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Abstract. This paper describes formal probabilistic models of flooding
and gossiping protocols, and explores the influence of different modeling
choices and assumptions on the results of performance analysis. We use
Prism, a model checker for probabilistic systems, for the formal analysis
of protocols and small network topologies, and use in addition Monte-
Carlo simulation, implemented in Matlab, to establish if the results
and effects found during formal analysis extend to larger networks. This
combination of approaches has several advantages. The formal model has
well defined synchronisation primitives with clear semantics for modeling
synchronous and asynchronous communication between nodes. Model
checking of the probabilistic model determines exact probabilities and
performance bounds, even if the model is non-deterministic; results that
cannot be obtained by simulation. However, Monte-Carlo simulation can
then be used in addition to study effects that only emerge in larger
networks, such as phase transition.

1 Introduction

Wireless sensor networks is an emerging field that has received a lot of attention
in recent years. Characteristic features of wireless networks are that each they
gather information about the network and the environment in a distributed
fashion, and that nodes use multi-hop communication on an unreliable medium.
Each node has its own processor, radio, antenna, and clock. The processors
operate under tight energy restrictions because nodes are either battery operated
or rely on abient energy sources. This combination of characteristics calls for
simple and robust distributed algorithms, that require few computing cycles,
and thus little processing power.

Many protocols for wireless sensor networks employ some form of the very sim-
ple flooding protocol to acquire or distribute information. Flooding a message
means that each node that receives a message, propagates it to all its neighbours
by broadcast. This introduces an unnecessary redundancy, because a node may
receive a message multiple times. Gossiping protocols introduce a random ele-
ment to reduce this redundancy. Gossiping means that each node decides with a
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certain probability to forward a message on or not. This reduces the probability
for node to receive a message multiple times, thus the redundancy and cost.

The main tool in model based development to evaluate the performance of
a protocol is simulation. Common simulators in the wireless domain are ns-2,
Opnet, and Glomosim, but it is not uncommon to build a customised simulator,
for example, in Java or Matlab. Flooding and gossiping protocols have been
studied before, for example in [1,2,3,4]. It has been observed in [5] that different
simulators can produce vastly different results, even for a simple protocol such as
flooding. The reason is that simulators employ different models for the MAC and
physical layers. The results of the simulators say as much about the protocol, as
about the particular the lower level implementation of the simulator.

Protocols are a traditional subject for analysis in formal methods, and wireless
protocols are no exception. The model checker Prism, for example, has been
used to analyse the randomised backoff procedure in the 802.11 wireless protocol
[6]. Flooding and gossiping protocols were examined in [3] and [4]. The latter
combine simulation studies and manual analytic evaluation. The formal analysis
in [3] deals with the correctness of the protocol, while simulation is used to assess
the performance. The analysis in [4] is manual for a general model of possible
topologies, however, for a specific set of assumptions on the synchronisation.

This paper uses model checking for performance analysis of flooding and gos-
siping protocols. Model checking has been used before for performance analysis,
for example, [7] describes for example how Prism can be used to evaluate a
strategy for dynamic power management, and [8] describes a tool based on model
checking timed automata that evaluates schedulers for embedded systems.

The main motivation of this paper is the observation that different papers
on wireless protocols such as gossiping use different assumptions, which makes
comparison of results difficult. For example, [3] and [5] both evaluate the flooding
protocol, but sending and receiving is perfectly synchronised in [3], while [5]
assumes a random waiting period in-between sending and receiving. In this paper
we examine what effect this and similar choices have on the outcome of the
analysis. This paper explores in particular the effect of collisions, unreliable
channels versus probabilistic broadcast, and the influence of timing. This analysis
can explain why the performance result of gossiping for a perfectly synchronised
network without collision, are similar to the result on a network with randomised
delay and collision, although the actual behaviour is vastly different.

The next section of this paper gives an introduction to flooding and gossiping
protocols. Section 3 and 4 introduce the model checker Prism and Monte-Carlo
simulation respectively. The models and the results will be presented in Section
5, and followed by a discussion and summary in Section 6.

2 Flooding and Gossiping

Gossiping is a simple protocol that uses probabilistic broadcast to send or request
information in a wireless network. The gossiping protocol can be informally
summarised as follows:
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– The source node broadcasts the message or request to all its neighbours. It
then proceeds to sleep.

