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Abstract. We consider the online auction problem in which an auction-
eer is selling an identical item each time when a new bidder arrives. It
is known that results from online prediction can be applied and achieve
a constant competitive ratio with respect to the best fixed price profit.
These algorithms work on a predetermined set of price levels. We take
into account the property that the rewards for the price levels are not
independent and cast the problem as a more refined model of online
prediction. We then use Vovk’s Aggregating Strategy to derive a new al-
gorithm. We give a general form of competitive ratio in terms of the price
levels. The optimality of the Aggregating Strategy gives an evidence that
our algorithm performs at least as well as the previously proposed ones.

1 Introduction

We consider the online auction problem proposed by Bar-Yossef, Hildrum, and
Wu [3]. This models the situation where an auctioneer is selling single items in
unlimited supply to bidders who arrive one at a time and each desires one copy.
A particularly interesting case is for a digital good, of which infinitely many
copies can be generated at no cost. Precisely, when each bidder t arrives with
bid mt, the auctioneer puts a price rt on the item and sells a copy to the bidder
at price rt if rt ≤ mt and rejects the bidder otherwise. The auctioneer is required
to compute the price rt prior to knowing the values mt,mt+1, . . .. Below we give
a formal description.

Definition 1 (Online Auction A). For each bidder t = 1, 2, . . . , T ,

1. Compute (randomly) a price rt.
2. Observe the bid mt > 0.
3. If rt ≤ mt, then sell to bidder t at price gA,t = rt.
4. Otherwise, reject bidder t and gA,t = 0.

The total profit of the auction A is GA,T =
∑T

t=1 gA,t.

The goal of the auction is to make the total expected profit E[GA,T ] as much as
the best fixed price profit, denoted OPT, no matter what the bidding sequence
is. Note that OPT = max1≤k≤T km(k), where m(k) is the kth largest bid.
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We first assume that the smallest value l and the largest values h of the
bids in the auction are known. Discretizing the range [l, h] with a finite set of
price levels h ≥ b(1) > b(2) > · · · > b(N) = l, we have the problem reduced
to an online prediction game with expert advice [4,5,8,9]. We use b(i) = lρN−i

for some ρ > 1 with N = O(ln(h/l)) so that b(1) ≥ h/ρ. The idea is to in-
troduce an expert for each price level b(i) who always recommends the price
b(i). We can now use a number of expert-advice algorithms to achieve the to-
tal profit as much as that of the best expert, which is larger than OPT/ρ by
the choice of the set of price levels. Blum, Kumar, Rudra, and Wu employ the
Hedge or the Randomized Weighted Majority algorithm [9,5] and give a lower
bound of

E[GHedge,T ] ≥ ln α

α − 1

(
OPT

ρ
− h

ln α
ln(logρ(h/l) + 1)

)

on the total profit [1], where α > 1 is a parameter of the Hedge algorithm. Blum
and Hartline improve the additional loss term to O(h) by using the Following
Perturbed Leader (FPL) approach with a slight modification [2]. They call the
modified version the Hallucinated-Gain (HG) algorithm and give the following
bound

E[GHG,T ] ≥ (1 − δ)
(

OPT
ρ

− 2h

(
2
δ

ln ν(ρ) +
ν(ρ)
δ2 (1 − δ)ν(ρ) + 1

))

,

where ν(ρ) =
⌊
logρ 2

⌋
+ 1 and δ ∈ [0, 1] is a parameter of the HG algorithm.

Moreover, the HG algorithm can be further improved so that it does not need
to know l and h at a cost of only O(h) additional loss.

In this paper, we first observe that, unlike the typical expert-advice setting,
the rewards for the experts are not uniformly bounded. That is, the reward
for expert i is either 0 or b(i). So we could improve the algorithms using non-
uniform risk information as in [7]. Furthermore, we have a further advantage
in that the rewards for the experts are not independent. More precisely, when
the bid mt lies in (b(i + 1), b(i)], then all experts j with j ≥ i get rewards b(j)
and others get no rewards. In other words, there are only N possible outcomes
to be considered. Taking this advantage into account, we give a more refined
model of online prediction and apply Vovk’s Aggregating Strategy [10] to derive
a new algorithm called the Aggregating Algorithm for Auction (AAA). We give
its profit bound1 given by

E[GAAA,T ] ≥ c(α,B)
(

OPT
ρ

− 1
ln α

ln(logρ(h/l) + 1)
)

,

where α > 1 is a parameter of the AAA and c(α,B) is a complicated function of
α and B = {b(1), . . . , b(N)}. It seems that the bound is somewhat better since it
has only an O(log log(h/l)) additional loss term, but in order to make c(α,B) a
constant, we need to choose α that depends on h so that it quickly converges to
1 Actually we obtain a tighter form of bound.
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1 as h is large. Unfortunately, we have not succeeded to give a useful expression
for c(α,B) to compare the profit bound with that of the HG algorithm, but it is
better than the Hedge bound by the optimality of the Aggregating Strategy. We
conjecture that the AAA performs as well as the HG algorithm. Numerical com-
putation shows that the bound of the AAA outperforms others for sufficiently
large ranges [l, h] with l = 1 and h ≤ 1014.

