
A Proposal for Records in Event-B
∗

Neil Evans1 and Michael Butler2

1 AWE, Aldermaston, U.K.
2 School of Electronics and Computer Science, University of Southampton, U.K.

Abstract. The B method is a well known approach to the formal specifi-
cation and development of sequential computer programs. Inspired by ac-
tion systems, the B method has evolved to incorporate system modelling
and distributed system development. This extension is called Event-B.
Even though several of the structuring mechanisms of the original B
method are absent from Event-B, the desire to define and maintain struc-
tured data persists. We propose the introduction of records to Event-
B for this purpose. Our approach upholds the refinement principles of
Event-B by allowing the stepwise development of records too.

1 Introduction

The Praxis1 case study of the RODIN project is a (subset of a) VDM devel-
opment of an air traffic control display system (CDIS) undertaken by Praxis in
1992. One of the objectives of the case study is to drive the RODIN methodology,
including Event-B itself [7]. CDIS is currently being redeveloped using Event-B
and existing B tool support. The motivating feature of the case study is its size,
and the challenge is to develop techniques for constructing large specifications
in general so that the functionality of the overall system can be understood by
everyone involved in a project of this kind (a criticism of the original CDIS
specification).

Although the case study does not aim to construct a translation from VDM
to Event-B, there are several advantages to preserving the VDM record struc-
ture. In particular, it serves to organise a vast amount of structured data. So
it is worthwhile investigating how records (with arbitrary field types) can be
incorporated in Event-B. More generally, however, we have identified the bene-
fits of incorporating additional subtyping/inheritance-like properties of records
to enable their stepwise development through refinement, and to allow better
conceptual modelling during the early stages of an Event-B development. In
order to address the challenges of CDIS, this allows us to start with a very
abstract/generic view of the system and, through refinement, introduce airport-
specific details later in the development. Hence, the project members can choose
a suitable level of abstraction to view the system.
∗

This research was carried out as part of the EU research project IST
511599 RODIN (Rigorous Open Development Environment for Complex Systems)
http://rodin.cs.ncl.ac.uk.

1 Praxis High Integrity Systems Ltd., U.K.

J. Misra, T. Nipkow, and E. Sekerinski (Eds.): FM 2006, LNCS 4085, pp. 221–235, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

222 N. Evans and M. Butler

Our proposal does not require any changes to the semantics of Event-B, al-
though we propose an extension to its syntax.

After we have given an introduction to Event-B, we give a brief overview of
records (composites) in VDM. We then show how records can be modelled using
existing B constructs, namely SETS, CONSTANTS and PROPERTIES.
Along the way, we propose some syntactic sugar to make such definitions more
succinct. Our intention is to incorporate this syntax into the Event-B language,
thereby eliminating the need to define an unsugared version manually. We then
introduce two forms of record refinement: record extension and record subtyping.
An example is given to illustrate the use of record refinement in a development,
which includes a novel use of record refinement to enable the interface extension
of an event. Finally, we discuss other issues that arise from our approach. This
example demonstrates the refinement techniques currently being used in the
CDIS case study.

Note that open source tools supporting Event-B are currently under construc-
tion as part of the RODIN project. However, by writing stylised specifications,
existing B tools such as Atelier B [3] and the B Toolkit [5] can be applied to
Event-B specifications.

2 Event-B

An abstract Event-B specification comprises a static part called the context, and
a dynamic part called the machine. The machine has access to the context via
a SEES relationship. All sets, constants, and their properties are defined in
the context. The machine contains all of the state variables. The values of the
variables are set up using the INITIALISATION clause, and values can be
changed via the execution of events. Ultimately, we aim to prove properties of the
specification, and these properties are made explicit using the INVARIANT
clause. The tool support generates proof obligations which must be discharged
to verify that the invariant is maintained.

Events are specialised B operations [1]. In general, an event E is of the form

E =̂ WHEN G(v) THEN S (v) END

where G(v) is a Boolean guard and S (v) is a generalised substitution (both of
which may be dependent on state variable v)2. The guard must hold for the
substitution to be performed (otherwise the event is blocked). There are three
kinds of generalised substitution: deterministic, empty, and non-deterministic.
The deterministic substitution of a variable x is an assignment of the form
x := E (v), for expression E , and the empty substitution is skip. The non-
deterministic substitution of x is defined as

ANY t WHERE P(t , v) THEN x := F (t , v) END

Here, t is a local variable that is assigned non-deterministically according to the
predicate P , and its value is used in the assignment of x via the expression F .
2 The guard is omitted if it is trivially true.