– Nodes that receive a message chooses with probability psend to forward the
received message, and with probability 1 − psend to ignore the message. In
either case the node proceeds to sleep.

Gossiping is equal to flooding, if psend is equal to 1.
An interesting property of gossiping protocols is that for sufficiently large

values of the sending probability, the reliability is barely reduced, while the cost
of propagating the message is. If the sending probability psend is reduced further,
the reliability drops suddenly. This phenomenon is called phase transition and
the value at which this effect occurs is the phase transition threshold.

Numerous modifications of the gossiping protocol have been proposed to im-
prove reliability and efficiency. Halpern et al, for example, propose that nodes
within k (k is a constant) hop distance from the source node broadcast received
messages with probability 1, reducing the chance that the message dies out
completely in the first few steps. This and other modification are presented in
Halpern et al. in [1]. Other protocols modifying or building on gossiping protocols
can be found in [3,5,9,2].

This paper uses the gossiping protocol described above as baseline. That de-
scription, however, is incomplete. It does not specify what happens in case of a
collision, i.e. in the case that a node receives two messages at the same time. It
does also not specify if the protocol has to deal with an unreliable medium. And
it does not mention if the nodes in the network are synchronised.

For our basic model we assume perfect synchronisation and no collision. We
will extend it to a model with collision, to determine its effect on the perfor-
mance results. Another modification is that we introduce lossy channels to model
a unreliable medium. Next, we introduce an asynchronous model in which each
node can take transitions at a non-determined pace, which covers any pos-
sible clock drift or jitter. This is a very conservative assumption, hence we
compare in addition different probabilistic models to capture limited drift and
jitter.

An important assumption in our models is that the network topology is static.
We also assume for simplicity that the source node initiates the protocol with
probability psend, i.e. it uses probabilistic broadcast like the other nodes. Note,
that the probability of a node to receive the message if the source node sends
with probability psend, is psend times the probability if the source node would
send with probability 1.

3 The Prism Model Checker

For formal modeling and analysis of the flooding and gossiping protocols we use
the probabilistic model checker Prism, developed at the University of Birming-
ham [10]. Prism supports three types of probabilistic models: Markov decision
processes (MDP), discrete-time Markov chains (DTMC), and continuous-time
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Markov chains (CTMC) [10]. We use the discrete time modeling frameworks of
Markov decision processes or discrete-time Markov chains for our models.

A MDP consists of a set of states S, an initial state s0, and a probabilistic
transition relation Steps ⊆ S×Dist(S), where Dist(S) is the set of distributions
over S. The successor state of a state s is determined by first choosing non-
deterministically a step (s, μ) ∈ Steps, and then choosing a successor state
probabilistically according to distribution μ. States may be labeled with atomic
propositions. DTMCs can be viewed as a restriction of MDPs, where all non-
deterministic choice has been replaced by probabilistic choice.

The Prism input language is a state based language for modeling systems as
a composition of modules that act on shared variables and synchronise on com-
mon actions. Specifications for Prism models of MDPs and DTMCs are defined
in a probabilistic extension of CTL. A probabilistic specification might be that
the probability for a certain event to happen is smaller than a certain thresh-
old. Prism also allows to compute the probability for a given specification to
become true for DTMCs, and the minimal and maximal probability for MDPs.
The maximal and minimal probability for an MDP refer to the worst and best
case resolution of the non-deterministic choices. Prism can for example com-
pute the (maximal or minimal) probability for a certain node in the network to
receive the message. The underlying model checking algorithm of Prism uses a
MTBDD package to store and manipulate transition matrices and distributions
efficiently.

4 Monte-Carlo Simulation

Monte-Carlo simulation is a common statistical sampling scheme that solves the
problem by generating suitable random (or pseudo-random) numbers and observ-
ing what fraction of these random runs obey given properties. In a stochastic pro-
cess that either has a very complex time evolution or is too big in scale, Monte-
Carlo is one of the few feasible and consistent ways to obtain approximate results.

