve this fragment.
These algorithms have a worst-case exponential time complexity. Even for the
relaxation of the linear arithmetic problem over rationals (where polynomial
time decision procedures exists [13]), most practical solvers use Simplex [6] al-
gorithm that has a worst-case exponential complexity. Gomory cuts [23] can
be used to extend Simplex over integers although the algorithm might require
exponential space in the worst case. Ruess and Shankar [22] provide one such
implementation. Their algorithm also generates equalities over variables. How-
ever, unlike our approach, their algorithm does not try to exploit the sparsity in
linear arithmetic constraints, and the asymptotic complexity for solving sparse
linear arithmetic constraints is still exponential.

Recently attempts have been made to exploit the sparsity in linear arithmetic
constraints mostly dominated by difference logic queries. Seshia and Bryant [24]
demonstrate that although one might incur a linear blowup for translating a
Boolean formula over linear arithmetic constraints (over integers) to an equisatis-
fiable propositional formula, formulas with only a small number of non-difference
constraints can be converted using a logarithmic blowup. This approach how-
ever does not help towards improving the complexity of solving a set of linear
arithmetic constraints.

The closest approach to ours is the approach of Sheini and Sakallah [25], where
they provide a decision procedure for integer linear arithmetic by combining a
decision procedure for UTVPI constraints and a general linear arithmetic solver
(CPLEX [11] in their case). Their algorithm relies on computing a transitive
closure for the UTVPI constraints that incurs cubic time and quadratic space
complexity, independent of the sparsity of the constraints. In contrast, our de-
cision procedure retains the efficiency of the NCD algorithms thereby making
our procedure robust even for non sparse linear arithmetic benchmarks. This is
well demonstrated by our experimental results (Figure 1 (b)). Moreover, their
combination does not generate models for satisfiable formulas. Finally, their al-
gorithm does not provide a way to generate implied equalities that are crucial
for a Nelson-Oppen framework.
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Abstract. Verification by network invariants is a heuristic to solve uniform veri-
fication of parameterized systems. Given a system P , a network invariant for P is
a system that abstracts the composition of every number of copies of P running
in parallel. If there is such a network invariant, by reasoning about it, uniform
verification with respect to the family P [1] ‖ · · · ‖ P [n] can be carried out. In
this paper, we propose a procedure that searches systematically for a network in-
variant satisfying a given safety property. The search is based on algorithms for
learning finite automata due to Angluin and Biermann. We optimize the search by
combining both algorithms for improving successive possible invariants. We also
show how to reduce the learning problem to SAT, allowing efficient SAT solvers
to be used, which turns out to yield a very competitive learning algorithm. The
overall search procedure finds a minimal such invariant, if it exists.

1 Introduction

One of the most challenging problems in verification is the uniform verification of
parameterized systems. Given a parameterized system S(n) = P [1] ‖ · · · ‖ P [n]
and a property ϕ, uniform verification attempts to verify that S(n) satisfies ϕ for ev-
ery n > 1. The problem is in general undecidable [AK86]. One possible approach
is to look for restricted families of systems for which the problem is decidable (cf.
[EK00, CTTV04]). Another approach is to look for sound but incomplete methods (e.g.,
explicit induction [EN95], regular model checking [JN00, PS00], or environment abstrac-
tion [CTV06]).

Here, we attack uniform verification of parameterized systems using the heuristic of
network invariants [WL89, KM95]. In simple words1, a network invariant for a given
finite system P is a finite system I that abstracts the composition of every number
of copies of P running in parallel. Thus, the network invariant contains all possible
computations of every number of copies of P . If we find such a network invariant I , we
can solve uniform verification with respect to the family S(n) = P [1] ‖ · · · ‖ P [n] by
reasoning about I .

The general idea proposed in [WL89] and turned into a working method in [KM95], is
to show by induction that I is a network invariant for P . The induction base is to prove
that P 6 I , for a suitable abstraction relation 6. The induction step is to show that
P ‖ I 6 I . After establishing that I is a network invariant we can prove I |= ϕ, turning

� Part of this work has been done during the author’s stays in EPFL and TU München, funded
by the Swedish Foundation for Strategic Research via the ARTES++ graduate school.

1 We give a precise definition of the network invariants approach in Section 2.
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I into a proper network invariant with respect to ϕ. Then we conclude that S(n) |= ϕ
for every value of n.

Coming up with a proper network invariant is usually an iterative process. We start
with divining a candidate for a network invariant. Then, we try to prove by induction
that it is a network invariant. When the candidate system is nondeterministic this usu-
ally involves deductive proofs [KPSZ02]2. During this stage we usually need to refine the
candidate until getting a network invariant. The final step is checking that this invariant
is proper (by automatically model checking the system versus ϕ). If it is not, we have
to continue refining our candidate until a proper network invariant is found. Coming
up with the candidate network invariant requires great knowledge of the parameterized
system in question and proving abstraction using deductive methods requires great ex-
pertise in deductive proofs and tools. Whether a network invariant exists is undecidable
[WL89], hence all this effort can be done in vain.

In this paper, we propose a procedure searching systematically for a network invari-
ant satisfying a given safety property. If one exists, the procedure finds a proper invariant
with a minimal number of states. If no proper invariant exists, our procedure in general
diverges (though in some cases it may terminate and report that no proper invariant ex-
ists). In the light of the undecidability result for the problem, this seems reasonable.

Network invariants are usually explained in the setting of transition structures[KP00].
Here, we use learning algorithms that are best explained in terms of deterministic finite
state machines (DFAs). Operations like parallel composition are not very natural in the
context of DFAs (while standard in the context of transition structures). Porting the
learning algorithms to the context of transition structures is not complicated, however,
explaining the learning algorithms in the context of transition structures is unnatural
and renders the exposition hard to follow. Thus, we explain our work in the setting
of checking safety properties of networks that are described in terms of (the parallel
product of) DFAs.

As mentioned, this paper is about searching for network invariants. As the class of
DFAs is enumerable, a naı̈ve algorithm would be to enumerate all possible DFAs and
check one after the other whether it is a proper invariant. Clearly, this algorithm is not
feasible in practice. We improve the naı̈ve search for a minimal proper invariant by em-
ploying learning algorithms. The learning algorithm queries for additional information
like which strings should be accepted by the network invariant and which rejected. This
information is gathered by checking the system P and the property ϕ. When the learn-
ing algorithm proposes an automaton that is not an invariant, we identify some string
that should be accepted or rejected by a real invariant. This information can be fed back
to the learning algorithm to improve the candidate for invariant.

Two types of inference (or learning) algorithms for DFAs can be distinguished, so-
called online and offline algorithms. Online algorithms, such as Angluin’sL∗ algorithm
[Ang87], query whether strings are in the language, before coming up with an automa-
ton. Offline algorithms get a fixed set of examples and no further queries are allowed
before computing a minimal DFA conforming to the examples. Typical algorithms of
this type are based on a characterization in terms of a constraint satisfaction problem
(CSP) over the natural numbers due to Biermann [BF72].

2 For a recent attempt at mechanizing this step see [KPP05].
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Clearly, an online algorithm like Angluin’s should perform better than offline algo-
rithms like Biermann’s. Indeed, Angluin’s algorithm is polynomial while without the
ability to ask further queries the problem is known to be NP-complete [Gol78]. In our
setting, however, we cannot rely completely on Angluin’s algorithm. The definition of a
network invariant does not identify an automaton completely. In consequence, in some
cases we identify behaviors that can either be added to or equally well be removed from
the candidate invariant. Thus, queries may be answered by maybe.

We therefore define an algorithm that is a combination of an online algorithm and an
offline algorithm and is inspired by [PO98]. Similar to Angluin’s algorithm, we round
off the information on the automaton in question by asking queries. As queries can be
answered by maybe, we may not be able to complete the information as in Angluin’s
setting to compute a DFA directly. For this, we use Biermann’s approach for obtaining
a DFA based on the enriched information. Our combination is conservative in the sense
that in case all queries are answered by either yes or no, we obtain the same efficiency as
for Angluin’s algorithm. Furthermore, the encoding in terms of CSP is optimized based
on the information collected in Angluin’s algorithm. Both advantages are in contrast to
the combination proposed in [PO98].

While in [OS01] an efficient implementation for solving the resulting CSP problem
is explained, we give an encoding as a SAT problem featuring a simple yet—as the ex-
amples show—very efficient inference algorithm by employing powerful SAT solvers.

We note that there are efficient algorithms inferring a DFA that is not necessarily of
minimal size, like [Lan92], [OG92] (known as RPNI). However, getting a minimum size
automaton is essential to obtain our semi-computability result, which is why we cannot
use these algorithms.

To validate our approach in practice, we have implemented it and tailored it to the
intensively studied setting of transition structures [KP00]. Our implementation is based
on the verification tool TLV [PS96] and on the SAT solver ZCHAFF [MMZ+01]. We have
tested our implementation on a well-studied example of mutual-exclusion protocol. We
establish that the protocol is safe (i.e., no two processes are in the critical section si-
multaneously). The proper network invariant for this example is obtained in about 2
seconds.

Automatic inference of network invariants has been studied in [LHR97]. Their solu-
tion is based on heuristically solving a recursive equation for I . For some examples, a
proper invariant has been found within seconds, while for others, no proper invariant
was obtained automatically, though one exists. In contrast, in the case that a proper in-
variant exists, our algorithm would find one. Furthermore, the optimized yet systematic
search for a proper invariant allows to inform the user of our tool about the current
progress by saying up-to which size all possible invariants have been rejected. Such a
requirement is extremely important especially for semi-terminating algorithms. In other
words, while the general problem studied in this paper is undecidable, our algorithm de-
cides the restricted problem of whether, for a given natural number n, a proper network
invariant with at most n states exists.

Recently, several applications of learning techniques for verification problems have
been proposed. In [HV05, VSVA04b], learning was used in the setting of regular model
checking to verify safety properties. The approach was extended in [VSVA05] to
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checking ω-regular properties. An application to verify FIFO automata is given in
[VSVA04a]. None of the approaches deals with queries that are possibly answered by
maybe. Therefore, these papers do not address the combination of learning algorithms.
Less related combinations of verification and learning are reported for example in
[AMN05, CCST05].

Contribution. To the best of our knowledge, this is the first time learning techniques are
applied to the problem of finding network invariants and the first efficient realization of
a learning problem in terms of SAT solving. Furthermore, our combination of Angluin’s
L∗ and Biermann’s approach is more efficient than that of [PO98] due to additional
optimizations.

Outline. We recall the framework of verification by network invariants tailored to the
setting of DFAs in the next section. Section 3 recalls Angluin’s and Biermann’s infer-
ence algorithms, presents a simple combination of both of them, reduces it to SAT, and
discusses some optimizations. The search procedure finding proper network invariants
is described in Section 4. We examine the case study in Section 5, before we draw final
conclusions.

2 Verification by Network Invariants

We recall the notion and notation of verification by network invariants, tailored to the
setting of checking safety properties of system families built-up by DFAs.

For n ∈ IN, let [n] := {1, . . . , n}. For the rest of this section, we fix an alphabet Σ.
A deterministic finite automaton (DFA) A = (Q, q0, δ, Q+) over Σ consists of a finite
set of states Q, an initial state q0 ∈ Q, a transition function δ : Q × Σ → Q, and a
set Q+ ⊆ Q of accepting states. A run of A is a sequence r=q0

a1→ q1
a2→ . . .

an→ qn

such that ai ∈ Σ, qi ∈ Q and δ(qi−1, ai) = qi for all i ∈ [n]. It is called accepting
iff qn ∈ Q+. We say that r is a run over w = a1a2 . . . an and say that w is accepted
if r is accepting. The language accepted by A, denoted by L(A), is the set of accepted
strings. We extend δ to strings as usual by δ(q, λ) = q and δ(q, ua) = δ(δ(q, u), a),
where λ denotes the empty string. Let D denote the class of DFAs (over Σ).

In order to reason about network invariants we have to consider abstraction relations,
safety properties, and parallel composition. These notions are well established in the
context of transition structures [KP00], however, in the context of DFAs may seem out of
place. In what follows, we should have in mind the properties of these notions. These are
the properties that are required to make the algorithm work. In the context of transition
structures, these notions are well known, can be checked (where appropriate), and have
the required properties.

An abstraction relation on D is a reflexive and transitive relation6 ⊆ D×D. Here,
let 6 ⊆ D × D be defined by A 6 B iff L(A) ⊆ L(B). A safety property is a DFA
ϕ that has a prefix-closed language, i.e., ua ∈ L(ϕ) implies u ∈ L(ϕ), defining the
intended correct behavior. Thus, a system A ∈ D satisfies ϕ, denoted by A |= ϕ, iff
L(A) ⊆ L(ϕ). Clearly, in our setting, the abstraction relation is sound with respect
to safety properties: For A,B ∈ D, ϕ ∈ D, A 6 B and B |= ϕ implies A |= ϕ, as
L(A) ⊆ L(B) ⊆ L(ϕ) implies L(A) ⊆ L(ϕ).
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A parallel operator on D is a mapping ‖: D × D → D. For notational simplicity,
we assume ‖ to be associative and commutative, although this is not essential. We call
‖ compatible with respect to 6 if, for all C ∈ D, A 6 B =⇒ A ‖ C 6 B ‖ C. Let us
fix a parallel operator that is compatible with 6 for the rest of this paper.

A projection operator for A ‖ B onto B is a mapping prB
A‖B : L(A ‖ B) → L(B)

such that whenever w ∈ L(A ‖ B) then for all B′ with prB
A‖B(w) ∈ L(B′) also

w ∈ L(A ‖ B′). In other words, (at least) the projection of w has to be removed from
B to (eventually) remove w from the parallel product.

Definition 1. For P ∈ D, we call I ∈ D a network invariant, iff (I1) P 6 I and
(I2) P ‖ I 6 I . If furthermore for S ∈ D and a safety property ϕ ∈ D we have (P)
S ‖ I |= ϕ we call I a proper network invariant for (S, P, ϕ).

Often, we just say (proper) invariant instead of (proper) network invariant.

Theorem 1. [WL89] Let S, P , I and ϕ in D such that I is a proper network invariant
for (S, P, ϕ). Then S ‖ P [1] ‖ · · · ‖ P [n] |= ϕ, for all n ∈ IN where, for every i, P [i]
is a copy of P .

The problem studied in this paper can be phrased as follows:

Definition 2 (Proper Network Invariant Problem). For systems S, P and a safety
property ϕ in D, the proper network invariant problem is to compute a proper network
invariant for (S, P, ϕ) (if it exists).

Proposition 1. The proper network invariant problem is semi-computable.

Let us give a simple (but non-satisfactory) solution to the problem, based on the obser-
vation that the class of DFAs over a fixed alphabet is enumerable. Thus, let I1, I2, . . .
be an enumeration of DFAs.

– Check whether (I1) and (I2) hold for P and Ii. If yes, Ii is a network invariant.
– If so, check whether S ‖ Ii |= ϕ. If yes, a proper invariant has been found and the

procedure stops. If not, continue with i+ 1.

It other words, the procedure finds a proper invariant, if one exists. Additionally, in case
that DFAs are enumerated according to number of states, the resulting proper invariant
is minimal with respect to its number of states.

Of course, the algorithm outlined above is, in a way, naı̈ve, and clearly inefficient in
practice. We use learning techniques to accelerate the search for the proper invariants
in question. Our procedure still produces a minimal proper invariant, if one exists. Con-
ditions (I1), (I2), and (P) are used for inferring properties of the proper invariant we are
looking for.

3 Inference of Deterministic Finite Automata

3.1 Angluin’s Algorithm

Angluin’s learning algorithm [Ang87] is designed for learning a regular language, L ⊆
Σ∗, by constructing a minimal DFA A such that L(A) = L. In this algorithm a
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Learner , who initially knows nothing aboutL, is trying to learnL by asking a Teacher ,
who knows L, two kinds of queries:

– A membership query consists of asking whether a string w ∈ Σ∗ is in L.
– An equivalence query consists of asking whether a hypothesized DFAH is correct,

i.e., whether L(H) = L. The Teacher answers yes if H is correct, or else supplies
a counterexamplew, either in L \ L(H) or in L(H) \ L.

The Learner maintains a prefix-closed set U ⊆ Σ∗ of prefixes, which are candidates
for identifying states, and a suffix-closed set V ⊆ Σ∗ of suffixes, which are used to dis-
tinguish such states. The sets U and V are increased when needed during the algorithm.
The Learner makes membership queries for all words in (U∪UΣ)V , and organizes the
results into a table T that maps each u ∈ (U ∪UΣ) to a mapping T (u) : V �→ {+,−}
where + represents accepted and − not accepted. In [Ang87], each function T (u) is
called a row. When T is

– closed, meaning that for each u ∈ U , a ∈ Σ there is a u′ ∈ U such that T (ua) =
T (u′), and

– consistent, meaning that T (u) = T (u′) implies T (ua) = T (u′a),

the Learner constructs a hypothesized DFA H = (Q, q0, δ, Q+), where (a) Q =
{T (u) | u ∈ U} is the set of distinct rows, (b) q0 is the row T (λ), (c) δ is defined
by δ(T (u), a) = T (ua), and (d) Q+ = {T (u) | u ∈ U, T (u)(λ) = +} and submits
H as an equivalence query. If the answer is yes, the learning procedure is completed,
otherwise the returned counterexample is used to extend U and V , and subsequent
membership queries are performed in order to make the new table closed and consistent
producing a new hypothesized DFA, etc.

In our setting, queries are no longer answered by either yes or no, but also by maybe,
denoted by ?. We therefore list the necessary changes to Angluin’s algorithm. We keep
the idea of a table but now, for every u ∈ (U ∪ UΣ), we get a mapping T (u) : V →
{+,−, ?}. For u, u′ ∈ (U∪UΣ), we say that rows T (u) and T (v) look similar, denoted
by T (u) ≡ T (u′), iff, for all v ∈ V , T (u)(v) �=? and T (u′)(v) �=? implies T (u)(v) =
T (u′)(v). Otherwise, we say that T (u) and T (v) are obviously different. We call T

– weakly closed if for each u ∈ U , a ∈ Σ there is a u′ ∈ U such that T (ua) ≡ T (u′),
and

– weakly consistent if T (u) ≡ T (u′) implies T (ua) ≡ T (u′a).

Angluin’s algorithm works as before, but using the weak versions of closed and consis-
tent. However, extracting a DFA from a weakly closed and weakly consistent table is
no longer straightforward. For this, we rely on Biermann’s approach, described next.

3.2 Biermann’s Algorithm

Biermann’s learning algorithm [BF72] is also designed for learning a DFA A. This time
we are given a set of strings that are to be accepted byA and a set of strings that are to be
rejected byA. There is no possibility of asking queries and we have to supply a minimal
possible DFA that accepts / rejects these strings. The set of positive and negative strings
are called sample. We now formally describe samples and Biermann’s algorithm.
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A sample is a set of strings that, by the language in question, should either be ac-
cepted, denoted by +, or rejected, denoted by −. For technical reasons, it is convenient
to work with prefix-closed samples. As the samples given to us are not necessarily pre-
fix closed we introduce the value maybe, denoted by ?. Formally, a sample is a partial
function O : Σ∗ → {+,−, ?} that is defined for u whenever it is defined for some
ua. For a string u the sample O yields whether u should be accepted, rejected, or we
do not know. For strings u and u′, we say that O disagrees on u and u′ if O(u) �=?,
O(u′) �=?, and O(u) �= O(u′). Clearly, Angluin’s table (including entries with ?) can
easily be translated to a sample, possibly by adding prefixes to (U ∪UΣ)V with value ?
to obtain a prefix-closed domain. An automatonA is said to conform with a sample O ,
if whenever O is defined for u we have O(u) = + implies u ∈ L(A) and O(u) = −
implies u /∈ L(A).

Given a sample O and a DFAA that is conform to O , let Su denote the state reached
inAwhen reading u. As long as we do not haveA, we can treat Su as a variable ranging
over states and derive constraints for the assignments of such a variable. More precisely,
let CSP(O) denote the set of equations

{Su �= Su′ | O disagrees on u and u′} (C1)
∪ {Su = Su′ ⇒ Sua = Su′a | a ∈ Σ, ua, u′a ∈ D(O)} (C2)

Let the domain ofD(CSP(O)) comprise the set of variables Su used in the constraints.
A solution of CSP(O) is mapping Γ : D(CSP(O)) → IN fulfilling the equations over
the naturals, defined in the usual manner. The set CSP(O) is solvable over [N ] iff there
is a solution with range [N ]. It is easy to see that every solution of the CSP problem
over the natural numbers can be turned into an automaton conforming with O .

Lemma 1 (Learning as CSP, [BF72]). For a sample O , a DFA with N states conform-
ing to O exists iff CSP(O) is solvable over [N ].

We note that taking a different value for every Su, trivially solves the CSP problem.
Thus, a solution with minimum range exists and yields a DFA with a minimal number
of states.

3.3 Pruning the Search Space of the CSP Problem

In general, one finds a minimum DFA by trying to solve the corresponding CSP problem
with subsequently larger integer ranges. However, before doing so, let us make a simple
yet important observation to simplify the CSP problem. We call a bijection ι : [N ] →
[N ] a renaming and say that Γ and Γ ′ are equivalent modulo renaming iff there is a
renaming ι such that Γ = ι ◦ Γ ′.

Since names or numbers of states have no influence on the accepted language of an
automaton, we get

Lemma 2 (Name irrelevance). For a sample O , Γ : D(CSP(O))→ [N ] is a solution
for CSP(O) iff for every renaming ι : [N ]→ [N ], ι ◦ Γ is a solution of CSP(O).

The previous lemma can be used to prune the search space for a solution: We can assign
numbers to state variables, provided different numbers are used for different states.
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Definition 3 (Obviously different). Su and Su′ are said to be obviously different iff
there is some v ∈ Σ∗ such that O disagrees on uv and u′v. Otherwise, we say that Su

and Su′ look similar.

A CSP problem with M obviously different variables needs at least M different states,
which gives us together with Lemma 1:

Lemma 3 (Lower bound). LetM be the number of obviously different variables. Then
CSP(O) is not solvable over all [N ] with N < M .

Note that solvability over [M ] is not guaranteed, as can easily be seen.
As a solution to the constraints system produces an automaton and in view of

Lemma 2, we can fix the values of obviously different variables.

Lemma 4 (Fix different values). Let Su1 , . . . , SuM be M obviously different vari-
ables. Then CSP(O) is solvable iff CSP(O) ∪ {Sui = i | i ∈ [M ]} is solvable.

The simple observation stated in the previous lemma improves the solution of a corre-
sponding SAT problem defined below significantly, as described in Section 5.

Given a table T : (U ∪UΣ)×V → {+,−, ?}, we can easily approximate obviously
different states: For u, u′ ∈ (U ∪UΣ). States Su and Su′ are obviously different, if the
rows T (u) and T (u′) are obviously different.

3.4 Translation of CSP to SAT

We would like to efficiently solve the CSP problem presented above. Such a solution
is proposed in [OS01]. We follow, for reasons of simplicity, a different yet efficient ap-
proach. In order to solve the CSP problem, we translate it to an equivalent propositional-
logic satisfiability problem in conjunctive normal form (CNF). Therefore, we need to
represent the constraints formulated above in terms of equalities and inequalities as well
as the possible assignments to values from [N ] in CNF form. More specifically, we have
to encode in CNF constraints of the following form.

1. Su ∈ [N ]
2. Su �= Su′

3. Su = Su′ =⇒ Sua = Su′a

4. Su = i for some i ∈ [N ].
Namely, every constraint should be a conjunction of disjunctions of literals, where every
literal is either a proposition or its negation. We propose two different encodings: binary
and unary. While the first is more compact for representing large numbers, it turns out
that the unary encoding speeds-up solving the resulting SAT problem.

Binary Encoding. We show how to encode the constraints by using binary encoding
for numbers. In order to encode the restriction that a variable Su takes a value in [N ]
(case 1), we encode the value of Su by m propositional variables S1

u . . . S
m
u , where

m := �log2N�. Intuitively, the assignment to S1
u . . . S

m
u is the binary encoding of

Su − 1. Thus, we allocate m propositional variables for every string in the domain of
O . Furthermore, we limit the range to exactly N , involving up-to (logN)2 clauses,
unless the value of Su is fixed (case 4).
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In order to encode the restriction that Su �= Su′ (case 2) we do the following. We
have Su �= Su′ iff there is a distinguishing bit in their binary representation. Thus,
Su �= Su′ iff

∨

k∈{1,...,m}
Sk

u �= Sk
u′ is satisfiable, which reads in CNF as

ϕ = ( S1
u ∨ S1

u′ ∨ . . . ∨ Sm
u ∨ Sm

u′ ) ∧
( S1

u ∨ S1
u′ ∨ . . . ∨ ¬Sm

u ∨ ¬Sm
u′ ) ∧

( S1
u ∨ S1

u′ ∨ . . . ∨ ¬Sm−1
u ∨ ¬Sm−1

u′ ∨ Sm
u ∨ Sm

u′ ) ∧
( S1

u ∨ S1
u′ ∨ . . . ∨ ¬Sm−1

u ∨ ¬Sm−1
u′ ∨ ¬Sm

u ∨ ¬Sm
u′ ) ∧

...
( ¬S1

u ∨ ¬S1
u′ ∨ . . . ∨ ¬Sm

u ∨ ¬Sm
u′ )

Thus, each inequality is encoded by 2m clauses. Recall that m is logarithmic in the
number of states of the prospective automaton. It follows that the number of clauses is
linear with respect to the number of states of the target automaton.

In order to encode the restriction that Su = Su′ → Sua = Su′a (case 3) we do the
following. Clearly, Su = Su′ → Sua = Su′a is equivalent to (Su �= Su′∨Sua = Su′a).
We encode this restriction in CNF using the same scheme as for cases 1 and 2, except
that we add clauses for Su = Su′ . We obtain clauses of the form

( ϕ ∨ S1
ua ∨ ¬S1

u′a ) ∧
( ϕ ∨ ¬S1

ua ∨ S1
u′a ) ∧

...
( ϕ ∨ Sm

ua ∨ ¬Sm
u′a ) ∧

( ϕ ∨ ¬Sm
ua ∨ Sm

u′a )

where ϕ is as defined above. This can be easily translated to CNF. Thus, every such
constraint yields 2m+1m CNF clauses.

The restriction that Su = i (case 4) is encoded by requiring that the corresponding
bits of the binary representation of i are set or unset. Thus, we get m clauses for every
such constraint.

Let n be the number of strings in D(O) and N be the size of the automaton in
question. Then CSP(O) has O(n2) constraints. Thus, the binary SAT encoding yields
O(n2N logN) clauses overO(n logN) variables.

Unary Encoding. Surely, we can translate the CSP problem to an equivalent SAT
problem using a unary encoding for values. While in general, a unary encoding uses
exponentially more propositional variables, we obtain a similar number of clauses, since
the constraints can be encoded using less clauses. Furthermore, for the problem sizes
in question this exponential blow-up seems to be admissible. In fact, it turns out, that
the employed SAT solver performs much better with the unary encoding than with the
binary encoding.

In order to encode the restriction that a variable Su takes a value in [N ] (case 1),
we allocate N propositional variables S1

u, . . . , S
N
u and require that Sj

u = 1 implies∧
k  =j S

k
u = 0. Hence, N2 clauses are used for all these constraints.
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In order to encode the restriction that Su �= Su′ (case 2) we do the following. We
have Su �= Su′ iff (¬S1

u∨¬S1
u′ )∧ (¬S2

u∨¬S2
u′ )∧· · ·∧ (¬SN

u ∨¬SN
u′ ). Thus, we need

N clauses for each inequality.
The restriction Su = Su′ → Sua = Su′a (case 3) is encoded by clauses of the

following form.
( ¬S1

u ∨ ¬S1
u′ ∨ S1

ua ∨ ¬S1
u′a ) ∧

...
( ¬S1

u ∨ ¬S1
u′ ∨ SN

ua ∨ ¬SN
u′a ) ∧

( ¬S2
u ∨ ¬S2

u′ ∨ S1
ua ∨ ¬S1

u′a ) ∧
...

( ¬S2
u ∨ ¬S2

u′ ∨ SN
ua ∨ ¬SN

u′a ) ∧
...

( ¬SN
u ∨ ¬SN

u′ ∨ SN
ua ∨ ¬SN

u′a )

Thus, we require N2 CNF clauses for each equation. Finally, the restriction Su = i
(case 4) is trivial to represent.

Let n be the number of strings in D(O) and N the size of the target automaton.
Totally, the unary encoding has O(n2N2) clauses with O(nN) variables.

4 Inference of Network Invariants

We now describe how to compute a proper network invariant in the case that one exists.
For the rest of this section, we fix systems S, P , and a property automaton ϕ.

We start with an informal explanation. We are using an unbounded number of stu-
dents whose job it is to suggest possible invariants, one teaching assistant (TA) whose
job is to answer queries by the students, and one supervisor whose job is to control the
search process for a proper invariant. The search starts by the supervisor instructing one
student to look for a proper invariant.

Like in Angluin’s algorithm, every active student maintains a table (using +, −,
and ?) and makes it weakly closed and weakly consistent by asking the TA membership
queries. The TA answers with either +, −, or ?, as described below. When the table is
weakly closed and consistent, the student translates the table to a sample O and this
to a CSP problem. He solves the CSP problem using the SAT encoding. The solution
with minimum range is used to form an automaton I that is proposed to the supervisor.
The supervisor now checks whether I is indeed a proper invariant by checking (P), (I1),
and (I2). If yes, the supervisor has found a proper invariant. If not, one of the following
holds.

1. There is a string w such that w ∈ L(S ‖ I) but w /∈ L(ϕ),
2. There is a string w such that w ∈ L(P ) but w /∈ L(I),
3. There a string w such that w ∈ L(P ‖ I) but w /∈ L(I).

In the first case, the projection pr I
S‖I(w) should be removed from I . In the second case,

the string w should be added to I . In these cases, the supervisor returns the appropriate
string with the appropriate acceptance information to the student, who continues in the
same manner as before.
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In the last case, it is not clear, whether w should be added to I or removed from
P ‖ I . For the latter, we have to remove the projection pr I

P‖I(w) from I . Unless w

is listed negatively or pr I
P‖I(w) is listed positively in the table, both possibilities are

meaningful. Therefore, the supervisor has to follow both tracks. She copies the table of
the current student, acquires another student, and asks the current student to continue
with w in I and the new student to continue with pr I

P‖I(w) not in I .
In order to give answers, the teaching assistant uses the same methods as the super-

visor, however, whenever a choice is possible she just says ?.
Choices can sometimes yield conflicts that are observed later in the procedure. For

example, w might be added to I and the new automaton I ′ proposed by the student
together with S does not satisfy ϕ with w′ as counter example. It is then possible that
pr I′

S‖I′(w′) = w requesting to set w’s entry to −. Such a case reveals a conflicting
assumption and requires the student to retire. If no working student is left, no proper
invariant exists.

Clearly, the procedure sketched above finds a proper invariant if one exists. However,
it consumes a lot of resources and may yield a proper invariant that is not minimal. We
show how to adapt the supervisor so that it uses only one student at a given time and
it stops with a minimal proper invariant. Intuitively, the supervisor keeps track of the
active students as well as the sizes of recently suggested automata. Whenever a student
proposes a new automaton of size N , the supervisor computes the appropriate answer,
which is either a change of the student’s table or the answer proper invariant found.
However, she postpones answering the student (or stopping the algorithm), gives the
student priority N , and puts the student on hold. Then the supervisor takes a student
that is on hold with minimal priority and sends the pre-computed instrumentation to the
corresponding student. In case the student’s instrumentation was tagged proper invari-
ant found the procedure stops by printing the final proper invariant. Note that students
always propose automata of at least the same size as before since the learning algo-
rithm returns a minimal automaton conforming to the sample. Thus, whenever a proper
invariant is found, it is guaranteed that the proper invariant is eventually reported by the
algorithm, unless a smaller proper invariant is found before.

To be a little more precise, consider the pseudo code for the supervisor given in
Algorithm 1. The supervisor maintains a working set (set of students on hold) that
contains triplets of the form (n, table, automaton). Such a triplet consists of a table, a
lower bound on the minimal-size of an automaton consistent with the table, and if the
table yields a proper invariant a pointer to an automaton.

In line 2, the working set is initialized with the following triplet: size 1, empty table,
no invariant. Then, we enter a loop in which a triplet with minimal number of states n
is taken out of the working set. If the pointer to the automaton exists, then we have a
proper invariant. Since the number of states is minimal, it is indeed a minimal proper
invariant—and the algorithm terminates. If not, we ask the student to make the table
closed and consistent and to propose a new automaton (based on SAT solving) and
also list its number of states (line 8). The supervisor continuous by checking whether
the proposed automaton is indeed an invariant. If a counter example is obtained by
checking (P) or (I1), this counter example is added to the table, the automaton pointer
is set to NULL (proposed automaton is not proper invariant), and the triplet is added
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Algorithm 1. Pseudo code for the supervisor

1 Function supervisor ()
2 wset = { (1, getEmptyTable(),NULL) };
3 do
4 (wset, (n, table , automaton)) = takeOutWithMin n(wset);
5 if (automaton �= NULL) then
6 print (automaton); stop (); // a previously found invariant is proved minimal
7 print (”Considered all automata up−to size ”, n−1);
8 (n, table , automaton) = student ( table );
9 cex = checkP(automaton);

10 if cex �= NULL then
11 wset = wset ∪ addition( (n, table , NULL), (pr(cex ), −));
12 continue while;
13 cex = checkI1(automaton);
14 if cex �= NULL then
15 wset = wset ∪ addition( (n, table , NULL), (cex, +));
16 continue while;
17 cex = checkI2(automaton);
18 if cex = NULL then // we have an invariant, store it
19 wset = wset ∪ (n, table , automaton);
20 else
21 wset = wset ∪ addition( (n, table , NULL), (pr(cex ), −));
22 ∪ addition( (n, table , NULL), (cex, +));
23 while wset �= ∅;
24 print (”No invariant exists ”);

to the working set (lines 11,15). If the information that should be added to the table
conflicts with the information already stored there, the addition function just returns
the empty set, stopping further treatment of this triplet. If a counter example is found for
case (I2), the supervisor tries to add both possibilities, possibly enlarging the working
set (lines 21–22). If no counter example is obtained, we have a proper invariant and
store it in the working set (line 19). Unless no smaller invariant is found, it is printed
later in line 6. If we reach line 24, all possible invariants have been ruled out and no
proper invariant exists. Overall, the procedure guarantees that at most one student is
working and that the final proper invariant is indeed minimal.

Theorem 2. For systems S, P and a safety property ϕ in D, the procedure outlined
above computes minimal proper network invariant for (S, P, ϕ), if one exists.

Proof (sketch). Clearly, whenever an automaton is printed, it is a proper invariant. Min-
imality follows from the way the supervisor searches for invariants as well as from the
property that invariants proposed by the student are minimal. It remains to show that in-
deed one proper invariant is found, if it exists. The only way to fail this property would
be to stay forever in the while loop, without examining new possible proper invariants.
This is only possible if the triplets in the working set do not increase in the number of
states n. However, the combined learning algorithm proposes always a new automaton
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Fig. 1. Finding a proper invariant based on SAT solving

whenever a new string based on a counter example is added to the table. As there are
only finitely many automata of a fixed size, we obtain the desired contradiction.

5 Experimental Results

To validate our approach in practice, we have engineered the approach described in the
previous sections for the setting of transition structures, which have been used exten-
sively in the context of network invariants [KP00].

We have implemented the procedure of finding a proper invariant, if one exists,
based on the verification tool TLV [PS96], which we employ for checking the abstrac-
tion relation and checking the safety property ((P), (I1), (I2)) and on the SAT solver
ZCHAFF [MMZ+01] used for computing prospective proper invariants. Using TLV and
ZCHAFF, the remaining effort was to come-up with code implementing the completion
of tables, and gluing the three tools together.

We used the well-studied example of a simple mutual exclusion protocol taken from
[KP00]. We were interested in a proper invariant showing that the safety property no two
processes are in the critical section simultaneously holds.

In first experiments we skipped the step of making the table complete and consistent,
thus using only Biermann’s algorithm. In total, we examined 78 possible invariants
before finding the minimal one with 7 states after approximately 20 minutes, solving
78 SAT problems using the binary encoding.

To reduce the number of SAT instances, we have experimented with rounding off
the information in the table before applying Biermann’s algorithm. Interestingly, this
idea alone fails. Extending the table yields less but larger SAT problems. With the bi-
nary encoding, one of the SAT problems alone took about 30 minutes. Using the unary
encoding, solving the SAT instances turns out to be much faster though the overall ap-
proach is still not satisfactory. Only by combining the optimization of fixing values for
obviously different variables we convert the approach to a working method.

In conclusion, it is the combination of Angluin’s and Biermann’s algorithms, reduced
to SAT solving based on unary encoding and fixing the variables of obviously different
variables that yields best results. Figure 1 reports the values of this combination for
our example. We needed up-to 217 entries in a sample yielding minimal automata of
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up-to 7 states (Figure 1(a)). Figure 1(b) shows the speed-up using the unary encoding
for this setting. Intuitively, although the unary encoding might be slightly bigger than
the binary one, the information encoded in the SAT problem is less “packed” allowing
a SAT solver to perform more optimizations.

Overall, we needed seven iterations taking roughly two seconds to come up with the
proper invariant, which promises also successful results for a setting with larger proper
invariants.

6 Conclusion

In this paper, we presented a procedure searching for a proper network invariant based
on learning techniques. To this end, we developed a learning procedure combining ideas
of Angluin’sL∗ and Biermann’s inference algorithm. Moreover, we have shown that the
resulting learning algorithm allows an efficient implementation via a reduction to SAT
and using existing SAT solvers. The search for a proper invariant terminates with an
invariant with a minimal number of states, provided one exists, and might otherwise not
terminate. Since the studied problem is undecidable, this cannot be avoided.

While we have experienced that learning techniques do not scale easily to large sys-
tems [BJLS03], our approach should be understood as an alternative to finding invariants
manually. For this, it has to be competitive for systems of sizes that could alternatively
be handled by hand.

On the same line, it is important to note that our search procedure iteratively consid-
ers larger and larger prospective proper invariants. This implies that it can be used to
decide the question whether a proper network invariant with up-to n states exists, for
every fixed natural number n. Practically, it means that the algorithm is able to continu-
ously report on its progress, i.e., the size of the current prospective invariant. Thus, even
if no proper invariant is found after a while, a user can learn that no invariant with size
up-to the one currently studied exists.

It would be interesting to combine learning methods for ω-automata in the search for
network invariants. This would allow us to handle also more complex properties of the
parameterized system in question.

Acknowledgment. We thank Bengt Jonsson and Christian Schallhart for valuable com-
ments and discussions.
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Abstract. The nominal datatype package implements an infrastructure
in Isabelle/HOL for defining languages involving binders and for rea-
soning conveniently about alpha-equivalence classes. Pitts stated some
general conditions under which functions over alpha-equivalence classes
can be defined by a form of structural recursion and gave a clever proof
for the existence of a primitive-recursion combinator. We give a version
of this proof that works directly over nominal datatypes and does not
rely upon auxiliary constructions. We further introduce proving tools
and a heuristic that made the automation of our proof tractable. This
automation is an essential prerequisite for the nominal datatype package
to become useful.

Keywords: Lambda-calculus, proof assistants, nominal logic, primitive
recursion.

1 Introduction

The infrastructure provided by various datatype packages [2,6] dramatically sim-
plifies the embedding of languages without binders inside HOL-based proof as-
sistants [4]. Because such proof assistants emphasise the development of theories
by definition rather than axiom postulation, simple tasks like reasoning about
lists would be fiendishly complicated without such an infrastructure.

The purpose of the nominal datatype package1 is to provide an infrastructure
in Isabelle/HOL for embedding languages with binders and for reasoning con-
veniently about them. Many ideas for this package originate from the nominal
logic work by Pitts ([7], see also [11]). Using this package, the user can define
the terms of, for example, the lambda-calculus as follows:

atom decl name

nominal datatype lam = Var "name"
| App "lam" "lam"
| Lam "〈〈name〉〉lam"

(1)

where name is declared to be the type for variables and where 〈〈. . .〉〉 indicates that
a name is bound in a lambda-term. Despite similarities with the usual datatype
declaration of Isabelle/HOL and despite the fact that after this declaration one
1 Available from http://isabelle.in.tum.de/nominal/

U. Furbach and N. Shankar (Eds.): IJCAR 2006, LNAI 4130, pp. 498–512, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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can, as usual, write (Var a), (App t1 t2) and (Lam a t) for the lambda-terms, the
code above does not define a datatype in the usual sense, but rather defines
alpha-equivalence classes. Indeed we can show that the equation

(Lam a (Vara)) = (Lam b (Var b)) (2)

holds for the nominal datatype lam.
By using alpha-equivalence classes and strong induction principles, that is

induction principles which have the usual variable convention already built-
in [10,11], one can often formalise with great ease informal proofs about lan-
guages involving binders. One example2 is Barendregt’s informal proof of the
substitution lemma shown in Fig. 1. This lemma establishes a “commutation-
property” for the function of capture-avoiding substitution. This substitution
function is usually defined by the three clauses:

(Var a)[b := t′] = if a = b then t′ else (Var a)

(App t1 t2)[b := t′] = App (t1[b := t′]) (t2[b := t′])

(Lam a t)[b := t′] = Lam a (t[b := t′])

(3)

where the last clause has the side-constraint that a �= b and a # t′ (the latter
is the nominal logic terminology for a not being free in t′). While it is trivial to
define functions by primitive recursion over datatypes, this is not so for nomi-
nal datatypes, because there functions need to respect equations such as (2); if
not, then one can easily prove false in Isabelle/HOL. Consider for example the
following two definitions that are intended, respectively, to calculate the set of
bound names and to return the set of immediate subterms of a lambda-term:

bn (Vara) = ∅

bn (App t1 t2) = (bn t1) ∪ (bn t2)
bn (Lam a t) = {a} ∪ (bn t)

ist (Vara) = ∅

ist (App t1 t2) = {t1, t2}
ist (Lama t) = {t}

If bn and ist were functions, then they must return the same result for the two
terms in (2)—that means {a} = {b} in case of bn and {Vara} = {Var b} in case
of ist; however, if we assume a �= b, then both equations lead to contradictions.
Pitts gave in [8,9] some general conditions that allow to define the substitution
function by the clauses in (3), but exclude definitions such as bn and ist.

In earlier versions of the nominal datatype package one could define functions
on a case-by-case basis, but this involved some rather non-trivial reasoning—
there was no uniform method for defining functions over the structure of nominal
datatypes. Pitts gave in [9] two proofs for the existence of a primitive recursion
operator that allows one to define functions by stating a clause for each term-
constructor. His first proof is fairly complicated and involves auxiliary construc-
tions: for example he does not show the existence directly for alpha-equivalence
classes, but indirectly via the existence of primitive recursion for the correspond-
ing “un-quotient” type (in case of the lambda-calculus “un-quotient” means
2 Other examples such as Church-Rosser and strong normalisation can be found in

the distribution of the nominal datatype package.
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Fig. 1. The informal proof shown at the top is taken from Barendregt [1]. In the
lambda-case, the variable convention allows him to move the substitutions under the
binder, to apply the induction hypothesis and finally to pull the substitutions back
out from under the binder. Using the nominal datatype package one can formalise
this proof in Isabelle/HOL by establishing first the lemmas forget and fresh fact.
Although hidden by the auto-tactic, the formal proof follows quite closely Barendregt’s
reasoning, including his use of the variable convention. One important part of this
formalisation is the definition of the function for capture-avoiding substitution.
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lambdas are defined having the type name×lam). Norrish formalised this proof
quite faithfully, but needed, despite using the quotient package by Homeier [5]
that automated some parts of the proof, approximately 600 lines of extremely
dense HOL4-code. It is a fair comment3 to say that this formalisation and the one
included in early versions of the nominal datatype package are far too difficult
for an automation.

We present in this paper a formalisation of Pitts second proof whose length is
in case of the lambda-calculus only 150 lines of readable Isar-code. In contrast
to [9], our proof is a direct proof not relying on any auxiliary constructions; also
we prove directly the existence of a recursion combinator and do not make a
detour via an iteration combinator. The automation of this proof will be part of
the forthcoming release of the nominal datatype package. To ease the automa-
tion, we introduce here a heuristic that allowed us to write a tactic for solving
some re-occurring proof obligations to do with finite support.

The paper introduces in Sec. 2 the central notions from the nominal logic
work and some brief comments on the implementation of the nominal datatype
package. Sec. 3 gives the proof of the structural recursion combinator for the
type lam. Some examples are given in Sec. 4. The general case for all nomi-
nal datatypes is mentioned very briefly in Sec. 5; Sec. 6 draws conclusions and
mentions related work.

2 Preliminaries

As can be seen from the declaration of lam shown in (1), there is a single type of
variables in the lambda-calculus. We denote this type here by name and in the
tradition of the nominal logic work call its elements atoms. While the structure
of atoms is immaterial, two properties need to hold for the type name: one has
to be able to distinguishing different atoms and one needs to know that there
are countably infinitely many of them.

Permutations are finite bijective mappings from atoms to atoms; as in [11]
permutations are implemented as finite lists whose elements are swappings (that
is pairs of atoms). We write such permutations as (a1 b1)(a2 b2) · · · (an bn); the
empty list [] stands for the identity permutation. A permutation π acting on an
atom a is defined as:

[]·a def= a

((a1 a2) :: π)·a def=






a2 if π·a = a1
a1 if π·a = a2
π·a otherwise

(4)

where (a b) :: π is the composition of a permutation followed by the swapping
(a b). The composition of π followed by another permutation π′ is given by list-
concatenation, written as π′@π, and the inverse of a permutation is given by
list reversal, written as π−1. Our representation of permutations as lists does
3 Personal communication with Norrish.
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not give unique representatives: for example, the permutation (a a) is “equal” to
the identity permutation. We equate the representations of permutations with a
relation ∼:

Definition 1 (Permutation Equality). Two permutations are equal, written
π1 ∼ π2, provided π1·a = π2·a for all atoms a.

To generalise the notion given in (4) of a permutation acting on an atom, the
nominal datatype package takes advantage of the overloading mechanism in Is-
abelle by declaring a constant, written infix as (−)·(−), with the polymorphic
type (name× name) list⇒ α ⇒ α. A definition of the permutation action can
then be given separately for each type-constructor; for lists, products, unit, sets
and functions the definitions are as follows:

α list : π·[] def= []
π·(x :: t) def= (π·x) :: (π·t)

α1 × α2 : π·(x1, x2)
def= (π·x1, π·x2)

unit : π·() def= ()
α set : π·X def= {π·x |x ∈ X}
α1 ⇒ α2 : π·fn def= λx.π·(fn (π−1·x))

(5)

The nominal datatype package also defines a permutation action for the type
lam, which behaves as follows:

π·(Var a) = Var (π·a)
π·(App t1 t2) = App (π·t1) (π·t2)
π·(Lam a t) = Lam (π·a) (π·t)

(6)

(Since we have not yet derived a mechanism for defining functions by structural
recursion over nominal datatypes, this permutation action cannot yet be defined
directly, but needs to be lifted from the representing type for lam.)

The nominal datatype package assumes that every permutation action de-
fined for a type satisfies three basic properties. For this we use the terminology
from [11] of a permutation type:

Definition 2 (Permutation Type). A type α will be referred to as permu-
tation type, written ptα, provided the permutation action satisfies the following
three properties:

(i) []·x = x

(ii) (π1@π2)·x = π1·(π2·x)
(iii) if π1 ∼ π2 then π1·x = π2·x

These properties entail that the permutations action behaves on elements of
permutation types as one expects, for example we have π−1·(π·x) = x. We note
that:
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Lemma 1. Given ptα, ptα1 and ptα2 , the types name, unit, α list, α set,
α1 × α2, α1 ⇒ α2 and lam are also permutation types.

Proof. All properties follow by unwinding the definition of the corresponding
permutation action and routine inductions. The property ptα1⇒α2 uses the fact
that π1 ∼ π2 implies π−1

1 ∼ π−1
2 . )*

The permutation action on a function-type, say α1 ⇒ α2 with α1 being a per-
mutation type, is defined so that for every function fn we have the equation

π·(fn x) = (π·fn)(π·x) (7)

in Isabelle/HOL; this is because we have π−1·(π·x) = x for x of type α1.
The most interesting feature of the nominal logic work is that as soon as

one fixes a permutation action for a type, then the support for the elements of
this type, very roughly speaking their set of free atoms, is fixed as well [3]. The
definition of support and the derived notion of freshness is:

Definition 3 (Support and Freshness)

• The support of x, written supp(x), is the set of atoms defined as

supp(x)
def
= {a | infinite{b | (a b)·x �= x}}

• An atom a is said to be fresh for an x, written a # x, provided a �∈ supp(x).

The advantage of the quite unusual definition of support is that it generalises
the notion of a free variable to functions (a fact that will play an important rôle
later on). Unwinding this definition and the permutation action given in (5) and
(6), one can calculate the support for the types:

name: supp(a) = {a}
α1 × α2: supp(x1, x2) = supp(x1) ∪ supp(x2)
unit: supp(()) = ∅

α list: supp([]) = ∅
supp(x :: xs) = supp(x) ∪ supp(xs)

lam: supp(Var a) = {a}
supp(App t1 t2) = supp(t1) ∪ supp(t2)
supp(Lam a t) = supp(t)− {a}

(8)

where the last clause uses the fact that alpha-equivalence for the type lam is
given by:

Lama t = Lam b t′ ⇔ (a = b ∧ t = t′) ∨ (a �= b ∧ t = (a b)·t′ ∧ a # t′) (9)

For permutation types the notion of support and freshness have very good prop-
erties as mentioned next (proofs are in [11]):

π·a # π·x if and only if a # x (10)
if a # x and b # x then (a b)·x = x (11)
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A further restriction on permutation types filters out all those that contain
elements with infinite support:

Definition 4 (Finitely Supported Permutation Types). A permutation
type α is said to be finitely supported, written fsα, if every element of α has
finite support.

We shall write finite(supp(x))/infinite(supp(x)) to indicate that an element x
from a permutation type has finite/infinite support. The following holds:

Lemma 2. Given fsα, fsα1
and fsα2

, the types name, unit, α list, α1×α2 and
lam are also finitely supported permutation types.

Proof. Routine proofs using the calculations given in (8).

The crucial property entailed by Def. 4 is that if an element, say x, of a permu-
tation type has finite support, then there must be a fresh atom for x, since there
are infinitely many atoms. Therefore we have:

Proposition 1. If x of permutation type has finite support, then there exists an
atom a with a # x.

As a result, whenever we need to choose a fresh atom for an x of permutation type,
we have to make sure that x has finite support. This task can be automatically per-
formed by Isabelle’s axiomatic type-classes [12] for most constructions occurring
in informal proofs: Isabelle has to just examine the types of the construction us-
ing Lem. 2. Unfortunately, this is more difficult in case of functions, because not
all functions have finite support, even if their domain and codomain are finitely
supported permutation types (see [9, Example 9]). Therefore we have to establish
whether a function has finite support on a case-by-case basis. In order to automate
the corresponding proof obligations, we use the auxiliary notion of supports [3].

Definition 5. A set S of atoms supports an x, written S supports x, provided:

∀ a b. a �∈ S ∧ b �∈ S ⇒ (a b)·x = x .

This notion allows us to approximate the support of an x from “above”, because
we can show that:

Lemma 3. If a set S is finite and S supports x, then supp(x) ⊆ S.

Proof. By contradiction we assume supp(x) �⊆ S, then there exists an atom
a ∈ supp(x) and a �∈ S. From S supports x follows that for all b �∈ S we have
(a b)·x = x. Hence the set {b | (a b)·x �= x} is a subset of S, and since S is
finite by assumption, also {b | (a b)·x �= x} must be finite. But this implies that
a �∈ supp(x) which gives the contradiction. )*

Lem. 3 gives us in many cases some effective means to decide relatively easily
whether a function has finite support: one only needs to find a finite set of
atoms and then verify whether this set supports the function. For this we use
the following heuristic:
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Heuristic 1. Assume an HOL-function, say fn, is given as a lambda-term. The
support of the tuple consisting of the free variables of fn supports this function,
more formally we have supp(FV (fn)) supports fn, where we assume FV is de-
fined as usual, except that we group the free variables in tuples, instead of finite
sets.

This is a heuristic, because it can very likely not be established as a lemma in-
side Isabelle/HOL, since it is a property about HOL-functions. Nevertheless the
heuristic is extremely helpful for deciding whether a function has finite support.
Consider the following two examples:

Example 1. Given a function fn def= f1 c where f1 is a function of type name⇒ α.
We also assume that f1 has finite support. The question is whether fn has finite
support? The free variables of fn are f1 and c, that means FV (fn) = (f1, c).
According to our heuristic we have to verify whether supp(f1, c) supports fn ,
which amounts to showing that

∀a b. a �∈ supp(f1, c) ∧ b �∈ supp(f1, c) ⇒ (a b)·fn = fn

To do so we can assume by the definition of freshness (Def. 3) that a # (f1, c)
and b # (f1, c) and show that (a b)·fn = fn . This equation follows from the
calculation that pushes the swapping (a b) inside fn:

(a b)·fn def= (a b)·(f1 c)
by (7)

= ((a b)·f1) ((a b)·c) (∗)
= f1 c

def= fn

where (∗) follows because we know that a # f1 and b # f1 and therefore by (11)
that (a b)·f1 = f1 (similarly for c).

We can conclude that supp(fn) is a subset of supp(f1, c), because the latter
is finite (since f1 has finite support by assumption and c is finitely supported
because the type name is a finitely supported permutation type). So fn must
have finite support. )*

Example 2. Given the function fn ′ def= λπ. f2 (r1 π) (r2 π) where we assume that
the free variables of fn ′, namely f2, r1 and r2, are functions with finite support.
In order to verify that fn ′ has finite support we need to verify (f1, r1, r2) supports
fn ′, that is decide the following equation

(a b)·(λπ. f2 (r1 π) (r2 π)) = λπ. f2 (r1 π) (r2 π)

under the assumptions that a # (f2, r1, r2) and b # (f2, r1, r2). Pushing the
swapping (a b) under the λ and inside the applications using (5) and (7), the
swapping will by (11) “vanish” in front of f1, r1 and r2, and we have two identical
terms. So fn ′ has finite support under the given assumptions. )*

As the examples indicate, by using the heuristic one can infer from a decision
problem involving permutations whether or not a function has finite support.
The main point is that the decision procedure involving permutations can be
relatively easily automated in a special purpose tactic analysing permutations.
This seems much more convenient than analysing the support of a function
directly.
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3 Recursion for the Lambda-Calculus

In this section we derive from an inductively defined relation the existence of
a recursion combinator that allows us to define functions over the structure of
the type lam. This way of introducing a recursion combinator is standard in
HOL-based theorem provers.

In contrast with the usual datatypes, such as lists and products, where the
term-constructors are always injective, the term-constructors of nominal
datatypes are because of the binders in general not injective, see equation (2).
That means when stating a function definition by characteristic equations like
the ones given for capture-avoiding substitution in (3), it is not obvious whether
the intended function, roughly speaking, preserves alpha-equivalence—we have
seen the counter-examples bn and ist in the Introduction. Pitts [8,9] stated some
general conditions for when functions do preserve alpha-equivalence.

A definition by structural recursion involves in case of the lambda-calculus
three functions (one for each term-constructor) that specify the behaviour of the
function to be defined—let us call these functions f1, f2, f3 for the variable-,
application- and lambda-case respectively and let us assume they have the types:

f1 : name⇒ α
f2 : lam⇒ lam⇒ α⇒ α⇒ α
f3 : name⇒ lam⇒ α⇒ α

with α being a permutation type. Then the first condition by Pitts states that
f3—the function for the lambda case—needs to satisfy the following property:4

Definition 6 (Freshness Condition for Binders (FCB)). A function f
with type name⇒ lam⇒ α⇒ α satisfies the FCB provided ∃ a. a # f ∧ ∀ t r. a #
f a t r.

As we shall see later on, this condition ensures that the result of f3 is independent
of which particular fresh name one chooses for the binder a. The second condition
states that the functions f1, f2 and f3 have finite support. This condition ensures
that we can use Prop. 1 to chose a fresh name.

