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Abstract. We examine how to induce selfish heterogeneous users in a
multicommodity network to reach an equilibrium that minimizes the so-
cial cost. In the absence of centralized coordination, we use the classical
method of imposing appropriate taxes (tolls) on the edges of the network.
We significantly generalize previous work [20,13,9] by allowing user de-
mands to be elastic. In this setting the demand of a user is not fixed a
priori but it is a function of the routing cost experienced, a most natural
assumption in traffic and data networks.

1 Introduction

We examine a network environment where uncoordinated users, each with a
specified origin-destination pair, select a path to route an amount of their re-
spective commodity. Let f be a flow vector defined on the paths of the network,
which describes a given routing according to the standard multicommodity flow
conventions. The users are selfish: each wants to choose a path P that minimizes
the cost TP (f). The quantity TP (f) depends typically on the latency induced
on P by the aggregated flow of all users using some edge of the path.

We model the interaction of the selfish users by studying the system in the
steady state captured by the classic notion of a Wardrop equilibrium [19]. This
state is characterized by the following principle: in equilibrium, for every origin-
destination pair (si, ti), the cost on every used si − ti, path is equal and less than
or equal to the cost on any unused path between si and ti. The Wardrop principle
states that in equilibrium the users have no incentive to change their chosen
route; under some minor technical assumptions the Wardrop equilibrium concept
is equivalent to the Nash equilibrium in the underlying game. The literature on
traffic equilibria is very large (see, e.g., [2,6,5,1]). The framework is in principle
applicable both to transportation and decentralized data networks. In recent
years, starting with the work of Roughgarden and Tardos [17], the latter area
motivated a fruitful treatment of the topic from a computer science perspective.
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The behavior of uncoordinated selfish users can incur undesirable conse-
quences from the point of view of the system as a whole. The social cost function,
usually defined as the total user latency, expresses this societal point of view.
Since for several function families [17] one cannot hope that the uncoordinated
users will reach a traffic pattern which minimizes the social cost, the system
designer looks for ways to induce them to do so. A classic approach, which we
follow in this paper, is to impose economic disincentives, namely put nonneg-
ative per-unit-of-flow taxes (tolls) on the network edges [2,12]. The tax-related
monetary cost will be, together with the load-dependent latency, a component
of the cost function TP (f) experienced by the users. As in [3,20] we consider the
users to be heterogeneous, i.e., belonging to classes that have different sensitivi-
ties towards the monetary cost. This is expressed by multiplying the monetary
cost with a factor a(i) for user class i. We call optimal the taxes inducing a user
equilibrium flow which minimizes the social cost.

The existence of a vector of optimal edge taxes for heterogeneous users in
multicommodity networks is not a priori obvious. It has been established for
fixed demands in [20,13,9]. In this paper we significantly generalize this previous
work by allowing user demands to be elastic. Elastic demands have been studied
extensively in the traffic community (see, e.g., [10,1,12]). In this setting the
demand di of a user class i is not fixed a priori but it is a function Di(u) of
the vector u of routing costs experienced by the various user classes. Demand
elasticity is natural in traffic and data networks. People may decide whether
to travel based on traffic conditions. Users requesting data from a web server
may stop doing so if the server is slow. Even more elaborate scenarios, such as
multi-modal traffic, can be implemented via a judicious choice of the demand
functions. E.g., suppose that origin-destination pairs 1 and 2 correspond to the
same physical origin and destination points but to different modes of transit,
such as subway and bus. There is a total amount d of traffic to be split among
the two modes. The modeler could prescribe the modal split by following, e.g.,
the well-studied logit model [1]:

D1(u) = d
eθu1+A1

eθu1+A1+eθu2+A2
, D2(u) = d − D1(u)

for given negative constant θ and nonnegative constants A1 and A2. Here u1
(resp. u2) denotes the routing cost on all used paths of mode 1 (resp. 2).

