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Abstract. Partially blind signature was first introduced by Abe and
Fujisaki. Subsequently, Abe and Okamoto proposed a provably secure
construction for partially blind signature schemes with a formalized def-
inition in their work. In this paper, based on discrete logarithm problem
and the Schnorr’s blind signature scheme, we propose a new efficient
partially blind signature scheme. Follow the construction proposed by
Abe and Okamoto, we prove its security in random oracle model. The
computation and communication costs are both reduced in our scheme.
It will make privacy-oriented applications which based on partially blind
signatures more efficient and suitable for hardware-limited environment,
such as smart phones and PDAs.

1 Introduction

Blind signature schemes, first introduced by Chaum in [1], allow a user to get a
signature without giving the signer any information about the actual message.
The signer also can’t have a link between the users and the signatures. It’s a
useful property in privacy oriented e-services such as electronic cash and elec-
tronic voting system. However, it may not a good idea to blind everything in the
e-cash system[2]. As to prevent a customer’s double-spending, the bank has to
keep a spent database which stores all spent e-cash to check whether a specified
e-cash has been spent or not. Certainly, the spent database kept by the bank
may grow unlimitedly. The other problem is to believe the face value of e-cash in
the withdraw phase, the signer must assure that the message contains accurate
information without seeing it.

Partially blind signature scheme proposed in [2] helps to solve the problems
stated above. The scheme allows each of signatures contains an explicit infor-
mation which both the signer and the user have agreed on. For example, the
signer can attach the expiry date and denomination to his blind signatures as
an attribute. Accordingly, The attribute of the signatures can be verified inde-
pendently through those of the certified public key.

Based on different hard problem assumptions, many partially blind signature
schemes have been given. The schemes proposed in [2,3,4] are based on RSA
� This work is partially supported by NSFC under the grants 90104005 and 60573030.

D.Z. Chen and D.T. Lee (Eds.): COCOON 2006, LNCS 4112, pp. 378–386, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Efficient Partially Blind Signature Scheme with Provable Security 379

algorithm, but the scheme in [2] does not have randomization property, which
is important to withstand the chosen plaintext attack[5], and the scheme in
[3] was also showed vulnerability on the chosen plaintext attack by [6]. The
schemes proposed in [7,8,9] are based on discrete logarithm problem and [9] costs
lower computation than [2,10]. The proposed partially blind signature schemes in
[10,11] are based on the theories of quadratic residues, and the scheme [11] makes
better performance than [10], but the signing protocol in [11] will give two valid
signatures corresponding to the same message. The schemes proposed in [12,13]
are based on bilinear pairings, but their verification of the signature require
pairing operation, which is several times slower than modular exponentiation
computation and not suitable for hardware-limited situations in client side, such
as smart phones and PDAs.

Our Contribution. Considering both security and efficiency, based on discrete
logarithm problem and the blind signature scheme in [14], we propose a new
efficient partially blind signature scheme. Follow the construction that given in
[7], we prove its security in random oracle model (ROM)[15]. Compared to the
schemes in [4,7,9], the computation and communication costs for the user and
the signer are both reduced in our scheme.

Organization. The rest of the paper is organized as follows. Section 2 describes
the basic definitions associated with partially blind signatures. In section 3, we
describe our efficient partially blind signature scheme, and then prove its security
in section 4 and compare the performance of the proposed scheme with others
related schemes in section 5. Section 6 concludes the paper.

2 Definitions

Abe and Okamoto introduced the notion of partially blind signatures in [7]. For
the following provable security, We give the definitions proposed in [8] which
provided a compact definitions based on [7]. In the phase of partially blind
signatures, the signer and the user are assumed to have agreed on a piece of
common information, denoted by info. An info may be sent from the user to the
signer. The paper [7] formalized this notion by providing a function Ag. Function
Ag is defined as a polynomial-time deterministic algorithm that completes the
negotiation of info between the signer and the user correctly. In our scheme, this
negotiation is considered to be done outside of the scheme.

