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Abstract. We summarize some current trends in embedded systems
design and point out some of their characteristics, such as the chasm
between analytical and computational models, and the gap between
safety-critical and best-effort engineering practices. We call for a coher-
ent scientific foundation for embedded systems design, and we discuss
a few key demands on such a foundation: the need for encompassing
several manifestations of heterogeneity, and the need for constructivity
in design. We believe that the development of a satisfactory Embedded
Systems Design Science provides a timely challenge and opportunity for
reinvigorating computer science.

1 Motivation

Computer Science is going through a maturing period. There is a perception
that many of the original, defining problems of Computer Science either have
been solved, or require an unforeseeable breakthrough (such as the P versus NP
question). It is a reflection of this view that many of the currently advocated
challenges for Computer Science research push existing technology to the limits
(e.g., the semantic web [4]; the verifying compiler [15]; sensor networks [6]), to
new application areas (such as biology [12]), or to a combination of both (e.g.,
nanotechnologies; quantum computing). Not surprisingly, many of the bright-
est students no longer aim to become computer scientists, but choose to enter
directly into the life sciences or nanoengineering [8].

Our view is different. Following [18,22], we believe that there lies a large un-
charted territory within the science of computing. This is the area of embedded
systems design. As we shall explain, the current paradigms of Computer Sci-
ence do not apply to embedded systems design: they need to be enriched in
order to encompass models and methods traditionally found in Electrical Engi-
neering. Embedded systems design, however, should not and cannot be left to
the electrical engineers, because computation and software are integral parts of
embedded systems. Indeed, the shortcomings of current design, validation, and
maintenance processes make software, paradoxically, the most costly and least
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reliable part of systems in automotive, aerospace, medical, and other critical ap-
plications. Given the increasing ubiquity of embedded systems in our daily lives,
this constitutes a unique opportunity for reinvigorating Computer Science.

In the following we will lay out what we see as the Embedded Systems Design
Challenge. In our opinion, the Embedded Systems Design Challenge raises not
only technology questions, but more importantly, it requires the building of a
new scientific foundation — a foundation that systematically and even-handedly
integrates, from the bottom up, computation and physicality [14].

2 Current Scientific Foundations for Systems Design,
and Their Limitations

2.1 The Embedded Systems Design Problem

What Is an Embedded System? An embedded system is an engineering arti-
fact involving computation that is subject to physical constraints. The physical
constraints arise through two kinds of interactions of computational processes
with the physical world: (1) reaction to a physical environment, and (2) execu-
tion on a physical platform. Accordingly, the two types of physical constraints
are reaction constraints and execution constraints. Common reaction constraints
specify deadlines, throughput, and jitter; they originate from the behavioral re-
quirements of the system. Common execution constraints put bounds on avail-
able processor speeds, power, and hardware failure rates; they originate from the
implementation requirements of the system. Reaction constraints are studied in
control theory; execution constraints, in computer engineering. Gaining control
of the interplay of computation with both kinds of constraints, so as to meet a
given set of requirements, is the key to embedded systems design.

Systems Design in General. Systems design is the process of deriving, from
requirements, a model from which a system can be generated more or less au-
tomatically. A model is an abstract representation of a system. For example,
software design is the process of deriving a program that can be compiled; hard-
ware design, the process of deriving a hardware description from which a circuit
can be synthesized. In both domains, the design process usually mixes bottom-up
and top-down activities: the reuse and adaptation of existing component models;
and the successive refinement of architectural models in order to meet the given
requirements.

Embedded Systems Design. Embedded systems consist of hardware, soft-
ware, and an environment. This they have in common with most computing
systems. However, there is an essential difference between embedded and other
computing systems: since embedded systems involve computation that is sub-
ject to physical constraints, the powerful separation of computation (software)
from physicality (platform and environment), which has been one of the cen-
tral ideas enabling the science of computing, does not work for embedded sys-
tems. Instead, the design of embedded systems requires a holistic approach that
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integrates essential paradigms from hardware design, software design, and con-
trol theory in a consistent manner.

