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Abstract. This paper studies the problem of finding the 1-median on a
graph where vertex weights are uncertain and the uncertainty is charac-
terized by given intervals. It is required to find a minmax regret solution,
which minimizes the worst-case loss in the objective function. Averbakh
and Berman had an O(mn2log n)-time algorithm for the problem on a
general graph, and had an O(nlog2n)-time algorithm on a tree. In this
paper, we improve these two bounds to O(mn2+n3log n) and O(nlog n),
respectively.
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1 Introduction

Over three decades, location problems on networks have received much
attention from researchers in the fields of transportation and communication
[9,10,11,12,17]. Traditionally, network location theory has been concerned with
networks in which the vertex weights and edge lengths are known precisely.
However, in practice, it is often impossible to make an accurate estimate of all
these parameters [13,14]. Real-life data often involve a significant portion of un-
certainty, and these parameters may change with time. Thus, location models
involving uncertainty have attracted increasing research efforts in recent years
[1,2,3,4,5,6,7,8,13,14,16,18,19,20,21].

Several ways for modeling network uncertainty have been defined and stud-
ied [13,16,18]. One of the most important models is the minmax regret approach,
introduced by Kouvelis [13]. In the model, uncertainty of network parameters is
characterized by given intervals, and it is required to minimize the worst-case loss
in the objective function that may occur because of the uncertain parameters.
During the last ten years, many important location problems have been studied on
the minmax regretmodel. The 1-center problem was studied in [2,3,6], the p-center
problem was studied in [2], and the 1-median problem was studied in [4,5,7,13].

The minmax regret 1-median problem is the focus of this paper. For a general
graph with uncertain edge lengths, the problem is strongly NP-hard [1]. For a
general graph with uncertain vertex weights, Averbakh and Berman [4] gave an
O(mn2log n)-time algorithm, where n is the number of vertices and m is the
number of edges. As to trees, it was proved in [7] that uncertainty in edge lengths
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can be ignored by setting the length of each edge to its upper bound. For a tree
with uncertain vertex weights, Kouvelis et al. [13] proposed an O(n4)-time algo-
rithm. Chen and Lin [7] improved the bound to O(n3). Averbakh and Berman
presented an O(n2)-time algorithm in [4] and then improved it to O(nlog2n)
in [5]. In this paper, improved algorithms are presented for the minmax regret
1-median problem on a general graph and a tree with uncertain vertex weights.
For general graphs, we improve the bound from O(mn2log n) to O(mn2 + n3log
n). For trees, we improve the bound from O(nlog2n) to O(nlog n).

The remainder of this paper is organized as follows. In Section 2, notation
and definitions are introduced. In Sections 3 and 4, improved algorithms for the
minmax regret 1-median problem on a general graph and a tree are proposed,
respectively. Finally, in Section 5, we conclude this paper.

2 Notation and Definitions

Let G = (V, E) be an undirected connected graph, where V is the vertex set
and E is the edge set. Let n = |V | and m = |E|. In this paper, G also denotes
the set of all points of the graph. Thus, the notation x ∈ G means that x is a
point along any edge of G which may or may not be a vertex of G. Each edge
e ∈ E has a nonnegative length. For any two points a, b ∈ G, let d(a, b) be
the distance of the shortest path between a and b. Suppose that the matrix of
shortest distances between vertices of G is given. Each vertex v ∈ V is associated
with two positive values w−

v and w+
v , where w−

v ≤ w+
v . The weight of each vertex

v ∈ V can take any value randomly from the interval [w−
v , w+

v ]. Let Σ be the
Cartesian product of intervals [w−

v , w+
v ], v ∈ V . Any element S ∈ Σ is called a

scenario and represents a feasible assignment of weights to the vertices of G. For
any scenario S ∈ Σ and any vertex v ∈ V , let wS

v be the weight of v under the
scenario S.

For any scenario S ∈ Σ, and a point x ∈ G, we define

F (S, x) =
∑

v∈V

(wS
v × d(v, x)),

which is the total weighted distance from all the vertices to x according to S.
Given a specific scenario S ∈ Σ, the classical 1-median problem is to find a point
x∗ ∈ G that minimizes F (S, x∗). The point x∗ is called a 1-median of G under
the scenario S. For any point x ∈ G, the regret of x with respect to a scenario
S ∈ Σ is maxy∈GF (S, x) − F (S, y) and the maximum regret of x is

Z(x) = maxS∈Σmaxy∈GF (S, x) − F (S, y).