For the elastic demand setting we show in Section 3 the existence of taxes that
induce the selfish users to reach an equilibrium that minimizes the total latency.
Note that for this result we only require that the vector D(u) of the demand
functions is monotone according to Definition 1. The functions Di(u) do not
have to be strictly monotone (and therefore invertible) individually, and for some
i �= j, Di(u) can be increasing while Dj(u) can be decreasing on a particular
variable (as for example in the logit model mentioned above). The result is stated
in Theorem 1 and constitutes the main contribution of this paper. The existence
results for fixed demands in [20,13,9] follow as corollaries. Our proof is developed
over several steps but its overall structure is explained at the the beginning of
Section 3.1.
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We emphasize that the equilibrium flow in the elastic demand setting satisfies
the demand values that materialize in the same equilibrium, values that are not
known a priori. This indeterminacy makes the analysis particularly challenging.
On the other hand, one might argue that with high taxes, which increase the
routing cost, the actual demand routed (which being elastic depends also on the
taxes) will be unnaturally low. This argument does not take fully into account
the generality of the demand functions Di(u) which do not even have to be
decreasing; even if they do they do not have to vanish as u increases. Still it is
true that the model is indifferent to potential lost benefit due to users who do
not participate. Nevertheless, there are settings where users may decide not to
participate without incurring any loss to either the system or themselves and
these are settings we model in Section 3. Moreover in many cases the system
designer chooses explicitly to regulate the effective use of a resource instead
of heeding the individual welfare of selfish users. Charging drivers in order to
discourage them from entering historic city cores is an example, among many
others, of a social policy of this type.

A more user-friendly agenda is served by the study of a different social cost
function which sums total latency and the lost benefit due to the user demand
that was not routed [10,11]. This setting was recently considered in [4] from a
price of anarchy [14] perspective. In this case the elasticity of the demands is
specified implicitly through a function Γi(x) (which is assumed nonincreasing
in [4]) for every user class i. Γi(di) determines the minimum per-user benefit
extracted if di users from the class decide to make the trip. Hence Γi(di) also
denotes the maximum travel cost that each of the first di users (sorted in order of
nonincreasing benefit) from class i is willing to tolerate, in order to travel. In the
full version of the paper we show the existence of optimal taxes for this model.
We demonstrate however that for these optimal taxes to exist, participating
users must tolerate, in the worst-case, higher travel costs than those specified by
their Γ (·) function.

In this extended abstract we omit many technical details. A full version of the
paper is available as AdvOL-Report 2006/02 at http://optlab.mcmaster.ca/

2 Preliminaries

The model: Let G = (V, E) be a directed network (possibly with parallel edges
but with no self-loops), and a set of users, each with an infinitesimal amount
of traffic (flow) to be routed from an origin node to a destination node of G.
Moreover, each user α has a positive tax-sensitivity factor a(α) > 0. We will
assume that the tax-sensitivity factors for all users come from a finite set of
possible positive values. We can bunch together into a single user class all the
users with the same origin-destination pair and with the same tax-sensitivity
factor; let k be the number of different such classes. We denote by Pi, a(i) the
the flow paths that can be used by class i, and the tax-sensitivity of class i, for
all i = 1, . . . , k respectively. We will also use the term ‘commodity i’ for class i.
Set P .= ∪i=1,...,kPi. Each edge e ∈ E is assigned a latency function le(fe) which
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gives the latency experienced by any user that uses e due to congestion caused by
the total flow fe that passes through e. In other words, as in [3], we assume the
additive model in which for any path P ∈ P the latency is lP (f) =

∑
e∈P le(fe),

where fe =
∑

e�P fP and fP is the flow through path P . If every edge is assigned
a per-unit-of-flow tax be ≥ 0, a selfish user in class i that uses a path P ∈ Pi

experiences total cost TP (f) equal to
∑

e∈P le(fe)+a(i)
∑

e∈P be hence the name
‘tax-sensitivity’ for the a(i)’s: they quantify the importance each user assigns to
the taxation of a path.

A function g : R
n → R

m is positive if g(x) > 0 when x > 0. We assume that
the functions le are strictly increasing, i.e., x > y ≥ 0 implies le(x) > le(y), and
that le(0) ≥ 0. This implies that le(fe) > 0 when fe > 0, i.e., the function le is
positive.

Definition 1. Let f : K → R
n, K ⊆ R

n. The function f is monotone on K if
(x − y)T (f(x) − f(y)) ≥ 0, ∀x ∈ K, y ∈ K. The function f is strictly monotone
if the previous inequality is strict when x �= y.

In what follows we will use heavily the notion of a nonlinear complementar-
ity problem. Let F (x) = (F1(x), F2(x), . . . , Fn(x)) be a vector-valued function
from the n-dimensional space R

n into itself. Then the nonlinear complementar-
ity problem of mathematical programming is to find a vector x that satisfies the
following system:

xT F (x) = 0, x ≥ 0, F (x) ≥ 0.