With these two conditions we can define a recursion combinator, we call it
rfunf1f2f3

, with the following properties:

Theorem 1 (Characteristic Equations for Recursion). If f1, f2 and f3
have finite support and f3 satisfies the FCB, then:

rfunf1f2f3
(Var a) = f1 a

rfunf1f2f3
(App t1 t2) = f2 t1 t2 (rfunf1f2f3

t1) (rfunf1f2f3
t2)

rfunf1f2f3
(Lam a t) = f3 a t (rfunf1f2f3

t) provided a # (f1, f2, f3)

To give a proof of this theorem we start with the following inductive relation,
called recf1f2f3 and of type (lam× α) set where, like above, α is assumed to be
a permutation type:
4 We slightly adapted the definition of Pitts to apply to our recursion combinator.
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(Var a, f1 a) ∈ recf1f2f3

(t1, r1) ∈ recf1f2f3 (t2, r2) ∈ recf1f2f3

(App t1 t2, f2 t1 t2 r1 r2) ∈ recf1f2f3

a # (f1, f2, f3) (t, r) ∈ recf1f2f3

(Lam a t, f3 a t r) ∈ recf1f2f3

(12)

With this inductive definition comes the following induction principle:

∀a. P (Var a) (f1 a)
∀t1 t2 r1 r2. P t1 r1 ∧ P t2 r2 ⇒ P (App t1 t2) (f2 t1 t2 r1 r2)
∀a t r. a # (f1, f2, f3) ∧ P t r⇒ P (Lam a t)

(t, r) ∈ recf1f2f3 ⇒ P t r (13)

We shall show next that the relation recf1f2f3 defines a function in the sense that
for all lambda-terms t there exists a unique r so that (t, r) ∈ recf1f2f3 . From this
we obtain a function from lam to α.

We first show that there exists an r for every t. For this we use the following
strong structural induction principle [9,10,11] that the nominal datatype package
generates for the type lam:

finite(S)
∀a. P (Var a)
∀t1t2. P t1 ∧ P t2 ⇒ P (App t1 t2)
∀a t. a �∈ S ⇒ P t⇒ P (Lam a t)

P t (14)

This induction principle is called strong, because in the lambda-case one does
not need to establish the property P for all binders a, but only for binders that
are not in the finite set S. With this structural induction principle the proof of
the next lemma is routine.

Lemma 4 (Totality). Provided f1, f2 and f3 have finite support, then for all
t there exists an r such that (t, r) ∈ recf1f2f3 .

Proof. By the strong induction principle, where we take S to be supp(f1, f2, f3),
which we know by assumption is finite. Then in the lambda-case we can assume
that a �∈ supp(f1, f2, f3) holds, which is defined to be a # (f1, f2, f3). All cases
are then routine applying the rules in (12).

Next we establish that all r in the relation recf1f2f3 have finite support.

Lemma 5 (Finite Support). If f1, f2 and f3 have finite support, then (t, r) ∈
recf1f2f3 implies that r has finite support.

Proof. By the induction principle give in (13). In the variable-case we have to
show that f1 a has finite support, which we inferred in Example 1 using our
heuristic. The application- and lambda-case are similar. )*
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In order to establish the “uniqueness” part of Theorem 1, we need the follow-
ing two lemmas establishing that recf1f2f3 is equivariant (see [7]) and that it
preserves freshness.

Lemma 6 (Equivariance). If (t, r) ∈ recf1f2f3 then for all π also (π·t, π·r) ∈
rec(π·f1)(π·f2)(π·f3).

Proof. By the induction principle given in (13). All cases are routine by pushing
the permutation π into t and r, except in the lambda-case where we have to
apply (10) in order to infer (π·a) # (π·(f1, f2, f3)) from a # (f1, f2, f3). )*

Lemma 7 (Freshness). If f1, f2 and f3 have finite support and f3 satisfies
the FCB, then assuming (t, r) ∈ recf1f2f3 and a # (f1, f2, f3, t) implies a # r.

Proof. By the induction principle given in (13); non-routine is the lambda-case.
In this case, say with the instantiations (Lam a′ t), we have that a′ # (f1, f2, f3).
We further have that a # (f1, f2, f3, Lama′ t) and have to show that a # f3 a

′ t r.
In case that a = a′, we know from the FCB, there exists an a′′ such that a′′ # f3
and ∀ t r. a′′ # f3 a

′′ t r. Using (10) we apply the swapping (a a′′) to both sides of
our goal which gives a′′ # ((a a′′)·f3) a′′ ((a a′′)·t) ((a a′′)·r). Since a # f3 and
a′′ # f3 we have by (11) that (a a′′)·f3 = f3 and hence we are done. In case
a �= a′ we can infer from a # (f1, f2, f3, Lam a

′ t) that a # (f1, f2, f3, t) holds and
thus apply the induction hypothesis. )*

Now we can show the crucial lemma about recf1f2f3 being a “function”.

Lemma 8 (Uniqueness). If f1, f2 and f3 have finite support and f3 satisfies
the FCB, then (t, r) ∈ recf1f2f3 and (t, r′) ∈ recf1f2f3 implies that r = r′.

Proof. By the induction principle given in (13); again the only non-routine case
is the lambda-case. By assumption we know that (Lam a t, f3 a t r) ∈ recf1f2f3

from which we can infer that a # (f1, f2, f3) and (t, r) ∈ recf1f2f3 ; the induction
hypothesis states that for all r′, (t, r′) ∈ recf1f2f3 implies r = r′. Using the second
assumption (Lam b t′, r′) ∈ recf1f2f3 we need to show that f3 a t r = f3 b t

′ r′ holds
for all Lam b t′ such that b # (f1, f2, f3) and Lama t = Lam b t′. The latter implies
by (9) that either

(a = b ∧ t = t′) or (a �= b ∧ t = (a b)·t′ ∧ a # t′) .

The first case is routine because by the induction hypothesis we can infer that
r = r′. In the second case we have ((a b)·t, r′) ∈ recf1f2f3 and by Lem. 6 also that
(t, (a b)·r′) ∈ recf1f2f3 (where we also use (11) and the facts a # (f1, f2, f3) and
b # (f1, f2, f3)). By induction hypothesis we can therefore infer that r = (a b)·r′.
Hence we have to show that f3 a ((a b)·t′) ((a b)·r′) = f3 b t

′ r′ holds.
Since we know that a # t′ and a # (f1, f2, f3), we can use (t′, r′) ∈ recf1f2f3

and Lem. 7 to show that a # r′ holds. With this and the facts that a �= b,
a # t′ and a # f3, we can infer that a # (f3 b t

′ r′) (the latter is because
(f3, b, t

′, r′) supports (f3 b t
′ r′) and therefore supp(f3 b t

′ r′) ⊆ (f3, b, t
′, r′)).
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We now show that also b # (f3 b t
′ r′). From the FCB we know that there

exists a b′ such that b′ # f3 and ∀ t r. b′ # f3 b
′ t r holds. If b = b′ we are done;

otherwise we use (10) and apply the swapping (b b′) to both sides of b # (f3 b t
′ r′)

which gives b′ # ((b b′)·f3) b′ ((b b′)·t′) ((b b′)·r′). Since b # f3 and b′ # f3 we
have by (11) that (b b′)·f3 = f3 and hence we are done.

Knowing that a # (f3 b t
′ r′) and b # (f3 b t

′ r′) hold, we can infer by (11)
that (a b)·f3 b t

′ r′ = f3 b t
′ r′. The left-hand side of this equation is equal to

f3 a ((a b)·t′) ((a b)·r′) which is what we had to show. )*

To prove our theorem about structural recursion we define rfunf1f2f3
t to be the

unique r so that (t, r) ∈ recf1f2f3 . This is a standard construction in HOL-based
theorem provers. The characteristic equations for rfunf1f2f3

are given by how
the relation recf1f2f3 is defined.

4 Examples

We are now going to give examples defining three functions by recursion over
the structure of the nominal datatype lam. We use the functions:

sz1 = λa. 1
sz2 = λ r1 r2. 1 + (max r1 r2)
sz3 = λa r. 1 + r

frees1 = λa. {a}
frees2 = λ r1 r2. r1 ∪ r2
frees3 = λa r. r − {a}

subst1 b t
′ = λa. if a = b then t′ else (Var a)

subst2 b t
′ = λ r1 r2. App r1 r2

subst3 b t
′ = λa r. Lama r

To verify the precondition for the function sz we need to define π·n = n
as the permutation action over natural numbers. This definition implies that
nat is a permutation type; this also implies that the support of sz1, sz2 and
sz3 is the empty set. Next we need to show that the FCB-condition, namely
∃a. a # sz3 ∧∀t′ r. a # sz3 a r, holds. For this we can chose any atom a, because
sz3 has empty support and sz3 a r is a natural number and so has also empty
support.

In order to define the function for the set of free names of a lambda-term in
the nominal datatype package, we need to restrict the co-domain of frees to
finite sets. This is because finite sets, as opposed to arbitrary sets, have much
better properties w.r.t. the notion of support. In addition finite sets of names
are permutation types. We can verify that freesn for n = 1, 2, 3 has empty
support using our heuristic and the fact that the HOL-functions λx y. x∪ y and
λx y. x − y have empty support. To verify the FCB-condition, namely ∃a. a #
frees3 ∧ ∀t′ r. a # frees3 a r, holds. For this we can chose any atom a, because
frees3 has empty support; next we have to verify that ∀r. a # r−{a} holds, or



510 C. Urban and S. Berghofer

equivalently ∀r. a �∈ supp(r−{a}). Since we restricted the co-domain of frees to
finite sets, we know that r−{a} is finite for all r and further that supp(r−{a}) =
r − {a}. Thus we are done.

For the substitution function we find that supp(b, t′) supports substn b t
′ for

n = 1, 2, 3. The set supp(b, t′) is finite, because name and lam are finitely sup-
ported permutation types. The FCB-condition of subst3 holds for all atoms
c with c # (b, t′). Because supp(b, t′) supports substn b t

′, the preconditions of
the recursion-combinator in the lambda-case simplify to a # (b, t′) and thus we
obtain the characteristic equation

subst b t′ (Lama t) = Lam a (subst b t′ t)

with the side-conditions a �= b and a # t′, as expected.
The “functions” bn and ist from the Introduction do not satisfy the FCB. In

case of bn it is never true that a # r ∪ {a}, and in case of ist there does not
exists an a such that for all t we have that a # {t} holds—it will fail for example
for t = Vara.

5 General Case

The nominal datatype package supports the declaration of more than one atom
type and allows term-constructors to have more than one binder. The notions of
support and freshness (see Def. 3) have in the implementation already polymor-
phic type to take several atom types into account. For the recursion combinator
we have to make sure that the function fi of the characteristic equations have
finite support with respect to every atom type that occurs in binding position.
By binding position we mean the types occurring inside the 〈〈. . .〉〉 that are used
in a nominal datatype declaration. For example, given the term-constructor C
with the type declaration

C "〈〈atm1〉〉 . . . 〈〈atmn〉〉α"

then we have to consider all atom types atm1 . . .atmn.
Similarly the FCB needs to be generalised for all atom types that occur in

binding position. To explain the generalisations let us consider first the term-
constructor Let "〈〈name〉〉 lam" "lam". The type indicates that if we write, say
Leta t1 t2, then the scope of the binder a is t1. Hence the characteristic equation
for Let is

rfunf1 f2 f3 f4
(Let a t1 t2) = f4 a t1 t2 (rfunf1 f2 f3 f4

t1) (rfunf1 f2 f3 f4
t2)

provided a # (f1, f2, f3, f4, t2)

As can be seen, the binder a needs to be fresh for f1, f2, f3 and f4 (like in the
lambda-case), but also for t2. The general rule is that a needs to be fresh for
all terms that are not in its scope—in this example, this applies only to t2. The
FCB for Let is
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∃a. a # f4 ∧ ∀t1 t2 r1 r2. a # t2 ⇒ a # f4 a t1 t2 r1 r2

where in the second conjunct we may assume that a is fresh for all terms not in
its scope.

Albeit not yet supported by the current version of the nominal datatype
package, even more interesting is the term-constructor Letrec "〈〈name〉〉(lam ×
〈〈name〉〉lam)" where we have two binders. The characteristic equation for Letrec
is

rfunf1 f2 f3 f4 f5
(Letreca t1 b t2) = f5 a t1 b t2 (rfunf1 .. f5

t1) (rfunf1 .. f5
t2)

provided a # (f1, f2, f3, f4, f5)
and b # (f1, f2, f3, f4, f5, t1)
and a �= b

where we need to have b # t1 since t1 is not in the scope of the binder b.
However, in case we have more than one binder in a term-constructor then we
further need to add constraints that make sure every binder is distinct. With
these generalisations the proofs we have given in Sec. 3 scale to all nominal
datatypes.

6 Conclusion

We presented a structural recursion combinator for nominal datatypes. The de-
tails were given for the nominal datatype lam; we mentioned briefly the general
case—further details are given in [9]. For the presentation we adapted the clever
proof given also in [9]. The main difference is that we gave a direct proof for
nominal datatypes and did not use auxiliary constructions. There are also a
number of other differences: for example Pitts does not need to prove Lem. 5,
which is however necessary in Isabelle/HOL, because one cannot conveniently
introduce the type of finitely supported functions. In comparison with the formal-
isation by Norrish, our proof is much shorter—only about 150 lines of readable
Isar-code compared to approximately 600 dense lines of HOL4-code. Our use
of the heuristic that solves proof obligations to do with finite support made it
tractable to automate our proof. The earlier formalisation were far too difficult
for such an automation. This work removes the painful obstacle when defining
functions over the structure of nominal datatypes using earlier versions of the
nominal datatype package. In the future we are aiming at automating the pro-
cess of verifying the FCB and finite support-conditions required in the recursion
combinator.
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Abstract. In the context of combinations of theories with disjoint sig-
natures, we classify the component theories according to the decidability
of constraint satisfiability problems in arbitrary and in infinite models,
respectively. We exhibit a theory T1 such that satisfiability is decidable,
but satisfiability in infinite models is undecidable. It follows that satisfi-
ability in T1 ∪ T2 is undecidable, whenever T2 has only infinite models,
even if signatures are disjoint and satisfiability in T2 is decidable.

In the second part of the paper we strengthen the Nelson-Oppen decid-
ability transfer result, by showing that it applies to theories over disjoint
signatures, whose satisfiability problem, in either arbitrary or infinite
models, is decidable. We show that this result covers decision procedures
based on rewriting, complementing recent work on combination of theo-
ries in the rewrite-based approach to satisfiability.

1 Introduction

In many applications of automated reasoning (for instance to software verifi-
cation), it is important to decide the satisfiability of conjunctions of literals
modulo a given background theory; quite often, it is also necessary to combine
modularly such decision procedures to unions of background theories. If such
theories have disjoint signatures and are stably infinite (which means that we
can safely restrict to infinite models to decide satisfiability of literals), then the
well-known Nelson-Oppen combination schema provides a combination transfer
result. Recently, relaxing the stably infiniteness requirement has received a lot of
attention in order to design combination schemas handling theories that are not
stably-infinite. For instance,1 Tinelli and Zarba [22] have shown how to combine
an arbitrary theory with one satisfying requirements which are stronger than
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stable-infiniteness. Thus, contrary to the combination schema by Nelson-Oppen
[14], such a schema is asymmetric in the sense that the requirements on the
component theories are not the same.

In this paper, we consider combinations of theories whose signatures are dis-
joint and classify the component theories according to the decidability of their
satisfiability problems in arbitrary and in infinite models. Assume that the sat-
isfiability problem in a theory T1 is decidable in arbitrary models but not in
infinite models. Then, any combination of such a T1 with a theory T2 that does
not have finite models yields an undecidable satisfiability problem. This holds
even if T1 and T2 have disjoint signatures and even if satisfiability in T2 is de-
cidable in arbitrary models. As a consequence of this observation, we obtain the
first (undecidability) result of the paper, by exhibiting a theory such that the
satisfiability problem is decidable, whereas the satisfiability problem in infinite
models is undecidable.

The second result of the paper is related to decision procedures based on
rewriting. Armando et al [1] recently showed how to use a rewrite-based inference
system to obtain decision procedures for (disjoint) unions of variable-inactive
theories, when there exist rewrite-based decision procedures for the component
theories. Here, we explain the relationship between variable-inactivity and stable-
infiniteness. We show that if a theory is not stably infinite, then the inference
system is guaranteed to generate clauses that constrain the cardinality of its
models, so that the theory is not variable-inactive. This result has two applica-
tions: first, it complements the combination schema of [1] for (disjoint) unions of
theories that have a rewrite-based satisfiability procedures. Second, it suggests
a simple way to combine the rewrite-based approach with constraint-solving
techniques that check satisfiability in finite models.

2 Preliminaries

A signature Σ is an (at most countable) set of functions and predicate symbols,
each of them endowed with the corresponding arity. We assume the binary equal-
ity predicate symbol ‘=’ to be always present in any signature Σ. The signature
obtained from Σ by the addition of a set of new constants (that is, 0-ary function
symbols) K is denoted by Σ∪K or by ΣK; when the set of constants is finite, we
use letters a, b, c, etc. in place of K. We have the usual notions of Σ-term, (full
first order) -formula, -atom, -literal, -clause, -positive clause, etc.: e.g., an atom
is an atomic formula, a literal is an atom or the negation of an atom, a clause is
a multiset of literals, a positive clause is a multiset of atoms, etc. Abusing nota-
tion, we write a clause C either as the disjunction of its literals or as a sequent
∆1 ⇒ ∆2, meaning that ∆1 (resp. ∆2) contains the negative (resp. positive)
literals of C. Terms, literals, clauses and formulæ are called ground whenever
variables do not appear. Formulæ without free variables are called sentences.
The universal (resp. existential) closure of a formula φ is the sentence obtained
from φ by adding a prefix of universal (resp. existential) quantifiers binding all
variables occurring free in φ. A Σ-theory T is a set of sentences (called the ax-
ioms of T ) in the signature Σ. If T is finite, the theory is said to be finitely
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axiomatized. A universal theory is a theory whose axioms are universal closures
of quantifier-free formulae.

From the semantic side, we have the standard notion of a Σ-structureA: this is
a support set endowed with an arity-matching interpretation of the function and
predicate symbols from Σ. We use fA (resp. PA) to denote the interpretation
of the function symbol f (resp. predicate symbol P ) in the structure A. The
support set of a structure A is indicated by the notation |A|. We say that A is
finite when there exists an integer N > 0 such that the cardinality of |A| is less
than N ; if such an integer does not exist, we say that A is infinite. The truth of
a Σ-formula in A is defined in the standard way (so that truth of a formula is
equivalent to truth of its universal closure). A formula φ is satisfiable in A iff its
existential closure is true in A.

A Σ-structure A is a model of a Σ-theory T (in symbols A |= T ) iff all axioms
of T are true in A. For models of a Σ-theory T we shall use the lettersM,N , . . .
to distinguish them from arbitrary Σ-structures. If φ is a formula, T |= φ (‘φ is
a logical consequence of T ’) means that φ is true in any model of T . A Σ-theory
T is complete iff for every Σ-sentence φ, either φ or ¬φ is a logical consequence
of T ; T is consistent iff it has a model.

A Σ-constraint in a signature Σ is a finite set of ground Σa-literals (where a
is a finite set of new free constants). The constraint satisfiability problem for a
Σ-theory T is the problem of deciding whether a Σ-constraint is satisfiable in a
model of T : if this problem is decidable, we say that the theory T is ∃-decidable.
Notice that, equivalently, T is ∃-decidable iff it is decidable whether a universal
Σ-formula is entailed by the axioms of T .

3 Satisfiability in Infinite Models

Let T1 and T2 be theories such that the signature Σ1 of T1 is disjoint from the
signature Σ2 of T2, i.e., Σ1 ∩Σ2 contains only the equality symbol. We consider
the decidability of the constraint satisfiability problem of the theory T1∪T2. We
are especially interested in establishing the relationships between the decidability
of the constraint satisfiability problems in the component theories T1 and T2,
and the decidability of the constraint satisfiability problem in T1 ∪ T2.

3.1 Undecidability Result

Let us recall two simple facts. First, combined word problems are decidable
whenever the word problems for the component theories are decidable [18]. Sec-
ond, it is commonly believed that combining word problems is more difficult than
combining constraint satisfiability problems - the reason is that the algorithms
to be combined are less powerful, as they can handle only constraints formed by
a single negative literal. From these two observations, one may conjecture that
the decidability of the constraint satisfiability problem in T1 ∪ T2 always follows
from the decidability of the constraint satisfiability problem in T1 and T2. Con-
trary to expectation, all known combination results for the decidability of the
constraint satisfiability problems in unions of theories (such as [14,22]) assume
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that the component theories satisfy certain requirements. The key observation
is that such requirements are related to the satisfiability of constraints in infi-
nite models of a component theory. For example, the Nelson-Oppen combination
schema [14] requires the component theories to be stably-infinite. A Σ-theory T
is stably infinite iff every Σ-constraint satisfiable in a model of T is satisfiable in
an infinite model of T . Motivated by this observation, we introduce the following
definition.

Definition 3.1. Let T be a Σ-theory; we say that T is ∃∞-decidable iff it is ∃-
decidable and moreover it is decidable whether any Σ-constraint Γ is satisfiable
in some infinite model of T .

From the definition, it is trivially seen that ∃-decidability is equivalent to ∃∞-
decidability in the case of stably infinite theories. To illustrate the interest of
studying the decidability of satisfiability in the infinite models of a theory, we
state the following

Theorem 3.1. Let Ti be a Σi-theory (for i = 1, 2) and let the signatures Σ1, Σ2
be disjoint. If T1 is ∃-decidable but it is not ∃∞-decidable and if T2 is consistent,
∃-decidable but does not admit finite models, then the constraint satisfiability for
T1 ∪ T2 is undecidable.

Proof. We simply show that a Σ1-constraint Γ is T1 ∪ T2-satisfiable iff it is
satisfiable in an infinite model of T1. One side is obvious; for the other side, pick
infinite modelsM1 of T1∪Γ andM2 of T2 (the latter exists by consistency of T2).
By Löwhenheim-Skolem theorem, we can assume that both models are countable,
i.e. that they have the same support (up to isomorphism). But then, we can
simply put together the interpretations of functions and predicate symbols and
get a model of T1 ∪ T2 ∪ Γ . )*

We notice that there are many theories which are ∃-decidable and have only
infinite models. One such theory is Presburger Arithmetic, another one is the
theory of acyclic lists [17]. More interestingly, one could ask the following

QUESTION 1: Are there ∃-decidable theories that are not ∃∞-decidable?

If the answer is positive, then Theorem 3.1 implies that there exist theories which
are ∃-decidable and whose union is not ∃-decidable. In Section 4, we exhibit
some theories that are ∃-decidable but not ∃∞-decidable, thereby answering
QUESTION 1 positively.

3.2 Decidability Result

Notwithstanding the negative result implied by Theorem 3.1, we observe that
when both T1 and T2 are ∃∞-decidable, we are close to get the decidability
of constraint satisfiability in T1 ∪ T2. To understand why, recall the following
well-known fact.

Lemma 3.1. Let Λ be a set of first-order sentences. If Λ does not admit infinite
models, then there must exist an integer N > 0 such that, for each model M of
Λ, the cardinality of the support set of M is bounded by N .
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For a proof, the interested reader is referred to any introductory textbook about
model theory (see, e.g., [23]). The key idea is to apply compactness to infinitely
many ‘at-least-n-elements’ constraints (these are the constraints expressed by
the formulæ ∃x1, . . . , xn

∧
i =j xi �= xj). It is interesting to notice that the above

bound on the cardinality of finite models can be effectively computed for ∃-de-
cidable theories:

Lemma 3.2. Let T be an ∃-decidable Σ-theory; whenever it happens2 that a
given Σ-constraint Γ is not satisfiable in an infinite model, one can compute a
natural number N such that all models of T ∪ Γ have cardinality at most N .

Proof. For h = 2, 3, . . . , add the following set δh := {ci �= cj | 1 ≤ i < j ≤ h} of
literals to T ∪Γ , where the constants c1, . . . , ch are fresh.3 Clearly, if T ∪Γ ∪ δh

is unsatisfiable, then we get a bound for the cardinality of the models of T ∪ Γ .
Since, by Lemma 3.1, such a bound exists, the process eventually terminates. )*

Definition 3.2. An ∃∞-decidable Σ-theory T is said to be strongly ∃∞-de-
cidable iff for any finite Σ-structure A, it is decidable whether A is a model
of T .

It is not difficult to find strongly ∃∞-decidable theories. For example, any finitely
axiomatizable ∃∞-decidable Σ-theory with a finite Σ is strongly ∃∞-decidable,
since it is sufficient to check the truth of the axioms for finitely many valuations.
Now, we are in the position to state and prove the following modularity property
for ∃∞-decidable theories.

Theorem 3.2. Let Ti be a strongly ∃∞-decidable Σi-theory (for i = 1, 2) such
that Σ1, Σ2 are finite and disjoint. Then the combined theory T1 ∪T2 is ∃-decid-
able.4

Proof. Let Γ be a finite set of ground Σ1 ∪Σ2-literals containing free constants.
By well-known means (see, e.g., [5]), we can obtain an equisatisfiable set Γ1 ∪Γ2
such that Γi contains only Σ

a
i -symbols, for i = 1, 2 and for some free constants

a. Let Γ0 be an arrangement of the constants a, i.e. a finite set of literals such
that either ai = aj ∈ Γ0 or ai �= aj ∈ Γ0, for i �= j and ai, aj ∈ a. Clearly,
Γ1 ∪ Γ2 is satisfiable iff Γ1 ∪ Γ0 ∪ Γ2 is satisfiable for some arrangement Γ0 of
the constants a. From the fact that theories T1, T2 are both ∃∞-decidable, the
following case analysis can be effectively performed:

– If Γ0∪Γi is satisfiable in an infinite model of Ti (for both i = 1, 2), then Γ0∪
Γ1∪Γ2 is satisfiable in an infinite model of T1∪T2 by the standard argument
underlying the correctness of the Nelson-Oppen combination schema (see,
e.g., [21,12]).

2 There is a subtle point here: Lemma 3.2 applies to all ∃-decidable theories, but it
is really useful only for ∃∞-decidable theories, because only for these theories the
hypothesis ‘Γ in not satisfiable in an infinite model of T ’ can be effectively checked.

3 Notice that the literals in δh are simply the Skolemization of the ‘at-least-h-elements’
constraint.

4 This result can be easily generalized to the combination of n > 2 theories.
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– If Γ0∪Γi is unsatisfiable in any infinite model of Ti (for either i = 1 or i = 2),
then (by Lemma 3.2) we can effectively compute an integer N > 0 such that
each modelM of T∪Γi∪Γ0 has cardinality less than N . Hence, it is sufficient
to exhaustively search through Σ1 ∪ Σ2 ∪ a-structures up to cardinality N .
The number of these structures is finite because Σ1 and Σ2 are finite and, by
Definition 3.2, it is possible to effectively check whether each such a structure
is a model of T1 and T2, and hence also of T1 ∪ T2 ∪ Γ0 ∪Γ1 ∪ Γ2. If a model
is found, the procedure returns ‘satisfiable’, otherwise another arrangement
Γ0 (if any) is tried. )*

Since a stably infinite theory is ∃-decidable if and only if it is ∃∞-decidable,
it is clear that Theorem 3.2 substantially generalizes Nelson-Oppen result (the
further requirement of Definition 3.2 being only a technical condition which is
usually fulfilled). Theorem 3.2 raises the following

QUESTION 2: Is there a practical sufficient condition for a theory to be
strongly ∃∞-decidable?

Clearly, stably infinite ∃-decidable theories are ∃∞-decidable. More interesting
examples are given in Section 5, where we will show that, whenever a finitely
axiomatized theory T admits a rewrite-based decision procedure for its constraint
satisfiability problem [2,1], T is not only ∃-decidable but also strongly ∃∞-de-
cidable.

4 Undecidability

In this section, we give an affirmative answer to QUESTION 1 by defining some
∃-decidable theories that are not ∃∞-decidable. Let ΣTM∞ be the signature
containing (in addition to the equality predicate) the following (infinite) set of
propositional letters {P(e,n) | e, n ∈ N}. Consider the propositional letter P(e,n):
we regard e as the index (i.e. the code) of a Turing Machine and n as the input to
the Turing machine identified by e (this coding is possible because of basic results
about Turing machines, see, e.g., [16]). We indicate by k : N×N→ N∪{∞} the
(non-computable) function associating to each pair (e, n) the number k(e, n) of
computation steps of the Turing Machine e on the input n. We write k(e, n) = ∞
when the computation does not halt. The axioms of the theory TM∞ are the
universal closures of the following formulæ:

P(e,n) →
∨

i<j≤m

xi = xj , if k(e, n) < m. (1)

Two observations are in order. First, the property “being an axiom of TM∞” is
decidable, because the ternary predicate k(e, n) < m is recursive. Indeed, it is
sufficient to run the Turing Machine e on input n and wait at most m compu-
tation steps to verify whether e halts. Second, the consequent of implication (1)
is an at-most cardinality constraint, i.e. it is a formula of the form

∨

i =j

xi = xj (2)
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where xi, xj are (implicitly universally quantified) distinct variables for i, j =
1, . . . , n, which constrain the domain of any model to contain at most n elements.
Thus, axioms of the form (1) tells us that if P(e,n) holds and the Turing Machine
e halts in at most m steps, then the cardinality of the domains of a model is
bounded by m. These properties allow us to state and prove the following key
result:

Proposition 4.1. The theory TM∞ is ∃-decidable but it is not ∃∞-decidable.

Proof. To show that the theory is ∃-decidable, consider a constraint Γ over
the signature Σ

a
TM∞

. First, guess an arrangement Γ0 for the constants a and
check the set of equations and inequations from Γ ∪ Γ0 for consistency in the
pure theory of equality. Then, if the satisfiability check succeeds, Γ0 explicitly
gives the minimum cardinality m for Γ ∪ Γ0 to be satisfied. Clearly, Γ ∪ Γ0 is
unsatisfiable if it contains both P(e,n) and ¬P(e,n). If this is not the case, we still
have to consider the constraints represented by axiom (1), which states that if a
literal of the kind P(e,n) is in a ΣTM∞-constraint, such a constraint can be only
satisfied in a model whose cardinality is at most k(e, n). Thus, if P(e,n) ∈ Γ ∪Γ0,
we only need to check that m ≤ k(e, n), which can be effectively done since the
ternary predicate k(e, n) < m is recursive.

To see that TM∞ is not ∃∞-decidable, notice that the constraint {P(e,n)} is
TM∞-satisfiable in an infinite structure iff k(e, n) = ∞. In turn, this is equivalent
to check whether the computation of the Turing Machine e on the input n does
not terminate, which is obviously undecidable, being the complement of the
Halting problem. )*

The theory TM∞ is defined on an infinite signature. However, it is possible
to introduce a universal theory TM∀ω over a finite signature, with the same
characteristics as TM∞ as far as decidability in finite and infinite models is
concerned. Since the proof that such theory is ∃-decidable but not ∃∞-decidable
is similar to that of Proposition 4.1, modulo some technical details, we report it
in the full TR version of the present paper. Thus, we are ready to state our first
main result:

Theorem 4.1. There exist ∃-decidable universal theories over finite and dis-
joint signatures, whose union is not ∃-decidable.

5 Decidability

The answer to QUESTION 2 rests on showing that (under suitable assumptions)
rewrite-based methods give practical sufficient conditions for a theory to be
strongly ∃∞-decidable. First, we need to introduce some technical definitions. In
Section 5.1, we recall some basic notions underlying the superposition calculus
[15] and we introduce superposition modules as suitable abstractions for the
subsequent technical development. Then, in Section 5.2, we introduce the notion
of invariant superposition modules and, in Section 5.3, we show that they can
generate an “at most” cardinality constraint (cf. (2) in Section 4) whenever a
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theory does not admit infinite models. Last, in Section 5.4, we describe how
to combine rewrite-based procedures [1,2] with Satisfiability Modulo Theory
(SMT) tools, such as [9,3,10,11], in order to obtain automatic methods to solve
constraint satisfiability problems involving theories admitting only finite models
(e.g., enumerated data-types).

5.1 Superposition Calculi and Superposition Modules

From now on, we consider only universal, finitely axiomatized theories, whose
signatures are finite. Without loss of generality, we may assume that signatures
contain only function symbols (see, e.g., [15]). A fundamental assumption of
superposition-based inference systems [15] is that the universe of terms is ordered
by a reduction ordering. A reduction ordering on terms can be extended to literals
and clauses by using standard techniques. The most commonly used orderings are
the Knuth-Bendix ordering (KBO) and the lexicographic path ordering (LPO).
Definitions, results, and references on orderings can be found in, e.g., [4]. Since
we have to deal with constraints involving finitely (but arbitrarily) many new
constants, we consider a countable set5 K disjoint from Σ to form the expanded
signature ΣK. We collect all needed data in the following:

Definition 5.1 (Suitable Ordering Triple). A suitable ordering triple is a
triple (Σ,K,!) where: (a) Σ is a finite signature; (b) K := {c1, c2, c3, . . . } is a
countably infinite set of constant symbols such that Σ and K are disjoint; (c) !
is a reduction ordering over ΣK-terms satisfying the following conditions:

(i) ! is total on ground ΣK-terms;
(ii) for every ground ΣK-term t with root symbol f ∈ Σ and for every ci ∈ K,

we have t ! ci;
(iii) for ci, cj ∈ K, we have ci ! cj iff i > j.

The above conditions on the reduction ordering are similar to those adopted in
[2,1] to build rewrite-based decision procedures for the constraint satisfiability
problem in theories of data structures, fragments of integer arithmetic, and their
combinations. It is indeed very easy and natural to produce suitable ordering
triples: for instance, if an LPO is adopted, it is sufficient to take a total prece-
dence >p satisfying the condition f >p ci >p cj , for f ∈ Σ, ci ∈ K, cj ∈ K and
i > j.

Another key characteristic of a rewrite-based inference system is the possi-
bility of associating a model to the set of derived clauses, defined by building
incrementally a convergent term rewriting system.

Let (Σ,K,!) be a suitable ordering triple and let S be a set of ΣK-clauses
not containing the empty clause. The set gr(S) contains all ground ΣK-clauses
that are instances of clauses in S. By transfinite induction on C ∈ gr(S), we
simultaneously define Gen(C) and the ground rewrite system RC as follows:
5 Usual results on orderings can be extended to infinite signatures, see [13]; notice

however that one can keep the signature ΣK finite, by coding ci as si(0) (for new
symbols s, 0), like e.g. in [8].
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(a) RC :=
⋃

D∈gr(S),C!D Gen(D);
(b) Gen(C) := {l→ r} in case C is of the kind ∆1 ⇒ l = r,∆2 and the following

conditions are satisfied:
1. RC �|= ∆1 ⇒ ∆2, i.e. (i) for each l = r ∈ ∆1, l and r have the same

normal form with respect to RC (in symbols, l ↓RC r) and (ii) for each
s = t ∈ ∆2, s �↓RC t;

2. l ! r, l ! u (for all u occurring in ∆1), {l, r} !ms {u, v}, for every
equation u = v occurring in ∆2, where !ms is the multi-set extension
[4] of !;

3. l is not reducible by RC , and
4. RC �|= r = t′, for every equation of the kind l = t′ occurring in ∆2;

(c) Gen(C) := ∅, otherwise.

We say that C is productive if Gen(C) �= ∅. Finally, let RS :=
⋃

C∈gr(S)Gen(C).
Note that RS is a convergent rewrite system, by conditions 2 and 3 above.

A set of clauses is saturated with respect to an inference system, if any clause
that can be inferred from S is redundant in S (see, e.g., [7]). In a more abstract
treatment, that makes saturation independent of the inference system and only
requires a well-founded ordering on proofs, a set of formulæ is saturated if it
contains all the premises of all normal-form proofs in the theory [6]. For the
purposes of this paper, we are interested in a semantic notion of saturation
based on model generation.

Definition 5.2. A set S of ΣK-clauses is model-saturated iff the rewrite system
RS is a model of S (i.e. the quotient of the Herbrand universe of ΣK modulo
RS-convergence is a model of the universal closures of the clauses in S).

The following definition of reasoning module is precisely what we need to prove
the main technical Lemma 5.2 below.

Definition 5.3 (Superposition Module). Let (Σ,K,!) be a suitable order-
ing triple. A superposition module SP(Σ,K,!) is a computable function which
takes a finite set S0 of ΣK-clauses as input and returns a (possibly infinite)
sequence

S0, S1, . . . , Sn, . . . (3)

of finite sets of ΣK-clauses, called an S0-derivation, such that ( i) if S0 is un-
satisfiable, then there exists k ≥ 0 such that the empty clause is in Sk; ( ii) if S0
is satisfiable, then the set

S∞ :=
⋃

j≥0

⋂

i≥j

Si

of persistent clauses is model-saturated, and ( iii) the sets Si and Sj are logically
equivalent for (0 ≤ i, j ≤ ∞). We say that SP(Σ,K,!) terminates on the set of
ΣK-clauses S0 iff the S0-derivation (3) is finite.

Superposition modules are deterministic, i.e. there exists just one S0-derivation
starting with a given finite set S0 of clauses. Any implementation of the super-
position calculus [15] together with a fair strategy satisfies Definition 5.3.
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5.2 Superposition Modules and Rewrite-Based Decision Procedures

For the proofs below, we need a class of superposition modules which are in-
variant (in a sense to be made precise) under certain renamings of finitely many
constants. Formally, an n-shifting (where n is an integer such that n > 0) is the
operation that applied to a ΣK-expression E returns the ΣK-expression E+n ob-
tained from E by simultaneously replacing each occurrence of the free constant
ci ∈ K by the free constant ci+n, for i > 0 (where the word ‘expression’ may
denote a term, a literal, a clause, or a set of clauses). In practice, an n-shifting
rearranges the set of free constants occurring in the set of clauses by eliminating
the constants c1, . . . , cn that are not in the range of the function (·)+n.

Example 5.1. Let us consider the set S := {f(c1, c4) = c1, f(f(c1, c4), c4) = c2}
of ground ΣK-literals where Σ := {f} and K := {c1, c2, . . . }. Then, we have that
S+5 := {f(c6, c9) = c6, f(f(c6, c9), c9) = c7}.

Definition 5.4 (Invariant Superposition Module). Let (Σ,K,!) be a suit-
able ordering triple. A superposition module SP(Σ,K,!) is invariant iff for ev-
ery S0-derivation S0, S1, . . . , Sj , . . . (with S0 being a set of ΣK-clauses), we have
that (S0)+n, (S1)+n, . . . , (Sj)+n, . . . is an (S0)+n-derivation, for all n ≥ 0.

Most of the actual implementations of superposition are stable under signature
extensions (this is so because they need to handle Skolem symbols) and hence,
the behavior of a superposition prover is not affected by any proper extension
of the signature and the ordering. The property of producing derivations being
invariant under shifting is weaker than stability under signature extensions. As
a consequence, any superposition prover can be turned into an invariant super-
position module. However, not all possible implementations of the superposition
calculus are invariant superposition modules, as we point out in the full TR
version of the paper.

Example 5.2. Suppose that in the suitable ordering triple (Σ,K,!), the term
ordering ! is an LPO whose precedence satisfies f >p ci >p cj (for f ∈ Σ, ci ∈
K, cj ∈ K, i > j). Let us consider the superposition module given by the
standard superposition calculus and let us take again the situation in Exam-
ple 5.1. The (model-)saturated set output by SP(Σ,K,!) when taking S as
input is Ss := {f(c1, c4) = c1, c2 = c1}. It is not difficult to see that the set
(Ss)+5 := {f(c6, c9) = c6, c7 = c6} is exactly the set that we would obtain as
output by the superposition module SP(Σ,K,!) when taking as input the set
(S)+5 (see Example 5.1).

Definition 5.5. Let (Σ,K,!) be a suitable ordering triple. A universal and
finitely axiomatized Σ-theory T is ∃-superposition-decidable iff there exists an
invariant superposition module SP(Σ,K,!) that is guaranteed to terminate
when taking as input T ∪ Γ , where Γ is a ΣK-constraint.

From the termination results for superposition given in [2,1], it follows that
theories such as equality, (possibly cyclic) lists, arrays, and so on are ∃-decid-
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able by superposition. According to Definition 5.5, any theory T which is ∃-su-
perposition-decidable is ∃-decidable. In the following, we show that T is also
∃∞-decidable, which is the second main result of the paper.

5.3 Invariant Superposition Modules and Cardinality Constraints

A variable clause is a clause containing only equations between variables or their
negations. The antecedent-mgu (a-mgu, for short) of a variable clause ∆1 ⇒ ∆2

is the most general unifier of the unification problem {x ?= y | x = y ∈ ∆1}. A
cardinality constraint clause is a variable clause ∆1 ⇒ ∆2 such that⇒ ∆2µ does
not contain any trivial equation like x = x, where µ is the a-mgu of ∆1 ⇒ ∆2;
the number of free variables of ∆2µ is called the cardinal of the cardinality
constraint clause ∆1 ⇒ ∆2. For example, the clause x = y ⇒ y = z1, x = z2 is a
cardinality constraint clause whose cardinal is 3 (notice that this clause is true
only in the one-element model).

Lemma 5.1. If a satisfiable set S of clauses contains a cardinality constraint
clause ∆1 ⇒ ∆2, then S cannot have a model whose domain is larger than the
cardinal of ∆1 ⇒ ∆2.

Proof. Let µ be the a-mgu of ∆1 ⇒ ∆2. By definition of a cardinality constraint
clause, the clause ⇒ ∆2µ does not contain trivial equations; if n is the number
of distinct variables in ⇒ ∆2µ, then there cannot be more than n − 1 distinct
elements in any model of S. )*

The next crucial lemma expresses the property that an invariant superposition
module discovers a cardinality constraint clause whenever the input set of clauses
does not admit infinite models.

Lemma 5.2. Let (Σ,K,!) be a suitable ordering triple. Let SP(Σ,K,!) be an
invariant superposition module. If S0 is a satisfiable finite set of clauses, then
the following conditions are equivalent:

(i) the set S∞ of persistent clauses in an S0-derivation of SP(Σ,K,!) con-
tains a cardinality constraint clause;

(ii) S0 does not admit infinite models.

Proof. The implication (i) ⇒ (ii) is proved by Lemma 5.1. To show (ii) ⇒ (i),
assume that the set S0 does not have a model whose domain is infinite. By
Lemma 3.1, there must exist a natural number N such that every model M of
S0 has a domain with at most N elements. Since a cardinality constraint clause
does not contain constants, it is in S∞ iff it is in (S∞)+N . Hence, by Definition
5.4 of an invariant superposition module (considering (S0)+N rather than S0, if
needed) we are free to assume that the constants {c1, . . . , cN} do not occur in
S∞. Recall also that, according to the definition of a suitable ordering triple, the
constants {c1, . . . , cN} are the smallest ground ΣK-terms.

According to the definition of superposition module (cf. Definition 5.3), since
S0 is assumed to be satisfiable, S∞ is model-saturated, which means that the
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convergent rewrite system RS∞ is a model of S∞ (hence also of S0, which is
logically equivalent to S∞). Now, since S0 does not have a model whose domain
is of cardinality N or greater, there is at least one constant among c1, . . . , cN
which is not in normal form (with respect to RS∞). Assume that ci is not in
normal form (with respect to RS∞) and that each cj (for j < i) is. By model
generation (see section 5.1), to reduce ci we need a rule l → r from a productive
clause C of the kind ∆1 ⇒ l = r,∆2 ∈ gr(S∞); furthermore, ci can be reduced
only to cj for j < i. The maximality condition 2 of model generation in Section
5.1 on l implies that l is ci and that the remaining terms in C are of the kind cj
for j ≤ i.6 By condition 1 of model generation in Section 5.1, the fact that all
terms cj (j < i) are in RS∞ -normal form, and the fact that RS∞ is a convergent
rewrite system extending RC , it follows that each equation in ∆1 is of the form
cj = cj . Furthermore, again by condition 1 of model generation in Section 5.1,
there is no (trivial) equality of the form cj = cj in ∆2. Since the constants
{c1, . . . , cN} do not occur in S∞, we are entitled to conclude that the productive
clause ∆1 ⇒ l = r,∆2 is the ground instance of a variable clause, i.e. there must
exist a variable clause C̃ of the form ∆̃1 ⇒ l̃ = r̃, ∆̃2 in S∞ such that C̃θ ≡ C
for some ground substitution θ. Since the antecedent of C consists of trivial
equalities, θ is less general than µ, where µ is the a-mgu of C̃, i.e. we have that
θ = µθ′ for some substitution θ′. Furthermore, since there are no positive trivial
equalities in C ≡ C̃µθ′, there are no positive trivial equalities in C̃µ either, which
implies that C̃ is a cardinality constraint clause belonging to S∞. )*

The following result immediately follows from Lemma 5.2 above, because unsatis-
fiability in infinite models can be detected by looking for a cardinality constraint
clause among the finitely many final clauses of a terminating derivation:

Theorem 5.1. Let T be a finitely axiomatized universal Σ-theory where Σ is
finite. If T is ∃-superposition-decidable, then T is strongly ∃∞-decidable.

5.4 Combining Superposition Modules and SMT Procedures

Invariant superposition modules provide us with means to check whether a the-
ory is strongly ∃∞-decidable (and this answers QUESTION 2 in Section 3.2).
However, the situation is not really clear in practice. By using available state-
of-the-art implementations of the superposition calculus, such as SPASS [24]
or E [20], with suitable ordering, we have run concrete invariant superposition
modules for a theory T≤k, admitting only finite models with at most k − 1 ele-
ments, axiomatized by an appropriate “at most” cardinality constraint, see (2).
Indeed, according to Definition 5.4, the hard part is to prove termination for
arbitrary input clauses of the form T≤k ∪ Γ , where Γ is a set of ground literals.
Our preliminary experiments were quite discouraging. In fact, both SPASS and
E were able to handle only the trivial theory T≤1 (axiomatized by ⇒ x = y).
Already for T≤2 (axiomatized by ⇒ x = y, x = z, y = z), the provers do not
6 More precisely (this is important for the proof): terms occurring positively can only

be cj for j ≤ i and terms occurring negatively can only be cj for j < i.
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function Grounding (N : integer, T : axioms, Γ : Ground literals)
1 introduce fresh constants c1, . . . , cN ;
2 for every k-ary function symbol f in Γ ∪ T (with k ≥ 0), generate the positive

clauses
N∨

i=1

f(a1, . . . , ak) = ci

for every a1, . . . , ak ∈ {c1, . . . , cN} and let E be the resulting set of clauses;
3 for every clause C ∈ T , instantiate C in all possible ways by ground substitutions

whose range is the set {c1, . . . , cN} and let Tg be the resulting set of clauses;
4 return the set Tg ∪ E ∪ Γ .
end

Fig. 1. Computing equisatisfiable sets of ground clauses for instances of the constraint
satisfiability problem of theories with no infinite models

terminate in a reasonable amount of time although we experimented with var-
ious settings. For example, while SPASS is capable of finding a saturation for
T≤2 ∪ Γ when Γ := ∅, it seems to diverge when Γ := {a �= b}. This seems
to dramatically reduce the scope of applicability of Theorem 5.1 and hence of
Theorem 3.2.

Fortunately, this problem can be solved by the following two observations.
First, although a superposition module may not terminate on instances of the
constraint satisfiability problem of the form T ∪ Γ , where Γ is a constraint and
T does not admit infinite models (such as T≤k, above), Lemma 5.2 ensures that
a cardinality constraint clause will eventually be derived in a finite amount of
time: if a clause C is in the set S∞ of persistent clauses of a derivation S0, S1, . . . ,
then there must exists an integer k ≥ 0 such that C ∈ Sk (recall Definition 5.3).
Second, when a cardinality constraint clause C is derived from T ∪ Γ , a bound
on the cardinality of the domains of any model can be immediately obtained
by the cardinal associated to C. It is possible to use such a bound to build an
equisatisfiable set of clauses (see Figure 1) and pass it to an SMT procedure
for the pure theory of equality (e.g., those in [9,3,10,11]) or to a model builder.
The observations above motivate the following relaxation of the notion of an
∃-superposition-decidable theory.

Definition 5.6. Let (Σ,K,!) be a suitable ordering triple. A universal and
finitely axiomatized Σ-theory T is weakly-∃-superposition-decidable iff there
exists an invariant superposition module SP(Σ,K,!) such that for every ΣK-
constraint Γ , any T ∪ Γ -derivation either (i) terminates or (ii) generates a car-
dinality constraint clause.

We can easily adapt Theorem 5.1 to this new definition.

Theorem 5.2. Let T be a universal and finitely axiomatized Σ-theory, where
Σ is finite. If T is weakly-∃-superposition-decidable, then T is strongly ∃∞-de-
cidable.

Proof. Decidability of Σ-constraints in T -models can be obtained by halting
the invariant superposition module, as soon as a cardinality constraint clause
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is generated at some stage i, and applying an SMT procedure for the theory
of equality or a model builder to the set of clauses produced by applying the
function Grounding of Figure 1 to Si. Satisfiability in infinite models is answered
negatively if a cardinality constraint clause is generated; otherwise, we have
termination of the invariant superposition module and if the empty clause is not
produced, satisfiability is reported by Lemma 5.2. )*

6 Conclusion and Future Work

By classifying the component theories according to the decidability of constraint
satisfiability problems in arbitrary and in infinite models, respectively, we ex-
hibited a theory T1 such that T1-satisfiability is decidable, but T1-satisfiability
in infinite models is undecidable. It follows that satisfiability in T1 ∪ T2 is unde-
cidable, whenever T2 has only infinite models, even if signatures are disjoint and
satisfiability in T2 is decidable. In the second part of the paper we strengthened
the Nelson-Oppen combination result, by showing that it applies to theories
over disjoint signatures, whose satisfiability problem, in either arbitrary or infi-
nite models, is decidable. We showed that this result covers decision procedures
based on superposition, offering an alternative to the results in [1].

An interesting line of future work consists of finding ad hoc contraction rules
which allow the superposition calculus to terminate on theories that do not admit
infinite models such as the T≤k’s considered in Section 5.4.
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Verifying Mixed Real-Integer Quantifier
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Abstract. We present a formally verified quantifier elimination proce-
dure for the first order theory over linear mixed real-integer arithmetics
in higher-order logic based on a work by Weispfenning. To this end we
provide two verified quantifier elimination procedures: for Presburger
arithmitics and for linear real arithmetics.

1 Introduction

The interest of theorem provers in decision procedures (dps.) for arithmetics is
inveterate. Noteworthily, the apparently first theorem prover [14] implements
a quantifier elimination procedure (qep.) for Presburger arithmetic (Z). This
paper presents a formally verified qep. for R"·# = Th(R, <,+, �.�, 0, 1) in higher-
order logic based on [38]. For a real number x, �x� is the greatest integer
less than or equal to x. Our development environment is Isabelle/HOL [27].
Weispfenning presented in [38] a qep. for R"·#, which reduces the qe. prob-
lem to qe. in Z and R = Th(R, <,+, 0, 1). In this paper, we formalize not
only this reduction, but also a qep. for Z and a qep. for R, which yields a
complete qep. for R"·#. In fact, our formalization is carried out in an exe-
cutable fragment of HOL, for which code generation [7] is possible. The in-
terest in R"·# is not only of theoretical nature (almost any non trivial exten-
sion of R"·# is undecidable, see [38] for several impossibility results), but also
practically motivated, since mixed real-integer constraints naturally rise in
verification.

Generated ML code from HOL functions [7] yields smoothly integratable ora-
cles returning sound answers, provided the code generator is correct. Accepting
these answers as equality proofs is often referred to by reflection. Many type
theory based theorem provers accept such proofs as part of their underlying
logic [21,8]. Reflection has been used and studied by many researchers and the
opinions range from enthusiasm [2,3] to scepticism concerning its utility in LCF
frameworks[19].

Regardless of reflection, implementations of dps. proved correct in the logic
are worthy for several reasons: (a) while even new considerations using depen-
dent types [1,23] fail to guarantee completeness of (complex enough) dps., the
approach we adopt does; (b) sharing theorems between HOL theorem provers
[29,26] provides a mechanism of sharing dps., which is an important issue to
achieve faster progress in theorem proving; (c) an LCF-conservative integration

U. Furbach and N. Shankar (Eds.): IJCAR 2006, LNAI 4130, pp. 528–540, 2006.
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is still possible, e.g. by specializing the simplifier to the involved defining equa-
tions (fast rewriting techniques [4] play an important role) or by instrumenting
code generators to produce LCF-proofs (Isabelle provides a prototypical imple-
mentation [6]); (d) no intimate knowledge of the internals of the underlying
theorem prover is needed. This makes the dps. easily portable and enables other
developers (and even normal users) insight into dps.-implementations, which are
the till now arcane.

The main contributions of our work are: (a) the first-time verified formaliza-
tion of a qep. for R"·# and R (à la [15]) in a theorem prover; (b) a perspicuous
and concise formalization (4000 lines including several optimizations) of a uni-
form treatment for linear arithmetics that is easily portable to other theorem
provers; (c) the most substantial application of reflection in a theorem prover
(as far as we are aware of); (d) a motivation to proof-producing code generators
as an alternative of reflection in LCF-based theorem provers.

Related Work. In [38] R"·# has been proved to admit quantifier elimination.
The overall procedure reduces the problem to qe. in R and Z. The decidability
of R is arguably due to Fourier [18]. The decidability of Z has been shown in-
dependently by Presburger [31] and Skolem [34]. Several other qep. have been
proposed for R [35,15,24] and for Z [12,33,32] and incited excellent complex-
ity studies [30,17,16,36,37]. Alternative dps. use automata [39,22]. Many the-
orem provers include implementations of qep. for Z and R [28,10,25] or for
some subsets [13]. A formalization of Cooper’s qep. for Z has been presented
in [11]. An automata based dp. for closed R"·#-formulae has been recently pro-
posed [9]. Since this procedure is based on sorts distinction for variables, it
does not provide a qep., see [38] for an excellent proof. An extension of [32]
to deal with real and integer variables is presented in [5]. The said extension
is noteworthily online and proof producing and hence useful for combination
frameworks based on the Nelson and Oppen method. The considered formulae
are quantifier free.

Notation. Datatypes are declared using datatype. Lists are built up from the
empty list [] and consing ·; the infix @ appends two lists. For a list l, {{l}} denotes
the set of elements of l, and l!n denotes its nth element. Functions are defined by
pattern matching. We use the letters u, x, y, z for reals and c, d, i, j for integers
and denote by i the injection of i into the reals. We call i a real integer. For i
and j we write i | j if i divides j. For x and y we define x | y ↔ ∃i.y = x·i. We
use i � j (resp. x � y) as a shorthand for ¬i | j (resp. ¬x | y). For x we denote by
�x� the greatest integer i such that i ≤ x. Note that �x� is an integer, not a real
integer. We use �x� as a shorthand for −�−x�.

The rest of this paper is structured as follows. In § 2 we set up the basis for
our formalization and then present the qep. for R"·# in a top-down fashion. In
§ 3 we formalize the overall procedure in terms of two qe. procedures: for R,
subject of § 4, and for Z, subject of § 5. In § 6 we describe some formalization
and integration issues.
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2 Preliminaries

2.1 Syntax and Semantics

We define the syntax of terms and formulae as follows:

datatype ρ = înt | vnat |− ρ | ρ + ρ | ρ − ρ | int ∗ ρ | �ρ�
datatype φ = ρ<0 | ρ>0 | ρ≤0 | ρ≥0 | ρ=0 | ρ �=0 | int | ρ | int ��� ρ

T | F | ¬ φ | φ∧φ | φ∨φ | φ→φ | φ↔φ | ∃φ | ∀φ
The real integer constant i in the logic is represented by the term î. Bound
variables are represented by de Bruijn indices: vn represents the bound vari-
able with index n (a natural number). Hence quantifiers need not carry variable
names. The bold symbols +, ≤0, ∧ etc are constructors and reflect their coun-
terparts +, λx.x ≤ 0, ∧ etc in the logic. We use �� 0 as a place-holder for
=0, �=0,<0,≤0,>0 or ≥0, all of them notably constructors with only one
argument. We use �t� to denote − �− t�.

Throughout the paper p and q (resp. s and t) are of type φ (resp. ρ).