In our particular protocol evaluation scenario Monte-Carlo is used to ap-
proximate the DTMC models described in Prism, but on a larger and more
realistic scale, beyond the capabilities of Prism. The precision of the results
and the computation time are both satisfactory as we are sampling the protocol
behaviour thousands of times. The randomness of the sampling is guaranteed
by the pseudo-random numbers generated in Matlab. Probabilistic choice is
simulated by comparing the random number output of the Matlab function
rand with a predetermined probability threshold specified as a parameter of the
protocol.

5 Models and Results

5.1 Gossiping Without Collision

The baseline model for our experiments is a Prism model for gossiping without
collision. We furthermore assume that all nodes are perfectly synchronised. We
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module node4
active4: bool init true;
send4: bool init false;

[tick] active4 & !send4 & (send1|send3|send5|send7)
-> psend :(active4’=true) & (send4’=true)
+ (1-psend):(active4’=false) & (send4’=false);

[tick] active4 & !send4 & !(send1|send3|send5|send7)
-> (active4’=true) & (send4’=false);

[tick] active4 & send4
-> (active4’=false) & (send4’=false);

[tick] !active4 -> (active4’=false) & (send4’=false);
endmodule

Fig. 1. Prism model for the gossiping protocol without collision and sending probabil-
ity psend

choose for the network topology a 3 by 3 square grid. Each node can receive
packets from its immediate neighbours. The source node is in one of the corners
of the grid. The nodes are numbered 0 to 8, increasing with hop distance form
the source. Fig. 1 depicts the model for the central node 4.

The module for node 4 has two state variables active4 and send4. The node
is active and listing when active4 is true, and ready to send if send4 is true.
The variables are readable by the other nodes. The nodes synchronise on label
tick, i.e. they all update their state vector at the same time.

The first transition in Fig. 1 fires when the node is active and not sending,
and when one of its neighbours is ready to send. In this case the node will choose
with probability psend to remain active and to be ready to send in the successor
state. Alternatively, it chooses with probability 1-psend to become inactive and
to not send. This transition models the probabilistic choice to either propagate
a received message, or to become inactive.

The second transition models that a node remains active and does not send
a message, if none of its neighbours is currently ready to send. The remaining
transitions model that a node becomes inactive once it broadcasts a message,
or remains inactive, if it is inactive. The modules for the other nodes differ
only in the number and names of the neighbours. The composition has no non-
deterministic transition; the composition hence falls in the class of DTMCs. The
composed model has just 65 states and 140 transitions.

The results for the Prism model are depicted in Fig. 2(a). The nodes one hop
from the source receive the message with probability psend. This probability
declines with an increasing hop distance. The central node 4 has a higher prob-
ability of receiving the message than node 3 and 5 with the same hop distance.
The pairs 1 and 2, 3 and 5, and node 6 and 7, have exactly the same receiving
probability, due to the symmetry of the grid. Note, that the probabilities that
were computed for the Prism model are exact probabilities, rather than averages
over a big number of experiments.
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Fig. 2. (a) Probability of receiving the message for each node in the Prism model.
Sending probability ranges from 0.1 to 1 in increments of 0.1. (b) Results of the Monte-
Carlo Simulation for a 20 by 50 network in Matlab.

For the Monte-Carlo simulation we model the protocol in Matlab to explore
the behaviour of gossiping protocol on a medium size 20×50 gird. The Matlab

simulation model makes the same communication assumptions as the Prism

model, in particular we assume that there are no collisions. The gossiping pro-
tocol is initiated by the node on the middle of the narrow edge of the grid. For
a reasonable precision, we computed the average for 3000 runs.

Similar to the Prism model, the simulation model has 2 state variables,
active(i) and send(i), for each node i. The node is active and listening to the
medium if active(i) is true, and ready to send if send(i) is true. All active and
sending state of all nodes updated sequentially in the same iteration. This loop
through the sending and active vector leads to a model in which sending and
receiving is perfectly synchronised.

The results for the Matlab model are presented in Fig. 2(b). As for the
Prism model, we find that the fraction of nodes with hop distance 1 receiving
the message is approximately equal to the sending probability psend. A phase
transition can be observed between the sending probability 0.6 and 0.7. If the
sending probability is 0.7, the fraction of nodes receiving the message remains
mostly above 0.6, while if the sending probability is 0.6 most part of the receiving
probability curve remains below 0.3. Also note that there is an interesting ’bump’
phenomenon at a hop distance of about 10 and sending probability 0.6 to 0.8.
This is the point where the propagation of the message reaches the boundary
of the 20 × 50 grid. Neither the phase transition nor the ’bump’ effect can be
observed in Prism model, as the grid size is too small for those effects to occur.

