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Preface

The 11th International Conference on Implementation and Application of
Automata (CIAA 2006) was held at the National Taiwan University, Taiwan,
August 21–23, 2006.

This volume of Lecture Notes in Computer Science contains the papers that
were presented at CIAA 2006, as well as the abstracts of the poster papers that
were displayed during the conference. The volume also includes the abstracts
and extended abstracts of three invited lectures presented by Ming Li, Grzegorz
Rozenberg, and Sheng Yu.

The 22 regular papers were selected from 76 submissions covering various
topics in the theory, implementation, and applications of automata and related
structures. Each submitted paper was reviewed by at least three Program Com-
mittee members, with the assistance of referees. The authors of the papers pre-
sented here come from the following countries: Austria, Canada, China, Cyprus,
Czech Republic, Finland, France, Germany, Hungary, India, Ireland, Italy, The
Netherlands, Poland, Spain, Sweden, Taiwan, UK, and USA.

We wish to thank all who have made this meeting possible: the authors for sub-
mitting papers, the Program Committee members and external referees (listed in
the proceedings) for their excellent work, and our three invited speakers. Finally,
we wish to express our sincere appreciation to the sponsors, local organizers, pro-
ceedings Chair, the editors of the Lecture Notes in Computer Science series and
Springer, in particular Alfred Hofmann, for their help in publishing this volume.

August 2006 Oscar H. Ibarra
Hsu-Chun Yen
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Information Distance and Its Applications

Ming Li

School of Computer Science, University of Waterloo, Waterloo, Ont. N2L 3G1,
Canada

mli@uwaterloo.ca
http://www.cs.uwaterloo.ca/∼mli

Abstract.We summarize the recent developments of a general theory of
information distance and its applications in whole genome phylogeny,
document comparison, internet query-answer systems, and many other
data mining tasks. We also solve an open problem regarding the univer-
sality of the normalized information distance.

1 Introduction

We live in an information society. Internet has created the cyber, or informa-
tion, space. In the classical Newton world, we know how to measure physical
distances. Have you thought about the equally fundamental question of how to
measure the “information distance” between two objects: two documents, two
letters, two emails, two music scores, two languages, two programs, two pictures,
two systems, or two genomes? Such a measurement should not be application
dependent. Just like in the classical world, we do not measure distances some-
times by the amount of time a bird flies and sometimes by the number of pebbles
lining up on the Santa Barbara beach.

A good information distance metric should not only be application-independent
but also universally minorize all other “reasonable” definitions.

The task of a universal definition of information distance is illusive. Traditional
distances such as the Euclidean distance or the Hamming distance obviously fail
for even trivial examples. For instance, we (human) perceive a positive photo
to be similar to its negative print, while their Hamming distance is the largest.
In fact, for any computable distance, we can always find such counterexamples.
Furthermore, when we wish to adopt a metric to be the universal standard of
information distance, we must justify it. It should not be out of thin air. It
should not be from a specific application. It should not require amendaments for
different applications. It should be as good as any definition for any application,
in some sense.

From a simple and accepted assumption in thermodynamics, we have derived
such a universal information distance [2,18,19] and a general method to measure
similarities between two sequences [18,19]. The theory has been initially applied
to alignment free whole genome phylogeny [18], chain letter history [3], language
history [4,19], plagiarism detection [5], and more recently to music classification
[9], parameter-free data mining paradigm [13], internet knowledge discovery [8],
among many recent applications.

O.H. Ibarra and H.-C. Yen (Eds.): CIAA 2006, LNCS 4094, pp. 1–9, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



2 M. Li

2 A Theory of Information Distance

Given a binary string x, the Kolmogorov complexity of x condition on y, K(x|y),
is the length of the shortest program that outputs x with input y. When y = ε,
we write K(x|ε) as K(x). For formal definitions and a comprehensive study of
Kolmogorov complexity, see [20]. What would be a good departure point for
defining “information distance” between two sequences? What should be the
properties it must satisfy? The second question is easy to answer. We can use
our common sense of a metric: (a) It must be symmetric; (b) It should satisfy
the triangle inequality; (c) The distance of any sequence x to itself is 0, and
positive otherwise.

To answer the first question, in early 1990’s, we have studied the energy cost
of convertion between two strings x and y. Over half a century ago, John von
Neumann hypothesized that performing 1 bit of information processing costs
1KT of energy, where K is the Boltzmann’s constant and T is the room tem-
perature. Observing that reversable computations can be done for free, in early
1960’s Rolf Landauer revised von Neumann’s proposal to hold only for irre-
versible computations. We thought about using the minimum energy needed to
convert between x and y to define their distance, as it is an objective measure.
Thus, if you have x and wish to erase it, then you can reversibly convert it to x∗,
x’s shortest effective description, then erase |x∗|. Only the process of erasing |x∗|
bits is irreversible computation. Carrying on from this line of thinking, we [2]
have defined the energy to convert between x and y to be the length of shortest
program converting x to y and vice versa. That is, with respect to a universal
Turing machine U , the cost of converting between x and y is:

E(x, y) = min{|p| : U(x, p) = y, U(y, p) = x} (1)

A natural upper bound for E(x, y) is K(x|y) + K(y|x). Using this (and other
reasons), we have defined the sum distance in [2]:

dsum(x, y) = K(x|y) + K(y|x).

However, the following theorem proved in [2] was a surprise.

Theorem 1. E(x, y) = max{K(x|y), K(y|x)}.

Thus, we have defined the max distance:

dmax(x, y) = max{K(x|y), K(y|x)}.

Both distances are shown to satisfy the basic distance requirements such as
positivity, symmetricity, triangle inequality, in [2]. We have further shown that
dmax and dsum minorizes all other distances that are computable and satisfies
some reasonable density condition that within distance k to any string x, there
are at most 2k other strings. Formally, a distance D is admissible if

∑
y

2−D(x,y) ≤ 1. (2)
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Then we proved that for any admissible computable distance D, there is a
constant c, for all x, y, dmax(x, y) ≤ D(x, y) + c. Put it bluntly, if any other
distance recovers some regularity between two sequences, so will dmax.

The remaining question is to demonstrate that such distances are useful. How-
ever when we [18] tried to use our information distances, dsum or dmax, to measure
similarity between genomes in 1998, we were in trouble. E. coli and H. influenza
are sister species but their genome lengths defer greatly. The E. coli genome is
about 5 megabases whereas the H. influenza genome is only 1.8 megabase long.
dmax or dsum between the two genomes are predominated by genome length
difference rather than the amount of information they share. Such a measure
trivially classifies H. influenza to be closer to a more remote species of similar
genome length such as A. fulgidus (2.18 megabases) than to E. coli.

In order to solve this problem, we introduced “shared information distance”
in [18]:

dshare(x, y) = 1− K(x)−K(x|y)
K(xy)

.

where K(x)−K(x|y) is mutual information between sequences x and y [20]. We
proved the basic distance metric requirements such as symmetry and triangle
inequality, and have demonstrated its successful application in whole genome
phylogeny in [18]. It turns out that dshare is equivalent to

K(x|y) + K(y|x)
K(xy)

.

Thus, it can be viewed as the normalized sum distance. Hence, it becomes natural
to normalize the optimal max distance in [19]:

d(x, y) =
max{K(x|y), K(y|x)}

max{K(x), K(y)} (3)

We have called d(x, y) the “normalized information distance” proved metricity
properties similar to that of normalized sum distance.

However, a key issue of universality of the normalized information distance,
all versions, has remained unsolved. The similar proof for dmax and dsum does not
work any more for normalized distances dshare and d. In [18], in order to prove
the universality statement, we were only able to prove a very weak statement:
for any computable distance D, there is a constance c ≤ 2 such that, with
probability 1, for all sequences x and y, d(x, y) ≤ cD(x, y). This seemingly
innocent statement is actually begging the question: the random sequences have
probability 1, whereas it is non-random sequences we are interested in measuring
and this statement says nothing about them.

In our second paper [19], we have tried to avoid this problem by rescaling the
density conditions changing from

|{y : |y| = n and D(x, y) ≤ d ≤ 1}| ≤ 2dn (4)

in [18] to
|{y : |y| = n and D(x, y) ≤ d ≤ 1}| ≤ 2dK(x) (5)
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However it turns out that Formula (5) is so restrictive that no reasonable dis-
tances can satisfy such requirement except our own normalized information
distance. Thus the universality statement is again meaningless. Cilibrasi and
Vitanyi have tried to further change the definition of normalized admissible dis-
tances [9].

3 Fixing the Theory

We did not need to change the definition after all. Using the the original defition
of [18], Formula (4), we now prove the full universality theorem, removing the
“with probability 1” condition.

Theorem 2. For any computable distance D, satisfying density requirement
(4), for all sequence x and y, d(x, y) ≤ D(x, y) + O(log n/ max{K(x), K(y)}).

Proof. For any binary sequence x of length n, Muchnik [21] proved that there
exists a (shortest) program x∗, such that |x∗| = K(x), K(x|x∗) = O(log n) and
K(x∗|x) = O(log n). That is, x∗ is a shortest program for x and it does not
contain too much extra information unrelated to x.

For any sequences x and y of length up to n, there are x∗ and y∗ satisfying
Muchnick’s theorem. Given y, we can compute y∗ using O(log n) information.
Then using K(x∗|y∗) information, we can compute x∗, which in turn gives x
with O(log n) information. We have proved:

K(x|y) ≤ K(x∗|y∗) + O(log n). (6)

The equality actually holds. More general exploration of this is in [12].
Applying Inequality (6),

d(x, y) =
max{K(x|y), K(y|x)}

max{K(x), K(y)}

≤ max{K(x∗|y∗), K(y∗|x∗)}+ O(log n)
max{K(x), K(y)} (7)

Given D, using the density property of Formula (4) and the computability
of D, we know K(x∗|y∗) ≤ D(x, y)|x∗| and K(y∗|x∗) ≤ D(y, x)|y∗|. Thus, from
Formula (7) and symmetry of D, we have,

d(x, y) ≤ max{K(x∗|y∗), K(y∗|x∗)}+ O(log n)
max{K(x), K(y)}

≤ max{D(x, y)|x∗|, D(x, y)|y∗|}+ O(log n)
max{|x∗|, |y∗|}

≤ D(x, y) + O(log n/ max{K(x), K(y)}).

Similar proof gives the universality statement for the normalized sum distance
(dshare), defined in [18].



Information Distance and Its Applications 5

Corollary 1. For any computable distance D satisfying (4), there is a constant
c ≤ 2 such that for all sequences x and y, dshare(x, y) ≤ cD(x, y), modulo an
O(log n/K(xy)) additive factor.

4 A Tale of Two Approximations

Kolmogorov Complexity is not computable and not approximable [20]. Two
heuristic methods were proposed to approximate d(x, y) in practice.

For sequence data, we [18] demonstrated that normal compression algorithms
can be naturally and conveniently adopted to relplace Kolmgorov complexity
in the formula d(x, y). Others have subsequently successfully used the popular
compression programs such as gzip, jzip and bzip [4,19,13] to apply to similar fo-
mulas. Keogh, Lonardi and Ratanamahatana called this method parameter-free
[13] and compared it with 51 different parameter-laden measures/methods from
seven major data mining conferences SIGKDD, SIGMOD, ICDM, ICDE, SSDB,
VLDB, PKDD, PAKDD, on various standard time series clustering tasks. The
simple parameter-free normalized information distance method outperformed all
51 methods for classifying various time series ranging from heart beat signals to
stock market curves.

We give the original example presented in [18] on whole genome phylogeny.
This is the first success of this method. Traditional method for phylogeny de-
pended on multiple alignment of sequences of different species corresponding to
one protein. Often different protein gives different phylogeny. For example, half of
the proteins in mammalian mtDNA implied that primates were closer to rodents,
and the other half implied that primates were closer to ferungulates. Around the
turn of the last century, we started to have complete genomes of many species.
We thought about doing phylogeny construction using the whole genome infor-
mation. However, multiple sequence alignment of complete genomes were out of
question for obvious reasons. Partial information of the genomes were used to
construct trees: gene order, break points, and segment copying [29]. We took a
bold step by bluntly computing dshare(x, y) for each pair of x and y, mitochon-
drial genomes for 20 species of mammals and constructed the tree in Figure 1
accordingly. The method was very robust and 100% correct on all branches at our
first try. The tree confirmed the accepted hypothesis that primates are closer to
ferungulates than rodents. Later, the similar experiments were repeated in [19],
and many other publications.

Objects can be given literally. A sequence contains information within it-
self. Names and abstract concepts also contain information, although not within
themselves. The name “human genome” implies three gigabases of information.
The phrase “War and Peace by Tolstoy” perhaps carries information even be-
yond the book. If “human genome” and “War and Peace” can still be asscoiated
with some sequences that can be compressed, the concept of “home” or “red” is
even more problematic. Behind these names, there lays the common knowledge
of the human kind and our civilization. Can we still measure the normalized
information distance between two abstract concepts? Cilibrasi and Vitanyi [8]
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Fig. 1. The evolutionary tree of 20 mammals built from their mtDNA sequences

observed an alternative way of approximating d(x, y). By the Coding Theorem
(see [20]), we have

− logm(x) = K(x) + O(1), (8)

where m(x) is the universal distribution of x. Equation 8 relates the randomness
of an object to its probability. While we do not know how to compute m(x), the
natural heuristic now is to use the distribution of x in the world-wide web to
approximate m(x). Let us define such a distribution g(x) to be the probability x
appears in a page indexed by an internet search engine. Then the Shannon-Fano
code length is

G(x) = − log g(x).

Replacing K(x) by G(x) in the definition of d(x, y), with simple rearranging, we
now arrive at our second heuristic approximation of d(x, y).

d′′(x, y) =
G(xy)−min{G(x), G(y)}

max{G(x), G(y)}

=
max{log f(x), log f(x)} − log f(x, y)

log N −min{log f(x), log f(y)} . (9)

where f(x) is the number of pages containing x, f(x, y) is the number of pages
containing both x and y, and N is the total number of indexed pages.

Extending formula (9) to its conditional version, it has allowed us to explore
the new frontiers of the internet as a knowledge-base, in [12]. In that paper, we
have implemented the first Query-Answer prototype based on this theory. The
system parses (by natural language processing) a user’s query such as “Who
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invented the light bulb?” into x (who) and y (the light bulb) and a condition
(invent). Then it using a search engine to search for names that are closest
to “the light bulb” conditioning on “invent”, using the normalized information
distance approximated by Formula (9). The search result is shown in Table 1.

Table 1. Top 10 answers to “Who invented the light bulb”

Who invented the light bulb?
Candidates Distance
thomas edison 0.4801

edison 0.4859
lightbulb 0.6087

thomas alva edison 0.6444
did thomas edison 0.7252

latimer 0.7283
thomas 0.7724

joseph swan 0.7750
incandescent light bulb 0.7876

wilson swan 0.8088

Table 1 is interesting. The top answer Thomas Edison is of course the popular
solution, whereas it is amusing to see the name of Sir Joseph Wilson Swan
who invented the electric lamp with a carbon filament, 20 years before Thomas
Edison. Lewis Latimer’s name was also not far fetched; a son of of runaway black
slaves, he made decisive improvements to the Edison’s bulb.

5 Blossom of Hundred Flowers

The reserach of information distance has developed along two directions: theo-
retical and practical.

Paper [2] has stimulated the theoretical research. Significant theoretical progress
has been reported by an elite group of Russian scientists: A.V. Chernov, An.A.
Muchnik, A.E. Romashchenko, A.K. Shen, N.K. Vereshchagin, M.V. V’yugin, and
many others. See [21,6,22,27,30,31]. Many of these results will be disseminated in
the third edition of our book [20].

Along the more practical direction, initiated by the paper [18], many research
groups have reexamined our experiments and experimented on the new ones.
We mention a few more recent experiments not already mentioned. Using var-
ious versions of normalized information distance, a wide range of applications
have appeared: language classification [4,19], hierarchical clustering [9,15], music
classification [7], software metrics and obfuscation [14,28], web page authorship,
topic and domain identification [25], protein sequence/structure classification
[16,17], phylogenetic reconstruction [1,23], hurricane risk assessment [11], SVM
kernel for string classification [10], ortholog detection [24], and clustering fetal
heart rate tracings [26].
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While the method is robust, it fails when there are not enough data to com-
pensate for the compression overhead. Francesc Rossello, J. Rocha, G. Valiente
and their colleagues in Spain have experimented on protein sequence compar-
isons using the normalized information distance. Because the protein sequences
are short and simple compression does not take right scoring functions (such
as BLOSUM scores) into account, the clustering result is inferior to standard
methods, as expected. The universality claim is theoretical. In practice, it may
be possible to characterize the data so that some class of compression algorithms
approximates the optimal. A typical such assumption is the stationary source in
the field of information theory.
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7. R. Cilibrasi, P.M.B. Vitányi, and R. de Wolf Algorithmic clustring of music based
on string compression. Comput. Music J., 28:4(2004), 49–67.
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Ciliates (ciliated protozoa) are unicellular organisms with an evolutionary history
that extends back perhaps two billion (2 x 109) years. The unique extraordinary
feature of ciliates is that they posses two kinds of nuclei within the same cell:
macronucleus containing genes that provide the genetic information needed to
maintain the structure and function of the cell, and micronucleus that does
not contribute to the maintainance, growth and proliferation of the cell – it is
reserved for the sexual exchange of DNA between two mating cells.

When ciliates are starved they may mate. At some stage during sexual re-
production a micronucleus develops into a new macronucleus. This process of
transformation of the micronuclear genome into the macronuclear genome, called
gene assembly, is perhaps the most involved process of DNA manipulation yet
known in living organisms. It is fascinating from both the biological and com-
putational point of view.

The computational nature of gene assembly has attracted much attention in
recent years and considerable body of theory has been developed. This theory
involves, among others, novel kinds of string and graph rewriting systems, novel
sorts of graphs as well as new questions about various known graph families, and
novel topics in the combinatorics of words. In our talk we will survey some of
the main developments of this theory.
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Abstract. The state complexity of combined operations is studied. We
show that the state complexity of a combined operation can be very dif-
ferent from the composition of the state complexities of the participating
individual operations. However, the estimate through individual nonde-
terministic state complexities for each of the combined operations being
considered is very similar to the actual state complexity. Several open
problems related to state complexity are also proposed.

1 Introduction

State complexity is a fundamental topic in theoretical computer science. Many
results on state complexity also have important practical implications in au-
tomata applications [26]. In recent years, there have been a large number of
papers published in this area of research. Examples include [2-5, 8-10, 13-16, 18,
19, 23, 24, 26, 28]. However, in all those papers, state complexity is considered for
only individual operations, e.g., union, intersection, catenation, and Kleene star.
In [27], the state complexity of combined operations was proposed as one of the
future directions in state complexity research. There have been a few examples
recently, e.g., the state complexity of

{x1, x2, · · · , xk}∗

is considered in [6] and the state complexity of Lk, for k ≥ 2, is studied in [20].
In both theory and practice, combinations of operations are as important as

individual operations. It is clear that the state complexity of combined operations
should be studied along with the study of the state complexity of individual
operations.

The state complexity of a combined operation may not necessarily be equal
to the composition of the state complexities of the participating individual op-
erations. For example, given an m-state DFA A and an n-state DFA B, what
is the state complexity of (L(A)L(B))∗ (i.e., the number of states of a mini-
mal DFA that accepts (L(A)L(B))∗ in the worst case)? It is known that the
state complexity of the catenation of an m-state DFA language and an n-state
DFA language is m2n − 2n−1, and the state complexity of the (Kleene) star of

O.H. Ibarra and H.-C. Yen (Eds.): CIAA 2006, LNCS 4094, pp. 11–22, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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an n-state DFA language is 2n−1 + 2n−2. Then is it true that the state com-
plexity of (L(A)L(B))∗ is 2m2n−2n−1−1 + 2m2n−2n−1−2? In fact, it is not true
for this combination of operations. The result is even in a different order [7].
However, in some other cases, the state complexity of a combination of opera-
tions is very similar to the composition of the state complexities of individual
operations.

In this paper, we consider only the combinations of operations each of which
consists of only two operations. In particular, every second operation of the
combined operations we consider is (Kleene) star. Note that the first operation
of a combination may restrict its result to a special type of DFA. Then the
worst cases for the second operation in the general setting may or may not be
among the outputs of the first operation. Therefore, the state complexity of a
combination of operations may or may not be the same as the composition of
the state complexities of the individual operations. Each case has to be studied
individually.

We also use the nondeterministic state complexity of each individual oper-
ation to estimate the state complexity of a combined operation. Surprisingly,
all the results of the estimation for the examples we use are very close to
the actual state complexities. Although they are not as accurate as the state
complexities we have proved, they appear to be good enough for practical
purposes.

In the following, we introduce the basic notations that are necessary for this
paper and review the definition of state complexity in the next section. In Sec-
tion 3, we consider the state complexities of two combined operations: star of
union and of star of intersection. In Section 4, we consider another two com-
bined operations: star of catenation and star of reversal. We estimate the same
four combined operations using individual nondeterministic state complexities in
Section 5. We conclude the paper and raise several related questions in Section 6.

2 Preliminaries

A deterministic finite automaton (DFA) is denoted by a 5-tuple A=(Q, Σ, δ, s, F ),
where Q is the finite and nonempty set of states, Σ is the finite and nonempty
set of input symbols, δ : Q×Σ → Q is the state transition function, s ∈ Q is the
initial state, and F ⊆ Q is the set of final states. A DFA is said to be complete
if δ(q, a) is defined for all q ∈ Q and a ∈ Σ.

A nondeterministic finite automaton (NFA) is also denoted by a 5-tuple M =
(Q, Σ, δ, s, F ), where Q, Σ, s, and F are defined the same way as in a DFA
and δ : Q × Σ → 2Q maps a pair of a state and an input symbol into a set of
states rather than, restrictively, a single state. An NFA may have multiple initial
states, in which case an NFA is denoted (Q, Σ, δ, S, F ) where S is the set of initial
states. An ε-NFA is a further extension of NFA, where δ : Q× (Σ ∪ {ε})→ 2Q

allows ε-transitions from the states.
The reader may refer to [11,21,25] for a rather complete background knowledge

in automata theory.
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State complexity ([26]) is a descriptional complexity measure for regular lan-
guages based on the deterministic finite automaton model. The state complexity
of a regular language L, denoted sc(L), is the number of states in the mini-
mal complete DFA accepting L. The state complexity of a class L of regular
languages, denoted sc(L), is the supremum among all sc(L), L ∈ L. When we
speak about the state complexity of an operation on regular languages, we mean
the state complexity of the languages resulting from the operation. For example,
we say that the state complexity of the catenation of an m-state DFA language,
i.e., a language accepted by an m-state complete DFA, and an n-state DFA
language is exactly m2n − 2n−1. This means that m2n − 2n−1 is the state com-
plexity of the class of languages each of which is the catenation of an m-state
DFA language and an n-state DFA language. In other words, there exist two
regular languages that are accepted by an m-state DFA and an n-state DFA,
respectively, such that the catenation of them is accepted by a minimal DFA
of m2n − 2n−1 states, and this is the worst case. So, in a certain sense, state
complexity is a worst-case complexity measure. Clearly, the state complexity of
a regular-language operation gives a lower bound for the space, as well as the
time, complexity of the same operation.

3 Star of Union and Star of Intersection

We first consider the state complexities of the star-of-union and the star-of-
intersection combined operations. It is clear that for an m-state DFA A and
an n-state DFA B, the state complexities of L(A) ∪ L(B) and L(A) ∩ L(B),
respectively, are both mn. We know that the state complexity for the star of
a k-state DFA language is 2k−1 + 2k−2. Calculating the composition of the
complexities of union (intersection) and star, we obtain 2mn−1 + 2mn−2. How-
ever, the state complexities of the two combined operations are actually very
different [22].

Theorem 1. Let A be an m-state DFA and B an n-state DFA, for m, n > 2.
Then the state complexity of (L(A) ∪ L(B))∗ is

2m+n−1 − 2m−1 − 2n−1 + 1.

The idea for proving that the above number is an upper bound can be described
as follows. An ε-NFA that accepts (L(A)∪L(B))∗ is first constructed, and then
the number of states in the corresponding DFA is counted. Note that each state
of the DFA is a set of states of the NFA, i.e., the states of A and B, possibly
except the initial state of the DFA. It can be shown that it is the worst case
when at least one of the two initial states is a final state and each of A and B
has only one final state. In this case, the initial state of the DFA consists of the
two initial states of A and B, respectively. Then the states of the DFA consist of
the following two parts. The first part consists of (2m−1 − 1)(2n−1 − 1) nonfinal
states, each of which is a set that is the union of two nonempty sets of states
of A and B, respectively, and do not contain the final states. The second part
consists of 2m+n−2 final states, each of which is a set of states of A and B that
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include the two final states. Then the total number of states in the resulting
DFA is

(2m−1 − 1)(2n−1 − 1) + 2m+n−2 = 2m+n−1 − 2m−1 − 2n−1 + 1.

For proving that the above upper bound can be reached, we choose the fol-
lowing general example for m, n > 2:

A = (QA, Σ, δA, 0, {0}) where QA = {0, 1, . . . , m− 1}, Σ = {a, b, c}

– δA(j, a) = (j + 1) (mod m1), j = 0, 1, . . . , m− 1,
– δA(j, b) = j , j = 0, 1, . . . , m− 1,
– δA(0, c) = 1, δA(j, c) = j, j = 1, 2, . . . , m− 1,

and
B = (QB, Σ, δB, 0, {0}) where QB = {0, 1, . . . , n− 1},

– δB(j, b) = (j + 1) (mod m2), j = 0, 1, . . . , n− 1,
– δB(j, a) = j, j = 0, 1, . . . , n− 1,
– δB(0, c) = 1, δB(j, c) = j, j = 1, 2, . . . , n− 1.

DFA A and B are shown in Figure 1 and Figure 2, respectively.
It has been proved [22] that any DFA accepts (L(A) ∪ L(B))∗ needs at least

2m+n−1 − 2m−1 − 2n−1 + 1 states, for m, n > 2.
Then the above number is the state complexity for the combined operation:

star of union. It is very different from our calculation according to the individual
state complexities.

Let us consider another similar combined operation: star of intersection. We
know that the intersection of two regular languages has exactly the same state
complexity as the union of two regular languages. However, we have the following
result [22].

a
a

a

a
a

b c

b, c b, c

b, c

0

1 2

m-1

Fig. 1. DFA A
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1 2
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Fig. 2. DFA B

Theorem 2. There exist an m-state DFA A and an n-state DFA B, m, n ≥ 3,
such that any DFA accepts (L(A) ∩ L(B))∗ has at least 2m(n−2) distinct states.

This result can be shown using the DFAs in Figure 3 and Figure 4.
Clearly, this result is very different from the result for the star-of-union com-

bined operation. The former is of 2O(mn) and the latter is of 2O(m+n). It appears
that the set of the DFAs resulted from the union operation is different from
the set of the DFAs resulted from the intersection. They may not be disjoint.
However, the former may not include those that are the worst cases for the star
operation. It is an interesting question: what are the properties of the DFAs that
are resulted from a certain operation?
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1 2

m-1

b,c,d,e

,d,e ,d,e

b, c ,d,e

a

Fig. 3. DFA A in the worst-case example for (L(A) ∩ L(B))∗
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Fig. 4. DFA B in the worst-case example for (L(A) ∩ L(B))∗

4 Star of Catenation and Star of Reversal

For star-of-catenation and star-of-reversal combined operations, we again start
with looking at the compositions of the state complexities of individual opera-
tions. We know that for an m-state DFA A and an n-state DFA B, the state
complexities for L(A)L(B), L(B)R, and L(B)∗, respectively, are m2n−2n−1, 2n,
and 2n−1 + 2n−2. Then 2m2n−2n−1−1 + 2m2n−2n−1−2 would be an upper bound
for (L(A)L(B))∗ and 22n−1 + 22n−2 would be an upper bound for (L(B)R)∗.
However, each actual state complexity is significantly smaller than the above
bound [7].

Theorem 3. Let A be an arbitrary m-state DFA and B an arbitrary n-state
DFA, m, n > 1. Then

2m+n−1 + 2m+n−4 − 2m−1 − 2n−1 + m + 1

states are sufficient and necessary for a DFA to accept (L(A)L(B))∗ in the worst
case.

A detailed proof of the theorem can be found in [7]. An upper bound 2m+n + 1,
which is not tight, can be easily proved as follows. An m + n-state ε-NFA is
easily constructed to accept (L(A)L(B))+. An equivalent DFA of 2m+n states
can be constructed from the ε-NFA. Then at most one more state is needed for
accepting (L(A)L(B))∗.

A worst-case example is given in Figure 5 and Figure 6, for m, n > 1. It has
been shown that any DFA accepting (L(A)L(B))∗ needs at least

2m+n−1 + 2m+n−4 − 2m−1 − 2n−1 + m + 1

states, which is exactly the same as the upper bound.
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Fig. 5. DFA A in the worst-case example for (L(A)L(B))∗
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Fig. 6. DFA B in the worst-case example for (L(A)L(B))∗

Note that from the above result and several previous results, it appears that
the proof of an upper bound in general needs careful observations, which may
not be very difficult, and the proof of a tight lower bound needs right examples,
which are usually difficult to find. However, an upper bound is shown to be tight
only when a general worst-case example is found. The software system Grail+
has played an important role in helping us to find the right examples.

Theorem 4. Let A be an arbitrary n-state DFA, n > 0. Then 2n states are
sufficient and necessary in the worst case for a DFA to accept (L(A)R)∗.

It is easy to show that the state complexity of this combined operation is no
more than 2n + 1 by the following arguments. (L(A)R)+ is clearly accepted by
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an NFA of n states with possibly multiply initial states. An equivalent minimal
DFA would have no more than 2n states. Then at most one more state, i.e.,
2n + 1 in total, is needed for a DFA to accept (L(A)R)∗. A better bound 2n is
proved in [7]. A worst case example for n > 1 is shown in Figure 7, for which 2n

states are necessary for any DFA to accept the star of its reversal. This example
is a modification of an example in [17].

0

1 2

n-1

a, c

b,
c

b

a

a

a

a

b, c

b, c

Fig. 7. A worst-case example for the star of reversal

5 Relation to Nondeterministic State Complexity

The above results on the state complexities of combined operations show that
the state complexity of a combined operation can be very different from the
composition of the state complexities of the participating individual operations
in some cases and very similar in other cases.

In this section, we examine a different approach to estimate the state com-
plexity of a combined operation.

In obtaining each of the upper bounds of the combined operations, we first
construct an NFA and then transform it into a DFA and count the maximal
possible useful states in the DFA. Naturally, we can calculate the composition
of nondeterministic state complexities of individual operations first, and then
calculate the number of states in the resulting DFA that is corresponding to the
resulting NFA.

The nondeterministic state complexities of basic individual operations on reg-
ular languages were obtained in [8]. We list them in the following.

Theorem 5. For any integer m, n ≥ 1, let A be an m-state NFA and B an
n-state NFA. Then
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– m + n + 1 states are sufficient and necessary in the worst case for an NFA
to accept L(A) ∪ L(B);

– m · n states are sufficient and necessary in the worst case for an NFA to
accept L(A) ∩ L(B);

– m + n states are sufficient and necessary in the worst case for an NFA to
accept L(A)L(B).

Theorem 6. For any integer n > 2, let A be an n-state NFA. Then n+1 states
are sufficient and necessary in the worst case for an NFA to accept the language
L(A)∗.

Theorem 7. For any integer n > 3, let A be an n-state NFA. Then n+1 states
are sufficient and necessary in the worst case for an NFA to accept the language
L(A)R.

Note that DFAs are special cases of NFAs. For an m-state DFA A and an n-state
DFA B, the nondeterministic state complexity of L(A)∪L(B) is m + n + 1 and
that of the star of an m + n + 1 NFA is m + n + 2. Then m + n + 2 is an upper
bound for the number of states in a minimal NFA that accepts (L(A)∪L(B))∗.
Therefore, 2m+n+2 is an upper bound for the number of states in an equivalent
minimal DFA. This number of states is very close to the state complexity of
(L(A) ∪ L(B))∗, i.e., 2m+n−1 − 2m−1 − 2n−1 + 1.

We estimate the state complexity for each of the four combined operations
through individual nondeterministic state complexities (NSC). These results,
compared with their (deterministic) state complexities, are listed in the following
table, where A is an m-state DFA and B an n-state DFA:

Operations State Complexity Est. through NSC
(L(A) ∪ L(B))∗ 2m+n−1 − 2m−1 − 2n−1 + 1 2m+n+2

(L(A) ∩ L(B))∗ ≥ 2m(n−2) 2mn+1

(L(A)L(B))∗ 2m+n−1 + 2m+n−4 − 2m−1 − 2n−1 + m + 1 2m+n+1

(L(B)R)∗ 2n 2n+2

It is clear from the above table that the estimates through nondeterministic
state complexities are very close to the real state complexities for those combined
operations. This fact also suggests that the compositions of the nondeterministic
state complexities of individual operations are very close to the nondeterministic
state complexities of those combined operations. Although the tight bounds or
the accurate state complexities still need to be rigorously proved, those estimates
are good enough for practical purposes in general.

Why the compositions of individual (deterministic) state complexities can be
very different from the combined state complexities, but it appears not true for
nondeterministic state complexities? Note that both (deterministic) state com-
plexity and nondeterministic state complexity are worst-case complexities. One
conjecture is that the (deterministic) state complexity of each individual opera-
tion can be far away from its corresponding average state complexity. However,
this appears to be untrue in general for nondeterministic state complexities. Note
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that, unfortunately, average state complexity has not been studied except in [18]
where several operations on unary automata, i.e., automata with the one-letter
alphabet, have been studied. Here we talk about average state complexity only
informally. The resulting finite automaton of an operation may fall into a proper
subset of the finite automata in general setting, which may not include the worst
cases of the second operation. However, for NFAs, it appears that the number
of states in the worst cases after each of the operations, union, catenation, star,
reversal, etc., is linear to their average case. Then the resulting NFAs from the
first operation may not be very different from those worst-case NFAs for the
second operation although they are restricted to only a proper subset of the
general NFAs.

Using the same approach, i.e., through individual nondeterministic state com-
plexities, we can give an upper bound for the (deterministic) state complexity
of each of the following combined operations: reversal of union, reversal of inter-
section, reversal of catenation, and reversal of star.

Theorem 8. Let A be an m-state DFA and B an n-state DFA, m, n > 3. Then

(1) 2m+n+2 states are sufficient for a DFA to accept (L(A) ∪ L(B))R;
(2) 2mn+1 states are sufficient for a DFA to accept (L(A) ∩ L(B))R;
(3) 2m+n+1 states are sufficient for a DFA to accept (L(A)L(B))R;
(4) 2n+2 states are sufficient for a DFA to accept (L(B)∗)R.

Although several of the above estimates can be easily reduced, we predict that
they are already very close to the accurate state complexities.

6 Conclusion and Open Problems

The state complexities of four different combinations of operations on regu-
lar languages have been considered: star of union, star of intersection, star of
catenation, and star of reversal. In the first, third, and fourth cases, the state
complexities of the combined operations are significantly smaller than the com-
positions of the state complexities of their participating individual operations.
However, in the second case, they are very close. These results show that al-
though the composition of the state complexities of individual operations gives
an upper bound to the state complexity of the combined operation, this upper
bound may or may not be close to the tight bound. The tight bound can be far
from this bound. The state complexity of each combined operation has to be
studied individually in order to know its result. There are many combinations of
operations on regular languages that are worth studying. They are not restricted
to combinations of two operations. Hopefully many new results on this topic will
be obtained in the near future.

Consider the star operation on n-state DFA languages, n > 0, Clearly, there
is only a subset of DFAs of n states such that the resulting minimal DFAs after
the star operation on them have 2O(n) states. We now call this set of DFAs the
2O(n) group, for any n ≥ 1. Clearly, the DFAs that accept the union of two
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regular languages and that are among the worst cases resulted from the union
operation are not in the 2O(n) group. Then there are at least the following two
questions that may be interesting: (1) What are the properties of the 2O(n) group
for the star operation? (2) What are the properties of the DFAs that accept the
union of two regular languages? Similar questions can be asked for many other
operations and state complexities. It appears that many refined questions need
to be solved in automata theory.

The estimates through individual nondeterministic state complexities for com-
bined operations appear to be very close to the actual state complexities. One
possible reason for this phenomenon is that the nondeterministic state complex-
ity of an operation may be close to its average state complexity and this is not
true for the (deterministic) state complexity of the same operation in general.
Unfortunately, average state complexities in both deterministic case and non-
deterministic case have not been studied except in [18]. Both deterministic and
nondeterministic average state complexities, as well as their relations with the
worst-case state complexities, are important future topics in this area of research.
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Abstract. Weighted finite automata (WFA) are used with accelerating
hardware to scan large genomic banks. Hardwiring such automata raise
surface area and clock frequency constraints, requiring efficient ε-transi-
tions-removal techniques. In this paper, we present new bounds on the
number of new transitions for several ε-transitions-removal problems. We
study the case of acyclic WFA. We introduce a new problem, the partial
removal of ε-transitions while accepting short chains of ε-transitions.

1 Introduction

Weighted Finite Automata (WFA) are used to find occurrences of biological
patterns in genomic databases containing tens of gigabytes of data. Biological
patterns can be seen as regular or weighted expressions over the 20-letter amino
acid alphabet. They may represent the signature of a protein family, the features
of a domain or the specific location of an active site. The usual length ranges of
the patterns are from a few amino acids to a few tenth.

WFA can be efficiently hardwired onto reconfigurable architectures (namely
FPGA components) to speed up the search of biological patterns, reducing com-
putation time from hours to minutes [1]. Today, with the exponential growth
of genomic data, the hardwire WFA alternative offers an interesting approach
compared to pure software implementation.

Hardware speed comes from the ability to compute all WFA states simulta-
neously. Actually, genomic data (input string) are processed on-the-fly, and the
performance of a hardwired WFA is mainly determined by the input data rate.
Thus, the processing time becomes independent of the WFA size, and is only
dictated by the time for accessing all the items of the database.

This scheme is valid as long as the WFA fits into FPGA components. Un-
fortunately, biological patterns may require consequent reconfigurable resources,
particularly when insertion/deletion errors are considered. In that case, inser-
tions are modeled by cyclic transitions and deletions by ε-transitions. Resulting
WFA are thus much larger in terms of the number of transitions. From a hard-
ware point of view, the resources are directly related to the number of transitions
to hardwire. Hence, finding equivalent automata with less transitions is highly
beneficial.

O.H. Ibarra and H.-C. Yen (Eds.): CIAA 2006, LNCS 4094, pp. 23–33, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Beside the automaton size, a direct hardware implementation of ε-transitions
is not realistic. Fig. 1 exemplifies the hardware mapping of a WFA with ε-transi-
tions. Paths with ε-transitions are represented by dotted lines: they systemat-
ically bypass state registers. The main consequence is that a long critical path
(dashed line) is created from the input to the output. The critical path is defined
as the longest path between two registers, and determines the maximum clock
frequency of the circuit. The longer the path, the lower the frequency. Hence, to
keep a reasonable working frequency, the critical path needs to be broken into
smaller parts by removing some ε-transitions.

Fig. 1. Hardwiring a WFA with 5 regular transitions doubled with ε-transitions [2]. A
critical path runs through the whole automaton.

The classical method removing ε-transitions in automata uses the ε-closure of
every state [3,4]. Recently, for WFA, Mohri proposed a generic algorithm with
a smallest distance method [5]. A certain condition must be checked to ensure
that the weights are well-defined in cycles.

These algorithms can raise the number of transitions from n to O
(
n2

)
. The

resulting automaton can be minimized [6], but for large automata, such a limit
makes the hardware implementation impossible. As an example, in [7], we ex-
perienced an 80-state automaton for discovering olfactory receptor genes in the
dog genome. On this automaton, the classical ε-transitions-removal algorithms
produce more than 3100 new transitions. This number reaches the limit of today
FPGA’s technology and prevents larger automata from being hardwired.

Hromkovic proposed a study for ε-transitions in finite automata [8]. There are
rational expressions of size O(n) such that every ε-free recognizing automaton
has a size Ω(n log n). Lifshits raised this bound to Ω(n log2 n/ log log n) [9]. Other
works optimized the creation time of those automata [10].

In this paper we study the development of WFA: we double every transi-
tion with an ε-transition, and we study the number of new transitions created
when removing the ε-transitions. We previously proposed a first study for linear-
shaped automata: in this case, we designed an optimal method that produces
automata with Θ(n log n) new transitions [2].
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The rest of the paper is organized as follows. Section 2 provides WFA back-
ground. Then, in Section 3, we study the development of WFA for acyclic
automata. Section 4 presents a new problem driven by the hardware constraints:
the removal while accepting short ε-chains. The final section concludes with ex-
perimental results and perspectives.

2 Background

2.1 WFA and Pattern Matching

Definition 1. A Weighted Finite Automaton (WFA) is a 5-tuple A=(Q, Σ, Δ,
I, F ), where Q is a finite set of states, Σ a finite alphabet, Δ ⊂ Q × Q × (δ :
Σ 
→ K) a finite transition table, I ⊆ Q and F ⊆ Q the sets of initial and final
states.

The number of transitions of the WFA is |Δ|. For each transition τ = (q, q′, δ) ∈
Δ, we denote by i[τ ] = q its initial state, f[τ ] = q′ its final state, and δ[τ ] = δ its
weight function. A WFA without ε-transitions is a WFA such that δ(ε) = −∞ for
every transition (q, q′, δ). Now we define paths as consecutive labeled transitions:

Definition 2. A path π = (τ1, α1) . . . (τk, αk) ∈ (Δ × (Σ))∗ in a WFA A is a
succession of pairs of transitions and characters where the transitions τ1 . . . τk

are consecutive transitions, that is f[τi] = i[τi+1] for i = 1 . . . k − 1, and where
the characters αi are in Σ. The label of π is the word α1 . . . αk.

The weight function δ can be extended to paths: for a path π=(τ1, α1) . . . (τk, αk),
we define δ(π) = δ[τ1](α1) + . . . + δ[τk](αk). Weights on words used in pattern
matching are computed as weights on paths between some initial and final states.

2.2 Path-Equivalence

Now we give a definition of our ε-transition-removal problem. We define it as
finding a new automaton with a special kind of equivalence, the path-equivalence,
which requires that some paths (the closed paths, see below) have a superior path
in the corresponding automaton.

Definition 3. One path π is superior to another one π′ if both paths have the
same label, the same initial state and the same final state, and if δ(π) ≥ δ(π′).

Definition 4. A path π = (τ1, α1) . . . (τk, αk) is left-closed if it begins with an
initial state (i[τ1] ∈ I) or if its first character α1 is different than ε. Similarly, a
path is right-closed if f[τk] ∈ F or αk �= ε. A path is closed if it is closed at both
sides.

Definition 5. Two WFA A = (Q, Σ, Δ, I, F ) and A′ = (Q, Σ, Δ′, I, F ) are
path-equivalent if every closed path in A labeled by a word w �= ε has a superior
path in A′ and reciprocally.
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Basically, the path-equivalence states that the two automata simulate each other
through their paths. Usual algorithms that remove the ε-transitions such as [4]
or [5] produce path-equivalent automata.

2.3 Development of an Automaton

Given a WFA without ε-transitions A = (Q, Σ, Δ, I, F ) and a deletion cost cε,
we define Aε as the WFA in which all transitions of A are doubled by ε-transi-
tions. More precisely, every transition (q, q′, δ) ∈ Δ is extended with δ(ε) = cε.

Definition 6. Given a WFA A, any WFA A′ is a development of A if A′ is
path-equivalent to Aε and if has no ε-transitions. We say that A′ is developed
from A if A′ is a development of A.

To be efficiently harwired, a WFA needs to be developed with as few new transi-
tions as we can. In the general case, the ε-transitions-removal from an automaton
with n transitions gives an automaton with O

(
n2

)
new transitions. In [2], we

studied the case of linear-shaped automata. We designed an optimal method
that produces automata with Θ(n log n) new transitions.

3 Removal in Acyclic Automata

Here we use the results on linear-shaped WFA to analyze the number of new
transitions in the developments of some more generic automata. To ensure that
the weights are well defined, automata with cycles require special constraints
[5]. The section 3.1 considers acyclic automata with n states : we give an upper
bound to develop such automata. The section 3.2 extends the result to automata
with cycles, but with no cycles on ε-transitions. Such automata are common in
biological applications (Fig. 2).

Fig. 2. Detail of a genomic automaton recognizing MIP membrane proteins [11]. The
complete automaton has more than 300 transitions. Except for some insertion transi-
tions (X), this automaton is acyclic.

3.1 Acyclic Automata

Definition 7. A WFA A = (Q, Σ, Δ, I, F ) is acyclic if its graph has no cycle.
The states of an acyclic WFA can be numbered q1, q2, . . . qn such that there is no
backward transition (qi, qj , δi,j) with i ≥ j.

We call such a WFA a numbered automaton. The following algorithm develops a
numbered automaton with n states from the development of two sub-automata
obtained by cutting the automaton at a state qz .
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Algorithm 1. Development of a numbered WFA

Input: a numbered WFA with n states A = (Q,Σ, Δ, I, F ), an integer z ∈ [2, n − 1], a
cost cε

Let C be the set of all cut transitions (qi, qj , δi,j) with i < z < j
Let Z be a set of states touching C
Let A1 = (Q1 = {q1 . . . qz} ∪ Z, Σ, Δ1, I, {qz} ∪ Z)
and A2 = (Q2 = {qz . . . qn} ∪ Z, Σ, Δ2, {qz} ∪ Z, F )

where the transition tables Δ1 and Δ2 are the restrictions of Δ on Q1 and Q2

Let A′
1 and A′

2 recursively be two developments of A1 and A2

Let A′ be the concatenation of A′
1 and A′

2 : A′ = (Q,Σ, Δ′, I, F ), Δ′ = Δ′
1 ∪ Δ′

2

For all qi in Q1

Add to Δ′ the transition (qi, q, δ
′
i) for all final states q ∈ F

with δ′
i(α) = maxi+1≤k≤n [(n − i − 1)cε + δk(α)]

For all qi in Q2

Add to Δ′ the transition (q, qi, δ
′′
i ) for all initial states q ∈ I

with δ′′
i (α) = max1≤k≤i [(i − 1)cε + δk(α)]

Output: the WFA A′ = (Q, Σ, Δ′, I, F )

In the algorithm for linear-shaped WFA (Algorithm 1 in [2]), initial and final
states of both sub-automata guarantee that the paths are closed. Here some
transitions are cut over qz (Fig. 3). All the paths are closed if one adds to each
sub-automaton a set of states Z that touches the cut transitions, that is a set Z
such that any cut transition starts or ends in Z. Each state in Z is a final state for
the left sub-automaton and an initial state for the right one : the sub-automata
are overlapping. We have the following property:

Property 1. The algorithm 1 builds an automaton which is path-equivalent to
the initial automaton.

Proof. We just give the sketch of the proof, which is similar to the case of linear-
shaped WFA (Lemma 3 in [2]). A 
→ A′ Each closed path of A not labeled by
ε and not completely included in A1 or in A2 can be written as π1π2, where
π1 and π2 are closed paths in A1 and A2. Any such decomposition leads to a
superior closed path in A′. A′ 
→ A Reciprocally, any closed path of A′ either
goes through a state q ∈ {qz} ∪ Z, or jumps over such a state. In both case a
superior closed path of A can be reconstructed.

Each step of the algorithm adds no more than |Q1| · |F |+ |Q2| · |I| transitions.
To bound this value, we need a bound on |Z|.

Definition 8. Let be a numbered WFA with states {q1, q2 . . . qn}, and qz a state.
The width κz is the number of transitions (qa, qb, δ) with a < z < b.

The maximal width is K = maxi κi: it can be seen as the maximal number of
branches in the WFA, except the main branch. On the automaton depicted on
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Fig. 3. Algorithm developing a numbered WFA with n states. A state qz is chosen to
split the automaton into two parts with z and n− z +1 states. The two cut transitions
are shown in double lines. The set Z = {x, 6′} touches every cut transition. This set
Z is added to the two parts to give the sub-automata A1 and A2. Final states of A1

(and initial states of A2) are {z} ∪ Z. At the bottom, we add to the developments of
the two sub-automata transitions from initial states of A1 to all states of A2. With the
symmetrical operation, no more than |Q1| · |F | + |Q2| · |I | transitions are created.

Fig. 2, we have K = 1 for all numberings. In the general case, the widths depend
on the chosen numbering.

At each step, the set Z has no more than K elements. When applying recur-
sively algorithm 1, the sets I and F will always have no more than K+1 elements.
Then one step of the algorithm adds no more than (|Q1| + |Q2|) · (K + 1) ≤
(n + K) · (K + 1) transitions. We thus have the following consequence of the
property 1:

Property 2. Any numbered WFA with a maximal width K can be developed
with O((K + 1) · n · (log n +K)) transitions.



Path-Equivalent Removals of ε-transitions in a Genomic WFA 29

This coarse bound guarantees that automata with a small maximum width are
developed with very few new transitions (Fig. 6). This is sufficient for real-life
genomic automata representing biological features. Such automata, hand-crafted
or computed by state-merging techniques [11], are compounds of a few linear-
shaped parts (Fig. 2).

For the lower bound, the generic argument on linear-shaped WFA can be
applied to the longest path in the WFA. If this longest path has a size  ≤ n, we
have a bound of Ω( log ).

3.2 ε-acyclic Automata

To extend the previous bounds for automata with cycles, we can consider a
slightly modified automaton. An ε-acyclic automaton is an automaton without
cycles of ε-transitions (Fig. 4). As an ε-acyclic automaton has a numbering with
no backward ε-transition, the algorithm 1 can still be used. The same bound
of O((K + 1) · n · (log n +K)) is obtained (each width κi is now the number of
ε-transitions cut by the state qi).

1

2

4

z

1′

2′

3′

6′

... ...
y

Fig. 4. Unlike the automaton on Fig. 3, this numbered automaton has a backward
transition (6′, y, δ). However, that transition is not doubled with an ε-transition.

In real applications, if we have an automaton A without ε-transitions, we add
some ε-transitions while keeping the automaton ε-acyclic. This construction is
justified when the automaton represents biological structures made of similar
units. Those units are separated by sequences that cannot be deleted, as for
instance in the case of exon recognition.

4 Removal with Short ε-chains

To further lower the number of new transitions, we can remark that short ε-
chains (that is chains of successive ε-transitions) can be actually hardwired with
a reasonable critical path (Fig. 5).
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Fig. 5. Critical path for ε-chains with 8-bit weights and a 40 ns (25 MHz) constraint
on a WFA with 20 regular transitions and different lengths of ε-chains. Chains of 3
ε-transitions can be hardwired. The FPGA being half-filled (between 48% and 51%),
the hardware compiler has a moderate pressure on the different optimisation phases.
The critical path should be linear to the length of ε-chains, but the hardware compiler
does not further minimize it as soon as it meets the constraint.

Definition 9. Given a WFA A and nε ∈ N, any WFA A′′ is a development
with short ε-chains of A if A′′ is path-equivalent to Aε and if all ε-chains of A′′

have a length ≤ nε.

Given a linear-shaped WFA with n states, we can split it into nε parts of size
O(n/nε), develop each sub-automaton with O(n/nε · log(n/nε)) transitions, and
finally add an ε-transition that covers each sub-automaton.

Thus we have the following property:

Property 3. A linear-shaped WFA with n states can be developed with short
ε-chains with O(n log(n/nε)) new transitions.

Furthermore, if we restrict that all remaining ε-transitions are original, that is,
they were present before the removal, the same bound is a lower bound:

Property 4. Given nε, any development with short original ε-chains of a linear-
shaped WFA with n states has Ω(n log(n/nε)) new transitions.

The proof, which enumerates some sets in which at least one transition must
appear in the automaton, is given in appendix. Although accepting short chains
of ε-transitions is a local change, this technique lowers the actual number of
new transitions (Fig. 6). The ε-chains can be used in (ε)-acyclic WFA to obtain
O((K + 1) · n · (log(n/nε) +K)) new transitions.
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Number of states of the initial automaton 20 80 200
Quadratical ε-transitions-removal algorithms 190 3160 19900
Linear-shaped WFA [2] 69 433 1345
Linear-shaped WFA, development with short ε-chains (section 4)

ε-chains of length ≤ nε = 3 42 310 1022
ε-chains of length ≤ nε = 5 30 250 890

(ε-)acyclic WFA (section 3)
K = 1, best-case 96 522 1555
K = 1, worst-case 141 925 2835
K = 2, best-case 124 612 1766
K = 2, worst-case 176 1292 4096

Fig. 6. Number of new transitions produced while removing ε-transitions on various
automata. For acyclic WFA, complexity range from best-case (only one additional
branch through the whole WFA) to the worst-case (each cut has a maximal width: the
automaton is constantly branching). Even in the worst-case situation, genomic WFA
with 80 states and no more than K + 1 = 3 branches can be efficiently hardwired with
less than 1300 new transitions.

5 Conclusions and Perspectives

The removal techniques presented in sections 3 and 4 allow larger automata
to be hardwired on a given FPGA. For acyclic automata, the best results for
a strict application of algorithm 1 would require finding the numbering of the
states that minimizes the maximal width K. In fact, for real automata with a
small number of branches as the one in Fig. 2, good solutions are found when
cutting at the branching states.

Other studies could find more precise bounds. For acyclic automata, the initial
number of transitions could be taken into account. Finally, we plan to study ap-
proximated developments of automata, in which the resulting automaton would
not strictly be path-equivalent to the initial one. In real applications, the cost
assigned to deletions prevents sequences with too many ε-transitions from being
accepted.
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Appendix

Proof of Property 4

This proof uses a similar technique than the proof of the Lemma 6 in [2], but
additional work is done to handle the short ε-chains. The span of a transition
(qi, qj , δ) is |j − i|.

Proof. Let A be a linear-shaped WFA with n states, and A′′ a development with
short original ε-chains of A. Let π = (τa+1, αA)(τa+2, ε) . . . (τb−1, ε)(τb, αB) be
a closed path in A, where αA and αB are two characters different from ε. This
path has in A′′ a superior path π′ that can be written as π′ = (π′

1, ε) (τA, αA)
(π′

2, ε) (τB , αB) (π′
3, ε).

As the three paths π′
1, π′

2 are π′
3 are original ε-chains, any of them has a span

not greater than nε transitions, that is 3nε globally. Therefore, at least one of
the two transitions τA and τB has a span included in {

⌈
k−3nε

2

⌉
, . . . , k− 1} with

k = b− a (Figure 7).

a . . . . . . . . . bαA
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a b
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ε

Fig. 7. Proof of the property 4. At least one of the transitions τA and τB has a span
included in { k−3nε

2 , . . . , k − 1}.
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If we consider all n−k+1 pairs (a, b) with the same k = b−a, then the WFAA′′

has no less than (n−k+1)/2 transitions of span included in {
⌈

k−3nε

2

⌉
, . . . , k−1}.

Let (ki) the sequence defined by ki+1 = 2ki + 3nε and k0 = 1. We have
ki = 2i(1 + 3nε) − 3nε. We consider several ks taking the values of (ki) from
i = 1 to the last i such that ki ≤ n, that is if =

⌊
log n+3nε

1+3nε

⌋
= Θ(log(n/nε)).

Then the WFA A′′ has not less than Σ
if

i=1(n − ki + 1)/2 = Θ(n log(n/nε))
transitions.
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Abstract. Extended finite automata are finite state automata equipped
with the additional ability to apply an operation on the currently remain-
ing input word, depending on the current state. Hybrid extended finite
automata can choose from a finite set of such operations. In this pa-
per, five word operations are taken into consideration which always yield
letter-equivalent results, namely reversal and shift operations. The com-
putational power of those machines is investigated, locating the corre-
sponding families of languages in the Chomsky hierarchy. Furthermore,
different types of hybrid extended finite automata, defined by the set
of operations they are allowed to apply, are compared with each other,
demonstrating that there exist dependencies and independencies between
the input manipulating operations.

1 Introduction

Finite automata are probably best known for capturing the family of regular
languages. These machines have been intensively studied and moreover, have
been extended in various ways [4,5,7,9]. Recently, in a series of papers, so called
extended finite automata, which are finite state machines with the additional
ability to manipulate the unread part of the input by a formal language opera-
tion on words, were introduced and investigated. Typical formal language the-
oretical operations are, for instance, reversal, shift, or bio-inspired operations.
This led to the devices of flip-pushdown automata [13], the “flip-pushdown input-
reversal” theorem [10], input-reversal automata [1], revolving-input automata [2],
and hairpin finite automata [3]. It is worth mentioning that some of these devices
induce a hierarchy of languages based on the number of operations allowed dur-
ing the computation. Loosely speaking, it was shown that k + 1 pushdown flips
are better than k for both deterministic and non-deterministic flip-pushdown au-
tomata [10]. A similar statement has been proved in the context of input-reversal
automata [1]. Moreover, input-reversal automata have been shown to be deeply
linked to controlled linear context-free languages [8], leading to an alternative
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characterization of the Khabbaz hierarchy of languages [11,12]. In the case of
revolving-input finite automata and hairpin finite automata language families
are obtained that are incomparable to classical classes like, e.g., the family of
context-free languages.

Common to all of the above mentioned types of automata is that the machine
is equipped with a single operation that can manipulate the remaining input
during the computation. Here we restrict ourselves to the case of extended finite
automata, that is, to finite state automata which can perform such an operation
on the still unread part of the input. We further generalize the notion of extended
finite automata to hybrid extended finite automata allowing the automaton to
choose from a finite set O of operations during the computation. Obviously, with
no further limitation on O one can define operations that provide computational
power beyond that of Turing machines, for example, by defining an operation to
be an oracle for the halting problem. So, there is an interest in natural operations
that are somehow feasible. Therefore, we restrict ourselves to simple operations
like those mentioned above such as input-reversal (ir), left- and right-revolving (lr
and rr, respectively), circular-interchange (ci), and circular-shift (cs). Thus, we
will have O = {ir, lr, rr, ci, cs} in this paper. Note that all these operations yield
letter-equivalent results when being applied, i.e., they only change the ordering
of the remaining input symbols.

At first glance we show that λ-moves, regardless whether they are used during
ordinary transitions and/or non-ordinary transitions, do not increase the compu-
tational power of hybrid extended finite automata, whenever the operations are
somehow “well-behaved.” Here well-behaved means that applying an operation
blindly and non-blindly at the same time gives the same result in both cases. For
instance, the “blind” input-reversal mapping v to vR and the “non-blind” input-
reversal mapping av to vRa, for all letters a, are well-behaved in the above sense.
Observe that all operations fromO are well-behaved. What concerns the relation-
ships between the language families induced by hybrid extended finite automata
with some set of operations D ⊆ O and the families of the Chomsky-hierarchy
we find the following situation: (1) Obviously, if the number of operations ap-
plied is zero, the family of regular languages is characterized. We show that this
remains true for every D as long as the number of operations is arbitrarily con-
stant. (2) Moreover, it is shown that for every D the language accepted by any
hybrid extended finite automaton with operations from D is context-sensitive.
(3) In most cases, namely, whenever D contains at least one of the operations
lr, rr, or cs, then the family of languages accepted by hybrid extended finite
automata with D as set of operations is incomparable to the families of 2-linear
(deterministic) context-free and (deterministic) context-free languages.

In the classical theory of automata and formal languages many results hold for
a large variety of classes of automata, when appropriately abstracted. This led to
the rich theory of abstract families of automata (AFA), which is the equivalent
of the theory of abstract families of languages (AFL); for a general treatment of
machines and languages we refer, e.g., to [6]. As a first step towards a similar the-
ory for (hybrid) extended finite automata we study the dependencies of modes of
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operations. There it turns out that, hybrid extended finite automata without the
circular-interchanging operation, but with at least two operations from the set
{ir, lr, rr} characterize the family of languages accepted by so called bi-revolving
finite automata [2]. Observe, that a bi-revolving finite automaton is an {lr, rr}-
NFA, i.e., a hybrid extended finite automaton with the operations lr and rr, in
our terminology. Thus, this family of languages is the most general class that can
be obtained by operations from the set O\{ci}. As the reader may have noticed,
the circular-interchanging operation ci is excluded. Although extended finite
automata with the ci operation characterize the family of regular languages,
even in the case when the number of operations is unbounded [2], combining
circular-interchange with some other operation may increase the computational
power of the underlying device. For instance, we show that right-revolving and
circular-interchanging is better than right-revolving, i.e., the family of languages
accepted by {rr, ci}-NFA’s is a strict superset of the family of languages accepted
by rr-NFA’s or in other words by right-revolving finite automata. On the other
hand, when combining input-reversal with circular-interchanging, then no in-
crease in computational power compared to input-reversal only is obtained. We
have to leave open, whether the aforementioned most general language family
of bi-revolving languages is “stable” under the circular-interchanging operation.
Here stable means that every hybrid extended finite automaton with the opera-
tions lr, rr, and ci can be simulated by a bi-revolving finite automaton.

2 Preliminaries

We denote the cardinality of a set S by |S| and its powerset by 2S. The empty
word is denoted by λ, the reversal of a word w by wR, and for the length of w
we write |w|. For the number of occurrences of a symbol a in w we use the
notation |w|a. Set inclusion and strict set inclusion are denoted by ⊆ and ⊂, re-
spectively. If there is no danger of confusion, any singleton set may be identified
with its element. By L (CSL), L (CFL), L (DCFL), L (2-LIN), L (2-DLIN),
L (LIN), and L (REG) the families of context-sensitive, context-free, determin-
istic context-free, 2-linear context-free, 2-linear deterministic context-free, linear
context-free, and regular languages, respectively, are denoted.

A (non-deterministic) finite state automaton, NFA for short, is a 5-tuple A =
(Q, Σ, δ, q0, F ), where Q is a finite set of states, Σ is the input alphabet, δ is a
mapping from Q × (Σ ∪ {λ}) into 2Q, called the transition function, q0 ∈ Q is
the initial state, and F ⊆ Q is the set of accepting states. A configuration of a
finite state automaton is a couple (q, w), where q ∈ Q is the current state and
w ∈ Σ∗ is the still unread part of the input. For any a in Σ ∪ {λ} and w in Σ∗,
we write (q, aw) A (p, w), if p is in δ(q, a).

In the following we consider finite state automata with the ability to apply ad-
ditional operations to the unread input. We may start with a uniform definition
which generalizes the one given in, e.g., [2].

Definition 1. A (non-deterministic) hybrid extended finite (state) automaton
is a 7-tuple A = (Q, Σ, δ, Δ, φ, q0, F ), where A = (Q, Σ, δ, q0, F ) is a finite state
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automaton, Δ is a finite set of mappings from Q × (Σ ∪ {λ}) into 2Q, and φ
is the interpretation of Δ which is a function from Δ into a set O of operation
symbols.

The configurations of a hybrid extended finite state automaton are defined as
for finite state automata. The transitions according to δ will be referred to as
ordinary transitions and denoted by o

A. The operations which can be addition-
ally applied to the unread part of the input are specified by the interpretation φ
of Δ. In the present paper, we restrict ourselves to the set O = {ir, lr, rr, ci, cs} of
operation symbols. The corresponding transition relations are defined as follows:
Let p, q ∈ Q, a ∈ Σ ∪ {λ}, b, c ∈ Σ, and v, w ∈ Σ∗, then

– an input-reversal transition is defined by (q, aw) ir
A (p, wRa), if there is

τ ∈ Δ with φ(τ) = ir and p ∈ τ(q, a),
– a left-revolving transition is defined by (q, a) lr

A (p, a) and (q, awb) lr
A

(p, baw), if there is τ ∈ Δ with φ(τ) = lr and p ∈ τ(q, a),
– a right-revolving transition is defined by (q, cw) rr

A (p, wc), if there is τ ∈ Δ
with φ(τ) = rr and p ∈ τ(q, c) or p ∈ τ(q, λ), furthermore, (q, λ) rr

A (p, λ), if
p ∈ τ(q, λ),

– a circular-interchanging transition is definedby(q,a) ci
A (p,a) and (q,cwb) ci

A

(p, bwc), if there is τ ∈ Δ with φ(τ) = ci and p ∈ τ(q, a) and, respectively,
p ∈ τ(q, c) or p ∈ τ(q, λ), and

– a circular-shift transition is defined by (q, a) cs
A (p, a) and (q, aw) cs

A

(p, vau), for all u and v with w = uv, if there is τ ∈ Δ with φ(τ) = cs
and p ∈ τ(q, a).

Those transitions will also be referred to as non-ordinary transitions. Note that
all these definitions include λ-transitions.

For any hybrid extended finite automaton, whenever there is a choice be-
tween an ordinary or another transition, the automaton non-deterministically
chooses the next move. We write (q, w) A (p, v) for (q, w) f

A (p, v) with
f ∈ {o, ir, lr, rr, ci, cs}. As usual, the reflexive transitive closure of A is de-
noted by ∗A. The subscript A will be dropped from A and ∗A whenever the
meaning remains clear.

Let k be a non-negative integer. We define Tk(A), the language accepted with
at most k non-ordinary steps to be

Tk(A) = {w ∈ Σ∗ | (q0, w) ∗A (q, λ)
with at most k non-ordinary steps and q ∈ F }.

If the number of non-ordinary steps is not bounded, the language accepted is
analogously defined as above and denoted by T (A).

In order to clarify our notation we give an example. In what follows, when
specifying an automaton we will list only those transitions which do not map to
the empty set.
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Example 1. The non-regular context-free language

L = {wa | w ∈ {a, b}∗, |w|a = |w|b − 1 } ∪ {wb | w ∈ {a, b}∗, |w|a = 2|w|b + 2 }

is accepted by the hybrid extended finite automaton A = (Q, {a, b}, δ, {τr, τc}, φ,
q0, {qa, qb}) with φ(τr) = rr, φ(τc) = ci, state set Q = {q0, q1, qa, qb, qa?, qa??, qb?},
and

1. τc(q0, a) = τc(q0, b) = {q1}
2. δ(q1, a) = δ(qa, a) = {qb?}
3. δ(q1, b) = δ(qb, b) = {qa??}
4. δ(qb?, b) = {qa}
5. δ(qa??, a) = {qa?}
6. δ(qa?, a) = {qb}

7. τr(qa, b) = {qa}
8. τr(qb, a) = {qb}
9. τr(qa?, b) = {qa?}

10. τr(qa??, b) = {qa??}
11. τr(qb?, a) = {qb?}

Automaton A accepts L as follows: When starting in state q0 the first transition
is a circular-interchange transition. Next, in state q1, the (originally) last input
symbol is read, yielding a decision of the kind of mode in which the input will be
processed, either searching for one b after a symbol a has been read or searching
for two as after a symbol b has been read. Note that A accepts the same language
if φ(τr) = lr or φ(τr) = cs.

Let D be any subset of the operation symbols forming the range O of the in-
terpretation φ, that is, D ⊆ {ir, lr, rr, ci, cs} in our setting. A hybrid extended
finite state automaton A = (Q, Σ, δ, Δ, φ, q0, F ) is referred to as D-NFA if and
only if φ(Δ) = D, where φ is extended to sets of transition mappings in the
natural way. The family of languages which can be accepted by some D-NFA
(with an unbounded number of non-ordinary steps) is denoted by L (D-NFA).
The following lemma summarizes the relation between hybrid extended finite
automata with different sets of operations. Since the proof is straight forward
we omit the proof.

Lemma 1. Let k be a non-negative integer and D ⊆ {ir, lr, rr, ci, cs}. If D′ ⊆ D,
then, for any hybrid extended finite automaton A = (Q, Σ, δ, Δ, φ, q0, F ) with
φ(Δ) = D′ there is a D-NFA B with Tk(A) = Tk(B). The statement remains
true if an unbounded number of non-ordinary moves is allowed. In conclusion,
we have L (D′-NFA) ⊆ L (D-NFA). ��

The definition of hybrid extended finite automata allowed λ-transitions for or-
dinary moves, i.e., applications of the function δ, and non-ordinary moves, i.e.,
applications of functions from the set Δ. As usual, the aim of λ-transitions of δ
is to allow changes of configurations without consuming input symbols. Since,
basically, applications of functions from Δ do not consume input symbols, λ-
transitions of Δ functions serve the purpose to apply operations independent of
the current input symbol. This is why the corresponding transitions are called
blind operations. Moreover, this intention implies that whenever an operation is
applicable blindly and non-blindly at the same time, the effects of the applica-
tions are the same in both cases. Let us call computable operations, which meet
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this condition and lead to letter-equivalent results, well-behaved. Observe, that
all operations in question are well-behaved.

We can show that λ-transitions do not increase the computational power of
hybrid extended finite automata. We say that a hybrid extended finite automaton
A = (Q, Σ, δ, Δ, φ, q0, F ) is λ-free, if δ is restricted to Q×Σ. If all the mappings
in Δ are restricted to Q×Σ, then A is said to be free of blind operations. The
construction proving the next lemma is omitted due to the page limitation.

Lemma 2. Let k be a non-negative integer. For any hybrid extended finite au-
tomaton A = (Q, Σ, δ, Δ, φ, q0, F ) with φ(Δ) = D, one can construct a D-NFA B
with Tk(A) = Tk(B), which is both λ-free and free of blind operations. The state-
ments remain true if an unbounded number of non-ordinary steps is allowed.

3 Basic Results on Hybrid Extended Finite Automata

This section is devoted to some basic results on hybrid extended finite automata.
We turn to prove the interesting fact that even a hybrid extended finite automa-
ton which is allowed to apply all considered operations, cannot accept more
languages than an ordinary deterministic finite state automaton, as long as the
number of applied operations is bounded by an arbitrary constant. In order to
prepare for the proof, we need an uncommon closure property of regular lan-
guages, which is shown in the following lemma—due to the lack of space the
proof is omitted.

Lemma 3. Let A = (Q, Σ, δ, q0, F ) be a deterministic finite state automaton
and a ∈ Σ be a distinguished input symbol. Then a deterministic finite state
automaton A′ can effectively be constructed which accepts the language { vx |
v, x ∈ Σ∗ and xav ∈ L(A) }. ��

Now we are ready for the next theorem, which gives yet another characterization
of the family of regular languages. The proof is based on induction on the number
of non-ordinary moves k and is omitted here.

Theorem 1. Let D ⊆ {ir, lr, rr, ci, cs} and k be a non-negative integer. A lan-
guage L is accepted by a D-NFA A with at most k non-ordinary steps, that is,
Tk(A) = L, if and only if L is regular.

Whenever the number of non-ordinary moves is not restricted to be constant,
then we find the following situation.

Theorem 2. Let D ⊆ {ir, lr, rr, ci, cs}. Then the family L (D-NFA) is strictly
included in L (CSL) and belongs to the complexity class NP.

Proof. The inclusions in L (CSL) and NP are readily shown by construction
of appropriate Turing machines. The strictness is seen as follows: Obviously,
unary languages accepted by hybrid extended finite automata as considered in
the present paper are regular since a non-ordinary transition does not change
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the remaining part of the input. Therefore, these non-ordinary transitions can
be omitted. This shows that a unary language is accepted by a D-NFA if and
only if it is regular. Thus, there is a context-sensitive language which cannot be
accepted by any D-NFA, D ⊆ {ir, lr, rr, ci, cs}. ��

4 Hybrid Extended Finite Automata and Dependencies
of the Modes

In this section we investigate the relation between D-NFA’s with different sets
of operations. First let us recall what is known from the literature. In case of
the circular interchanging operation it was shown in [2] that this operation does
not increase the computational power of (extended) finite automata, even if the
number of circular interchanging operations is not bounded by a constant.

Theorem 3 ([2]). L (ci-NFA) = L (REG).

This is completely different to the remaining four operations we are interested
in. Namely, for the input-reversal operation a precise characterization in terms
of linear context-free languages was given in [1]. This result reads as follows:

Theorem 4 ([1]). L (ir-NFA) = L (LIN).

For the remaining revolving operations the following inclusions and comparabil-
ity results were obtained in [2]:

Theorem 5 ([2]). We have:

1. L (REG) ⊂ L (rr-NFA) ⊂ L ({lr, rr}-NFA) ⊂ L (CSL).
2. L (LIN) ⊂ L (lr-NFA) ⊂ L ({lr, rr}-NFA) ⊂ L (CSL).
3. The families L (lr-NFA), L (rr-NFA) are incomparable.
4. Each of the families L (lr-NFA), L (rr-NFA), and L ({lr, rr}-NFA) are in-

comparable with each of L (2-LIN), L (DCFL), and L (CFL). Furthermore,
L (rr-NFA) is incomparable with L (LIN).

By Theorems 4 and 5 we immediately obtain the following corollary.

Corollary 1. L (ir-NFA) ⊂ L (lr-NFA). ��

In Theorem 2 we have already seen that L (D-NFA) is strictly included in
L (CSL) for any D ⊆ {ir, lr, rr, ci, cs}. The next theorem shows that L (D-NFA)
is incomparable to some standard families from the Chomsky hierarchy. The
below given proof parallels the one given for bi-revolving finite automata in [2]
and is omitted here. Note that a bi-revolving finite automaton is an {lr, rr}-NFA
in our terminology.

Theorem 6. For any D ⊆ {ir, lr, rr, ci, cs} with |D ∩ {lr, rr, cs}| > 0, the family
L (D-NFA) is incomparable with each of the families L (2-DLIN), L (2-LIN),
L (DCFL), and L (CFL).
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The three lemmata given below show that the circular-interchanging operation
when combined with other operations from O can or cannot increase the com-
putational power of the underlying device. We start our investigation with an
operation the computational power of which is not increased when combined
with the circular-interchanging operation.

Lemma 4. L ({ir, ci}-NFA) = L (ir-NFA).

Proof (Sketch). Let A = (Q, Σ, δ, Δ, φ, q0, F ) be a λ-free {ir, ci}-NFA which is
free of blind operations with Δ = {τi, τc}, φ(τi) = ir, and φ(τc) = ci. We
construct an ir-NFA B the states of which are triples. Their first components
mimic the states of A and the second and third component can store the first
and the last symbol, respectively, of the remaining input. In order to store the
first and the last symbol of the remaining input, these symbols are read from
the input by ordinary transitions (and interposed input reversal transitions).
Then the circular-interchange transition can be simulated by interchanging the
symbols in the memory. If the stored symbols shall be read by A, they are
deleted from the memory in B. The dash symbol (−) as the second or third
state component indicates that no symbol is currently stored as the first or last
one, respectively, in the memory.

Formally, let B = (Q′, Σ, δ′, {τ}, φ′, q′0, F ′) with φ′(τ) = ir, Q = { q, q′, q′′ |
q ∈ Q } and Σ− = Σ ∪ {−}; then set Q′ = {f} ∪ (Q × Σ− × (Σ− ∪ {?})),
q′0 = (q0,−,−) and F ′ = {f} ∪ (F × {−} × {−}). The transition relations δ′

and τ are specified as follows.

1. For all p, q ∈ Q, a ∈ Σ, y ∈ Σ−, if p ∈ δ(q, a), let
(p,−, y) ∈ δ′((q,−, y), a) and (p,−, y) ∈ δ′((q, a, y), λ).

2. For all p, q ∈ Q, a ∈ Σ, y ∈ Σ−, if p ∈ τi(q, a), let
(p, y,−) ∈ τ((q,−, y), a) and (p, y, a) ∈ τ((q, a, y), λ).

3. For all p, q ∈ Q, a, b ∈ Σ, if p ∈ τc(q, a), let
(a) (p, b, a) ∈ δ′((q, a, b), λ) and (p, b, a) ∈ δ′((q,−, b), a),
(b) (q, a, ?) ∈ τ((q, a,−), λ), (q′, a, b) ∈ δ′((q, a, ?), b), and

(p, b, a) ∈ τ((q′, a, b), λ),
(c) (q′, a,−) ∈ δ′((q,−,−), a) and (q, a, ?) ∈ τ((q′, a,−), λ).

