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Abstract. In this paper we present several lower bounds on the approx-
imation of the exemplar conserved interval distance problem of genomes.
We first prove that the exemplar conserved interval distance problem can-
not be approximated within a factor of c log n for some constant c > 0
in polynomial time, unless P=NP. We then prove that it is NP-complete
to decide whether the exemplar conserved interval distance between any
two sets of genomes is zero or not. This result implies that the exemplar
conserved interval distance problem does not admit any approximation
in polynomial time, unless P=NP. In fact, this result holds even when a
gene appears in each of the given genomes at most three times. Finally,
we strengthen the second result under a weaker definition of approxima-
tion (which we call weak approximation). We show that the exemplar con-
served interval distance problem does not admit a weak approximation
within a factor of m, where m is the maximum length of the given genomes.

1 Introduction

A central problem in the genome comparison and rearrangement area is to com-
pute the number (i.e., genetic distances) and the actual sequence of genetic
operations needed to convert a source genome to a target genome. This prob-
lem originates from evolutionary molecular biology. In the past, typical genetic
distances studied include edit [10], signed reversal [13,9,1] and breakpoint [17],
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conserved interval [3,4], etc. (It was Sturtevant and Dobzhansky who came up
with the idea of signed reversal and breakpoint distance, though implicitly, in
1936 [16].) Recently, conserved interval distance was also proposed to measure
the similarity of multiple sequences of genes [3]. For an overview of the re-
search performed in this area, readers are referred to [8,7] for a comprehensive
survey.

Until a few years ago, in genome rearrangement research, people always
assumed that each gene appears in a genome exactly once. Under this as-
sumption, the genome rearrangement problem is essentially the problem of
comparing and sorting signed/unsigned permutations [8,7]. However, this as-
sumption is very restrictive and is only justified in several small virus genomes.
For example, this assumption does not hold on eukaryotic genomes where par-
alogous genes exist [12,15]. Certainly, it is important in to compute genomic
distances efficiently, e.g., by Hannenhalli and Pevzner’s method [8], when no
gene duplications arise; on the other hand, one might have to handle this gene
duplication problem as well. A few years ago, Sankoff proposed a way to se-
lect, from the duplicated copies of genes, the common ancestor gene such that
the distance between the reduced genomes (exemplar genomes) is minimized
[15]. He also proposed a general branch-and-bound algorithm for the problem
[15]. Recently, Nguyen, Tay and Zhang used a divide-and-conquer method to
compute the exemplar breakpoint distance empirically [12]. As these problem
seemed to be hard, theoretical research was followed almost immediately. It
was shown that computing the signed reversals and breakpoint distances be-
tween exemplar genomes are both NP-complete [5]. Recently, Blin and Rizzi
further proved that computing the conserved interval distance between exem-
plar genomes is NP-complete [4]; moreover, it is NP-complete to compute the
minimum conserved interval matching (i.e., without deleting the duplicated
copies of genes). There has been no formal theoretical results, before Nguyen
[11] and our recent work [6], on the approximability of the exemplar genomic
distance problems except the NP-completeness proofs [5,4]. Nguyen [11] proved
that exemplar breakpoint distance cannot be approximated within constant
ratio in polynomial time unless P = NP . Actually, the result was proved
through a reduction from the set cover problem. This work was announced
in [12].

In [6], we present the first set of inapproximability and approximation re-
sults for the Exemplar Breakpoint Distance problem, given two genomes each
containing only one sequence of genes drawn from n identical gene families.
(Some of the results hold subsequently for the Exemplar Reversal Distance
problem.) For the One-sided Exemplar Breakpoint Distance Problem, which
is also known to be NP-complete, we obtain a factor-2(1 + log n), polynomial-
time approximation. The approximation algorithm follows the greedy strategy
for Set-Cover, but constructing the family of sets is non-trivial and is related
to a new problem of longest constrained common subsequences which is re-
lated to but different from the recently studied constrained longest common
subsequences [2].
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2 Preliminaries

In the genome comparison and rearrangement problem, we are given a set of
genomes, each of which is a signed sequence of genes. The order of the genes
corresponds to their positions on the linear chromosome and the signs corre-
spond to which of the two DNA strands the genes are located. While most of
the past research are under the assumption that each gene occurs in a genome
once, this assumption is problematic in reality for eukaryotic genomes or the
likes where duplications of genes exist [15]. Sankoff proposed a method to select
an exemplar genome, by deleting redundant copies of a gene, such that in an ex-
emplar genome any gene appears exactly once; moreover, the resulting exemplar
genomes should have a property that certain genetic distance between them is
minimized [15].

