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Abstract. Several studies have reported that the linear program relaxation of in-
teger multi-commodity network flow problems often provides integer optimal 
solutions. We explore this phenomenon with a 0-1 multi-commodity network 
with mutual arc capacity constraints. Characteristics of basic solutions in the 
linear programming relaxation problem of the 0-1 multi-commodity problem 
are identified. Specifically, necessary conditions for a linear programming re-
laxation to have a non-integer solution are presented. Based on the observed 
characteristics, a simple illustrative example problem is constructed to show 
that its LP relaxation problem has integer optimal solutions with a relatively 
high probability. Furthermore, to investigate whether or not and under what 
conditions this tendency applies to large-sized problems, we have carried out 
computational experiments by using randomly generated problem instances. 
The results of our computational experiment indicate that there exists a narrow 
band of arc density in which the 0-1 multi-commodity problems possess no in-
teger optimal solutions. 

1   Introduction  

The integer multi-commodity minimum cost network flow problem (IMNFP), which 
has been applied in various fields such as transportation, production, and communica-
tion systems, involves finding optimal integral flows that satisfy arc capacity con-
straints on an underlying network. The problem is known to be NP-hard even in its 
simplest form, viz. in a planar graph with unit arc capacities [1]. Moreover, coupled 
by various side constraints, many IMNFP problems in practice usually take further 
complication. Subsequently, several studies have developed heuristic procedures or 
efficient branch-and-bound based procedures for IMNFP problems with side con-
straints ([2],[3],[5],[7],[9],[11], [12] ). 

Some of these studies have reported that the linear program (LP) relaxation of in-
stances of the IMNFP with or without side constraints often provides integer optimal 
solutions or excellent bounds ( [5], [9], [12] ). Löbel [9] considered the IMNFP with 
arc cover constraints as coupling constraints for vehicle scheduling in public transit 
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and suggested the column generation technique for solving large-scale linear prob-
lems. In his computational experiments using instances based on real-world data, the 
LP relaxation gave tight bounds in several problem instances. In fact, the LP relaxa-
tion was observed to yield integer optimal solutions for a few problem instances. 
Faneyte, Spieksma, and Woeginger[5] studied the 0-1 MNFP with node cover con-
straints as coupling constraints for the crew-scheduling problem and presented a 
branch-and-price algorithm for arc-chain formulation. Their computational experi-
ments also showed that the LP relaxation for most of the instances based on practical 
data for a crane rental company gave an integer optimal solution. In addition, they in-
dicated the short length of feasible paths in their instances as one possible explanation 
for this phenomenon. For some instances with longer possible paths, however, the LP 
relaxation provided an integer optimal solution. For the IMNFP on a ring network, 
Ozdaglar and Bertsekas [12] reported that the LP relaxation gave an integer optimal 
solution for almost all instances. Moreover, similar findings for some instances of the 
IMNFP with side constraints, viz. the LP relaxation often provides an integer optimal 
solution, are observed in [2], [3], [7], and [11].  

In some special classes of the IMNFP, it has been shown that the LP relaxation 
gives an integer optimal solution. Evans [4] described a sufficient condition under 
which the IMNFP can be transformed into an equivalent single-commodity problem, 
and Kleitmann, Martin-Lof, Rothschild, and Whinston [8] showed that if each node in 
a network were a source or sink for at least (k-1) of the k commodities, the optimal so-
lution would be integral. Along this line of research, we investigate the 0-1 MNFP, a 
sub-class problem of IMNFP, to explore the effectiveness of the LP relaxation. The 0-
1 MNFP has been applied to several practical problems, such as the crew-scheduling 
problem and telecommunications ([2], [5], [11]). 

We have identified some characteristics of basic feasible solutions of the LP re-
laxation. Also, by using them, we have constructed an example to show that its LP re-
laxation problem has integer optimal solutions with a relatively high probability. As 
the construction of the example is pathological, we have conducted computational ex-
periments by using randomly generated problem instances in order to investigate 
whether or not and under what conditions the LP relaxation provides integer optimal 
solutions.  

This paper is organized as follows. Section 2 below describes the problem under 
consideration, along with some definitions of notation. It also includes the characteris-
tics of basic feasible solutions of the LP relaxation and a simple illustrative example. 
Section 3 discusses the results of computational experiments and Section 4 contains 
concluding remarks. 