5.2 Gossiping with Collision

An important characteristic of the wireless domain is that transmissions are
prone to collisions with messages from other nodes. A simple modification of
the baseline Prism model takes collisions into account (Fig. 3). The model uses
two integer variables active4 and send4, instead of boolean variables, to denote
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module node4
active4:[0..1] init 1;
send4: [0..1] init 0;

[tick] active4=1 & send4=0 & send1+send3+ send5 +send7 = 1
-> psend :(active4’=1)&(send4’=1)
+ (1-psend):(active4’=0)&(send4’=0);

[tick] active4=1 & send4=0 & send1+ send3+ send5 +send7 !=1
-> (active4’=1) & (send4’=0);

[tick] active4=1 & send4=1 -> (send4’=0)& (active4’=0);
[tick] active4=0 -> (send4’=0)& (active4’=0);
endmodule

Fig. 3. Prism model for the gossiping protocol with collision
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Fig. 4. Results for gossiping with collision. (a) Model checking results. (b) Monte-Carlo
simulation.

if a node is active or sending. A node receives a message if it is active and not
sending, and if the number of sending neighbours is equal to 1. It will not receive
a message if there is no or more than one sending neighbor. The resulting model
has 72 states and 146 transitions.

The results for the Prism model in Fig. 4 (a) show that the receiving prob-
ability is significantly smaller for nodes 4, 6, 7 and 8, compared to the result
for gossiping without collision. For nodes 4 and 8 we observe even a sudden de-
cline of reliability when the sending probability exceeds 0.7, due to an increased
chance for collision. The probability that those nodes receive a message is even
equal to zero for a sending probability of 1, due to collisions.

Monte-Carlo simulation confirms these results. Compared to gossiping in the
ideal no-collision scenario, a smaller fraction of nodes receives the message. The
fraction even jumps erratically in a band from 0.4 to 1 for sending probability 1
(i.e. flooding) due to the vast amount of collisions. The phase transition is still
visible, now between sending probability 0.8 and 0.7, rather than between 0.7
and 0.6 as in the ideal model.
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module scheduler
turn: bool init true;

[tick] !turn ->(turn’ = !turn);
[tock] turn -> (turn’= false);
endmodule

module chan01 //lossy channel between node 0 and 1
buff01: [0..1] init 0;

[tock] send0=1 | send1=1 -> precv:(buff01’=1)+(1-precv):(buff01’=0);
[tock] send0!=1 & send1!=1 -> (buff01’=0);
endmodule

Fig. 5. Prism model for scheduler and lossy channel

5.3 Probabilistic Broadcast and Lossy Channels

Another important characteristic of wireless networks is the unreliable medium.
Each message has a positive chance to get lost due to external disturbances. The
wired equivalent is a lossy channel in which the message is send with probability
one, but received with probability precv. Although there exist no fixed channels
between nodes in the wireless domain, the link between nodes can be suitably
modeled as a lossy channel.

The Prism model for flooding on lossy channels includes for each channel a
module with a one place buffer; variable buff01 in Fig. 5. The buffer will take
the value 1 with probability precv, if a node sends via this channel. The model
includes a scheduler to ensure that the nodes and the channels are updated alter-
natingly. Transitions labeled tick update the state of the nodes and transitions
labeled tock update the state of the channels. The resulting Prism has 12856
states and 76732 transitions.

The results for the Prism model are depicted in Fig. 6. The probability of
receiving the message increases compared to gossiping with collision for all nodes
in the network. The lossy channel cancels some of the effects of collisions. If two
nodes send a message at the same time, one of the two messages might get lost,
such that the other can be received uncorrupted. The probability that node 4
receives a message for precv=0.5 is 0.44 on lossy channels, compared to about
0.30 for gossiping with collision and psend=0.5, and 0.375 for gossiping without
collision.