We postulate that such a holistic approach cannot be simply an extension of
hardware design, nor of software design, but must be based on a new founda-
tion that subsumes techniques from both worlds. This is because current design
theories and practices for hardware, and for software, are tailored towards the
individual properties of these two domains; indeed, they often use abstractions
that are diametrically opposed. To see this, we now have a look at the abstrac-
tions that are commonly used in hardware design, and those that are used in
software design.

2.2 Analytical Versus Computational Modeling

Hardware Versus Software Design. Hardware systems are designed as the
composition of interconnected, inherently parallel components. The individual
components are represented by analytical models (equations), which specify their
transfer functions. These models are deterministic (or probabilistic), and their
composition is defined by specifying how data flows across multiple components.
Software systems, by contrast, are designed from sequential components, such
as objects and threads, whose structure often changes dynamically (components
are created, deleted, and may migrate). The components are represented by
computational models (programs), whose semantics is defined operationally by
an abstract execution engine (also called a virtual machine, or an automaton).
Abstract machines may be nondeterministic, and their composition is defined by
specifying how control flows across multiple components; for instance, the atomic
actions of independent processes may be interleaved, possibly constrained by a
fixed set of synchronization primitives.

Thus, the basic operation for constructing hardware models is the composition
of transfer functions; the basic operation for constructing software models is
the product of automata. These are two starkly different views for constructing
dynamical systems from basic components: one analytical (i.e., equation-based),
the other computational (i.e., machine-based). The analytical view is prevalent
in Electrical Engineering; the computational view, in Computer Science: the
netlist representation of a circuit is an example for an analytical model; any
program written in an imperative language is an example for a computational
model. Since both types of models have very different strengths and weaknesses,
the implications on the design process are dramatic.

Analytical and Computational Models Offer Orthogonal Abstractions.
Analytical models deal naturally with concurrency and with quantitative con-
straints, but they have difficulties with partial and incremental specifications
(nondeterminism) and with computational complexity. Indicatively, equation-
based models and associated analytical methods are used not only in hardware
design and control theory, but also in scheduling and in performance evaluation
(e.g., in networking).

Computational models, on the other hand, naturally support nondeterminis-
tic abstraction hierarchies and a rich theory of computational complexity, but
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they have difficulties taming concurrency and incorporating physical constraints.
Many major paradigms of Computer Science (e.g., the Turing machine; the
thread model of concurrency; the structured operational semantics of program-
ming languages) have succeeded precisely because they abstract away from all
physical notions of concurrency and from all physical constraints on compu-
tation. Indeed, whole subfields of Computer Science are built on and flourish
because of such abstractions: in operating systems and distributed computing,
both time-sharing and parallelism are famously abstracted to the same concept,
namely, nondeterministic sequential computation; in algorithms and complexity
theory, real time is abstracted to big-O time, and physical memory to big-O
space. These powerful abstractions, however, are largely inadequate for embed-
ded systems design.

Analytical and Computational Models Aim at Different System
Requirements. The differences between equation-based and machine-based de-
sign are reflected in the type of requirements they support well. System designers
deal with two kinds of requirements. Functional requirements specify the ex-
pected services, functionality, and features, independent of the implementation.
Extra-functional requirements specify mainly performance, which characterizes
the efficient use of real time and of implementation resources; and robustness,
which characterizes the ability to deliver some minimal functionality under cir-
cumstances that deviate from the nominal ones. For the same functional re-
quirements, extra-functional properties can vary depending on a large number
of factors and choices, including the overall system architecture and the charac-
teristics of the underlying platform.