2 Online Prediction Game and the Aggregating Strategy

We will show that online auction can be modeled as an online prediction game to
which the Aggregating Strategy can be applied. The Aggregating Strategy is a
very general method for designing algorithms that perform optimally for various
games. In this section, we describe the strategy with its performance bound in
a generic form.

First we describe a game that involves the learner (an algorithm), N experts,
and the environment. A game is specified by a triple (Γ,Ω, λ), where Γ is a
fixed prediction space, Ω is a fixed outcome space, and λ : Ω × Γ → [0,∞]
is a fixed reward function. (Note that the game is often described in terms of
a loss function in the literature.) At each trial t = 1, 2, . . . , T , the following
happens.

1. Each expert i makes a prediction xi,t ∈ Γ .
2. The learner combines xi,t and makes its own prediction γt ∈ Γ .
3. The environment chooses some outcome ωt ∈ Ω.
4. The learner gets reward λ(ωt, γt) and experts i get reward λ(ωt, xi,t).

The total reward of the learner A is RA,T =
∑T

t=1 λ(ωt, γt) and that of expert
i is Ri,T =

∑T
t=1 λ(ωt, xi,t). The goal of the learner A is to make predictions so

that its total reward RA,T is not much less than the total reward of the best
expert max1≤i≤N Ri,T .

Now we give the Aggregating Strategy that derives an algorithm called the
Aggregating Algorithm (AA) for each specific game. The AA uses a parameter
α > 1. For each trial t, the AA assigns to each expert i a weight vi,t given by

vi,t =
vi,1α

Ri,t−1

∑N
j=1 vj,1αRj,t−1

, (1)

where Ri,t−1 =
∑t−1

q=1 λ(ωq, xi,q) is the sum of the rewards that expert i has
received up to the previous trial. Initial weights vi,1 can be set based on a
prior confidence on the experts. Typically the uniform prior (vi,1 = 1/N) is
used. When given predictions xi,t from experts, the AA predicts a γt ∈ Γ
given by

γt = arg sup
γ∈Γ

inf
ω∈Ω

λ(ω, γ)

logα

∑N
i=1 vi,tαλ(ω,xi,t)

. (2)

The next theorem gives a performance bound of the AA.
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Theorem 1 ([10]). For any outcome sequence (ω1, . . . , ωT ) ∈ Ω∗,

RAA,T ≥ c(α) logα

N∑

i=1

vi,1α
Ri,T ≥ c(α) max

1≤i≤N

(

Ri,T − ln(1/v1,i)
ln α

)

,

where

c(α) = inf
v,x

sup
γ∈Γ

inf
ω∈Ω

λ(ω, γ)

logα

∑N
i=1 viαλ(ω,xi)

, (3)

where v = (v1, . . . , vN ) ranges over all probability vectors of dimension N and
x = (x1, . . . , xN ) ranges over all possible predictions of experts.

3 The Game for Online Auction

Now we give the game (Γ,Ω, λ) reduced from the online auction problem. We first
fix a finite set of price levels B = {b(1), . . . , b(N)} with h ≥ b(1) > · · · > b(N) = l
as options to choose from.

The prediction space Γ is the set of probability vectors of dimension N . The
prediction γt = pt = (pt(1), . . . , pt(N)) ∈ Γ in the tth trial is interpreted as the
way of choosing price rt in the auction, i.e., letting rt = b(i) with probability
pt(i). For each 1 ≤ i ≤ N , we define an expert who always recommends the
option b(i). Formally, we let xi,t = ei(∈ Γ ), where ei is the unit vector whose
ith component is 1.

The outcome space Ω is the set of vectors whose ith component represents
a reward for the ith option, which is either 0 (for the case where mt < b(i)) or
b(i) (for the case where mt ≥ b(i)). Moreover, if the option b(i) gets a positive
reward, then all the options b(j) with j ≥ i get positive rewards as well. Thus,
we have only N possible reward vectors and

Ω =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(b(1), b(2), . . . , b(N − 1), b(N)),
(0, b(2), . . . , b(N − 1), b(N)),

...
(0, 0, . . . , 0, b(N))

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

.