3 The Elastic Demand Problem

In this section the social cost function is defined as the total latency
∑

e fele(fe).
We set up the problem in the appropriate mathematical programming framework
and formulate the main result for this model in Theorem 1.

The traffic (or Wardrop) equilibria for a network can be described as the
solutions of the following mathematical program (see [1] p. 216):

(TP (f) − ui)fP = 0 ∀P ∈ Pi, i = 1 . . . k

TP (f) − ui ≥ 0 ∀P ∈ Pi, i = 1 . . . k
∑

P∈Pi

fP − Di(u) = 0 ∀i = 1 . . . k

f, u ≥ 0

where TP is the cost of a user that uses path P , fP is the flow through path
P , and u = (u1, . . . , uk) is the vector of shortest travel times (or generalized
costs) for the commodities. The first two equations model Wardrop’s principle
by requiring that for any origin-destination pair i the travel cost for all paths in
Pi with nonzero flow is the same and equal to ui. The remaining equations ensure
that the demands are met and that the variables are nonnegative. Note that the
formulation above is very general: every path P ∈ Pi for every commodity i has
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its own TP (even if two commodities share the same path P , each may have its
own TP ).

If the path cost functions TP are positive and the Di(·) functions take non-
negative values, [1] shows that the system above is equivalent to the following
nonlinear complementarity problem (Proposition 4.1 in [1]):

(TP (f) − ui)fP = 0 ∀i, ∀P ∈ Pi (CPE)
TP (f) − ui ≥ 0 ∀i, ∀P ∈ Pi

ui(
∑

P∈Pi

fP − Di(u)) = 0 ∀i

∑

P∈Pi

fP − Di(u) ≥ 0 ∀i

f, u ≥ 0

In our case the costs TP are defined as
∑

e∈P le(fe)+a(i)
∑

e∈P be, ∀i, ∀P ∈ Pi,
where be is the per-unit-of-flow tax for edge e, and a(i) is the tax sensitivity
of commodity i. In fact, it will be more convenient for us to define TP slightly
differently:

TP (f) :=
lP (f)
a(i)

+
∑

e∈P

be, ∀i, ∀P ∈ Pi.

The special case where Di(u) is constant for all i, was treated in [20,13,9].
The main complication in the general setting is that the minimum-latency flow f̂
cannot be considered a priori given before some selfish routing game starts. At an
equilibrium the ui achieve some concrete value which in turn fixes the demands.
These demands will then determine the corresponding minimum-latency flow f̂ .
At the same time, the corresponding minimum-latency flow affects the taxes we
impose and this, in turn, affects the demands. The outlined sequence of events
serves only to ease the description. In fact the equilibrium parameters materialize
simultaneously. We should not model the two flows (optimal and equilibrium) as
a two-level mathematical program, since there is no the notion of leader-follower
here, but as a complementarity problem as done in [1].

Suppose that we are given a vector u∗ of generalized costs. Then the social
optimum f̂∗ for the particular demands Di(u∗) is the solution of the following
mathematical program:

min
∑

e∈E

le(f̂e)f̂e s.t. (MP)

∑

P∈Pi

f̂P ≥ Di(u∗) ∀i

f̂e =
∑

P∈P:e∈P

f̂P ∀e ∈ E

f̂P ≥ 0 ∀P
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Under the assumption that the functions xle(x) are continuously differentiable
and convex, it is well-known that f̂∗ solves (MP) iff (f̂∗, µ∗) solves the following
pair of primal-dual linear programs (see, e.g., [8, pp. 9–13]):

min
∑

e∈E

(

le(f̂∗
e ) + f̂∗

e
∂le
∂fe

(f̂∗
e )

)

f̂e s.t.

(LP2)

max
∑

i

Di(u∗)µi s.t.

(DP2)
∑

P∈Pi

f̂P ≥ Di(u∗), ∀i µi ≤
∑

e∈P

(

le(f̂∗
e ) + f̂∗

e
∂le
∂fe

(f̂∗
e )

)

∀i, P ∈Pi

f̂e =
∑

P∈P:e∈P

f̂P , ∀e ∈ E µi ≥ 0 ∀i

f̂P ≥ 0, ∀P

Let the functions Di(u) be bounded and set K1 := maxi maxu≥0{Di(u)} + 1.

