
Approximating Min-Max (Regret) Versions of
Some Polynomial Problems

Hassene Aissi, Cristina Bazgan, and Daniel Vanderpooten

LAMSADE, Université Paris-Dauphine, France
{aissi, bazgan, vdp}@lamsade.dauphine.fr

Abstract. While the complexity of min-max and min-max regret ver-
sions of most classical combinatorial optimization problems has been
thoroughly investigated, there are very few studies about their approxi-
mation. For a bounded number of scenarios, we establish a general ap-
proximation scheme which can be used for min-max and min-max regret
versions of some polynomial problems. Applying this scheme to short-
est path and minimum spanning tree, we obtain fully polynomial-time
approximation schemes with much better running times than the ones
previously presented in the literature.

Keywords: min-max, min-max regret, approximation, fptas, shortest
path, minimum spanning tree.

1 Introduction

The definition of an instance of a combinatorial optimization problem requires
to specify parameters, in particular objective function coefficients, which may
be uncertain or imprecise. Uncertainty/imprecision can be structured through
the concept of scenario which corresponds to an assignment of plausible values
to parameters. There exist two natural ways of describing the set of all possible
scenarios. In the interval data case, each numerical parameter can take any
value between a lower and an upper bound. In the discrete scenario case, which
is considered here, the scenario set is described explicitly. Kouvelis and Yu [6]
proposed the min-max and min-max regret criteria, stemming from decision
theory, to construct solutions hedging against parameters variations. The min-
max criterion aims at constructing solutions having a good performance in the
worst case. The min-max regret criterion, less conservative, aims at obtaining a
solution minimizing the maximum deviation, over all possible scenarios, of the
value of the solution from the optimal value of the corresponding scenario.

Complexity of the min-max and min-max regret versions has been studied
extensively during the last decade. In [6], for the discrete scenario case, the
complexity of min-max (regret) versions of several combinatorial optimization

� This work has been partially funded by grant CNRS/CGRI-FNRS number 18227.
The second author was partially supported by the ACI Sécurité Informatique grant-
TADORNE project 2004.

D.Z. Chen and D.T. Lee (Eds.): COCOON 2006, LNCS 4112, pp. 428–438, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Approximating Min-Max (Regret) Versions of Some Polynomial Problems 429

problems was studied, including shortest path and minimum spanning tree. In
general, these versions are shown to be harder than the classical versions. More
precisely, if the number of scenarios is not constant, these problems become
strongly NP -hard, even when the classical problems are solvable in polynomial
time. On the other hand, for a constant number of scenarios, min-max (regret)
versions of these polynomial problems usually become weakly NP -hard.

While the complexity of these problems was studied thoroughly, their approx-
imation was not studied until now, except in [2]. That paper investigated the
relationships between min-max (regret) and multi-objective versions, and showed
the existence, in the case of a bounded number of scenarios, of fully polynomial-
time approximation schemes (fptas) for min-max versions of several classical
optimization problems (shortest path, minimum spanning tree, knapsack). The
interest of studying these relationships is that, unlike for min-max (regret) ver-
sions, fptas, which determine an approximation of the non-dominated set (or
Pareto set), have been proposed for the multi-objective version (see, e.g., [9,
11]). Approximation algorithms for the min-max version, which basically consist
of selecting one min-max solution from an approximation of the non-dominated
set, are then easy to derive but critically depend on the running time of the
approximation scheme for the multi-objective version.

In this paper, we adopt an alternative perspective and develop a general
approximation scheme, using the scaling technique, which can be applied to
min-max (regret) versions of some problems, provided that some conditions are
satisfied. The advantage of this approach is that the resulting fptas usually have
a much better running time than those derived using multi-objective fptas.

After presenting some background concepts in section 2, we introduce in sec-
tion 3 the general approximation scheme. In section 4 we present applications
of this general scheme to shortest path and minimum spanning tree, giving in
each case fptas with better running times than previously known fptas based on
multi-objective versions.

