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Abstract. We consider model based estimates for set-up time. The gen-
eral setting we are interested in is the following: given a disk and a se-
quence of read/write requests to certain locations, we would like to know
the total time of transitions (set-up time) when these requests are served
in an orderly fashion. The problem becomes nontrivial when we have, as
is typically the case, only the counts of requests to each location rather
then the whole input, in which case we can only hope to estimate the
required time. Models that estimate the set-up time have been suggested
and heavily used as far back as the sixties. However, not much theory ex-
ists to enable a qualitative understanding of such models. To this end we
introduce several properties through which we can study different models
such as (i) super-additivity which means that the set-up time estimate
decreases as the input data is refined (ii) monotonicity which means that
more activity produces more set-up time, and (iii) an approximation
guarantee for the estimate with respect to the worst possible time.

We provide criteria for super-additivity and monotonicity to hold for
popular models such as the independent reference model (IRM). The cri-
teria show that the estimate produced by these models will be monotone
for any reasonable system. Wealso show that the IRMbased estimate func-
tions, upto a factor of 2, as a worst case estimate to the actual set-up time.

To establish our theoretical results we use the theory of finite metric
spaces, and en route show a result of independent interest in that theory,
which is a strengthening of a theorem of Kelly [4] about the properties
of metrics that are formed by concave functions on the line.

1 Introduction

Set-up times which are associated with moving a system from one state to an-
other play a major role in the performance analysis of systems. Perhaps the most
glaring example is provided by disk based storage systems in which the states
correspond to locations on the disk. In this case the total duration of the move-
ments of the disk’s head (from one location to another or from one disk track to
another), aka the set-up time is the dominant feature in the total service time,
and hence a lot of effort is put in order to minimize it by means of reordering
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the disk’s content. Interestingly enough, in this application as well as in other
real world applications, the above task becomes a problem with partial input.
The reason is simple: to collect all transition information will be too costly and
will render the original optimization useless as the set-up time will be second
to the input collection time. Instead, the only information typically available is
the state counts, ie the number of times that each state was requested. In graph
terminology we want to know the length of a path in a weighted graph where
we only know the number of times that each node was visited.

In order to estimate the set-up time, researchers have used stochastic models,
ie stochastic processes with parameters that are inherited from the observed
count. The simplest of these models, the Independent Reference Model (IRM) is
very intuitive: the requests at any time are drawn (independently of the previous
state) from a distribution proportional to the count vector. This simple model
is the most popular model for the analysis of storage system performance; see
for for example [1,3,6,7,8,9] among many.

In this paper we consider new and basic properties of set-up time estimates
and check whether they hold for the IRM model. In a full version of the paper
we will consider other models such as the so called the Partial Markov Model
(PMM). These properties relate the set-up time estimates to the worst case case
and examine the changes in the estimate due to a different way of collecting
the data. The applicability of these properties to various models is an evidence
to their quality, and moreover they allow for a rigorous study of models that
are heavily used, often with not enough underlying rationale. It is interesting
to note that while the IRM is one of the oldest models of user access patterns,
dating back to the sixties, the basic properties considered above have never been
explored. What follows is a brief description of these properties.

Given time intervals I ⊂ J it is obvious that a system suffers at least as much
set-up time during J as it does during I. The monotonicity property simply
says that the set-up time estimate of the model reflects that fact, ie it gives
an estimate for J which is at least as big as the one for I. A model is said
to be super-additive if the addition of input information (by means of higher
resolution of measurements) does not increase the set-up time estimate. It is
almost immediate that super-additivity implies monotonicity and that it applies
to the worst case time which provides the largest possible set-up time consistent
with a given input data. The last property compares the set-up time estimate
with the worst case estimate (which is NP hard to compute). Showing that
the estimate of a model does not deviate much from the worst case estimate is
tantamount to showing that is not over optimistic.