Then if n denotes |V | the solutions f̂∗, µ∗ of (LP2), (DP2) are upper bounded
as follows f̂∗

P ≤ Di(u∗) < K1, ∀P ∈ Pi µi ≤
∑

e∈P

(
le(f̂∗

e ) + f̂∗
e

∂le
∂fe

(f̂∗
e )

)
<

n ·maxe∈E max0≤x≤k·K1{le(x)+x ∂le
∂fe

(x)}, ∀i. It is important to note that these
upper bounds are independent of u∗.

We wish to find a tax vector b that will steer the edge flow solution of (CPE)
towards f̂ . Similarly to [13] we add this requirement as a constraint to (CPE): for
every edge e we require that fe ≤ f̂e. By adding also the Karush-Kuhn-Tucker
conditions for (MP) we obtain the following complementarity problem:

fP (TP (f) − ui) = 0, ∀i, P TP (f) ≥ ui, ∀i, P

ui(
∑

P∈Pi

fP − Di(u)) = 0, ∀i
∑

P∈Pi

fP ≥ Di(u), ∀i

(GENERAL CP)
be(fe − f̂e) = 0, ∀e fe ≤ f̂e, ∀e

(
∑

e∈P

(le(f̂e) + f̂e
∂le
∂fe

(f̂e)) − µi)f̂P = 0, ∀i, P
∑

e∈P

(le(f̂e) + f̂e
∂le
∂fe

(f̂e)) ≥ µi, ∀i, P

µi(
∑

P∈Pi

f̂P − Di(u)) = 0, ∀i
∑

P∈Pi

f̂P ≥ Di(u), ∀i

fP , be, ui, f̂P , µi ≥ 0, ∀P, e, i

where fe =
∑

P�e fP , f̂e =
∑

P�e f̂P .
The users should be steered towards f̂ without being conscious of the con-

straints fe ≤ f̂e; the latter should be felt only implicitly, i.e., through the cor-
responding tax be. Our main result is expressed in the following theorem. For
convenience, we view Di(u) as the ith coordinate of a vector-valued function
D : R

k → R
k.

Theorem 1. Consider the selfish routing game with the latency function seen
by the users in class i being TP (f) :=

∑
e∈P le(fe) + a(i)

∑
e∈P be, ∀i, ∀P ∈ Pi.

If (i) for every edge e ∈ E, le(·) is a strictly increasing continuous function with
le(0) ≥ 0 such that xle(x) is convex and continuously differentiable and (ii) Di
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are continuous functions bounded from above for all i such that D(·) is positive
and −D(·) is monotone then there is a vector of per-unit taxes b ∈ R

|E|
+ such

that, if f̄ is a traffic equilibrium for this game, f̄e = f̂e, ∀e ∈ E. Therefore f̄
minimizes the social cost

∑
e∈E fele(fe).

3.1 Proof of the Main Theorem

The structure of our proof for Theorem 1 is as follows. First we give two basic
Lemmata 1 and 2. We then argue that the two lemmata together with a proof
that a solution to (GENERAL CP) exists imply Theorem 1. We establish that
such a solution for (GENERAL CP) exists in Theorem 2. The proof of the
latter theorem uses the fixed-point method of [18] and arguments from linear
programming duality.

The following result of [1], can be easily extended to our case:

Lemma 1 (Theorem 6.2 in [1]). Assume that the le(·) functions are strictly
increasing for all e ∈ E, D(·) is positive and −D(·) is monotone. Then if more
than one solutions (f, u) exist for (CPE), u is unique and f induces a unique
edge flow.

Lemma 2. Let (f∗, b∗, u∗, f̂∗, µ∗) be any solution of (GENERAL CP). Then
∑

P∈Pi
f∗

P = Di(u∗), ∀i and f∗
e = f̂∗

e , ∀e ∈ E.

