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Abstract. In this paper we show a lower bound for the on-line version
of Heilbronn’s triangle problem in d dimensions. Specifically, we provide
an incremental construction for positioning n points in the d-dimensional
unit cube, for which every simplex defined by d + 1 of these points has
volume Ω(1/n(d+1) ln (d−2)+2).

1 Introduction

The off-line version of the famous triangle problem was posed by Heilbronn
[Ro51] more than 50 years ago. It is formulated as follows:

Given n points in the unit square, what is H2(n), the maximum possible
area of the smallest triangle defined by some three of these points?

There is a large gap between the best currently-known lower and upper bounds
on H2(n), Ω(log n/n2) [KPS82] and O(1/n8/7−ε) (for any ε > 0) [KPS81]. Jiang
et al. [JLV02] showed that the expected area of the smallest triangle, when the
n points are put uniformly at random in the unit square, is Θ(1/n3). Bare-
quet [Ba01] generalized the off-line problem to d dimensions:

Given n points in the d-dimensional unit cube, what is Hd(n), the max-
imum possible volume of the smallest simplex defined by some d + 1 of
these points?

The best currently-known lower bound on Hd(n) is Ω(log n/nd) [Le03]. Other
versions, in which the dimension of the optimized simplex is lower than that of
the cube, were investigated in [Le04, BN05, Le05].

The on-line version of the triangle problem is harder than the off-line version
because the value of n is not specified in advance. In other words, the points
are positioned one after the other in a d-dimensional unit cube, while n is incre-
mented by one after every point-positioning step. The procedure can be stopped
at any time, and the already-positioned points must have the property that every
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subset of d + 1 points defines a polytope whose volume is at least some quan-
tity Hon−line

d (n), where the goal is to maximize this quantity. Schmidt [Sc71]
showed that Hon−line

2 (n) = Ω(1/n2). Barequet [Ba04] used nested packing ar-
guments to demonstrate that Hon−line

3 (n) = Ω(1/n10/3) = Ω(1/n3.333...) and
Hon−line

4 (n) = Ω(1/n127/24) = Ω(1/n5.292...).
In this paper we present a nontrivial generalization of the latter method

to d dimensions, showing that for a fixed value of d we have Hon−line
d (n) =

Ω( 1
n(d+1) ln (d−2)+2 ). Specifically, we provide an incremental procedure for posi-

tioning n points (one by one) in a d-dimensional unit cube so that no subset
of up to d + 1 points is “too dense.” Specifically, the distance between any two
points is at least a1/n1/d (for some constant a1 > 0), no three points define a
triangle whose area is less than a2/n2/(d−1) (for some constant a2 > 0), and so
on. The values of the constants are tuned at the end of the construction. It is
then proven that all the d-dimensional simplices defined by (d + 1)-tuples of the
points have volume Ω(1/n(d+1) ln (d−2)+2).

2 The Construction

2.1 Notation and Plan

We use the following notation. Let pi1 , pi2 , ..., piq be any q points in �d. Then,
|pi1pi2 | denotes the distance between two points pi1 , pi2 ; |pi1pi2pi3 | denotes the
area of the triangle pi1pi2pi3 ; |pi1pi2pi3pi4 | denotes the 3-dimensional volume of
the tetrahedron pi1pi2pi3pi4 ; and, in general, |pi1pi2 . . . piq | denotes the volume of
the (q−1)-dimensional simplex pi1pi2 . . . piq . We denote by Cd the d-dimensional
unit cube, and by Bd

r a d-dimensional ball of radius r. The line defined by the
pair of points pi1 , pi2 is denoted by �i1i2 .

Throughout the construction we refer to d as a fixed constant. Therefore, we
omit factors that depend solely on d, except when they appear in powers of n.

We want to construct a set S of n points in Cd such that

[1] |pi1pi2 | ≥ V2 = a1/n1/d, for any pair of distinct points pi1 , pi2 ∈ S and for
some constant a1 > 0.