On first sight this is a surprising result. The neighbours of a node that sends
with probability p on a reliable channel receive the message with probability
p. Sending with probability 1 on a lossy channels with probability p, yields the
same probability that the neighbours receive the message. In [2] it is conjectured
that probabilistic broadcast is equivalent to removing links probabilistically from
the network. The latter is equivalent to a lossy channel, if we assume that only
one message is send. The results, however, show that this is not true for a
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Fig. 6. (a) Probability of receiving the message for each node in the Prism model of
flooding on lossy channels with collision. Probability precv ranges from 0.1 to 1 in
increments of 0.1. The arrows on the left hand side denote the increase of the receiving
probability in nodes 1 and 2 with respect to probability precv of the lossy channel. (b)
Results of the Monte-Carlo simulation.

multi-hop network. In general, probabilistic broadcast and lossy channels (and
probabilistically removing links) show different behaviour.

A reason for this difference is that in a probabilistic broadcast scheme the
probability that two nodes receive a message is correlated. If node 0 decides to
send a message with probability 0.5 to node 1 and 2, then either both nodes
will receive a message or none of the nodes. The probability for the message
to die out in this step is 50%. If node 0 sends a message to node 1 and 2 on
lossy channels with receiving probability 0.5, then there is only a 25% chance
that the message dies out, i.e that none of the nodes receives the message. If
one node does not receive the message directly, there is still a positive chance
that it receives it via another route. This explains that node 1 and 2 receive the
message with a probability of about 0.58 rather than 0.5.

The result of the Prism model is confirmed by the Monte-Carlo simulation.
Fig. 6(b) also shows phase transition as expected, but similar to gossiping with-
out collision between receiving probability 0.6 and 0.8. Note also, that the result
for receiving probability precv=1, is the same as for gossiping with collision and
psend=1, as both are equal to flooding.

5.4 Non-deterministic Execution Order

All models presented thus far have been synchronous in the sense that all nodes
(and all channels) update their state synchronously. Nodes that receive a message
at the same time, will respond to it at the same time. In a wireless network such
synchronicity is typically absent. Nodes operate independently and have each
their own clock that might drift or jitter.

Asynchronous models are traditionally used in Formal Methods to model con-
current systems that operate independently and synchronise on shared actions
and variables. Transitions in the different components may interleave in any
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module node4
active4:[0..1] init 1;
rcv4: [0..2] init 0;

[msg1] active4=1 & rcv4= 0 -> psend: (active4’=1)&(rcv4’=1)
+ (1-psend):(active4’=0)&(rcv4’=0);

(...)
[msg1] active4=1 & rcv4!=0 -> (active4’=1) & (rcv4’=2);
(...)
[] active4=1 & rcv4= 2 -> (active4’=1) & (rcv4’=0);
[msg1] active4=0 -> (active4’=0) & (rcv4’=0);
(...)
[msg4] active4=1 & rcv4= 1 -> (active4’=0) & (rcv4’=0);
endmodule

Fig. 7. Prism model with non-deterministic execution order

order, unless they synchronise explicitly. The model checking problem is then to
check a specification for any possible interleaving and execution order.

The corresponding Prism model for gossiping with a non-deterministic exe-
cution order is a MDP. All previous models were DTMCs. MDPs combine non-
determinism and probabilistic choice, and the model checking problem becomes
to compute the maximal and minimal probability for a specification to become
true. The specification in our case is that a given node receives the message. The
maximal and minimal probability correspond to the best and worst case exe-
cution order. Model checking thus gives firm upper and lower bounds on these
probabilities. Monte-Carlo simulation cannot be used to produce similar results.
Any simulation has to choose particular execution orders, and the Monte-Carlo
simulation can produce at best averages, but no conservative bounds.

Fig. 7 depicts part of the Prism model for the central node 4. We assume
that a node receives the message as soon as its neighbour sends it. However,
receiving a message and responding to it may be interleaved with any number of
transitions of other nodes. The first transition of module node4 models reception
of a message from node1. Both nodes synchronise on label msg1. There are
similar transitions to model reception of messages from the other neighbouring
nodes, which were omitted from Fig. 7. The integer variable rcv4 records if
no message, one message, or more than one message has been received, with
rcv4=2 if a collision occurred. If a node detects a collision, i.e. active4 =1 &
rcv4=2, it may return to the initial state. Since this is an internal action, it
has no synchronisation label. If a node did receive exactly one message it can
broadcast. Node 4 synchronises on label msg4 with the neighbouring nodes to
realise a broadcast.