Let bi = (0, . . . , 0, b(i), . . . , b(N)) so that Ω = {b1, . . . , bN}. If the bid mt lies in
the interval (b(i + 1), b(i)] in the auction, then let the tth outcome be ωt = bi in
the reduced game.

Finally, our reward function is λ(bi,p) = bi · p =
∑N

j=i b(j)p(j). Under the
reduction just described, it is easy to see that E[gA,t] = λ(bi,pt) if the bid mt is
in (b(i + 1), b(i)], and so we have E[GA,T ] = RA,T . Similarly, the total profit of
a single sales price b(i) equals Ri,T . So, Theorem 1 implies that the AA for the
auction achieves profit nearly as large as the best single price sales maxi Ri,T

in the set B. Moreover, if we choose b(i) = lρN−i, then, no matter what the
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optimal price r∗ ∈ [l, h] is, there exists a b(j) with b(j) ≤ r∗ < b(j + 1) = ρb(j)
and so we have OPT/ρ ≤ Rj,T ≤ maxi Ri,T . Therefore, the AA achieves profit
nearly as large as OPT. We call this algorithm the Aggregating Algorithm for
Auction (AAA).

4 The Aggregating Algorithm for Auction

In this section we show how the AAA works by giving the weights vt it maintains
and the prediction pt in a closed form. First we rewrite (1) and (2) in terms of
the notations used in our auction game as

vi,t =
vi,1α

b(i)τi,t−1

∑N
j=1 vj,1αb(j)τj,t−1

, (4)

where τi,t = #{1 ≤ q ≤ t | mt ≤ b(i)} is the number of trials up to t in which
the price b(i) receives reward, and

pt = arg sup
p∈Γ

min
1≤k≤N

bk · p

logα

(
1 +

∑N
i=k vi,t(αb(i) − 1)

) . (5)

Note that the Hedge algorithm predicts with qt(i) = vi,t for determining the
price at trial t. (More precisely, the normalized parameter α1/b(1) is used instead
of α in (4) [3].) The rest is to show the prediction of the AAA.

Theorem 2. Let

dk,t = logα

(

1 +
N∑

i=k

vi,t(αb(i) − 1)

)

for 1 ≤ k ≤ N with the convention dN+1,t = 0. Then,

pt(i) =
1

b(i) (di,t − di+1,t)
∑N

k=1
1

b(k) (dk,t − dk+1,t)

attains the supremum of (5).

Proof. Note that we want to solve

pt = arg sup
p∈Γ

min
1≤k≤N

∑N
i=k b(i)p(i)

dk,t
. (6)

We first claim that for any p ∈ Γ ,

min
1≤k≤N

∑N
i=k b(i)p(i)

dk,t
≤ 1

∑N
k=1

1
b(k) (dk,t − dk+1,t)

. (7)
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Fig. 1. The Hedge prediction qt(N) and the AAA prediction pt(N) for the lower price

Let M denote the r.h.s. of the above inequality. We prove the claim by con-
tradiction. Assume on the contrary that the claim does not hold, i.e., for any
1 ≤ k ≤ N , there exists a positive ∆k > 0 such that

∑N
i=k b(i)p(i)

dk,t
= M + ∆k.

Then we have

p(k) =
1

b(k)
(
(M + ∆k)dk,t − (M + ∆k+1)dk+1,t

)

=
M(dk,t − dk+1,t)

b(k)
+

∆kdk,t

b(k)
− ∆k+1dk+1,t

b(k)

>
M(dk,t − dk+1,t)

b(k)
+

∆kdk,t

b(k)
− ∆k+1dk+1,t

b(k + 1)

since b(k) > b(k + 1). Summing up the both sides over all 1 ≤ k ≤ N , we get

N∑

k=1

p(k) > 1 +
∆1d1,t

b(1)
> 1,

which contradicts the fact that p is a probability vector. So (7) holds.
On the other hand, the prediction p ∈ Γ with

p(i) =
1

b(i) (di,t − di+1,t)
∑N

k=1
1

b(k) (dk,t − dk+1,t)

clearly satisfies the equality of (7). This implies that this prediction p attains
the supremum. ��
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The prediction of the AAA can be viewed as a nonlinear transformation of the
Hedge prediction qt(i). Figure 1 illustrates the transformation for N = 2, α = 1.5
and various sets of price levels B = {b(1), b(2)}. We fix b(1) = 10.