[2] |pi1pi2pi3 | ≥ V3 = a2/n2/(d−1), for any triple of distinct points pi1 , pi2 , pi3 ∈
S and for some constant a2 > 0.

[3] |pi1pi2pi3pi4 | ≥ V4 = a3/n
4d2−5d−1

d(d−1)(d−2) , for any quadruple of distinct points
pi1 , pi2 , pi3 , pi4 ∈ S and for some constant a3 > 0.

...
[q − 1] |pi1pi2 . . . piq | ≥ Vq = aq−1Vq−1/(aq−2n

d(q−2)+q−3
d(d−q+2) ), for any q-tuple (4 ≤

q ≤ d + 1) of distinct points pi1 , pi2 , . . . , piq ∈ S and for some constant
aq−1 > 0.

The goal is to construct S incrementally. That is, assume that we have al-
ready constructed a subset Sv of v points, for v < n, which satisfies the above
conditions [1]–[q − 1]. We want to show that there exists a new point p ∈ Cd

that satisfies
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[1’] |ppi1 | ≥ V2 = a1/n1/d, for each point pi1 ∈ S.
[2’] |ppi1pi2 | ≥ V3 = a2/n2/(d−1), for any pair of distinct points pi1 , pi2 ∈ S.

[3’] |ppi1pi2pi3 | ≥ V4 = a3/n
4d2−5d−1

d(d−1)(d−2) , for any triple of distinct points pi1 , pi2 , pi3

∈ S.

...
[(q − 1)’] |ppi1pi2 . . . piq−1 | ≥ Vq = aq−1Vq−1/(aq−2n

d(q−2)+q−3
d(d−q+2) ), for any q-tuple

(4 ≤ q ≤ d + 1) of distinct points pi1 , pi2 , . . . , piq ∈ S.

We will show this by summing up the volumes of the “forbidden” portions of
Cd where one of the inequalities [1’]–[(q − 1)’] is violated, and by showing that
the sum of these volumes is less than 1. This implies the existence of the desired
point p, which we then add to Sv to form Sv+1. We continue in this manner
until the entire set S is constructed.

2.2 Forbidden Balls

The forbidden regions where one of the inequalities [1’] is violated are v d-
dimensional balls of radius r1 = a1/n1/d.1 Their total volume is at most

v|Bd
r1

| = O
( v

n

)
= O(1).

2.3 Forbidden Cylinders

The forbidden regions where one of the inequalities [2’] is violated are
(
v
2

)
d-

dimensional “cylinders” Gij , for 1 ≤ i < j ≤ v. The cylinder Gij is centered at
�ij , its length is at most

√
d, and its cross-section perpendicular to �ij is a (d−1)-

dimensional sphere of radius r2 = 2V3
V2

= 2a2
n2/(d−1)·|pipj | = Θ

(
1

n2/(d−1)|pipj |
)

(see
Figure 1).

The overall volume of the “cylinders” (within Cd) is at most

∑
1≤i<j≤v

(|Bd−1
r2

|
√

d) =
∑

1≤i<j≤v

O

(
1

n2|pipj|d−1

)
. (1)

To bound this sum, we fix pi and sum over pj . We use a d-dimensional spherical
packing argument that exploits the fact that Sv satisfies [1]. Specifically, we have

∑
j �=i

1
|pipj |d−1 ≤

O(n1/d)∑
t=1

Mtn
d−1

d

ad−1
1 td−1

, (2)

where Mt is the number of points of Sv that lie in the d-dimensional spherical
shell centered at pi with inner radius a1t/n1/d and outer radius a1(t + 1)/n1/d;

1 Recall that |Bd
r | = πd/2rd/Γ (d/2 + 1) = Θ(rd), where Γ (·) is the continuous gener-

alization of the factorial function.
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Gij

pi

pj

2a2
n2/(d−1)|pipj |

�ij

2a2
n2/(d−1)|pipj |

Fig. 1. A cylinder in �d

see Figure 2. There are O(n1/d) such spherical shells (within Cd). Because of [1],
the number of such points is Mt = O(td−1). This follows by an argument of
packing spheres of volume Θ(1/n) within a shell whose volume is Θ

(
td−1

n

)
.