2   The 0-1 MNFP and Characteristics of the Problem 

We consider the 0-1 MNFP on a digraph G(V, E) with a node set V and an arc set E. 
Given a set of commodities K, each commodity k is assumed to have a single origin 
and single destination. Let i and j be an arc and path index, respectively. Let kΨ and 
Pj denote the set of origin-destination paths of commodity k and the set of arcs in path 
j, respectively. Also, let cj (j∈ kΨ ) and ui represent the cost of shipping commodity k 
along path j and the bundle (mutual arc) capacity of arc i, respectively. Without loss 
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of generality, we will assume that all arcs have capacities. Moreover, δij denotes the 
Kronecker delta to indicate whether an arc i belongs to Pj ; i.e. δij equals 1 if i∈Pj and 
equals zero otherwise. The decision variable yj is a binary variable to indicate whether 
or not commodity is shipped along path j. Then, the arc-chain formulation of the 0-1 
MNFP is expressed as 
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In the above formulation, zi is a slack variable. Constraints (1) represent that each 
commodity must be shipped on a unique path and Constraints (2) represent that total 
flow on an arc can not exceed its capacity. An LP relaxation problem is obtained by 
relaxing integrality constraints (3) and the rank of the constraint matrix in the relaxed 
problem is (|K|+|E|), where |K| denotes the cardinality of set K. Given a basic feasible 
solution of the LP relaxation problem, let By and Bz denote index sets of basic path 
variables and basic slack variables, respectively. Moreover, we use By

k as an index set 
of basic path variables for commodity k. Also, let Nz denote a set of arcs of which 
slack variables are nonbasic. As the arcs that belong to Nz are saturated, we will call 
them saturated nonbasic arcs. Note that there can be saturated basic arcs because of 
degeneracy.  

In a basic feasible solution of the LP relaxation problem, at least one path variable 
should be basic for each commodity, i.e. |By

k| ≥1 for all k. Thus, a basic matrix B of 
the LP relaxation problem can be expressed as 
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Each of the first |K| columns corresponds to one path variable for each commodity, 
which we shall call a primary path variable. The next |Nz| columns correspond to non-
primary path variables in the basis and the last |Bz| columns correspond to slack vari-
ables of the arcs in Bz. The first |K| rows are flow constraints and the next |Nz| and last 
|Bz| rows correspond to the capacity constraints of saturated arcs in Nz and basic arcs 
in Bz, respectively. Now, let D = D3 - D2D1. Then, the inverse of the basic matrix is 
expressed as 
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The integrality of basic solutions is closely related to the characteristics of matrix D. 
The matrix D is square and its rank is |Nz|. Moreover, it can be described by using the 
relationship of paths and saturated arcs. We assume that, in the matrix B, the (i+|K|)th 
row corresponds to the capacity constraints of arc i and the jth column corresponds to 
path j. Also, we assume the rth column (for r=1,2,…,|K|) corresponds to the primary path 
of commodity r. Let i=1,2,…, |Nz| and j=|K |+1, …, |K |+|Nz| be the arc and path index, 
respectively. Also, let kj be an commodity index of path j.  In addition, (D)ij, (D)i., and 
(D).j denote an element, row, and column of matrix D, respectively. Element (D1)r,j-|K|  = 
1 if r= kj; otherwise it is zero. It notes that (D1)r,j-|K|  = 1 if path j is a path of commodity 
r. Moreover, element (D2)ir =1 if i∈Pr, otherwise (D2)ir =0. Therefore,  
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Then, the element of matrix D is given as, for i=1,2,…, |Nz| and j=|K |+1, …, |K |+|Nz| 
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The above observation clearly indicates that that matrix D can be obtained from the 
relationship of the basic path variables and saturated nonbasic arcs and that the ele-
ments in matrix D are 0, 1, or -1. Similar observation applies to the term D5 - D4D1, 
which is a term in the inverse of a basic matrix. As a parenthetical note, if D is uni-
modular, then the corresponding basic feasible solution is integral.  

Now, we state some properties of basic solutions. 