Our Results: We show that monotonicity applies to the IRM , regardless of
the metric involved. We further show that IRM set-up time estimate is a 1/2
approximation to the worst case. Our results concerning super-additivity have
the following curious feature: Super additivity holds in the IRM model pro-
vided that the “time-metric”, ie the times associated with the transition times
between pair of states, belongs to the well studied class of metric spaces known as
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negative type metrics. Not all metric spaces belong to this class, but as we show,
the time metrics that come from motion of disk drives in fact do, owing to the
physical features of the system. Therefore IRM is indeed super additive with
respect to these I/O systems. These results show that the IRM can be used to
produce reliably conservative estimates which are easy to calculate and that eas-
ily lend themselves to compactness-of-input/accuracy tradeoff. Following these
observations the first and second authors used the IRM set-up time estimate as
a central ingredient in a commercially available application which dynamically
reconfigures data in a disk array. Details of the application and successful results
from real production environments are to be presented elsewhere.

Techniques: Naturally, much of the notions and proofs come from and use the
theory of metric spaces. The classes of interest in this discussion are �1-metrics
and negative type metrics, as well as the general class of metrics. In the process of
establishing our results we extend a result of Kelly on the properties of invariant
metrics on the real line coming from concave functions.

Organization: The rest of the paper is organized as follows. Section 2 In-
troduces set-up times and discusses some basic definitions and facts from the
theory of metric spaces relevant to our discussion. Section 3 describes the ba-
sic models which we will study and introduces the concepts of monotonicity,
super additivity, dominance and approximation. In section 4 we prove criteria
for monotonicity and super additivity of the IRM estimate in terms of metric
properties of the set-up time function. Finally, Section 5 discusses properties of
metric arising from the seek times in disk drives.

2 Preliminaries

2.1 Set-Up Time

Throughout the paper we let X represent the states of a system. In this section
we let n denote the number of states in X . Following [1] section 6.2, we let the
function d : X × X −→ R+, be the set-up time function; namely, for i, j ∈ X ,
d(xi, xj) represents the amount of time which is required to switch the system
from state i to state j.

The abstract notion of a state can acquire many different meanings in different
applications. For example, the states can refer to different tasks that the system
needs to accomplish as in production systems and processors, or, to physical
locations where tasks should be conducted as in storage systems. We assume
that there is some process which generates a sequence of requests for the states
of X .

Given a time interval I let xI = x = x1, ..., xm be the sequence of requests
for states of X during I. The Total set-up time during time interval I is simply
the sum of the set-up times between consecutive requests

T (x) =
m−1∑

j=1

d(xj , xj+1)
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In some cases we are not given the sequence of requests (a trace) but rather
some partial information about the sequence x. We wish to estimate the total
set-up time of the sequence using the information available to us. In this paper
we shall assume that the partial information available to us is the activity vector
a = aI = (a1, ..., an), where ai is the number of requests for state i during time
interval I. We will assume that in general a can be any vector with integer
nonnegative entries. We let a =

∑
i ai be the total number of requests.

2.2 Metric Spaces

The theory of finite metric spaces will be used in the statements and proofs of
our results. The following section provides some basic definitions and facts about
metric spaces which will be needed later on.

We continue with a few standard definitions. A pair (X, d) where X is a set
and d is a function d : X × X −→ R+ is called a metric-space if (i) d(x, x) = 0
for all x ∈ X and d(x, y) > 0 for x �= y, (ii) d(x, y) = d(y, x) for all x, y ∈ X
and (iii) d(x, y) + d(y, z) ≥ d(x, z) for all x, y, z ∈ X . If instead of property (i)
we only require that d(x, x) = 0 we say that (X, d) form a semi-metric. If we
do not require the symmetry property, we say that (X, d) form a Pseudometric.
One can “symmetrize” such an object by taking d∗(x, y) = (d(x, y) + d(y, x))/2.
It can be easily seen that d∗ satisfies 1’ and 3’ if d does. Set-up time functions
can be reasonably assumed to satisfy the triangle inequality since one way to
switch from state x to state z is to first switch from x to y and then from y to
z. Set-up time functions cannot always be assumed to be symmetric as can be
seen from rotational latency in disk drives.