Hence, the sum in Equation (2) is O(n). Summing this over all pi, we obtain
a final bound of O(vn). Substituting this in Equation (1), we see that the total
volume of the forbidden cylinders is O(v/n) = O(1).

2.4 Forbidden Prisms

The forbidden regions where one of the inequalities [3’] is violated are
(
v
3

)
d-

dimensional “prisms” φijk, for 1 ≤ i < j < k ≤ v. The base area (a portion of a
2-dimensional flat) of φijk is at most d, and its “height” is a (d− 2)-dimensional

sphere of radius r3 = 3V4
V3

= O

(
1

n
4d2−5d−1

d(d−1)(d−2) |pipjpk|

)
. The overall volume of the

prisms (within Cd) is at most

∑
1≤i<j<k≤v

(|Bd−2
r3

| · d) =
∑

1≤i<j<k≤v

O

⎛
⎝ 1

n
4d2−5d−1

d(d−1) |pipjpk|d−2

⎞
⎠ . (3)

To bound this sum, we fix pi, pj and sum over pk. We use a d-dimensional
cylindrical packing argument that exploits the fact that Sv satisfies [1] and [2].
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a1
n1/d2

1

3

pi

O(n1/d)

Fig. 2. A spherical packing of balls in �d

The cylinders are centered at �ij ; see Figure 3, where the line �ij emanates from
pi toward pj through the dth dimension. Specifically, we have

∑
k �=i,j

1
|pipjpk|d−2 ≤ N0n

2(d−2)
d−1

ad−2
2

+
O(n1/d)∑

t=1

2d−2Ntn
d−2

d

ad−2
1 td−2|pipj |d−2

, (4)

where N0 is the number of points of Sv that lie in the innermost d-dimensional
cylinder of the packing (centered at �ij and of radius a1/n1/d), and Nt is the
number of points of Sv that lie in the cylindrical shell centered at �ij with inner
radius a1t/n1/d and outer radius a1(t + 1)/n1/d.

Obviously, N0 = O(n1/d), since the volume of the (d − 1)-dimensional cross-
sectional sphere of the innermost cylinder is O(1/n

d−1
d ) and because of [1]. Also,

we have Nt = O(td−2n1/d). This follows by an argument of packing spheres of
volume Θ(1/n) within a shell whose volume is Θ

(
td−2

n
d−1

d

)
.

Hence, the quantity in Equation (4) is

O

(
n

2d2−3d−1
d(d−1) +

n

|pipj|d−2

)
.

Substituting this in Equation (3), we obtain the upper bound on the total
volume of the forbidden prisms
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�ij

2
1

3

a1
n1/d

pi

pj

O(n1/d)

Fig. 3. A d-dimensional cylindrical packing (an extruded (d−1)-dimensional spherical
packing) of balls in �d

O

⎛
⎝ ∑

1≤i<j≤v

⎛
⎝ 1

n2 +
1

n
3d2−4d−1

d(d−1) |pipj |d−2

⎞
⎠

⎞
⎠

= O

⎛
⎝ v2

n2 +
1

n
3d2−4d−1

d(d−1)

∑
1≤i<j≤v

1
|pipj|d−2

⎞
⎠ . (5)

We bound the sum in the second summand similarly to our bounding of the
term in Equation (2) (in Section 2.3). We fix pi and use a d-dimensional spherical
packing argument within spherical shells centered at pi. Arguing as above, we
obtain

∑
j �=i

1
|pipj |d−2 ≤

O(n1/d)∑
t=1

Mtn
d−2

d

ad−2
1 td−2

=
O(n1/d)∑

t=1

O(td−1)n
d−2

d

ad−2
1 td−2

= O(n).