Proposition 1. Every integer feasible solution of the 0-1 MNFP is a basic feasible 
solution of its LP relaxation problem.  

Proof) For a given integer feasible solution, each commodity has exactly one path 
with its flow equal to 1. Let the index set of these variables be By and the arc set E be 
Bz. Then, from a constraint matrix, a matrix B consisting of columns corresponding to 
the path variables in By and slack variables of arcs in Bz is given as 
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Matrix B is nonsingular and its rank is (|K|+|E|). Therefore, the matrix B is a basis of 
an LP relaxation. ■ 

As one of the properties for non-integer basic solutions, a relationship between |K|, 
|Nz|, and |By| is established in [6] and [10]. 
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Proposition 2. (By Maurras and Vaxès [10] and Farvoleden et al [6])  Every non-
integer basic feasible solution of the LP relaxation problem satisfies |By| = |Nz|+|K|. 

Proof. From equation (5), the result immediately follows. ■ 

In the above proposition, if |Nz|=0, then |By|=|K| and the corresponding solution is in-
tegral.  

Proposition 3. There should be at least two saturated nonbasic arcs in a non-integer 
basic feasible solution of the LP relaxation problem; viz. |Nz| ≥ 2. 

Proof. Suppose that |Nz| < 2. If |Nz|=0, the solution is integral. Moreover, if |Nz|=1, 
matrix D is [1] and the solution is integral. ■ 

Proposition 3 above can be strengthened by the main proposition of the paper below. 
It states that there should be at least two saturated nonbasic arcs on the same path for 
a non-integer basic solution. 

Proposition 4. For a non-integer basic feasible solution of the LP relaxation problem 
with a basic matrix B of the form given in (4), | Nz ∩Pj

 | ≥ 2 for some j∈ By.  

Proof. Suppose that | Nz ∩ Pj | ≤ 1 for all j∈ By. By (5), each column of matrix D has 
at most two nonzero elements because | Nz ∩ Pj

 | ≤ 1 for all j∈ By. Since in this case 
the matrix D takes the form of node-arc incidence matrix obtained by removing a 
node in a general network, it is unimodular. This is a contradiction because the solu-
tion is assumed to be nonintegral. ■ 

The above two propositions describe necessary conditions for the LP relaxation problem 
to have non-integer vertices and they are closely related to the form of basic matrices.  

It is possible to approximate the probability that LP relaxations have integer opti-
mal solutions for simple problems, in which we relax the assumption that all arcs have 
capacities. As an example, we consider an instance with |K|=2, |E|=2, and four feasi-
ble paths for each commodity, in which E is a set of arcs with capacities only. Fig. 
1(a) shows the constraint and basic matrices corresponding to a non-integer basic so-
lution and one of their extended forms. The four paths include (i) a path including 
none of the two capacity-constrained arcs, (ii) a path including both of the two capac-
ity-constrained arcs, and (iii) a couple of paths including exactly one of the two ca-
pacity-constrained arcs. Each of the paths may include some uncapacitated arcs that 
are not included in E, but they will not appear in the constraint matrix. There are nine 
feasible integer solutions and, by Proposition 1, all of them are basic solutions of the 
LP relaxation. By Propositions 2 and 3, |Nz| = 2, |By| = 4, |By

k| = 2 (for k=1,2). Then, 
two non-integer basic feasible solutions can be drawn to satisfy the necessary condi-
tion in Proposition 4. The extended form of a basic matrix corresponds to the case in 
which one path of commodity 1 includes all saturated nonbasic arcs and each path of 
commodity 2 includes exclusively one saturated nonbasic arc.  

Suppose that the arc capacity is set equal to 1 and the cost for each path is selected 
randomly among integer values between 1 and Cmax in the above example. Consider 
the pseudo-probability Pu that all optimal solutions are integral and the pseudo-
probability Po that at least one of the optimal solutions is integral. To get Pu and Po for 
a given Cmax, we obtained optimal solutions for all possible cases (Cmax