A Proposal for Records in Event-B 223

Note that in this paper we abuse the notation somewhat by allowing events to
be decorated with input and output parameters (and preconditions to type the
input parameters) in the style of classical B [1].

In order to refine an abstract Event-B specification, it is possible to refine
the model and context separately. Refinement of a context consists of adding
additional sets, constants or properties (the sets, constants and properties of the
abstract context are retained).

Refinement of existing events in a model is similar to refinement in the B
method: a gluing invariant in the refined model relates its variables to those of
the abstract model. Proof obligations are generated to ensure that this invariant
is maintained. In Event-B, abstract events can be refined by more than one
concrete event. In addition, Event-B allows refinement of a model by adding new
concrete events on the proviso that they cannot diverge (i.e. execute forever).
This condition ensures that the abstract events can still occur. Since the concrete
events operate on the state variables of the refined model, they must implicitly
refine the abstract event skip.

3 VDM Composites

A composite type consists of a name followed by a list of component (field)
names, each of which is accompanied by its type. In general, this looks like:

type name :: component name1 : component type1

...
component namen : component typen

One can see that this resembles record declarations in many programming lan-
guages. However, it is possible to constrain the type of a composite further by
including an invariant for the values of the components. Note that the nature of
invariants in VDM is different from invariants in Event-B: invariants in Event-B
have to be proven, whilst in VDM they are enforced. State in VDM is declared
as a special kind of record whose components are the state variables which can
be accessed and modified via operations (functions having side effects on the
state).

Even though we have focused on VDM composite types specifically, record-
like structures are also present in other formal notations (for example, composite
data types in Z schemas [12], or signatures in Alloy [2]).

4 A Set-Based Approach in Event-B

This approach attempts to mimic the record type definitions of VDM by using
the SETS, CONSTANTS and PROPERTIES clauses of an Event-B context.
One of the motivations of this work is to enable a stepwise development of
complex record structures (in the spirit of refinement) by introducing additional

224 N. Evans and M. Butler

CONTEXT Func
SETS R ; A ; B
CONSTANTS r1 , r2
PROPERTIES

r1 ∈ R → A ∧
r2 ∈ R → B ∧
r1 ⊗ r2 ∈ R →→ A × B

END

Fig. 1. A simple record type

fields as and when they become necessary. This is also comparable to inheritance
in object-oriented programming in which classes are restricted or specialised by
introducing additional attributes.

Consider the following VDM composite type declaration R

R :: r1 : A
r2 : B

That is, R is a record with two fields, named r1 and r2, of type A and B
respectively. In B, we can model this by declaring three deferred sets R, A and
B in the SETS clause. This is shown in Figure 1 in a context named Func.
The sets A and B correspond to the types A and B in the declaration and,
as such, these could be replaced by specific B types (such as NAT), or could
themselves be other record types. Note that recursive record types are not part
of this proposal, although we are investigating this for future work.

The set R represents the record type that we are trying to specify. We can
think of this set as representing all of the potential models of the record type.
Since we are unaware of the appropriate model for the record, because we may
want to refine it during later stages, this set remains deferred until we are sure
that we do not want to refine it any further. Instead, we can specify properties
of the set within the PROPERTIES clause.

Two accessor functions are declared in the CONSTANTS clause to retrieve
the fields of an R record instance: r1 retrieves the value of the field of type A, and
r2 retrieves the value of the field of type B . The properties of these functions are
given in the PROPERTIES clause. In particular, note that for every pair of
values from A and B there is a record instance (i.e. a member of R) whose fields
have these values. This is expressed succinctly using Event-B’s direct product
operator ⊗ and the surjective mapping →→, where

r1 ⊗ r2 = { (x , (y, z)) | (x , y) ∈ r1 ∧ (x , z) ∈ r2 }

This approach to modelling composites is quite verbose for a two-field record.
Instead, we propose some syntactic sugar. Within the SETS clause, we propose
composite-like declarations for records. Hence, for this example, we would allow an
equivalent context as shown in Figure 2. We choose to put such definitions in the
SETS clause because this clause is most closely associated with type definitions.