Certain metric spaces are induced by norms. The �p norm on Rn is ‖x‖p =
(
∑n

i=1 |xi|p)
1
p where x = (x1, . . . , xn). A metric space (X, d) is called an �p-

metric if there exists a mapping φ : X −→ Rn such that d(x, y) = ‖φ(x)−φ(y)‖p

for all x, y ∈ X . We sometimes say Euclidean metric instead of �2-metric. A space
(X, d) is negative type if (X,

√
d) is Euclidean.

Some Basic Facts About Metric Spaces. Assume (X, d) is a finite metric
space, X = {x1, . . . , xn}. There are two classical criteria for it to be Euclidean.

– Schoenberg’s criterion: (X, d) is Euclidean if and only if for all n real numbers
v1, . . . , vn with

∑
i vi = 0 we have

∑
i,j vivjd

2(xi, xj) ≤ 0. (This criterion is
the reason for the name negative type, as by definition, d is Euclidean iff d2

is negative type.)
– Cayley’s criterion: Consider the order n − 1 matrix M with entries Mi,j =

d2(xi, xn)+d2(xj , xn)−d2(xi, xj), i, j = 1, . . . , n−1. Then (X, d) is Euclidean
if and only if the matrix M is positive semi definite, ie, all of its eigenvalues
are nonnegative.

We say that a metric (X, d) is L1 if there exist functions fx, x ∈ X such that
d(x, y) =

∫
R |fx(t) − fy(t)|dt. It is known that a finite metric space is L1 iff it is

�1. Another well known fact we later use is that every �1-metric is negative type
[5]. Negative type distances do not necessarily satisfy the triangle inequality.
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A distance function can be defined on the line given a real positive function F
with certain properties. We define the distance dF between i and j as dF (i, j) =
F (|i − j|). utilized in this paper. We note that if F is convex then dF satisfies
the triangle inequality and thus provides a metric.

3 Models and Their Properties

Recall that our input is an activity vector, that is the count of requests to the
different states; however, in order to know the total set-up time we need to
know the actual sequence of requests. In the absence of the actual sequence we
use models for estimating set-up time. A model for estimating set-up time is
an interpretation of an activity vector as a distribution over sequences, and the
resulting estimate is then the expected set-up time for a random sequence drawn
from this distribution. For example some models will interpret an activity vector
(100, 100) as a uniform distribution of sequences that visit either location 1 or 2,
while other will consider the distribution in which either all first 100 requests are
for the first location or all of them were for the other; clearly the two different
models in the above example will produce very different time estimates.

3.1 Examples of Models and Estimates

We now describe a few models M and their associated set-up time estimates.

The IRM (Independent Reference Model). The IRM models independent
random requests to states in X , taking into account that the different states are
not uniformly popular. The model is parameterized by a probability distribution
p = pi on the set of states X . The model itself is then given by the product
measure on Xa. The product measure reflects an underlying assumption that
requests are generated independently of each other. To be compatible with the
observed activity vector we set the request probability for state i to be pi = ai/a
and the length of the generated sequence to be a. For this model the expected
total set-up time is

T (a, d; IRM) = a
∑

i,j

pipjd(xi, xj) =
1
a

∑

i,j

aiajd(xi, xj)

We will refer to T (a, d; IRM) as the IRM estimate. For ease of notation we will
sometimes use T (a, d) instead of T (a, d; IRM).

The next model is not discussed in details in this extended abstract, and our
results about it will be presented in the full version of the paper.

The PMM (Partial Markov Models) ri of not moving to another state, and
in the event of a move, the next state is j with probability qj , independent of
the current requested state. Consequently, the transition probabilities of moving
from i to j are pi,j = (1 − ri)qj for i �= j and pi,i = ri + (1 − ri)qi. Here
0 ≤ ri, qi ≤ 1. We call the vector r = (ri) the locality vector of the model. Given
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a locality vector r and an observed activity vector a for some time interval I
there exists a unique partial Markov model P which is compatible with r and
a. By compatibility we mean that r is the locality vector of P and a/a is the
stationary distribution of P which expresses the expected reference probabilities
in the model P . Fix the vector r = (ri). We let P r denote the partial Markov
model which for each interval I uses the model P compatible with r and aI to
model the request stream during I (note that P 0 is simply the IRM). The P r

estimate is
T (a, d; P r) = a(

∑

i,j

(ai/a)P r
i,jd(xi, xj))

Partial Markov models are useful in capturing locality of reference pheno-
menon, [1,2], which means that a request to state i is likely to be followed by
another request to state i within a short time span. Many applications naturally
exhibit this type of behavior. The larger the entries of the locality vector r, the
more likely states are to repeat in succession. In the partial Markov model the
number of repetitive successions is distributed geometrically.