4. For all q ∈ Q, a ∈ Σ, let
(q′′, a,−) ∈ δ′((q, a,−), λ) ∩ δ′((q,−, a), λ) ∩ δ′((q,−,−), a).

5. For all p, q ∈ Q, a ∈ Σ, if p ∈ τi(q, a) or p ∈ τc(q, a), let
(p′′, a,−) ∈ δ′((q′′, a,−), λ).

6. For all q ∈ Q, a ∈ Σ, if δ(q, a) ∩ F �= ∅, let
f ∈ δ′((q′′, a,−), λ).

This completes the description of the hybrid extended finite automaton B.
Ordinary moves of A are simulated by transitions of type (1). Here one has

to distinguish two cases, namely whether the first symbol of the input is al-
ready memorized in the finite control or not. Transitions of type (2) switch the
memorized first and last symbol of the input and simulate the input-reversal op-
eration properly; as in the previous case one has to distinguish several cases. The
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transitions in (3) are for the simulation of the circular-interchanging operation.
Again one has to cope with several cases: Type (3)a is used if both symbols or
the last symbol is memorized in the finite control. If the last symbol is not yet
known, type (3)b transitions are used to store it by making an input-reversal to
transport the last symbol to the front, memorizing the last symbol by reading
it, and finally turning the unread part of the input back by an input-reversal
again. Similarly, one can treat the case if both symbols are not yet stored in the
finite control; here transition from (3)c and then from (3)b are taken. Transi-
tions (4) and (5) deal with the case if the remaining input consists of a single
symbol (which may have been memorized in the state). Finally, type (6) transi-
tions control the acceptance of the machine, if a transition of type (4) has been
used. ��

In contrast to the above result, the circular-interchanging operation adds to
the power of both rr-NFA’s and cs-NFA’s. These cases are treated in the two
lemmata given below.

Lemma 5. L (rr-NFA) ⊂ L ({rr, ci}-NFA).

Proof. The inclusion holds by definition. For its strictness, we show that the
language

L = {wa | w ∈ {a, b}∗, |w|a = |w|b − 1 } ∪ {wb | w ∈ {a, b}∗, |w|a = 2|w|b + 2 }
from Example 1 cannot be accepted by any rr-NFA. Assume the contrary, and
let A = (Q, Σ, δ, Δ, φ, q0, F ) be an rr-NFA accepting L and |Q| = n. Let us
consider the word w = b2n(n+1)+1a2n(n+1)+1 as input. Note that w ∈ L. First we
show that, in every accepting computation of w, the number of ordinary steps
reading a sequence of b’s between two consecutive revolving moves is bounded
by n. This is obvious, because otherwise one state is repeated at least once due to
the pigeon hole principle. Thus, cutting this loop leads to a valid computation.
Therefore, whenever the original word is accepted, also the new word induced
by the cut loop is also accepted. Since after the cutting the number of b’s is not
equal to the number of a’s on the input the automaton accepts a word not of
the appropriate form. Therefore, in the forthcoming we may assume that the
automaton A fulfills the above mentioned property.

From this fact we deduce there are at least 2(n + 1) positions where a right-
revolving move is started by reading a letter b. Because of the pigeon hole prin-
ciple we find a state, say p, which appears at least twice during the first n
of these positions. Thus, starting the computation in state q0 with input w,
the first appearance of state p is reached by i ordinary moves and j right-
revolving moves (inter-winded), with 0 ≤ j < n + 1. Hence we have (q0, w) =
(q0, b

2n(n+1)+1a2n(n+1)+1) ∗A (p, b2n(n+1)+1−i−ja2n(n+1)+1bj). Then from the
latter configuration state p is reached a second time by k ordinary moves and 
right-revolving moves (inter-winded) with 1 ≤  ≤ (n + 1) − j. Therefore we
find (p, b2n(n+1)+1−i−ja2n(n+1)+1aj) ∗A (p, b2n(n+1)+1−i−j−k−�a2n(n+1)+1bjb�).
Since we are considering an accepting computation, there is a state qf ∈ F
such that (p, b2n(n+1)+1−i−j−k−�a2n(n+1)+1bj+�) ∗A (qf , λ). Observe, that  ≥ 1
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and i + j + k +  ≤ n(n + 1), thus, k < n(n + 1). Now we can fool the
automaton A by constructing an accepting computation for the word w′ =
b2n(n+1)+1−k−�a2n(n+1)+1b� by cutting out the above considered loop in the com-
putation. For this word we have the accepting computation

(q0, w
′) = (q0, b

2n(n+1)+1−k−�a2n(n+1)+1b�) ∗A
(p, b2n(n+1)+1−i−j−k−�a2n(n+1)+1b�bj) =

(p, b2n(n+1)+1−i−j−k−�a2n(n+1)+1bj+�) ∗A (qf , λ)

of A. We find |w′|b = 2n(n+1)+1−k > n(n+1)+1, thus 2|w′|b > 2n(n+1)+2 >
|w′|a. Therefore, the constructed word w′ is not a member of L, a contra-
diction. Thus no right-revolving finite automaton can accept the considered
language L. ��

Next we compare the computational power of cs-NFA’s and {cs, ci}-NFA’s.

Lemma 6. L (cs-NFA) ⊂ L ({cs, ci}-NFA).

Proof. As the language L used in the previous proof is accepted by a {cs, ci}-NFA
(see Example 1), it is sufficient to show that L cannot be accepted by some
cs-NFA. Assume the contrary, then there is a cs-NFA A accepting L and an
accepting computation for the input word bn+2an+2, where n is the number
of states of A. As in the previous proof, the number of consecutive ordinary
transitions in such computation is bounded by n. Therefore, there is an integer i,
0 ≤ i ≤ n such that (q0, b

n+2an+2) ∗ (q, bn+2−ian+2) cs (p, w) ∗ (qf , λ), for
some q, p ∈ Q and qf ∈ F . Since the number of symbols moved in the circular-
shift transition is not determined, then also the computation (q0, b

n+1an+2b) ∗
(q, bn+1−ian+2b) cs (p, w) ∗ (qf , λ), is possible, accepting a word which is no
member of L. ��

The next theorem locates the family L (cs-NFA) in the hierarchy of languages
which has been established so far.

Theorem 7. For x ∈ {lr, rr}, we have L (REG) ⊂ L (cs-NFA) ⊂ L (x-NFA) =
L ({x, cs}-NFA).

Proof. The inclusions, including the equality, hold because of Lemma 1 and as a
circular-shift transition can be simulated by a—non-deterministically chosen—
number of revolving steps, either left or right. The first inclusion is strict due
to Theorem 6. As L (lr-NFA) and L (rr-NFA) are incomparable [2], the latter
inclusions are strict. ��

As a main result of this section we obtain that the family of languages accepted
by {lr, rr}-NFA’s is as powerful as at least seven other language families investi-
gated in the present paper, namely as the families L (D-NFA), where D contains
at least two operations from the set {ir, lr, rr}, extended or not extended by the
operation cs.
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Theorem 8. For any D ⊆ {ir, lr, rr, cs} with |D ∩ {ir, lr, rr}| > 1, we have

L (D-NFA) = L ({lr, rr}-NFA) .

Proof (Sketch). We argue as follows:

1. The inclusions of the language families L ({ir, lr}-NFA), L ({ir, rr}-NFA),
and L ({lr, rr}-NFA) in L ({ir, lr, rr}-NFA) hold because of Lemma 1.

2. We show L ({ir, lr, rr}-NFA) ⊆ L ({lr, rr}-NFA). Given a hybrid extended fi-
nite automaton A = (Q, Σ, δ, Δ, φ, q0, F ) with Δ = {τi, τl, τr} and φ(τi) = ir,
φ(τl) = lr, φ(τr) = rr, which is λ-free and free of blind operations. The idea
to construct an {lr, rr}-NFA B is as follows: Automaton B stores in the finite
control whether the input is read from left-to-right or from right-to-left. With
this information the input-reversal operation can be simulated by switching
this information accordingly. Hence, an input-reversal is implemented virtu-
ally because the input cannot be mirrored anymore. Then we distinguish two
cases: (1) The input is read from left-to-right. Then all transitions, i.e., ordi-
nary and non-ordinary ones, can be simulated in a straight forward fashion.
(2) The input is read from right-to-left. This means, that the first symbol of
the actual input is on the right. Thus an ordinary transition must be simu-
lated by a left-revolving operation which is followed by the appropriate read
operation. Moreover, a right-revolving transition is in principle simulated
by a left-revolving transition and vice versa. Here one has to be careful,
because of the following obstacle: Before simulating a (non-blind) left- or
right-revolving transition, one has to check its applicability to the current
configuration, depending on the input symbol which is the first symbol of
the actual input. Since this input symbol is on the right end of the word, a
left-revolving followed by a right-revolving operation can be used. That is,
for a, b ∈ Σ, v ∈ Σ∗ and appropriate states q, q′, p, and p′, one can simu-
late (q, avRb) lr

A (p, bavR) by (q, bva) lr
B (q′, abv) rr

B (p′, bva) rr
B (p, vab),

where the first and the third transitions are performed as blind operations
by B, and the second transition as a non-blind operation verifying that
there is the symbol a. Symmetrically, one can simulate (q, avR) rr

A (p, vRa)
by (q, va) lr

B (q′, av) rr
B (p′, va) lr

B (p, av). The tedious details are left to
the reader.

3. The inclusion L ({ir, lr, rr}-NFA) ⊆ L ({ir, lr}-NFA) is seen as follows. Given
an {ir, lr, rr}-NFA A which is—without loss of generality—free of blind op-
erations, there is an equivalent {ir, lr}-NFA B performing ordinary, input-
reversal, and left-revolving transitions as the automaton A does and simulat-
ing any right-revolving transition of the form (q, av) rr

A (p, va) with a ∈ Σ
and v ∈ Σ∗, by (q, av) ir

B (p′, vRa) lr
B (p′′, avR) ir

B (p, va), for some ap-
propriate states p′ and p′′. The details of the construction are left to the
reader.

4. Analogously, we find L ({ir, lr, rr}-NFA) ⊆ L ({ir, rr}-NFA) as the left-
revolving (q, avb) lr

A (p, bav) with a, b ∈ Σ and v ∈ Σ∗ can be simulated
by (q, avb) ir

B (p′, bvRa) rr
B (p′′, vRab) ir

B (p, bav); again, the details of the
construction are left to the reader.
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5. For D ⊆ {ir, lr, rr} with |D| > 1, we have L (D-NFA) ⊆ L (D ∪ {cs}-NFA)
due to Lemma 1. The converse inclusions hold as a non-deterministically cho-
sen number of both left- and right-revolving transitions simulates a circular-
shift transition. ��

Finally, we state the following result without proof.

Lemma 7. There is a language accepted by an lr-NFA which can be accepted
neither by an {rr, ci}-NFA nor by a {cs, ci}-NFA.

There are a few questions in the context of this section which we have to leave
open here. Mainly, these questions concern the power of hybrid extended finite
automata which are allowed to perform, among others, the circular-interchanging
operation, in particular in combination with the left-revolving transition.
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Abstract. Random access video compression is mostly implemented
without any reduction of temporal redundancy. Standard video compres-
sion systems like MPEG (1,2 and 4) are heavily based on motion com-
pensation, which to some extent makes random access at single frame
level impossible. We present a method for near random access video
compression of low-motion video that is based on the discrete cosine
transform and vector quantization and refine this system using weighted
finite automata while keeping the random access property and using
some reduction of temporal redundancy.

1 Introduction

Video compression standards like [1], [2] and [3] depend heavily on motion com-
pensation for reduction of temporal redundancy. An introduction to this topic
can be found e.g. in [4]. Motion compensation is usually implemented by the use
of motion vectors. The most basic implementations of this concept are global
motion compensation and block motion compensation. In block motion com-
pensation each video frame is partitioned into some set of square blocks. For
sake of simplicity we assume that global motion compensation is a special form
of block motion compensation, where there is only one block that is the full
frame. In the most simple case thus in a sequence of video frames f0, f1, . . .
the blocks of fn+1 are displayed either as translated blocks of fn, if a suitable
block can be found in fn, or as new pixel material that might have either not
been present in frame fn, or the corresponding object has been subject to a
transformation that cannot be displayed by motion vectors, e.g. rotation or scal-
ing. Reduction of spatial redundancy is in the majority of cases implemented in
virtue of applying the discrete cosine transform (DCT [5]) on non-overlapping
8×8 pixel blocks in a fashion similar to still image compression in JPEG [6], [7].
An implementation of a video coder using MPEG like motion compensation but
using weighted finite automata (WFA) for reduction of spatial redundancy was
described in [8]. Algorithms for still image compression by WFA are presented
in [9], [10] , [11] and [12].

The use of motion compensation in the described form, no matter how useful
it is for the reduction of temporal redundancy, renders every system employing
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it unable to provide random access at single frame level. Applications for which
random access is either required or highly desired, e.g. video editing or systems
with high user interaction during video decoding, are usually working on uncom-
pressed data or formats like Motion JPEG that do not make any use of temporal
redundancy.

In section 2 of this paper we present a compression scheme for low motion
video that is based on the DCT and vector quantization and allows near random
access to each encoded frame. By near random we mean that random access is
possible after some very short initialization time used to decode data efficiently
storing per block position inter frame similarities. We then refine this approach
further in section 3 by the use of WFA to improve the compression ratio relative
to DCT coding while still keeping the random access property. The method
works well for the example material shown in appendix B. It is not expected to
work well for generic video material.

2 DCT Coding and Vector Quantization

Let b(i, j) denote a real n× n matrix which we interpret as an image block. For
b the discrete cosine transform (DCT) B of b is given by

B(i, j) = αiαj

n−1∑
k=0

n−1∑
l=0

b(k, l) cos
(

iπ(2k + 1)
2n

)
cos

(
jπ(2l + 1)

2n

)
(1)

and in turn is an n× n block of coefficients where

αm =
{ 1√

2
if m = 0

1 otherwise .
(2)

As n is finite we may also interpret b and B as vectors of dimension n2 by fol-
lowing the raster scan order (left to right, top to bottom). The DCT decomposes
the source block into a linear combination built from an orthogonal basis of IRn2

given by the functions
ci,j = cos(i2πx) cos(j2πy) (3)

which are sampled in the middle of the intervals

Il,m =
[
il2π

2n
,
i(l + 1)2π

2n

]
×

[
jm2π

2n
,
j(m + 1)2π

2n

]
, for 0 ≤ l, m < n . (4)

Figure 1 shows an example block in image and coefficient form as well as
the transformed block matrix. Following the transformation the coefficients are
quantized. Quantization is controlled by a matrix q(i, j) ∈ INn×n

+ . The matrix
B is divided element-wise by q and each elementary result is rounded towards
zero. This rounding process is the main cause of compression as well as distor-
tion found in DCT based image coders like JPEG. The balance of compression
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and distortion is controlled by the elements of q. If all elements of q equal 1,
distortion and compression rate are minimal. Higher compression is achieved by
using values greater than 1 as elements of q, where coefficients corresponding to
high frequency basis function are usually divided by greater numbers than those
corresponding to low frequency basis functions, because high frequency errors
are harder to perceive in the human visual system than low frequency errors.
Figure 2 shows an example.

200 197 193 188 178 165 155 150
196 196 194 187 177 166 154 147
193 194 191 182 173 163 152 144
188 187 184 176 166 156 145 138
178 176 173 168 158 145 134 128
167 164 161 156 147 133 122 117
156 154 151 144 134 122 112 107
148 148 146 138 128 117 106 98

1264 143 −28 0 0 0 0 0
143 0 0 0 0 0 0 0
−28 0 0 0 0 0 0 0

0 0 0 0 5 0 0 0
0 0 0 0 0 0 0 0
0 0 4 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

Fig. 1. 8 × 8 pixel DCT example: source block matrix b (left), image of source block
(middle, black at 0, white at 255), transformed block matrix B (right)

1264 143 −28 0 0 0 0 0
143 0 0 0 0 0 0 0
−28 0 0 0 0 0 0 0

0 0 0 0 5 0 0 0
0 0 0 0 0 0 0 0
0 0 4 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

B

16 11 10 16 24 40 51 61
12 12 14 19 26 58 60 55
14 13 16 24 40 57 69 56
14 17 22 29 51 87 80 62
18 22 37 56 68 109 103 77
24 35 55 64 81 104 113 92
49 64 78 87 103 121 120 101
72 92 95 98 112 100 103 99

q

79 13 −2 0 0 0 0 0
11 0 0 0 0 0 0 0
−2 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

B′

Fig. 2. The elements of the quantized matrix B′ are obtained by dividing the trans-
formed coefficients matrix B element-wise by the quantization matrix q and rounding
the result in the direction of 0. Some elements of B might vanish after quantization.

Quantization with a non-trivial matrix q also implies that some similar blocks
are equal after reconstruction. This allows a simple form of vector quantization,
where only the first appearance of each reconstructed block needs to be stored
and all subsequent appearances are only given as references to this first appear-
ance. For compression of low-motion video we thus decompose each frame into
a set of square image blocks and reorder the data so that for each position all
occurring blocks are stored in a row as shown in figure 3. Let B′

x,y(f ′) denote the
sequence for spatial position (x, y) and B′′

x,y(f
′′) the f ′′th unique block in B′

x,y.
We then compute the mapping B′

x,y(f ′) to B′′
x,y(f ′′) (see figure 4) which is a func-

tion and is described for each position x, y by an integer sequence i : f ′ 
→ f ′′.
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B2 B3
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B3
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C2 C3
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C25

A4 A5
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A A A A A11 12 13 14 15

A16 A17 A18 A19 A20

A21 A22 A23 A24

B B4 5

B10

B15

B20

C4

C15

Fig. 3. Blocks are reordered according to block position

’

Block assignment

B 0,0B’0,0

0,0B’’B 0,0’’

0,0B

B’0,0B’0,0B’0,0 B

B’0,0

B’0,0

B 0,0’ ’ ’

0,0’

(2) (3)

(1)(0)

(4)

(1) (2) (3) (4)

(1)

(0)

(0)
Transformed blocks for

       position (0,0)

Transformed Quantized

        blocks for position (0,0)

Stored blocks for
       position (0,0)

Fig. 4. The first occurrence of each block per position is stored

Thus the compressed file has the components

1. the number of stored blocks B′′ per position,
2. the length of the coded blocks in B′′,
3. the mapping i and
4. the coded blocks B′′.

Points 1-3 are stored as meta-data to allow random access. Point 3 denotes for
each frame and position, which block B′′ is to decoded and the block length
information in point 1 and 2 is used to compute for each frame which data is
irrelevant and thus can be skipped.

Tests have shown that for real low-motion video the storage costs of the coded
blocks in point 4 make up 90-98% of the total file size. Thus a better compression
of the coded blocks promises the best chance to improve the compression ratio
in a refined approach. An application of this compression method to low-motion
video showing a page turn of a book filmed from above has yielded a compression
rate 2 to 4 times higher than that reached my MJPEG. In the concrete case
shown in appendix B the factor is about 2.45.
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3 Refinement of Compression by WFA Coding

A weighted finite automaton Z (WFA, [13]) over some semiring S is a quintuple
Z = (Q, Σ, W, I, F ) where

– Q = {0, 1, . . . , n− 1} is a finite set of states,
– Σ = {0, 1, . . . , l − 1} is a finite alphabet,
– W = (A0, A1, . . . , Al−1), Ai ∈ Sn×n are the transition matrices,
– I ∈ Sn is the initial distribution and
– F ∈ Sn is the final distribution.

The function computed by Z is defined as

fZ(w = w1 . . . wk ∈ Σ∗) = I

k∏
j=1

Awj F . (5)

In the context of this paper we only consider WFA where S = IR. The extension
of this function to ω-words is defined as

fZ(w = w1w2 . . . ∈ Σω) = lim
n→∞ fZ(w1w2 . . . wn) . (6)

A detailed study of these automata, where the input word w = w1w2 . . . ∈ Σω

is interpreted as the real number 0.w1w2 . . . =
∑

i>0 wil
−i, can be found in

[14], [15] and [16]. One result of this study is that the only smooth (that means
every derivative is continuous) functions computable by WFA are polynomials,
implying that the basis functions of the DCT cannot be displayed at infinite
precision by a WFA. As practical image compression is performed on images of
finite precision, this is of no concern in applications. For images of dimension 2
we choose an alphabet size of 4, where the image is recursively partitioned into
quadrants. This partitioning corresponds to a quadtree as shown in figure 5.
For sake of simplicity we are limiting the scope of this paper to square images

ε
ε

10 2 302 03

10 11

12 13

20 21

22

30 31

23 32 33

00 01
0 1

2 3

Fig. 5. Recursive partitioning of image into quadrants (left for wordlength 0,1 and 2)
and quadtree (right)

of size 2k × 2k for some k ∈ IN. We then identify the addresses of pixels in
images with nodes of a quadtree of depth k. Each quadtree node is assigned the
arithmetic average of the pixel values in the corresponding image block. This
quadtree can be turned into a WFA displaying the image by the following steps,
where quadtree nodes are transformed to WFA states:
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1. Use the assigned arithmetic pixel averages as final weights for the states.
2. Each edge going from state w to wa is labeled with alphabet symbol a and

weight 1.
3. Each quadtree leaf is assigned an edge back to itself with weight one for

every alphabet symbol.
4. The state ε is assigned initial weight 1 and all other states initial weight 0.

The automaton produced in this construction is fully deterministic. Efficient
WFA compression of natural images requires some amount of nondeterminism.
Let for WFA Z denote pZ(j), j = 0, 1, . . . , |Q|− 1 the automaton produced from
Z by changing its initial distribution to 1 at state j and 0 otherwise. We call
pZ(j) the image of the automaton Z for state j. Now observe that

fpZ(j)(aw ∈ Σ+) =
|Q|−1∑
k=0

Aa(j, k)fpZ(k)(w) . (7)

This means that subquadrant a of state j is computed as a linear combination
of state images of Z and the coefficients of this linear combination are given by
row j of the transition matrix Aa. We thus can transform Z into an equivalent
automaton Z ′ by substituting edges in a way that does not change the function
fZ the automaton computes. Algorithms for effectively computing minimal state
WFA can be found for instance in [17] and [16]. The computed WFA is then a
minimum state instance of all WFA computing exactly the function fZ .

In image compression applications we are mostly not interested in exact (loss-
less) representations of images, but in such that give an approximation (lossy)
that describes an image at a sufficient quality. Lossy image compression systems
allow much higher compression rates, even in the case where the image quality
is considered high enough so that the human visual system cannot tell any dif-
ference between the original image and the mathematically lossy reconstruction.
The application of the minimization algorithm to WFA generated from quadtrees
representing images does in general not reduce the automaton to a representa-
tion that would be small enough to compete with standard lossy compression
systems. Thus it is necessary to transform the automaton in a way that does no
longer exactly produce the original image but a sufficient approximation. The
key to this can be found in equation 8, where we relax the equality constraint
in equation 7 to

fpZ(j)(aw ∈ Σ+) ≈
∑|Q|−1

k=0 A′
a(j, k)fp′

Z(k)(w) . (8)

For this approximation we also formulate a quality constraint in equation 9.
∣∣∣∣∣∣
|Q|−1∑
k=0

Aa(j, k)fpZ (k)(w)−
|Q|−1∑
k=0

A′
a(j, k)fp′

Z (k)(w)

∣∣∣∣∣∣ < ε(j) . (9)

The distortion caused by the approximation we allow per state will in general
depend on the image block that the corresponding state represents. Observe that
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changing the transition matrices changes at least some of the state images pZ(j).
For this reason practical algorithms constructing WFA from images process the
image in an order that avoids adding any edges to states that will have their state
images changed in a later step of the algorithm. In practice it is also not necessary
that each state image is produced by computations as given by equation 5. For
the evaluation of a state image according to equation 7 at a certain resolution
it is sufficient to have all referenced state images at half this resolution. The
referenced state images do not have to be provided in WFA form.

This implies that we can use the DCT coded image blocks in section 2 as
state images of finite resolution instead of a WFA generating the same image
block. If the image blocks have size 2k × 2k, we can imagine them as quad-
rants referenced by WFA states representing image blocks of size 2k+1× 2k+1 as
shown in figure 6. Due to the vector quantization process in section 2 each DCT

a:1

2:1
3:10:1

1:1

Fig. 6. DCT coded image blocks of size 2k ×2k are used to describe the quadrants of a
WFA state representing an image block of size 2k+1 ×2k+1 that in turn is subquadrant
a of some image block of size 2k+2 × 2k+2. The image shows an example for k = 3.

coded block may be referenced multiple times. The goal of the refinement is to
substitute edges ending in DCT coded blocks by linear combinations of other
DCT coded blocks if the storage cost for a linear combination is lower than that
of the DCT code and the quality of the approximation produced by the linear
combination is at least as good as that of the DCT code. When choosing target
states of edges used in these newly created linear combinations, it is important
not to use states that themselves are displayed by linear combinations. If all
edges of linear combinations end in DCT coded blocks, the decoding time of
such a linear combination is bounded by some constant times the length of the
linear combination. Otherwise the automaton could contain paths of arbitrary
length depending on the image resolution until real pixel material is reached and
random access would be lost.

Let BC(i) denote the sequence of DCT coded blocks resulting from the con-
catenation of the sequences B′′

x,y(f
′′) in raster scan order as it is appearing in

the file produced in section 2 and BO(i) the corresponding sequence of original
blocks. We are interested in approximating BO(m) by a short linear combination

BO(m) ≈
e∑

k=1

λkBC(tk) (10)
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where

1. tk < m for k ∈ {1, . . . , e}, which ensures that we do not use state images
that we may change later in the algorithm,

2. none of the states denoted by the sequence tk have been substituted by a
linear combination of other states, so the decoding of the linear combination
components is possible in constant time,

3. e ≤ emax ∈ IN+, to bound the decoding time of the approximation by about
emax times that of BC(m),

4. ∣∣∣∣∣BO(m)−
e∑

k=1

λkBC(tk)

∣∣∣∣∣ <

∣∣∣∣∣BO(m)−BC(m)

∣∣∣∣∣ (11)

so the approximation does not decrease the quality of the reconstructed block
and

5. the storage cost of the linear combination is not higher than that of the DCT
code.

An example of the substitution of a single image block by a linear combination
of other image blocks is shown in figure 7. The orthogonal matching pursuit

a:1 a:−0.11 a:−0.11a:0.56a:0.56a:0.31

Fig. 7. Substitution of one image block by a linear combination of other blocks: the
edge for label a ending in the state shown left is substituted by the linear combination
of the states on the right

algorithm by Culik and Kari adapted for this application is shown in algorithm
1 in appendix A. The cost of a linear combination can for example be computed
by encoding it in the components

1. length of the linear combination (e.g. Huffman coded),
2. target states of the edges (e.g. binary block code) and
3. weights of the edges (usually floating point numbers represented in sign,

exponent and mantissa and then entropy coded).

Experiments have shown that non-adaptive Huffman coding is appropriate for
entropy coding of the linear combinations in this application, where we expect
a sufficient amount of data to reach stable probability distributions, so we can
choose the better time performance of a Huffman coder over the marginally
better compression performance of an arithmetic coder. Time performance of
entropy coding is often one of the critical factors for the frame rate in video
decoding.
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The application of this refinement method to the test material mentioned
in section 2 has shown that it is possible to improve the compression ratio by
a factor of approximately 1.18 to 1.3, where up to 60% of the coded blocks
can be substituted by WFA representations. The average length of the linear
combinations was then around 3.4, meaning that on average decoding a WFA
represented image block takes about 3.4 times as long as decoding a plain DCT
coded block. In the concrete example shown in appendix B the compression rate
is 3.15 times better than that of MJPEG. Table 1 shows a comparison with
MJPEG and FFMPEGs MPEG4 codec for some group of picture (GOP) sizes.
The method proposed in section 2 clearly outperforms the compression ratio of
MPEG4 using only I-Frames.

Table 1. Performance comparison. Used methods: A: Uncompressed, B: MJPEG, C:
Section 2, D: Section 3, E: MPEG4 GOP Size 1, F: MPEG4 GOP Size 4, G: MPEG4
GOP Size 12, H: MPEG4 GOP SIZE 80.

Method A B C D E F G H
Filesize/KB 62080 7552 3112 2404 4896 2076 1400 1248
Avg. Y-PSNR ∞ 45.2625 45.3672 45.3411 45.3583 45.3511 45.3225 45.31

It is likely that the compression ratio can be further improved by relaxing
some of the constraints formulated above, e.g. using non-uniform block sizes
or allowing the matching pursuit algorithm to produce linear combinations not
yielding the same quality as the DCT coding, if in turn the storage cost is
sufficiently reduced.

4 Conclusion

We have presented a method for compressing low-motion video where near ran-
dom access to the compressed frames is possible and have refined this approach
by WFA coding. Experiments have shown that for some applications the pro-
posed method yields a compression ratio up to 4 times higher than that of other
compressed video formats allowing frame level random access.
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15. Derencourt, D., Karhumäki, J., Latteux, M., Terlutte, A.: On Computational
Power of Weighted Finite Automata. Lecture Notes in Computer Science 629
(1992) 236–245

16. Droste, M., Kari, J., Steinby, P.: Observations on the smoothness properties of
real functions computed by weighted finite automata. To appear in Fundamenta
Informaticae.

17. Berstell, J., Reutenauer, C.: Rational Series and Their Languages. Springer-Verlag,
Berlin (1988)



56 G. Tischler

A Orthogonal Matching Pursuit Algorithm

Input : bO(i), bC(i),
costbC

(i) (storage cost of coded blocks), m (state to approximate)
Output: idx (highest used index in linear combination)

cost(i) (costs of prefixes of linear combination)
e(i) (errors of prefixes of linear combination)
t(i) target state vector, c(i) weight vector

idx ← 01

while idx < m and idx < emax do2

for i ∈ {0, 1, . . . , m − 1} do3

α(i) ← < bo(m), bc(i) > -
Pidx−1

k=0
<bc(i),o(k)><bo(m),o(k)>

|o(k)|24

β(i) ← |bc(i)|2 −
Pidx−1

k=0
<bc(i),o(k)>

|o(k)|25

t(idx) ← min{i|α(i)2

β(i) maximal for t(j) �= i for j < idx6

and bC(i) was not replaced by a linear combination}
u(idx) ← bC(t(idx))7

o(idx) ← bC(t(idx)) −
Pidx−1

i=0
<u(idx),o(i)>

|o(i)|2 o(i)8

for i ∈ 0, 1, . . . , idx do9

c(i) ←< bo(m), o(i) >10

for i = idx to 0 do11

for k ∈ {0, 1, i − 1} do12

c(k) ← c(k) − c(i)<u(i),o(k)>
|o(k)|213

e(idx) ← |bo(m) −
Pidx

i=0 c(i)bc(t(i))|14

cost(idx) ← storage cost of linear combination up to index idx15

if cost(idx) > costbC
(m) then // cost too high ?16

break17

if e(idx) < |bo(m) − bc(m)| then // error small enough ?18

break19

idx ← idx + 120

Algorithm 1. Orthogonal Matching Pursuit. Matching succeeds iff the algorithm
aborts the while loop in line 19. < ·, · > denotes the scalar product of two vectors.
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B Example Material for Random Access Video
Application

Fig. 8. Example material for random access video application: Frames of a video show-
ing a page flip. The complete movie contains 80 frames.
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Abstract. A border of a string is a prefix of the string that is simultane-
ously its suffix. It is one of the basic stringology keystones used as a part
of many algorithms in pattern matching, molecular biology, computer-
assisted music analysis and others. The paper discusses automata-theore-
tical background of Iliopoulos’s ALL BORDERS algorithm that finds all
borders of a string with don’t care symbols. We show that ALL BORDERS
algorithm is a simulator of a finite automaton together with explaining
the function of the automaton. We show that the simulated automa-
ton accepts intersection of sets of prefixes and suffixes (and thus a set
of borders) of the input string. Last but not least we define approxi-
mate borders. Based on the knowledge of the automata background of
ALL BORDERS algorithm we offer an automata-based algorithm that finds
approximate borders with Hamming distance. We discuss conditions un-
der which the same principle can be used for other distance measures for
which an approximate searching automaton can be constructed.

1 Introduction

A border is a kind of regularity in strings. A string has a border if it has a prefix
that is simultaneously its suffix. An analysis of borders is one of basic keystones
of stringology used as a part of many algorithms in pattern matching, molecular
biology, computer-assisted music analysis and others.

There are two most commonly discussed problems concerning borders: the
All Borders problem, i.e. is to find all borders of all prefixes of a string, and the
Border Array problem. All Borders problem (see Problem 1) is dealt with in
this paper. Border Array problem for string t, n = |t|, consists in computation
of an array β[1..n] where β[i] is the length of the longest border of the prefix
of t of lenght i. A border array is used in preprocessing of the Knuth-Morris-
Pratt [MP70] pattern matching algorithm to compute failure function. It can
be computed in linear time and stores all information needed to compute all
borders of all prefixes of the string.
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“Don’t care” symbol is a special symbol that can be matched to any symbol
including itself. Don’t care symbol is a simple approach embracing errors and
inaccuracy to the concepts of pattern matching and regularities searching. This
approach originates from the field of DNA analysis. Pattern matching in strings
with don’t care symbols was first studied by Fischer and Paterson in [FP74].
They developed O(n. log m log |Σ|) time algorithm to search for a pattern of
length m in a string of length n over alphabet Σ ∪ {∗} based on convolutions.
Algorithms that find borders, border array and covers (factors from which given
string can be obtained by concatenations and overlaps) in string with don’t care
symbols were introduced by Iliopoulos et al. in [IMM+03].

Approximate regularities extend basic problems of searching for regularities
by adding a measure of string similarity. This allows some level of errors and
inaccuracy to be accepted. Similarity in this sense is more general than using
don’t care symbols as we do not need to specify the positions where errors can
occur. We restrict only a total number of errors allowed.

In this paper we study both borders in strings with don’t care symbols and
approximate borders from the automata-oriented point of view. Our long-run
goal is to create a scheme for finding regularities in strings based on automata-
theoretical base. We hope that introduction of common theoretical base of ex-
isting algorithms can help to find analogies among problems and adapt existing
algorithms to solve more specific variants of the problems.

In the area of pattern matching, Holub and Melichar have created a simi-
lar scheme in [Hol00] and [MHP05]. They have found interconnection between
automata-oriented algorithms and algorithms based on dynamic programming
and bit parallelism. We would like to follow that work and extend it to the area
of searching for regularities.

This paper starts by reminding the reader of Iliopoulos’s algorithm for finding
all borders of all prefixes of string with don’t care symbols. We show that the
algorithm is in fact a simulator of a finite automaton. In accordance with the
definition of a border, the appropriate finite automaton accepts the intersection
of sets of prefixes and suffixes of the input string. Last but not least we define ap-
proximate border of a string and use the knowledge of the automata background
of Iliopoulos’s algorithm to generalise the algorithm for finding all approximate
borders of all prefixes of the string.

2 Preliminaries

An alphabet Σ is a nonempty set of symbols. A string over alphabet Σ is
a sequence of zero or more symbols from Σ. The set of all nonempty strings
over alphabet Σ is denoted by Σ+. Empty string is denoted by ε. We denote
Σ∗ = Σ+ ∪ {ε}.

If t1 and t2 are strings over Σ, their concatenation is denoted by t1t2. We use
exponents notation for repetition of strings: t0 = ε, t1 = t, t2 = tt, . . . for any
t ∈ Σ∗. Whenever t = uwv, u, w, v ∈ Σ∗, w is a factor of t. t[i] denotes the i-th
symbol of string t. t[i . . . j] denotes the factor of t beginning with i-th symbol
and ending with j-th symbol of string t.
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The length of string t is the number of symbols of t. We denote it by |t|. We
use a convention that symbol n is used for the length of the analyzed string
n = |t|. Whenever we use w for a factor of t etc., we use symbol m for its length:
m = |w|. |ε| = 0.

String w ∈ Σ∗ is a prefix of string t if t = wu, u ∈ Σ∗. w is a proper prefix
if |w| < |t|. Set of all prefixes of string t is denoted by Pref (t). Similarly string
w ∈ Σ∗ is a suffix of string t if t = vw, v ∈ Σ∗. w is a proper suffix if |w| < |t|.
Set of all suffixes of string t is denoted by Suff (t).

In many problems we need to check whether two strings are similar but not
necessarily equal. One of possible approaches is to add a “don’t care” symbol, i.e.
a special universal symbol ∗ �∈ Σ that can be matched to any symbol including
itself. String with don’t care symbols is a string over Σ ∪ {∗}. The relation of
matching strings with don’t care symbols is denoted by operator ≈. Another
approach is to introduce a distance of strings. Distance is usually a metric,
even though it is not necessary. (Metric is a function that satisfies conditions of
positivity, symmetry and triangle inequality.)

In this paper we use Hamming distance metric. Hamming distance between
two strings t1 and t2 is the minimum number of substitutions needed to convert
string t1 to t2. Hamming distance is defined for strings of equal length.

Formal language L is a subset of set of all strings drawn from alphabet
Σ: L ⊂ Σ∗.

A nondeterministic finite automaton M is a quintuple (Q, Σ, δ, I, F ), where:
Q is a finite set of states, Σ is an input alphabet, δ is a mapping
δ : Q × (Σ ∪ {ε}) → P(Q) called a state transition function, I ⊂ Q is a set
of initial states, and F ⊂ Q is a set of final states.

When reading a string with don’t care symbols, automaton does a transition
whenever read symbol matches (not necessarily equals to) the symbol for which
the transition is defined.

A deterministic finite automaton M is a special case of nondeterministic finite
automaton such that transition mapping is a function δ: Q×Σ → Q and there
is only one initial state q0 ∈ Q.

To describe transition function of finite automaton we often use transition
diagrams. Let us use the following conventions:

– unuseful states (there is no word that can move automaton from such state
to any final state) and transitions to unuseful states are omitted whenever
it cannot cause a confusion,

– shortened form i or ij is used to improve legibility instead of qi or qj
i , re-

spectively, whenever it is unambiguous,
– if we label a transition in transition diagram by set of symbols, it represents

a set of transitions each for one symbol from the set,
– notation a is used instead of longer Σ \ {a} for any a ∈ Σ.

Definition 1. Prefix searching automaton (SPOECO) for string w, m = |w|,
with possible don’t care symbols is a nondeterministic finite automaton MP =
(Q, Σ, δ, I, Q) such, that:
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Q = {q0, q1, . . . , qm},
δ: (match) qi+1 ∈ δ (qi, a), for i ∈ {0, 1, . . . , m− 1}, a ≈ w[i + 1],

(loop) q0 ∈ δ (q0, a), for each a ∈ Σ,
I = {q0}.

Definition 2. Approximate prefix searching automaton for string w, m = |w|,
with Hamming distance at most k (SPORCO) is a nondeterministic finite au-
tomaton MHam

P = (Q, Σ, δ, I, Q) such, that:

Q =
{
qj
i : i ∈ {0, 1, 2, . . . , m}, j ∈ {0, 1, 2, . . . , k}

}
,

δ: (match) qj
i+1 ∈ δ

(
qj
i , a

)
, i ∈ {0, 1, . . . , m − 1}, j ∈ {0, 1, . . . k} and

a = w[i + 1],
(mismatch) qj+1

i+1 ∈ δ
(
qj
i , a

)
, i ∈ {0, 1, . . . , m− 1}, j ∈ {0, 1, . . . , k − 1} and

a �= w[i + 1],
(loop) q0

0 ∈ δ
(
q0
0 , a

)
, for all a ∈ Σ,

I = {q0
0}.

Codes SPOECO and SPORCO are selected in compliance with taxonomy from
[MHP05]. Both automata can be used in pattern matching. We construct the
prefix searching automata for given pattern and read the input string. After
reading any prefix of the pattern, automaton reaches a final state as the (ap-
proximate) prefix searching automaton for string w accepts any string t ending
with an (respectively approximate) prefix of w (see [MHP05]). An example of an
approximate prefix searching automaton for t = abc ∗ b with Hamming distance
at most 2 is given in Figure 1.

00 10 20 30 40 50

01 11 21 31 41 51

02 12 22 32 42 52

Σ

a b c Σ b

a b c b

a b c Σ b

a b c b

a b c Σ b

Fig. 1. Transition function of the approximate prefix searching automaton for
t = abc ∗ b with Hamming distance at most 2

Note that a (eventually approximate) prefix automaton accepting (respec-
tively approximate) prefixes of w can be obtained from (approximate) prefix
searching automaton by removing the loop in the initial state.
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3 Problem Statement

We are dealing with All Borders problem:

Definition 3. A border w of string t over alphabet Σ is a proper prefix of t that
is simultaneously a suffix of t: w ∈ (Pref (t) \ {t})∩ Suff (t). A set of all borders
of t is denoted by Bord (t).

Problem 1 (All Borders). Given string t, find all borders Bord (w) of each prefix
w ∈ Pref (t).

Note that a string of length n can have at most n borders. Thus number of all bor-
ders of all prefixes is at most

∑n
i=1 i = 1

2n(n+1). As an example consider string
an that has n borders: ε, a, aa, . . ., an−1. Each its prefix of length i has i borders.

Border array is an array storing for each prefix length 0, 1, . . . n the length of
the longest border of given prefix. Border array can be computed in linear time.
Considering the “exact” version of the problem (neither don’t care symbols nor
approximation is allowed) a border w′ of a border of string t is also a border of t
(“border of a border is a border”). In this case a border array stores information
about all borders of all prefixes of the string. On the other hand whenever
we allow don’t care symbols or approximate matching, border array cannot be
used to find all borders of all prefixes any more. String matching under these
circumstances is not transitive. As an example consider string t = aba ∗ abaa.
The longest border of t is abaa with length 4. The longest border of t[1 . . . 4] is
ab. Still ab is not a border of t. An algorithm solving All Borders problem on
a string with don’t cares is discussed in the next section.

4 ALL BORDERS Algorithm Simulates Finite Automaton

ALL BORDERS algorithm was invented by Iliopoulos et al. in [IMM+03] to solve
All Borders problem for strings with don’t cares. In this section we show that
ALL BORDERS algorithm (Algorithm 1) is a simulation of a prefix searching au-
tomaton for string t running over input string t.

Using the definition of the prefix searching automaton (Definition 1), we
show that ALL BORDERS algorithm simulates the function of the prefix searching
automaton.

Theorem 1. Algorithm ALL BORDERS simulates prefix searching automaton for
string t reading input string t[2 . . . n], n = |t|.

Proof. Let us assume that array Si stores indices of active states after reading
a prefix t[2 . . . i], i ∈ {2, 3, . . . , n}. Note that the initial state q0 is always included
as there is a loop for all symbols of the alphabet in q0.
Using induction according to i:
i = 1: Nothing is read yet and thus the only active state is the initial state q0.
S1 is set during the initialisation.
Assume that the theorem holds for i = k. Let i = k + 1:



Borders and Finite Automata 63

For each active state qj , qj+1 will be active in the next step if t[j + 1] can be
matched to the read symbol t[i]. This is exactly what is done by the body of the
cycle on lines 3–5. ��

Algorithm 1: Searching for all borders of all prefixes
Input: String t, n = |t|.
Output: Sets Si, i ∈ {1, 2, . . . , n} such that Si is a set of lengths of
borders from Bord (t[1 . . . i]).
Description: In each step we increase actual length of prefix and
compute Si based on Si−1 from the previous step. Note that in each
step only sets Si and Si−1 are used.
AllBorders(t)
(1) S1 ← {0}
(2) for i ← 2 to n
(3) Si ← {0}
(4) foreach j ∈ Si−1

(5) if t[i] ≈ t[j + 1] then Si ← Si ∪ {j + 1};
(6) output(Lengths of borders of t[1 . . . i]: Si);

Based on Theorem 1 we construct automata-based Algorithm 2 solving All Bor-
ders problem.

Algorithm 2: Searching for all borders (automata based)
Input: String t, n = |t|.
Output: Sets Si, i ∈ {2, . . . , n} such that Si is a set of lengths of
borders from Bord (t[1 . . . i]).
Description: Automata based equivalent of Algorithm 1.
AllBordersFA(t)
(1) Construct a prefix searching automaton

MP = (Q, Σ, δ, {q0}, F ) for string t.
(2) Read t[2 . . . n] as an input string.
(3) for i ← 2 to n
(4) Si = δ∗(q0, t[2 . . . i]) ∩ F
(5) output(Lengths of borders of t[1 . . . i]: Si);

4.1 ALL BORDERS Algorithm and Intersection of Automata

Following the definition of border we can search for borders using automaton
accepting intersection of languages of prefix automaton and suffix automaton.
Algorithm based on this idea was published in [MHP05]. Efficient implemen-
tation of this algorithm has the same asymptotic complexity as ALL BORDERS
algorithm [ŠM06]. Let us show that ALL BORDERS does the same.

Observation 1. Algorithm 2 finds lengths of prefixes of t that are equal to some
proper suffix of t.
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In the following text, please, take care to distinguish prefix searching au-
tomaton and accepts LP = Σ∗.Pref (t) and prefix automaton accepting only
Pref (t).

In ALL BORDERS algorithm string t[2 . . . n], n = |t|, is read by prefix searching
automaton MP for string t. As we know the length of the input string, we can
expand the loop in the initial state and construct “expanded automaton” MPe

by creating n “copies” “Mj”, j ∈ {0, 1, . . . , n− 1} of a prefix automaton. States
of “Mj” are denoted by upper index j. State q0

0 of “M0” is the only initial state
of MPe. States of subautomata “Mj”, j > 0 are reached by “Σ-transitions” for
all symbols of alphabet from states qj

0 of “Mj” to states qj+1
0 of “Mj+1” for each

j ∈ {0, 1, . . . , n − 2}. MPe is equivalent to the prefix searching automaton for
input strings shorter than n.
As an example consider string t = abc ∗ b. Transition diagrams of automata MP

and MPe are depicted in Figure 2.
Note that a subautomaton “Mj” in the expanded automaton MPe reads suf-

fix t[j + 2 . . . n] of input string t[2 . . . n], j ∈ {0, 1, . . . , n − 2}, “Mn−1” reads
ε. The suffix is obtained after reading first j symbols of the input string in
“Σ-transitions”. Thus reading of t[2 . . . n] by expanded prefix searching automa-
ton is equivalent to reading all proper suffixes of t[2 . . . n] by prefix automata.
Lower index of accepting final state give then the lengths of borders (lengths
of prefixes that equal to some proper suffix). See Figure 3 for example on
abc ∗ b. Similarly after reading t[2 . . . i], i ∈ {2, 3, . . . , n}, we can detect bor-
ders of t[1 . . . i].

MP 0 1 2 3 4 5
a b c Σ b

Σ

“M0” 00 10 20 30 40 50a b c Σ b

“M1” 01 11 21 31 41 51a b c Σ b

...
...

“M3” 03 13 23 33 43 53a b c Σ b

“M4” 04 14 24 34 44 54a b c Σ b

Σ

Σ

Σ

Σ

Fig. 2. Transition diagrams of both common and expanded version of prefix searching
automaton for abc ∗ b. Dashed states are never reached when reading bc ∗ b.
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t0 = t[2 . . . n] = bc ∗ b 00 10 20 30 40 50a b c Σ b

t1 = t[3 . . . n] = c ∗ b 01 11 21 31 41 51a b c Σ b

t2 = t[4 . . . n] = ∗b 02 12 22 32 42 52a b c Σ b

t3 = t[5 . . . n] = b 03 13 23 33 43 53a b c Σ b

t4 = ε 04 14 24 34 44 54a b c Σ b

Fig. 3. Transition diagrams of prefix automata “Mj” for string abc ∗ b obtained by
splitting expanded prefix searching automaton (“Mj” reads tj as an input string)

4.2 Complexity of the Algorithm

Let us remind that ALL BORDERS algorithm (Algorithm 1) is in fact direct imple-
mentation of Algorithm 2. Thus the complexity of both algorithms is the same.
Complexity analysis ofAlgorithm1 is given in [IMM+03].Theworst case time com-
plexity is quadratic as themaximalnumber ofborders onoutput is quadratic.Num-
ber of transitions performed is equal to the number of borders found. [IMM+03]
shows that the algorithm is linear in average case for random strings.

5 Approximate Borders

We have shown that ALL BORDERS algorithm simulates function of nondetermin-
istic prefix searching automaton. Let us define All Approximate Borders problem
and show a generalization of ALL BORDERS algorithm solving this problem. We
use the knowledge automata background of ALL BORDERS algorithm.

Definition 4. An approximate prefix (suffix) w of string t with a distance mea-
sure D and a distance bound k is w ∈ Σ∗: D (w, p) ≤ k for some p ∈ Pref (t) (or
p ∈ Suff (t)). The set of all approximate prefixes (suffixes) of string t with dis-
tance measure D and distance bound k is denoted by APrefD,k (t)(or ASuffD,k (t)
respectively).

Approximate border w of string t is a proper prefix of t that is simultaneously
its approximate suffix or an approximate prefix of t that is simultaneously its
proper suffix.

Definition 5. An approximate border of string t with distance measure D and
distance bound k is w∈ Σ∗: w∈ ((Pref (t) \ {t}) ∩ASuffD,k (t))∪(APrefD,k (t)∩
(Suff (t) \ {t})). A set of all approximate borders of string t with distance measure
D and distance bound k is denoted by ABordD,k (t).
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Problem 2 (All Approximate Borders).
Given string t, n = |t|, distance function D and distance bound k, find all
approximate borders ABordD,k (w) of each prefix w ∈ Pref (t).

5.1 ALL APPROX BORDERS Algorithm

In this work we deal with Hamming distance only. More generally we can use
any distance measure for which we can construct approximate prefix searching
automaton and that is:

1. defined over strings of the same length (we consider distance to be infinite
for strings of different length),

2. symmetric, that is for each two strings u, v ∈ Σ∗: D (u, v) = D (v, u).

For distance measures that satisfy restrictions 1 and 2 and for which we can con-
struct the approximateprefix searching automaton, generalisationof ALL BORDERS
algorithm to approximate borders can be done as shown in Algorithm 3. For Ham-
ming distance we can use approximate prefix searching automaton SPORCO
(Definition 2).

Algorithm 3: Searching for all approximate borders
Input: String t, distance bound k and distance measure D satisfying
restrictions 1 and 2 for which we can construct the approximate prefix
searching automaton.
Output: Set of all approximate borders of all prefixes of t with
distance measure D and distance bound k.
Description: Generalisation of Algorithm 2. Computes sets Sl

i of
approximate borders of t[1 . . . i] with distance l, i ∈ {0, 1, . . . , n},
l ∈ {0, 1, . . . , k}.
AllApproxBorders(t)
(1) Construct approximate prefix searching automaton

MHam
P = Q, Σ, δ, {q0

0}, F for string t with distance
function D and distance bound k.

(2) Use the longest proper suffix t[2 . . . n] as an input string.
(3) for i ← 2 to n
(4) Sl

i = {j: ql
j ∈ δ∗ q0

0 , t[2 . . . i] ∩ F}
(5) output(Lengths of borders of t[1 . . . i]: l∈{0,1,...,k} Sl

i)

5.2 Correctness Analysis

An approximate border of a string is either a proper prefix and an approximate
suffix or an approximate prefix and a proper suffix of the string. Intersection of
these two sets contains exact borders of the string. Let D be a distance measure
satisfying restrictions 1 and 2. Then these two sets are the same.

Lemma 1. Given distance bound k and distance measure D satisfying restric-
tions 1 and 2: u ∈ Pref (t) and u ∈ ASuffD,k (t) if and only if there exists
v ∈ Suff (t) such that v ∈ APrefD,k (t) and |u| = |v|.
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Proof. Prefix u is in ASuffD,k (t) if and only if there exists v∈ Suff (t): D (u, v)≤k.
Using symmetry of D this is equivalent to D (v, u) ≤ k meaning that suffix v is in
APrefD,k (t). Moreover lengths of u and v are the same because D is defined for
strings of the same length only). ��

Lemma 2. Algorithm 3 finds lengths of prefixes u such that there exists a proper
suffix v, D (u, v) ≤ k.

Proof. A principle is the same as in Algorithm 2. In each step the nondetermin-
istic automaton simultaneously tries to accept a proper suffix by an approximate
prefix automaton and prepare one symbol shorter suffix by reading a symbol in
the loop of the initial state. ��

Theorem 2. Algorithm 3 finds all approximate borders.

Proof. Lemma 1 tells that under given circumstances a set of approximate bor-
ders is equal to a set found by Algorithm 3 according to Lemma 2. ��

5.3 Complexity of the Algorithm

Let n = |t|. Algorithm ALL APPROX BORDERS does n − 1 steps to read t[2 . . . n].
In each step one active state can be added as the initial state is reactivated
by the loop in the initial state and each active state qi, i ∈ {0, 1, . . . n − 1}
can activate state qi+1. Note that approximate prefix searching automaton for
Hamming distance is acyclic and deterministic with exception of the initial state
(that has a the loop). Thus the number of active states cannot be increased
anywhere else.

There are n− 1 steps, in the i-th step we compute transition function for at
most i states. Overall complexity is O(n2).

6 Conclusion and Future Work

We have shown the automata theoretical background ALL BORDERS algorithm de-
veloped by Iliopoulos et al. ALL BORDERS algorithm solves All Borders problem on
strings with don’t cares. We have found that the algorithm is an implementation
of intersection of prefix and suffix automaton.

By introducing the common theoretical base of algorithms from the field of
regularities searching we try to improve consistency of algorithms. We hope we
will be able to reuse ideas of algorithms solving similar problems to solve new
variants of the problems. To test this attitude we have defined all approximate
borders problem and generalised automata based version of ALL BORDERS to solve
all approximate borders problem for Hamming distance. Asymptotic complexity
of the algorithm remained the same as that of ALL BORDERS algorithm.

In future we would like to deal with generalisation of this attitude to other
variants of All Borders problem based on the knowledge of appropriate searching
automata. Namely we want to take under consideration approximate borders
with Levenshtein distance, general approximate borders (i.e. strings, that are
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both approximate prefix and approximate suffix but do not need to be either
prefix or suffix of string). Last but not least we would like to follow the idea
of this paper and deal with other regularities searching problems like periods,
covers etc.
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Abstract. We present an algorithm that uses finite automata to find
the common motifs with gaps occurring in all strings belonging to a
finite set S = {S1, S2, . . . , Sr}. In order to find these common motifs we
must first identify the factors that exist in each string. Therefore the
algorithm begins by constructing a factor automaton for each string Si.
To find the common factors of all the strings, the algorithm needs to
gather all the factors from the strings together in one data structure
and this is achieved by computing an automaton that accepts the union
of the above-mentioned automata. Using this automaton we are able
to create a new factor alphabet. Based on this factor alphabet a finite
automaton is created for each string Si that accepts sequences of all non
overlapping factors residing in each string. The intersection of the latter
automata produces the finite automaton which accepts all the common
subsequences with gaps over the factor alphabet that are present in all
the strings of the set S = {S1, S2, . . . , Sr}. These common subsequences
are the common motifs of the strings.

1 Introduction

The problem of finding common motifs in a set of strings has long been an area of
interest in the academic community. Given a set of strings, the problem of finding
common motifs in that set is the problem of finding similar substrings that lie in
all of these strings. In some particular applications, like in biology, this require-
ment is more flexible in the sense that motifs do not have to be identical but have
to share a certain degree of similarity. This degree is quantified using metrics
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such as Hamming and Levenshtein distances or by allowing don’t care symbols
to occur in the motifs. Don’t care symbols are occurrences in the string that can
match any symbol of the alphabet. In this paper, we are interested in finding
common motifs in the strings that have don’t care symbols concentrated in dis-
tinct parts of contiguous positions in the strings, i.e. common motifs with gaps.

This problem has engrossed biologists because of its applications in that area.
It can be applied in understanding the fundamental process of gene expression
[8]. Gene expression consists of two parts, transcription and translation. During
transcription an mRNA molecule is created by copying a gene from the DNA
and during translation the mRNA molecule is decoded to produce a protein. In
order though for the transcription process to begin, one or more proteins, called
transcription factors, have to bind to some specific regions of the gene called
binding sites. These binding sites share common patterns which are the common
motifs of the genes. If these common motifs are identified and extracted from the
genes, they will give the opportunity to biologists to match these binding sites to
their corresponding transcription factors in order to be able to fully understand
the way gene expression works [8].

A classical approach to finding these motifs was by using artificial intelligence
techniques [10] but these methods are inexact methods that used machine learn-
ing to discover the motifs by training the machines to recognize them. Recently,
microarray technology has been used particularly in this application of the prob-
lem but this technology is inexact, it is based on probabilities and is limited by
weak signal sequences [8].

In text algorithm applications, finding common motifs with gaps has been
mainly handled using suffix trees [1,2,5,7] which provided exact results. In this
paper we propose an algorithm using automata to index common gapped motifs.
We believe that the use of automaton permit the indexation of bigger strings
and allows more open definitions.

Section 2 formally introduces the general problem. Section 3 presents an al-
gorithm in order to solve the question of finding common motifs with gaps.
Moreover Section 4 presents a complete example following step by step the pro-
posed algorithm. Eventually in Section 5 there is an analysis of the complexity
of the proposed solution.

2 Definition of the Problem

Given a set of strings S = {S1, S2, . . . , Sr} and p, q, 1 ≤ p ≤ q ≤ min(|Sj | :
j ∈ 〈1, r〉). The problem of finding common motifs with gaps consists in finding
words B1, B2, . . . , Bm such that:

1. m > 1.
2. p ≤ |Bi| ≤ q for i ∈ 〈1, m〉.
3. B1 ◦di,1 B2 ◦di,2 . . . ◦di,m−1 Bm occur in Si for all i ∈ 〈1, r〉, m > 1 and the

size of the gap di,j varies in each motif (Fig. 1), where ◦ denotes don’t care
symbol matching any symbol of alphabet and ◦j denotes concatenation of j
don’t care symbols.
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...

B1
S2:

Sr:

S1:

B1

B2
d2,m−1︷︸︸︷

B2

Bm−1

B2

Bm−1

Bm

Bm−1

Bm

BmB1

dr,m−1︷ ︸︸ ︷

d1,m−1︷ ︸︸ ︷d1,1︷ ︸︸ ︷
d2,1︷ ︸︸ ︷

dr,1︷ ︸︸ ︷

Fig. 1. An example of a motif with gaps that occurs in every string, where by di,j we
mean a size of a gap

3 Algorithm

The algorithm takes as input a set of strings S = {S1, S2, . . . , Sr} and two
constants p, q, which will be the lower and upper bound respectively of the
length each motif can have, and returns the common motifs with gaps found in
all those strings. The algorithm begins with computing the set of all factors F
of length between the constants p and q that appear in all strings belonging to
the set S = {S1, S2, . . . , Sr}.

In order to find all these factors in F that appear in all the strings, we begin
by creating a factor automaton MFi for each string Si ∈ S. Each factor au-
tomaton MFi accepts all the factors of the particular string Si ∈ S. Then, the
algorithm joins all the MFi automata together in one automaton. The resulting
union automaton accepts the union of the languages accepted by each of the r
automata. This automaton can either be deterministic or non-deterministic. If it
is deterministic, then the algorithm finishes because this is a sign that there are
no common symbols and therefore no common motifs are present in the strings
from this set S. On the other hand, if the resulting union automaton is non-
deterministic, the algorithm proceeds with transforming this non-deterministic
automaton into a deterministic one.

From this deterministic union automaton we identify all factors having length
between the two constants p and q that are repeating in all strings from the set
S. These factors are subsequently used to create a repetition table RT, which
is used to create a new factor alphabet containing only the symbols relevant to
the factors extracted in the previous steps.

Based on the repetition table, we find the longest common subsequence over
the factor alphabet of all the strings of S. To achieve this aim, we first cre-
ate a finite automaton MSi for each string Si ∈ S accepting sequences of non-
overlapping factors using the factor alphabet as input alphabet. Then, we create
the automaton MS by taking the intersection of these automata MSi. The result-
ing automaton will accept the intersection of the languages accepted by each of
the factor automata i.e. it accepts all sequences of factors occurring in all strings
from the set S which are the common motifs of the strings with gaps.
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The algorithm:
Input: Set of strings S = {S1, S2, . . . , Sr}, p, q.
Output: Sequence of words B1, B2, . . . , Bm occurring in all strings in S.
Method:
1. (a) For each string Si ∈ S construct a factor automaton Miε by creating

automaton Mi, accepting string Si (i.e. L(Mi) = {Si}), then adding
ε-transitions leading from the initial state to all states of Mi and making
all states final.

(b) Construct automaton Mε, L(Mε) =
r⋃

i=1

L(Miε).

(c) By eliminating ε-transitions in Mε we get MF .
(d) If MF is deterministic, then strings in S have no common symbol and

thus they cannot have a common motif. Set m = 0 and exit the algo-
rithm.

(e) Using determinisation of MF we construct MDF while for each state q′

of MDF we preserve a set of states of MF q′ consists of. The set is called
d-subset.

2. Find all states of MDF representing factors of length between p and q and
having at least one state from each automaton Mi in its d-subset. Construct
a repetition table RT (the shortest path from the initial state to the state
spells the repeated factor while members of d-subset identify locations).

3. Take all factors represented by states in the previous step and create a new
“factor alphabet” FA.

4. For each string Si in S construct a finite automaton MSi accepting sequences
of all non-overlapping factors from FA.

5. Construct automaton MS accepting all common subsequences of sequences
accepted by automata MSi for i ∈ 〈1, r〉 using the following approach:
(a) Add ε-transitions parallel to each transition in each finite automaton

MSi, i ∈ 〈1, r〉. The resulting automata will be MS ε
i .

(b) By eliminating ε-transitions in MS ε
i we get MSN

i for each i ∈ 〈1, r〉.

(c) Construct the automaton MS, L(MS ) =
r⋂

i=1

L(MSN
i ).

(d) Finite automaton MS is accepting all sequences B1, B2, . . . , Bm which
are sequences of factors occurring in all strings from set S.

4 An Example

As an example let’s consider a set of strings S = {aabccddab, babbcdacd}. We will
find common motifs in this set of strings bounded from parameters p = 2, q = 3.

First (step 1a of the algorithm) we construct finite automata M1ε and M2ε

for both strings from S. See Fig. 21.
In the next step (step 1b of the algorithm) we construct automaton Mε ac-

cepting the union of languages L(M1ε) and L(M2ε). See Fig. 3.

1 All states in the automata presented in this paper are final states.
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Fig. 2. Transition diagrams of finite automata M1ε and M2ε for the set of strings
S = {aabccddab, babbcdacd} from the example
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Fig. 3. Transition diagram of finite automaton Mε from the example

According to step 1c of the algorithm, we construct automaton MF by replac-
ing the ε-transitions by non ε-transitions. The transition diagram of the resulting
automaton is given in Fig. 4.

In this example, automaton MF is nondeterministic. This means that there
is a possibility that a common motif exists in set S. According to step 1e of the
algorithm 3, we must construct its deterministic equivalent MD. Its transition
diagram is given in Fig. 5.

Table 1 is the repetition table RT of common factors created as described
in step 2 of the algorithm. The factor alphabet (step 3 of the algorithm) is
FA = {ab, bc, cd, da}. Subsequently we will construct, according to step 4 of the
algorithm, finite automata MS1 and MS2 accepting all non-overlapping sequences
of factors of the both strings. Their transition diagrams are depicted in Fig. 6.

The last step (step 5 of the algorithm involves the construction of an automa-
ton which accepts all sequences of factors occurring in both strings of S. Tran-
sition diagrams of finite automata MS ε

1 and MS ε
2 are shown in Fig. 7 (step 5a).

Transition diagrams of finite automata MSN
1 and MSN

2 are shown in Fig. 8
(step 5b of the algorithm).

According to the step 5c of the algorithm, we need to construct a finite au-
tomaton accepting the language that corresponds to the intersection of the lan-
guages accepted by the two automata. The transition diagrams of the finite
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automaton accepting the intersection of the languages accepted by automaton
MSN

1 and MSN
2 is depicted in Fig 9.
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Fig. 4. Transition diagram of finite automaton MF from the example
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Table 1. Repetition table RT of common factors from the example (F – first occur-
rence, G – repetition with a gap)

Factor d-subset Repetitions
ab 319132 (31, F ), (91, G), (32, F )
bc 4152 (41, F ), (52, F )
cd 616292 (61, F ), (62, F ), (92, G)
da 8172 (81, F ), (72, F )
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Fig. 6. Transition diagrams of finite automata MS1 and MS2 accepting sequences of
non-overlapping factors of both strings from the example
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Fig. 9. Transition diagram of finite automaton MS from the example

Finally, from the above computation we may conclude that in this particular
set S = {aabccddab, babbcdacd} and using parameters p = 2, q = 3 the following
common motifs occur: m1 = {ab, cd}, m2 = {ab, da}, m3 = {bc, cd}, m4 =
{bc, da}.

5 Time and Space Complexity of the Algorithm

We shall discuss the time and space complexity for each step of the algorithm.
As described in Section 3 the algorithm requires five steps.

In Step 1 we fist construct r finite automata, one for each string Si of the set
of strings S. The time and space needed to construct each automaton depends
on the length of each particular string Si which is the language to be accepted
by the automaton. Therefore this process requires linear time and space [4] with
respect to the length of the strings.
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Subsequently we wish to construct the automaton which accepts the union
of these languages. If we assume that the value n is the cumulated size of the

input sequences i.e. n =
r∑

i=1

|Si|, then this step requires O(n) space and time for

all the strings to be included in the automaton. Next, we wish to transform this
union automaton into a deterministic factor automaton also called Direct Acyclic
Word Graph (DAWG). In most cases the union automaton is non-deterministic.
In order to create the deterministic factor automaton we need to transform
the non-deterministic union automaton to a deterministic automaton which will
be the factor automaton MF . Generally, the construction of a deterministic
automaton from a non-deterministic requires exponential time and space. In the
case of factor automata though the maximum number of states of the resulting
deterministic automaton is 2|n| − 1 and the maximum number of transitions is
3|n| − 4 [3]. Thus, this step is bounded overall by linear time and space.

In Step 2 we extract from MF the factors belonging to all the strings and which
have length between the values p and q, and we add them to the repetition table
RT . In order to find all these factors we need to reach all the states at depth q.
Let δ = q − p + 1 the length of the last interval. As we are looking for all the
factors between p and q there are at most n×δ such factors. Thus the complexity
of this step is O(n× δ).

In Steps 3 and 4 we construct the new factor alphabet and for each string Si

in S we construct a finite automaton MSi accepting all non-overlapping factors
from the factor alphabet. Each automaton requires O(n) time to be constructed
and O(n) space. Thus, overall this step can be completed in linear time and
requires linear space.

In Step 5 we construct the finite automaton MS accepting all common subse-
quences of the strings accepted by MSi. This is achieved by creating the finite au-
tomaton MS that accepts the intersection of the languages accepted by automata
MSi taken from Step 4. The process of intersecting automata requires quadratic
time and is usually done by cartesian product. In [6], Holub and Melichar present
an algorithm for the intersection of factor automata which does not employ carte-
sian product but uses state marking. Using this algorithm we avoid the creation
of all inaccessible states during the automaton construction.

Although the resulting automaton from the algorithm in [6] contains no in-
accessible states as it would have if we had used cartesian product to construct
it, nevertheless the time and space complexities of this step are still quadratic
relative to the input. For the case of only two factor automata to be intersected,
for example L1 and L2 having lengths n and m respectively then the state com-
plexity of L1 ∩ L2 is O(nm). When we transfer this into a problem with many
automata the complexity will become O(nk)—polynomial with n size of texts
and exponential with k the number of automata. This is a familiar situation
relating to the problem of finding the longest common subsequences of many
(> 3) strings using Dynamic Programming which is an NP-complete problem so
no better exact algorithm is destined to appear [9].
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Overall, looking over all the steps we can see that the algorithm’s time and
space complexity is exponential due to the last step that requires the intersection
of many finite automata.

6 Conclusion

We have presented a complete automaton based algorithm to solve the problem
of identifying and indexing the common motifs with gaps in a set of strings.
The algorithm takes advantage of the fact that one can find common motifs of
a set of strings by intersecting their corresponding factor automata which were
created by the common factors residing in the strings. Other solutions of the
problem require some limit of gaps (fixed gap, bounded gap, bounded sum of
gaps). The presented algorithm allows any gaps while keeping the same time
and space complexity. Moreover it offers a sound application of finite automata
on the problem of finding common motifs with gaps in a set of strings.
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Abstract. The factor oracle is a relatively new data structure for the set
of factors of a string which has been introduced by Allauzen, Crochemore,
and Raffinot in 1999. It may recognize non-factors (hence the name
“oracle”) but its implementational simplicity and experimental behav-
iour are stunning; factor oracle based string matching has been conjec-
tured optimal on average. However, its structure is not well understood.
We take important steps in clarifying its structure by explaining how it
can be obtained as a quotient of the trie for the set of factors. When
seen this way, all known properties of the factor oracle become simple
observations. Also, we introduce a framework where various oracles can
be compared. The factor oracle is better than several natural ones.
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1 Introduction

The factor oracle is a relatively new data structure for the set of factors of
a string which has been introduced by Allauzen, Crochemore, and Raffinot in
[1,2]. The starting point was the notion of weak factor recognition which means
constructing a no-biased algorithm for detecting factors of a string. In the string
matching algorithms based on reversed factors, identifying correctly non-factors
is enough. Therefore, the factor oracle recognizes all factors of a string but may
recognize some non-factors as well (hence the name “oracle”). On the other hand,
the string matching algorithms based on it are as efficient as the best existing
ones but far simpler to implement; they also require less memory. According to
the experimental results, it has been conjectured in [1,2] that these algorithms
are optimal on average. A number of other applications of the factor oracle to
data compression, repetitions searching, and learning have been investigated in
[3,7,8,9,10,11,12,13].
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The structure of the factor oracle is however not well understood. Proving
various properties of it was, so far, rather difficult and therefore solving the
open problems concerning it difficult to attempt.

We present here a different way of looking at the factor oracle, namely as a
quotient of the trie for the set of factors. Using our construction, all known prop-
erties of the factor oracle become simple observations. Moreover, we introduce
the general notion of an oracle for the set of factors of a string – the factor ora-
cle is a particular case here – and build a framework for comparing such oracles
since, arguably, all of them have to include a quotient of the trie.

Several other natural oracles can be obtained in this way and the factor oracle
proves to be the best among those. Particular examples exist when the factor
oracle can be improved but whether there exists a general strategy for building
better oracles remains open.

We hope that the new approach will be of help in solving various open prob-
lems concerning the factor oracle; see Section 9 for details.

The paper is structured as follows. We recall in the next section all basic
concepts needed and then present in Section 3 a variant of Ukkonen’s algorithm
for building tries in which some additional information is computed; this in-
formation helps us later in constructing quotients of the trie. The very sim-
ple algorithm of [1,2] for constructing the factor oracles is described briefly
in Section 4. Section 5 describes an oracle naturally obtained from the trie,
called trie oracle. In Section 6 we show how the factor oracle can be obtained
from the trie oracle and why it is better whereas Section 7 contains a di-
rect construction of the factor oracle as a quotient of the trie1, which makes
it very simple to prove things about the factor oracle as done in Section 8.
We conclude with a brief discussion concerning the main open problems in
Section 9.

Some of the proofs had to be omitted due to limited space.

2 Basic Definitions

Let A be an alphabet; A∗ is the free monoid generated by A, that is, the set of
all finite strings over A. The empty string is ε. For a string w ∈ A∗, we denote
by |w| the length of w. If w = xyz, for w, x, y, z ∈ A∗, then x, y, z are a prefix,
factor, and suffix of w, resp. When different from w they are called proper. The
set of all factors of w is denoted fact(w). The same notation is used for a set of
strings.

For a string w, we shall denote by suf(w) the longest proper suffix of w, that
is the string obtained from w by removing its first letter; for the empty string
we have suf(ε) = nil. The ith letter of w is w[i] and, for 1 ≤ i ≤ j ≤ |w|, we
denote w[i..j] = w[i]w[i + 1] · · ·w[j].

1 Ways of obtaining the factor oracle as a quotient of the trie have been investigated
in [4] and [5]; their automata may be different in some cases from the factor oracle;
see the note on page 83.
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A finite automaton is a directed graph2 where the edges are labelled by letters
from A; if we have an edge i

a−→ j, then j is an a-son of i.
The automaton is deterministic if any node has at most one a-son, for any

letter a and nondeterministic otherwise. To define the language recognized by
an automaton, we need to identify an initial node and some final nodes. Then,
the strings recognized are precisely those labelling paths from the initial node
to a final node. The set of the strings recognized by an automaton M is denoted
L(M). In general, for a node i, the language L(i) is the set of all labels of finite
paths starting from i and ending in a final node. Unless otherwise specified, all
our graphs, when seen as automata, have 0 or ε as initial node and all nodes are
final.

The quotient of a graph G is any graph obtained from G by merging together
the nodes according to a given equivalence relation ≡. The edges are modified
accordingly. The quotient is denoted G|≡.

Inspired by the discussion of [1,2] on the properties the factor oracle should
have, we introduce the notion of oracle for the set of factors of a string w; it is
a deterministic automaton which:

(o1) recognizes at least all factors of w;
(o2) is acyclic (it recognizes a finite set of strings);
(o3) has |w| + 1 states (lowest possible);
(o4) has linearly many edges (independent of alphabet size);
(o5) for each node, all incoming edges have the same label (for efficient imple-

mentation).

The criteria (o1)-(o4) appear in [1,2]; (o5) is new but nevertheless satisfied by
the factor oracle; it is very important for implementation because it makes the
the memorization of the edge labels unnecessary. Notice the difference between
an oracle for the set of factors of a string and the factor oracle of [1,2]. As we
shall work with both finite automata and tries, we shall simply call them all
graphs.

3 Ukkonen’s Algorithm for Tries

The trie of a string w ∈ A∗, denoted trie(w), is the tree containing all factors of
w. Formally, it is a directed graph having as nodes the factors of w and (labelled)
edges u

a−→ ua, where u, ua ∈ fact(w), a ∈ A. Each factor is the label of a path
starting from the root. See Fig. 1 for an example. Whenever we discuss about
tries, we shall identify each node with the corresponding path from the root.

The trie is, in some sense, the most basic data structure for strings as most of
the other ones – suffix trees, DAWGs, suffix automata – can be obtained from
it. As we show below, also the factor oracle can be obtained from it.

2 In an automaton the nodes are usually called states and the labelled edges are called
transitions.



Factor Oracles 81

Ukkonen [16] gave a linear time on-line algorithm for constructing suffix trees
which are tries with all chains (paths of nodes of outdegree 1) compacted. How-
ever, his construction works also for the simpler case of tries. We describe it
below as it is useful in constructing a number of oracles from the obtained trie.

We shall need suffix links, which are links from a node u to suf(u); we shall
represent them as dotted arrows; the regular edges are represented as solid ar-
rows. The suffix path from a node u is: u, suf(u), suf2(u), . . ., continuing as long
as the suffix links are defined; we shall denote it by suf∗(u).

The algorithm works sequentially, considering all the letters of w one at a
time. To add one letter a, we start from the deepest node in the current trie and
follow the suffix links adding new a-sons with their suffix links; this is done until
one node having an a-son is found or the value of the suffix link becomes nil; see
[6] for more details.

Important for us later will be the time each node has been created, that is,
the index of the letter in the string which caused the addition of that node. This
will be denoted, for a node u, by time(u); we shall sometimes write the time as
a subscript to the label of the node: utime(u).

Here is the pseudocode for Ukkonen’s algorithm. We also compute the time
values and some S′-links which will be discussed later.

Ukkonen trie(w)

- given a string w = w[1]w[2] · · · w[n], w[i] ∈ A, 1 ≤ i ≤ n;
- return trie(w);

1. construct the two-node trie(w[1]) with the suffix links
2. for i from 2 to n do
3. v ← deepest leaf of trie(w[1..i − 1])
4. k ← min{i | sufi(v) has a w[i]-son or it is nil}
5. for � from 0 to k − 1 do

6. create suf�(v)
w[i]−→ x

7. create a suffix link for x [ to w[i]-son of suf�+1(v) (or ε if nil) ]
8. time(x) ← i

9. if sufk(v) = nil then S′(i) ← 0
10. else u ← w[i]-son of sufk−1(v)
11. S′(i) ← time(u)

The trie obtained for the string baababbabc is shown in Fig. 1. The string has
been chosen to show the most important aspects of our constructions. It may
seem a bit long but, probably, there is no shorter one which shows all situations
that need to be analyzed.

Setting, by convention, S′(0) = −1, the values of S′ for the example in Fig. 1
are:

i 0 1 2 3 4 5 6 7 8 9 10
S′(i) −1 0 0 2 1 2 4 1 2 6 0

The following two remarks about Ukkonen’s trie construction algorithm are
very useful.
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Remark 1. If v is the deepest node in the trie with time(v) = i, then all nodes
in the trie with time equal to i are found on the suffix path suf∗(v). The S′-link
S′(i) is the first node on the suffix path which has a time different from i.