8 cases) of path 
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(a) Constraint and basic matrices
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Fig. 1. The constraint and basic matrices of a non-integer basic solution and the pseudo-
probabilities Po and Pu according to Cmax for an instance with |K|=2, |E|=2 

costs and counted the number of corresponding cases. The term “pseudo” is used to 
indicate that the sample space generated as such provides “pseudo” elementary 
events, which may not be equally likely. Fig. 1(b) shows the results. When all path 
costs are identically one, i.e. Cmax=1, Pu =0 and Po =1. Moreover, Pu =95.7% and 
Po=97.5% at Cmax=13. Also, pseudo-probability Pu increases while pseudo-probability 
Po decreases as Cmax increases and that they converges as Cmax increases. Because Po 
is always greater than or equals to Pu for a specific value of Cmax the pseudo-
probability Po is greater than 95.7%. Considering the pseudo-probability and the sim-
ple ratio of the number of integer solutions to that of basic feasible solutions (9/11), 
we conclude that the probability that the LP relaxation has an integer optimal solution 
must be high in our example problem. For simple instances like the example above, it 
may be possible to identify all basic feasible solutions and to approximate the prob-
abilities Po and Pu. In general, however, it will be difficult to calculate the probability 
for a large-sized problem instance. 

3   Computational Results 

Conceivably, as the number of uncapacitated arcs increases, so does the chance of 
obtaining integer solution of the LP relaxation problem. Moreover, there might be a spe-
cific band of arc density within which the chance of obtaining non-integer optimal solu-
tion of the LP relaxation problem is high. If so, then many observations made by earlier 
studies on the integrality of the LP relaxation solution could be partially explained.  

We performed computational experiments using randomly generated instances of the 
0-1 MNFP to search for trends that the  LP  relaxation had an integer optimal  solution 
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in large-size instances. For this purpose, we considered four factors: the number of 
commodities (|K|=10, 30, 50, 70), the arc density (d=0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 
15%), the number of nodes (|V|=100, 200, 300), and the maximum arc capacity 
(Umax=1, 0.1*|K|). The arc density d, defined as the number of arcs over the 
number of possible arcs, specified the number of arcs in the random instance, viz. 
d*(|V|-1)*|V| arcs, where |V| denotes the number of nodes.  

To generate instances, we used a path-based generation scheme. First, for each 
commodity, source and destination nodes were randomly selected and a path from the 
source to the destination node was constructed. The length of a path was randomly de-
termined between 1 and the minimum of |V|-1 and d*(|V|-1)*|V|/|K|. If needed, addi-
tional arcs were randomly generated. In addition, the arc capacities were determined 
randomly between 1 and the maximum arc capacity Umax, and each arc was assigned a 
random cost between 1 and 100. For each combination of the four factors, 100 in-
stances were generated and Cplex 9.0 was used to solve the generated instances. We 
obtained LP optimal solutions of the generated problem instances and counted the 
number of instances of which the optimal solution was integral.  

Tables 1 and 2 show the results for Umax with 1 and 0.1*|K|, respectively. In all but 
three cases, there were at least 50 instances with an integer optimal solution, particu-
larly more than 90 instances for all cases when Umax=0.1*|K|. Moreover, the mini-
mum number of instances with an integer optimal solution was 29, when Umax =1, 
|V|=300, |K|=70, and d=1%.  

In Table 1, for the given number of nodes and commodities, the number of in-
stances with an integer optimal solution is minimal at a specific arc density and 
increases when the arc density is far apart from the specific level. There are two ex-
planations for this: in our procedure to generate problem instances, candidate paths 
likely share few arcs at low arc densities; at high arc densities, there are many arcs 
and the paths with low cost likely share few arcs.  

Table 1. The number of instances in which the LP relaxation yields optimal solution when 
Umax=1 

 |V|=100 |V|=200 |V|=300 

|K| 
d 

10 30 50 70 10 30 50 70 10 30 50 70 

0.5% - - - - 91 100 100 100 92 59 97 99 

1% 100 100 100 100 97 64 83 100 100 91 65 28 

2% 97 97 100 100 100 91 68 45 100 97 93 81 

3% 97 74 71 95 99 97 90 70 100 99 97 93 

4% 98 80 58 51 100 99 98 87 100 99 99 100 

5% 100 92 70 49 100 98 95 85 100 100 99 98 

6% 100 90 78 42 100 98 96 98 100 100 100 99 

7% 99 96 88 67 100 100 99 97 100 100 99 100 

8% 99 92 83 67 100 100 100 100 100 99 100 99 

9% 100 98 85 68 100 100 98 98 100 100 100 99 

10% 99 98 90 78 100 99 100 99 100 100 100 100 

15% 100 100 97 90 100 100 98 100 100 100 100 100 
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Table 2. The number of instances in which the LP relaxation yields optimal solution when 
Umax=0.1*|K| 

