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Abstract. An axis-parallel k–dimensional box is a Cartesian product
R1 × R2 × · · · × Rk where Ri (for 1 ≤ i ≤ k) is a closed interval of the
form [ai, bi] on the real line. For a graph G, its boxicity box(G) is the
minimum dimension k, such that G is representable as the intersection
graph of (axis–parallel) boxes in k–dimensional space. The concept of
boxicity finds applications in various areas such as ecology, operation
research etc.

A number of NP-hard problems are either polynomial time solvable
or have much better approximation ratio on low boxicity graphs. For
example, the max-clique problem is polynomial time solvable on bounded
boxicity graphs and the maximum independent set problem has log n
approximation ratio for boxicity 2 graphs. In most cases, the first step
usually is computing a low dimensional box representation of the given
graph. Deciding whether the boxicity of a graph is at most 2 itself is
NP-hard.

We give an efficient randomized algorithm to construct a box represen-
tation of any graph G on n vertices in 1.5(∆ + 2) ln n dimensions, where
∆ is the maximum degree of G. We also show that box(G) ≤ (∆+2) ln n
for any graph G. Our bound is tight up to a factor of ln n. The only pre-
viously known general upper bound for boxicity was given by Roberts,
namely box(G) ≤ n/2. Our result gives an exponentially better upper
bound for bounded degree graphs.

We also show that our randomized algorithm can be derandomized to
get a polynomial time deterministic algorithm.

Though our general upper bound is in terms of maximum degree ∆,
we show that for almost all graphs on n vertices, its boxicity is upper
bound by c ·(dav +1) ln n where dav is the average degree and c is a small
constant. Also, we show that for any graph G, box(G) ≤

√
8ndav ln n,

which is tight up to a factor of b
√

lnn for a constant b.

1 Introduction

Let F = {Sx ⊆ U : x ∈ V } be a family of subsets of a universe U , where V is an
index set. The intersection graph Λ(F) of F has V as vertex set, and two distinct
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vertices x and y are adjacent if and only if Sx∩Sy �= ∅. Representations of graphs
as the intersection graphs of various geometrical objects is a well studied topic
in graph theory. Probably the most well studied class of intersection graphs are
the interval graphs, where each Sx is a closed interval on the real line.

A well known concept in this area of graph theory is the boxicity, which was
introduced by F. S. Roberts in 1969 [17]. This concept generalizes the concept of
interval graphs. A k–dimensional box is a Cartesian product R1 × R2 × · · · × Rk

where Ri (for 1 ≤ i ≤ k) is a closed interval of the form [ai, bi] on the real line. For
a graph G, its boxicity is the minimum dimension k, such that G is representable as
the intersection graph of (axis–parallel) boxes in k–dimensional space. We denote
the boxicity of a graph G by box(G). The graphs of boxicity 1 are exactly the class
of interval graphs. This concept finds applications in niche overlap in ecology and
to problems of fleet maintenance in operations research. (See [12].)

In many algorithmic problems related to graphs, the availability of certain
convenient representations turn out to be extremely useful. Probably, the most
well-known and important examples are the tree decompositions and path de-
compositions [5]. Many NP-hard problems are known to be polynomial time
solvable given a tree(path) decomposition of the input graph that has bounded
width. Similarly, the representation of graphs as intersections of “disks” or
“spheres” lies at the core of solving problems related to frequency assignments in
radio networks, computing molecular conformations etc. For the maximum inde-
pendent set problem which is hard to approximate within a factor of n(1/2)−ε for
general graphs, a PTAS is known for disk graphs given the disk representation
[13,1] and an FPTAS is known for unit disk graphs [22]. In a similar way, the
availability of box representation in low dimension make some well known NP
hard problems like the max-clique problem, polynomial time solvable since there
are only O((2n)k) maximal cliques in boxicity k graphs. Though the complex-
ity of finding the maximum independent set is hard to approximate within a
factor n(1/2)−ε for general graphs, it is approximable to a log n factor for boxi-
city 2 graphs (the problem is NP-hard even for boxicity 2 graphs) given a box
representation [2,4].