The execution order has little impact on the performance of gossiping with-
out collision. Synchronous execution realises the best result for this model. We
get a different picture for the gossiping with collisions. The results in Fig. 8(a)
show that the difference between upper and lower bound increases as the sending
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Fig. 8. (a) Upper bound (solid line) and lower bound (dashed) on the probability of
receiving the message. Sending probability ranges from 0.1 to 0.5 in increments of 0.1.
(b) Upper and lower bounds for sending probability from 0.6 to 1. The arrows indicate
which upper bound belongs to which lower bound.

probability psend increases from 0.1 to 0.5. The upper bound is equal to the
probability of the synchronous model without collision. The lower bound does
not correspond to a particular execution order. It is reached for each node by
a different execution order. In contrast, the result of Monte-Carlo simulation,
such as depicted in Fig. 4(b), shows only some possible behaviour. Monte-Carlo
simulation gives neither the best, nor the worst case, and cannot give any firm
lower bounds.

The results in Fig. 8(b) for sending probabilities between 0.6 and 1 are even
more telling. The lower bound of gossiping with psend of 0.6, for example, is
higher than the lower bound for psend=0.8. Sending with 0.6 thus gives a higher
guaranteed performance, while it is at the same time more efficient. Its perfor-
mance is also in a narrower band, making it more predictable under different
execution orders. Different orders may be the consequence of clock drift and
jitter, different battery levels and thus clock speeds, or the placement of the
nodes.

5.5 Unreliable Timing

Assuming any execution order is a very conservative assumption. Although
clocks may drift and jitter, they all proceed positive rate in about the same
range. In this section we will consider different timing models for gossiping that
contain different types of random delay. This random delay can also be viewed
as part of a randomised protocol that introduces a random waiting period to
reduce collisions. A variant of the flooding protocol with a randomised delay
was for example used in [5].

A simple way to model unreliable timing is to postpone sending the message
with a certain probability pdelay. If sending has been postponed, it will be send
with probability 1-pdelay in the next step, or be postponed another time with
probability pdelay, etcetera. This is very simple memoryless model of unreliable
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[tick] active4=1 & send4=0 & send1+send3+send5+send7 =1
->(1-psend): (active4’=0)&(send4’=0)
+ psend*(1-pdelay): (active4’=1)&(send4’=1)
+ psend* pdelay: (active4’=2)&(send4’=0);

[tick] active4=2 ->(1-pdelay): (active4’=1)&(send4’=1)
+ pdelay: (active4’=2)&(send4’=0);

Fig. 9. Transition modeling sending and delay of the Prism for gossiping model with
collisions and simple memoryless delay

timing, and the delay is governed by a geometric distribution with an expected
waiting time of 1/(1-pdelay). Fig. 9 shows the two transitions that model send-
ing and delay. The rest of the model is the same as the model for gossiping with
collision, shown in Fig. 3.

Fig. 10 shows the results of Prism for a sending probability psend=0.8, and a
delay probability pdelay ranging from 0.1 to 0.9. We chose a sending probability
of 0.8 for this comparison because it is above the threshold for phase transition.
The results show that the receiving probability increases in nodes 4, 6, 7 and
8, as the probability of delay increases. This, because those nodes are prone to
collisions, and more delay reduces the chance of collision. In contrast, there is
very slight decrease in the receiving probabilities of node 3 and 5 in the corner of
the grid. They have only two neighbours, each with a different hop distance to
source, such that collisions are impossible in a synchronous setting. Probabilistic
delay now introduces a slight chance for collision. But despite the decrease, the
receiving probability is for all nodes close to the upper bound which was obtained
for the model with non-deterministic execution order. The receiving probability
of node 8 was 0.41 for the synchronous model with collision, and it increased
to 0.69. This is an increase of 68%, just 3.4% under theoretical upper bound,
obtained with the non-deterministic model.