[[̂i]]vs
ρ = i

[[vn]]vs
ρ = vs!n

[[− t]]vs
ρ = −[[t]]vs

ρ

[[t + s]]vs
ρ = [[t]]vs

ρ + [[s]]vs
ρ

[[t − s]]vs
ρ = [[t]]vs

ρ − [[s]]vs
ρ

[[i ∗ t]]vs
ρ = i·[[t]]vs

ρ

[[�t�]]vs
ρ = �[[t]]vs

ρ �

[[T ]]vs = True
[[F ]]vs = False
[[t <0]]vs = ([[t]]vs

ρ < 0)
[[t >0]]vs = ([[t]]vs

ρ > 0)
[[t ≤0]]vs = ([[t]]vs

ρ ≤ 0)
[[t ≥0]]vs = ([[t]]vs

ρ ≥ 0)
[[t=0]]vs = ([[t]]vs

ρ = 0)
[[t �=0]]vs = ([[t]]vs

ρ �= 0)

[[i | t]]vs = (i | [[t]]vs
ρ )

[[i ��� t]]vs = (i � [[t]]vs
ρ )

[[¬p]]vs = (¬[[p]]vs)
[[p ∧ q]]vs = ([[p]]vs ∧ [[q]]vs)
[[p ∨ q]]vs = ([[p]]vs ∨ [[q]]vs)
[[p → q]]vs = ([[p]]vs → [[q]]vs)
[[p ↔ q]]vs = ([[p]]vs ↔ [[q]]vs)
[[∃ p]]vs = (∃x.[[p]]x·vs)
[[∀ p]]vs = (∀x.[[p]]x·vs)

Fig. 1. Semantics of the shadow syntax

The interpretation functions ([[.]].ρ and [[.]].) in Fig. 1 map the representations
back into logic. They are parameterized by an environment vs which is a list of
real expressions. The de Bruijn index vn picks out the nth element from that
list. We say that x is a witness for p if [[p]]x·vs holds. It will alway be clear from
the context which vs is meant.

2.2 Generic Quantifier Elimination

Assume we have a function qe, that eliminates one ∃ in front of quantifier-
free formulae. The function qelimφ applies qe to all quantified subformulae in a
bottom-up fashion. Let qfree p formalize that p is quantifier-free (qf.). We prove
by structural induction that if qe takes a qf. formula q and returns a qf. formula
q′ equivalent to ∃ q, then qelimφ qe is a qep.:

(∀vs, q. qfree q → qfree (qe q) ∧ ([[qe q]]vs ↔ [[∃ q]]vs))
→ qfree (qelimφ qe p) ∧ ([[qelimφ qe p]]vs ↔ [[p]]vs).

(1)

In § 3 we present mir, an instance of qe satisfying the premise of (1).
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2.3 Linearity

When defining a function (over ρ or φ) we assume the input to have a precise
syntactical shape. This not only simplifies the function definition but is also cru-
cial for its correctness proof. The fact that v0 does not occur in a ρ-term t (resp.
in a φ-formula p) is formalized by unboundρ t (resp. unboundφ p). Substituting
t for v0 in p is defined by p[t]. Decreasing all variable indexes in p is defined by
decr p. These functions have such simple recursive definitions that the properties
(2) are proved automatically.

unboundφ p→ ∀x, y.[[p]]x·vs ↔ [[p]]y·vs

qfree p→ ([[p[t]]]x·vs ↔ [[p]]([[t]]
x·vs
ρ )·vs)

unboundφ p→ ∀x.[[decr p]]vs ↔ [[p]]x·vs

(2)

We define p to be R-linear (islinR p) if it is built up from ∧,∨ and atoms θ,
either of the form c ∗ v0 + t �� 0, such that unboundρ t ∧ c > 0, or satisfying
unboundφ θ . We define p to be Z-linear in a context vs (islinZ p vs) if in addition
to the previous requirements every t represents an integer, i.e. [[�t�]]vs

ρ = [[t]]vs
ρ .

Moreover i | c ∗ v0 + t and i ��� c ∗ v0 + t such that i > 0 ∧ c > 0 ∧
unboundρ t ∧ [[t]]vs

ρ = [[�t�]]vs
ρ , are Z-linear atoms. A R- (resp. Z-) linear formula

can be regarded as a formula in R (resp. Z), assuming v0 will be interpreted by
some x ∈ R (resp. by some i, i ∈ Z).

3 Quantifier Elimination for R�·�

The main idea is: “�·� is burdensome, get rid of it”. Notice that ∀x.0 ≤ x−�x� <
1 and hence ∃x.[[p]]x·vs ↔ ∃i, u.0 ≤ u < 1 ∧ [[p]](i+u)·vs. Let 0̂ ≤ v0 < 1̂ be a
shorthand for 1 ∗ v0 + 0̂≥0∧ 1 ∗ v0 + −̂1<0. Let split0 p = 0̂ ≤v0 < 1̂∧ p′,
where p′ results from p by replacing every occurrence of v0 by v0 + v1 and vi

by vi+1 for i > 0. We easily prove

qfree p→ ([[∃ p]]vs ↔ ∃i, u.[[split0 p]]
i·u·vs) (3)

One main contribution of [38] is to supply two functions linR and linZ, which,
assuming that v0 is interpreted by u ∈ [0, 1) (resp. by i), transform any qf. p
into a R- (resp. Z-) linear formula, cf. (5) and (4).

qfree p→ ([[linZ p]]i·vs ↔ [[p]]i·vs) ∧ islinZ (linZ p) (i · vs) (4)
qfree p ∧ 0 ≤ x < 1→ ([[linR p]]x·vs ↔ [[p]]x·vs) ∧ islinR (linR p) (5)

The next subsections exhibit linZ and linR, which mainly “get rid of �·�”. Now
given two qe. procedures qeRl

for R and qeZl
for Z satisfying:

islinR p→ ([[qeRl
0̂ ≤v0 < 1̂ ∧ p]]vs ↔ [[∃ 0̂ ≤v0 < 1̂ ∧ p]]vs) ∧ qfree(qeRl

p)
islinZ p→ ([[qeZl

p]]vs ↔ ∃i.[[p]]i·vs) ∧ qfree(qeZl
p)

then it is simple to prove that mir = qeZl
◦ linZ ◦ qeRl

◦ linR ◦ split0 satisfies the
premise of (1) and hence qelimφ mir is a qep. for φ-formulae. In § 4 and § 5 we
present instances of qeR and qeZ.
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3.1 linZ

In order to define linZ and prove (4), we first introduce a function splitZ that,
given a ρ-term t, returns an integer c and a ρ-term s (not involving v0), such
that (6) (Lemma 3.2 in [38]) holds. Note that v0 is interpreted by a real int-
eger i.

(splitZ t = (c, s))→ ([[c ∗ v0 + s]]i·vs
ρ = [[t]]i·vs

ρ ) ∧ unboundρs (6)

The definition of splitZ and the proof of (6) proceed by induction on t. If
t = �t′� then return (c, �s�), where splitZ t′ = (c, s). Remember that �x + j� =
�x�+ j holds for any j ∈ Z. The other cases are trivial.

Now linZ is simple: push negations inwards and transform atoms according to
the result of splitZ and the properties (7), cf. example 1 for the =0 case, where
the first property in (7) is used . By induction on p, we easily prove (4) using
the properties (6) and (7).

(c·i = y)↔ (c·i = �y� ∧ y = �y�)
(c·i < y)↔ (c·i < �y� ∨ (c·i = �y� ∧ �y� < y))

(d | c·i+ y)↔ (�y� = y ∧ d | c·i+ �y�)
0 | x↔ (x = 0)

(7)

Example 1

linZ (t=0) = let (c, s) = splitZ t in
if c = 0 then s=0
else if c > 0 then c ∗ v0 + �s�=0 ∧�s� − s=0
else − c ∗ v0 + �− s�=0∧�s� − s=0

3.2 linR

In order to define linR and prove (5), we first introduce a function splitR : ρ →
(φ× int× ρ)list that, given a ρ-term t, yields a complete finite case distinction
given by R-linear formulae φi and corresponding ρ-terms si (not involving v0)
and integers ci such that [[t]]u·vs

ρ = [[ci ∗ v0 + si]]u·vs
ρ whenever [[φi]]u·vs holds

(Lemma 3.3 in [38]), i.e.

∀(φi, ci, si) ∈ {{splitR t}}.([[φi]]u·vs → ([[t]]u·vs
ρ = [[ci ∗ v0 + si]]u·vs

ρ ))
∧unboundρ si ∧ islinR φi (8)

0 ≤ u < 1 → ∃(φi, ci, si) ∈ {{splitR t}}.[[φi]]u·vs (9)

The definition of splitR and the proof of (8) and (9) proceed by induction on
t. Assume t = �t′�, let (φ′i, c

′
i, s

′
i) ∈ {{splitR t′}} and assume [[φ′i]]

u·vs and c′i > 0.
From the induction hypothesis we have [[t′]]u·vs

ρ = [[c′i ∗ v0 + s′i]]
u·vs
ρ and since

0 ≤ u < 1 and c′i > 0 we have j ≤ c′i·u < j + 1 for some j ∈ {0 . . . c′i}, i.e.

j + �[[s′i]]u·vs
ρ � ≤ [[c′i ∗ v0 + s′i]]

u·vs
ρ < j + 1 + �[[s′i]]u·vs

ρ �



Verifying Mixed Real-Integer Quantifier Elimination 533

and hence �[[c′i ∗ v0 + s′i]]
u·vs
ρ � = j. For (φ′i, c

′
i, s

′
i) ∈ {{splitR t′}} splitR returns

the list of (φ′i ∧Aj , 0, �s� + ĵ), where j ∈ {0 . . . c′i}, where Aj = r − ĵ≥0∧ r −
ĵ + 1 <0 and r = c′i ∗ v0 + s′i − �s′i�. The cases c′i < 0 and c′i = 0, ignored in
[38], are analogous. The other cases for t are simple.

The definition of linR for atoms is involved, but very simple for the rest: it
just pushes negations inwards. Due to the result of splitR, assume that atoms
have the form f(c ∗ v0 + s), where s does not involve v0 and f ∈ {��0, λt.i |
t, λt.i ��� t for some i}. For every f , we define its corresponding R-linear version
fl : int → ρ → φ, and prove (10). Example 2 shows the case for =0 and the
corresponding definition of linR.

0 ≤ u < 1 ∧ unboundρ s ∧ ([[t]]u·vs
ρ = [[c ∗ v0 + s]]u·vs

ρ )

→ ([[fl c s]]u·vs ↔ [[f t]]u·vs) ∧ islinR (fl c s)
(10)

Example 2

c ∗ v0 + s=l 0 = if c = 0 then s=0 else
if c > 0 then c ∗ v0 + s=0 else − c ∗ v0 +− s=0

linR(t=0) = let [(p0, c0, s0), ..., (pn, cn, sn)] = splitR t
in (p0 ∧(c0 ∗ v0 + s0 =l 0))∨ ...∨(pn ∧(cn ∗ v0 + sn =l 0))

Since · | · and · ��� · are not R-linear, their corresponding linear versions eliminate
them at the cost of a case distinction according to (11).

0 ≤ u < 1 ∧ c > 0→
(d | c·u+ s↔ ∃j ∈ {0..c− 1}.(c·u = j + �s� − s) ∧ d | j + �s�) (11)

We implement this case distinction by dvd and · |l · follows naturally, ie.

d dvd c ∗ v0 + s = (c ∗ v0 + s − �s� − 0̂=0∧ d | �s� + ĉ− 1)∨ ...

∨(c ∗ v0 + s − �s� − ĉ− 1=0∧ d | �s� + ĉ− 1)
d |l c ∗ v0 + s = if d = 0 then c ∗ v0 + s=l 0 else

if c = 0 then d | s else
if c > 0 then |d| dvd c ∗ v0 + s
else then |d| dvd −c ∗ v0 +− s

Now we define linR(d | t) analogously to the =0-case.

linR(d | t) = let [(p0, c0, s0), ..., (pn, cn, sn)] = splitR t
g = λc, s.d |l c ∗ v0 + s

in (p0 ∧(g c0 s0))∨ . . .∨(pn ∧(g cn sn))

Note that linR has akin definitions for the atoms. In fact for an atom f(t), the
real definition is linR(f(t)) = splitl fl t, where

splitl fl t ≡ let [(p0, c0, s0), . . . , (pn, cn, sn)] = splitR t
in (p0 ∧(fl c0 s0))∨ . . .∨(pn ∧(fl cn sn)) (12)
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We prove the following simple, yet generic property for splitl
0 ≤ u < 1 ∧ (∀t, c, s.unboundρ s ∧ ([[t]]u·vs

ρ = [[c ∗ v0 + s]]u·vs
ρ )

→ ([[fl c s]]u·vs ↔ [[f t]]u·vs ∧ islinR (fl c s)))
→ islinR (splitl fl t) ∧ ([[splitl fl t]]u·vs ↔ [[f t]]u·vs)

(13)

Note that the premise of (13), which expresses that fl is a R-linear version of f ,
will be discharged by the instances of (10) for the different f ’s. After all these
preparations, it is not surprising that (5) is proved automatically.

4 Quantifier Elimination for R

We present ferrack, a verified qep. for R based on [15], and prove (14). To our
knowledge, this is the first-time verified formalization of this qep.

islinR p→ [[ferrack(0̂ ≤v0 < 1̂ ∧ p)]]vs ↔ [[∃ 0̂ ≤v0 < 1̂∧ p]]vs (14)

The implementation of ferrack is based on (15) (Lemma 1.1 in [15]), a con-
sequence of the nature of R-expressible sets: for a R-linear formula p, the set
{x|[[p]]x·vs} is a finite union of intervals, whose endpoints are either [[t]]x·vs

ρ

c for
some (t, c) ∈ {{U p}} (cf. Fig. 2), −∞ or +∞. In Fig. 2, p− and p+ are defined as

p U p B p p− p+

p ∧ q (U p)@(U q) (B p)@(B q) p− ∧ q− p+ ∧ q+

p ∨ q (U p)@(U q) (B p)@(B q) p− ∨ q− p+ ∨ q+

c ∗ v0 + t=0 [(− t, c)] [−̂1 − t] F F
c ∗ v0 + t �=0 [(− t, c)] [− t] T T
c ∗ v0 + t <0 [(− t, c)] [] T F
c ∗ v0 + t ≤0 [(− t, c)] [] T F
c ∗ v0 + t >0 [(− t, c)] [− t] F T

c ∗ v0 + t ≥0 [(− t, c)] [−̂1 − t] F T
[] [] p p

Fig. 2. U p, B p, p−, p+

to simulate the behavior of p, where v0 is interpreted by arbitrarily small (resp.
big) real numbers.

islinR p→ (∃x.[[p]]x·vs ↔ [[p−]]x·vs ∨ [[p+]]x·vs

∨∃((t, i), (s, j)) ∈ {{U p}}2.[[p]](([[t]]
x·vs
ρ /i+[[s]]x·vs

ρ /j)/2)·vs)
(15)

For the proof of (15), assume islinR p. The conclusion of (15) has the form
A ↔ B ∨ C ∨D. Obviously D → A holds. We first prove B → A and C → A.
For this we prove the following properties for p− and p+ by induction on p. The
proof is simple: we provide y.

islinR p→ unboundφ (p−) ∧ ∃y.∀x < y.[[p−]]x·vs ↔ [[p]]x·vs (16)
islinR p→ unboundφ (p+) ∧ ∃y.∀x > y.[[p+]]x·vs ↔ [[p]]x·vs (17)
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Now assume that [[p−]]x·vs holds for some x. Since unboundφ p− holds, we have
by (2) that [[p−]]z·vs holds for any z, e.g. for z < y, where y is obtained from
(16). Consequently z is a witness for p. Analogously we prove ∃x.[[p+]]x·vs →
∃x.[[p]]x·vs. This finishes the proof of B ∨ C ∨ D → A. Now we only have to
prove A∧ ¬B ∧ ¬C → D. For this assume [[p]]x·vs for some x and ¬[[p−]]x·vs and
¬[[p+]]x·vs. This means that x is a withness for p that is neither too large nor too
small. Hence x must lie in an interval with endpoints in Mp = { [[t]]x·vs

ρ

i |(t, i) ∈
{{U p}}}. This is expressed by (18).

islinR p ∧ ¬[[p−]]x·vs ∧ ¬[[p+]]x·vs ∧ [[p]]x·vs

→ ∃((t, i), (s, j)) ∈ {{U p}}2.
[[t]]x·vs

ρ

i
≤ x ≤

[[s]]x·vs
ρ

j

(18)

The proof of (18) is easy. In fact its main part is done automatically. Now
we conclude that either x ∈ Mp, in which case we are done (remember that
x+x

2 = x), or we can find the smallest interval with endpoints in Mp containing
x, i.e. lx < x < ux ∧ ∀y.lx < y < ux → y �∈ Mp for some (lx, ux) ∈ M2

p . The
construction of this smallest interval is simple.

Now we prove a main property of R-formulae (19), which shows the the ex-
pressibility limitations of R. A R-formula p does not change its truth value over
smallest intervals with endpoints in Mp, i.e.

islinR p ∧ l < x < u ∧ (∀y.l < y < u→ y �∈Mp)
∧[[p]]x·vs → ∀y.l < y < u→ [[p]]y·vs (19)

The proof of (19) is by induction on p. The cases �=0 and =0 are trivial.
Assume p is c ∗ v0 + t<0 and let z = − [[t]]x·vs

ρ

c . From [[p]]x·vs we have x < z.
Since l < y < u and z ∈ Mp we have y �= z. Hence y < z (which is [[p]]y·vs), for
if y > z then l < z < u, which contradicts the premises since z ∈Mp. The other
interesting cases are proved analogously.

Since [[p]]x·vs and lx < x < ux ∧ ∀y.lx < y < ux → y �∈Mp for some (lx, ux) ∈
M2

p , we conclude that [[p]]z·vs for any z such that lx < z < ux. Taking z = lx+ux

2
finishes the proof of (15).

In order to provide an implementation of ferrack, we define in Fig. 3 a function
to simulate the substitution of (

[[t]]x·vs
ρ

i +
[[s]]x·vs

ρ

j )/2 for v0 in p, since division is not

included in our language. We use the notation p[( t
i+

s
j )/2] for this substitution.

The main property is expressed by

islinR p ∧ i > 0 ∧ j > 0 ∧ unboundρ t ∧ unboundρ s

→ unboundφ(p[(
t

i
+
s

j
)/2])

∧([[p[(
t

i
+
s

j
)/2]]]x·vs ↔ [[p]](([[t]]

x·vs
ρ /i+[[s]]x·vs

ρ /j)/2)·vs)

(20)
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For the implementation of the bounded existential quantifier in (15) we use a
function eval∨, which basically evaluates a function f lazily over a list
[a0, . . . , an]. The result represents f a0 ∨ . . .∨ f an, i.e.

∀vs, ps.[[eval∨ f ps]]vs ↔ ∃p ∈ {{ps}}.[[f p]]vs (21)

(p ∧ q)[( t
i
+ s

j
)/2] = p[( t

i
+ s

j
)/2]∧ q[( t

i
+ s

j
)/2]

(p ∨ q)[( t
i
+ s

j
)/2] = p[( t

i
+ s

j
)/2]∨ q[( t

i
+ s

j
)/2]

(c ∗ v0 + t′ ��0)[( t
i
+ s

j
)/2] = 2·j ∗ t + 2·i ∗ s + 2·i·j ∗ t′ ��0

p[( t
i
+ s

j
)/2] = p

ferrack p = let σ = λ((t, i), (s, j)).p[( t
i
+ s

j
)/2]; U = U p

in decr(eval∨ σ (allpairs U U))

Fig. 3. Substitution,eval∨ and ferrack

The implementation of ferrack is given in Fig. 3. The function allpairs satisfies
{{allpairs xs ys}} = {{xs}}×{{ys}}. For a R-linear formula p, [[ferrack p]]vs is hence
equivalent to

∃((t, i), (s, j)) ∈ {{U p}}2.[[p]](([[t]]x·vs
ρ /i+[[s]]x·vs

ρ /j)/2)·vs.

The proof of (14) needs the following observation. Recall that the input to
qeRl

in mir (cf. § 3) is p = 0̂ ≤v0 < 1̂ ∧ p′, for some linear formula p′ and hence
[[p−]]x·vs ↔ [[p+]]x·vs ↔ False and consequently ferrack correctly ignores p− and
p+ (recall (15)). An implementation that covers all R-linear formulae should
simply include p− and p+.

5 Quantifier Elimination for Z

We present cooper, a verified qep. for Z based on [12], and prove (22).

islinZ p (i · vs)→ [[cooper p]]vs ↔ ∃i.[[p]]i·vs (22)

The input to Cooper’s algorithm is a Z-linear formula p. We only consider
linear formulae where the coefficients of v0 are 1̂, since ∃i.Q(d·i)↔ ∃i.d | i∧Q(i)
holds. It is straightforward to convert p into p′ = adjust p d, and prove (23), cf.
[11].

islinZ p (i · vs) ∧ dvdĉ p d ∧ d > 0 → islinZ (adjust p d) (i · vs)
∧dvdĉ (adjust p d) 1 ∧ [[adjust p d]](d·i)·vs ↔ [[p]]i·vs (23)

islinZ p (i · vs)→ dvdĉ p (lcmĉ p) ∧ lcmĉ p > 0 (24)

The predicate dvdĉ p d is true exactly when all the coefficients ĉ of v0 in p
satisfy c | d. A candidate for d is lcm{c|c ∗ v0 occurs in p}, which is computed
recursively by lcmĉ, cf. (24).
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cooper p = let d = lcmĉ p; q = d | 1 ∗ v0 + 0̂∧(adjust p d); δ = δq;
M = eval∨ (λj.q−[ĵ])[1..δ];
B = eval∨ (λ(b, j).q[b + ĵ]) (allpairs (B q) [1..δ]) in
decr(M ∨ B)

Fig. 4. cooper

A fundamental property is that, for any Z-linear p, the set {i|[[p]]i·vs} differs
from a periodic subset of Z only by a finite set (involving B p, cf. Fig. 2). Let δp

be lcm{d|d | 1 ∗ v0 + t occurs in p}, then (25) (Cooper’s theorem [12]) expresses
this fundamental property.

islinZ p (i · vs) ∧ dvdĉ p 1→

∃i.[[p]]i·vs ↔ ∃j ∈ {1..δp}.[[p−]]j·vs ∨ ∃b ∈ {{B p}}.[[p]](j+[[b]]i·vs
ρ )·vs

(25)

The proof is simple and we refer the reader to [12,28,10,20] for the mathe-
matical details and to [11] for a verified formalization.

The implementation of cooper is shown in Fig. 4. First the coefficients of v0
are normalized to one. This step is correct by (23) and (24). After computing δ p
and B p, the appropriate disjunction is generated using eval∨. The properties
(21),(25) and (2) finish the proof of (22).

6 Formalization and Integration Issues

6.1 Normal Forms

When defining a function (over ρ or φ) we assume the input to have a pre-
cise syntactical shape, i.e. satisfy a given predicate. This not only simplifies the
function definition but is also crucial for its correctness proofs. In [11], such
functions used deeply nested pattern matching, which gives rise to a consider-
able number of equations, for the recursive definitions package avoids overlapping
equations by performing completion. To avoid this problem, the ρ-datatype con-
tains additional constructor CX int ρ, not shown so far. Its intended meaning
is [[CX c t]]vs

ρ = [[c ∗ v0 + t]]vs
ρ . In fact all the previous occurrences of c ∗ v0 + t

can be understood as a syntactic sugar for CX c t. Both proofs and implementa-
tion are simpler. In the ρ-datatype definition we also included only multiplication
by a constant and it was maladroit not to do so in [11].

6.2 Optimizations

Our implementation includes not only the optimization presented in § 4, i.e. omit-
ting the generation of p− and p+ in ferrack, but also several others, left out for space
limitations. For instance several procedures scrutinize and simplify ρ-terms and φ-
formulae. These are also used to keep the U, cf. § 4, and B, cf. § 5, small, which
considerably affects the output size of ferrack and cooper. The evaluation of large
disjunctions is done lazily. In [12], Cooper proved a dual lemma to (25) that uses
substitution of arbitrary large numbers, cf. p+ in Fig. 2 and a set A, dual to B. We
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formalized this duality principle, cf. [11] formore details, and choose the smaller set
in the implementation. The generic qep. qelimφ, cf. § 2.2, pushes ∃ inwards before
every elimination. All these optimizations are formally proved correct.

6.3 Integration

We integrate the formalized qep. by providing an ML-function reif. Given a HOL
subgoal P , it constructs a φ-formula p and a HOL-list vs such that the theorem
[[p]]vs = P canbeproved inHOL.Obviouslywe can replace [[p]]vs by [[qelimφ mir p]]vs

and then we either use rewriting or run the generated code, depending on our trust
in the code generator. Of course reif can not succeed on every subgoal, since φ-
formulae represent only a (small) subset of HOL-formulae.Note that the complete-
ness of the integrated qep. relies entirely on the completeness of reif.

6.4 Performance

Since our development is novice, we have only tested the qep.for small reasonable
looking examples. The generated code proves e.g. ∀x.2·�x� ≤ �2·x� ≤ 2·�x+ 1�
within 0.06 sec. but needs more than 10 sec. to prove ∀x, y.�x� = �y� → 0 ≤
|y − x| ≤ 1. The main causes are as follows:

– mir reduces the problem blindly to R and Z, while often only qeR or qeZ is
sufficient to eliminate ∃.

– The substitution in Fig. 3 gratuitously introduces big coefficients, which
heavily influences the output size of cooper.

– cooper introduces big coefficients (which appear in · | · atoms!), due to the
global nature of the method (see [33]), which heavily influences the output
size of linR.

Solving these problems is part of our future work.

7 Conclusion

We presented a formally verified and executable qep. for R"·#, based on [38], and
corroborate the maturity of modern theorem provers to assist formalizing state
of the art qep. within acceptable time (1 month) and space (4000 lines). Our
formalization includes a qep. for R à la [15] and Copper’s qep. for Z, that could
be replaced by more efficient yet verified ones, e.g. [24,33]. Our work represents a
new substantial application of reflection as well as a challenge for code generators,
e.g. [7], to generate proof-producing code. Decision procedures developed this
way are easier to maintain and to share with other theorem provers. This is
one key issue to deal with the growing challenges, such as Flyspeck1, modern
theorem provers have to face.
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31. Mojzesz Presburger. Über die Vollständigkeit eines gewissen Systems der Arith-
metik ganzer Zahlen, in welchem die Addition als einzige Operation hervortritt. In
Comptes Rendus du I Congrès des Math. des Pays Slaves, pages 92–101, 1929.

32. William Pugh. The Omega test: a fast and practical integer programming algorithm
for dependence analysis. In Proceedings of the 1991 ACM/IEEE conference on
Supercomputing, pages 4–13. ACM Press, 1991.

33. C. R. Reddy and D. W. Loveland. Presburger arithmetic with bounded quantifier
alternation. In STOC ’78: Proceedings of the tenth annual ACM symposium on
Theory of computing, pages 320–325, New York, NY, USA, 1978. ACM Press.
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Abstract. We introduce a Presburger modal logic PML with regularity
constraints and full Presburger constraints on the number of children
that generalize graded modalities, also known as number restrictions
in description logics. We show that PML satisfiability is only pspace-
complete by designing a Ladner-like algorithm. This extends a well-
known and non-trivial pspace upper bound for graded modal logic.
Furthermore, we provide a detailed comparison with logics that con-
tain Presburger constraints and that are dedicated to query XML doc-
uments. As an application, we show that satisfiability for Sheaves
Logic SL is pspace-complete, improving significantly its best known up-
per bound.

1 Introduction

Logics for XML Documents. In order to query XML documents with Pres-
burger and/or regular constraints, logical and automata-based formalisms have
been recently introduced [ZL06, SSMH04, BT05] leading to various expressive-
ness and complexity results about logics and specialized tree automata. As
usual, XML documents are viewed as labeled, unranked ordered trees. For in-
stance, a logic with fixed-point operators, Presburger and regularity constraints
is shown exptime-complete in [SSMH04], improving results for description log-
ics with qualified number restrictions [CG05]. At the same period, the sister logic
SL (“Sheaves Logic”) is shown decidable in [ZL03]. The more expressive logic
GDL is however shown undecidable in [ZL06] since GDL can express properties
about disjoint sequences of children. More generally, designing modal logics for
semistructured data, either for tree-like models [Mar03, ABD+05] or for graph-
like models [ADdR03, BCT04] has been a fruitful approach since it allows to
reuse known technical machineries adapted to special purpose formalisms.

Our Motivation. The main goal of this work is to introduce a modal logic
allowing Presburger constraints (more general than those in graded modal log-
ics [BC85, Tob00] or description logics [HST00, CG05]) and with regularity con-
straints as in the logical formalisms from [Wol83, ZL03, SSMH04] but with a
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satisfiability problem in polynomial space which would refine decidability and
complexity results from [Tob00, SSMH04, ZL06]. Such an hypothetical logic
would be much more helpful than the minimal modal logic K that is also known
to be pspace-complete [Lad77] but K has not the ability to express such complex
Presburger and regularity constraints. With such requirements, fixed-point op-
erators are out of the game since modal µ-calculus is already exptime-complete.
Similarly, Presburger constraints should be in a normal form since full Presburger
logic has already a complexity higher than 2exptime. It is worth observing that
as far as memory ressources are concerned, no exptime-complete problem is
known to be solved in polynomial space. Hence, the potential difference between
exptime-completeness and pspace-completeness remains, so far, a significant
gap in practice for running algorithms.

Our Contribution. We consider a Presburger modal logic PML with full Pres-
burger constraints on the number of children and with regularity constraints.
It is a minor variant of either the fixed-point free fragment of [SSMH04] or
the Sheaves Logic SL [ZL06]. The exact relationships between PML, SL and
the logic from [SSMH04] are provided in the paper. We show that the satis-
fiability problem is pspace-complete (only the binary representation for inte-
gers is used). The complexity upper bound is proved with a Ladner-like al-
gorithm, see the original one in [Lad77] and strongly related tableaux meth-
ods in [Gor99]. This result generalizes what is known about graded modal
logic [Fin72, BC85, Tob00] and apart from its larger scope, we believe our
proof is also much more transparent. Even though some of the bounds used
in our algorithm are obtained by a careful analysis of proofs from [SSMH04],
our algorithm can be viewed as the optimal composition between an algorithm
that transforms a PML formula into a Presburger tree automata and an algo-
rithm that tests emptiness for these peculiar Presburger tree automata. This
provides a new and non-trivial pspace complexity upper bound that is not a
direct consequence of [SSMH04] since composing a polynomial space reduction
with a polynomial space test does not imply the existence of a direct poly-
nomial space test for the composition. For example, runs of linearly-bounded
alternating Turing machines can be computed in polynomial space and test-
ing if a run is accepting can be done in polynomial space in the size of the
run. However, since apspace = exptime, it is unlikely that the composition
can be done in pspace. Additionally, our algorithm substantially refines results
from [ZL03, SSMH04]. Indeed, as by-products of the pspace-completeness of
PML, we show that SL satisfiability [ZL06] is pspace-complete, the fixed-point
free fragment of the main logic from [SSMH04] is also pspace-complete and
the logic PDLtree from [ABD+05] is undecidable when extended with Presburger
constraints. The complexity upper bounds are established via a logspace reduc-
tion whereas the pspace lower bound is proved by reducing satisfiability for
the modal logic K restricted to the only truth constants as atomic formulae and
characterized by the class of all the Kripke structures or equivalently by the class
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of all finite trees. Indeed, pspace-hardness of this very K fragment is already
known [Hem01].

Omitted proofs can be found in the report [DL06].

2 Presburger Modal Logic

Given countably infinite sets AP = {p1, p2, . . .} of propositional variables and
Σ = {R1, R2, . . .} of symbol relations, we define the set of formulae and terms
inductively as follows: φ ::= p | ¬φ | φ∧φ | t ∼ b | t ≡k c | A(R, φ1, . . . , φn)
and t ::= a × &Rφ | t + a × &Rφ, where p ∈ AP, R ∈ Σ, b, k, c ∈ N, a ∈ Z,
∼∈ {<,>,=} and A is a nondeterministic finite-state automaton over an n-
letter alphabet ΣA in which the letters are linearly ordered ΣA = a1, . . . , an.
The language accepted by A is denoted by L(A). We write |φ| to denote the size
of the formula φ with some reasonably succinct encoding and md(φ) to denote
the “modal degree” of φ defined as the maximal number of imbrications of the
symbol & in φ.

A term of the form a1× &R1φ1 + . . .+am× &Rmφm is abbreviated by Σiai&
Riφi.

Because of the presence of Boolean operators and quantifier-elimination for Pres-
burger arithmetic, any kind of Presburger constraints can be expressed in this
formalism, maybe less concisely with respect to an analogous language with
quantifiers. We assume in the following that the automata are encoded reason-
ably succinctly and the elements in Z are represented with a binary encoding.

A model M for PML is a structure M = 〈T, (RR)R∈Σ , (<R
nd)nd∈T , l〉 where

– T is the set of nodes (possibly infinite),
– (RR)R∈Σ is a family of binary relations in T × T such that for all R ∈ Σ and
nd ∈ T , the set {nd′ ∈ T : 〈nd, nd′〉 ∈ T } is finite (finite-branching),

– each relation <R
nd is a total ordering on the RR-successors of nd,

– l : T → 2AP is the valuation function.

In the rest of the paper, we write RR(nd) = nd1 < . . . < ndα to mean that
RR(nd)

def= {nd′ ∈ T : 〈nd, nd′〉 ∈ RR} = {nd1, . . . , ndα}, and nd1 <
R
nd . . . <R

nd

ndα. Given a finite-branching binary relation R ⊆ T × T , we write R�(q) to
denote the cardinal of the set {q′ ∈ T : 〈q, q′〉 ∈ R}. The satisfaction relation is
inductively defined below where M is a model for PML and nd ∈ T :

– M, nd |= p iff p ∈ l(nd); M, nd |= ¬φ iff not M, nd |= φ,
– M, nd |= φ1 ∧ φ2 iff M, nd |= φ1 and M, nd |= φ2,
– M, nd |= Σiai&

Riφi ∼ b iff ΣiaiR
�
Ri,φi

(nd) ∼ b with RRi,φi = {〈nd′, nd′′〉 ∈
T × T : 〈nd′, nd′′〉 ∈ RRi

, and M, nd′′ |= φi},
– M, nd |= Σiai&

Riφi ≡k c iff there is n ∈ N such that ΣiaiR
�
Ri,φi

(nd) = nk+c,
– M, nd |= A(R, φ1, . . . , φn) iff there is ai1 · · · aiα ∈ L(A) such that RR(nd) =
nd1 < . . . < ndα and for every j ∈ {1, . . . , α}, M, ndj |= φij .

The automata in PML are used exactly as those defining temporal operators
in extended temporal logic [Wol83]. The modal operator � (see e.g. [BdRV01])
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is defined by �φ ≈ &Rφ � 1 (and dually �φ ≈ &R¬φ = 0) whereas formula ��nφ
from graded modal logic is defined by ��nφ ≈ &Rφ � n. A basic example of
what PML can express and graded modal logic cannot is that “there are twice
more children satisfying p than children satisfying q” which can be stated by
&Rp− 2&Rq = 0.

A formula φ of PML is satisfiable whenever there exist a model M =
〈T, (RR)R∈Σ , (<R

nd)nd∈T , l〉 and nd ∈ T such that M, nd |= φ. Even though PML
models are defined from general Kripke structures (apart from the fact that
they are finite-branching), we show below that we can restrict ourselves to finite
unranked ordered trees.

Lemma 1. For every PML formula φ, φ is satisfiable iff φ is satisfiable in a
model M such that for all relation symbols R occurring in φ and nd ∈ T , the
restriction of 〈T,RR〉 to R∗

R(nd) is a tree.

Proof. Suppose that φ has a PML model M = 〈T, (RR)R∈Σ, (<R
nd)nd∈T , l〉 and

state nd ∈ T such that M, nd |= φ. We build a model M′ satisfying the tree
condition by unfolding M in the standard way. However, it remains to define
the corresponding linear ordering. The model M′ = 〈T ′, (SR)R∈Σ , (<

′R
nd)nd∈T ′ , l′〉

is defined as follows:

– T ′ is the set of finite non-empty sequences of the form nd R1 nd1 . . . Rk ndk,
– (nd R1 nd1 . . . Rnndn) SR (nd R1 nd1 . . .Rn ndn Rn+1 ndn+1) iff 〈ndn, ndn+1〉 ∈
RR and R = Rn+1,

– l′(nd R1 nd1 . . . Rn ndn) = l(ndn) for every nd R1 nd1 . . . Rn ndn ∈ T ′,
– each ordering <

′R
nd′ is the one induced by <R

nd by considering the last element
nd of the sequence nd′.

One can show that for every nd R1 nd1 . . . Rn ndn ∈ T ′ and PML formula ψ,
M′, nd R1 nd1 . . . Rn ndn |= ψ iff M, ndn |= ψ. In particular M, 〈nd〉 |= φ.

Since the formula tree of every formula is finite and Presburger or regular con-
straints only speak about direct successors, we can establish the result below.

Lemma 2. For every PML formula φ, φ is satisfiable iff φ is satisfiable in a
model M such that T is finite and for all relation symbols R occurring in φ and
nd ∈ T , the restriction of 〈T,RR〉 to R∗

R(nd) is a tree.

Additionally, one relation symbol suffices as a consequent of the result below.

Lemma 3. For every PML formula φ, one can compute in logspace a PML
formula φ′ with a unique relation symbol R such that φ is satisfiable on finite
trees iff φ′ is satisfiable on finite trees.

In the rest of the paper, we assume that Σ is a singleton set {R}, we write
A(φ1, . . . , φn) instead of A(R, φ1, . . . , φn) and &φi instead of &Rφi. Models are
written as tuples 〈T,R, (<nd)nd∈T , l〉.
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3 An Optimal Algorithm for PML Satisfiability

In this section, we show that PML satisfiability can be solved in polynomial
space by using a Ladner-like algorithm [Lad77]. The original algorithm [Lad77]
is designed for the modal logics K and S4, see a tense extension in [Spa93].

3.1 Consistent Sets of Formulae

We define below a notion of closure à la Fisher-Ladner [FL79] for finite sets of
formulae. Intuitively, the closure cl(X) of X contains all the formulae useful to
evaluate the truth of formulae in X .

Definition 1. Let X be a finite set of formulae. cl(X) is the smallest set of
formulae such that

– X ⊆ cl(X), cl(X) is closed under subformulae,
– if ψ ∈ cl(X), then ¬ψ ∈ cl(X) (we identify ¬¬ψ with ψ),
– if t ∼ b ∈ cl(X), then t ∼′ b ∈ cl(X) for every ∼′∈ {<,>,=},
– let K be the lcm of all the constants k occurring in subformulae of the form
t ≡k c. Without any loss of generality, we can assume that ≡K does not occur
in φ. If t ≡k c ∈ cl(X), then t ≡K c′ ∈ cl(X) for every c′ ∈ {0, . . . ,K − 1}.

A set X of formulae is said to be closed iff cl(X)=X . Observe that card(cl(X)) is
exponential in card(X), which is usually not a good start to establish a polyno-
mial space upper bound. Nevertheless, consistent sets of formulae, the ones that
may be satisfiable, contain exactly one formula from {t ≡K c : c ∈ {0, . . . ,K−1}}
for each constraint t ≡k c′ in X . Hence, as shown below, encoding consistent
sets will require only linear space.

We refine the notion of closure by introducing a new parameter n: the distance
from the root node to the current node where the formulae are evaluated. Each
set cl(n, φ) is therefore a subset of cl(φ).

Definition 2. Let φ be a PML formula. For n ∈ N, cl(n, φ) is the smallest set
such that:

– cl(0, φ) = cl({φ}), for every n ∈ N, cl(n, φ) is closed,
– for all n ∈ N and &ψ occurring in some formula of cl(n, φ), ψ ∈ cl(n+ 1, φ),
– for all n ∈ N and A(φ1, . . . , φm) ∈ cl(n, φ), {φ1, . . . , φm} ⊆ cl(n+ 1, φ).

We are only interested in subsets of cl(n, φ) whose conjunction of its elements is
PML satisfiable. A necessary condition to be satisfiable is to be consistent locally,
i.e. at the propositional level and at the level of Presburger constraints. As far
as these latter constraints are concerned, we are more interested to introduce
a notion of consistency that allows a polynomial space encoding of consistent
sets than to guarantee that the Presburger constraints in a given set are indeed
satisfiable. This latter property is checked with constraint systems (see below)
in the main algorithm. This is analogous to the requirement to check maximal
consistency at the propositional level but not PML satisfiability at once.
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Definition 3. A set X ⊆ cl(n, φ) is said to be n-locally consistent iff the con-
ditions below hold:

– if ¬ψ ∈ cl(n, φ), then ¬ψ ∈ X iff ψ �∈ X,
– if ψ1 ∧ ψ2 ∈ cl(n, φ), then ψ1 ∧ ψ2 ∈ X iff ψ1, ψ2 ∈ X,
– if t ∼ b ∈ cl(n,X) then there is a unique ∼′∈ {<,>,=} s.t. t ∼′ b ∈ X,
– if t ≡k c ∈ cl(n,X), then there is a unique c′ ∈ {0, . . . ,K − 1} such that
t ≡K c′ ∈ X,

– if t ≡k c ∈ cl(n,X), then ¬t ≡k c ∈ X iff there is c′ ∈ {0, . . . ,K − 1} such
that t ≡K c′ ∈ X and not c′ ≡k c,

– if t ∼ b ∈ cl(n,X) then ¬t ∼ b ∈ X iff there is ∼′∈ {<,>,=} \ {∼} such
that t ∼′ b ∈ X.

Lemma 4. Let φ be a PML formula and n ∈ N. (I) Every n-locally consistent
set has cardinal at most 2× |φ| and can be encoded with a polynomial amount of
bits with respect to |φ|. (II) cl(|φ|, φ) = ∅.

Let X be an n-consistent subset of cl(n, φ). The set X is encoded as follows. To
each subformula ψ in cl(n, φ) that is neither a periodicity constraint of the form
t ≡K c, nor a constraint of the form t ∼ b, we associate a bit encoding whether ψ
belongs to X . To each formula of the form t ∼ b in cl(n, φ), we associate a value
∼′ in {<,>,=} encoding the fact that t ∼′ b belongs to X . Analogously, to each
formula of the form t ≡k c in cl(n, φ), we associate a value c′ in {0, . . . ,K − 1}
encoding the fact that t ≡K c′ belongs to X . This unique c′ requires O(|φ|) bits
to be encoded. Hence, each n-consistent subset of cl(n, φ) can be encoded with
O(|φ|2) bits.

3.2 Constraint Systems

In this section, we explain how a consistent set induces solutions from numerical
constraint systems based on the Presburger and regularity constraints. A con-
straint system S over the set of variables {x1, . . . , xn} is a Presburger formula
built over {x1, . . . , xn} that is a Boolean combination of atomic constraints of
the form Σjaj × xij = b with each aj ∈ Z and b ∈ N. A positive solution for
S is an element x ∈ Nn such that x |= S in Presburger arithmetic. We base
our analysis on the following lemma, which follows from a result of Papadim-
itriou [Pap81].

Lemma 5. Let S be a constraint system over {x1, . . . , xn}. S has a positive
solution iff there is a positive solution s.t. all the coefficients are bounded by
(n+2×m)× (2×m+(a+1))4m+1 where a is the maximal absolute value among
the constants occurring in S and m is the number of atomic constraints in S.

Given a PML formula φ and an n-locally consistent set X , we associate a con-
straint system SX as follows. The number of (n + 1)-locally consistent sets is
bounded by nb(n + 1) def= 2p1(|φ|) for some polynomial p1(·) and we denote be-
low such sets by Y1, . . . , Ynb(n+1). The system SX contains the variables x1, . . . ,
xnb(n+1). To each formula ψ ∈ cl(n+ 1, φ) that is not a periodicity constraint of



Presburger Modal Logic Is PSPACE-Complete 547

the form t ≡K c, we associate the term tψ = Σi,ψ∈Yixi. Remember that we have
assumed wlog that formulae of the form t ≡K c belongs to the closure sets but
are not atomic formulae occurring in φ. We shall define SX as a conjunction of
the constraints below:

– ΣYi is not satisfiable xi = 0,
– if Σiai&φi = b ∈ X , then we add Σiaitφi = b,
– if Σiai&φi < b ∈ X , then we add Σiaitφi + y = b− 1 where y is new,
– if Σiai&φi > b ∈ X , then we add Σiaitφi − y = b+ 1 where y is new,
– if Σiai&φi ≡K c ∈ X , then we add Σiaitφi −Ky = c where y is new,
– if A1(φ1

1, . . . , φ
1
n1

), . . . ,Al(φl
1, . . . , φ

l
nl

) and ¬A′
1(ψ1

1 , . . . , ψ
1
m1

), . . . ,
¬A′

l′ (ψ
l′

1 , . . . , ψ
l′

m′
l
) are all the automaton-based formulae in X , then we add

the Presburger formula of the form

∨
∃ . . . yi,j

k . . . zi,j
k . . . (

∧

i,j

(tφj
i

= ai,j
0 +Σky

i,j
k ai,j

k )∧(
∧

i,j

tψj
i

= bi,j0 +Σkz
i,j
k bi,jk ))

such that each disjunct has at most 2p1(|φ|) + 22×|φ|2 variables and the ab-
solute values of the coefficients ai,j

k and bi,jk are bounded by 22×|φ|.
The positive solutions form the Parikh image of the language L(A1) ∩ · · · ∩
L(An1) ∩ −L(A′

1) ∩ · · · ∩ −L(A′
m1

) over the alphabet Y1, . . . , Ynb(n+1). A
transition q

ai−→ q′ in A1(φ1
1, . . . , φ

1
n1

) is read as a concise representation for

the transitions of the form q
Y−→ q′ with φ1

i ∈ Y . The existence of such a
formula is a consequence of the proof of [SSMH04, Theorem 3] and the proof
of [SSMH04, Theorem 6]. Indeed, computing the minimal and determin-
istic automaton for the product of A1, . . . ,Al,A′

1, . . . ,A′
l′ over the alpha-

bet {Y1, . . . , Ynb(n+1)} produces a constraint system of dimension nb(n+ 1)
with doubly exponential number of variables and coefficients bounded by an
exponential value in |φ| [VSS05]. However, the constraints induced by the
automaton-based formulae involve subformulae of φ and the latter system
can be reduced to a system with only an exponential amount of variables
using some combinatorial argument from [SSMH04, Theorem 6].

If we restrict ourselves to the fragment of PML with at most k regularity con-
straints per formulae and deterministic automata, say PMLdet

k , then an automa-
ton A accepting L(A1)∩ · · · ∩ L(An1)∩−L(A′

1)∩ · · · ∩−L(A′
m1

) (n1 +m1 � k)
can be built in polynomial-time in |φ| and then a Presburger formula for the
Parikh image of L(A) in linear-time in A using [VSS05, Theorem 4]. In the case
PML is studied in full generality instead of a specific PMLdet

k , one needs to take
advantage of this huge disjunction. The number of disjuncts may be (double)
exponential but each disjunct will satisfy the good size properties to get pspace.
The construction of SX is done in the way that allows to state the result below:

Lemma 6. Let φ be a PML formula, d ∈ {0, . . . , |φ|} and X be a d-locally
consistent of formulae. Then, X is PML satisfiable iff SX has a positive solution.
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Because of the Presburger formula introduced by the regular constraints, the
system SX can be viewed as a disjunction of constraint systems S′ such that the
number of variables in S′ is at most exponential in |φ|, the number of atomic
constraint in S′ is polynomial in |φ| and the maximal absolute value among
the constants occurring in S′ is at most exponential in |φ|. By Lemma 5, if
S′ has a solution, then each value can be encoded in polynomial space in |φ|.
Consequently, if SX has a solution, then each value can be encoded in poly-
nomial space in |φ|. We write M to denote the maximal value for all the sys-
tems SX from the d-locally consistent set of φ with d � |φ|. M is actually in
O(2p2(|φ|)).

3.3 The Algorithm

We define the function SAT such that φ is PML satisfiable iff there isX ⊆ cl(0, φ)
such that X is 0-locally consistent and SAT(φ,X, 0) has a computation that
returns true. The function SAT(X,φ, d) is defined in Fig. 1. The first argument
X is intended to be a subset of cl(d, φ). SAT is a non-deterministic algorithm
but it can be defined as a deterministic one by enumerating possibilities instead
of guessing, in the standard way.

Observe that we do not need to guess values for the auxiliary variables (y,
yi,j

k ,zi,j
k ) but their existence is taken into account in the bound M and in the

(final-checking) step. Similarly, if we guess a set Yx that contains some unsatis-
fiable formula then SAT(Yx, φ, d + 1) has no accepting computation which also
induces a non accepting computation for SAT(X,φ, d). However, the bound M
takes into account this type of constraints of unsatisfiable formulae. Moreover,
we check on the fly that the regularity constraints hold true. In particular, we
visit on the fly the automata obtained by the subset construction in order to
check negative regularity constraints.

The algorithm described in SAT is a typical example of Ladner-like algorithm,
see e.g. similar algorithms in [Lad77, Spa93, Dem03]. Indeed, it does not rely on
any machinery such as automata or tableaux/sequent proof systems for checking
satisfiability (but its correctness proof is indeed a kind of completeness proof).
Moreover, the graph of recursive calls (here for SAT) induces a tree model for
the argument formula. Since PML models are precisely trees, we get the PML
model for free.

Observe also that comparing our algorithm from the one in [Tob00] for the
poorer graded modal logic, our pspace upper bound is not based on any specific
technique such as the trace technique and Presburger constraints are checked
after guessing all the children.

3.4 Complexity Analysis and Correctness

Firstly, we prove that SAT requires only polynomial space.

Lemma 7. For each 0-locally consistent set X, any computation of SAT(φ,X, 0)
requires polynomial space in |φ|.

Then we prove the correctness of the algorithm.
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function SAT(X, φ, d)

(consistency) if X is not d-locally consistent then abort;
(base case) if X contains only propositional formulae then return true;
(witnesses)

(initialization-counters) for every ψ ∈ cl(d + 1, φ) that is not a periodicity
constraint of the form t ≡K c, Cψ := 0;

(initialization-states) for every A(ψ1, . . . , ψα) ∈ X, qA(ψ1,...,ψα) := q0 for some
initial state q0 of A;

(initialization-states-complement) for every ¬A(ψ1, . . . , ψα) ∈ X,
q¬A(ψ1,...,ψα) := I where I is the set of initial states of A;

(guess-number-children) guess nb in {0, . . . , nb(d + 1)×M};
(guess-children-from-left-to-right) for i = 1 to nb do

1. guess x ∈ {1, . . . , nb(n + 1)};
2. if not SAT(Yx, φ, d + 1) then abort;
3. for every ψ ∈ cl(d + 1, φ) that is not a periodicity constraint, if ψ ∈ Yx,

then Cψ := Cψ + 1;
4. for every A(ψ1, . . . , ψα) ∈ X,

(a) guess a transition qA(ψ1,...,ψα)
ai−→ q′ in A with ΣA = a1, . . . , aα;

(b) if ψi ∈ Yx, then qA(ψ1,...,ψα) := q′, otherwise abort;
5. for every ¬A(ψ1, . . . , ψα) ∈ X,

(a) guess a letter ai in ΣA = a1, . . . , aα;
(b) if ψi ∈ Yx, then q¬A(ψ1,...,ψα) := {q : ∃ q′ ∈ q¬A(ψ1,...,ψα), q

′ ai−→ q},
otherwise abort;

(final-checking)
1. for every Σiai�ψi ∼ b ∈ X, if Σiai × Cψi ∼ b does not hold, then abort,
2. for every Σiai�ψi ≡k c ∈ X, if Σiai×Cψi ≡k c does not hold, then abort,
3. for every A(ψ1, . . . , ψα) ∈ X, if qA(ψ1,...,ψα) is not a final state of A, then

abort;
4. for every ¬A(ψ1, . . . , ψα) ∈ X, if q¬A(ψ1,...,ψα) contains a final state of A,

then abort;
(return-true) return true.

Fig. 1. Satisfiability algorithm

Lemma 8. A formula φ is PML satisfiable iff for some X ⊆ cl(0, φ), SAT
(X,φ, 0) has a computation that returns true.

By Lemmas 7, 8, Savitch’s Theorem and pspace-hardness of K, we establish our
main result.

Theorem 1. PML satisfiability is pspace-complete.

Obviously, PML without regularity constraints is also in pspace.

4 Complexity Results for Similar Logics

In this section, we compare PML with other logics with Presburger constraints.
This is the opportunity to clarify the relationships between PML and logics
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from [SSMH04, ZL06, ABD+05] and to state some new pspace-completeness
and undecidability results.

4.1 Graded Modal Logics

Graded modal logics are obviously the modal ancestors of PML where the for-
mulae with Presburger constraints are of the form ��nφ and the like, are consid-
ered, see e.g. the early [Fin72, BC85, vdH92, vdHdR95]. Such logics have been
extended to fit more specific motivations, giving epistemic logics [vdHM91] and
description logics (see e.g. [CG05]) with graded modalities. It is only in [Tob00]
that minimal graded modal logic, counterpart of the modal logic K, is shown
decidable in pspace, various decidability results being earlier established in
a systematic way in [Cer94]. Our result about PML extends the main result
from [Tob00]. Various extensions of known logics by adding graded modalities
has been considered and undecidability is often obtained because the ability to
count is often central to encode a grid, see e.g. [BP04]. However, the exptime-
completeness of graded µ-calculus [KSV02] remains a tour de force. Furthermore,
there exist various attempts to encode concisely logics with counting into logics
with no explicit counting mechanism, see e.g. [OSH96, MP97], but none of them
implies a pspace upper bound. Modal-like logics with more expressive Pres-
burger constraints on the number of children can be found in [SSMH04, ZL06]
and this is the subject of the two next sections.

4.2 Sheaves Logic

Definition. In this section, we recall the syntax and semantics of the Sheaves
Logic SL that is shown decidable in [ZL03, ZL06] with a non-elementary algo-
rithm. For the sake of uniformity, we adopt a presentation of SL models simi-
lar to the one for PML models whereas the mode of representation for regular
languages and semilinear sets is the same as for PML. Indeed, the choice of rep-
resentations for such objects may induce sometimes complexity gaps because of
the different conciseness of the formalisms. Similarly, we allow Boolean operators
at the level of element formulae (denoted by E) as done for document formulae
(denoted by D). The element formulae are inductively defined as follows:

– E := α[D] | δ | ¬E | E ∧ E | true,
– D := A(E1, . . . , Ep) | ∃x1, . . . , xp : φ(x1, . . . , xp) : x1E1& · · ·&xpEp |

true | ¬D | D ∧D′,

where

– α belongs to a countably infinite set TAGS of tags,
– δ belongs to a countably infinite set DATATYPES of datatypes disjoint from

TAGS,
– A is a nondeterministic finite-state automaton over an p-letter alphabet ΣA

in which the letters are linearly ordered ΣA = a1, . . . , ap.
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– φ(x1, . . . , xp) is a Boolean combination of Presburger formulae built over the
variables x1, . . . , xp of the form either t ∼ b or t ≡k c with t = Σaixi.

A model M for SL is a structure M = 〈T,R, (<nd)nd∈T , l〉 where T is a finite
set of states, 〈T,R〉 is a tree and each <nd is a total ordering on R(nd) and
l : T → TAGS∪DATATYPES is a labeling function such that for every nd ∈ T ,
if nd is a leaf of 〈T,R〉 then l(nd) ∈ DATATYPES and for every nd ∈ T , if nd is
not a leaf of 〈T,R〉 then l(nd) ∈ TAGS. The satisfaction relation is inductively
defined below where M is a model for SL and nd ∈ T (we omit the clauses for
Boolean operators):

– M, nd |= δ iff δ = l(nd),
– M, nd |= α[D1 ∧D2] iff M, nd |= α[D1] and M, nd |= α[D2],
– M, nd |= α[¬D] iff α = l(nd) and not M, nd |= α[D],
– M, nd |= α[true] iff α = l(nd),
– M, nd |= α[∃x1, . . . , xp : φ(x1, . . . , xp) : x1E1& · · ·&xpEp] iff α = l(nd),
R(nd) = nd1 < · · · < ndk, and there exist i1, . . . , ik such that for every
j ∈ {1, . . . , k}, M, ndj |= Eij and [x1 ← n1, . . . , xp ← np] |= φ(x1, . . . , xp)
with ni = card({l ∈ {1, . . . , k} : il = i}),

– M, nd |= α[A(E1, . . . , Ep)] iff α = l(nd), R(nd) = nd1 < · · · < ndk, and
there is i1, . . . , ik such that for every j ∈ {1, . . . , k}, M, ndj |= Eij and
ai1 · · · aik

∈ L(A) with ΣA = {a1, . . . , ap}.