 |V|=100 |V|=200 |V|=300 

|K| 
d 

10 30 50 70 10 30 50 70 10 30 50 70 

0.5%  - - - 91 100 100 100 92 86 99 100 

1% 100 100 100 100 97 89 98 100 100 98 97 98 

2% 97 98 100 100 100 100 99 100 100 100 100 100 

3% 97 95 98 100 99 100 99 100 100 100 100 99 

4% 98 97 98 100 100 100 100 100 100 100 100 100 

5% 100 99 100 99 100 100 100 100 100 100 100 100 

6% 100 98 99 100 100 100 100 100 100 100 100 100 

7% 99 99 100 100 100 100 100 98 100 100 100 100 

8% 99 99 99 100 100 100 100 100 100 100 100 100 

9% 100 99 100 100 100 100 100 100 100 100 100 100 

10% 99 100 99 100 100 99 100 100 100 100 100 100 

15% 100 99 100 100 100 100 100 100 100 100 100 100 

Although the results in Tables 1 and 2 indicate that instances give integer optimal 
solutions with a high probability for the given number of nodes and commodities, 
there may be arc densities at which most instances give non-integer optimal solutions. 
In our cases indeed, the results reveal that the range of arc densities at which most in-
stances have non-integer optimal solutions is very narrow, if it exists. As an example, 
consider the case with Umax=1, |V|=300, and |K|=70 in Table 1; most instances may 
have non-integer optimal solutions at some arc densities between 0.5 and 2%; how-
ever, the range of arc densities at which most instances have non-integer optimal solu-
tions is very narrow for this case, if exists, as shown in Fig. 2. In Fig. 2, the minimum 
number of instances with an integer optimal solution was 21, when d=0.8%.  
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Fig. 2. The result according to the arc density when |V|=300 and |K|=70 
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In Table 1, the range of arc densities, at which the number of instances with integer 
optimal solutions is large, widens as the number of commodities decreases. In the 
case with Umax=1, |V|=100, and |K|=70, there are less than 90 problem instances with 
integer optimal solutions at arc densities from 4 to 10%. In contrast, for |K|=30, the 
number is less than 90 at arc densities of 3 and 4%. As the number of nodes increases, 
the range of arc densities at which there are more than 90 instances with an integer 
optimal widens.  
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Fig. 3. The results for dc levels of 20, 40, 60, 80, and 100% when |V|=100 and |K|=70 

When the 0-1 MNFP is applied to crew or vehicle scheduling problems, it would 
have many arcs without capacity. To see the effects of varying the number of arcs 
with capacity, we performed additional experiments. For |V|=100 and |K|=70, five 
different ratios dc of arcs with capacity were used to generate instances, i.e., 20, 40, 
60, 80, and 100%, where dc is defined as the ratio of the number of arcs with capacity 
over the number of arcs. For each case, 100 instances were generated and tested. Fig. 
3 shows that the number of instances with integer optimal solutions increases as dc 
decreases. 

4   Conclusion 

Motivated by the observations made by several studies, in which the LP relaxations of 
instances of the IMNFP often gave integer optimal solutions or excellent bounds, we 
have examined the 0-1 MNFP with mutual arc capacity constraints to explore this 
phenomenon. The characteristics of basic feasible solutions in the LP relaxation were 
examined and the necessary conditions for a basis in the LP relaxation problem to be 
non-integral were identified. Our computational experiments showed that the LP re-
laxation frequently provided an integer optimal solution, except when the arc density 
was within a specific range. Moreover, when the capacities of the arcs were large or 
the proportion of arcs with capacities was small, the LP relaxation yielded an integer 
optimal solution. 
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Our results are applicable to the 0-1 MNFP with side constraints related to a single 
path, such as hop constraints, because the constraints are considered implicitly in sub-
problems used to generate a feasible path. However, further study is needed to address 
other side constraints such as resource constraints. 
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