Functional requirements are naturally expressed in discrete, logic-based for-
malisms. However, for expessing many extra-functional requirements, real-valued
quantities are needed to represent physical constraints and probabilities. For
software, the dominant driver is correct functionality, and even performance and
robustness are often specified discretely (e.g., number of messages exchanged;
number of failures tolerated). For hardware, continuous performance and ro-
bustness measures are more prominent and refer to physical resource levels such
as clock frequency, energy consumption, latency, mean-time to failure, and cost.
For embedded systems integrated in mass-market products, the ability to quan-
tify trade-offs between performance and robustness, under given technical and
economic constraints, is of strategic importance.

Analytical and Computational Models Support Different Design
Processes. The differences between models based on data flow and models based
on control flow have far-reaching implications on design methods. Equation-
based modeling yields rich analytical tools, especially in the presence of stochas-
tic behavior. Moreover, if the number of different basic building blocks is small, as
it is in circuit design, then automatic synthesis techniques have proved extraor-
dinarily successful in the design of very large systems, to the point of creating an
entire industry (Electronic Design Automation). Machine-based models, on the
other hand, while sacrificing powerful analytical and synthesis techniques, can
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be executed directly. They give the designer more fine-grained control and pro-
vide a greater space for design variety and optimization. Indeed, robust software
architectures and efficient algorithms are still individually designed, not auto-
matically generated, and this will likely remain the case for some time to come.
The emphasis, therefore, shifts away from design synthesis to design verification
(proof of correctness).

Embedded systems design must even-handedly deal with both: with com-
putation and physical constraints; with software and hardware; with abstract
machines and transfer functions; with nondeterminism and probabilities; with
functional and performance requirements; with qualitative and quantitative anal-
ysis; with booleans and reals. This cannot be achieved by simple juxtaposition
of analytical and computational techniques, but requires their tight integration
within a new mathematical foundation that spans both perspectives.

3 Current Engineering Practices for Embedded Systems
Design, and Their Limitations

3.1 Model-Based Design

Language-Based and Synthesis-Based Origins. Historically, many method-
ologies for embedded systems design trace their origins to one of two sources: there
are language-based methods that lie in the software tradition, and synthesis-based
methods that come out of the hardware tradition. A language-based approach is
centered on a particular programming language with a particular target run-time
system. Examples include Ada and, more recently, RT-Java [5]. For these lan-
guages, there are compilation technologies that lead to event-driven implementa-
tions on standardized platforms (fixed-priority scheduling with preemption). The
synthesis-based approaches, on the other hand, have evolved from hardware de-
sign methodologies. They start from a system description in a tractable (often
structural) fragment of a hardware description language such as VHDL and Ver-
ilog and, ideally automatically, derive an implementation that obeys a given set of
constraints.

Implementation Independence. Recent trends have focused on combining
both language-based and synthesis-based approaches (hardware/software code-
sign) and on gaining, during the early design process, maximal independence
from a specific implementation platform. We refer to these newer aproaches col-
lectively as model-based, because they emphasize the separation of the design
level from the implementation level, and they are centered around the semantics
of abstract system descriptions (rather than on the implementation semantics).
Consequently, much effort in model-based approaches goes into developing effi-
cient code generators. We provide here only a short and incomplete selection of
some representative methodologies.

Model-Based Methodologies. The synchronous languages, such as Lustre
and Esterel [11], embody an abstract hardware semantics (synchronicity) within
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different kinds of software structures (functional; imperative). Implementation
technologies are available for several platforms, including bare machines and
time-triggered architectures. Originating from the design automation commu-
nity, SystemC [19] also chooses a synchronous hardware semantics, but allows
for the introduction of asynchronous execution and interaction mechanisms from
software (C++). Implementations require a separation between the components
to be implemented in hardware, and those to be implemented in software; dif-
ferent design-space exploration techniques provide guidance in making such par-
titioning decisions. A third kind of model-based approaches are built around a
class of popular languages exemplified by MATLAB Simulink, whose semantics
is defined operationally through its simulation engine.