A major difference with the semantics of PML (see also [SSMH04]) is that for
SL in Presburger constraints each child counts only once.

PSPACE-Completeness. Let φ be an SL formula with tags {α1, . . . , αn} and
datatypes {δ1, . . . , δn′}. We define a formula φ′ built over the propositional vari-
ables (plus others, see below) V P = {pα1 , . . . , pαn , pαnew}∪{pδ1 , . . . , pδn′ , pδnew}.

Given a PML ϕ, we write ∀nϕ as an abbreviation for
∧n

i=0

i times︷ ︸︸ ︷
� . . .�ϕ. The for-

mula φ′ is defined as the conjunction φ′val ∧ t(φ) where t(φ) is defined recur-
sively on the structure of φ and φ′val states constraints about the valuation
of datatypes and tags in SL models. For each document formula of the form
D = ∃x1 · · ·xp : φ(x1, . . . , xp) : x1E1 & · · ·& xpEp in φ, we introduce new
propositional variables p1

D, . . . , p
p
D.

The formula φ′val is defined as the conjunction below

∀|φ|
∨

p∈V P

(p ∧
∧

q∈V P\{p}
¬q) ∧

internal nodes labeled by tags︷ ︸︸ ︷
∀|φ|(�true⇒

∨

α∈{α1,...,αn,αnew}
pα) ∧

∀|φ|(�false⇒
∨

δ∈{δ1,...,δn′ ,δnew}
pδ)

︸ ︷︷ ︸
leaves labeled by constants of datatypes

∧

∀|φ|
∧

D is of the form ∃...Ep

∨

i∈{1,...,p}
(pi

D ∧
∧

j∈{1,...,p}\{i}
¬pj

D)
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where |φ| is the size of φ. Actually, an optimal construction would consider
md(φ). Let t be reduction from SL formulae to PML formulae:

– t is homomorphic for Boolean operators and t(true) = true,
– t(αi[D]) = pαi ∧ t(D), t(δi) = pδi ,
– t(A(E1, . . . , Ep)) = A(t(E1), . . . , t(Ep)),
– t(∃x1 · · ·xp : φ(x1, . . . , xp) : x1E1 & · · ·& xpEp) equals the formula below:

φ(x1, . . . , xp)[x1 ← &(p1
D ∧ t(E1)), . . . , xp ← &(pp

D ∧ t(Ep))]

where φ(x1, . . . , xp)[x1 ← &(p1
D ∧ t(E1)), . . . , xp ← &(pp

D ∧ t(Ep))] is obtained
from φ(x1, . . . , xp) by replacing each occurrence of xi by &(pi

D ∧ t(Ei)).

New propositional variables need to be introduced and a constraint on them
needs to be stated because in SL in Presburger constraints each child can count
only once. It is not difficult to show that t is sound.

Lemma 9. t is a logspace reduction such that φ is SL satisfiable iff φ′ is PML
satisfiable.

So, SL satisfiability is in pspace which contrasts with the complexity of the
decision procedure from [ZL06].

Proposition 1. SL is pspace-complete.

pspace-hardness is obtained by reducing modal logic K without propositional
variables [Hem01].

4.3 Fixed-Point Free SSMH Logic

In this section, we recall the syntax and semantics of the fixed-point free fragment
of the logic from [SSMH04]. For brevity, we call it SSMH. The SSMH formulae
are inductively defined as follows:

φ ::= true | ¬φ | φ ∧ φ′ | α〈Φ(x1, . . . , xp) : x1φ1& · · ·&xpφp〉 |

#〈Φ(x1, . . . , xp) : x1φ1& · · ·&xpφp〉 | α〈A(φ1, . . . , φp)〉 | #〈A(φ1, . . . , φp)〉.
where α belongs to a countably infinite set TAGS of tags, A is a nondeter-
ministic finite-state automaton over an p-letter alphabet and Φ(x1, . . . , xp) is
a Presburger formula as in SL. A model M for SSMH is a structure M =
〈T,R, (<nd)nd∈T

, l〉 where T is a finite set of states, 〈T,R〉 is a tree and each
<nd is a total ordering on R(nd) and, l : T → TAGS is a labeling function (no
datatypes here). The satisfaction relation is inductively defined below where M
is a model for SSMH and nd ∈ T (we omit the clauses for Boolean operators):

– M, nd |= α iff α = l(nd),
– M, nd |= α〈Φ(x1, . . . , xp) : x1φ1& · · ·&xpφp〉 iff α = l(nd) and R(nd) =
nd1 < · · · < ndk and [x1 ← n1, . . . , xp ← np] |= Φ(x1, . . . , xp) where ni =
card({l ∈ {1, . . . , k} :M, ndl |= φi}),
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– M, nd |= #〈φ(x1, . . . , xp) : x1φ1& · · ·&xpφp〉 iff [x1 ← n1, . . . , xp ← np] |=
Φ(x1, . . . , xp) where ni = card({l ∈ {1, . . . , k} : M, ndl |= φi}),

– M, nd |= α〈A(φ1, . . . , φp)〉 iff α = l(nd), R(nd) = nd1 < · · · < ndk and
there is i1, . . . , ik such that for every j ∈ {1, . . . , k}, M, ndj |= φij and
ai1 · · · aik

∈ L(A). (analogous clause for #〈A(φ1, . . . , φp)〉).

Unlike SL and like PML, a child can count more than once in Presburger
constraints. Let φ be an SSMH formula with tags {α1, . . . , αn}. We shall define
a PML formula φ′ built over the propositional variables V P = {pα1 , . . . , pαn}.
Let t be a logspace reduction from SSMH formulae to PML formulae:

– t is homomorphic for Boolean operators and t(true) = true,
– t(α〈φ(x1, . . . , xp) : x1φ1& · · ·&xpφp〉) equals

pα ∧ φ(x1, . . . , xp)[x1 ← &t(φ1), . . . , xp ← &t(φp)].

– t(#〈φ(x1, . . . , xp) : x1φ1& · · ·&xpφp〉) equals

φ(x1, . . . , xp)[x1 ← &t(φ1), . . . , xp ← &t(φp)].

– t(α〈A(φ1, . . . , φp)〉) = pα ∧A(t(φ1), . . . , t(φp)),
– t(#〈A(φ1, . . . , φp)〉) = A(t(φ1), . . . , t(φp)).

Lemma 10. t is a logspace reduction s.t. φ is SSMH satisfiable iff ∀|φ|∨
p∈V P (p ∧

∧
q∈V P\{p} ¬q) ∧ t(φ) is PML satisfiable.

The proof is similar (and indeed simpler) than the proof of Lemma 9. So, SSMH
satisfiability is in pspace. We can do better as done for SL.

Proposition 2. SSMH is pspace-complete.

4.4 PDL over Finite Trees

In [ABD+05] a PDL-like logic PDLtree is introduced where models are finite, la-
beled ordered trees and the four atomic relations are: left-sibling, right-sibling,
mother-of and daughter-of. Other relations can be generated with standard “pro-
gram operators” (iteration, test, union and composition). There is no (full) Pres-
burger constraints in PDLtree but regularity constraints can be stated thanks to
the interplay between the program operators and the atomic relations. PDLtree
satisfiability is shown exptime-complete in [ABD+05]. It is not difficult to show
that, on the model of the undecidability proof for [ZL06, Proposition 1], adding
Presburger constraints to PDLtree leads to undecidability. We provide below an
undecidability proof for a logic sharing features from PDLtree and PML, say L,
that is a strict fragment of the logic PDLtree on which are added Presburger
constraints. Hence, the logic L contains features from both PDLtree and PML
while being incomparable with them since L satisfiability will be shown below
undecidable.

Given a countably infinite set AP = {p1, p2, . . .} of propositional variables
and Σ = {↓, ↓∗,→,→∗,←,←∗, ↑, ↑∗} a set of symbol relations, we define the set
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of formulae and terms inductively as follows: φ ::= p | ¬φ | φ∧φ | t ∼ b and
t ::= a× &Rφ | t+ a× &Rφ, where p ∈ AP, R ∈ Σ, b ∈ N, a ∈ Z, ∼∈ {<,>,=}.
The programs from PDLtree are much richer than Σ because iteration, test, union
and composition are present in PDLtree. Similarly, the Presburger constraints
from PML strictly contains those of L. A model M for L is a structure M =
〈T,R↓, R↓∗ , R→, R→∗ , R←, R←∗ , R↑, R↑∗ , l〉 where

– 〈T,R↓, R→〉 is a finite ordered tree with R↓ and R→ are child-of and right-
sibling relations, respectively; l : T → 2AP is the valuation function,

– for every R ∈ {↓,→,←, ↑}, R∗
R = RR∗ (R∗

R is the reflexive and transitive
closure of RR), R→ = R−1

← and R↑ = R−1
↓ ,

The satisfaction relation is inductively defined as for PML except this time
the models are finite ordered trees.

Proposition 3. The satisfiability problem for L is undecidable.

The proof is by reducing the halting problem for 2-counter machines. If we mod-
ify the models by allowing infinite trees with finite-branching, satisfiability be-
comes Σ1

1-hard by reducing the recurring problem for nondeterministic 2-counter
machines [AH94, Lemma 8]. The formulae built in the proof of Proposition 3
are specific since only the relation symbols from {↓∗, ↓,→∗,←} are used. The
decidability status of the following logics is still open: restriction of L to formulae
with no subformula of the form Σiai&

Riφi where for some j �= j′, Rj �= Rj′ , PML
augmented with the relation symbol ←.

The logic obtained by adding ↓∗ to PML is a fragment of the logic SSMH
extended with fixed-points, for which satisfiability is in exptime [SSMH04].
Actually, this fragment is already exptime-hard, even if we use only trivial
regularity and Presburger constraints (use the complexity result of [FL79]).

5 Concluding Remarks

We have shown that Presburger modal logic that admits in its language full Pres-
burger and regularity constraints has a pspace-complete satisfiability problem,
that is the same complexity of the modal logic K. This is shown by design-
ing a specially tailored Ladner-like algorithm that takes advantage of the con-
straint systems to be solved from PML formulae. This improves previous results
from [Tob00, SSMH04, ZL06] and paves the way to design querying language for
XML documents that can express Presburger and regularity constraints and for
which the underlying modal logic is only in pspace.
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Abstract. This paper presents new classes of tree automata combining
automata with equality test and automata modulo equational theories.
We believe that these classes have a good potential for application in
e.g. software verification. These tree automata are obtained by extending
the standard Horn clause representations with equational conditions and
rewrite systems. We show in particular that a generalized membership
problem (extending the emptiness problem) is decidable by proving that
the saturation of tree automata presentations with suitable paramodu-
lation strategies terminates. Alternatively our results can be viewed as
new decidable classes of first-order formula.

1 Introduction

Combining tree automata and term rewriting systems (TRS) has been successful
in domains like automated theorem proving [6] and verification of infinite state
systems e.g. [12,18,16].

A problem with such approaches is to extend the decidability results on
tree automata languages to equivalence classes of terms modulo an equational
theory. Some authors, e.g. [25,20], have investigated the problem of empti-
ness decision for tree automata modulo specific equational theories, e.g. A,
AC, ACU. . . Moreover, it is also shown in [20] that emptiness is decidable
for any linear equational theory, and results about regularity preservation un-
der rewriting have been established for several general classes of TRS (see
e.g. [22] § 2.3).

Another important difficulty stems from the non linear variables (variables
with multiple occurrences) in the rewrite rules, which impose in general some
over-approximations of the rewrite relation. Tree automata with constraints have
been proposed earlier in order to deal with non-linear rewrite systems (see [6]).
They are an extension of classical tree recognizers where syntactic equality and
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disequality tests between subterms are performed during the automata compu-
tations. The emptiness of the recognized language is undecidable without re-
striction, and two remarkable subclasses with decidable emptiness problem are
tree automata with equality and disequality constraints restricted to brother
positions of [3] and the reduction automata of [7]. This second class captures in
particular languages of terms (ir)reducible by non linear rewrite systems.

Following [11], it is classical to represent tree automata by Horn clause sets.
In this setting, a recognized language is defined as a least Herbrand model and
it is possible to use classical first-order theorem proving techniques in order to
establish decision results [25,13].

In this paper, we follow this approach in order to unify the two problems men-
tioned above: we show how techniques of basic ordered paramodulation with
selection and a variant of splitting without backtracking solve some decision
problems on languages of tree automata with equality constraints, transformed
by rewriting. More precisely, we show that the so called Generalized Membership
Problem, GMP (whether there exists a ground instance of a given term in a
given language) is decidable by saturation with a standard calculus presented
in Section 3. Note that GMP generalizes the emptiness problem. Alternatively
our results can be viewed as new decidable classes of first-order formula. Both
classes of standard tree automata (TA) and tree automata with equality con-
straints generalizing those of [7], where the equality tests are presented by arbi-
trary equations (TAD), are studied in these settings, as well as their respective
generalisation modulo an equational theory E presented as a convergent term
rewriting system (monadic TRS in the case of TA and restricted collapsing TRS
in the case of TAD). The decision results are presented as follows in the paper:

E = ∅ E
TA Section 4 Section 6
TAD Section 5 Section 7

The last result (lower right corner of the table) is to our knowledge one of the first
decision results (after [14]) concerning tree automata with equality constraints
modulo equational theories. We show that emptiness is undecidable for TA ex-
tended with non-linear facts, even with only one state. Unlike stated in [7,6], we
prove also that this problem is undecidable for non-deterministic reduction au-
tomata (see Section 5). Therefore, we have introduced for the definition of TAD
a refinement on the restriction for the automata of [7] in order to make GMP
decidable. The idea is roughly to bound the number of equality tests that can
be performed along a whole computation (and not only along each computation
path). The representation of constrained automata as Horn clauses permits us
to use state of the art first-order theorem proving techniques to provide an ef-
fective (implementable) decision procedure for GMP (hence emptiness), instead
of the complicated pumping lemmas used so far which hardly lead to effective
algorithms. A key-ingredient for the termination of our saturation-based decision
procedure was the application of recently proposed splitting rules.

As illustrated by two examples of authentication protocols (one with recur-
sion) the class of automata of Section 7 permits a sharper modeling of verification
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problems (avoiding approximation as it is often required with more standard tree
automata). A long version of this paper, completed with the proofs in appendix
and more example is available in [15].

Related work. A comparison with the reduction automata of [7] is detailed in
Sections 5 and 7.

The closely related works [18,13] propose a different extension H1 of standard
TA defined as Horn clause sets for which satisfiability is decidable. In the ver-
sion [13] of H1 Horn clauses have a head whose argument is at most of height one
and linear (without duplicated variables), or are purely negative (goals). None
of the classes TAD and H1 contains the other. However, H1 becomes undecid-
able when allowing variable duplication in the heads. Our TAD class allows this
under the previously mentioned restrictions.

2 Preliminaries

Term algebra. Let F be a signature of function symbols with arity, denoted
by lowercase letters f , g. . . and let X be an infinite set of variables. The term
algebra is denoted T (F ,X ), and T (F) for ground terms. A term is called linear if
every variable occurs at most once in it and sublinear if all its strict subterms are
linear. We denote vars(t) as the set of variables occurring in a term t ∈ T (F ,X ).
A substitution σ is a mapping from X to T (F ,X ) such that {x|σ(x) �= x}, the
support of σ, is a finite set. The application of a substitution σ to a term t is
denoted by tσ and is equal to the term t where all variables x have been replaced
by the term σ(x). A substitution σ is grounding for t if tσ ∈ T (F). The positions
Pos(t) in a term t are represented as sequence of positive integers (Λ, the empty
sequence, denotes the root position). A subterm of t at position p is denoted t|p,
and the replacement in t of the subterm at position p by u denoted t[u]p.

Rewriting. We assume standard definitions and notations for TRS [9].

Clauses. Let P be a finite set of predicate symbols which contains an equality
predicate =. The other predicate symbols are denoted by uppercase letter P ,
Q,. . . and are assumed unary. We shall later use a partition P \ {=} = P0 < P1,
where P0 and P1 are sets of predicate symbols. Let Q be a finite set of nullary
predicate symbols disjoint from P and that we call splitting predicates, denoted
by lowercase letters q. . . Constrained Horn clauses are constrained disjunctions of
literals denoted Γ ⇒ H �θ� where Γ is a set of negative literals called antecedents,
H is a positive literal called head of the clause and the constraint θ is a set of
equations between terms of T (F ,X ). A clause with a splitting literal as head or
with no head at all is called a goal. The constraint is omitted when θ is empty.
For the sake of notation, we shall sometimes make no distinction between the
constraint and its most general solution (when it exists). When θ is satisfiable,
we call the expansion of the above clause the unconstrained clause Γθ ⇒ Hθ.

Atoms of the formP (s), resp. q, where P ∈ P and s ∈ T (F ,X ), resp. q ∈ Q, are
represented for uniformity as equations P (s) = true, resp. q = true, where true is
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a distinguished function symbol (in F). An atom of the latter form is called non-
equational and can be denoted simply P (s), resp. q. We assume in the following
that predicate symbols can only occur at the root of the terms that we consider.

Orderings. We assume we are given a precedence ordering " on F ∪P∪Q, and
denote by ∼ the relation # ∩ " and ! the relation " \ ∼. We assume that !
is total on P1 and moreover that for all predicates P0, P

′
0 ∈ P0, P1 ∈ P1, q ∈ Q

and every function symbol f ∈ F , P0 ∼ P ′
0 and P1 ! P0 ! q ! f . We assume

the symbol true to be the minimal one. Assume that P1 = {P1, . . . , Pn} with
P1 ! . . . ! Pn. We call i the index of Pi, denoted ind(Pi), and let ind(Q) = 0
for all Q ∈ P0. We shall also use the constant ∞ = max(ind(P )|P ∈ P) + 1,
which is bigger than the index of every predicate in P1.

We assume a reduction ordering !lpo [9] on T (F ∪P ∪Q,X ) total on ground
terms, defined as a lexicographic path ordering. This ordering is extended to
literals as in [2], see [15], Appendix A, for complete definitions.

Tree Automata. Tree automata are finite state recognizers of ground terms.
We consider here a definition à la Frühwirth et al [11] of tree automata as finite
sets of Horn clauses on P and F with equality. Every non-equational predicate
symbol occurring in a given tree automaton A is called a state of A. Given a
tree automaton A and a state Q ∈ P of A, the language of A in Q, denoted by
L(A, Q), is the set of terms t ∈ T (F) such that Q(t) is a logical consequence ofA.

General Membership Problem (GMP). We focus on one decision problem,
GMP, which generalizes many important problems concerning tree automata (in
particular membership and emptiness decision). This problem has been shown
decidable in [23] for standard tree automata.

INSTANCE: a tree automaton A, a state Q of A and a term t ∈ T (F ,X ),
QUESTION: is there a substitution σ grounding for t such that tσ∈L(A, Q)?

In particular, when t is a ground term, this problem is equivalent to a membership
problem for A: t ∈ L(A, Q)? When t is a variable, it is equivalent to a non-
emptiness problem for A: L(A, Q) �= ∅?
Lemma 1. GMP is satisfied by A, Q and t iff A ∪ {Q(t)⇒ } is inconsistent.

3 Basic Ordered Paramodulation with Selection

We shall establish the decidability of GMP for several classes of tree automata
(with equations), using techniques of saturation under paramodulation, based
on Lemma 1 and the calculus described in this section.

Basic Ordered Paramodulation with Selection. The following set of in-
ference rules, parametrized by a reduction ordering !, which we assume total
on ground terms, and a selection function which assigns to each clause a set
of selected negative literals1, forms a sound and refutationally complete (i.e.
1 We shall sometimes underline literals to indicate that they are selected.
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for every unsatisfiable set of clauses the inference system will generate, with a
fair strategy, the empty clause) calculus for Horn clauses called basic ordered
paramodulation with selection [2,19].

Γ ⇒ $ = r �θ� Γ ′ ⇒ u[$′]p = v �θ′�
RP

Γ, Γ ′ ⇒ u[x]p = v �θ, θ′, $′ = $, x = r�

if x is fresh, and (i) $′ /∈ X , (ii) no
literal is selected in Γ and Γ ′, (iii)
and (v) hold.

Γ ⇒ $ = r �θ� Γ ′, u[$′]p = v ⇒ A �θ′�
LP

Γ, Γ ′, u[x]p = v ⇒ A �θ, θ′, $′ = $, x = r�

if x is fresh, (i) $′ /∈ X , (ii) no literal
is selected in Γ , (iii) holds, (iv) u = v
is selected or (v’) holds.

Γ, s = t⇒ A �θ�
Eq

Γ ⇒ A �θ, s = t�

if (vi) s = t is selected or (vii)
sσ �≺ tσ and sσ = tσ is maximal in
Γσ, sσ = tσ,Aσ, where σ is the mgu
of θ, s = t.

The conditions missing above are: (iii) $σ �� rσ and $σ = rσ is strictly maximal
in Γσ, $σ = rσ, (v) uσ = vσ is maximal in Γ ′σ, uσ = vσ, where σ is the
most general unifier (mgu) of θ, θ′, $′ = $, x = r, (v’) uσ = vσ is maximal in
Γ ′σ, uσ = vσ,Aσ (σ is as in (v)).

Concerning RP and LP, we shall talk of paramodulation of the first clause
(called first premise) into the second clause (second premise). The clause re-
turned by the above inferences is called the conclusion. If after every step the
constraints are eagerly propagated in the clauses (i.e. each clause is expanded)
the calculus is called ordered paramodulation with selection.

Resolution. The application of LP at the root of non-equational atoms followed
by Eq is called basic resolution.

Γ ⇒ P ($) = true �θ� Γ ′, P ($′) = true ⇒ A �θ′�
R

Γ, Γ ′ ⇒ A �θ, θ′, $′ = $�

Note that the clause generated by the LP step is deleted, subsumed by the clause
generated by the Eq step.

When the non-basic version of LP and Eq are used, this inference is simply
called ordered resolution.
Note that when the unconstrained part of a clause only contains variables (no
function symbols), only the resolution rule applies into this clause, and the clause
obtained also contains only variables (i.e. every application of LP is performed
at the root position of an atom). Therefore, for the sake of presentation, we
shall eagerly apply the constraint when describing the application of R in this
case. The application of RP to clauses whose heads are non-equational returns
a tautology, and hence this case will be ignored in the following proofs.

Deletion of redundant clauses. We assume that the deletion of tautologies
and subsumed clauses (these notions are considered after clause expansion) and
the simplification under rewriting by orientable positive equational clauses are
applied as in [2].
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Splitting. We shall use ε-splitting [13], a variant of splitting without backtrack-
ing [21].

B,Γ ⇒ H�θ�
εsplit

B ⇒ qB�θ� qB, Γ ⇒ H�θ�

where the literals of Γ∪H are not equational, Bθ is an ε-block, i.e. a set of literals
of the form Q1(x), . . . , Qn(x), with Q1, . . . , Qn ∈ P , x is a variable which does
not occur in Γ and H , and where qB ∈ Q is uniquely associated with B, modulo
variable renaming.

Note that the above splitting rule replaces a clause by two split clauses. Using
this rule eagerly (as soon as possible) preserves correctness and completeness
of the calculus. Indeed, since every splitting predicate qB is smaller than any
predicate of P , the original clause is redundant (wrt the general redundancy
criterion of [2]) because its reduced instances are implied by smaller reduced
instances of the split clauses. Another important point is that the number of
splitting literals that can be introduced is bounded. We will assume that the set
Q is large enough to cover all ε-blocks.

4 Standard Tree Automata

The transitions of standard tree automata are classically encoded into Horn
clauses of the following form:

Q1(x1), . . . , Qn(xn) ⇒ Q
(
f(x1, . . . , xn)

)
(s)

where n ≥ 0 (when n = 0, by convention, the set of antecedents of the clause is
empty), x1,. . . ,xn are distinct variables and Q1, . . . , Qn, Q ∈ P0.

Definition 1. A standard bottom-up tree automaton (TA) is a finite set of
clauses of type (s).

The language of a TA is called a regular language.

Example 1. The language of the following TA in Q1 is the set of binary trees
with inner nodes labelled by f and leaves labelled by 0 or 1, such that at least a
leaf is labeled by 1: ⇒ Q0(0), ⇒ Q1(1),

Q0(x1), Q0(x2) ⇒ Q0(f(x1, x2)), Q1(x1), Q0(x2)⇒ Q1(f(x1, x2)),
Q0(x1), Q1(x2) ⇒ Q1(f(x1, x2)), Q1(x1), Q1(x2)⇒ Q1(f(x1, x2))

The emptiness and membership problems for TA can be solved in deterministic
time, respectively linear and quadratic. GMP for a linear term can be decided
by a procedure of the same quadratic time complexity. For a non-linear term,
the problem is EXPTIME-complete [10]. We sketch below a slight variation of
a DEXPTIME procedure of [13] in our framework, in order to introduce the
principles of the proofs in the next sections. It is based on the function sel1
which selects in a Horn clause Γ ⇒ H�θ�: every splitting negative literal, if
any, and otherwise every non-equational literal Q(t) of Γ such that tθ is not a
variable.
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Proposition 1 ([13]). Ordered resolution with selection and ε-splitting satu-
rates the union of a TA and a goal clause P (t) ⇒.

Proof. (sketch, the complete proof may be found in [15], Appendix B). We show
that the saturation of a TA A and the goal P (t) ⇒ under ordered resolution
wrt �lpo and the selection function sel1, with eager application of the εsplit
rule of Section 3, produce only clauses of one of the following form (gs), for
goal-subterm, or (gf), for goal-flat.

q1, . . . , qk, P1(s1), . . . , Pm(sm) ⇒ [ q ] (gs)

where m, k ≥ 0, s1, . . . , sm are subterms of t, P1, . . . , Pm ∈ P0, and q1, . . . , qk, q
are splitting literals (the q in the head is optional, as indicated by the square
brackets).

P1(yi1), . . . , Pk(yik
), P ′

1(f(y1, . . . , yn)), . . . , P ′
m(f(y1, . . . , yn)) ⇒ [ q ] (gf)

where k,m ≥ 0, i1, . . . , ik ≤ n, y1, . . . , yn are distinct variables,
P1, . . . , Pk, P

′
1, . . . .P

′
m ∈ P0, and q is a splitting literal (optional in the clause).

Since the number of clauses of type (gs) and (gf) is exponential, the saturation
terminates and GMP is solvable in deterministic exponential time. �

Corollary 1. GMP is decidable for TA.

Undecidable extension. Let us call a fact a Horn clause ⇒ H with no an-
tecedents at all. We define a clause to be of type (s+) if it is of type (s) or a
fact. Note that we allow non-linear variables in facts. We can show that GMP
for this slight extension of TA is undecidable 2 (even with one predicate only):

Proposition 2. GMP for sets of clauses of type (s+) is undecidable.

Proof. We reduce in [15], Appendix C, the halting problem of 2 counter machines
to GMP for (s+).

5 Tree Automata with Syntactic Equational Constraints

Reduction Automata. The original reduction automata (RA) of [7] can be
defined as finite sets of constrained Horn clauses of the following form:

Q1(x1), . . . , Qn(xn)⇒ Q(f(x1, . . . , xn))�c� (red)

where n > 0, x1,. . . , xn are distinct variables, c is a conjunction of constraints
of the form xi|p = xi′ |p′ (equality constraint) or xi|p �= xi′ |p′ (disequality con-
straint) for some positions p and p′ (sequences of integers), Q is maximal in
{Q,Q1, . . . , Qn} (here, we do not assume that the ordering on predicates is
total) and it is moreover strictly maximal if c contains at least one equality con-
straint. An equality constraint as above (resp. disequality constraint) is satisfied
2 GMP with linear facts can be shown decidable [6].
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by every two ground terms t, t′ ∈ T (F) such that p ∈ Pos(t), p′ ∈ Pos(t′) and
t|p = t′|p′ (resp. p ∈ Pos(t), p′ ∈ Pos(t′) and t|p �= t′|p′). Given an RA A and
a state Q of A, the language L(A, Q) is defined as in page 560 (extending the
definition from Horn clause to constrained Horn clauses). The definition of GMP
and emptiness problems for RA follow.

We prove that the emptiness problem is undecidable for non-deterministic
reduction automata, contradicting a claim in [7,6].

Proposition 3. The emptiness problem is undecidable for non-deterministic RA.

The proof, a variation of the proof of Proposition 2, is given in [15], Appendix D.

TAD. We propose here the definition of a new class of tree automata where the
constraints are generalized (compared to [7]) to equations between arbitrary terms
and where the transitions comply to stronger ordering conditions, based on the
ordering� on states, in order to obtain a decidable GMP. We call below test pred-
icates3 the elements of P1. The constrained transitions of our automata have the
following form:

Q1(x1), . . . , Qn(xn), u1 = v1, . . . , uk = vk ⇒ Q∗(x) (d)

where n, k ≥ 0, x1,. . . , xn, x are distinct variables, u1, v1, . . . , uk, vk ∈
T
(
F , {x1, . . . , xn, x}

)
,Q1, . . . , Qn, Q ∈ P ,Q∗ is a test predicate, and for all i ≤ n,

if Qi is a test predicate then Q∗ � Qi.
The unconstrained transitions are restricted to clauses of type (s) which contain

no more test predicates symbols in their antecedents than in their heads.

Q1(x1), . . . , Qn(xn) ⇒ Q
(
f(x1, . . . , xn)

)
(t)

where n > 0, x1,. . . ,xn are distinct variables, and either Q1, . . . , Qn, Q ∈ P0 or
Q is a test predicate and at most one of Q1, . . . , Qn is equal to Q, and the others
belong to P0.

Definition 2. A tree automaton with equational constraints or TAD is a finite set
of clauses of type (t) or (d).

Note that every TA is a particular case of TAD (without test predicates).

Example 2. The language of the following TAD in stateQ2 is the set of stuttering
lists of natural numbers build with the symbols cons and empty:

⇒ Q0(0) Q0(x1)⇒ Q0(s(x1))
⇒ Q1(empty) Q0(x1), Q1(x2)⇒ Q1(cons(x1, x2))

Q0(x1), Q2(x2)⇒ Q2(cons(x1, x2))
Q0(x1), Q1(x2), x2 = cons(x1, y), x = cons(x1, x2)⇒ Q2(x)

Proposition 4. Ordered paramodulation with selection and ε-splitting saturates
the union of a TAD and a goal clause P (t)⇒.
3 And we shall sometimes mark a predicate Q with an asterisk like in Q∗ to indicate

that it is a test predicate.



Tree Automata with Equality Constraints Modulo Equational Theories 565

Proof. (sketch) Let sel2 be a selection function which generalizes sel1, by selecting
every equational negative literals, if any, and otherwise is defined just like sel1. We
consider saturation under ordered paramodulation wrt�lpo with selection by sel2
and ε-splitting.

The principle of the proof of termination (detailed in [15], Appendix E) is to
show that, starting with a TAD A and P (t) ⇒, every step of paramodulation re-
turns either a clause smaller than all its premises (wrt to a well founded ordering

) or a clause of type (gf). Two key points ensure this result. First, because of the
selection strategy, equations in clauses of type (d) will be eliminated first, using
Eq, before these clauses can be involved in resolution. The type of clauses obtained
(when all equations have been eliminated) is called (d+) and their predicates sat-
isfy the same ordering condition as for (d). Second, thanks to the ordering condi-
tions on predicates for (t) and (d+) the application of such clauses in resolution
makes clauses decrease (wrt
). ��

Corollary 2. GMP is decidable for TAD.

6 Tree Automata Modulo Monadic Theories

There have been many works to identify some classes of rewrite systems preserving
the regularity of sets of terms, like for instance ground TRS, right-linear monadic
TRS, linear semi-monadic TRS. . . (see [22], Section 2.3 for a summary of some
recent results). These results often rely on a procedure of completion of TA wrt
some TRS, which adds new TA transitions without adding new states. As observed
in [14], such a TA completion can be simulated by saturation under paramodula-
tion. The next results show that this method is effective (i.e. terminates) in the
case of monadic theories.

Definition 3. A rewrite rule $→ r is called sublinear if $ is sublinear, collapsing
if r is either a ground term or a variable, and monadic if r is either a variable
occurring in $ or a term g(z1, . . . , zk) for some g ∈ F , k ≥ 0 and some distinct
variables z1, . . . , zk occurring in $.

Example 3. The following axiom for integer equality: eq(s(x), s(y)) → eq(x, y) as
well as this rule for the elimination of stuttering in lists: cons(x, cons(x, y)) →
cons(x, y) are monadic rewrite rules. Sublinear and collapsing rewrite rules
permit to describe cryptographic functions [1], like decryption in a symmet-
ric cryptosystem dec

(
enc(x, y), y

)
→ x (the symbols enc and dec stand for

encryption and decryption and the variables x and y correspond respectively
to the encrypted plaintext and the encryption key), or, in the case of public
(asymmetric) key cryptography: adec

(
aenc(x, pub(y)), inv(pub(y))

)
→ x and

adec
(
aenc(x, inv(pub(y))), pub(y)

)
→ x where inv is an idempotent operator, fol-

lowing the rule inv(inv(y)) → y, which associates to a public encryption key its
corresponding private key (for decryption), and conversely. We will also consider
below projections on pairs: fst(pair(x, y)) → x and snd(pair(x, y)) → y.
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We call an equational theory a set of positive clauses of the form:

⇒ $ = r (eq)

An equational theory E is called �-convergent if for each clause of E , the equation
$ = r is orientable by �lpo, i.e. $ �lpo r, and the rewrite system R = {$ → r

∣∣⇒
$ = r ∈ E and $ �lpo r} is confluent. Moreover, the theory E is called sublin-
ear (resp. collapsing, monadic) if all the rules ofR are sublinear (resp. collapsing,
monadic).

Definition 4. A tree automaton modulo an equational theory (TAE) is the union
of an equational theory and of a finite set of clauses of type (s).

Example 4. The language of the following simple TAE in state Qe is the set of
expressions equivalent to non-negative even integers:

⇒ p(s(x)) = x ⇒ s(p(x)) = x
⇒ Qe(0) Qe(x) ⇒ Qo(s(x)) Qo(x) ⇒ Qe(s(x))

If, instead of the above equational theory for successor and predecessor we con-
sider the following monadic equational theory for a partial subtraction on natural
numbers: s(x) − s(y) = x − y, x − 0 = x, 0 − x = 0, the language is the set of
ground terms equivalent to non-negative even integers.

Proposition 5. Basic ordered paramodulation with selection and ε-splitting. sat-
urates the union of a TAE modulo a �-convergent monadic equational theory and
a goal clause P (t) ⇒.

Proof. We show the termination of saturation ofA∪{P (t)⇒} under basic ordered
paramodulation wrt the ordering �lpo and the selection function sel1 and with
eager ε-splitting.

The new situation here is that the right paramodulation RP can be applied to
a clause of type (s), using an equation of the equational theory (i.e. of clause of A
of type (eq)).

⇒ f($1, . . . , $n) = r Q1(x1), . . . , Q1(xn)⇒ Q
(
f(x1, . . . , xn)

)
RP

Q1(x1), . . . , Qn(xn)⇒ Q(y) �x1 = $1, . . . , xn = $n, y = r�

Also, LP with an equational clause (eq) is possible into the initial goal clause
P (t) ⇒. We introduce in [15], Appendix F, a new clause type (l) to character-
ize the (expansions of) clauses obtained this way, and show by a case analysis that
all the clauses obtained during the saturation are of type (l) or of a type (f) which
generalizes (gf) (proof of Proposition 1), allowing a head of the form Q(r) where
r is either a variable or a linear flat term g(x1, . . . , xn).

Since the number of clauses of type (l) and (f) is finite, this proves that the
saturation of A ∪ {P (t)⇒} under basic ordered paramodulation terminates. ��
Note that the expanded form of the above clause Q1($1), . . . , Qn($n) ⇒ Q(y) is
related to the push clauses of two-automata [25] or selecting theories [24]. We will
come back to this remark in Example 7 showing how the approach for protocol
verification of this last paper can be carry on by TADE.
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Corollary 3. GMP is decidable for TAE modulo a �-convergent monadic equa-
tional theory.

7 Tree Automata with Equational Constraints Modulo a
Theory

It is shown in [14] that the class of languages of terms recognized by tree au-
tomata of [3], with equality constraints between brother positions is not closed
under rewriting with shallow theories (rewrite systems whose left and right mem-
bers of rules have depth 1). The reason is that these tree automata test syntactic
equalities whereas we want to consider languages of terms modulo an equational
theory. The problem is the same with the tree automata of [7]. Our definition based
on Horn clauses and our saturation method solve this problem by considering a
class of tree automata which combines both equality constraints like TAD and
equational theories like TAE. The tree automata defined this way test equality
constraints modulo an equational theory and recognize languages of terms mod-
ulo the same theory.

Definition 5. A tree automaton with equational constraints modulo an equational
theory (TADE) is the union of an equational theory and of a TAD.

We show in [15], Appendix G, that every reduction automaton with equality con-
straints only is equivalent to a TADE of the same size, as long as its transitions
fulfill the restrictions on predicates introduced in the definition of (t) and (d) in
order to make emptiness decidable.

Example 5. We illustrate in this example how TADE can be used to characterize
the behaviour of security protocols running in an insecure environment, follow-
ing a model with explicit destructors [1] specified with the rewrite rules of Exam-
ple 3. It is known [17] that such model with rewrite rules is more expressive than a
standard model of cryptosystems based on free algebras. For instance, the attack
mentioned in Example 6 cannot be captured by free algebras based approach like
e.g. [12]. Our representation is such that a state of the protocol is reachable (from
an initial state) iff it is in the TADE language. The protocol of Denning & Sacco [8]
permits two agentsA and B to exchange a new symmetric key using an asymmet-
ric cryptosystem. The respective behaviour of the agents can be represented by
the two following clauses of type (d)4:

Q0j(x) ⇒ Q1j(pair(A, aenc(aenc(K, inv(pub(A))), pub(B)))) j = 0, 1
Qi0(x) ⇒ Qi1(enc(S, adec(adec(snd(x), inv(pub(B))), pub(fst(x))))) i = 0, 1

The predicate Qij represent the content of the channel Q when agents A and B
are in respective states i, j, which are either 0 (initial state) or 1 (final state). In
the first clause,A initiates the protocol, sendingB a freshly chosen symmetric key
K for further secure communications (A, B,K, S are constant function symbols).
4 For the sake of simplicity we denote Q1(x1), x = u⇒ Q(x) by Q1(x1) ⇒ Q(u).
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This key is K signed, for authentication purpose, with the secret key inv(pub(A))
ofA and encrypted with the public key pub(B) ofB. Moreover,A appends its name
at the beginning of the message. In the second clause,B answers with a secret value
S encrypted with K, which has been extracted from the received message (using
the destructor symbols and the rules of Example 3). Note that in this setting, equa-
tions in clauses (d) permit to model conditionals for the agents of protocols.

We add some clauses of type (t) and (d) in order to model the control of an at-
tacker over the public communication channelQ, namely the ability to read / ana-
lyze and recompose (by application of any public function f, possibly a destructor
symbol) / resend messages:

Q00(x1), Q00(x2) ⇒ Q00(f(x1, x2)) Q00(x1), Q01(x2) ⇒ Q01(f(x1, x2))
Q00(x1), Q10(x2) ⇒ Q10(f(x1, x2)) Q00(x1), Q11(x2) ⇒ Q11(f(x1, x2))
symmetric of the above clauses: Q01(x1), Q00(x2) ⇒ Q01(f(x1, x2)) . . .
Q01(x1), Q10(x2) ⇒ Q11(f(x1, x2)) Q10(x1), Q01(x2) ⇒ Q11(f(x1, x2))

Note that in the above clauses we allow several combinations of the agent’s states
in the antecedents, but not every combination. The principle is that ifA (resp. B)
is in state 1 in the first antecedent, it must be in state 0 in the second one (and
conversely), because we assume that each agent can run only once. This way, we
ensure an exact representation (as ground terms) of the executions of an instance
of the protocol, whereas many other Horn clauses or tree automata models are
approximating [12,18,25]. Note that these conditions fit well with the ordering re-
strictions on clauses of type (t) and (d). We also add some clauses (t) ensuring that
some ground terms are initially known to the attacker, e.g.⇒ Q00(A).

Proposition 6. Basic ordered paramodulation with selection and ε-splitting sat-
urates the union of a TADE modulo a �-convergent sublinear and collapsing equa-
tional theory and a goal clause P (t) ⇒.

Proof. (sketch) We consider saturation under basic ordered paramodulation wrt
the ordering�lpo and the selection function sel2 (defined in the proof of Proposi-
tion 4) and with eager ε-splitting. Following the same proof schema as for Propo-
sition 4 (TAD) we show (in [15], Appendix H) that, starting with a TADE A and
P (t) ⇒, every step of paramodulation returns either a clause smaller than all its
premises (wrt to a well founded ordering
) or a clause of type (gf) or (df) where
this latter clause type is similar to (gf) and also contains only a finite number of
clauses.

The proof is nevertheless much more complicated than in the case of TAD
(see [15], Table 5). Indeed, like for TAD (Proposition 4), we obtain clauses of
type (d+) generalizing (d), in this case using basic narrowing. However, these
clauses (d+) can be combined, by resolution, with clauses of a type similar to (l)
in Proposition 5. Clause decreasing, wrt 
, is obtained for such resolution steps
thanks to the restrictions on the equational theory considered. ��

Corollary 4. GMP is decidable for TADE modulo a �-convergent sublinear and
collapsing equational theory.
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Example 6. Several security properties of the Denning & Sacco’s protocol may be
expressed as GMP wrt the TADE of Example 5: Q01(x) ⇒ expresses for instance
that B has answered to a message not originating from A (authentication flaw)
andQ01(S) ⇒ that the secret is revealed (confidentiality flaw). Both instances of
GMP can be solved with the method of Proposition 6, revealing a known attack,
which is described in [15], Example 6.

Example 7. The recursive authentication protocol [4] ensures the distribution of
certified session keys to a group of clients by a server which process recursively an
unbounded list of requests. The automated verification of such group protocols has
been studied in [16,24]. We shall follow below the presentation of [16], showing that
it fits in our formalism. The server receives a sequence of requests for keys repre-
sented by a term of the form nil or5:

〈
hash(m(a), a, b, na, y), 〈a, b, na, y〉

〉
, denoted

below by hma(a, b, na, y), where hash is a unary one-way function, a is the name of
the principal requesting a certificate, b is the name of the principal with whom a
is willing to share a key, na is a random number generated by a (nonce), m(a) is a
mac key shared by the server and a and y is a subsequence of the other requests,
which (if not nil) has the form hmc(c, a, nc, y

′) (c is the name of another principal).
The behaviour of the server, when receiving a request sequence, is defined by the
following clauses of type (d) ) (a, b, c, na, nc are variables):

Q0(x), x = hma(a, b, na, nil)⇒ Q1
(
aenc(pub(a), 〈k(a, b, na), b, na〉)

)

Q0(x), x = hma(a, b, na, hmc(c, a, nc, y
′)) ⇒ Q1

(
aenc(pub(a), 〈k(a, b, na), b, na〉)

)

Q1
(
aenc(pub(a), 〈k(c, a, nc), c, na〉)

)

It means that the server sends to a one or two certificates encrypted with his pub-
lic key, where k is a secret function used for the generation of session keys. Note
the two occurrences of a in the equation of the second clause, which implicitly ex-
press an equality between the name of the requester of a query and the receiver in
the next one. It is assumed that for the first element of the sequence, the receiver
is actually the server himself (hence it is not necessary to send him a certificate).
Moreover, we have a clause of type (t) for the enumeration of the requests by the
server: Q0(x) ⇒ Q0(next(x)), where next is an operator which pops the first ele-
ment of a request’s sequence, defined by the following collapsing equation (m is a
variable): next(hash(m,x1, x2, x3, y), 〈x1, x2, x3, y〉) = y.

8 Conclusion and Further Works

We have introduced new classes of tree automata with constraints and shown that
the General Membership Problem is decidable for them with a uniform theorem-
proving technique. Potential extensions are numerous.

As future work we plan to extend the tree automata classes defined in this paper
to disequality tests as in [7]. This would permit us to characterize languages of
normal form wrt a TRS and is useful in particular in inductive theorem proving [6].

5 We abbreviate pair(t1, pair(t2, . . . , pair(tn−1, tn))) by 〈t1, . . . , tn〉 (n ≥ 2).
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Equality tests between brother positions à la [3] can be easily incorporated into
the Horn clauses representation of tree automata (see e.g. [14]). Equations are not
necessary for this purpose, since multiple occurrences of a variable suffice, as in:
Q1(x), Q2(x) ⇒ Q

(
f(x, x)

)
. The combination of TA classes of [3] and [7] preserves

emptiness decidability [5]. Hence the combination of the above class of TA with
equality test modulo and unrestricted test between brother positions is interesting
to study.

It would also be interesting to extend the above saturation results (in partic-
ular for classes modulo monadic or collapsing theories) to term algebra modulo
AC, using AC-paramodulation techniques. This combination (AC + sublinear–
collapsing) permits us to axiomatize primitives like the exclusive-or.
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11. T. Frühwirth, E. Shapiro, M. Vardi, and E. Yardeni. Logic programs as types for
logic programs. In Proc. of the 6th IEEE Symposium on Logic in Computer Science,
pages 300–309, 1991.



Tree Automata with Equality Constraints Modulo Equational Theories 571

12. T. Genet and F. Klay. Rewriting for Cryptographic Protocol Verification. In Proc.
of 17th Int. Conf. on Automated Deduction, CADE, volume 1831 of LNCS. Springer,
2000.

13. J. Goubault-Larrecq. Deciding H1 by Resolution. Information Processing Letters,
95(3):401–408, 2005.

14. F. Jacquemard, C. Meyer, and C. Weidenbach. Unification in Extensions of Shallow
Equational Theories. In 9th Int. Conf. on Rewriting Techniques and Applications,
RTA, volume 1379 of LNCS, pages 76–90. Springer, 1998.

15. F. Jacquemard, M. Rusinowitch, and L. Vigneron. Tree automata with equality
constraints modulo equational theories. Technical Report LSV-06-07, LSV, 2006.
http://www.lsv.ens-cachan.fr/Publis .
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The 3rd IJCAR ATP System Competition
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The CADE ATP System Competition (CASC) is an annual evaluation of fully
automatic, first-order Automated Theorem Proving (ATP) systems - the world
championship for such systems. CASC-J3 was held on 18th August 2006, as part
of the 3rd International Joint Conference on Automated Reasoning1, in Seattle,
Washington. It was the eleventh competition in the CASC series.

CASC-J3 was (like all CASCs) divided into divisions according to problem
and system characteristics. The competition divisions were:2

– The FOF division: Mixed FOF non-propositional theorems.
– The CNF division: Mixed CNF really-non-propositional theorems.
– The SAT division: Mixed CNF really-non-propositional non-theorems.
– The EPR division: CNF effectively propositional theorems and non-theorems.
– The UEQ division: Unit equality CNF really-non-propositional theorems.

The systems were ranked in each division according to the number of problems
solved (just a “yes” output). The systems in the FOF, CNF, and SAT divisions
were also ranked according to the number of problems solved with an acceptable
proof/model output. The problems were selected from the TPTP problem library
v3.2.0, which was not released until the day of the competition. The selection
of problems was biased towards up to 50% new problems not previously seen
by the entrants. A CPU time limit was imposed on each system’s run on each
problem, and a wall clock time limit was imposed to limit very high memory
usage that causes swapping. The CASC-J3 WWW site provides access to all the
details of the competition design, competition resources, and the systems that
were entered: http://www.tptp.org/CASC/J3/

The main change in CASC-J3 since CASC-20 (the previous CASC) was the
promotion of the FOF division to primary place. This change reflects the in-
creased number of FOF contributions to the TPTP - 550 new FOF problems
between TPTP v3.0.1 and TPTP v3.1.0, in contrast with only 168 new CNF
problems. The contributions reflect a corresponding increased use of FOF in
applications, where problems are typically generated mechanically as part of a
more complex software process, e.g., proof obligations arising from software veri-
fication [DFS04], or problems that check the consistency of an ontology [RPG05].
1 CADE was a constituent conference of IJCAR, hence CASC-“J3”.
2 The acronyms mean: FOF - First Order Form (with all quantifiers and connectives),

CNF - Clause Normal Form, SAT - Satisfiable, EPR - Effectively propositional (with
a finite Herbrand universe), UEQ - Unit equality.

U. Furbach and N. Shankar (Eds.): IJCAR 2006, LNAI 4130, pp. 572–573, 2006.
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The use of ATP is typically just one of many software components within such
applications, whose developers are best served by ATP systems that accept prob-
lems in whatever form is naturally produced by the application, without a need
for transformation to any particular form, e.g., CNF or FOF with a restricted
use of connectives. In accordance with that need, the FOF problems in CASC-J3
used the full set of FOF operators defined in the TPTP language, e.g., including
<= and <∼>, and interpreted propositions for true and false. No standardizing
preprocessing was performed.

For CASC-21 (in next CASC) a FOF satisfiability division is planned, which
will require systems to establish the satisfiability of sets of FOF formulae. This
division will provide a link to the QF UF division of the SMT-COMP competi-
tion [BdMS05], where systems must establish the satisfiability of sets of ground
FOF formulae with equality. In the long term it is hoped to build closer ties
between the TPTP and SMT-LIB [RTRL], which may lead to corresponding
links between CASC and SMT-COMP. Combining the reasoning strengths of
state-of-the-art first order systems (as evaluated in CASC) with theory reason-
ing capabilities (as evaluated in SMT-COMP) will provide users with better
reasoning tools for solving application problems.

CASC has been a catalyst for improved engineering and performance of many
ATP systems, and provides stimulus and insights that can lay the basis for the
development of future ATP systems [SS06]. One of the virtues of the competition,
which makes it repetitive to people who are looking for new features, is the
fact that changes are made conservatively: this makes the results comparable
over time, and provides incremental challenges to system developers. A key to
sustaining the value of CASC in the future is continued growth of the TPTP.
Developers and users are strongly encouraged to contribute new problems to the
TPTP, particularly problems from emerging commercial applications of ATP.
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Abstract. We present a new method for automatically proving termi-
nation of term rewriting. It is based on the well-known idea of interpre-
tation of terms where every rewrite step causes a decrease, but instead
of the usual natural numbers we use vectors of natural numbers, ordered
by a particular non-total well-founded ordering. Function symbols are
interpreted by linear mappings represented by matrices. This method
allows to prove termination and relative termination. A modification of
the latter in which strict steps are only allowed at the top, turns out to
be helpful in combination with the dependency pair transformation.

By bounding the dimension and the matrix coefficients, the search
problem becomes finite. Our implementation transforms it to a Boolean
satisfiability problem (SAT), to be solved by a state-of-the-art SAT
solver. Our implementation performs well on the Termination Problem
Data Base: better than 5 out of 6 tools that participated in the 2005
termination competition in the category of term rewriting.

1 Introduction

The annual Termination Competition [2] has given a new drive to the quest for
automated methods to obtain termination proofs for term rewriting.

The termination provers do apply established methods (path orderings, de-
pendency pairs, interpretations, labellings) as well as new methods (RFC match
bounds). Two insights are that general methods can be restricted to special
cases, gaining efficiency without loosing too much power, and combining meth-
ods may lead to strong improvements. We present here one such phenomenon:
termination proofs from interpretations into a well-founded monotone algebra.
This is a well-known general theme, but our point is

– the special choice of the algebra, and
– the special implementation of how to find suitable interpretations.
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The carrier of the algebra consists of vectors of natural numbers on which we de-
fine a well-founded ordering that is not total. Each function symbol is interpreted
by a suitable linear mapping. This method allows to prove termination and rel-
ative termination. It has been proposed for string rewriting by Hofbauer and
Waldmann [11]. In the present paper, we discuss its extension to term rewriting
and a modification that allows to prove relative top-termination, i.e., a vari-
ant of relative termination where the strict steps are only allowed on top level.
The latter is very helpful when using the dependency pair transformation. In
order to cover the two-sorted nature of the dependency pair transformation, our
monotone algebra setting is presented many-sorted.

We have implemented the method by bounding the dimension and the matrix
coefficients, resulting in a search problem with a finite but typically huge search
space. This is solved by transforming this finite search problem to a SAT prob-
lem, and using the state-of-the-art SAT solver SatELiteGTI, [3]. This performs
surprisingly well on the Termination Problem Data Base, see section 7.

The main part of the paper is organized as follows. We present a many-
sorted monotone algebra framework for relative termination and relative top-
termination in Section 3, generalizing earlier results on monotone algebras. Then
we choose the matrix instance of this framework in Section 4. Later, we combine
this with the Dependency Pair method in Section 5. Our implementation is
described in Section 6 and its performance is discussed in Section 7.

Our methods are illustrated by examples. They are kept simple for the sake
of presentation. Nevertheless none of them can be proved terminating by any of
the programs that participated in the Termination Competition 2005 [2].

2 Preliminaries

Let S be a non-empty set of sorts, and let Σ be an S-sorted signature, being a
set of operation symbols each having a fixed arity in S∗ × S. An S-sorted set
A is defined to consist of a set As for every s ∈ S. For an S-sorted set X of
variable symbols let T (Σ,X ) be the S-sorted set of terms over Σ and X , that
is, the smallest S-sorted set satisfying

– xs ∈ T (Σ,X )s for all xs ∈ Xs, and
– if the arity of f ∈ Σ is ((s1, . . . , sn), s) and ti ∈ T (Σ,X )si for i = 1, . . . , n,

then f(t1, . . . , tn) ∈ T (Σ,X )s.

A term rewriting system (TRS) R over Σ,X is a S-sorted set in which for
every s ∈ S the set Rs consists of pairs ($, r) ∈ T (Σ,X )s ×T (Σ,X )s, for which
$ �∈ Xs and all variables in r occur in $. Pairs ($, r) are called rewrite rules of
sort s and are usually written as $→ r.

An S-sorted relation → over an S-sorted set A is defined to be an S-sorted
set for which →s⊆ As ×As for every s ∈ S.

A substitution σ : X → T (Σ,X ) is defined by a map σs : Xs → T (Σ,X )s for
every s ∈ S. These extend to terms in the obvious way.



576 J. Endrullis, J. Waldmann, and H. Zantema

For a TRS R the (S-sorted) top rewrite relation top→R on T (Σ,X ) is defined
by t

top→R,s u if and only if there is a rewrite rule $→ r ∈ Rs and a substitution
σ : X → T (Σ,X ) such that t = $σ and u = rσ. The (S-sorted) rewrite relation
→R is defined to be the smallest S-sorted relation satisfying

– if t
top→R u then t→R u, and

– if ti →R,si ui and tj = uj for j �= i, then f(t1, . . . , tn) →R,s f(u1, . . . , un)
for every f ∈ Σ of arity ((s1, . . . , sn), s) and every i = 1, . . . , n.

For S-sorted binary relations we write · for sort-wise relation composition,
and ∗ for sort-wise transitive reflexive closure.

An S-sorted relation → is called well-founded or terminating if for no s ∈ S
an infinite sequence t1, t2, t3, . . . exists such that ti →s ti+1 for all i = 1, 2, 3, . . . .

A TRS R is called terminating if →R is well-founded. Termination is also
called strong normalization; therefore the property of R being terminating is
written as SN(R).

A binary relation →1 is called terminating relative to a binary relation →2,
written as SN(→1 / →2), if for no s ∈ S an infinite sequence t1, t2, t3, . . . exists
such that

– ti →1,s ti+1 for infinitely many values of i, and
– ti →2,s ti+1 for all other values of i.

We use the notation →1 / →2 to denote →∗
2 · →1 · →∗

2; it is easy to see that
SN(→1 / →2) coincides with well-foundedness of →1 / →2. We write SN(R/S)
as a shorthand for SN(→R /→S), and we write SN(Rtop/S) as a shorthand for

SN(
top→R /→S).