The following definitions are very much following those in [3,4]. Given n gene
families (alphabet) F , a genome G is a sequence of elements of F such that
each element is with a sign (+ or −). In general, we allow the repetition of a
gene family in any genome. Each occurrence of a gene family is called a gene,
though we will not try to distinguish a gene and a gene family if the context
is clear. Given a genome G = g1g2...gm with no repetition of any gene, we say
that gene gi immediately precedes gj if j = i + 1. Given genomes G and H, if
gene a immediately precedes b in G but neither a immediately precedes b nor
−b immediately precedes −a in H, then they constitute a breakpoint in G. The
breakpoint distance is the number of breakpoints in G (symmetrically, it is the
number of breakpoints in H).

The number of a gene g appearing in a genome G is called the cardinality of
g in G, written as card(g,G). A gene in G is called trivial if g has cardinality
exactly 1; otherwise, it is called non-trivial. In this paper, we assume that all the
genomes we discuss could contain both trivial and non-trivial genes. A genome G
is called r-repetitive, if all the genes from the same gene family appear at most r
times in G. A genome G is called a k-span genome, if all the genes from the same
gene family are within distance at most k in G. For example, G = −adc − bdaeb
is 2-repetitive and it is a 5-span genome.

Given a genome G = g1g2 · · · gm, an interval [gi, gj ] is simply the substring
gigi+1 · · · gj (which will also be denoted as G[i, j]). For example, given G′ =
bdc−ag−e−fh,G′′ = bdce−gafh, between the two intervals I1 = dc−ag−e−f
and I2 = dce−gaf , there are 2 breakpoints c−a and −e−f . A signed reversal on
a genome G simply reverses the order and signs of all the elements in an interval
of G. In the previous example, if a signed reversal operation is conducted in I1
on G′, then we obtain a new genome G∗ = bfe − ga − c − dh. (All the reversals
concerned in this paper are signed reversals. Henceforth, we simply use reversal
to make the presentation simpler.) The reversal distance between genomes G
and H is the minimum number of reversals to transfer G into H.

Given a genome G over F , an exemplar genome of G is a genome G′ obtained
from G by deleting duplicating genes such that each gene family in G appears
exactly once in G′. For example, let G = bcaadagef there are two exemplar
genomes: bcadgef and bcdagef .
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Given a set of genomes G and two gene families a, b ∈ F , an interval [a, b] is a
conserved interval of G if (1) a precedes b or −b precedes −a in any genome in G;
and (2) the set of unsigned genes (i.e., ignoring signs) between a and b are the
same for all genomes in G. Let G = {G1, G2}, where G1 = bc−ag−e−fdh,G2 =
b − ce − gaf − dh, there are three conserved intervals between G1 and G2:
[e, a], [b, h] and [−a, g].

Given two sets of genomes G and H, the conserved interval distance between
G and H is defined as

d(G,H) = NG + NH − 2NG∪H,

where NG (resp. NH and NG∪H) is the number of conserved intervals in G
(resp. H and G ∪ H). Continuing the example in the previous paragraph, let
H = {H1,H2}, where H1 = b − cg − af − edh,H2 = bagcdefh, then there are
two conserved intervals between H1 and H2: [b, h] and [a, c]. There is only one
conserved interval in G ∪ H: [b, h]. Therefore, d(G,H) = 3 + 2 − 2 × 1 = 3.