More recent modeling languages, such as UML [20] and AADL [10], attempt
to be more generic in their choice of semantics and thus bring extensions in two
directions: independence from a particular programming language; and empha-
sis on system architecture as a means to organize computation, communication,
and constraints. We believe, however, that these attempts will ultimately fall
short, unless they can draw on new foundational results to overcome the current
weaknesses of model-based design: the lack of analytical tools for computational
models to deal with physical constraints; and the difficulty to automatically
transform noncomputational models into efficient computational ones. This leads
us to the key need for a better understanding of relationships and transforma-
tions between heterogeneous models.

Model Transformations. Central to all model-based design is an effective
theory of model transformations. Design often involves the use of multiple mod-
els that represent different views of a system at different levels of granularity.
Usually design proceeds neither strictly top-down, from the requirements to the
implementation, nor strictly bottom-up, by integrating library components, but
in a less directed fashion, by iterating model construction, model analysis, and
model transformation. Some transformations between models can be automated;
at other times, the designer must guide the model construction. The ultimate
success story in model transformation is the theory of compilation: today, it
is difficult to manually improve on the code produced by a good optimizing
compiler from programs (i.e., computational models) written in a high-level lan-
guage. On the other hand, code generators often produce inefficient code from
equation-based models: fixpoints of equation sets can be computed (or approx-
imated) iteratively, but more efficient algorithmic insights and data structures
must be supplied by the designer.

For extra-functional requirements, such as timing, the separation of human-
guided design decisions from automatic model transformations is even less well
understood. Indeed, engineering practice often relies on a ‘trial-and-error’ loop
of code generation, followed by test, followed by redesign (e.g., priority tweaking
when deadlines are missed). An alternative is to develop high-level program-
ming languages that can express reaction constraints, together with compilers
that guarantee the preservation of the reaction constraints on a given execution
platform [13]. Such a compiler must mediate between the reaction constraints
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specified by the program, such as timeouts, and the execution constraints of the
platform, typically provided in the form of worst-case execution times. We believe
that an extension of this approach to other extra-functional dimensions, such as
power consumption and fault tolerance, is a promising direction of investigation.

3.2 Critical Versus Best-Effort Engineering

Guaranteeing Safety Versus Optimizing Performance. Today’s systems
engineering methodologies can be classified also along another axis: critical sys-
tems engineering, and best-effort systems engineering. The former tries to guar-
antee system safety at all costs, even when the system operates under extreme
conditions; the latter tries to optimize system performance (and cost) when the
system operates under expected conditions. Critical engineering views design
as a constraint-satisfaction problem; best-effort engineering, as an optimization
problem.

Critical systems engineering is based on worst-case analysis (i.e., conservative
approximations of the system dynamics) and on static resource reservation. For
tractable conservative approximations to exist, execution platforms often need
to be simplified (e.g., bare machines without operating systems; processor ar-
chitectures that allow time predictability for code execution). Typical examples
of such approaches are those used for safety-critical systems in avionics. Real-
time constraint satisfaction is guaranteed on the basis of worst-case execution
time analysis and static scheduling. The maximal necessary computing power is
made available at all times. Dependability is achieved mainly by using massive
redundancy, and by statically deploying all equipment for failure detection and
recovery.

Best-effort systems engineering, by contrast, is based on average-case (rather
than worst-case) analysis and on dynamic resource allocation. It seeks the effi-
cient use of resources (e.g., optimization of throughput, jitter, or power) and is
used for applications where some degradation or even temporary denial of ser-
vice is tolerable, as in telecommunications. The ‘hard’ worst-case requirements
of critical systems are replaced by ‘soft’ QoS (quality-of-service) requirements.
For example, a hard deadline is either met or missed; for a soft deadline, there
is a continuum of different degrees of satisfaction. QoS requirements can be en-
forced by adaptive (feedback-based) scheduling mechanisms, which adjust some
system parameters at run-time in order to optimize performance and to recover
from deviations from nominal behavior. Service may be denied temporarily by
admission policies, in order to guarantee that QoS levels stay above minimum
thresholds.