3 Monotone Algebras

A Σ-algebra (A, [·]) is defined to consist of a S-sorted set A, and for every f ∈ Σ
a function [f ] : As1 × · · · × Asn → As, where ((s1, . . . , sn), s) is the arity of f .
This function [f ] is called the interpretation of f .

Let αs : Xs → As for every s ∈ S; this collection of maps αs is written as
α : X → A. We define the term evaluation [·, α] : T (Σ,X ) → A inductively by

[x, α] = αs(x),
[f(t1, . . . , tn), α] = [f ]([t1, α], . . . , [tn, α])

for f ∈ Σ and x ∈ Xs.

Definition 1. An operation [f ] : As1×· · ·×Asn → As is monotone with respect
to an S-sorted binary relation → on A if for all ai, bi ∈ Asi for i = 1, . . . , n with
ai →si bi for some i and aj = bj for all j �= i we have

[f ](a1, . . . , an) →s [f ](b1, . . . , bn).

A weakly monotone Σ-algebra (A, [·], >,	) is a Σ-algebra (A, [·]) equipped
with two S-sorted relations >, 	 on A such that
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– > is well-founded;
– > · 	 ⊆ >;
– for every f ∈ Σ the operation [f ] is monotone with respect to 	.

An extended monotone Σ-algebra (A, [·], >,	) is a weakly monotone Σ-
algebra (A, [·], >,	) in which moreover for every f ∈ Σ the operation [f ] is
monotone with respect to >.

The combination >,	 is closely related to the notion of reduction pair in the
dependency pair framework, e.g. in [8]. A crucial difference is that the relations
in a reduction pair are relations on terms that are closed under substitutions,
while in our setting they are relations on the arbitrary (many-sorted) set A.

In the sequel we often omit sort information, e.g. writing [t, α] > [u, α] rather
than [t, α] >s [u, α]. A TRS given without sort information is assumed to be
one-sorted, i.e., S consists of one element.

The one-sorted version of extended monotone algebra where 	 is left implicit
by defining it as the union of > and equality is called well-founded monotone
algebra in [14,15]. A main theorem states that a TRS is terminating if and only
if there is a well-founded monotone algebra (A, [·], >) such that [$, α] > [r, α]
for every rule $ → r and every α : X → A. First we show that for relative
termination we have a similar characterization based on extended monotone
algebras, but not on this earlier version of well-founded monotone algebras.

Theorem 1. Let R,S be TRSs over a signature Σ. Then

1. SN(R/S) if and only if there exists an extended monotone Σ-algebra
(A, [·], >,	) such that [$, α] > [r, α] for every rule $ → r in R and [$, α] 	
[r, α] for every rule $→ r in S, for every α : X → A.

2. SN(Rtop/S) if and only if there exists a weakly monotone Σ-algebra
(A, [·], >,	) such that [$, α] > [r, α] for every rule $ → r in R and [$, α] 	
[r, α] for every rule $→ r in S, for every α : X → A.

Proof. For the ‘if’-part of part 1 assume such an extended monotone algebra
(A, [·], >,	) exists; we have to prove SN(R/S). So assume an infinite reduction

t1 →R∪S t2 →R∪S t3 →R∪S · · ·

containing infinitely many R-steps. Choose α : X → A arbitrary. Due to mono-
tonicity with respect to > we obtain [ti, α] > [ti+1, α] if ti →R ti+1, and due
to monotonicity with respect to 	 we obtain [ti, α] 	 [ti+1, α] if ti →S ti+1.
Since > · 	 ⊆ > we obtain > · 	∗ ⊆ >, hence for ti →R ti+1 →∗

S tj we ob-
tain [ti, α] > [tj , α]. Since there are infinitely many R-steps this gives rise to an
infinite decreasing sequence with respect to >, contradicting well-foundedness.

The proof of the ‘if’-part of part 2 is similar; now all→R-steps in the assumed
infinite reduction are

top→R-steps, by which monotonicity with respect to > is not
required.

For the ‘only if’-part assume SN(R/S), respectively SN(Rtop/S), holds.
Choose A = T (Σ,X ), and [f ](t1, . . . , tn) = f(t1, . . . , tn) for all f ∈ Σ. De-
fine > = (→R /→S)+ and 	 = (→R∪S)∗, respectively > = (

top→R /→S)+ and
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	 = →∗
S . Then (A, [·], >,	) satisfies all requirements; where well-foundedness

of > is concluded from the assumption SN(R/S), respectively SN(Rtop/S). ��

For the relations >,	 we typically have in mind some more properties, like
transitivity of both > and 	, reflexivity of 	, and 	 · > · 	 ⊆ > ⊆ 	. However,
from the proof of Theorem 1 we see that these properties are not essential.

For this characterization of relative termination the general notion of extended
monotone algebra is essential: it does not hold for the restricted case where 	
coincides with the union of > and equality. For instance, if R consists of the rule
f(f(x)) → f(g(f(x))) and S consists of the rule f(x) → g(f(x)) then SN(R/S)
holds, but no extended monotone algebra exists in which 	 coincides with the
union of > and equality and the properties of Theorem 1 hold.

Now we arrive at the theorem for extended monotone algebras as we will use
it for proving (relative) termination by matrix interpretations.

Theorem 2. Let R,S be TRSs over a signature Σ.

1. Let (A, [·], >,	) be an extended monotone Σ-algebra such that [$, α] 	 [r, α]
for every rule $ → r in R ∪ S and every α : X → A. Let R′ consist of all
rules $→ r from R ∪ S satisfying [$, α] > [r, α] for every α : X → A.
Then SN((R \R′)/(S \R′)) implies SN(R/S).

2. Let (A, [·], >,	) be a weakly monotone Σ-algebra such that [$, α] 	 [r, α] for
every rule $ → r in R ∪ S and every α : X → A. Let R′ consist of all rules
$→ r from R satisfying [$, α] > [r, α] for every α : X → A.
Then SN((R \R′)top/S) implies SN(Rtop/S).

Proof. For part 1 assume SN((R \ R′)/(S \ R′)). Take any infinite reduction
with respect to R ∪ S. From Theorem 1 part 1 we conclude SN(R′/(R ∪ S)), so
this infinite reduction contains only finitely many R′-steps. So after removing
a finite initial part, this reduction only consists of (R ∪ S) \ R′-steps. Since
SN((R \ R′)/(S \ R′)) this remaining part contains only finitely many R \ R′-
steps. So the original infinite reduction contains only finitely many R-steps.
Hence we proved SN(R/S).

For part 2 assume SN((R\R′)top/S). Take any infinite reduction with respect

to
top→R ∪ →S . From Theorem 1 part 2 we conclude SN(R′

top/(R ∪ S)), so this

infinite reduction contains only finitely many
top→R′ -steps. So after removing a

finite initial part, this reduction only consists of
top→R\R′ -steps and →S-steps.

Since SN((R \R′)top/S) this remaining part contains only finitely many
top→R\R′ -

steps. So the original infinite reduction contains only finitely many
top→R-steps,

proving SN(Rtop/S). ��

The basic way to apply Theorem 2 is as follows. If SN(R/S) (or SN(Rtop/S))
has to be proved then try to find an extended (or weakly) monotone Σ-algebra
satisfying the conditions for which R′ is not empty. Then the proof obligation
is weakened to SN((R \R′)/(S \R′)) (or SN((R \ R′)top/S)). For this we again
apply Theorem 2 in the same way. This is repeated until R \ R′ = ∅, for which
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the remaining proof obligation SN((R \ R′)/(S \ R′)) ( or SN((R \ R′)top/S))
trivially holds. Proving termination rather than relative termination is a special
case of this approach: then S is empty in SN(R/S).

Application of Theorem 2 is well-known for the case where A consists of the
natural numbers, or natural numbers ≥ 2, and all functions [f ] are polynomials,
and> and 	 have their usual meaning. For part 1 strict monotonicity is required,
while for part 2 weak monotonicity is sufficient. In this polynomial case 	 coin-
cides with the union of > and equality. In the matrix interpretations in the vector
algebras considered in this paper, this is not the case for dimensions > 1.

4 Matrix Interpretations

In this paper we focus on interpretations based on matrices. For the basic ver-
sion this means that we fix a dimension d and construct a one-sorted extended
monotone algebra (A, [·], >,	) in which A = Nd. Without any complication this
extends to the many-sorted setting in which every sort has its own dimension. To
keep the presentation simple here we restrict to the one-sorted case.

The relations > and 	 on A are defined as follows:

(v1, . . . , vd) > (u1, . . . , ud) ⇐⇒ v1 > u1 ∧ vi ≥ ui for i = 2, 3, . . . , d,

(v1, . . . , vd) 	 (u1, . . . , ud) ⇐⇒ vi ≥ ui for i = 1, 2, . . . , d.
All requirements for > and 	 from Definition 1 trivially hold. Note that 	 does
not coincide with the union of > and equality.

For the interpretation [c] of a symbol c ∈ Σ of arity 0 we choose any element of
A. For the interpretation [f ] of a symbol f ∈ Σ of arity n ≥ 1 we choose nmatrices
F1, F2, . . . , Fn over N, each of size d× d, such that the upper left elements (Fi)1,1
are positive for all i = 1, 2, . . . , n, and a vector f ∈ Nd. Now we define

[f ](v1, . . . ,vn) = F1v1 + · · ·+ Fnvn + f

for all v1, . . . ,vn ∈ A. One easily checks that f is monotonic with respect to 	.
Due to positiveness of the upper left matrix elements we also conclude that f is
monotonic with respect to >. So by choosing all [f ] of this shape all requirements
of an extended monotone algebra are fulfilled.

In order to apply Theorem 2, part 1, we should be able to check whether [$, α] 	
[r, α] or [$, α] > [r, α] for all α : X → A, for given rewrite rules $ → r. Let
x1, . . . , xk be the variables occurring in $, r. Then due to the linear shape of the
functions [f ] we can compute matricesL1, . . . , Lk, R1, . . . , Rk and vectors l, r such
that

[$, α] = L1x1 + · · ·+ Lkxk + l

and
[r, α] = R1x1 + · · ·+Rkxk + r

where α(xi) = xi for i = 1, . . . , k.
For matrices B,C ∈ Nd×d write

B 	 C ⇐⇒ ∀i, j : (B)i,j ≥ (C)i,j .
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The following lemma states how the conditions of Theorem 2 can be checked.

Lemma 1. Let L1, . . . , Lk, R1, . . . , Rk and l, r correspond to a rewrite rule $→ r
as described above. Then

– [$, α] 	 [r, α] for every α : X → A if and only if

Li 	 Ri for i = 1, . . . , k, and l 	 r,

– [$, α] > [r, α] for every α : X → A if and only if

Li 	 Ri for i = 1, . . . , k, and l 	 r, and l1 > r1.

So for applying Theorem 2, part 1, we fix a dimension d and choose matrices Fi

and vectors f for all f ∈ Σ. Next for every rule $→ r ∈ R ∪ S we check whether
Li 	 Ri for i = 1, . . . , k and l 	 r. If so, then we may remove all rules more-
over satisfying l1 > r1. After having done so we may continue by choosing new
matrices, or by any other technique for proving (relative) termination.

Note that for our matrix interpretations after choosing the interpretation check-
ing whether a left hand side is greater (or greater or equal) than a right hand side
is decidable due to Lemma 1, in contrast to non-linear polynomial interpretations.

Example 1. Consider the TRS consisting of the following rule.

h(g(s(x), y), g(z, u))→ h(g(u, s(z)), g(s(y), x))

We choose A = N2 together with the symbol interpretations:

[h](x0,x1) =
(

3 1
1 0

)
· x0 +

(
1 3
0 1

)
· x1 +

(
0
2

)

[g](x0,x1) =
(

2 1
1 0

)
· x0 +

(
1 0
2 1

)
· x1

[s](x0) =
(

1 0
0 1

)
· x0 +

(
0
2

)

Let α : X → A be arbitrary; writeα(x) = x, α(y) = y, α(z) = z and α(u) = u.
Then we obtain

[h(g(s(x), y), g(z, u)), α]

=(
7 3
2 1

)
· x +

(
5 1
1 0

)
· y +

(
5 1
1 0

)
· z +

(
7 3
2 1

)
· u +

(
6
4

)

>(
7 3
2 1

)
· x +

(
5 1
1 0

)
· y +

(
5 1
1 0

)
· z +

(
7 3
2 1

)
· u +

(
4
2

)

=

[h(g(u, s(z)), g(s(y), x)), α].

By Theorem 2 we conclude that the system is terminating.
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Just as in this example, in general we conclude [$, α] > [r, α] for arbitrary α :
X → A if we have a strict decrease in the first vector coefficient, and ≥ for all
matrix coefficients and all other vector coefficients.

We conclude this section by an example of relative termination.

Example 2. Define R,S as follows; we want to prove SN(R/S).

R = { f(a, g(y), z)→ f(a, y, g(y)), f(b, g(y), z)→ f(a, y, z), a → b }

S = { f(x, y, z)→ f(x, y, g(z)) }.
We choose the following symbol interpretations:

[a] =
(

1
0

)
[b] =

(
0
0

)

[f](x0,x1,x2) =
(

1 0
0 0

)
· x0 +

(
1 2
0 0

)
· x1 +

(
1 0
0 0

)
· x2 +

(
0
0

)

[g](x) =
(

1 0
1 1

)
· x +

(
0
1

)

Thereby all rules in R ∪ S are weakly decreasing, i.e. all matrix coefficients in
the left hand side are greater or equal to the corresponding coefficients in the right
hand side. Moreover, all upper left matrix coefficients are nonzero and the rules
in R are strictly decreasing in the first coefficient. Hence by Theorem 2 all rules
from R may be removed proving SN(R/S).

5 Top Reduction and Dependency Pairs

For a one-sorted TRS R a symbol f ∈ Σ is called a defined symbol if f is the
root symbol of a left hand side of a rule of R. For every defined symbol f ∈ Σ a
new marked symbol f# is added having the same arity as f . If f(s1, . . . , sn) →
C[g(t1, . . . , tm)] is a rule in R and g is a defined symbol of R, then the rewrite
rule f#(s1, . . . , sn) → g#(t1, . . . , tm) is called a dependency pair of R. The TRS
consisting of all dependency pairs of R is denoted by DP(R). We consider these
TRSs R and DP(R) to be S-sorted for S = {s,#}, and every f ∈ Σ has arity
((s, . . . , s), s) and its marked version f# has arity ((s, . . . , s),#).

The main theorem about dependency pairs is the following, due to Arts and
Giesl, [1].

Theorem 3. Let R be a one-sorted TRS. Then SN(R) if and only if
SN(DP(R)top/R).

We will use this theorem for proving SN(R) by proving SN(DP(R)top/R) using
part 2 of Theorem 2.

For doing so by matrix interpretations we fix a dimension d as before and con-
struct a weakly monotone algebra (A, [·], >,	) in which As = Nd and A# = N.
The relation 	 on As = Nd is defined as before:

(v1, . . . , vd) 	 (u1, . . . , ud) ⇐⇒ vi 	 ui for all i = 1, 2, . . . , d;
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the relation 	 on A# = N is the usual ≥ on N. However, for > on As = Nd we
now choose another relation as before: we choose > to be the empty relation. The
relation > on A# = N is the usual > on N. All requirements for > and 	 from
Definition 1 trivially hold.

For the interpretation [f ] of a symbol f ∈ Σ of arity n ≥ 0 we define

[f ](v1, . . . ,vn) = F1v1 + · · ·+ Fnvn + f

for n matrices F1, F2, . . . , Fn over N of size d× d, and a vector f ∈ Nd. Note that
now we do not require any more that the upper left elements of the matrices are
positive. For the interpretation [f#] of a marked symbol f# corresponding to f of
arity n ≥ 0 we define

[f#](v1, . . . ,vn) = f1v1 + · · ·+ fnvn + cf

for n row vectors f1, . . . ,fn over N of size d, and a constant cf ∈ N. Here fivi

denotes the inner product, corresponding to matrix multiplication of a row vector
by a column vector.

As before [f ] is monotonic with respect to 	, and monotonicity with respect to
> is trivial since > is empty. The same holds for f#. By choosing all [f ] and f# of
this shape all requirements of a weakly monotone algebra are fulfilled.

In order to apply Theorem 2, part 2, for rules in R we check whether [$, α] 	
[r, α] for all α : X → A for given rewrite rules as before. Checking whether [$, α] >
[r, α] for all α is only required for rules $ → r in DP(R) being of sort #. This
restriction can be written as lx + cl > rx + cr for every vector x over N, being
equivalent to l 	 r ∧ cl > cr. Similarly, for rules $→ r in DP(R) the requirement
[$, α] 	 [r, α] for all α is equivalent to l 	 r ∧ cl 	 cr.

It is also possible to keep the treatment of SN(DP(R)top/R) one-sorted on vec-
tors of size d, choosing> to be the strict part of 	. However, then the search space
is much bigger since for every f# n matrices of size d× d plus a vector have to be
chosen, instead of n vectors of size d plus a constant, where n is the arity of f .
Every termination proof in this one-sorted setting also yields a termination proof
in the two-sorted setting as presented here, with the same bound on matrix- and
vector elements. This can be seen as follows. If there is a proof in the one-sorted
setting then for at least one dependency pair the interpretation of the lhs strictly
exceeds the interpretation of the rhs. Since > is the strict part of 	, there is at
least one dimension in which strict inequality appears. Then by eliminating all
other dimensions an interpretation in our two-sorted setting is found by which
this particular dependency pair can be removed. By repeating the argument, the
full termination proof in the one-sorted setting can be mimicked in our two-sorted
setting. So the two-sorted approach is as powerful but yields much smaller search
spaces, by which this two-sorted approach is preferred.

Example 3. Consider the TRS consisting of the following rule.

g(g(s(x), y), g(z, u))→ g(g(y, z), g(x, s(u)))
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Using the dependency pairs transformation we get 3 dependency pairs:

1. g#(g(s(x), y), g(z, u))→ g#(g(y, z), g(x, s(u)))
2. g#(g(s(x), y), g(z, u))→ g#(y, z)
3. g#(g(s(x), y), g(z, u))→ g#(x, s(u))

The dependency pairs 2 and 3 can easily be removed by counting the symbols.
That is using [g#](x, y) = [g](x, y) = 1 + x + y and [s](x) = x + 1 as polyno-
mial interpretation over N. So the original rule and the first dependency pair re-
main. We choose the following interpretation with dimension d = 2 (i.e. As = N2,
A# = N).

[g#](x0,x1) = (1, 0) · x0 + (0, 1) · x1

[g](x0,x1) =
(

1 0
1 0

)
· x0 +

(
1 0
0 1

)
· x1

[s](x0) =
(

1 0
0 0

)
· x0 +

(
1
0

)

For the original rule g(g(s(x), y), g(z, u))→ g(g(y, z), g(x, s(u))) we obtain
(

1 0
1 0

)
· x +

(
1 0
1 0

)
· y +

(
1 0
1 0

)
· z +

(
1 0
0 1

)
· u +

(
1
1

)

	
(

1 0
1 0

)
· x +

(
1 0
1 0

)
· y +

(
1 0
1 0

)
· z +

(
1 0
0 0

)
· u +

(
1
0

)

and for the remaining dependency pair g#(g(s(x), y), g(z, u)) → g#(g(y, z),
g(x, s(u))) we obtain

(1, 0) · x + (1, 0) · y + (1, 0) · z + (0, 1) · u + (1)

>

(1, 0) · x + (1, 0) · y + (1, 0) · z + (0, 0) · u + (0).

So all rules are weakly decreasing and the dependency pair is strictly decreasing
and thus can be removed. Hence the system is terminating.

Note that the given interpretation cannot be used to prove termination directly
by Lemma 1. All the upper left matrix elements are nonzero, but (1, 1)T �> (1, 0)T .
In Section 7 we will see that in experiments it often happens similarly that this
dependency pair approach succeeds where the basic matrix approach from Section
4 fails.

6 Implementation

The method described in the previous sections has been implemented as follows.
The basic algorithm finds a matrix interpretation that allows to remove rules

from a termination problem. It is called repeatedly until all rules have been
removed.
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Algorithm Remove:

– inputs
• a pair of rewrite systems (R,S) over signature Σ
• a flag f ∈ {Full,Top}
• numbers d, b, b′

– outputs a matrix interpretation [·] such that
• if f = Full, then the interpretation fulfills the conditions of Theorem 2,

part 1, for a non-empty TRS R′;
• if f = Top, then the interpretation fulfills the conditions of Theorem 2,

part 2, for a non-empty TRS R′;
• the interpretation [·] uses matrices of dimension d× d;
• all the coefficients in the matrices in the interpretations of operation sym-

bols are in the range 0 . . . 2b − 1;
• all the coefficients in the in the matrices in the interpretations of rules are

in the range 0 . . . 2b′ − 1.

It may be useful to choose b < b′. For instance, if b = 2 and b′ = 3 then the
algorithm searches for matrices with coefficients < 4 as the interpretations of the
operation symbols, but allows coefficients up to 7 in the matrices obtained by mul-
tiplying these basic matrices guided by the shape of the rules.

As described in Sections 4 and 5 the conditions for Theorem 2 give rise to con-
straints on coefficients in vectors and matrices that constitute the interpretations
of the rules.

The implementation of the algorithm has two stages: the first stage produces
a system I of inequalities, representing these constraints. The second stage solves
this constraint system I by translation to a boolean satisfiability problem F .

We stress that the constraint system I consists of inequalities between polyno-
mials of the unknowns. The maximal degree of these polynomials is the maximal
depth of a term in a rewrite rule. The number of unknowns depends linearly on
the size of the alphabet and quadratically on the dimension of the vector space we
use. The number of the inequalities is quadratic in the dimension and linear in the
number of rules. Because of the size and the non-linearity of this system, there is
no hope for a feasible exact algorithm that solves it.

By putting the bounds b, b′ on the range of the variables, the problem has be-
come finite. This finite problem is translated into propositional logic. Each vari-
able from I is then represented by a list of b boolean variables, giving its binary
representation. To represent intermediate results (partial sums and products), we
need additional constraint variables (translated into bit strings of length b′).

Then the formula F is transformed into conjunctive normal form, and we call a
SAT solver to find a satisfying assignment. We use SatELiteGTI, [3], the winner
of last year’s SAT competition. But our translators are not specific to that solver
since we use a system-independent data exchange format. E. g. we checked with
ZChaff ([12]) and got nearly identical results. Information about the 2005 SAT
competition and these tools is obtained via http://www.satcompetition.org/.

From the satisfying assignment for F a satisfying assignment for the original
system I is constructed. This gives the matrices and vectors for the symbol in-
terpretations. The rule interpretations are re-calculated to double-check that all
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constraints do really hold and that indeed a nonempty set R′ of rules can be re-
moved according to Theorem 2.

If the solver does not find a satisfying assignment within a given time bound,
the process is repeated by either giving larger bounds for the coefficients or larger
dimension for the vector space.

While this gives the general idea, quite some effort has to be invested to orga-
nize the repeated attempts in such a manner that all potentially successful param-
eter combinations are actually tried within the given time bound. For instance,
we start with the direct matrix method using dimension one with 5 bits for co-
efficients, followed by dimension two with 3 bits for coefficients, both 5 seconds
time-out. Afterward we do a dependency pairs transformation and use matrix in-
terpretations of dimension one, up to dimension 4, with 2 bits for coefficients, 3
bits for intermediates, increasing the time-out stepwise.

To give an impression of this search and the size of the resulting formula, con-
sider the TRS consisting of the following rules.

h(x, c(y, z)) → h(c(s(y), x), z)

h(c(s(x), c(s(0), y)), z) → h(y, c(s(0), c(x, z)))

For smaller dimensions no solution is found, but by choosing dimension d = 3
and 2 bits per coefficient suitable interpretations are found by which the second
rule can be removed. Termination of the remaining rule is easily shown by a one-
dimensional interpretation.

For the main step in this proof, i.e., removing the second rule, the translation
of the constraint problem needs 8.000 boolean variables and 40.000 propositional
clauses. A satisfying assignment is found by SatELiteGTI in around 5 seconds on
a current personal computer.

The translation of one binary multiplication (where the arguments have 3 bits
and the result has 6 bits) needs about 150 clauses. One can exchange variables for
clauses, to a certain extent.

We developed two independent implementations:

– as part of Matchbox [13], by Waldmann, written in Haskell, and
– as part of Jambox, [4], by Endrullis, written in Java.

This allows to double-check our results. We each use slightly different algorithms
that produce formulas of different sizes. It is not automatically the case that the
smaller formula is better for the solver. In some cases, the solver will find a solution
for a larger formula earlier than for a smaller one.

7 Performance Measurements

In this section we will analyze the performance of the matrix method under various
setting on the TRS part of the Termination Problem Database 2005 (TPDB). This
problem set was the basis of the 2005 Termination Competition and is available
via [2]. It consists of 773 TRS, among which 588 could be proved to be terminating
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by any of the six participating tools; the rest both contains non-terminating TRSs
and TRSs for which the termination behavior is unknown or only established by
a human.

By direct method we mean pure matrix interpretations, i.e. without usage of
any other termination methods like dependency pairs. Likewise the method with
dependency pairs stands for the combination of matrix interpretations with the
dependency pairs framework. A huge amount of methods has been developed for
the dependency pairs framework. In our implementation we restrict to the most
basic methods, since our goal is to analyze the strength of the matrix method. In
particular, we use dependency graph approximation and the usable rules criterion
[5,8], the sub-term criterion [8], and compute strongly connected components as
in [9]. Finally, dependency pairs + stands for the extension by the transformation
of applicative TRSs into functional form as described in [6], and rewriting of right
hand sides [16]. Both techniques are non-branching syntactic transformations, to
be used as preprocessing.

We want to emphasize that we did not apply any of the following techniques:
recursive path order, argument filtering and semantic labelling, as they were con-
sidered sometimes to be essential for any serious termination tool.

The following table presents our results.

method dimension initial bits result bits cumulative
d b b′ YES score

direct 1 4 5 141
direct 2 2 3 219
direct 3 3 4 225

dependency pairs 1 4 5 433
dependency pairs 2 1 2 503
dependency pairs 2 2 3 505
dependency pairs 3 2 3 507
dependency pairs 4 2 3 509

dependency pairs + 4 2 3 538

For these results we took the time limit of 1 minute, just like in the Termination
Competition. However, this time was hardly ever consumed; the average compu-
tation time for all proofs is around 1 second. The full results, including all proofs
generated by Jambox, are available via

http://joerg.endrullis.de/ijcar06/.

For the following 6 systems our approach found termination proofs where all
participating tools in the 2005 competition failed: TRCSR-Ex1-2-Luc02c-GM,
TRCSR-Ex14-AEGL02-C, TRCSR-Ex1-GL02a-C, TRCSR-Ex4-7-15-Bor03-C,
TRCSR-Ex49-GM04-C and TRCSR-Ex6-9-Luc02c-GM. So by adding our approach
the total score of 588 for all tools would increase to 594.

We also applied our approach the subcategory of relative termination in TPDB,
on which the 2005 competition also run. The winner in this subcategory was TPA
with a score of 23; our approach would have yielded a second place with a score
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of 20. Among these 20 proofs 10 are done with dimension one, 8 with dimension
two and 2 with dimension three.

8 Conclusions

The idea of using matrix interpretations for termination proofs for string rewriting
was developed by Hofbauer and Waldmann [11]. It allowed them to prove termi-
nation for {aa → bc, bb → ac, cc → ab}. In this paper we showed how to extend
this approach to term rewriting successfully. A crucial ingredient is taking linear
combinations of matrix interpretations for symbols of arity > 1.

In the results on the benchmark database TPDB we see a big jump when in-
creasing the dimension from 1 (representing linear polynomial interpretations)
to 2. Increasing the dimension from 2 to higher values only yields a minor im-
provement, while then the sizes of the satisfiability formulas strongly increase. By
adding the dependency pairs approach an enormous jump is achieved: then us-
ing only linear polynomial interpretations (d = 1) already reaches a score of 433
points. In the Termination Competition 2005 this would have been a remarkable
third place. Finally, our highest score of 538 for dependency pairs + would have
yielded a second place in this competition: still below the winning score of 576 for
AProVE [7], but significantly better than the second score of 509 for TTT [10].

We like to stress that among the 538 TRSs for which termination was proved
by our tool, for several (6) of them all six tools from the 2005 competition failed.
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Abstract. Based on inductive definitions, we develop an automated tool for de-
fining partial recursive functions in Higher-Order Logic and providing appro-
priate reasoning tools for them. Our method expresses termination in a uniform
manner and includes a very general form of pattern matching, where patterns can
be arbitrary expressions. Termination proofs can be deferred, restricted to sub-
sets of arguments and are interchangeable with other proofs about the function.
We show that this approach can also facilitate termination arguments for total
functions, in particular for nested recursions. We implemented our tool as a defi-
nitional specification mechanism for Isabelle/HOL.

1 Introduction

Advanced specification mechanisms that introduce definitions in a natural way are es-
sential for the practical usability of proof assistants.

In a logic of total functions, notably Higher-Order Logic (HOL), recursive function
definitions usually require a termination proof. On the other hand, many interesting
algorithms do not always terminate: Some examples are search in an infinite search
space, semi-decision procedures or the evaluation of programs.

There are several ways to express partiality in a logic of total functions [14], but
defining a function from a set of non-terminating equations is generally difficult, es-
pecially if it is not clear when the recursion terminates, or if the termination proof is
nontrivial. Thus, modelling non-terminating algorithms as logic functions often requires
artificial manual workarounds, which can complicate subsequent reasoning.

In order to improve this situation, we describe a general function definition principle
for Isabelle/HOL [15], which is not limited to terminating recursions. From a set of re-
cursive equations, our package defines a partial function (modeled as an underspecified
total function), together with a set describing the function’s domain. On the domain,
the defined function coincides with the specification. The provided tools allow to rea-
son about such a partial function as conveniently as it is common for total functions.
Our package has the following key properties:

Definitional. Every definition is reduced to a simpler form that can be processed by
existing means. The original specification is then derived from that definition by
an automated proof procedure. Since all reasoning is performed within the theorem
prover, this approach offers a maximum of safety without having to rely on an
external soundess proof.

Generalized Pattern matching. Functions may be specified by pattern matching. Pat-
terns are not restricted to datatype constructors, may contain guards and overlap,
but must be proved to be compatible.
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Reasoning Principles. For each recursive function f , an induction principle (which
we call f -induction) is proved, which corresponds to the recursive structure of the
definition of f , and is the main tool for reasoning about it.

Deferred Termination. Termination proofs are strictily separated from function defi-
nitions. At definition time, no other input than the specification is needed. Proper-
ties of the function can be proved before its termination is established. This partic-
ularly simplifies the treatment of nested recursions.

1.1 Motivation

Partiality. As an example for partiality, we define an interpreter for a minimalistic
imperative language. Such an interpreter must be partial, since the interpreted program
might loop and this non-termination cannot be detected. However we would expect to
be able to prove termination for certain classes of programs, for example the class of all
programs without while loops.

The language is straightforward and we present it directly in Isabelle/HOL notation.
For simplicitly, a shallow embedding is used for expressions, instead of modeling their
syntax. The notation f(x := y) denotes function update, and iter denotes function
exponentiation.

types var = nat
val = nat
env = var⇒ val
exp = env⇒ val

consts
exec :: com⇒ env⇒ env

datatype com =
ASSIGN var exp
| SEQ com com
| IF exp com com
| WHILE exp com
| FOR exp com

function
exec (ASSIGN v exp) e = e(v:=exp e)
exec (SEQ c1 c2) e = exec c2 (exec c1 e)
exec (IF exp c1 c2) e = if exp e �= 0 then exec c1 e else exec c2 e
exec (FOR exp c) e = iter (exp e) (exec c) e
exec (WHILE exp c) e = if exp e �= 0

then exec (WHILE exp c) (exec c e) else e

Current tools in Isabelle/HOL cannot handle the definition of exec. The attempt would
lead to an unsolvable termination proof obligation.

As a workaround, we can always extend a partial function to a total one: If we know
that the function terminates under certain conditions, this check can be added to the
function body, returning a dummy value if the check fails:

f x = if 〈guard〉 x then 〈bodyf〉 x else dummy

Then f can be defined as a total function. But this is unsatisfactory as a general method
for two reasons: First, the termination guard must be known at definition time. If it
turns out later that this condition was too restrictive, one must change the definition
of the function. Second, the workaround changes the body of the function. Since the
termination guard is alien to the functional specification, this is inelegant and may cause
difficulties when executable code is to be extracted from the definition at a later stage.
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Restricting our interpreter to programs without while loops is certainly inadequate. We
would have to find a condition that covers all possible terminating programs, which is
not obvious.

Our package allows to define exec as a partial function and later prove its termination
on the sets we need.

Generalized Pattern Matching. Function definitions by pattern matching are conve-
nient in functional programming, and the same is true for logic.

In functional languages, patterns consist only of variables and datatype constructors,
so that they can be compiled into efficient tests. Some languages also allow simple
invertible arithmetic expressions like n+ 2.

Such restrictions seem inappropriate for an extensible logical framework like Is-
abelle/HOL. We can for example define a type for α-equated lambda terms, using a
package of Urban and Berghofer (see [20]), and the need arises to define functions
on such terms as well. For example, the following equations describe capture-avoiding
substitution [. ::= .]:

(Var a)[b::=u] = if a=b then u else Var a
(App t1 t2)[b::=u] = App (t1[b::=u]) (t2[b::=u])

a&(b, u) =⇒ (Lam [a].t)[b::=u] = Lam [a].(t[b::=u])

This is obviously a form of pattern matching, but different from patterns used in
functional programming: First, due to α-equivalence, the constructor in the lambda case
is not injective (eg. Lam [a].(Var a) = Lam[b].(Var b)), and second, the lambda case is
conditional: It requires that a is fresh in b and u.

To be able to support such constructions, we adopt a more general notion of pattern
matching, which is purely logical. Our patterns may essentially be arbitrary expres-
sions, but we require two properties to ensure that the patterns really form a function
definition:

1. Every possible argument is matched by at least one pattern. (Completeness)
2. If more than one pattern matches an argument, the associated right hand sides are

equal. (Compatibility)

Pattern completeness will be needed to generate an induction rule and does not stand in
the way of partial definitions, since missing patterns can easily be added by introducing
trivial equations f p = f p. Compatibility ensurtes that the whole specification is con-
sistent. Note that in contrast to functional programming, the equations do not have any
associated order. Every equation will become a simplification rule on its own.

These two conditions are very natural (though undecidable), and sometimes used to
justify function definitions in pen-and-paper theories. As expected, a definition with our
package requires a proof of these conditions.

1.2 An Overview of Our Method

Starting from the specification of a function, our package inductively defines its graph
G and its smallest recursion relation R, which captures the recursive structure of the
definition. Using the definite description operator, the graph is turned into a total func-
tion f , which models the specified partial function. Its domain domf is defined as the
accessible part of R.
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Then, pattern completeness and compatibility must be proved by the user or auto-
mated tools. Our package builds on these facts to prove that G actually describes a
function on domf . Then it automatically derives the original recursion equations and an
induction rule. The rules are constrained by preconditions of the form t ∈ domf , that
is, they describe the function’s behaviour on its domain. Despite these constraints, they
allow convenient reasoning about the function, before its termination is established. To
support natural termination proofs, the package provides introduction rules for domf
and a special termination rule.

The rest of this paper is organized as follows: In §2 we introduce some logical concepts
required by our package. In §3, we describe the automated definition process. In §4, we
discuss how our package supports termination proofs. In §5, we show how our particular
method can improve the treatment of nested recursive definitions. In §6, we briefly
describe case studies, and §7 discusses related work.

2 Logical Preliminaries

We work in classical Higher-Order Logic. Derivations are expressed in the natural de-
duction framework Isabelle/Pure, using universal quantification

∧
and implication =⇒.

2.1 Recursion Relations and Termination Conditions

The extraction of termination conditions was first introduced by Boyer and More [5]
and is an important component in every implementation of general recursion in theorem
provers, definitional or not.

Given a function definition, we call a relation R on the function’s argument type a
recursion relation, if the function argument decreases wrt. R in every recursive call.
Consider the following function definition:

gcd(x, 0) = x
gcd(0, y) = y
gcd(x+ 1, y + 1) = if x < y then gcd(x+ 1, y − x)

else gcd(x− y, y + 1)

Then the relation {((x1, y1), (x2, y2)) |x1 + y1 < x2 + y2} is a recursion relation.
Another one is the lexicographic ordering, and a third one is the universal relation where
everything is smaller than everything else. Note that we do not require the relation to
be wellfounded.

From a definition, we can automatically extract a set of termination conditions,
which a recursion relation must satisfy. In our example, these conditions are:

x < y =⇒ (x + 1, y − x) <R (x+ 1, y + 1)
¬x < y =⇒ (x − y, y + 1) <R (x+ 1, y + 1)

The details of the extraction in HOL are described in Slind’s thesis [18]. Abstractly, the
extraction is a syntax directed search for recursive calls in the function body. For each
recursive call, a condition is generated, stating that the argument in the recursive call is
smaller than the original argument.
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Note that this extraction must be context-aware and take the positions of recursive
calls into account. In the above example, these occur inside an if-expression, which is
reflected in additional premises. In general, a context consists of bound variables and
premises, and is denoted by Γ. Termination conditions have the general form1:

Γk =⇒ rk <R lhs

This general notion of context can express Higher-Order recursion: Consider a datatype
for trees and a function which maps its argument f over all leaves:

treemap f (Leaf x) = Leaf (f x)
treemap f (Branch ts) = Branch (map (treemap f ) ts)

The termination condition reflects the fact that recursive calls occur only on elements
of ts:

∧
x. x ∈ set ts =⇒ x <R Branch ts

Since the extraction process requires some knowledge about the contexts resulting
for terms occuring at certain positions, the algorithm is parametrized with a set of con-
gruence rules, which express this knowledge. The shape of congruence rules is not
relevant for us, and can be found in Slind’s thesis [18].

2.2 Accessible Part

We adopt the notion of the accessible part (or wellfounded part) of a relation, denoted
by accR. The accessible part consists of just the elements which do not occur in an
infinitely descending R-chain. It is inductively defined by the following rule:

∀y <R x. y ∈ accR
x ∈ accR

(ACC-INTRO)

If R is wellfounded, then accR is just the universal set. In other cases, it might still
contain interesting subsets. Using this notion instead of wellfoundedness is crucial to
be able to support non-termination.

The accessible part comes with a very general induction principle, which we call
acc-induction:

∀x ∈ accR. (∀y <R x. P y) −→ P x

∀x ∈ accR.P x
(ACC-INDUCT)

This rule works like wellfounded induction, but with arbitrary relations. Consequently,
the inductive result is only proved for the elements of accR.

1 To distinguish them from logical symbols, meta-variables like contexts are printed in bold.
Also note that Γ =⇒ φ is slight abuse of notation: If Γ binds variables, they are quantified
over the whole implication:

∧
v1 . . . vn. Γ =⇒ φ.
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2.3 Inductive Definitions

To define inductive relations, our tool uses an existing package [16] from Isabelle/HOL,
which introduces inductive sets as least fixed-points by means of the Knaster-Tarski
fixed-point theorem. Given some introduction rules for a set S, the package defines the
set and returns the introduction rules as theorems. An elimination rule, expressing that
S is in fact the smallest such set, is also generated automatically. The package also
provides an induction rule, but we will not use it, since we rely on acc-induction.

3 The Process of Definition

We start with the recursive equations given as input by the user and which he would
like to get back as simplification rules in the end:

C1 =⇒ f lhs1 = rhs1...
Cn =⇒ f lhsn = rhsn

Each equation may contain free variables, which we collectively denote by v∗
i .

3.1 Defining the Graph and the Recursion Relation

We transform the equations into an inductive definition of a relation G, representing
the graph of the function. The first step is the termination condition extraction from
§2.1, which extracts from each equation a list of mi recursive calls and their contexts:
(Γi1, ri1), . . . , (Γimi , rimi). From the i-th equation we now build the following intro-
duction rule for G:

Ci (Γ[h/f]
i1 =⇒ (r[h/f]

i1 , h(r[h/f]
i1 )) ∈ G) . . . (Γ[h/f]

imi
=⇒ (r[h/f]

imi
, h(r[h/f]

imi
)) ∈ G)

(lhsi, rhs[h/f]
i ) ∈ G

(GINTROi)

In Γ[h/f] etc, the function variable h is substituted for the function symbol f.
Compared to a naive relational description, which would invent a new variable for the

result of each recursive call2, we use a single function variable h, which is constrained
to the graph on all recursive calls.

The introduction rules form an inductive definition of the relation G, and we can
introduce G, using the package for inductive definitions. Next, we can already define
the function f , using HOL’s definite description operator:

f def= λx. THE y. (x, y) ∈ G (F-DEF)

The basic reasoning tool for our new function is acc-induction on a recursion relation.
While other packages require the user to supply such a relation, this is not necessary,
since it can be defined automatically.

The essential observation is that the termination conditions extracted from a defini-
tion (see §2.1) always have the form of introduction rules for R:

2 Inventing separate variables for the recursive calls would require additional bookkeeping and
lead to problems with Higher-Order recursion.
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Ci =⇒ Γi,1 =⇒ ri,1 <R lhsi
...

Ci =⇒ Γi,mi =⇒ ri,mi <R lhsi

(RINTROSi)

Collecting all the rules, one for each recursive call, we can regard them as a specifica-
tion of the recursion relation, and thus define a relation R from them. For convenience,
we use the package for inductive definitions again, but in fact the specification is not
truly inductive: R appears only on the right hand sides.

Note that from such a definition we get the smallest recursion relation for our func-
tion and that smaller relations have bigger accessible parts. Since the accessible part of
this relation will be the domain of our function, the smallest recursion relation is the
best we can get.

3.2 Completeness and Compatibility

The following proof requires completeness and compatibility of the patterns, which
were already mentioned in §1.1.

Completeness ensures that every possible input value is matched by one of the pat-
terns. It has the following form3:
∧

v∗
1 .C1 =⇒ x = lhs1 =⇒ P . . .

∧
v∗

n. Cn =⇒ x = lhsn =⇒ P

P
(COMPLETE)

Compatibility states that the set of equations are not contradictory, in the sense that
they assign different values to the same argument. This is expressed by special elimina-
tion rules for G, one for each equation:

Ci (lhsi, y) ∈ G

∧
h. (Γi1 =⇒ (ri1, h(ri1)) ∈ G) =⇒ . . .

=⇒ (Γimi =⇒ (rimi , h(rimi)) ∈ G)
=⇒ y = rhsi[h/f] =⇒ P

P
(COMPATi)

In many cases, compatibility can easily be proved using the definition of G. In par-
ticular, disjoint patterns, where each argument is matched by at most one pattern, are
trivially compatible.

Our package generates proof obligations for completeness and compatibility which
must be solved to complete the definition. For the case of disjoint constructor patterns,
we provide an automated proof tactic which solves these goals. Automation of com-
pleteness proofs works as described by Slind [18], and compatibility uses the definition
of G and simplification.

3.3 The Relation Is a Function

We are now prepared to prove that the relation G describes a function on accR:

∀x ∈ accR. ∃!y.(x, y) ∈ G
3 Completeness and compatibility are existential statements, which are expressed in Isa-

belle/Pure by elimination rules.
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The proof of this property is performed automatically by our package, when a definition
is made, using only primitive inference steps and rewriting. The following informal but
detailed proof sketch illustrates the structure of the derivation:

Proof. We use acc-induction on the recursion relation R. For the induction step, fix
an x ∈ accR. As induction hypothesis, we can assume the property for all z <R

x. Splitting into existence and uniqueness, and using the fact that the unique value is
denoted by f, this yields:

∧
z. z <R x =⇒ (z, f z) ∈ G (IH-EXIST)∧

y z. z <R x =⇒ (z, y) ∈ G =⇒ y = f z (IH-UNIQUE)

To complete the induction step, we have to prove ∃!y. (x, y) ∈ G. We distinguish
cases and look at each of the defining equations in turn, proving existence and unique-
ness separately: For the i-th equation, assume Ci and x = lhsi.

Existence: From RINTROSi and IH-EXIST get Γij =⇒ (rij , f rij) ∈ G for all j ≤
mi. Applying GINTROi yields (lhsi, rhsi) ∈ G.

Uniqueness: Assume (lhsi, y) ∈ G for some y. Instantiate COMPATi with P :=
(y = rhsi) and apply the assumption. It remains to prove the second premise
of COMPATi. For this, assume Γij =⇒ (rij , h rij) ∈ G for all j ≤ mi and
y = rhsi[h/f] for some function h. From RINTROSi and IH-UNIQUE, get Γij =⇒
h rij = f rij . Use these equations as contextual rewrite rules to show rhsi[h/f] =
rhsi. Thus y = rhsi.

Combining existence and uniqueness, we have for each equation Ci =⇒ x =
lhsi =⇒ ∃!y.(x, y) ∈ G. Using COMPLETE, these results can be combined into one,
which completes the induction step. ��

3.4 Deriving Partial Simplification and Induction Rules

Having established that function values exist and are unique on accR, we introduce the
abbreviation domf ≡ accR and prove the original recursion equations and an induction
rule. The equations are guarded by termination assumptions:

lhs1 ∈ domf =⇒ C1 =⇒ f lhs1 = rhs1
. . .

lhsn ∈ domf =⇒ Cn =⇒ f lhsn = rhsn

Deriving the recursion equations is simple: From uniqueness we know that (x, y) ∈ G
implies f x = y, and we have already proved the required relations in the existence part
of the previous proof. We can reuse them after lifting them out of the induction context,
which is technical but straightforward.

The partial induction rule follows the structure of the recursion: In each case, the
property may be assumed on the arguments of the recursive calls, but the inductive
result is restricted to domf . The rule is a simple consequence of acc-induction, the
definition of R and pattern completeness:
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∧
v∗

1 . lhs1 ∈ domf =⇒ C1
=⇒ (Γ11 =⇒ P r11) =⇒ . . . =⇒ (Γ1m1 =⇒ P r1m1)
=⇒ P lhs1

...∧
v∗

n. lhsn ∈ domf =⇒ Cn

=⇒ (Γn1 =⇒ P rn1) =⇒ . . . =⇒ (Γnmn =⇒ P rnm3n)
=⇒ P lhsn

a ∈ domf =⇒ P a
(F-PINDUCT)

With the proof of the partial simplification and induction rules, the actual definition
process is finished: The rules provide adequate means for reasoning about the function.
In particular, we can now establish the properties we might need for a termination proof.
We will see in §5 that this is extremely useful when dealing with nested recursion.

3.5 A Simple Example

Let us define the Fibonacci function:

fib 0 = 1
fib 1 = 1
fib (n+ 2) = fib n + fib (n+ 1)

The graph of the function, Gfib, is defined by

(0, 1) ∈ Gfib (1, 1) ∈ Gfib
(n, h(n)) ∈ Gfib (n+ 1, h(n+ 1)) ∈ Gfib

(n+ 2, h(n) + h(n+ 1)) ∈ Gfib

The termination conditions (and definition of Rfib) are:

n <Rfib n+ 2 n+ 1 <Rfib n+ 2

The proof obligation for completeness is a simple property of natural numbers, and
compatibility is trivial, since the patterns are disjoint. We get the following simplifica-
tion and induction rules:

0 ∈ domfib =⇒ fib 0 = 1
1 ∈ domfib =⇒ fib 1 = 1

n+ 2 ∈ domfib =⇒ fib (n+ 2) = fib n+ fib (n+ 1)

0 ∈ domfib =⇒ P 0
1 ∈ domfib =⇒ P 1∧
n. n+ 2 ∈ domfib =⇒ P n =⇒ P (n+ 1) =⇒ P (n+ 2)

a ∈ domfib =⇒ P a

4 Termination Proofs

All results obtained from the partial simplification and induction rules will contain ter-
mination assumptions of the form t ∈ domf . Thus, it is desirable to know more about
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domf , which is the objective of a termination proof. Often, our goal will be to show
that a function is total and any value is element of domf . For partial functions, we will
usually be interested in a certain subset.

While the definition process was fully automated and worked for any function defini-
tion4, we cannot expect such automation for termination proofs. But there are powerful
methods for proving termination [8,12,21], and we plan to integrate them in subsequent
work. Here we concentrate on the fundamental tools for conducting interactive termi-
nation proofs in a natural and simple way. This is particularly important for the difficult
cases, where automated methods fail.

4.1 Domain Introduction Rules

To show that some value belongs to the domain of a function, one can use the rule ACC-
INTRO (cf. §2.2), and the definition of R. From this, general introduction rules for the
domain can be derived. For fib, these rules are:

0 ∈ domfib 1 ∈ domfib
n ∈ domfib (n+ 1) ∈ domfib

(n+ 2) ∈ domfib

Domain introduction rules are a natural description of the termination behaviour of the
function, and termination proofs with these rules are straightforward: We can show that
fib is total, i.e. that ∀x. x ∈ domfib, by simple mathematical induction on naturals,
using the domain introduction rules.

Our package proves domain introduction rules automatically. Note however that in
some cases of pathological pattern overlaps, they can be weaker then one first expects,
since recursive calls can be “hidden” in other equations. Consider the definition

f 0 = 0
f (x+ 1) = f x
f (x+ 2) = f x

Here, the termination of f x+2 case not only depends on f x, but also on f (x+1), since
the second equation is also applicable. However, in practice such cases do not appear
very frequently, and the generated domain introduction rules are generally useful.

4.2 Wellfounded Recursion Relations

Often, a function is proved total by providing a wellfounded relation and showing
that it is a recursion relation. Although we do not use user-specified recursion rela-
tions for the definition itself, we can still support this approach to termination proofs:
Since we used the smallest recursion relation, if any other recursion relation is well-
founded, then so is R. This argument is reflected by the following rule (again, for our
fib-example).

4 It is instructive to see that for the non-terminating definition f x = f x + 1, our algorithm
defines the Graph G as the empty set and the recursion relation R as the diagonal, where each
element is smaller than itself. Then the accessible part of R is the empty set, which means that
the derived partial simplification and induction rules are of little use: They are instances of ex
falso quodlibet.
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wf R′ n <R′ n+ 2 n+ 1 <R′ n+ 2
∀x.x ∈ domfib

Our package automatically provides this rule, which allows existing termination
proofs to be easily “ported” to our package.

4.3 Simplification and Induction Rules Revisited

For total functions, the termination assumptions in the simplification and induction
rules are actually unnecessary, and can be easily removed after the termination proof,
to get unconstrained simplification and induction rules familiar from total function
definitions.

For partial functions, we can replace the abstract domain domf by a concrete set
D, for which we have proved termination. Note that in order to replace domf in the
premises of the induction rule, we must also show that D is downward closed under
R, since the induction principle is only valid, if calls on elements of D only recurse
on elements of D5. In practice, this is often simple. Our package supports the removal
of termination assumptions by setting up the required proof obligations, and modifying
the rules after the proof.

5 Nested Recursion

Functions with nested recursive calls are notoriously difficult to define and reason about.
The central problem is that the termination conditions resulting from a nested recursion
contain references to the function that is to be defined. As a very simple (and prominent)
example, consider the following definition of the constant zero function:

f 0 = 0
f (n+ 1) = f (f n)

As a termination condition one would have to prove that f n < n + 1. Since the
function is always zero, this is certainly true, but seems difficult to prove, before the
function f is “properly” defined. We can identify two problems here:

(1) If the system requires the termination proof to be conducted before the function
symbol f is even introduced in the logic, it is difficult to support nested recursion, since
the termination goal can not even be stated. Definitional packages like ours do not have
this problem, since definitions are transformed into a non-recursive form and can be
introduced into the logic immediately. Observe that nested recursions do not make our
definitions circular, although the definition of R may refer to f.

(2) After stating the termination goal, we need to prove it, and this requires reason-
ing principles for the function. But the main tool, namely f-induction, is usually not
available at that point, since it depends on f’s termination.

Slind’s recursion package TFL [17] provides a “provisional induction rule” [19] to
solve nested termination goals. This rule is basically a severely mangled f-induction

5 For example, we cannot use the set of even numbers in our example fib. Although the function
does terminate on all even numbers, the modified induction principle would not be true.
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rule, where the unsolved termination conditions become part of the function body. With
TFL’s second definition principle, relationless definition, this becomes even more diffi-
cult. The provisional induction rule can help with termination proofs, but this is often
quite inelegant due to the structure of the rule. Slind already observes these shortcom-
ings in the conclusion of [19]:

“We regard our results on relationless definition of nested recursion as only
partly satisfactory. The specified recursion equations and induction theorems
are automatically derived, which is good; however, the termination proof us-
ing the provisional induction theorem and recursion equations for the auxiliary
function is usually clumsy and hard to explain.”

As an alternative approach, Krstić and Matthews [11] proposed the notion of induc-
tive invariants to describe properties of a function f in terms of an input-output relation,
without the need to explicitly mention f. They show how such an inductive invariant
can be used to prove f’s termination.

But this comes at a high cost, since establishing an inductive invariant is compara-
tively hard: The proof of an inductive invariant corresponds to a wellfounded induction,
and to be able to apply the induction hypothesis, one has to show that the arguments in
the inner recursive calls are decreasing. This means that one has to anticipate parts of
the termination proof to establish the inductive invariant.

Instead, we would like to be able to use f-induction, which is generally simpler6.
Giesl [7] shows that this approach is sound: We may prove lemmas by f-induction
and then use them (in a certain way) in the termination proof of f. His argument is
that anything proved by f-induction is “partially true”, i.e. it holds for all x where f
terminates. Then, a close look reveals that at the positions where the lemmas are needed,
one can assume this, since the inner recursive calls are proved first. But since Giesl’s
informal proofs include statements like “P holds for all x where f terminates”, it was
not clear how to formalize them in a logic like HOL, where “termination” has no direct
correspondence.

Fortunately, our framework provides adequate tools to express such notions, since
termination is modeled by membership in domf . We can state and prove that f returns
zero, whenever it terminates:

x ∈ domf =⇒ f x = 0

The proof is just as simple as if we already knew that the function is total: Induc-
tion and simplification, but using the partial induction and simplification rules. Then
termination of f is equally simple, using structural induction and the domain intro-
duction rules, making use of the lemma to show termination of the outer recursive
call.

6 To compare wellfounded induction with f-induction, it is an interesting exercise to add even
more nesting to the nested-zero example by changing the second equation to f (n + 1) =
f (f (f (f n))), and then trying to prove the lemma ∀n.f n = 0 once by nat-induction,
where the property can be assumed on smaller arguments and once by f-induction, where the
property can be assumed on the arguments of all recursive calls.



Partial Recursive Functions in Higher-Order Logic 601

6 Case Studies

To test our method and implementation, we conducted several small case studies, which
show that our tool is practically useful.

We defined the partial interpreter we presented in the motivation. It is trivial to
show by structural induction that it terminates on programs without while loops. It is
also simple to prove termination of a bigger class of programs,

We were able to define the substitution function for α-equated lambda-terms, which
makes extensive use of the new pattern matching features. Showing pattern compatibil-
ity turned out to be the main challenge for this.

For nested recursion, we adopted an example from Slind [19]: first order unification.
Before proving termination, we use the partial induction principle to prove two lemmas
about the substitutions returned by the algorithm. These properties are needed in the
termination proof. Compared to Slind’s quite technical proof, this approach avoids a
large amount of “formal noise”.

For space reasons, we cannot give a presentation of the theories. Formal proof docu-
ments in human-readable Isabelle/Isar notation are available as an electronic appendix
to this paper7.

7 Related Work

Both Isabelle 2005 and HOL4 [9] include (different versions of) the recursion package
TFL, a work by Slind [17,18]. In TFL, a definition is transformed into a functional, and
a specialized fixed-point combinator is used to define the function. The user must spec-
ify a wellfounded recursion relation. Optionally, TFL allows deferred termination argu-
ments, where the wellfounded relation is not given at definition time, but in later proofs.
Proving termination amounts to showing that the relation is indeed a recursion relation
and wellfounded. TFL generates an induction principle for each definition. Since it is
based on wellfounded relations, TFL can only define total functions.

TFL allows pattern matching in the style of functional programming. Patterns are
compiled to a conditional expression in a preprocessing step, while completing them
and removing overlaps. This compilation is inherently limited to datatype patterns. Due
to the preprocessing, the returned equations can differ from the original specification.