It was shown by Cozzens [11] that computing the boxicity of a graph is NP–
hard. This was later improved by Yannakakis [23], and finally by Kratochvil [16]
who showed that deciding whether the boxicity of a graph is at most 2 itself
is NP–complete. Therefore it is interesting to design efficient algorithms to rep-
resent small boxicity graphs in low dimensions. To the best of our knowledge,
the only known strategy till date for computing a box representation for general
graphs is by Roberts [17], but it guarantees only a box representation in n/2
dimensions for any graph G on n vertices and m edges. In this paper, we give a
randomized algorithm that guarantees an exponentially better bound (O(ln n)
instead of n/2) for the dimension in case of bounded degree graphs. To be pre-
cise, our approach yields a box representation for any graph G on n vertices
and maximum degree ∆ in 1.5(∆ + 2) lnn dimensions in O(∆m ln n) time with
high probability. We also derandomize our algorithm to obtain a deterministic
polynomial time algorithm to do the same.
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In a recent manuscript [8] the authors showed that for any graph G, box(G) ≤
tw(G) + 2, where tw(G) is the treewidth of G. This result implies that the class
of ‘low boxicity’ graphs properly contains the class of ‘low treewidth graphs’. It
is well known that almost all graphs on n vertices and m = c · n edges (for a
sufficiently large constant c) have Ω(n) treewidth [15]. In this paper we show that
almost all graphs on n vertices and m edges have boxicity at most c′ m

n ln n for a
small constant c′. An implication of this result is that for almost all graphs, there
is an exponential gap between its boxicity and treewidth. Hence it is interesting
to take a relook at those NP-hard problems that are polynomial time solvable
in bounded treewidth graphs and see whether they are also polynomial time
solvable for bounded boxicity graphs.

Researchers have also tried to bound the boxicity of graph classes with special
structure. Scheinerman [18] showed that the boxicity of outer planar graphs is
at most 2. Thomassen [20] proved that the boxicity of planar graphs is bounded
above by 3. Upper bounds for the boxicity of many other graph classes such as
chordal graphs, AT-free graphs, permutation graphs etc. were shown in [8] by
relating the boxicity of a graph with its treewidth. Researchers have also tried to
generalize or extend the concept of boxicity in various ways. The poset boxicity
[21], the rectangle number [9], grid dimension [3], circular dimension [14,19] and
the boxicity of digraphs [10] are some examples.

1.1 Our Results

We summarize below the results of this paper.

1. We show that for any graph G on n vertices, box(G) ≤ (∆ + 2) lnn. This
bound is tight up to a factor of lnn.

2. In fact, we show a randomized algorithm to construct a box representation
of G in 1.5(∆ + 2) lnn dimensions, that runs in O(∆m ln n) time with high
probability, where m is the number of edges in G.

3. Next we show a polynomial time deterministic algorithm to construct a
box representation in (∆ + 2) lnn dimensions by derandomizing the above
randomized algorithm.

4. Though the general upper bound that we show is in terms of the maximum
degree ∆, we also investigate the relation between boxicity and average de-
gree. We show that for almost all graphs on n vertices and m edges, the
boxicity is O((dav + 1) lnn), where dav is the average degree.

5. We also derive a upper bound for boxicity of general graphs in terms of
average degree. We show that for any graph G, box(G) ≤

√
8ndav ln n, which

is tight up to a factor of b
√

ln n for a constant b.

We refer the reader to the complete version [7] for the missing proofs.

1.2 Definitions and Notations

Let G be a undirected simple graph on n vertices. The vertex set of G is denoted
as V (G) = {1, · · · , n} (or V in short). Let E(G) denote the edge set of G.
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We denote by G, the complement of G. We say the edge e is missing in G, if
e ∈ E(G). A graph G′ is said to be a super graph of G where V (G) = V (G′), if
E(G) ⊆ E(G′). For a vertex u ∈ V , let N(u) denote the set of neighbors of u in
G and let d(u) denote the degree of u in G, i.e. d(u) = |N(u)| . Let ∆ denote
the maximum degree of G.