Summing this over all pi, we obtain a final bound of O(vn). Substituting this
in Equation (5), we see that the total volume of the forbidden prisms is

O

(
v2

n2 +
v

n
2d2−3d−1

d(d−1)

)
= O(1).
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2.5 General Forbidden Zones

In Sections 2.2, 2.3, and 2.4 we computed the total volume of the forbidden zones
in which the respective inequalities [1’]–[3’] are violated. These zones correspond
to q = 2, 3, 4, respectively. In this section we analyze the general case 4 < q ≤
d + 1.

The forbidden regions where one of the inequalities [(q − 1)’] is violated are(
v

q−1

)
d-dimensional zones ψi1i2...iq−1 (for 1 ≤ i1 < i2 < . . . < iq−1 ≤ v and

4 < q ≤ d + 1), whose “bases” are portions of (q − 2)-dimensional flats with
volume at most d(q−2)/2. The “height” of the zone ψi1i2...iq−1 is a (d − q + 2)-

dimensional sphere of radius rq−1 = O(Vq/Vq−1) = O
(

Vq

|pi1pi2 ...piq−1 |
)
. The total

volume of the zones (within Cd) is at most

∑
1≤i1<...<iq−1≤v

O(|Bd−q+2
rq−1

|d
q−2
2 ) =

∑
1≤i1<...<iq−1≤v

O

(
V d−q+2

q

|pi1pi2 . . . piq−1 |d−q+2

)
.

(6)
To bound this sum, we fix pi1 , pi2 , . . . , piq−2 and sum over piq−1 . We use a packing
argument that exploits the fact that Sv satisfies [1]–[q −2]. The packing consists
of the Cartesian product of the (q−3)-dimensional flat π = πi1i2...iq−2 that passes
through pi1 , pi2 , . . . , piq−2 , and spheres whose centers belong to π and extend to
the (d − q + 3)-dimensional space orthogonal to π. Specifically, we have

∑
iq−1 �=i1,...,iq−2

1
|pi1pi2 . . . piq−1 |d−q+2

≤ Z0

V d−q+2
q−1

+
O(n1/d)∑

t=1

⎛
⎝Zt · O

(
n

1
d

a1t|pi1pi2 . . . piq−2 |

)d−q+2
⎞
⎠ , (7)

where Z0 is the number of points of Sv that lie in the innermost shape of the
packing (centered at the flat π and of radius a1/n1/d), and Zt is the number of
points of Sv that lie in the shell centered at π with inner radius a1t/n1/d and
outer radius a1(t + 1)/n1/d.

Obviously, Z0 = O(n
q−3

d ), since the volume of the innermost shape is
O(1/n

d−q+3
d ) and because of [1]. Also, we have Zt = O(td−q+2n

q−3
d ). This fol-

lows by an argument of packing spheres of volume Θ(1/n) within a shell whose
volume is Θ(td−q+2/n

d−q+3
d ).

Hence, the sum in Equation (7) is

O

(
n

q−3
d

V d−q+2
q−1

+
n

|pi1pi2 . . . piq−2 |d−q+2

)
. (8)

Substituting this in Equation (6), we obtain the upper bound on the total volume
of the forbidden zones
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O

⎛
⎝V d−q+2

q

∑
1≤i1<···<iq−2≤v

(
n

q−3
d

V d−q+2
q−1

+
n

|pi1pi2 . . . piq−2 |d−q+2

)⎞
⎠

= O

⎛
⎝n

q−3
d vq−2

(
Vq

Vq−1

)d−q+2

+
∑

1≤i1<...<iq−2≤v

n

(
Vq

Vq−2

)d−q+2
⎞
⎠ .