2 Preliminaries

We consider in this paper the class C of 0-1 problems with a linear objective
function defined as:

{
min

∑m
i=1 cixi ci ∈ N

x ∈ X ⊂ {0, 1}m

This class encompasses a large variety of classical combinatorial problems,
some of which are polynomial-time solvable (shortest path problem, minimum
spanning tree, . . .) and others are NP -hard (knapsack, set covering, . . .). The
size of a solution x ∈ X is the number of variables xi which are set to 1.

2.1 Min-Max, Min-Max Regret Versions

Given a problem P ∈ C, the min-max (regret) version associated to P has for
input a finite set of scenarios S where each scenario s ∈ S is represented by a

430 H. Aissi, C. Bazgan, and D. Vanderpooten

vector (cs
1, . . . , c

s
m). We denote by val(x, s) =

∑m
i=1 cs

ixi the value of solution
x ∈ X under scenario s ∈ S and by val∗s the optimal value in scenario s.

The min-max optimization problem corresponding to P , denoted by Min-

Max P , consists of finding a solution x having the best worst case value across
all scenarios, which can be stated as: minx∈X maxs∈S val(x, s).

Given a solution x ∈ X , its regret, R(x, s), under scenario s ∈ S is defined as
R(x, s) = val(x, s) − val∗s . The maximum regret Rmax(x) of solution x is then
defined as Rmax(x) = maxs∈S R(x, s).

The min-max regret optimization problem corresponding to P , denoted by
Min-Max Regret P , consists of finding a solution x minimizing the maximum
regret Rmax(x) which can be stated as: minx∈X maxs∈S{val(x, s) − val∗s}.

When P is a maximization problem, the max-min and min-max regret versions
associated to P are defined similarly.

2.2 Approximation

Let us consider an instance I, of size |I|, of an optimization problem and a
solution x of I. We denote by opt(I) the optimum value of instance I. The
performance ratio of x is r(x) = max

{
val(x)
opt(I) ,

opt(I)
val(x)

}
, and its error is ε(x) =

r(x) − 1. For a function f , an algorithm is an f(n)-approximation algorithm if,
for any instance I of the problem, it returns a solution x such that r(x) ≤ f(|I|).
An optimization problem has a fully polynomial-time approximation scheme (an
fptas , for short) if, for every constant ε > 0, it admits an (1 + ε)-approximation
algorithm which is polynomial both in the size of the input and in 1/ε. The class
of problems having an fptas is denoted by FPTAS.

2.3 Matrix Tree Theorem

In this section we describe classical results concerning the matrix tree theorem
that will enable us to derive approximation schemes for min-max and min-max
regret versions of spanning tree.

The matrix tree theorem provides a way of counting all the spanning trees in
a graph (see, e.g., [10]). Consider a graph G = (V, E) with |V | = n, |E| = m
and let cij denote the cost of edge (i, j) ∈ E.

Define an n × n matrix A whose entries are given as follows:

aij =

⎧⎨
⎩

−cij if i �= j and (i, j) ∈ E∑
(i,�)∈E ci� if i = j

0 otherwise

Define Ar as the submatrix of A obtained by deleting the rth row and column
and D(Ar) as its determinant. The matrix tree theorem [10] states the following
equality:

D(Ar) =
∑
T∈T

∏
(i,j)∈T

cij (1)

where T is the set of all spanning trees of G.

Approximating Min-Max (Regret) Versions of Some Polynomial Problems 431

As indicated in [3], this theorem can be extended to count the number of
spanning trees of value v for each possible value v using a matrix depending on
one variable. Following this idea, we can extend the matrix tree theorem to the
multiple scenarios case as in [5]. Define the n×n matrix A(y1, . . . , yk) as follows:

aij(y1, . . . , yk) =

⎧⎪⎨
⎪⎩

−
∏k

s=1 y
cs

ij
s if i �= j and (i, j) ∈ E∑

(i,�)∈E

∏k
s=1 y

cs
i�

s if i = j

0 otherwise

Then, the determinant of the submatrix Ar(y1, . . . , yk) obtained by deleting
any rth row and column is given by

D(Ar(y1, . . . , yk)) =
∑

v1,...,vk∈V T

av1,...,vk

k∏
s=1

yvs
s (2)

where av1,...,vk
is the number of spanning trees with value vs in scenario s, for

all s ∈ S and V T is the set of values reached on all scenarios, for all spanning
trees of G.