The minmax regret 1-median problem is to find a point x ∈ G minimizing Z(x).

3 Minmax Regret 1-Median on a General Graph

Averbakh and Berman [4] had an O(mn2log n)-time algorithm to find a min-
max regret 1-median of a graph G = (V, E). In this section, we give a new
implementation of their algorithm, which requires O(mn2 + n3log n) time.
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3.1 Averbakh and Berman’s Algorithm

It is well-known that there is always a vertex that is a solution to the classi-
cal 1-median problem [10]. Thus, for any scenario S ∈ Σ, miny∈GF (S, y) =
miny∈V F (S, y). Therefore, the regret of x with respect to a scenario S ∈ Σ can
also be expressed as maxy∈V F (S, x) − F (S, y). Consequently, we have

Z(x) = maxS∈Σmaxy∈V F (S, x) − F (S, y)
= maxy∈V maxS∈ΣF (S, x) − F (S, y).

For any point x ∈ G and vertex y ∈ V , define R(x, y)=maxS∈ΣF (S, x)−F (S, y).
Then, we have

Z(x) = maxy∈V R(x, y).

The problem is to find a point x ∈ G that minimizes Z(x). For ease of pre-
sentation, only the computation of minx∈GZ(x) is described. For each edge
e ∈ E, let Z∗

e = minx∈eZ(x). Averbakh and Berman solved the minmax regret
1-median problem by firstly determining Z∗

e for every e ∈ E and then computing
minx∈GZ(x) as the minimum among all Z∗

e . Their computation of each Z∗
e takes

O(n2log n) time and thus their solution to the minmax regret 1-median problem
requires O(mn2log n) time. Let e = (a, b) be an edge in G. In the remainder of
this section, Averbakh and Berman’s algorithm for computing Z∗

e is described.
For ease of description, e is regarded as an interval [a, b] on the real line so that
any point on e corresponds to a real number x ∈ [a, b].

Consider the function R(·, y) for a fixed y ∈ V . For a point x ∈ e, any
scenario S ∈ Σ that maximizes F (S, x) − F (S, y) is called a worst-case scenario
of x according to y. For each point x ∈ e and each vertex v ∈ V , let

wx,y
v =

{
w+

v if d(v, x) > d(v, y), and
w−

v if d(v, x) ≤ d(v, y).

For each point x ∈ e, let S(x,y) be the scenario in which the weight of each v ∈ V
is wx,y

v . It is easy to see that S(x,y) is a worst-case scenario of x according to y.
Thus, we have the following lemma.

Lemma 3.1 [4]. R(x, y) = F (S(x,y), x) − F (S(x,y), y).

For each v ∈ V , let xv be the point on e that is farthest from v. For convenience,
each xv is called a pseudo-node of e. There are at most two points x ∈ [a, b]
with d(v, x) = d(v, y). For ease of presentation, assume that there are two such
points yv

1 and yv
2 , where yv

1 < yv
2 . For convenience, yv

1 and yv
2 are called y-critical

points of e. In the interval [a, b], R(·, y) is a piecewise linear function having O(n)
breakpoints, including at most n pseudo-nodes and at most 2n y-critical points.
These breakpoints can be easily determined in O(n) time. Let B(y) be the non-
decreasing sequence of the pseudo-nodes and y-critical points on e. Averbakh
and Berman showed the following.

Lemma 3.2 [4]. Let y ∈ V be a vertex. Given B(y), the function R(·, y) on e
can be constructed in O(n) time.
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Averbakh and Berman computed Z∗
e as follows. First, by sorting, B(y) is ob-

tained in O(n2log n) time for every y ∈ V . Next, the function R(·, y) on e is con-
structed for every y ∈ V , which takes O(n2) time. Finally, Z∗

e = minx∈eZ(x) =
minx∈e{maxy∈V R(x, y)} is computed in O(n2) time, by using Megiddo’s linear-
time algorithm for two-variable linear programming [17].

3.2 The Improved Algorithm

Averbakh and Berman’s algorithm for computing each Z∗
e requires O(n2log n)

time. The bottleneck is the computation of B(y) for each y ∈ V . In this subsec-
tion, we show that with a simple O(n3log n)-time preprocessing, each B(y) can
be computed in O(n) time.

