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Abstract. We consider the problem of drawing a directed graph in two
dimensions with a minimum number of crossings such that for every
node the incoming edges appear consecutively in the cyclic adjacency
lists. We show how to adapt the planarization method and the recently
devised exact crossing minimization approach in a simple way. We report
experimental results on the increase in the number of crossings involved
by this additional restriction on the set of feasible drawings. It turns out
that this increase is negligible for most practical instances.

1 Introduction

The importance of automatic graph drawing stems from the fact that many
different types of data can be modeled by graphs. In most applications, the
interpretation of an edge is asymmetric, so that the graph is intrinsically directed.
This is the case, e.g., for metabolic networks. Here, the incoming edges of a
reaction node correspond to reactants, while the outgoing edges correspond to
products of the modeled reaction. Consequently, a good layout of such a network
should separate incoming from outgoing edges, e.g., by letting the incoming edges
enter on one side of the node and letting the outgoing edges leave on the opposite
side. By this, the human viewer is able to distinguish reactants from products
much more easily; see Figure 1.

In spite of its practical relevance, the direction of edges is ignored by many
graph drawing algorithms. The graph is processed as an undirected graph first;
only after the positions of nodes and edges have been determined the direction
is visualized by replacing lines by arrows. An important exception is given by
hierarchical drawings, in which incoming and outgoing edges are separated by
definition. Furthermore, a polynomial time algorithm for hierarchical drawings of
digraphs that allows directed cycles and produces the minimum number of bends
is given by Bertolazzi, Di Battista and Didimo in [1]. However, the restriction to
this special type of drawing might lead to many more crossings than necessary.

In this paper, our aim is to adapt the planarization method in order to obtain
the desired separation of incoming and outgoing edges. We focus on the pla-
narization step itself, i.e., the computation of a planar embedding of the graph
after eventually adding virtual nodes representing edge crossings. The objective
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Fig. 1. Two drawings of the same graph, both have three crossings, with unsorted (left)
and sorted (right) incoming and outgoing edges; gray nodes represent reactions

is to add as few such nodes as possible. For a comprehensive survey over the
planarization approach, see [11].

In order to obtain the separation of edges, we consider the additional bimodal
restriction that all incoming edges appear consecutively in all cyclic adjacency
lists. We show how to adapt the well-known approach based on finding a planar
subgraph first and then reinserting the missing edges one after the other in a very
efficient way. We use an experimental evaluation to investigate the question of
how many additional crossings have to be expected from restricting the class of
feasible embeddings in this way. The results show that—for practical instances—
this increase is usually negligible.

We do not address the question of how to realize the resulting embedding
by an actual drawing of the graph. Notice however that once we have such an
embedding at hand, it is easily possible to adapt, e.g., the orthogonal layout
algorithm such that incoming and outgoing edges lie on opposite sides [12].

In Section 2 we recall the concept of bimodality and describe the basic trans-
formation used by the evaluated algorithms. Next we propose a postprocessing
technique that can be combined with any crossing reduction approach, see Sec-
tion 3. Then we look into the planarization method; the problem of finding a
planar subgraph is considered in Section 4, while edge reinsertion is dealt with in
Section 5. In Section 6, we discuss a recently developed exact approach for cross-
ing minimization. In Section 7, we present an experimental evaluation showing
that the number of crossings computed by different methods does not grow much
by our additional requirement. Section 8 summarizes the results.

2 Bimodal Embeddings

An embedding of a graph G = (V, E) is called bimodal if and only if for every
vertex v of G the circular list of the edges around v is partitioned into two
(possibly empty) linear lists of edges, one consisting of the incoming edges and
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the other consisting if the outgoing edges. A planar digraph is bimodally planar
if and only if it has a bimodal embedding that is planar. This structure was first
investigated by Bertolazzi, Di Battista, and Didimo in [1]. Bimodal planarity of
a graph G can be decided by testing planarity of a simple transformation of G
in O(|V |) time [1]. The transformation is applied in the following way: for every
node v of G expand v by an expansion edge e and add all incoming edges of v
to one end-node v− of e and all outgoing edges to the other end-node v+ of e.
The resulting graph is denoted by Gd = (Vd,Ed) in the following. We call Gd the
d-graph of G. An illustration of this construction is given in Figure 2.

v−

v+

v

Fig. 2. A directed graph G and its d-graph Gd. The bold edge is an expansion edge.
Note that Gd is equal to K3,3.