Equality (2) is obtained by replacing each cij in (1) by
∏k

s=1 y
cs

ij
s . Then each

product term in (1) corresponding to tree T becomes
∏k

s=1 y
∑

(i,j)∈T cs
ij

s .

3 A General Approximation Scheme

We establish now a general result giving a sufficient condition for the existence
of fptas for min-max (regret) versions of problems P in C.

Theorem 1. Given a problem Min-Max (Regret) P, if

1. for any instance I, a lower and an upper bound L and U of opt can be
computed in time p(|I|), such that U ≤ q(|I|)L, where p and q are two
polynomials with q non decreasing and q(|I|) ≥ 1,

2. and there exists an algorithm that finds for any instance I an optimal solu-
tion in time r(|I|, U) where r is a non decreasing polynomial,

then Min-Max (Regret) P is in FPTAS.

Proof. Let I be an instance of Min-Max P or Min-Max Regret P defined on
a scenario set S where each scenario s ∈ S is represented by a vector (cs

1, . . . , c
s
m).

We use the technique of scaling in order to provide an fptas. In order to obtain a
solution with an error bounded by ε, we need a lower bound of opt(I). Moreover,
for obtaining a polynomial algorithm, we have to use a lower bound that is
polynomially related to an upper bound.

When I is an instance of Min-Max P , consider I the instance of Min-Max P
derived from I where each scenario s ∈ S is represented by a vector (cs

1, . . . , c
s
m),

with cs
i = � tcs

i

εL � and t is an upper bound of the size of any feasible solution of I.

432 H. Aissi, C. Bazgan, and D. Vanderpooten

Let x∗ and x∗ denote respectively an optimal solution of instance I and I. Let
val(x, s) denote the value of a solution x in scenario s for I. We have

cs
i <

εL

t
(cs

i + 1), for all s ∈ S,

and thus, val(x∗, s) < εL
t val(x∗, s) + εL, for all s ∈ S,

which implies maxs∈S val(x∗, s) < εL
t maxs∈S val(x∗, s) + εL.

Since x∗ is an optimal solution in I, we have

opt(I) = max
s∈S

val(x∗, s) ≤ max
s∈S

val(x∗, s)

and thus, the value of an optimal solution of I has, in I, the value

max
s∈S

val(x∗, s) <
εL

t
max
s∈S

val(x∗, s) + εL ≤ opt(I) + εL ≤ opt(I)(1 + ε).

A similar result can be obtained for Min-Max Regret P . Let I be an
instance of Min-Max Regret P and let I denote the instance derived from
I, by scaling each entry cs

i as follows: cs
i = � 2tcs

i

εL �, where t is an upper bound
of the size of any feasible solution of I. Let x∗ and x∗ denote respectively an
optimal solution of instance I and I and let x∗

s , x∗
s denote respectively, an optimal

solution of instance I and I in scenario s.
Then, we have, for all s ∈ S,

val(x∗, s) − val(x∗
s , s) <

εL

2t
val(x∗, s) − val(x∗

s, s) +
ε

2
L

≤ εL

2t
(val(x∗, s) − val(x∗

s , s)) +
ε

2
L

≤ εL

2t
(val(x∗, s) − val(x∗

s , s)) +
ε

2
L

and thus

max
s∈S

{val(x∗ , s) − val(x∗
s, s)} < max

s∈S

{
εL

2t
(val(x∗, s) − val(x∗

s, s))
}

+
ε

2
L

≤ max
s∈S

{
εL

2t
(val(x∗, s) − val(x∗

s, s))
}

+
ε

2
L

≤ max
s∈S

{val(x∗, s) − val(x∗
s, s) + val(x∗

s , s) − εL

2t
val(x∗

s, s)} +
ε

2
L

≤ max
s∈S

{val(x∗, s) − val(x∗
s, s) + val(x∗

s, s) − εL

2t
val(x∗

s, s)} +
ε

2
L

≤ max
s∈S

{val(x∗, s) − val(x∗
s, s)} + εL ≤ opt(I)(1 + ε)

We show in the following that such a solution x∗ of instance I for Min-Max

P or Min-Max Regret P can be obtained in polynomial time in |I| and 1
ε .