A Proposal for Records in Event-B 225

CONTEXT Func
SETS

R :: r1 : A,
r2 : B

END

Fig. 2. Syntactic sugar for record types

A machine that SEES this context may contain state variables of type R.
Such variables hold an instance of the record, and events can be defined to
update the values of their fields using the accessor functions. The structure of
these events follows a definite pattern: non-deterministically choose an instance
of the record type such that its fields have certain values. For example, consider
the event in Figure 3 that changes the r1 field of a variable r of type R with a
value x . The new value y is chosen so that its r1 value is equal to x , and its r2
value remains unchanged. It is important to state explicitly which fields do not
change, otherwise they will be assigned non-deterministically.

Update r1 of r (x) =̂
ANY y WHERE

y ∈ R ∧
r1 (y) = x ∧
r2 (y) = r2 (r)

THEN
r := y

END

Fig. 3. A record update operation

Before we proceed to consider refinement, it is worth mentioning an alternative
approach which, under suitable conditions, individual state variables are used
to model the fields of a record directly. The approach in [4] uses the structuring
mechanisms of classical B (in particular, the INCLUDES mechanism) and
naming conventions to model the record structure. Their approach resulted from
an attempt to construct a translation from VDM to B. A shortcoming of their
approach is that it would be impossible to perform parallel updates of ‘fields’ that
reside in the same machine (a constraint imposed by INCLUDES). Although
renaming can be employed to re-use such definitions, we feel that our approach
(with its syntactic sugar) gives a representation that is more suitable at an
abstract level; and it is also amenable to parallel updates. More fundamentally,
however, renaming and machine inclusion are not available in Event-B.

It would be possible to use variables instead of constants to model accessor
functions. In some way this would simplify the approach as updates to a field
could be specified more succinctly. For example, if r1 and r2 were specified as
variables, then the update in Figure 3 could be specified as

Update r1 of r(x) =̂ r1(r) := x

226 N. Evans and M. Butler

The variable r2 is not modified by this assignment. The problem with using vari-
ables rather than constants for accessor functions is that it does not work in a dis-
tributed setting. In a distributed development we wish to avoid designs in which
variables are globally available since maintaining a consistent global view of vari-
ables is too much effort. Constants, on the other hand, can easily be globally agreed
since they never change. Using constants as accessor functions means we specify
a fixed way of accessing fields of a record that is globally agreed.

5 Refining Record Types

We now investigate the effect of refining the record type R defined in Section 4
by introducing a new accessor function. There are two ways of doing this: we can
either ‘extend’ R by adding the accessor function directly, or we can declare a
new subtype of R (which we call Q), on which the accessor function is declared.
Since the latter refinement will add further constraints to R, Q ’s set of potential
models will be a subset of R’s. In this example, both kinds of refinement have
an additional field r3 of type C . For a simple record extension, we propose a
syntax as follows:

EXTEND R WITH r3 : C

For subtyping, we propose the following syntax:

Q SUBTYPES R WITH r3 : C

Their verbose definitions are shown in Figures 4 and 5 respectively. The pro-
posed syntax means that the developer does not have to interact with the verbose
definitions directly. Notice that these definitions are both refinements of the con-
text machine given in Figure 1. Hence, the properties declared in the refinement
are in addition to those of the original machine. The final property in Figure 4
states that all possible field combinations are still available in R, and the cor-
responding property in Figure 5 states that all possible field combinations are
available in Q (without adding any further constraints to R).

Subtyping of this kind can be seen in programming languages such as Niklaus
Wirth’s Oberon [11], and specification languages such as Alloy [2]. The accessors
r1 and r2 can still be applied to objects of type Q in Figure 5, but r3 can only
be applied to objects of type Q (and any of its subtypes).