Remark 2. Notice that, if u with time(u) = j is a node on the suffix path suf∗(v),
then not all nodes with time equal with j need to be on the suffix path suf∗(v).
In our example we have the suffix path (the subscripts show the time values):
baa3, aa3, a2, but the node ba2 is not on the suffix path of baa. The shallowest
(closest to root) node with time value j must be on suf∗(v). This gives also that
u ∈ suf∗(v) implies time(u) ∈ S′∗(time(v)), but the converse need not be true.
(Here S′∗(i) is the S′-path of i, that is, i, S′(i), S′2(i), . . ..)
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Fig. 1. The trie built by Ukkonen’s algorithm for the string baababbabc

4 A Simple Algorithm for Factor Oracle

We recall in this section the sequential algorithm of Allauzen, Crochemore, and
Raffinot (ACR, for short) for constructing factor oracles. However, we shall not
assume we know that the obtained graph is the factor oracle. We shall show later
that the same object can be obtained from the trie we described before and the
most important properties we need about the factor oracle will follow from there.
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ACR factor oracle(w)
- given a string w = w[1]w[2] · · · w[n], w[i] ∈ A, 1 ≤ i ≤ n;
- return factor oracle(w);
1. S(0) ← −1
2. for i from 1 to n do

3. create i − 1
w[i]−→ i

4. � ← S(i − 1)
5. while (� 	= −1) and (� has no w[i]-son) do

6. create �
w[i]−→ i

7. � ← S(�)
8. if � = −1 then S(i) ← 0
9. else S(i) ← the w[i]-son of �

The factor oracle for the string baababbabc is shown in Fig. 2. Again, regular
edges are solid arrows whereas the S-links are dotted. Notice the string baabc
which is recognized but is not a factor. The S-links for the example are:

i 0 1 2 3 4 5 6 7 8 9 10
S(i) −1 0 0 2 1 2 4 1 2 4 0

a

b
c

c

c
bba

caa bbbbb a
9876543210 10

Fig. 2. factor oracle(baababbabc)

5 Trie Oracle

We can obtain another oracle for fact(w) from the trie(w) in a natural way; we
simply merge all nodes with the same time value to obtain trie(w)|time. Obviously
time gives an equivalence relation on the set of nodes. The nodes of trie(w)|time

are the corresponding time values. The one for our string baababbabc is shown
in Fig. 3. The edges are shown as continuous arrows and the S′-links are dotted.
There are three differences with respect to the factor oracle – two edges and one
S′-link; they are shown in bold.

We notice first that it is nondeterministic3; the node 2 has two b-sons. We
make it deterministic in the following way: eliminate any edge i

a−→ j whenever
we can find i

a−→ k with k < j. In our example the edge 2 b−→ 6 is removed.
Denote the obtained graph trie oracle(w). The one for our example is shown in
Fig. 4.
3 It can be shown that the algorithm of [4] produces, in our notation, trie(w)|time

whereas the (modified) version of [5] yields trie oracle(w).
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Fig. 3. trie(baababbabc)|time
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Fig. 4. trie oracle(baababbabc)

We prove below that the trie oracle is an oracle for fact(w). The trie oracle is
deterministic, acyclic, has |w| + 1 states, and for each node all incoming edges
are labelled the same. We prove next that it recognizes at least all factors of w.
The next lemma concerns trie |time and is useful for our purpose.

Lemma 1. In trie(w)|time, if j ∈ S′∗(i), then L(i) ⊆ L(j).

Proof. By induction on i from |w| to 1. For i = |w|, we have L(i) = {ε} and the
property holds. Assume it true for i + 1, i+ 2, . . . , |w| and prove it for i. For any
edge i

a−→ i′, there exists v
a−→ va in trie(w) with time(v) = i and time(va) = i′.

We can also find a node u ∈ suf∗(v) such that time(u) = j and there exists an
edge u

a−→ ua; we can take for u the shallowest node with time value j. Now
ua ∈ suf∗(va) and if we put j′ = time(ua), then j′ ∈ S′∗(i′). By the inductive
hypothesis, L(i′) ⊆ L(j′). As this holds for every a-son of i, the claim follows.

�

Corollary 1. For any w, trie oracle(w) recognizes at least all factors of w.

Proof. It is clear that trie(w)|time recognizes at least all factors of w. But when-
ever an edge j

a−→ i is removed to create trie oracle(w), there is another edge
j

a−→ �, with � < i. In such a case we have � ∈ S′∗(i) and Lemma 1 says that
eliminating the former edge does not affect the set of recognized strings. �

What is left to show is property (o4) in the definition of an oracle.

Lemma 2. For any w, trie(w)|time has at most 2|w| − 1 edges.
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Proof. There are two types of edges in trie(w)|time and trie(w): (type 1) i
w[i]−→ i+1

and (type 2) i −→ j, with j �= i + 1; for trie(w) we consider the time values of
the ends of an edge. There are |w| edges of type 1 in trie(w)|time so we need to
count the other ones.

In trie(w), each internal node has exactly one outgoing edge of type 1. There-
fore, the number of edges of type 1 is the same as the number of internal nodes.
The total number of edges equals the number of nodes minus one (it is a tree).
Therefore, the number of edges of type 2 is the number of leaves minus one. But
the number of leaves is at most the number of non-empty suffixes of w, that is,
|w|. So, there are at most |w| − 1 edges of type 2. The claim follows. �

Corollary 2. For any w, the set of strings recognized by trie oracle(w) is closed
under taking factors.

Proof. The sequence of S′-links starting from any node of trie oracle(w) ends
in the initial node 0. Therefore, Lemma 1 implies that any string recognized
starting from some i is also recognized starting from 0. �

Proposition 1. For any w, trie oracle(w) is an oracle for fact(w).

Proof. It follows from the above results. �

6 Factor Oracle from Trie Oracle

We shall see in this section how the factor oracle can be obtained from the
trie oracle by removing certain edges. The differences between the two graphs in
Figs. 2 and 4 are shown in bold in the latter. The factor oracle recognizes strictly
less strings than the trie oracle in this case; for instance, baababc is recognized
by the latter but not by the former.

Notice that we do not attempt to find a better algorithm for computing the
factor oracle (the simplicity of the one in [1,2] we presented above seems almost
impossible to beat) but to understand its tricky structure and properties. Here
is the main result.

Theorem 1. For any string w, we have

(i) for any i there is ei ≥ 1 such that S′ei(i) = S(i);
(ii) factor oracle(w) is obtained from trie oracle(w) by removing, for all i with

ei ≥ 2, all edges S′k(i)
w[i+1]−→ i + 1, 1 ≤ k ≤ ei − 1.

7 Factor Oracle from Trie

We describe two ways of obtaining the factor oracle directly from the trie, dif-
ferent from constructing the trie oracle and then performing the eliminations in
Theorem 1(ii). Both constructions here are similar to the one above but they
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are independent of the factor oracle; in particular, they do not make reference
to the S-links.

The first one uses the idea that the edges which the trie oracle has but the
factor oracle does not appear from the fact that we may add an a-son to a node
v even when there is already a node with the same time value as v which has an
a-son. In our example, this happens when adding the edge ba2

b−→ bab6 when
there is already a2

b−→ ab4 (subscripts show the time). Modifying Ukkonen’s
algorithm for tries so that such edges are not added would produce a graph
whose quotient with respect to the time values produces precisely the factor
oracle. For our example this new graph would look like the trie in Fig. 1 with
the subtree rooted at bab removed. The new S′-links would be the same as the
S-links in the factor oracle. However, the new suffix links would not be true suffix
links but powers of those. Precisely, the new suffix link for a node u would link to
the longest suffix of u that exists in the new graph. For instance, in our example,
we would have the new (pseudo)suffix link of bbab pointing to ab = suf2(bbab)
as the suffix bab is no longer in the new graph.

A better way to modify Ukkonen’s algorithm is to add an a-son to a node v
even if there exists another, say u, with the same time value and that has an
a-son but the (new) time value of v will not be the index of the current letter in
w but time(ua). This new version of the algorithm, say Ukkonen trie 2(w),
would have line 8 replaced by the following pseudocode (for clarity, denote the
new time values by time 2 and the new S′-links by S′′):

8. time 2(x) ← i

8.1. if sufk(v) 	= nil then
8.2. t ← time 2(sufk(v)); t′ ← time 2(sufk(v)w[i]); � ← k − 1
8.3. while time 2(suf�(v)) = t do
8.4. time 2(suf�(v)w[i]) ← t′; � ← � − 1

Denote the graph constructed by this algorithm trie 2(w) and let trie oracle 2(w)
be the quotient trie 2(w)|time 2. From the construction it should be clear that a
deterministic automaton is obtained.

Remarks 1 and 2 hold as well for trie 2(w) with one exception. Not all nodes
with a given time 2 are found on the suffix path from the deepest node with that
time 2 value. The nodes with the same time 2 form a tree with the shallowest
node as root. In our example, this happens for the nodes with time 2 value 4;
the root is ab4.

The results in Lemma 1, Corollaries 1 and 2 and Proposition 1 hold also for
trie oracle 2(w). The proof of the next lemma is similar with the one of Lemma 1.

Lemma 3. In trie oracle 2(w), if j ∈ S′′∗(i), then L(i) ⊆ L(j).

The following results are now easy to prove.

Lemma 4. For any w, we have:
(i) trie oracle 2(w) recognizes at least all factors of w;
(ii) the set of strings recognized by trie oracle 2(w) is closed under taking factors.



Factor Oracles 87

Proposition 2. For any w, trie oracle 2(w) is an oracle for fact(w).

For our string baababbabc, the differences between trie 2 and trie are: (i)
time 2(bab) = 4 �= 6 = time(bab) and (ii) S′′(9) = 4 �= 6 = S′(9). There-
fore, the two graphs trie oracle 2(baababbabc) and factor oracle(baababbabc) are
identical. The next theorem says that this is always the case.

Theorem 2. For any string w, we have

(i) for any i, S′′(i) = S(i);
(ii) factor oracle(w) and trie oracle 2(w) are the same.

8 Properties of the Factor Oracle

The properties of the factor oracle from [1,2] can be very easily deduced using
Theorem 2. The first two are proved in Proposition 2 and Lemma 4.

1. factor oracle(w) is an oracle for the set of factors of w.
2. The set of strings recognized by factor oracle(w) is closed under taking fac-

tors.
Denote, for u factor of w, poccur(u, w) = min{|z| | z = xu, w = zy}.

3. The shortest string recognized by factor oracle(w) in i is a factor of w and
is unique. This is the string labelling the shallowest (closest to root) node
with time 2 value i in trie 2(w). Denote it by min(i). The next property is
also clear.

4. poccur(min(i), w) = i.
5. min(i) is a suffix of any string recognized by factor oracle(w) in i. The shal-

lowest node with time 2 value i, corresponding to min(i), is on the suffix
path of any node with time 2 i.

6. Any factor u of w is recognized by factor oracle(w) in j ≤ poccur(u, w). We
have in trie 2(w), time 2(u) ≤ poccur(u, w).

7. Any path in factor oracle(w) whose label ends with min(i) leads to j ≥ i.
Such a path in trie 2(w) leads to a node v such that the shallowest node of
time 2 value i is on v’s suffix path. It follows that j = time 2(v) ≥ i.

8. Let v be a factor of w recognized by factor oracle(w) in i. Then any suffix of
v is recognized in j ≤ i. The suffix of v is in trie 2(w) on the suffix path of
v and therefore has a lower, or equal, time 2 value.

9. factor oracle(w) has at most 2|w| − 1 edges. This follows from Lemma 2.
Denote repet(w, i) the longest suffix of w[1..i] that appears at least twice in
w[1..i].

10. The reading of repet(w, i) in factor oracle(w) ends in S(i). Starting from the
deepest node of trie 2(w) with time 2 value i; it corresponds to the node
w[1..i]. Moving up its suffix path, we encounter shorter suffixes until one
which is already in trie 2(w) is found. That node has time 2 value S(i) and
its label is precisely repet(w, i).
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9 Discussion and Open Problems

Our framework for discussing oracles for the set of factors of a string is provided
by the following result.

Proposition 3. Any oracle for the set of factors of a string w contains a quo-
tient of trie(w) as a subgraph.

Proof. Let O be an oracle and define a relation on the nodes of trie(w) by

u ≡O v iff the paths labelled u and v in O end in the same node .

We claim that O must contain as a subgraph the quotient trie(w)|≡O .
First, it is clear that ≡O is an equivalence relation with |w| + 1 classes. No

two prefixes of w are in the same ≡O-class and denote the ≡O-class of the prefix
of length i by i. Therefore, trie(w)|≡O has the nodes 0, 1, . . . , n.

Consider an edge i
a−→ j of trie(w)|≡O . There must be then an edge u

a−→ ua
in trie(w) such that u ≡O w[1..i] and ua ≡O w[1..j]. Therefore, reading u in O
from 0 leads to i whereas reading ua from 0 leads to j. As O is deterministic,
there must be an edge i

a−→ j in O, proving the claim. �

Remark 3. Notice that, in particular, for any oracle O, trie(w)|≡O is determin-
istic. Also, all edges in O which are not in trie(w)|≡O can be eliminated and it
still remains an oracle.

Therefore, comparing oracles for the set of factors reduces to comparing quotients
of the trie. Other natural oracles can be obtained from DAWGs, suffix automata,
or factor automata; see [6]. It can be shown that the factor oracle is better than
all of those.

There exist particular examples, such as the string abcacdace4 from [4], for
which the factor oracle is not the smallest possible oracle but finding a gen-
eral (simple) strategy for building better oracles remains to be investigated. A
discussion of this example using our trie quotients is omitted due to lack of space.

Finally, we recall briefly the most important open problems about the factor
oracle; they apply to all oracles for the set of factors of a string:

1. Are factor oracle based string matching algorithms optimal on average, as
conjectured by [1,2]?

2. Which is the number of errors (maximal and average), that is, non-factors
that are recognized by the factor oracle? Examples are given in [14,15] where
this is exponential but they are over an infinite alphabet. One can find
examples over binary alphabet where it is still superpolynomial.

3. What is the average number of external transitions for the factor oracle or,
put otherwise, what is its average size?

4 The factor oracle for this example recognizes fewer non-factors than the smaller
oracle of [4] but one can find examples for which smaller oracles which also “lie”
less can be constructed.
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4. Is there a simple strategy for building even better oracles, within our frame-
work of quotients of the trie?

5. Characterize the set recognized by the factor oracle; not in terms of the
factor oracle itself, like in [14,15].
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Abstract. The simple grammar reduction is an important component
in the implementation of Concatenation State Machines (a hardware
version of stateless pushdown automata designed for wire-speed network
packet classification). We present a comparison and experimental analy-
sis of the best-known algorithms for the grammar reduction. There are
two approaches to this problem: one processing compressed strings with-
out decompression and another one which processes strings explicitely.
It turns out that the second approach is more efficient in the considered
practical scenario despite having worst-case exponential time complexity
(while the first one is polynomial). The study has been conducted in the
context of network packet classification, where simple grammars are used
for representing the classification policies.

1 Introduction

The simple grammar equivalence problem is a generalization of equality testing
of two grammar-compressed strings. In the case of a simple grammar we have
grammar-compressed sets of strings (languages). The theoretical background
of the algorithms involved is an interesting mixture of string matching, text
compression, algebraic theory of processes, and formal language theory.

The simple grammar equivalence problem is a classical question in formal lan-
guage theory. It is a nontrivial problem, since the inclusion problem for simple
languages is undecidable. A. Korenjak and J. Hopcroft, see [7,5], proved that
the equivalence problem is decidable and they gave the first, doubly exponential
time algorithm solving it. Their result was improved by D. Caucal to polynomial
time in n and v(G), see [3]. The parameter n is the size of the simple grammar
and v(G) is the length of a shortest string derived from a nonterminal, maxi-
mized over all nonterminals. Caucal’s algorithm is exponential since v(G) can be
exponential with respect to n. Y. Hirshfeld, M. Jerrum, and F. Moller gave the
first polynomial O(n13) time algorithm for this problem in [6]. A recent paper
[1] presented a variation of Caucal’s algorithm using a technique developed in
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the context of pattern matching on compressed strings [8,9], improving the time
complexity of the algorithm to O(n7 log2 n) and O(n5 polylog v(G))). Interest-
ingly, this seemingly theoretical problem, for which a polynomial-time algorithm
was unknown for many years, turns out to have an important application in the
domain of network packet processing. Moreover, in spite of their high worst-case
complexities, the structure of these algorithms makes them potentially applicable
in practical situations.

In this paper, we describe our experimental study comparing the performance
of three implementations of simple grammar reduction in the context of the
wire-speed network packet classification problem. These three implementations
are variations of a general simple grammar reduction method but differ by using
three different algorithms for deciding on simple grammar equivalence.

In the IDT solution for the wire-speed network packet classification problem,
classes of network packets are represented using simple grammars, and their
recognition is made by a so-called Concatenation State Machine [4], a hardware
implementation of a stateless pushdown automaton. In order to store large sets
of classification policies in memory, it is essential to reuse their common parts.
A natural way to do this consists in decomposing simple languages into primes
(languages not representable as concatenation of two simple languages), each of
which is stored in memory only once. When a new classification policy is added
to memory, we verify if its prime factors are already stored in the data base.
Representation of finite automata by Concatenation State Machines can be seen
as a compression technique. Indeed, the size of a finite state automaton is some-
times exponentially larger than the size of an equivalent Concatenation State
Machine. However, certain problems which are easy for finite state machines,
like language equivalence (by automata minimization) are much more complex
for Concatenation State Machines, as witnessed by this paper. Despite the fact
that a Concatenation State Machine is a compact representation of an automa-
ton, in practical cases the sizes of Concatenation State Machines are still large
(several tens of thousands of nodes). Hence, the complexities of the algorithms
involved are of fundamental importance. Our experiments showed that despite a
very large worst-case complexities of the considered algorithms, in practice some
of them performed well.

2 Simple Grammar Equivalence Algorithms

A context-free grammar G = (Σ, N, P ) is composed of a finite set Σ of terminals,
a finite set N of nonterminals disjoint from Σ, and a finite set P ⊂ N×(N∪Σ)∗

of production rules. For every β, γ ∈ (N∪Σ)∗, if (A, α) ∈ P , then βAγ → βαγ. A
derivation β

∗−→ γ is a finite sequence (α0, α1, . . . , αn) such that β = α0, γ = αn,
and αi−1 → αi for i ∈ [1, n]. For every sequence of nonterminals α ∈ N∗ of a
grammar G = (Σ, N, P ), the language derivable from α, denoted LG(α), is the
set of terminal strings derivable from α, i.e., LG(α) def= {w ∈ Σ∗ | α ∗−→w}. Often,
if G is known from the context, we will write L(α) instead of LG(α).
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A grammar G = (Σ, N, P ) is in Greibach Normal Form if for every production
rule (A → α) ∈ P , we have α ∈ ΣN∗. A grammar G = (Σ, N, P ) is a simple
grammar if G is a Greibach Normal Form grammar such that whenever A→ a α1
and A→ a α2, for a same a ∈ Σ, then α1 = α2. A language is a simple language
if it can be derived from a simple grammar.

Let G = (Σ, N, P ) be a simple grammar and α, β ∈ N∗ two strings of non-
terminals. The equivalence problem consists in deciding whether L(α) = L(β)
(also denoted by α ≡ β). A function H : N → N+ is called a decomposing
morphism if we can order the elements of N in such a way that for each A ∈ N ,
H(A) = A or A > B for each symbol B occurring in the string H(A). We can
extend this definition to the domain N∗ by defining H(Aα) = H(A) ·H(α), with
α ∈ N∗. We denote H |N | by H∗ since H |N |+1 = H |N |. If H is a decomposing
morphism, by H[A 	→α] we denote a new mapping N → N+ which is identical on

all nonterminals but A, and H[A 	→α](A) def= α.
Let G = (Σ, N, P ) be a simple grammar. A decomposing morphism H is said

to be self-proving in G if for each A ∈ N we have:

– If A→ aα, then H(A)→ aβ and H∗(α) = H∗(β), and
– If H(A)→ aβ, then A→ aα and H∗(α) = H∗(β).

It has been proved (e.g., in [1]) that if H is an acyclic decomposing morphism
self-proving in G, then for every α ∈ N+ we have α ≡ H(α).

Therefore, if two strings α and β ∈ N∗ have the same decomposition, i.e.
H∗(α) = H∗(β), and H is self-proving, then α ≡ β. In order to prove that
α ≡ β it is sufficient to find a self-proving decomposing morphism H , such that
H∗(α) = H∗(β).

The quotient of A by B, denoted quot(A, B), is a word γ ∈ N∗, such that, if
it exists, L(A) = L(B)L(γ). As shown in [6], using the notion of ||A||, the norm
of A, i.e., the length of a shortest word of L(A), it follows that there exists such
a γ of length in O(n2), and it can be computed in time O(n2). The technique of
calculating quot(A, B), was not originally considered in [3].

First Mismatch-Pair problem (First-MP) is defined as follows:

Input: decomposing morphism H : N 
→ N+ and strings α, β ∈ N+;
Output:

– First-MP(α, β, H) = nil, if H∗(α) = H∗(β);
– First-MP(α, β, H) = failure, if one of H∗(α), H∗(β) is a proper

prefix of the other;
– First-MP(α, β, H) = (A, B) ∈ N × N , where (A, B) is the first

mismatch pair, i.e., the first symbols occurring at the same po-
sition in H∗(α) and in H∗(β) which are different.

In the context of the simple grammar equivalence problem, the First-MP problem
is important in the application of a process called DecompositionProcess.
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Input: decomposing morphism H : N 
→ N+ and strings α, β ∈ N+;
Output:

– If First-MP(α, β, H) = nil, then DecompositionProcess(α, β, H) =
success;

– If First-MP(α, β, H) = failure, then DecompositionProcess(α, β, H) =
failure;

– If First-MP(α, β, H) = (A, B), then, assuming ||A|| >= ||B||, the an-
swer is given by a recursive call to DecompositionProcess(α, β, H[A�→B·quot(A,B)]).

Essentially, this process tries to make H∗(α) and H∗(β) equal by updating
H with a new decomposition whenever a mismatching pair (A, B) is found. The
new decomposition is chosen by supposing that L(B) is a left divider of L(A),
i.e. by setting H[A 	→B·quot(A,B)], which eliminates the mismatch. This operation
is done repeatedly until First-MP returns success or failure, which is bound to
occur within n steps, where n is the size of N . The decomposition process is
constructing a self-proving decomposing morphism, as implied by its definition,
which would prove the equivalence of the two input strings.

3 Comparison of the Algorithms

We consider three simple grammar equivalence algorithms, which were presented
in [3], [6], and [1]. Even though they all use a similar basic idea derived from [7],
the manner in which this idea is applied differs significantly in two specific ways.

3.1 Two Basic Strategies in the Algorithms

The first difference resides in the way the self-proving decomposing morphism is
created.

Incremental Algorithms: Both algorithms from [3] and [1] build the decom-
posing morphism as needed from the input pair of strings. Let S be a set of
pairs of nonterminal strings. Initially, S contains only the input pair (α1, β1)
and H is initialized to H(A) = A, for each A ∈ N . The decomposition process
is applied to each pair contained in S. During this process, each time a nonter-
minal A is assigned a new decomposition in H , the algorithm verifies whether
A and H(A) have transitions over the same terminal symbols. If this is not the
case, we have failed in building a self-proving decomposing morphism such that
H∗(α1) = H∗(β1) and we conclude that the input strings are not equivalent.
Otherwise, for each terminal symbol a for which A → aα and H(A) → aβ, the
pair (α, β) is added to the set S. When all elements in S have been processed,
we conclude that H is self-proving and, since it has been applied successfully to
the input pair of strings, that α1 ≡ β1.

This method of constructing the self-proving decomposing morphism requires
only O(n) calls to First-MP, which is the only complex operation involved. How-
ever, this method does not directly perform grammar reduction, it only deter-
mines the equivalence between two nonterminals. In order to obtain a reduced
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grammar, we call the equivalence algorithm repeatedly over all pairs of nonter-
minals, increasing the overall complexity by a factor of O(n2).

Decremental Algorithm: The algorithm from [6] uses a different method
to create the self-proving decomposing morphism. At first all possible decom-
positions are considered. That is, for every pair (A, B) ∈ N × N such that
||A|| >= ||B||, we compute the pair (A, B · quot(A, B)). All these potential
decompositions are stored in a set S. The objective now is to transform S by
removing invalid decompositions, until we have a maximal set of valid decom-
positions which permits the construction of any self-proving decomposing mor-
phism. In order to do so, we consider every pair (A, B · quot(A, B)) ∈ S and we
verify whether it respects the conditions of the definition of a self-proving de-
composition. This is done as before by verifying that A and B ·quot(A, B) have
transitions for the same terminal symbols. If this is not the case, the pair is re-
moved from S and we continue with the remaining elements in S. Otherwise, for
each terminal symbol a for which A→ aα and Bquot(A, B)→ aβ, we apply the
decomposition process to (α, β), each time with H initialized to H(A) = A, for
every A ∈ N . Whenever a new decomposition needs to be set, that is whenever a
mismatching pair (A′, B′) is found, we look for its corresponding decomposition
(A′, B′·quot(A′, B′)) in S. If a decomposition is found, we set H[A′→B′·quot(A′,B′)]
and the decomposition process continues. Otherwise, we conclude that the pair
(A, B · quot(A, B)) cannot be part of a self-proving decomposing morphism and
it is removed from S. If any pair is removed from S, we start a new iteration
to test all the remaining pairs of S again. If no element can be removed from S
then the process stops. At this point, for every pair (A, β) ∈ S we have A ≡ β,
and for every pair (A, B) ∈ N2 such that A ≡ B · L, for some language L, we
have (A, B ·α) ∈ S and L = L(α). In order to check the equivalence of the input
pair (α1, β1) we try to find a decomposing morphism H such that H ⊆ S and
H∗(α1) = H∗(β1). If we succeed in doing this, then α1 ≡ β1.

3.2 Two Categories: Compressed or Uncompressed Representations

The second difference between the three algorithms resides in the way the First-
MP operation is executed. The algorithm from [3] performs this operation di-
rectly on uncompressed strings, explicitly decomposing the strings and compar-
ing them symbol by symbol. Since a decomposed string can have an exponential
length with respect to the number of nonterminals, the algorithm has expo-
nential complexity. However, if the lengths of decomposed strings are relatively
small, which seems to be the case for all “real-life” examples we have considered,
this approach may be acceptable in practice.

On the other side, the algorithms from [1] and [6] process the First-MP op-
eration in polynomial time without a complete decompression of the strings by
using a dynamic programming approach. This technique requires that we deal
with morphism H in binary form, i.e., such that H(A) = α implies |α| ∈ {1, 2}
for all A ∈ N . We can transform any morphism H into a binary one by intro-
ducing at most O(n) new nonterminals per original nonterminal, thus increasing
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the number of nonterminals to k = O(n2), where n is the original number of
nonterminals in the grammar. Let N ′ denote the new set of nonterminals. Then,
the main task required by this approach is to compute a table P containing, for
all A, B, C ∈ N ′, the starting positions of a specific subset of the occurences of
H∗(A) in H∗(B)H∗(C). The actual positions we need to find are those for which
H∗(A) is overlapping the first symbol of H∗(C). Since, for each A, B, C, this set
of positions forms an arithmetic progression, its representation takes constant
memory space, thus the entire table P requires O(k3) (i.e., O(n6)) memory space,
which is the space complexity of algorithm from [6]. This space complexity can
be improved to O(k2) as described in [8], leading to O(n4) space complexity of al-
gorithm from [1]. For more details about calculating First-MP, see the appendix.

4 Implementation

We wrote three programs, SGR-1, SGR-2, and SGR-3, for simple grammar re-
duction which implement the algorithms from [3], [6], and [1], respectively, for
checking on simple grammar equivalence.

The First Mismatch Problem was solved using techniques from the fully com-
pressed string matching, [8]. Besides the First-MP problem, the three programs
are relatively simple to implement. The extent to which the implementation
can be improved depends on the structure and the internal mechanisms of the
algorithm. Below we list the improvements made in comparison with a straight-
forward implementation.

Lazy Evaluation: Programs SGR-2 and SGR-3 compute the First-MP using
dynamic programming. However, in case of SGR-3, we do not need to consult
the set of all entries of the table at each call, but often only a small subset of it.
Therefore, we implemented the dynamic programming section of the algorithm
using “lazy evaluation”, that is we compute any required value of the table only
once, the first time it is needed, and store the result in the table for future
references. Unnecessary values are never computed.

Reduced Number of Calls: When performing grammar reduction with SGR-1
or SGR-3, we can reduce the number of calls to function equivalence(A, B),
which checks for equivalence of two nonterminals A and B, by sorting the non-
terminals according to the length of the shortest word they generate. This per-
mits to ignore all pairs for which the length of a shortest word derivable from
each nonterminal differs.

Reduced Redundant Calculation of the Decomposing Morphism: In
SGR-1 and SGR-3, whenever two nonterminals are found equivalent, the self-
proving decomposing morphism H which was built during the verification of the
equivalence, will be reused for subsequent calculations.

Reduced Redundant Calculation of Table P: In SGR-3 the construction of
the dynamic programming table P (see Section 3.2) depends only on the nonter-
minals of the grammar and the decomposing morphism used to decompose the
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symbols. Even though the algorithm introduces new temporary nonterminals be-
fore each regeneration of the table (which are needed to compress the compared
strings of nonterminals before starting the computation of the first mismatch),
the original nonterminals used in the morphism are always the same, and they do
not depend on the temporary ones. Therefore, if two consecutive regenerations of
table P use the same decomposing morphism, we can reuse the part of the table
which is related to the original nonterminals. Whenever a call to equivalence()
returns false, any changes to the table and the decomposing morphism made
during that call should be rolled back, if we want to avoid the recalculation
of them from scratch. We achieve this by saving table P and the decomposing
morphism before each call to equivalence().

5 Experimental Results

In this section we describe a performance comparison of the three programs
SGR-1, SGR-2, and SGR-3. The benchmark of the test-cases on which the exper-
iments were performed came from a real-life example of simple grammars used
at IDT Canada for representing different policies of network packet filtering and
classification. We have considered three different classes of simple grammars
coming from three different applications. Namely:

(Class A) Every test-case from this class defines a valid HTTP packet over
TCP with constraints correlating specific IP source and destination ad-
dresses, and HTTP headers defined by simple regular expressions.

(Class B) Test-cases from this class describe different policies for Sun content
load balancing blades. Such a blade offers Layer 4 through Layer 7 load
balancing. The parsing is based on IP protocol and TCP/UDP ports (Layer
4) or URLs, cookies, and CGI scripts (Layer 7).

(Class C) This class contains a set of policies demonstrating the capability
of PAX.port (a programmable wire-speed packet classification co-processor)
working as a firewall (Layer 3).

All test cases use a binary alphabet. Some other characteristics of the grammars
in each class are as follows:

Class A Class B Class C
Min Avg Max Min Avg Max Min Avg Max

Nb. of nonterminals 2878 11784 29520 1852 2568 3478 1122 4555 5765
Nb. of production rules 4972 19025 49735 2418 3415 4944 1707 5254 6789
Avg shortest word length 180 216 317 62 218 280 201 281 307
Max shortest word length 374 622 1064 624 773 824 680 680 680

We compare the performances of the programs by calling each of them over
several examples of the three classes of input grammars and measure the time
taken by each one to compute a reduced simple grammar, i.e., a simple grammar
equivalent to the input grammar such that no two nonterminals are equivalent.
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Fig. 1. Experimental results for grammar reduction. Each column represents a different
test case, sorted from left to right by number of nonterminals.
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Fig. 2. Execution time for SGR-2 on randomly generated simple grammars

The results, presented in Fig. 1, are compiled separately for each of the three
classes of test-cases and sorted by number of nonterminals, each column repre-
senting one particular test-case.

Program SGR-1 performs well for all the test-cases. There is a very little
variation in the time taken by this algorithm to perform the reduction of different
grammars of similar sizes, making it a good practical solution to the problem of
simple grammar reduction. Program SGR-1 gives the best results for most (but
not all) test cases, although both programs, SGR-1 and SGR-3, have been able
to handle all of them.

Program SGR-3 theoretically requires O(n4) memory space. However, the var-
ious improvements applied to the implementation of this algorithm, mainly the
use of “lazy memory allocation”, reduced the amount of memory needed to ex-
ecute the algorithm over these test-cases.

Program SGR-2 is ineffective, since it could not compute a result within the
allocated time frame, even for the smallest test-cases. In order to estimate the
behavior of algorithm SGR-2, we generated several simple grammars, varying the
number of nonterminals from 10 to 2500. It is important to remember that those
simple grammars were randomly generated.
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The table in Fig. 2 illustrates the properties of the generated grammars. Each
line describes a particular set of grammars, by means of an arithmetic progression
representing the number of nonterminals of each grammar in the set. The column
times specifies how many different grammars have been tested for each value
of the arithmetic progression. The results, presented in Fig. 2, are averaged for
each size and sorted by the number of nonterminals of each grammar. It was
impractical to test input grammars with more than 2500 nonterminals.

6 Conclusion

With a careful implementation, the algorithms for simple grammar equivalence
checking from [1] and [3] can both be used to efficiently perform simple gram-
mar reduction, even for large test-cases and in spite of their high worst-case
complexities. The algorithm from [3] in particular has proved to be fast and to
have stable performances when applied to different grammars of similar sizes.
The good performance of the algorithm from [3] is due to the fact that in all
analysed test-cases the length of the shortest word derivable from a nonterminal
was never of exponential size with respect to the size of the grammar. Note,
that it is easy to construct a simple grammar of size O(n) generating a single
word of length 2n, for which the algorithm from [3] is impractical, while the
algorithm from [1] runs instantaneously. Since such grammars do not occur in
our test-cases, the exponential solution most often yields the best results. There-
fore it is to be wondered whether the additional work needed to implement the
polynomial solution to the problem of simple grammar reduction is really worth
it, since a much simpler to implement solution based on [3] yields better perfor-
mance in practice. Note that some part of good performance of algorithms from
[1] and [3] is due to the applied practical improvements. From this perspective
the algorithm from [6] was relatively harder to implement.

The algorithm from [6], has proven to be inefficient to solve the problem of
simple grammar reduction. Even in the case of grammars of size of few hun-
dreds of production rules this algorithm could not produce the result within the
allocated timeframe. This is mainly due to the fact that, in average case, this
algorithm performance is relatively close to its theoretical worst-case complex-
ity. However, this algorithm was designed to answer a more general problem
than simple grammar reduction, and as such, this result was to be expected.
The purpose of [6] was to show that some language theoretical problem has a
polynomial-time solution and the authors didnt’t address the question of its opti-
mality. In fact, the context-free processes considered in this algorithm correspond
to Greibach Form grammars which are not necessarily deterministic.

It follows from our experiments that the worst-case exponential time algo-
rithm performs in practice like a low-polynomial time algorithm, at the same
time there is a point (which could be called the point of high sophistication of
the input) from which the worst-case high-polynomial algorithm substantially
beats the exponential algorithm. However in practical situations the input for
our problem does not reach such a high point of sophistication. The practical
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situations which we considered appear genuinely in the network packet process-
ing applications, and are of great importance in the context of the IDT solution.
This analysis made us believe that the two approaches based on algorithms from
[3] and [1], may represent a valid practical solution to the problem of simple
grammar reduction.

The future work is to implement a hybrid algorithm which would combine two
categories of algorithms. We can precompute in O(n log n) time the lengths of
the shortest words derivable from all grammar nonterminals. Then, depending
on the maximal shortest word v, for example when v = O(n2), we can run
the direct algorithm with explicit decompression of involved strings, otherwise
the algorithm using sophisticated compressed matching techniques is called. The
practical efficiency of the hybrid algorithm would depend on the careful selection
of the choice criteria. This requires further work.

Acknowledgments. We would like to thank Feliks Welfeld, Senior Architect at
IDT Canada Inc., for providing us with the real-life test examples which made
this experimental research possible.
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Appendix: Solving the First-Mismatch Problem

The First Mismatch Problem can be solved using techniques from the fully com-
pressed string matching, where compression is in terms of grammar compression,
as proposed in [8]. Hence, for technical reasons, we change terminology of mor-
phisms to grammar compression. Each morphism can be treated as a context-free
grammar generating a single word H∗(α). The symbols X such that H∗(X) = X
are terminal symbols of the grammar and other symbols are its nonterminals.
The fact that H(A) = BC can be treated as a production (in a context-free
grammar) A→ BC. Therefore we assume that we have a context-free grammar
G in Chomsky normal form which generates exactly one terminal word. The size
n of the grammar is the number of nonterminals.

As mentioned is Section 3.2, in order to convert our grammar to a binary
(Chomsky) form we may increase the number of its non-terminals to k = O(n2).
Since the best algorithm for fully compressed matching with k nonterminals
works in O(k4) time, First-Mismatch would work in O(n8) time. To reduce it to
O(n6)we introduce another parameter of grammars — the height.

The height of the morphism H , denoted by height(H) is min{k ≥ 0 | Hk =
Hk+1}. The height of a context-free grammar G generating a single word, de-
noted by height(G), is the length of the longest path in the derivation tree.

Lemma 1. Assume H is an acyclic morphism over N , where n = |N | such that
|H(A)| ≤ n for each A. Then we can construct a binary Hb such that H∗

b = H∗,
over the set of at most n2 nonterminals and with height O(n log n).

Denote by val(A) the terminal string derived from A. When it creates no ambigu-
ity we identify the names of variables with their values. In terms of the morphism
val(A) = H∗(A). Denote by First-GMP(A, B) the first position in val(A) which
contains a symbol different than the corresponding symbol in val(B). The basic
data structure needed to compute First-GMP is the table of overlapping occur-
rences, where by an occurrence of a string we mean its starting position. Assume
we have a rule X → BC. The splitting point of X is the position between B and
C in X . We define the overlap-occurrences table P , where for each two variables
X, Y , P(Y, X) is the set of occurrences of Y in X overlapping the splitting point
of X .

The following key property of the sets P(Y, X) follows from the so called
periodicity-lemma.

Property A: Each set P(Y, X) is a single arithmetic progression.

Hence the set P(Y, X) can be of exponential size but it has a small representation
(starting point, period, continuation) and membership query in this set can be
answered in constant time. There is another important property of table P .
Let Y = BC, denote by Pleft(Y, X) the set of overlap occurrences of Y in X
in which B overlaps the splitting point of X and by Pright(Y, X) the set of
overlap occurrences of Y in X in which C overlaps the splitting point of X .
Note that the constant-size representation of P(Y, X) can be easily constructed
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from representations of P(B, X) and P(C, X). We have the following nontrivial
facts which are the basis for efficient computation of table P :

Property B:
1. P(Y, X) = Pleft(Y, X) ∪ Pright(Y, X);
2. Pleft(Y, X) is a prefix segment of the arithmetic progression P(B, X) or
|Pleft(Y, X)| ≤ 1;

3. Pright(Y, X) is a suffix segment of the arithmetic progression P(C, X)
or |Pright(Y, X)| ≤ 1.

For nonterminals A �= B we write B ≺ A iff B is in a derivation tree starting
with A, in other words to compute val(A) first val(B) should be computed.
The relation ≺ corresponds to an acyclic graph. Assume that the variables are
topologically sorted X1, X2, . . . Xn, this means that Xi ≺ Xj ⇒ i < j.

Lemma 2. Assume that the table P(Xk, Xr) is computed for all k < j, r ≤ i,
then

Equality-Testing: For any k < j we can check if there is a full occurrence of
Xk in Xi starting at a given position t in time O(height(G)).

First-Mismatch Computation: We can check where is the first mismatch in a
full occurrence of Xj in Xi starting at a given position in time O(height2(G)).

Proof. We start with the proof of the first point. In the derivation tree for Xi

we go down to the deepest node Xr containing the interval corresponding to
potential occurrence of Xk starting at t. Then this potential occurrence overlaps
the splitting point of Xr, we simply check if t ∈ P(Xk, Xr). This takes constant
time since P(Xk, Xr) is an arithmetic progression. The traversal down to the
node Xr takes O(height(G)) time. The second point follows from the first one.
We need only O(height(G)) calls to the equality testing.

The structure of the algorithm for computing table P is as follows:

for i = 1 to n do
for i = j to n do

compute P(Xj , Xi) in time O(height2(G)), using Properties A and B;
O(1) applications of the algorithm from Lemma 2.b are sufficient.

In this way we described informally algorithmic construction which proves the
following fact.

Lemma 3. Assume that given acyclic morphism H is binary, then we can solve
the First-MP problem in time O(k2 ·h2), where k is the number of nonterminals
and h = height(H) is the height of the morphism.

The last lemma together with Lemma 1 implies the following:

Corollary 1. The First-Mismatch problem for an acyclic morphism can be com-
puted in O(n6) time.
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Abstract. The availability of weighted finite-state string automata toolkits made
possible great advances in natural language processing. However, recent advances
in syntax-based NLP model design are unsuitable for these toolkits. To combat
this problem, we introduce a weighted finite-state tree automata toolkit, which in-
corporates recent developments in weighted tree automata theory and is useful for
natural language applications such as machine translation, sentence compression,
question answering, and many more.

1 Introduction

The development of well-founded models of natural language processing applications
has been greatly accelerated by the availability of toolkits for finite-state automata. The
influential observation of Kaplan & Kay, that cascades of phonological rewrite rules
could be expressed as regular relations (equivalent to finite-state transducers) [1], was
exploited by Koskenniemi in his development of the two-level morphology and accom-
panying system for its representation [2]. This system, which was a general program
for analysis and generation of languages, pioneered the field of finite-state toolkits [3].

Successive versions of the two-level compiler, such as that written by Karttunen and
others at Xerox [4], were used for large-scale analysis applications in many languages
[3]. Continued advances, such as work by Karttunen in intersecting composition [5] and
replacement [6,7], eventually led to the development of the Xerox finite-state toolkit,
which superseded the functionality and use of the two-level tools [3].

Meanwhile, interest in adding uncertainty to finite-state models grew alongside in-
creased availability of large datasets and increased computational power. Ad-hoc meth-
ods and individual implementations were developed for integrating uncertainty into
finite-state representations [8,9], but the need for a general-purpose weighted finite-state
toolkit was clear [10]. Researchers at AT&T led the way with their FSM
Library [11] which represented weighted finite-state automata by incorporating the the-
ory of semirings over rational power series cleanly into the existing automata theory.
Other toolkits, such as van Noord’s FSA utilities [12], the RWTH toolkit [13], and
the USC/ISI Carmel toolkit [14], provided additional interfaces and utilities for work-
ing with weighted finite-state automata. As in the unweighted case, the availability of
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this software led to many research projects that took advantage of pre-existing imple-
mentations [15,16,17] and the development of the software led to the invention of new
algorithms and theory [18,19].

While these toolkits are very robust and capable of development of a wide array of
useful applications in NLP and beyond, they all suffer from the limitation that they can
only operate on string-based regular languages. In the 1990s, this was begrudgingly ac-
cepted as sufficient — the power of computers and the relatively limited availability of
data prevented any serious consideration of weighted automata of greater complexity,
even though more complex automata models that better captured the syntactic nature
of language had long been proposed [20]. As NLP research progressed and computing
power and available data increased, researchers started creating serious probabilistic
tree-based models for such natural language tasks as translation [21,22,23], summariza-
tion [24], paraphrasing [25], language modeling [26], and others. And once again, soft-
ware implementations of these models were individual, one-off efforts that took entire
PhD theses’ worth of work to create [27]. GRM, an extension of the AT&T toolkit that
uses approximation theory to represent higher-complexity structure such as context-free
grammars in the weighted finite-state string automata framework, was useful for han-
dling certain representations [28], but a tree automata framework is required to truly
capture tree models.

Knight and Graehl [29] put forward the case for the top-down tree automata theory
of Rounds [20] and Thatcher [30] as a logical sequel to weighted string automata for
NLP. All of the previously mentioned tree-based models fit nicely into this theory. Ad-
ditionally, as Knight and Graehl mention [29], most of the desired general operations in
a general weighted finite-state toolkit are applicable to top-down tree automata.

We thus propose and present a toolkit designed in the spirit of its predecessors but
with the tree, not the string, as its basic data structure. Tiburon is a toolkit for ma-
nipulation of weighted top-down tree automata. It is designed to be easy to construct
automata and work with them — after reading this article a linguist with no computer
science background or a computer scientist with only the vaguest notions of tree au-
tomata should be able to write basic acceptors and transducers. To achieve these goals
we have maintained simplicity in data format design, such that acceptors and transduc-
ers are very close to the way they appear in tree automata literature. We also provide
a small set of generic but powerful operations that allow robust manipulation of data
structures with simple commands. In subsequent sections we present an introduction to
the formats and operations in the Tiburon toolkit and demonstrate the powerful appli-
cations that can be easily built.

2 Related Work

The rich history of finite-state string automata toolkits was described in the previous
section. Tree automata theory is extensively covered in [31,32]. Timbuk [33] is a toolkit
for unweighted finite state tree automata that has been used for cryptographic analy-
sis. It is based on ELAN [34], a term rewriting computational system. MONA [35] is
an unweighted tree automata tool aimed at the logic community. Probabilistic tree au-
tomata were first proposed by Magidor and Moran [36]. Weighted tree transducers were
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first described by Fülöp and Vogler [37] as an operational representation of tree series
transducers, first introduced by Kuich [38].

3 Trees

Tree automata represent sets of trees and tree relations. Formally, a tree is constructed
from a ranked alphabet Σ. Each member of the alphabet is assigned one or more non-
negative integers, called a rank, and Σm refers to all x ∈ Σ with rank m. A tree over
Σ is thus defined as:

– x, where x ∈ Σ0, or
– x(t1, ...tm), where x ∈ Σm and t1, ..., tm are trees over Σ.

Figure 1 shows a typical tree and its representation in Tiburon. In this example, NP
has rank 2, DT and NN have rank 1, and “the” and “boy” have rank 0.

(a) (b)

NP(DT("the") NN("boy"))

NP

NNDT

"the" "boy"

Fig. 1. (a) A typical syntax tree, and (b), its Tiburon representation

4 Regular Tree Grammars

As finite-state string acceptors recognize the same family of string languages as regu-
lar string grammars, so do finite-state tree acceptors recognize the same family of tree
languages as regular tree grammars (RTG) [39]. For simplicity we favor the grammar
representation, as tree acceptors must be written as hypergraphs, and this can be con-
fusing. RTGs look very similar to context-free grammars (CFG) (in fact, a CFG is a
special case of an RTG) and thus tend to be a very comfortable formalism. Analo-
gous to their string counterpart, a weighted regular tree grammar (wRTG) recognizes a
weighted, possibly infinite set of trees. Formally, a wRTG over Σ and under semiring
(K,⊕,⊗, 0̄, 1̄) consists of a finite set N of nonterminal symbols disjoint from Σ, a start
symbol s ∈ N , and a set P of productions of the form a→ r, δ, where a ∈ N , r is a tree

A

B C

D E D

(a) (b)

q -> A(q r) # 0.8
q -> B(r E) # 0.2
r -> C(r)
r -> D

Fig. 2. (a) A regular tree grammar, and (b), a tree in the grammar’s language
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over Σ ∪ N , and δ ∈ K is an associated weight. Informally, a wRTG “works” similar
to a CFG in that from the start symbol, a sequence of rewrites is performed, replacing
nonterminals with trees as specified by the productions, until the generated/recognized
tree has no nonterminals remaining. To calculate the weight w of the resulting tree,
start with w = 1̄ and for each production p = a → r, δ used, let w = w ⊗ δ. Figure
2(a) shows a typical wRTG in Tiburon format. When weights are omitted on produc-
tions, a weight of 1̄ is assumed. Figure 2(b) shows one of the trees that this gram-
mar recognizes. If we use the probability semiring, the tree has an associated weight
of 0.16.

4.1 Generation

One fundamental operation on a wRTG is the generation of trees that are in the gram-
mar’s language. Naturally, one might want to know the tree of highest weight in a
grammar. Knuth’s extension [40] of Dijkstra’s classic best-path algorithm [41] to the
hypergraph case efficiently finds the best path in the tree recognizer equivalent of a
wRTG. However, in many cases it is desirable to obtain a list of trees, ordered by
weight. A machine translation application may output a wRTG encoding billions of par-
tial translations, and we may want to list the top scoring 25,000 trees for a subsequent
re-ranking operation. The -k operation in Tiburon adapts the k-best paths algorithm
of Huang and Chiang [42] to wRTGs. For example, given the grammar even.rtg
depicted in Fig. 3(a), we issue this command:

java -jar tiburon.jar -k 5 even.rtg

The five derivations with highest weight in the grammar are returned, as depicted in
Fig. 3(b).

qe
qe -> A(qe qo) # .1
qe -> A(qo qe) # .8
qe -> B(qo) # .1
qo -> A(qo qo) # .6
qo -> A(qe qe) # .2
qo -> B(qe) # .1
qo -> C # .1

B(C): 0.0100
A(C B(C)): 0.0008
B(A(C C)): 0.0006
A(B(C) C): 0.0001
B(B(B(C))): 0.0001

(a) (b)

Fig. 3. (a) even.rtg, and (b) its top 5 derivations

Another operation, -g, stochastically generates trees from a grammar, probabilisti-
cally choosing states to expand until a tree is obtained or a threshold of expansion is
reached. This operation is useful for diagnosis — designers of wRTGs may wish to
verify that their wRTGs generate trees according to the distribution they have in mind.
Given the grammar vic.rtg, depicted in Fig. 4(a), we issue the following command,
obtaining five random derivations, as seen in Fig. 4(b):

java -jar tiburon.jar -g 5 vic.rtg
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q
q -> S(np vp)
np -> NP(dt nn)
np -> NP(dt jj nn)
dt -> the
dt -> a
jj -> funny
jj -> blue
jj -> strange
nn -> fish
nn -> carrot
vp -> VP(v np)
v -> ate
v -> created

S(NP(the carrot) VP(ate NP(a fish))): 1.0000
S(NP(the fish) VP(created NP(a carrot))): 1.0000
S(NP(a carrot) VP(created NP(the funny fish))): 1.0000
S(NP(the fish) VP(created NP(a carrot))): 1.0000
S(NP(a fish) VP(created NP(a fish))): 1.0000

(a) (b)

Fig. 4. (a) vic.rtg, and (b) five random derivations

4.2 Intersection

Weighted intersection of wRTGs is useful for subdividing large problems into smaller
ones. As noted in [31], RTGs (and by extension wRTGs) are closed under intersec-
tion. Thus, a wRTG representing machine translation candidate sentences can be inter-
sected with another wRTG representing an English syntax language model to produce
re-weighted translations. As a simpler example, consider the grammar even.rtg de-
picted in Fig. 3(a), which produces trees with an even number of labels. The grammar
three.rtg depicted in Fig. 5(a) produces trees with a number of labels divisible by
three. We obtain a grammar which produces trees with a number of labels divisible by
six. by using the following command. The grammar is partly shown in Fig. 5(b).

java -jar tiburon.jar even.rtg three.rtg

q3
q3 -> A(q1 q1) # .25
q3 -> A(q3 q2) # .25
q3 -> A(q2 q3) # .25
q3 -> B(q2)    # .25
q2 -> A(q2 q2) # .25
q2 -> A(q1 q3) # .25
q2 -> A(q3 q1) # .25
q2 -> B(q1)    # .25
q1 -> A(q3 q3) # .025
q1 -> A(q1 q2) # .025
q1 -> A(q2 q1) # .025
q1 -> B(q3)    # .025
q1 -> C        # .9

qe_q3
qe_q3 -> A(qo_q1 qe_q1) # 0.2000
qe_q3 -> A(qo_q3 qe_q2) # 0.2000
qe_q3 -> A(qo_q2 qe_q3) # 0.2000
qe_q3 -> B(qo_q2) # 0.0250
qe_q3 -> A(qe_q1 qo_q1) # 0.0250
qe_q3 -> A(qe_q3 qo_q2) # 0.0250
qe_q3 -> A(qe_q2 qo_q3) # 0.0250
qe_q2 -> A(qe_q3 qo_q1) # 0.0250
qe_q2 -> A(qe_q1 qo_q3) # 0.0250
qe_q2 -> A(qe_q2 qo_q2) # 0.0250
qe_q2 -> A(qo_q3 qe_q1) # 0.2000
qe_q2 -> A(qo_q1 qe_q3) # 0.2000
qe_q2 -> A(qo_q2 qe_q2) # 0.2000
qe_q2 -> B(qo_q1) # 0.0250

(a) (b)

Fig. 5. (a) three.rtg, and (b) a portion of the intersection of even.rtg (see Fig. 3) and
three.rtg. The complete grammar has 43 productions.

4.3 Weighted Determinization

wRTGs produced by automated systems such as those used to perform machine transla-
tion [43] or parsing [44] frequently contain multiple derivations for the same tree with
different weight. This is due to the systems’ representation of their result space in terms
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of weighted partial results of various sizes that may be assembled in multiple ways. This
property is undesirable if we wish to know the total probability of a particular tree in a
language. It is also frequently undesirable to have repeated results in a k-best list. The
-d operation invokes May and Knight’s weighted determinization algorithm for tree
automata [45]. As an example, consider the grammar undet.rtg, depicted in Fig.
6(a). This grammar has two differently-weighted derivations of the tree D(A B), as we
see when the top three derivations are obtained, depicted in Fig. 6(b). The following
command determinizes the grammar and attempts to return the top three derivations in
the resulting grammar:

java -jar tiburon.jar -d 5 -k 3 undet.rtg

Of course, since there are now only two derivations, only two trees are returned, as seen
in Fig. 6(c). The -d 5 argument signifies the maximum time allowed for determiniza-
tion, in minutes. Determinization is, in the worst case, an exponential-time operation,
so it is helpful in practical matters to prevent overly lengthy operations.

t
t -> D(q r) # 0.2
t -> D(q s) # 0.3
q -> A # 0.3
r -> B # 0.2
s -> B # 0.6
s -> C # 0.4

D(A B): 0.0540
D(A C): 0.0360
D(A B): 0.0120

(a) (b)

Warning: returning fewer 
trees than requested
D(A B): 0.0660
D(A C): 0.0360

(c)

Fig. 6. (a) Undeterminized grammar undet.rtg, (b) k-best list without determinization, and
(c) k-best list with determinization

4.4 Pruning

In real systems using large grammars to represent complex tree languages, memory and
cpu time are very real issues. Even as computers increase in power, the added complex-
ity of tree automata forces practitioners to combat computationally intensive processes.
One way of avoiding long running times is to prune weighted automata before oper-
ating on them. One technique for pruning finite-state (string) automata is to use the
forward-backward algorithm to calculate the highest-scoring path each arc in the au-
tomaton is involved in, and then prune the arcs that are only in relatively low-scoring
paths [46].

We apply this technique for tree automata by using an adaptation [47] of the inside-
outside algorithm [48]. The -p option with argument x removes productions from a
tree grammar that are involved in paths x times or more worse than the best path. The
-c option provides an overview of a grammar, and we can use this to demonstrate the
effects of pruning. The file c1s4.determ.rtg represents a language of possible
translations of a particular Chinese sentence. We inspect the grammar as follows:

java -jar tiburon.jar -m tropical -c c1s4.determ.rtg
Check info:

113 states
168 rules
28 unique terminal symbols
2340 derivations
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Note that the -m tropical flag is used because this grammar is weighted in the
tropical semiring. We prune the grammar and then inspect it as follows:

java -jar tiburon.jar -m tropical -p 8 -c c1s4.determ.rtg
Check info:

111 states
158 rules
28 unique terminal symbols
780 derivations

Since we are in the tropical semiring, this command means “Prune all productions that
are involved in derivations scoring worse than the best derivation plus 8”. This roughly
corresponds to derivations with probability 2980 times worse than the best derivation.
Note that the pruned grammar has fewer than half the derivations of the unpruned gram-
mar. A quick check of the top derivations after the pruning (using -k) shows that the
pruned and unpruned grammars do not differ in their sorted derivation lists until the
455th-highest derivation.

5 Tree Transducers

Top-down tree transducers in Tiburon come in two varieties: tree-to-tree [20,30] and
tree-to-string [49]. They represent the weighted transformation of a tree language into
either a tree language or a string language, respectively. One can also think of trans-
ducers as representing a language of weighted tree/tree or tree/string pairs [50,51]. We
omit a formal definition of top-down tree transducers here; we refer the reader to [31]
for a thorough treatment.

Figure 7(a) shows a sample tree-to-tree transducer in Tiburon format. Like a tree
grammar, it has a start symbol and a set of optionally weighted productions. A trans-
duction operation walks down an input tree, transforming it and recursively processing
its branches. For example, the first production in Fig. 7(a) means: “When in state q,
facing an input subtree with root symbol A and two children about which we know
nothing, replace it with an output subtree rooted at R with two children. To compute the
output subtree’s left child, recursively process the input subtree’s right child beginning
in state r. To compute the output subtree’s right child, recursively process the input sub-
tree’s left child beginning in state r.” Figure 7(b) shows one transduction licensed by
this transducer. The format for tree-to-string transducers in Tiburon is similar to that for
tree-to-tree transducers; the sole differences are the right side of productions are strings,
not trees, and the special symbol *e* representing the empty string may be used.

q
q.A(x0: x1:) -> R(r.x1 r.x0) # 0.4
q.A(x0: x1:) -> R(r.x0 s.x1) # 0.6
q.C(x0:) -> L(q.x0)
r.C(x0:) -> T # 0.8
r.C(x0:) -> S # 0.2
r.C(x0: B(D x1:)) -> R(q.x0 r.x1)
r.B(x0: x1:E) -> Q
s.B -> X (a)

A

B C

D E D

0.32

R

T Q

(b)

Fig. 7. (a) A tree-to-tree transducer, and (b), a weighted transduction licensed by the transducer
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Knight and Graehl [29] describe a wide hierarchy of transducer classes. Transduc-
ers in Tiburon are specifically top-down transducers with extended left-hand sides, also
known as xR in Knight and Graehl’s hierarchy, where “R” denotes “root-to-frontier”
(i.e. top-down) and the “x” denotes the extended left-hand sides. By extended, we
mean that the left side of productions can be trees of arbitrary depth. The sixth and
seventh productions in Fig. 7(a) show an example of extended left-hand side produc-
tions. Strictly speaking, the class xR refers to only tree-to-tree transducers; tree-to-string
transducers with the same characteristics are in the class xRs. There are no restrictions
on copying or deleting of variable children in xR or xRs; the seventh production shows
an example of a deleted child. The xR and xRs class of transducers were selected for
Tiburon because of their good fit with natural language applications [20,29].

5.1 Forward and Backward Application

Application is the operation of passing a tree or grammar onto a transducer and obtain-
ing the resultant image. Tiburon supports forward application of a tree onto a tree-to-tree
or tree-to-string transducer with the -l operation (for “left-side” transduction). If the
transducer in Fig. 7(a) is in a file xr1.trans the transduction performed in Fig. 7(b)
can be accomplished as follows:

echo "A(B(D E) C(D))" | java -jar tiburon.jar -l -s xr1.trans
q2
q2 -> R(q0 q1) # 0.4000
q1 -> Q # 1.0000
q0 -> S # 0.2000
q0 -> T # 0.8000

The -s flag tells Tiburon to expect the input tree from stdin instead of a file. As seen
above, the image of a tree onto a tree-to-tree transducer is a wRTG. The image of a
tree onto a tree-to-string transducer is a wCFG, currently represented in Tiburon as a
one-state wRTG. The image of a wRTG onto the transducers supported in Tiburon is
not a wRTG [31] and as such is currently not supported. However, limited versions
of the transducers supported, such as transducers that do not copy their variables, do
produce wRTG images [31]. We will soon release the next version of Tiburon, which
will support the -r operation for backward application (the inverse image of a tree or
wRTG onto a transducer is a wRTG) and forward application of wRTGs onto limited
classes of transducers.

5.2 Composition

We often want to build a cascade of several small transducers and then programmati-
cally combine them into one. Unlike string transducers, general top-down tree transduc-
ers are not closed under composition, that is, a transduction carried out by a sequence
of two transducers may not be possible with a single transducer. Engelfriet showed that
top-down tree transducers that do not allow deletion or copying of variables (known
as RLN transducers; the L signifies “linear” and the “N” signifies “non-deleting”) are
closed under composition [52]. Tiburon, however, allows composition of tree-to-tree
transducers without checking if the transducers to be composed are composable. For
example, consider the transducer below, which is in a file xr2.trans:
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q
q.R(x0: x1:) -> R(R q.x1 R q.x0)
q.T -> B # 0.6
q.T -> D # 0.4
q.Q -> C
q.S -> E
q.X -> A

The following command composes xr1.trans with xr2.trans and passes a tree
through them, returning the top three output derivations:

echo "A(B(D E) C(D))" | java -jar tiburon.jar -ls -k 3 \
xr1.trans xr2.trans

R(R C R B): 0.1920
R(R C R D): 0.1280
R(R C R E): 0.0800

xr1.trans is not RLN, it is xRL (i.e. it has an extended left side and deletes variables
but does not copy), but in this case the two transducers are composable. We believe that
many of the xR transducers used in natural language applications will not suffer from
the general noncomposability of their class.

5.3 Training

A common task in building tree transducer models is the assignment of appropriate
weights to productions. We can use Expectation-Maximization training [53] to set the
weights of an unweighted tree transducer such that they maximize the likelihood of
a training corpus of tree/tree or tree/string pairs. Tiburon provides the -t operation,
which implements the technique described by Graehl and Knight for training tree trans-
ducers using EM [54].

As an example, consider training a machine translation model using bilingual in-
put/output pairs. Given the 261-production unweighted tree-to-string transducer
depicted in Fig. 8(a) in file y1.ts, and the 15 tree/string pairs in Fig. 8(b) in file
y1.train, we run this command to produce the transducer in Fig. 8(c):

java -jar tiburon.jar -t 20 y1.train y1.trans

6 Applications Using Tiburon

The translation model of Yamada and Knight [22] is a specialized model for predicting
a Japanese string given an English tree. The custom implementation of this model, built
by Yamada as part of his PhD thesis [27], took more than one year to complete. Graehl
and Knight [54] showed how this model could be represented as a four-state tree-to-
string transducer. We built an untrained transducer from Yamada’s model and trained it
on the same data used by Yamada and Knight to produce their alignment sentence pairs
[22]. The complete process took only 2 days. For details we refer the reader to [55].

Knight and Graehl [56] describe a cascade of finite-state string transducers that per-
form English-Japanese transliteration. Of course, a weighted string transducer toolkit
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q
q.X(x0: x1:) -> q.x0 q.x1 # 0.8571
q.X(x0: x1:) -> q.x1 q.x0 # 0.1429
q.are -> son # 0.5
q.are -> estan # 0.5
q.the -> los # 0.8571428571428571
q.the -> la # 0.14285714285714288
q.not -> no # 1.0
q.do -> *e* # 1.0
q.Garcia -> Garcia # 1.0
q.enemies -> enemigos # 1.0
q.angry -> enfadados # 1.0
q.has -> tiene # 1.0
q.zanzanine -> zanzanina # 1.0

X(Garcia X(and associates))
Garcia y asociados 
X(X(Carlos Garcia) X(has X(three associates)))
Carlos Garcia tiene tres asociados 
X(X(his associates) X(X(are not) strong))
sus asociados no son fuertes 
X(Garcia X(X(has X(a company)) also))
Garcia tambien tiene una empresa 
X(X(its clients) X(are angry))
sus clientes estan enfadados 
X(X(the associates) X(X(are also) angry))
los asociados tambien estan enfadados 
X(X(X(the clients) X(and X(the associates))) X(are enemies))
los clientes y los asociados son enemigos 
X(X(the company) X(has X(three groups)))
la empresa tiene tres grupos 
X(X(its groups) X(are X(in Europe)))
sus grupos estan en Europa 
X(X(the X(modern groups)) X(sell X(strong pharmaceuticals)))
los grupos modernos venden medicinas fuertes 
X(X(the groups) X(X(do not) X(sell zanzanine)))
los grupos no venden zanzanina 
X(X(the X(small groups)) X(X(are not) modern))
los grupos pequenos no son modernos

q
q.X(x0: x1:) -> q.x0 q.x1
q.X(x0: x1:) -> q.x1 q.x0
q.a -> *e*
q.a -> empresa
q.a -> Garcia
q.also -> asociados
q.also -> *e*
q.also -> empresa
q.also -> enfadados
q.also -> estan
q.also -> Garcia
q.also -> los
q.also -> tambien
q.also -> tiene
q.also -> una
q.and -> asociados
q.and -> clientes
q.and -> *e*
q.and -> enemigos
...

(a) (b) (c)

Fig. 8. (a) Portion of a 261-production unweighted tree-to-string transducer. (b) 15 (tree, string)
training pairs. (c) Portion of the 31-production weighted tree-to-string transducer produced after
20 iterations of EM training (all other productions had probability 0).

such as Carmel is well suited for this task, but Tiburon is suited for the job as well. By
converting string transducers into monadic (non-branching) tree transducers, we obtain
equivalent results. We used simple scripts to transform the string transliteration trans-
ducers into these monadic trees, and reproduced the transliteration operations. Thus, we
see how Tiburon may be used for string-based as well as tree-based applications.

7 Conclusion

We have described Tiburon, a general weighted tree automata toolkit, and described
some of its functions and their use in constructing natural language applications. Tiburon
can be downloaded at http://www.isi.edu/licensed-sw/tiburon/

References

1. Kaplan, R.M., Kay, M.: Phonological rules and finite-state transducers. In: Linguistic Society
of America Meeting Handbook, Fifty-Sixth Annual Meeting. (1981) Abstract.

2. Koskenniemi, K.: Two-level morphology: A general computational model for word-form
recognition and production. Publication 11, University of Helsinki, Department of General
Linguistics, Helsinki (1983)

3. Karttunen, L., Beesley, K.R.: A short history of two-level morphology. Presented at
the ESSLLI-2001 Special Event titled ”Twenty Years of Finite-State Morphology” (2001)
Helsinki, Finland.

4. Karttunen, L., Beesley, K.R.: Two-level rule compiler. Technical Report ISTL-92-2, Xerox
Palo Alto Research Center, Palo Alto, CA (1992)

5. Karttunen, L., Kaplan, R.M., Zaenen, A.: Two-level morphology with composition. In:
COLING Proceedings. (1992)

6. Karttunen, L.: The replace operator. In: ACL Proceedings. (1995)



112 J. May and K. Knight

7. Karttunen, L.: Directed replacement. In: ACL Proceedings. (1996)
8. Riccardi, G., Pieraccini, R., Bocchieri, E.: Stochastic automata for language modeling. Com-

puter Speech & Language 10(4) (1996)
9. Ljolje, A., Riley, M.D.: Optimal speech recognition using phone recognition and lexical

access. In: ICSLP Proceedings. (1992)
10. Mohri, M., Pereira, F.C.N., Riley, M.: The design principles of a weighted finite-state trans-

ducer library. Theoretical Computer Science 231 (2000)
11. Mohri, M., Pereira, F.C.N., Riley, M.: A rational design for a weighted finite-state transducer

library. In: Proceedings of the 7th Annual AT&T Software Symposium. (1997)
12. van Noord, G., Gerdemann, D.: An extendible regular expression compiler for finite-state

approaches in natural language processing. In: 4th International Workshop on Implementing
Automata. (2000)

13. Kanthak, S., Ney, H.: Fsa: An efficient and flexible c++ toolkit for finite state automata using
on-demand computation. In: ACL Proceedings. (2004)

14. Graehl, J.: Carmel finite-state toolkit. http://www.isi.edu/licensed-sw/carmel (1997)
15. Kaiser, E., Schalkwyk, J.: Building a robust, skipping parser within the AT&T FSM toolkit.

Technical report, Center for Human Computer Communication, Oregon Graduate Institute
of Science and Technology (2001)

16. van Noord, G.: Treatment of epsilon moves in subset construction. Comput. Linguist. 26(1)
(2000)

17. Koehn, P., Knight, K.: Feature-rich statistical translation of noun phrases. In: ACL Proceed-
ings. (2003)

18. Pereira, F., Riley, M.: Speech recognition by composition of weighted finite automata. In
Roche, E., Schabes, Y., eds.: Finite-State Language Processing. MIT Press, Cambridge, MA
(1997)

19. Mohri, M.: Finite-state transducers in language and speech processing. Comput. Linguist.
23(2) (1997)

20. Rounds, W.C.: Mappings and grammars on trees. Mathematical Systems Theory 4 (1970)
21. Och, F.J., Tillmann, C., Ney, H.: Improved alignment models for statistical machine transla-

tion. In: EMNLP/VLC Proceedings. (1999)
22. Yamada, K., Knight, K.: A syntax-based statistical translation model. In: ACL Proceedings.

(2001)
23. Eisner, J.: Learning non-isomorphic tree mappings for machine translation. In: ACL Pro-

ceedings (companion volume). (2003)
24. Knight, K., Marcu, D.: Summarization beyond sentence extraction: A probabilistic approach

to sentence compression. Artificial Intelligence 139 (2002)
25. Pang, B., Knight, K., Marcu, D.: Syntax-based alignment of multiple translations extracting

paraphrases and generating new sentences. In: NAACL Proceedings. (2003)
26. Charniak, E.: Immediate-head parsing for language models. In: ACL Proceedings. (2001)
27. Yamada, K.: A Syntax-Based Translation Model. PhD thesis, University of Southern Cali-

fornia (2002)
28. Allauzen, C., Mohri, M., Roark, B.: A general weighted grammar library. In: CIAA Pro-

ceedings. (2004)
29. Knight, K., Graehl, J.: An overview of probabilistic tree transducers for natural language

processing. In: CICLing Proceedings. (2005)
30. Thatcher, J.W.: Generalized2 sequential machines. J. Comput. System Sci. 4 (1970)
31. Gécseg, F., Steinby, M.: Tree Automata. Akadémiai Kiadó, Budapest (1984)
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Abstract. In this paper, a reflection is made on an indeterminism inherent to
Hopcroft’s minimization algorithm: the splitter choice. We have implemented
two natural policies (FIFO and FILO) for managing the set of splitters for which
we obtain the following practical results: the FILO strategy performs better than
the FIFO strategy, in the case of a one letter alphabet, the practical complex-
ity in the FILO case never exceeds a linear one and our implementation is more
efficient than the minimization algorithm of the FSM tool. This implementation is
being integrated in a finite automata library, the Dash library. Thus, we present an
efficient manner to manipulate automata by using canonical minimal automata.

Keywords: Finite automata, minimization, Hopcroft’s algorithm.

1 Introduction

The problem of minimizing a deterministic finite automaton has been widely studied.
Finite automata libraries, such as FSM [MPR00], Mona [KM01], etc., include a mini-
mization procedure. State of the art implementations of minimization algorithm is then
an important issue for practical efficiency.

Minimization Algorithms. For a detailed presentation of the currently known mini-
mization algorithms, the reader is referred to Watson’s taxonomy [Wat95].

For a given automaton labeled by the alphabet Σ where Q is the states set and F the
final states set, most of minimization algorithms have a O(|Q|2) complexity and use
one of the following two fix point strategies:

(S1) Consider the coarsest partition {F, Q/F} and refine this partition until it satisfies
some congruence properties;

(S2) Consider the finest partition and gather the equivalent classes.

Among the algorithms using other strategies, the Brzozowski algorithm [Brz62] al-
lows to compute the minimal automaton from a non deterministic automaton in an
exponential time. A linear algorithm exists for complete deterministic automata over
a one letter alphabet [PTB85]. Indeed, the problem is equivalent to determining the
coarsest partition of the states set stable with respect to the transition relation func-
tion. Thus, the authors of [PTB85] use the second strategy (S2): the starting partition

O.H. Ibarra and H.-C. Yen (Eds.): CIAA 2006, LNCS 4094, pp. 114–125, 2006.
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is the partition with singleton classes and the output is built via a sequence of steps
in which two or more classes are merged. An incremental algorithm has been proposed
in [WD03, Wat01]. Unlike the other iterative algorithms, the intermediate results can be
used since they consist in partially minimized automata. The Hopcroft’s algorithm pro-
posed in [Hop71] has a theoretical O(|Σ|.|Q|. log |Q|) complexity which is currently
the best for a minimization algorithm.

Contribution. We propose a new implementation of the Hopcroft algorithm in the
OCaml1 language. We describe this implementation and some heuristics that signifi-
cantly improve the speed of the practical state-of-the-art Hopcroft’s minimization algo-
rithm.

In the Hopcroft’s algorithm, at each step a splitter is chosen among a set of classes
in order to refine the partition. Every complexity computation leans on the worst case
choice. It is the case in [BC04] where the authors exhibit an automata family over a one
letter alphabet and a bad strategy that lead to the O(|Q|. log |Q|) complexity with the
Hopcroft’s algorithm. This means that there exists a bad strategy in the splitter choice
while applying the Hopcroft’s algorithm.

Our point of view is that there exists a good strategy in the splitter choice that allows
a fast implementation of the Hopcroft’s algorithm. This heuristic consists in a FILO
strategy in which the most recent class is chosen as the splitter. In practice, this heuristic
is powerful. In the case of a one letter alphabet, the practical complexity seems linear,
even on the “bad” automata depicted in [BC04].

This implementation is being included in the Dash library (currently developed at the
LSV2) which is a finite automata library designed to share common connected compo-
nents between automata. The sharing of common components imposes that two equiv-
alent automata are represented with the same minimal automaton. We thus propose an
extension of our implementation, based on the work of [Cou04], to automatically com-
pute a canonical representative.

Outline. Section 2 recalls basic definitions and results concerning minimization. We
present the Hopcroft’s algorithm in section 3. We discuss its complexity and present an
open question. In the section 4, the implementation is precisely depicted and the two
strategies, FILO and FIFO are detailed. These implementations are then experimented
on benchmarks and compared to other softwares in section 5. Finally, in section 6,
we detail the efficient representation of automata in the Dash library using canonical
minimal automata.

2 Minimal Automaton

In this section, we recall some basic notions and terminology on finite automata and
regular languages. For a complete theory, one can refer to [BBC92, HU79]. In the se-
quel, Σ is a non empty finite alphabet.

1 http://caml.inria.fr/index.en.html
2 http://www.lsv.ens-cachan.fr
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Definition 1. A deterministic, complete and finite automaton3 over Σ is a tuple (Q, q0,
T, F ) where:

– Q is a finite set of states;
– q0 ∈ Q is the initial state;
– T : Q×Σ → Q is the transition function;
– F ⊆ Q is the set of final states.

A rational language is associated to any finite automaton: it consists in the set of letter
sequences which label paths from the initial state to a final state. We suppose that every
considered automaton is reachable, i.e. any state of the automaton is reachable from the
initial state. The automata theory ensures [Ner58, BBC92] that any rational language is
recognized by a unique finite automaton (up to an isomorphism) with a minimal number
of states. This automaton is the minimal automaton associated with the language.

For a given deterministic, complete and finite automaton, the equivalent (in term of
language recognized) minimal automaton can be obtained by defining a congruence
relation on the initial automaton’s states, i.e. an equivalence relation which is stable
with the transition function:

q ∼ q′ =⇒ ∀a ∈ Σ, T (q, a) ∼ T (q′, a)

If ∼m is the coarsest congruence such that

q ∼m q′ =⇒ (q, q′) ∈ F 2 or (q, q′) ∈ (Q/F )2,

we have the following result:

Proposition 1. The finite automaton (Q/∼m, q0, T
′, F ′) where

– q0 is the q0 class up to ∼m;
– T ′(a, q) = T (a, q);
– q ∈ F ′ ⇔ q ∈ F ;

is the minimal automaton associated to the automaton (Q, q0, T, F ).

Given a finite automaton, this proposition allows to compute the associated minimal au-
tomaton by simply computing the equivalence relation. In the next section, we introduce
an efficient algorithm for computing this equivalence.

3 Hopcroft’s Algorithm

The Hopcroft’s algorithm [Hop71] is detailled in Algorithm 1. It has a theoretical
O(|Σ|.|Q|. log |Q|) complexity. The main principle consists in refining the coarsest
partition until finding a stable partition (strategy S1). The initial partition is {F, Q \F}
and each step of the algorithm consists in splitting the classes for which the stability
constraint is not satisfied.
P is the current partition and L contains the elements of the partition to be treated.