Definition 1 (Projection). Let π be a permutation of the set {1, · · · , n}. Let
X ⊆ {1, · · · , n}. The projection of π onto X denoted as πX is defined as follows.
Let X = {u1, . . . , ur} such that π(u1) < π(u2) < ... < π(ur). Then πX(u1) =
1, πX(u2) = 2, · · · , πX(ur) = r.

Definition 2 (Interval Representation). An interval graph can be repre-
sented as the intersection graph of closed intervals on real line. To define an
interval representation of an interval graph G, we define the two functions l :
V → R and r : V → R. The interval corresponding to a vertex v denoted as I(v)
is given by [l(v), r(v)], where l(v) and r(v) are the left and right end points of
the interval corresponding to v.

Definition 3. We define a map M(G, π) which associates a permutation π of
the vertices {1, 2, · · · , n} to an interval super graph G′ of G, as follows: Consider
any vertex u ∈ V (G). Let nu ∈ N(u) ∪ {u} be the vertex such that π(nu) =
minw∈N(u)∪{u} π(w). Then associate the interval [π(nu), π(u)] to the vertex u,
and let G′ be the resulting interval graph. It is easy to verify that G′ is a super
graph of G. We define M(G, π) = G′.

1.3 Box Representation and Interval Graph Representation

Let G = (V, E(G)) be a graph and let I1, . . . , Ik be k interval graphs such that
each Ij = (V, E(Ij)) is defined on the same set of vertices V . If

E(G) = E(I1) ∩ · · · ∩ E(Ik),

then we say that I1, . . . , Ik is an interval graph representation of G. The following
equivalence is well-known.

Theorem 1 (Roberts [17]). The minimum k such that there exists an inter-
val graph representation of G using k interval graphs I1, . . . , Ik is the same as
box(G).

Recall that a k–dimensional box representation of G is a mapping of each vertex
u ∈ V to R1(u) × · · · × Rk(u), where each Ri(u) is a closed interval of the
form [�i(u), ri(u)] on the real line. It is straightforward to see that an interval
graph representation of G using k interval graphs I1, . . . , Ik, is equivalent to a k–
dimensional box representation in the following sense. Let Ri(u) = [�i(u), ri(u)]
denote the closed interval corresponding to vertex u in an interval realization of
Ii. Then the k–dimensional box corresponding to u is simply R1(u)×· · ·×Rk(u).
Conversely, given a k–dimensional box representation of G, the set of intervals
{Ri(u) : u ∈ V } forms the ith interval graph Ii in the corresponding interval
graph representation.
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When we say that a box representation in t dimensions is output by an algo-
rithm, the algorithm actually outputs the interval graph representation: that is,
the interval representation of the constituent interval graphs.

2 The Randomized Construction

Consider the following randomized procedure RAND which outputs an interval
super graph of G. Let ∆ be the maximum degree of G.

RAND
Input: G.
Output: G′ which is an interval super graph of G.

begin
step1. Generate a permutation π of {1, . . . , n} uniformly at random.
step2. Return G′ = M(G, π).

end.

Lemma 1. Let e = (u, v) ∈ E(G). Let G′ be the output of RAND(G). Then,

Pr
[
e /∈ E(G′)

]
=

1
2

(
d(u)

d(u) + 2
+

d(v)
d(v) + 2

)
≤ ∆

∆ + 2
.

Proof. We have to estimate the probability that u and v are adjacent in G′.
That is, I(u) ∩ I(v) �= ∅.

Let nu ∈ N(u) be a vertex such that it minimizes minw∈N(u) π(w). Similarly,
let nv ∈ N(v) be a vertex such that it minimizes minw∈N(v) π(w).