HOL Light [10] provides a similar mechanism, also based on a fixed-point combina-
tor. Patterns are similar to ours, but since they are allowed to be incomplete, no induction
principle can be provided. There is no general support for Higher-Order recursion.

Another approach to define certain partial functions is by tail recursion (see [13]).
Since tail recursions always have a total model, they are immediately admissible with-
out a termination proof. However, since no induction rule can be provided, the lack of
reasoning principles often makes this approach harder than it sounds.

The idea of generating an explicit description of a function’s domain was first pre-
sented by Dubois and Donzeau-Gouge [6] in a type theoretic setting, and later used by
Bove and Capretta [4] to develop a definition principle for general recursion in type
theory. In Coq [3], a recent package for general recursion [1] allows (non-nested) defi-
nitions in a manner similar to TFL.

7 http://www4.in.tum.de/˜krauss/partial/
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A different approach for dealing with non-termination is to work in domain theory,
where any computable function can easily be defined. But domain theory comes with
a certain overhead which usually results in cumbersome reasoning about the functions
later.

8 Conclusion

We have presented a method for recursive function definitions, based on an inductive
definition of the function’s graph, together with its domain as the accessible part of
its recursion relation. Compared to existing approaches, we have been able to increase
both the expressive power and the convenience in formal reasoning. In the future, we
hope to use this as a basis for the principal tool for defining functions in Isabelle/HOL,
subsuming both TFL [17] and the package for primitive recursion on datatypes [2]. The
latter is just a special case of general recursion, where termination is immediate, but the
user is forced into the recursion scheme of the datatype specification.

To complement this work, we intend to adapt existing techniques to automate termi-
nation proofs. The clear separation of definition and termination proofs in our design
allows an easy integration of such external reasoning components.
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Abstract. We present a type theory with some proof-irrelevance built
into the conversion rule. We argue that this feature is particularly useful
when type theory is used as the logical formalism underlying a theorem
prover. We also show a close relation with the subset types of the theory
of PVS. Finally we show that in these theories, because of the additional
extentionality, the axiom of choice implies the decidability of equality,
that is, almost classical logic.

1 Introduction

A formal proof system, or proof assistant, implements a formalism in a similar
way a compiler implements a programming language. Among existing systems,
dependent type systems are quite widespread. This can be related to various
pleasant features; among them :

1. Proofs are objects of the formalism. The syntax is therefore smoothly uni-
form, and proofs can be rechecked at will. Also, only the correctness of the
type-checker, a relatively small and well-identified piece of software, is critical
for the reliability of the system (“de Bruijn principle”).

2. The objects of the formalism are programs (typed λ-terms) and are identified
modulo computation (β-conversion). This makes the formalism well-adapted
for problems dealing with program correctness. But also the conversion rule
allows the computation steps not to appear in the proof; for instance 2+2 = 4
is simply proved by one reflexivity step, since this proposition is identified
with 4 = 4 by conversion. In some cases this can lead to a dramatic space
gain, using the result of certified computations inside a proof; spectacular
recent applications include the formal proof of the four-color theorem [11] or
formal primality proofs [14].

3. Finally, type theories are naturally constructive. This makes stating decid-
ability results much easier. Furthermore, combining this remark with the two
points above, one comes to program extraction: taking a proof of a propo-
sition ∀x : A.∃y : B.P (x, y), one can erase pieces of the λ-term in order to
obtain a functional program of type A → B, whose input and result are
certified to be related by P . Up to now however, program extraction was
more an external feature of implemented proof systems1: programs certified

1 Except NuPRL; see related work.

U. Furbach and N. Shankar (Eds.): IJCAR 2006, LNAI 4130, pp. 604–618, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



On the Strength of Proof-IrrelevantType Theories 605

by extraction are not anymore objects of the formalism and cannot be used
anymore to assert facts like in the point above.

Some related formalisms only build on some of the points above. For example
PVS implements a theory whose objects are functional programs, but where
proofs are external to the formalism.

An important remark about (2) is that the more terms are identified by the
conversion rule, the more powerful this rule is. In order to identify more terms it
is therefore a tempting step to combine points (2) and (3) by integrating program
extraction into the formalism so that the conversion rule does not require the
computationally irrelevant parts of terms to be convertible.

In what follows, we present and argue in favor of a type-theory along this
line. More precisely, we claim that such a feature is useful in at least two re-
spects. For one, it gives a more comfortable type theory, especially in the way
it handles equality. Furthermore it is a good starting point to build a platform
for programming with dependent types, that is to use the theorem prover also
as a programming environment. Finally, on a more theoretical level, we will also
see that by making the theory more extensional, proof-irrelevance brings type
theory closer to set-theory regarding the consequences of the axiom of choice.

The central idea of this work is certainly simple enough to be adjusted to
various kinds of type theories, whether they are predicative or not, with various
kinds of inductive types, more refined mechanisms to distinguish the compu-
tational parts of the proofs etc. . . . In what follows we illustrate it by using a
marking of the computational content which is as simple as possible. We define
it precisely, but omit most meta-theoretical proofs and do not detail the model
construction.

Related work. Almost surprisingly, proof-irrelevant type theories do not seem
to enjoy wide use yet. In the literature, they are often not studied for themselves,
but as a mean for proving properties of other systems. This is the case for the
work of Altenkirch [2] and Barthe [4]. One very interesting work is Pfenning’s
modal type theory which involves proof-irrelevance and a sophisticated way to
pinpoint which definitional equality is to be used for each part of a term; in
comparision we here stick to much simpler extraction mechanism. Finally the
NuPRL approach using a squash type [6] is very close to ours, but the extentional
setting gives sometimes different results.

2 The Theory

2.1 The λ-Terms

The core of our theory is a Pure Type System (PTS) extended with Σ-types
and some inductive type definitions. As in PTS’s, the type of types are sorts;
the set of sorts is:

S ≡ {Prop} ∪ {Type(i)|i ∈ N}.
As one can see, we keep the sort names of Coq. As usual, Prop is the impredicative
sort and the sorts Type(i) give the hierarchy of predicative universes. It comes
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as no surprise that the system contains the usual syntactic constructs of PTSs;
however it is comfortable, both for defining the conversion rule and constructing a
model to tag the variables indicating whether they correspond to a computational
piece of code or not; in our case this means whether they live in the impredicative
or a predicative level (i.e. whether the type of their type is Prop or a Type(i)).
A similar tagging is done on the projections of Σ-types. Except for this detail,
the backbone of the theory considered hereafter is essentially Luo’s Extended
Calculus of Constructions (ECC) [16].

The syntax of the ECC fragment is therefore:

s ::= Prop | Type(i) s ::= ∗ | �
t ::= s | xs | λxs : t.t | (t t) | Πxs : t.t | Σsxs : t.t | < t, t >Σx:t.t

| πs
1(t) | πs

2(t)

Γ ::= [] | Γ (x : t).

We will sometimes write x for xs, Σx : A.B for Σsx : A.B or π2(t) for πs
2(t)

omitting the tag s when it is not relevant or can be infered from the context.
The binding of variables is as usual. We write t[x \ u] for the substitution of

the free occurrences of variable x in t by u. As has become custom, we will not
deal with α-conversion here, and leave open the choice between named variables
and de Bruijn indices.

We also use the common practice of writing A→ B (resp. A×B) for Πx : A.B
(resp. Σx : A.B) when x does not appear free in B. We also write Πx, y : A.B
(resp. λx, y : A.t) for Πx : A.Πy : A.B (resp. λx : A.λy : A.t).

2.2 Relaxed Conversion

The aim of this work is the study of a relaxed conversion rule. While the idea
is to identify terms with respect to typing information, the tagging of impred-
icative vs. predicative variables is sufficient to define such a conversion in a
simple syntactic way. A variable is computationally irrelevant when tagged with
the ∗ mark. The tag on the Σ-type construction are there to indicate whether
the second component of pairs is irrelevant or not. This leads to the following
definition.

Definition 1 (Extraction). We can simply define the extraction relation →ε

as the contextual closure of the following rewriting equations:

x∗ →ε ε λx : A.ε→ε ε
(ε t) →ε ε π∗

2(t)→ε ε.

We write →∗
ε for the reflexive-transitive closure of →ε. We say that a term is of

tag ∗ if t→∗
ε ε and of tag � if not. We write s(t) for the tag of t.

Definition 2 (Reduction). The β-reduction 
β is defined as the contextual
closure of the following equations:
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(λxs : A.t u) 
β t[xs \ u] if s(u) = s

πs
1(< a, b >Σx:A.B) 
β a if s(a) = �
πs

2(< a, b >Σx:A.B) 
β b if s(b) = s.

The restrictions on the right-hand side are there in order to ensure that the
tag is preserved by reduction. Without them (λx% : Prop.x% Prop) can reduce
either to ε or to Prop which would falsify the Church-Rosser property. Actually
these restrictions later appear to be always satisfied on well-typed terms, but are
necessary in order to assert the meta-theoretic properties below. While they are
specific to our way of marking computational terms, other methods will probably
yield similar technical difficulties.

The relaxed reduction 
ε is the union of 
β and →ε. We write =ε for the re-
flexive, symmetric and transitive closure of 
ε and 
∗

ε for the transitive-reflexive
closure of 
ε.

Lemma 1 (β-postponement). If t
∗
ε t

′, then there exists t′′ such that t→∗
ε t

′′

and t′′ 
∗
β t

′.

Lemma 2 (Church-Rosser). For t a raw term, if t 
∗
ε t1 and t 
∗

ε t2, then
there exists t3 such that t2 
∗

ε t3 and t2 
∗
ε t3.

Proof. By a slight adaptation of the usual Tait–Martin-Löf method.

Furthermore, →ε is obviously strongly normalizing. One therefore can "pre-
cook" all terms by →ε when checking relaxed convertibility:

Lemma 3 (pre-cooking of terms). Let t1 and t2 be terms. Let t′1 and t′2 be
their respective →ε-normal forms. Then, t1 =ε t2 if and only if t′1 =β t

′
2.

While this property is important for implementation, its converse is also true and
semantically understandable. Computationally relevant β-reductions are never
blocked by not-yet-performed ε-reductions:

Lemma 4. Let t1 be any raw term. Suppose t1 →ε t2 
β t3. Then there exists
t4 such that t1 
β t4 →∗

ε t3.

Proof. It is easy to see that→ε cannot create new β-redexes, nor does it duplicate
existing ones.

It is a good feature to have the predicative universes to be embedded in each
other. It has been observed (Pollack, McKinna, Barras. . . ) that a smooth way
to present this is to define a syntactic subtyping relation which combines this
with =β (or here =ε). Note that this notion of subtyping should not be confused
with, for instance, subtyping of subset types in the style of PVS.

Definition 3 (Syntactic subtyping). The subtyping relation is defined on
raw-terms as the transitive closure of the following equations:

Type(i) ≤ Type(i+ 1) T =ε T
′ ⇒ T ≤ T ′

B ≤ B′ ⇒ Πx : A.B ≤ Πx : A.B′.
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2.3 Functional Fragment Typing Rules

The typing rules for the kernel of our theory are given in PTS-style [3] and corre-
spond to Luo’s ECC. The differences are the use of subtyping in the conversion
rule and the tagging of variables when they are “pushed” into the context.

The rules are given in figure 1. In the rule Prod, max is the maximum of two
sorts for the order Prop < Type(1) < Type(2) < . . .

We sketch the basic meta-theory of the calculus defined up to here. As men-
tioned above, we cannot detail the proofs and the intermediate lemmas here.
The proof techniques are relatively traditional, even if one has to take care of
the more delicate behavior of relaxed reduction for the first lemmas (similarly
to [21]).

Lemma 5 (Substitution). If Γ (x : A)∆ � t : T and Γ � a : A are derivable,
then Γ∆[x \ a] � t[x \ a] : T [x \ a] is derivable.

Of course, subject reduction holds only for 
β-reduction, since ε is not meant
to be typable.

( ) Γ �
Γ � : (i)

( ) Γ �
Γ � (i) : (i + p)

( )
[] � ( ) Γ �

Γ � x : A
(x : A) ∈ Γ

( )
Γ � A : (i)
Γ (x
 : A) � ( )

Γ � A :
Γ (x∗ : A) �

( )Γ � t : A Γ � B : s
Γ � t : B

A ≤ B

( )
Γ � A : s Γ (x : A) � B : (i)

Γ � Πx : A.B : max(s, (i))

( )
Γ � A : s Γ (x : A) � B :

Γ � Πx : A.B :

( )
Γ � Πx : A.B : s Γ (x : A) � t : B

Γ � λx : A.t : Πx : A.B
( )Γ � t : Πx : A.B Γ � u : A

Γ � (t u) : B[x \ u]

( )
Γ � A : (i) Γ (x : A) � B : (i)

Γ � Σ
x : A.B : (i)

( ∗)
Γ � A : (i) Γ (x : A) � B :

Γ � Σ∗x : A.B :

( )
Γ � a : A Γ (x : A) � b : B Γ � Σ x : A.B : (i)

Γ �< a, b >Σx:A.B: Σ x : A.B

( )Γ � t : Σ x : A.B

Γ � π1(t) : A
( ) Γ � t : Σ x : A.B

Γ � π2(t) : B[x \ π1(t)]

Fig. 1. The ECC fragment
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Lemma 6 (Subject reduction). If Γ � t : T is derivable, if t 
β t
′ (resp.

T 
β T
′, Γ 
β Γ

′) by a well-sorted reduction, then Γ � t′ : T (resp. Γ � t :
T ′, Γ ′ � t : T ).

Lemma 7. If Γ � t : T is derivable, then there exists a sort s such that Γ � T :
s; furthermore Γ � T : Prop if and only if t is of tag ∗.

A most important property is of course normalization. We do not claim any
proof here, although we very strongly conjecture it. A smooth way to prove it is
probably to build on top of a simple set-theoretical model using an interpretation
of types as saturated Λ-sets as first proposed by Altenkirch [1,20].

Conjecture 1 (Strong Normalization). If Γ � t : T is derivable, then t is strongly
normalizing.

Stating strong normalization is important in the practice of proof-checker, since
it entails decidability of type-checking and type-inference.

Corollary 1. Given Γ , it is decidable whether Γ � wf. Given Γ and a raw term
t, it is decidable whether there exists T such that Γ � t : T holds.

The other usual side-product of normalization is a syntactic assessement of
constructivity.

Corollary 2. If [] � t : Σx : A.B, then t
∗
β < a, b >Σx:A.B with [] � a : A and

[] � b : B[x \ a].

2.4 Data Types

In order to be practical, the theory needs to be extended by inductive defini-
tions in the style of Coq, Lego and others. We do not detail the typing rules
and liberally use integers, booleans, usual functions and predicates ranging over
them. We refer to the coq documentation [8,10]; for a possible more modern
presentation [5] is interesting.

Two points are important though:

1. Data types live in Type. That is, for instance, nat : Type(1); thus, their
elements are of tag �.

2. There is no primary need for inductive definitions in Prop. Logical connectors
and inductive properties can be encoded using impredicativity. For instance,
we write:

A ∧B ≡ ΠP : Prop.(A→ B → P ) → P.

2.5 Treatment of Propositional Equality

Propositional equality is a first example whose treatment changes when switching
to a proof-irrelevant type theory. The definition itself is unchanged; two objects
a and b of a given type A are equal if and only if they enjoy the same properties:

a =A b ≡ ΠP : A→ Prop.(P a)→ (P b).
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It is well-known that reflexivity, symmetry and transitivity of equality can
easily be proved. When seen as an inductive definition, the definition of “=A” is
viewed as its own elimination principle.

Let us write refl for the canonical proof of reflexivity:

refl ≡ λA : Type(i).λx : A.λP : A→ Prop.λp : (P x).p

In many cases, it is useful to extend this elimination over the computational
levels:

Eq_reci : ΠA : Type(i).ΠP : A→ Type(i).Πa, b : A.(P a)→ a =A b→ (P b).

There is however a particularity to Eq_rec: in Coq, it is defined by case analy-
sis and therefore comes with a computation rule. The term (Eq_rec A P a b p e)
of type (P b) reduces to p in the case where e is a canonical proof by reflexivity;
in this case, a and b are convertible and thus coherence and normalization of the
type theory are preserved.

As shown in the next section, such a reduction rule is useful, especially when
programming with dependent types. In our proof-irrelevant theory however, we
cannot rely on the information given by the equality proof e, since all equality
proofs are treated as convertible. Furthermore, allowing, for any e, the reduction
rule (Eq_rec A P a b p e)
p is too permissive, since it easily breaks the subject
reduction property in incoherent contexts.

We therefore put the burden of checking convertibility between a and b on the
reduction rule of Eq_rec by extending reduction with the following, non-linear
rule:

(Eq_rec A P a a p e) 
 p

or the equivalent conditional rule:

(Eq_rec A P a b p e) 
 p if a =ε b.

Again, we do not detail meta-theory here, but the various lemmas of the
previous section still hold when =ε is enriched with this new reduction.

3 Programming with Dependent Types

We now list some applications of the relaxed conversion rule, which all follow
the slogan that proof-irrelevance makes programming with dependent types more
convenient and efficient.

From now on, we will write {x : A|P} for Σ∗x : A.P , that is for a Σ-type
whose second component is non-computational.

3.1 Dependant Equality

Programming with dependent types means that terms occur in the type of com-
putational objects (i.e. not only in propositions). The way equality is handled
over such families of types is thus a crucial point which is often problematic in
intensional type theories.
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Let us take a simple example. Consider we have defined a data-type of arrays
over some type A. If n is a natural number, (tab n) is the type of arrays of size
n. That is tab : nat→ Type(i).

Commutativity of addition can be proved in the theory: com : Πm, p :
nat.(m + p) = (p + m) is inhabited. Yet tab (m + p) and tab (p + m) are two
distinct types with distinct inhabitants; the operator Eq_rec described above
only allows to construct a translation function from one to the other:

tr : Πn : nat.(tab (m+ p))→ (tab (p+m)).

The problem is proving that this function indeed ultimately behaves like the
identity; typically proving:

Πi : nat.Πx : i < p+m→ (t i x) = (tr n t i (com m p x)).

It is known [18,15], that to do so, one needs the reduction rule for Eq_rec
together with a proof that equality proofs are unique. The latter property being
generally established by a variant of what Streicher calls the “K axiom”:

K : ΠA : Type.Πa : A.ΠP : a =A a→ Prop.(P (refl a))→ Πe : a =A a.(P e)

where refl stands for the canonical proof by reflexivity.
Here since equality proofs are also irrelevant to conversion, this axiom becomes

trivial. Actually, since (P e) and (P (refl a)) are convertible, this statement
does not even need to be mentioned anymore, and the associated reduction rule
becomes superfluous.

In general, it should be interesting to transpose McBride’s work [18] in the
framework of proof-irrelevant theories.

3.2 Partial Functions and Equality over Subset Types

In the literature of type theory, subset types come in many flavors; they designate
the restriction of a type to the elements verifying a certain predicate. The type
{x : A|P} can be viewed as the constructive statement "there exists an element
of A verifying P", but also as the data-type A restricted to elements verifying
P . In most current type theories, the latter approach is not very practical since
equality is defined over it in a too narrow way. We have < a, p > =β < a′, p′ >
only if a =β a

′ and p =β p
′; the problem is that one would like to get rid of the

second condition. The same is true for propositional Leibniz equality and one
can establish:

< a, p > ={x:A|P} < a, p′ > → p =P [x\a] p
′.

In general however, one is only interested in the validity of the assertion (P a),
not the way it is proved. A program awaiting an argument of type {x : A|P}
will behave identically if fed with < a, p > or < a, p′ > .

Therefore, each time a construct {x : A|P} is used indeed as a data-type, one
cannot use Leibniz equality in practice. Instead, one has to define a less restrictive
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equivalence relation �A,P which simply states that the two first components of
the pair are equal:

< a, p > �A,P < a′, p′ > ≡ a = a′.

But using �A,P instead of ={x:A|P} quickly becomes very tedious; typically, for
every function f : {x : A|P} → B one has to prove

Πc, c′ : {x : A|P} . c �A,P c′ → (f c) =B (f c′)

and even more specific statements if B is itself a subset type.
In our theory one can prove without difficulties that ={x:A|P} and �A,P are

equivalent, and there is indeed no need anymore for defining �A,P . Furthermore,
one has < a, p > =ε < a, p′ > , so the two terms are computationally identified
which is stronger than Leibniz equality, avoiding the use of the deductive level
and makes proofs and developments more concise.

Array Bounds. A typical example of the phenomenon above is observed when
dealing with partial functions. For instance when an array t of size n is viewed
as a function taking an index i as argument, together with a proof that i is less
than n. That is:

t : (tab n) with tab ≡ Πi : nat.i < n→ A.

In traditional type theory, this definition is cumbersome to use, since one has
to state explicitly that the values (t i pi), where pi : i < n do not depend upon
pi. The type above is therefore not sufficient to describe an array; instead one
needs the additional condition:

Tirr : Πi : nat.Πpi, p
′
i : i < n.(t i pi) =A (t i p′i)

where =A stands for the propositional Leibniz equality.
This is again verbose and cumbersome since Tirr has to be invoked repeatedly.

In our theory, not only the condition Tirr becomes trivial, since for any pi and p′i
one has (t i pi) =ε (t i p′i), but this last coercion is stronger than propositional
equality: there is no need anymore to have recourse to the deductive level and
prove this equality. The proof terms are therefore clearer and smaller.

3.3 On-the-Fly Extraction

An important point, which we can only briefly mention here is the consequence
for the implementation when switching to a proof-irrelevant theory. In a proof-
checker, the environment consists of a sequence of definitions or lemmas which
have been type-checked. If the proof-checker implements a proof-irrelevant the-
ory, it is reasonable to keep two versions of each constant: the full proof-term,
which can be printed or re-checked, and the extracted one (that is →ε-
normalized) which is used for conversion check. This would be even more natural
when building on recent Coq implementations which already use a dual storing of
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constants, the second representation being non-printable compiled code precisely
used for fast conversion check.

In other words, a proof-system built upon a theory as the one presented
here would allow the user to efficiently exploit the computational behavior of a
constructive proof in order to prove new facts. This makes the benefits of program
extraction technology available inside the system and helps transforming proof-
system into viable programming environments.

4 Relating to PVS

Subset types also form the core of PVS. In this formalism the objects of type {x :
A|P} are also of typeA. This makes type checking undecidable and is thus impossi-
ble in our setting. But we show that it is possible to build explicit coercions between
the corresponding types of our theory which basically behave like the identity.

The following lemma states that the construction and destruction operations
of our subset types can actually be omitted when checking conversion:

Lemma 8 (Singleton simplification). The typing relation of our theory re-
mains unchanged if we extend the →ε reduction of our theory by :

< a, p > Σ∗x:A.P →ε a

π∗
1(c)→ε c.

The following definition is directly transposed2 from PVS [23]. We do not treat
dependent types in full generality (see chapter 3 of [23]).

Definition 4 (Maximal super-type). The maximal super-type is a partial
function µ from terms to terms, recursively defined by the following equations.
In all these equations, A and B are of type Type(i) in a given context.

µ(A) ≡ A if A is a data-type µ({x : A|P}) ≡ µ(A)

µ(A→ B) ≡ A→ µ(B) µ(A×B) ≡ µ(A)× µ(B).

Definition 5 (η-reduction). The generalized η-reduction, written 
η, is the
contextual closure of:

λx : A.(t x) 
η t if x is not free in t

< π1(t), π2(t) > 
η t.

We can now construct the coercion function between A and µ(A):

Lemma 9. If Γ � A : Type(i) and µ(A) is defined, then:

– Γ � µ(A) : Type(i),
– there exists a function µ(A) which is of type A→ µ(A) in Γ ,

2 A difference is that in PVS, propositions and booleans are identified; but this point
is independent with this study. It is however possible to do the same in our theory
by assuming a computational version of excluded-middle.
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– furthermore, when applying the singleton simplification S to µ one obtains
an η-expansion of the identity function; to be precise: S(µ)→∗

εη λx : B.x.

Proof. It is almost trivial to check that Γ � µ(A) : Type(i). The two other clauses
are proved by induction over the structure of A.

– If f : A → µ(A), then g ≡ λx : {x : A|P}.(f π1(x)) : {x : A|P} → µ(A).
Furthermore π1(x) is here simplified to x, since P : Prop. Since (S(f) x)
∗

εηx,
S(g) 
∗

εη λ : x : {x : A|P}.x.
– If f : B → µ(B), then g ≡ λh : A → B.λx : A.(f (h x)) : A → µ(B). Since

(S(f) (h x)) 
∗
εη (h x), we have g 
∗

εη λh : A→ B.h.
– If fA : A→ µ(A) and fB : B → µ(B), then
g ≡ λx : A × B. < (fA π1(x)), (fB π2(x)) >A×B is of the expected type.
Again, the induction hypotheses assure that g 
∗

εη λx : A×B.x.

The opposite operation, going from from µ(A) to A, can only be performed
when some conditions are verified (TCC’s in PVS terminology). We can also
transpose this to our theory, still keeping the simple computational behavior of
the coercion function. This time however, our typing is less flexible than PVS’, we
have to define the coercion function and its type simultaneously; furthermore, in
general, this operation is well-typed only if the type-theory supports generalized
η-reduction.

This unfortunate restriction is typical when defining transformations over pro-
grams with dependent types. It should however not be taken too seriously, and
we believe this cosmetic imperfection can generally be tackled in practice3.

Lemma 10 (subtype constraint). Given Γ � A : Type(i), if µ(A) is defined,
then one can define π(A) and π(A) such that, in the theory where conversion is
extended with 
η, one has:

Γ � π(A) : µ(A) → Prop and Γ � π(A) : Πx : µ(A).(π(A) x) → A.

Furthermore, π(A) 
εη-normalizes to λx : µ(A).λp : (π(A) x).x.

Proof. By straightforward induction. We only detail some the case where A =
B → C. Then π(A) ≡ λf : A→ µ(B).∀x : A.(π(B) (f x)) and π(A) ≡ λf : A→
µ(B).λp : ∀x : A.(π(B) (f x)).λx : A.(π(B) (f x) (p x)).

5 A More Extensional Theory

Especially during the 1970ies and 1980ies, there was an intense debate about
the respective advantages of intensional versus extensional type theories. The
latter denomination seems to cover various features like replacing conversion
by propositional equality in the conversion rule or adding primitive quotient
3 For one, in practical cases, η-does not seem necessary very often (only with some

nested existentials). And even then, it should be possible to tackle the problem with
by proving the corresponding equality on the deductive level.
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types. In general, these features provide a more comfortable construction of
some mathematical concepts and are closer to set-theoretical practice. But they
break other desirable properties, like decidability of type-checking and strong
normalization.

The theory presented here should therefore be considered as belonging to the
intentional family. However, we retrieve some features usually understood as
extensional.

5.1 The Axiom of Choice

Consider the usual form of the (typed) axiom of choice (AC):

(∀x : A.∃y : B.R(x, y)) ⇒ ∃f : A→ B.∀x : A.R(x, f x).

When we transpose it into our type theory, we can chose to translate the
existential quantifier either by a Σ-type, or the existential quantifier defined in
Prop :

∃x : A.P ≡ ΠQ : Prop.(Πx : A.P → Q)→ Q : Prop

If we use a Σ-type, we get a type which obviously inhabited, using the projec-
tions π1 and π2. However, if we read the existential quantifiers of AC as defined
above, we obtain a (non-computational) proposition which is not provable in
type theory.

Schematically, this propositions states that if Πx : A.∃y : B.R(x, y) is prov-
able, then the corresponding function from A to B exists “in the model”. This as-
sumption is strong and allows to encode IZF set theory into type theory (see [26]).

What is new is that our proof-irrelevant type theory is extensional enough
to perform the first part of Goodman and Myhill’s proof based on Diaconescu’s
observation. Assuming AC, we can prove the decidability of equality. Consider
any type A and two objects a and b of type A. We define:

{a, b} ≡ {x : A|x = a ∨ x = b}

Let us write a′ (resp. b′) for the element of {a, b} corresponding to a (resp. b);
so π1(a′) =ε a and π1(b′) =ε b. It is the easy to prove that

Πz : {a, b}.∃e : bool.(e = true ∧ π1(z) = a) ∨ (e = false ∧ π1(z) = b)

and from the axiom of choice we deduce:

∃f : {a, b} → bool.Πz : {a, b}.(f z = true∧π1(z) = a)∨ (f z = false∧π1(z) = b)

Finally given such a function f , one can compare (f a′) and (f b′), since both
are booleans over which equality is decidable.

The key point is then that, thanks to proof-irrelevance, the equivalence be-
tween a′ = b′ and a = b is provable in the theory. Therefore, if (f a′) and (f b′)
are different, so are a and b. On the other hand, if (f a′) = (f b′) = true then
π1(b′) = a and so b = a. In the same way, (f a′) = (f b′) = false entails b = a.
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We thus deduce a = b ∨ a �= b and by generalizing with respect to a, b and A
we obtain:

ΠA : Type(i).Πa, b : A.a = b ∨ a �= b

which is a quite classical statement. We have formalized this proof in Coq, as-
suming proof-irrelevance as an axiom.

Note of course that this “decidability” is restricted to a disjunction in Prop
and that it is not possible to build an actual generic decision function. Indeed,
constructivity of results in the predicative fragment of the theory are preserved,
even if assuming the excluded-middle in Prop.

5.2 Other Classical Non-computational Axioms

At present, we have not been able to deduce the excluded middle from the
statement above4. We leave this theoretical question to future investigations but
it seems quite clear that in most cases, when admitting AC one will also be willing
to admit EM. In fact both axioms are validated by the simple set-theoretical
model and give a setting where the Type(i)’s are inhabited by computational
types (i.e. from {x : A|P} we can compute x of type A) and Prop allows classical
reasoning about those programs.

Another practical statement which is validated by the set-theoretical model
is the axiom that point-wise equal functions are equal :

ΠA,B : Type(i).Πf, g : A→ B.Πx : A.f x = g x→ f = g.

Note that combining this axiom with AC (and thus decidability of equality) is
already enough to prove (in Prop) the existence of a function deciding whether
a Turing machine halts.

5.3 Quotients and Normalized Types

Quotient sets are a typically extensional concept whose adaptation to type theory
has always been problematic. Again, one has to chose between “effective” quo-
tients and decidability of type-checking. Searching for a possible compromise,
Courtieu [9] ended up with an interesting notion of normalized type5. The idea
is remarkably simple: given a function f : A → B, we can define {(f x)|x : A}
which is the subtype of B corresponding to the codomain of f . His rules are
straightforwardly translated into our theory by simply taking:

{f(x)|x : A} ≡ {y : B|∃x : A.y = f x}

Courtieu also gives the typing rules for functions going from A to {f(x)|x : A},
and back in the case where f is actually of type A→ A.

4 In set theory, decidability of equality entails the excluded middle, since {x ∈ N|P}
is equal to N if and only if P holds.

5 A similar notion has been developped for NuPRL [22].
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The relation with quotients being that in the case f : A → A we can under-
stand {f(x)|x : A} as the type A quotiented by the relation

x R y ⇐⇒ f x = f y

In practice this appears to be often the case, and Courtieu describes several
applications.

6 Conclusion and Further Work

We have tried to show that a relaxed conversion rule makes type theories more
practical, without necessarily giving up normalization or decidable type checking.
In particular, we have shown that this approach brings together the world of PVS
and type theories of the Coq family.

We also view this as a contribution to closing the gap between proof systems
like Coq and safe programming environments like Dependant ML or ATS [7,27].
But this will only be assessed by practice; the first step is thus to implement
such a theory.
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Abstract. Adding rewriting to a proof assistant based on the Curry-Howard iso-
morphism, such as Coq, may greatly improve usability of the tool. Unfortunately
adding an arbitrary set of rewrite rules may render the underlying formal system
undecidable and inconsistent. While ways to ensure termination and confluence,
and hence decidability of type-checking, have already been studied to some ex-
tent, logical consistency has got little attention so far.

In this paper we show that consistency is a consequence of canonicity, which
in turn follows from the assumption that all functions defined by rewrite rules
are complete. We provide a sound and terminating, but necessarily incomplete
algorithm to verify this property. The algorithm accepts all definitions that fol-
low dependent pattern matching schemes presented by Coquand and studied by
McBride in his PhD thesis. Moreover, many definitions by rewriting containing
rules which depart from standard pattern matching are also accepted.

1 Introduction

Equality is ubiquitous in mathematics. Yet it turns out that proof assistants based on the
Curry-Howard isomorphism, such as Coq [9] are not very good at handling equality.
While proving an equality is not a problem in itself, using already established equalities
is quite problematic.

Apart from equalities resulting from internal reductions (beta, iota), which can be
used via the conversion rule without being recorded in the proof term, any other use
of an equality requires giving all details about the context explicitly in the proof. As a
result, proof terms may become extremely large, taking up memory and making type-
checking time consuming: working with equations in Coq is not very convenient.

A straightforward idea for reducing the size of proof terms is to allow other equalities
in the conversion, making their use transparent. This can be done by using user-defined
rewrite rules. However, adding arbitrary rules may easily lead to logical inconsistency,
making the proof environment useless. It is of course possible to put the responsibility
on the user, but it is contrary to the current Coq policy to guarantee consistency of
developments without axioms. It is desirable to retain this guarantee when rewriting
is added to Coq. Since consistency is undecidable in presence of rewriting, one has
find some decidable criteria satisfied only by rewriting systems which do not violate
consistency.
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The syntactical proof of consistency of the calculus of constructions, which is the
base of the formalism implemented in Coq, requires every term to have a normal
form [2]. The same proof is also valid for the calculus of inductive constructions [22],
which is even closer to the formalism implemented in Coq.

There exist several techniques to prove (strong) normalization of the calculus of
constructions with rewriting [1,5,4,19,20], following numerous works about rewriting
in the simply-typed lambda calculus. Practical criteria for ensuring other fundamen-
tal properties, like confluence, subject reduction and decidability of type-checking are
addressed e.g. in [4].

Logical consistency is also studied in [4]. It is shown under an assumption that for
every symbol f defined by rewriting, f(t1, . . . , tn) is reducible if t1 . . . tn are terms in
normal form in the environment consisting of one type variable. Apart from an informal
proof that this is the case for the two rules defining the induction predicate for natural
numbers and a remark that this property resembles the completeness of definitions,
satisfying the assumption of the consistency lemma is not discussed.

Practical techniques for checking completeness of definitions are known for almost
30 years for the first-order algebraic setting [12,18,13]. More recently, their adaptations
to type theory appeared in [10,14] and [16]. In this paper we show how the latter al-
gorithm can be tailored to the calculus of constructions extended with rewriting. We
study a system, similar to a proof assistant reality, where the sets of available function
symbols and rewrite rules are not known from the beginning but may grow as the proof
development advances.

We show that logical consistency is an easy consequence of canonicity (see Def. 2
and Lemma 4), which in turn can be proved from completeness of definitions by rewrit-
ing, provided that termination and confluence are proved first. Our completeness check-
ing algorithm closes the list of necessary procedures needed to guarantee logical consis-
tency of developments in a proof assistant based on the calculus of constructions with
rewriting. For additional examples and the proofs of all lemmas we refer the reader to
the Web appendix [21].

2 Rewriting in the Calculus of Constructions

Let us briefly discuss how we imagine introducing rewriting in Coq and what problems
we encounter on the way to a usable system.

From the user’s perspective definitions by rewriting could be entered just as all other
definitions:1

Inductive nat : Set := O : nat | S : nat → nat.
Symbol + : nat → nat → nat
Rules

O + y −→ y x + O −→ x
(S x) + y −→ S (x + y) x + (S y) −→ S (x + y)
x + (y + z) −→ (x + y) + z.

Parameter n : nat.

1 The syntax of the definition by rewriting is inspired by the experimental “Rewriting” branch of
Coq developed by Blanqui. For the sake of clarity we omit certain details, like environments
of rule variables and allow the infix + in the definition.
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The above fragment can be interpreted as an environmentE consisting of the inductive
definition of natural numbers, symmetric definition by rewriting of addition and the
declaration of a variable n of type nat. In this environment all rules for + contribute to
conversion. For instance both ∀x. x + 0 = x and ∀x. 0 + x = x can be proved by
λx :nat. refl nat x, where refl is the only constructor of the Leibniz equality inductive
predicate. Note that the definition of + is terminating and confluent. The latter can be
checked by an (automatic) examination of its critical pairs.

Rewrite rules can also be used to define higher-order and polymorphic functions, like
the map function on polymorphic lists.

Symbol map : forall (A:Set), (A → A) → list A → list A
Rules

map A f (nil A) −→ nil A
map A f (cons A a l) −→ cons A (f a) (map A f l)
map A λx.x l −→ l

Even though we consider higher-order rewriting, we choose the simple matching
modulo α-conversion. Higher-order matching is useful for example to encode logical
languages by higher-order abstract syntax, but it is seldom used in Coq where modeling
relies rather on inductive types. Instead of higher-order matching, one needs a possibil-
ity not to specify certain arguments in left-hand sides, and hence to work with rewrite
rules built from terms that may be not typable. Consider, for example the type tree of
trees with size and the function rotr performing a right rotation in the root of the tree.

Inductive tree : nat → Set :=
Leaf : tree O

| Node : forall n1:nat, tree n1 → bool → forall n2:nat, tree n2
→ tree (S(n1+n2)).

Symbol rotr : forall n:nat, (tree n) → (tree n)
Rules

rotr 0 t −→ t
rotr ? (Node O t1 a n2 t2) −→ Node O t1 a n2 t2
rotr ?1 (Node ?2 (Node ?3 A b ?4 C) d ?5 E)

−→ Node ?3 A b (S (?4 + ?5))(Node ?4 C d ?5 E)

The first argument of rotr is the size of the tree and the second is the tree itself. The
first two rules cover the trees which cannot be rotated and the third one performs the
rotation.

The ? marks above should be treated as different variables. The information they
hide is redundant: if we take the third rule for example, the values of ?3, ?4 and ?5 must
correspond to the sizes of the trees A, C and E respectively, ?2 must be equal S(?3+?4)
and ?1=S(?2+?5). Note that by not writing suitable subterms we make the rule left-
linear (and therefore easier to match) and avoid critical pairs with +, therefore helping
the confluence proof.

This way of writing left-hand sides of rules was already used by Werner in [22]
to define elimination rules for inductive types, making them orthogonal (the left-hand
sides are of the form Ielim P f w (c x), where P , f , w, x are distinct variables
and c is a constructor of I). In [4], Blanqui gives a precise account of these omissions
using them to make more rewriting rules left-linear. Later, the authors of [6] show that
these redundant subterms can be completely removed from terms (in a calculus without
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rewriting however). In [3], a new optimized convertibility test algorithm is presented
for Coq, which ignores testing equality of these redundant arguments.

In our paper we do not specify which arguments should/could be replaced by ? and
do not restrict left-hand sides to be left-linear, but rely on the acceptance condition for
definitions by rewriting to guarantee needed metatheoretical properties listed in the next
section.

It is also interesting to note that when the first argument of rotr is a ? then we may
say that it is matched modulo conversion and not syntactically.

3 Pure Type Systems with Generative Definitions

Even though most papers motivated by the development of Coq concentrate on the cal-
culus of constructions, we present here a slightly more general formalization of a pure
type system with inductive definitions and definitions by rewriting. The presentation,
taken from [7,8], is quite close to the way these elements are and could possibly be im-
plemented in Coq. The formalism is built upon a set of PTS sorts S, a binary relationA
and a ternary relationR over S governing the typing rules (Term/Ax) and (Term/Prod)
respectively (Fig. 1). The syntactic class of pseudoterms is defined as follows:

t ::= v | s | (t1 t2) | (λv :t1.t2) | ((v :t1)t2)

A pseudoterm can be a variable, a sort from S, an application, an abstraction or a prod-
uct. We use Greek letters γ, δ to denote substitutions which are finite partial maps from
variables to pseudo-terms. The postfix notation is used for the application of substitu-
tions to terms.

Inductive definitions and definitions by rewriting are generative. They are stored in
the environment and are used in terms only through names they “generate”. An envi-
ronment is a sequence of declarations, each of them is a variable declaration v : t, an
inductive definition Ind(Γ I := ΓC), where Γ I and ΓC are environments of (possibly
mutually defined) inductive types and their constructors, or a definition by rewriting
Rew(Γ,R), where Γ is an environment of (possibly mutually defined) function sym-
bols and R is a set of rewrite rules defining them. Given an environment E, induc-
tive types, constructors and function symbols declared in E are called constants (even
though syntactically they are variables). General environments are denoted by E and
the environment containing only variable declarations are denoted by Γ , ∆, G, D. We
assume that names of all declarations in environments are pairwise disjoint. A pair con-
sisting of an environment E and a term e is called a sequent and denoted by E � e. A
sequent is well-typed if E � e : t for some t.

Definition 1. A pure type system with generative definitions is defined by the typing
rules in Fig. 1, where:

– The relation ≈ used in the rule (Term/Conv) is the smallest congruence on well
typed terms, generated by −→ which is the sum of beta −→β and rewrite −→R

reductions.
– The notation E � Ind(Γ I := ΓC) : correct means that:

• Γ I = I1 : tI1 . . . Ik : tIk is the environment of inductive types
• ΓC = c1 : tC1 . . . cn : tCn is the environment of inductive constructors
• the positivity condition POSE(Γ I := ΓC), as defined e.g. in [15], is satisfied.
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ε � ok
E � ok E � t : s

E; v : t � ok

E � ok E � Ind(Γ I := Γ C) : correct
E; Ind(Γ I := Γ C) � ok

E � ok E � Rew(Γ, R) : correct
E; Rew(Γ, R) � ok

E1; v : t; E2 � ok
E1; v : t; E2 � v : t

E � ok
E � Ii : tI

i

E � ok
E � ci : tC

i

where

8<
:

E = E1; Ind(Γ I := Γ C); E2

Γ I = I1 : tI
1 . . . In : tI

n

Γ C = c1 : tC
1 . . . cm : tC

m

E � ok
E � fi : ti

E � ok δ : Γi → E

E � liδ −→R riδ
where

8<
:

E = E1; Rew(Γ, R); E2

Γ = f1 : t1 . . . fn : tn

R = {Γi : li −→ ri}i=1...m

(Term/Prod)
E � t1 : s1 E; v : t1 � t2 : s2

E � (v : t1)t2 : s3
where s1, s2, s3 ∈ S

(Term/Abs)
E; v : t1 � e : t2 E � (v : t1)t2 : s

E � λv : t1.e : (v : t1)t2

(Term/Ax)
E � ok

E � s1 : s2
where (s1, s2) ∈ A

(Term/App)
E � e : (v : t1)t2 E � e′ : t1

E � e e′ : t2{v �→ e′}

(Term/Conv)
E � e : t E � t′ : s E � t ≈ t′

E � e : t′

Fig. 1. Environment correctness, environment lookup and PTS rules

– The notation E � Rew(Γ,R) : correct means that:
• Γ = f1 : t1 . . . fn : tn is the environment of function symbols with E � ti : si

• R = {Γi � li −→ ri}i=1...n is the set of rewrite rules, where Γi is the environ-
ment of variables (including ? variables), li is the left-hand side and ri is the
right-hand side

• for each rule, E;Γi � ok
• R satisfies the acceptance condition ACCE(Γ ;R) (see below).

– The notation δ : Γ → E means that δ is a well-typed substitution, i.e. E � vδ :
tδ for all v : t ∈ Γ .

As in [20,4], recursors and their reduction rules have no special status and they are
supposed to be expressed by rewriting.

Assumptions. We assume that we are given a positivity condition POS and an accep-
tance condition ACC for definitions by rewriting. Together with the right choice of the
PTS they must imply the following properties:

P1) subject reduction, i.e. E � e : t, E � e −→ e′ implies E � e′ : t
P2) uniqueness of types, i.e. E � e : t, E � e : t′ implies E � t ≈ t′.
P3) strong normalization, i.e. E � ok implies that reductions of all well-typed terms

in E are finite
P4) confluence, i.e. E � e : t, E � e −→∗ e′, E � e −→∗ e′′ implies E � e′ −→∗ ê

and E � e′′ −→∗ ê for some ê.
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These properties are usually true in all well-behaved type theories. They are for example
all proved for the calculus of algebraic constructions [4], an extension of the calculus of
constructions with rewriting where the General Schema is the ACC condition. We use
the notation t↓ for the unique normal form of t.

4 Towards Consistency and Completeness

Consistency of the calculus of constructions (resp. calculus of inductive constructions)
can be shown by rejecting all cases of a hypothetical normalized proof e of (x : ∗)x
in a closed environment, i.e. empty environment (resp. an environment containing only
inductive definitions and no axioms). Our goal is to extend the definition of closed
environments to the calculus of constructions with rewriting, allowing also a certain
class of definitions by rewriting.

Let us try to identify that class. If we reanalyze e in the new setting, the only new
possible normal form of e is an application of a function symbol f , coming from a
rewrite definition Rew(Γ,R), to some arguments in normal form. There is no obvious
argument why such terms could not be proofs of (x : ∗)x , but we could complete
the consistency proof if we knew that such terms were always reducible. Let us call
COMP(Γ,R) the condition on rewrite definitions we are looking for, meaning that
function symbols from Γ are completely defined by the given set of rules R.

Note that the completeness of f has to be checked much earlier than it is used: we use
it in a given closed environmentE = E1; Rew(Γ,R);E2 but it has to be checked when
f is added to the environment, i.e. in the environment E1. It implies that completeness
checking has to account for environment extension and can be performed only with
respect to arguments of types whose set of normal forms would not change in the future.
This is the case for arguments of inductive types.

The requirement that functions defined by rewriting are completely defined could
very well be included in the condition ACC. On the other hand, the separation between
ACC and COMP is motivated by the idea of working with abstract function symbols,
equipped with some rewrite rules not defining them completely. For example if + from
Sect. 2 were declared using only the third rewrite rule, one could develop a theory of an
associative function over natural numbers.

In the next section we define COMP and provide an always terminating and sound
algorithm checking whether a rewrite definition is complete.

5 Checking Completeness

The intuition behind the definitions given below is the following. A rewrite definition
Rew(Γ,R) satisfies COMP (or is complete) if for all f in Γ , the goal f(x1, . . . , xn)
is covered by R. A goal is covered if all its instances are immediately covered, i.e re-
ducible byR at the root position. Following the discussion from the previous section we
limit ourselves to normalized canonical instances, i.e. built from constructors wherever
possible.

Definition 2 (Canonical form and canonical substitution). Given a judgment E �
e : t we say that the term e is in canonical form if and only if:
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– if t↓ is an inductive type then e = c(e1, . . . , en) for some constructor c and terms
e1, . . . , en in canonical form

– otherwise e is arbitrary

Let ∆ be a variable environment and E a correct environment. We call δ : ∆ → E
canonical if for every variable x ∈ ∆, the term xδ is canonical.

From now on, let E be a global environment and let Rew(Γ,R) be a rewrite definition
such that E � Rew(Γ,R) : correct. Let f : (x1 : t1) . . . (xn : tn) t ∈ Γ .

Definition 3. A goal is a well-typed sequent E;Γ ;∆ � f(e1, . . . , en).
A normalized canonical instance of the goal E;Γ ;∆ � f(e1, . . . , en) is a well-

typed sequent E; Rew(Γ,R);E′ � f(e1δ ↓, . . . , enδ ↓) for any canonical substitution
δ : ∆→ E; Rew(Γ,R);E′.

A term e is immediately covered by R if there is a rule G � l −→ r in R and a
substitution γ such that lγ = e. By obvious extension we can also write that a goal or
a normalized canonical instance is immediately covered by R.

A goal is covered by R if all its normalized canonical instances are immediately
covered by R.

Note that, formally, a normalized canonical instance is not a goal. The difference is that
the conversion corresponding to the environment of an instance contains reductions
defined by R, while the one of a goal does not.

Definition 4 (Complete definition). A rewrite definition Rew(Γ ;R) is complete in
the environment E, which is denoted by COMPE(Γ ;R), if and only if for all function
symbols f : (x1 : t1) . . . (xn : tn) t ∈ Γ the goal E;Γ ;x1 : t1; . . . ;xn : tn �
f(x1, . . . , xn) is covered by R.

Example 1. The terms (S O), λx:nat.x and (Node O Leaf true O Leaf)
are canonical, while (O + O) and (Node nA A b O Leaf) are not. Given the
definition of rotr from Sect. 2 consider the following terms:

t1 = rotr (S (nA + nC)) (Node nA A b nC C)
t2 = rotr (S O) (Node O Leaf true O Leaf)

Both (with their respective environments) are goals for rotr, and t2 (with a slightly
different environment) is also a normalized canonical instance of t1. The goal t1 is not
immediately covered, but its instance t2 is, as it is head-reducible by the second rule
defining rotr. Since other instances of t1 are also immediately covered, the goal is
covered (see Example 3).

5.1 Splitting

The algorithm that we present in Sect. 5.3 checks that a goal is covered using successive
splitting, i.e. replacement of variables of inductive types by constructor patterns. In
presence of dependent types not all constructors can be put in every place. Consider the
first rule of the definition of rotr. It is clear that only Leaf can replace t and in order
to decide so one must use unification modulo conversion.



626 D. Walukiewicz-Chrząszcz and J. Chrząszcz

Even though in general this problem is undecidable, we assume the existence of
a partial unification algorithm Alg, which given a unification problem U , returns a
substitution γ, ⊥ or ?. If it returns a substitution γ then γ is the most general unifier
of U and if it returns ⊥, U has no unifier; ? means that the problem is too difficult for
the algorithm (for the exact definitions we refer the reader to [21]). An example of such
a partial unification algorithm is constructor unification, that is first-order unification
with constructors and type constructors as rigid symbols, answering ? whenever one
compares a non-trivial pair of terms involving non-rigid symbols.

In the definitions below, we use Ran(γ) for the variable part of the codomain of a
substitution γ.

Definition 5 (Splitting). Let E;Γ ;∆ � f(e) be a goal. A variable x is a splitting
variable if x : t ∈ ∆ and t↓= Iu for some inductive type I ∈ E.

A splitting operation considers all constructors c of the inductive type I and for each
of them constructs the following unification problem Uc:

E;Γ, ∆;∆c � x = c(z1, . . . zk) E;Γ, ∆;∆c � Iu = Iw

where c : (z1 : Z1) . . . (zk : Zk).Iw and ∆c = z1 : Z1, . . . , zk : Zk.
If Alg(Uc) �= ? for all c, the splitting is successful. In that case, let Sp(x) =

{σc | σc = Alg(Uc) ∧ Alg(Uc) �= ⊥}. The result of splitting is the set of goals
{E;Γ ;Ran(σc) � f(e)σc}σc∈Sp(x).

If Alg(Uc) = ? for some c, the splitting fails.

Example 2. If one splits the goal rotr n t along the variable n, one gets two goals:
rotr O t and rotr (S m) t. The first one is immediately covered by the first
rule for rotr and if we split the second one along t, the Leaf case is impossible,
because tree O does not unify with tree (S m) and the Node case gives rotr
(S (nA + nC)) (Node nA A b nC C).

The following lemma states the correctness of splitting, i.e. that splitting does not de-
crease the set of normalized canonical instances. Note that the lemma would also hold
if we had a unification algorithm returning an arbitrary set of most general solutions,
but in order for the coverage checking algorithm to terminate the set of goals resulting
from splitting must be finite.

Lemma 1. Let E;Γ ;∆ � f(e) be a coverage goal and let {E;Γ ;Ran(σc) �
f(e)σc}σc∈Sp(x) be the result of successful splitting along x : Iu ∈ ∆. Then every
normalized canonical instance of E;Γ ;∆ � f(e) is a normalized canonical instance
of E;Γ ;Ran(σc) � f(e)σc for some σc ∈ Sp(x).

5.2 Preservation of Reducibility

Although one would expect that an immediately covered goal is also covered, it is not
always true, even for confluent systems. In fact we need a property of critical pairs that
is stronger than just joinability. Let us suppose that or : bool → bool → bool
is defined by four rules by cases overtrue and false and thatif : bool → bool
→ bool → bool is defined by two rules by cases on the first argument.
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Inductive I : bool → Set := C : forall b:bool, I (or b b).
Symbol f: forall b:bool, I b → bool
Rules

f (or b b) (C b) −→ if b (f true (C true)) (f false (C false))

In the example presented above all expressions used in types and rules are in normal
form, all critical pairs are joinable, the system is terminating, and splitting of f b i
along i results in the only reducible goal f (or b b) (C b). In spite of that f is
not completely defined, as f true (C true) is a normalized canonical instance of
f (or b b) (C b) and it is not reducible. In order to know that an immediately
covered goal is always covered we need one more condition on rewrite rules, called
preservation of reducibility.

Definition 6. Definition by rewriting Rew(Γ,R) preserves reducibility in an environ-
ment E if for every critical pair 〈f(u), rδ〉 of a rule G1 � f(e) −→ r in R with a
rule G2 � g −→ d coming from R or from some other rewrite definition in E, the term
f(u↓) is immediately covered by R.

Note that by using ? variables in rewrite rules one can get rid of (some) critical pairs
and hence make a definition by rewriting satisfy this property. In the example above
one could write f ? (C b) as the left-hand side (which would make the system
non-terminating, but that is another story). Of course all orthogonal rewrite systems,
in particular inductive elimination schemes, as defined in [22], preserve reducibility.

Lemma 2. Let Rew(Γ,R) preserve reducibility in an environmentE and letE;Γ ;∆ �
f(e) be a goal. If it is immediately covered then it is covered.

5.3 Coverage Checking Algorithm

In this section we present an algorithm checking whether a set of goals is covered by
the given set of rewrite rules. The algorithm is correct only for definitions that preserve
reducibility. The algorithm, in a loop, picks a goal, checks whether it is immediately
covered, and if not, splits the goal replacing it by the subgoals resulting from splitting.
In order to ensure termination splitting is limited to safe splitting variables. Intuitively,
a splitting variable is safe if it lies within the contour of the left-hand side of some rule
when we superpose the tree representation of the left-hand side with the tree represen-
tation of the goal. The number of nodes that have to be added to the goal in order to fill
the tree of the left-hand side is called a distance, and a sum of distances over all rules is
called a measure. Since the measures of goals resulting from splitting are smaller than
the measure of the original goal, the coverage checking algorithm terminates.

Safe splitting variables used in the algorithm are computed by the splitting matching
procedure: SV (φ,R) is the set of safe splitting variables for the goal φ along left-hand
sides of rules from R.

We refer the reader to [21] for the formal definitions of the notions mentioned above
and the corresponding lemmas.

Definition 7 (Coverage checking algorithm). Let W be a set of pairs consisting of a
goal and a set of safe variables of that goal along left-hand sides of rules from R and
let CE be a set of goals. The coverage checking algorithm works as follows:
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Initialize
W = {(E;Γ ;x1 : t1; . . . ;xn : tn � f(x1, . . . , xn), SV (f(x1, . . . , xn), R))}
CE = ∅

Repeat

1. choose a pair (φ,X) from W ,
2. if φ is immediately covered by one of the rules from R then

W := W \ {(φ,X)}
3. otherwise

(a) if X = ∅ then W := W \ {(φ,X)}, CE := CE ∪ {φ}
(b) otherwise choose x ∈ X; split φ along x

i. if splitting is successful and returns {φ1...φn} then
W := W \ {(φ,X)} ∪ {(φi, SV (φi, R))}i=1...n,

ii. otherwise W := W \ {(φ,X)} ∪ {(φ,X \ {x})}

until W = ∅

Lemma 3. If Rew(Γ,R) preserves reducibility and the algorithm stops with CE = ∅
then the initial goal is covered.

Example 3. The beginning of a possible run of the algorithm for the function rotr
is presented already in Example 2. Both splitting operations are performed on safe
variables, as required. We are left with the remaining goal rotr (S (nA + nC))
(Node nA A b nC C). Splitting along A results in:

rotr (S (O + nC)) (Node O Leaf b nC C)
rotr (S((S(nX+nZ))+nC)) (Node (S(nX+xZ)) (Node nX X y nZ Z) b nC C)

immediately covered by the second and the third rule respectively.
Since we started with the initial goal rotr n t and since the definition of rotr

preserves reducibility, it is complete.