The preprocessing computes a list for each edge e ∈ E and computes n lists
for each vertex a ∈ V . The list computed for each e ∈ E is P (e), which is
the non-decreasing sequence of all pseudo-nodes of e. The n lists computed for
each a ∈ V are, respectively, denoted by Y (a, y), y ∈ V . Each Y (a, y), y ∈ V ,
stores the non-decreasing sequence of the values d(v, y)−d(v, a) of all v ∈ V . By
using sorting and with the help of the distance matrix, the computation of each
P (e) and each Y (a, y) takes O(nlog n) time. Thus, the preprocessing requires
O((m + n2)nlog n) = O(n3log n) time.

Let e = (a, b) be an edge. Consider the function R(·, y) for a fixed y ∈ V on e.
In the following, we show how to compute B(y) in O(n) time. The function R(·, y)
has two kinds of breakpoints: pseudo-nodes and y-critical points. As mentioned,
for each vertex v ∈ V there are at most two y-critical points x ∈ [a, b]. To be
more specific, if d(v, a) < d(v, y) < d(v, xv), there is a point x in the open interval
(a, xv) with d(v, x) = d(v, y). In such a case, we say that v generates a left y-
critical point and denote the point as yv

1 . On the other hand, if d(v, b) < d(v, y) <
d(v, xv), we say that v generates a right y-critical point and denote the point as
yv
2 . We obtain B(y) as follows. First, we determine the y-critical points generated

by all vertices v ∈ V . Then, we compute Y1 as the non-decreasing sequence
of the left y-critical points. Since the slope of d(v, x) in the interval [a, xv] is
+1, it is easy to conclude that each left y-critical point yv

1 is at a distance of
d(v, y)−d(v, a) from a. The sequence Y (a, y) stores the non-decreasing sequence
of the values d(v, y) − d(v, a) of all v ∈ V . Thus, the order of the left y-critical
points in Y1 can be obtained from Y (a, y) in O(n) time by a simple scan. Next,
we compute Y2 as the non-decreasing sequence of the right y-critical points.
Since the slope of d(v, x) in the interval [xv, b] is −1, each right y-critical point
yv
2 is at a distance of d(v, y) − d(v, b) from b. The sequence Y (b, y) stores the

non-decreasing sequence of the values d(v, y) − d(v, b) of all v ∈ V . Thus, the
order of the right y-critical points in Y2 can be obtained by scanning the reverse
sequence of Y (b, y) in O(n) time. Finally, B(y) is computed in O(n) time by
merging Y1, Y2, and P (e).

With the above computation of B(y), each Z∗
e can be computed in O(n2)

time. Thus, we obtain the following.

Theorem 3.3. The minmax regret 1-median problem on a general graph can be
solved in O(mn2 + n3log n) time.
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We remark that Averbakh and Berman’s algorithm uses O(n2) space, whereas
ours uses O(n3) space.

4 Minmax Regret 1-Median on a Tree

In Subsection 4.1, Averbakh and Berman’s O(nlog2n)-time algorithm for the
minmax regret 1-median problem on a tree T = (V, E) is described. In Subsection
4.2, an O(nlog n)-time improved algorithm is presented.

4.1 Averbakh and Berman’s Algorithm

An edge that contains a minmax regret 1-median is called an optimal edge.
Averbakh and Berman’s algorithm consists of two stages. The first stage finds
an optimal edge e∗, which requires O(nlog2n) time. The second stage finds the
exact position of a minmax regret 1-median on e∗ in O(n) time. Our improvement
is obtained by giving a more efficient implementation of the first stage. Thus,
only the first stage is described in this subsection.

Let v ∈ V be a vertex. By removing v and its incident edges, T is broken
into several subtrees, each of which is called an open v-branch. For each open
v-branch X , the union of v, X , and the edge connecting v and X is called a
v-branch. For any vertex p ∈ v in T , let B(v, p) be the v-branch containing p.
Let S− be the scenario in which the weight of every v ∈ V is w−

v . Let S+ be the
scenario in which the weight of every v ∈ V is w+

v . For any subtree X of T , let
V (X) be the set of vertices in X . For any vertex a ∈ V and any open a-branch
X , the following auxiliary values are defined:

W+(X) = Σv∈V (X)w
+
v W−(X) = Σv∈V (X)w

−
v

D+(X, a) = Σv∈V (X)w
+
v × d(v, a) D−(X, a) = Σv∈V (X)w

−
v × d(v, a)

F+(a) = Σv∈V w+
v × d(v, a) F−(a) = Σv∈V w−

v × d(v, a)

By using dynamic programming, these auxiliary values of all vertices a and all
open a-branches X are pre-computed, which takes O(n) time [5].