Approximating Min-Max (Regret) Versions of Some Polynomial Problems 433

The bounds L and U can be computed in time p(|I|) by hypothesis. In order
to compute an optimal solution for I, we apply the algorithm (that exists by
hypothesis) that runs in time r(|I |, U(I)).

In the case where I is an instance of Min-Max P , since opt(I) ≤ topt(I)
εL ≤

tU
εL ≤ tq(|I|)

ε , and q, r are non decreasing, the total time for computing the (1+ε)-
approximation is p(|I|) + r(|I |, U(I)) ≤ p(|I|) + r(|I |, q(|I |)L(I)) ≤ p(|I|) +
r(|I|, q(|I|) tq(|I|)

ε).
In the case where I is an instance of Min-Max Regret P , since opt(I) ≤

2topt(I)
εL + t ≤ 2tU

εL + t ≤ 2tq(|I|)
ε + t, and q, r are non decreasing, the total time

for computing the (1 + ε)-approximation is (k + 1)p(|I|) + r(|I |, U(I)) ≤ (k +
1)p(|I|) + r(|I |, q(|I|)L(I)) ≤ (k + 1)p(|I|) + r(|I|, q(|I|)(tq(|I|)

ε + t)). �

We discuss now the two conditions of the previous theorem. The following result
shows that the first condition can be satisfied easily if the underlying problem
P is solvable in polynomial time.

Proposition 1. If a minimization problem P is solvable in polynomial time,
then for any instance on a set of k scenarios of Min-Max P and Min-Max

Regret P, there exist a lower and an upper bound L and U of opt computable
in polynomial time, such that U ≤ kL.

Proof. Consider an instance I of Min-Max P defined on a set S of k scenarios
where each scenario s ∈ S is represented by (cs

1, . . . , c
s
m) and let X be the set

of feasible solutions of I. We define the following instance I ′ of a single scenario
problem minx∈X

∑
s∈S

1
kval(x, s) obtained by taking objective function coeffi-

cients c′i =
∑k

s=1
cs

i

k , i = 1, . . . , m. Let x∗ be an optimal solution of I ′. We take
as lower and upper bounds L =

∑
s∈S

1
kval(x∗, s) and U = maxs∈S val(x∗, s).

Clearly, we have

L = min
x∈X

∑
s∈S

1
k

val(x, s) ≤ min
x∈X

∑
s∈S

1
k

(max
s∈S

val(x, s)) = min
x∈X

max
s∈S

val(x, s) = opt

and

min
x∈X

max
s∈S

val(x, s) ≤ max
s∈S

val(x∗, s) ≤
∑
s∈S

val(x∗, s) = k
∑
s∈S

1
k

val(x∗, s) = kL

Consider now an instance I of Min-Max Regret P defined on a set S of
k scenarios and let X be the set of feasible solutions of I. Let x∗ ∈ X be an
optimal solution of the single scenario instance I ′ derived from I as for the min-
max case. We take as lower and upper bounds L =

∑
s∈S

1
k (val(x∗, s) − val∗s)

and U = maxs∈S(val(x∗, s) − val∗s). Clearly, we have

L = min
x∈X

1
k

∑
s∈S

(val(x, s) − val∗s) ≤ min
x∈X

1
k

k max
s∈S

(val(x, s) − val∗s) = opt

and

434 H. Aissi, C. Bazgan, and D. Vanderpooten

min
x∈X

max
s∈S

(val(x, s)−val∗s) ≤ max
s∈S

(val(x∗, s)−val∗s) ≤
∑
s∈S

(val(x∗, s)−val∗s) = kL

If any instance of P of size n is solvable in time p(n), where p is a polynomial,
then bounds L and U are computable in O(p(|I|/k)). �

If P is polynomially approximable, then the first condition of Theorem 1 can
be satisfied for Min-Max P . More precisely, if P is f(n)-approximable where
f(n) is a polynomial, given an instance I of Min-Max P , let x̃ be an f(|I|/k)-
approximate solution in I ′ (defined as in the proof of Proposition 1), then we
have L = 1

f(|I|/k)

∑
s∈S

1
kval(x̃, s) and U = maxs∈S val(x̃, s), and thus U ≤

kf(|I|/k)L.
The second condition of Theorem 1 can be weakened for Min-Max P by

requiring only a pseudo-polynomial algorithm, that is an algorithm polynomial
in |I| and max(I) = maxi,s cs

i . Indeed, knowing an upper bound U , we can
eliminate any variable xi such that cs

i > U on at least one scenario s ∈ S.
Condition 2 is then satisfied applying the pseudo-polynomial algorithm on this
modified instance.