The Worst Case (Supremum) Model. In the worst case model W we as-
sume that the sequence of states during time interval I was the sequence which
maximizes the total set-up time among all sequences which are consistent with
the vector a. The measure is thus a δ measure on the worst case sequence.
Consequently,

T (a, d; W ) = max
a∑

i=1

d(xi, xi+1)

where the maximum is over all sequences of states in X , of length a that agree
with the frequency vector a and x1 = xa+1. We refer to T (a, d; W ) as the worst
case estimate.

3.2 Properties of Models

We introduce notions which will allow us to examine the behavior of model based
estimates with regards to changes in the input data and to compare estimates
for different models.

Super Additivity. Let I be a time interval and let I1, ..., Ik be a subdivision of
I into subintervals. Accordingly, we have aI =

∑
j = 1kaIj . A model M is said

to be super additive with respect to a set-up time function d if the inequality

T (aI , d; M) ≥
k∑

j=1

T (aIj , d; M) (1)

always holds. Super additivity may be interpreted as stating that the addition
of input information, namely, aIj instead of aI , never increases the estimate.

Monotonicity. We say that a vector a = (ai) dominates a vector b = (bi) if
for all i, ai ≥ bi. We use the notation a ≥ b to denote dominance. A model M
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is said to be monotone with respect to d if for any pair of time intervals I ⊂ J
we have T (aI , d; M) ≤ T (aJ , d; M), or stated otherwise, for any pair of vectors
a,b with nonnegative entries and such that a ≥ b we have

T (a, d; M) ≥ T (b, d; M) (2)

Approximation. Let 0 < α < 1. Given a set up function d, a model M1 is
said to be provide an α approximation to a model M2 (and vice versa) if for any
activity vector a we have

α ≤ T (a, d; M1)
T (a, d; M2)

≤ 1
α

(3)

We say that a model M is conservative if it α approximates the worst case model
W for some α > 0.

4 Metric Space Criteria for Properties of Models

In this section we establish criteria for monotonicity and super additivity of the
IRM estimates in terms of metric properties of the set-up time function d. We
also establish a criterion for the IRM estimate to be a 1/2 approximation to the
worst case estimate.

Theorem 1. (A criterion for Super additivity) The IRM estimate is super ad-
ditive with respect to d if and only if d is negative type.

Proof. It is enough to establish super additivity for a subdivision of I into two
subintervals, that is to show that for all nonnegative vectors a = (ai),b = (bi),

T (a + b, d) ≥ T (a, d) + T (b, d) (4)

Let a =
∑

i ai and b =
∑

i bi. Then

T (a + b, d) − T (a, d) − T (b, d)

=
∑

i�=j

(ai + bi)(aj + bj)d(xi, xj)
a + b

−
∑

i�=j

aiajd(xi, xj)
a

−
∑

i�=j

bibjd(xi, xj)
b

=
1

ab(a + b)

∑

i�=j

d(xi, xj)(aibjab + ajbiab − aiajb
2 − bibja

2)

=
1

ab(a + b)

∑

i�=j

d(xi, xj)(aib − bia)(bja − ajb)

= − ab

a + b

∑

i�=j

d(xi, xj)
(

ai

a
− bi

b

) (
aj

a
− bj

b

)
.
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Setting vi =
ai

a
− bi

b
, we get

T (a + b, d) − T (a, d) − T (b, d) = − ab

a + b

∑

i�=j

vivjd(xi, xj). (5)