It is easy to see that I(u) ∩ I(v) �= ∅ if (a) π(nu) < π(v) < π(u). This is
because, if the above condition holds, then, recalling the definition of M(G, π),
it follows that l(u) < r(v) < r(u), which implies that r(v) ∈ I(u)∩I(v). Similarly,
if (b) π(nv) < π(u) < π(v) then also I(u) ∩ I(v) �= ∅. On the other hand, it is
easy to see that I(u) ∩ I(v) �= ∅ only if either (a) or (b) hold. Again, the above
two events ( (a) and (b)) are mutually exclusive. Hence

Pr
[
e /∈ E(G′)

]
= Pr[π(nu) < π(v) < π(u)] + Pr[π(nv) < π(u) < π(v)] .

We bound Pr[π(nu) < π(v) < π(u)] as follows. Let X = {u} ∪ N(u) ∪ {v}. Let
πX be the projection of π onto X . Clearly, the event π(nu) < π(v) < π(u)
translates to saying that πX(v) < πX(u) and πX(v) �= 1. Note that πX can
be any permutation of |X | elements with equal probability, which is 1

(d(u)+2)! .
The number of permutations where πX(v) < πX(u) equals (d(u) + 2)!/2. Now
the number of permutations where πX(v) = 1 equals (d(u) + 1)!. Note that the
set of permutations with πX(v) = 1 is a subset of the set of permutations with
πX(v) < πX(u). It follows that

Pr[πX(v) < πX(u) and πX(v) �= 1] =
(d(u) + 2)!/2 − (d(u) + 1)!

(d(u) + 2)!
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which is d(u)
2(d(u)+2) . Using similar arguments, it follows that Pr[π(nv) <

π(u) < π(v)] = d(v)
2(d(v)+2) . Combing the two bounds, the result follows.

Lemma 2. Let I1, I2, · · · , It be the output generated by t invocations of
RAND(G). If t ≥ 3

2 (∆ + 2) lnn then E(G) = E(I1) ∩ E(I2) ∩ · · · ∩ E(It)
with high probability .

As mentioned in the proof of Lemma 2, if we fix t = (∆ + 2) lnn, the resulting
intersection graph is G with probability at least 1/2. Hence we have the following
Corollary.

Corollary 1. Let G be a graph on n vertices and with maximum degree ∆. Then
box(G) ≤ (∆ + 2) lnn .

The following Lemma is straightforward.

Lemma 3. The RAND procedure can be implemented in O(m + n) time as-
suming that a permutation of {1, . . . , n} can be generated uniformly at random
in O(n) time.

The following theorem is a direct consequence of Lemma 2 and Lemma 3.

Theorem 2. Given a graph G on n vertices and m edges, with high probabil-
ity, a box representation of G in (∆ + 2) lnn dimensions can be constructed in
O(∆m ln n) time, where ∆ is the maximum degree of G.

Tight example: We remark that for any given ∆ and n > ∆ + 1, we can
construct a graph G on n vertices and with maximum degree ∆ such that
box(G) ≥ �(∆ + 2)/2�. We assume that ∆ is even for the ease of explana-
tion. Roberts [17] has shown that for any even number k, there exists a graph
on k vertices with degree k − 2 and boxicity k/2. We call such graphs as Roberts
graph. The Roberts graph on n vertices is obtained by removing the edges of a
perfect matching from a complete graph on n vertices. We take such a graph by
fixing k = ∆ + 2 and we let the remaining n − (∆ + 2) vertices to be isolated
vertices. Clearly, the boxicity of such a graph is also k/2 = (∆ + 2)/2, where
as the maximum degree is ∆. Thus our upper bound is tight up to a factor of
2 lnn.

3 Derandomization

In this section we derandomize the above randomized algorithm to obtain a
deterministic polynomial time algorithm to output the box representation in
(∆ + 2) lnn dimensional space for a given graph G on n vertices with maximum
degree ∆.