A Widening Gap. The two approaches —critical and best-effort engineering—
are largely disjoint. This is reflected by the separation between ‘hard’ and ‘soft’
real time. They correspond to different research communities and different prac-
tices. Hard approaches rely on static (design-time) analysis; soft approaches, on
dynamic (run-time) adaptation. Consequently, they adopt different models of
computation and use different execution platforms, middleware, and networks.
For instance, time-triggered technologies are considered to be indispensable for
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drive-by-wire automotive systems [17]. Most safety-critical systems adopt very
simple static scheduling principles, either fixed-priority scheduling with preemp-
tion, or round-robin scheduling for synchronous execution. It is often said that
such a separation is inevitable for systems with uncertain environments. Meet-
ing hard constraints and making the best possible use of the available resources
seem to be two conflicting requirements. The hard real-time approach leads to
low utilization of system resources. On the other hand, soft approaches take the
risk of temporary unavailability.

We believe that, left unchecked, the gap between the two approaches will
continue to widen. This is because the uncertainties in embedded systems design
keep increasing for two reasons. First, as embedded systems are deployed in a
greater variety of situations, their environments are less perfectly known, with
greater distances between worst-case and expected behaviors. Second, because
of the rapid progress in VLSI design, embedded systems are implemented on
sophisticated, hardware/software layered multicore architectures with caches,
pipelines, and speculative execution. The ensuing difficulty of accurate worst-
case analysis makes conservative, safety-critical solutions ever more expensive, in
both resource and design cost, in comparison to best-effort solutions. The divide
between critical and best-effort engineering already leads often to a physical
separation between the critical and noncritical parts of a system, each running
on dedicated hardware or during dedicated time slots. As the gap between worst-
case and average-case solutions increases, such separated architectures are likely
to become more prevalent.

Bridging the Gap. We think that technological trends oblige us to revise the
dual vision and separation between critical and best-effort practices. The in-
creasing computing power of system-on-chip and network-on-chip technologies
allows the integration of critical and noncritical applications on a single chip.
This reduces communication costs and increases hardware reliability. It also al-
lows a more rational and cost-effective management of resources. To achieve this,
we need methods for guaranteeing a sufficiently strong, but not absolute, separa-
tion between critical and noncritical components that share common resources.
In particular, design techniques for adaptive systems should make flexible use of
the available resources by taking advantage of any complementarities between
hard and soft constraints. One possibility may be to treat the satisfaction of
critical requirements as minimal guaranteed QoS level. Such an approach would
require, once again, the integration of boolean-valued and quantitative methods.

4 Two Demands on a Solution

Heterogeneity and Constructivity. Our vision is to develop an Embedded
Systems Design Science that even-handedly integrates analytical and compu-
tational views of a system, and that methodically quantifies trade-offs between
critical and best-effort engineering decisions. Two opposing forces need to be ad-
dressed for setting up such an Embedded Systems Design Science. These corre-
spond to the needs for encompassing heterogeneity and achieving constructivity
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during the design process. Heterogeneity is the property of embedded systems
to be built from components with different characteristics. Heterogeneity has
several sources and manifestations (as will be discussed below), and the existing
body of knowledge is largely fragmented into unrelated models and correspond-
ing results. Constructivity is the possibility to build complex systems that meet
given requirements, from building blocks and glue components with known prop-
erties. Constructivity can be achieved by algorithms (compilation and synthesis),
but also by architectures and design disciplines.

The two demands of heterogeneity and constructivity pull in different direc-
tions. Encompassing heterogeneity looks outward, towards the integration of
theories to provide a unifying view for bridging the gaps between analytical and
computational models, and between critical and best-effort techniques. Achiev-
ing constructivity looks inward, towards developing a tractable theory for system
construction. Since constructivity is most easily achieved in restricted settings,
an Embedded Systems Design Science must provide the means for intelligently
balancing and trading off both ambitions.