CONTEXT FuncR
REFINES Func
SETS C
CONSTANTS r3
PROPERTIES

r3 ∈ R → C ∧
(r1 ⊗ r2 ⊗ r3) ∈ R →→ A × B × C

END

Fig. 4. An extended record type

A Proposal for Records in Event-B 227

CONTEXT FuncR
REFINES Func
SETS C
CONSTANTS Q , r3
PROPERTIES

Q ⊆ R ∧
r3 ∈ Q → C ∧
(r1 ⊗ r2 ⊗ r3) ∈ Q →→ A × B × C

END

Fig. 5. A record subtype

Depending on whether extension or subtyping is used, a certain amount of
care is required when refining the events associated with the records. The event
Update r1 of r shown in Figure 3 is still applicable in the refined context
of Figure 4, even though it would assign r ’s new r3 field non-deterministically.
Refinement could then be used to assign something meaningful to this field.
However, using the refined context of Figure 5, if the model is refined so that
r is defined to be of type Q then this event is no longer applicable without
modification because the quantified variable y ranges over Q ’s superset R. The
ANY clause would need to be strengthened so that it chooses an element of
Q (rather than R). Note that the surjectivity constraints of a record extension
are consistent with the constraints of the original record definition. Indeed, the
original constraints follow from those of the extension, i.e.:

(r1 ⊗ r2 ⊗ r3) ∈ R →→ A × B × C ⇒ (r1 ⊗ r2) ∈ R →→ A × B

5.1 Other Possible Refinement Combinations

In addition to a single chain of record refinements, which is most easily achieved
by record extension, the subtyping of record types presented above permits other,
less restrictive, kinds of development.

The diagrams shown in Figure 6 give two possible extension hierarchies. Each
of these is meaningful, and we would like them to be available in Event-B. Hence,
records should not constrain the structuring of context machines.

R

Q Q’

(i)

X

Z

Y Y’

(ii)

Fig. 6. Possible Record Hierarchies

228 N. Evans and M. Butler

In Figure 6(i), two different sets, Q and Q ′, subtype the same record type
R. That is, Q and Q ′ have the common ancestor R, and both are defined to be
subsets of R. (The relationship between Q and Q ′ in this case is left unspecified,
but we can impose an extra property to ensure they are disjoint if necessary.) In
(ii), the record type Z combines the record subtypes Y and Y ′. In this situation,
the model for Z must be a model for both Y and Y ′, and the accessor functions
of both Y and Y ′ can be applied to objects of type Z . The least constrained set
of models that fulfils this relationship is the intersection of Y and Y ′. Hence,
they should not be disjoint. Syntactically, the fields belonging to a record of type
Z (prior to any extensions to Z) are the union of the fields of Y and Y ′ 3.

6 One-Field Variables

In section 5, we have seen how existing record types can be refined to give
new record types with more complex structure. At the most abstract level, the
specifier might be unaware that a simple (non-record) state variable requires
a record structure at a later stage in the development. For example, we may
declare a variable v to be of type VALUE , but then decide that for every value
we need to associate some other characteristic (say, a format). We would then
need to define a record type

FVALUE :: val : VALUE ,

format : FORMAT

and declare a concrete variable fv of type FVALUE . In order to link the variables
v and fv in a refinement, the gluing invariant must link the val component of fv
with v . In this case, we have

v = val(fv)

Hence, at the most abstract level, we are not expected to identify all record
types. These can be introduced during the refinement stages.

7 Extension Example

In order to motivate the use of record types, we present an example to show how
a very simple abstract specification can be refined into a model with structured
objects. We consider an electronic mail delivery system in which users (with
identities) can send and receive messages. We begin with a very abstract view
of the system. The context (which we call Context) declares two sets User and
Message, and one record type Send interface. This is shown in Figure 7.

The corresponding machine (which we call Email) declares a variable mailbox ,
which maps users to their respective set of messages. We specify two events: send
and read. These are shown in Figure 8. At this stage, the send event requires
two parameters that represent the message to be sent and the intended recipient.
3 We assume there are no name clashes between the accessors of Y and Y ′.

A Proposal for Records in Event-B 229

CONTEXT Context
SETS

User ; Message ;
Send interface :: dest : User ,

mess : Message
END

Fig. 7. The Abstract Context

However, during the refinement stages send will require additional parameters.
Interface extension is not possible in the current B tools, but by using record
types instead we can extend the interface of send via record extension. The
record type Send interface is declared for this purpose. Note that this is a very
abstract representation of the system because the send operation magically
deposits the message in the appropriate user’s mailbox. Subsequent refinements
will model how this is actually achieved. The read event non-deterministically
retrieves a message from the input user’s mailbox and returns it as an output.