Let R(x, y) and S(x,y) be defined the same as in Subsection 3.1. Consider the
computation of R(x, y) for a pair of vertices x, y ∈ V . An edge is a bisector of a
simple path if it contains the middle point of the path. In case the middle point
is located at a vertex, both the edges connecting the vertex are bisectors. Let
(i, j) ∈ E be a bisector of the path from x to y, where i is closer to x than j. Let
X be the open j-branch containing x and Y be the open i-branch containing y.
By Lemma 3.1, R(x, y) = F (S(x,y), x) − F (S(x,y), y). Since T is a tree, it is easy
to see that under the scenario S(x,y) the weights of all vertices in Y are equal to
their upper bounds w+

v and the weights of all vertices in X are equal to their
lower bounds w−

v . Thus, F (S(x,y), x) and F (S(x,y), y) can be computed in O(1)
time according to the following equations [5]:

F (S(x,y), x) = F −(x) − D−(Y, i) − d(i, x) × W −(Y ) + D+(Y, i) + d(i, x) × W +(Y )

F (S(x,y), y) = F+(y) − D+(X, j) − d(j, y)×W +(X)+D−(X, j)+d(j, y)× W −(X)
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Based upon the above discussion, the following lemma is obtained.

Lemma 4.1 [5]. Let x ∈ V be a vertex. Given the bisectors of the paths from x
to all the other vertices, R(x, y) can be computed in O(n) time for all y ∈ V .

For each x ∈ V , let ŷ(x) be a vertex in T such that R(x, ŷ(x)) = maxy∈V R(x, y).
We have the following.

Lemma 4.2 [5]. Let x ∈ V be a vertex. If x = ŷ(x), x is a minmax regret
1-median of T ; otherwise, B(x, ŷ(x)) contains a minmax regret 1-median.

A centroid of T is a vertex c ∈ V such that every open c-branch has at most
n/2 vertices. It is easy to find a centroid of T in O(n) time [12]. Averbakh and
Berman’s algorithm for finding an optimal edge is as follows.

Algorithm 1. OPTIMAL_EDGE(T )
begin

1 T̂ ← T // T̂ is the range for searching an optimal edge
2 while (T̂ is not a single edge) do
3 begin
4 x ← a centroid of T̂
5 for each y ∈ V do compute a bisector of the path from x to y
6 for each y ∈ V do R(x, y) ← F (S(x,y), x) − F (S(x,y), y)
7 ŷ(x) ← the vertex that maximizes R(x, y) over all y ∈ V
8 if x = ŷ(x) then return (x) // x is a minmax regret 1-median
9 else (̂T ) ← B(x, ŷ(x)) ∩ T̂ // reduce the search range to a subtree
10 end
11 return T̂ // T̂ is an optimal edge

end

The while-loop in Lines 2-10 performs O(log n) iterations, in which Line 5
requires O(nlog n) time [5] and is the bottleneck. Therefore, Algorithm 1 finds
an optimal edge in O(nlog2n) time.

4.2 An Improved Algorithm

For each e = (i, j) ∈ E, define Se as the scenario in which the weight of every
vertex v in the open i-branch containing j is w+

v and the weight of every vertex
v in the open j-branch containing i is w−

v . A key procedure of the new algorithm
is to compute for every e ∈ E a vertex that is a classical 1-median under the
scenario Se. The computation is described firstly in Subsection 4.2.1. Then, the
new algorithm is proposed in Subsection 4.2.2.

4.2.1 Computing Medians
For ease of discussion, throughout this subsection, we assume that T is rooted
at an arbitrary vertex r ∈ V . Let v ∈ V be a vertex. Denote P (v) as the path
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from r to v, p(v) as the parent of v, and Tv as the subtree of T rooted at v.
For convenience, the subtrees rooted at the children of v are called subtrees of
v. For any subtree X of T , define the weight of X under a scenario S ∈ Σ as
W (S, X) =

∑
v∈V (X) wS

v . For any scenario S ∈ Σ and v ∈ V , define
δ(S, v) = 2W (S, Tv) − W (S, T ).

Note that 2W (S, Tv) − W (S, T ) = W (S, Tv) − W (S, T\Tv) and thus δ(S, v) is
equal to the weight difference between Tv and its complement under the scenario
S. By the definition of δ(S, v), it is easy to see the following.