From the figure we can see that the AAA puts more weight on the lower price
b(N) when qt(N) is small. This is reasonable since the lower price is more likely to
get reward. Curiously the weight on b(N) gets larger when b(N) gets closer to b(1).

5 The Performance Bound of the AAA

In this section, we give the performance bound of the AAA by showing c(α) in
terms of the set B of price levels. In what follows, we write c(α,B) to explicitly
specify B. From the proof in Theorem 2, we can rewrite c(α) of (3) as

c(α,B) = inf
v∈Γ

1
∑N

k=1
1

b(k) (dk − dk+1)
, (8)

where

dk = logα

(

1 +
N∑

i=k

v(i)(αb(i) − 1)

)

Theorem 3. Let (r1, . . . , rN ) and (s1, . . . , sN ) be the probability vectors in Γ
defined as

ri =
(

1
b(i)

− 1
b(i − 1)

)

b(N),

si =
(

1
αb(i) − 1

− 1
αb(i−1) − 1

)

(αb(N) − 1)

with the convention that b(0) = ∞. Then

c(α,B) =
b(N) ln α

D(r||s) + b(N) ln α
, (9)

where D(r||s) =
∑N

i=1 ri ln(ri/si) is the Kullback-Leibler divergence.

Proof. The problem is to maximize the denominator of (8)

f(v) =
N∑

k=1

1
b(k)

(dk − dk+1)

subject to v ∈ Γ . First we relax the constraint and find the maximum of f(v)
subject to

∑N
i=1 v(i) = 1. Then we will show that the maximizer v∗ lies in

the feasible solution, i.e., v∗(i) ≥ 0 for all i. Since f is concave, the set of
equations

∂

∂v(j)

(

f(v) + t

(
N∑

i=1

v(i) − 1

))

= −(αb(j) − 1)
j∑

k=1

(
1

b(k)
− 1

b(k − 1)

)
1

1 +
∑N

i=k(αb(i) − 1)v(i)
+ t = 0
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for 1 ≤ j ≤ N and
∑N

i=1 v(i) = 1 give the maximizer. It is straightforward to
show that the solution is

v∗(j) =
F (b(j), b(j − 1)) − F (b(j + 1), b(j))

t(αb(j) − 1)

and

t = F (b(N + 1), b(N)) =
1/b(N)

1 + 1/(αb(N) − 1)
,

where b(N + 1) = −∞ and

F (x, y) =
1
x − 1

y
1

αx−1 − 1
αy−1

.

We can show that F (a, b) < F (b, c) for any a < b < c with b > 0. This gives
v∗(j) > 0.

Plugging v∗ into f(v), we have the theorem. ��

6 Numerical Comparisons of the Performance Bounds

To compare the bound of the AAA with those of the Hedge and the HG al-
gorithms, we need to give a useful form of c(α,B) with b(i) = lρN−i for N =
�logρ(h/l)	+1. We have not succeeded to derive such an expression. So we show
numerical experiments to compare the performance bounds. Recall that

E[GHedge,T ] ≥ ln α

α − 1
OPT

ρ
− h

α − 1
ln

(
logρ(h/l) + 1

)
,

E[GHG,T ] ≥ (1 − δ)
OPT

ρ
− 2h(1 − δ)

(
2
δ

ln ν(ρ) +
ν(ρ)
δ2 (1 − δ)ν(ρ) + 1

)

,

E[GAAA,T ] ≥ c(α,B)
OPT

ρ
− c(α,B)

lnα
ln

(⌊
logρ h/l

⌋
+ 1

)
.

We fix l = 1 and adjust the parameters of the algorithms so that the first terms
of the bounds are all equal to (1/(2ρ))OPT. Thus, the bounds are all of the form
of

E[GA,T ] ≥ 1
2ρ

OPT − gA(h)h

for some functions gA. Note that gHG(h) = O(1) and gHedge(h) = O(log log h)
by definition. Figure 2 shows how fast the functions gA(h) grow for the three
algorithms.

Although gAAA seems to be slightly increasing, the value is much smaller
than gHedge and gHG for a reasonable range of h. In fact, for a typical choice of
ρ = 1.01, gHG is a large constant (17.97) while gAAA ≤ 0.5 for log log h ≤ 3.5. It
is interesting to note that the Hedge has a better bound than the HG bound in
typical cases. We may improve the bound by using a tighter bound of Theorem 1
and choosing carefully the initial weights v1,i.
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Fig. 2. The second term functions gA(h) for the three algorithms. We set ρ = 1.01.
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