4.1 Encompassing Heterogeneity

System designers deal with a large variety of components, each having different
characteristics, from a large variety of viewpoints, each highlighting different
dimensions of a system. Two central problems are the meaningful composition
of heterogeneous components to ensure their correct interoperation, and the
meaningful refinement and integration of heterogeneous viewpoints during the
design process. Superficial classifications may distinguish between hardware and
software components, or between continuous-time (analog) and discrete-time
(digital) components, but heterogeneity has two more fundamental sources: the
composition of subsystems with different execution and interaction semantics;
and the abstract view of a system from different perspectives.

Heterogeneity of Execution and Interaction Semantics. At one extreme
of the semantic spectrum are fully synchronized components, which proceed
in lock-step with a global clock and interact in atomic transactions. Such a
tight coupling of components is the standard model for most synthesizable hard-
ware and for hard real-time software. At the other extreme are completely
asynchronous components, which proceed at independent speeds and interact
nonatomically. Such a loose coupling of components is the standard model for
most multithreaded software. Between the two extremes, a variety of interme-
diate and hybrid models exist (e.g., globally-asynchronous locally-synchronous
models). To better understand their commonalities and differences, it is useful
to decouple execution from interaction semantics [21].

Execution Semantics. Synchronous execution is typically used in hardware, in
synchronous programming languages, and in time-triggered systems. It consid-
ers a system’s execution as a sequence of global steps. It assumes synchrony,
meaning that the environment does not change during a step, or equivalently,
that the system is infinitely faster than its environment. In each execution step,
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all system components contribute by executing some quantum of computation.
The synchronous execution paradigm, therefore, has a built-in strong assump-
tion of fairness: in each step all components can move forward. Asynchronous
execution, by contrast, does not use any notion of global computation step. It
is adopted in most distributed systems description languages such as SDL [16]
and UML, and in multithreaded programming languages such as Ada and Java.
The lack of built-in mechanisms for sharing computation between components
can be compensated through constraints on scheduling (e.g., priorities; fairness)
and through mechanisms for interaction (e.g., shared variables).

Interaction Semantics. Interactions are combinations of actions performed by
system components in order to achieve a desired global behavior. Interactions
can be atomic or nonatomic. For atomic interactions, the state change induced in
the participating components cannot be altered through interference with other
interactions. As a rule, synchronous programming languages and hardware de-
scription languages use atomic interactions. By contrast, languages with buffered
communication (e.g., SDL) and multithreaded languages (e.g., Java) generally
use nonatomic interactions. Both types of interactions may involve strong or
weak synchronization. Strongly synchronizing interactions can occur only if all
participating components agree (e.g., CSP rendezvous). Weakly synchronizing
interactions are asymmetric; they require only the participation of an initiating
action, which may or may not synchronize with other actions (e.g., outputs in
synchronous languages).

Heterogeneity of Abstractions. System design involves the use of models
that represent a system at varying degrees of detail and are related to each
other in an abstraction (or equivalently, refinement) hierarchy. Heterogeneous
abstractions, which relate different styles of models, are often the most powerful
ones: a notable example is the boolean-valued gate-level abstraction of real-
valued transistor-level models for circuits.

In embedded systems, a key abstraction is the one relating application soft-
ware to its implementation on a given platform. Application software is largely
untimed, in the sense that it abstracts away from physical time. References to
physical time may occur in the parameters of real-time statements, such as time-
outs, which are treated as external events. The application code running on a
given platform, however, is a dynamical system that can be modeled as a timed
or hybrid automaton [1]. The run-time state includes not only the variables of
the application software, but also all variables that are needed to characterize
its dynamic behavior, including clock variables. Modeling implementations may
require additional quantitative constraints, such as probabilities to describe fail-
ures, and arrival laws for external events. We need to find tractable theories
to relate the application and implementation layers. In particular, such theo-
ries must provide the means for preserving, in the implementation, all essential
properties of the application software.