As a first refinement we begin to introduce more detail in the form of a more
realistic architecture. This is depicted in Figure 9. Each user is associated with a
mail server that is responsible for forwarding mail and retrieving mail from the
middleware. As part of this refinement, we introduce a record type to structure
the data passing from senders to receivers via the communications medium. The
record type called Package is declared using our proposed syntax in the context

MACHINE Email
SEES Context
VARIABLES mailbox
INVARIANT mailbox ∈ User → P (Message)
INITIALISATION mailbox := User × { ∅ }

OPERATIONS
send (ii) =̂
PRE ii ∈ Send interface THEN

mailbox (dest (ii)) := mailbox (dest (ii)) ∪ { mess (ii) }
END ;

mm ←− read (uu) =̂
PRE uu ∈ User THEN

ANY xx WHERE
xx ∈ Message ∧ xx ∈ mailbox (uu)

THEN
mm := xx

END
END

END

Fig. 8. The Abstract Machine

230 N. Evans and M. Butler

MAIL SERVER MAIL SERVER

MIDDLEWARE

...................................

Fig. 9. Architecture for the e-mail system

CONTEXT Context2
REFINES Context
SETS

Server ;
Package :: destination : Server ,

recipient : User ,
contents : Message ;

EXTEND Send interface WITH source : User
CONSTANTS

address
PROPERTIES

address ∈ User → Server
END

Fig. 10. First refined context

refinement named Context2. This is shown in Figure 10. Note that in addition to
Package we declare a new set Server which represents the different mail servers,
and we declare a function address that returns the (unique) server hosting a
particular user. We also extend Send interface by adding a new field source
that contains the identities of the senders.

The refined state comprises new variables sendbuf , receivebuf and middleware.
The variable middleware holds the packages on the communications medium,
and each mail server has separate buffers for messages waiting to be sent and
messages waiting to be read (i.e. mappings from Server to P (Package)). The
refined event send constructs packages and adds them to the server associated
with the sender. The event read selects packages from a user’s server and out-
put’s their contents. These are shown in Figure 11.

As part of this Event B refinement, we introduce two new events forward
(which passes packages from servers to the middleware) and deliver (which takes
packages from the middleware and adds them to the appropriate server’s receive
buffer). Note that these events (also shown in Figure 11) will not collectively
diverge because only a finite number of packages will be waiting to be transferred.

The gluing invariant that links the refined state with the abstract state is
dictated by the need to preserve outputs. Since we are refining from simple mes-
sages to packages, we use the technique given in Section 6. In the abstract model,

A Proposal for Records in Event-B 231

send (ii) =̂
PRE ii ∈ Send interface THEN

ANY ss , pp WHERE
ss ∈ Server ∧ pp ∈ Package ∧
ss = address (source (ii)) ∧
destination (pp) = address (dest (ii)) ∧
recipient (pp) = dest (ii) ∧
contents (pp) = mess (ii)

THEN
sendbuf (ss) := sendbuf (ss) ∪ { pp }

END
END ;

mm ←− read (uu) =̂
PRE uu ∈ User THEN

ANY ss , pp WHERE
ss ∈ Server ∧ pp ∈ Package ∧
ss = address (uu)
pp ∈ receivebuf (ss) ∧
recipient (pp) = uu

THEN
mm := contents (pp)

END
END ;

forward =̂
ANY ss , pp WHERE

ss ∈ Server ∧ pp ∈ Package ∧
pp ∈ sendbuf (ss)

THEN
sendbuf (ss) := sendbuf (ss) − { pp } ‖
middleware := middleware ∪ { pp }

END ;

deliver =̂
ANY ss , pp WHERE

ss ∈ Server ∧ pp ∈ Package ∧
pp ∈ middleware ∧
destination (pp) = ss

THEN
middleware := middleware − { pp } ‖
receivebuf (ss) := receivebuf (ss) ∪ { pp }

END

Fig. 11. First refinement events

the output from read is obtained from the input user’s mailbox, whereas it is
retrieved from receivebuf in the refined model. We link the contents field of the
packages in receivebuf with mailbox . Hence, we introduce the following invariant

232 N. Evans and M. Butler

∀ s , u, p.(s ∈ Server ∧ u ∈ User ∧ p ∈ Package ⇒
p ∈ receivebuf (s) ∧ recipient(p) = u ⇒ contents(p) ∈ mailbox (u))

This fulfils the proof obligation derived from the output of read but, since the
event deliver adds packages to receivebuf , we must strengthen the invariant as
follows

∀ u, p.(u ∈ User ∧ p ∈ Package ⇒
p ∈ middleware ∧ recipient(p) = u ⇒ contents(p) ∈ mailbox (u))