Let (f∗, b∗, u∗, f̂∗, µ∗) be a hypothetical solution to (GENERAL CP). Then f̂∗

is a minimum latency flow solution for the demand vector D(u∗). Moreover
f∗

e ≤ f̂∗
e , ∀e ∈ E. After setting b = b∗ in (CPE), Lemma 1 implies that any

solution (f̄ , ū) to (CPE) would satisfy f̄e = f∗
e and ū = u∗. Therefore f̄e ≤ f̂∗

e ,
∀e ∈ E. Under the existing assumptions on le(·), We can show (proof omitted)
that any equilibrium flow f̄ for the selfish routing game where the users are
conscious of the modified latency TP (f) := lP (f)

a(i) +
∑

e∈P b∗e, ∀i, ∀P ∈ Pi, is a
minimum-latency solution for the demand vector reached in the same equilibrium.
Therefore the b∗ vector would be the vector of the optimal taxes. To complete
the proof of Theorem 1 we will now show the existence of (at least) one solution
to (GENERAL CP):

Theorem 2. If fele(fe) are continuous, convex, strictly monotone functions for
all e ∈ E, and Di(·) are nonnegative continuous functions bounded from above
for all i, then (GENERAL CP) has a solution.

Proof. We provide only a sketch of the proof. See the full paper for de-
tails. (GENERAL CP) is equivalent in terms of solutions to the comple-
mentarity problem (GENERAL CP′) (proof omitted). The only difference
between (GENERAL CP) and (GENERAL CP′) is that TP (f) =

∑
e∈P ( le(fe)

a(i) +

be) is replaced by TP (f̂) =
∑

e∈P ( le(f̂e)
a(i) + be) in the first two constraints.

To show that (GENERAL CP′) has a solution, we will follow a classic proof
method by Todd [18] that reduces the solution of a complementarity problem
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to a Brouwer fixed-point problem. In what follows, let [x]+ := max{0, x}. If φ :
R

n → R
n with φ(x) = (φ1(x), φ2(x), . . . , φn(x)) is a function with components

φ1, . . . , φn defined as
φi(x) = [xi − Fi(x)]+,

then x̂ is a fixed point to φ iff x̂ solves the complementarity problem xT F (x) =
0, F (x) ≥ 0, x ≥ 0. Following [1], we will restrict φ to a large cube with an
artificial boundary, and show that the fixed points of this restricted version of
φ are fixed points of the original φ by showing that no such fixed point falls on
the boundary of the cube.

Note that for (GENERAL CP) x = (f, u, b, f̂ , µ). We start by defining the
cube which will contain x. Let Kf̂ := maxi maxu≥0{Di(u)}+1, Kf := Kf̂ , Kµ :=
n ·maxe∈E max0≤x≤k·Kf̂

{le(x)+x ∂le
∂fe

(x)}. Let S be the maximum possible entry
of the inverse of any ±1 matrix of dimension at most (k+m)×(k+m), where m
denotes |E| (note that S depends only on (k+m).) Also, let amax = maxi{1/a(i)}
and lmax = maxe{le(k · Kf )}. Then define Kb := (k + m)Smamaxlmax + 1,

Ku := n ·
(
maxe∈E,i∈{1,...,k}

{
le(k·Kf )

a(i)

}
+ Kb

)
+ 1.

We allow x to take values from the cube {0 ≤ fP ≤ Kf , P ∈ P}, {0 ≤ ui ≤
Ku, i = 1, . . . k}, {0 ≤ be ≤ Kb, e ∈ E}, {0 ≤ f̂P ≤ Kf̂ , P ∈ P}, {0 ≤ µi ≤
Kµ, i = 1, . . . k}. We define φ = ({φP : P ∈ P}, {φi : i = 1, . . . , k}, {φe : e ∈
E}, {φP̂ : P ∈ P}, {φî : i = 1, . . . k}) with |P| + k + m + |P| + k components as
follows:

φP (f, u, b, f̂ , µ) = min{Kf , [fP + ui − TP (f̂)]+} ∀i, ∀P ∈ Pi

φi(f, u, b, f̂ , µ) = min{Ku, [ui + Di(u) −
∑

P∈Pi

fP ]+} i = 1, . . . , k

φe(f, u, b, f̂ , µ) = min{Kb, [be + fe − f̂e]+} ∀e ∈ E

φP̂ (f, u, b, f̂ , µ) = min{Kf̂ , [f̂P + µi −
∑

e∈P

∂le
∂fe

(f̂e)]+} ∀i, ∀P ∈ Pi

φî(f, u, b, f̂ , µ) = min{Kî, [µi + Di(u) −
∑

P∈Pi

f̂P ]+} i = 1, . . . , k

where fe =
∑

P�e fP , f̂e =
∑

P�e f̂P . By Brouwer’s fixed-point theorem, there
is a fixed point x∗ in the cube defined above, i.e., x∗ = φ(x∗). In particular we
have that f∗

P = φP (x∗), u∗
i = φi(x∗), b∗e = φe(x∗), f̂∗

P = φP̂ (x∗), µ∗
i = φî(x

∗) for
all P, P̂ ∈ P , i = 1, . . . , k, e ∈ E.