Min-Max and Min-Max Regret versions of some problems, like shortest
path, knapsack, admit pseudo-polynomial time algorithms based on dynamic
programming [6]. For some dynamic programming formulations, we can easily
obtain algorithms satisfying condition 2, by discarding partial solutions with
value more than U on at least one scenario. We illustrate this approach in section
4.1 for the shortest path problem.

For other problems, which are not known to admit pseudo-polynomial al-
gorithms based on dynamic programming, specific algorithms are required. We
present an algorithm verifying condition 2 for Min-Max Spanning Tree

(section 4.2).
Unfortunately, these algorithms cannot be adapted directly in order to obtain

algorithms satisfying condition 2 for min-max regret versions. The basic diffi-
culty here is that, if we can find an algorithm in r(|I|, U(I)) for any instance
I of Min-Max P , the direct extension of this algorithm for the corresponding
instance I ′ of Min-Max Regret P will be in r(|I ′|, U(I ′) + optmax) where
optmax = maxs∈S val∗s is a value which is not necessarily polynomially related
to U(I ′).

However, for problems whose feasible solutions have a fixed size such as span-
ning tree, we reduced the min-max regret version to a min-max version in [2]. In
this context, we need to consider instances where some coefficients are negative
and possibly non integral but any feasible solution has a non-negative integral
value. For an optimization problem P , we denote by P ′ the extension of P to
these instances. More precisely, we proved the following theorem.

Theorem 2. ([2]) For any polynomial-time solvable minimization problem P
whose feasible solutions have a fixed size and for any function f : N → (1, ∞), if
Min-Max P ′ has a polynomial-time f(n)-approximation algorithm, then Min-

Max Regret P has a polynomial-time f(n)-approximation algorithm.

Approximating Min-Max (Regret) Versions of Some Polynomial Problems 435

4 Applications

In this section, we apply the previous results to min-max (regret) shortest path,
and minimum spanning tree. We also compare the running time for our algo-
rithms and for the fptas obtained using an approximation of the non-dominated
set, and show a significant improvement.

4.1 Shortest Path

In [6], Kouvelis and Yu proved the NP -hardness of min-max and min-max regret
versions of shortest path, even for two scenarios.

Consider an instance I defined by a directed graph G = (V, A), with V =
{1, . . . , n} and |A| = m, and a set S of k scenarios giving for each arc (i, j) ∈ A
its cost cs

ij under scenario s. Denote by cij the vector of size k formed by cs
ij ,

s ∈ S. We are interested in optimal paths from 1 to any other vertex.
We give now pseudo-polynomial algorithms satisfying condition 2 of Theo-

rem 1 for Min-Max (Regret) Shortest Path.

Proposition 2. Given U an upper bound on the optimal value, then Min-Max

Shortest Path and Min-Max Regret Shortest Path can be solved in time
O(nmUk).

Proof. We propose for each problem, an enumeration algorithm based on a dy-
namic programming formulation, that produces the set of all vectors of values
(or regrets), for which all coordinates are less than or equal to U , and selects
from this set an optimal vector. Let u = (U, . . . , U) denote the vector of size k.

Considering first Min-Max Shortest Path, we describe an algorithm that
computes at each stage �, the set V �

j of all possible vectors of values at most U
corresponding to paths from 1 to j of length at most �, � = 1, . . . , n − 1, j =
2, . . . , n. The algorithm starts by initializing V 0

1 = {(0, . . . , 0)}, where (0, . . . , 0)
is a vector of size k and computes V �

j at each stage � for each vertex j, � =
1, . . . , n − 1, j = 2, . . . , n as follows:

V �
j = ∪i∈Γ −1(j){vj = vi + cij : vi ∈ V �−1

i and vj ≤ u} (3)

Finally, the algorithm selects, as an optimal vector, a vector in V n−1
j such

that its largest coordinate is minimum, for j = 2, . . . , n.
Consider now Min-Max Regret Shortest Path. Let (val∗s)i, s ∈ S, i =

1, . . . , n, be the value of a shortest path in graph G from 1 to i under scenario
s and let (val∗)i be the vector of size k of these values (val∗s)i, s ∈ S.