The set C is called the splitter.

3 Since we only consider deterministic, complete and finite automata, we use the shortcut finite
automaton.
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L := ∅
if |F | < |Q/F | then

C0 := Q/F ; C1 := F ;ADD(C1, L)
else

C1 := Q/F ; C0 := F ;ADD(C1, L)
end if
P := {C0, C1};
while L 	= ∅{The while loop corresponds to the Cut procedure} do

let C = EXTRACT(L) in
for all a ∈ Σ do

for all B ∈ P {The forall loop corresponds to split (C, a) procedure} do
let (B′, B′′) = SPLIT(B, C, a)
if |B′| < |B′′| then

B := B′′;ADD(B′, P);ADD(B′, L)
else

B := B′;ADD(B′′, P);ADD(B′′, L);
end if

end for
end for

end while

Algorithm 1. Hopcroft’s Algorithm

1. The function split covers all the classes in P whose image by the transition
function meets the splitter and determines the refined classes. Its implementation
will be precise latter.

2. SPLIT has three arguments and decomposes the second argument (a subset) into
two subsets depending on the splitter (the first argument) and the transitions labeled
by the third argument. More precisely:

(B ∩ T−1(C, a), B ∩c T−1(C, a)) = SPLIT(B, C, a);

3. ADD has two arguments and adds a new subset in a set of subsets;
4. EXTRACT is the choice function on which we act to define the strategies we studied.

In the next section, we detail our implementation.

4 Implementation

4.1 Automata Representation

In our implementation, automata states are represented by integers: the states of an
automatonA are numbered from 0 to |Q| − 1 and the following data structures will be
used:

– the initial state is represented by an integer,
– the final states are represented by a boolean array of size |Q|,
– the transition function is represented by an array of integer array:

transition.(i).(a) = j ⇔ T (i, a) = j
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4.2 Data Structures

The current partition is represented by an integer array partition of size |Q| and an
integer couple array class_indices.

To each class B of the current partition, the array class_indices maps the integer
couple (l, h) so that elements of class B are the elements of the array partition whose
indices are between l and h. During the execution of our implementation, elements in a
class always have consecutive indices in the array partition.

When a class B is split in B′ and B′′, the elements in partition with indices between
l and h are permuted so that elements of class B′ have indices between l and h′ and
elements of B′′ have indices between l′ = (h′+1) and h. An integer array class is used
to quickly find the class of an element.

In order to find efficiently the index of an element, an integer array partition−1 is
held up to date. It has the following property:

partition.(i) = j ⇔ partition−1.(j) = i.

The partition array represents a one-to-one mapping over the integers between 0 and
|Q| − 1 and the array partition−1 represents the inverse mapping.

In order to realize the split operation efficiently, an integer list array transition−1 is
used to decide which classes have to be (possibly) split. It represents the inverse of the
transition function:

i ∈ transition−1.(a).(j)⇔ T (i, a) = j

A pointer_array is used to decide whether a class needs to be split: if B is a class
with indices h and l in class_indices and if pointer_array.(B) �= (h− 1), then B needs
to be split in B′ and B′′, with respective indices (l, h′) and (h′ + 1, h), where h′ =
pointer_array.(B). At the beginning of each iteration of the algorithm, pointer_array
associates to each class B the upper index h associated to B, if class_indices.(B) =
(l, h).

In our implementation, the two initial classes are numbered 0 and 1. Then, the
created classes during the algorithm execution are numbered with increasing indices
above 2.

4.3 L’s Implementation

There are two natural choices for implementing the L object. By natural, we mean
that there is no other simple choice that allows to carry out the ADD and EXTRACT
operations in constant time [Knu01]. For instance, always choosing the class of L
with the smallest size needs important resources and leads to a loss of performance in
practice.

FIFO Strategy. For this strategy, the classes are treated in their appearance order.
If classes_number refers to the number of known classes and next_class indicates the
next splitter, the algorithm 1 while loop, where the functionincr increments an integer
pointer, becomes Algorithm 2.



Around Hopcroft’s Algorithm 119

while next_class � classes_number do
let C =next_class
for all a ∈ Σ do
split (C, a)

end for
incr next_class

end while

Algorithm 2. FIFO Cut Procedure

FILO Strategy. For this strategy, the chosen splitter is the most recent class of the
splitter set. The L object is then represented by a list: additions and deletions then
occur on the top of the list. The Algorithm 1 while loop becomes Algorithm 3.

while L 	= ∅ do
let C = head(L) in remove_head(L);
for all a ∈ Σ do
split (C, a)

end for
end while

Algorithm 3. FILO Cut Procedure

4.4 split Function Implementation

Let C be the splitter and a a letter, the split function acts in two steps:

1. First, the set T−1(C, a) is considered and the elements of the array partition are
permuted so that each class B is transformed into:

B ∩ T−1(C, a) B ∩� (T−1(C, a))

where �A denotes the complementary of A in Q.
Moreover, a list visited_classes which stores the encountered classes is also com-
puted. A particular care must be taken when C ∩ T−1(C, a) �= ∅.

2. For every B in visited_classes, we determine if B is refined by C: B is refined if,
and only if B ∩ �(T−1(C, a)) �= ∅. (Since B was encountered in the first step,
B ∩ T−1(C, a) �= ∅.) If it is the case, a new class with the smaller part of B is
created and added to L, otherwise nothing is done.

Due to a lack of space, the details of the split procedure can be found in [BP06].
We have presented the implementation, thus the contiguous question is its com-

plexity and its efficiency. We only have actually partial results that we present in the
following.
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4.5 Complexity

We do not go into the details of the Hopcroft’s algorithm complexity computation. The
reader is referred to [BBC92, Knu01] for instance.

Theoretical Upper Bound. The computation of the time complexity preponderant
term is realized by bounding the sum, denoted by S, of the lists size of T−1 covered
during the execution. It can be shown that S � |Σ|.(log2 |Q|).|Q|.

Reachability of the Upper Bound. For the case of one letter alphabet, the authors
of [BC04] construct an automata family and a splitter choice so that the bound
O(|Q| log |Q|) is reached. Their strategy consists in choosing at each step a splitter
that does not refine classes in L (if possible).

Conjecture. There are open questions: does there exists a static strategy such that for
every automaton the complexity is linear? And if it does, is it the case of the FILO
strategy?

We have not found yet any way to compute this complexity. We only have practical
results that we develop in the next section. For each automaton, a tree derivation can
be constructed as proposed in [Knu01] for representing the program execution. It is a
binary tree such that a node is a set of states and each son is a subset of the root such
that the two sons form a partition. We add three colors: black when a set belongs to L
and has never been modified, blue when a set belongs to L and has been refined, green
when the set does not belong to L. A cost function can be associated to each node to
compute the complexity. The idea is that the smaller the splitter is the smaller the cost
function is locally, but this does not ensure that the minimum is global.

In order to obtain precise practical results of our two implementations behavior, our
programs also compute the value of S.

5 Experiments

We realized many experiments on different automata families and we implemented sev-
eral automata generators: a random automata family over a one letter alphabet with a
number of states between 40 and 4.106; the automata family over a one letter alphabet
constructed from the de Bruijn words given in [BC04]; a random automata family over
a two letters alphabet with a number of states between 40 and 4.106 and a particular
automata family over a four letters alphabet developped in previous works [BPP04] to
model hardware signal processing components.

These experimentations allowed to compare the practical performances of our pro-
gram with those of the Finite-State Machine Library FSM [MPR00].

Random One Letter. The random automata generation over a one letter alphabet is a
simple problem since the topology of a reachable finite automaton over this particular
alphabet has the particular structure of a frying pan.

The diagram given on the left of Figure 1 depicts our experimentations results: for
any fixed size minimized automaton, we represent max{S/(|Q|.|Σ|)} in function of
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|Q|, which corresponds to the worst case. The scale of the abscissa axis is logarithmic.
We notice that the FIFO strategy is a linear function and it means that we obtain a bad
complexity around |Q| log |Q|.

On the opposite, the curve associated to the FILO strategy is always below the con-
stant 3 and seems to converge towards the constant 2. This suggests a linear complexity
for the one letter case.

Fig. 1. One letter and two letters alphabet experimental results

De Bruijn’s Words Automata. A n-de Bruijn’s word w over Σ is a word of minimal
size such that for every word v of size n, v is a contiguous sub-word of w2: ∀v, |v| = n,
∃u1, u2 such that w = u1.v.u2. For instance, the word ω = 11101000 is 3-de Bruijn’s
word.

In [BC04], the authors use these words to construct one letter automata with a circu-
lar shape: if 1 and 0 are the letters, if w = w0.w2...wn−1 is the de Bruijn’s word, the as-
sociated automaton has n states {0, · · · , n−1}, the transition function is T : i 
→ (i+1)
mod n and a state i is final if, and only if wi = 1.

For the word ω = 11101000, the automaton is depicted in Figure 2.
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Fig. 2. Automaton for ω = 11101000 and a two letter automaton

The experiments are made over automata associated to de Bruijn’s word of size be-
tween 3 and 21. The results are identical to those of the previous subsection.

Random Two Letters. The topology of a two letters alphabet is more complex than
the case of one letter. We thus have chosen a particular family with the shape of a binary
tree given in Figure 2.
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Such automata with various number of states, which are final with a probability p,
were minimized and the worst case results are given on the right side of Figure 1.

FSM Minimization Comparison. FSM [MPR00] is a powerful and performant finite-
state machine library. It is able to manipulate large size automata and transducers. In
particular, it holds a minimization implementation whose code is not known. We com-
pared the library with our implementations on the benchmarks previously depicted. Our
implementation is always faster, the efficiency varies from 4 to 15 times faster.

The test automata for four letters we have chosen are signal processing components
studied in some verification process. Their interest is that they are realistic examples
and that it is easy to generate many automata with the same structure but with different
sizes. Their precise description can be found in [BPP04]. A small library was written to
handle these models which are specified in a functional way, so that their descriptions
are very close to the automaton definition.

Two families of automata were studied and the results are given in Figure 3.

Fig. 3. Comparison with FSM

6 Canonical Minimal Automaton

When manipulating huge automata, a software decomposes each automaton in its con-
nected components and stores the minimal automaton associated to each component.
In order to reduce the resources and memory, if two components recognize the same
language, it would be interesting to store it only once.

In the previous sections, we detailed minimization procedures that compute two iso-
morphic automata. We can refine this result and impose a states encoding so that we can
compute an identical minimal automaton, which is called canonical minimal automa-
ton. Thus, let A be an automaton, we denote by Ac the canonical minimal automaton
(w.r.t. a particular states encoding). We have:

∀A,B,L(A) = L(B) =⇒ Ac = Bc.

Finding the canonical minimal automaton is rather straightforward: once the clas-
sical Hopcroft’s algorithm has been applied, the states are renamed by a procedure
of complexity O(|Σ|.|Q|) with numbers in {0, · · · , n − 1}. The idea is roughly the
following:

– the letters are ordered,
– the initial state has the number 0,
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– if the state reached from 0 by a is not the initial state, then it is denoted 1 and is
stored in a stack. Every successor of 0 is treated in the same way,

– every successor of the state in the top of the stack is numbered like the successors
of 0 (note that if a state is already visited, nothing is done),

– the procedure ends when the stack is empty.

The previous solution can be applied when there is an initial state which is not the
case when dealing with connected components. The author of [Cou04] proposes two
techniques, which he did not prove formally, to find a canonical representative:

– a sorted Hopcroft’s algorithm that needs to be executed twice;
– a sorted Hopcroft’s algorithm with a static storage policy that computes directly the

solution.

We prove in this paper that these solutions are correct. We included them in our FILO
implementation so that we could experiment this approach on different automata fami-
lies. Due to a lack of space, proves of propositions 2 and 3 can be found in [BP06].

Two-Pass Solution. In this case, the idea is to sort the encountered classes list vis-
ited_classes handled in the split procedure. Thus, this procedure is modified by adding
a sorting algorithm:

visited_classes:=sort(visited_classes).

With this modification, the canonical minimal automaton is obtained by applying
twice the FILO strategy. Let us denote by min2 this new implementation.

Proposition 2. Let A and B two automata such that L(A) = L(B), then

min2 ◦ min2(A) = min2 ◦ min2(B).

The complexity is not easy to estimate. Nevertheless, on practical analyses, the sorting
does not increase that much the execution time: the number of classes is often small.

One-Pass Solution. The sorted Hopcroft’s algorithm can be improved in the following
way:

– when a class B is split in {B ∩T−1(C, a), B ∩ �(T−1(C, a))}, we add to L either
B ∩ T−1(C, a), or B ∩ �(T−1(C, a). The author of [Cou04] proposes to impose
statically that one of these sets is always chosen. In our experiments, we found that
the set B ∩ T−1(C, a) is more profitable,

– during the initialization of L, again a static choice of the final set or the non-final
states is done.

Note that the modifications do not act on the correction but only on the complexity
which could be increased and that there does not exist a good static strategy for the
initialization step: indeed, if for A = (Q, q0, T, F ) it is more efficient to choose F ,
then forA′ = (Q, q0, T, Q \ F ) the choice of Q \ F is more advantageous.

Let us denote this new al gorithm min1. It computes a canonical minimal automaton:

Proposition 3. Let A and B be two automata such that L(A) = L(B), then

min1(A) = min1(B).
Practical Results. We apply the two sorted Hopcroft’s algorithm on the automata fam-
ilies depicted in the section 5. The two-pass solution goes practically twice slower than
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Fig. 4. Canonical Minimization

the one-pass solution if the initialization step is good. At the opposite, if the initializa-
tion is badly realized, the complexity of the one-pass solution increases a lot. These
practical results are presented in Figure 4. Since the initialization step of the one-pass
algorithm is too sensitive, the two-pass algorithm is included in the Dash library.

7 Conclusion

We have presented a detailed implementation of the Hopcroft’s algorithm which is very
efficient in practice. This implementation is being included in the Dash library. The
way the set of splitters is handled is a crucial point for the efficiency and we studied
two natural implementations. On very large scale experiments, we discover that the
FILO strategy performs better and could lead to a minimization procedure that could be
linear in the size of the automaton in the case of a one letter alphabet. In future works,
we plan to find a proof of this belief.

In the second part of the paper, we investigate how the original algorithm can be
modified in order to obtain a canonical minimal automaton associated to a rational
language. Two solutions are proved correct and experimental results are depicted that
show that, most of the time, one solution is better than the other.
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Abstract. We propose a new model of finite state machine: multi-tape
automata with symbol classes and identity and non-identity constraints
(in short MASCIN). This model generalizes both classical single or
multi-tape machines, and machines with extended alphabet. We define
this model in terms of a constraint satisfaction problem and discuss a
problem occurring when projection is used on the model. Finally, we
describe its implementation and results of a performance test.

1 Introduction

In this paper, we focus on various extensions of the transition labelling of finite
state automata. The transitions of an automaton are usually labelled by the
symbols of an alphabet. However, other possibilities have been investigated. For
example, transitions are labelled by words in the generalized automata intro-
duced by Eilenberg [2] or in the block automata [5], and by rational expressions
in the expression automata [6]. The main interest of these types of labelling is
essentially their compactness.

Labelling techniques of a different nature have been introduced in the eighties
in order to take into account arbitrarily wide alphabets. This is of particular
interest in computational linguistics, where it is common to use alphabets of
words; this makes it necessary to efficiently handle large alphabets. The emer-
gence of UniCode, bringing the coding of characters up to 21 bits, increases this
need. The first solutions that appeared to handle large alphabets are based on
the use of special transitions, called default transitions, or, in an equivalent way,
on the introduction of a generic symbol inducing a default processing or a failure
function [12].
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The model of automata and transducers with extended alphabet [9,1], origi-
nally implemented [8] at Xerox PARC, is based on this notion of a generic symbol
that allows the interpretation of the machine behaviour with respect to the (in-
finite) universal alphabet (the alphabet that contains all the possible symbols).
The modeling and efficiency problems that this model can solve, in particular
the introduction of identity and non-identity relations in the case of transducers
(at XRCE), are described in [4]. This model has induced other generalizations,
such as the model of automata and transducers with predicates [14].

The model that we are presenting here is a generalization of the labelling of
automata and transducers with extended alphabet. It is based on the notion of
symbol class and supports the use of any subset of the alphabet of the machine
(or of the complement of such a subset with respect to the universal alphabet)
as a label or as a component of a label. Moreover, it supports machines with n
tapes and extends, in the case where n ≥ 2, identity and non-identity handling
introduced in transducers with extended alphabet, by augmenting each label
with a set of binary identities or non-identities (applying to two classes that are
components of the label). We show that the formalism of Constraint Satisfaction
Problems (CSP) is suitable for describing such labels.

The next section gives some details of n-ary relations and multi-tape au-
tomata. Section 3 introduces symbol classes and multi-tape machines with sym-
bol classes. Section 4 deals with identities and non-identities in the scope of
multi-tape machines with symbol classes; the formalism of CSPs is introduced
and the operation of projection is studied. Finally, the implementation of this
model inside WFSC (Weighted Finite State Compiler [10]) as an extension of its
weighted multi-tape machine model [11] and experimental results are described
in Section 5.

2 Preliminaries

An alphabet Σ is a non-empty and, usually, finite set of symbols. A word of
length m over an alphabet Σ is a sequence of m symbols of Σ, for example
u = σ1σ2 . . . σm, σi ∈ Σ. We denote by |u| the length of the word u. We call
empty word the word of length 0, denoted by ε. A language is a subset of Σ∗.
We denote by ∅ the empty language and by Σε the set Σ ∪ {ε}.

A n-ary relation R over the alphabets Σ1, . . . , Σn is a subset of Σ∗
1 ×· · ·×Σ∗

n.
The set of n-tuples 〈u1, . . . , un〉 belonging to R is the graph of the relation R.
In the sequel, we will consider, without loss of generality, n-ary relations over a
single alphabet Σ.

A n-ary relation is rational if it can be obtained by combining atomic relations,
that is n-tuples of the set {〈s1, . . . , sn〉 ∈ (Σ∗)n | |si| ≤ 1}, via the classical
operations of union, concatenation and iteration. The n-ary rational relations
are realized by finite state automata with n tapes.

Definition 1. A finite state multi-tape machine of arity n is a 5-tuple M =
〈Σ, Q, E, I, F 〉 where Σ is a finite alphabet, Q is the finite set of states, E ⊆
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Q × Σε
n × Q is the set of transitions, I ⊆ Q is the set of initial states, and

F ⊆ Q is the set of final states.

Multi-tape machines generalize classical automata (n=1) and transducers (n=
2). Let e = 〈p, �, d〉 be a transition of M. The label l(e) of e is a n-tuple of
Σε

n. A path γ from a state q to a state q′ in M is a sequence γ = e1e2 . . . ek of
transitions such that p(e1) = q, d(ek) = q′ and ∀i ∈ �1, k − 1�, d(ei) = p(ei+1).
A path γ is successful if and only if q ∈ I and q′ ∈ F . The label l(γ) of the
path γ is the n-tuple l(γ) = l(e1)l(e2) . . . l(ek) of (Σ∗)n. A n-tuple w ∈ (Σ∗)n is
recognized by the machine M if there exists a path labelled by w in M.

3 Machines with Symbol Classes

Machines with extended alphabet have been designed in the 1980s at the Xerox
Palo Alto Research Center (PARC) [8] with the purpose of developing applica-
tions supporting arbitrarily large alphabets. Such a machine defines a language
or a relation over a (possibly infinite) super-alphabet Ω. Its alphabet Σ is finite
and contains a special symbol called OTHER (denoted by ?) that represents
the set of symbols Ω \Σ. Transitions are labelled as usual. However, in the case
of transducers, two special labels have been added to allow the representation of
the identity relation 〈?i, ?i〉 and the non-identity relation 〈?, ?〉, with regard to
? [3]. The language (resp. relation) over Ω can be obtained from the language
(resp. relation) over the alphabet Σ of an automaton (resp. transducer) with
extended alphabet thanks to a morphism. A formal definition of these machines
has been given in [4].

We present here a model that leads to a generalization of the labelling of
automata and transducers with extended alphabet [13]. This model is based on
the notion of symbol class, close to the notion of character class in UNIX’s, and
makes it possible to use any subset of the alphabet, or its complement, as a label
or label component. This model also generalizes multi-tape machines. We look
into the properties of this type of labelling, and then deduce the definition of a
machine with symbol classes.

3.1 Symbol Classes

Definition 2. Let Ω be the universal alphabet. We call symbol class any finite
or cofinite subset Ci of Ω. Let Σ be a finite subset of Ω. The set CΣ of symbol
classes over Σ is defined by

CΣ = {Ci ⊆ Ω | Ci ⊆ Σ ∨Ci ⊆ Σ} (1)

where Ci is the complement of Ci with respect to Ω.

Property 1. For every finite subset Σ ⊂ Ω, the set CΣ of symbol classes over
Σ is finite: |CΣ | = 2|Σ|+1.
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Proposition 1. The set CΣ of symbol classes defined over a subset Σ of Ω is
closed by union, intersection and complementation and by every operation (such
as difference) that can be expressed as a combination of these operations.

Proof. By definition, the complement (with respect to Ω) of a finite class is
cofinite. In addition, a cofinite class Ci over Σ can be described under the form
Ci = C′

i ∪Σ where C′
i is the finite class Σ \ Ci.

Let C1 and C2 be two classes over Σ. The finite case is obvious: C1 ∪C2 and
C1 ∩ C2 are two finite classes. Let us assume that C1 and C2 are cofinite. Then
we have C1 = C′

1 ∪Σ and C2 = C′
2 ∪Σ, where C′

1 and C′
2 are two finite classes

over Σ. We get

C1 ∪ C2 = (C′
1 ∪ C′

2) ∪Σ and C1 ∩ C2 = (C′
1 ∩ C′

2) ∪Σ

thus C1 ∪C2 and C1 ∩ C2 are two cofinite classes.
Let us assume now that C1 is finite and C2 is cofinite, with C2 = C′

2∪Σ. We have

C1 ∪ C2 = (C1 ∪C′
2) ∪Σ and C1 ∩ C2 = (C1 ∩C′

2)

As a consequence, C1 ∪ C2 is a cofinite class and C1 ∩ C2 is a finite class. ��
Let 〈C∗Σ, ·, ε〉 be the free monoid1 defined over CΣ . We call a word of classes any
finite sequence C1C2 . . . Cn with ∀i ∈ �1, n�, Ci ∈ CΣ and we call a language of
classes any subset of C∗Σ. The evaluation over Ω of a word of classes is a subset of
Ω∗ calculated according to the morphism of monoids λ : 〈C∗Σ , ·, ε〉 → 〈2Ω∗

, ·, {ε}〉
defined by:

λ(ε) = {ε}; ∀Ci, Cj ∈ CΣ , λ(Ci) = Ci, λ(Ci · Cj) = λ(Ci) · λ(Cj)

The evaluation over Ω of the language of classes L is defined by:

∀L ⊆ C∗Σ, λ(L) =
⋃
u∈L

λ(u) (2)

Property 2. The evaluation over Ω of a word of classes u is either the empty
set or a language made of words having the same length as u: ∀u ∈ C∗Σ , λ(u) �=
∅ ⇒ ∀v ∈ λ(u), |v| = |u|.

The cardinality of the language generated over Ω by a word of classes is equal to
the product of the cardinalities of the classes it is made of: ∀u = C1C2 . . . Cn ∈
CΣ, |λ(u)| =

∏n
i=1 |Ci|. The cardinality |λ(u)| is infinite if at least one of the

classes is cofinite, and zero if at least one of the classes is the empty set.

3.2 Multi-tape Automata with Symbol Classes

Definition 3. A multi-tape automaton with symbol classes (MASC) A(n),
with arity n, is an automaton whose transitions are labelled with n-tuples of
symbol classes. It is a 6-tuple A = 〈Σ, C, Q, E, I, F 〉 where Σ is a finite alpha-
bet, C ⊂ CΣ is a finite set of symbol classes over Σ, and E ⊂ Q× (C∪{ε})n×Q
is the set of transitions.
1 The empty set is assumed to be a symbol with no particular properties.
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Figure 1 illustrates the efficiency of modeling by an automaton with symbol
classes with respect to an automaton with extended alphabet.

fs1s0

s2

a

b
d

a

c

bdc
? ?

ab

dc

?

(a) A complete automaton with extended
alphabet A (The ? means Ω\Σ =
{a, b, c, d})

s0

s2

{a, b}
fs1

{a, b}

{a, c, d}

∅

{a, c, d}

(b) A complete automaton with symbol
classes A′ equivalent to A

Fig. 1. Illustration of the efficiency of modeling by automata with symbol classes

4 Machines with Symbol Classes, Identities and
Non–identities

We now propose an extension to the identity and non–identity labels of the
transducers with extended alphabet, and we define multi-tape automata with
symbol classes, identities and non–identities (MASCIN). In order to make the
implementation more efficient, we use binary relations that are either an identity
relation between two classes, denoted by idCi,Cj , or a non–identity relation,
denoted by nidCi,Cj .

The formalism of Constraint Satisfaction Problems (CSP) [7] is very convenient
for the description of labels of a MASCIN . Indeed, a CSP is given by a set X of
variables each defined over a discrete (and usually finite) domain, and by a set T of
constraints, each applying on a subset of variables.Thus, the label of any transition
of a MASCIN is a CSP whose set of solutions is the evaluation over Ω of the label.

We recall some definitions concerning CSPs in order to enlighten the link with
the labelling of MASCINs. In particular, we express the elementary properties
of the labelling based on identities and non–identities in terms of a CSP problem.
Finally, we investigate the properties of the projection operation.

4.1 Constraint Satisfaction Problems

Definition 4. A Constraint Satisfaction Problem (CSP), P = 〈X,D, T 〉, is
defined by a set of n variables X = {x1, . . . , xn}, the set D = {C1, . . . , Cn} of
their domains and a set of constraints T = {t1, . . . , tm} that each apply over a
subset of variables.
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The subset of variables involved by a constraint t is denoted by var(t). We also
denote by var(U) the subset of variables concerned by the constraints of U , with
U ⊆ T . Each constraint defines a subset of the cross-product of the concerned
variable domains.

A total assignment is obtained by instantiating every variable by a value of
its domain. We denote it by A = {〈x1, v1〉, . . . 〈xn, vn〉}, or more simply by
A = 〈v1, . . . , vn〉. A partial assignment instantiates a subset of variables.

Let t be a constraint and A be an assignment that instantiates every variable
of var(t). We say that t(A) is true if A satisfies the constraint t. An assignment
is consistent if t(A) is true for every t ∈ T . A total and consistent assignment
is a solution of the CSP. The set of solutions, denoted by CSP (X,D, T ), is the
graph of the n-ary relation R defined over the sets C1, C2, . . . , Cn by the set of
constraints T and denoted 〈D, T 〉. Two CSPs are equivalent if they admit the
same set of solutions.

A binary constraint applies over a subset of two variables. Among the binary
constraints, we distinguish the equality constraints, of the form (xi = xj), and
the disequality constraints, of the form (xi �= xj). Theses two types of binary
constraints are referred to as equi-constraints. We call ECSP a CSP having
only equi-constraints and we call equi-constraint relation the relation defined by
a ECSP . A CSP without any constraint is a particular case of ECSP .

Proposition 2. Let P = 〈X,D, T 〉 be a ECSP .

1. We set T1 = T ∪ {(xj = xk) | ∃i, (xi = xj) ∈ T ∧ (xi = xk) ∈ T } and
P1 = 〈X,D, T1〉. The ECSP P and P1 are equivalent.

2. Let us set T2 = T1 ∪ {(xj �= xk) | ∃i, (xi = xj) ∈ T1 ∧ (xi �= xk) ∈ T1} and
P2 = 〈X,D, T2〉. The ECSP P and P2 are equivalent.

3. The equality relation in X determines a partition of X. Let [xi] be the class
of xi. Let us set C′

i =
⋂

xk∈[xi] Ck and let D′ be the set of domains C′
i. Let us

consider the problem P ′ = 〈X,D′, T 〉. The ECSP P and P ′ are equivalent.

Proof. The proof is straightforward: 1. is directly deduced from the transitivity
of the equality in X ; 2. comes from the fact that (xi = xj ∧xi �= xk)⇒ xj �= xk;
3. is a consequence of the fact that every variable of a same class is involved in
the same set of constraints. ��

In the sequel, we will say that P2 is the normalized form of P and that P ′ is the
reduced form of P . Proposition 2 can be illustrated over the undirected graph
G = 〈X, E ∪D〉 associated to P . Every edge represents a constraint of T :

(xi, xj) ∈ E ⇔ (xi = xj) ∈ T (3)
(xi, xj) ∈ D ⇔ (xi �= xj) ∈ T

Figure 2 shows the graph G of a problem P that is partitioned into two classes
and the graph G1 of the equivalent problem P1. The graph G1 is the transitive
closure of G. Each component of G is transformed into a clique in G′. Figure 3(a)
represents the graph of a problem P partitioned into four classes. Figure 3(b)
represents the graph of the problem P2 equivalent to P .
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Fig. 2. The graph of a ECSP (bold edges) and the graph of its transitive closure (all
edges)
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Fig. 3. The graph of a ECSP (equality edges in bold, disequality edges in dashed
bold) and its normalized graph (equality edges in solid, disequality edges in dashed)

4.2 Multi-tape Automata with Symbol Classes, Identities and
Non–identities

Let A be a MASC with n tapes. Let e be a transition of A and l(e) be its
label. We have: l(e) = 〈C1, . . . , Cn〉, with, for all i ∈ �1, n�, Ci ∈ CΣ ∪ {ε}.
For all i ∈ �1, n� we consider a variable xi whose domain is Ci. Let X be
the set of variables and D be the set of domains. It is clear that the label
l(e) = 〈C1, . . . , Cn〉 is equivalent to the problem ECSP 〈X,D, ∅〉. In addition,
the evaluation λ(l(e)) of l(e) over Ω is equal to the set of solutions of this ECSP .

In the case where there exist some disequality binary constraints between
the variables, the number of transitions can be decreased by turning A into an
automaton with identities and non-identities. This can be achieved by equipping
each label with a set T of identity or non–identity relations over the classes
involved by the label.

An identity idCi,Cj (resp. a non-identity nidCi,Cj ) is a binary equality con-
straint xi = xj (resp. a binary disequality constraint xi �= xj). As a consequence,
for all transitions e of a MASCIN , the label l(e) = 〈〈C1, . . . , Cn〉, T 〉 is equal to
the ECSP 〈X,D, T 〉. In addition the evaluation λ(l(e)) of l(e) over Ω is equal
to the set of solutions of this ECSP .

Definition 5. A multi-tape automaton with symbol classes, identities and non–
identities is an automaton in which every transition is labelled by a CSP having
only equality or disequality binary constraints.
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4.3 Projection of an Equi-constrained n-ary Relation

Let R be an n-ary relation over the sets C1, . . . , Cn. We consider the case of
the projection of R with the suppression of one tape (called single projection in
the following). In order to simplify notation, and without any loss of generality,
we assume that the tape that is removed is the n-th tape and we denote this
projection by π(R).

By definition:

π(R) = {〈x1, . . . , xn−1〉 | ∃xn ∈ Cn, 〈x1, . . . , xn〉 ∈ R} (4)

Let us suppose that R is an equi-constrained relation, i.e. R = 〈D, T 〉 where
T is a set of equality or disequality constraints. The projection π(R) is a relation
over the domains C1, . . . , Cn−1; let D′ be the set of these domains.

We show that π(R) is not necessarily an equi-constrained relation over D′

and we investigate a set of sufficient conditions such that this property holds. In
the following, we assume that the ECSP associated to R is in normalized and
reduced form.

Proposition 3. Let us consider the equi-constrained relation R′ = 〈D′, T \ Tn〉,
where Tn is the set of constraints of T that involve the tape n. Then we have:

1. π(R) ⊆ R′,
2. A necessary and sufficient condition for π(R) to be strictly included in R′

is that there exists a partial assignment 〈x1, . . . , xn−1〉 that satisfies every
constraint of T \ Tn and such that, for all xn ∈ Cn, there exists at least one
constraint of Tn that is not satisfied by the assignment 〈x1, . . . , xn〉.

Proof. Let T ′ = T \ Tn. We have var(T ′) = X \ {xn}. Since T ′ ⊆ T we have
R = 〈D, T 〉 ⊆ 〈D, T ′〉. In addition, as var(T ′) = X \ {xn}, we have π(〈D, T ′〉) =
〈D′, T ′〉 = R′. Finally, we have π(R) ⊆ R′.

Proposition 3.2 comes directly from the equivalence 〈x1, . . . , xn−1〉 �∈ π(R) ⇔
∀xn ∈ Cn, 〈x1, . . . , xn〉 �∈ R. ��

Corollary 4. If T contains an equality relation xi = xn, then π(R) = R′.

Proof. Let us recall that the ECSP associated to R is under normalized form.
Due to Proposition 2, for every constraint involving the tapes k and n there exists
a constraint of the same type between the tapes i and n. As a consequence, every
assignment 〈x1, . . . , xn〉 such that 〈x1, . . . , xn−1〉 satisfies the constraints of T \Tn

satisfies the constraints of T . ��

Thus, in the following, we will consider only disequality constraints.

Example 1. This example illustrates the fact that π(R) is not necessarily equi-
constrained. We take C1 = {a, b, c}, C2 = {a, b, d}, C3 = {a, b} and T =
{(x1 �= x3), (x2 �= x3)}. Thus we have: π(R) = (C1 × C2) \ {〈a, b〉, 〈b, a〉}. It
is clear that π(R) is equal to none of the three equi-constrained relations on C1
and C2: C1 × C2, idC1,C2 and nidC1,C2 .
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When π(R) = R′, it is possible to merely delete the tape n, which provides an
efficient implementation of the projection. Among the simple criteria that allow
one to determine that π(R) = R′, let us cite:

1. There exists an equality relation (xi = xn) in T .
2. The condition |Cn| > |Tn| is satisfied.
3. The condition D = Cn \

⋃
(xj �=xn)∈T Cj �= ∅ is verified.

5 Implementation and Experimental Results

5.1 Implementation

In the regular expression notation of WFSC [10], classes are written as sequences
of atoms and ranges. For example, the class [ac-hn-p‘VERB’‘NOUN’], consists
of the atoms a, c to h, n to p, VERB, and NOUN. The complement of this class
is written as [^ac-hn-p‘VERB’‘NOUN’]. A tuple of classes with constraints is
written in the following style: for example, the triple [a-p]:[^b-e]:m{1=2,1~3}
consists of a class [a-p] on tape 1, a class [^b-e] on tape 2, and the atomic
symbol m on tape 3. There is an identity constraint between tapes 1 and 2, and
a non-identity constraint between tapes 1 and 3.

In the internal encoding of WFSC, each transition of a machine carries a
symbolic identifier, ID in the following, referring to its label. Labels and their
components are referred to by an ID and are defined in a symbol table. An atomic
label is stored in the symbol table with its ID and its value (e.g., 〈70201, ”VERB”〉.
A complex label is stored with its own ID and the vector of the IDs of its n
components: 〈ID, 〈ID1, . . .IDn〉〉. For a symbol class, each IDi (with i ∈ [[1, n]])
defines a range, such as a-h, or an atom, such as g or VERB; in addition, we need
to store whether the class is the union of all its components, or the complement
of this union. For a tuple of classes, each IDi (with i ∈ [[1, n]]) defines a symbol
class; if there are constraints between these classes, then those are defined in a
(n×n)-matrix M which is appended to the tuple definition in the symbol table.
Each element of M defines the constraint between two classes and can have the
values identity, non-identity, or unconstrained .

In order to avoid multiple definition and to allow fast label comparison,
a canonization is performed on any label added into the table by construct-
ing the transitive closure among its constraints and removing from its classes
all letters that, due to constraints, cannot occur. For example, the canonical
form of [a-p]:[^b-e]{1=2} is [af-p]:[af-p]{1=2} and the canonical form of
[a-p]:[^b-e]:m{1=2,1~3} is [af-ln-p]:[^af-ln-p]:m{1=2}.

5.2 Experimental Results

The use of symbol classes is advantageaus regarding memory usage and run-
ning time. We tested some cases2 where an ordinary transducer was trans-
2 Due to space limitation, we are reporting a composition test only here. Composi-

tion allows the creation of cascades of filters; this is customary in NLP. Moreover,
composition is in membership tests, too.
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Fig. 4. Time of composition with (T1) or without (T ) symbol classes. The number of
transitions of T is on the x axis whereas it is just one in T1—but it represents exactly
the corresponding labels (and transitions) of T !

formed into an equivalent MASCIN . In this composition test 128, 256, ...,
65536 labels in T were replaced, successively, by equivalent symbol classes in
T1. The relative storage gain is obvious: in the last case, the basic UniCode
range (BMP, Basic Multilingual plane), represented on 65536 transitions (as
a:a, b:b etc.) in T , was represented by a single transition in T1, labelled by
[\u0000-\uffff]:[\u0000-\uffff]{1=2}. The relative time of T ◦ T , T ◦ T1
and T1 ◦ T1 was measured (see Figure 4). The time complexity of the operation
reduces to a (small) constant in the T1 ◦ T1 case.

In our experiments, we noted efficiency improvement when symbol classes were
applicable. We identified some classes of tasks where MASCINs can be used
successfully. We consider the enhanced modelling power even more important.

6 Conclusion

The model of multi-tape automata with symbol classes, identities and non–
identities is a generic model for a wide class of finite state machines: a 1-tape
automaton is a single tape MASC labelled with singletons, a n-tape automaton
(n ≥ 2) is a n-tape MASC labeled by CSPs of arity n whose domains are sin-
gletons, an automaton with extended alphabet is a single-tape MASC labelled
with singletons or with the class that is the complement of the alphabet, and a
transducer with extended alphabet is a two-tape MASCIN labelled with CSPs
of arity 2. Moreover, this model generalizes the model of automata and trans-
ducers with extended alphabet in two ways: on the one hand, it supports n-tape
machines, and on the other hand, it makes it possible to use any subset of the
alphabet Σ, or its complement, as a label or as a label component. Thanks to
this property, this model is a very good candidate for the development of algo-
rithms in a very general framework: finite or infinite alphabet, 1, 2 or n tapes,
handling of identities and non–identities. In applications, MASCINs may yield
efficiency improvements.
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14. Gertjan van Noord and Dale Gerdemann. Finite state transducers with predicates
and identities. Grammars, 4(3):263–286, 2001.



On the Computation of Some Standard
Distances Between Probabilistic Automata

Corinna Cortes1, Mehryar Mohri1,2,�, and Ashish Rastogi2

1 Google Research,
1440 Broadway, New York, NY 10018

2 Courant Institute of Mathematical Sciences,
251 Mercer Street, New York, NY 10012

Abstract. The problem of the computation of a distance between two
probabilistic automata arises in a variety of statistical learning problems.
This paper presents an exhaustive analysis of the problem of computing
the Lp distance between two automata. We give efficient exact and ap-
proximate algorithms for computing these distances for p even and prove
the problem to be NP-hard for all odd values of p, thereby completing
previously known hardness results. We also give an efficient algorithm
for computing the Hellinger distance between unambiguous probabilistic
automata. Our results include a general algorithm for the computation of
the norm of an unambiguous probabilistic automaton based on a monoid
morphism and efficient algorithms for the specific case of the computation
of the Lp norm. Finally, we also describe an efficient algorithm for testing
the equivalence of two arbitrary probabilistic automata A1 and A2 based
on Schützenberger’s standardization with a running time complexity of
O(|Σ| (|A1|+ |A2|)3), a significant improvement over the previously best
algorithm reported for this problem.

1 Introduction

A probabilistic automaton is a finite automaton with transition probabilities. It
represents a probability distribution over the set of all strings [14]. Probabilistic
automata are used extensively in a variety of areas, including text and speech
processing [11], image processing [5], and computational biology [6].

These automata are typically derived from large data sets using statistical
learning algorithms. The convergence of these algorithms is often tested by mea-
suring the distance between the probabilistic automata obtained after consecu-
tive iterations. The computation of the distance between probabilistic automata
is also needed in other learning problems such as clustering when the objects to
cluster, e.g., documents, images, biosequences, are modeled as Hidden Markov
Models (HMMs) or probabilistic automata.

This motivates our study of the computation of various distances between
probabilistic automata. We have previously shown that the relative entropy,
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or Kullback-Leibler divergence, of unambiguous probabilistic automata can be
computed efficiently [4] and that, in the general case of arbitrary probabilistic
automata, the computational cost is at least O(c

√
n/ log n), where c is a constant

and n the size of the automaton [3].
Here, we present an exhaustive analysis of the problem of computing the

Lp distance between two automata. We give efficient exact and approximate
algorithms for computing these distances for p even and prove that the problem
is NP-hard for all odd values of p using a reduction from the Max-clique problem
by [15]. These latter results complete those given by [15] who showed the problem
to be NP-hard for L1 and L∞. We also give an algorithm for computing the
Hellinger distance between unambiguous probabilistic automata. In addition, we
present a general algorithm for the computation of the norm of an unambiguous
probabilistic automaton using a monoid morphism and give efficient algorithms
for the specific case of the computation of the Lp norm.

A problem closely related to that of computing a distance between two prob-
abilistic automata is to test for their equivalence. Our algorithm for computing
the L2 distance of two arbitrary probabilistic automata A1 and A2 provides in
fact a polynomial-time method for testing their equivalence since A1 and A2 are
equivalent iff their L2 distance is null. However, we will describe a more effi-
cient algorithm based on Schützenberger’s standardization technique [17,1] with
a running-time complexity of O(|Σ| (|A1| + |A2|)3), a significant improvement
over the previously best algorithm reported for this problem whose complexity
is O(|Σ| (|A1|+ |A2|)4)) [19].

The remainder of the paper is organized as follows. Section 2 introduces some
basic algebraic definitions and notation related to probabilistic automata needed
for the description of our algorithms. Section 3 presents several algorithms for
the computation of the norm of a probabilistic automaton, including an approxi-
mate solution. The problem of the computation of the Lp distance and Hellinger
distance is examined in detail in Section 4.

2 Preliminaries

Definition 1. Let (K,⊗, 1) be a monoid. A function Φ : (R+, ·, 1)→ (K,⊗, 1) is
said to be a monoid morphism if Φ(1) = 1, Φ(0) = 0, and Φ(x · y) = Φ(x)⊗Φ(y)
for all x, y,∈ R+.

Definition 2 ([10]). A semiring is a system (K,⊕,⊗, 0, 1) such that: (K,⊕, 0)
is a commutative monoid with 0 as the identity element for ⊕; (K,⊗, 1) is a
monoid with 1 as the identity element for ⊗; ⊗ distributes over ⊕: for all a, b, c
in K: (a⊕ b)⊗ c = (a⊗ c)⊕ (b⊗ c) and c⊗ (a⊕ b) = (c⊗ a)⊕ (c⊗ b), and
0 is an annihilator for ⊗: ∀a ∈ K, a⊗ 0 = 0⊗ a = 0.

A semiring K is said to be closed if for all a ∈ K, the infinite sum
⊕∞

n=0 an

is well-defined and in K, and if associativity, commutativity, and distributivity
apply to countable sums [13]. K is said to be k-closed if for all a ∈ K,

⊕k+1
n=0 an =⊕k

n=0 an. More generally, we will say that K is closed (k-closed) for an automaton
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A, if the closedness (resp. k-closedness) axioms hold for all cycle weights of
A. In some semirings, e.g., the probability semiring (R+, +, ·, 0, 1), the equality⊕k+1

n=0 an =
⊕k

n=0 an may hold for the cycle weights of A only approximately,
modulo ε > 0. A is then said to be ε-k-closed for that semiring.

Definition 3 ([7,16,1]). A weighted automaton A = (Σ, Q, I, F, E, λ, ρ) over
a semiring (K,⊕,⊗, 0, 1) is a 7-tuple where: Σ is the finite alphabet of the au-
tomaton, Q is a finite set of states, I ⊆ Q the set of initial states, F ⊆ Q the set
of final states, E ⊆ Q×Σ∪{ε}×K×Q a finite set of transitions, λ : I → K the
initial weight function mapping I to K, and ρ : F → K the final weight function
mapping F to K.

Stochastic automata are probabilistic automata such that at each state the
weights of the outgoing transitions and the final weight sum to one.

We denote by |A| = |E|+|Q| the size of an automaton A = (Σ, Q, I, F, E, λ, ρ),
that is the sum of the number of states and transitions of A. Given a transition
e ∈ E, we denote by i[e] its input label, p[e] its origin or previous state and
n[e] its destination state or next state, w[e] its weight (weighted automata case).
Given a state q ∈ Q, we denote by E[q] the set of transitions leaving q.

A path π = e1 · · · ek in A is an element of E∗ with consecutive transitions:
n[ei−1] = p[ei], i = 2, . . . , k. We extend n and p to paths by setting: n[π] = n[ek]
and p[π] = p[e1]. We denote by P (q, q′) the set of paths from q to q′ and by
P (q, x, q′) the set of paths from q to q′ with input label x ∈ Σ∗. The labeling
functions i and the weight function w can also be extended to paths by defining
the label of a path as the concatenation of the labels of its constituent transitions,
and the weight of a path as the ⊗-product of the weights of its constituent
transitions: i[π] = i[e1] · · · i[ek], w[π] = w[e1]⊗ · · · ⊗ w[ek].

The output weight associated by an automaton A to an input string x ∈ Σ∗

is defined by:
[[A]](x) =

⊕
π∈P (I,x,F )

λ[p[π]]⊗ w[π] ⊗ ρ[n[π]]. (1)

Definition 4. A weighted automaton A defined over the probability semiring
(R+, +, ·, 0, 1) is said to be probabilistic if for any state q ∈ Q,

∑
π∈P (q,q) w[π],

the sum of the weights of all cycles at q, is well-defined and in R, and the weights
assigned to the all strings sums to one:

∑
x∈Σ∗ [[A]](x) = 1.

A weighted automaton is said to be unambiguous if for any string x ∈ Σ∗ it
admits at most one accepting path labeled with x. It is said to be deterministic
or subsequential if it has a unique initial state and if no two transitions leaving
the same state share the same input label.

3 Computation of the Norm of a Probabilistic Automaton

The computation of single-source shortest-distances is needed in many of the
algorithms presented in this section and the following ones. We denote by s[A]
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the ⊕-sum of the weights of all successful paths of a weighted automaton A when
it is defined and in K. s[A] can be viewed as the shortest-distance from the initial
states to the final states.

When the semiring K is closed, or when A is closed for K, s[A] can be computed
exactly using a generalization of the Floyd-Warshall algorithm in time O(|A|3)
and space Ω(|A|2), assuming a constant cost for the semiring operations [13].

3.1 Case of Unambiguous Automata

In previous work, we gave a general algorithm for computing the entropy of a
probabilistic automaton by relating this problem to a shortest-distance one [4].
Here, we generalize these results by considering an arbitrary monoid morphism.

Let (K,⊕,⊗, 0, 1) be a closed, or ε-k-closed semiring. Let Φ : (R+, ·, 1) →
(K,⊗, 1) be a monoid morphism. We will say that Φ preserves closedness, if for
all x, 0 ≤ x < 1,

⊕∞
n=0 Φ(xn) is well-defined and in K. For a such a morphism,

we can define the Φ-norm of a probabilistic automaton as:

‖A‖Φ =
⊕

x∈Σ∗
Φ([[A]](x)). (2)

Theorem 1. Let (K,⊕,⊗, 0, 1) be a closed or ε-k-closed semiring and let Φ :
(R+, ·, 1) → (K,⊗, 1) be a monoid morphism preserving closedness. Then, for
any unambiguous probabilistic automaton A, ‖A‖Φ can be computed exactly in
time O(|A|3).

Proof. The automaton Φ(A) derived from A by replacing each weight x by Φ(x) is
a weighted automaton over the semiring K. Since A is unambiguous, at most one
path in A, π = e1 · · · ek, is labeled with any string x ∈ Σ∗. Since Φ is a monoid
morphism, Φ([[A]](x)) =

⊗k
j=1 Φ(i[ej ]), that is the weight of the path labeled with

x in Φ(A). This shows that ‖A‖Φ = s(A) and proves the theorem. ��

Theorem 1 provides an algorithm for computing the Φ-norm of unambiguous
probabilistic automata for arbitrary monoid morphisms preserving closedness.
We will briefly illustrate two applications of the theorem.

(a) Entropy of a Probabilistic Automaton.
Let K denote (R∪{+∞,−∞})× (R∪{+∞,−∞}). For pairs (x1, y1) and

(x2, y2) in K, define the following :

(x1, y1)⊕ (x2, y2) = (x1 + x2, y1 + y2) (3)
(x1, y1)⊗ (x2, y2) = (x1x2, x1y2 + x2y1) (4)

Then, the system (K,⊕,⊗, (0, 0), (1, 0)) defines a commutative semiring
[2,8,4], called the entropy semiring. It can be shown [4] that the function
Φ : (R+, +, ·, 0, 1) → (K,⊕,⊗, (0, 0), (1, 0)) defined by: ∀x ∈ R+, Φ(x) =
(x,−x log x), is a monoid morphism preserving closedness. Thus, the
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norm-Φ of an unambiguous probabilistic automaton can be computed ef-
ficiently using a single-source shortest-distance algorithm. Its second com-
ponent is exactly the entropy of A, thus this provides an efficient and simple
algorithm for computing the entropy of A.

(b) Norm Lα of a Probabilistic Automaton, α ∈ R+.
The function Φ : (R+, +, ·, 0, 1) → (R+, +, ·, 0, 1) defined by Φ(x) = xα

is clearly a monoid morphism. Since for 0 ≤ x < 1, 0 ≤ xα < 1, it also
preserves closedness. Thus, the Lα-norm of an unambiguous probabilistic
automaton A can be computed efficiently using a shortest-distance algo-
rithm. In particular, the Bhattacharya norm, i.e., L 1

2
-norm, of A can be

computed efficiently.

3.2 General Case

In general, a probabilistic automaton may not be unambiguous. But, the Lp

norm can still be computed in polynomial time for any integer p ≥ 1.

Theorem 2. The Lp-norm of a probabilistic automaton A can be computed ex-
actly in time O(|A|3p) time and Θ(|A|2p) space.

Proof. Let A(p) denote the automaton obtained by intersecting A with itself p−1
times. Then, by definition of intersection, (s[A(p)])1/p represents the Lp norm of
A. The cost of intersection to create A(p) is in O(|A|p). ��

3.3 Approximate Computation

Here we consider the specific case of the computation of the Lp norm of a prob-
abilistic automaton. Our results can be generalized to cover more general cases,
in particular in the case of unambiguous automata.

Since for any ε > 0, a probabilistic automaton is ε-k-closed for the proba-
bility semiring, instead of the (generalized) Floyd-Warshall algorithm, we can
use a single-source shortest-distance algorithm to compute s[A] [13]. This algo-
rithm works with any queue discipline, its space complexity is linear which is
significantly more efficient than the Floyd-Warshall algorithm.

The time complexity of the algorithm depends on the queue discipline used.
With a breadth-first queue discipline (as in the Bellman-Ford shortest-distance
algorithm), an analysis similar to [4] can be used to show that the overall com-
plexity of this approximate algorithm is:

O(|Q|+ (|E|+ |Q|) log(1/ε)
log(1/|λ2|)

). (5)

For ε exponentially smaller than |λ2| (ε = |λ2|d), the cost in complexity is only
linear: O(|Q|+ d(|E|+ |Q|)). Other queue disciplines may lead to more efficient
algorithms, depending on the probabilistic automaton considered.



142 C. Cortes, M. Mohri, and A. Rastogi

4 Computation of Distances Between Probabilistic
Automata

There are several standard distances used to compare distributions which can be
used in particular to compare probabilistic automata. Here are the definitions of
some of the most commonly used ones, the relative entropy or Kullback-Leibler
divergence, and the Lp distance between two distributions q1, q2 over a discrete
set X :

D(q1 ‖ q2) =
∑
x∈X

q1(x) log
q1(x)
q2(x)

Lp(q1, q2) =
( ∑

x∈X
(q1(x) − q2(x))p

)1/p

Hellinger(q1, q2) =
( ∑

x∈X
(
√

q1(x) −
√

q2(x))2
)1/2

.

(6)

Since we have previously specifically studied the problem of the computation of
the relative entropy [4,3], in what follows, we will focus on the computation of
the Lp distance and the Hellinger distance.

4.1 L2p Distance of Probabilistic Automata

In [15], the authors give an approximate algorithm to compute the L2 distance
between two HMMs. Their algorithm applies to the specific cases of HMMs in
which each state belongs to at most one cycle.1 This section presents a simple
and general algorithm for the computation of the L2p distance of two arbitrary
probabilistic automata, for p ∈ N.

Our algorithm computes (L2p(A1, A2))2p. The L2p distance between A1, A2
can then be obtained straightforwardly by taking the 2pth root. (L2p(A1, A2))2p

can be rewritten as:

(L2p(A1, A2))2p =
∑

x∈Σ∗
|[[A1]](x)− [[A2]](x)|2p =

∑
x∈Σ∗

([[A1]](x)− [[A2]](x))2p

=
∑

x∈Σ∗

2p∑
i=0

(
2p

i

)
([[A1]](x))i(−[[A2]](x))2p−i (7)

=
2p∑

i=0

(
2p

i

)
(−1)i

∑
x∈Σ∗

([[A1]](x))i([[A2]](x))2p−i. (8)

Let T (i, 2p− i) denote
∑

x∈Σ∗([[A1]](x))i([[A2]](x))2p−i. Note that if A1, A2 are
acyclic, then one can compute T (i, 2p− i) exactly using a generalization of the

1 For more general HMMs, they claim without proof that an iterative version of their
method yields an approximate algorithm that works in time O((|A1|+|A2|)6p), where
A1 and A2 are the HMMs considered. The approximation does not appear explicitly
in this complexity term however.
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single-source shortest-distance algorithm [13] that works for arbitrary semirings,
in linear time O(|A1|+ |A2|).

Next, let us consider the case of unambiguous automata A1, A2. If Ai =
(Σ, Qi, Ii, Fi, Ei, λi, ρi), i = 1, 2, then the transitions in the intersection au-
tomaton A = A1 ∩A2 are defined according to the following rule:

(q1, a, w1, q
′
1) ∈ E1 and (q2, a, w2, q

′
2) ∈ E2 ⇒ ((q1, q2), a, w1w2, (q′1, q

′
2)) ∈ E.

Since we are dealing with unambiguous automata, we can avoid the re-computa-
tion of the intersection automaton for different is. During intersection, instead
of multiplying w1 and w2, we can keep instead the pair (w1, w2). Then, we only
need to intersect A1 and A2 once, and modify the weight of each transition
in the intersection automaton for different is in the computation of T (i, 2p −
i) as ((q1, q2), a, (wi

1(w2)2p−i), (q′1, q′2)). Running the shortest-distance algorithm
over the intersection automaton with weights modified as described above yields
T (i, 2p− i). Computing the intersection automaton takes O(|A1||A2|) time.

Thus, if we use the exact algorithm to compute the shortest-distance, then
for each i, computing T (i, 2p− i) costs O(|A1 ∩ A2|3) time and Θ(|A1 ∩ A2|2).
Therefore, the time complexity of computing the 2p-distance between A1, A2 is
O((2p)|A1 ∩A2|3) and the space complexity Θ(|A1 ∩A2|2).

Theorem 3. The L2p distance of unambiguous probabilistic automata can be
computed exactly in time O(2p|A1|3|A2|3).

Note that this theorem significantly improves the result of [15], which is expo-
nential in p. Thus, for unambiguous automata, our algorithms are, to the best of
our knowledge, the only polynomial time algorithms for computing the 2p norm
exactly.

For the computation of the L2p-distance of arbitrary automata, we can no
longer intersect A1, A2 just once. Since there may be multiple paths in Ai, i = 1, 2
with the same label, cross terms appear in T (i, 2p−i). This makes it necessary to
perform 2p separate intersections for each i. The computational cost and space
complexity of intersection to compute T (i, 2p− i) is in O(|A1|i|A2|2p−i). Thus,
the exact shortest-distance algorithm has complexity O((|A1|i|A2|2p−i)3). This
leads us to the following result.

Theorem 4. The L2p distance of two arbitrary probabilistic automata A1 and
A2 can be computed in time

∑2p
i=0 O((|A1|i|A2|2p−i)3) = O((|A1|+ |A2|)6p).

Note that our algorithm for computing the L2p distance of two arbitrary proba-
bilistic automata A1 and A2 clearly also provides an efficient method for testing
their equivalence since A1 and A2 are equivalent iff their Lp distance is null.
For p = 1, our exact algorithm can be used to test for equivalence in time
O((|A1||A2|)3). However, the standardization algorithm of Schützenberger [17]
can be used to derive a more efficient algorithm.

Theorem 5. The equivalence of two arbitrary probabilistic automata A1 and A2
can be computed in time O(|Σ| (|A1|+ |A2|)3).
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Proof. The standardization algorithm of Schützenberger [17,1] applies to any
weighted automaton defined over a field. It leads to a representation of a weighted
automaton with the smallest number of states. The algorithm requires the con-
struction of bases for vectorial spaces for which spanning sets are known. Using
LUP decompositions, the complexity of the standardization algorithm applied
to a weighted automaton A is in O(|Σ||A|3).

For the purpose of equivalence, we may view a probabilistic automaton as an
automaton over the field (R, +, ·, 0, 1). Since negation is allowed over this field,
we can construct the automaton A = A1−A2, which can be done in linear time,
and apply standardization. A1 and A2 are equivalent iff A is equivalent to the
null weighted machine, that is iff after standardization A has no state. Thus, this
leads to an algorithm for testing the equivalence of two probabilistic automata
A1 and A2 with overall complexity O(|Σ| |A|3) = O(|Σ| (|A1|+ |A2|)3). ��

To our knowledge, this is the most efficient algorithm for testing the equivalence
of probabilistic automata. The best algorithm previously reported in the liter-
ature was that of Wen-Guey Tzeng whose complexity is O(|Σ| (|A1| + |A2|)4))
[19]. The alphabet factor does not appear in the expression of the complexity
reported by the author most likely because the proof is restricted to a binary
alphabet. The technique described by Wen-Guey Tzeng is in fact closely related
to the standardization algorithm of Schützenberger [17], which the author was
apparently not aware of.

4.2 L2p+1 and L∞ Distance of Probabilistic Automata

It was shown by [15] that the problem of computing the L1 or L∞ distance
of two probabilistic automata is NP-hard, even for acyclic automata. Here, we
extend these results to the case of arbitrary L2p+1 distances, where p ∈ N.

Our proof of the hardness of computing the L2p+1 distance between two
acyclic probabilistic automata is by reduction from the Max-clique problem and
is based on a technique used by [15].

Given a graph G = (V, E), one can construct an acyclic weighted automa-
ton AG over the probability semiring of size polynomial in |V | + |E| such that
[[A]](x) = k for some string x iff G has a clique of size k. AG is constructed as
follows. It has a single initial state qs and a single final state qt. For each i ∈ V ,
it admits the following transitions:

(a) a transition from qs to qi,0 with label ε and weight 1;
(b) a transition from qi,n to the final state qt with label ε and weight 1;
(c) a transition from qi,i−1 to qi,i with label i and weight 1;
(d) a transition from qi,j−1 to qi,j with label ε and weight 1 for each j �= i; and
(e) if (i, j) ∈ E, a transition from qi,j−1 to qi,j with label j and weight 1.

The size of AG is clearly polynomial in |V |+ |E|. Given a set S ⊆ V , let [S]
denote the ordered tuple with elements of S. For example, if S = {1, 2, 5, 3},
then [S] = (1, 2, 3, 5). By construction, for any clique S, AG contains a distinct
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path labeled with [S] starting at the initial state and going through qi,0 for each
i ∈ S. Since all accepting paths have the same weight 1, this proves the property
that [[A]](x) = k for some string x iff G has a clique of size k.

The automaton AG is not probabilistic. But, an equivalent probabilistic au-
tomaton without ε-transitions can be computed from AG by using the weighted
ε-removal algorithm [12], and a weight-pushing algorithm can be used to nor-
malize the sum of its weights to one [11]. For the sake of the simplicity of the
presentation, we will continue to work with AG. Our results can be generalized
to the case of a probabilistic automaton without ε-transitions without difficulty.

Theorem 6. The problem of computing the L2p+1 distance of two probabilistic
automata is NP-hard.

Proof. Using the notation used in [15], let ak denote the number of strings
accepted by AG with weight exactly k. ak is in fact exactly the number of cliques
of size k in the original graph G. Thus determining the maximum k such that
ak �= 0 is equivalent to determining the size of the largest clique.

For each i ∈ {0, 1, . . . , n}, let Ci denote the constant weighted automaton
assigning the same weight i to all subsequences of {1, . . . , n} and weight 0 to all
other strings. By definition of the L2p+1 norm,

∀i ≥ 0, [L2p+1(Ci, AG)]2p+1 =
n∑

j=0

aj |i− j|2p+1 (9)

This defines a system of linear equation with unknown variables aj , j = 0, . . . , n.
Let M ∈ R(n+1)×(n+1) be the matrix defined by Mi,j = |i−j|2p+1, i∈ {0, 1, . . . , n}.
If M is invertible, then all ajs can be defined with respect the L2p+1 distance of
the automata Ci and AG, which will prove the statement of the theorem.

This matrix is a specific Toeplitz matrix, but it is not straightforward to
compute its determinant [15]. Instead, we can do our reasoning in Z3. Indeed,
in Z3, the coefficients of M are either 0, 1, or −1, regardless of the value of p.
The determinant of M in Z3 is given by:

det(M) =

⎧⎨
⎩
−1 if n + 1 = 2 mod 3

1 if n + 1 = 0 mod 3
0 if n + 1 = 1 mod 3.

(10)

We delay the proof of this fact to Lemma 1.
This implies that for all n ∈ N such that n is of the form n ≡ ±1 mod 3, the

matrix M of size (n + 1)× (n + 1) defined by Mi,j = |i− j|2p+1, i ∈ {0, 1, . . . , n}
is invertible in R. Therefore, for n ≡ ±1 mod 3, one can compute the matrix A
and determine the size of the largest clique in the original graph G. This leaves
us only with the case where n ≡ 0 mod 3 in the original graph G = (V, E).
But, in this case, one can add a dummy vertex to G that is connected to all
other vertices of V . Doing so increases the size of the largest clique by exactly
one, and yields a graph G′ = (V ′, E′) with |V ′| ≡ 1 mod 3. Since the size of
the largest clique in G is one less than the size of the largest clique in G′, the
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reduction is complete. Thus, the problem of determining the computing 2p + 1
distance between two probabilistic automata is NP-hard. ��

We conjecture that the problem of computing the L2p+1 distance, or L∞, is in
fact undecidable. Note that it was shown by [15] that, in view of the hardness
of approximation results for cliques of [18,9], even a polynomial approximation
of the L∞ distance within a factor of n

1
4−ε is impossible unless NP = P.

Lemma 1. The determinant of M in Z3 is given by

det(M) =

⎧⎨
⎩
−1 if n + 1 = 2 mod 3

1 if n + 1 = 0 mod 3
0 if n + 1 = 1 mod 3.

(11)

Proof. Let M [n] ∈ Rn×n be the matrix defined by Mi,j = |i − j|2p+1 mod 3.
Note that in Z3, |i− j|2p+1 mod 3 = |i− j| for all p ∈ N. Let Ri, Cj denote the
ith row and the jth column of M respectively. Consider n such that n + 1 = 1
mod 3, i.e. let n + 1 = 3k + 1 for some k ∈ N. For all j ∈ {1, . . . , 3k + 1},

M3k+1,j = |3k + 1− j|2p+1 mod 3 = (1 − j)2p+1 mod 3 (12)
= −|1− j|2p+1 mod 3 = −M1,j (13)

Since the last row is a scalar multiple of the first row, det(M) = 0 for n + 1 = 1
mod 3.

Next, suppose n + 1 = 2 mod 3. Let n + 1 = 3k + 2 for some k ∈ N. In this
case, we show that det(M [3k+2]) = − det(M [3k]). Given M [3k+2], we perform
the following row and column operations:

R1 ← R1 + R3k+1 C1 ← C1 + C3k+2. (14)

The resulting matrix has zeros everywhere in the first row and column except
at M1,1 = 1, M1,3k+2 = M3k+2,1 = −1. Developing the determinant of M along
R1, it is not hard to see that det(M [3k + 2]) = det(M [3k + 1]) − det(M [3k]).
Since det(M [3k + 1]) = 0, we obtain

det(M [3k + 2]) = − det(M [3k]). (15)

Finally, suppose n + 1 = 0 mod 3. Let n + 1 = 3k for k ∈ N. We show that
det(D[3k]) = det(D[3k − 4]) − det(D[3(k − 1)]). Given M [3k], we perform the
following operations

R1 ← R1 + R3k−2 C1 ← C1 + C3k−2
R3k ← R3k + R3 C3k ← C3k + C3
R2 ← R2 + R1 C2 ← C2 + C1
R3k−1 ← R3k + R3k−1 C3k−1 ← C3k + C3k−1
R2 ← R2 + R3k−1 C2 ← C2 + C3k−1

(16)

The resulting matrix has zeros everywhere in the first and last row and col-
umn, except for M1,3k = 1, M3k,1 = 1. Furthermore, the submatrix defined by
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Ri, Cj for i, j ∈ {2, . . . 3k − 1} is the same as M [3k − 2] except for M2,2 = 1
and M2,3k−1 = M3k−1,2 = −1. Developing the determinant along the following
sequence of rows and columns: R1, C1, R2, C2 yields

det(M [3k]) = det(M [3k − 4])− det(M [3(k − 1)]), (17)

and ends the proof. ��

4.3 Hellinger Distance of Probabilistic Automata

The ideas presented in the previous section can be used in a straightforward
manner to compute the Hellinger distance of two unambiguous probabilistic au-
tomata. The Hellinger distance Hellinger(A1, A2) of two probabilistic automata
A1, A2 is given by:

Hellinger(A1, A2) =
( ∑

x∈Σ∗
(
√

[[A1]](x)−
√

[[A2]](x))2
)1/2

. (18)

Thus,

[Hellinger(A1, A2)]2 =
∑

x∈Σ∗
(
√

[[A1]](x) −
√

[[A2]](x))2 (19)

=
∑

x∈Σ∗
[[A1]](x) +

∑
x∈Σ∗

[[A2]](x) − 2
∑

x∈Σ∗

√
[[A1]](x)[[A2]](x)

= 2(1−
∑

x∈Σ∗

√
[[A1]](x)[[A2]](x)) (20)

The problem of computing the Hellinger distance between A1, A2 therefore re-
duces to efficiently computing

∑
x∈Σ∗

√
[[A1]](x)[[A2]](x). Once again, as long as

A1 and A2 are unambiguous there is at most one accepting string with label x in
A1 ∩A2. Intersecting A1 and A2 over the probability semiring, the weight of the
transition corresponding to the intersection of the transitions e1 = (q1, a, w1, q

′
1)

and e2 = (q2, a, w2, q
′
2) is given by w1w2.

The function Φ : (R+, +, ·, 0, 1) → (R+, +, ·, 0, 1) defined by Φ(x) =
√

x
is clearly a monoid morphism. Since 0 ≤ x < 1, 0 ≤

√
x < 1, it also pre-

serves closedness. Since the Φ norm of the intersection automaton is precisely
the quantity we are interested in, we obtain an efficient algorithm to compute
the Hellinger distance. The complexity of this computation is the same as the
complexity of the shortest distance algorithm on the intersection automaton
A1 ∩ A2. If A1, A2 are acyclic, then the shortest-distance computation can be
done in linear time, i.e. O(|A1 ∩A2|). For A1, A2 unambiguous, one could com-
pute the Hellinger distance exactly in time that is cubic in the size of the in-
tersection automaton and space that is quadratic using a generalization of the
classical Floyd-Warshall all-pairs shortest-distance algorithm that works for ar-
bitrary closed semirings. However, a more efficient approximate solution can be
obtained using the general single-source shortest-distance algorithm [13] that
uses only linear space.
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5 Conclusion

We examined the problem of the computation of several standard distances
between probabilistic automata. We showed that in each case, the problem can
be viewed as a shortest-distance computation over an appropriate semiring. In
each case, we either gave an efficient algorithm for the computation of the norm
of a probabilistic automaton or the distance between two probabilistic automata,
or showed the intractability of the problem.

Our algorithms can be used to compute distances between very large proba-
bilistic automata. Some of our results could perhaps be extended to the case of
finitely ambiguous probabilistic automata. Many of our results can be straight-
forwardly extended to the case of weighted tree automata.
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2. Stephen Bloom and Zoltan Ésik. Iteration Theories. Springer-Verlag, Berlin, 1991.
3. Corinna Cortes, Mehryar Mohri, Ashish Rastogi, and Michael Riley. Distances

between Probabilistic Automata. In preparation, journal version, 2006.
4. Corinna Cortes, Mehryar Mohri, Ashish Rastogi, and Michael Riley. Efficient Com-

putation of the Relative Entropy of Probabilistic Automata. In Proceedings of
LATIN 2006, volume 3887 of LNCS, pages 323–336. Springer-Verlag, 2006.

5. Karel Culik II and Jarkko Kari. Digital Images and Formal Languages. In Grzegorz
Rozenberg and Arto Salomaa, editors, Handbook of Formal Languages, volume 3,
pages 599–616. Springer, 1997.

6. R. Durbin, S.R. Eddy, A. Krogh, and G.J. Mitchison. Biological Sequence Analysis:
Probabilistic Models of Proteins and Nucleic Acids. Cambridge University Press,
Cambridge UK, 1998.

7. Samuel Eilenberg. Automata, Languages and Machines, volume A–B. Academic
Press, 1974–1976.

8. Jason Eisner. Expectation Semirings: Flexible EM for Finite-State Transducers.
In Proceedings of the ESSLLI Workshop on Finite-State Methods in NLP, 2001.

9. Lars Engebretsen and Jonas Holmerin. Clique is hard to approximate within
n1−o(1). In Proceedings of the 27th International Colloquium on Automata, Lan-
guages and Programming (ICALP 2000), pages 2–12, London, UK, 2000. Springer-
Verlag.

10. Werner Kuich and Arto Salomaa. Semirings, Automata, Languages. Number 5
in EATCS Monographs on Theoretical Computer Science. Springer-Verlag, Berlin,
Germany, 1986.

11. Mehryar Mohri. Finite-State Transducers in Language and Speech Processing.
Computational Linguistics, 23(2), 1997.

12. Mehryar Mohri. Generic Epsilon-Removal and Input Epsilon-Normalization Algo-
rithms for Weighted Transducers. International Journal of Foundations of Com-
puter Science, 13(1):129–143, 2002.

13. Mehryar Mohri. Semiring Frameworks and Algorithms for Shortest-Distance Prob-
lems. Journal of Automata, Languages and Combinatorics, 7(3):321–350, 2002.

14. Azaria Paz. Introduction to probabilistic automata. Academic Press, New York,
1971.



On the Computation of Some Standard Distances 149

15. Rune B. Lyngsø and Christian N. S. Pederson. The Consensus String Problem and
the Complexity of Comparing Hidden Markov Models. Journal of Computer and
System Sciences, 65(3):545–569, 2002.

16. Arto Salomaa and Matti Soittola. Automata-Theoretic Aspects of Formal Power
Series. Springer-Verlag, 1978.

17. Marcel-Paul Schützenberger. On the definition of a family of automata. Informa-
tion and Control, 4, 1961.

18. J. H̊astad. Clique is hard to approximate within n1−ε. In FOCS ’96: Proceedings
of the 37th Annual Symposium on Foundations of Computer Science, page 627,
Washington, DC, USA, 1996. IEEE Computer Society.

19. Wen-Guey Tzeng. A Polynomial-Time Algorithm for the Equivalence of Prob-
abilistic Automata. Foundations of Computer Science (FOCS), pages 216–227,
1992.



Does o-Substitution Preserve Recognizability?

Andreas Maletti

Technische Universität Dresden
Department of Computer Science

01062 Dresden, Germany
maletti@tcs.inf.tu-dresden.de

Abstract. Substitution operations on tree series are at the basis of sys-
tems of equations (over tree series) and tree series transducers. Tree series
transducers seem to be an interesting transformation device in syntactic
pattern matching. In this contribution, it is shown that o-substitution
preserves recognizable tree series provided that the target tree series is
linear and the semiring is idempotent, commutative, and continuous.
This result is applied to prove that the range of the o-t-ts transforma-
tion computed by a linear recognizable tree series transducer is pointwise
recognizable.

1 Introduction

Tree series transducers [1] were introduced as a joint generalization of tree
transducers [2,3] and weighted tree automata [4,5]. They thereby serve as the
transducing devices corresponding to weighted tree automata. Both historical
predecessors of tree series transducers have successfully been motivated from
and applied in practice. Specifically, tree transducers are motivated from syntax-
directed translations in compilers [6], and they are applied in, e. g., computa-
tional linguistics [7] and query languages of xml databases [8]. Weighted tree
automata have been applied to code selection in compilers [9] and tree pattern
matching [10].

In [11] a tree-based syntactic pattern matching approach is presented and
shown to be competetive. The approach is tailored to digit recognition. Using
a training procedure for regular tree grammars a tree automaton is trained. To
accomodate for training errors, usually a refined model using probabilities is ap-
plied. Essentially this corresponds to a weighted tree automaton. A common ob-
servation is that the recognized digit is invariant under small translations of the
input image (such as, e. g., small tiltings). Finitely presentable transformations
(also respecting the probabilities) on the input tree can be realised by tree series
transducers. Another application of tree series transducers (using the semiring of
probabilities) is demonstrated in [12], where tree series transducers are trained to
perform machine translation. Yet another application of tree series transducers
is presented in [13], where tree series transducer are applied to code selection.

Let us illustrate one application of tree series transducers in the setting of nat-
ural language processing. Imagine a statistical channel model that is applied to
a channel that translates Japanese text into English text [14]. Statistical models

O.H. Ibarra and H.-C. Yen (Eds.): CIAA 2006, LNCS 4094, pp. 150–161, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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are built from a large corpus of hand-annotated and translated input sentences.
Any such channel model gives rise to an automatically generated (statistical)
translation system, which may assist translators by providing suitable candi-
date translations. In [14] the simple IBM model 1 [15,16] is displayed. This
model consists of several stages: reordering, insertion, and word translation. The
first stage just reorders parse subtrees to accomodate for different word order
(English: Subject-Verb-Object and Japanese: Subject-Object-Verb); the second
stage inserts words that have no direct translation; and the final stage just per-
form word-to-word translation. All operations are probabilistic, so with a certain
probability, the reordering TO NN→ NN TO takes place. In fact, all stages are
simple weighted tree to weighted tree (where the weight is a probability) trans-
formations, which can easily be modelled by a tree series transducer. We depict
the working of a tree series transducer for the reordering stage in Figure 1.

TT (vb)

VB

PRP

He

VB1

adores

VB2

VB

listening

TO

TO

to

NN

music

VB (0.723)

TT (prp)
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VB2

VB

listening

TO

TO
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music

TT (vb)

VB
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TT (vb1)
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PRP (1)
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VB2 (0.749)

TO (0.893)

NN (1)

music

TO (1)

to

VB (1)

listening

VB1 (1)

adores

Fig. 1. Reordering performed by a tree series transducer

Tree substitution is at the core of the semantics of tree transducers, and tree
series substitution fulfills this purpose for tree series transducers. In this paper
we investigate o-substitution [17]. A tree series is a mapping from a set of output
trees into some semiring. Let us illustrate o-substitution using the semiring of
probabilities. The probability (e. g., reliability), that is associated with an output
tree, is taken to the nth power, if the output tree is used in n copies (is copied
n times into some other tree). In this approach, an output tree stands for a
composite, and the probability associated with the output tree reflects, e. g.,
the reliability of this particular composite. When we combine composites into
a new composite, then we obtain the reliability of the composite by a simple
multiplication of the reliabilities of its components; each component taken as
often as needed to assemble the composite (under the assumption that each
component is critical for the correct functioning of the composite).