Another cause of heterogeneity in abstractions is the use of different ab-
stractions for modeling different extra-functional dimensions (or ‘aspects’) of
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a system. Some dimensions, such as timing and power consumption in certain
settings, may be tightly correlated; others, such as timing and fault tolerance,
may be achievable through independent, composable solutions. In general we
lack practical theories for effectively separating orthogonal dimensions, and for
quantifying the trade-offs between interfering dimensions.

Metamodeling. We are not the first to emphasize the need for encompassing
heterogeneity in systems design. Much recent attention has focused on so-called
‘metamodels,’ which are semantic frameworks for expressing different models
and their interoperation [2,9,3]. We submit that we need a metamodel which is
not just a disjoint union of submodels within a common (meta)language, but one
which preserves properties during model composition and supports meaningful
analyses and transformations across heterogeneous model boundaries. This leads
to the issue of constructivity in design.

4.2 Achieving Constructivity

The system construction problem can be formulated as follows: “build a system
meeting a given set of requirements from a given set of components.” This is a
key problem in any engineering discipline; it lies at the basis of various systems
design activities, including modeling, architecting, programming, synthesis, up-
grading, and reuse. The general problem is by its nature intractable. Given a
formal framework for describing and composing components, the system to be
constructed can be characterized as a fixpoint of a monotonic function which
is computable only when a reduction to finite-state models is possible. Even in
this case, however, the complexity of the algorithms is prohibitive for real-world
systems.

What are the possible avenues for circumventing this obstacle? We need results
in two complementary directions. First, we need construction methods for specific,
restricted application contexts characterized by particular types of requirements
and constraints, and by particular types of components and composition mecha-
nisms. Clearly, hardware synthesis techniques, software compilation techniques,
algorithms (e.g., for scheduling, mutual exclusion, clock synchronization), archi-
tectures (such as time-triggered; publish-subscribe), as well as protocols (e.g., for
multimedia synchronization) contribute solutions for specific contexts. It is impor-
tant to stress that many of the practically interesting results require little compu-
tation and guarantee correctness more or less by construction.

Second, we need theories that allow the incremental combination of the above
results in a systematic process for system construction. Such theories would
be particularly useful for the integration of heterogeneous models, because the
objectives for individual subsystems are most efficiently accomplished within
those models which most naturally capture each of these subsystems. A re-
sulting framework for incremental system construction is likely to employ two
kinds of rules. Compositionality rules infer global system properties from the
local properties of subsystems (e.g., inferring global deadlock-freedom from the
deadlock-freedom of the individual components). Noninterference rules guar-
antee that during the system construction process, all essential properties of
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subsystems are preserved (e.g., establishing noninterference for two scheduling
algorithms used to manage two system resources). This suggests the following
action lines for research.

Constructivity for Performance and Robustness. The focus must shift
from compositional methods and architectures for ensuring only functional prop-
erties, to extra-functional requirements such as performance and robustness.

Performance. The key issue is the construction of components (schedulers) that
manage system resources so as to meet or optimize given performance require-
ments. These cover a large range of resource-related constraints involving upper
and lower bounds, averages, jitter, and probabilities. Often the requirements for
different resources are antagonistic, for instance, timeliness and power efficiency,
or respecting deadlines and maximizing utilization. Thus we need construction
methods that allow the joint consideration of performance requirements and the
analysis of trade-offs.

Another inherent difficulty in the construction of schedulers comes from
uncertainty and unpredictability in a system’s execution and external environ-
ments. In this context, poor precision for time constants used in static schedul-
ing techniques implies poor performance [23]. One approach is to build adaptive
schedulers, which control execution by dynamically adjusting their scheduling
policies according to their knowledge about the system’s environment. However,
currently there is no satisfactory theory for combining adaptive techniques for
different kinds of resources. Such an approach must address the concerns of
critical systems engineering, which currently relies almost exclusively on static
techniques. The development of a system construction framework that allows the
joint consideration of both critical and noncritical performance requirements for
different classes of resources is a major challenge for the envisioned Embedded
Systems Design Science.