We describe an algorithm that computes at each stage �, the set R�
j of all

possible vectors of regrets at most U corresponding to paths from 1 to j of
length at most �, � = 1, . . . , n − 1, j = 2, . . . , n. Consider arc (i, j) ∈ A and let
Pi be a path in G from 1 to i of regret ri

s = val(Pi, s) − (val∗s)i, s ∈ S. Denote
by Pj the path constructed from Pi by adding arc (i, j). The regret of Pj is
rj
s = val(Pi, s)+ cs

ij − (val∗s)j = ri
s +(val∗s)i + cs

ij − (val∗s)j , s ∈ S. The algorithm
starts by initializing R0

1 = {(0, . . . , 0)} and for 1 ≤ � ≤ n − 1 and 2 ≤ j ≤ n let

R�
j = ∪i∈Γ −1(j){rj = ri + (val∗)i + cij − (val∗)j : ri ∈ R�−1

i and rj ≤ u} (4)

436 H. Aissi, C. Bazgan, and D. Vanderpooten

Finally, the algorithm selects, as an optimal vector, a vector in Rn−1
j such

that its largest coordinate is minimum, for j = 2, . . . , n.
We point out that, for both algorithms, any path of interest can be obtained

using standard bookkeeping techniques that do not affect the complexity of these
algorithms.

In order to prove the correctness of these algorithms, we show that V n−1
j ,

resp. Rn−1
j , contains all vectors of values, resp. regrets, at most U corresponding

to paths from 1 to j, j = 2, . . . , n. For this, we need to justify that we can
eliminate, at any stage, any vector which violates the upper bound U , without
losing any vector at the end.

Indeed, for the min-max version, if such a solution vi is obtained then any of
its extensions computed in (3) would also violate U due to the non-negativity of
vectors cij .

Similarly, for the min-max regret version, if such a solution ri is obtained then
any of its extensions computed in (4) would also violate U since vectors of the
form (val∗)i + cij − (val∗)j are non-negative.

Both algorithms can be implemented in time O(nmUk). �

Corollary 1. Min-Max (Regret) Shortest Path are in FPTAS.

Proof. Using Theorem 1, Propositions 1 and 2, we derive an fptas whose running
time is O(mnk+1

εk). �

Warburton describes in [11] an fptas for approximating the non-dominated set
for the multi-objective version of the shortest path problem. From this fptas,
Warburton derives an fptas for Min-Max Shortest Path in acyclic graphs
with running time O(n2k+1

ε2k−2), whereas our running time, for general graphs, is
better.

4.2 Minimum Spanning Tree

In [6], Kouvelis and Yu proved the NP -hardness of min-max and min-max regret
versions of minimum spanning tree, even for two scenarios. We first describe
algorithms for Min-Max Spanning Tree with running time polynomial in a
suitably chosen upper bound on the optimal value.

Consider an instance of Min-Max Spanning Tree represented by a graph
G = (V, E) where |V | = n, |E| = m, cs

ij is the cost of edge (i, j) in scenario
s ∈ S and |S| = k.

Proposition 3. Given U an upper bound on the optimal value, then Min-Max

Spanning Tree can be solved in time O(mn4Uk log U).

Proof. We can solve Min-Max Spanning Tree using an extension of the matrix
tree theorem to the multiple scenarios case as presented in section 2.3.

The optimal value opt of Min-Max Spanning Tree can be computed by
considering, for each monomial in (2), the largest power vmax = maxs=1,...,k vs.
The minimum value of vmax over all monomials corresponds to opt.