When the coverage checking algorithm stops with CE �= ∅, we cannot deduce that R
is complete. The set CE contains potential counterexamples. They can be true coun-
terexamples, false counterexamples, or goals for which splitting failed along all safe
variables, due to incompleteness of the unification algorithm. In some cases further
splitting of a false counterexample may result in reducible goals or in the elimination
of the goal as uninhabited, but it may also loop. Some solutions preventing looping
(finitary splitting) can be found in [16].

Unfortunately splitting failure due to incompleteness of the unification may happen
while checking coverage of a definition by case analysis over complex dependent in-
ductive types (for example trees of size 2), even if rules for all constructors are given.
Therefore, it is advisable to add a second phase to our algorithm, which would treat
undefined output of unification as success. Using this second phase of the algorithm,
one can accept all definitions by case analysis that can be written in Coq.

6 Completeness Implies Canonicity Implies Consistency

It follows that completeness of definitions by rewriting guarantees canonicity and logi-
cal consistency.
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Definition 8. An environmentE is closed if and only if it contains only inductive defini-
tions and complete definitions by rewriting, i.e. for each partition of E into
E1; Rew(Γ,R);E2 the condition COMPE1(Γ,R) is satisfied.

Lemma 4 (Canonicity). Let E be a closed environment. IfE � e : t and e is in normal
form then e is canonical.

Theorem 1. Every closed environment is consistent.

Proof. Let E be a closed environment. Suppose that E � e : (x : #)x. Since E � ok
and E � Ind(False : # :=) : correct we have E′ � ok where E′ = E; Ind(False :
# :=). MoreoverE′ is a closed environment.

Hence, we haveE′ � e False : False. By Lemma 4, the normal form of e False
is canonical. Since False has no constructors, this is impossible.

7 Conclusions and Related Work

In this paper we study consistency of the calculus of constructions with rewriting. More
precisely, we propose a formal system extending an arbitrary PTS with inductive def-
initions and definitions by rewriting. Assuming that suitable positivity and acceptance
conditions guarantee termination and confluence, we formalize the notion of complete
definitions by rewriting. We show that in every environment consisting only of inductive
definitions and complete definition by rewriting there is no proof of (x :∗)x. Moreover,
we present a sound and terminating algorithm for checking completeness of defini-
tions. It is necessarily incomplete, since in presence of dependent types emptiness of
types trivially reduces to completeness and the former is undecidable.

Our coverage checking algorithm resembles the one proposed by Coquand in [10]
for Martin-Löf type theory and used by McBride for his OLEG calculus [14]. In these
works the procedure consisting in successive case-splittings is used to interactively built
pattern matching equations, or to check that a given set of equations can be built this
way. Unlike in our paper, Coquand and McBride do not have to worry whether all in-
stances of a reducible subgoal are reducible. Indeed, in [10] pattern matching equations
are meant to be applied to terms modulo conversion, and in [14] equations (or rather the
order of splittings in the successful run of the coverage checking procedure) serve as a
guideline to construct an OLEG term verifying the equations. Equations themselves are
never used for reduction and the constructed term reduces according to existing rules.

In our paper rewrite rules are matched against terms modulo α. Rewriting has to be
confluent, strongly normalizing and has to preserve reducibility. Under these assump-
tions we can prove completeness for all examples from [10] and for the class of pattern
matching equations considered in [14]. In particular we can deal with elimination rules
for inductive types and with Streicher’s axiom K stating that all proofs of(eqA a a) are
equal. Moreover, we can accept definitions which depart from standard pattern match-
ing, like rotr and + (for the axiom K and more examples we refer the reader to [21]).

The formal presentation of our algorithm is directly inspired by the recent work of
Pfenning and Schürmann [16]. A motivation for that paper was to verify that a logic
program in the Twelf prover covers all possible cases. In LF, the base calculus of Twelf,
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there is no polymorphism, no rewriting and conversion is modulo βη. The authors use
higher-order matching modulo βη, which is decidable for patterns of Miller and strict
patterns. Moreover, since all types and function symbols are known in advance, the
coverage is checked with respect to all available function symbols. In our paper, con-
version contains rewriting and it cannot be used for matching; instead we use matching
moduloα. This simplifies the algorithm searching for safe splitting variables, but on the
other hand it does not fit well with instantiation and normalization. To overcome this
problem we introduce the notions of normalized canonical instance and preservation of
reducibility which were not present in previously mentioned papers. Finally, since the
sets of function symbols and rewrite rules grow as the environment extends, coverage
is checked with respect to constructors only.

Even though the worst-case complexity of the coverage checking is clearly exponen-
tial, for practical examples the algorithm should be quite efficient. It is very similar
in spirit to the algorithms checking exhaustiveness of definitions by pattern match-
ing in functional programming languages and these are known to work effectively in
practice.

An important issue which is not addressed in this paper is to know how much we
extend conversion. Of course it depends on the choice of conditions ACC and POS
and on the unification algorithm used for coverage checking. In particular, some of the
definitions by pattern matching can be encoded by recursors [11], so if ACC is strict,
we may have no extension at all. In general there seems to be at least two kinds of ex-
tensions. The first are non-standard elimination rules for inductive types, but the work
of McBride shows that the axiom K is sufficient to encode all other definitions by pat-
tern matching considered by Coquand. The second are additional rules which extend
a definition by pattern matching (like associativity for +). It is known that for first-
order rewriting, these rules are inductive consequences of the pattern matching ones,
i.e. all their canonical instances are satisfied as equations (Thm. 7.6.5 in [17]). Unfortu-
nately, this is no longer true for higher-order rules over inductive types with functional
arguments. Nevertheless we believe that such rules are also some sort of inductive con-
sequences of the pattern matching part.

Our completeness condition COMP verifies closure properties defined in [7,8].
Hence, it is adequate for a smooth integration of rewriting with the module system
implemented recently in Coq.
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ness of rewriting in the calculus of constructions. Available for download at
http://www.mimuw.edu.pl/˜chrzaszcz/papers/.

22. Benjamin Werner. Méta-théorie du Calcul des Constructions Inductives. PhD thesis, Uni-
versité Paris 7, 1994.



Specifying and Reasoning About
Dynamic Access-Control Policies

Daniel J. Dougherty1, Kathi Fisler1, and Shriram Krishnamurthi2

1 Department of Computer Science, WPI
2 Computer Science Department, Brown University

Abstract. Access-control policies have grown from simple matrices to non-
trivial specifications written in sophisticated languages. The increasing complex-
ity of these policies demands correspondingly strong automated reasoning tech-
niques for understanding and debugging them. The need for these techniques is
even more pressing given the rich and dynamic nature of the environments in
which these policies evaluate. We define a framework to represent the behavior
of access-control policies in a dynamic environment. We then specify several in-
teresting, decidable analyses using first-order temporal logic. Our work illustrates
the subtle interplay between logical and state-based methods, particularly in the
presence of three-valued policies. We also define a notion of policy equivalence
that is especially useful for modular reasoning.

1 Introduction

Access control is an important component of system security. Access-control policies
capture rules that govern access to data or program operations. In the classical frame-
work [28], a policy maps each user, resource and action to a decision. The policy is
then consulted whenever a particular user wants to perform an action on a resource.
The information that defines this user, resource, and action forms an access request.

Modern applications increasingly express policies in domain-specific languages,
such as the industrially popular language [33], and consult them through a policy-
enforcement engine. Separating the policy from the program in this manner has several
important consequences: it allows the same policy to be used with multiple applications,
it enables non-programmers to develop and maintain policies, and it fosters rich mecha-
nisms for combining policy modules [9,33] derived from di erent, even geographically
distributed, entities. (In , a typical combiner is “a decision by one module to deny
overrides decisions by all other modules”.) A university administration can, for exam-
ple, author a common policy for campus building ID-card locks; each department can
individually author a policy covering its unique situations (such as after-hours access
for undergraduate research assistants); and an appropriate policy combiner can mediate
the decisions of the two sub-policies.

Access-control policies are hard to get right. Our appreciation for the di culty of au-
thoring policies stems from our experience maintaining and debugging the policies from
a highly-configurable commercial conference paper manager called C [27]. Al-
most all interesting bugs in C have related to access control in some form.

U. Furbach and N. Shankar (Eds.): IJCAR 2006, LNAI 4130, pp. 632–646, 2006.
c Springer-Verlag Berlin Heidelberg 2006
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1. During the submission phase, an author
may submit a paper

2. During the review phase, reviewer r may
submit a review for paper p if r is as-
signed to review p

3. During the meeting phase, reviewer r
can read the scores for paper p if r has
submitted a review for p

4. Authors may never read scores

1. During the submission phase, an author may
submit a paper

2. During the review phase, reviewer r may sub-
mit a review for paper p if r is not conflicted
with p

3. During the meeting phase, reviewer r can read
the scores for paper p if r has submitted a re-
view for p and r is not conflicted with p

4. Authors may never read scores

Fig. 1. Two candidate policies for controlling access to review scores

Many sources of complexity make policies di cult to author. Combiners are one
natural cause of di culty. Size is another factor: policies in realistic applications can
govern hundreds of actions, resources, and classes of users (called roles). Perhaps most
significantly, decisions depend on more than just the information in the access request.
Consider the policy governing member access to conference paper reviews: a re-
viewer assigned to a paper may be required to submit his own review before being
allowed to read those of others. The conference manager software maintains the in-
formation about which reviewers have submitted reviews for which papers; the policy
engine must be able to consult that information when responding to an access request.
Such information forms the environment of the policy. As this simple example shows,
environment data may be highly dynamic and a ected by user actions.

What is the impact of the environment? Figure 1 shows two candidate policies gov-
erning access to review scores for papers in a conference manager. Which policy should
we choose? The policies di er syntactically only in rules 2 and 3 but, if the application
allows conflict-of-interest to change after paper assignment, the semantic change is con-
siderable. Imagine a reviewer who is initially assigned a paper and submits a review, but
the chair later learns that the reviewer was conflicted with the paper. By the policy
on the left, the reviewer can read the scores for the conflicted paper.

As the example shows, such leaks are not evident from the policy document alone:
they require consideration of the dynamic environment. Fixing these, however, requires
edits to the policy, not the program. This suggests that analysis should focus on the
policy, but treat information from the program as part of the policy’s environment.

Whereas existing work on reasoning about access-control policies models the en-
vironment only lightly, if at all, this paper presents formal analyses for access-control
policies in their dynamic environments. We propose a new mathematical model of poli-
cies, their environments, and the interactions between them. We then propose analyses
that handle many common scenarios, focusing on two core problems: goal reachabil-
ity and contextual policy containment. Such analyses require a combination of rela-
tional reasoning (to handle interesting policies) and temporal reasoning (for the envi-
ronments). In addition, the analyses must support realistic development scenarios for
policies, such as modular policy authoring and upgrading. A recurring theme in this
work is the interplay between techniques for defining these analyses originating from
formal verification and from databases.
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Permit(a, submit-paper, p) author(a) , paper(p) , phase(submission)
Permit(r, submit-review, p) reviewer(r) , paper(p), assigned(r p) , phase(review)
Permit(r, read-scores, p) reviewer(r) , paper(p), has-reviewed(r,p) , phase(meeting)
Deny(a, read-scores, p) author(a) , paper(p)

Fig. 2. Formal model of policy on left in Figure 1

2 Modeling Policies and Their Dynamic Environments

The sample policies in Figure 1 require information such as the assignment of papers
to reviewers and conflicts of interest between reviewers and papers. Policies are declar-
ative statements over data from requests and over relations that capture information
gathered by the application (such as conflict-of-interest data). Following many other
policy models [5,12,23,29,30], we capture policies as Datalog programs.

A Datalog rule is an expression of the form

R0(u0) R1(u1) Rn(un)

where the Ri are relation names, or predicates, and the ui are (possibly empty) tuples of
variables and constants. The head of the rule is R0(u0), and the sequence of formulas
on the right hand side is the body of the rule. Given a set of Datalog rules, a predicate
occurring only in the bodies of rules is called extensional and a predicate occurring in
the head of some rule is called intentional. For a set of rules P, edb(P) and idb(P) denote
the extensional and intentional predicates of P, respectively. A policy is recursive if
some idb appears in a rule body. The signature of P, P, is edb(P) idb(P). A set of
facts is a set of closed atomic formulas over a signature .

Definition 1. Let Subjects, Actions, and Resources each be sorts. Let be a first-order
relational signature including at least the two distinguished ternary predicates Permit
and Deny of type Subjects Actions Resources.1 A policy rule over is a Datalog
rule over whose head is either Permit or Deny. A policy over is a set of policy rules
over .

That is, a policy is a set of Datalog rules whose idb predicates are amongst Permit
and Deny. We use an explicit Deny relation following the policy language [33],
rather than interpret deny as the negation of permit, to allow a policy to not apply to
some requests. The distinction between denial and non-applicability is useful for de-
composing policies into sub-policies that only cover pertinent requests, as in the uni-
versity example of the Introduction. (Bertino et al. discuss implications of supporting
negated decisions [8].) We point out the consequences of this decision on our models
and analyses as they arise in the paper.

Figure 2 shows a sample policy. The policy governs the use of the actions submit-
paper, submit-review, and read-scores based on information from the environment.

1 Subjects, Actions, and Resources could have more structure, such as tuples to model resources
with attributes or sets of Subjects to model joint actions. Such changes do not a ect our theo-
retical foundations, so we use the atomic versions to simplify the presentation.
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What is an environment? A principal source of environment information is the pro-
gram (e.g., which reviewers have submitted papers). Some information comes from
end-users (such as credentials). The run-time system also provides information (such
as the current time), and some information comes from the policy framework itself
(in role-based access control, for example, policies operate under assignments of users
to roles and under hierarchies of permission inheritance among roles). These diverse
sources suggest that (i) the environment must be a transition system, to model the pro-
gram’s execution and the passage of time, and (ii) each state must consist of an instance
of the edb relations referred to by the policy. This model is therefore in the family of
recent work on representing programs as transitions over relations [2,13,41,44]. Be-
cause our model is general enough to handle most forms of environment information,
we focus on the general model and ignore finer distinctions in the rest of this paper.

Concretely, consider the policy in Figure 2. The predicate has-reviewed tracks which
reviewers have submitted reviews for which papers. When a reviewer r submits a re-
view for paper p, the tuple r p is added to has-reviewed in the policy environ-
ment. The phase predicate tracks the current phase of the reviewing process. When
the chair ends the review phase and starts the program committee meeting, the fact
phase(review) is removed from the set of current facts and phase(meeting) is added.

Semantically, at any given time the set E of facts in the environment relevant to the
policy rules constitute an instance over the edb relations of P. Evaluation of access
requests, such as Permit(s a r), can thus be viewed as asking for the truth of the sen-
tence Permit(s a r) in this structure. More constructively, it is well-known that a set
P of Datalog rules defines a monotone operator on the instances over P . In this vein,
P inductively defines instances of idb names in terms of E, as follows. Treat E as an
instance over P by adding empty relations for the idb names, and take the least fixed-
point of the operator determined by P starting with E. The idb relations in the resulting
instance are the defined relations. We call the generated idb facts the access tables of
P with respect to E (denoted P(E)). Negation can be introduced into the framework
with some conceptual and computational cost [1].

Transitions in the policy’s environment are triggered by various conditions. Some
arise from the passage of time (such as the passing of the submission deadline moving
the conference into the review phase). Others arise from user or program actions (once
an author submits a review, for example, he can read other reviews for the same paper).
We use the generic term event for all of these conditions, and assume a signature of
events that can label transitions in the environment:

Definition 2. Given an event signature EV , an event is a closed instance of one pred-
icate or constant in EV . An environment model over a signature relative to event
signature EV is a state machine whose states are relational structures over and
whose transitions are labeled with events from EV .

A policy interacts with its dynamic environment by consulting facts in the environment
and potentially constraining certain actions in the environment. The latter captures the
influence of policy decisions on an application that uses it (recall that the policy’s en-
vironment includes the model of the application). We model such interactions through
events that share the same names as actions in policy requests. For example, a transition
labeled submit-review(Alice,paper1) would correspond to a request sent to the policy.
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Datalog
Policy

facts+decs

facts+decs

facts+decs

facts

facts

facts

facts

submit−review(Alice,paper1)

Fig. 3. Combining an environment model and a policy into a dynamic access model

Not all events need to be governed by the policy. To avoid ambiguity, we require that
all predicates that appear in both EV and the Actions sort of the policy have the type
Subjects Resources in EV .

A policy and an environment model for the policy’s dynamic environment combine
to form a state machine over access tables, as shown in figure 3 (where “decs” is short
for “decisions”). Intuitively, the access tables arise from applying the policy to the facts
at each state of the environment model. The transitions are a subset of those in the envi-
ronment model. Transitions whose event labels are policy actions are kept if the request
defined by that event yields Permit in the source state of the transition, and removed if
the request yields Deny. Some transitions may be labeled with policy actions for which
their source state yields neither Permit nor Deny. Applications must determine whether
to permit or deny such actions. Rather than fix an interpretation, we assume that an
application specifies which transitions should be treated as denied in the absence of a
policy decision. This expectation is reasonable because an application queries the policy
engine for decisions and acts on the responses. We use the term policy context for a pair
containing an environment model and a subset of its transitions, denoted ,
where is the set of transitions that the application treats as defaulting to deny.

Definition 3. Let P be a policy, be an environment model over P and
be a policy context. The dynamic access model for P, , and is the state machine
obtained by

– augmenting each state q of with the access tables from evaluating P at q; then
– eliminating transitions t that are labeled with policy actions such that (i) P does not

yield Permit, and (ii) either P yields Deny or t is in , and
– eliminating unreachable states.

We use the term ( P)-accessible for states in . We say “accessible” rather than
“reachable” to connote the influence of the policy: states in are reached only by
securing the permission of the access-control policy.

Dynamic access models satisfy the definition of environment models. This allows in-
cremental construction of dynamic access models from a series of policy modules. The
definition assumes that the policy will not yield both Permit and Deny for any request
considered in the second clause. If this assumption is violated, we say the policy has no
model. The subsequent results in this paper assume that policies have models.
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The following remark will be useful later.

Remark 4. Let be a policy context with an empty set of default-deny tran-
sitions and let P and P be policies. Then any state which is ( P P )-accessible is
( P)-accessible.

Ideally, environment models would be at least partially derived from applications. Stan-
dard techniques such as abstract interpretation [11] address this problem. Such tech-
niques are commonly used in software verification, and are not discussed further in this
paper. In general, we expect that finite models over-approximate their original infinite
models, so that all sets of facts reachable in the original model remain reachable in the
abstracted model.

3 Analyzing and Comparing Policies

Formal analyses can answer many useful questions about policies. Two fundamental
analyses are safety (does a policy prohibit users from doing something undesirable) and
availability (does a policy permit a user to do something that they are allowed to do).
Both of these depend on the dynamic environment and resemble properties common to
model checking.

Policy authors also need the ability to compare policies in the absence of formal
properties. Policies require upgrades and revisions just as programs do. Authors need
to know that their policies implement expected changes, but more importantly, that the
change did not yield unanticipated changes to decisions. Property-based verification is
of limited use for this problem as it would require the policy author to write proper-
ties expressing the unanticipated changes. Analyses that compare policies and provide
insights into the requests on which they yield di erent decisions are therefore crucial.
This section formalizes analyses both on single-policies and for comparing policies.

3.1 Goal Reachability

The analyses for safety and availability (a form of liveness) share a similar structure:
they ask whether there is some accessible state in the dynamic access model which
satisfies some boolean expression over policy facts. Checking whether a policy allows
authors to read review scores, for example, amounts to finding an accessible state satis-
fying the formula

x1x2 (Permit(x1 read-scores x2) author(x1) paper(x2))

We use the term goal reachability for this common analysis problem, where a goal is
formally defined as follows:

Definition 5. An n-ary goal is a sentence of the form x1 xn A, where A is a Boolean
combination of atomic formulas over P . A goal is conjunctive if A is a conjunction of
edbs. A goal is ( P)-reachable if it is satisfied in a ( P)-accessible state.

The formulas that capture goals do not interleave quantifiers and temporal operators.
When formulas do interleave these, the logic gets complicated if the domains of the
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structures at di erent states are allowed to vary (this phenomenon is familiar from pred-
icate modal logic). For problems that require such formulas, - is a sublanguage of
linear predicate temporal logic that avoids the di culty with varying-domain models,
yet is rich enough to express many properties of interest [13,41].

Goal reachability combines database query evaluation and reachability analysis. The
body of a goal is precisely a database query: to evaluate the goal at a particular state
in a model is to evaluate the associated Boolean query on the database of facts at that
state. Model checking algorithms for first-order temporal logics subsume this prob-
lem [13,41]. Given that goal reachability is a very useful and special case of first-order
model checking, however, it is worth understanding the complexity of goal checking.
Although checking the truth of an arbitrary first-order sentence in a finite model is
PSPACE-complete, the result of any fixed Datalog query can be computed in polyno-
mial time in the size of the database, and the result of any fixed conjunctive query over a
database Q can be computed in space O(log Q ) [42]. Strategies for e cient evaluation
of Datalog queries have been much-studied [1], particularly in the case of of conjunctive
queries, resulting in many fast evaluation techniques [16].

The following theorem records an upper bound on the asymptotic complexity of
deciding goal reachability in models with fixed domains.

Theorem 6. Let be a finite dynamic access model with n states, each of which has
the same finite domain of size d. Reachability in of a fixed goal G can be checked in
time polynomial in n and d. If G is a conjunctive goal then reachability can be checked
in nondeterministic logspace in the size of .

Proof. Each state q of can be considered as a database Q over the schema given by the
signature of the policy. For a fixed signature the size of Q is bounded by a polynomial
in d. Hence the satisfiability of a goal formula at a given state can be computed in
polynomial time in d. We then use the fact that reachability between nodes in a directed
graph is in NLOGSPACE [24] and so requires time polynomial in n. When the goal
is conjunctive, we require NLOGSPACE to check satisfiability of a goal formula at a
given state. Hence, the entire goal reachability test can be done in NLOGSPACE.

3.2 Contextual Policy Containment

Intuitively, policy containment asks whether one policy is more permissive than another.
For example, we could say that policy P2 subsumes the decisions of policy P1 if every
permitted request under P1 is permitted under P2 and every denied request under P2 is
denied under P1. Whether a request is permitted or denied in a policy, though, depends
on the set of facts that might support the request. We can exploit our environment model
to restrict attention to those sets of facts that are accessible in the environment. This
gives rise to the following formal definition of contextual policy containment:

Definition 7. Let P(Q)(Permit) denote the Permit table defined by policy P over a
set of facts Q (and similarly for P(Q)(Deny)). P2 contains P1 in context , written
P1 P2, if for all instances Q of edb and idb facts in ( P1)-accessible states,

P1(Q)(Permit) P2(Q)(Permit) and P2(Q)(Deny) P1(Q)(Deny)

P1 and P2 are contextually equivalent if P1 P2 and P2 P1.
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A subtlety in comparing the semantics of two polices arises due to the fact that changing
policies can result in a change in the accessibility relation in a dynamic access model:
which states should we examine? The following lemma justifies the choice made in
Definition 7.

Lemma 8. If P1 P2, then every ( P1)-accessible state is ( P2)-accessible.

Proof. We induct over the length of a shortest path from the start state to a given ( P1)-
accessible state. It su ces to show that at any such state the set of actions enabled
under P1 is a subset of those enabled under P2. But this is clear from an examination of
Definition 3.

Ideally, we would like to use contextual containment to reason about relationships be-
tween fragments of policies, as well as entire policies. Reasoning about the relationships
between policy fragments is critical for policies authored across multiple entities (as in
our university example in the Introduction). Modular policy reasoning is subtle, how-
ever, in the presence of requests to which the policy does not apply. In our model, the
context determines how such requests are handled. If a new policy fragment permits
a request that defaulted to Deny in the context, new states could become accessible;
these states would have not been tested for containment, thus rendering policy reasoning
unsound.

Modular reasoning is sound, however, if policy combination cannot make additional
states accessible. If the containment check between two fragments occurs in a context
in which all non-applicables default to Permit, for example, policy containment and
accessibility lift to modular policy reasoning, as we now show.

Lemma 9. Let be a policy context with an empty set of default-deny transi-
tions. If P1 P2 then for all policies P, (P P1) (P P2).

Proof. Let q be a state which is ( P P1)-accessible and let Q be the associated
database of edb and idb facts at q. By Remark 4, q is ( P1)-accessible, so the inclusions
in the definition of P1 P2 apply at Q. Letting T denote the operator constructing the
idb relations for a Datalog program, note that the fixed point of TP Pi is the same as
that of TPi TP. By hypothesis, at each iteration n of the fixpoint construction starting
with Q, we have (TP1 TP)n(Q) (TP2 TP)n(Q). The lemma follows.

Contextual containment under an empty set of default Deny transitions is analogous to
uniform containment as defined for Datalog programs [10,35] (which is itself a general-
ization of the standard homomorphism-based characterization of containment for con-
junctive queries). Correspondingly, we use the term uniform contextual containment for
this scenario. Such preservation under context is also the key feature of observational
equivalence in programming language theory. For the same reasons that observational
equivalence is the canonical notion of equality between programming language expres-
sions, we feel that uniform contextual equivalence should be viewed as a fundamental
notion of policy equivalence.

Uniform contextual containment supports the following analyses, none of which re-
quire a policy author to write formal properties:
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– A new policy P neither removes any permissions nor adds any denials if and only
if the new fragment of P uniformly contextually contains the fragment it replaced.
If the replaced fragment also contains the new fragment, the two policies yield
precisely the same decisions.

– A new policy P adds a specific set of permissions I to an old policy P if P I
(where I is a set of idb facts) is uniformly contextually equivalent to P .

Lemma 9 over-approximates the set of accessible states by setting to . Such over-
approximation is inherent to an open system setting, where we cannot make assump-
tions about the behavior of other modules. Naturally, this can result in irrelevant failures
to prove containment. This e ect can be mitigated: the degree of over-approximation is
controlled entirely by the value of , which is a parameter to the containment check.

3.3 Checking Contextual Policy Containment

We now discuss how to implement a test for contextual policy containment. The most
straightforward approach is to rename the predicates in the two policies so they are
disjoint (we use subscripts in the formula below), take the union of the two policies,
and use model checking to verify the temporal logic sentence

AG x1x2x3 ((Permit1(x1 x2 x3) Permit2(x1 x2 x3))

(Deny2(x1 x2 x3) Deny1(x1 x2 x3)))

The universal quantification over requests makes this approach potentially expensive to
evaluate at each state of the dynamic access model.

We can improve the situation by focusing on the relationship between policies and
single rules. Roughly speaking we will reduce the policy containment question to con-
sideration of whether individual rules are contained in (whole) policies. It is natural
to consider a single rule as a policy in its own right. But the notion of accessibility is
di erent depending on whether a rule is considered in isolation or as part of a larger
policy. We will thus want to explore containment between a rule from policy P1 and a
whole policy P2 but restricting attention to states accessible under all of policy P1. This
motivates the following refinement of contextual containment.

Definition 10. Let P1 and P2 be policies and let be a rule. Then P1
P2 if for all

instances Q of edb and idb facts in ( P1)-accessible states, (Q)(R) P2(Q)(R) where
R is the predicate at the head of .

Analyzing contextual containment in terms of individual rules will be sound assuming
a rather natural constraint on rules: that no Permit rule has the Deny predicate occurring
in its body and no Deny rule has the Permit predicate occurring in its body. We will call
such polices separated. This restriction is naturally satisfied in most policies. Further-
more, note that if only one kind of violation occurs, for example if some Permit rules
depend on Deny but not vice versa, then the policy can be rewritten to be separated
simply by expanding the o ending occurrences of Deny by their definitions.

Lemma 11. Let P1 and P2 be separated policies and let be a policy context. Then
P1 P2 if and only if for each Permit rule 1 of P1, 1 P1

P2, and for each Deny

rule 2 of P2, 2 P1
P1.
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Proof. Suppose P1 P2, and let 1 be a Permit-rule of P1. Since P1 is separated, at
any state q with associated database Q, 1(Q)(Permit) P1(Q)(Permit); it follows that

1 P1
P2. A similar argument shows that 2 P2

P1 for each Deny-rule 2 from P2.
For the converse we consider without loss of generality a fact Permit(u) in P1(Q)

for Q associated with a ( P1)-accessible state q and argue that Permit(u) is in P2(Q)
by induction on the number of stages in the Datalog computation of this fact under P1.
Since P1 is separated this computation relies only on edb facts from q and Permit-facts
generated in fewer steps by P1, so the result follows.

We now focus on the problem of testing containments of the form 1 P1
P2 (from

Definition 10). While it is tempting to treat this as a purely logical problem, this is
insu cient because it might miss relationships among the edb relations being main-
tained in the dynamic access model. Consider an example in which a policy author
wants to replace the following rule 1 for reviewers’ access to paper reviews with
rule 2:

1: Permit(r, read-scores, p) reviewer(r) , has-reviewed(r,p) , phase(meeting)
2: Permit(r, read-scores, p) reviewer(r) , assigned(r,p) , phase(meeting)

Suppose the the dynamic access model maintains an invariant that reviews have only
been submitted by reviewers who were assigned to a paper. Then 1 2 as single-rule
policies since at every state, has-reviewed(r,p) implies assigned(r,p).

A related semantic phenomenon is the following. If every Subject (for example)
in a model’s domain were named by a constant, it could happen that the e ect of
a given rule was subsumed by finitely many rules of a policy in a “non-uniform”
way.

Such examples illustrate why syntactic analysis is in general insu cient for checking
contextual containment. The following algorithm works directly with the policy context

to check containment.

Algorithm 12. Let be a policy context, P1 and P2 be policies, and R0(u0)
R1(u1) Rn(un) be a rule from P1. To test whether P1

P2:
For each ( P1)-accessible state q and for each valuation mapping the variables

of into q which makes each Ri( ui) true, let Q be the database whose edb facts are
those of q and whose idb facts are those Ri( ui) where Ri is an idb predicate from . If
u0 P2(Q )(R0) for each such Q , return success; if this fails for some Q , fail.

Lemma 13. Algorithm 12 is sound and complete for testing P1
P2.

Proof. Suppose P1
P2 holds. Let q be a ( P1)-accessible state, let Q be the associ-

ated database instance and suppose R(a) is in (Q), where R is the predicate at the head
of ; we want to show that R(a) is in P2(Q). The fact that R(a) is in (Q) is witnessed
by an instantiation of the body of with elements from q that comprise edb facts from
q and idb facts derived from evaluating as a policy over q. But those latter idb facts
are part of the instance Q as constructed in Algorithm 12, as are the edb facts from q.
So the algorithm will report success. The argument that the algorithm correctly reports
failures is similar.
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The e ect of a rule will often be captured by a policy in the sense of logical entailment,
without appealing to the semantics of the application in question. Such relationships can
be uncovered by purely symbolic computation: this is essentially the notion of uniform
containment between Datalog programs. In our setting this takes the following form.
First note that a collection B of atomic formulas can be considered as a database of
facts by viewing the variables as values and the formulas as defining tables.

Definition 14. Let P be a policy, R0(u0) R1(u1) Rn(un) be a rule, and B be
the database instance derived from the body of . P simulates if u0 P(B)(R0).

Lemma 15. Let be a policy context, let P1 and P2 be policies, and let 1 be a rule
from P1. If P2 simulates rule 1 then 1 P1

P.

Proof. It is easy to see that when P2 simulates 1, the computation in Algorithm 12 will
succeed at any state q.

Checking rule simulation requires time polynomial in when the schema is consid-
ered fixed: the complexity is O(dk) where k is the maximum arity of a predicate in
and d is the number of distinct variables in B.

The following algorithm summarizes how we can combine rule simulation and direct
checking of a policy context to test contextual containment.

Algorithm 16 (Improved containment checking). Let be a policy context and let
P1 and P2 be separated policies. To test whether P1 P2:

(i) Consider each Permit rule 1 of P1:
Test whether P2 simulates 1. If so continue with the next rule. If not,
use Algorithm 12 to directly test whether 1 P1

P2. If so continue
with the next rule; if not halt and return failure.

(ii) Proceed similarly with each Deny rule of P2.
(iii) If no failure is reported above, return success.

Theorem 17. Algorithm 16 is sound and complete for testing P1 P2.

Proof. This follows from Lemmas 11, 13, and 15.

Algorithm 16 can produce counterexamples when the containment check fails. The
check in Algorithm 12 identifies both a request that violates containment (formed from
the head of the rule causing failure) and a path through the dynamic access model to a
set of facts that fail to support the request. Counterexamples are important for creating
useful analyses, as experience with model checking has shown.

Ideally, however, we would like to go beyond mere containment. A policy author
would benefit from knowing the semantic di erence between two policies, given as the
set of all requests whose decisions changed from one policy to the other. Furthermore,
these di erences should be first-class objects, amenable to querying and verification
just as policies are. The ability to analyze di erences matters because authors can often
state precise expectations of changes even if they cannot state global system properties,
as Fisler et al. [14] discuss. This is therefore an important problem for future work.
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4 Related Work

Using state transition systems to model programs guarded by access control policies
goes back to Bell and LaPadula [6] and Harrison et al. [18]. More recent works sup-
port state transitions over richer models of access control and properties beyond safety
[3,17,25,31,32,36]. Our model is unique in separating the static policy from its dy-
namic environment. This enables us to consider analyses such as semantic di erenc-
ing that can meaningfully be applied to the policy alone. This separation also reflects
the growing practice of writing policies in a di erent (domain-specific) language from
applications.

Role-based access control ( ) [37] o ers one form of support for a dynamic en-
vironment. The role abstraction allows users to change roles without having to modify
the policy. In that sense it does illustrate the principle of a dynamic environment, but it
is simply not rich enough to model the multitude of sources of change.

Bertino et al.’s model captures time-sensitive, role-based access control poli-
cies [7]. views time in concrete units such as hours and days and supports rule
enabling and disabling based on concrete times (such as “give the night nurse permis-
sion to check charts at 5pm”). This concrete-time model explicitly elides other aspects
of the dynamic environment, such as the passage of time induced by program events,
and is thus unsuitable for reasoning about interactions between programs and policies.

Guelev et al. reduce access control policies to state machines over propositions by
encoding each first-order relational term as a separate proposition [17]. They provide
propositional temporal logic verification, but do not consider policy comparison. Abite-
boul et al. verify - properties against web services modeled as graphs over rela-
tional facts [2,13]. Our work includes a model of the facts over time whereas theirs
assumes that the facts are arbitrary (within a given schema). Spielmann’s work on veri-
fying e-commerce systems has similar limitations relative to our project [41].

Alloy [22] supports reasoning about relational data. Several researchers, including
the authors, have tried building policy analysis tools atop Alloy [14,21,39], but these all
assume non-dynamic environments. Alloy’s support for temporal reasoning is limited
to properties of small bounded-length paths. Frias et al.’s DynAlloy tool extends Alloy
to handle dynamic specifications [15], but retains Alloy’s bounded path restrictions.

Datalog is the foundation for many access-control and related frameworks
[5,12,23,29,30,34]. These works support only non-temporal query evaluation, while we
are targeting richer analyses. Our use of uniform containment is inspired by results in
the database literature. Shmueli [40] showed that simple containment of Datalog pro-
grams is undecidable while Sagiv [35] showed that uniform containment of programs
is decidable, building on ideas of Cosmadakis and Kanellakis [10].

Several researchers have also built access-control reasoning tools atop Prolog
[17,26,38], but their work does not address policy comparison. Weissman and Halpern
model policies using the full power of first-order logic [43]. Their criticisms of Datalog-
based models for capturing request denial do not apply to our model with an explicit
Deny predicate. Verifying a property against a static policy in their model reduces to
checking validity of first-order logic formulas; policy comparison would reduce to com-
puting the set of first-order models that satisfy one formula but not another. We thus
believe our model provides a better foundation for building usable verification tools.
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Given that our model involves both relational terms and a transition system, our anal-
yses require logics that integrate predicate logic and temporal operators. Hodkinson et
al. have shown [19,20] that such logics have very bad decidability properties, even
when the first-order components are restricted to decidable fragments. For example, the
monadic fragment of first-order linear temporal logic is undecidable, even restricted to
the 2-variable case. (The one-variable fragment is decidable.) For branching-time log-
ics, even the one-variable monadic fragment is undecidable. These results suggest that
checking validity or satisfiability (conventional theorem-proving tasks) to reason about
first-order properties of dynamic policies would face severe di culties. This paper uses
models of policy environments to yield decidable analysis questions.

Backes et al. [4] propose refinement relations as a means for determining whether
one policy contains another, but their work focuses solely on policies and does not ac-
count for the impact of the dynamic environment. Fisler et al. [14] have implemented
both verification and semantic di erencing for role-based policies, but their work han-
dles only weaker (propositional rather than relational) policy models and ignores the
impact of the dynamic environment.

5 Perspective

This work has demonstrated the importance of analyzing access-control policies in the
dynamic context in which they evaluate requests. A great deal of the subtlety in this
work arises because policies are are not two-valued (i.e., they may respond with “not-
applicable”), but as we explain in the Introduction, this complexity is crucial to enable
policies to be modular and to properly separate concerns and spheres of influence. This
paper routinely employs results and insights from both the database and computer-aided
verification literature, and thus highlight synergies between the two; however, the def-
initions and lemmas relating policy containment and accessibility under policies and
contexts demonstrate the subtle ways in which these results interact within a common
model. We believe that the notions of uniform contextual containment and equivalence
defined in this paper are fundamental concepts for a theory of policies. The work in this
paper can be used to analyze any situation where a program’s execution is governed by
a logical policy, but we have not explored applications other than access control.
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Abstract. We investigate whether identification constraints such as
keys and functional dependencies can be granted full status as a con-
cept constructor in a Boolean-complete description logic. In particular,
we show that surprisingly simple forms of such constraints lead to unde-
cidability of the associated logical implication problem if they are allowed
within the scope of a negation or on the left-hand-side of inclusion depen-
dencies. We then show that allowing a very general form of identification
constraints to occur in the scope of monotone concept constructors on
the right-hand-side of inclusion dependencies still leads to decidable im-
plication problems. Finally, we consider the relationship between certain
classes of identification constraints and nominals.

1 Introduction

To date, description logics (DLs) have incorporated keys or functional depen-
dencies in one of two ways. The first adds a separate family of terminological
constraints to inclusion dependencies, e.g., in the form of a key box [5,7,13,14],
while the second avoids this by adding a new concept constructor called a
path-functional dependency (PFD) [11,18,19]. However, the latter approach still
falls short of a full integration of keys or functional dependencies since there
are syntactic restrictions on occurrences of PFDs and on the syntax of the
PFD constructor itself. In particular, all earlier work has required that any oc-
currence of this constructor appears only at the top level on the right hand
side of inclusion dependencies, and that the left hand sides of PFDs them-
selves are nonempty. Note that an ordinary functional dependency of the form
“{} → A” has an empty left hand side and consequently enforces a fixed
A value. In this paper, we investigate whether such syntactic restrictions are
necessary—unfortunately, it turns out that this is indeed the case—and study
the limits of decidability in such a setting. Our main contributions are as
follows.

– We show that allowing PFDs on the left hand side of inclusion dependencies,
or in the scope of a containing negation on the right hand side, leads to
undecidability. Notably, this remains true when PFDs are limited to very
simple forms of relational keys or functional dependencies.
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– Conversely, we show that allowing PFDs within the scope of monotone con-
cept constructors on the right hand side of inclusion dependencies, still leads
to decidable implication problems.

– We show that allowing left hand sides of PFDs to be empty also leads to
undecidability. This entails first showing that the introduction of an ABox to
previously decidable PFD dialects already makes logical implication undecid-
able. The result follows by showing that such PFDs can simulate nominals.

DLs have become an important part of the semantic web. Indeed, OWL, the cur-
rent standard for capturing semantic web ontologies, is largely based on a DL di-
alect. They have also been used as a lingua franca for a large variety of languages for
capturing metadata: UML class diagrams, ER models, relational schema, object-
oriented schema, DTDs for XML and XML itself are all examples [6,15].

1.1 Identification Is Important

Identification constraints are fundamentally tied to issues of equality, and as web
services with query languages such as SWRL that are based on OWL are intro-
duced, important questions such as how can one reliably identify resources and
whether there is at most one kind of web service inevitably surface when finding
execution strategies for services and when communicating results of such services.
With the addition of the PFD concept constructor along the lines considered in
this paper, it becomes possible to express, e.g., that among all possible clients, so-
cial security numbers are a reliable way of identifying those that are registered. In
particular, this can be captured by the following inclusion dependency.

Client  ¬Registered � Client : SIN→ Id

To paraphrase: If a client is registered, then no other client will share his or her
social insurance number. Note that social insurance numbers may not be a reliable
way of identifying an arbitrary unregistered client in general.

There are a number of additional applications and capabilities that become pos-
sible after removing syntactic restrictions on PFDs, beyond the fact that a sim-
ple and elegant presentation of the associated DL would ensue. For example, to
say that all information about clients is located at a single site, one can add the
dependency

Client  Client :→ LocationOfData

Again to paraphrase:For any pair of clients, both will agree on the location of avail-
able data.

As we shall see, relaxing existing restrictions to accommodate the first example
is possible since disjunction is a monotone concept constructor, but is not possible
for the second example without the introduction of alternative restrictions on the
use of PFDs or syntax of the PFD constructor itself.

1.2 Background and Related Work

PFDs were introduced and studied in the context of object-oriented data mod-
els [9,23]. An FD concept constructor was proposed and incorporated in Clas-
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sic [4], an early DL with a PTIME reasoning procedure, without changing the
complexity of its implication problem. The generalization of this constructor to
PFDs alone leads to EXPTIME completeness of the implication problem [11]; this
complexity remains unchanged in the presence of additional concept constructors
common in rich DLs [18,19]. Note that all earlier work has assumed the above
syntactic restrictions on occurrences of the PFD concept constructor in inclusion
dependencies.

In [5], the authors consider a DL with functional dependencies and a general
form of keys added as additional varieties of dependencies, called a key box. They
show that their dialect is undecidable for DLs with inverse roles, but becomes de-
cidable when unary functional dependencies are disallowed. This line of investi-
gation is continued in the context of PFDs and inverse features, with analogous
results [17]. We therefore disallow inverse features in this paper to exclude an al-
ready known cause for undecidability.

A form of key dependency with left hand side feature paths has been considered
for a DL coupled with various concrete domains [14,13]. In this case, the authors
explore how the complexity of satisfaction is influenced by the selection of a con-
crete domain together with various syntactic restrictions on the key dependencies
themselves.

PFDs have also been used in a number of applications in object-oriented schema
diagnosis and synthesis [2,3], in query optimization [8,10] and in the selection of
indexing for a database [16]. The results reported in this paper are an expansion
of earlier preliminary work in [20].

The remainder of the paper is organized as follows. The definition of DLFD, a
Boolean complete DL based on attributes or features that includes the PFD con-
cept constructor is given next. In Section 3, we show that the interaction of this
constructor with negation leads to undecidability for a variety of simple cases of
PFDs. Section 4 then shows how decidability can be regained while still allowing
PFDs in the scope of monotone concept constructors on the right hand sides of
inclusion dependencies, most significantly in the scope of concept union and at-
tribute restriction. In Section 5, we consider relaxing the requirement that PFDs
have non-empty left hand sides, showing that both this and a (weaker) alternative
of admitting an ABox leads to undecidability. Our summary comments follow in
Section 6.

2 Definitions

Our investigations are based on the following dialect of description logic called
DLFD. To simplify the presentation, the dialect is based on attributes or fea-
tures instead of the more common case of roles. Note that ALCN with a suit-
able PFD construct can simulate our dialect. Conversely, DLFD can simulate
ALCQI [21].

Definition 1 (Description Logic DLFD). Let F and C be sets of attribute
names and primitive concept names, respectively. A path expression is defined by
the grammar “Pf ::= f.Pf | Id” for f ∈ F. We define derived concept descriptions
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Syntax Semantics: Defn of “(·)I”

D, E ::= C (C)I ⊆ ∆
| D1 �D2 (D1)I ∩ (D2)I

| D1 �D2 (D1)I ∪ (D2)I

| ∀f.D {x : (f)I(x) ∈ (D)I}
| ¬D ∆ \ (D)I

| D : Pf1, ..., Pfk → Pf {x : ∀ y ∈ (D)I .∧k
i=1(Pfi)I(x) = (Pfi)I(y)⇒ (Pf)I(x) = (Pf)I(y)}

Fig. 1. Syntax and Semantics of DLFD

by the grammar on the left-hand-side of Figure 1. A concept description obtained by
using the fourth production of this grammar is called an attribute value restriction.
A concept description obtained by using the final production is called a path func-
tional dependency (PFD). Note that we assume for this production that k > 0, that
the left hand side of a PFD is non-empty. In addition, a PFD is called: (1) unary
when k = 1, (2) key when the right hand side is Id, and (3) simple when there is
no path expression with more than a single attribute name.

An inclusion dependency C is an expression of the form D  E. A terminology
T consists of a finite set of inclusion dependencies.

The semantics of expressions is defined with respect to a structure (∆, ·I), where
∆ is a domain of “objects” and (.)I an interpretation function that fixes the inter-
pretation of primitive concepts C to be subsets of∆ and primitive attributes f to be
total functions (f)I : ∆→ ∆. The interpretation is extended to path expressions,
(Id)I = λx.x, (f.Pf)I = (Pf)I ◦ (f)I and derived concept descriptions D and E
as defined on the right-hand-side of Figure 1.

An interpretation satisfies an inclusion dependency D  E if (D)I ⊆ (E)I .
The logical implication problem asks if T |= D  E holds; that is, for a posed
question D  E, if (D)I ⊆ (E)I for all interpretations that satisfy all inclusion
dependencies in T .

3 Undecidability

It turns out that allowing arbitrary use of very simple varieties of the PFD con-
cept constructor lead to undecidable implication problems. This is true for three
boundary cases in particular:

1. when all PFDs are simple and key,
2. when all PFDs are simple and unary, and
3. when all PFDs are simple and non-key.

In the first case, a PFD resembles C : f1, . . . , fk → Id , which captures the stan-
dard notion of relational keys, while in the second, a PFD has either the form
C : f → g or the formC : f → id. The standard notion of a (relational) functional
dependency (FD) is captured by the final third case in which a PFD resembles
C : f1, . . . , fk → f .
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Observe that the three cases are exhaustive in the sense that the only possibility
not covered happens when all PFDs have the form C : f → Id (i.e., are simple,
unary, and key). However, it is a straightforward exercise in this case to map logi-
cal implication problems to alternative formulations in decidable DL dialects with
inverses and number restrictions. In the rest of this section, we elaborate on the
first two of these cases. Notably, our reductions make no use of attribute value re-
strictions; they rely solely on PFDs and the standard Boolean constructors. The
reduction for the last case is similar and will be given in an extended version of the
paper.

Our undecidability results are all based on a reduction of the unrestricted tiling
problem to the DLFD implication problem. An instance U of this problem is a
triple (T,H, V ) where T is a finite set of tile types and H,V ⊆ T × T two binary
relations.A solution toT is amapping t : N×N→ T such that (t(i, j), t(i+1, j)) ∈
H and (t(i, j), t(i, j + 1)) ∈ V for all i ∈ N. This problem is Π0

0 -complete [1,22].

3.1 PFDs That Are Simple and Key (Relational Keys)

The reduction constructs a terminology for a given tiling problem U = (T,H, V ),
denoted T 1

U , by first establishing an integer grid in three steps.

1. Begin by introducing primitive concepts A, B, C and D to serve as possible
grid points.

A � B  ⊥ A � C  ⊥ A �D  ⊥ B � C  ⊥ B �D  ⊥ C �D  ⊥

2. Then create an “infinitely branching” tree of squares. Such a tree can be rooted
at a hypothetical top-left with, e.g., an A object.

A  ¬(B : g, k→ Id) � ¬(C : f, g → Id)
B  ¬(A : f, h→ Id) � ¬(D : f, g → Id)
C  ¬(A : h, k → Id) � ¬(D : g, k → Id)
D  ¬(B : h, k→ Id) � ¬(C : f, h→ Id)

3. And finally, flatten and align the tree into an integer grid using keys.

A  A : h→ Id B  B : k → Id C  C : f → Id D  D : g → Id

The accumulated effect of these inclusion dependencies on an interpretation is
illustrated in Figure 2. Note that the thick edges indicate places where flattening
of the infinitely branching tree of squares happens.

We model the tiling problem U using primitive concepts Ti for each tile type
ti ∈ T , asserting that Ti � Tj  ⊥ for all i < j. The tiles are placed on the grid
points using the assertion (A � B � C � D)  

⊔
ti∈T Ti. The adjacency rules for

the instance U of the tiling problem can now be captured as follows:

– for (ti, tj) �∈ H :

A � Ti  (B �Tj) : g → Id B � Ti  (A � Tj) : f → Id
C �Ti  (D � Tj) : k → Id D � Ti  (C � Tj) : h→ Id
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Fig. 2. Defining a Grid

– for (ti, tj) �∈ V :

A � Ti  (C � Tj) : f → Id C � Ti  (A � Tj) : h→ Id
B � Ti  (D � Tj) : g → Id D � Ti  (B � Tj) : k → Id

where Ti corresponds to tile type ti ∈ T . The above constraints form a terminology
T 1

U associated with an unrestricted tiling problem U that immediately yields the
following result:

Theorem 2. An instance U = (T,H, V ) of the infinite tiling problem admits a
solution if and only if

T 1
U �|= A  ⊥.

Corollary 3. The logical implication problem forDLFD with PFDs that are sim-
ple and key is undecidable. This remains true in the absence of attribute values
restrictions.

3.2 PFDs That Are Simple and Unary

Again, the reduction constructs a terminology for a given tiling problem U =
(T,H, V ), denoted this time as T 2

U , by first establishing an integer grid. For this
case, an extra step is needed.

1. As before, introduce primitive concepts A, B, C and D to serve as possible grid
points.

A � B  ⊥ A � C  ⊥ A �D  ⊥ B � C  ⊥ B �D  ⊥ C �D  ⊥

2. To create an analogous infinitely branching tree of squares, first create “raw
material” consisting of the necessary chains.
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A  ¬(B : k→ Id) � ¬(C : f → Id) B  ¬(A : h→ Id) � ¬(D : g → Id)
C  ¬(A : h→ Id) � ¬(D : g → Id) D  ¬(B : k → Id) � ¬(C : f → Id)

3. The chains are then shaped into squares with functional dependencies.

A  ¬(B : k → g) � ¬(C : f → g) B  ¬(A : h→ f) � ¬(D : g → f)
C  ¬(A : h→ k) � ¬(D : g → k) D  ¬(B : k → h) � ¬(C : f → h)

4. And then as before, an integer grid is obtained by flattening and aligning using
keys.

A  A : h→ Id B  B : k → Id C  C : f → Id D  D : g → Id

The final accumulated effect of these inclusion dependencies on an interpretation
is the same as in Figure 2, and, since a tiling problem can then be overlaid on this
grid in the same manner as in the above case for PFDs that are simple and key,
we have the following result:

Theorem 4. An instance U = (T,H, V ) of the infinite tiling problem admits a
solution if and only if

T 2
U �|= A  ⊥.

Corollary 5. The logical implication problem forDLFD with PFDs that are sim-
ple and unary is undecidable. This remains true in the absence of attribute value
restrictions.

4 On Regaining Decidability

We now show that undecidability is a consequence of allowing PFDs to occur
within the scope of negation. In particular, and for the remainder of the paper,
we shall assume a limited DLFD in which inclusion dependencies, D  E, are
presumed to adhere to the following less general grammar.

D ::= C | D1 �D2 | D1 �D2 | ∀f.D | ¬D
E ::= D | E1 � E2 | E1 � E2 | ∀f.E | D : Pf1, ...,Pfk → Pf

Observe that PFDs must now occur on right hand sides of inclusion dependencies
at either the top level or within the scope of monotone concept constructors; this
implies that limited DLFD is a strict generalization of earlier dialects. Note that
allowing PFDs on left hand sides is equivalent to allowing PFDs in the scope of
negation:

Example 6. D1  ¬(D2 : f → g) is equivalent to D1 � (D2 : f → g)  ⊥.

In the following, we reduce logical implication problems in limited DLFD to sim-
pler formulations for which existing decisions procedures can be applied [18].
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4.1 Transformation of Terminologies

We start by showing that allowing PFDs in monotone concept constructors within
terminologies can be avoided by a syntactic transformation.

Definition 7 (SimpleConstraints and Terminologies).An inclusion depen-
dency D  E ∈ T is called simple if it conforms to limited DLFD and if the right
hand side can be parsed by the following grammar.

E ::= D | D : Pf1, ...,Pfk → Pf

A terminology T is called simple if all its inclusion dependencies are simple.

For a given terminology T , we construct a simple terminology T simp by rewriting
the right hand sides of inclusion dependencies as follows:

(D  D′)simp = {D  D′}
(D  E1 � E2)

simp = {D  D1 �D2} ∪ (D1  E1)
simp ∪ (D2  E2)

simp

(D  E1 � E2)
simp = {D  D1 �D2} ∪ (D1  E1)

simp ∪ (D2  E2)
simp

(D  ∀f.E1)
simp = {D  ∀f.D1} ∪ (D1  E1)

simp

for D  D′ a simple inclusion dependency and D1 and D2 fresh primitive concept
names. We define T simp =

⋃
D&E∈T (D  E)simp.

Lemma 8. 1. Let I |= T simp. Then I |= T ;
2. Let I |= T . Then there is I ′ such that I and I ′ agree on the interpretation of

all symbols in T and I ′ |= T simp.

Proof. Follows by straightforward inductions on the definition of (·)simp. �

Thus, in terminologies, the interaction of positive concept constructors with PFDs
poses little difficulty and we can use existing decision procedures for the implica-
tion problem.

Theorem 9. Let T be a terminology conforming to limitedDLFD and C a simple
inclusion dependency. Then T |= C is decidable and complete for EXPTIME.

Proof. The theorem is a consequence of Lemma 8 and of reductions presented in
[18]. �

4.2 Transformation of Posed Questions

Now assuming, w.l.o.g., that a given terminology is simple, we exhibit a reduction
of a logical implication problem with a posed question expressed in limitedDLFD.
Unfortunately, allowing other than simple inclusion dependencies as posed ques-
tions leads to more complications as the following two examples illustrate.

Example 10. A counterexample to D  (C : f, g → h)�(C : f, h→ g) is depicted
in Figure 3. Note that any such counterexample must also falsify C  C : f → Id
since distinct C objects that agree on f will be required. Thus:
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Fig. 3. Counterexample for Example 10

{C  C : f → Id} |= D  (C : f, g → h) � (C : f, h→ g).

Example 11. A counterexample to D  (C : f → g) � ∀f.(C : f → g) is shown
in Figure 4. Observe with this case that distinct C objects must occur at different
levels when compared to a D-rooted tree.

The examples suggest a need for multiple root objects in counterexample interpre-
tations, with the roots themselves occurring at different levels. Our overall strat-
egy is to therefore reduce a logical implication problem to a negation of a consis-
tency problem in an alternative formulation in which objects in a satisfying coun-
terexample denote up to $ possible copies in a counterexample interpretation for
the original problem, where $ is the number of occurrences of PFDs in the posed
question.

To encode this one-to-many mapping of objects, we require a general way to
have $ copies of concepts occurring in a given membership problem. We therefore
write Di to denote the concept description D in which all primitive concepts C are
replaced by Ci.For a simple terminology T we then define

T i = {Ndi �Di  Ei | D  E ∈ T , E a non PFD}, and

T i,j = {Ndi � Ndj �Di � Ej � (�1≤n≤k∀Pfn .Eqi,j)  ∀Pf .Eqi,j ,

Ndi � Ndj �Dj � Ei � (�1≤n≤k∀Pfn .Eqi,j)  ∀Pf .Eqi,j

| D  E : Pf1, . . . ,Pfk → Pf ∈ T }.
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Fig. 4. Counterexample for Example 11
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For a concept description E we define

Not(E) =






¬D0 if E (= D) is free of PFDs,
Not(E1) �Not(E2) if E = E1 � E2,

Not(E1) �Not(E2) if E = E1 � E2,

∀f.Not(E1) if E = ∀f.E1,

Ndi �Di � (�1≤i≤k∀Pfi .Eq0,i) � ∀Pf .¬Eq0,i

otherwise, when E = D : Pf1, . . . ,Pfk → Pf .

where i in the last equation is the index of the PFD in the original posed
question.