That is, in addition to the contents of the packages in receivebuf , the contents
of the packages on the medium must also be elements of mailbox . By attempt-
ing to discharge the proof obligations once more, we discover that we have to
strengthen the invariant further

∀ s , u, p.(s ∈ Server ∧ u ∈ User ∧ p ∈ Package ⇒
p ∈ sendbuf (s) ∧ recipient(p) = u ⇒ contents(p) ∈ mailbox (u))

This is sufficient to discharge all of the proof obligations. Hence, we have shown
that the contents of any package in transit must be an element of the correspond-
ing abstract mailbox. Of course, it would be possible to strengthen the invariant
further by stating other properties of the system, but this is not pursued here.

As a second refinement, we extend Package with a priority field. In addition,
we extend Send interface with a field pri . These refinements are shown (using
our proposed notation) in Figure 12.

CONTEXT Context3
REFINES Context2
SETS

EXTEND Package WITH priority : BOOL ;
EXTEND Send interface WITH pri : BOOL

END

Fig. 12. The second context refinement

This refinement specifically affects the order in which packages are moved onto
the middleware: packages with priority TRUE take precedence over packages
with priority FALSE . In order to model this, we refine the events send and
forward (as shown in Figure 13). The send event is refined because we have
extended its interface to incorporate a priority field (named pri). Using this
extension to Send interface, we can assign priorities to the refined packages.
The refinement of forward is an example of the refinement of a single event into
two events. The first refined event (also called forward) only selects packages
with high priority (i.e. those packages whose priority field is TRUE). The second
event, called forward2 selects low priority packages, but only if there are no high
priority packages at the same server. Hence, high priority packages are forwarded
before low priority packages. Since this refinement does not introduce any new
variables, no gluing invariant is required.

A Proposal for Records in Event-B 233

send (ii) =̂
PRE ii ∈ Send interface THEN

ANY ss , pp WHERE
ss ∈ Server ∧ pp ∈ Package
ss = address (source (ii)) ∧
destination (pp) = address (dest (ii)) ∧
recipient (pp) = dest (ii) ∧
contents (pp) = mess (ii) ∧
priority (pp) = pri (ii)

THEN
sendbuf (ss) := sendbuf (ss) ∪ { pp }

END
END ;

forward =̂
ANY ss , pp WHERE

ss ∈ Server ∧
pp ∈ Package ∧
pp ∈ sendbuf (ss) ∧
priority (pp) = TRUE

THEN
sendbuf (ss) := sendbuf (ss) − { pp } ‖
middleware := middleware ∪ { pp }

END ;

forward2 =̂
ANY ss , pp WHERE

ss ∈ Server ∧
pp ∈ Package ∧
pp ∈ sendbuf (ss) ∧
∀ qq . (qq ∈ sendbuf (ss) ⇒ priority (qq) = FALSE)

THEN
sendbuf (ss) := sendbuf (ss) − { pp } ‖
middleware := middleware ∪ { pp }

END

Fig. 13. The second refinement

8 Subtyping Refinement

The example could be refined further by specialising Package using subtyping.
Using this technique, it is possible to refine Package in more than one way (see
Figure 6(i)) so that different kinds of packages are dealt with in different ways.
For example, consider the following subtype declarations

AirportPackage SUBTYPES Package WITH ...
RunwayPackage SUBTYPES Package WITH ...

It would then be possible to specialise the servers to meet the needs of the
different kinds of package. On the other hand, we would be able to continue
to use the middleware unaltered because it would simply treat both subtypes

234 N. Evans and M. Butler

uniformly (i.e. as objects of type Package). In the CDIS case study, this technique
is being used to model VDM union types in Event-B.

9 Wider Issues

Although we have not set out with the aim of addressing object oriented mod-
elling or programming approaches, there is a link between our work and various
formal approaches to object oriented modelling and programming. Directly rele-
vant to our work is the UML-B approach of Snook and Butler [10] which defines
a mapping from a UML profile to B. In UML-B, class attributes and associations
are modelled in B as accessor functions on object instance identifiers, i.e., if a
is an attribute of type A of class C , then a is modelled in the B notation as a
function a ∈ C → A. UML-B effectively combines our form of subtyping with
extension to represent class inheritance. In our approach accessor functions are
represented as constants whereas in UML-B attributes and associations can be
declared as either constant or variable and the corresponding accessor functions
are in turn either constants or variables.