Definition 1. (Partially Blind Signature Scheme) A partially blind signa-
ture scheme is a four-tuple(G, S, U , V).

- G is a probabilistic polynomial-time algorithm, that takes security parameter
k and outputs a public and secret key pair(pk, sk).

- S and U are pair of probabilistic interactive Turing machines each of which
has a public input tape, a private input tape, a private random tape, a private
word tape, a private output tape, a public output tape, and input and output
communication tapes. The random tape and the input tapes are read-only,
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and the output tapes are write-only. The private work tape is read-write. The
public input tape of U contains pk generated by G(1k), the description of Ag,
and infou. The public input tape of S contains the description of Ag and
infos. The private input type of S contains sk, and that for U contains a
message msg. The lengths of infos, infou, and msg are polynomial in k. S
and U engage in the signature issuing protocol and stop in polynomial-time.
When they stop, the public output tape of S contains either completed or not-
completed. If it is completed, then its private output tape contains common
information info. Similarly, the private output tape of U contains either ⊥
or (info,msg, sig).

- V is a polynomial-time algorithm. V takes (pk, info,msg, sig) and outputs
either accept or reject.

Definition 2. (Partial Blindness)Let U0 and U1 be two honest users that
follow the signature issuing protocol. Let S∗ play the following Game A in the
presence of an independent umpire.

1. (pk, sk) ← G(1k).
2. (msg0,msg1, infou0 , infou1 , Ag) ← S∗(1k, pk, sk).
3. The umpire sets up the input tapes of U0, U1 as follows:

- The umpire selects b ∈R {0, 1} and places msgb and msg1−b on the
private input tapes of U0 and U1, respectively. b is not disclosed to S∗.

- Place infou0 and infou1 on the public input tapes of U0 and U1 respec-
tively. Also place pk and Ag on their public input tapes.

- Randomly select the contents of the private random tapes.
4. S∗ engages in the signature issuing protocol with U0 and U1 in a parallel

and arbitrarily interleaved fashion. If either signature issuing protocol fails
to complete, the game is aborted.

5. Let U0 and U1 output (msgb, info0, sigb) and (msg1−b, info1, sig1−b), re-
spectively, on their private tapes. If info0 �= info1 holds, then the umpire
provides S∗ with the no additional information. That is, the umpire gives
⊥ to S∗. If info0 = info1 holds, then the umpire provides S∗ with the ad-
ditional inputs sigb, sig1−b ordered according to the corresponding messages
msg0,msg1.

6. S∗ outputs b′ ∈R {0, 1}. The signer S. wins the game if b′ = b.

A signature scheme is partially blind if, for every constant c > 0, there exists a
bound k0 such that for all probabilistic polynomial-time algorithm S∗, S∗ outputs
b′ = b with probability at most 1/2 + 1/kc for k > k0. The probability is taken
over the coin flips of G, U0, U1, and S∗.

Definition 3. (Unforgeability)Let S be an honest signer that follow the sig-
nature issuing protocol. Let U∗ play the following Game B in the presence of an
independent umpire.

1. (pk, sk) ← G(1k).
2. Ag ← U∗(pk).



Efficient Partially Blind Signature Scheme with Provable Security 381

3. The umpire places sk, Ag and a randomly taken infos on the proper input
tapes of S.

4. U∗ engages in the signature issuing protocol with S in a concurrent and
interleaving way. For each info, let �info be the number of executions of
the signature issuing protocol where S outputs completed and info is on its
output tapes. (For info that has never appeared on the private output tape
of S, define �info = 0.)

5. U∗ outputs a single piece of common information, info, and �info + 1 signa-
tures (msg1, sig1), · · · , (msg�info+1, sig�info+1).