Combining this with the equality Vq = aq−1Vq−1

aq−2n
d(q−2)+q−3

d(d−q+2)
, we see that the total

forbidden volume is

O

⎛
⎝1 +

∑
1≤i1<...<iq−2≤v

n

(
Vq

Vq−2

)d−q+2
⎞
⎠ . (9)

In order to show that the bound in Equation (9) is O(1), it remains to prove
that the second summand in it is smaller than 1. This amounts to proving that
the second summand in Equation (8) is smaller than the first summand in it.
From [q − 2] we know that Vq−1 = aq−2Vq−2

aq−3n
d(q−3)+q−4

d(d−q+3)
for 4 < q ≤ d + 1. By

substituting this in Equation (8), we obtain the equal quantity

O

⎛
⎝n

q−3
d

(
aq−3n

d(q−3)+q−4
d(d−q+3)

aq−2Vq−2

)d−q+2

+
n

V d−q+2
q−2

⎞
⎠

= O

⎛
⎝n

(q−3)d2+(−q2+7q−13)d−2q2+12q−17
d(d−q+3)

V d−q+2
q−2

+
n

V d−q+2
q−2

⎞
⎠ . (10)

The second summand in Equation (8) is smaller than the first summand in it
if and only if the second summand in Equation (10) is smaller than the first
summand in it. That is, we have to prove that

n
d2(q−3)+d(−q2+7q−13)−2q2+12q−17

d(d−q+3) > n,

i.e., the inequality

(q − 3)d2 + (−q2 + 7q − 13)d − 2q2 + 12q − 17
d(d − q + 3)

> 1,

which, after simple manipulations, is

(q − 4)d2 − (q − 4)2d − 2q2 + 12q − 17 > 0.

However, it is easily verified that
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(q − 4)d2 − (q − 4)2d − 2q2 + 12q − 17 = (q − 4)(d − q + 2)(d + 2) − 1 ≥ 5 > 0,

using the facts that q ≥ 5, d − q ≥ −1, and d ≥ 4.

2.6 Epilogue

We are now ready to bound Hon−line
d (n), the maximum possible volume of the

smallest simplex defined by some d + 1 of n points in the d-dimensional unit
cube. In other words, we want to lower bound Vd+1. For this purpose we use its
recursive definition and write

Vd+1 =
d+1∏
q=4

(
aq−1

aq−2n
d(q−2)+q−3

d(d−q+2)

)
· V3 =

ad

n(∑ d+1
q=4

d(q−2)+q−3
d(d−q+2) )+ 2

d−1

. (11)

Let us upper bound the power of n in Equation 11:

d+1∑
q=4

d(q − 2) + q − 3
d(d − q + 2)

+
2

d − 1

=
d+1∑
q=4

(
q − 1 − 1/d

d − q + 2

)
− 1

d

d+1∑
q=4

(
d − q + 2
d − q + 2

)
+

2
d − 1

=
d−2∑
t=1

d + 1 − 1/d − t

t
− (1 − 2/d) +

2
d − 1

< (d + 1 − 1/d)(ln (d − 2) + 1) − (d − 2) − (1 − 2/d) + 2/(d − 1)
= (d + 1) ln (d − 2) + 2 − (ln (d − 2) − 1)/d + 2/(d − 1)
< (d + 1) ln (d − 2) + 2,

where we use the facts that
∑k

t=1 1/t < ln k+1 and 2/(d−1)−(ln (d − 2)−1)/d <
0 for d sufficiently large (d ≥ 24). We see that Vd+1 > ad

n(d+1) ln (d−2)+2 .
It remains to show that the constants a1, a2, . . . , ad can be fixed so that the

total volume of the forbidden zones is strictly less than 1. To this aim note that
among these constants, the total volume of the forbidden balls depends only on
a1, the total volume of the forbidden prisms depends only on a1, a2, and so on.
This allows us to fix the values of the constants sequentially so that the total
volume of any type of forbidden shapes is strictly less than 1/d. (See [Ba04] for
the implementation of this technique for d = 3, 4.)

This completes the proof of the main theorem:

Theorem 1. Hon−line
d (n) = Ω(1/n(d+1) ln (d−2)+2). �

3 Conclusion

In this paper we show by using nested packing arguments that Hon−line
d (n) =

Ω(1/n(d+1) ln (d−2)+2). This compares favorably with the best-known lower
bound [Le03] in the off-line case Hoff−line

d (n) = Ω(log n/nd).
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