Naumann’s work [8] is a good example of a relevant formal framework for
reasoning about object oriented programs. This uses records and record sub-
typing to represent objects in an object oriented programming language. There
are two significant differences from our work. Firstly, Naumann allows record
fields to be methods thus modelling method overriding and dynamic dispatch
of method calls, an important feature of object oriented programming. We do
not address overriding of events rather we focus on refinement. Secondly, Nau-
mann uses record constructors and a rich notion of subtyping for record types as
is commonly found in formal approaches to object oriented programming. Our
notion of subtyping is simply subsetting of the deferred B type used to model
records and is independent of any subtyping of the fields. This means we avoid
having to address the issue of covariance versus contravariance of method ar-
guments [6]. Naumann’s language is influenced by Oberon [11] which provides
inheritance through record extension.

10 Conclusion

Without changing its semantics, we have proposed a method of introducing
record types in Event-B that is amenable to refinement. Our experience in the
redevelopment of CDIS has identified the benefits of such an approach. In partic-
ular, it allows us to start with a very abstract model and defer the introduction
of airport-specific information until later in the development.

Our example has demonstrated how it is possible to specify an abstract view
of a system with a very abstract representation of the data that it handles. In
addition to the existing refinement techniques of Event-B, our refinements show
how it is possible to introduce structured data in a stepwise manner in order to
progress towards the formal design and implementation of the system.

A Proposal for Records in Event-B 235

During the implementation phase of a B development, it may be necessary
to describe how records are to be implemented. Since a record is defined as a
deferred set, a decision must be made to give an explicit representation of the
set. In addition, fields of such records are declared as constant functions whose
algorithmic behaviour must be given as part of the implementation.

Of course, it is not the case that the records within a B development will
necessarily be implemented as records in program code - for example, a record
could be used to model structured data such as XML messages. However, there
is provision for the implementation of record-like structures using existing B
technology: SYSTEM definitions of BASE machines are macros for the imple-
mentation (using B libraries) of database style structures. (See [9] for a detailed
description of BASE machines and the common B libraries.) The similarities be-
tween our proposed syntax and the syntax of BASE machines suggest that they
provide a natural progression from the specification and refinement of records
to their implementation, although this has yet to be investigated.

Acknowledgements

The authors thank Jean-Raymond Abrial and Cliff Jones for many valuable dis-
cussions, and are also grateful to Helen Treharne for useful advice and suggestions.

References

1. Abrial J. R.: The B Book: Assigning Programs to Meanings, Cambridge University
Press (1996).

2. The Alloy Analyzer, http://alloy.mit.edu.
3. Atelier B, http://www.atelierb.societe.com.
4. Bicarregui J. C.,Matthews B. M., Ritchie B., Agerholm S.: Investigating the inte-

gration of two formal methods, Proceedings of the 3rd ERCIM Workshop on Formal
Methods for Industrial Critical Systems (1998).

5. B Core (U.K.) Ltd, http://www.b-core.com.
6. Castagna G.: Covariance and Contravariance: Conflict without a Cause., in ACM

Trans. Program. Lang. Syst., volume 17, number 3, pages 431-447 (1995).
7. Métayer C., Abrial J. R., Voisin L.: Event-B Language, RODIN deliverable 3.2,

http://rodin.cs.ncl.ac.uk (2005).
8. Naumann D. A.: Predicate transformer semantics of a higher-order imperative lan-

guage with record subtyping, in Sci. Comput. Program., volume 41, number 1, pages
1-51 (2001).

9. Schneider S.: The B Method: An Introduction, Palgrave (2001).
10. Snook C., Butler M. J.: UML-B: Formal modelling and design aided by UML., in

ACM Trans. Software Engineering and Methodology, to appear (2006).
11. Wirth N. : The Programming Language Oberon, in Softw., Pract. Exper., volume

18, number 7, pages 671-690 (1988).
12. Woodcock J. C. P., Davies J.: Using Z: Specification, Refinement, and Proof, Pren-

tice Hall (1996).

	Introduction
	Event-B
	VDM Composites
	A Set-Based Approach in Event-B
	Refining Record Types
	Other Possible Refinement Combinations

	One-Field Variables
	Extension Example
	Subtyping Refinement
	Wider Issues
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