We note that
∑

i vi = 0, hence by Schoenberg’s criterion the IRM estimate is
super additive if d is negative type. Conversely if the IRM estimate is super
additive then ∑

i,j

vivjd(xi, xj) ≤ 0

for all v of the form a/a − b/b where a,b are vectors with integer non negative
entries. After scaling we may deduce that the property holds whenever a,b have
rational non negative entries and by density of the rationals for all a,b with
non negative entries. Every vector v = (v1, . . . , vh) such that

∑
i vi = 0 has a

multiple of the form 1
aa − 1

bb, where a,b have non negative entries. Indeed if
ai = max{vi, 0} and bi = max{−vi, 0}, then a = b and 1

aa − 1
bb = 1

av, hence
Schoenberg’s criterion holds and d is negative type.

Theorem 2. (criteria for monotonicity) The IRM estimate is monotone with
respect to d if and only for every choice of k, the matrix B(k, d)i,j = d(xi, xk) +
d(xk, xj)−d(xi, xj) defines a nonnegative quadratic form when restricted to vec-
tors with nonnegative entries. In particular, if d is a pseudo metric or negative
type then the IRM estimate is monotone with respect to d.

Proof. We check the sign of the partial derivatives of T (a, d) with respect to ak

(where k ∈ {1, . . . , n} is an arbitrary element).

∂

∂ak
T (a, d)

=
a(

∑
i aid(xi, xk) +

∑
j ajd(xj , xk)) −

∑
i,j aiajd(xi, xj)

a2

=
1
a2

∑

i,j

aiaj(d(xi, xk) + d(xj , xk) − d(xi, xj)) =
1
a2 aBat

where B = B(k, d) is the matrix with ij entry d(xi, xk) + d(xj , xk) − d(xi, xj).
Assume that for all k, B(k, d) is positive semi definite on vectors with nonneg-
ative entries then ∂

∂ak
T (a, d) ≥ 0 for all k and all activity vectors a. It follows

from the Mean-value Theorem that if a ≥ b then T (a, d) ≥ T (b, d). Conversely
if there are a ≥ 0 and k such that aB(k, d)at < 0 then taking b which is identical
to a except that bk is slightly smaller than ak we get T (a, d) < T (b, d), which
proves the first statement of part 3.

If d is a semi-metric then B has nonnegative entries and so aB(k, d)at ≥ 0 and
if d is negative type then by Cayley’s criterion aB(k, d)at ≥ 0 which completes
the proof.
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Theorem 3. (Comparison of the IRM estimate and worst case estimate) If d
satisfies the triangle inequality then for all activity vectors a we have

2T (a, d; IRM) ≥ T (a, d; W ) (6)

where W is the worst case model.

Proof. Assume first that the activity vector is the vector (1, 1, . . . , 1). The IRM
estimate here is 1

n

∑
i,j d(xi, xj), while the worst case estimate is the length of

the longest Hamiltonian cycle in the complete graph on X with edge weights
given by d. Assume without loss of generality that the longest Hamiltonian path
in X is 1, 2, . . . , n. Since d satisfies the triangle inequality we have for 1 ≤ i < n
and for j ∈ X d(xi, xi+1) ≤ d(xi, xj) + d(xj , xi+1) (the n + 1 point coincides
with the first point). Summing over all i, j we get

n

n∑

i=1

d(xi, xi+1) ≤ 2
∑

i,j

d(xi, xj).

Therefore 2T (a, d; IRM) ≥ T (a, d; W ). To complete the proof we need to con-
sider a general activity vector (a1, . . . , an). Let X ′ be the metric space with a
points that is composed of groups of aj points of type j. Given d on X we induce
a metric on X ′ by letting the distance between a point of type i and a point
of type j be d(xi, xj). Clearly X ′ also satisfies the triangle inequality. We have
thus reduced the problem to the case of the activity vector (1, 1, . . . , 1) and are
done.