A partially blind signature scheme is unforgeable if, for any probabilistic
polynomial-time algorithm U∗ that plays the above game, the probability that
the output of U∗ satisfies

V(pk, info,msgj , sigj) = accept

for all j = 1, · · · , �info + 1 is at most 1/kc where k > k0 for some bound k0
and some constant c > 0. The probability is taken over the coin flips of G, U∗,
and S.

Definition 4. (DLP (Discrete Logarithm Problem)): For x, g ∈R Zp,
given y = gx(mod p), compute x = logg y. We assume that DLP is hard, which
mean there is no polynomial time algorithm to solve it with non-negligible prob-
ability.

3 The Proposed Partially Blind Signature Scheme

The proposed efficient partially blind signature scheme is based on the theories of
DLP. Our scheme consists of five phases: Initialization, Requesting, Signing,
Extraction and Verifying, as described below.

1. Initialization. Signer S selects two large prime numbers p and q(typical
length: |p| = 1024, |q| = 160), which satisfied q|p − 1. Then chooses a
generator g ∈ Zp, g

q ≡ 1(mod p). S picks up a random number x ∈ Zq,
computes corresponding y = gx(mod p). a ‖ b denotes a concatenates b.
H, F , : {0, 1}∗ �→ Zq defined as two public hash functions. M is an arbitrary
message space. The public key of S is the tuple (y, p, q, g), x is the private
key.

2. Requesting. Assume that User U wants to get a partially blind signature
on message msg ∈ M , and then prepares a string info ∈ M that will be
sent to S for his agreement, this negotiation is considered to be done outside
of the scheme. Then S selects two random numbers r, d ∈R Zq, computes
z = F(info), then submits u = grzd(mod p) to U .

After receiving u, U also selects three random numbers v, w, e ∈R Zq, com-
putes z = F(info) and b = ze(mod p). Then computes C′ = H(msg||info||t)
while t = ubgvyw(mod p), sends C = w − C′ to S.
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3. Signing. After receiving C, S Signs C with the randomizing factor r and
his private key x, computes S = r + (C − z)x(mod q). Then S sends the
other randomizing number d and S to U .

4. Extraction. After receiving S and d, U computes S′ = S + v(mod q) and
N = d + e(mod q). Hence, the resulting signature on the message msg and
the common information info is a tuple (msg, info, S′, C′, N).

5. Verifying. For the signature (msg, info, S′, C′, N), because

S′ = S + v, S = r + (C − z)x

and
C = w − C′, C′ = H(msg||info||t),

we can easily get

gS′
yz+C′

zN = ze+dgvgr+(C−z)xyz+C′
(mod p)

= ubgvyC−zyz+C′
(mod p)

= ubgvyC+C′
= ubgvyw = t(mod p).

Hence, we have the equation

H(msg||info||gS′
yz+C′

zN (mod p)) = H(msg||info||t) = C′.

The partially blind signature is accepted as valid if it satisfies the above
equation.

4 Security

In this section, we discuss some security properties of our partially blind signa-
ture scheme based on assuming the intractability of the DLP.

4.1 Randomization

Theorem 1. Given a response S produced by Signer S, user U cannot remove
the random factor r from S in polynomial time.

Proof. In the scheme, S selects a large integers r and computes u = gr(mod p),
and submits u to U . Then U sends C to S, and S returns S = r + (C − z)x.
If U wants to remove r from the corresponding signature S, he must derive the
unique pair (x, r) from (y, u). However, it is difficult for U to determine (x, r)
because the derivation is DLP. Hence, in the proposed scheme, U cannot remove
the random large integer r from the corresponding signature S of msg. 	


4.2 Partial Blindness

Due to the Definition 2, for each instance numbered i of the proposed scheme,
signer S∗ can record Ci received from U who communicates with S∗ during the
instance i of the scheme. The tuple (Si, Ci, ri, di) is usually referred to as the
view of S∗ to the instance i of the scheme. Thus, we have the following theorem.