Tree series substitutions have also been studied in relation with recogniz-
able tree series [4]. Substitution is a standard operation on tree series, and in
particular, OI-substitution [18] was studied with respect to preservation of recog-
nizability [19]. A tree series is called recognizable, if there exists a finite state
automaton that computes this tree series. Recognizable tree series are of partic-
ular interest, because they are finitely representable. It is known that the result
of certain substitutions is not recognizable. We study the limit of recognizabil-
ity under o-substitution. Which o-substitutions will lead to recognizable tree
series? Thus we aim towards classes of transformations that preserve the ability
to finitely represent tree series.
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Our main result states that o-substitution preserves recognizable tree series
in semirings that are commutative, idempotent, and continuous [20], whenever
the participating tree series are linear (i. e., each variable may occur at most
once in the trees in the support).

We apply this result to show that the o-t-ts transformation computed by a
linear recognizable tree series transducer over a commutative, idempotent, and
continuous semiring is pointwise recognizable.

2 Preliminaries

We use N and N+ to represent the nonnegative and positive integers, respectively.
Further let [k] be an abbreviation for {n ∈ N | 1 � n � k}. A set Σ which is
nonempty and finite is also called an alphabet. As usual, Σ∗ denotes the set of
all (finite) words over Σ. Given w ∈ Σ∗, the length of w is denoted by |w|.

A ranked alphabet is an alphabet Σ with a mapping rkΣ : Σ −→ N. We use Σk

to represent {σ ∈ Σ | rkΣ(σ) = k}. Moreover, we use the set X = {xi | i ∈ N+}
of variables and Xk = {xi | i ∈ [k]}. Given a ranked alphabet Σ and V ⊆ X,
the set of Σ-trees indexed by V , denoted by TΣ(V ), is inductively defined to be
the smallest set T such that (i) V ⊆ T and (ii) for every k ∈ N, σ ∈ Σk, and
t1, . . . , tk ∈ T also σ(t1, . . . , tk) ∈ T . Since we generally assume that Σ ∩X = ∅,
we write α instead of α() whenever α ∈ Σ0. Moreover, we also write TΣ to
denote TΣ(∅).

For every t ∈ TΣ(X), we denote by |t|x the number of occurrences of x ∈ X
in t. Let I ⊆ N+ be finite, u ∈ TΣ(X) and ui ∈ TΣ(X) for every i ∈ I. By
u[ui]i∈I we denote the tree obtained from u by replacing every occurrence of a
variable xi with i ∈ I by ui. We write u[u1, . . . , un] for u[ui]i∈I if I = [n]. Let
V ⊆ X. We say that u ∈ TΣ(X) is linear and nondeleting in V , if every x ∈ V
occurs at most once and at least once in t, respectively. Moreover, we use var(u)
to represent the set of variables that occur in u.

A (commutative) semiring is an algebraic structure A = (A, +, ·, 0, 1) consist-
ing of two commutative monoids (A, +, 0) and (A, ·, 1) such that · distributes
over + and 0 is absorbing with respect to · . As usual we use

∑
i∈I ai for sums

of families (ai)i∈I of ai ∈ A where for only finitely many i ∈ I we have ai �= 0.
A semiring A = (A, +, ·, 0, 1) is called idempotent, if 1 + 1 = 1, and A is called
complete, if it is possible to define an infinitary sum operation such that for
arbitrary index sets I and (ai)i∈I of ai ∈ A we have

–
∑

i∈{j1,j2} ai = aj1 + aj2 with j1 �= j2;
–

∑
i∈I ai =

∑
j∈J

(∑
i∈Ij

ai

)
for all (Ij)j∈J such that

⋃
j∈J Ij = I and for

every j1 �= j2 we have Ij1 ∩ Ij2 = ∅; and
– a ·

(∑
i∈I ai

)
=

∑
i∈I(a · ai) for all a ∈ A.

Whenever we speak of a complete semiring, we silently assume that the infini-
tary sum operation is given. A semiring is naturally ordered, whenever # ⊆ A2,
defined by a # b iff there exists a c ∈ A such that a+ c = b, constitutes a partial



Does o-Substitution Preserve Recognizability? 153

order on A. Let A be complete and naturally ordered. We say that A is continu-
ous, if for every index set I and (ai)i∈I of ai ∈ A the following supremum exists
and

∑
i∈I ai = sup{

∑
i∈F ai | F ⊆ I with F finite} where the supremum is taken

with respect to the natural order #. Examples of continuous semirings are

– the Boolean semiring B = ({0, 1},∨,∧, 0, 1),
– the natural number semiring N = (N ∪ {∞}, +, ·, 0, 1), and
– the arctic semiring A = (N ∪ {∞,−∞}, max, +,−∞, 0).

Let S be a set and A = (A, +, ·, 0, 1) be a semiring. A (formal) power series ψ
is a mapping ψ : S −→ A. Given s ∈ S, we denote ψ(s) also by (ψ, s) and write
the series as

∑
s∈S(ψ, s) s. The support of ψ is supp(ψ) = {s ∈ S | (ψ, s) �= 0}.

Power series with finite support are called polynomials. We denote the set of
all power series by A〈〈S〉〉 and the set of polynomials by A〈S〉. The polynomial
with empty support is denoted by 0̃. Power series (ψi)i∈I ∈ A〈〈S〉〉 are added
componentwise; i. e., (

∑
i∈I ψi, s) =

∑
i∈I(ψi, s) for every s ∈ S, and we multiply

ψ ∈ A〈〈S〉〉 with a coefficient a ∈ A componentwise; i. e., (a ·ψ, s) = a · (ψ, s) for
every s ∈ S.

In this paper, we only consider power series in which the set S is a set of
trees. Such power series are also called tree series. Let Δ be a ranked alphabet.
A tree series ψ ∈ A〈〈TΔ(X)〉〉 is said to be linear and nondeleting in V ⊆ X,
if every t ∈ supp(ψ) is linear and nondeleting in V , respectively. We also use
var(ψ) =

⋃
u∈supp(ψ) var(u).

Now let A be a complete semiring and ψ ∈ A〈〈TΔ(X)〉〉 and let I ⊆ N+ be
finite and ψi ∈ A〈〈TΔ(X)〉〉 for every i ∈ I. The o-substitution of (ψi)i∈I into ψ,
denoted by ψ←−o (ψi)i∈I , is defined by

ψ←−o (ψi)i∈I =
∑

u∈supp(ψ),
(∀i∈I) : ui∈supp(ψi)

(
(ψ, u) ·

∏
i∈I

(ψi, ui)|u|xi

)
u[ui]i∈I .

If we suppose that I = [n], then we also write ψ←−o (ψ1, . . . , ψn) instead of
ψ←−o (ψi)i∈I . In an expression ψ←−o (ψ1, . . . , ψn) the series ψ is called the target
and every ψi is called a source.

Let us recall the notion of recognizable tree series [4,5,18,21]. Let Σ be a
ranked alphabet and A = (A, +, ·, 0, 1) be a semiring. A (bottom-up) weighted
tree automaton M (over Σ and A), abbreviated to wta, is a tuple (Q, Σ,A, F, μ)
where Q is an alphabet of states, F : Q −→ A is a final weight distribution and
μ = (μk)k∈N with μk : Σk −→ AQ×Qk

is a tree representation. The initial algebra
semantics of M is determined by the mapping hμ : TΣ −→ AQ given by

hμ(σ(t1, . . . , tk))q =
∑

q1,...,qk∈Q

μk(σ)q,q1,...,qk
· hμ(t1)q1 · . . . · hμ(tk)qk

for every k ∈ N, σ ∈ Σk, q ∈ Q, and t1, . . . , tk ∈ TΣ. The tree series recognized
by M , denoted by ‖M‖, is defined by (‖M‖, t) =

∑
q∈Q Fq · hμ(t)q for every

t ∈ TΣ .
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We use the method of [22,21] to graphically represent wta. Note that we
write μ0(α)q instead of μ0(α)q,() for every α ∈ Σ0 and q ∈ Q. A tree series
ψ ∈ A〈〈TΣ〉〉 is termed recognizable, if there exists a wta M over Σ and A such
that ψ = ‖M‖. The class of all recognizable tree series over Σ and A is denoted
by Arec〈〈TΣ〉〉.

Let Q be an alphabet. We write Q(V ) for {q(v) | q ∈ Q, v ∈ V }. Now let
A = (A, +, ·, 0, 1) be a semiring and Σ and Δ be ranked alphabets. A tree
representation μ (over Q, Σ, Δ, and A) [1] is a family (μ(σ))σ∈Σ of matrices
μ(σ) ∈ A〈〈TΔ(X)〉〉Q×Q(Xk)∗

where k = rkΣ(σ) such that for every q ∈ Q and
w ∈ Q(Xk)∗ it holds that μ(σ)q,w ∈ A〈〈TΔ(Xn)〉〉 with n = |w|, and μ(σ)q,w �= 0̃
for only finitely many (q, w) ∈ Q × Q(Xk)∗. A tree representation μ is said to
be recognizable and linear, if μ(σ)q,w is recognizable and linear for every k ∈ N,
σ ∈ Σk, and (q, w) ∈ Q×Q(Xk)∗, respectively. A tree series transducer [1,20], in
the sequel abbreviated to tst, is a sixtuple M = (Q, Σ, Δ,A, F, μ) consisting of

– an alphabet Q of states,
– ranked alphabets Σ and Δ, also called input and output ranked alphabet,

respectively,
– a complete semiring A = (A, +, ·, 0, 1),
– a vector F ∈ A〈〈TΔ(X1)〉〉Q, called top-most output, such that for all q ∈ Q:

Fq is nondeleting and linear in X1, and
– a tree representation μ over Q, Σ, Δ, and A.

Tst inherit the properties recognizable and linear from their tree represen-
tation. Let M = (Q, Σ, Δ,A, F, μ) be a tst. Then M induces a mapping
‖M‖o : TΣ −→ A〈〈TΔ〉〉 as follows. For every k ∈ N, σ ∈ Σk, and t1, . . . , tk ∈ TΣ

we define the mapping ho
μ : TΣ −→ A〈〈TΔ〉〉Q inductively for every q ∈ Q by

ho
μ(σ(t1, . . . , tk))q =

∑
w∈Q(Xk)∗,

w=q1(xi1 )···qn(xin )

μk(σ)q,w←−o (ho
μ(ti1 )q1 , . . . , h

o
μ(tin)qn) .

For every t ∈ TΣ the o-tree-to-tree-series (for short: o-t-ts) transformation com-
puted by M is ‖M‖o(t) =

∑
q∈Q Fq←−o (ho

μ(t)q).

3 Preservation of Recognizability

In this section we consider the question whether o-substitution preserves recog-
nizability. Let Σ be a ranked alphabet. It is known that IO substitution does
not, in general, preserve recognizability. However, IO substitution on linear tree
languages preserves recognizability [23].

In [24] a first result on tree series is presented for OI substitution. For every
k ∈ N, σ ∈ Σk, and ψ1, . . . , ψk ∈ A〈〈TΣ(X)〉〉, we define

σ(ψ1, . . . , ψk) =
∑

t1,...,tk∈TΣ(X)

(
(ψ1, t1) · . . . · (ψk, tk)

)
σ(t1, . . . , tk) .
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Note that this sum is always well-defined. Let t ∈ TΣ(X) be a tree, n ∈ N, and
ψ1, . . . , ψn ∈ A〈〈TΣ(X)〉〉. For every j ∈ [n], � ∈ N+ \ [n] let

xj←−OI
(ψ1, . . . , ψn) = ψj and x←−OI

(ψ1, . . . , ψn) = 1 x

and for every k ∈ N, σ ∈ Σk, and t1, . . . , tk ∈ TΣ(X) let

t←−
OI

(ψ1, . . . , ψn) = σ(t1←−OI
(ψ1, . . . , ψn), . . . , tk←−OI

(ψ1, . . . , ψn)) ,

where t = σ(t1, . . . , tk). Now let ψ ∈ A〈〈TΣ(X)〉〉. We define ψ←−
OI

(ψ1, . . . , ψn)
by

ψ←−
OI

(ψ1, . . . , ψn) =
∑

t∈TΣ(X)

(ψ, t) ·
(
t←−

OI
(ψ1, . . . , ψn)

)
.

Note that also this sum is always well-defined. With the help of [24] we can easily
relate o-substitution and OI substitution. Recall that our semirings are always
commutative.

Proposition 1. Let n ∈ N, ψ ∈ A〈〈TΣ(Xn)〉〉 be nondeleting and linear in Xn,
and ψ1, . . . , ψn ∈ A〈〈TΣ(X)〉〉.

ψ←−o (ψ1, . . . , ψn) = ψ←−
OI

(ψ1, . . . , ψn)

Proof. Clearly, t←−
OI

(1 ti)i∈I = 1 t[ti]i∈I for every t ∈ TΣ(XI) and family
(ti)i∈I ∈ TΣ(X)I .

ψ←−o (ψi)i∈I =
∑

t∈TΣ(XI),
(∀i∈I) : ti∈TΣ(X)

(
(ψ, t) ·

∏
i∈I

(ψi, ti)
)
· (1 t[ti]i∈I)

= (by t←−
OI

(1 ti)i∈I = 1 t[ti]i∈I)∑
t∈TΣ(XI),

(∀i∈I) : ti∈TΣ(X)

(
(ψ, t) ·

∏
i∈I

(ψi, ti)
)
·
(
t←−

OI
(1 ti)i∈I

)

= (by [24, Theorem 6] and definition of ←−
OI

)∑
t∈TΣ(XI)

(ψ, t) ·
(
t←−

OI
(ψi)i∈I

)
= ψ←−

OI
(ψi)i∈I

Theorem 2 (cf. [24]). For every n ∈ N, ψ ∈ Arec〈〈TΣ(Xn)〉〉 such that ψ is
nondeleting and linear in Xn, and every ψ1, . . . , ψn ∈ Arec〈〈TΣ〉〉 we have that
ψ←−o (ψ1, . . . , ψn) ∈ Arec〈〈TΣ〉〉.

Proof. The statement is proved for OI-substitution in [24, Corollary 14]. Since
OI-substitution coincides with o-substitution on nondeleting and linear target
tree series (see Proposition 1), we obtain the statement.

We would like to achieve a result which does not depend on nondeletion of ψ (see
Theorem 2). Let us show the main idea in a simple setting. Let ψ∈Arec〈〈TΣ(X1)〉〉
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be linear in X1 and ψ1 ∈ Arec〈〈TΣ〉〉. Our goal is to show that ψ←−o (ψ1) is recog-
nizable, thus we need to present a wta M ′ = (Q′, Σ,A, F ′, μ′) that recognizes
ψ←−o (ψ1). Let M = (Q, Δ,A, F, μ) and M1 = (Q1, Σ,A, F1, μ1) be wta that
recognize ψ and ψ1, respectively. We employ a standard idea for the construc-
tion of M ′. Roughly speaking, we take the disjoint union of M and M1 and add
transitions that nondeterministically change from M1 to M . More precisely, for
every k ∈ N+, σ ∈ Σk, q ∈ Q, and q1, . . . , qk ∈ Q1 we set

μ′
k(σ)q,q1,...,qk

=
∑

p∈Q1

μ0(x1)q · (F1)p · (μ1)k(σ)p,q1,...,qk
.

Roughly, for each state p of M1 we take (μ1)k(σ)p,q1···qk
of M1, multiply (F1)p,

and multiply μ0(x1)q for entering M (via x1) in state q. Nullary symbols σ are
treated similarly. We employ a proof method, which requires us to make the
input alphabets Σ and Δ disjoint. This simplifies the proof because each tree
then admits a unique decomposition into (at most one) part that needs to be
processed by M1 and a part that needs to be processed by M .

Proposition 3. Let A be idempotent and continuous. Let J ⊆ I ⊆ N+ be finite,
ψ ∈ A〈〈TΔ(X)〉〉 such that J ∩ var(ψ) = I ∩ var(ψ), and for every i ∈ I let
ψi ∈ A〈〈TΔ(X)〉〉 such that ψi �= 0̃ for every i ∈ I \ J .

ψ←−o (ψi)i∈I = ψ←−o (ψj)j∈J

Theorem 4. Let A be a continuous and idempotent semiring. Let n ∈ N,
ψ ∈ Arec〈〈TΣ(Xn)〉〉 be linear in Xn, and ψ1, . . . , ψn ∈ Arec〈〈TΣ〉〉.

ψ←−o (ψ1, . . . , ψn) ∈ Arec〈〈TΣ〉〉

Proof. Let ψi = 0̃ for some i ∈ [n]. Then ψ←−o (ψ1, . . . , ψn) = 0̃, which is
recognizable. Thus let ψi �= 0̃ for all i ∈ [n]. For every k ∈ N+ let Δk = Σk

and Δ0 = Σ0 ∪Xn. Since ψ ∈ Arec〈〈TΣ(Xn)〉〉 and ψ1, . . . , ψn ∈ Arec〈〈TΣ〉〉, there
exist wta M = (Q, Δ,A, F, μ) and Mi = (Qi, Σ,A, Fi, μi) such that ‖M‖ = ψ
and ‖Mi‖ = ψi for every i ∈ [n].

For every i ∈ [n] and k ∈ N let Σ
i

be Σ
i

k = {σi | σ ∈ Σk}. We de-
fine bari : TΣ −→ T

Σ
i by bari(σ(t1, . . . , tk)) = σi(bari(t1), . . . ,bari(tk)) for

every k ∈ N, σ ∈ Σk, and t1, . . . , tk ∈ TΣ. Moreover, we define the mapping
bari : A〈〈TΣ〉〉 −→ A〈〈T

Σ
i〉〉 for every ϕ ∈ A〈〈TΣ〉〉 by

bari(ϕ) =
∑

t∈TΣ

(ϕ, t) bari(t) .

Without loss of generality, we assume that for every i ∈ [n] we have that
(i) Σ and Σ

i
are disjoint and (ii) Q and Qi are disjoint. Let Σ′

k = Σk∪
⋃

1≤i≤n Σ
i

k

for every k ∈ N, and Q′ = Q ∪
⋃

1≤i≤n Qi. We construct a wta M ′ recognizing
ψ←−o (bar1(ψ1), . . . ,barn(ψn)) as follows. Let M ′ = (Q′, Σ′,A, F ′, μ′) where for
every i ∈ [n], k ∈ N, σ ∈ Σk:
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– F ′
q = Fq for every q ∈ Q and F ′

p = 0 for every p ∈
⋃

1≤i≤n Qi;

– μ′
k(σi)p,w = (μi)k(σ)p,w for every p ∈ Qi and w ∈ (Qi)k;

– μ′
k(σ)q,w = μk(σ)q,w for every q ∈ Q and w ∈ Qk; and

– μ′
k(σi)q,w =

∑
p∈Qi

μ0(xi)q ·(Fi)p ·(μi)k(σ)p,w for every q ∈ Q and w ∈ (Qi)k.

All the remaining entries in μ′ are set to 0.
We claim that ψ′ = ψ←−o (bar1(ψ1), . . . ,barn(ψn)) is recognizable. In fact,

M ′ recognizes ψ′. Clearly, hμ′(bari(t))p = hμi(t)p for every i ∈ [n], t ∈ TΣ, and
p ∈ Qi. Next we prove that for every q ∈ Q and t ∈ TΣ(Xn), which is linear in
Xn, and family (ui)i∈var(t) ∈ T

var(t)
Σ we have

hμ′(t[bari(ui)]i∈var(t))q = hμ(t)q ·
∏

i∈var(t)

(
‖Mi‖, ui

)
.

We prove this statement inductively, so let t = xj for some j ∈ [n]. Moreover,
let uj = σ(t1, . . . , tk) for some k ∈ N, σ ∈ Σk, and t1, . . . , tk ∈ TΣ.

hμ′(xj [bari(ui)]i∈var(xj))q

= (by substitution and definition of barj)

hμ′
(
σj(barj(t1), . . . ,barj(tk))

)
q

=
∑

q1,...,qk∈Q′
μ′

k(σj)q,q1···qk
·
∏
i∈[k]

hμ′(barj(ti))qi

= (by definition of μ′ and hμ′(barj(ti))qi = hμj (ti)qi)∑
q1,...,qk∈Qj

∑
p∈Qj

μ0(xj)q · (Fj)p · (μj)k(σ)p,q1···qk
·
∏
i∈[k]

hμj (ti)qi

=
∑

p∈Qj

μ0(xj)q · (Fj)p · hμj (σ(t1, . . . , tk))p

= μ0(xj)q ·
(
‖Mj‖, σ(t1, . . . , tk)

)
= hμ(xj)q ·

∏
i∈var(xj)

(
‖Mi‖, ui

)

Let t = σ(t1, . . . , tk) for some k ∈ N, σ ∈ Σk, and t1, . . . , tk ∈ TΣ(Xn).

hμ′(σ(t1, . . . , tk)[bari(ui)]i∈var(t))q

= (by substitution)
hμ′(σ(t1[bari(ui)]i∈var(t1), . . . , tk[bari(ui)]i∈var(tk)))q

=
∑

q1,...,qk∈Q′
μ′

k(σ)q,q1···qk
·
∏

j∈[k]

hμ′(tj [bari(ui)]i∈var(tj))qj
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= (by induction hypothesis and definition of μ′)∑
q1,...,qk∈Q

μk(σ)q,q1···qk
·
∏

j∈[k]

(
hμ(tj)qj ·

∏
i∈var(tj)

(
‖Mi‖, ui

))

= hμ(σ(t1, . . . , tk))q ·
∏

j∈[k],i∈var(tj)

(
‖Mi‖, ui

)

= (because t is linear in Xn)

hμ(σ(t1, . . . , tk))q ·
∏

i∈var(t)

(
‖Mi‖, ui

)

This completes the proof of the auxiliary statement. Consequently,

(‖M ′‖, t[bari(ui)]i∈var(t)) = (‖M‖, t) ·
∏

i∈var(t)

(‖Mi‖, ui)

= (ψ, t) ·
∏

i∈var(t)

(ψi, ui) . (1)

Using this result, we can show that ψ′ = ψ←−o (bari(ψi))i∈I is recognizable. In
fact, this is the tree series that is recognized by M ′.

ψ←−o (bar1(ψ1), . . . ,barn(ψn))
= (by distributivity)∑

t∈supp(ψ)

(ψ, t) ·
((

1 t
)
←−o

(
bar1(ψ1), . . . ,barn(ψn)

))

= (by Proposition 3)∑
t∈supp(ψ)

(ψ, t) ·
((

1 t
)
←−o

(
bari(ψi)

)
i∈var(t)

)

= (by definition of ←−o because t is linear)∑
t∈supp(ψ),

(∀i∈var(t)) : ui∈supp(bari(ψi))

(
(ψ, t) ·

∏
i∈var(t)

(bari(ψi), ui)
)

t[ui]i∈var(t)

= (by definition of bari)∑
t∈TΣ(Xn),

(∀i∈var(t)) : ui∈TΣ

(
(ψ, t) ·

∏
i∈var(t)

(ψi, ui)
)

t[bari(ui)]i∈var(t)

= (by (1) )∑
t∈TΣ(Xn),

(∀i∈var(t)) : ui∈TΣ

(
‖M‖, t[bari(ui)]i∈var(t)

)
t[bari(ui)]i∈var(t)
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=
∑

u∈TΣ′

( ∑
t∈TΣ(Xn),

(∀i∈var(t)) : ui∈TΣ

(
‖M‖, t[bari(ui)]i∈var(t)

)
t[bari(ui)]i∈var(t) , u

)
u

= (because t and ui are uniquely determined by u)∑
u∈TΣ′

(
‖M‖, u

)
u = ‖M‖

Finally, we need to remove the annotation. To this end we define the mapping
unbar: TΣ′(X) −→ TΣ(X) for every x ∈ X, k ∈ N, i ∈ [n], σ ∈ Σk, and
t1, . . . , tk ∈ TΣ′(X) by

unbar(x) = x

unbar(σ(t1, . . . , tk)) = σ(unbar(t1), . . . ,unbar(tk))

unbar(σi(t1, . . . , tk)) = σ(unbar(t1), . . . ,unbar(tk)) .

Finally, let unbar : A〈〈TΣ′(X)〉〉 −→ A〈〈TΣ(X)〉〉 be defined by

unbar(ϕ) =
∑

t∈TΣ′ (X)

(ϕ, t) unbar(t)

for every ϕ ∈ A〈〈TΣ′(X)〉〉. Clearly, unbar(ψ′) = ψ←−o (ψ1, . . . , ψn). Moreover,
unbar can be realized by a nondeleting, linear tree transducer (with one state)
of [24] (which uses OI substitution). Since ψ′ is a recognizable tree series and non-
deleting, linear tree transducers of [24] preserve recognizability, also unbar(ψ′)
is recognizable, which proves the statement.

Let us illustrate the previous theorem on an example.

Example 5. Let Σ = {γ(1), α(0)} and consider the arctic semiring. Let

ψ = max
u∈TΣ(X1)

height(u) u and ψ′ = max
u∈TΣ

height(u) u .

Then ψ←−o (ψ′) is recognizable. In fact, ψ←−o (ψ′) = ψ′. We show the wta that
recognize ψ and ψ←−o (ψ′) [the automaton that is constructed in Theorem 4] in
Fig. 2.

�

0

α/0 x1/0

γ/1

2

1

0

α/0

α/0

γ/1

γ/1

γ/1

Fig. 2. Wta recognizing ψ [left] and ψ ←−o (ψ′) [right] over A
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4 Application to Tree Series Transducers

In Theorem 4 we showed that o-substitution preserves recognizability under
certain conditions. We now apply this theorem to tst. In fact this means that
theorems about wta can be applied. We demonstrate such an application after
the theorem.

Theorem 6. Let A be an idempotent and continuous semiring. Moreover, let
M = (Q, Σ, Δ,A, F, μ) be a linear recognizable tst. Then ‖M‖o(t) is recognizable
for every t ∈ TΣ.

Proof. We first prove that ho
μ(t)q is recognizable for every t ∈ TΣ and q ∈ Q by

induction on t. Let t = σ(t1, . . . , tk) for some k ∈ N, σ ∈ Σk, and t1, . . . , tk ∈ TΣ .

ho
μ(σ(t1, . . . , tk))q =

∑
w∈Q(Xk)∗,

w=q1(xi1 )···qn(xin )

μk(σ)q,w←−o (ho
μ(ti1 )q1 , . . . , h

o
μ(tin)qn) .

By induction hypothesis ho
μ(tij )qj is recognizable for every j ∈ [n]. Since M is

recognizable, μk(σ)q,w is recognizable. By Theorem 4 also

μk(σ)q,w←−o (ho
μ(ti1)q1 , . . . , h

o
μ(tin)qn)

is recognizable because μk(σ)q,w is linear in Xn. Since recognizable tree series
are closed under finite sums [4] we obtain that ho

μ(t)q is recognizable.
For every t ∈ TΣ we have ‖M‖o(t) =

∑
q∈Q Fq←−o (ho

μ(t)q). We showed that
ho

μ(t)q is recognizable. Moreover, Fq←−o (ho
μ(t)q) is recognizable due to Theo-

rem 4. Thus, also ‖M‖o(t) is recognizable.

Since idempotent semirings are zero-sum free [25], we obtain the following corol-
lary. Other results on recognizable tree series can be applied similarly.

Corollary 7. Let A be an idempotent and continuous semiring with recursive
operations. Moreover, let M = (Q, Σ, Δ,A, F, μ) be a linear recognizable tst.
Then for every t ∈ TΣ it is decidable whether ‖M‖o(t) = 0̃ or not.

Proof. By Theorem 6 we have that ψ = ‖M‖o(t) is recognizable and by [26] we
can decide whether ψ = 0̃.
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11. López, D., Piñaga, I.: Syntactic pattern recognition by error correcting analysis on
tree automata. In Ferri, F.J., Quereda, J.M.I., Amin, A., Pudil, P., eds.: Proc. Joint
IAPR Int. Workshops Advances in Pattern Recognition. Volume 1876 of LNCS.,
Springer (2000) 133–142

12. Graehl, J., Knight, K.: Training tree transducers. In: HLT-NAACL. (2004) 105–112
13. Borchardt, B.: Code selection by tree series transducers. In Domaratzki, M.,

Okhotin, A., Salomaa, K., Yu, S., eds.: Proc. 9th Int. Conf. Implementation and
Application of Automata. Volume 3317 of LNCS., Springer (2004) 57–67

14. Yamada, K., Knight, K.: A syntax-based statistical translation model. In: Proc.
39th Annual Meeting Assoc. Comput. Ling., Morgan Kaufmann (2001) 523–530

15. Brown, P.F., Cocke, J., Della Pietra, S., Della Pietra, V.J., Jelinek, F., Mercer,
R.L., Roossin, P.S.: A statistical approach to language translation. In: Proc. 12th
Int. Conf. Comput. Ling. (1988) 71–76

16. Brown, P.F., Della Pietra, S., Della Pietra, V.J., Mercer, R.L.: The mathematics
of statistical machine translation: Parameter estimation. Comput. Linguist. 19
(1993) 263–311
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Abstract. Analysis by reduction is a method used in linguistics for
checking the correctness of sentences of natural languages. This method
can be modelled by restarting automata. Here we study a new type of
restarting automaton, the so-called t-sRL-automaton, which is an RL-
automaton that is rather restricted in that it has a window of size 1
only, and that it works under a minimal acceptance condition. On the
other hand, it is allowed to perform up to t rewrite (that is, delete)
steps per cycle. We study the correctness preservation of these auto-
mata on the one hand, and the complexity of these automata on the
other hand, establishing a complexity measure that is based on the de-
scription of t-sRL-automata in terms of so-called meta-instructions. We
present a hierarchy result and we show that the correctness preserving
nondeterministic t-sRL-automata are not stronger than the deterministic
t-sRL-automata.

1 Introduction

The original motivation for introducing the restarting automaton was the de-
sire to model the so-called analysis by reduction of natural languages. Analysis
by reduction is usually presented by finite samples of sentences of a natural
language and by sequences of their correct reductions (see, e.g., [6]). An impor-
tant property of the analysis by reduction is the so-called correctness preserving
property. Restarting automata with this property form a useful tool for robust
parsing with the syntactic error detection and error recovery capabilities [5,11].
Similarly they form a basis for the linguistic task of rule-based disambiguation
(see, e.g., [2]).
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Here we continue the study of a new variant of the restarting automaton, the
so-called simple RL-automaton (sRL-automaton) [10], that is rather restricted in
various aspects. However, by admitting that t (≥ 1) delete operations may be
performed in each cycle, the expressive power of this model of the restarting au-
tomaton is parametrized by t, which yields an infinite hierarchy of automata and
language classes. In [10] we studied the number of gaps generated during a reduc-
tion as a dynamic complexity measure for t-sRL-automata. A bounded number
of gaps implies that only feasible languages are accepted, that is, languages that
are recognizable in polynomial time, while with an unbounded number of gaps
these automata accept NP-complete languages.

Here we concentrate on the correctness preserving property of sRL-automata
and their descriptional complexity. A (nondeterministic) sRL-automaton M can
be seen as a reduction system which defines a ‘simplification’ relation c

M on the
set of its input words. For two words u and v, the relation u c

M v expresses
the fact that M can reduce u to v in a single cycle of a computation. A non-
deterministic sRL-automaton M is called strongly correctness preserving if, for
each cycle u c

M v of M , the word v produced belongs to the language L(M)
accepted by M if the word u belongs to the language L(M) (see Section 2 for
the definitions). Thus, if u ∈ L(M), then each reduction that M may apply to u
produces an element of L(M). While nondeterministic sRL-automata are clearly
more expressive than their deterministic counterparts, we will see that this in not
true anymore when we restrict our attention to nondeterministic sRL-automata
that are strongly correctness preserving.

In [3] a complexity measure is defined for restarting automata that is based
on the length of their description in terms of elementary instructions, and ex-
ponential trade-offs are established between nondeterministic and deterministic
finite-state acceptors and deterministic 1-sRR-automata (that is 1-sRL-automata
which do not use move-left instructions). Working with elementary instruc-
tions of restarting automata is very cumbersome. More conveniently a t-sRL-
automaton can be described by a finite set of reduction rules called ‘meta-
instructions.’ Accordingly, we introduce a new descriptional complexity measure
for sRL-automata — the number of meta-instructions — and we establish an
infinite hierarchy with respect to this measure.

The paper is structured as follows. After introducing the simple RL-automaton
in Section 2 and restating some of its basic properties, we present the an-
nounced result on correctness preserving sRL-automata. The complexity mea-
sure is then introduced and studied in Section 3. Another complexity measure
for sRL-automata is briefly mentioned in the concluding section.

2 The t-sRL-Automaton

Here we describe in short the type of restarting automaton we will be dealing
with. More details on restarting automata in general can be found in [12].

An sRL-automaton (simple RL-automaton) M is a (in general) nondetermin-
istic machine with a finite-state control Q, a finite input alphabet Σ, and a head
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(window of size 1) that works on a flexible tape delimited by the left sentinel c
and the right sentinel $. For an input w ∈ Σ∗, the initial tape inscription is cw$.
To process this input M starts in its initial state q0 with its window over the left
end of the tape, scanning the left sentinel c. According to its transition relation,
M performs move-right steps and move-left steps, which change the state of M
and shift the window one position to the right or to the left, respectively, and
delete steps, which delete the content of the window, thus shortening the tape,
change the state, and shift the window to the right neighbour of the symbol
deleted. Of course, neither the left sentinel c nor the right sentinel $ may be
deleted. At the right end of the tape M either halts and accepts, or it halts and
rejects, or it restarts, that is, it places its window over the left end of the tape
and reenters the initial state. It is required that before the first restart step and
also between any two restart steps, M executes at least one delete operation.

A configuration of M is a string αqβ where q ∈ Q, and either α = λ and
β ∈ {c} · Σ∗ · {$} or α ∈ {c} · Σ∗ and β ∈ Σ∗ · {$}; here q represents the
current state, αβ is the current content of the tape, and it is understood that
the window contains the first symbol of β. A configuration of the form q0cw$ is
called a restarting configuration.

We observe that each computation of an sRL-automaton M consists of certain
phases. Each part of a computation of M from a restarting configuration to the
next restarting configuration is called a cycle. The part after the last restart
operation is called the tail. We use the notation u c

M v to denote a cycle of M
that begins with the restarting configuration q0cu$ and ends with the restarting
configuration q0cv$; the relation c∗

M is the reflexive and transitive closure of
c

M . We require that no delete operation is executed in a tail computation.
Observe that this does not influence the expressive power of (nondeterministic)
sRL-automata.

An input w ∈ Σ∗ is accepted by M , if there is an accepting computation which
starts with the (initial) configuration q0cw$. By L(M) we denote the language
consisting of all words accepted by M ; we say that M recognizes (accepts) the
language L(M). By S(M) we denote the simple language accepted by M , which
consists of all words that M accepts by tail computations. Obviously, S(M)
is a regular sublanguage of L(M). By RS(M) we denote the reduction system
RS(M) := (Σ∗,c

M , S(M)) that is induced by M . Observe that, for each w ∈ Σ∗,
we have w ∈ L(M) if and only if w c∗

M v holds for some word v ∈ S(M).
We say that M is an sRR-automaton if M does not use any move-left steps.

By sRL (sRR) we denote the class of all sRL-automata (sRR-automata). A t-sRL-
automaton (t ≥ 1) is an sRL-automaton which uses at most t delete operations
in a cycle, and similarly we obtain the t-sRR-automaton. By L(A) we denote the
class of languages that are accepted by automata of type A (A-automata), and
by L≤n(A) we denote the class of finite languages that are accepted by automata
of type A and that do not contain any words of length exceeding the number n.

On the set of words Σ∗, we consider the well-founded partial ordering ≤ that
is defined by u ≤ v if and only if u is a scattered subword of v. By < we denote
the proper part of ≤.
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For L ⊆ Σ∗, let Lmin := {w ∈ L | u < w does not hold for any u ∈ L }, that
is, Lmin is the set of minimal words of L. It is well-known that Lmin is finite
for each language L (see, e.g., [7]). We say that an sRL-automaton M accepting
the language L works with minimal acceptance if it accepts in tail computations
exactly the words of the language Lmin, that is, S(M) = Lmin. Thus, each word
w ∈ L�Lmin is reduced to a word w′ ∈ Lmin by a sequence of cycles of M . We will
use the prefix min- to denote sRL-automata that work with minimal acceptance.

An sRL-automaton working with minimal acceptance is forced to perform
sequences of cycles even for accepting a regular language. In fact, this is even
true for most finite languages.

Example 1. Let t ≥ 1, and let L<t> := {at, λ}. Then L<t>
min = {λ}. Hence, an

sRL-automaton for the language L<t> that works with minimal acceptance must
execute the cycle at c λ, which means that it must execute t delete operations
during this cycle. Hence, it is a t-sRL-automaton.

Concerning the relationship between sRR- and sRL-automata, we have the fol-
lowing important result, which generalizes a corresponding result for RLWW-
automata from [14].

Theorem 1. [10] For each integer t ≥ 1 and each t-sRL-automaton M , there
exists a t-sRR-automaton M ′ such that the reduction systems RS(M) and RS(M ′)
coincide.

Observe that, in each cycle, M ′ executes its up to t delete operations strictly
from left to right, while M may execute them in arbitrary order.

Based on Theorem1 we can describe a t-sRL-automaton by meta-instructions of
the form (c·E0, a1, E1, a2, E2, . . . , Es−1, as, Es·$), where 1 ≤ s ≤ t, E0, E1, . . . , Es

are regular languages (often represented by regular expressions), called the regular
constraints of this instruction, and a1, a2, . . . , as ∈ Σ correspond to letters that
are deleted by M during one cycle. On trying to execute this meta-instruction
starting from a configuration q0cw$, M will get stuck (and so reject), if w does
not admit a factorization of the form w = v0a1v1a2 · · · vs−1asvs such that vi ∈ Ei

for all i = 0, . . . , s. On the other hand, if w admits factorizations of this form,
then one of them is chosen nondeterministically, and q0cw$ is transformed into
q0cv0v1 · · · vs−1vs$. In order to also describe the tails of accepting computations,
we use accepting meta-instructions of the form (c · E · $, Accept), where E is a
regular language. Actually we can require that there is only a single accepting
meta-instruction for M . If M works with minimal acceptance, then this accepting
meta-instruction is of the form (c · L(M)min · $, Accept).

Example 2. Let t ≥ 1, and let LRt := { c0wc1wc2 · · · ct−1w | w ∈ {a, b}∗ }, where
Σ0 := {a, b} and Σt := {c0, c1, . . . , ct−1}∪Σ0. We obtain a t-sRR-automaton Mt

for the language LRt through the following sequence of meta-instructions:

(1) (cc0, a, Σ∗
0 · c1, a, Σ∗

0 · c2, . . . , Σ
∗
0 · ct−1, a, Σ∗

0 · $),
(2) (cc0, b, Σ

∗
0 · c1, b, Σ

∗
0 · c2, . . . , Σ

∗
0 · ct−1, b, Σ

∗
0 · $),

(3) (cc0c1 · · · ct−1$, Accept).
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It follows easily that L(Mt) = LRt holds, and that Mt works with minimal
acceptance. Actually, the automaton Mt is even deterministic.

For each n ∈ N+, we consider the finite approximation of order (n + 1) · t of
the language LRt which is defined as follows:

LR
(n)
t := { c0wc1wc2 · · · ct−1w | w ∈ {a, b}∗, |w| ≤ n }.

A t-sRR-automaton M
(n)
t for LR

(n)
t , also working with minimal acceptance, is

easily obtained from Mt by taking the following sequence of meta-instructions,
where Σ≤n−1

0 := {w ∈ Σ∗
0 | |w| ≤ n− 1 }:

(1) (cc0, a, Σ≤n−1
0 · c1, a, Σ≤n−1

0 · c2, . . . , Σ
≤n−1
0 · ct−1, a, Σ≤n−1

0 · $),
(2) (cc0, b, Σ

≤n−1
0 · c1, b, Σ

≤n−1
0 · c2, . . . , Σ

≤n−1
0 · ct−1, b, Σ

≤n−1
0 · $),

(3) (cc0c1 · · · ct−1$, Accept).

We emphasize the following properties of restarting automata, which are used
implicitly in proofs. They play an important role in linguistic applications of
restarting automata (e.g., for the analysis by reduction, grammar-checking, and
morphological disambiguation).

Definition 1. (Correctness Preserving Property)
A t-sRL-automaton M is (strongly) correctness preserving if u ∈ L(M) and
u c∗

M v imply that v ∈ L(M).

Definition 2. (Error Preserving Property)
A t-sRL-automaton M is error preserving if u �∈ L(M) and u c∗

M v imply that
v �∈ L(M).

It is rather obvious that each t-sRL-automaton is error preserving, and that all
deterministic t-sRL-automata are correctness preserving. On the other hand, one
can easily construct examples of nondeterministic t-sRL-automata that are not
correctness preserving.

Concerning the parameter t and the relation of t-sRL-automata to other lan-
guage classes the following results have been obtained.

Theorem 2. [10] For each suffix Y ∈ {sRR, sRL}, and each integer t ≥ 2,
(a) L(det-(t− 1)-Y) ⊂ L(det-t-Y) and

L((t − 1)-Y) ⊂ L(t-Y).
(b) L(min-det-(t− 1)-Y) ⊂ L(min-det-t-Y) and

L(min-(t− 1)-Y) ⊂ L(min-t-Y).
(c) L≤n(min-det-(t− 1)-Y) ⊂ L≤n(min-det-t-Y) and

L≤n(min-(t− 1)-Y) ⊂ L≤n(min-t-Y) for each n ≥ t.

Theorem 3. [10]
(a) DCFL ⊂

⋃
t∈N+

L(min-det-t-sRL) ⊂
⋃

t∈N+
L(min-t-sRL).

(b) The language classes
⋃

t∈N+
L(min-t-sRL) and

⋃
t∈N+

L(t-sRL) are incompa-
rable under inclusion to the class CFL of context-free languages and to the
class GCSL of growing context-sensitive languages.
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Correctness preserving nondeterministic t-sRR-automata are strictly more ex-
pressive than deterministic t-sRR-automata. For example, the language L :=
{ anbnc, anb2nd | n ≥ 0 } is accepted by the 3-sRR-automaton M that is given
through the following meta-instructions:

(1) (c, a, a∗, b, b∗ · c · $),
(2) (c, a, a∗, b, {λ}, b, b∗ · d · $),
(3) (c · (c + d) · $, Accept).

If M should select the wrong meta-instruction, then this is recognized at the
right sentinel, and then M simply halts and rejects. Thus, M is correctness
preserving. On the other hand, it is easily shown that L cannot be accepted
by a deterministic sRR-automaton. Surprisingly, however, we have the following
equivalence for sRL-automata.

Theorem 4. For each correctness preserving t-sRL-automaton M , there exists
a deterministic t-sRL-automaton M ′ such that L(M ′) = L(M).

Proof. Let M be a correctness preserving t-sRL-automaton that is given through
meta-instructions I1, . . . , Ii. We will describe a deterministic t-sRL-automaton
M ′ that recognizes the same language as M . First, for each j = 1, . . . , i, we
construct a finite-state acceptor Aj for the set of words to which meta-instruction
Ij is applicable. The automaton M ′ will then proceed as follows:
1. M ′ scans the current word w on its tape from left to right simulating all

the acceptors A1, . . . , Ai in parallel. At the right sentinel M ′ knows which
meta-instructions of M are applicable to the current word. If none is applica-
ble, then M ′ halts and rejects; if one of the applicable meta-instructions is
accepting, then M ′ halts and accepts. Otherwise, any correct application
of any of the applicable meta-instructions will yield a word w′ such that
w′ ∈ L(M) if and only if w ∈ L(M), as M is correctness preserving. Thus,
M ′ simply chooses one of the applicable meta-instructions, e.g., the one with
the smallest index. By I we denote this meta-instruction.

2. M ′ simulates an application of I to its current tape content.

It remains to show how M ′ can simulate an application of I to the con-
figuration q0cw$. Let w = y1 · · · yn, where y1, . . . , yn ∈ Σ, and assume that
I = (c · E0, x1, E1, x2, E2, . . . , Es−1, xs, Es · $), where 1 ≤ s ≤ t, E0, E1, . . . , Es

are regular languages, and x1, x2, . . . , xs ∈ Σ correspond to letters that are
deleted by M during one cycle. M ′ must determine a factorization of the form
w = v0x1v1x2 · · · vs−1xsvs such that vi ∈ Ei for all i = 0, . . . , s, and remove
the symbols x1, x2, . . . , xs. As w may have many such factorizations, M ′ must
choose one of them deterministically. For this task M ′ will use finite-state accep-
tors M1, . . . , Ms and MR

1 , . . . , MR
s , which accept the following regular languages:

L(M1) = E0 · x1, (E1 · x2 ·E2 · x3 · · ·Es−1 · xs ·Es)R = L(MR
1 ),

L(M2) = E1 · x2, (E2 · x3 · · ·Es−1 · xs ·Es)R = L(MR
2 ),

...
...

L(Ms−1) = Es−2 · xs−1, (Es−1 · xs ·Es)R = L(MR
s−1),

L(Ms) = Es−1 · xs, (Es)R = L(MR
s ).
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After step (1) above (that is, when choosing the meta-instruction I), M ′ is
at the right sentinel. Now it scans its tape again, this time from right to left,
thereby simulating the finite-state acceptors MR

1 , . . . , MR
s in parallel. For each

0 ≤ j ≤ s and 1 ≤ � ≤ n, let q(j, �) denote the state of MR
j after reading the

word yn . . . y+1. When reaching the left sentinel, M ′ changes direction again.
Now, while moving to the right, M ′ simulates the finite-state acceptor M1. Si-
multaneously, it recomputes the internal states of all the acceptors MR

1 , . . . , MR
s

on the respective tape symbol, that is, it runs these acceptors in reverse. This it
can do due to the following technical result from [1] (pages 212–213).

Lemma 1. Let A be a deterministic finite-state acceptor. For each word x and
each integer i, 1 ≤ i ≤ |x|, let qA(x, i) be the internal state of A after processing
the prefix of length i of x. Then there exists a deterministic two-way finite-state
acceptor A′ such that, for each input x and each i ∈ {2, 3, . . . , |x|}, if A′ starts its
computation on x in state qA(x, i) with its head on the i-th symbol of x, then A′

finishes its computation in state qA(x, i−1) with its head on the (i−1)-th symbol
of x. During this computation A′ only visits (a part of) the prefix of length i of x.

As meta-instruction I is applicable to the configuration q0cw$, w belongs to the
set E0 · x1 · E1 · x2 · E2 · x3 · · ·Es−1 · xs · Es. Hence, there is a smallest index
�1 such that y1 · · · y1 ∈ L(M1) and y1+1 · · · yn ∈ [L(MR

1 )]R. That is, after
scanning y1 · · · y1 , the finite-state acceptor M1 is in an accepting state, and
simultaneously q(1, �1) is an accepting state of MR

1 . On reaching this position,
M ′ deletes y1 = x1, aborts the simulations of M1 and MR

1 , and starts to simulate
M2 from its initial state. Now M ′ looks for an index �2 > �1 such that M2 is in
an accepting state after processing y1+1 · · · y2 , and q(2, �2) is an accepting state
of MR

2 . Once this position is reached, M ′ deletes the symbol y2 = x2, aborts
the simulations of M2 and MR

2 , and starts to simulate M3. This process is then
continued for i = 3, 4, . . . , s. In this way, M ′ deletes s symbols y1 , . . . , ys such
that y1 · · · y1−1 ∈ E0, y1 = x1, y1+1 · · · y2−1 ∈ E1, y2 = x2, . . . , ys = xs,
and ys+1 · · · yn ∈ Es.

It is easy to see that the t-sRL-automaton M ′ constructed in the way described
above is deterministic, and that it accepts the same language as the given t-sRL-
automaton M . ��

3 A Complexity Measure for sRL-Automata

A t-sRL-automaton M can be interpreted as a description of the language L(M).
Hence, the question about the succinctness of this description in comparison to
other descriptions of the same language arises. Thus, we need to introduce a
measure for the size of a t-sRL-automaton.

In [3] the descriptional complexity of various types of deterministic restarting
automata is investigated. There the number of instructions in the transition
relation of a restarting automaton is taken as the size of that automaton, that
is, for an sRL-automaton M this would yield the number

sizeδ(M) := |Q| · (|Σ|+ 2) · μ,
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where μ denotes the maximal degree of nondeterminism that M has in any situ-
ation. However, the description of sRL-automata in terms of transition relations
is rather cumbersome. Therefore we prefer to consider measures that are based
on descriptions of sRL-automata in terms of meta-instructions.

Definition 3. Let M be a t-sRL-automaton that is given through meta-instruc-
tions I1, . . . , Ir. Then sizeI(M) := r is called the instruction size of M .

The t-sRL-automata Mt and M
(n)
t of Example 2 have instruction size 3. Obvi-

ously, each regular language L is accepted by a restarting automaton of instruc-
tion size 1 that is given through the single meta-instruction (c · L · $, Accept).
It is easy to construct a sequence of languages (Li)i≥1 with growing alphabets
such that any t-sRL-automaton recognizing Li has instruction size at least i.
A similar hierarchy is obtained in a simple way by the sequence of languages
LIi :=

⋃i
j=1 { ajbanbj·n | n ≥ 0 } (i ≥ 1). Observe that this sequence also forms

an infinite hierarchy with respect to the number of delete operations per cycle.
However, we even have a sequence of 3-sRL-automata with growing instruction

size and a fixed finite alphabet.
Let Σ := {a, b}, let i > 1, and let wj := ajbi+1−j (1 ≤ j ≤ i). For each

j ∈ {1, . . . , i}, let Ei
j denote the language

Ei
j := {w1, . . . , wj−1, wj+1, . . . , wi} ⊂ Σi+1,

and let Mi be the 3-sRL-automaton with input alphabet Σ := {a, b} that is given
through the following meta-instructions:

1. (c · (
∑i

j=1(wj · a∗ · wj + wj · b+ · Ei
j)) · $, Accept),

2. (c · wj · a∗, a, {λ}, b, b∗ · wj · $), j = 1, . . . , i,
3. (c · wj · a∗, a, {λ}, b, {λ}, b, b∗ · Ei

j · $), j = 1, . . . , i.

Obviously, sizeI(Mi) = 2i + 1, and it is easily verified that

L(Mi) =
i⋃

j=1

{wja
nbmwj | n ≥ m ≥ 0 } ∪

i⋃
j,k=1
j �=k

{wja
nbmwk | m > 2n ≥ 0 }.

On the other hand, we have the following lower bound result.

Theorem 5. If M is an sRL-automaton for the language L(Mi) of the above
3-sRL-automaton Mi, then sizeI(M) ≥ 2i + 1.

Proof. Let i > 1 be an integer, and let M be an sRL-automaton recognizing
the language L(M) = L(Mi). Let wk,l,μ,ν := wkaμbνwl, let p be the number of
states of M , and let n := p !. None of the words wk,k,n,n (1 ≤ k ≤ i) can be
accepted by M in a tail computation, as otherwise it could be shown by using
pumping techniques that M will also accept certain words which do not belong
to L(Mi).
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Each meta-instruction which is used in an accepting computation on an input
wk,l,μ,ν ∈ L(Mi) deletes only some of the symbols a and b in the middle. Here
the fact is used that all words wj (1 ≤ j ≤ i) have the same length, and so
neither the prefix wk nor the suffix wl can be converted into another word wj

for any index j by applying deletions.
If there are less than i meta-instructions that are used for accepting all words

of the form wk,k,cn,cn (1 ≤ k ≤ i, c ≥ 1), then at least one of them applies to
two different words wk,k,cn,cn and wl,l,cn,cn, l �= k. Hence, this instruction cannot
distinguish between wkacnbcnwk and wla

cnbcnwl. As neither the prefixes nor the
suffixes wl and wk are affected by this instruction, we see that this instruction
also applies to the word wla

cnbcnwk.
Each meta-instruction which is used in an accepting computation for a word

of the form word wla
cnbcnwl (c a large constant) deletes at least as many sym-

bols b as a. Now assume that, after some cycles of an accepting computation
starting with the word wla

cnbcnwl, the number α of symbols a deleted and the
number β of symbols b deleted satisfy the condition β = α + m for some in-
teger m satisfying m ≥ n = p!. Thus, wla

cnbcnwl is reduced to a word of the
form wla

cn−αbcn−α−mwl. The restarting automaton M cannot distinguish be-
tween wla

cnbcnwl and wla
cnbcn+nwl �∈ L(Mi). However, by applying the same se-

quence of cycles to the latter word, M will derive the word wla
cn−αbcn−α+n−mwl,

which belongs to L(Mi), as m ≥ n. This contradicts the Error Preserving
Property.

Hence, for all sequences of cycles starting with a word of the form wla
cnbcnwl,

the number α of symbols a deleted and the number β of symbols b deleted
satisfy the restriction α ≤ β < α + n. As seen above the word wla

cnbcnwk

can also be processed by the same sequence of cycles, and the same is true for
the word wla

cnb2cnwk �∈ L(Mi). However, after a sufficient number of cycles
α > n is obtained, and therewith β < α + n ≤ 2α holds. Hence, the resulting
word is wla

cn−αb2cn−βwk, which belongs to L(Mi), again contradicting the Error
Preserving Property.

It follows that, for each value of j ∈ {1, . . . , i}, there is at least one meta-
instruction with prefix and suffix wj that is involved in the accepting computa-
tions of M for the words of the form wk,k,cn,cn (1 ≤ k ≤ i). Thus, there are at
least i different meta-instructions of this form.

Essentially the same method also works for those meta-instructions that are
used in accepting computations for words of the form wja

nbmwk (m > 2n). At
least i different meta-instructions must be used in these computations. As they
differ from the meta-instructions above, and as M needs at least one accepting
meta-instruction, we see that sizeI(M) ≥ 2i + 1 holds. �

4 Conclusions

Using meta-instructions for describing sRL-automata instead of describing them
by elementary instructions has several advantages for the designers of sRL-
automata:
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1. The task of designing a particular restarting automaton can be split into
several smaller tasks of designing single meta-instructions.

2. Such a design can be done incrementally. First we introduce some basic
meta-instructions which do not define the whole target language, but only
an important subset of it. Then we keep adding new meta-instructions to
improve our approximation of the target language. In a similar way the indi-
vidual rules for the analysis by reduction of Czech can be designed (see [6]).

3. If we succeed in this task, only using correctness preserving meta-instruc-
tions, then it is even possible to design the automaton for the target language
in parallel, that is, two or more (correctness preserving) meta-instructions
can be developed separately and finally put together to describe a single
automaton. Moreover, Theorem 4 provides us with a procedure to convert a
nondeterministic sRL-automaton of this form into a deterministic one. In a
similar way the rule-based tagging procedure in [2] works.

The instruction size does not allow to distinguish ‘complicated’ regular lan-
guages from ‘simple’ ones. Therefore in [8] we define a finer complexity measure
for sRL-automata which measures the size of a t-sRL-automaton through the size
of its description in terms of meta-instructions. Actually this new measure relates
the size of a meta-instruction to the length of its description in terms of regular
expressions. In this way even deterministic 2-sRL-automata allow very succinct
representations of (certain) regular languages, as witnessed by a non-recursive
trade-off.
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Abstract. We extend an algorithm by Paige and Tarjan that solves the
coarsest stable refinement problem to the domain of trees. The algorithm
is used to minimize non-deterministic tree automata (NTA) with respect
to bisimulation. We show that our algorithm has an overall complexity
of O(r̂ m log n), where r̂ is the maximum rank of the input alphabet, m
is the total size of the transition table, and n is the number of states.

1 Introduction

We present an algorithm that minimizes non-deterministic tree automata with
respect to bisimulation equivalence in time O(r̂ m logn), where r̂ is the maximum
rank of the input alphabet, m is the total size of the transition table, and n is the
number of states. In the construction of this algorithm, we extend the algorithm
proposed in [13] to the domain of trees. Since the time complexity reduces to
O(m log n) if r̂ is constant, this retains the complexity of [13] in all cases where
the maximum rank of the input alphabet is bounded. This holds in particular
for monadic trees, i.e. the string case.

The minimization of finite string automata (FA) is a well-studied problem,
where the objective is to find the unique minimal FA that recognizes the same
language as a given FA. In the deterministic case, efficient algorithms are avail-
able, e.g. the algorithm proposed by Hopcroft in [9], where he uses a “process
the smaller half” strategy to obtain a bound of O(n log n). However, it has
been proven that minimization of non-deterministic finite automata (NFA) is
PSPACE complete [10] and, what is worse, that the minimization problem for
an NFA with n states cannot be efficiently approximated within the factor O(n),
unless P = PSPACE [8]. To avoid exponential time, the problem must either be
restricted (i.e. by considering a special class of devices or requiring additional
information), or no approximation guarantees can be given. Of course, this holds
also for non-deterministic tree automata (NTA) because they generalize NFAs
(as a string may be seen as a monadic tree). Hence, we cannot hope to find an
efficient algorithm that performs well on all input NTAs.

Bisimulation minimization of tree automata is of particular interest in tree
regular model checking (an extension of regular model checking). In this field,
the verification of infinite state systems with tree-like architecture is considered,
and many of the associated algorithms would benefit from an efficient method
to reduce the size of non-deterministic tree automata [2,3].
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The algorithm presented in this paper takes advantage of the fact that bisim-
ulation equivalence is computationally easier to decide than language equiva-
lence, and that bisimulation equivalence implies language equivalence (although
the converse does not hold in the general case). When minimizing an NTA, we
group states that are observationally equivalent and use the blocks of the re-
sulting partition as states in the output NTA. As mentioned above, the time
complexity becomes O(r̂ m logn), as compared to O(m log n) by [13]. Thus, in-
terestingly, the maximum rank r̂ (which is the constant 1 in [13]) does not become
an exponent. Instead, it influences the complexity rather modestly.

Related work. There does not seem to be any documented algorithm that
uses bisimulation to minimize NTA, but we do know of a number of minimiza-
tion algorithms that operate on various kinds of tree automata. For instance,
algorithms for guided tree automata (GTA) are considered in [5]. A GTA is a
bottom-up tree automaton equipped with separate state spaces that are assigned
by a top-down automaton. According to the authors, minimization of GTA is
possible in time O(nm), but it is an open question whether or not tree automata
can be minimized in time O(m logm). In [7], Cristau et al. claim that a deter-
ministic bottom-up tree automaton for unranked trees can be minimized in time
O
(
m2

)
, using the algorithm proposed in [9]. In [6], the minimal tree automata is

computed using an algorithm that construct congruences on the states of a given
deterministic tree automata until a fixed point is reached. However, there are
no given results regarding the complexity of the given algorithm. An alternative
definition of deterministic top-down tree automata together with a minimization
algorithm is given by Nivat and Podelski in [12].

Outline. Section 2 covers the preliminaries, while Section 3 generalizes a parti-
tioning algorithm from [13] to trees. Section 4 describes the necessary calcula-
tion steps. In Section 5, the extended algorithm is applied to the minimization of
NTA, and in Section 6, we show experimental results obtained from a prototype.
We conclude with some directions for future work.

2 Preliminaries

Tree automata. A ranked alphabet is a finite set of symbols Σ =
⋃

k∈N
Σ(k)

which is partitioned into pairwise disjoint subsets Σ(k). The symbols in Σ(k) are
said to have rank k. The set TΣ of all trees over Σ is the smallest superset of Σ(0)
that contains every f [t1, . . . , tk], where f ∈ Σ(k), k ≥ 1, and t1, . . . , tk ∈ TΣ . A
subset of TΣ is called a tree language.

A non-deterministic tree automaton is a quadruple A = (Q , Σ, δ, F ) where Σ
is a ranked input alphabet, Q is a finite set of states, δ is a finite set of transition
rules f (q1, . . . , qn) → qn+1 such that f ∈ Σ(n), and q1, . . . , qn+1,∈ Q , for some
n ∈ N. Finally, F ⊆ Q is a set of accepting states. In the obvious way, δ extends
to trees, yielding a relation δ : TΣ → P (Q): For t = f [t1, . . . , tk] ∈ TΣ ,

δ(t) = {q | f (q1, . . . , qk)→ q ∈ δ and qi ∈ δ(ti) for all i ∈ {1, . . . , k}} .
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The tree language recognized by A is L(A) = {t ∈ TΣ | δ(t) ∩ F �= ∅}. Let
r = f (q1, . . . , qn) → qn+1 be a transition rule, then |r| denotes its length (that
is, |r| = n + 1), r(i) denotes the state qi, and q ∈ r indicates that r(i) = q for
some i : 1 ≤ i ≤ |r|. For B ⊆ Q, take δB as the set {r ∈ δ | ∃q ∈ B s.t. q ∈ r}.

For technical convenience, we shall henceforth restrict ourselves to ranked
alphabets containing at most one symbol of rank k for each k ∈ N. We can
thus leave out the input symbol when writing a transition rule, without risk
of confusion. Extending the algorithm presented in Section 3 to unrestricted
alphabets is straight-forward and does not effect the results in any way.

Equivalences. We consider equivalence relations on Q . Let $′ and $, where
$′ ⊆ $, be two such relations. We write (Q/$) to denote the set of equivalence
classes (henceforth, blocks) of $, and [q]� to denote unique the block of $ that
contains q. For a block B ∈ (Q/$), we write [[B]]�′ to denote the set {B′ ∈
(Q/$′) | B′ ⊆ B}. For a block B′ ∈ (Q/$′), we let [B′]� represent the (unique)
block B ∈ (Q/$) such that B′ ∈ [[B]]�′ .

Symbolic rules. Let A = (Q, Σ, δ, F ) be an NTA, and $′,$, where $′ ⊆ $,
equivalence relations on Q. To represent the set {([q1]�, . . . , [qk]�) → [q]� |
(q1, . . . , qk) → q ∈ δ} of symbolic rules, we use the notation (δ/$). Conversely,
if ρ = (D1, . . . , Dk) → Dk+1 is a symbolic rule, then the set of instances of ρ,
denoted [[ρ]], is the set {(q1, . . . , qk) → qk+1 | qi ∈ Di, i : 1 ≤ i ≤ k + 1} ∩ δ.
We write ρ(i) to refer to block Di of ρ, and B ∈ ρ to indicate that ρ(i) = B, for
some i ∈ {1, . . . , |ρ|}. The length of ρ is written |ρ|. For a transition rule r ∈ δ,
we use [r]� to represent the unique symbolic rule ρ ∈ (δ/$) such that r ∈ [[ρ]].

Given a rule ρ = (D1, ..., Dn) → Dn+1 in (δ/$), we let [[ρ]]�′ represent the
set

{(D′
1, ..., D

′
n)→ D′

n+1 ∈ (δ/$′) | D′
i ∈ [[Di]]�′ , for all i : 1 ≤ i ≤ n + 1} .

To denote the subset {(D′
1, ..., D

′
n) → D′

n+1 | ∃i ∈ {1, . . . , n + 1} s.t. D′
i = B}

of [[ρ]]�′ we write [[ρ]]B�′ . Conversely, for the symbolic rule ρ′ ∈ (δ/$′), we define
[ρ′]� to be the (unique) symbolic rule ρ ∈ (δ/$) such that ρ′ ∈ [[ρ]]�′ .

Occurrences and counts. Let $ be an equivalence relation, and q a state,
then the set of occurrences of q in $, denoted Occ($)(q), is the set of pairs
(ρ, i) where ρ ∈ (δ/$) and q ∈ ρ(i) for some i : 1 ≤ i < |ρ|. Intuitively,
Occ($)(q) identifies the symbolic rules in which [q] occurs in the left hand side
of the rule, together with the position of such an occurrence. Given a block B
in $, we define Occ($)(B)(q), to be {(ρ, i) | (ρ, i) ∈ Occ($)(q) and B ∈ ρ}. For
a symbolic rule ρ, and a state q, we define count(ρ)(q) to be the size of the
set {r ∈ [[ρ]] | ∃i ∈ {1 . . . |r|} s.t. r(i) = q}. We extend the definition to a set � of
symbolic rules such that count(�)(q) =

∑
ρ∈� count(ρ)(q).

Stability. Let $ and ∼=, where $ ⊆ ∼=, be equivalence relations on Q. The
relation $ is stable with respect to ∼= if whenever q $ p then Occ(∼=)(q) =
Occ(∼=)(p), and stable if it is stable with respect to itself.
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3 The Algorithm

In this section, we introduce an algorithm for solving the coarsest stable refine-
ment problem for NTAs. An instance of the problem consists of an NTA A and
an equivalence relation $init on the states of A.

The equivalence relation $init is assumed to satisfy the following conditions:
(i) $init is stable with respect to Q×Q and (ii) if q $init q′ then q ∈ F iff q′ ∈ F .
The task is to find the stable (as defined in the previous section) refinement $
of $init that is coarsest in the sense that every other stable refinement of $init

is also a refinement of $.
The algorithm iterates over a sequence of steps (described in detail in Sec-

tion 4) generating two sequences of equivalence relations on Q, denoted by
$0,$1, . . . ,$t and ∼=0,∼=1, . . . ,∼=t respectively. We define $0 to be $init and
∼=0 to be Q×Q.

In the (i + 1)-th iteration, the equivalences $i+1 and ∼=i+1 are derived from
$i and ∼=i as follows. Let Bi ∈ (Q/$i) and Si ∈ (Q/∼=i) be such that Bi ⊂ Si

and |Bi| ≤ |Si|
2 (as implied by Lemma 1, $i is a proper refinement of ∼=i so Bi

and Si exist). We have that q ∼=i+1 q′ if and only if two conditions are met. First,
q ∼=i q′, and second, q ∈ Bi if and only if q′ ∈ Bi. Furthermore, for all q, q′ ∈ Q ,
it holds that q $i+1 q′ if and only if the following conditions are satisfied:

(1) q $i q′

(2) Occ(∼=i+1)(Bi)(q) = Occ(∼=i+1)(Bi)(q′)
(3) For every ρ ∈ (δ/∼=i), we have that

count(ρ)(q) = count
(
[[ρ]]Bi∼=i+1

)
(q) iff count(ρ)(q′) = count

(
[[ρ]]Bi∼=i+1

)
(q′) .

Intuitively, the second and third conditions refine $i with respect to Bi and
Si − Bi respectively. The iteration continues until we reach the termination
point t, at which we have $t = ∼=t.

Correctness and time complexity. We now argue that the algorithm is cor-
rect and runs in time O(r̂ m log n), beginning with a simple lemma.

Lemma 1. The relation $i is a refinement of ∼=i, for all i : 0 ≤ i ≤ t.

Proof. By induction on i. The base case is trivial since ∼=0= Q × Q. Suppose
that q $i+1 q′. By definition of $i+1 it follows that q $i q′. By the induction
hypothesis it follows that q ∼=i q′. Since q $i q and Bi ∈ (Q/$i) it follows that
q ∈ Bi iff q′ ∈ Bi. By definition of ∼=i+1 it follows that q ∼=i+1 q′. ��

This implies that $i is a proper refinement for all i : 0 ≤ i < t, and that, up
to the termination point, we will be able to pick Bi ∈ (Q/$i) and Si ∈ (Q/∼=i)
such that Bi ⊂ Si and |Bi| ≤ |Si|

2 . Next, we consider partial correctness of the
algorithm which will follow from Lemma 2 and Lemma 5.

Lemma 2. The relation $i is stable with respect to ∼=i, for all i : 1 ≤ i ≤ t.
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Proof. By induction on i. The base case (when i = 0) follows from the definitions
of $0 and ∼=0. Suppose then that q $i+1 q′, and that (ρ, j) ∈ Occ(∼=i+1)(q) for
some ρ ∈ (δ/∼=i+1); we show that (ρ, j) ∈ Occ(∼=i+1)(q′). Depending on ρ, we
have three cases:

First, Si − Bi /∈ ρ and Bi /∈ ρ. This means that ρ ∈ (δ/∼=i), and therefore
(ρ, j) ∈ Occ(∼=i)(q). Since q $i+1 q′, we know by definition that q $i q′. By the
induction hypothesis it follows that $i is stable with respect to ∼=i, and hence
(ρ, j) ∈ Occ(∼=i)(q′). Since ρ ∈ (δ/∼=i+1) it follows that (ρ, j) ∈ Occ(∼=i+1)(q′).

Second, Si − Bi ∈ ρ and Bi /∈ ρ. Let ρ be of the form (D1, . . . , Dn)→ Dn+1.
Define ρ1 ∈ (δ/∼=i) to be the symbolic rule

(
D1

1, . . . , D
1
n

)
→ D1

n+1 where, for
each k : 1 ≤ k ≤ n + 1, we have that D1

k = Si if D1
k = Si − Bi and D1

k = Dk

otherwise. We observe that ρ1 = [ρ]∼=i
, and therefore

(
ρ1, j

)
∈ Occ(∼=i)(q). Since

q $i+1 q′, we know by definition that q $i q′. By the induction hypothesis it
follows that $i is stable with respect to ∼=i, and hence

(
ρ1, j

)
∈ Occ(∼=i)(q′).

From Bi /∈ ρ we know that count(ρ)(q) > count
(
[[ρ]]Bi∼=i+1

)
(q). Since q $i+1 q′

it follows that count(ρ)(q′) > count
(
[[ρ]]Bi∼=i+1

)
(q′). Hence, (ρ, j) ∈ Occ(∼=i)(q′).

Third, Bi ∈ ρ. This means that (ρ, j) ∈ Occ(∼=i+1)(Bi)(q). Since q $i+1 q′ it
follows that (ρ, j) ∈ Occ(∼=i+1)(Bi)(q′) and hence (ρ, j) ∈ Occ(∼=i+1)(q). ��

In the proof of Lemma 5, we use two auxiliary lemmas (Lemma 3 and Lemma 4).
The proofs of these two lemmas have been omitted, but the interested reader
will find these in [4].

Lemma 3. Any stable refinement $ of $i, is also a stable refinement of ∼=i+1.

Lemma 4. Consider equivalence relations $′⊆$, a symbolic rule ρ ∈ (δ/$), a
state q, and j : 1 ≤ j ≤ |ρ|. Then, we have (ρ, j) ∈ Occ($)(q) if and only if
(ρ′, j) ∈ Occ($′)(q) for some ρ′ ∈ [[ρ]]�′ .

Lemma 5. If $ is a stable refinement of $0, then $ is also a refinement of $i,
for each i : 1 ≤ i ≤ t.

Proof. By induction on i. The base case is trivial. For the induction step, suppose
that q $ q′. We show that q $i+1 q′ using the three conditions in the definition
of $i+1. Condition (1) is satisfied by the induction hypothesis.

For Condition (2), suppose that (ρ, j) ∈ Occ(∼=i+1)(Bi)(q). Since (ρ, j) is in
Occ(∼=i+1)(Bi)(q) we know that Bi ∈ ρ and that (ρ, j) ∈ Occ(∼=i+1)(q). From
the induction hypothesis we know that $⊆$i, and by Lemma 3 that $⊆∼=i+1.
By Lemma 4 there is a ρ′ ∈ [[ρ]]� such that (ρ′, j) ∈ Occ($)(q). Since q $ q′ and
$ is stable, we have that (ρ′, j) ∈ Occ($)(q′). From $⊆∼=i+1 and ρ′ ∈ [[ρ]]�, it
follows by Lemma 4 that (ρ, j) ∈ Occ(∼=i+1)(q′). Since Bi ∈ ρ, we conclude that
(ρ, j) ∈ Occ(∼=i+1)(Bi)(q′).

Regarding Condition (3), assume that count(ρ)(q) �= count([[ρ]]Bi∼=i+1
)(q). We

show that count(ρ)(q′) �= count([[ρ]]Bi∼=i+1
)(q′). From the above assumption, we

know that there are ρ1 ∈ (ρ/∼=i) and j such that Bi �∈ ρ1 and (ρ1, j) is an
element of Occ(∼=i+1)(q). Form the induction hypothesis we know that $⊆$i,
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and hence by Lemma 3 it follows that $⊆∼=i+1. By Lemma 4 there is a ρ2 ∈
[[ρ1]]�, such that (ρ2, j) ∈ Occ($)(q). Since q $ q′ and $ is stable it follows that
(ρ2, j) ∈ Occ($)(q′). From $⊆∼=i+1 and ρ2 ∈ [[ρ1]]�, it follows by Lemma 4 that
(ρ1, j) is an element of Occ(∼=i+1)(q′), and hence the result. ��

Lemma 6. There is a t ≤ n− 1 such that $t = ∼=t.

Proof. As long as the algorithm has not terminated, we have Bi ⊂ Si and
consequently ∼=i+1 ⊂ ∼=i. By finiteness of Q it follows that after at most t =
|Q| − 1 steps we reach a point where there are no Bt ∈ (Q/$t) and St ∈ (Q/∼=t)
such that Bt ⊂ St and |Bt| ≤ |St|

2 . This implies $t = ∼=t. ��

Now, we are ready to prove correctness. Lemma 6 guarantees that the algorithm
terminates, producing $t. According to Lemma 2, $t is stable with respect to
∼=t, and since $t = ∼=t, the equivalence $t is stable. The implication of this, in
combination with Lemma 5, is stated as the following theorem.

Theorem 1. The algorithm terminates with output $t, where $t is the coarsest
stable refinement of $0.

To simplify the discussion regarding time complexity, we formulate Lemma 7.

Lemma 7. For each q ∈ Q and i < j if q ∈ Bi ∩Bj then |Bj | ≤ |Bi|
2 .

Proof. By definition we know that Bi is a block of ∼=i+1. Since i < j it follows
by definition that ∼=j is a refinement of ∼=i and hence Bi is a union of blocks in
∼=j . From the fact that q ∈ Bj we know that q ∈ Sj . Since q ∈ Bi it follows that
Sj ⊆ Bi. From |Bj | ≤ |Sj|

2 , it follows that |Bj | ≤ |Bi|
2 . ��

As demonstrated in Section 4, calculation steps 1 to 8 can each be performed
in time O

(∑
r∈δB

|r|
)
. This is also the time required by an entire iteration. The

time complexity of the algorithm can then be written as
∑

r∈δB0

|r|+
∑

r∈δB1

|r|+ . . .
∑

r∈δBt

|r| ,

where Bi is the B-block chosen during the ith iteration. Now, a transition rule
r = (q1, . . . , qk) → qk+1 ∈ δ will only be contained in the set δBi , 0 ≤ i ≤ t, if
state qj is contained in Bi for some j : 1 ≤ j ≤ k + 1. No state occur in more
than log n B-blocks (Lemma 7), and since r contains at most |r| distinct states, r

cannot contribute by more than |r|2 log n to the total sum. This implies that the
algorithm runs in time O

(
(
∑

r∈δ |r|
2) log n

)
, which is bounded by O(r̂ m log n).

4 Iterations

In this section we describe the data structures used in the representation of
the equivalences $i and ∼=i (see Section 3). Also, we use a number of auxiliary
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data structures which allow efficient implementation of each iteration in the
algorithm. Finally, we describe how to implement each iteration.

Each state is represented by a record which we identify with the state itself.
We maintain three lists of blocks:

– P corresponds to blocks in $i. Each block is represented by a record which
we will identify with the block itself. Each block S in P contains a pointer
to a doubly linked list of its elements; and each state points to the block in
P containing it. Each block in P is also equipped with a natural number
which indicates its size.

– X corresponds to the blocks in ∼=i. Each block is represented by a record
which we will identify with the block itself. A block of X is simple if it
contains a single block of P , and is compound otherwise. Each block in X
contains a pointer to a doubly linked list of the blocks of P contained in it;
and each block S in P contains a pointer to the block of X containing it.

– C is a sublist of X containing only the compound blocks in X .

The elements of the above lists are doubly linked. This allows deletion of elements
in constant time. A rule r is represented by a doubly linked list of elements. The
ith element of the list (corresponding to state q) is a record with:

– pointers to the next and previous elements of r (if any).
– pointers to the ith element in the previous and the next rule in [r]∼=i .
– a pointer to the symbolic rule ρ = [r]∼=i

.
– pointers c, c1, and c2 to three counters containing natural numbers.

Intuitively, given a rule r, the pointer c points to count(ρ)(q) where ρ = [r]∼=i
.

The counters c1 and c2 are temporary variables, used during the iterations, to
point to count(ρ′)(q) resp. count

(
[[ρ]]B∼=i+1

)
(q), where ρ′ = [r]∼=i+1 . A state has

a pointer to the list of rules in which it occurs. A symbolic rule ρ is represented
by a record which is pointed to by all instances of ρ.

Initialization. In the initial configuration, all rules r ∈ δ points to (the only)
symbolic rule ρ0 ∈ (δ/∼=0). Each position of r (corresponding to a state q) points
to a counter count(ρ0)(q). The list X contains only one block. This block is
compound and it is also the only block contained in C.