5 Set-Up Time Functions of a Disk

In this section we show that the radial seek time function of a disk drive, which
is the standard set-up function in storage system research is an �1-metric and
in particular is negative type. From this we conclude that the IRM estimates
are super additive when applied to disk seek times. Data on disk drives resides
on tracks which form concentric circles of varying radii r around the center of
a platter. To get from a track at radius r1 to another track at radius r2 the
head of the device performs a radial motion. The time it takes the disk head to
perform this radial motion is known as (radial) seek time. Seek time is translation
invariant Furthermore, the acceleration and deceleration of the head dictate that
the seek time from r1 to r2 has the form

dF (r1, r2) = F (|r1 − r2|)

where F is a concave non decreasing function.
If we let X be the set of data locations on the disk then a theorem of Kelly

proved in [4] can be interpreted as stating that (X, dF ) is negative type. We
prove a stronger result of independent interest using a much simpler proof.

Theorem 4. Let F be a concave nondecreasing function with F (0) = 0 and let
X ⊂ R. Then (X, dF ) is an �1 metric space.
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Proof. Let X = {x1, . . . , xn}. Consider

Y = {|xi − xj | : 1 ≤ i, j ≤ n}

the set of possible distances in X , and order the elements of Y as 0 = y0 < y1 <
y2 < . . . < ym. let G be the piecewise linear function which

(i) coincides with F on Y
(ii) is linear on all intervals [yi, yi+1] and
(iii) is constant on [ym, ∞) (that is, gets the value F (ym) there).

Obviously (X, dF ) = (X, dG) since F = G on the set of all relevant values Y , so
it is enough to prove the claim for G, which is also non decreasing and concave.
We now define functions Hs,t as follows.

Hs,t(x) = sx if x < t and st otherwise.

We also let si = G(yi)−G(yi−1)
yi−yi−1

be the sequence of slopes of G. We now claim
that G is a convex combination of functions of the form Hs,t.

The proof proceeds by induction on m. If m = 0 then G = H1,0 = 0. For
m > 0, look at the function G̃ = G−Hsm,ym . It is not hard to see that G̃(0) = 0,
G̃ is constant beyond ym−1 and is piecewise linear with breakpoints y1, . . . , ym−1.
A piecewise linear function is concave and nondecreasing if and only if its slopes
are decreasing and nonnegative, and so s1 ≥ s2 ≥ . . . ≥ sm ≥ 0, and similarly
s1 − sm ≥ s2 − sm ≥ . . . ≥ sm−1 − sm ≥ 0. But, these are the slopes of G′

and it is therefore concave and nondecreasing. We may now apply the induction
hypothesis to G̃ and this proves the claim.

Since a sum of �1-metrics is also an �1-metric, we are left with the task of
showing that for a function F = Hs,y, the resulting metric dF is an �1-metric.
Notice that dF (i, j) = s · min{|i − j|, y}. Let fi = 1

2sχ[xi,xi+y] be the function
whose value is 1

2s on the interval [xi, xi + y] and zero otherwise. It is easy to see
that for any i, j ∈ R

dF (i, j) = s · min{|i − j|, y} =
∫

R
|fi(x) − fj(x)|dx

This shows that dF is an L1 metric and hence l1.

Combining theorem 1 with theorem 4 we get

Theorem 5. The IRM estimate is super additive with respect to the seek time
function dF for any physical disk drive.

6 Conclusions and Future Work

We have introduced several natural properties of set-up time estimates and stud-
ied them for the IRM. We have shown that the IRM estimate satisfies monotonic-
ity which is a “sanity check” for set-up time estimates, and further that the IRM
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is an easily computable approximation to the worst case estimate. In the specific
but important context of seek functions in disk drives we showed that the IRM
shares another formal property that holds for worst case estimates namely super
additivity. It would be interesting to explore monotonicity, super additivity and
various approximation relations among other models. One interesting class of
examples are the renewal models which were suggested by Opderbeck and Chu
in [6]. The IRM is a special case of such models where the renewal model is based
on exponential inter-arrival times. It would be interesting to investigate other
cases such as hyperexponential, gamma or Pareto bounded heavy tail distribu-
tions. Such an investigation will likely require refined definitions for properties
such as monotonicity and super additivity since the associated models are not
Markovian.

Acknowledgments. We would like to thank Timothy Chow for helpful discus-
sions regarding a preliminary version of this paper.
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