Efficient Partially Blind Signature Scheme with Provable Security 383

Theorem 2. The proposed scheme is partially blind.

Proof. Since the tuple (msg, info, S′, C′, N) is produced, we have S′ = Si +
v, C′ = w − Ci, N = di + e and Si = ri + (Ci − z)x. From the view of S∗, Since
v, w, e are three random numbers selected by U from Zq and S∗ cannot know
v, w, e. The existence of a random triplet (v, w, e) that protects (S′, C′, N). Hence
S∗ can derive (v, w, e) from each view(Si, Ci, ri, Ni) such that Ci = w −C′,C′ =
H(msg||info||gS′

yz+C′
zN(mod p)) is satisfied where (Si, Ci, ri, Ni) regard as

(S, C, r, N). When the instance i �→ {0, 1}, therefore, even an infinitely powerful
S∗ can succeed in determining i with probability 1/2. 	


From the proof of Theorem 2, we can know the importance of random factors
v, w, e. U must reselect v, w, e in a new instance of the proposed scheme and
protect factors v, e as a secret during the proceeding of the scheme. The random
factors v, w, e must be destroyed after the signature (msg, info, S′, C′, N) is
created.

4.3 Unforgeability

From Definition 3, we analyze the successful forgery with following the same
security argument given by Abe and Okamoto in [7]. Let us consider two types
of forgery against the partially blind signature.

1. A user U∗ can generate a valid partially blind signature while �info = 0.
2. Given a large number of valid partially blind signatures(0 < �info

< poly(log n)), U∗ can extract a new valid signature.

Theorem 3. The proposed scheme is unforgeable in the situation of type 1.

Proof. We assume a successful forger U∗ who plays Game B and produces a valid
signature (msg, info, S′, C′, N) with probability µ > 1/kc, such that �info = 0.
By exploiting U∗, we construct a machine M that forges the non-blind signature
of the proposed scheme in a passive environment. M simulates random oracles
F and H.

Let qF and qH be the maximum number of queries that U∗ asked from F and
H, respectively. Let qS be the maximum number of queries of signer S. Selects
i ∈ {1, 2, · · · , qH + qS}, U∗ sends the tuple (msgi, infoi, ti) to the oracle H for
computing its hash value H(msgi||infoi||ti). Simultaneously, U∗ asks F to get
z = F(info). F returns zi = gωi(mod p), where wi ∈R Zq. M knows ωi from
each pair of (zi, ωi) in F . All of the parameters are limited by a polynomial in k.
As the same proof construction in [7], we can easily know the success probability
of M which is denoted by µ′.

µ′ =
µ

(qH + qS)(qF + qS)
.

Then we use M to solve DLP. From the above construction. M can get
a valid signature tuple (t1, S′

1, C
′
1, N1) in polynomial running time after 1/µ′
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trials, with probability at least 1 − e−1(here, e is base of natural logarithms).
Because U∗ only can get hash value from H. Next, we use the standard replay
technique [16,17]. That is, we repeat with the same random tape and a different
choice of H, we can get another valid signature (t2, S′

2, C
′
2, N2) after 2/µ′ trials,

with probability at least (1 − e−1)/2, and we have t1 = t2. From the equation
C′ = H(msg||info||gS′

yz+C′
zN(mod p)), we have

S′
1 + (C′

1 + z1) · x + ω1 · N1 = S′
2 + (C′

2 + z2) · x + ω2 · N2.

Since H was changed choice in the second time run, both S′
1 �= S′

2 and C′
1 �= C′

2
have a overwhelming probability in 1 − 2−k, M can get x from

x =
(S′

2 − S′
1) + (ω2 · N2 − ω1 · N1)

(C′
1 − C′

2) + (z1 − z2)
(mod q).

It means M can solve DLP in polynomial running time. 	


Next we consider the forgery attempts in situation of type 2. We prove the
security of our scheme where the common information is not all the same in
Game B.