Lemma 4. Let G = (V, E) be the graph. Let E(G) be the edge set of the com-
plement of G. Let H ⊆ E(G). Then we can construct an interval super graph G′

of G in polynomial time such that |E(G′) ∩ H | ≥ 2
∆+2 |H |.
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Theorem 3. Let G be a graph on n vertices with maximum degree ∆. The box
representation of G in (∆ + 2) lnn dimensions can be constructed in polynomial
time,

Proof. Let h = |E(G)|. It follows from Lemma 4 that we can construct t interval
graphs such that the number of edges of E(G) which is not missing in any of

these t interval graphs is at most
(

∆
∆+2

)t

h. If
(

∆
∆+2

)t

h < 1, then we are done.

That is, we are done if t ln
(

∆
∆+2

)
+ lnh < 0 is true. Clearly this is true, if

t > lnh

ln(∆+2
∆ ) . Using the fact that ln ∆+2

∆ ≥ 2
∆ − 1

2 ( 2
∆)2, we obtain box(G) ≤

∆2

2(∆−1) ln h ≤ (∆ + 2) lnn. By Lemma 4, each interval graph is constructed in
polynomial time. Hence the total running time is still polynomial. Thus the
theorem follows.

Proof (Lemma 4). We derandomize the RAND algorithm to devise a determin-
istic algorithm to construct G′.

Our deterministic strategy defines a permutation π on the vertices {1, · · · , n}
of G. The desired G′ is then obtained as M(G, π). Let the ordered set Vn =<
v1, · · · , vn > denote the final permutation given by π. We construct Vn in a step
by step fashion. At the end of step i, we have already defined the first i elements
of the permutation, namely the ordered set Vi =< v1, · · · , vi >, where each vj is
distinct. Let V0 denote the empty set. Having obtained Vi for i ≥ 0, we compute
Vi+1 in the next step as follows.

Given an ordered set Vi of i vertices < v1, v2, · · · , vi >, let Vi 
 u denote the
ordered set of the i + 1 vertices < v1, v2, · · · , vi, u >. (We will abuse notation
and use Vi to denote the underlying unordered set also, when there is no chance
of confusion.) Let V0 
 u denote < u >.

Consider the RAND algorithm whose output is denoted as G′′. For each
e ∈ H , let xe denote the indicator random variable which is 1 if e ∈ E(G′′), and
0 otherwise. Let XH =

∑
e∈H xe.

Let Z(Vi) for i ≥ 0 denote the event that the first i elements of the ran-
dom permutation generated by RAND is given by the ordered set Vi =<
v1, · · · , vi >. Note that Pr[Z(V0)] = 1 since the first 0 elements of any per-
mutation is the empty set V0.

Let xe|Z(Vi) denote the indicator random variable corresponding to xe con-
ditioned on the event Z(Vi).

Similarly, let the random variable XH |Z(Vi) denote the number of missing
edges in G′′ conditioned on the event Z(Vi).
For i ≥ 0, Let fe(Vi) denote Pr[xe = 1 | Z(Vi)] and let F (Vi) denote
E[XH | Z(Vi)]

Note that fe(V0) denote Pr[xe = 1] and F (V0) denote E[XH ].
Clearly

F (Vi) =
∑

e∈H

fe(Vi).
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By Lemma 1, we know that for any e ∈ H , fe(V0) ≥ 2
∆+2 . Thus F (V0) ≥ 2|H|

∆+2 .
Clearly,

E[XH |Z(Vi)] =
1

|V − Vi|
∑

u∈V −Vi

E[XH |Z(Vi 
 u)] .

Let u ∈ V − Vi be such that

E[XH |Z(Vi 
 u)] = max
w∈V −Vi

E[XH |Z(Vi 
 w] .

Define Vi+1 = Vi 
 u. It follows that

F (Vi+1) = E[XH |Z(Vi+1)] ≥ E[XH |Z(Vi)] = F (Vi).