Lemma 4.3. For any scenario S ∈ Σ, the function value of δ(S, ·) is decreasing
along any downward path in T .

Under a scenario S ∈ Σ, a vertex v is a classical 1-median of T if and only if
W (S, X) ≤ 1/2×W (S, T ) for all open v-branches X [12]. By using this property,
the following lemma can be obtained.

Lemma 4.4 [15]. For any scenario S ∈ Σ, the vertex v ∈ V with the smallest
δ(S, v) > 0 is a classical 1-median.

Under a scenario S ∈ Σ, T may have more than one median, but it has a unique
vertex v with the smallest δ(S, v) > 0, which is called the median, denoted as
m(S). For any v ∈ V , define the heavy path of v under a scenario S ∈ Σ, denoted
by h(S, v), as the path starting at v and at each time moving down to the heaviest
subtree, with a tie broken arbitrarily, until a leaf is reached. With some efforts,
the following can be proved.

Lemma 4.5. Let S ∈ Σ be a scenario and v ∈ V be a vertex with δ(S, v) > 0.
Then, h(S, v) contains the median m(S).

Lemma 4.3, 4.4 and 4.5 are useful for finding a classical 1-median for a fixed sce-
nario S ∈ Σ. In our problem, all scenarios Se, e ∈ E, need to be considered. Let
e = (i, j) be an edge in T such that i is the parent of j. For ease of presentation,
denote Sē as the scenario S(j,i). For each v ∈ V , the weight of Tv and the heavy
path of v only depend on the weight assignment to the vertices in Tv. Therefore,
the following two lemmas can be obtained.

Lemma 4.6. Let e = (i, j) be an edge in T such that i is the parent of j.
For any v ∈ V ,

W (Se, Tv) =

⎧
⎨

⎩

W (S+, Tv) if v ∈ Tj,
W (S−, Tv) if v /∈ Tj and v /∈P (i),
W (S−, Tv) − W (S−, Tj) + W (S+, Tj) if v ∈ P (i); and

W (Sē, Tv) =

⎧
⎨

⎩

W (S−, Tv) if v ∈ Tj,
W (S+, Tv) if v /∈ Tj and v /∈P (i),
W (S+, Tv) − W (S+, Tj) + W (S−, Tj) if v ∈ P (i); and

Lemma 4.7. Let e = (i, j) be an edge in T such that i is the parent of j.
For any v /∈ P (i),

h(Se, v) =
{

h(S+, v) if v ∈ Tj,
h(S−, v) if v /∈ Tj;

and h(Sē, v) =
{

h(S−, v) if v ∈ Tj,
h(S+, v) if v /∈ Tj.
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According to Lemmas 4.6 and 4.7, maintaining information of T under the sce-
narios S+ and S− is very useful to the computation of m(Se) for every e ∈ E.
With a bottom-up computation, we pre-compute the values W (S+, Tv) and
W (S−, Tv) for all v ∈ V in O(n) time. With the pre-computed values, for any
e ∈ E and v ∈ V , δ(Se, v) = 2W (Se, Tv) − W (Se, Tr) can be determined in O(1)
time by Lemmas 4.6. Besides, we preprocess T to construct the heavy paths
h(S+, v) and h(S−, v) for every v ∈ V . The total length of the heavy paths of
all v ∈ V is O(n2). However, they can be constructed in O(n) time and stored
in O(n) space [22].

Let H+ = {h(S+, v)|v ∈ V } and H− = {h(S−, v)|v ∈ V }. Let e ∈ E be an
edge. Since the value of δ(Se, ·) decreases along any downward path in T , we can
compute the median m(Se) by firstly finding a path in H+ ∪ H− that contains
the median and then locating the median by performing binary search on the
path. The following two lemmas help in the finding. Due to the page limit, the
proofs are omitted.

Lemma 4.8. Let e = (i, j) be an edge in T such that i is the parent of j. Let
z be the lowest vertex on P (j) with δ(Se, z) > 0. If z = j, h(S+, z) contains
m(Se); otherwise, h(S−, z) contains m(Se).

Lemma 4.9. Let e = (i, j) be an edge in T such that i is the parent of j. Let
z be the lowest vertex on P (j) with δ(Sē, z) > 0. If z = j, h(S−, z) contains
m(Sē); otherwise, either h(S+, z) or h(S+, c′) contains m(Sē), where c′ is the
child of z such that Tc′ is the second heaviest under the scenario S+.