Throughout this paper, we will denote the set of all expansion edges by E′. We
use this simple transformation for adapting techniques for undirected crossing
minimization to the directed variant. Planar directed graphs are not necessarily
bimodally planar. By Kuratowski’s theorem, this can only happen if a K3,3 or K5
subdivision is created by the transformation into a d-graph. Note that for graphs
with all nodes of degree at most three the transformation of G to Gd is trivial, as
no nodes are split in this case. In particular, this holds for cubic graphs that are
defined by the property that all nodes have degree three. Therefore, a directed
cubic graph is bimodally planar if and only if it is planar. This is also true
for graphs in which each node has at most one incoming edge or at most one
outgoing edge.

3 Naive Post-processing Approach

We first discuss a post-processing procedure that can be used after applying
any crossing reduction algorithm or heuristic to the d-graph Gd. Our aim is
to embed Gd such that no expansion edge crosses any other edge; contracting
expansion edges then yields an embedding of G with the desired separation of
incoming and outgoing edges. So assume that any embedding of Gd is given. We
first delete all edges crossing any expansion edge. If two expansion edges cross
each other, we delete one of them. Next, we reinsert all deleted edges one after
another, starting with the deleted expansion edges. As explained in Section 5.1
below, we can insert a single edge with a minimal number of crossings for the
fixed embedding computed so far such that crossings with expansion edges are
prevented. If reinserting an expansion edge produces any crossings, the crossed
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(non-expansion) edges have to be deleted and put to the end of the queue of
edges to be reinserted. At the end of this reinsertion process, no expansion edge
will cross any other edge. However, the number of crossings of the remaining
edges might grow significantly in this approach. In the following sections, we
explain how to get better results by adapting well-known crossing minimization
approaches for our purposes, especially the planarization approach.

4 Maximum Bimodally Planar Subgraphs

It is well-known that the maximum planar subgraph problem—the problem of
finding a planar subgraph of a given graph that contains a maximum number of
edges—is NP-hard. Recently, it was shown that this remains true even for cubic
graphs:

Theorem 1 (Faria et al. [4]). The maximum planar subgraph problem is
NP-hard for cubic graphs.

As a cubic graph is equal to its d-graph, we derive that this also holds for the
maximum bimodally planar subgraph problem:

Corollary 1. It is an NP-hard problem to compute a maximum bimodally pla-
nar subgraph of a directed graph, even for a cubic graph.

For computing maximal bimodally planar subgraphs, i.e., bimodally planar sub-
graphs such that adding any further edge of G destroys bimodally planarity, we
do the following: it is easy to see that the bimodally planar subgraphs of G are in
one-to-one correspondence to the planar subgraphs of Gd containing all expan-
sion edges. Thus we have to modify a given maximal planar subgraph algorithm
such that it never deletes any expansion edge. Methods for finding maximal pla-
nar subgraphs have been studied intensively [8,10,3]; here we only discuss the
incremental method; see Section 4.1. We also have a look at the exact approach;
see Section 4.2.

4.1 Incremental Method

Starting with the empty subgraph (VH , ∅) of some graph H = (VH , EH), the
incremental method tries to add one edge from EH after the other. Whenever
adding an edge would destroy planarity, it is discarded, otherwise it is added
permanently to the subgraph being constructed. The result is a maximal planar
subgraph of H , which however is not a maximum planar subgraph in general. To
find a maximal bimodally planar subgraph of G, we have to compute a maximal
planar subgraph of its d-graph Gd. However, this subgraph must always contain
all expansion edges, so that the latter can be contracted at the end. We thus
have to start with the subgraph (Vd, E

′)—which is obviously planar—instead of
the empty subgraph (Vd, ∅). Then we try to add the remaining edges Ed \ E′

as before. The resulting subgraph of Gd corresponds to a maximal bimodally
planar subgraph H of G.
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4.2 Exact Method

An exact approach for finding a maximum planar subgraph of H = (VH , EH)
based on polyhedral techniques was devised in [9]. The problem is modeled by
an integer linear program (ILP) as follows: for every edge e ∈ EH , a binary
variable xe is introduced, having value one if and only if e belongs to the chosen
subgraph. To enforce that the modeled subgraph is planar, one has to make sure
that it contains no Kuratowski subgraph of H , i.e., no subdivision of K5 or K3,3.
In terms of the model, this is equivalent to the constraint

∑
e∈K xe ≤ |K| − 1

for every (edge set of a) Kuratowski graph K in G. As we search for a planar
subgraph containing the maximal number of edges, the number of variables set
to one should be maximized. The integer linear program is thus

max
∑

e∈EH
xe

s.t.
∑

e∈K xe ≤ |K| − 1 for all Kuratowski subgraphs K of G

xe ∈ {0, 1} for all e ∈ EH .