In particular, it is also true that F (V1) ≥ F (V0).
After n steps, we obtain the final permutation Vn. Applying the above in-

equality n times, it follows that

F (Vn) = E[XH |Z(Vn)] ≥ E[ZH ] = F (V0).

Recalling that F (V0) ≥ 2|H|
∆+2 , we have F (Vn) ≥ 2|H|

∆+2 .
Let π be the permutation which maps < 1, · · · , n > to Vn. The final interval

super graph G′ output by our deterministic strategy is M(G, π). By definition,
F (Vn) is the total number of edges from H that are missing in G′. We have
shown that F (Vn) ≥ 2|H|

∆+2 as claimed.
It remains to show that the above deterministic strategy takes only polynomial

time. For that we need the following lemma.

Lemma 5. For any ordered set Uj =< u1, · · · , uj > and any e ∈ H, fe(Uj) can
be computed exactly in polynomial time.

Given a vertex w ∈ V − Vi, F (Vi 
 w) is simply
∑

e∈H fe(Vi 
 w). It follows
from Lemma 5 that F (Vi 
 w) can be computed in polynomial time. Recall
that given Vi, Vi+1 is Vi 
 u where u maximizes F (Vi 
 w) among the vertices
from w ∈ V − Vi. Clearly such a u can also be found in polynomial time. Since
there are only n steps before computing Vn, the overall running time is still
polynomial.

4 In Terms of Average Degree

It is natural to ask whether our upper bound of (∆ + 2) lnn still holds even if
we replace ∆ by the average degree dav. Unfortunately this is not the case as
illustrated by the following example. Consider the following graph G = (V, E) on
n vertices. We take a Roberts graph on n1 vertices such that n1(n1 −2)/n = dav

and we let the remaining n − n1 vertices to be isolated vertices. The average
degree of this graph is clearly dav (recall the definition of Roberts graph) and
its boxicity is at least n1/2 ≥ 1

2

√
ndav. If we substitute ∆ by dav in our upper

bound, we obtain that the boxicity of this graph is at most (dav + 2) lnn, which
is far below the actual boxicity. Still, we can prove the following general upper
bound in terms of the average degree.
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Theorem 4. For a graph G = (V, E) on n vertices and average degree dav,
box(G) ≤

√
8ndav ln(n). Moreover, there exists a graph G with n vertices and

average degree dav such that box(G) ≥ 1
2

√
ndav.

Proof. We show the upper bound as follows. Let x =
√

ndav

2 ln(n) . Let V ′ denote the
set of vertices in G whose degree is greater than or equal to x. It is straightforward
to verify that |V ′| ≤ ndav

x . Let G′′ be the induced sub graph of G induced on
V − V ′. That is, each vertex in G′′ has degree at most x. By Theorem 2, we
obtain that box(G′′) ≤ 2x ln(n). Since box(G′′) + |V ′| is a trivial upper bound
for box(G), it follows that box(G) ≤ 2x ln(n) + ndav

x = 2
√

2ndav ln(n). The
example graph discussed in the beginning of this section serves as the example
that illustrate the lower bound.

4.1 Boxicity of Random Graphs

Though in general boxicity of a graph is not upper bound by (dav + 2) lnn,
where dav is the average degree, we now show that for almost all graphs, the
boxicity is at most c(dav + 1) lnn, for a small positive constant c. We show
the following. Let G be a random graph drawn according to the G(n, m) model
[6], where n is the number of vertices and m is the number of edges. Then
Pr

[
box(G) ≤ 8(2m

n + 1) lnn)
]

≥ 1 − 2
n2 . (Note that dav = 2m/n). It follows

immediately that for almost all graphs on n vertices and m edges, the boxicity
is upper bound by 8(dav + 1) lnn.

Theorem 5. For a random graph G on n vertices and m edges drawn according
to G(n, m) model,

Pr
[
box(G) ≤ 8

(
2m

n
+ 1

)
ln n

]
≥ 1 − 2

n2 .
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