Robustness. The key issue is the construction of components performing as de-
sired under circumstances that deviate from the normal, expected operating en-
vironment. Such deviations may include extreme input values, platform failures,
and malicious attacks. Accordingly, robustness requirements include a broad
spectrum of properties, such as safety (resistance to failures), security (resis-
tance to attacks), and availability (accessibility of resources). Robustness is a
transversal issue in system construction, cutting across all design activities and
influencing all design decisions. For instance, system security must take into ac-
count properties of the software and hardware architectures, information treat-
ment (encryption, access, and transmission), as well as programming disciplines.
The current state of the art in building robust systems is still embryonic. A
long-term and continuous research effort is necessary to develop a framework for
the rigorous construction of robust systems. Our purpose here is only to point
out the inadequacy of some existing approaches.

In dynamical systems, robustness can be formalized as continuity, namely,
that small perturbations of input values cause small perturbations of output
values. No such formalization is available for discrete systems, where the change
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of a single input or state bit can lead to a completely different output behavior.
Worse, many of our models for embedded systems are nonrobust even in the
continuous domain. For example, in timed automata, an arbitrarily small change
in the arrival time of an input may change the entire behavior of the automaton.

In computer science, redundancy is often the only solution to build reliable
systems from unreliable components. We need theories, methods, and tools
that support the construction of robust embedded systems without resorting
to such massive, expensive overengineering. One hope is that continuity can be
achieved in fully quantitative models, where quantitative information expresses
not only probabilities, time, and other resource consumption levels, but also func-
tional characteristics. For example, if we are no longer interested in the absolute
(boolean-valued) possibility or nonpossibility of failure, but in the (real-valued)
mean-time to failure, we may be able to construct continuous models where small
changes in certain parameters induce only small changes in the failure rate.

Incremental Construction. A practical methodology for embedded systems
design needs to scale, and overcome the limitations of current algorithmic
verification and synthesis techniques. One route for achieving scalability is to
rely on compositionality and noninterference rules which require only light-
weight analyses of the overall system architecture. Such correct-by-construction
techniques exist for very specific properties and architectures. For example, time-
triggered architectures ensure timely and fault-tolerant communication for dis-
tributed real-time systems; a token-ring protocol guarantees mutual exclusion
for strongly synchronized processes that are connected in a ring. It is essential
to extend the correct-by-construction paradigm by studying more generally the
interplay between architectures and properties.

A related class of correct-by-construction techniques is focused on the use of
component interfaces [7]. A well-designed interface exposes exactly the informa-
tion about a component which is necessary to check for composability with other
components. In a sense, an interface formalism is a ‘type theory’ for component
composition. Recent trends have been towards rich interfaces, which expose func-
tional as well as extra-functional information about a component, for example,
resource consumption levels. Interface theories are especially promising for in-
cremental design under such quantitative constraints, because the composition
of two or more interfaces can be defined as to calculate the combined amount of
resources that are consumed by putting together the underlying components.

5 Summary

We believe that the challenge of designing embedded systems offers a unique
opportunity for reinvigorating Computer Science. The challenge, and thus the
opportunity, spans the spectrum from theoretical foundations to engineering
practice. To begin with, we need a mathematical basis for systems modeling and
analysis which integrates both abstract-machine models and transfer-function
models in order to deal with computation and physical constraints in a consis-
tent, operative manner. Based on such a theory, it should be possible to combine
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practices for critical systems engineering to guarantee functional requirements,
with best-effort systems engineering to optimize performance and robustness.
The theory, the methodologies, and the tools need to encompass heterogeneous
execution and interaction mechanisms for the components of a system, and they
need to provide abstractions that isolate the subproblems in design that require
human creativity from those that can be automated. This effort is a true grand
challenge: it demands paradigmatic departures from the prevailing views on both
hardware and software design, and it offers substantial rewards in terms of cost
and quality of our future embedded infrastructure.

Acknowledgments. We thank Paul Caspi and Oded Maler for valuable com-
ments on a preliminary draft of this manuscript.
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