This ILP can now be solved by branch-and-cut. However, in order to improve the
runtime of such algorithms and hence obtain a practical solution method, one has
to further investigate this formulation and exhibit other classes of valid inequali-
ties as well as fast techniques for finding violated constraints for a given fractional
solution. For details, the reader is referred to [9]. This solution approach can eas-
ily be adapted to our situation: we have to ensure that the edges in E′ always
belong to the chosen subgraph, i.e., we have to add the constraint xe = 1 to
the ILP, for each expansion edge e ∈ E′. Observe that this type of constraint
is harmless with respect to the complexity of the problem, as it cuts out a face
from the polytope spanned by the feasible solutions of the ILP.

5 Edge Reinsertion

After calculating a maximal (resp., maximum) bimodally planar subgraph, the
deleted edges have to be reinserted. Our objective is to reinsert them one by
one so that the minimum number of crossings are produced for each edge. This
can be done in two different ways: either by inserting an edge into a fixed bi-
modally planar embedding of the bimodally planar subgraph, see Section 5.1,
or by inserting an edge optimally over all bimodally planar embeddings of the
bimodally planar subgraph, see Section 5.2. Again, we have to treat expansion
edges differently, as they may not be involved in any edge crossings.

5.1 Fixed Embedding

Given a fixed embedding Γ (Gd) of Gd, it is easy to insert an edge e(v, w)
into Γ (Gd) such that a minimal number of crossings is produced. For this, one
can use the extended dual graph D of Γ (Gd), the nodes of which are the faces
of Γ (Gd) plus two nodes vD and wD corresponding to v and w. For each edge
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in Ed \ E′, we have the dual edge in D. Additionally, we connect v (resp., w)
with all nodes in D corresponding to faces that are adjacent to v (resp., w) in
Γ (Gd). Then we calculate the shortest path from v to w in the extended dual
graph and insert the edge e into Γ (Gd) along this path, replacing crossings by
dummy nodes. Clearly, the shortest path does not cross any edge of E′ as its
dual edge is not included in D. This can be done in O(|V |) time.

5.2 All Embeddings

In the previous section we have considered reinserting an edge into a fixed em-
bedding. For getting fewer edge crossings, a powerful method is to calculate the
shortest path between two nodes v and w over all embeddings. In [6] a linear time
algorithm is presented for finding an optimal embedding which allows to insert
e with the minimum number of crossings. It uses the SPQR-tree and BC-tree
data-structures for representing all planar embeddings of a connected graph. In
the same straightforward way as explained in the previous section, this approach
can be adapted such that no expansion edge is crossed by any reinserted edge.
The resulting algorithm runs in O(|V |) time.

6 Exact Bimodal Crossing Minimization

It is a well-known fact that the general crossing minimization problem for undi-
rected graphs is NP-hard [5]. More recent results show that this is even true for
graphs with all nodes of degree three:

Theorem 2 (Hliněný [7], Pelsmajer, Schaefer, Štefankovič [13]). The
crossing minimization problem is NP-hard for cubic graphs.

Corollary 2. It is an NP-hard problem to compute a drawing of G separating
incoming and outgoing edges such that the number of crossings is minimal. This
even holds for cubic graphs.

Despite the NP-hardness of undirected crossing minimization, an exact approach
has been devised recently [2]; a branch-and-cut algorithm is proposed for mini-
mizing the number of crossings over all possible drawings. The first step in this
approach is to replace every edge of the graph by a path of length (at most)
|E|. After this, one may assume that every edge has a crossing with at most
one other edge. The ILP model used in this approach contains a variable xef

for all pairs of edges (e, f) ∈ E × E, having value one if and only if there is a
crossing between e and f in the drawing to be computed. By appropriate linear
constraints, one can ensure that the given solution is realizable, i.e., corresponds
to some drawing of G. Again, it is easy to adjust this method to our problem,
i.e., the problem of computing a crossing-minimal drawing with incoming and
outgoing edges separated. For this, we can apply the above algorithm to the
graph Gd. Then we only have to make sure that the expansion edges do not
have any crossings in the computed solution. We can thus do the adjustment
as follows: first observe that the edges in E′ do not have to be replaced by a
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path at all, as they are not allowed to produce crossings. Now we can just omit
the variable xef whenever e ∈ E′ or f ∈ E′, and thereby set this variable to
zero implicitly. The resulting ILP will thus have exactly the same number of
variables as the original ILP for the non-transformed graph. It will not become
harder structurally, as it arises from setting variables to zero.