Step 1: Select compound block S. Remove a compound block S from C.
Examine the first two blocks in S. Let B be the smaller one. If they are equal
in size then B can be arbitrarily chosen to be anyone of them. These blocks
correspond to Bi and Si chosen during the ith iteration (Section 3). This step
can be performed in constant time.

Step 2: Remove B from S. This step is to maintain the invariant that q ∼=i+1
q′ implies that q ∈ B iff q′ ∈ B. Remove B from S and create a new block S′ in
X . The block S′ is simple and contains B as its only block. If S is still compound,
put it back into C. Observe that the elements of X will now correspond to the
blocks of ∼=i+1. This step can be performed in constant time.
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Step 3: Calculate new symbolic rules. Note that each symbolic rule ρ ∈
(δ/∼=i) will potentially give raise to a set of rules in (δ/∼=i+1), namely those
in [[ρ]]B∼=i+1

and [[ρ]]¬B
∼=i+1

, and that these rules are obtained from ρ by replacing
occurrences of S in ρ either by Bi or S −B. The purpose of Step 3 is to derive
the rules in [[ρ]]B∼=i+1

, i.e., to generate those members of (δ/∼=i+1) in which B

occurs at least once. For this purpose, we build, for each ρ with [[ρ]]B∼=i+1
�= ∅, a

tree Tρ which encodes the symbolic rules in [[ρ]]B∼=i+1
. A list of existing trees is

maintained throughout the current iteration. The rule ρ will maintain a pointer1

to Tρ, while each tree will maintain a pointer to the list of its leafs.
The edges of the tree are labeled with blocks in X (i.e., blocks in ∼=i+1). Each

path π from the root to a leaf is of length |ρ|, and corresponds to one symbolic
rule ρ′ = [ρ]∼=i+1 . More precisely, the root-to-leaf concatenation of the labels of
edges along π defines the blocks which appear in ρ′ from left to right. Thus, the
ith edge in π is labeled by ρ′(i), for i : 1 ≤ i ≤ |ρ′|. Furthermore, the leaf at
the end of π points to a list Lρ′ of rules which are instances of ρ′. The elements
of different rules in Lρ′ are also linked together: position j in each rule has a
pointer to position j of the next rule in Lρ′ . This gives the list Lρ′ a “matrix”
form where the rows correspond to rules and the columns correspond to given
positions in the rules. When Tρ is completely constructed, each symbolic rule
ρ′ ∈ [[ρ]]B∼=i+1

will be represented by a path in Tρ; and each instance of ρ′ will be
present in the list associated with the corresponding leaf.

To construct Tρ, we go through the elements of B. For each element q ∈ B, we
go through the list of rules r with q ∈ r. Recall that q has a pointer to this list.
To prevent that a certain rule is considered twice, we mark encountered rules
(and unmark them at the end of the step). For a rule r, we find the symbolic
rule ρ = [r]∼=i

. This can be done since each r has a pointer to ρ, and since the
existing symbolic rules still correspond to those in (δ/∼=i) (they have yet not
been modified to reflect ∼=i+1). We also find the tree Tρ by following pointer
from each symbolic rule ρ to Tρ. If Tρ does not exist yet, we create it, add it to
the list of currently existing trees, and add a pointer to it from ρ. Now we modify
Tρ by “adding” r to it. The addition process is carried out as follows. Let r be of
the form (q1, . . . , qn) → qn+1. We simultaneously traverse r (from left to right)
and Tρ (in a top-down manner). We start from q1 and the root of the tree. At
step j of the traversal, we consider the state qj together with a node nj in Tρ. We
check whether there is an edge leaving nj which is labeled by [qj ]∼=i+1 (we can
find [qj ]∼=i+1 by following the pointer to the block in P containing qj and from
there following the pointer to the corresponding block in X). If such an edge
exists, we follow the edge one step down the tree to the next node nj+1. We also
move one step to the right in r to the state qj+1. If no such an edge exists, we
create a new edge nj+1 connected to nj and labeled with [qi]∼=i+1 (again moving
one step to the right in r). Checking existence of the right edge takes constant
time. This is due to the fact that each node may have at most two outgoing
edges (in fact a node has only outgoing edge unless the edges are labeled by B

1 Pointer from each symbolic rule ρ to Tρ.
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or S). Once we reach a leaf (after |ρ| steps), we insert r in the list pointed to
by the leaf. More precisely, we go through r from left to right. For element j in
r, we remove any existing (old) links to and from elements of other lists, and
add a double link to element j of the rule which was previously first in the list
of rules (before the insertion of r). This is to maintain the matrix form, i.e., the
invariant that corresponding elements in rules in the same list are linked. If the
leaf had just been created, we add it to the list of leafs of the tree. Notice that
the time complexity of the current step is O

(∑
r∈δB

|r|
)
. In fact, as we shall see

all subsequent steps have the same complexity.

Step 4: Create counters. In this step, we create new counters to reflect the
introduction of the new symbolic rules, and update the values of the temporary
pointers c1 and c2 in the relevant rules . We go through the list of existing trees
and through the list of leafs of each tree. For a given leaf corresponding to a
symbolic rule ρ′, we consider the corresponding list Lρ′ , and consider each rule r
in the corresponding list. We scan the rule r, and each position (corresponding to
a state q). If it is the first time we encounter q during the scanning of the current
leaf, we create the counter count(ρ′)(q), and make both q and pointer c1 of the
current position point to it. If it is not the first time, we find count(ρ′)(q) by
following the pointer from the current position to q, and from q to the counter.
We increase its value and create a pointer to it from c1 of the current position. We
create and modify count

(
[[ρ]]B∼=i+1

)
(q) in a similar manner, with two differences,

namely (i) we use c2 instead of c1; and (ii) we check whether it is the first time
we encounter q during the scanning of the current tree (rather than the current
leaf). To prevent that the same is considered twice during the scanning of r, we
mark encountered states. When the scanning of r has been completed, we scan
r one more time and unmark all states. When we have scanned all rules in the
current leaf, we go through all rules and positions one more time and delete the
pointers we have created from states q to the counters count(ρ′)(q) (preserving
the ones from c2). When we have scanned all leafs in the current tree, we delete
the corresponding pointers to count

(
[[ρ]]B∼=i+1

)
(q).

Step 5: Refine P with respect to B. Each position j : 1 ≤ j ≤ |ρ′| − 1
may potentially give raise to a split of the blocks in P . A state q1 which occurs
in position j in the left hand side of a rule r ∈ [[ρ′]] (i.e., r(j) = q1 for some
j : 1 ≤ j ≤ |ρ′| − 1) should not be in the same block as a state q2 which does
not occur in position j of any rule in [[ρ′]]. The reason is that this would imply
Occ(∼=i+1)(B)(q) �= Occ(∼=i+1)(B)(q′). To reflect this in our blocks, we go
through all trees and all leafs in a tree. For a leaf corresponding to a rule ρ′, we
iterate over all positions j : 1 ≤ j ≤ |ρ′| − 1, and scan position j of all the rules
in Lρ′ one by one. This can be done due to the matrix form, where position j in
each rule has a pointer to position j of the next rule in Lρ′ . Let q be the state
in the position and rule currently under consideration. We find the block D of
P containing q. We create an associated block D′ if one does not already exist.
We move q to D′ decreasing the size of D and increasing the size of D′.
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During the scanning, we construct a list which contains all blocks which have
been split. After we have scanned position j of all rules in Lρ′ , we go through the
new list of blocks. For each block D (and associated block D′), we remove the
record for D if it has become empty (all its elements have been moved to D′);
otherwise if the block of X containing D has become compound by the split, we
add this block to C.

Step 6: Refine P with respect to S − B. For each tree Tρ, and all of its
leaves, we go through the list Lρ′ , and scan every rule r in Lρ′ . Let q be the state
of r currently scanned. We determine whether the counters pointed to by c and
c1 have the same values. This corresponds to checking whether count(ρ)(q) =
count

(
[[ρ]]B∼=i+1

)
(q). If the equality holds, we find the block D of P containing q,

and create an associated block D′ if one does not already exist. Afterward, the
new list of blocks is processed in the same way as in Step 4.

Step 7: Update the counters. This step updates the counters for every state
in every rule in [[ρ]]¬B

∼=i+1
. For each tree Tρ in the list of trees created in Step 3,

we go through all the leaves of Tρ. For a given leaf and an associated list Lρ′ ,
we scan each rule r in Lρ′ from left to right. Let q be the state that is currently
scanned. We subtract the value of the counter pointed to by c2 from that pointed
to by c and put the value back in the latter. This corresponds to the assignment
count(ρ)(q) := count(ρ)(q)− count([[ρ]]B∼=i+1

)(q). To prevent that the same state
is processed more than once, we mark encountered states. When the scanning of
all leafs of Tρ has been completed, we scan all leaves one more time and unmark
all states. During the same scan we change the pointer c of a cell and make it
point to the same counter as c2. Now, we destroy, for each state q, the pointers
c1 and c2 and the corresponding counters.

Step 8: Update symbolic rules. We go through each tree Tρ. For each leaf
we create a new symbolic rule ρ′. We go through the associated list of rules, and
make the rules point to ρ′. After Tρ has been processed, it is destroyed.

5 NTA Minimization with Respect to Bisimulation

We now discuss how the algorithm presented in Section 3 can be applied to the
minimization of non-deterministic tree automata, with respect to bisimulation.
We begin with a formal definition of bisimulation equivalence.

Let A = (Q, Σ, δ, F ) and A′ = (Q′, Σ, δ′, F ′) be two NTA. A relation $⊆
Q × Q′ is a bisimulation relation if the following two conditions hold for all
states q ∈ Q and q′ ∈ Q′ such that q $ q′. First, q ∈ F if and only if q′ ∈ F ′.
Second, the fact that (q1, . . . , qi−1, q, qi, . . . , qk−1)→ qk ∈ δ, where i ≤ k, implies
that there exists a rule

(
q′1, . . . , q

′
i−1, q

′, q′i, . . . , q
′
k−1

)
→ q′k ∈ δ′, such that qj $ q′j

for all j ∈ {1, . . . , k}, and vice versa. States q and q′ as above are said to be
bisimilar (with respect to $). We consider A and A′ to be bisimulation equivalent
(and write A ∼ A′) if there is a bisimulation relation such that every state in Q
is bisimilar to a state in Q′, and every state in Q′ to a state in Q.
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Here, a brief remark is in place: When the notion of bisimulation equiva-
lence is extended to allow alphabets containing more than one symbol of a
given rank, one must require that it is the same symbol that occurs on both
sides of the implication. Note also that if A and A′ are bisimulation equivalent
NTAs, and the relation between their states is one-to-one, then A and A′ are
isomorphic.

Now, to produce the unique minimal tree automaton that is bisimilar to a
given tree automaton A = (Q, Σ, δ, F ), we first apply the algorithm of Section 3
with $0=$init to find an equivalence relation $ on Q, such that Q/$ is the
coarsest stable partition of Q, and then output A� = (Q/$, Σ, δ/$, F/$).

In the derivation of Theorem 2, which is a non-deterministic version of a result
in [6], we make use of two lemmas. To save space, the proofs have been omitted,
but the interested reader will find these in [4].

Lemma 8. Bisimulation equivalence is an equivalence relation.

Lemma 9. The input automaton and the output automaton returned by the
minimization algorithm are bisimulation equivalent.

Theorem 2. Given an automaton A, the minimization algorithm returns the
unique minimal bisimulation-equivalent automaton recognizing L(A).

Let A = (Q, Σ, δ, F ) be an NTA, and A� = (Q/$, Σ, δ/$, F/$) the NTA
returned by the minimization algorithm. According to Theorem 1, Q/$ is the
coarsest stable refinement of $init. By Lemma 9, automata A� and A are bisim-
ulation equivalent.

Let A′ = (Q′, Σ, δ′, F ′) be a minimal NTA bisimulation equivalent with A.
Since A and A′ are bisimulation equivalent, there is an equivalence relation $′

on Q, such that q $′ q′ if q and q′ are both bisimilar to the same state in Q′.
The partition Q/$′ is stable, and a refinement of $init. In combination with the
assumption that A′ is minimal, we have that Q/$′ is the unique coarsest stable
refinement of $init, and hence that $=$′.

Since both A� and A′ are bisimulation equivalent to A, they are also bisim-
ulation equivalent to each other (Lemma 8), and since they each have |Q/$|
states, this relation is one-to-one. Hence, A� and A′ are isomorphic. ��

Note that all deterministic tree automata (DTA) that recognize the same lan-
guage are bisimulation equivalent to each other, because they are all bisimulation
equivalent to the unique minimal DTA that recognizes this language, and bisim-
ulation equivalence, like all equivalence relations, is transitive.

Corollary 1. Given a DTA A, the minimization algorithm returns the unique
minimal DTA recognizing L(A).

The behavior described in Corollary 1 makes it impossible to give a nontrivial
approximation bound for the performance of the minimization algorithm. To
see why, recall that there is a family of tree languages T such that if L ∈ T ,
then the minimal DTA that recognizes L is exponentially larger than a minimal
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NTA recognizing the same language. This means that given any DTA A such that
L(A) ∈ T , the algorithm will return a potentially smaller, but still deterministic,
tree automaton, and hence misses the optimum with an exponential factor.

6 Experiments

To test our algorithm on some real life examples, we have used tree automata
that arose during computations in the framework of tree regular model checking
of some of the protocols described in [1]. Table 1 shows the execution time, and
the size before and after running our minimization algorithm.

Tree regular model checking is the name of a family of techniques for an-
alyzing infinite state systems in which states are represented by trees, set of
states by tree automata, and transitions by tree transducers. Most tree reg-
ular model checking algorithms rely heavily on efficient methods for checking
bisimulation.

Table 1. Minimization of non-deterministic tree automata

Protocol
Input Output

Time (s)
States Trans. States Trans.

Percolate
18 333 5 38 0.2
21 594 5 45 1.3

Leader
25 384 9 43 0.3
49 3081 14 167 30.6

7 Conclusion and Future Work

We have extended an algorithm by Paige and Tarjan for solving the coarsest
stable partition problem to the domain of trees, and obtained a running time of
O(r̂ m log n), where r̂ is the maximum rank of the input alphabet, m is the total
size of the transition table, and n is the number of states. As demonstrated, the
extended algorithm can be used to minimize non-deterministic tree automata
with respect to bisimulation equivalence.

One possible direction for future work is to integrate the minimization algo-
rithm in the framework of tree regular model checking, where tree automata are
encoded symbolically. Since many of the algorithms in this framework rely heav-
ily on minimization, we believe it would improve performance if our algorithm
could be integrated in this setting. We plan to implement a symbolic version of
our algorithm where we consider both binary decision diagrams and SAT solvers
to perform the necessary operations on the symbolic encoding.

Another possibility is to to extend the algorithm to work on hedge automata
(HA). As described in [11], an XML document can be viewed as a hedge (a more
general type of tree), and validated using a HA. We expect the size of this HA
to affect the efficiency with which the validation can be performed.
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Abstract. We consider forgetting automata, i.e., linear bounded au-
tomata which can only use the operations ‘move’, ‘erase’ (rewrite with a
blank symbol) and ‘delete’ (remove completely). A classification of the
families of languages corresponding to the possible combinations of op-
erations has been given in [1], here we address some of the problems left
open. Furthermore the unary case is being investigated.

1 Introduction

Forgetting automata were investigated by Jančar, Mráz, and Plátek in a number
of papers in order to deal with linguistic models, like the analysis by reduction
(stepwise abridgement of an input retaining the syntactical correctness). They
originate from two models proposed earlier, namely erasing automata and list
automata. In papers [2,3] work on erasing automata, which had been introduced
in [4] as a special form of a Turing machine that is allowed to rewrite the content
of an input field only a bounded number of times, was continued. Erasing au-
tomata can move bidirectionally on their input tape and rewrite the content of
the tape field under the head with an auxiliary blank symbol, i.e., erase the field.

On the other hand, list automata that work on a doubly linked list have been
investigated, e.g., in [5]. List automata operate on their input by means of the
operations move, write (rewrites an input symbol), delete (completely deletes
an input field, i.e., removes it from the doubly linked list) and insert (inserts
a new element into the list), which interestingly enough characterizes the four
levels of the Chomsky hierarchy in a uniform machine model when restricting
the operations appropriately ([6]).

Forgetting automata are automata that are able to use one or more of the
operations MV (move), ER (erase) and DL (delete). Associated with the possible
directions left and right (indicated as a subscript) we have a total of six opera-
tions and therefore 26− 1 = 63 different automata models (see [1]) to consider.1

Some of the corresponding language families coincide trivially, e.g.,

L (MV, DL) = L (MV, DLL),

1 The family of languages accepted by automata with a certain type of operations like
MVR and DLL will be denoted by L (MVR,DLL). If both directions are allowed for
one of the three operations, we will simply leave out the subscript.

O.H. Ibarra and H.-C. Yen (Eds.): CIAA 2006, LNCS 4094, pp. 186–197, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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as DLR can be simulated by consecutively performing DLL and MVR, while

L (MVR) = L (DLR) = L (ERR) = REG,

as only right moves are possible. Other classes coincide somewhat surprisingly
with the family of context-free languages ([7]). All classes, however, are strictly
included in DCSL ([8]).

In this paper we follow the aforementioned studies and concentrate on unary
input. When restricting to unary input the classification of forgetting automata
gets somehow more transparent. In this case, various simulations of one type of
automaton by another one are possible, whereas they do not work for inputs
with at least two different symbols. But also in the case of non-unary input the
examination of unary strings plays in import role as forgetting automata that
are able to move to the right only by erasing and deleting leave a trace of unary
symbols (i.e., blank symbols) behind when moving to the right. By dealing with
these strings of unary input left behind, new results can be obtained, namely the
characterization of L (ERR, DL) with the family of languages accepted by one-
way one-counter automata and the inclusion of L (MVL, ER, DL) in L (MV, ER),
that has been left open in [1]. Instead, a direct simulation leads to the equality
of L (MVR, ER, DLR) and L (MVR, ER, DL) left open in [1,9].

The question whether L (MV, DL) is a proper subset of L (MV, ER), that
has been put up [9] and asked again in [1,7], can at least be solved for the
deterministic case, while the nondeterministic case remains open.

The remainder of this paper is organized as follows: In Section 2 some basic
notations are introduced and the automata models used within the paper are
defined. Section 3 deals with the non-unary case of forgetting automata but also
provides some results used in Section 4, where a classification of unary forgetting
automata is given.

2 Preliminaries

Let A∗ denote the set of all words over the finite alphabet A. The empty word
is denoted by ε. The reversal of a word w is denoted by wR and the length of
w by |w|. The number of occurrences of an alphabet symbol a ∈ A in a word
w ∈ A∗ is denoted by |w|a. Set inclusion and strict set inclusion are denoted
by ⊆ and ⊂, respectively. In figures we use arrows =⇒ for set inclusion and
−→ for strict inclusion, while dotted lines · · · mark incomparability. We use the
following notations of language families: REG (regular languages), CFL (context-
free languages), DCSL (deterministic context-sensitive languages), LIN (linear
languages), METALIN (metalinear languages) and NL (languages accepted by
a nondeterministic Turing Machine using logarithmic space). We write L (X)
for the family of languages accepted by devices of type X and Ldet(X) for the
family of languages accepted by deterministic devices X. We use L u ⊆ L for the
correspondent family of unary languages. A unary alphabet is tacitly assumed
to be {a}.
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2.1 Forgetting Automata

A forgetting automaton is a system A = 〈S, A, �, �, ��, O, δ, s0, F 〉, where S is a
finite set of states, A is the input alphabet, �, � /∈ A are the left and the right
sentinels, �� /∈ A is the blank symbol used for erasing, O is a set of operations
(see below), δ : S × (A∪ {�, �, ��})→ 2S×O is the transition function, s0 ∈ S is
the initial state and F ⊆ S is the set of final states. O consists of one or more
of the following operations:

• MVL, MVR: move head to the left and right, resp.,
• DLL, DLR: delete current field and move head to the left and right, resp.,
• ERL, ERR: erase current field with �� and move head to the left and right, resp.

IfA reads � (resp.�), it always implies an MVR-operation (resp. MVL-operation),
even if MVR, MVL /∈ O. Generally, a forgetting automaton is nondeterministic.
A forgetting automaton is deterministic if |δ(s, x)| ≤ 1 for all s ∈ S and x ∈
(A ∪ {�, �, ��}).

A configuration of a forgetting automaton A is a string w1sw2, where the
word w1w2 ∈ �(A ∪ {��})∗� is the content of the list, s is the current state and
A reads the first symbol of w2. By  we denote the relation which describes the
change of configurations according to δ; ∗ is the reflexive, transitive closure of
. An input word is accepted by A if there is a computation, starting in the
initial configuration s0 � w�, which reaches a configuration with an accepting
state.

In case O contains both versions XL and XR of an operation, we write X
for short. A forgetting automaton with a certain set of operations, e.g., MVR

and DL, is called (MVR, DL)-automaton. For the family of languages accepted
by such automata we write L (MVR, DL).

2.2 Counter Automata and Register Machines

In order to be able to classify the computational capacities of forgetting automata
we recall briefly some definitions of other machine models that will be dealt
with:

A one-way one-counter automaton (1CA) is a pushdown automaton (PDA)
accepting by final state, with one pushdown symbol (except for the bottom
marker).

A two-way one-counter automaton (2CA) is a two-way finite automaton equip-
ped with a counter (linearly bounded by the length of the input). Its input is
placed between the sentinels � and �. The automaton can test if the counter
value is zero or nonzero and can add −1, 0 or +1. The automaton accepts an
input string if it halts in an accepting state.

A two-register machine consists of a finite control and two registers (counters)
and it receives a (natural) input number in the first register (i.e., it has no input
tape). It works deterministically and accepts an input by reaching an accepting
state.
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3 The Non-unary Case

First of all we take a closer look at the language classes between REG and CFL
and compare them to the classes of linear and metalinear languages.

Theorem 3.1. LIN ⊂ METALIN ⊂ L (MVR, DL)

Proof. Given a k-linear grammar, an (MVR, DL)-automaton can guess (by MVR-
steps) the ‘end points’ of the k linear derivation paths and process them suc-
cessively by deleting from the inside to the outside according to the given pro-
ductions and moving right to the next derivation path while memorizing the
(finitely many) nonterminals occurring. Furthermore the context-free language{
w ∈ {0, 1}∗

∣∣ |w|0 = |w|1
}
∈ L (MVR, DL) is not metalinear. ��

Lemma 3.1. LIN and METALIN are incomparable to L (ERR, DL).

Proof. On the one hand
{
w ∈ {0, 1}∗

∣∣ |w|0 = |w|1
}
∈ L (ERR, DL) is not meta-

linear, on the other hand
{
wcwR

∣∣ w ∈ {a, b}∗
}

/∈ L (ERR, DL) ([1]) is an (even
deterministic) linear language. ��

Interestingly enough it was shown in [1] that L (MVR, ERR, DL) coincides with
the family of context-free languages, i.e., the family of languages recognized by
pushdown automata. If we leave out the MVR-operation, we will get another
well-known family of languages:

Theorem 3.2. L (ERR, DL) = L (1CA), Ldet(ERR, DL) = Ldet(1CA)

Proof. Nondeterministic Case: ‘⊆’ A 1CA A can simulate an (ERR, DLL)-au-
tomaton B (L (ERR, DL) = L (ERR, DLL), see [1]) in the following way: We
assume without loss of generality that B accepts an input by halting on �. A
simulates each of B’s steps by a series of its own steps. The counter is thereby
used to keep track of the number of ��-symbols on B’s input list while A’s head
always remains on the position of the first (unerased) input symbol. During the
computation B’s head is always positioned on one of the following list elements:

� a b a b a b a b �
▲

(a) left sentinel

� �� �� �� �� a b a b �
▲

(b) rightmost ��-symbol

� �� �� �� �� a b a b �
▲

(c) leftmost input symbol

� �� �� �� �� �� �� �� �� �
▲

(d) right sentinel

As A’s head is always placed on an input symbol, it needs to cope with cases
(a), (b) and (d) using ε-moves. For this purpose A checks in every simulation
step whether B reaches an input symbol (we call this the ‘input mode’) or not
(‘blank mode’), which can be done by looking at the operation being simulated
and the counter value. Case (a) can be detected by checking the counter value
for zero, case (d) needs to be handled separately (see below).
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To simulate ERR in input mode, A increases the counter and stays in input
mode while in blank mode it simulates the state transition in an ε-move and
enters the input mode. To simulate DLL in input mode A also simulates the
following step (B will be reading �) in advance and stays in input mode if the
counter is empty; otherwise it enters the blank mode. To simulate DLL in blank
mode it decreases the counter in an ε-move and, if the counter is empty, it also
simulates the next step (B will be reading �) and enters input mode again; if
the counter is not empty it stays in blank mode.

In order to simulate B’s behavior after it hits �, A can guess the end of input
after each step. A thereby simulates the processing of the remaining unary input
��k (for some k ∈ IN0) with the counter value, using only ε-moves (all transitions
reading input are undefined for the states used therein). While ERR (and the
following MVL) imply only state changes, DLL can be simulated by decreasing
the counter; the arrival at the left boundary can be detected by using the zero
test. By this means A falls off the tape in an accepting state if and only if B
accepts on the right sentinel (after having erased the input completely).
‘⊇’ An (ERR, DL)-automaton A can simulate a 1CA B in the following way:
First of all B can be implied to be ε-free ([10]), therefore an upper bound k
of counter increase per move can be assumed. A needs to simulate B’s counter
including the zero test. It stores the counter value as the quotient of division by
k on its list and the remainder modulo k in its states. Furthermore it keeps the
information if at least one erased symbol is on the list in its states and updates
it when writing or deleting erased symbols. The result of the zero test is given
by this information and the remainder modulo k. By this means A ends up on
� accepting the input if and only if B falls off the tape and accepts the input.

Deterministic Case: ‘⊆’ We assume without loss of generality that a determin-
istic (ERR, DLL)-automaton always completely deletes the input before it accepts
or not accepts on �. As opposed to the nondeterministic case the end of input
cannot be guessed, but the ‘post-processing’ of the remaining string ��k can be
performed in parallel before: As the behavior of the deterministic (ERR, DLL)-
automaton B on ��k can be simulated by a (unary) DFA we just have to compute
the state the forgetting automaton will finally be in when reaching �. Therefore
a unary DFA Ci (see Fig. 1) for every possible (starting) state si is regarded and
the edges are followed forwards and backwards. When going backwards from
state si,ki , the counter is checked for the value ki with ε-moves (by decreasing ki

times, checking for zero and incrementing again). A then changes to an accepting
state if and only if B accepts the input when hitting � in the next step.
‘⊇’ To adapt the proof of the nondeterministic case we need to make sure that
within computations of the deterministic 1CA B only bounded chains of ε-moves
can occur. In the deterministic case we cannot do without ε-moves, but we can
state a linear upper bound for their usage. We therefore modify B to satisfy the
property that after reading n input symbols the counter value is not bigger than
k · n (for a fixed k ∈ IN). Whenever there occurs a series of ε-moves in B, it can
either lead into a loop or enter a state for which a state transition using an input
symbol is defined again (for a DPDA only one type of transition is allowed). We
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si,0 si,1 · · · si,ki−1 si,ki

si,ki+1

si,ki+2

si,ki+3

...

si,ni−2

si,ni−1

si,ni

Fig. 1. DFA Ci

obtain the desired property by removing some of the transitions as follows: In
the case of a loop s1, s2, . . . , sl, s1 we observe the overall change c of the counter
value during one cycle. If c < 0 the automaton will always reach counter value
zero and therefore leave the loop, if c >= 0 we can safely remove the transition
from sl to s1 (counter level zero can only be reached up to the first occurrence
of sl). The language accepted by B remains unchanged and we can obtain k by
examining the remaining state transitions.

We now know that only bounded chains of ε-moves can occur. Those can
be simulated by the (ERR, DL)-automaton A in advance for state changes only
and with DL-operations for decreasing the counter. By observing together only
a number of steps such that the decrease cannot exceed k, A is able to perform
zero check and decrease operations correctly, as it can use its modulo-k-counter
and the information whether there are erased symbols on the list or not. ��

While the inclusion L (MVR, ER, DLR) ⊆ L (MVR, ER, DL) is trivial, the question
of strict inclusion or equality of the two language families was left open in [1].
We will see that the absence of the DLL-operation in question does not make a
change in the generative power:

Theorem 3.3. L (MVR, ER, DLR) = L (MVR, ER, DL),
Ldet(MVR, ER, DLR) = Ldet(MVR, ER, DL)

Proof. An (MVR, ER, DLR)-automaton A can simulate an (MVR, ER, DL)-autom-
aton B in the following way: In order to deal with the DLL-operation unavailable
to A, it distinguishes between two different modes we call mode 1 and mode 2.
In mode 1 A simulates the operations MVR, ERL, ERR and DLR directly, while
it simulates DLL by executing ERL and entering mode 2. In mode 2 A simulates
B’s behavior as follows:

When B A
performs performs operation enters mode

MVR MVR, DLR 1
ERL DLR, ERL 1
ERR DLR, MVR 1
DLL DLR, ERL 2
DLR DLR, DLR 1
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By this means A finally accepts the input if and only if B accepts. ��

Another relation left open in [1] is the one between L (ER, DL) and L (MV, ER),
where we find the following inclusion to hold:

Theorem 3.4. L (ER, DL) ⊆ L (MV, ER)

Proof. An (MV, ER)-automatonA can simulate an (ER, DLL)-automaton B (note
that L (ER, DL) = L (ER, DLL) holds) as follows: essentially A simulates ER by
MV and DL by ER, that means it does not erase the fields erased by B but
only moves and erases fields deleted by B in order to treat them as deleted
afterwards. The challenge is not to lose track of the ‘critical’ position c up to
which B has erased the input so far in order to know if B reads ‘��’ or an input
symbol throughout the simulation. The idea is to mark the symbol on position
c by erasing it and to remember if currently the rightmost �� on the list stands
for a deleted symbol or position c (note that it can always be checked whether a
��-symbol is rightmost on the list). If B moves left from position c, we let A guess
whether B returns with or without deleting at least one symbol in between. If we
consider the partial computations performed by B that start in a certain state
si on an input symbol x ∈ A with an ERL-operation (resp. DLL-operation) and
only use ER-operations (on symbols already erased), we get the behavior of a
2NFA that starts its computation on the second last (resp. last) �� of a unary
input string w ∈ {��}∗ bordered by sentinels � and x. As this 2NFA can also be
represented by a DFA, A can simulate the behavior of such an automaton Ci (one
for each starting state si, see Figure 1) falling off the tape on its right sentinel
x in advance and simply move right in a corresponding state. The simulation
of Ci can be achieved by following Ci’s edges forwards and backwards during
normal movement (cf. the proof of Theorem 3.2). When going backwards from
state si,ki , A checks if its head is standing on position ki (by moving ki steps
to the left, checking the presence of the boundary symbol and moving ki steps
to the right again). In this way A can always keep the DFA’s state up to date
while moving around on the tape.

If A instead guesses that B will delete some symbol before returning, we let A
mark (i.e., erase) position c, continue simulating and halt in a non-accepting state
if the guess was wrong (i.e., B returned without deleting in between). However,
the first time B deletes one of the symbols left of position c, A simply treats the
rightmost input symbol on the left of c (again, this can always be checked) as
deleted. In this way the computation on the erased subword at the beginning
of the list as well as its length can be simulated correctly and A accepts if and
only if B does. ��

We can even add the MVL-operation and extend the result above:

Theorem 3.5. L (MVL, ER, DL) ⊆ L (MV, ER)

Proof. Whereas MVL is equivalent to ERL on fields that have been erased before,
it gives an (MVL, ER, DLL)-automaton the option to move left from the leftmost
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input symbol without erasing or deleting it. The proof of Theorem 3.4 can there-
fore be extended as follows: MVL on A is simulated by MVL (special treatment
is unnecessary as position c does not change) while MVL on ‘��’ is handled like
ERL. ��

The deterministic version of the preceding theorem can also be obtained:

Theorem 3.6. Ldet(MVL, ER, DL) ⊆ Ldet(MV, ER)

Proof. The proof of Theorem 3.4 can be modified to suit the deterministic case
as follows: If automaton B moves leftwards from position c, A does not have to
guess whether B deletes some symbol or not. If we consider the DFA Ci that
originates from using only ER-operations, two possibilities can emerge in the
deterministic case: 1. Ci’s state represents exactly one state of the 2DFA or 2.
Ci’s state represents the empty set of states. In the first case B will return to
position c without deleting any symbol in between and A can instantly change
to the corresponding state. In the second case B will either halt or use a DL-
operation and A can mark position c and directly simulate B’s steps. ��

Bringing together the previous theorems with the fact from [1] that the language{
wcwR

∣∣w ∈ {a, b}∗
}

is not contained in L (MVL, ER, DL) we even have a strict
inclusion:

Corollary 3.1. L (MVL, ER, DL) ⊂ L (MV, ER),
Ldet(MVL, ER, DL) ⊂ Ldet(MV, ER)

For an overview of the classification of forgetting automata see Figure 2 (the
trivial classes L (MVL), L (ERL) and L (MVL, ERL) below REG are omitted).

REG = L (MV) = L (ER)

L (ERR, DL) = L (1CA)

L (MVR, DL)

CFL = L (MVR,ER)
= L (MVR, ERR, DL)

LIN

METALIN

L (MV,DL) L (ER,DL) = L (ER,DLR)

L (MV,ER)

L (MVL, ER, DL)
L (MVR, ER, DL) =
L (MVR, ER, DLR)

L (MV,ER,DL)

DCSL

Fig. 2. The classification of (non-unary) forgetting automata
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4 The Unary Case

In this chapter we examine the computational capacities of forgetting automata
in the case of unary input alphabets. At the lower end of the hierarchy we can
get the following immediate result: as REGu = CFLu all language families up
to CFL collapse in the unary case.

Lemma 4.1. REGu = L u(ERR, DL) = L u(MVR, DL) = L u(MVR, ER)
= L u(MVR, ERR, DL) = CFLu

While in the general case it is still unknown if the inclusion CFL ⊆ L (MV, DL)
holds, in the unary case we can state:

Theorem 4.1. REGu = CFLu ⊂ L u(MV, DL)

Proof. To begin with, it is clear that REGu ⊆ L u(MV, DL) holds. Moreover the
language {a2n | n ∈ IN} is in L u(MV, DL), but not in REGu. ��

Once more, the following relation is still unknown to hold in the non-unary case:

Theorem 4.2. L u(MVL, ER, DL) ⊆ L u(MVR, ER, DL),
L u

det(MVL, ER, DL) ⊆ L u
det(MVR, ER, DL)

Proof. An (MVR, ER, DL)-automaton A can simulate an (MVL, ER, DL)-automa-
ton B by first traversing the input to the right up to � and then simulating all
of B’s operations in the converse direction. A finally reaches an accepting state
if and only if B does. ��

Note that the closure of L (MVL, ER, DL) under reversal would lead to the same
result for the non-unary case. The following result, however, does not hold in
the non-unary case, where

{
wcwR

∣∣ w ∈ {a, b}∗
}

serves as a counterexample:

Theorem 4.3. L u(MV, DL) ⊆ L u(ER, DL), L u
det(MV, DL) ⊆ L u

det(ER, DL)

Proof. As an (MV, DL)-automaton is not able to erase, it always reads the same
symbol (apart from the sentinels) in the unary case. Therefore moving can be
simulated by erasing. ��

In order to achieve a strict inclusion of L u(MV, DL) in DCSLu we draw a com-
parison between (MV, DL)-automata and two-way one-counter automata:

Theorem 4.4. L u(MV, DL) ⊆ L u(2CA)

Proof. A 2CA A can simulate an (MV, DL)-automaton B (processing unary in-
put) in the following way: During the computation the counter value equals the
position of A’s head (where 1 is the position of the first input symbol) minus the
number of symbols deleted by B. In other words: the number of deleted symbols
is represented by the position of A’s head minus the counter value. This gets
accomplished by simulating B’s steps in the following manner:
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B A
head movement counter update

MVL left −1
MVR right +1
DLL none −1
DLR right ±0

A can sense that B reaches the first input symbol (and therefore � if MVL or
DLL follows) if the counter value reaches zero. The right sentinel � marks the
end of the input for both A and B. By this means A accepts the input if and
only if B accepts. ��

Corollary 4.1. L u(MV, DL) ⊂ DCSLu

Proof. By Theorem 4.4 and the hierarchy for unary two-way counter automata
(see [11]) we can conclude: L u(MV, DL) ⊆ L u(2DC) ⊂ NLu ⊆ DCSLu. ��

In the deterministic case we can state a stronger separation result by simulating
a two-register-machine with an (MV, DL)-automaton and using a result of Ibarra
and Trân:

Theorem 4.5. L u
det(MV, DL) ⊂ L u

det(MV, ER)

Proof. First of all, the inclusion L u
det(MV, DL) ⊆ L u

det(MV, ER) holds, as in this
case DL can be simulated by ER ([1]). In the unary case a deterministic two-
register-machine A can simulate a deterministic (MV, DL)-automaton B in the
following way: A receives the length of B’s input string as input value in its first
register. During the simulation the first register stores the number of symbols
under and on the right side of B’s head and the second register deals with the
left side. MV-operations are simulated by shifting from one register to the other
while DL-operations lead to a decrement of the appropriate register.

In [12] Ibarra and Trân showed that the set of numbers L2 = {n2 | n ≥ 0}
(which corresponds to the language L′

2 = {an2 | n ≥ 0}) cannot be recognized
by a deterministic two-register-machine. A deterministic (MV, ER)-automaton
C on the other hand can accept L′

2 in the following way: C successively marks
the positions of squares, starting from 1 and 4. As the difference between two
adjacent squares (i+1)2−i2 equals 2i−1 it repeatedly copies a number (piece by
piece) to the right and adds two. For this purpose C marks positions i2 and i2+1
with ��-symbols and leaves them surrounded by unerased a’s (i.e., on positions
i2−1 and i2+2, see Figure 3). These subwords a����a serve as a boundary so that

� �� �� a �� �� a �� a �� �� a �� �� �� a �� �� a �� a �� a �� a �� �� a · · ·

1 4 9 16 25

Fig. 3. List contents after C has marked position 25
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C can move around without losing track of its position. The copying is done by
marking only every other position between two boundaries. This way the fields
between the squares i2 and (i+1)2 can be used twice, first for copying 2(i−1)−1
in it from the left (and adding two) and then for copying 2i−1 to the right side.
C finally accepts the input if and only if this construction finishes on a square
next to the right sentinel. ��

The preceding theorem partially solves (i.e., for the deterministic case) an open
problem from [1] and strengthens the claim “erasing is more powerful than delet-
ing” (from [13]) as we have:

Corollary 4.2. Ldet(MV, DL) ⊂ Ldet(MV, ER)

Moreover, in the deterministic case we can also give the following result:

Theorem 4.6. L u
det(MVL, ER, DL) ⊆ L u

det(MV, DL)

Proof. A deterministic (MV, DL)-automaton A is able to simulate a determinis-
tic (MVL, ER, DL)-automaton B as follows in the unary case: Again A has to keep
track of the position c up to which B has erased the input (cf. Theorem 3.4).
To simulate B’s behavior (on sufficiently long input; input up to a certain fixed
length can be handled separately) we regard loops of configurations of the fol-
lowing forms

���kxan� ∗ ���kxam� (m ≤ n) (1)

���kxan� ∗ ���lxam� (m < n, k < l) (2)

where A will always continue with the same computation steps and loop forever
(if m = n) or finally reach �. We therefore construct A to simulate these loops
while keeping its head on position c. In any case we first let A simulate the
initial steps up to the loop. For form (1) we then let A repeat the shortening of
the remaining input a∗ on position c, while for form (2) we let A simulate the
loop by moving to the right (following position c) and, if necessary, deleting the
appropriate number of symbols. Moreover, in order to correctly simulate B’s be-
havior when reaching �, A needs to check the distance to the right border before
simulating each cycle of the loop; as B can move back and forth during the loop
we might not capture this only by deleting the appropriate number of symbols.A
therefore always moves some steps (finitely many, bounded by |SB|) rightwards
and back to see if it can calmly simulate one cycle, i.e., if B does not reach � in be-
tween.A can then directly simulate the last steps before hitting � and afterwards
simulate all ER-steps by MV (as the remaining input consists only of ��-symbols)
and adopt MVL- and DL-steps. In that way A accepts if and only if B does. ��

Combined with Theorem 4.3 we therefore have an equality of the following lan-
guage classes in the deterministic case:

Corollary 4.3. L u
det(MV, DL) = L u

det(ER, DL) = L u
det(MVL, ER, DL)

For an overview of the classification of unary forgetting automata, in the deter-
ministic as well as the nondeterministic case, see Figure 4.
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REGu = CFLu

L u(MV, DL)

L u(ER, DL)

L u(MVL,ER,DL)

L u(MV,ER) L u(MVR, ER, DL)

L u(MV,ER,DL)

DCSLu

(a) nondeterministic case

REGu = CFLu

L u
det(MV,DL) = L u

det(ER,DL)
= L u

det(MVL,ER,DL)

L u
det(MV,ER) L u

det(MVR, ER, DL)

L u
det(MV,ER,DL)

DCSLu

(b) deterministic case

Fig. 4. The classification of unary forgetting automata
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2. Jančar, P., Mráz, F., Plátek, M.: Characterization of context-free languages by
erasing automata. In: Proc. MFCS 1992. Volume 629 of LNCS., Springer-Verlag
(1992) 305–314
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13. Mráz, F., Plátek, M.: A remark about forgetting automata. In: Proc. SOFSEM
1993. (1993) 63–66



Structurally Unambiguous Finite Automata�

Hing Leung

Department of Computer Science
New Mexico State University
Las Cruces, NM 88003, U.S.A.

hleung@cs.nmsu.edu

Abstract. We define a structurally unambiguous finite automaton
(SUFA) to be a nondeterministic finite automaton (NFA) with one start-
ing state q0 such that for all input strings w and for any state q, there is at
most one path from q0 to q that consumes w. The definition of SUFA dif-
fers from the usual definition of an unambiguous finite automaton (UFA)
in that the new definition is defined in terms of the transition logic of
the finite automaton, and is independent of the choice of final states.
We show that SUFA can be exponentially more succinct in the num-
ber of states than UFA and MDFA (deterministic finite automata with
multiple initial states). Some interesting examples of SUFA are given.
We argue that SUFA is a meaningful concept, and can have practical
importance as it can implemented efficiently on synchronous models of
parallel computation.

1 Introduction

The descriptional complexity of finite automata have been extensively studied
since 1970’s ([9], [11]). A recent survey on the descriptional complexity of au-
tomata can be found in [3].

While deterministic finite automata (DFA) are more suitable for implemen-
tation, nondeterministic finite automata (NFA) can be exponentially more suc-
cinct in denoting regular languages. NFA are classified according to the amount
of ambiguity used. Given an NFA M , we define the ambiguity of a string w to
be the number of different accepting paths for w in M . An NFA is said to be
k-ambiguous if every string in the language is accepted with at most k different
accepting computations. An unambiguous NFA (UFA) is a 1-ambiguous NFA.
An NFA is said to be finitely ambiguous (FNA) if the NFA is k-ambiguous for
some positive integer k. There is a special class of FNA called deterministic fi-
nite automata with multiple initial states (MDFA) ([5] [4] [2] [13]) which is an
NFA with deterministic transition logic. An MDFA is k-ambiguous where k is
the number of starting states.

An NFA is polynomially ambiguous (PNA) if there exists a polynomial p such
that every string x in the language is accepted with at most p(|x|) accepting
computations. Given an NFA of k states, any input string of length n can have
� The research is partially supported by NSF MII grant CNS-0220590.
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at most kn different accepting computations. Thus, it follows that every NFA is
exponentially ambiguous (ENA).

In Section 2, we define a variant of UFA which we call structurally unam-
biguous finite automata (SUFA). We present examples of interesting SUFA. We
prove descriptional complexity tradeoffs results between SUFA, UFA, MDFA
and reversal of MDFA. After we have established the technical results, we argue
in Section 3 that the new model SUFA is a meaningful concept. It can also have
practical importance as SUFA can be implemented efficiently on a synchronous
model of parallel computation.

2 Structurally Unambiguous Finite Automata

A SUFA is an NFA (Q, Σ, δ, q0, F ), where Q is the set of states, Σ is the alphabet
set, δ ⊆ Q×Σ ×Q, q0 is the starting state and F is the set of final states, such
that for any string w ∈ Σ∗ and for any q ∈ Q, there is at most one path that
goes from q0 to q for processing w.

Note that SUFA is defined by referring to the transition logic of the finite
automaton, and is independent of the way the set of final states is defined. That
is, SUFA is a property of the structure of the transition logic, independent from
the choice of the set of final states.

If there is only one final state, that is |F | = 1, then a SUFA is also a UFA.
However, SUFA may differ from UFA when there is more than one final state.

Similarly, we define a generalized structurally unambiguous finite automaton
(GSUFA) in the same way as SUFA except that we allow more than one starting
states. Specifically, a GSUFA is an NFA (Q, Σ, δ, S, F ) such that for any q, q′ ∈ Q
and for any string w ∈ Σ∗, there is at most one path that goes from q to q′ for
processing w. It is possible that in processing the same input w, two different
paths beginning from different states may arrive at the same state q′.

One can see that both GSUFA and SUFA are subclasses of FNA as the amount
of ambiguity of GSUFA and SUFA are bounded by n2 and n respectively, where n
is the number of states. It is interesting to compare the descriptional complexity
of the new models with UFA and MDFA, which are also subclasses of FNA.

We can see that the descriptional complexity of SUFA and GSUFA in terms
of the number of states are polynomially related. It is clear that a SUFA is a
GSUFA. Given an n-state GSUFA (Q, Σ, δ, S, F ) where S = {s1, s2, . . . , sk} ⊆ Q
is the set of starting states, we replicate from the GSUFA logic k disjoint copies
of SUFA Mi = (Q, Σ, δ, si, F ), where 1 ≤ i ≤ k. Next, we introduce a new
starting state s where s �∈ Q and create ε transitions from s to the starting state
si of each of the k SUFA. By substituting the ε-moves with direct non-ε-moves,
we obtain a O(n2)-state SUFA equivalent to the given GSUFA. As a MDFA is
a GSUFA, consequently neither MDFA and GSUFA can offer significant (bigger
than polynomial) advantage in descriptional sizes over SUFA.

Consider an n-state NFA M with Q = {q1, q2, . . . , qn}, the alphabet set Σ
and the transition function δ. Let 1 ≤ i, j ≤ n. We define Mi,j = (Q, Σ, δ, qi, qj).
Then M is a GSUFA iff Mi,j is a UFA for all i, j ∈ {1, . . . , n}. Stearns and
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Hunt [12] showed that there is a polynomial time algorithm for checking if a
given NFA is a UFA. To test if a given n-state NFA is a GSUFA, we can apply
the polynomial time UFA-testing algorithm n2 times. Similarly, we can apply
the UFA-testing algorithm n times to check if a given NFA is a SUFA. Therefore,
whether a NFA is a SUFA (or, GSUFA) can be determined in polynomial time.

In [12], it is shown that equivalence and containment problems for UFA can be
decided in polynomially time. However, this is not the case for SUFA in general.
We can show that the equivalence problem for SUFA is PSPACE-complete. In [1]
(p. 266), it is known that the DFA intersection problem is PSPACE-complete.
Since DFA are efficiently closed under complementation, the following union-
universe problem [4] is also PSPACE-complete: Given a number of DFA G1, G2,
. . ., Gn over an input alphabet Σ, we ask whether the union of the languages ac-
cepted by G1, G2, . . ., Gn is Σ∗. One can consider the disjoint union of the n DFA
as a MDFA G, which is a SUFA. We can thus reduce the union-universe problem
to an instance of the SUFA equivalence problem with the instance consisting of
the SUFA G and a single state DFA (which is a SUFA) accepting Σ∗. Therefore,
the equivalence problem for SUFA is PSPACE-hard. As the equivalence problem
for NFA is in PSPACE, we conclude that the equivalence problem for SUFA is
PSPACE-complete. It is not difficult to see that the containment problem is also
PSPACE-complete since the equivalence problem can be easily reduced to the
containment problem, which is also PSPACE-solvable. On the other hand, if the
number of final states in a SUFA is bounded by a constant k (independent of
the number of states n), the equivalence and containment problems are solvable
in polynomial time as Stearns and Hunt [12] had showed that the corresponding
problems are polynomial time solvable for k-ambiguous finite automata.

In [8], we introduced a language of “some-register-on”. Suppose there are n
registers. Each register holds a value of either 0 or 1 (‘off’ or ‘on’). Initially,
register 1 is on. All other registers are off. Consider an instruction

Copy i to j

Executing the instruction will copy the current value of register i to register j.
In short, the instruction is given as Ci,j .

We define an input string to consist of a sequence of copy instructions. As
copying register i to itself is a dummy instruction, we assume that Ci,i is not
allowed. As there are n(n−1) possible copy instructions, the input alphabet has
O(n2) letters.

An example input is C1,4C4,2C3,1C4,3C1,2. We say that an input is in the
language of some-register-on if some register is on after the sequence of copy
instructions have been performed.

Consider the example input given before. Initially, register 1 is on. The first
copy instruction C1,4 will turn register 4 to on. The next instruction C4,2 will
turn on register 2. The next instruction C3,1 sets register 1 to off as register 3
is off. Next, instruction C4,3 turns on register 3. The last instruction C1,2 turns
register 2 to off. Thus, after all copy instructions are performed, registers 3 and
4 are on whereas registers 1 and 2 are off. Since not all registers are off, we
conclude that the input belongs to the language of some-register-on.
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We define an n-state SUFA for the language of some-register-on. State 1 is an
initial state. The design intuition is that state i is loaded when register i is on.
With respect to the input symbol Ci,j , there are transitions going from state i to
state j, and transitions going from state k to state k where k �= j. All states are
final states. Formally, the NFA is A = (Q, Σ, δA, q0, F ) where Q = {1, 2, ..., n},
Σ = {Ci,j | 1 ≤ i, j ≤ n, i �= j}, q0 = 1, F = Q and δA = {(k, Ci,j , k) | 1 ≤
i, j, k ≤ n, i �= j �= k}

⋃
{(i, Ci,j , j) | 1 ≤ i, j ≤ n, i �= j}. Nondeterminism

occurs when the NFA is at state i given that the current input symbol is Ci,j .
The NFA can remain at state i or go to state j. Other transitions are self loops.

To see that A is an SUFA, we reverse the transition directions and the roles
of starting and final states from A. We denote the reversal of A as AR. The logic
after reversing the transitions is deterministic. But it differs from a DFA in that
all the n states are starting states. Thus, AR is a MDFA. Since a MDFA is a
GSUFA, the reversal automaton of a MDFA is also a GSUFA. That is, A is a
GSUFA with one starting state; hence, A is a SUFA.

We can show that the smallest DFA for the language of some-register-on has 2n

states. This is because all subsets of states considered by the subset construction
are reachable, and any two subsets of states are distinguishable in the sense of
Myhill-Nerode theorem.

In the next theorem, we show that a UFA for the language of some-register-on
has at least 2n − 1 states.

Theorem 1. Let n ≥ 3. The smallest UFA for the language L of some-register-
on with n registers has at least 2n − 1 states.

Proof. (Sketch) The technique for proving lower bound on the size of a UFA is
introduced by Schmidt [11].

For ∅ �= Q′ ⊆ Q = {1, 2, . . . , n}, we want to define xQ′ such that A reaches
the subset Q′ of states when processing xQ′ from the starting state 1. Let Q′ =
{q1, q2, . . . , qk}.

Case 1. Suppose 1 ∈ Q′. Define xQ′ = C1,q1C1,q2 . . . C1,qk
.

Case 2. Suppose 1 �∈ Q′. Let q ∈ Q − {1, q1}. Define xQ′ = C1,q1Cq,1Cq1,q2

Cq1,q3 . . . Cq1,qk
.

Similarly, for ∅ �= Q′′ ⊆ Q = {1, 2, . . . , n}, we want to define yQ′′ such that
AR reaches the subset Q′′ of states when processing the symbols of the string
yQ′′ from right to left. Let Q′′ = {q1, q2, . . . , qk}.

Case 1. Suppose Q′′ = Q. Define yQ′′ = ε.
Case 2. Suppose Q′′ �= Q. Let Q − Q′′ = {q′1, q′2, . . . , q′h} where h + k = n.

Define yQ′′ = Cq′
2,q′

1
Cq′

3,q′
2
. . . Cq′

h,q′
h−1

Cq1,q′
h
.

We can see that xQ′yQ′′ ∈ L iff Q′∩Q′′ �= ∅. We define a matrix M indexed by
nonempty subsets of states such that entry [Q′, Q′′] has the value 1 if Q′∩Q′′ �= ∅,
otherwise the entry has the value 0. It has been shown in [7] that M has rank
2n − 1. Then, by Schmidt’s technique ([11] [8]), the smallest UFA equivalent to
A has 2n − 1 states. ��

Theorem 1 shows that we can achieve the biggest tradeoff between SUFA and
UFA. However, the language of some-register-on is over an alphabet of size
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O(n2) whereas the number of states in A is only n. Using a binary encoding
for the O(n2) letters, the number of states in A becomes n+O(n2) ·O(log n2) =
O(n2 log n).

On the other hand, in [8], we have shown that there exists a family of n-
state MDFA, where all states are starting states, over a binary alphabet such
that the smallest UFA has 2n − 1 states. As explained before, a MDFA can
be transformed into a O(n2)-state SUFA. Therefore, we have another family of
SUFA demonstrating exponential succinctness in the number of states over UFA.

As a consequence, we have

Corollary 2. SUFA can be exponentially more succinct in the number of states
than UFA.

Not only that SUFA can be exponentially more succinct in descriptional sizes
than UFA, it can also be exponentially more succinct than MDFA.

Lemma 3. The smallest MDFA for the language L of some-register-on with n
registers has at least 2n − 2 states.

Proof. Suppose the contrary that there exists a k-entry MDFA with less than
2n−2 states for L. The MDFA can be considered as a nondeterministic union of
k DFA (named D1, D2, . . . , Dk) each having less than 2n−2 states. We consider
each DFA Di as an incompletely specified DFA such that every state in Di are
reachable from the start state and can reach some final state. Moreover, we can
assume that every state in Di is indeed an accepting state. This is because a state
that can reach some final state is reached by the processing of some prefix of a
string in L, where L has the property that all prefixes of strings in L are also in L.

From the subset construction of A, the state that corresponds to the subset
Q is a state that once entered, the subset construction automaton will never
leave the state. A string w that causes the subset construction automaton to go
into this accepting “sink” state satisfies the property that w−1L = Σ∗. In the
following discussion, we deliberately avoid constructing strings that belong to
{w | w−1L = Σ∗}.

On the other hand, for all nonempty subsets of states Q′ �⊆ Q, there exists a
string that will cause the subset construction automaton to return to the state
that corresponds to a set consisting only of the starting state 1. Thus, for any
string u ∈ L such that A reaches a nonempty subset Q′ �⊆ Q of states, there
exists a string v such that (uv)−1L = L.

Recall that the smallest DFA for L has 2n states where one of the state is a
non-accepting dead state and another state is an accepting sink state. Moreover,
the rest of the 2n− 2 states in the DFA obtained by the subset construction are
strongly connected as there is a resetting mechanism which we have discussed.

Suppose Di arrives at state q on processing the string u from the start state.
Recall that u is designed such that u ∈ L − {w | w−1L = Σ∗}. Let v be a
string such that (uv)−1L = L. We resume the processing of Di from state q to
process v. It is possible that Di aborts, or it may arrive at a state q′. As Di does
not have 2n − 2 states and the language accepted by Di is a proper subset of
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L, together with the fact that all states in Di are accepting states, we deduce
that there must exist a string y ∈ L such that Di aborts in processing y from
state q′. We conclude that from any state q that Di reaches on processing a
string u ∈ L − {w | w−1L = Σ∗}, there is a string z such that Di aborts when
processing z from state q, whereas uz ∈ L− {w | w−1L = Σ∗}.

We consider DFA D1. There exists some string w1 ∈ L − {w | w−1L = Σ∗}
such that D1 aborts in processing w1 from the starting state. On processing w1,
DFA D2 may abort or may arrive at a state q2. There exists w2 such that w1w2 ∈
L− {w | w−1L = Σ∗} but D2 aborts when processing w2 from q2. Similarly, on
processing w1w2, DFA D3 may abort or may arrive at a state q3. There exists
w3 such that w1w2w3 ∈ L but D3 aborts when processing w3 from q3. We can
repeat this process to obtain a string w = w1w2 . . . wk ∈ L − {w | w−1L = Σ∗}
such that every Di aborts in processing w. Thus, the MDFA cannot recognize L,
a contradiction to the assumption that the MDFA has less than 2n−2 states. ��

In fact, the above lemma can be strengthened to show that the smallest MDFA
for the language of some-register-on has at least 2n − 1 states.

Theorem 4. The smallest MDFA for the language L of some-register-on with
n registers has at least 2n − 1 states.

Proof. (Sketch) We continue with the analysis given in the previous lemma. Sup-
pose the contrary that there is a MDFA of 2n− 2 states for L. Each DFA Di (as
defined in the previous proof), where 1 ≤ i ≤ k, can be assumed to have at least
2n − 2 states. Otherwise, we can show that any DFA Di with less than 2n − 2
states is not needed as we can use the same technique as in the previous proof
to ‘attack’ Di by a string w ∈ L that posseses the resetting property w−1L = L.
Next, as the previous proof considers strings w ∈ L−{w | w−1L = Σ∗}, we can
argue that the 2n−2 states of each Di can be identified with the 2n−2 non-sink
(accepting) states of the DFA obtained by applying the subset construction to A.
Moreover, all the different Di’s are functionally equivalent. Therefore, we can re-
duce them to only one DFA which is of 2n−2 states. But this is a contradiction as
we know that the smallest incompletely specified DFA for L has 2n−1 states. ��

As a consequence, we have

Corollary 5. SUFA can be exponentially more succinct in the number of states
than MDFA.

Note that the SUFA A is the reversal of a MDFA. Theorem 4 also shows that
the reversal of a MDFA can be exponentially more succinct than a MDFA. This
should not be a surprise as the reversal of a DFA can also be exponentially more
succinct than a DFA [8]. Let LR denote the reversal of L. It is clear that LR

can be recognized by the n-state MDFA AR. On the other hand, the statement
that a MDFA requires at least 2n − 1 states to recognize L can be restated as
LR requires 2n − 1 states for the reversal of a MDFA to accept. Therefore, we
have the next corollary:
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Corollary 6. The reversal of a MDFA can be exponentially more succinct than
a MDFA. A MDFA can be exponentially more succinct than the reversal of a
MDFA.

In [8], it is shown that MDFA can be exponentially more succinct than UFA. On
the other hand, we are going to show that UFA can also be exponentially more
succinct than MDFA.

We modify the language of some-register-on. Instead of accepting a string
when some register is on, we accept a string only if the register that we query at
the end of the input is on. That is, the end of an input is augmented by a query
instruction.

Assert: Register i is on

An input is accepted if the register i queried is on. In short, the query instruction
is denoted as Qi. We denote the new language L1.

We extend the previous example input by a query Q3. The example input
becomes C1,4C4,2C3,1C4,3C1,2Q3. Since register 3 is on after the copy instructions
are performed, the input is accepted as the query is about register 3. If we query
about register 1 at the end of the input as in C1,4C4,2C3,1C4,3C1,2Q1, then the
input is not accepted since register 1 is off.

To handle the newly added query feature, we modify the SUFA for the lan-
guage of some-register-on. We introduce a new state called f , which is the only
final state. New transitions are added: from each state i, on processing Qi, it
will go to state f . The resulting (n + 1)-state NFA is a UFA. We can see this as
the reversal of the NFA is a DFA. In fact, it has been shown [8] that the UFA is
the smallest UFA for the language.

We can argue that the smallest MDFA for L1 has at least 2n − 1 states.

Corollary 7. The smallest MDFA for L1 has at least 2n−1 states. Hence, UFA
can be exponentially more succinct in the number of states than MDFA.

Proof. Suppose the contrary that there is a MDFA A1 for L1 with less than
2n − 1 states. We can assume without loss of generality that all states in A1
are useful in the sense that each state in A1 can reach some final state. We can
modify A1 to give a MDFA for L. The modifications are as follows: Remove all
transitions labelled with queries and define every state to be an accepting state.
It is easy to see that the resulting modified automaton is a MDFA for L with
less than 2n− 1 states. But this contradicts with the result of Theorem 4, which
states that the smallest MDFA for L has at least 2n − 1 states. ��

In the literature, we have seen UFA designed as the reversals of DFA and FNA
designed as the reversals of MDFA. Our example of SUFA, the language of
some-register-on, is also the reversal of a MDFA.

As we have shown that the reversal of a MDFA is a SUFA, and a n-state
MDFA can be converted to an equivalent SUFA with O(n2) states. One may
wonder if SUFA is just the study of finite automata that are MDFA, or the
reversals of MDFA. We answer the question by constructing a SUFA such that
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any equivalent MDFA, or reversal of MDFA, requires an exponential blow up in
the number of states.

Recall that L denotes the language of some-register-on over the alphabet
Σ = {Ci,j | 1 ≤ i, j ≤ n, i �= j}. We define a language L′ = LR ·b·L ⊆ (Σ∪{b})∗,
where b is a new symbol not in Σ. Note that the reversal of L′ is L′ itself.

An initial design of a finite automaton B for L′ does not give us a SUFA.
We connect AR with a transition labelled by b, followed with A. Specifically,
the copy of AR is a MDFA with n starting states and a final state 1 (which is
considered as a final state of AR, but it is not exactly a final state of B). From
the state 1 of AR, we have a transition labelled by b that goes to the state 1 of
A which is a SUFA with all n states accepting. Together, B has 2n states.

We replicate n copies B1, B2, . . . , Bn of B, each with a different starting state.
That is, Bi is a SUFA with state i of AR as the starting state. We introduce a new
starting state for the nondeterministic union of B1, B2, . . . , Bn. We call the re-
sulting SUFA B′, which has O(n2) states over the alphabet Σ∪{b} of size O(n2).

Theorem 8. The smallest MDFA for L′ has at least 2n−1 states. The smallest
NFA for L′ that is the reversal of a MDFA has at least 2n − 1 states.

Proof. Suppose there is a MDFA N for L′ with less than 2n−1 states. We derive
from N a finite automaton for the language of some-register-on by removing all
transitions that are encountered before N processes the symbol b. We define the
starting states to be {q | (q′, b, q) is a transition in N }. The resulting finite
automaton is a MDFA for the language of some-register-on. As N has less than
2n − 1 states by assumption, the resulting finite automaton is a MDFA for the
language of some-register-on with less than 2n − 1 states, which contradicts the
statement of Theorem 4.

Suppse there is a finite automaton N ′, which is the reversal of a MDFA, that
recognizes L′ with less than 2n − 1 states. The reversal of N ′ is a MDFA that
recognizes the reverse of L′, which is again L′. But this contradicts the previous
result. ��

As a consequence, we have

Corollary 9. SUFA can be exponentially more succinct in the number of states
than MDFA and the reversal of MDFA simultaneously with respect to the same
language family.

Using a binary encoding for the alphabet symbols, we obtain from B′ a SUFA
for L′ with O(n3 log n) states.

3 Why SUFA?

In Section 2, we have shown that SUFA can be exponentially more succinct than
UFA and MDFA (also, reversals of MDFA) for denoting some family of regular
languages. On the other hand, SUFA will not do worse than equivalent MDFA
(or, reversals of MDFA) by more than a quadratic blow up in sizes.



206 H. Leung

From the descriptional complexity results, we see that SUFA is a stronger
model than UFA and MDFA (also, reversals of MDFA). But, one may wonder
whether SUFA has practical significance for the practitioners implementing finite
automata for online processing of input strings.

SUFA can be implemented efficiently on a synchronous model of parallel com-
putation. One process thread can be assigned to each state. When the state is
off, the process thread is waiting to be woken up by another thread. As there
is only one path arriving at a state at any moment, there will not be two mes-
sages sending to a process thread at the same time. Thus, the process thread
will not require any buffer to hold the incoming messages in the synchronous
computation.

NFA have been classified into UFA, FNA, PNA and ENA according to the
ambiguity levels exhibited. As the amount of ambiguity is defined in terms of
the number of accepting computations, the classification depends on the choice
of the set of final states, which determines the language denoted.

Structural properties are obtained that offer equivalent characterizations of
FNA, PNA and ENA. Suppose all states in an NFA are useful; that is, every
state can reach some final state, and can be reached from some starting state.
It is shown ([6] [10] [14]) that an NFA is strictly exponentially ambiguous if and
only if there exists a state q and a string w such that there are more than one
path from q to q processing w; an NFA is strictly polynomially ambiguous if and
only if the NFA is not strictly exponentially ambiguous and there exists different
states p, q and a non-empty string w such that there are paths for processing w
that goes from p to itself, from q to itself and from p to q; an NFA is finitely
ambiguous if and only if the NFA is not strictly polynomially ambiguous.

Observe that the structural properties are defined in terms of the transition
logic of an automaton, but not on the set of final states. The characterizations
for ENA, PNA and FNA show that one can replace the semantic definition of
ambiguity levels exhibited by a NFA by the structural definition.

In this paper, we have shown that the structural definition of unambiguous
finite automata differs from the semantic definition. That is, SUFA and UFA
are not the same class. Unlike the undesirable effect that ambiguity has on the
parsing of programs, ambiguity in NFA are used to reduce the descriptional
size. It is therefore not necessary to demand an unambiguous finite automaton
to allow only one accepting path for each string accepted. Moreover, from a
practitioner’s point of view, there is no drawback in adopting SUFA as the defi-
nition of unambiguous finite automata as it allows efficient synchronous parallel
processing.

The classes of SUFA, FNA, PNA and ENA are forming a nice proper hierachy
in that the next model in the hierachy is more general and could be exponentially
more succinct than the previous model. Note that it is still a conjecture that
PNA can be exponentially more succinct than FNA.

On the other hand, the models UFA, MDFA and reversal of MDFA are incom-
parable to each other as it has been shown that UFA can be exponentially more
succinct than MDFA (Corollary 7), MDFA can be exponentially more succinct
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than UFA [8], MDFA can be exponentially more succinct than reversal of MDFA
(Corollary 6) and reversal of MDFA can be exponentially more succinct than
MDFA (Corollary 6). As the reversal of a UFA is a UFA, we can also conclude
from Corollary 7 and [8] that UFA can be exponentially more succinct than re-
versal of MDFA, and reversal of MDFA can be exponentially more succinct than
UFA.

Finally, the models UFA, MDFA and reversal of MDFA are proper subclasses
of SUFA. It is shown that SUFA can be exponentially more succinct than UFA
(Corollary 2), and SUFA can be exponentially more succinct than MDFA and
the reversal of MDFA simultaneously (Corollary 9).
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Abstract. We show how to convert alternating Büchi automata to sym-
bolic structures, using a variant of Miyano and Hayashi’s construction.
We avoid building the nondeterministic equivalent of the alternating au-
tomaton, thus save an exponential factor in space.

For one-weak automata, Miyano and Hayashi’s approach produces
automata that are larger than needed. We show a hybrid approach that
produces a smaller nondeterministic automaton if part of the alternating
automaton is one weak.

We perform a thorough experimental analysis and conclude that the
symbolic approach outperforms the explicit one.

1 Introduction

In this paper we consider two closely related problems: that of model checking
specifications given as alternating Büchi automata (ABWs) and that of comput-
ing language emptiness for such automata. These problems have gained impor-
tance through the advent of new temporal logics such as PSL [1] and ForSpec [2].

The standard approach for model checking and consistency checking of Linear
Time Logic (LTL) properties is to convert these properties to nondeterministic
Büchi word automata (NBWs). This can be done explicitly [3,4,5] or symbolically
[6]. LTL properties can be seen as one-weak alternating automata, a restrictive
subclass of ABWs. A one-weak alternating automaton with n states can be
translated to an NBW with n · 2n states [5].

Languages like PSL are not star free and are therefore translated to ABWs,
not to one-weak automata [7]. For ABWs in general, conversion to an NBW
is not as simple as for one-weak automata. For ABWs, we need Miyano and
Hayashi’s construction [8], which generates O(3n) states [9]. Thus, an efficient
implementation of this construction is the key to a successful application of
alternating automata and, therefore, of logics like PSL. (It should be noted that
most model checkers for PSL currently accept only a subset of the language.)

This paper presents two contributions to an efficient use of Miyano and
Hayashi’s construction. First, through a reformulation of the construction we
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are able to develop a symbolic approach. Since the size of the symbolic repre-
sentation is polynomial in the size of the ABW, we can avoid the O(3n) blowup
associated with the conversion to an NBW1. The resulting symbolic representa-
tion can be used for model checking and consistency checking using either BDDs
or SAT.

The second contribution is a combination of Miyano and Hayashi’s construc-
tion with that of Gastin and Oddoux for one-weak automata [5]. Thus, we are
able to retain full generality while increasing efficiency for automata with parts
that are one-weak. Such automata occur frequently and benefit significantly from
our approach.

We perform a thorough experimental evaluation of our solution using both the
classic explicit approach and the symbolic one using either BDDs or SAT-based
model checking.

An approach through the linear μ-calculus [10] would also be possible. How-
ever, μ-calculus formulae are expressed using parity instead of Büchi automata.
This makes computing emptiness in the unbounded case (not handled in [10])
much harder.

2 Preliminaries

We denote by B(V ) the set of Boolean formulae with variables in V . Formulae in
B+(V ) do not use negation, formulas in B∨(V ) use only disjunction. Valuations
are denoted by subsets of V . We use ϕ[X/Y ] to denote that each variable in Y
is replaced by the corresponding variable or expression in X . We will assume a
finite set of (Boolean) atomic propositions AP . Our alphabet Σ is 2AP . The i-th
letter of an infinite word w on alphabet Σ, where w ∈ Σω, is denoted by wi,
whereby the index starts at zero. The empty word is denoted by ε. A Σ-labeled
tree τ is a prefix-closed set T ⊆ N∗ together with a labeling function L : T → Σ.

Definition 1. An alternating generalized Büchi word automaton (AGW) is a
tuple A = (Q, q0,AP , ρ,Acc) where Q is a finite nonempty set of states, q0 ∈ Q
is the initial state, AP is a finite set of atomic propositions, ρ maps every state
to a disjunction of formulae (ϕ ∧ ψ) where ϕ ∈ B(AP), and ψ ∈ B+(Q) (the
automaton is nondeterministic if ψ ∈ B∨(Q)), and Acc ⊆ 2Q is the acceptance
condition. (The automaton is non-generalized if |Acc| = 1, in which case we will
take Acc to be a subset of Q.)

We abbreviate alternating/nondeterministic generalized/non-generalized Büchi
word automaton to (A/N)(G/B)W. For nondeterministic automata, we will also
write ρ : Q× 2AP → 2Q, as usual.

For a given q ∈ Q, ρ(q) consists of a disjunctively related set of transition
formulae ϕ∧ψ, where ϕ defines the set of labels for which the transition is valid
and ψ defines the states to which the automaton will move.

1 This blowup can also be avoided by an on-the-fly approach, but that is hard to
combine with symbolic model checking.
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A run of A on an infinite word w ∈ (2AP )ω is a (possibly infinite) Q-labeled
tree τ such that the label of the root (ε) is q0 and for every node t labeled q,
with |t| = i, the conjunction of wi and the labels of t’s children models ρ(q). A
branch may be finite if it ends in a node t labeled q with |t| = i and wi models
ρ(q). A run τ on w is accepting if every infinite branch has infinitely many labels
in F for all F ∈ Acc. We denote by L(A) the set of words w for which A has an
accepting run.

Note that in the definition of a run there is no requirement that the set of
children of t be minimal. This condition can be added without changing the
language. Note also that t can have an arbitrary, possibly empty set of children
if ρ(t) = true. There is no run that contains a node labeled q if ρ(q) = false. A
run of an NGW for word w can be viewed as sequence r ∈ Qω.

A Büchi automaton induces a graph. The states of the automaton are the
nodes of the graph and there is an edge from q to q′ if q′ occurs in ρ(q). The
graph is partitioned into maximal strongly connected components (SCCs), some
of which may be trivial. A non-generalized alternating Büchi automaton is weak
if each SCC contains either only accepting states or only non-accepting ones.
The automaton is one weak (a.k.a. very weak or linear weak) if every SCC has
size one.

Definition 2. A fair transition system (FTS) [11] is a tuple (V, A, T, Θ, F ),
where V is a finite set of state variables, A is a finite set of input variables,
T ∈ B(V ∪A ∪ V ′) is the transition relation, Θ ∈ B(V ) specifies a single initial
state, and F ⊆ B(V ) specifies the acceptance condition.

In this definition, V ′, the set of primed versions of variables in V , is used to
denote the next state variables.

An FTS S = (V, A, T, Θ, {F1, . . . , Fn}) defines an NGW N as follows: N =
(Q, I, A, ρ,Acc), where Q is 2V , I is defined by Θ, ρ(q) =

∨
{ϕ ∧ ψ | ϕ ∈

B(A), ψ ∈ B+(Q) and q |= ϕ ∧ ψ → T }, and Acc = {Acc1, . . . ,Accn}, where
Acci = {q | q |= Fi}. Thus, we can speak of a run of an FTS and the language
of an FTS as if it were an NGW.

Where convenient, we will use the obvious extension to FTSs with variables
with larger finite domains.

3 Converting the Alternating Automaton

In this section, we show how to construct an NGW from an ABW. Our con-
struction combines the full generality of Miyano and Hayashi’s approach with
the efficiency of Gastin and Oddoux’ approach for one-weak automata where
possible. Since Miyano and Hayashi’s original formulation refers to individual
states and can not directly be encoded symbolically, we use an alternative for-
mulation here, more closely related to that of [12]. We also show how the same
approach can be used to convert an ABW to an FTS directly, avoiding building
the NGW.
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3.1 From ABW to NGW

Let A = (Q, q0,AP , ρ,Acc) be an ABW. Let QS ⊆ Q be the set of states in SCCs
of size greater than one and let QW = Q \QS be the set of states that are SCCs
of size one. We partition Q into four sets: QSN = QS \ Acc, QSA = QS ∩ Acc,
QWN = {q ∈ QW \ Acc | SCC of q has a self loop}, and QWA = QW \ QWN .
Assume that k = |QWN | and QWN = {b1, . . . , bk}.

Theorem 1. For the ABW A = (Q, q0,AP , ρ,Acc) there exists an NGW A′ =
(Q′, q′0,AP , ρ′,Acc′) such that L(A′) = L(A). The NGW A′ can be constructed
as follows:

– Let Q′ = L ×R× C, with L = 2Q, R = 2QSN , and C = {0, . . . , k}
– q′0 = ({q0}, ∅, 0)
– Acc′ = {L × {∅} × C,L ×R× {1}, . . . ,L ×R× {k}}
– The transition relation ρ′ is such that (L′, R′, c′) ∈ ρ′((L, R, c), σ), where

σ ∈ 2AP and L = {l1, . . . , ln}, if ∃L′
1, . . . , L

′
n such that:

• ∀j : L′
j ∪ σ |= ρ(lj)

•
⋃

j L′
j = L′

• R′ ⊆ L′

• either R = ∅ and R′ = L′ ∩QSN , or R �= ∅ and R′ ∪ (L′ \QSN ) ∪ σ |=∧
r∈R ρ(r)

• for all j, either bc �= lj or bc /∈ L′
j.

Proof. A directed acyclic graph (DAG) can be converted to a tree in the obvious
way. Thus, a DAG with labels in Q can be seen as a run.

It is well known that we can convert run trees to DAGs in such a way that an
accepting run yields an accepting DAG and a non-accepting run yields a non-
accepting DAG. The conversion is as follows. Suppose we have a run tree τ . On
every level, the DAG will have at most one node with a given label. Thus for
every level and a given label, we pick one representative node in τ . Other nodes
with the same label are removed, as are their subtrees. Their incoming edges are
redirected to the corresponding representative nodes. In the following we will
consider runs as DAGs and identify nodes for a given level by their labels.