Following the proof of Theorem 5.3 of [1] we can show that

f̂∗
P = [f̂∗

P +µ∗
i −

∑

e∈P

(le(f̂∗
e )+f̂∗

e

∂le
∂fe

(f̂∗
e ))]+, ∀P µ∗

i = [µ∗
i +Di(u∗)−

∑

P∈Pi

f̂∗
P ]+, ∀i

f∗
P = [f∗

P + u∗
i − TP (f̂∗)]+, ∀P. (1)

Note that this implies that (f̂∗, µ∗) satisfy the KKT conditions of (MP) for u∗.
Here we prove only (1) (the other two are proven in a similar way). Let f∗

P = Kf
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for some i, P ∈ Pi (if f∗
P < Kf then (1) holds). Then

∑
P∈Pi

f∗
P > Di(u∗), which

implies that u∗
i +Di(u∗)−

∑
P∈Pi

f∗
P < u∗

i , and therefore by the definition of φi

we have that u∗
i = 0. Since TP (f̂∗) ≥ 0, this implies that f∗

P ≥ f∗
P +u∗

i −TP (f̂∗).
If TP (f̂∗) > 0, the definition of φP implies that f∗

P = 0, a contradiction. Hence
it must be the case that TP (f̂∗) = 0, which in turn implies (1).

If there are i, P ∈ Pi such that f∗
P > 0, then (1) implies that u∗

i = TP (f̂∗) =
∑

e∈P
le(f̂∗

e )
a(i) +

∑
e∈P b∗e. In this case we have that u∗

i < Ku, because u∗
i = Ku ⇒

∑
e∈P

le(f̂∗
e )

a(i) +
∑

e∈P b∗e = n ·
(
maxe∈E,i∈{1,...,k}

{
le(Kf )

a(i)

}
+ Kb

)
+ 1 which is a

contradiction since b∗e ≤ Kb. On the other hand, if there are i, P ∈ Pi such that
f∗

P = 0, then (1) implies that u∗
i ≤ TP (f̂∗). Again u∗

i < Ku, because if u∗
i = Ku

we arrive at the same contradiction. Hence we have that

u∗
i = [u∗

i + Di(u∗) −
∑

P∈Pi

f∗
P ]+, ∀i. (2)

Next, we consider the following primal-dual pair of linear programs:

min
∑

i

∑

P∈Pi

fP
lP (f̂∗)
a(i)

s.t. (LP*) max
∑

i

Di(u∗)ui −
∑

e∈E

f̂∗
e be s.t.

(DP*)
∑

P∈Pi

fP ≥ Di(u∗) i = 1, . . . , k ui ≤ lP (f̂∗)
a(i)

+
∑

e∈P

be ∀i, ∀P ∈Pi

fe =
∑

P∈P:e∈P

fP ∀e ∈ E be, ui ≥ 0 ∀e∈E,∀i

fe ≤ f̂∗
e ∀e ∈ E

fP ≥ 0 ∀P

From the above, it is clear that f̂∗ is a feasible solution for (LP*), and (u∗, b∗)
is a feasible solution for (DP*). Moreover, since the objective function of (LP*)
is bounded from below by 0, (DP*) has at least one bounded optimal solution
as well. There is an optimal solution (û, b̂) of (DP*) such that all the b̂e’s are
suitably upper bounded:

Lemma 3 (folklore). There is an optimal solution (û, b̂) of (DP*) such that
b̂e ≤ Kb − 1, ∀e ∈ E.

Let f̂ be the optimal primal solution of (LP*) that corresponds to the optimal
dual solution (û, b̂) of (DP*). Exploiting the fact that (f̂ , û, b̂) is a saddle point for
the Lagrangian (see e.g. [16]) of (LP*)-(DP*) we can show (derivation omitted)
that

b∗e = [b∗e + f∗
e − f̂∗

e ]+, ∀e ∈ E. (3)

Equations (1),(2),(3) imply that (f∗, u∗, b∗, f̂∗, µ∗) is indeed a solution of (GEN-
ERAL CP′), and therefore a solution to (GENERAL CP). The proof of
Theorem 2 is complete.
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