Now, we are ready to present our algorithm for computing m(Se) for all e ∈ E.
It is as follows.

Algorithm 2. COMPUTE_MEDIANS(T )
begin

1 Orient T into a rooted tree with an arbitrary root r ∈ V
2 Compute W (S+, Tv), W (S−, Tv), h(S+, v), and h(S−, v) for all v ∈ V
3 for each v ∈ V do
4 c′(v) ← the child of v such that Tc′(v) is the second heaviest under S+

5 for each j ∈ V − {r} do (in depth-first search order)
6 begin
7 e ← (p(j), j)
8 P (j) ← the path from r to j
9 m(Se) ← the classical 1-median under Se

10 m(Sē) ← the classical 1-median under Sē

11 end
12 return ({m(Se)|e ∈ E})

end

The time complexity of Algorithm 2 is analyzed as follows. Lines 1-4 requires
O(n) time. Consider the for-loop in Lines 5-11 for a fixed j ∈ V − r. Line 7 takes
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O(1) time. Since the vertices are processed in depth-first search order, Line 8 also
takes O(1) time. Based upon Lemma 4.8, Line 9 is implemented in O(log n) time
as follows. First, we compute z as the lowest vertex on P (j) with δ(Se, z) > 0.
Then, if z = j, we find m(Se) on h(S+, z); otherwise, we find m(Se) on h(S−, z).
The computation of z and the finding of m(Se) are done in O(log n) time by
using binary search. Similarly, based upon Lemma 4.9, Line 10 is implemented
in O(log n) time. Therefore, each iteration of the for-loop takes O(log n) time.
There are n − 1 iterations. Thus, the for-loop requires O(nlog n) time in total.
We obtain the following.

Theorem 4.10. The computation of m(Se) of all e ∈ E can be done in
O(nlog n) time.

4.2.2 The New Approach
We pre-compute the medians m(Se) for all e ∈ E. Also, as in Subsection 4.1,
the auxiliary values W+(X), W−(X), D+(X, a), D−(X, a), F+(a), and F−(a)
of all vertices a ∈ V and all open a-branches X are pre-computed.

Averbakh and Berman’s algorithm finds an optimal edge by repeatedly re-
ducing the search range T̂ into a smaller subtree until only one edge is left. Let
x be the centroid of the current search range T̂ . The reduction is done by de-
termining a vertex ŷ(x) with R(x, ŷ(x)) = maxy∈V R(x, y) and then reducing T̂

into B(x, ŷ(x)) ∩ T̂ . A solution to the finding of bisectors is required for their
determination of ŷ(x). The new algorithm is obtained by using a different ap-
proach for the determination of ŷ(x), which is based upon the following lemma.
We omit the proof due to the page limit.

Lemma 4.11. For any x ∈ V , there is an edge e ∈ E such that R(x, m(Se)) =
F (Se, x) − F (Se, m(Se)) = maxy∈V R(x, y).

According to Lemma 4.11, we modify Algorithm 1 by replacing Lines 5-7 with
the following.

5 for each e ∈ E do R′(e) ← F (Se, x) − F (Se, m(Se))
6 ê ← the edge that maximizes R′(e) over all e ∈ E
7 ŷ(x) ← m(Sê)

Let e = (i, j) be an edge in T . Let X be the open j-branch containing i and Y be
the open i-branch containing j. Since T is a tree, for every v ∈ V (X), we have
F (Se, v) = F−(v) − D−(Y, i) − d(i, v) × W−(Y ) + D+(Y, i) + d(i, v) × W+(Y );
and for every v ∈ V (Y ), we have F (Se, v) = F+(v) − D+(X, j) − d(j, v) ×
W+(X)+ D−(X, j) + d(j, v) × W−(X). By using these two equations, it is easy
to implement the new Line 5 in O(n) time. The new Lines 6 and 7 take O(n)
time. Therefore, Algorithm 2 requires O(nlog n) time after the replacement.

Theorem 4.12. The minmax regret 1-median problem on a tree can be solved
in O(nlog n) time.
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5 Concluding Remarks

During the last decade, minmax regret optimization problems have attracted
significant research efforts. In [22], an O(mnlog n)-time algorithm is obtained for
the minmax regret 1-center problem on a general graph, and an O(nlog2n)-time
algorithm is obtained for the problem on a tree. For many location problems,
however, there are still gaps between the time complexities of the solutions to
their classical versions and those to their minmax regret versions. It would be a
great challenge to bridge these gaps.
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