7 Experimental Comparison

In the previous sections, we showed how to adapt several crossing minimization
algorithms and heuristics in a simple way such that for directed graphs the
sets of incoming and outgoing edges are separated in the adjacency lists. This
is obtained by transforming the original directed graph into a new undirected
graph where certain edges do not allow any crossings. From the nature of this
transformation and the described modifications, it is obvious that the runtime
is not affected negatively. We also observed this in our experiments. For this
reason, we focused on the number of crossings in the evaluation reported in the
following: we are interested in comparing the number of crossings when (a) the
direction of edges is ignored, i.e., crossing minimization is done as usual, and
(b) we apply the transformation in order to separate incoming from outgoing
edges. Theoretically, the crossing number cannot decrease by our modification,
but it is possible that it grows considerably. However, our experiments show
that for practical graphs the number of crossings is not increased significantly.
In fact, the increase in the number of crossings is marginal compared with the
variance due to the randomness of the heuristics, such that for many instances
the number of crossings after the transformation even decreases. Combining this
observation with the simpleness of implementation and the fact that runtime
does not increase, our claim is that these techniques should always be applied
when dealing with (meaningfully) directed edges. For the experiments, we used
the instances of the Rome library of directed graphs [14], consisting of two sets
of graphs called north and random. The former contains 1277 directed acyclic
graphs on 10 to 100 nodes derived from real-world instances. The latter contains
909 directed acyclic graphs randomly generated in a specific way, they are much
denser in general. We first applied the simple incremental method (Section 4.1)
combined with the optimal edge reinsertion over all embeddings (Section 5.2).
As mentioned above, it turned out that the increase in the number of crossings
when separating incoming and outgoing edges is very small in general. This is
shown in Figure 3 (a) and (b), where each instance is given by a plus sign.
Its x-coordinate is the number of crossings before the transformation and the y-
coordinate is the number of crossings afterwards. In particular, each cross on the
diagonal line represents an instance with the same number of crossings before
and afterwards. A cross above the diagonal represents an instance for which the
number of crossings increases. Due to the randomness of the heuristics, there are
also crosses below the diagonal, in particular for the random instances.

Another interesting finding is the negligible increase in the number of crossings
for planar graphs: if G is planar, then Gd is not necessarily planar. Anyway, if
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Fig. 3. Numbers of crossings before and after the transformation, using the incremental
planar subgraph heuristic. For non-planar graphs, the average increase is 0.36 % (a),
0.59 % (b), 0.95 % (c), and 0.87 % (d), respectively.

we consider all 854 planar north instances, then the average number of crossings
after the transformation is only 0.04, i.e., in most cases the graph remains planar.
The set of random instances does not contain any planar graph. We next applied
the optimal planar subgraph method (Section 4.2), again in combination with the
optimal edge reinsertion over all embeddings (Section 5.2). As many instances
could not be solved within a reasonable running time, we had to set a time limit
of five CPU minutes (on an Athlon processor with 2.0 GHz). Within this time
limit, 89% of the north instances and 33% of the random instances could be
solved. The results are shown in Figure 4; the general picture is similar to the
one for the incremental method.

The directed graphs contained in the libraries north and random are all
acyclic. This fact might favor a small number of additional crossings. For this
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Fig. 4. Numbers of crossings before and after the transformation, using the optimal
planar subgraph method. For non-planar graphs, the average increase is 3.30 % (a) and
4.21 % (b), respectively.

reason, we also examined graphs with a random direction for each edge. To allow
us to compare the corresponding results to the results presented so far, we used
the north and random instances again, this time with the direction of each edge
reversed with a probability of 1/2. The results obtained with the incremental
heuristic are displayed in Figure 3 (c) and (d). In fact, the increase in the number
of crossings induced by sorting adjacency lists is more obvious now compared to
Figure 3 (a) and (b), but it is still very small. Nevertheless, we conjecture that in
theory the requirement of separating incoming and outgoing edges may induce a
quadratic number of edge crossings even for planar graphs. We have constructed
a family of directed planar graphs Gk such that Gk has O(k) edges and such
that the planarization heuristic has always produced Ω(k2) crossings when sep-
arating incoming from outgoing edges. The graph Gk is defined as follows: it
consists of two wheel graphs W2k sharing their rim; one of them has all spokes
directed from the rim to the hub, the other one has spokes with alternating
direction. We applied the planarization method to the graphs Gk many times,
with enforced separation of incoming and outgoing edges. For all k, the smallest
number of crossings we could find was

∑k
i=1�i/2� = Θ(k2). We conjecture that

this is the minimum number of crossings for all bimodal drawings of Gk. This
would mean that a quadratic number of crossings is unavoidable even for planar
graphs.

8 Conclusion

We can summarize the statement of this paper as follows: whenever the direc-
tion of edges in a graph carries significant information, this should be stressed by
separating incoming and outgoing edges in the adjacency lists. We have shown
how crossing reduction algorithms can be adapted in order to comply with this
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requirement. The necessary changes are not only easy to implement but also
neutral with respect to runtime. As our experiments show, the number of cross-
ings can be expected to grow only slightly for practical instances.
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