First, we will prove that L(A) ⊆ L(A′). Let DAG d be an accepting run
of ABW A on word w. We construct the run r of NBW A′ as follows. Let
r = r0r1 . . . with ri = (L(i), R(i), c(i)). Let L(i) = {q | q occurs at level i of d}.
Assume L(i) = {l1, . . . , ln} for some n and let L′

i = {q | q is a child of li}. Then,
by the definition of a run, we have L′

i ∪wi |= ρ(li) and L(i + 1) =
⋃

i L′
i.

Let R(0) = ∅, let R(i + 1) = L(i + 1) ∩QSN if R(i) = ∅, and let R(i + 1) =
{q ∈ L(i + 1) | q ∈ QSN , ∃q′ ∈ R(i) : q is a child of q′ in d} if R(i) �= ∅.

Finally, choose c(0) = 0 and choose c(i) such that there is no edge from bc(i)
at level i to bc(i) at level i + 1 and the level j such that j < i and c(j) = c(i) is
minimal. (States in QWN are numbered b1, . . . , bk.)

It should be clear that r satisfies the definition of the transition relation of A′

and is therefore a run. Choose levels di in d such that d0 = 0 and for all i, di+1
is the level closest to the root such that an accepting state occurs on every path
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between level di and level di+1. Since d is an accepting run, there are infinitely
many such levels, and R is empty at those levels. Furthermore, since no path
gets stuck in a state bj, for any bj there are infinitely many levels at which the
edge from bj to bj is not taken, and thus c(i) is equal to j for infinitely many
values of i. Therefore, r is accepting.

Vice-versa, we need to prove that L(A′) ⊆ L(A). Let r = r0r1 . . . be an
accepting run of A′ on w, with ri = (L(i), R(i), c(i)). We will construct an
accepting run DAG d.

By the definition of the NBW, we have

∀q ∈ L(i) ∃L′ ⊆ L(i + 1) : Q′
L ∪ wi |= ρ(q), and (1)

∀q ∈ R(i) R′ = R(i + 1) ∪ (L(i + 1) \QSN )⇒ R′ ∪ wi |= ρ(q). (2)

Let S(i) denote the set of states on level i of d. We will define S(i) inductively.
Let S(0) = {q0}. We define S(i + 1) as follows. For q ∈ S(i) \ R(i), we pick as
successors the states L′ ⊆ L(i + 1) defined by 1. For q ∈ S(i) ∩R(i) we pick as
successors the states R′ ⊆ L(i + 1)∪R(i + 1) as defined in 2. (Note that L′ and
R′ are not uniquely defined. Any sets satisfying 1 and 2 will do.)

Note that R(i + 1) ⊆ R′ ⊆ S(i + 1) ⊆ L(i + 1) ∪R(i + 1). The last inclusion
may be strict if S(i) ⊆ R(i) and L(i + 1) contains redundant states in QSN .

By 1 and 2, d is a run.
Since for all i the successors of a state in R(i) are all either in R(i + 1) or

outside QSN , all paths between two levels i and j with R(i) = R(j) = ∅ must
contain at least one state outside QSN .

Now, since for every j and for infinitely many i, we have c(i) = j, the transition
from bj to bj is avoided infinitely often. Thus, no path in d gets stuck in any
state bj . Since every path has infinitely many states outside QSN , and does not
get stuck in a state bj ∈ QWN , it must visit an accepting state infinitely often,
and the DAG is accepting. ��
Intuitively, if we take QWA ∪ QWN = ∅, then the construction reduces to a
variant of Miyano and Hayashi’s approach. A run τ of A can be mapped to a
run r′ of A′ such that if (L, R, c) is the state of r′ after i transitions, then (1) L
is the set of labels of the nodes on level i of τ and (2) R consists of all labels in L
that label a state v for which there is no accepting state on the path between the
last level with R = ∅ and v. As Miyano and Hayashi note, a run of an ABW is
accepting if and only if it has infinitely many levels such that each path between
two such levels contains an accepting state. This is the case if and only if R
becomes empty infinitely often.

On the other hand, if QWA∪QWN = Q, then the construction reduces to that
of Gastin and Oddoux. Every state in QWN has a number i, and if the self loop
on state i is taken, then c �= i.

Using our combined approach the state space of A′ has size
|QWN | · 3|Q \ (Acc ∪ QWN )| · 2|Acc ∪ QWN | versus 3|Q\Acc| · 2|Acc| using Miyano and
Hayashi’s approach.

Note that there is no requirement in the transition relation that the sets L′

and R′ be minimal. This condition can be added, but is hard to deal with in a
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Fig. 1. ABW A and part of corresponding NGW A’

symbolic implementation. We do use the minimality condition when constructing
A′ explicitly.

We refer to our construction as MHGO, as it combines Miyano and Hayashi’s
with Gastin and Oddoux’ construction. By setting QWN = QWA = ∅, our con-
struction reduces to that of Miyano and Hayashi and we refer to it as MH.

Using this construction, accepting loops have length at least k. To remedy this
drawback we introduce a simple variant of MHGO in which C has domain
2QWN . Intuitively a c ∈ C contains all the states on which a self loop is not
allowed, and each state in QWN should appear infinitely often. Although this
expands the state space, its symbolic encoding is not larger.

The example shown in Fig. 1 illustrates the construction. (We use concatena-
tion to denote conjunction and ā (a bar) to indicate negation.) Since A′ is very
large, we only show a part: for most states edges labeled with ā are missing.
In the upper half of A′ we have that c = 0 and in the lower one that c = 1.
From the illustration we see that the transitions of the two halves are almost
symmetric, but for the second column of states. Since r is in QWN we can take
the self-loop on r only when c is 0. The NGW has two acceptance sets. One
requiring infinitely many visits in states with R = ∅, the other infinitely many
visits in states with c = 1, meaning that the self loop on r is not taken. In Fig. 1,
the first acceptance set is illustrated by bold borders on the left, the second by
bold borders on the right of the state.

3.2 From ABW to Fair Transition System

Let A = (Q, q0,AP , ρ,Acc) be an ABW. Let QSN , QSA, QWN , and QWA be as
before. We define the symbolic fair transition system S to be (V,AP , T, Θ, F ),
where



214 R. Bloem et al.

– V = QL ∪QR ∪ {c} where QL = {qL | q ∈ Q}, QR = {qR | q ∈ QSN }, and c
has domain {0, . . . , k},

– T = TI ∧ TLC ∧ TR (the parts are defined below),
– Θ = q0L ∧ (c = 0), and
– F = (F0, . . . , Fk), with F0 =

∧
q∈QSN

¬qR and Fi = (c = i) for 1 ≤ i ≤ k.

Let [Q′
LR/Q] be the substitution that replaces q ∈ Q \ QSN with q′L and

q ∈ QSN with q′R. We have TI =
∧

q∈QSN
(q′R → q′L),

TLC =
∧

q∈Q\QWN

(qL → ρ(q)[Q′
L/Q]) ∧

∧
q=bi∈QWN

(qL → ρ(q)[Q′
L/(Q \ {q}) and (c �= i ∧ q′L)/{q}]),

TR = (F0 ∧
∧

q∈QSN

(q′L → q′R)) ∨ (¬F0 ∧
∧

q∈QSN

(qR → ρ(q)[Q′
LR/Q])).

The FTS is easily seen to encode the NGW A′ introduced in the last section.
A valuation v corresponds to a state q of the NGW: q = (L, R, ĉ), where L =
{q | qL ∈ v}, R = {q | qR ∈ v}, and ĉ is the valuation of variable c. Thus, by
Theorem 1, we have the following theorem.

Theorem 2. L(S) = L(A).

The size of the FTS depends significantly on that of ρ. In contrast to Miyano
and Hayashi’s approach, where T contains two copies of ρ for Q \ Acc and
one for Q ∩Acc, the combined approach needs only one copy for non-accepting
states that are either trivial SCCs or in QWN . On the other hand, it contains
additional propositions c �= i for every self-loop on a state in QWN and it has
multiple fairness conditions.

Using the simple variant of MHGO in which C has domain 2QWN , it is pos-
sible to find witnesses in fewer steps than with MH, because we do not require
minimality for T . For the PSL formula always{{a; b}[∗n]}! we can find a witness
in one step, whereas MH needs 2n steps.

4 Experimental Evaluation

We implemented the approaches on top of the NuSMV model checker [13]. We
compare the explicit approach of building the NGW first and then converting
it to an FTS against our direct symbolic approach of building the FTS. We use
both BDDs and SBMC [14]. Finally, we compare the MH approach with the
variant of MHGO. It turns out that the variant of MHGO sometimes outper-
forms MHGO, especially when the language of the automaton is not empty. The
reason is that the latter creates accepting loops that are longer than necessary.
We use the pattern {E, S}{MH,MHGO}-{BDD, SBMC} to denote the combinations
of encodings and engines. (Where MHGO refers to the variant.) All experiments



Symbolic Implementation of Alternating Automata 215

were run on a 3GHz Intel Xeon CPU with 4GB of memory, with a time out of
900s and a 1GB memory limit.

In the SAT approach we use Simple Bounded Model Checking (SBMC) since
it is complete and allows for a fair comparison with BDDs, and we used Min-
iSAT [15] as SAT engine. The variable order chosen for the BDD experiments is
such that the current and the corresponding next variables are consecutive and
each qR immediately follows the corresponding qL. (This ordering yields good
performance on average.) We first compute the set of reachable states and use it
in the language emptiness algorithms to restrict the search as is common practice
in model checking. Using this setting we obtained better results on average.

We experimented with two classes of ABWs: R-ABWs are random ABWs for
which the number of accepting states, labels variables, transitions, and destina-
tions of each transition are proportional to the number of states; and PSL-ABWs,
which are built from typical PSL expressions used in industry [16].

The results of the experimental analysis are reported in Fig. 2: we plot the
number of problems solved in a given amount of time (the samples are ordered
by increasing computation time). The results show that the symbolic encoding
outperforms the explicit one, and that the best approach is either SMH-BDD or
SMH-SBMC. This is due to the construction of the explicit NBW which caused
all the time-outs/memory-outs that occurred for EMH-BDD on R-ABWs.

SMH-SBMC outperforms SMH-BDD on ABWs with L(A) �= ∅ because of the
limited number of steps needed by SMH-SBMC to find a solution. (See Figs. 2(a)
and 2(c).) On the other hand, BDDs perform better than SBMC on ABWs with
L(A) = ∅ (Figs. 2(b) and 2(d)): SBMC needs to consider a high depth to be
able to conclude that the language is empty, which results in a high consumption
of resources. (Cf. [14]). Note that in these figures SBMC is either very fast or
times out. A typical example of a property with an easy induction proof is
G(p∧Xn(¬p∧X ϕ)). A typical property for which the induction proof is hard is
G(p∧F(¬p∧X ϕ)). We conjecture that this is related to the fact that the encoding
does not require minimality and thus the induction proof depends on ϕ.

Figs. 2(e) and 2(f) compare symbolic MH with MHGO on random PSL prop-
erties. No significant difference results on these formulae. In the unsatisfiable
case, on average we noticed that SMHGO-SBMC times out at a lower depth than
SMH-SBMC. The presence of multiple fairness conditions appears to blow up
the SAT instance that is generated to prove that there is no witness. In the
satisfiable cases SMHGO-BDD performs slightly worse than SMH-BDD because
of the increased number of fix-points needed to perform language emptiness. On
the other hand, SMHGO-SBMC performs slightly better since the SAT instances
are smaller and shorter witnesses are found.

Figs. 2(g) and 2(h) show the results of computing language emptiness of
the combination of the Gigamax model (from the NuSMV distribution) and
R-ABWs with L(A) = ∅. The language of the combination is obviously empty.
The automata used in the plots of Fig. 2(g) are those for which SMH-SBMC was
not able to prove language emptiness. In contrast, in Fig. 2(h) we use automata
for which SMH-SBMC suceeded. The plots show that the BDD-based approaches
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Fig. 2. Language emptiness and Model checking results
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handle the increased complexity of the combined model well. SBMC, however
shows a mixed picture. For SMH-SBMC, Fig. 2(g) shows that there are three
cases for which adding the Gigamax model enables language emptiness to com-
plete. On the other hand, Fig. 2(h) shows that there are 15 examples for which
SMH-SBMC can not compute language emptiness on the combined model al-
though it could do so on the automaton in separation. EMH-SBMC can show
language emptiness for 8 of the 20 automata used in Fig. 2(g), but only for three
of the combined models. On the other hand, for the automata used in Fig. 2(h)
the results for EMH-SBMC are confirmed. With random models, too, BDDs are
quite well behaved, but the performance of SBMC is hard to predict.

The experimental analysis clearly shows that the symbolic encoding outper-
forms the explicit encoding, and that on average SBMC is the most effective
technique if the language is nonempty. On the other hand, BDDs are more effec-
tive than SBMC if the language is empty. Our results for SBMC confirm those
of [14]: sometimes the search needs large resources to consider deep runs to prove
that the property holds. (This is often the case when the language of the au-
tomaton is empty.) Finally, on the experiments considered there is no evident
benefit in using the variant of MHGO over MH. We believe that a more thorough
experimental analysis is needed to confirm or refute this result.

We are currently exploring the effects of optimizing both the ABW and the
NBW using the techniques of [17,18]. Preliminary results are promising, but a
thorough analysis must be carried out to better understand the impact of such
optimizations. We are also researching ways to apply the optimizations of [17]
directly to the symbolic encoding.
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15. Eén, N., Sörensson, N.: MiniSAT (2005) http://www.cs.chalmers.se/Cs/
Research/FormalMethods/MiniSat/Main.html.

16. David, S.B., Orni, A.: Property-by-Example guide: a handbook of PSL/Sugar
examples - PROSYD deliverable d1.1/3. http://www.prosyd.org (2005)
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Abstract. Branching bisimulation minimization is often used to obtain a smaller
but equivalent model for a complicated one. It is particularly useful in composi-
tional analysis to replace a subsystem’s behaviors with the minimal one so that
the growth of states can be controlled in a hierarchical, divide-and-conquer man-
ner. Nonetheless, branching bisimulation minimization is typically invoked after
the whole state space is enumerated entirely. In practice, when the parallel com-
position engine drains too many memory resources during exploring reachable
states, it causes operating systems to swap excessively (i.e., thrashing) due to the
page replacement of virtual memory. When such a scenario occurs, the system de-
grades dramatically in performance and becomes unusable, albeit minimization
is possible to abstract the whole state space into very small one. In this paper,
we present a pragmatic approach to make branching bisimulation minimization
on-the-fly. It minimizes the state space during composition and releases mem-
ory resources that are no longer used. Our approach allows larger systems to be
verified by taking account of operating systems memory management.

1 Introduction

Model checking techniques [15,16,19], while dealing with large-scale concurrent soft-
ware systems, typically do not scale well due to the PSPACE worst-case lower bound.
Reduction methods incorporated in these tools, such as partial order or symmetry, can
alleviate the state explosion problem to some extent but not in general. Approaches
to increasing the size of system that can be accommodated in a single analysis step
must eventually be combined with effective compositional techniques [22,7,12,6] that
divide a large system into smaller subsystems, analyze each subsystem, and combine
the results of these analyses to verify the full system.

The magic of compositional analysis, which allows excessive state exploration to be
alleviated and controlled, relies on subsystem boundaries to prevent internal behavior
(which is not concerned by outside components) from interleaving with outside behav-
ior during parallel composition. Therefore, appropriate methods must be imposed on
the subsystem state space to hide the internal behavior so that it will not participate
the parallel composition in the hierarchy. These methods typically involve abstracting,
reducing, or minimizing states and transitions of subsystems, while properties of in-
terest are preserved. However, the behavior of a subsystem often comprises “pending”
behavior – yet-to-synchronize behavior that appears in a subsystem’s state space, but
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its reachability is uncertain in the whole state space. So, methods to hide the internal
details of a subsystem must be capable of dealing with the “pending” behavior, which
excludes several well-known state-space reduction or minimization methods.

Bisimulation, technologically, is very suitable for such an application. Bisimula-
tion was first introduced by Milner [20](i.e., CCS). Milner introduced strong and weak
bisimulation to relate two communicating systems. Weak bisimulation, also known as
observational equivalence, is widely used in practical applications. A finer bisimulation
equivalence, called branching bisimulation, was later proposed by Glabbeek[11] to im-
prove weak bisimulation equivalence. Branching bisimulation and weak bisimulation
are the same for a large class of processes. It is finer than the weak bisimulation but
has some good properties, such as lower complexity and a simpler algorithm. So, in our
previous work [6,5], branching bisimulation has been used as the tool to hide internal
details of a subsystem. The branching bisimulation minimization (BBM) tool we use is
Fc2tools from INRIA [4]. It is a solid, stable set of tools, which is well implemented.
Minimizations can be invoked only after the state space is entirely explored. We call
this type of minimization as off-line.

Although off-line BBM has been applied successfully to many tasks, we have en-
countered the following scenario: When the parallel composition engine consumes
memory up to a certain point, the operating systems begin swapping pages between
physical memory and the hard disk. This symptom is known as “thrashing.” When that
happens, the system’s performance degrades dramatically due to the heavy disk I/Os.
Beyond this point, the whole system becomes unusable, even though BBM can shrink
the state-space considerably once it has the chance.

In this paper, we propose a pragmatic on-the-fly BBM approach. The minimization
is incorporated with the parallel composition engine. When the shortage of memory
resources is detected, branching bisimulation minimization is invoked to minimize the
explored state space and then release the memories which are no longer used. Such an
on-the-fly approach allows systems of larger size to be verified.

2 Related Work

Branching bisimulation equivalence was introduced by Van Glabbeek and Weijland in
[11]. They argue that this equivalence relation applied on labeled transition systems
(LTS) is finer than the observation equivalence of Milner[20]. Branching bisimulation
is favored for the following reasons. In the view of algorithm, branching bisimulation
can be decided in O(mn) time complexity, where m is the number of transitions and
n the number of states, and in O(m) space complexity [13,4]. Nevertheless, the fastest
algorithm of observation equivalence has O(l ·n2.367) time complexity and O(n+m+)
space complexity, where l is the number of actions and m+ is the number of edges
after taking τ+ the transitive closure. Van Glabbeek has also shown that observation
equivalence is not adequate for a modal logic with eventually operator. Therefore, if we
apply the observation equivalence to minimize a process, the liveness properties will be
lost. Nonetheless, branching bisimulation preserves liveness properties.

Currently, there are several branching bisimulation tools available, such as fc2min
in [4], ltsmin in [8] and bcg_min in CADP toolset[10]. These tools perform branching
bisimulationoveralabeledtransitionsysteminanoff-linemanner.Branchingbisimulation
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reduction based on τ -confluence can be found at [2,14,21]. τ -confluence allows to reduce
on-the-fly a state space with respect to branching bisimulation but not completely.

Making reduction and minimization methods on-the-fly is a common tactic to make
verification tools scale to larger systems. In [1,9], they address the application of bisim-
ulation equivalence checking on-the-fly. In such an application, they can check the
equivalence without constructing two LTSs entirely before comparisons. On-the-fly
generation of minimal models for model checking can be found in [3,18]. In this appli-
cation, an explicit state space is constructed from compact, implicit notations or design
languages. Their objective is to obtain a reachable minimal graph on-the-fly with re-
spect to the temporal formula.

3 Branching Bisimulation Minimization (BBM)

Formally, branching bisimulation is an equivalence relation defined as follows:

Definition 1. Let LTS1 = < S1, A1,'1, q1 > and LTS2 = < S2, A2,'2, q2 >
be two LTS, where Si is the set of states, Ai is the set of actions (labeled transitions),
'i is the transition relation, and qi is the initial state. Let≡b be the branching bisimula-
tion equivalence relation. LTS1 ≡b LTS2 , if there exists a binary symmetric relation
R ⊆ S1 × S2 such that

1. q1R q2

2. ∀s, s′ : sR s′, ∀a ∈ A ∪ {τ} if s
a

−→ t, then
(a) either a = τ ∧ tR s′,
(b) or ∃t′, ∃p0, p1, ....pn, ∃q0, q1, ....qm,

s′ = p0
τ−→ p1 · · · τ−→ pn = t1

a−→ t2 = q0
τ−→ q1 · · · τ−→ qm = t′ such

that
tRt′ ∧ sRpi ∧ tRqi, ∀i, j, 0 ≤ i ≤ n, 0 ≤ j ≤ m. �

The problem to obtain a minimal LTS of a given LTS is a Relational Coarsest Partition
Problem (RCP for short). Kanellakis and Smolka [17] studied this problem to provide a
solution on deciding equivalences over labeled transition systems. The algorithm com-
putes equivalence classes over states of a LTS, and refines them into exclusive blocks
with appropriate instability notion until all pairs of blocks are stable. Each block can be
replaced by a state to form the minimal LTS.

Let S be the set of states of a LTS. Let Bi be a set of states from S, called blocks.
The collection Π = {Bi ⊆ S | i∈ I} is a partition of S if and only if

⋃
i∈I Bi = S and

for j �= i : Bi ∩ Bj = φ. The elements in a partition are blocks. We say Π’ refines Π
if and only if ∀B′ ∈ Π ′, ∃B ∈ Π such that B′ ⊆ B.

The basic algorithm of RCP is

1. Π:= Π0
2. while (Π is not stable)
3. begin
4. Find (B, B’) unstable
5. Π:= RefineΠ(B, B′)
6. end
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In the beginning, the algorithm initializes a partition Π to Π0, where Π0 is a partition
with one block which contains all the states of a LTS. Then it repeats a refinement step
which consists in finding an unstable pair of blocks and refining the current partition
with respect to it, until a stable partition is obtained.

Definition 2. Given an action a in A of LTS, a pair of blocks (B, B′) of Π is
a-unstable iff in the setting of (B �= B′ or a �= τ) and φ �= Posa(B, B′) �= B, where

Posa(B, B′) = {s ∈ B |∃s1, s2, ..., sn, s′ : s0 = s,

∀i > 0, si ∈ B ∧ si−1
τ→ si, sn

a→ s′ ∧ s′ ∈ B′}. ��
The condition (B �= B′ or a �= τ) means that we cannot use τ -action to check the
instability of B itself. The condition φ �= Posa(B, B′) �= B means only partial states
in B may reach states in B′ via action a. If both conditions hold, the pair of blocks
(B, B′) is a-unstable. This instability notion is better explained in Fig. 1. In the figure,
a block B is checked against a splitter B′ with action a. The states which can use a
to reach block B′ is marked as grey. If the set of marked states is fewer than B, B is
unstable. Therefore, B will be split into two blocks, one with the marked states and one
with the unmarked states. In other words, the stability of a block is determined by its
outgoing transitions to other blocks, including τ actions.

Fig. 1. The instability notion checked by a splitter block

A pair of blocks is said to be unstable if and only if there exists an action a for which
these blocks are a-unstable, otherwise it is said to be stable. More generally, a block B
of a partition Π is said to be stable iff for all blocks B′ in Π , the pair (B, B′) is stable.
The partition Π is stable iff each of its blocks are stable.

When the BBM algorithm finds an unstable pair of blocks, it applies the refinement
below in the current partition by splitting a block into two smaller blocks.

Definition 3. If a pair of blocks (B, B′) of Π is a-unstable, then a refinement
Refa

Π(B, B′) of Π is obtained by replacing B with the blocks Posa(B, B′) and B −
Posa(B, B′). ��

For more details of the BBM algorithm, please refer to [4].
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4 Making Branching Bisimulation Minimization On-the-Fly

As described in previous sections, when state exploration drains too much memory, the
program begins swapping hard due to the page replacement. Therefore, minimizing a
partially explored state space to save memory allows verification of larger systems. It
can delay severe page replacement if the quotient of state space is indeed tractable under
a computer’s physical memory configuration.

According to Definition 1, the equivalence relation between two states is defined re-
cursively. Whether two states are branching bisimulated can only be known from top to
the bottom and then from bottom to the top. When a new state is newly explored, it may
have more successor states to explore and these successor states determine the inequiv-
alence. That is, we do not have backward inference of the inequivalence information
to split existing blocks in an iteration for newly explored states as the applications in
[3,18]. In the applications of [3,18], once a state is explored, the inequivalence can be
checked immediately by its proposition formula and the splitting of blocks can be de-
termined. So, we need to minimize a partial state space in a pragmatic way. We define
the partially explored state space as a partial LTS.

Definition 4. Given an entire state space L = < S, A,→, q >, L′ = < S′, A′,→, q′ >
is a partial LTS with respect to L iff

(q = q′) ∧ (S′ ⊆ S)∧(A′ ⊆ A) ∧ (→′⊆→) such that for each state s in S′ there
exists a path from q′ to s. ��

In the states of a partial LTS, we call a state which has no outgoing transitions as termi-
nal state. A terminal state is either having successor states which are not yet explored
or is a deadlock state. The other states in a partial LTS, which are not terminal states,
are called nonterminal states.

The naive solution which passes a partial LTS to the BBM algorithm as an interme-
diate step, unfortunately, does not work. The correctness (i.e., the instability notion) is
not maintained due to the unexplored states. Branching bisimulation, for example, will
merge all the terminal states into one. So, we need to examine the instability notion
more carefully.

Recall that in figure 1, a block B is partitioned by a splitter B′ if there are specific
transitions ending in the splitter. When dealing with action a, the states which can use a
to reach block B′ are marked. If the set of marked states is fewer than B, B is unstable.
Therefore, B will be split into two blocks, one with the marked states and one with the
unmarked states. In other words, the stability of a block is determined by its outgoing
transitions to other blocks, including τ actions. So, whether a block should be split or
not can be fully determined by its splitters. Therefore, if the states in a block B have
been totally explored, the correctness of a finer instability notion is preserved. That is,
once a block B is stable with respect to all its splitters, the newly explored behavior
(must be from splitter blocks) will not be able to split the block anymore, though B
could be merged into a bigger block in the future. Using this property, we design our
pragmatic approach as follows. We first define:
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Definition 5. A complete-partial LTS.
Given an entire state space L = < S, A,→, q >, LC = < SC , AC ,→C , qc > is a
complete-partial LTS with respect to L iff

LC is a partial LTS of L and each nonterminal state in LC has their outgoing transi-
tions explored totally. ��

To obtain a complete-partial LTS, we need to explore the reachable states breath-firstly.
The nature of breath-first search maintains its explored state space as a complete-partial
LTS at all time. So, to cope with our approach, the parallel composition must be de-
signed to explore states breath-firstly.

Our approach for intermediate minimization is described as follows. During state ex-
ploration, the program may pass a complete-partial LTS to the BBM module to start an
intermediate minimization. In each immediate minimization, we prepare the complete-
partial LTS into an initial partition which consists of a main-block and splitter-blocks
(shown in figure 2). In this complete-partial LTS, the terminal states, which either have
unexplored successor states or not, are made into disjoint splitter-blocks. Splitter blocks
collects all the terminal states of a complete-partial LTS so that no outgoing transitions
from main-block would end at other places.

Fig. 2. The main-block and splitter blocks of a complete partial LTS

Lemma 1. Let a block B be a complete-partial LTS without terminal states. Let B
be partitioned into Bi, i ∈ I by all the actions from B that end at splitter-blocks.
Then, Bi is final, i.e., it can never be split by other transitions (such as unexplored
states).

Proof. By contradiction. If Bi can be split by other transitions which do not start from
B and end in its splitter blocks, it would contradict the Definition 2. ��

Now, let ΠO be the partition of blocks obtained by off-line minimization. Lemma 1
shows that the instability notion holds for a complete-partial LTS, albeit Bi can be finer
than that of ΠO . States in distinct block of ΠO cannot be erroneously merged by our
algorithm. Some block Bi may be merged into a bigger block at a later stage, if there
exist τ -actions between a main-block and the splitter-blocks.
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Algorithm 1. The BFS state exploration algorithm
1: list<lts> InputLtsList; /* the list of LTSs which participate

the parallel composition */
2: lts complete_partial_LTS; /* a global data structure which

store the complete partial LTS */
3: void BFS_Compose() {
4: Let InitState be the product of initial states of LTSs in InputLtsList.
5: complete_partial_LTS.States.add( InitState );
6: complete_partial_LTS.InitStateId = InitState.Id;
7: Queue.addtail( InitState );
8: do {
9: CurState = Queue.delhead();
10: for all s be successors of CurState {
11: Let t be a transition of CurState s;
12: complete_partial_LTS.States.add( s );
13: complete_partial_LTS.Trans.add( t );
14: if s is new created {
15: Queue.addtail( s );
16: }
17: }
18: if minimization is required
19: Minimize( Queue );
20: } while( ! Queue.empty() );
21: Minimize( Queue );
22: }

Algorithm 2. The Minimization procedure
1: Let UnstableBlockList be an empty block list;
2: Let complete_partial_LTS be a partially composed LTS;
3: void Minimization( splitterlist ) {
4: MergeTauCycle( complete_partial_LTS );
5: PrepareUnstableBlockList( splitterlist );
6: BranchBisim( complete_partial_LTS );
7: }
8: void PrepareUnstableBlockList( splitterlist ) {
9: Let MainBlock be an empty block;
10: for all s in complete_partial_LTS.States {
11: if s is in splitterlist {
12: Create an empty block b; // the splitter-block
13: b.BottomList.add( s );
14: Add all s.InTrans into b.TransitionList;
15: UnstableBlockList.add( b );
16: }else {
17: MainBlock.BottomList.add( s );
18: Add all s.InTrans into MainBlock.TransitionList;
19: }
20: }
21: MainBlock.resetMark();
22: MainBlock.resetBlockPtr();
23: MainBlock.resetBottomList();
24: UnstableBlockList.add( MainBlock );
25: }

Lemma 2. States of a complete-partial LTS which are in the same block in ΠO are
eventually merged. ��

We explain Lemma 2 informally by introducing a dummy on-the-fly algorithm. This
dummy algorithm always split an initial block until each state is a single block. Real
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minimization is actually taken place after state space is entirely explored. In this case,
states in a same block of ΠO should be merged at last. This implies, a better minimiza-
tion algorithm such as ours, will eventually merge the states into the same blocks in ΠO

in last refinement, provided that Lemma 1 holds.
We illustrate our on-the-fly BBM algorithm in Algorithm 1 and Algorithm 2.

5 Experiments

In this section, we discuss how the memory resources are saved in our approach. In
principle, the parallel composition engine can output the explored states directly to
files, if no minimization method or analysis algorithm is invoked. The required memory
storage is the hash table which keeps the information of explored states so that when a
new reachable state is generated, it can be checked if it is already explored before.

In a straightforward implementation of explicit state enumeration, a state and a tran-
sition require the least memory structure as follows:

struct state_type {
BITSTATE state_no ; // the bit representation
struct edge_type * transitions ;

};
struct edge_type {

struct state_type *to ; // the destination state
struct edge_type * next ; // the pointer to link the transitions

};

Let the length of BITSTATE be S bits. A pointer in most platforms occupies 4 bytes. So,
a state with 3 outgoing transitions can occupy (

⌈
S
8

⌉
+4)+3∗8 bytes. In the hash table,

a state needs to store
⌈

S
8

⌉
+ 4 bytes, where 4 bytes are the pointer to the state. When

a state is merged, the memory resources of its state and transitions can be freed and
re-allocated but it still needs to keep a copy of BITSTATE (

⌈
S
8

⌉
+ 4 bytes) in the hash

table and its pointer in the hash table is redirected to the representative state of all the
merged ones.

By the analysis above, let the number of states being merged be n. Assume each state
has 3 transitions. The total memory occupied (including hash table) by these states are
n ∗ ((

⌈
S
8

⌉
+ 4) + 24 + (

⌈
S
8

⌉
+ 4)) bytes. After these states are merged, there are

n ∗ (
⌈

S
8

⌉
+ 4) bytes need to be kept in the hash table. Take S = 32 for example. 4/5 of

the memory is returned for reallocation. So, using our strategy, it could approximately
have a factor 5 gain.

An essential question unanswered in the previous section is the timing for triggering
minimization. If there is plenty of memory, it is unnecessary to invoke an intermediate
minimization. So, our tool allows two kinds of threshold to be specified - number of new
states (NNS) and memory size of states and transitions (MSST). In the case of NNS,
a counter is increased for each newly enumerated state. When the counter exceeds the
given NNS, minimization is invoked and the counter is reset. In the case of MSST,
users can manually specify the upper bound of the size of new states and transitions in
bytes. When that limit is reached, minimization is invoked. Compared to NNS, MSST
is more accurate. It can be used to count how much memory has been used by the newly
explored states and transitions in the unit of pages.
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Table 1. The results of of applying different NNS thresholds

Two-elevator system

state space without minimization 3600 states 7951 transitions

state space with minimization 53 states 199 transitions

upper bound (states) Max. State Num. Time Spent (sec.)

10,000 3600 2.693

1,000 1464 4.567

500 963 5.978

100 601 16.422

50 573 29.331

10 534 125.96

In table 1, we show a two-elevator system minimized on-the-fly with different NNS
values and the time spent. The middle column is the maximum number of states that
ever generated in each experiment. Undoubtedly, on-the-fly BBM will produce longer
elapse time. However, in the case of verification application, the primary concern is to
lower memory usage and prevent the program from thrashing. Additional computation
time is often acceptable, as long as it is not an increase in hours or days. In the ex-
treme case of NNS = 10, the maximum number of states ever generated is not close
to minimal 53 states. So, there is a root cost for the intermediate minimization in this
example.

In figure 3(b), we show the distribution of the maximum number generated for a
larger example – three-elevator system. During the on-the-fly minimization, with NNS
= 5000, the maximum number of states generated has never exceed 7803. In figure 3(a),
we show the subtasks performed in an intermediate minimization cycle.

Enumerating

state space

Computing S.C.C.

Merging S.C.C.

Splitting blocks

Merging blocks

28983

7803

147

(a) (b)

Fig. 3. A comparison of analyses with/without on-the-fly BBM by the maximum number of states
ever generated
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6 Conclusions

In this paper, we propose a pragmatic approach to achieve on-the-fly BBM which allows
larger systems to be verified. In our approach, BBM algorithm needs not be modified.
We have shown that a partially explored LTS can be minimized by the BBM algorithm
if its state exploration is enumerated breath-firstly and an initial partition is prepared
in a specific way. In our future research, we will seek approaches to determine the
thresholds of triggering intermediate minimization automatically so that BBM is only
triggered at the precise timing. The thresholds apparently may vary from a system to a
system.
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Finite-State Temporal Projection

Tim Fernando

Computer Science, Trinity College, Dublin 2, Ireland

Abstract. Finite-state methods are applied to determine the conse-
quences of events, represented as strings of sets of fluents. Developed
to flesh out events used in natural language semantics, the approach
supports reasoning about action in AI, including the frame problem and
inertia. Representational and inferential aspects of the approach are ex-
plored, centering on conciseness of language, context update and con-
straint application with bias.

1 Introduction

What follows, given that certain events happen? This question is addressed below
through finite-state methods. Automata and their runs are basic to temporal
logic (e.g. Eme92). In Linear Temporal Logic (LTL), for instance, an infinite
string x1x2 · · · of sets xi of atomic propositions specifying all atomic propositions
true at time i extends uniquely to an infinite string x̂1x̂2 · · · of sets x̂i of formulae
true at i. To capture events that make up the string x1x2 · · ·, it is convenient to
consider fragments anan+1 · · · an+m of x̂1x̂2 · · ·, where ak ⊆ x̂k for n ≤ k ≤ n+m.
These fragments cover only finite stretches of x̂1x̂2 · · · and may include only some
formulae true over those stretches.

In general, let Φ be a set of formulae called fluents. A fluent may or may not
be atomic, and may or may not belong to LTL. We identify an event with a
string a1a2 · · · an over the alphabet 2Φ of sets of fluents, drawing boxes, instead
of curly braces, to enclose a set of fluents when it is intended as a symbol of
the alphabet. This notation reinforces the intuition that an event is a film strip
assembled from partial snapshots ∈ 2Φ, and helps, for instance, distinguish the
string � (that we conflate with the language {�}) from the empty language ∅
(containing no strings). As an event, the string ϕ � is as much a part of ϕ ϕ

as it is of ϕ ϕ , where ϕ is the negation of ϕ. Henceforth, we assume negation
· is a map on fluents such that ϕ = ϕ �= ϕ for every fluent ϕ.

We shall see shortly that identifying an event (instance) with a string has
certain defects. We will finesse the problem by focusing less on the conception
of an event-as-string and more on that of an event-type-as-language. Much of
what follows concerns operations and relations on languages over the alphabet
2Φ that build up and relate event-types in useful ways.

1.1 Superposition and the Allen Interval Relations

A natural conjunction of languages L, L′ over 2Φ is the superposition of L and
L′ (Fer04) obtained from the componentwise union of strings in L and L′ of the
same length

O.H. Ibarra and H.-C. Yen (Eds.): CIAA 2006, LNCS 4094, pp. 230–241, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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L&L′ def=
⋃
n≥0

{(a1 ∪ b1) · · · (an ∪ bn) | a1 · · · an ∈ L and b1 · · · bn ∈ L′} .

For instance, we can compose a language for rain from dawn to dusk as

rain
+

& dawn �+ & �+ dusk = rain, dawn rain
∗

rain, dusk

(suppressing parentheses, as & is associative) consisting for n ≥ 0 of strings
rain, dawn rain

n
rain, dusk with (n + 2) snapshots, all of rain, the first at

dawn, and the last at dusk. The different values of n support models at different
levels of temporal granularity (the larger the n, the finer the grain). It is not
obvious, however, that we should think of each of these infinitely many strings as
distinct events. And surely we can reduce the infinite language to some finite core
that captures its essence: three snapshots, rain, dawn , rain and rain, dusk ,
arranged in a particular order.

Indeed, it is tempting to reduce every string rain, dawn rain
n

rain, dusk

with n ≥ 1 to the string rain, dawn rain rain, dusk of length 3. More gener-
ally, we define the interval reduction ir(s) of a string s ∈ (2Φ)∗ inductively

ir(s) def=

⎧⎨
⎩

s if length(s) ≤ 1
ir(as′) if s = aas′

a ir(a′s′) if s = aa′s′ where a �= a′

(for all a, a′ ⊆ Φ), reducing a block aa of two a’s to one, in line with the dic-
tum “no time without change” (KR93, page 674). What does the modification
“interval” in ir have to do with Allen’s 13 interval relations, tabulated below?

p before q p � q p after q q � p

p meets q p q p met-by q q p

p overlaps q p p, q q p overlapped-by q q p, q p

p starts q p, q q p started-by q p, q p

p during q q p, q q p contains q p p, q p

p finishes q q p, q p finish-by q p p, q

p equals q p, q

It turns out we can extract each of the 13 strings in the language

Allen(p, q) def= p (ε + �) q + q (ε + �) p +

( p + q + ε) p, q ( p + q + ε)

(where ε is the null string) from the superposition

�+ p
+�+ & �+ q

+�+ = ir−1(� p �) & ir−1(� q �))
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by applying ir

ir(ir−1(� p �) & ir−1(� q �)) = �Allen(p, q)�

where ir(L) def= {ir(s) | s ∈ L}. Without the intervention of ir−1,

ir(� p � & � q �) = ir(� p, q �) = � p, q �

and a lot of structure gets lost.1 Going back to rain, dawn rain
∗

rain, dusk ,
we may, anticipating further superpositions, wish to live with its infinitely many
strings, whether or not they correspond to distinct events.

1.2 Subsumption and Constraints

If we &-superpose rain, dawn rain
∗

rain, dusk with �+ noon �+, we get

rain, dawn rain
∗

rain,noon rain
∗

rain, dusk

which filters out the string rain, dawn rain, dusk of length 2, and fleshes out

the remaining strings in rain, dawn rain
+

rain, dusk by including noon in the
middle. To capture the growth of information here, let us say that L subsumes
L′ and write L � L′ if the superposition of L and L′ includes L

L � L′ def⇐⇒ L ⊆ L&L′

(roughly: L is at least as informative as L′). Conflating a string s with the
singleton language {s}, it follows that L subsumes L′ exactly if each string in L
subsumes some string in L′

L � L′ iff (∀s ∈ L)(∃s′ ∈ L′) s � s′

where � holds between strings of the same length related componentwise by
inclusion

a1a2 · · · an � b1b2 · · · bm iff n = m and ai ⊇ bi for 1 ≤ i ≤ n .

For example, p, q � p � p + q . As a type with instances s ∈ L, a
language L is essentially a disjunction

∨
s∈L s of conjunctions s (as is clear from

the model-theoretic interpretations spelled out in Fer04).

1 Another way of making sense of Allen’s relations in the present set-up is to replace
intervals i and j by languages L and L′ (respectively), and then turn before(i, j)
to L�+L′, meets(i, j) to LL′, equals(i, j) to L&L′, finishes(i, j) to �+L &L′, etc.
These constructions are all finite-state.
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Pausing to consider the finite-state character of the preceding notions, note
that for finite Φ and L ⊆ (2Φ)∗, we can construct a finite-state transducer for
the relation

&L
def= {(s1, s2) | s2 ∈ s1&L}

provided L is regular. (Given a finite automaton for L, form a transducer with
the labeled state transitions

q
a:b→ q′ def⇐⇒ (∃c) q

c→ q′ and a ∪ c = b

with initial and final states unchanged.) Hence, if L and L′ are regular, then so
is

L&L′ = {s2 | (∃s1 ∈ L′) (s1, s2) ∈ &L} .

The relation

{(s, s′) | s′ � s} = &(2Φ)∗

is also regular. Moreover, if L is regular, so is the subsumption closure L� of L

L� def= {s | s � L} = L & (2Φ)∗

consisting of strings that subsume some string in L.
In addition to the unary operation mapping a language L to L�, subsumption

� induces a binary operation⇒ on languages. Given L and L′, let the constraint
L⇒ L′ be the set of strings s such that whenever s � �nL�m, s � �nL′�m

L⇒ L′ def= {s ∈ (2Φ)∗ | (∀n, m ≥ 0) s � �nL�m implies s � �nL′�m} .

As explained in FN05, ⇒ is adapted from a similar construct called restriction
in BK03, with

L⇒ L′ = (2Φ)∗ (L� ∩ L′�) (2Φ)∗

where L is the set-theoretic complement (2Φ)∗−L. (To make sense of the expres-
sion to the right, recall the Boolean equivalence between A ⊃ B and ¬(A∧¬B);
the counterexamples in L ⇒ L′ corresponding to A ∧ ¬B are strings with sub-
strings that subsume L but not L′ — that is, substrings from L� ∩ L′�.) We
can use ⇒ to define the ϕ-bivalent language

(ϕ-biv) � ⇒ ϕ + ϕ

consisting of strings a1a2 · · ·an ∈ (2Φ)∗ such that for each i from 1 to n (inclu-
sive), ϕ ∈ ai or ϕ ∈ ai. While we may want to work with strings that do not
belong to this language (allowing a string to be silent on ϕ), it makes sense to
restrict our events to strings in the ϕ-consistent language
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(ϕ-con) ϕ, ϕ ⇒ ∅
requiring that no symbol in a string contain both ϕ and its negation ϕ. Similarly,
to pick out a unique position in a string by a fluent r (e.g. r = speech time “now”
or some other reference point), the constraint

r �∗ r ⇒ ∅
precludes the occurrence of r in two different positions in a string. Again, observe
that in general L⇒ L′ is regular if L and L′ are (and Φ is finite).

1.3 Inertia, Force and STRIPS Actions

Next, given a fluent ϕ, we introduce a fluent fϕ to mark the application of a force
to make ϕ true (at the next step). Hence, the fluent fϕ says a force is applied to
make ϕ false. Accordingly, the constraint

ϕ � ⇒ � ϕ + fϕ � (1)

states that ϕ persists (forwards) unless some force is applied against it, while

� ϕ ⇒ ϕ � + fϕ � (2)

states that ϕ persists backward unless it was previously forced. (1) and (2) are
similar to inertial constraints formulated in FN05 except that we distinguish fϕ
from fϕ here (the previous fluents Fϕ amounting essentially to fϕ∨ fϕ) in order
to formulate the constraint

fϕ � ⇒ � ϕ + fϕ � (3)

saying an unopposed force on ϕ brings ϕ about at the next moment. We could
derive (1) from (3) and the constraint

ϕ ⇒ fϕ (4)

but (4) would, under (fϕ-con), rule out snapshots ϕ, fϕ, fϕ that make ϕ true
at the next step, assuming (3) for ϕ. Instead of (4), we use fϕ to encode the
representation of an action A in STRIPS (FN71) by the constraints

try(A) ⇒ fϕ1, . . . fϕn where Add-List(A) = [ϕ1, . . . , ϕn]

try(A) ⇒ fψ1, . . . , fψm where Delete-List(A) = [ψ1, . . . , ψm]

alongside

try(A) ⇒ χ1, . . . , χk where Precondition-List(A) = [χ1, . . . , χk]

(borrowing the notation try(A) from AF94, with the temporal parameter im-
plicit). In STRIPS, only one action is performed at a time, with deterministic
post-conditions provided by constraints of the form (3) asserting that an un-
opposed force succeeds. The constraints above go beyond STRIPS in allowing
multiple actions to execute simultaneously, and the effects of an action to be
non-deterministic.
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1.4 The Remainder of This Paper

Building on §§1.1 and 1.2 above (which draw on Fer04 and FN05, in pursuit of a
line of research derived from Ste00), we consider the conciseness of representation
in §2, the contribution context as a language makes to entailments in §3, and
the application of constraints for inference rules in §4.

2 Concise Representations and Minimal Strings

In this section, we examine the conciseness of our string/language representa-
tions, starting with an observation worked out in Kar05 that we can unpack the
symbols in our alphabet 2Φ as strings. In a string a1 · · ·an ∈ (2Φ)∗, each addition
ai+1 to a1 · · ·ai is understood as describing a succeeding moment of time. But,
of course, the sequential structure in a string need not mark the passage of time.
Instead, assuming Φ is finite, as henceforth we do, we can define a surjective
function π : Φ∗ → 2Φ by

π(ε) def= �
π(ϕs) def= ϕ ∪ π(s)

so for example ϕ, ψ = π(ϕψ) = π(ϕψϕ) . We then introduce a new symbol

“tick” * �∈ Φ+ to advance the clock so that we can encode, for instance, ϕ, ψ ϕ

as the string ϕψ * ϕ, or as ψϕψ * ϕϕ.

2.1 Snapshots-as-Symbols Versus Snapshots-as-Strings

Given an ordering of the fluents, we can pick out for each a ∈ 2Φ a canonical
representative π̂(a) ∈ Φ∗ such that π(π̂(a)) = a. Extending π̂ to strings over 2Φ,
we can define π̂ : (2Φ)∗ → (Φ ∪ {*})∗ by

π̂(ε) def= ε

π̂(as) def= π̂(a) * π̂(s)

so for example π̂(a1a2a3) = π̂(a1) * π̂(a2) * π̂(a3)*. It is easy to build a finite-state
transducer for {(s, π̂(s)) | s ∈ (2Φ)∗}.

Proposition 1. If L ⊆ (2Φ)∗ is regular then so is

Lπ̂
def= {π̂(s) | s ∈ L} .

Indeed, if R ⊆ (2Φ)∗ × (2Φ)∗ is regular, so is

Rπ̂
def= {(π̂(s), π̂(s′)) | sRs′} .

Proof. Rπ̂ = π̂−1; R; π̂ where ; is sequential composition. +
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By Proposition 1, we can work with the alphabet 2Φ without worrying if reg-
ularity is preserved when switching over to the alphabet Φ ∪ {*}. Equally, a
regular relation R over the alphabet Φ ∪ {*} remains regular when translated
to π̂; R; π̂−1 ⊆ (2Φ)∗ × (2Φ)∗. The choice between snapshots-as-symbols and
snapshots-as-strings is a matter of taste, as far as regularity is concerned. From
a processing perspective, it is noteworthy that working with Φ∪{*}makes greater
use of the finite-state machinery. But for that very reason, the theory is arguably
simpler to describe in terms of 2Φ (with the unwinding of a snapshot to a string
over Φ ∪ {*} kept in the background).

2.2 Minimal Strings and Weak Subsumption

Given a language L and string s over 2Φ, let us call s �-minimal in L if s ∈ L
and for all s′ ∈ L− {s}, not s � s′. Let L� be the set of strings �-minimal in L

L�
def= {s ∈ L | (∀s′ ∈ L− {s}) not s � s′} .

For example, (2Φ)� = �, and recalling the constraint (ϕ-biv) of ϕ-bivalence

(�⇒ ϕ + ϕ )� = ( ϕ + ϕ )∗

or in words: ( ϕ + ϕ )∗ is the set of �-minimal ϕ-bivalent strings.

Proposition 2. Let L be a language over the alphabet 2Φ.

(a) L� is the ⊆-least language �-equivalent2 to L, while L� is the ⊆-greatest.
(b) If L is regular, then so are L� and L�.

Proof. Straightforward, where a finite automaton for L can be turned into one
for {s | (∃s′ ∈ L) s � s′ and s �= s′}, making

L� = L− {s | (∃s′ ∈ L) s � s′ and s �= s′}

regular (by the closure properties of regular languages). +
We can minimize L further by “unpadding” L�. More precisely, for every

string s ∈ (2Φ)∗, let unpad(s) be s with all initial and final �’s stripped off

unpad(s) def=
{

s if s neither begins nor ends with �
unpad(s′) if s = �s′ or else if s = s′� .

For example, unpad(�� ϕ � ψ �) = ϕ � ψ . Next, for every language L over

2Φ, let unpad(L) def= {unpad(s) | s ∈ L} and call L unpadded if unpad(L) = L.
Let L� consist of all strings in L with any number of leading and trailing �’s
deleted or added

L� def= �∗unpad(L)�∗ = {s | unpad(s) ∈ unpad(L)} .

2 Given a relation R (such as �) between languages, we say L is R-equivalent to L′

if LRL′ and L′RL.
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Incorporating unpadding into subsumption �, let weak subsumption 	 be �
with the second argument L′ weakened to L′�

L	L′ def⇐⇒ L � L′� .

Weak subsumption 	 compares information content in the same way as �

L	L′ iff (∀s ∈ L)(∃s′ ∈ L′) s	s′ .

but without insisting that strings have the same length

s	s′ iff (∃s′′) unpad(s′′) = unpad(s′) and s � s′′ .

Insofar as L	L′ says every instance of L contains some instance of L′, it is
natural to say L′ happens in L when L	L′. For the record, we have

Proposition 3. Let L ⊆ (2Φ)∗.

(a) unpad(L�) is the ⊆-least unpadded language 	-equivalent to L.
(b) The relations {(s, unpad(s)) | s ∈ (2Φ)∗} and {(s, s′) | s′	s} are regular.

Hence, unpad(L) and L� are regular if L is.

3 Context as Language

It is a truism that information should be understood relative to context. But
what does this mean for information and context represented as languages over
the alphabet 2Φ? If we regard strings over 2Φ as epistemic possibilities much like
possible worlds except that strings are finite and their snapshots non-exhaustive,
then we can turn weak subsumption 	 into an inference relation |−C factoring
in background information encoded by a context C ⊆ (2Φ)∗. Let

L |−C L′ def⇐⇒ C[L]	L′

for some notion C[L] ⊆ (2Φ)∗ of C updated by L. Precisely what C[L] might be
depends on what we assume about C and L. In this section, we will assume C
describes the “big picture” with global constraints such as ϕ, ϕ ⇒ ∅ providing
the background for the more local events (with bounded temporal extents) de-
scribed by L. For example, we might expect an event L = rain,now of raining
now to update a background

C = (� + rain + rain )+ & (�+ now �+)

to give

C[L] = (� + rain + rain )∗ rain,now (� + rain + rain )∗ .

The asymmetry assumed above between C and L means that neither the inter-

section C ∩ L nor the superposition C&L will do for C[L].



238 T. Fernando

3.1 Context Updated by L

Keeping the previous example in mind, let us define

C[L] def= {s ∈ C | s	L}

thereby ensuring that the update C[L] preserves C and L. We write s ∈ C for “s
complies with the global constraint C,” and s	L for “s complies with the local
conditions L” (admittedly, a rather long-winded way of saying L happens in s).

Proposition 4. Let C, L ⊆ (2Φ)∗.

(a) C[L]	L and C[L] = (C[L])[L] and C[C] = C.
(b) C[L] =

⋃
s∈L C[s] and the relations

{(s, s′) | s′	s and s′ ∈ C} = {(s, s′) | s′	s} ; {(s′, s′) | s′ ∈ C}
{(s, s′) ∈ L× C | s′	s} = {(s, s) | s ∈ L} ; {(s, s′) | s′	s and s′ ∈ C}

and language C[L] are regular if C and L are.
(c) (C[L])[L′] = (C[L′])[L] for any L′ ⊆ (2Φ)∗.
(d) C[L] = C[L′] for every language L′ 	-equivalent to L. In particular, C[L] =

C[L�].
(e) C[L] = (L�&C) ∩ C. Hence, if C = C�, then C[L] = L�&C.

Proof. All parts are routine, with the regularity in part (b) a corollary of Propo-
sition 3(b), part (d) following from the biconditional

s	L iff s	L′

for every L′ 	-equivalent to L, and part (e) from

C	L iff C ⊆ L�&C .

+

3.2 The C-Negation of L

What part of a context C would be unable to support an update by L? Calling
that part negCL, we require that (negCL)[L] = ∅. An obvious candidate for
negCL is C − C[L]. The problem is that for say, C = (� + p + p )+,

C[ p ] = (� + p + p )∗ p (� + p + p )∗

C − C[ p ] = (� + p )+

(C − C[ p ])[ p ] = (� + p )∗ p (� + p )∗ �= ∅ .

So instead, let us define negCL to be the ⊆-largest sublanguage L′ of C such
that L′&L� is disjoint from C

negCL
def= {s ∈ C | (s&L�) ∩ C = ∅} .

Proposition 5. Let C, L ⊆ (2Φ)∗.
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(a) For any L′ ⊆ (2Φ)∗, the following are equivalent.
(i) C[L′] ⊆ negCL
(ii) (C[L′])[L] = ∅
(iii) (C[L])[L′] = ∅
(iv) C[L] ⊆ negCL′

(b) negCL is regular if C and L are.

Proof. For part (a), the equivalence of (ii) and (iii) follows from the commuta-
tivity expressed in Proposition 4(c). Note that (i) fails iff for some s ∈ C[L′],
there is an s′ ∈ (s&L�) ∩C. Such a pair s, s′ is what is precisely needed for (ii)
to fail, by Proposition 4(b,e).

For part (b), the trick, as with L�, is to use the closure of regular languages
under complementation

negCL = C − {s ∈ C | (∃s′ ∈ L�)(∃s′′ ∈ C) s&s′ $ s′′}

where s1&s2 $ s3 abbreviates {s1}&{s2} = {s3}. +
Armed with the definition of negC(L) above, we can for many languages L
associate a complement ¬L such that for contexts C meeting minimal conditions,
C[¬L] = negCL. More in §4.3 below.

4 Constraints as Inference Rules

If the previous section is about changes to context when a language is asserted
or denied, this (final) section is about changes to a language L when constraints
C from context are applied to L. We start by injecting L into C

inject(L, C) def= {s ∈ C | s � L} = L� ∩ C

(so C[L] = inject(L�, C)) before taking the strings �-minimal in that set for
the result of applying C to L

apply(C, L) def= (inject(L, C))� .

Recall from §3.1 that L is presumed to be local, and from Proposition 4(d) that
we can reduce L to L�. If C has the form L⇒ L′, then apply(L⇒ L′, L) looks
very much like the rule of inference modus ponens and indeed we will see that
apply(L ⇒ L′, L) � L′. We will proceed more generally, allowing the lefthand
side of C to differ (or not differ) from L, and paying special attention to the case
where the righthand side of C has the form B1 + B2.

4.1 Minimal Changes

For a constraint C of the form A⇒ B, let us define a relation 〈〈A, B〉〉 between
strings where fragments in A are superposed with strings in B

s〈〈A, B〉〉s′ def⇐⇒ (∃x ∈ A, y ∈ B, n, m ≥ 0) s � �nx�m, s&�ny�m $ s′.

Let 〈〈A, B〉〉∗ be the reflexive transitive closure of 〈〈A, B〉〉.
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Proposition 6. For A, B, L ⊆ (2Φ)∗, apply(A ⇒ B, L) is the set of strings
�-minimal in

{s′ ∈ A⇒ B | (∃s ∈ L) s 〈〈A, B〉〉∗ s′} .

It is regular if A, B and L are.

4.2 Biased Changes

Suppose further that the constraint C has the form A⇒ (B1 + B2), such as the
constraints (ϕ-biv) and (1)-(3) from §1.3. We can arrange a language L to satisfy
C by adding, as stated in Proposition 6, fragments of B1 or of B2. Introducing
a bias for B1, let us restrict 〈〈A, B1 + B2〉〉 to a variant 〈〈A, B1, B2〉〉 that can be
read: “if A then add B1 unless B2”

s 〈〈A, B1, B2〉〉 s′ def⇐⇒ (∃x ∈ A, y ∈ B1, n, m ≥ 0) s � �nx�m,

s �� �nB2�m and s& �ny�m $ s′ .

To implement this restriction, we must constrain the step to L� in apply(C, L)
to satisfy C, introducing a new parameter L′ to define

app(C, L, L′) def= ((L&L′) ∩C)�

ap(A, B1, B2, L) def= app(A⇒ (B1 + B2), L, (2Φ(B1))∗)

where Φ(B1) is the set {ϕ ∈ Φ | (∃s ∈ B1) s � �∗ ϕ �∗} of fluents occurring in
B1. Notice that for the constraints (ϕ-biv) and (1)-(3), Φ(B1) adds nothing to
B2 inasmuch as B2 is disjoint from B2 & (2Φ(B1))∗.

Proposition 7. For A, B1, B2, L ⊆ (2Φ)∗, ap(A, B1, B2, L) is the set of strings
�-minimal in

{s′ ∈ A⇒ (B1 + B2) | (∃s ∈ L) s 〈〈A, B1, B2〉〉∗ s′}

assuming B2 is disjoint from B2&(2Φ(B1))∗. The language ap(A, B1, B2, L) is
regular if A, B1, B2 and L are.

4.3 Refinements Based on Consistency

Bias applied blindly can lead to trouble, as illustrated by the case of (1)

ϕ � ⇒ � ϕ + fϕ �

in the presence of the consistency constraint

Φ-con def=
⋂

ψ∈Φ

( ψ, ψ ⇒ ∅) = {a ⊆ Φ | (∀ψ ∈ a) ψ �∈ a}∗ .
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When imposing (1) on ϕ ϕ , we must take the second disjunct fϕ � on the

righthand side of (1). But on ϕ, fϕ �, we must opt for the first disjunct � ϕ .
To cover such contingencies, let us refine our transformation ap(A, B1, B2, L)

of L, rewriting A⇒ (B1 + B2) as two constraints,

(A&¬B1)⇒ B2 and (A&¬B2)⇒ B1

where ¬B1 and ¬B2 are defined from Φ-con and A as follows. Let A-con def=
A� ∩ Φ-con and

¬Bi
def= {s ∈ A-con | (s&Bi) ∩A-con = ∅}�

for i ∈ {1, 2}. (So for (1), ¬B1 = ϕ ϕ and ¬B2 = ϕ, fϕ �.) Continuing to
keep the notation simple, we form in sequence the languages

L1
def= apply((A&¬B1)⇒ B2, L)

L2
def= ap(A,¬B2, B2, L1)

L3
def= apply((A&¬B2)⇒ B1, L2)

which are regular if A, B1, B2 and L are. The idea is to settle the question of
B2 versus ¬B2 given A, minimizing B2 in L2 before reducing A⇒ (B1 + B2) to
(A&¬B2)⇒ B1 in L3. The bias favoring B1 in A⇒ (B1 +B2) is derived from a
bias favoring ¬B2 in A⇒ (¬B2 +B2) after giving B2 its due in L1. The general
point is to subject the non-determinism in constraints A ⇒ (B + B′) to some
default preference between B and ¬B.
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Abstract. This paper deals with linguistic constraints encoded in the
form of (binary) tables, generally called lexicon-grammar tables. We de-
scribe a unified method to compile sets of tables of linguistic constraints
into Finite State Automata. This method has been practically imple-
mented in the linguistic platform Unitex.

1 Motivation

Finite State Models have been intensively used in Natural Language Process-
ing [13]. Nevertheless, because of the complexity of languages, it is often more
convenient for linguists to describe linguistic constraints with simpler and more
ergonomic representations. For instance, simple regular expressions are some-
times used to express morphological rules [6], inflected forms of dictionaries are
preferred to be written in a textual form [3] and syntactic constraints depend-
ing on lexicon are represented in the form of binary matrices [4]. Finite State
linguistic phenomena are sometimes described with more powerful and more
compact formalisms such as (weighted) context-free grammars [10] and recur-
sive transition networks[5]. These representations are then compiled into Finite
State Automata or Transducers in order to optimize processing.

This paper deals with linguistic constraints encoded in the form of (binary)
tables made of rows and columns, generally called lexicon-grammar tables. A row
of such table corresponds to the formal description of the lexical and syntactic
properties accepted by a lexical item. Each column corresponds to a property.
At the intersection of a row and a column, the encoded value indicates whether
or not a lexical entry (row) accepts a property (column)1. In this paper, we will
describe a unified method to compile sets of tables of linguistic constraints into
Finite State Automata. We will also show how it has been practically imple-
mented in the linguistic platform Unitex [11].

2 State-of-the-Art

The first idea of combining binary matrices and automata was pointed out in
[7], but the first compilation method has been found in [12] and has been imple-
mented in the linguistic platforms INTEX [14] and Unitex [11]. It was limited
1 Usually, symbol + stands for True and symbol - stands for False.
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to systems of constraints encoded in one table such as the ones in [4]. It used
hand-built parameterized reference automata, representing the sets of the pos-
sible syntactic constructions where can enter a fictive lexical entry accepting all
properties of the table. Each path is parameterized by one or several parameters
that refer to properties that correspond to syntactic constructions (e.g. Prep
Det Noun2) or lexical information (e.g. if the constituent Prep accepts the lexi-
cal value in). The compilation process consists, for each lexical entry (or raw), in
resolving the parameters according to the encoding in the tables. For instance, a
false value at a given column indicates that the transitions labeled with the para-
meter associated with the column, must be removed. A true value indicates that
these transitions must be made epsilon-transitions. Then, a specific automaton
is constructed for each lexical entry. The automaton representing all described
phenomena is simply the union of all constructed automata. It is then optimized
by a deterministic minimization operation for text processing efficiency.

Several linguistic studies have shown that it is sometimes more convenient to
encode constraints of a same linguistic phenomena into systems of multiple tables
because some properties can be factorized in different tables to avoid encoding
duplication [7,1]. In this case, Roche’s compilation does not work because it does
not handle multiple tables. [8] implemented an algorithm compiling systems of
multiple tables of specific constraints. These constraints were limited to very
local constraints. Tables described the restrictions on the combinations of pairs
of lexical elements in sequences where both elements occur consecutively (or
sometimes with a grammatical word in between). For instance, for French time
expressions, sequence milieu de matin (middle of morning) is forbidden while
sequence milieu d’après-midi (middle of afternoon) is accepted. A schemata au-
tomaton is used to represent all possible patterns for a type of expressions. This
automaton also recognizes bad sequences because it does not take lexical re-
strictions into account. All forbidden sequences encoded in the tables are put in
an automaton that is then applied using the failure algorithm [9] that cuts all
forbidden paths in the schemata automaton. [2] proposed an algorithm with no
restrictions on the constraints; constraints were represented in relational systems
of tables. The algorithm consisted in directly constructing the automaton that
recognizes accepted sequences, by using a parameterized reference automaton
with parameters resembling Roche’s ones. Nevertheless, the complexity of the
construction of the parameterized automaton could grow very fast with the num-
ber of tables. For instance, it is not well adapted to Maurel’s time expressions.

In this paper, we present a unified algorithm for compiling systems of tables
of constraints with no restrictions on the type of constraints.

3 Set of Constraints and Parameterized Automaton

This section focuses on the general description of inputs of our algorithm, that
are a set of linguistic constraints and a parameterized schemata. They are re-
spectively described in section 3.1 and in section 3.2.
2 Prep Det Noun stands the construction preposition determiner noun
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3.1 Sets of Linguistic Constraints

A syntactic construction is a sequence of syntactic symbols (and sometimes of
lexical symbols): for instance, the syntactic construction N0 V N1 is composed
of a noun phrase (N0) followed by a verb (V) and then another noun phrase (N1).
Each syntactic symbol have a set of possible lexical realizations, e.g. V could
be eat or walk. Though, syntactic constructions have lexical restrictions; their
acceptability can depend on the lexical realizations of a syntactic element. For
example, the transitive verb eat can enter the constructions N0 V N1, while the
intransitive verb walk cannot3:

John is eating an apple.
*John is walking an apple.

Such constraint is called a one-dimensional constraint because it depends on
only one element (the verb).

There can also exist lexical restrictions on the combination of two syntac-
tic elements in the context of a construction. For instance, in the construc-
tion N0 V N1 Prep N24, there exist lexical constraints on the pair (V,Prep):
pairs (receive,from) and (give,to) are acceptable, while (receive,to) and
(give,from) are forbidden as it is shown in the sentences below.

John received a present (*to+from) Mary.
John gave a present (to+*from) Mary.

Such constraint is called a two-dimensional constraint because it depends on the
combination of two elements (the pair verb-preposition).

Practically, a given constraint is not only limited to a single construction, but
also a set of equivalent constructions. For instance, the constraint on the pair
(V,Prep) in the example above is available as well for the equivalent interroga-
tive construction :

Who received a present (*to+from) Mary ?

Moreover, linguistic constraints can also restrict the combination of more syntac-
tic elements cooccurring in a same construction. Theoretically, such constraints
can be decomposed into elementary constraints that are one-dimensional and
two-dimensional ones, all related with logical AND operators. For example, the
acceptability of frozen constructions of the form N0 be Prep N Prep1 N1, can
depend on the lexical combination of Prep, N and Prep1 such as in:

The text is (in+*on) contradiction (with+*to) the law.

Verifying if this constraint is valid is equivalent to checking if elements in and
contradiction can cooccur in this context and if contradiction and with

3 In linguistic examples, the symbol * is the forbidden symbol and symbol + is the
disjonction symbol.

4 N0, N1 and N2 are noun phrases, V is a verb and Prep a preposition.
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cooccur. Thus, in the next sections, we will consider that there exist only one-
dimensional and two-dimensional constraints. One-dimensional ones are encoded
in the form of binary vectors, each element corresponding to a lexical value;
two-dimensional lexical constraints are encoded in the form of binary matrices,
encoding the restrictions on the combination of pairs of lexical values.

Examples of such representations are given in figure 1. The binary repre-
sentations describe lexical constraints on geographical names. Such names can
enter two constructions Detc Npr Nc (labeled NN) and Detc Nc of Npr (labeled
NPN), where Detc is a definite determiner (e.g. the), Npr is a proper name such
as Adriatic, Marmara, Paris... and Nc is a location noun classifier like city,
sea... Figure 1(a) presents two-dimensional constraints between lexical realiza-
tions of Nc and Npr (sea and Adriatic); figure 1(b) and figure 1(c) present
one-dimensional constraints depending on Npr, indicating whether or not it can
enter constructions NPN (city of Paris) or NN (Adriatic sea).

(a) Names-Classifiers (b) NPN constraint (c) NN constraint

Fig. 1. One- and two-dimensional constraints

3.2 Parameterized Schemata Automaton

A parameterized schemata automaton is a hand-built acyclic automaton that ex-
plicitely represents all possible syntactic realizations that the studied linguistic
phenomenon can have. It is used as a basis to build an automaton representing
all accepted constructions of this phenomenon, taking encoded lexical restric-
tions into account. Each path represents a possible construction. Labels of this
automaton are either lexical or syntactic elements, or parameters. Syntactic el-
ements that may cause lexical constraints in the construction are marked as
parameters. They are called syntactic parameters. Such parameters are denoted
with the name of the syntactic element preceded by symbol @: for instance, @X is
the parameter associated with the syntactic symbol X. Sets of constructions (i.e.
sets of paths) can also be parameterized because their acceptability may depend
on the lexical realizations of some syntactic ”parameterized” elements. We call
them construction parameters. They are denoted with the label assigned to the
set of constructions, preceded and followed by symbol @: for example, @P@ is
the parameter associated with the constructions labeled P. An example of such
automaton is given in figure 2: it consists of the parameterized schemata automa-
ton used for geographical names. @Nc@ and @Npr@ are syntactic parameters; @NN@
and @NPN@ are construction parameters.
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70 1
Detc

2@Nc

4

@Npr

3
of

5
@Npr

@NPN@

6
@Nc

@NN@

Fig. 2. A parameterized schemata automaton

A pair of parameters defines a set of lexical constraints. A pair composed
of a syntactic parameter @X and a construction parameter @P@ defines all 1-
dimensional lexical constraints depending on the syntactic element X in the
context of the constructions parameterized with P5. A pair composed of two
syntactic parameters (@X and @Y) defines all 2-dimensional lexical constraints for
combining the syntactic elements X and Y in the studied linguistic phenomenon6.

4 Algorithm

Our algorithm for compiling a set of constraints into a finite state automaton
(A+) is based on the use of a parameterized schemata automaton (Ap). It consists
of 3 steps:

1. building the automaton of all possible sequences (A) from Ap;
2. constructing the forbidden sequence automaton A−, from Ap and the sets

of different constraints;
3. constructing automaton A+ defined by L(A+) = L(A)−L(A−), where L(A)

stands for the language recognized by automaton A.

One can wonder why the desired automaton A+ is not directly constructed
from Ap. It is simply due to the fact that adding a new path requires checking
all constraints it undergoes. In case of complex systems like the one proposed
by [8] for date adverbials, the cost would be very important. At worse, the con-
struction process would have exponential complexity. The idea to build first the
automaton of forbidden constructions is because a path is invalid if it undergoes
only one forbidden constraint. Its construction is then linear with the number of
constraints7. The construction of the automaton of accepted sequences is simply
implemented using an intersection-type algorithm.

4.1 Construction of the Automata of All Possible Constructions

Automaton A (step 1) is built by replacing the syntactic parameters of Ap by
their actual associated symbols (standing for word classes), and replacing con-
struction parameters by ε symbol. The automaton produced for geographical
5 Path 5-7 comes from Fig. 1 (b) and path 6-7 comes from Fig. 1 (c).
6 Paths 1-2-3-5 and 1-4-6 come from Fig. 1 (a).
7 One should remark that the determinization operation computed after the automata

construction is theoretically exponential in complexity. Nevertheless, it has been
observed that, practically, it is very often not the case for natural language automata.
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names is given in figure 3. Symbol <E> stands for ε symbol. Note that syntac-
tic symbols are references to classes of words; they are also represented with
automata. These automata are automatically built from the set of lexical real-
izations used in the set of constraints. Automaton A is obtained by replacing
all syntactic symbols by their actual word class and then computing some opti-
mization operations as it is shown in figure 4.

70 1
Detc

2Nc

4

Npr

3
of

5
Npr

<E>

6
Nc

<E>

Fig. 3. A schemata automaton

5

0 1
the

2
sea

city

3

Paris

Marmara

Adriatic

4
of

sea

city

Marmara

Paris

Adriatic

Fig. 4. A lexicalized schemata automaton

4.2 Construction of the Automaton of Forbidden Syntactic Forms

The construction of A− consists in building, automatically from Ap, a para-
meterized automaton for each pair of parameters (X ,Y ) that undergoes lexical
restrictions; and then in lexicalizing this automaton according to the restrictions
encoded in the corresponding vectors or tables.

The construction of the pair-specific parameterized schemata automaton, called
Ap(X, Y ), consists in keeping only paths of Ap where X and Y cooccur. Marking
such paths is based on an automaton transversal-type algorithm: for each para-
meter of the pair, we mark the states and transitions of Ap, which can be reached
from transitions labeled by the parameter, or from which such a transition can
be reached. Then, Ap(X, Y ) is obtained by keeping states and transitions of Ap
marked for both parameters. Finally, other parameters are either replaced by an ε
(<E>) if they are construction parameters, or replaced by their associated syntac-
tic symbol (refering to a word class) if they are syntactic parameters. An example
of such automaton for the pair (Nc,Npr) is given in figure 5.

The construction of the automaton of forbidden syntactic forms is then based
on the lexicalization of such pair-specific parameterized schemata automata.
Such an automaton is associated with a binary vector or a binary table. In case
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70 1
Detc

2@Nc

4

@Npr

3
of

5
@Npr

<E>

6
@Nc

<E>

Fig. 5. the (Nc,Npr) parameterized schemata automaton

70 1
Detc

2city

4

Adriatic

Marmara

3
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Adriatic

Marmara <E>

6
city

<E>

Fig. 6. the (Nc,Npr) lexicalized schemata automaton for entry city
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Fig. 7. Automaton of forbidden constructions for geographic names

of a binary vector associated with a parameter pair (@X,@Y@), for each lexi-
cal entry x that are lexical realization of X , a new automaton is created from
Ap(X, Y ). Parameters @X are replaced by x. If the constructions labeled Y are
not accepted, parameters @Y @ are replaced by ε (<E>). If they are, transitions
labeled by @Y @ are removed. In case of a binary table associated with a pa-
rameter pair (@X,@Y), for each lexical realization x of X , a new automaton is
created from Ap(X, Y ). Transitions (q, @Y, p), where p and q are states of the
new automaton, are removed. For each lexical realization y of Y , if the combi-
nation between x and y is forbidden, a new transition (q, y, p) is added. Figure 6
shows an example of a lexicalized automaton specific to the pair (Nc,Npr) for
the lexical entry city in the case of geographic names.

All obtained lexicalized automata are then unioned; all syntactic symbols
are replaced by their actual automata; and finally, an optimization operation
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is computed (useless state removal and determinization). The global lexicalized
automaton of forbidden constructions for geographic names is given in figure 7.

4.3 Construction of the Automaton of Possible Syntactic Forms

Given deterministic automata A and A−, it is then possible to compute automa-
ton A+ representing all possible constructions, taking all lexical restrictions into
account. The process consists in computing the automaton that recognizes the
language L(A+) defined such that L(A+) = L(A) − L(A−). It implements a
variant of the standard algorithm for computing the intersection between two
automata. The automaton obtained for geographical names is given in figure 8.

21 3
the

6
sea

5Adriatic
Marmara

4

city

8
of

sea

7
of

Paris

Marmara

Fig. 8. Automaton of accepted constructions for geographic names

5 Implementation

Our algorithm has been implemented in C in Unitex, a GPL linguistic platform
[11]. The implementation was eased by the use of some modules, data structures
on finite state automata and common operations on them, already implemented
in Unitex. Parameterized schemata automata can be drawn with a graph editor
included in the platform. Unitex automata are recursive automata (automata
that can call other automata) that are equivalent to Recursive Transition Net-
works (RTN) [15]. Therefore, syntactic symbols are simply calls to automata
that represents their associated word classes. Automata can be unioned by sim-
ply creating an automaton that concurrently call all of them. There also exists
a ”Flatten” operation that computes the equivalent finite-state automaton of a
given RTN (when recognizing a regular language).

Besides, it is often more convenient for linguists to have different parameter-
pair constraints encoded in a same table in order to have a better view of the
studied linguistic phenomenon8. Moreover, tables are not always binary: they
can contain lexical values. For example, the example table and vectors (figure 1)
are practically gathered in one table as in figure 9. We therefore implemented a
module that transforms real tables into several binary vectors or tables.

8 As it has been shown in [2], elementary constraints can be also gathered in several
real tables.
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Fig. 9. A real table of linguistic constraints

6 Evaluation and Discussion

We tested9 our software with some lexicon-grammar tables describing constraints
on French geographical locative phrases [1] and French time adverbials [8]. The
test results are gathered in table 1. Samples of both systems are respectively
given in figure 10 and figure 11.

Table 1. Test results

type # of # of # of A− # of A− # of A+ # of A+ Compiling
lexical parameter states transitions states transitions time

constraints pairs
Loc 1,420 15 47,822 81,760 253 782 29 s

Time 818 5 2,868 27,280 100 694 2 s

Our unified algorithm has the advantage of working for all different types
of systems of lexicon-grammar tables. Although compiling times are reasonable
(cf. table 1), our algorithm is not always the most efficient one. For instance,
the conversion of simple systems of relational tables like geographical phrases
ones is faster using a process based on Roche’s algorithm preceded by a merge
operation on the related tables: 4s instead of 29s for our converter. Comparison
is not feasible for time adverbials because Roche’s algorithm and its extensions
do not work in that case.