In the above, we have introduced primitive concepts Eqi,j , 0 ≤ i �= j ≤ $, to
express that the ith and jth object copies coincide, and Ndi, 0 ≤ i ≤ $, to assert
that the ith copy exists. The following auxiliary sets of constraints are therefore de-
fined to account for the axioms of equality and for the fact that features inDLFD
denote total functions.

E(l) = {Eqi,j � Eqj,k  Eqi,k | 0 ≤ i < j < k ≤ l}
∪ {Eqi,j  Eqj,i | 0 ≤ i < j ≤ l}
∪ {(Eqi,j � Ci)  Cj | 0 ≤ i �= j ≤ l and C a primitive concept}
∪ {Eqi,j  ∀f.Eqi,j | 0 ≤ i �= j ≤ l and f a primitive feature}

N (l) = {Ndi  ∀f.Ndi | 0 ≤ i ≤ l and f a primitive feature}

Theorem 12. Let T be a simple terminology and D  E an inclusion dependency
containing l occurrences of the PFD concept constructor. Then T |= D  E if and
only if

(
⋃

0≤i≤l

T i) ∪ (
⋃

0≤i<j≤l

T i,j) ∪ E(l) ∪ N (l) |= (Nd0 �D0 �Not(E))  ⊥.

Proof. (sketch) Given an interpretation I such that I |= T and I �|= D  E
we construct an interpretation J as follows. First, in the construction, we use a
many-to-one map δ : ∆ → ∆J to associate objects in I with those in J . The
range of δ serves as the domain of the interpretation J . For the counterexample
object o ∈ (D � ¬E)I we set δo ∈ (Nd0)J . Then, for all o ∈ ∆ and 0 ≤ i �= j ≤ l
we define the map δ and the interpretation I as follows:

– δo ∈ (Ndi)J ∧ (f)I(o) = o′ ⇒ δo′ ∈ (Ndi)J ∧ (f)J (δo) = δo′,
– δo ∈ (Ndi)J ∧ o ∈ (D)I ⇒ δo ∈ (D)J for D a PFD-free concept,
– δo = δo′ ∧ δo ∈ (Ndi)J ∧ δo′ ∈ (Ndj)J ∧ (Pf)I(o) = (Pf)I(o′)⇒

δo ∈ (Eqi,j)J , and
– δo ∈ (Ndi)J ∧ o ∈ (¬D : Pf1, . . . ,Pfk → Pf)I where D : Pf1, . . . ,Pfk → Pf is

the i-th PFD constructor inE. Thus there must be o′ ∈ ∆ such that o′ ∈ (D)I

and the pair o, o′ agrees on all Pfi but disagrees on Pf; we set δo = δo′ and
δo′ ∈ (Ndi �Di � (�1≤i≤k∀Pfi .Eq0,i) � ∀Pf .¬Eq0,i)J .
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Note that, due to the syntactic restrictions imposed on the uses of PFD construc-
tors, a negation of an PFD can be enforced only in the counterexample of the
description E. Spurious occurrences of negated PFDs in the interpretation I are
therefore ignored as the interpretation itself satisfies all PFDs in T .

It is easy to verify THAT δo ∈ (Nd0 � D0 � Not(E))J for o ∈ (D � ¬E)I . By
inspecting all inclusion dependencies in T we have J |= T i as I |= T . Further-
more, the construction of J enforces J |= E(l) ∪N (l).

On the other hand, given an interpretation J of (Nd0 � D0 � Not(E)) that
satisfies all assertions in

(
⋃

0≤i≤l

T i) ∪ (
⋃

0≤i<j≤l

T i,j) ∪ E(l) ∪ N (l),

we construct an interpretation I of T that falsifies D  E as follows:

– ∆I = {(o, i) : o ∈ (Ndi)J , 0 ≤ i ≤ l and o �∈ (Eqj,i)J for any 0 ≤ j < i},
– (f)I((o, i)) = (o′, j) whenever (f)J (o) = o′ where j is the smallest integer

such that o ∈ (Eqj,i)J if such value exists and i otherwise; and
– (o, i) ∈ (D)I whenever (o, i) ∈ ∆J and o ∈ (Di)J .

It is easy to verify that (o, 0) falsifies D  E whenever o belongs to (Nd0 � D0 �
Not(E)), and such an object must exist by our assumptions. Also, I |= T , as other-
wise by cases analysis we get a contradiction with J |= (

⋃
0≤i≤l T i) ∪

(
⋃

0≤i<j≤l T i,j) ∪ E(l) ∪ N (l). �

Corollary 13. The implication problem for limited DLFD is decidable and
EXPTIME-complete.

Proof. Follows immediately from Theorems 9 and 12 above. �

5 On PFDs, Nominals and ABoxes

In this section, we explore the possibility of relaxing the non-emptiness condition
for left hand sides of PFDs in limitedDLFD. Doing so is highly desirable, since, as
we have hinted in our introductory comments, this would effectively endow limited
DLFD with a capability for nominals. To see this, consider that our introductory
single site for client information example can be elaborated as follows.

Site3  Site3 :→ Id "  ∀Site3Ref.Site3 Client  ∀LocationOfData.Site3

The first pair of inclusion dependencies define an individual called Site3 in two
steps: (1) establish that at most one such individual exists, and (2) that at least one
exists if anything exists. The final inclusion dependency then asserts that the loca-
tion of data for any given client is this individual, thus accomplishing the
objectives.
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Although desirable, we show in the remainder of this section that allowingPFDs
with empty left hand sides leads to undecidability of the logical implication prob-
lem for limited DLFD. To do so, we digress to consider a weaker alternative in
which the problem is considered in the context of an ABox, showing for this case
to begin with that the problem already becomes undecidable by presenting a re-
duction of the unrestricted tiling problem. However, it is possible with enough re-
strictions on the use of other concept constructors to re-obtain decidability [9].

An ABox consists of a finite collection of assertions A about individuals Ind1,
Ind2, etc., that denote elements of the domain. An assertion establishes concept
membership for individuals with the form “D(Indi)”, or attribute values for in-
dividuals with the form “f(Indi, Indj)”. The reduction of a given tiling problem
U = (T,H, V ) to a logical implication problem for limited DLFD in the context
of an ABox constructs a terminology and ABox pair, denoted 〈TU ,AU 〉, by first
establishing an integer grid in steps.

1. Begin by defining a triangle seed pattern by including in AU the following as-
sertions.

X(Ind1) Y(Ind2) Z(Ind3) f(Ind1, Ind2) g(Ind1, Ind3) g(Ind2, Ind3)

2. Now use the triangle seed pattern to create a possibly infinite horizontal se-
quence of objects that are instances of alternating concepts A0 and B0. The
results of this step are illustrated along the top of Figure 5.

X  A0 Y  B0
A0  A � (∀f.B0) � (B0 : g → fh) B0  B � (∀f.A0) � (A0 : h→ fg)

3. And finally, extend this sequence in the vertical direction to form the integer
grid. The results of this step are also illustrated in Figure 5.

A  (∀k.A) � (B : g → kg) B  (∀k.B) � (A : h→ kh)
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Fig. 5. Defining a Grid using an ABox
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As before, the tiling problem U is modeled using primitive concepts Ti for each
tile ti ∈ T , asserting that Ti � Tj  ⊥ for all i < j. We place the tiles on the
grid points using the assertion (A � B)  

⊔
ti∈T Ti. The adjacency rules for the

instance U of the tiling problem are then captured as follows:

– for (ti, tj) �∈ H :

A � Ti  (B � Tj) : g → Id B � Ti  (A � Tj) : h→ Id

– for (ti, tj) �∈ V :

(A � Ti) � ∀k.(A � Tj)  ⊥ (B �Ti) � ∀k.(B � Tj)  ⊥

where Ti corresponds to a tile type ti ∈ T . The above constraints form a termi-
nology TU and ABox AU associated with an unrestricted tiling problem U that
immediately yields the following result:

Theorem 14. An instance U = (T,H, V ) of the infinite tiling problem admits a
solution if and only if

〈TU ,AU 〉 �|= X  ⊥.

Corollary 15. The logical implication problem for limited DLFD in the context
of an ABox is undecidable.

Our main result in this section now follows since PFDs with empty left hand sides
can simulate the above triangle seed by instead adding the following to TU :

X �Y  ⊥ X  (∀f.Y) � (∀g.Z) Y  ∀g.Z Z  Z :→ Id

Corollary 16. The logical implication problem for limitedDLFD in which PFDs
are permitted empty left hand sides is undecidable.

6 Conclusions

We have shown that allowing PFDs to occur in the scope of negation or on the
left hand sides of inclusion dependencies in DLFD leads to undecidability of its
logical implication problem, and therefore that a full integration of keys and func-
tional dependencies in expressive DLs is not in general possible. Conversely, by
virtue of reductions to simpler dialects, we have shown that the complexity of this
problem remains unchanged for limited DLFD in which PFDs are restricted to
occur within the scope of monotone concept constructors on right hand sides of
inclusion dependencies.

There are several ways that limited DLFD can be extended without changing
the complexity of its logical implication problem. For example, by using reductions
introduced in [18], it is straightforward to add roles, quantified number restrictions
on roles and even role inversion. (Feature inversion, however, is another matter
since its addition to simple DLFD already leads to undecidability [17,19].)
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There is also a possibility of extending limited DLFD with regular path func-
tional dependencies as defined in [21]. In this case, left and right-hand-sides of
PFDs are specified as regular languages that can define infinite sets of path func-
tions. Such constraints have applications in reasoning about equality in semistruc-
tured databases [21] and in capturing inductive data types in information integra-
tion, thus extending the work in [12].

Another direction of future research includes studying terminologies stratified
with respect to the interactions of the PFD constructor and negation in an attempt
to extend the applicability of the proposed approach.
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A Resolution-Based Decision Procedure
for SHOIQ

Yevgeny Kazakov and Boris Motik

University of Manchester, UK

Abstract. We present a resolution-based decision procedure for the de-
scription logic SHOIQ—the logic underlying the Semantic Web ontol-
ogy language OWL-DL. Our procedure is goal-oriented, and it naturally
extends a similar procedure for SHIQ, which has proven itself in prac-
tice. Applying existing techniques for deriving saturation-based decision
procedures to SHOIQ is not straightforward due to nominals, number
restrictions, and inverse roles—a combination known to cause termina-
tion problems. We overcome this difficulty by using the basic superposi-
tion calculus, extended with custom simplification rules.

1 Introduction

Description logics (DLs) are a family of knowledge representation formalisms
[2] that have been applied in numerous areas of computer science, such as in-
formation integration and ontology modeling. In particular, the DL SHOIQ
provides a logical foundation for the Web Ontology Language (OWL)—the lan-
guage standardized by the W3C for building ontologies in the Semantic Web.
Thus, to implement advanced Semantic Web applications based on OWL-DL,
practical reasoning procedures for SHOIQ are required.

It is known that SHOIQ can be embedded into C2 [21]—the two-variable
fragment of first-order logic with counting quantifiers. Furthermore, C2 is decid-
able in NExpTime [18] (this result was recently sharpened to allow for binary
coding of numbers [19]). However, all known decision procedures for C2 use a
rather blind “guess-and-check” approach, which is unlikely to be suitable for
practical purposes. Rather, a practical algorithm should be goal-oriented, using
the input problem to guide the search.

Designing such a procedure for SHOIQ has proved to be a nontrivial task.
Namely, this logic provides for inverse roles, number restrictions, and nom-
inals—concepts with a bounded number of elements. The intricate interac-
tion between these constructs makes extending existing (tableau-based) proce-
dures difficult. Only recently, a goal-directed tableau-based procedure was pre-
sented in [10]; it uses a nondeterministic guess on the size of nominals to ensure
termination.

In this paper, we present an alternative reasoning procedure based on reso-
lution. SHOIQ is a hard logic, so it is not obvious which reasoning method is
most suitable for practice. Rather, comparing different methods and identifying
which ones are suitable for which types of problems can give crucial insights

U. Furbach and N. Shankar (Eds.): IJCAR 2006, LNAI 4130, pp. 662–677, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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into building practical reasoning systems. Furthermore, this procedure is based
on the same principles as the procedure for a weaker logic SHIQ [11], which
was implemented in a new reasoning system KAON2,1 and has shown promising
results for answering queries over large data sets.

To obtain an algorithm for SHOIQ, we face problems analogous to those
encountered in constructing the tableau algorithm from [10]. Namely, the com-
bination of nominals, inverse roles, and number restrictions can cause resolution
to derive clauses of unbounded size, thus preventing termination. We solve these
problems using novel simplification rules, which rename complex terms with
simpler ones based on their semantic meaning.

2 Preliminaries

Description Logic SHOIQ. Given a set of role names NR, a role is either some
R ∈ NR or an inverse role R− for R ∈ NR. An RBox KBR is a finite set of role
inclusion axioms R  S and transitivity axioms Trans(R), for R and S roles. For
R ∈ NR, we set Inv(R) = R− and Inv(R−) = R, and assume that R  S ∈ KBR
(Trans(R) ∈ KBR) implies Inv(R)  Inv(S) ∈ KBR (Trans(Inv(R)) ∈ KBR). A
role R is said to be simple if Trans(S) /∈ KBR for each S  ∗ R, where  ∗ is the
reflexive-transitive closure of  .

For NC a set of concept names and NI a set of individuals, the set of concepts
is the smallest set containing ", ⊥, A, ¬C, C � D, C � D, {a}, ∃R.C, ∀R.C,
�nS.C, and �nS.C, where A ∈ NC , C and D are concepts, R is a role, S is a
simple role, a is an individual, and n is a nonnegative integer.

A TBox KBT is a finite set of concept inclusion axioms C  D. An ABox
KBA is a finite set of axioms C(a), R(a, b), and (in)equalities a ≈ b and a �≈ b,
for a, b ∈ NI . A SHOIQ knowledge base KB is a triple (KBR,KBT ,KBA).
With |KB | we denote the number of symbols needed to encode KB using unary
coding of numbers. KB is given semantics by translating it into first-order logic
using the operator π defined in Table 1. The main inference problem in SHOIQ
is checking satisfiability of KB , or, equivalently, of π(KB).

Basic Superposition Calculus. We assume familiarity with standard notions of
resolution theorem proving [4] and term rewriting [3]. For a term t, t|p denotes
the subterm of t at the position p, and t[s]p denotes the replacement of t|p in t
with a term s. We encode literals (¬)A as (¬)A ≈ tt in a multi-sorted setting, so
≈ is the only predicate symbol. We do not distinguish (¬)s ≈ t from (¬)t ≈ s.
For a literal L, with L we denote a literal obtained from L by flipping its sign.

Basic superposition (BS) [5,15] is a calculus for equational theorem proving.
Its inference rules work with closures, which consist of (i) a skeleton clause C
and (ii) a substitution σ. A closure is written as C · σ and it is semantically
interpreted as the clause Cσ; it is ground if Cσ is ground. The empty closure
is denoted by �. A closure can be conveniently represented by marking with
[ ] the terms from Cσ occurring at variable positions of C. Any position at

1 http://kaon2.semanticweb.org/
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Table 1. Semantics of SHOIQ by Mapping to FOL

Translating Concepts to FOL
πy(�, X) = �
πy(⊥, X) = ⊥
πy(A, X) = A(X)

πy({a}, X) = X ≈ a
πy(¬C, X) = ¬πy(C, X)

πy(C � D, X) = πy(C, X) ∧ πy(D, X)
πy(C � D, X) = πy(C, X) ∨ πy(D, X)
πy(∃R.C, X) = ∃y : R(X, y) ∧ πx(C, y)
πy(∀R.C, X) = ∀y : R(X, y) → πx(C, y)

πy(�n S.C, X) = ∃y1, . . . , yn :
∧n

i=1 [S(X, yi) ∧ πx(C, yi)] ∧ ∧
1≤i<j≤n yi �≈ yj

πy(�n S.C, X) = ∀y∃y1, . . . , yn : [S(X, y) ∧ πx(C, y)] → ∨n
i=1 y ≈ yi

Translating Axioms to FOL
π(C  D) = ∀x : πy(C, x) → πy(D, x)
π(R  S) = ∀x, y : R(x, y) → S(x, y)

π(Trans(R)) = ∀x, y, z : R(x, y) ∧ R(y, z) → R(x, z)
π(C(a)) = πy(C, a)

π(R(a, b)) = R(a, b)
π(a ◦ b) = a ◦ b for ◦ ∈ {≈, �≈}
π(KB) =

∧
R∈NR

∀x, y : [R(x, y) ↔ R−(y, x)] ∧ ∧
α∈KBT ∪KBR∪KBA

π(α)
πx is obtained by simultaneously substituting in the definition of
πy all x(i) for all y(i), respectively, and πy for πx.
X is a meta-variable and is substituted by the actual variable.

or beneath a marked position is called a substitution position. For example,
(P (x) ∨ z ≈ b) · {x #→ f(y), z #→ g(b)} can be written as P ([f(y)]) ∨ [g(b)] ≈ b.

The BS calculus is parameterized with an admissible ordering on terms and
a selection function. An admissible ordering on terms � is a reduction ordering
total on ground terms. The term ordering is extended to literals by identifying
a literal s ≈ t with a multiset {{s}, {t}} and a literal s �≈ t with a multiset
{{s, t}}, and by comparing these multisets by a two-fold multiset extension of
the term ordering �; we denote the literal ordering also with �. A selection
function selects an arbitrary set of negative literals in each clause.

A literal L·σ is (strictly) maximal w.r.t. a closure C ·σ if L′σ � Lσ (L′σ $ Lσ)
for no L′ ∈ C. A literal L · σ is (strictly) eligible in (C ∨ L) · σ if either (i) no
literal is selected in (C ∨ L) · σ and L · σ is (strictly) maximal w.r.t. C · σ, or
(ii) L · σ is selected in (C ∨ L) · σ. The inference rules of BS are presented in
Table 2. Note that the standard resolution and factoring inference rules can be
viewed as “macros,” combining negative superposition and equality factoring,
respectively, with reflexivity resolution.

We next present the redundancy criteria for closures. Let R be a ground
and convergent rewrite system, and C · σ a ground closure. A variable x in the
skeleton C of C · σ is variable irreducible w.r.t. R if (i) xσ is irreducible by R,
or (ii) x occurs in C only in literals of the form x ≈ s such that xσ � sσ,
and xσ is irreducible by those rules l ⇒ r ∈ R for which xσ ≈ sσ � l ≈ r.
Furthermore, C · σ is variable irreducible w.r.t. R if all variables from C are
variable irreducible w.r.t. R. For C ·σ a possibly nonground closure, irredR(C ·σ)
is the set of all ground closures C ·στ that are variable irreducible w.r.t. a rewrite
system R.
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Table 2. Inference Rules of the BS Calculus

Positive superposition:

(C ∨ s ≈ t) · ρ (D ∨ w ≈ v) · ρ

(C ∨ D ∨ w[t]p ≈ v) · θ

(i) σ = MGU(sρ, wρ|p) and θ = ρσ;
(ii) tθ � sθ and vθ � wθ;
(iii) (s ≈ t) · θ is strictly eligible;
(iv) (w ≈ v) · θ is strictly eligible;
(v) sθ ≈ tθ � wθ ≈ vθ;
(vi) w|p is not a variable.

Negative superposition:

(C ∨ s ≈ t) · ρ (D ∨ w �≈ v) · ρ

(C ∨ D ∨ w[t]p �≈ v) · θ

(i) σ = MGU(sρ, wρ|p) and θ = ρσ;
(ii) tθ � sθ and vθ � wθ;
(iii) (s ≈ t) · θ is strictly eligible;
(iv) (w �≈ v) · θ is eligible;
(v) w|p is not a variable.

Reflexivity resolution:

(C ∨ s �≈ t) · ρ

C · θ

(i) σ = MGU(sρ, tρ) and θ = ρσ;
(ii) (s �≈ t) · θ is eligible.

Equality factoring:

(C ∨ s ≈ t ∨ s′ ≈ t′) · ρ

(C ∨ t �≈ t′ ∨ s′ ≈ t′) · θ

(i) σ = MGU(sρ, s′ρ) and θ = ρσ;
(ii) tθ � sθ and t′θ � s′θ;
(iii) (s ≈ t) · θ is eligible.

A closure C ·σ is redundant w.r.t. a set of closures N if, for all rewrite systems
R and all ground substitutions τ , if C ·στ ∈ irredR(C ·σ), then irredR(N) contains
closures C1, . . . , Cn, such that {C1, . . . , Cn} |= Cστ and Cστ � Ci, where � is
the multiset extension of the literal ordering to closures.

We extend basic superposition with several simplification rules, which can
simplify a closure set N ∪{C ·ρ} to N ∪{C1 ·ρ, . . . , Cn ·ρ}. Such application of a
simplification rule is sound if it preserves satisfiability; it is correct if the closure
C ·ρ is redundant w.r.t. N ∪{C1 ·ρ, . . . , Cn ·ρ}. In [5] the authors present several
sound and correct simplification rules, such as elimination of duplicate literals,
tautology deletion, closure subsumption, and elimination of marked positions—
that is, replacing C · σ with Cρ · θ such that σ = ρθ.

The following two simplification rules can be used to split off ground literals
in closures: cut nondeterministically derives L · {} or L · {} for a ground literal
L, and ground unit resolution simplifies a closure C · ρ ∨ L · ρ into C · ρ if the
closure set contains a ground closure L′ · θ such that Lρ = L′θ.

Let N0 be a set of closures of the form C · {}, and let N∞ be obtained by a
fair saturation of N0 by BS up to redundancy. Then, N0 is unsatisfiable if and
only if N∞ contains the empty closure.

3 Preprocessing

We split our decision procedure into a preprocessing phase, which converts a
SHOIQ knowledge base KB into a set of closures of a certain type, and a
saturation phase, which checks satisfiability of the closure set using BS. In the
rest of this section, we present the preprocessing phase in detail.
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Table 3. Closure Types after Preprocessing

Axiom Closure
R = Inv(S) 1. ¬R(x, y) ∨ S(y, x) and ¬S(x, y) ∨R(y, x)
R  S 2. ¬R(x, y) ∨ S(x, y)
L1  � n R.L2 3. L1(x) ∨ R(x, fi(x))

4. L1(x) ∨ L2(fi(x))
5. L1(x) ∨ fi(x) �≈ fj(x) 1 ≤ i < j ≤ n

!  ⊔
Li 6.

∨
Li(x)

L  {c} 7. L(x) ∨ x ≈ c

L1  � n R.L2 8. L1(x) ∨ ¬R(x, y) ∨ L2(y) ∨∨n
i=1 fi(x) ≈ y

L(c) 9. L(c)
R(c, d) 10. R(c, d)
c ≈ d 11. c ≈ d

c �≈ d 12. c �≈ d

Note: L(i) are of the form A or ¬A for A an atomic concept. L1  ∃R.L2 and
L1  ∀R.L2 are translated as L1  � 1R.L2 and L1  � 0R.L2, respectively.

Eliminating Transitivity Axioms. It is well-known that deciding a logic with
transitivity axioms by means of saturation calculi is difficult, and that it re-
quires advanced techniques [13]. Therefore, we eliminate transitivity axioms by
polynomially encoding KB into an equisatisfiable knowledge base Ω(KB) with-
out such axioms. Roughly speaking, a transitivity axiom Trans(S) is replaced
with axioms ∀R.C  ∀S.(∀S.C), for each R with S  ∗ R and C is a “rel-
evant” concept from KB . For more details, please see [14, Section 5.2]. (The
latter result considers only SHIQ; for SHOIQ, the encoding is the same, and
extending the correctness proof is trivial.) Similar encodings were presented in
[21,20].

Translation into Closures. Next, we simplify the TBox axioms of Ω(KB) by in-
troducing new concept names for nonatomic subconcepts. For example, we sim-
plify the axiom C  ∃R.∃S.A by introducing a new concept Q and by replacing
this axiom with C  ∃R.Q and Q  ∃S.A. This transformation is analogous to
the structural transformation [17]; for details, please see [14, Section 5.3.1].

For unary coding of numbers in number restrictions, this transformation is
polynomial, and it preserves satisfiability. Furthermore, it produces axioms con-
taining at most one nonatomic concept. Such axioms are converted into closures
by translating them into first-order logic using the operator π from Table 1,
skolemizing the existential quantifiers, and translating the result into conjunc-
tive normal form. We denote the resulting set of closures with Ξ(KB). Table 3
shows the closures that are produced by different types of axioms.

Introduction of Guards. Using nominals, one can restrict the cardinality of the
interpretation domain, which makes it possible to derive a closure of the form
x ≈ a1 ∨ · · · ∨ x ≈ an. Such closures can cause problems, since the variable x is
unshielded (that is, x does not occur in the closure as a proper subterm). This
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allows for superposition inferences from x, which are prolific since x unifies with
any term. We avoid this problem using the following transformation.

Definition 1. For a closure C ·ρ, a variable x of Cρ is guarded if it occurs in Cρ
in a negative nonequational literal, called a guard for x. Let KB be a SHOIQ
knowledge base and T a predicate not occurring in Ξ(KB). Then, Γ (KB) is the
smallest set such that ( i) for each closure C · ρ ∈ Ξ(KB), Γ (KB) contains the
closure ¬T (x1)∨· · ·∨¬T (xn)∨C ·ρ, where x1, . . . , xn are all nonguarded variables
of Cρ; ( ii) for each constant c occurring in Ξ(KB), Γ (KB) contains the closure
T (c) (if there are no constants, we add one); and ( iii) for each function symbol
f occurring in Ξ(KB), Γ (KB) contains the closure ¬T (x) ∨ T (f(x)).

Lemma 1. Ξ(KB) is satisfiable if and only if Γ (KB) is satisfiable.

Proof. (⇒) Let I be a model of Ξ(KB), and I ′ an interpretation obtained by
making T (x) to be true for all x. Clearly, I ′ is a model of Γ (KB). (⇐) In each
Herbrand model I of Γ (KB), ¬T (x)∨ T (f(x)) and T (c) ensure that T holds on
all elements of I. Hence, each ¬T (xi) in a closure from Γ (KB) is false in I, so I
is a model of Ξ(KB). ��

4 Saturating Closures by Basic Superposition

After preprocessing, our algorithm continues by saturating the set of closures
Γ (KB) by basic superposition. To prove that the saturation terminates, we apply
the approach used in most existing resolution-based procedures [12,6,7,16,1].
We define a class of closures NDL and demonstrate the following properties:
(i) NDL contains the closures obtained by translating a SHOIQ knowledge
base KB , (ii) applying an inference rule of BS to closures from NDL produces
a closure in NDL, and (iii) NDL contains finitely many closures for a finite
signature. For a fixed signature, Conditions (i)–(iii) ensure that BS produces
only finitely many closures from NDL in a saturation. However, as we discuss
in the following subsection, to coerce BS into producing closures of a restricted
syntactic structure, we introduce several novel simplification rules. These rules
can extend the signature, so, to ensure termination, we additionally show that
(iv) the signature is extended only a finite number of times in a saturation.

4.1 The Problems in Ensuring Termination for SHOIQ
It is well-known that reasoning in SHOIQ is difficult due to a subtle interac-
tion involving nominals, number restrictions, and inverse roles. This interaction
makes it difficult to ensure termination of BS on Ξ(KB). We demonstrate these
problems next on an example and sketch our solution.

Let KB be a SHOIQ knowledge base containing axioms T1–T4 from
Table 4. The preprocessing step, when applied to these axioms, produces the clo-
sures (1)–(9) shown on the far right; furthermore, saturation of (1)–(9) by basic
superposition produces closures (10)–(18). Note that (18) is similar in structure
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Table 4. Example of Termination Problems

Knowledge base KB and the closures obtained after preprocessing:

T1. O  {c} ⇒ ⇒ (1) ¬O(x) ∨ x ≈ c

T2. �  ∃R1.� � ∃R2.� ⇒ �  U1 � U2 ⇒ (2) ¬T (x) ∨ U1(x) ∨ U2(x)
⇒ Ui  ∃Ri.�, i = 1, 2 ⇒ (3) ¬Ui(x) ∨ Ri(x, fi(x))

T3. �  �1 R−
i .�, i = 1, 2 ⇒ ⇒ (4) ¬R−

i (x, y) ∨ gi(x) ≈ y

⇒ inverses of Ri, i = 1, 2 ⇒ (5) ¬Ri(x, y) ∨ R−
i (y, x)

T4. O  ∀Ri.O, i = 1, 2 ⇒ ⇒ (6) ¬O(x) ∨ ¬Ri(x, y) ∨ O(y)
introduction of guards ⇒ (7) T (c)

⇒ (8) ¬T (x) ∨ T (fi(x))
⇒ (9) ¬T (x) ∨ T (gi(x))

Saturation of (1)–(9):

[Resolving 3 with 6]: (10) ¬Ui(x) ∨ ¬O(x) ∨ O([fi(x)])
[Resolving 10 with 1]: (11)¬Ui(x) ∨ ¬O(x) ∨ [fi(x)] ≈ c

[Superposing 11 into 3]: (12) ¬Ui(x) ∨ ¬O(x) ∨ Ri(x, c)
[Resolving 12 with 5]: (13) ¬Ui(x) ∨ ¬O(x) ∨ R−

i (c, x)
[Resolving 13 with 4]: (14) ¬Ui(x) ∨ ¬O(x) ∨ x ≈ gi(c)
[Resolving 2 with 8]: (15) ¬T (x) ∨ U1([fi(x)]) ∨ U2([fi(x)])
[Resolving 15 with 14]: (16) ¬T (x) ∨ U2([fi(x)]) ∨ ¬O([fi(x)]) ∨ [fi(x)] ≈ g1(c)
[Resolving 16 with 14]: (17) ¬T (x) ∨ ¬O([fi(x)]) ∨ [fi(x)] ≈ g1(c) ∨ [fi(x)] ≈ g2(c)
[Resolving 10 with 17]: (18)¬T (x) ∨ ¬Ui(x) ∨ ¬O(x) ∨ [fi(x)] ≈ g1(c) ∨ [fi(x)] ≈ g2(c)

The result after simplifying (18) with (11):

(19) ¬T (x) ∨ ¬Ui(x) ∨ ¬O(x) ∨ g1(c) ≈ c ∨ g2(c) ≈ c

to (11): (18) just contains two literals fi(x) ≈ g1(c) and fi(x) ≈ g2(c) instead of
just one literal fi(x) ≈ c; additionally, (18) contains ¬T (x). It is easy to see that
all inferences with (11) can be repeated for (18), and that this would produce
even longer closures with even deeper literals fi(x) ≈ g1(g1(c)), fi(x) ≈ g2(g1(c))
and so on. This clearly prevents the saturation from terminating.

To deal with this problem, we express (18) equivalently using an additional
closure (19). It is easy to see that (19) is a logical consequence of (11) and (18).
Furthermore, (19) makes (18) redundant, since (18) follows from smaller closures
(11) and (19). Thus, (18) can be deleted from the closure set, which eventually
ensures termination of the saturation.

4.2 The Saturation Strategy for Deciding Satisfiability of Γ (KB)

We say that N is a set of DL-closures if every closure in N is of some form from
Table 5. Unary predicate symbols in N are organized into two sets A and B.

Lemma 2. For KB a SHOIQ knowledge base, Γ (KB) is a set of DL-closures.

Proof. The set Ξ(KB) contains only closures from Table 3, and, due to Defini-
tion 1, each closure in Γ (KB) contains a guard literal for each variable. ��

To obtain a procedure for checking satisfiability of Γ (KB), we next choose the
appropriate parameters for BS, and extend it with certain simplification rules.
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Table 5. Types of DL-Closures

1 α(x) ∨ (¬)f(x) ≈ g(x)
2 α(x) ∨ (¬)f([g(x)]) ≈ x
3 α(x) ∨ (¬)A(f(x))
4 β(x) ∨ (¬)f(x) ≈ c
5 β(x) ∨∨

(¬)x ≈ ti

6 α(x) ∨ β([f(x)]) ∨∨
[f(x)] ≈ ti ∨

∨
(¬)x ≈ ci

Condition (∗): if the closure contains a literal x ≈ ci, then the closure set
contains α′(x) ∨ g(f(x)) ≈ x such that α(x) = α′(x) ∨ α′′(x).

7 α1(x) ∨ ¬R(x, y) ∨ α2(y) ∨∨n
i=1 fi(x) ≈ y

8 ¬R(x, y) ∨ S(x, y) or ¬R(x, y) ∨ S(y, x)
9 α(x) ∨R(x, f(x)) or α(x) ∨R(f(x), x)

10 β(x) ∨R(x, c) or β(x) ∨R(c, x)
11 unit closures and (¬)B(t) (¬)t1 ≈ t2 (¬)f(g(c)) ≈ d

the empty closure: (¬)R(c, d) (¬)R(c, f(d)) (¬)R(f(c), d) �
A ⊆ B are sets of predicate symbols; A contains all predicate symbols of Γ (KB).
Each variable in each closure is guarded (see Definition 1).
α(x) is a disjunction (¬)A1(x) ∨ · · · ∨ (¬)An(x) with Ai ∈ A.
β(x) is a disjunction (¬)B1(x) ∨ · · · ∨ (¬)Bn(x) with Bi ∈ B.
Disjunctions α(x), β(x), β([f(x)]),

∨
(¬)x ≈ ti, and

∨
[f(x)] ≈ ti may be empty.

c and d are constants, and t(i) are ground terms of the form c or f(c).

These rules can extend the signature with new predicate symbols and constants.
To ensure that only finitely many new symbols are introduced into the signa-
ture, our rules reuse previously introduced symbols whenever possible. Thus, an
application of a simplification rule depends not only on the current closure set,
but also on the inferences applied previously.

Definition 2. With BSDL we denote the BS calculus parametrised by any ad-
missible term ordering � such that f(x) � A(x) � B(x) � c, R(x, c) � A(x),
R(c, x) � A(x), and B(f(x)) � g(c), for a binary predicate R ∈ A, and unary
predicates A ∈ A and B ∈ B \A. The selection function of BSDL selects in C ·σ
a literal of the form ¬R(x, y), x �≈ c, or x �≈ f(c); if there are no such literals
and Cσ does not contain a term f(x), an atom R(x, c), or an atom R(c, x), it
selects a literal ¬B(x) if there is one.

Apart from the standard BS inferences, BSDL eagerly applies the simplifi-
cation rules from Table 6, elimination of duplicate literals, tautology deletion,
closure subsumption, and ground unit resolution. Immediately after deriving a
closure C ·ρ∨L ·ρ where Lρ is ground, BSDL applies the cut rule for Lρ. Marked
positions are removed eagerly if this enables applying a simplification rule.

Anexample of an ordering suitable forBSDL is aKnuth-Bendix ordering (KBO) [3]
with weight(f) > weight(R) > weight(A) > weight(B) > weight(c) > weight(tt),
for each function symbol f , binary predicate symbol R, unary predicate symbols
A ∈ A and B ∈ B \ A, and a constant symbol c.

Next, we demonstrate that the simplification rules of BSDL are sound and
correct, so that they do not affect soundness or completeness of BS.
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Table 6. Simplification Rules of BSDL

Decomposition 1:

D · ρ ∨ L · ρ

D · ρ ∨ A(x),
¬A(x) ∨ L · ρ

(i) L · ρ is (¬)f(x) ≈ g(x), (¬)f([g(x)]) ≈ x,
R(x, f(x)), or R(f(x), x);

(ii) Dρ contains a term h(x);
(iii) If Decomposition 1 has already been applied

to a premise with the same L · ρ, then A
is the same as in the previous application;
otherwise, A ∈ A is fresh.

Decomposition 2:

D · ρ ∨ f(x) ≈ c

D · ρ ∨ B(x),
¬B(x) ∨ f(x) ≈ c

(i) Dρ contains either a term h(x), or a literal
(¬)A(x) with A ∈ A;

(ii) If Decomposition 2 has already been applied
to a premise with the same f(x) ≈ c, then
B is the same as in the previous application;
otherwise, B ∈ B \ A is fresh.

Nominal Generation 1:

α(x) ∨ ∨n
i=1 [f(x)] ≈ ti

α(x) ∨ ∨k
i=1 f(x) ≈ ci,

α(x) ∨ ∨n
j=1 ci ≈ tj

(1 ≤ i ≤ k)

(i) Some ti is of the form h(c);
(ii) If Nominal Generation 1 has already been

applied to some α(x) ∨ ∨n1
i=1 [f(x)] ≈ t′i

(with the same α(x) and f), then k and ci

are the same as in this previous application;
otherwise, k = n and ci are fresh.

Nominal Generation 2:

α(x) ∨ ∨n
i=1 [f(x)] ≈ ti ∨ ∨m

i=1 x ≈ ci

α(x) ∨ ∨k
i=1 Bi(x),

¬Bi(x) ∨ f(x) ≈ ei,

¬Bi(x) ∨ x ≈ di,

α(x) ∨ ∨n
j=1 ei ≈ tj ∨ ∨m

j=1 di ≈ cj

(1 ≤ i ≤ k)

(i) Some ti is of the form h(c);
(ii) A closure α′(x) ∨ g(f(x)) ≈ x, such that

α(x) = α′(x) ∨ α′′(x), has been derived be-
fore;

(iii) If Nominal Generation 2 has been applied to
some α(x) ∨ ∨n1

i=1 [f(x)] ≈ t′i ∨ ∨m1
i=1 x ≈ c′

i
(with the same α(x) and f), then k, di, ei,
and Bi are the same as in this previous ap-
plication; otherwise, k = n + m and di, ei,
and Bi ∈ B \ A are fresh.

Lemma 3 (Soundness). In every BSDL saturation, each application of a sim-
plification rule is sound.

Proof. Let N0, N1, . . . , Nn be a BSDL saturation and I0 a model of N0. We prove
the lemma by constructing a model Is for each Ns with 1 ≤ s ≤ n inductively.
Consider all possible cases for the inference producing Ns from Ns−1:

(Standard BS inferences) Is := Is−1 is clearly a model of Ns.
(Decomposition 1) If the predicate symbol A is reused in the inference, we set

Is := Is−1; otherwise, we extend Is−1 to Is by interpreting A(x) exactly as Lρ.
Obviously, Is is a model of Ns.

(Decomposition 2) Analogous to Decomposition 1.
(Nominal Generation 1) If ci are reused in the inference, we set Is := Is−1. If ci

are new and α(x) is true for all x, we extend Is−1 to Is by interpreting new symbols
arbitrarily. Otherwise, α(x) ∨

∨n
i=1 [f(x)] ≈ ti ensures that, for those x for which

α(x) is false in Is−1, f(x) has $ distinct values o1, . . . , o� in Is−1, 1 ≤ $ ≤ n, so we
extend Is−1 to Is by interpreting ci as oi for i ≤ $ and as o1 for i > $.

Hence, if α(x) is true for all x, all conclusions are obviously true in Is. Oth-
erwise, ci represent exactly those values f(x) for which α(x) is false, so each ci
is interpreted as some tj ; therefore, all conclusions are true in Is.
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(Nominal Generation 2) If di, ei, and Bi are reused in the inference, we set
Is := Is−1. If di, ei, and Bi are new and α(x) is true for all x, we extend Is−1 to Is
by interpreting di and ei arbitrarily, and making Bi false everywhere. Otherwise,
let x be such that α(x) is false in Is−1. By Condition (ii), α′(x) is also false, so
x ≈ g(f(x)). Moreover, α(x)∨

∨n
i=1 [f(x)] ≈ ti ∨

∨m
i=1 x ≈ ci ensures that either

f(x) is equal to one of t1, . . . , tn, or x is equal to one of c1, . . . , cm. These two
conditions imply that x can only be equal to one of g(t1), . . . , g(tn), c1, . . . , cm,
so α(x) is false for exactly $ distinct domain elements o1, . . . , o�, 1 ≤ $ ≤ n+m.
We extend Is−1 to Is as follows: for i ≤ $, we interpret di as oi, ei as f(oi), and
make Bi true only for oi; for i > $, we interpret di as o1, ei as f(o1), and make
Bi true only for o1.

Hence, if α(x) is true for all x, all conclusions are obviously true in Is. Oth-
erwise, for every x such that α(x) is false, i exists such that di is equal to x, Bi

holds only on x, and ei is equal to f(x). This makes the first three conclusions
true in Is; the fourth conclusion is true in Is because of the premise. ��

Lemma 4 (Correctness). All BSDL simplification rules are correct.

Proof. For each simplification rule with the premise C · ρ and conclusions Ci · ρ,
1 ≤ i ≤ n, ground substitution τ , and rewrite system R, we need to show that,
if C · ρτ is variable irreducible w.r.t. R, then (i) Ci · ρτ are variable irreducible
w.r.t. R, (ii) C1ρτ, . . . , Cnρτ |= Cρτ , and (iii) Cρτ � Ciρτ . Property (i) is
trivially satisfied for all simplification rules from Table 6, since each substitution
position in Ci · ρ corresponds to a substitution position in C · ρ. Next, we prove
properties (ii) and (iii) for each rule. Let u = xτ .

(Decomposition 1) The instanceC = Dρτ∨Lρτ of the premise can be obtained
by resolving the instances E1 = ¬A(u) ∨ Lρτ and E2 = Dρτ ∨ A(u) of the
conclusions on A(u). Furthermore, Dρτ contains a term h(u) by Condition (ii),
and h(u) � A(u) by Definition 2, so Dρτ � A(u). Similarly, Lρτ contains a term
f(u) by Condition (i), so Lρτ � ¬A(u). Thus, C � E1 and C � E2.

(Decomposition 2) By Condition (i), Dρ contains either h(x), but then h(u) �
B(u), or Dρ contains (¬)A(x), but then (¬)A(u) � B(u) by Definition 2. Hence,
Dρτ � B(u), so the rest is analogous to Decomposition 1.

(Nominal Generation 1) The instance C = α(u) ∨
∨n

i=1 f(u) ≈ ti of the
premise can be obtained by simultaneously paramodulating on each ci from
D = α(u) ∨

∨k
i=1 f(u) ≈ ci into Ei = α(u) ∨

∨n
j=1 ci ≈ tj . Furthermore, by

Condition (i) of Nominal Generation 1, some t = ti is of the form h(c), and,
because h(c) � ci, we have f(u) ≈ t � f(u) ≈ ci, which implies C � D.
Similarly, f(u) ≈ tj � ci ≈ tj , so C � Ei.

(Nominal Generation 2) The instance C = α(u)∨
∨n

i=1 f(u) ≈ ti∨
∨m

i=1 u ≈ ci
of the premise can be obtained from the conclusions as follows: first, paramod-
ulate from Ci = ¬Bi(u) ∨ f(u) ≈ ei and from Di = ¬Bi(u) ∨ u ≈ di on ei and
di, respectively, into Ei = α(u) ∨

∨n
j=1 ei ≈ tj ∨

∨m
j=1 di ≈ cj ; this produces

E′
i = α(u) ∨ ¬Bi(u) ∨

∨n
j=1 f(u) ≈ tj ∨

∨m
j=1 u ≈ cj ; then, resolve all E′

i with

F = α(u)∨
∨k

i=1 Bi(u) on Bi(u) to obtain C. Furthermore, some t = ti is of the
form h(c) by Condition (i), so h(c) � ei implies f(u) ≈ t � f(u) ≈ ei. Since



672 Y. Kazakov and B. Motik

f(u) � ¬Bi(u), so C � Ci. Similarly, f(u) ≈ t � u ≈ di, so C � Di. Finally,
f(u) � ei and f(u) � di imply C � Ei, and f(u) � Bi(u) implies C � F . ��

4.3 Saturation of DL-Closures by BSDL

We now show that BSDL inferences on DL-closures always produce a DL-closure.

Lemma 5 (Preservation of DL-Closures). Let N be a set of DL-closures to
which no BSDL simplification is applicable. Then, an application of a BSDL in-
ference to N followed by exhaustive simplification produces a set of DL-closures.

Proof. Before considering all possible inferences with closures from N , we con-
sider the types of literals that can be eligible in each closure fromN . Each closure
of type 1–4 contains exactly one literal containing a function symbol; this literal
is then eligible since it is maximal and no literal is selected. A closure of type
5 either contains a literal x �≈ t which is selected, or it contains a guard for x
which is selected. A closure of type 6 (that is not also of type 5) can contain
a literal x �≈ c, which is then selected. Otherwise, the closure must contain a
literal (¬)B([f(x)]): if this were not the case, the closure would have the form
α(x)∨

∨
[f(x)] ≈ ti∨

∨
x ≈ ci; if some ti is of the form h(c), the closure would be

simplified by Nominal Generation 1 or 2 (Condition (ii) of Nominal Generation
2 is satisfied because Condition (∗) holds for the premise); if all ti are constants,
the closure would be simplified by Decomposition 2 (Condition (i) is satisfied
by a guard for x occurring in α(x)). Since B(f(x)) � f(x) and B(f(x)) � g(c)
by Definition 2, a literal of this form is eligible for inferences. The cases for the
remaining closures are straightforward and are summarized in Table 7.

Next, we enumerate all BSDL-inferences between DL-closures and show that
they result in DL-closures. With [c1, c2] = [s] = [r1, r2, . . .] we denote an

Table 7. Eligible Literals in DL-Closures

1 α(x) ∨ (¬)f(x) ≈ g(x) 2 α(x) ∨ (¬)f([g(x)]) ≈ x

3 α(x) ∨ (¬)A(f(x)) 4 β(x) ∨ (¬)f(x) ≈ c

5.1 β(x) ∨ ∨
(¬)x ≈ ti ∨ x �≈ t 5.2 β(x) ∨ ¬B(x) ∨ ∨

x ≈ ti

6.1 α(x) ∨ ∨
[f(x)] ≈ ti ∨ ∨

(¬)x ≈ ci ∨ x �≈ c

6.2 α(x) ∨ β([f(x)]) ∨ (¬)B([f(x)]) ∨ ∨
[f(x)] ≈ ti ∨ ∨

x ≈ ci

7 α1(x) ∨ ¬R(x, y) ∨ α2(y) ∨ ∨n
i=1 fi(x) ≈ y

8.1 ¬R(x, y) ∨ S(x, y) 8.2 ¬R(x, y) ∨ S(y, x)

9.1 α(x) ∨ R(x, f(x)) 9.2 α(x) ∨ R(f(x), x)

10.1 β(x) ∨ R(x, c) 10.2 β(x) ∨ R(c, x)

11.1 (¬)B(t) 11.2 (¬)t1 ≈ t2 11.3 (¬)f(g(c)) ≈ d

11.4 (¬)R(c, d) 11.5 (¬)R(c, f(d)) 11.6 (¬)R(f(c), d)
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inference between closures c1 and c2 resulting in closures r1, r2, . . ., possibly
by applying simplification s exhaustively. Cut, ground unit resolution, and clo-
sure subsumption ensure that ground literals occur only in unit closures; we call
a combination these inferences splitting.

Resolution inferences are possible only between closures of types 3, 5.2, 6.2,
and 11.1 on unary literals; 9, 10, 11.4, 11.5, and 11.6 on positive binary literals;
and 7, 8, 11.4, 11.5, and 11.6 on negative binary literals. Resolution with a
premise of type 11 results in a ground closure, which is split into closures of
type 11. The remaining resolution inferences are as follows: [3,3] = [5], [3,5.2]
= [6], [3,6.2] = [6], [5.2,6.2] = [6], [6.2,6.2] = [6], [9.1,7] = [Decomposition 1] =
[1,6], [9.2,7] = [Decomposition 1] = [2,6], [9,8] = [9], [10.1,7] = [Decomposition 2,
Splitting] = [4,5,11], [10.2,7] = [Splitting] = [5,11], [10,8] = [10].

Superposition inferences are possible from a nonground closure of type 1, 2,
or 4, or from a ground closure of type 11.2 or 11.3, either into a term f(x) of
1, 3, 4, or 9, a term f([g(x)]) of 2, or a ground (sub)term of 5.1, 6.1, 10, or
11. Note that superposition into or from a ground term does not increase the
term depth, so the other premise remains of the same type or becomes ground.
Therefore, we do not consider types 5.1, 6.1, 10, and 11 in the following case
analysis.

Superposition from 1 into 1, 3, 4, or 9 produces the closure of the latter type,
since a function symbol f is just replaced by g: [1,1] = [1], [1,3] = [3], [1,4] = [4],
[1,9 ]= [9]. Superposition from 1 into 2 produces α([g′(x)])∨α′(x)∨g([g′(x)]) ≈ x
which is simplified into types 2 and 6 using Decomposition 1.

Superposition from 2 into 1, 3, 4, or 9 instantiates the variable of the second
premise to [g(x)]: [2,1] = [Decomposition 1] = [2,6], [2,3] = [6], [2,4] = [6], [2,9]
= [Decomposition 1] = [9,6]. Superposition from 2 into 2 produces either a tau-
tology, which is deleted, or a closure with a literal x �≈ x, which is removed by
reflexivity resolution and subsumption deletion.

Superposition from 4 into 1, 2, 3, 4, or 9 results in these inferences: [4,1] = [4],
[4,2] = [6], [4,3] = [Splitting] =[5,11], [4,4] = [Splitting] = [5,11], [4,9] = [10].

Reflexivity resolution inferences can be applied only to a closure of type 1,
5.1, 6.1, or 11.2. For 1 we obtain 5; in the remaining cases, the result is ground
and it is split into closures of type 11.

Factoring inferences are not applicable, because duplicate literals are eagerly
eliminated and closures with multiple equality literals are eagerly decomposed.

Condition (∗). Consider an inference producing a closure of type 6 with a
literal x ≈ ci. Such an inference is either a superposition between 2 and 4, so the
premise of type 2 validates Condition (∗) of the conclusion, or it has a premise
of type 6, so x ≈ ci in the conclusion stems from this premise. Hence, (∗) is
satisfied for all conclusions of type 6.

Guards are preserved by all inferences because each premise contains a guard,
and no inference involves a negative nonequational literal from all premises.

Simplification inferences always produce DL-closures: for our custom
rules, this follows from Table 6, and for the remaining standard ones this is
trivial. ��
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4.4 Termination and Complexity Analysis

We now show that each saturation of Γ (KB) by BSDL terminates. Assuming
unary coding of numbers in number restrictions, the number of function symbols
in Γ (KB) is linear in |KB |. To the best of our knowledge, this assumption is
used in all practical DL reasoning algorithms.

Lemma 6. Let Γ (KB) = N0, N1, . . . , Nn be a BSDL saturation. Then, the num-
ber of constants in each Ni is at most doubly exponential, and the number of clo-
sures in Ni is at most triply exponential in |KB |, for unary coding of numbers.

Proof. Nominal Generation 1 and 2 introduce new constants at most once for
a combination of α(x) and f . Other than the predicates from Γ (KB), α(x)
can contain the predicates A introduced by Decomposition 1, of which at most
four are introduced for a pair of function symbols f and g. Hence, the number
of disjunctions α(x) is at most exponential in |KB |, and so is the number of
Nominal Generation inferences that introduce new constants. Furthermore, the
premise of such an inference can involve all terms of the form c or f(c) derived
thus far, so the total number of constants can increase only by a linear factor.
Thus, the number of constants in Ni can be at most doubly exponential in |KB |.

Decomposition 2 introduces at most one predicate B for a combination of f
and c, and Nominal Generation 2 introduces at most one predicate Bi for each
ei or di. Hence, the number of predicates in Ni is at most doubly exponential
in |KB |. Since each DL-closure contains at most one variable, the number of
different literals is at most doubly exponential, so the number of DL-closures
without repeated literals is at most triply exponential in |KB |. ��

Theorem 1. BSDL decides satisfiability of a SHOIQ knowledge base KB in
triply exponential time, for unary coding of numbers.

Proof. Without loss of generality we can assume that an inference between two
closures is performed at most once in a saturation. By Lemmas 2 and 5, each
set of closures in a BSDL saturation contains only DL-closures, and is at most
triply exponential in size by Lemma 6. Hence, all DL-closures are derived af-
ter at most triply exponential number of steps. Because simplification rules of
BSDL are sound and correct by Lemmas 3 and 4, the set of closures upon ter-
mination is saturated up to redundancy. Hence, Γ (KB), and by Lemma 1 KB
as well, is satisfiable if and only if the saturated set does not contain the empty
closure.

Since BSDL uses the cut rule, it is nondeterministic, so a straightforward
complexity estimation gives us only a nondeterministic triply exponential upper
bound. This can be improved to a deterministic triply exponential bound as
follows. The number of unit ground closures is at most doubly exponential, so the
number of cut inferences performed on each branch of the saturation is at most
doubly exponential. Hence, if we implement our procedure using backtracking,
the number of all inferences is triply exponential. ��
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Table 8. Expressing Big Cardinality Restrictions in SHOIQ

T1. �  �2 R.� T2. �  �1 R−.�
T3. B0  ∀R.¬B0 T4. Bi+1 � Bi  ∀R.((Bi+1 � Bi) � (¬Bi+1 � ¬Bi))
T5. ¬B0  ∀R.B0 T6. ¬Bi+1 � Bi  ∀R.((¬Bi+1 � Bi) � (Bi+1 � ¬Bi))
T7. ¬Bp � · · · � ¬B0  {c} i = 1 . . . p
T8. �  �2 S.� T9. �  �1 S−.�
T10. A0  ∀S.¬A0 T11. Ai+1 � Ai  ∀S.((Ai+1 � Ai) � (¬Ai+1 � ¬Ai))
T12. ¬A0  ∀S.A0 T13. ¬Ai+1 � Ai  ∀S.((¬Ai+1 � Ai) � (Ai+1 � ¬Ai))
A1. ¬Aq � · · · � ¬A0(c) i = 1 . . . q

T1—T7 express |Bp � · · · � B0| ≤ 22p
; T8—T12, A1 express |Aq � · · · � A0| ≥ 22q

5 Discussion and Conclusion

In this paper, we presented a resolution-based procedure for deciding satisfiabil-
ity of a SHOIQ knowledge base KB running in triply exponential time. The
high complexity of our procedure is due to a possibly doubly exponential num-
ber of constants introduced by Nominal Generation 1 and 2. To understand the
situations in which this can happen, consider the following example.

Let KB be a knowledge base from Table 8, which uses the well-known encoding
of binary numbers by DL concepts. A concept Bi represents the i-th bit of a
number. Thus, a number bp bp−1 . . . b0 with bi ∈ {0, 1} is represented by a concept
µp(bp) � · · · � µ0(b0), where µi(0) = ¬Bi and µi(1) = Bi. Axioms T1 and T2
ensure that a model of KB can be embedded into a binary R-tree: every element
has at most two R-successors and at least one R-predecessor. Axioms T3–T6
ensure that the numbers bp bp−1 . . . b0 corresponding to elements connected by
R-links are incremented by one. Together with axiom T7, this ensures that the
number of elements in the concept at the k-th level of this tree is at most 2k. In
particular, the last level, corresponding to the concept Bp�· · ·�B0, can contain
at most 22p

elements. Using a dual set of axioms T8–T13 and A1, we express in
a similar way that the concept Aq � · · · �A0 contains at least 22q

objects.
Now checking subsumption between Aq � · · · � A0 and Bp � · · · � B0 w.r.t.

KB amounts to testing whether a set with 22q

elements can be embedded
into another set with 22p

elements. Such combinatorial problems, commonly
called the pigeon hole principle, are known to be very hard for resolution [9].
On KB , our algorithm applies the Nominal Generation rules for all possible
α(x) = (¬)Bp(x) ∨ · · · ∨ (¬)B0(x) and introduces a doubly exponential number
of constants, because the constraint |Bp � · · · �B0| ≤ 22p

is represented using a
fresh constant for each element of the set. Although this observation does not
prove that an optimal resolution-based procedure for SHOIQ cannot exist, it
suggests that resolution alone may not suffice. In our future work, we shall inves-
tigate if it is possible to integrate algebraic reasoning directly into resolution—for
example, as this was done for tableau calculi in [8].

However, worst-case complexity does not say anything about the typical case.
Namely, the previous example causes problems because it succinctly encodes
binary numbers. However, many applications do not require much combinato-
rial reasoning, so, on them, our algorithm does not introduce too many new
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constants. In fact, the Nominal Generation rules are triggered by terms g(c),
which can only result from interaction between inverse roles, number restrictions,
and nominals. If these constructs are not used simultaneously, our algorithm be-
comes similar to the algorithm for the DL SHIQ presented in [11], and it runs
in exponential time. Thus, our algorithm exhibits “pay-as-you-go” behavior. We
shall implement our new algorithm in KAON2 to see how it behaves in practice.
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