Theorem 4. The proposed scheme is unforgeable in the situation of type 2.

Proof. We assume a successful forger U∗
f who wins Game B with a probability

η, which is a non-negligible in polynomial running time. Then we construct
an machine M that simulates the signer in Game B. Let Ŝ denote the signer
simulated by M. M simulates two random oracles F and H. F returns zi =
gωi(mod p), where ωi ∈R Zq. We assume M don’t know ωi this time. M uses
U∗

f as a black-box and breaks the intractability assumption of DLP to compute
ω such that z = gω(mod p).

After �info times execution with Ŝ, U∗
f has got a set of successful challenge tu-

ple (msg1, info1, t1), (msg2, info2, t2), · · · , (msg�info
, info�info , t�info). U∗

f sends
the tuple (msgi, infoi, ti) to the random oracle H for computing its hash value
H(msgi||infoi||ti).

From the above construction, U∗
f can win Game B and forge a valid signa-

ture with a successful challenge tuple (msg�info+1, info�info+1, t�info+1) after 1/η
trails, with probability at least 1 − e−1. First we consider the situation that
there exists i ∈ {1, 2, · · · , �info}, msgi = msg�info+1, infoi = info�info+1 and
ti = t�info+1. Because U∗ only can get hash value from H, We have

gS′
�info+1yC′

�info+1zN�info+1 = gS′
iyC′

izNi

such that
S′

�info+1 + N�info+1 · ω = S′
i + Ni · ω.

Hence, we can compute ω from

ω =
S′

�info+1 − S′
i

N�info+1 − Ni
(mod q).
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Then we consider the situation that there does not exist i ∈ {1, 2, · · · , �info},
msgi = msg�info+1, infoi = info�info+1 and ti = t�info+1. This derives to the
same forgery attempts in the situation of type 1. 	


From Theorem 3 and Theorem 4, we have the following theorem.

Theorem 5. The proposed scheme is unforgeable if �info < poly(log n) for all
info.

5 Performance Concerns

We will discuss the performance of the proposed scheme from the costs of com-
munication and computation. Table 1 gives us a detail costs comparison amongst
related partially blind signature schemes[4,7,9]. The techniques to perform the
modular exponentiation computation are not used because they need additional
storage, which is limited in some application environments.

Table 1. The Comparisons of the partially blind signature schemes

Our Scheme Abe00 [7] Huang03 [9] Cao05 [4]

Mathematical foundation DLP DLP DLP/CRT RSA
Signer’s computation 2Te + 1Tm 3Te + 2Tm 2Te + 4Tm 2Te + 2Tm + Ti

User’s computation 3Te + 3Tm 4Te + 4Tm 4Te + 2Tm 3Te + 5Tm

Verifier’s computation 3Te + 2Tm 4Te + 2Tm 5Te + 3Tm 3Te + 2Tm

Signature size 2|m| + 3|q| 2|m| + 4|q| 2|m| + 3|n| 2|m| + 2|n|
*Te: time for one exponentiation computation; Tm: time for one multiplication compu-
tation; Ti: time for one inverse computation; Typical length: |q| = 160bit, |n| = 1024bit.

With regard to estimate the computational costs, we count only modular
exponentiation and multiplication. An inverse computation demands the same
amount of computation as a modular exponentiation. We also do not calculate
the computational costs on hash operations because it is much more faster than
modular exponentiation computation, and each schemes takes nearly same times
of hash operation. By Table 1, from the computational costs and signature sizes,
our scheme all shows more efficient than the schemes in [4,7,9].

6 Conclusion

In this paper, we proposed an efficient partially blind signature scheme based
on DLP and the Schnorr’s blind signature scheme, and we proved its security
in ROM. The computation and communication costs are both reduced in our
scheme. It will makes privacy oriented applications which based on partially
blind signatures more efficient and suitable for hardware-limited environment,
such as smart phones and PDAs.
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