Constructing automaton A− is the main factor for slowing down the process
because A− tends to be much bigger than the final A+ (cf. table 1). Roche’s
algorithm and its extension (to systems with multiple tables) directly deal with
A+. Maurel’s algorithm simply constructs the automaton recognizing forbidden
subsequences, which is clearly a smaller automaton than A− (542 states and 4191
transitions for 50 tables or parameter pairs [8]). The determinization of these
automata makes the difference clearer because of the exponential complexity of
this operation. Nevertheless, we consider that this relative lack of efficiency is
not really important because compiling can be done once for all before applying
9 Pentium III, 1.6 GHz, 512 Mb RAM.
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(a) Islands (b) French Departments

(c) Prepositional distribution

Fig. 10. Locative geographical phrases

matin midi soir
(morning) (12 a.m.) (evening)

aujourd’hui (today) - + -
hier (yesterday) + + +

demain (tomorrow) + + +

aujourd’hui hier demain
(today) (yesterday) (tomorrow)

à - - -
après + + -
d’ici + - +

Fig. 11. Time adverbials

the compiled automata on different texts. We are more interested in the fact
that the algorithm works for all types of systems.

7 Conclusion

In this paper, we have shown that linguistic constraints encoded in the form of
(binary) tables can be compiled into finite state automata. We have describe a
unified method, implemented in the linguistic platform Unitex, in three steps:
building the automaton of all possible sequences, the forbidden sequence au-
tomaton and the resulting automaton.



252 M. Constant and D. Maurel

References

1. Constant, Matthieu. 2002. On the Analysis of Locative Phrases with Graphs and
Lexicon-Grammar: the Classifier/Proper Noun Pairing. In Advances in Natural
Language Processing, Proceedings of PorTAL, Lecture Notes in Artificial Intelli-
gence (LNAI) 2389, Berlin: Springer, 33-42.

2. Constant, Matthieu. 2003. Converting Linguistic Systems of Relational Matrices
into Finite-State Transducers. Proceedings of the EACL Workshop on Finite-State
Methods in Natural Language Processing, Budapest, 75-82

3. Courtois, Blandine. 1990. Un système de dictionnaires électroniques pour les mots
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Abstract. This paper introduces a mechanism for combining unbound-
ed lookahead exploration with linear time complexity in a deterministic
parser. The idea is to use a resolve parsing action in place of the clas-
sical reduce. The construction of shift-resolve parsers is presented as a
two-step algorithm, from the grammar to a finite nondeterministic au-
tomaton, and from this automaton to the deterministic parser. Grammar
classes comparisons are provided.

1 Introduction

Common deterministic parser generators [1] provide a parser developer with
two interesting static guarantees: that the input grammar is unambiguous, and
that the resulting parser will process its input string in linear time. There is
however a major issue with these parser generation algorithms: they cannot
provide a deterministic parser for an arbitrary context-free grammar, resulting
in the infamous conflicts between possible parsing actions. Their inability to
deal with parsing decisions that need more than the pre-established k lookahead
terminal symbols is to blame for a large part of it.

Two different parsing techniques allow to circumvent this limitation to boun-
ded lookaheads in bottom-up parsers, but to keep the unambiguity guarantee.
The first, called regular lookahead parsing, uses a finite state automaton to
explore an unbounded right context [2,3,4]. The linear time guarantee is however
lost. The second, called noncanonical parsing, explores the right context using the
parser itself. The latter can thus perform some reductions in this right context,
return to the conflict point, and use a bounded number of the newly reduced
symbols to yield a deterministic decision [5,6,7]. However, the preset bound on
the reduced lookahead length—in practice the bound is k = 1—hampers the
power of the noncanonical methods.

We want to have our cake and eat it too: we want linear time parsing, ambigu-
ity detection, and no user defined bound on the lookahead length. Shift-resolve
parsing is a new combination of the regular and noncanonical strategies that
achieves all these properties. To this end, we make the following contributions.

– We propose a new parsing action, resolve (Section 2.1), which combines the
classical reduction with a pushback, i.e. it rewinds the stack down to the

O.H. Ibarra and H.-C. Yen (Eds.): CIAA 2006, LNCS 4094, pp. 253–264, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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point where the reduction should take place. The exact amount of pushback
is not fixed, but computed for each reduction as a minimal necessary length.

– By promoting the resolve action as a replacement for the reduce action,
our parsers properly integrate noncanonical resolutions in the right context
exploration (Section 2.2). One could fear that a quadratic time complexity
would stem from this combination. We avoid it by ensuring that the pushback
lengths remain bounded.

– We present the construction of shift-resolve parsers as the determinization of
a phrase recognizer (Section 4). The algorithm generalizes similar construc-
tions for LR parsers. The choice of the approximations used in order to have
a finite recognizer is left open, and we use a lattice of possible approximations
(Section 3.2). Hence, our method is highly generic and allows for tradeoffs
between descriptional complexity and classes of accepted grammars.

2 Shift-Resolve Parsing

A bottom-up parser operates by reverting the derivations that led from the axiom
of the grammar to the input string. Each of these reversions is the reduction of
a phrase α to a nonterminal A, where A→α is a rule of P . A canonical parser
always reduces the leftmost phrase in a given sentential form, called the handle of
the sentential form, but a noncanonical parser partially ignores this ordering. It
is able to reduce a phrase further right from a handle, and to use the additional
information provided by the newly reduced nonterminals to infer its parsing
decisions. Indeed, a single nonterminal symbol describes a complete context-free
language, and, using only a few nonterminals as lookahead, a noncanonical parser
has an impressive amount of right context information at its disposal.

2.1 The Approach

We make here the simplifying choice of always using completely reduced looka-
head symbols: symbols as they appear in the grammar rule we are exploring,
and cannot be reduced without reducing the entire rule.

As usual in noncanonical parsing [8], a deterministic two-stack model is used
to hold the current sentential form. The parsing (or left) stack corresponds to
the traditional LR stack, while the input (or right) stack initially contains the
input string. Two operations allow to move symbols from the top of one stack
to the top of the other: a shift of a symbol from the input stack to the parsing
stack, and a pushback of a bounded number of symbols the other way around.
A reduction using rule A→α removes the topmost |α| symbols from the parsing
stack and pushes A on top of the input stack.

We compute, for each reduction, the minimal bounded reduced lookahead
length needed to discriminate it from other parsing actions. This lookahead
exploration is properly integrated in the parser. Once the parser succeeds in
telling which action should have been done, we either keep parsing if it was a
shift, or need to reduce at an earlier point. The pushback brings the parser back
at this point; we call the combination of a pushback and a reduction a resolution.
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Table 1. Shift-resolve parsing table for G1

$ a b c S A B C D
q0 s4 s5 s1 s2 s3
q1 r1’0
q2 s8 s6 s7
q3 s8 s9 s10
q4 s8 r5’0 r5’0
q5 s8 r7’0 r7’0
q6 s11 s8
q7 s8 r4’0 r4’0
q8 r8’0 r9’0 s8 s12 s13
q9 s8 r6’0 r6’0
q10 s14 s8
q11 r2’0
q12 r9’1 s8 r8’1 r8’1
q13 r8’1 s8 r9’1 r9’1
q14 r3’0

No cost is paid in terms of computational complexity, since shift-resolve
parsers are linear in the length of the input text. A simple proof is that the only
re-explored symbols are those pushed back. Since pushback lengths are bounded,
and since each reduction gives place to a single pushback, the time linearity is
clear if the number of reductions is linear with the input length. This last point
stems from the fact that our method detects and rejects cyclic grammars.

2.2 Parsing Example

Let us consider the extended grammar with rules

S′ 1−→S, S
2−→ACa, S

3−→BDb, A
4−→AD,

A
5−→a, B

6−→BC, B
7−→b, C

8−→c, D
9−→c.

(G1)

Grammar G1 can require an unbounded lookahead if we consider approximated
parsing methods, like for instance a LR(0) approximation, which provides the
basis for most practical parsing methods. A single inadequate state with items
C→c· and D→c· can be reached after reading both prefixes Ac and Bc. After
reading Ac, the lookahead for the reduction to C is a, while the one for the
reduction to D is c+a. After reading Bc, the lookaheads are c+b and b respec-
tively. Thus, if we use a LR(0) approximation, we need an unbounded terminal
lookahead length in order to choose between the reduction to C or D, when
seeing the last input symbol a or b after a sequence c+.

Grammar G1 is not LALR(1). If we try to use more advanced parsers, G1 is not
NSLR(1) [6]—it is NSLR(2)—, and the time complexity of XLR(∞) parsing [2]
—LR-Regular using a LR(0) approximation—according to G1 is quadratic.

Table 1 contains the parse table for shift-resolve parsing according to G1. The
table is quite similar to a LR(1) table, with the additional pushback length in-
formation, but describes a parser with much more lookahead information. States
are denoted by qi; shift entries are denoted as si where i is the new state of the
parser; resolve entries are denoted as ri’j where i is the number of the rule for the
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Table 2. The parse of the string acca by the shift-resolve parser for G1

parsing stack input stack actions
q0 acca$ s4

q0aq4 cca$ s8

q0aq4cq8 ca$ s8

q0aq4cq8cq8 a$ r8’0
We have reached the first phrase in acca$ that we can resolve with a completely
reduced lookahead. This lookahead is a, and indeed it cannot be reduced any further
in the rule S→ACa. The lookahead allows the decision of resolving C→c. The newly
reduced nonterminal is pushed on the input stack, as usual in noncanonical parsing.

q0aq4cq8 Ca$ s12

q0aq4cq8Cq12 a$ r9’1
We have here a non-null pushback: the resolve action r9’1, which would have needed
an unbounded terminal lookahead, is solved using the stacked C and the lookahead
a. The pushback of length 1 emulates a reduced lookahead inspection of length 2.

q0aq4 DCa$ r5’0
q0 ADCa$ s2

q0Aq2 DCa$ s7

q0Aq2Dq7 Ca$ r4’0
q0 AC$ s2

q0Aq2 Ca$ s6

q0Aq2Cq6 a$ s11

q0Aq2Cq6aq11 $ r2’0
q0 S$ s1

q0Sq1 $ r1’0, accept

reduction and j the pushback length. The reduction according to rule S′ 1−→S
indicates that the input is successfully parsed. Table 2 details the parsing steps
on the valid input acca. Symbols are interleaved with states in the parsing stack
in order to ease the reading, and are not actually used.

The originality of shift-resolve parsing resides in that Table 1 is not the result
of a very precise computation; in fact, we used the worst approximation we
tolerate. Still, the parsing time is linear and no preset lookahead length was
necessary.

3 Grammatical Representation

The shift-resolve parsing table presented in Table 1 is the result of a two-steps
process: the first step builds a finite nondeterministic automaton from the gram-
mar, and the second generates the deterministic shift-resolve parser from it.

3.1 Position Graph

We consider here a graph representation of a context-free grammar. This graph
can be seen as the set of all left to right walks in all possible derivation trees
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c
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(a) Derivation tree

S′→·S$ S′→S·$S

S→AC·a S→ACa·S→·ACa S→A·Ca aA C

A→·AD A→AD·A→A·DA D

A→AD·A→·AD A→A·DA D

A→·a A→a·a D→·c D→c·c

D→·c D→c·c

C→·c C→c·c

d2 r2

r8d8

r9d9

r5 d9 r9d5

d4

d4 r4

r4

$

(b) Position graph

Fig. 1. Representing the derivation of string accca in G1

for the grammar. The nodes of this graph are positions to the immediate left or
immediate right of a derivation tree node. The vertices tell which other positions
are reachable. We label each position with a dotted rule giving its local context.

For instance, with G1, any tree node νA with symbol A can nondeterminis-
tically derive a node νa with symbol a from A→a, or two nodes ν′

A and νD

with symbols A and D from A→AD. Following this idea, we find that the local
context of ν′

A provides us with more information than the mere symbol A: the
symbol A in question is in front of a dot in the position A→·AD.

If we make this local context explicit in the labels of the positions, then
the relations between these positions become visible. These transitions are of
three types: symbol transitions X
−→, and a two kinds of ε-transitions: derivation
transitions di
−→ and reduction transitions ri
−→ where i is a rule number. Figure 1
presents the portion deriving accca of the position graph for G1, along with the
traditional derivation tree representation. We emulate an infinite number of end
of file markers with a looping transition $
−→.

We introduce the parenthesis grammar p(G) of a context-free grammar G as
the grammar with rules A

i−→diαri whenever A
i−→α is a rule of G. We also

define a homomorphism h that removes all the di and ri symbols from a string.
An immediate consequence is that L(G) = h(L(p(G))).

In order to uniquely identify a single position in the position graph, we define
valid positions for a grammar G as triples δdi[A

i−→α·α′]riy such that

S⇒
rm

∗δAy⇒
rm

δdiαα′riy in p(G). (1)

For instance, the position labeled by C→·c in Figure 1b is identified by the

expression d2Ad8[C
8−→·c]r8ar2.
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S→AC·a
S→A·Ca

S→·ACa S→·BDb

S→B·Db

S→BD·b
C→·c

c

C→c·
S→BDb·

A→·a
A→a·

A→·AD

A→A·D
D→·c
D→c·

A→AD·

a

C

A B

D

b

Aa S→ACa·
D

B→·BC

B→B·C
B

B→BC·

B→·b
b

B→b·
C

c

S′→·S$

S′→·S$
$

r8
r8

r6

r6

r7

d8

d6

d7

d6

d7

d3

d2

r3

r2

d9 d8
r7

r4

r5

r4

r5

r9
r9

d4

d5

d4

d5

d9

S

Fig. 2. Nondeterministic automaton for Grammar G1 using κ0

Definition 1. The position graph I = 〈N , 
−→〉 of grammar G associates the
(potentially infinite) set N of valid positions for G with the labeled relation 
−→
defined by

δ[A i−→α·Xα′]y X
−→ δ[A i−→αX·α′]y, (2)

δ[A i−→α·Bα′]y
dj
−→ δαdj [B

j−→·β]rjuy if α′⇒∗u in p(G), and (3)

δαdj [B
j−→β·]rjuy

rj
−→ δ[A i−→αB·α′]y if α′⇒∗u in p(G). (4)

3.2 Position Equivalences

We are eager to put explicit labels on our positions because we intend to collapse
the position graph into a finite graph. The equivalence relations defined to this
end will preserve the local context, and thus use the position labels.

Definition 2. The collapsed position graph Γκ = 〈[N ]κ, 
−→κ〉 of a position
graph I = 〈N , 
−→〉 associates [N ]κ the finite set of equivalence classes [p]κ over
N modulo κ with the labeled relation 
−→κ defined by

[p]κ
χ
−→κ [q]κ iff ∃p′ ∈ [p]κ, q′ ∈ [q]κ, p′

χ
−→ q′. (5)

Simple Equivalence Relation. Figure 2 is not a Rorschach test but the col-
lapsed position graph Γκ0 for G1 using a simple equivalence relation κ0 between
positions.

Definition 3. Two positions are simply equivalent if and only if they have the
same dotted rule as label, i.e.

δ[A→α·α′]y κ0 γ[B→β·β′]z iff A→α·α′ = B→β·β′. (6)
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While very basic, this equivalence relation is fine enough to yield a working
shift-resolve parser for G1. It is the simplest equivalence relation we will use for
shift-resolve parsing.

Lattice of Equivalence Relations. The usual partial order on Eq(N )—the com-
plete lattice of all equivalence relations on N—is the inclusion relation ⊆. For
any two elements κa and κb of Eq(N ), κa ∧ κb is the greatest lower bound or
meet, defined as

κa ∧ κb = κa ∩ κb. (7)
Finer equivalence relations are obtained when using the meet of two equivalence
relations; they result in larger collapsed position graphs.

Let K be the set of all equivalence relations that are included in κ0; K is an
obvious interval sublattice of Eq(N ), ordered by the inclusion relation. We will
only make use of equivalence relations in K: if κ is in K, then κ = κ0 ∧ κ′ for
some κ′ in Eq(N ). Equivalence relations in K abound: for instance, a relation
κk with LR(k) precision could be written as κ0 ∧ lk with

δ[A→α·α′]y lk γ[B→β·β′]z iff k : h(y) = k : h(z); (8)

the set of equivalence classes using lk is [N ]lk = T ′k—the set of different se-
quences of k terminals. An experimental parser generator with a much finer
equivalence relation is currently available from the Internet at the following ad-
dress: http://serdis.dis.ulpgc.es/~ii-pl/ftp/dr.

3.3 Nondeterministic Automaton

We call a collapsed position graph Γκ using an equivalence relation κ in K a
nondeterministic automaton.

Preserving Grammar Derivations. Let us denote by ν0 = [ε[S′→·S$]ε]κ the eq-
uivalence class on N using κ containing ε[S′→·S$]ε, and by ν1 = [ε[S′→S·$]ε]κ
the one containing ε[S′→S·$]ε. We also denote by

χ
−→∗
κ the transitive reflexive

closure of 
−→κ, labeled with χ the sequence of labels on the individual relations.
We show here a simple result: paths in a nondeterministic automaton correspond
to derivations in the parenthesis grammar.

Theorem 1. If S⇒∗δAρ⇒δriαα′diρ = γα′diρ = γσ holds in p(G), then
ν0

γ
−→∗
κ[δri[A

i−→α·α′]dix]κ
σ
−→∗

κν1 with ρ⇒∗x holds in Γκ.

Proof. A straightforward induction on the length of γ.

Size of the Nondeterministic Automaton. The index of κ0 is |G|, thus, the size
of Γκ0∧κ′ is in the worst case O(|[N ]κ′ |.|G|) where |[N ]κ′ | is the index of κ′.

4 Shift-Resolve Parsers

4.1 Shift-Resolve Parser Construction

We now describe how to extract a deterministic shift-resolve parser from a non-
deterministic automaton Γκ. The algorithm is based on a subset construction.
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q2

q3

q0

q12

B→BC·, r8, 1
S→AC·a, r9, 1
B→B·C, r8, 1
S→B·Db, r8, 1
C→·c
D→·cc

C

c

C→c·
D→c·
S→AC·a, r8, 0
B→B·C, r8, 0
S→B·Db, r8, 0
S→BD·b, r9, 0
A→A·D, r9, 0
S→A·Ca, r9, 0
C→·c
D→·c

q8

A

B

c

c

Fig. 3. Item sets of some states of the shift-resolve parser for Grammar G1

States of the Shift-Resolve Parser. The states of the shift-resolve parser are sets
of items [ν, sr , d], where ν is an equivalence class on N using κ—i.e. a state in
Γκ—, sr a parsing action—either a production number or 0 to code a shift—,
and d is a nonnegative integer to code the distance to the resolution point. By
convention, we assume that d is null whenever sr denotes a shift.

Initial state’s item set is computed as Iq0 = C({[ν0, 0, 0]}), where the closure
C of an item set I is the minimal set such that

C(I) = I ∪
{[ν′, 0, 0] | [ν, sr , d] ∈ C(I), ν di
−→κ ν′} ∪
{ι | [ν, sr , d] ∈ C(I), ν ri
−→κ ν′,¬(null(i) and null(I)),
((sr = 0 and ι = [ν′, i, 0]) or (sr �= 0 and ι = [ν′, sr , d]))},

where, by noting L the terminal language produced by a sequence of symbols,
we discard superfluous ε-reductions with the help of the conditions

null(i) iff A
i−→α, L(α) = {ε}

null(I) iff [[δ[A→αX·β]y]κ, sr, d] ∈ I, L(X) = {ε}.

Transition from state item set I with symbol X is defined as follows.

Δ(I, X) = C({[ν′, sr , d′] | [ν, sr , d] ∈ I, ν
X
−→κ ν′,

((sr = 0 and d′ = 0) or (sr �= 0 and d′ = d + 1))})

Figure 3 presents the details of the item sets computations for states q8 and
q12 of the shift-resolve parser presented in Table 1.

Parser Table. Parser table entries, i.e., shifts and resolves, are computed from
the item set Iq of each state q as follows.

T (q, X) =
if ∀ι = [[δ[A→α·Xβ]x]κ, sr , d] ∈ Iq,
sr = r: resolve r with pushback d (if r = 1 and d = 0, accept)
otherwise: shift to q′ such that Iq′ = Δ(Iq , X)
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4.2 Shift-Resolve Grammars

Rejection Condition. A grammar is inadequate if and only if two different state
item sets are built with identical item sets except for some pushback length(s);
otherwise, we write it is a ShRe(κ) grammar.

It follows that the worst-case space complexity of the shift-reduce parser for
G is O(2|Γκ||P |). More powerful shift-resolve parsers can be obtained at the price
of descriptional complexity if we add to the condition that one such state should
be Δ-reachable from the other.

Theorem 2. If G is ambiguous, then it is not ShRe(κ) for any κ in K.

Proof. We merely outline the proof.
Since G is an ambiguous context-free grammar, we can find two leftmost

derivations S⇒
lm

∗xAρ⇒
lm

xαα′ρ = xασ and S⇒
lm

∗yBσ⇒
lm

yβσ in G, with Aαα′ �= Bβ,
and such that there is a z in T ∗ with xα⇒∗z and yβ⇒∗z.

Such derivations are mirrored in the nondeterministic automaton Γκ by two
positions ν = [δ[A→α·α′]s]κ and ν′ = [γ[B→β·]t]κ such that ν0

u
−→∗
κν

χ
−→∗
κν1

and ν0
u′

−→∗

κν′ χ′

−→∗

κν1, with

h(u) = h(u′) = z (9)
h(χ) = h(χ′) = σ. (10)

In such a situation, there is a prefix ϕ in V ∗ such that some items [ν, sr , d]
and [ν′, sr ′, d′] are included in the item set of Δ(Iq0 , ϕ). The right context of
this shift-resolve parser state is σ$∗, an infinite regular language. Since ν �= ν′

(Aαα′ �= Bβ and κ = κ0 ∧ κ′), we are bound to find two item sets only differing
on the pushback lengths, and therefore G is found inadequate.

Grammar Classes. The problem of deciding whether there exists an equivalence
relation κ in K such that a given context-free grammar is ShRe(κ) is obviously
not decidable, otherwise we could answer to the ambiguity problem in context-
free grammars using Theorem 2.

The classes of ShRe(κk)—κk is defined as the meet of k0 and lk from Equa-
tion (8)—grammars are not comparable with the classes of LR(k) grammars.
For instance, we can produce a shift-resolve parser for the grammar with rules

S→AC |BCb, A→d, B→d, C→aCb |c (G2)

using κ0, but G2 is not LR(k) for any value of k—as a matter of fact, it is not
LR-Regular either.

Conversely, for k > 0, we can put an unbounded number of null nonterminals
between a conflict and its resolution. For instance, the grammar with rules

S→Aa |Bb, A→cAE |c, B→cBE |c, E→ε (G3)

is LR(1) but not ShRe(κ) for any κ: once we reach the a or b symbol allowing
to resolve, we would need to pushback an unbounded number of E symbols in
order to have the c we intend to reduce on top of the parsing stack.
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B→b·, 0, 0
S→B·, r7, 0
S→S·a, r7, 0
S′→S·$, r7, 0
B→dB·A, r7, 0
A→·a, 0, 0

bq0

S→Sa·, r7, 1
A→a·, 0, 0
S→S·a, r7, 1
S′→S·$, r7, 1
B→dbA·, r5, 0
S→B·, r5, 0
S→S·a, r5, 0
S′→S·$, r5, 0
B→db·A, r5, 0
A→·a, 0, 0

a

S→Sa·, r7, 2
A→a·, 0, 0
S→S·a, r7, 2
S′→S·$, r7, 2
B→dbA·, r5, 0
S→B·, r5, 0
S→S·a, r5, 0
S′→S·$, r5, 0
B→db·A, r5, 0
A→·a, 0, 0

a

Fig. 4. Item sets exhibiting the inadequacy of Grammar G4 using κ0

A simplification we made in the shift-resolve construction makes it possible
for a LR(0) to be inadequate using κk. This is the case for the grammar with
rules

S→Sa |B, A→a, B→dBA |b. (G4)

Figure 4 shows how the resolution in a shift-resolve state with a single possi-
ble reduction (here B→b) can be tricked into an useless exploration of the right
context caused by the κk approximations. The issue can be tackled on the nonde-
terministic automaton level by choosing a finer equivalence relation, for instance
κ = κ0 ∧ c1 where

δ[A→α·α′]y c1 γ[B→β·β′]z iff h(δ) : 1 = h(γ) : 1. (11)

The issue can also be tackled on the subset construction level if we test whether
following ri transitions in the nondeterministic automaton is necessary for a
resolution, and if not, fill the entire parser table line with this resolution.

5 Related Work

Shift-resolve parsing is related to two areas: parsing techniques and nondeter-
ministic grammatical representations.

Parsing Techniques. The presence of conflicts in deterministic parsers is a widely
acknowledged issue. Transforming an input grammar until no more conflicts
can be found is a tedious task, can obfuscate the grammar, and may result in
convoluted semantic actions. It is therefore tempting for a parser developer to
trade the two static guarantees—unambiguity and linear time recognition—for
his confidence in his own skill in the handling of ambiguities and a reasonable
chance of having a linear time parser [9]. Another line of research is to see how
far one can go without sacrificing the static guarantees.

This line has given birth to the LR-Regular [10] and noncanonical [5] parser
families. To the best of our knowledge, the only other combination of the two
families [11] is an extension to DR(k) parsing [12]. It suffers from a worst-case
quadratic parsing time complexity inherent to DR(k) parsing with non LR(k)
grammars.

Using only completely reduced symbols in noncanonical parsing was already
investigated with the Leftmost SLR(1) parsers [6], and discarded as less powerful



Shift-Resolve Parsing: Simple, Unbounded Lookahead, Linear Time 263

than Noncanonical SLR(1) parsing. We improve on LSLR(1) parsers by allowing
a non-predefined lookahead length and more powerful approximations in our
grammatical representations.

Finally, to the extent of our knowledge, Grammar G1 is the first published
instance of a quadratic parsing time complexity with a regular lookahead parser.

Nondeterministic Grammatical Representations. Before becoming a classical
presentation [13] and a classical implementation [1] for LR(k) parser construc-
tions, nondeterministic grammatical representations were used for efficient LR(k)
testing [14]. Item grammars are a very similar representation [15]. They have
also been used as a unifying framework for parsing methods [16]. Our idea of
using the lattice of equivalence relations for the various possible approximations
seems to be new, though there are many similarities with the theory of abstract
interpretation [17].

6 Conclusion

Shift-resolve parsing is a novel parsing method with an attractive combination of
properties: the produced parsers are deterministic, they can use an unbounded
lookahead, and they run in linear time. Their generation is the result of a highly
generic algorithm working on a nondeterministic automaton. It is easy to design
new approximations for the automaton in order to improve the grammatical
coverage.

The next logical step is the investigation of which conditions would yield shift-
resolve parsers that keep running in linear time even if we allow unbounded
pushback lengths.
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17. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: POPL ’77,
ACM Press (1977) 238–252



A Family of Algorithms for Non Deterministic
Regular Languages Inference�

Manuel Vázquez de Parga, Pedro Garćıa, and José Ruiz
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Abstract. We present in this paper a new family of algorithms for reg-
ular languages inference from complete presentation.

Every algorithm of this family, on input of the sets of words (D+, D−),
obtains for every x in D+ at least a non deterministic finite automaton
(NFA) which accepts x and is consistent with D−. This automaton is,
besides, irreducible in the sense that any further merging of states accepts
words of D−. The output of the algorithm is a NFA which consists of
the collection of NFAs associated to each word of D+. Every algorithm
of the family converges to a automaton for the target language.

We also present the experiments done to compare one of the algo-
rithms of the family with two other well known algorithms for the same
task. The results obtained by our algorithm are better, both in error rate
as in the size of the output.

1 Introduction

The classical algorithms for regular languages identification typically output a
deterministic finite automaton (DFA). One of the best known algorithms of this
kind is the RPNI (Regular Positive and Negative Inference) algorithm [8], which
converges to the minimal DFA of the target language. Its method is to merge the
states in the prefix tree Moore machine of the sample in lexicographical order
and to propagate the merges to keep the automaton deterministic, under the
condition of not merging states that represent positive samples with those which
represent negative ones.

Starting up from the idea that a non deterministic automaton (NFA) is gener-
ally a smaller description for a regular language than its equivalent DFAs, it has
recently been proposed an algorithm called DeLeTe2 [3] whose output is a spe-
cial type of NFA called RFSA (Residual Finite State Automata) characterized
by the fact that its states are residuals of the language it recognizes.

The authors of DeLeTe2 show that when the target automaton is a randomly
generated DFA, this algorithm behaves worse than RPNI, but the opposite way
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happens if the target automaton is generated using random regular expressions
or NFAs.

We propose in this work a family of algorithms such that each of them, on
input of a sample, outputs a non deterministic automaton. They all infer the class
of regular languages in the limit. The method is to obtain, for each word of the
positive sample, at least an irreducible consistent automaton (the merging of any
two states in it, makes the resulting automaton to accept negative words). The
way to do it is merging states in the automaton that just recognizes the word.
The method is flexible as things like the number of subautomata inferred for
each word or the order of state merging can be changed without affecting to the
convergence of the process. The experiments done clearly show that this method
obtains better results than both the classical RPNI and DeLeTe2 algorithms.

The article is structured as follows: After this introduction, section 2 contains
some preliminary definitions and notation, section 3 contains the theoretical basis
of the method while section 4 contains the method itself and section 5 contains
two examples for better understanding of the method. Finally, the experiments
done (section 6) and the conclusions (section 7) end the job.

2 Preliminary Definitions and Notation

2.1 Finite Automata

An alphabet is any non empty finite set of symbols. A word over an alphabet Σ
is any finite sequence of symbols in Σ, the empty word is denoted as λ, Σ∗ is
the set of all the words over Σ, which is a free monoid under the concatenation
of words. Given a word x = uv, with u, v ∈ Σ∗, u is called prefix of x. The set
of the prefixes of x is called Pr(x).

A language over Σ is any subset of Σ∗. The concatenation of two languages
L1 and L2 will be denoted as L1L2. The residual language of L associated to x
is x−1L = {y ∈ Σ∗|xy ∈ L}.

A non deterministic finite automaton (NFA) is a 5-tuple A = (Q, Σ, δ, I, F ),
where Q is a finite set of states, Σ is an alphabet, I, F ⊆ Q are respectively
the set of initial and final states and δ : Q×Σ → 2Q is the transition function,
which will also be denoted as δ ⊆ Q×Σ ×Q.

Given P ⊆ Q and a ∈ Σ, δ(P, a) = ∪
q∈P

δ(q, a). The function δ is extended

to words writing δ(P, λ) = P and δ(P, xa) = δ(δ(P, x), a), for every a ∈ Σ,
x ∈ Σ∗. The language accepted by A will be denoted as L(A), that is, L(A) =
{x ∈ Σ∗ : δ(I, x) ∩ F �= ∅}. The left language of a state q with respect to A is
Lq = {x ∈ Σ∗ : q ∈ δ(I, x)}. Two automata are equivalent if they accept the
same language.

A finite automaton A is deterministic if Card(I) = 1 and for every state q
and every symbol a, Card(δ(q, a)) ≤ 1.

A subautomaton of a non deterministic finite automaton A = (Q, Σ, δ, I, F )
is any finite automaton A′ = (Q′, Σ, δ′, I ′, F ′) where Q′ ⊆ Q, I ′ ⊆ I ∩ Q′,
F ′ ⊆ F ∩Q′ and δ′ ⊆ δ ∩Q′ ×Σ ×Q′.
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It is easily seen that if A′ is a subautomaton of A then L(A′) ⊆ L(A).
Given A = (Q, Σ, δ, I, F ) and B = (Q′, Σ, δ′, I ′, F ′) the function ϕ : Q → Q′

is a homomorphism from A to B if ϕ(I) ⊆ I ′, ϕ(F ) ⊆ F ′ and ϕ(δ(q, a)) ⊆
δ′(ϕ(q), a) for any q in Q and a in Σ.

The subautomaton of B induced by ϕ(Q) is denoted as ϕ(A). It follows that
L(A) ⊆ L(ϕ(A)) ⊆ L(B).

The merge of states p and q in a finite automaton A = (Q, Σ, δ, I, F ) is
defined as follows: merge(A, p, q) = (ϕ(Q), Σ, δ′, I ′, F ′) where ϕ(q) = p and
∀r �= q, ϕ(r) = r, also I ′ = ϕ(I), F ′ = ϕ(F ) and (r, a, s) ∈ δ if and only if
(ϕ(r), a, ϕ(s)) ∈ δ′.

It follows that L(A) ⊆ L(merge(A, p, q)).
Given a language L, let U = {u−1

1 L∩ ... ∩ u−1
k L : k ≥ 0, u1, ..., uk ∈ Σ∗}. The

universal automaton [1,2,7,9] for L is defined as U = (U, Σ, δ, I, F ) with:

– I = {q ∈ U : q ⊆ L}.
– F = {q ∈ U : λ ∈ q}.
– The transition function is such that q ∈ δ(p, a) iff q ⊆ a−1p.

Related to the universal automaton we have the following:

Theorem 1. [2] Let U = (U, Σ, δ, I, F ) the universal automaton for L ⊆ Σ∗.
Then:

1. L(U) = L.
2. For any automaton A = (Q, Σ, δA, IA, FA) such that L(A) ⊆ L, the function

ϕ : Q→ U defined as ϕ(q) =
⋂

u∈Lq

u−1L is an automata homomorphism.

2.2 Grammatical Inference

Grammatical inference is the discipline that deals with learning formal languages
from either a positive or a complete sample.

A positive (resp. negative) sample of L is any finite set D+ ⊆ L (resp. D− ⊆
L). In the case it contains positive and negative words it will be denoted as
(D+, D−).

An inference algorithm is an algorithm that on input of any sample outputs a
representation of a language. The algorithm is consistent if the output contains
D+ and is disjoint with D−.

The type of convergence that we will use in our algorithms was defined by
Gold [5,6] and is called identification in the limit.

An algorithm A identifies a class of languages L by means of hypothesis in H
in the limit if and only if for any L ∈ L, and any presentation of L, the infinite
sequence of hypothesis output by A converges to h such that L(h) = L, that is,
there exists t0 such that (t ≥ t0 ⇒ ht = ht0 ∧L(ht0) = L), where ht denotes the
hypothesis output by A after processing t examples.

One of the best known algorithms that identifies L3 (the family of regular
languages) using deterministic finite automata is the RPNI (Regular positive
and negative inference) [8]. Given a sample, the algorithm builds the prefix
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tree Moore machine, whose states are the prefixes of the sample and whose
transitions are of the form δ(x, a) = xa. An output 1, 0 or ? is assigned to every
state depending whether it is associated to a positive sample, to a negative one
or to a prefix of a word of the sample which is not itself a word of it. The
algorithm merges every state with the previous ones in lexicographical order
and propagates the merges to keep the determinism under the condition that no
state with output 0 can be merged with a state with output 1. The merging of a
state with output s with a state with output ? gives out a state with output s.

Among the recently proposed algorithms that output non deterministic fi-
nite automata is the algorithm DeLeTe2 [3]. It outputs a special type of
automata called RFSA (Residual finite state automaton). A finite automaton
A = (Q, Σ, δ, I, F ) is a RFSA if for every q ∈ Q the language {x|δ(q, x)∩F �= ∅}
is a residual language of L(A).

3 Subautomata Associated to a Word in a Language

Definition 1. An automaton A = (Q, Σ, δ, I, F ) is irreducible in a regular lan-
guage L if and only if L(A) ⊆ L and for any pair of states p and q in Q we have
that L(merge(A, p, q))− L �= ∅.

Proposition 1. Let A = (Q, Σ, δ, I, F ) irreducible in a regular language L.
Then A is isomorphic to a subautomaton of U , the universal automaton for L.

Proof. Let ϕ : Q → U the homomorphism of Theorem 1. As A is irreducible in
L so is irreducible in L(A). As A does not have mergible states ϕ is injective
[4], then given states p and q in Q with p �= q it holds that ϕ(p) �= ϕ(q).
The automaton ϕ(A) induced in U by ϕ(Q) is a subautomaton of U . Let δ′

the transition function of ϕ(A) and let δ′′ be the restriction of δ′ such that
for every q in Q and a in Σ, δ′′(ϕ(q), a) = ϕ(δ(q, a)). The automaton B =
(ϕ(Q), Σ, δ′′, ϕ(I), ϕ(F )) is isomorphic to A and is a subautomaton of U .

Definition 2. A decomposition of a finite automaton A is any collection (Ai)i∈I

of subautomata of A such that L(A) = ∪
i∈I

L(Ai).

Definition 3. Given a word x, we will denote Ax the minimal deterministic
finite automaton without useless states for the language {x}, that is, Ax =
(Q, Σ, δ, I, F ) where Q = Pr(x), I = {λ}, F = {x} and for any u, ua in
Pr(x) δ(u, a) = ua.

Definition 4. Let L be a language over the alphabet Σ and let x ∈ L. A sub-
automaton associated to x in L is any finite automaton A obtained by means of
any sequence of state merging in Ax and such that A is irreducible in L.

It is clear that for every automaton A associated to x in L, x ∈ L(A).

Proposition 2. Let L be a regular language and x ∈ L. A subautomaton asso-
ciated to x in L can be obtained knowing a finite number of words in Σ∗ − L.
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Proof. Let x be a word in L and let u, v, z be a factorization of x, that is,
x = uvz. If the states related to u and to uv can not be merged, any word in
uv∗z−L will prevent to do so. If n is the number of states of Ax, the number of
words enough to guarantee that a subautomaton associated to x in L is obtained
is bounded above by n2.

Proposition 3. Let L be a regular language. There exists a finite set M of words
in L such that L is accepted by the NFA defined by the collection of subautomata
associated to the words in M .

Proof. As any subautomaton associated to any word in M is a subautomaton of
U , the collection of all the subautomata associated to the different words of L
recognizes L. The finiteness is deduced from the fact that if A is the subautoma-
ton of U associated to x in L and y ∈ L−L(A), the subautomaton A′ associated
to y is different from A. Then, as the number of subautomata of U is finite, M
is finite.

4 A Family of Algorithms for Inference of L3 Using Non
Deterministic Finite Automata

4.1 The Family WASRI

Based on the concepts that have been previously exposed, we describe now a
family of algorithms that will be called WASRI (word associated subautomata
regular inference). Every member of this family infers the class of regular lan-
guages in the limit and is described in Algorithm 1.

Algorithm 1. WASRI Scheme
Input: (D+, D−).
Output: NFA consistent with (D+, D−).
Method:
A = (Q,Σ, δ, I, F ) with Q = δ = I = F = ∅
For every x ∈ D+

If x /∈ L(A)
Obtain at least a finite automaton irreducible for x in Σ∗ − D−.
For every A′ = (Q′, Σ, δ′, I ′, F ′) so obtained, where Q ∩ Q′ = ∅

A = (Q ∪ Q′, Σ, δ ∪ δ′, I ∪ I ′, F ∪ F ′)
End For

End For
Returns (A)
End

Theorem 2. Any algorithm of the WASRI family infers the class of regular
languages in the limit.
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Proof. Let L ⊆ Σ∗ and suppose we have a complete presentation of L. From
Proposition 3, there exists a finite set of words in L that give a collection of
subautomata that recognizes L, and for every word, the number of words in
L needed to obtain those subautomata is also finite (Proposition 2), these two
facts assure the convergence of the process, as after a finite amount of time those
words will appear and L will be identified.

As it can be deduced from the above scheme, what will make the algorithms in
WASRI differ from each other will be facts like:

– The number of subautomata which are inferred for each word.
– The order in the process of merging states in the way to obtain each subau-

tomata.

Although it has been omitted in the above scheme an algorithm of the family
may introduce a subsequent selection in the collection of automata obtained so
far. For example, if we have obtained several automata for each word (using
different merging order criteria), it is possible to select one or some of them (for
example the smallest in size). Some of the automata in the output collection may
also be eliminated, when the resulting automaton doing so still accepts D+.

Let us see next the description of one of the most basic members of the family:

4.2 WASRI1

Let D = (D+, D−) be a complete sample of the language, with D+ = {x1, ..., xn}.
The Algorithm 2 describes one of the elements of the family, that will be called
WASRI1.

WASRI1 obtains a finite automaton A compatible with (D+, D−) in the fol-
lowing way: For every word x ∈ D+ which is not recognized by the current
automaton, it starts building Ax and obtains a subautomaton associated to x
merging states inAx following the lexicographical order, under the condition that
the state merging does not make the resulting automaton to accept any of the
negative samples. The subautomaton for that word is added to the current one.

Finally, it checks if the automaton resulting from the deletion of the subau-
tomata obtained for any of the words of D+ still recognizes D+. If that is the
case the subautomaton is effectively deleted.

The complexity of the algorithm WASRI1 is kn2|D−|, where k is an integer,
n is the length of the longest word of D+ and |D−| is the sum of the lengths
of the negative words of the sample. It is worth to mention that the temporal
complexity depends on the length of every word and not on the sum of the
lengths of the input (i. e. the size of the prefix tree acceptor of the sample). This
fact makes WASRI1 to run much faster, under the same conditions, than the
rest of the algorithms that will be compared to it in this work.

If A = (Q, Σ, δ, I, F ) and Ai = (Qi, Σ, δi, Ii, Fi) by A = A ∪ Ai we mean
that the automaton A becomes (Q∪Qi, Σ, δ∪ δi, I ∪ Ii, F ∪Fi). Under the same
conditions as before, by A = Delete(A,Ai), we mean that the automaton A
becomes (Q−Qi, Σ, δ − δi, I − Ii, F − Fi).
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Algorithm 2
WASRI1(D+, D−)
A = (Q,Σ, δ, I, F ) with Q = δ = I = F = ∅
list = ∅
For i = 1 to i = n
If xi /∈ L(A)

Ai = Axi with Qi = {qi0 , ..., qim} = Pr(xi)
For j = 1 to j = m

For k = 0 to k = j − 1
If qik ∈ Qi

If L(merge(Ai, qik , qij )) ∩ D− = ∅
Then Ai = merge(Ai, qik, qij)
End If

End If
End For

End For
A = A ∪ Ai

list=Add(list,Ai)
End For
For i = 1 to Length(list)

If D+ ⊆ L(Delete(A, Ai)) Then A = Delete(A,Ai)
End For
Return(A)
End

5 Two Examples

We present in this section two examples of run for better understanding of
WASRI1, the first one describes most of the situations that may appear in it, that
is, besides the merging of states it reflects the fact that some of the input words
may be recognized by the previous automaton and also the fact that some of the
subautomata may be deleted and the automaton still recognizes D+. The second
is an example to show that this algorithm may treat some situations in a much
more efficient way than the rest of algorithms that have been compared with it.

5.1 Example of Run

Let us suppose that the input to WASRI1 is D+ = {0, 000011, 001, 0101010}
and D− = {01000010}.

We will describe the process of the word 0101010 as if this word were the first
input to WASRI1. The automaton Ax for x = 0101010 is depicted in Fig. 1 (A).
States 2,3 and 4 can be merged with state 1 as the resulting automaton does not
accept the negative sample. The output to these first merges is in Fig. 1 (B).
The next states that can be merged in lexicographical order are states 6 and
7, as the previous possible merges would give an automaton that accepts the
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(A)

(B)

(C) (D)

1 2 3 4 5 6 7 8

1 5 6 7 8

1 5 6 8 1 5 6

0 1 0 1 0 1 0

0,1

1 0 1 0

0,1

1 0 0

1 0,1 1

1
0

0

Fig. 1. Successive merges done by algorithm WASRI1 while processing the word
0101010 on input D+ = {0101010, 0, 001, 000011} and D− = {01000010}

negative sample. The resulting automaton is Fig. 1 (C). Finally, merging states
5 and 8 gives automaton in Fig. 1 (D), which is minimal for this word.

Considering the complete input D+ = {0, 000011, 001, 0101010}, the automa-
ton for the first word 0 is in Fig. 2 (A), while Fig. 2 (B) and (C) are respectively
the outputs for the words 000011 and 0101010. You should observe at this point
that the word 001 produces no output as it is recognized by the current automa-
ton so far (Fig. 2 (A) and (B)).

Finally, as the deletion of the automaton corresponding to the word 000011
still recognizes D+, WASRI1 algorithm outputs automata (A) and (C) in Fig.2.

(A) (B) (C)

0 0,1 0,1 1

1 1
0

0

Fig. 2. Non deterministic automata on input D+ = {0, 000011, 001, 0101010} and
D− = {01000010} before deleting superfluous automata.

5.2 A Nice Example

Let us suppose that the target language is L = {x ∈ 0∗ : |x| is a multiple of 2, 3
or 5}. The minimal DFA for L has the same number of states than its canonical
RFSA (30 states). If the input for WASRI1 algorithm is D+ = {02, 03, 05} and
D− = {0, 011}, it outputs the automaton depicted in Fig. 3 which recognizes
L, while algorithms like RPNI or DeLeTe2 are far away from convergence with
this input.
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0

0

0 0

0

0 0 0 0

0

Fig. 3. Output automata given by WASRI on input D+ = {02, 03, 05},D− = {0, 011}

6 Experiments

The aim of the experiments is to analyze the behavior of one of the implementa-
tions of the algorithm WASRI and to compare it with the DeLeTe2 algorithm,
which has been reported as to have a better behavior than the classical inference
algorithms if the target automata are randomly generated as NFAs. We also in-
clude the recognition rates obtained by RPNI algorithm using the same set of
experiments. Both the training/test samples and the DeLeTe2 program used in
these experiments are provided by their authors and are available at Aurélien
Lemay’s web page http://www.grappa.univlille3.fr/∼lemay/.

Two kinds of experiments are reported in Table 1, depending on the source
of the training and test samples: er * if they come from regular expressions and
nfa * from NFAs. The number in the identifier of the experiment represents the
number of training samples. Each experiment consists of 30 different languages
to be learned and has 1000 test samples. Table 1 reports the recognition rate
and the average size of the inferred hypothesis. These results are calculated as
follows: each test sample is presented to the inference program, the program
tags the sample as belonging to the target language or not, if this classification
agrees with the real sample tag, the sample is considered correct and increases a
counter; at the end, the number of correct samples is divided by 1000 (the total
of test samples) and this value is reported as recognition rate. The average size
is computed adding up the number of states of the 30 hypothesis generated in
each experiment and dividing by 30.

The algorithm implemented for experiments obtains, for every word in D+,
two automata: The first one is obtained applying WASRI1 (the order is lexi-
cographical and every state tries to get merged with the previous ones). The

Table 1. Inference results with RPNI, DeLeTe2 and Wasri algorithms

RPNI DeLeTe2 WASRI
Iden. Recogn. rate Avg. size Recogn. rate Avg. size Recogn. rate Avg. size
er 50 76.36% 9.63 81.3% 32.43 89.15% 15,93
er 100 80.61% 14.16 91.4% 30.73 93.0% 25,36
er 150 84.46% 15.43 92.0% 60.96 95.88% 25,73
er 200 91.06% 13.3 95.7% 47.73 95.79% 35,5
nfa 50 64.8% 14.3 69.3% 71.26 74,76% 39,3
nfa 100 68.25% 21.83 74.4% 149.13 76.46% 79,83
nfa 150 71.21% 28.13 76.7% 218.26 77.27% 121,1
nfa 200 71.74% 33.43 78.9% 271.3 81.16% 148,13
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second uses the same algorithm with an inverse order (the word xi corresponds
to state qi0 and λ to state qim). Once the whole set D+ has been processed, the
algorithm outputs the automata with less number of states.

Table 1 resumes the recognition rates and the average size of the automata
obtained by the three algorithms to be compared, that is, RPNI, DeLeTe2 and
WASRI. As it can be seen, the recognition rates obtained by WASRI are higher
than those obtained by the other algorithms. It can also be seen that the number
of states of the automata obtained by WASRI is smaller than those obtained by
DeLeTe2.

7 Conclusions

We describe in this paper a family of algorithms that, each one of them, infers
the class of regular languages in the limit. We have made the same experiments
as in [3] to compare the error rate and the size of the output automata of one
of the algorithms of the family, the WASRI1, with the results obtained by the
algorithm DeLeTe2. The results obtained by WASRI1 are better both in error
rate as in smaller size of the output.

Some work needs to be done to complete the comparisons. It has been reported
in [3] that RPNI behaves better than DeLeTe2 when the source of the target lan-
guage is generated in a deterministic way. The comparisons between RPNI and
WASRI1 remain to be done with this type of source. Also, some effort to char-
acterize the type of the output produced by our algorithm would probably lead
us to determine some languages for which its performance might not be so good.
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Abstract. XSLT version 2.0 has the full power of a Turing machine, i.e. it is
“Turing-complete.” We show this is so by implementing a universal Turing ma-
chine emulator stylesheet in XSLT. We use only the constructs available in the
official XSLT version 2.0 recommendation of the World Wide Web Consortium.
Furthermore, we do not resort to string functions (which are also available in
XSLT) but rather rely on the innate transformational capabilities of XSLT.

1 Introduction

Recently, we showed that XSLT can be used as an interpreter for a simple imperative
language [1]. Here, we show that XSLT can be used to implement the functionality of
a universal Turing machine.

Formally, a Turing machine (TM) is denoted M=(Q, Σ, Γ, δ, q0, B, F ) where Q is
a finite set of states, Σ is the set of input symbols, Γ is the set of tape symbols, δ
is a mapping from QxΓ to QxΓx{L, R}, q0 ∈ Q is the start state, B is the blank
symbol and F ⊆ Q is the set of final states [2]. A universal Turing machine accepts the
language {<M,w> |M is an encoding of a TM, w is an encoding of the input to M, and
M accepts w}. A programming language or any other logical system is called Turing-
complete if it has a computational power equivalent to a universal Turing machine. In
other words, the system and the universal Turing machine can emulate each other [3].

2 The “Universal Turing Machine Emulator Stylesheet” UTMES

UTMES is an XSLT version 2.0 [4] stylesheet. It takes as input an XML encoded defin-
ition of a TM that accepts by final state, as well as the input for the TM, and “runs” the
TM on the provided input, making use of the temporary tree construct of XSLT version
2.0. This proves the Turing-completeness of XSLT version 2.0.

The specification of a TM is structured under a <TM> root which has <Spec> and
<input> elements. The <Spec> element has the state set, input symbols, tape sym-
bols, start state, blank symbol, final states and transition function specifications as sub-
elements. The transition rules in the <TransitionFunction> element are enclosed

O.H. Ibarra and H.-C. Yen (Eds.): CIAA 2006, LNCS 4094, pp. 275–276, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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in <Delta> elements, having @CurrentState, @read, @NextState, @write and
@direction attributes, which indicate the current state, symbol read from tape, next
state, the symbol to overwrite the symbol read and the direction that the tape head will
move (left or right), respectively.

UTMES transforms the TM specification, together with its initial input, into an in-
ternal format, which represents the instantaneous description (ID) [2] of the TM in
its initial configuration. Execution then proceeds by successively generating a new ID,
using the current ID and the transition function of the TM. The full code of our imple-
mentation, documentation, as well as sample Turing machines can be found at [5].

In related work, there have been several approaches to proving Turing-completeness
of XSLT version 1.0. Kepser [6] coded mu-recursive functions in XSLT, which are
themselves Turing-complete. Lyons [7] implemented a universal TM which takes the
initial tape as an input string parameter from the command line at execution time. Kor-
lyukov [8] used the transformation oriented approach with recursive templates like we
did, but made use of non-standard features of the XML processor XT developed by
Clark [9].

3 Conclusion

We showed the Turing-completeness of XSLT version 2.0, by developing an XSLT
stylesheet, called UTMES, that emulates a universal Turing machine using only native
XSL transformations (as opposed to non-standard features or string manipulation func-
tions). XSLT version 2.0 is backwards compatible with version 1.0, and previous com-
pleteness results for XSLT 1.0 generally apply to version 2.0. However, our work seems
to be the only one so far that shows the Turing-completeness of the official XSLT ver-
sion 2.0 recommendation of the W3C using a purely transformation based approach.
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We address the model-checking problem of viz. communicating finite-state ma-
chines (in short, CFSMs) [1,2,6], an infinite system which are modelled as a col-
lection of finite state automata communicating messages through FIFO queues.
Several verification methods have been developed for CFSMs. Since all interest-
ing verification problems are undecidable [4], there is in general no completely
automatic verification procedure for this class of systems.

Generally state-space exploration techniques are used for verifying properties
of CFSMs; they spread the reachability information along the transitions of the
system to be analyzed. The exploration process starts with the initial global
state of the system, and tries at every step to enlarge its current set of reachable
states by propagating these states through transitions. The search terminates
when a stable set is reached, i.e., for every control state, the new queue con-
tents are included in the current ones associated with that control state. In order
to use this state-space exploration paradigm for verifying properties of systems
with infinite state spaces, one needs a finite representation for an infinite sets
of states, as well as a search technique that can explore an infinite number of
states in a finite amount of time. A solution to the first problem is to use global
state by representing the control part explicitly and the queue contents symbol-
ically. To solve the second problem, techniques such as, meta-transitions [2] or
accelerations [6] have been used.

We use a Finite Union of Deterministic Finite Automata (FUDFA) to repre-
sent (possibly infinite) set of queue contents as introduced in [8]. Quite a few
operations needed to symbolically analyze such systems can be implemented on
the union of DFAs in polynomial time. The advantage gained by this approach
is that the inclusion between finite unions DFAs can be checked efficiently.
In [9], it was showed that FUDFAs can be used for the forward and backward
reachability analysis of the systems. It also lifts this approach for the case of a
CFSM with n queues. Using this fact a generic algorithm for reachability analysis

� The author did this work when he was a summer intern at HTSL, Bangalore during
May-July’05.
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parameterized by a set of cycles Θ was defined. Finally we implement a state
space search algorithm using FUDFAs as the representation of queue contents for
a version of Alternating Bit Protocol. For this we developed our own library in
C for symbolic manipulation of DFAs.

We also formulate a partial decision procedure based on this reachability
analysis for model checking LTL-formulas. We know that the LTL model-check-
ing problem is undecidable for CFSMs [1]. We adapt a partial decision procedure
from [3]. We build a Büchi automaton B¬Π for the negation (complement) of the
LTL formula Π . We compute the product of the protocol P (which is modelled
by a CFSM) and B¬Π . The result is a protocol enhanced by a set of accepting
states. We call such a machine Büchi automaton with queues. The property Π
is satisfied by every run of P if and only if the set of accepting runs of BP,¬Π

is empty. An accepting run of BP,¬Π is a run containing an infinite number of
occurrences of some accepting control state c, the queue contents at each visit to
c being allowed to vary. Since it is impossible to check all the runs of BP,¬Π , our
procedure will search for only runs containing an infinite number of occurrences
of c produced by the infinite execution of a sequence of transitions forming a
cycle from c to c. We use a testing procedure for checking the unboundedness of
queue contents following a a result by Jérone. In [7] Jéron has developed a semi-
decision procedure to check whether some sequences can be infinitely repeated
for transition systems representing CFSMs. This reduces the model checking
problem to calculating few derivative operations [5] for regular languages.
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Abstract. This paper investigates the synthesis of quantum networks
built to realize hybrid switching circuits in the absence of ancilla qu-
dits. We prove that all mixed qudit, binary/ternary, circuits can be con-
structed by hybrid Not and Multiple-Controlled-Not gates without any
ancilla qudits.

1 Introduction

Quantum computation quantum information theory have become one of most
interesting and productive fields [1]. Computer and communication systems using
quantum effects have remarkable efficient properties [1,2,3]. Recently, Hybrid
quantum computing is studied [4]. Multiple-qudit gates, such as Not, Swap, and
hybrid Toffoli gates are studied in [2,3,4,5]. But the universality of these gates
and synthesis arbitary hybrid circuits by these gates without ancilla qudits are
not studied.

In this paper, we constructively prove that hybrid Not and Multiple-
Controlled-Not gates are universal to realize all hybrid reversible circuits. Based
on this proof process, a construction based synthesis algorithm for any hybrid
reversible circuits is proposed in our technique report [6].

2 Universality of Hybrid Reversible Gates

This section begins by presenting some basic definitions of hybrid reversible
switching gates and we prove that hybrid Not gate and Multiple-Controlled-Not
gate are universal for realization of arbitrary hybrid reversible circuits without
using ancilla qudits.

Definition 1 (Hybrid reversible function). Let B = {0, 1}, T = {0, 1, 2}.
A hybrid logic function f with n input variables, A1, . . . , An, and n output
variables, P1, . . . , Pn, is denoted by f : T n1 × Bn2 → T n1 × Bn2 , where n =
n1 + n2, n1 ≥ 1, n2 ≥ 1, Ai and Pi are ternary variables when 1 ≤ i ≤ n1, Ai

and Pi are binary variables when n1 + 1 ≤ i ≤ n1 + n2. There are 2n1 × 3n2

different n-dimension hybrid assignments for the input vectors. A hybrid logic
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function f is reversible if it is a one-to-one and onto function (bijection), called
((n1, 3), (n2, 2)) hybrid reversible circuit. A hybrid reversible logic circuit is also
called a hybrid reversible gate when it is used to synthesize other hybrid reversible
circuits. There are a total of (3n1 × 2n2)! different n-qudit hybrid reversible
functions.

Definition 2 (Hybrid Not gate). A hybrid Not gate Nj is defined as: Pj =
Aj ⊕3 1, where ⊕3 denotes addition modulo 3, if 1 ≤ j ≤ n1; Pj = Aj ⊕2 1 if
n1 + 1 ≤ j ≤ n1 + n2; Pi = Ai, if i �= j.

Definition 3 (‘(n−1)’-Controlled-Not hybrid gate). A ‘(n−1)’-Controlled-
Not hybrid gate Cj, briefly called ‘(n− 1)’-CNot gate, is defined as :

If m �= j, then Pm = Cj(Am) = Am. If m = j, and if A1 = . . . = An1 = 2,
and An1+1 = . . . = An1+n2 = 1, then Pj = Cj(Aj) = Aj ⊕3 1 if 1 ≤ j ≤ n1, or
Pj = Cj(Aj) = Aj ⊕2 1 if n1 + 1 ≤ j ≤ n1 + n2; else, Pj = Aj .

Theorem 1. All n-bit (n ≥ 2) hybrid reversible functions can be realized by
using Not and ‘(n − 1)’-CNot gates without ancilla qudits. And the number
of ternary ‘(n − 1)’-CNot gates is no more than 14n1 × 3n1 × 2n2 , the number
of binary ‘(n− 1)’-CNOT gates is no more than 2n2× 3n1 × 2n2 , the number of
ternary Not gates is no more than 6n×n1×3n1×2n2, and the number of binary
Not gates is no more than 4n× n2 × 3n1 × 2n2 .

Theorem 2. The computational complexity of our synthesis algorithm is no
higher than n(2n + 1)3n1 × 2n2 .

Remark 1. The computational complexity of breadth-first search based synthesis
algorithm is greater than (3n1×2n2)!, because in the worst case, it at least needs
to compute all (3n1 × 2n2)! reversible circuits. In fact, it also has to do a lot of
comparisons of equality to determine whether the calculated circuit is the given
circuit or not. Therefore, the computational complexity of our construction based
synthesis algorithm is exponentially lower than any breadth-first search based
synthesis algorithm.
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Abstract. We present a tool for reachability analysis of procedural pro-
grams whose statements consist of affine equations and inequations. We
use finite automata for representing the possibly infinite sets of stack
configurations and memory valuations.

Let ℘ be any procedural program with the following restrictions: (1) variables
take only integer (Z) values, (2) every right-hand side of an assignment is an
affine equation over Z, (3) every condition of an if-statement or a while-loop is a
boolean combination of affine inequations over Z. A configuration of ℘ consists
of a string of labels l0l1 . . . ln and a sequence of memory valuations σ0σ1 . . . σn

where l0 is the label of the statement to be executed next, l1 to ln are labels
marking re-entry points, σ0 describes the values of the variables in scope at l0
before the execution of l0, and σ1 to σn describe the memory contents saved on
the stack. Given a set of configurations C0, we are interested in calculating all
reachable successors (post∗(C0)) or predecessors (pre∗(C0)). As it is in general
undecidable, whether a given configuration is reachable from C0, we only give
an algorithm which calculates in each step a subset of reachable states but may
not terminate. We use the framework of weighted pushdown systems introduced
in [1] for representing ℘, allowing us to apply the algorithms mentioned there.

Definition 1. A pushdown system (PDS) is a tuple (Q, Γ, Δ) where Q and Γ
are finite sets and Δ is a relation between Q×Γ and Q×

⋃
k≤0 Γ k. The elements

of Δ are called rules. A weighted PDS (wPDS) (Q, Γ, Δ, w) is a PDS (Q, Γ, Δ)
extended with a function w : Δ→ S which assigns to each rule of Δ a weight in
the set S.

For translating ℘ into a wPDS P , let V be the set of variables used in ℘. We
introduce additional variable identifiers V ′ := {x′ | x ∈ V}, Vs := {xs | x ∈ V},
V ′

s := {x′
s | x ∈ V}. x ∈ V is used for representing the value of the variable x

before a given statement is executed, x′ for its value after execution. Similarly,
we use xs and x′

s for the values of x saved in the top-most activation record
(σ1). Assume that a procedure call (l) proc(x); (l’) ... in ℘ where l, l′ are
unique labels. Further assume, that x and y are the local variables in scope at
l. Let the first statement of the procedure proc( z ) be labeled by lp, and let
lwb be an unused label up to now. We then represent this procedure call by two
� Partially funded by the DFG project Algorithms for Software Model Checking.
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rules rcall = (q, l, q, lplwb) and rwb = (q, lwb, q, l′). We assign rcall the relation
w(rcall) = {(x, y, z′, y′

s) | z′ = x ∧ y′
s = y}, and set w(rwb) to {(z, ys, x

′, y′) |
x′ = z ∧ y′ = ys}. We only include those variables in the relation w(l) which are
read or written by l . S therefore becomes the set of relations over the variables
V ∪ V ′ ∪ Vs ∪ V ′

s definable by Presburger formulae.
We instantiate the algorithms of [1] in order to calculate post∗(C0), resp.

pre∗(C0). For this, we need an operation which, given two statements represented
by the rules r1, r2, calculates the weight representing their serial execution. In
our case, this becomes the concatenation of relations where we have to take into
account that the relations only describe the changes of variables accessed by
the represented statement. In the case of post∗, we additionally need an unary
operator for restricting the values on which a procedure call is evaluated (cf. [2]).
We finally require that C0 can be represented as a P-automaton:

Definition 2. Let P = (Q, Γ, Δ, w) be a wPDS. A = (Z, Γ, δ, Q, F, g) is a
(weighted) P-automaton where Z is the set of states, a finite superset of Q,
F ⊆ Z is the set of final states, Q is the set of initial states, δ ⊆ Z × Γ × Z
is the transition relation, and g : δ → S assigns each transition a weight in
S. z′ �∈ Q hast to hold for (z, a, z′) ∈ δ. C(A) denotes the set of configurations
represented by A.

With this at hand, we get the following result for post∗, and similarly for pre∗:

Theorem 1. Given a wPDS P and a P-automaton A representing the set C0
of initial configurations, the algorithms of [1] calculate a sequence (Ai)i∈N of
P-automata with either C(Ai) � C(Ai+1) ⊆ post∗(C0) or C(Ai) = C(Ai+1) =
post∗(C0). In the latter case the algorithm terminates.

We use number decision diagrams (NDD), a subclass of finite automata (cf. [3])
for compactly representing the elements of S. We have implemented our own
NDD-library, as we needed to support the operations described above. Special
care was taken for an efficient implementation of these operations, especially in
the case of concatenation (cf. [2]). Further, we adapted the technique of path
compression used for BDDs, which allows us to dispense with states of a NDD
that do not carry any information (in the sense that they have exactly one succes-
sor). We have implemented these algorithms in a tool. As a case study we com-
puted the complete input-output relation of a faulty quicksort-implementation
allowing us to locate the error ([2]).
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Abstract. We propose a method for lexical disambiguation based on
polarities for Interaction Grammars (IGs), well suited for coordination.

1 Introduction

We deal with lexical disambiguation using lexicalized IGs[2]. An IG is defined
by a lexicon which associates to every word a set of lexical items specifying its
grammatical behaviors. The number of lexical selections for a sentence is the
product of the number of lexical entries for each word.

Lexical items are polarized. They may be seen as bags of polarized features and
this simplification, as an abstraction. In the abstract grammar, parsing amounts
to counting polarities and we use it to filter the initial grammar because of a
homomorphism, presented in [1], from the initial to the abstract grammar: every
parse in the former is transposed in a parse in the latter.

2 Interaction Grammars

IGs are based on underspecification, expressed by using tree descriptions rather
than trees, and polarities. Polarized features decorating nodes express valences:
positive (resp. negative) features represent available (resp. expected) resources.
Syntactic composition consists of superposing tree descriptions while respecting
polarities: a negative feature must encounter a dual positive feature to be neu-
tralized. A feature is a triple (f, p, v) such that f is a feature name taken from F ,
v is a finite disjunction (v1| . . . |vn) of atoms and p is a polarity from {→,←, =}.

3 Polarity Automata

We first need a function pD that count polarities in a description for particular
f and v. We assign +1 to →, -1 to ← and 0 to = or if a the value is not present
in a description. Feature values being disjunctions, this function returns the set
of all possible countings. It can be shown that it is a Z interval.

Let w1 . . . wn be a sentence to parse with an IG G given by its lexicon LexG.
For each word wi we know LexG(wi) = {Di,1 . . . Di,ki}. A lexical selection is a
sequence S = D1,s1 . . .Dn,sn , where Di,si ∈ LexG(wi). We extend function p to
selections as the sum of pD for all D in S.

Here is the a global neutrality criterion (GNC) verified by valid selections: if
a selection S is valid, for every f and v then 0 ∈ pS(f, v).
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Polarity Automata. For any f ∈ F and value v, the automaton A(f, v) is
defined as follows. States are pairs (i, p), where i represents the position between
wi and wi+1 and p is an interval of Z which represents the counting of polarities.

Transitions have the form (i, p)
Di+1,sk−→ (i + 1, q), where q is a Z interval of the

sums of any element of p added to any element of pDi+1,sk
(f, v). The initial state

is (0, {0}) and accepting states are (n, p) such that 0 ∈ p.
A lexical selection accepted by A(f, v) verifies GNC. Hence, the intersection of

polarity automata contains the good solutions. Furthermore, a (bad) lexical se-
lection not contained in all initial automata will disappear from the intersection.
Actually, this process pursues the filtering.

Selection of Feature Values. If a value does not appear with an active (→ or
←) polarity in any description, the automaton will not filter. So, the first opti-
mization is to consider only values with active polarity within some descriptions.

Then, the size of the automaton depends on the choice of the value. If v ⊆ v′

the automaton for v will be larger than the one for v′. So we order feature values.
Let us pay attention to maximal values for that order. If v ∩ v′ �= ∅ then

A(f, v ∪ v′) may be smaller than A(f, v) and A(f, v′). As a conclusion, we add
any value v1 ∪ v2 such that v1 ∩ v2 �= ∅ until we reach a fix point.

Refinement. Coordination shows so much ambiguity that GNC is not sufficient
but we can take advantage of the syntactic modelisation. Two conjoinable seg-
ments must be on the left and on the right of a coordination and have the same
active polarities. We can show that if Di is associated with a coordination for
two segments between position h and j then we have the following invariants:∑i

n=1 pDn(f, v) =
∑h−1

n=1 pDn(f, v) and
∑j

n=1 pDn(f, v) =
∑i−1

n=1 pDn(f, v).
Our invariants can be applied on states. For every transition t labelled with

a coordination from (i, p) to (i + 1, q) in A(f, v) we check that: (1) there exists
(h, q) in the path from the initial state to (i, p) and (2) there exists (k, p) in the
path from (i+1, q) to a final state. If these states cannot be found, the transition
t should be removed.

4 Conclusion

We presented a symbolic method for lexical selection. We used IGs but this
method can be extended to other formalisms, see [1]. We also go beyond a simple
counting of polarities by incorporating syntactical information for coordination.
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When a programmer is faced with the task of producing a parser for a context-
free language there are many tools to choose from. We find that programmers
avoid such tools when making parsers for simpler, domain-specific computer
languages, such as file formats, communication protocols and end-user inputs.
Since these languages often meet the criteria for regular languages, the extra run-
time effort required for supporting the recursive nature of context-free languages
is wasted.

Existing parsing tools based on regular expressions such as Lex, TLex, Re2C,
Sed, Awk and Perl focus on building parsers by combining small regular ex-
pressions using some form of program logic. For example, Lex defines a token
sequence model. None of these tools support the construction of an entire parser
using a single regular expression. Doing so has a number of advantages. From the
regular expression we gain a clear and concise statement of the solution. From
the state machine we obtain a very fast and robust executable that lends itself
to many kinds of analysis and visualization. In this work we present the machine
construction and action execution model of Ragel, which allows the embedding
of user code into regular expressions to support the single-expression model.

The Ragel language provides the regular expression operators union, concate-
nation, kleene star, difference and intersection for constructing parsers. The full
set of operators is given in the manual, available from Ragel’s homepage.

User actions can be embedded into regular expressions in arbitrary places
using action embedding operators. The entering transition operator > isolates the
start state, then embeds an action into all transitions leaving it. The finishing
transition operator @ embeds an action into all transitions going into a final
state. The all transition operator $ embeds an action into every transition. The
pending out transition operator % enqueues an embedding for the yet-unmade
leaving transitions. It allows the user to specify an action to be taken upon the
termination of a sequence, prior to the definition of the termination characters.

When a parser is built by combining expressions with embedded actions,
transitions which need to execute a number of actions on one input character are
often synthesized. To yield an action ordering that is intuitive and predictable
for the user, we recursively traverse the parse tree of regular expressions and
assign timestamps to action embeddings. When the traversal visits a parse tree
node it assigns timestamps to all entering action embeddings, recurses on the
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children, then assigns timestamps to the remaining embedding types in the order
in which they appear.

During the composition of a parser, the programmer must be careful to en-
sure that only the intended sub-components of the parser are active at any given
time. Otherwise, there is a danger that actions which are irrelevant to the cur-
rent section of the parser will be executed. In the context of embedded actions,
unintended nondeterminism causes spurious action execution.

In most situations, regular expression operators are adequate for segmenting
the components of a parser, but they sometimes lead to complicated and verbose
parser specifications. In one case, there is no regex-based means of controlling
nondeterminism; when we attempt to use the standard kleene star operator to
parse a token stream we create an ambiguity between extending a token and
wrapping around the machine to begin a new token.

A priority mechanism was devised and built into the determinization process,
specifically for the purpose of allowing the user to control nondeterminism. Pri-
orities are integer values embedded into transitions. When the determinization
process is combining transitions that have different priorities, the transition with
the higher priority is preserved and the transition with the lower priority is
dropped. To avoid unintended side-effects, priorities were made into named en-
tities; only priority embeddings with the same name are allowed to interact.

Using priority embeddings for controlling nondeterminism can be tedious and
confusing for the programmer. Fortunately, the use of priorities has been nec-
essary only in a small number of scenarios. This allows us to encapsulate the
priority functionality into a set of operators and hide priority embeddings from
the user.

The left-guarded concatenation operator, given by the <: compound symbol,
places a higher priority on all transitions of the first machine. This is useful if
one must forcibly separate two lists that contain common elements. The entry-
guarded concatenation operator, given by :>, terminates the first machine when
the second machine begins. The finish-guarded concatenation operator, given by
:>>, terminates the first machine when the second machine moves into a final
state. The longest-match kleene star operator, given by **, first embeds a high
priority into all transitions and a low priority into pending out transitions. When
it makes the epsilon transitions from the final states into the start state, they
will be given a lower priority than the existing transitions.

header_list := ( lower+ ’:’ ’ ’* <: (
( lower ( lower | digit )* ) >mark %id |
[ \t]+ >mark %ws |
’\n\t’ @cont )** ’\n’ )*;
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a..z

4
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5
tab / cont

a..z 2:
nl

sp  
3

tab / mark

6a..z / mark

nl / ws tab, sp

a..z / ws, mark

nl / id
tab, sp / id, mark

0..9, a..z
nl

tab, sp / mark

a..z / mark
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Given a length-m pattern P and an error threshold k, the bit-parallel NFA of
Baeza-Yates and Navarro uses (m − k)(k + 2) bits of space. In this paper we
decrease this to (m− k)(k + 1) by modifying the NFA simulation algorithm. As
a side-effect, also the original NFA simulation is slightly improved.

For a string A, let Ai denote the ith character, and Ai..j denote the sub-
string whose endpoints are Ai and Aj (for i ≤ j). We consider the task of
approximate matching where we wish to find from a text T all locations j where
edL(P, Tj−h..j) ≤ k for some h ≥ 0. Here k is an error threshold and edL(A, B)
denotes Levenshtein edit distance between strings A and B.

The Bit-Parallel by Diagonals (BPD) algorithm of Baeza-Yates and Navarro
[1] is the fastest verification capable approximate string matching algorithm for
a wide range of moderate values of m and k [2]. BPD encodes the type of NFA
shown in Fig. 1 into a length-(k+2)(m−k) bit-vector D = 0 D1 0 D2 0...0 Dm−k.
Each Di is a sequence of k + 1 bits that describes the status of the k + 1 states
i + d on rows d = 0 . . . k. BPD also preprocesses vectors Mλ that describe
matching transitions for character λ (see [1]). The core of BPD is an efficient
algorithm for updating the automaton status bit-vector D at text character
Tj. See Fig. 2 (Left). Here ’&’, ’|’, and ’∧’ denote bitwise “and”, “or”, and
“xor”, respectively, and ’<<’ and ’>>’ denote shifting the bit-vector left and
right. Superscript denotes repetition in bit-vectors (e.g. 12(01)2 = 110101). The
segments Di in D are separated by a 0 bit to avoid overflow in the arithmetic
addition of the update algorithm. The following Lemmata enable removing the
separator bits.

Lemma 1. The operation (((x + (0k+11)m−k) ∧ x) >> 1) in algorithm BPD is
equivalent to (((x + (0k+11)m−k) ∧ x) & x).

Lemma 2. If operation (((x + (0k+11)m−k) ∧ x) >> 1) is replaced by (((x +
(0k+11)m−k) ∧ x) & x) in BPD, the separator bits do not need explicit resetting.

Lemma 3. Let y be an arbitrary bit-sequence of length q, and set z = y & 01q−1.
Then u = ((y + 1) ∧ y) & y) is equal to v = ((z + 1) ∧ z) & y).

The modification of Lemma 1 does not alter the number of operations in BPD.
Lemma 2 enables removing the operation that resets the separator bits (last line
in Fig. 2 (Left)). Lemma 3 gives a modification that makes the separator bits
obsolete: The algorithm remains correct if we perform the arithmetic addition on
a version of D where the (k + 1)th bit in each Di is set to 0 (avoiding overflow).

O.H. Ibarra and H.-C. Yen (Eds.): CIAA 2006, LNCS 4094, pp. 287–289, 2006.
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We can now form the complete update algorithm for D of form D1D2...Dm−k.
It is shown in Fig. 2 (Right). Now Mλ must be built without the separator
bits. We implemented both BPD variants in C and performed tests on a 32-bit
SUN Sparc Ultra 2 with 128 MB RAM and GCC 4.0.2 compiler (using ‘-O3’
switch). Fig. 3 shows the results. The methods used horizontal partitioning (see
[1]) when the NFA required more than one computer word. Our BPD used
separator bits (removing 2nd last line in our code) if it did not increase the
number of words.

s rt i n g no errors

1 error

2 errors

s rt i n g

s rt i n g

ε ε ε ε ε ε

ε ε ε ε ε ε

⇒

Fig. 1. NFA for approximate string matching with P = “string” and k = 2

x ← (D >> (k + 2)) | MTj

D′← ((D << 1) | (0k+11)m−k)
& ((D << (k + 3)) | (0k+11)m−k−101k+1)
& (((x + (0k+11)m−k) ∧ x) >> 1)
& (0 1k+1)m−k

x ← (D >> (k + 1)) | MTj

D′← ((D << 1) | (0k1)m−k)
& ((D << (k + 2)) | (0k1)m−k−11k+1)

z ← x & (0 1k)m−k

D′ ← D′ & (((z + (0k1)m−k) ∧ z) & x

Fig. 2. Algorithms for updating D. (Left) Original BPD. (Right) Our tight BPD.
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Fig. 3. Average time in seconds for approximate search in 8 MB English text
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