Approximating Min-Max (Regret) Versions of Some Polynomial Problems 437

Actually, instead of computing all monomials, we can use, as suggested in
[5], the algorithm presented in [7]. When applied to matrix Ar(y1, . . . , yk), this
algorithm can compute the determinant polynomial up to a specified degree
in each variable in opposition to the classical method of Edmonds [4]. In this
case, it is sufficient to compute the polynomial determinant up to degree U in
each variable ys for s = 1, . . . , k. The algorithm in [7] requires O(n4) multipli-
cations and additions of polynomials. The time needed to multiply two mul-
tivariate polynomials of maximum degree ds in variable ys for s = 1, . . . , k is∏k

s=1 ds log
∏k

s=1 ds [1]. Thus, the running time to compute the polynomial de-
terminant is O(n4Uk log U).

Once an optimal vector is identified, a corresponding spanning tree can be
constructed using self reducibility [8]. It consists of testing iteratively, for each
edge if the graph obtained by contracting this edge admits a spanning tree of the
required vector of adjusted values on all scenarios (subtracting iteratively the
vector of costs cs

ij , s ∈ S, for each edge (i, j) being tested to the required vector of
values). In at most m−(n−1) iterations such a spanning tree is obtained. Hence,
the self reducibility requires O(m) computations of determinant polynomial. �

Corollary 2. Min-Max Spanning Tree is in FPTAS.

Proof. Using Theorem 1, Propositions 1 and 3, we derive an fptas whose running
time is O(mnk+4

εk log n
ε). �

Corollary 3. Min-Max Regret Spanning Tree is in FPTAS.

Proof. Notice that Theorem 1 and Proposition 3 remain true even for the in-
stances of spanning tree where some coefficients are negative but any feasible
solution has a non-negative value. Thus, Min-Max Spanning Tree

′ is in FP-
TAS. The result follows from Theorem 2. The running time of the fptas is
O(mnk+4

εk log n
ε). �

In this case, we obtain fptas with better running times for Min-Max (Re-

gret) Spanning Tree. Indeed, the running time of the fptas obtained in
[2] using the general multi-objective approximation scheme presented in [9] is
O(nk+4

ε2k (log U)k log n
ε).

References

1. A. V. Aho, J. E. Hopcroft, and J. D. Ullmann. The design and analysis of computer
algorithms. Addison-Wesley Reading, 1976.

2. H. Aissi, C. Bazgan, and D. Vanderpooten. Approximation complexity of min-max
(regret) versions of shortest path, spanning tree, and knapsack. In Proceedings of
the 13th Annual European Symposium on Algorithms (ESA 2005), Mallorca, Spain,
LNCS 3669, pages 862–873, 2005.

3. F. Barahona and R. Pulleyblank. Exact arborescences, matching and cycles. Dis-
crete Applied Mathematics, 16:91–99, 1987.

4. J. Edmonds. System of distinct representatives and linear algebra. Journal of
Research of the National Bureau of Standards, 71:241–245, 1967.

438 H. Aissi, C. Bazgan, and D. Vanderpooten

5. S. P. Hong, S. J. Chung, and B. H. Park. A fully polynomial bicriteria approx-
imation scheme for the constrained spanning tree problem. Operations Research
Letters, 32(3):233–239, 2004.

6. P. Kouvelis and G. Yu. Robust discrete optimization and its applications. Kluwer
Academic Publishers, Boston, 1997.

7. M. Mahajan and V. Vinay. A combinatorial algorithm for the determinant. In Pro-
ceedings of the 8th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA
1997), New Orleans, USA, pages 730–738, 1997.

8. C. H. Papadimitriou. Computational complexity. Addison Wesley, 1994.
9. C. H. Papadimitriou and M. Yannakakis. On the approximability of trade-offs and

optimal access of web sources. In IEEE Symposium on Foundations of Computer
Science (FOCS 2000), Redondo Beach, California, USA, pages 86–92, 2000.

10. W.T. Tutte. Graph Theory, volume 21 of Encyclopedia of Mathematics and its
Applications. Addison-Wesley, 1984.

11. A. Warburton. Approximation of Pareto optima in multiple-objective, shortest-
path problems. Operations Research, 35:70–79, 1987.

	Introduction
	Preliminaries
	Min-Max, Min-Max Regret Versions
	Approximation
	Matrix Tree Theorem

	A General Approximation Scheme
	Applications
	Shortest Path
	Minimum Spanning Tree

	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