We considered also two other models for unreliable timing. One is similar
to the previous one, except that a node waits for a fixed amount of time after
receiving the message. After this waiting period it decides probabilistically to
delay or to send. If the waiting time is for example 10, there is a chance of 1-
pdelay that the node sends at 10, and pdelay chance sending will be postponed.
Since we assume no fixed time scale, this would be equivalent with a model in
which some nodes send at 1, others at 1.1, 1.2 etcetera. We found that this
additional waiting time lead only to a slight increase of the performance. We
obtained similar results for a model that did send uniformly distributed in an
interval, up to 10 time units. Apparently, all three approaches are effective in
reducing the impact of collisions.

For the simple model of randomised delay we find for the 20 by 50 grid that
increasing the delay increases the performance on average. The fraction of nodes
that receives the message in a synchronous setting with collision was on average
22% lower than the fraction for the synchronous protocol without collision. In-
creasing the probability of delay to 0.9 reduces this gap to 1.2%. The performance
for the protocols with a delay probability of 0.8 and 0.9 overlap, due to sampling
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Fig. 10. (a) Result for gossiping with probabilistic delay. The probability of delay
ranges from 0.1 to 0.9 in increments of 0.1. Bold lines are the upper and lower bound
for non-deterministic execution order, the dotted line is the performance of the syn-
chronous model. (b) Results of the Monte-Carlo simulation for a 20 by 50 network.

error. By its nature, results of Monte-Carlo simulations are only approximations.
The model checking results, in contrast, show that the performance is strictly
ordered. It increases in nodes that are prone to collision monotonically with an
increasing delay, and decreases monotonically in nodes on the edge of the grid
that have little chance for collision.

6 Conclusion

This paper uses a combination of model checking for probabilistic automata and
the more traditional method of Monte-Carlo simulations. The formal probabilis-
tic automaton model helps to make certain assumptions in the model explicit
that are often hidden in simulation models. Synchronisation between nodes, for
example, has to be explicitly defined in a formal Prism model. It cannot happen
that one inadvertently implements a perfectly synchronised model. Monte-Carlo
simulation, however, can give a fast feedback and show if the results obtained
for a small network extend to networks of a more realistic size.

We considered different models that make different assumptions, their influ-
ence on outcome of performance analysis. Collisions can have a big impact on
the performance, especially in protocols with a high sending probability. Prob-
abilistic delay mitigates the effect to an extend that it almost vanishes for high
delay probabilities. However, even if the performance of an ideal synchronised
network without collision is within the range of accuracy of the Monte-Carlo
simulation from the performance of a network with collision and simple prob-
abilistic delay with probability 0.9, the networks show very different behaviour
otherwise. Sending a message takes one time unit in the ideal model, while the
expected duration between receiving and sending in the other is 10 time units.
Similarly, gossiping protocols, which employ probabilistic broadcast, show a very
different behaviour from flooding protocols on lossy channels.
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Using the model checker Prism for the analysis has the advantage that it
delivers exact results. In addition, the model checker is able to compute firm
upper and lower bounds. Construction of DTMC or MDP took Prism at most
45 seconds for the model with lossy channels, on a Pentium M 1.8GHz with 512
MB RAM. Checking this model took at most 4 seconds. Constructing the models
with probabilistic drift took at most 5 seconds and checking them took at most
10 seconds. All other models were constructed in less than a second each, and
checking them took also less than a second as well, in more than 50% of the cases
even less than 0.1 seconds. The size of the model ranged from 65 states and 140
states for the ideal model to 12856 transitions and 76732 transitions for flooding
on lossy channels. Constructing the latter model for a 4 by 4 grid exceeded the
capabilities of Prism. To be able to compare results we used the 3 by 3 grid for
all Prism models.

The model checker Prism has the option to export the DTMC as a sparse
matrix. This sparse matrix however conceals the structure of the system, and we
chose to implement the simulator separately. A straightforward translation of
the Prism model to Matlab is possible, however, this yields a fairly inefficient
simulator. An obvious drawback of having a custom build simulator and a formal
model is that we had to develop and maintain two version of the model. Future
work will be to provide an interface for modeling wireless networks, such that
the formal model and the simulation model are build from the same source. This
interface should give access to as well model checking as Monte-Carlo simulation.
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