If G and H are both a singleton, i.e., G contains only a genome G, and H
contains only a genome H, then we simply use the notation d(G,H) = NG+NH−
2NG∪H to stand for d(G,H). Note that when only one genome G is considered,
every interval in G is a conserved interval. This implies that when G (resp. H)
has n trivial genes, then d(G,H) = 2(n

2 ) − 2NG∪H .
The Exemplar Conserved Interval Distance Problem, denoted as the ECID

problem, is defined as follows:

Instance: Two sets of genomes G and H, each genome is of length O(m) and
covers n identical gene families (i.e., it contains at least one gene from each of
the n gene families); an integer K.
Question: Are there respective exemplar genomes G∗ of G and H∗ of H, such
that the conserved interval distance distance d(G∗,H∗) is at most K?

In the next three sections, we present lower bounds on the approximation of
the optimization version of the ECID problem, namely, to compute or approx-
imate the minimum value K in the above formulation. Given a minimization
problem Π, let the optimal solution of Π be OPT . We say that an approxi-
mation algorithm A provides a performance guarantee of α for Π if for every
instance I of Π, the solution value returned by A is at most α × OPT . (Usually
we say that A is a factor-α approximation for Π.) Typically we are interested
in polynomial time approximation algorithms.

In many biological problems, the optimal solution value OPT could be zero.
(For example, in some minimum recombination haplotype reconstruction prob-
lems the optimal solution could be zero.) In that case, if computing such a zero
optimal solution value is NP-complete then the problem does not admit any
approximation unless P=NP. However, in reality one would be happy to ob-
tain a solution with value one or two. Due to this reason, we relax the above
(traditional) definition of approximation to a weak approximation. Given a min-
imization problem Π, let the optimal solution of Π be OPT . We say that a
weak approximation algorithm B provides a performance guarantee of α for
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Π if for every instance I of Π, the solution value returned by B is at most
α × (OPT + 1).

3 A c log n Lower Bound on Approximating ECID

Theorem 1. It is NP-complete to approximate the Exemplar Conserved Interval
Distance problem within a factor of c log n for some constant c > 0.

Proof. We use a reduction from the Dominating Set problem to the ECID prob-
lem for two sets of genomes G = {G1, G2} and H = {H1,H2} that will be
constructed from the given graph.

Let T = (V,E) be any given graph with V = {v1, v2, · · · , vn} and E =
{e1, e2, · · · , em}. We assume that vertices and edges in T are sorted by their
corresponding indices. We construct two sets of genomes G = {G1, G2} and
H = {H1,H2} as follows. For each vi ∈ V , we have four corresponding genes
v1

i , v2
i , v3

i , and v4
i . We enforce a rule that vk

i is incident to vl
j if and only if k = l

and vi is incident to vj in T . Let Bj
i be the sorted sequence of vertices incident

to vj
i and Bj

i be the unsigned reversal of Bj
i . (“|” is not a gene and is used for

readability purpose.)

G1 = v1
1B1

1v3
1 |v2

1B2
1v4

1 | · · · |v1
n−1B

1
n−1v

3
n−1|v2

n−1B
2
n−1v

4
n−1|v1

nB1
nv3

n|v2
nB2

nv4
n

G2 = −v3
1B1

1 − v1
1 | − v4

1B2
1 − v2

1 | · · · | − v3
n−1B1

n−1 − v1
n−1| − v4

n−1B2
n−1 − v2

n−1|
−v3

nB1
n − v1

n| − v4
nB2

n − v2
n

H1 = v1
1B1

1v3
1 | · · · |v1

n−1B
1
n−1v

3
n−1|v1

nB1
nv3

n|v2
1 − v4

1 | · · · |v2
n−1 − v4

n−1|v2
n − v4

n

H2 = −v3
1B1

1 − v1
1 | · · · | − v3

n−1B1
n−1 − v1

n−1| − v3
nB1

n − v1
n|

−v4
nv2

n| − v4
n−1v

2
n−1| · · · | − v4

1v2
1

Fig. 1 shows a simple graph with six vertices v1, v2, . . . , v6. The corresponding
genomes for this graph are given as follows.

G1 = v1
1v1

3v3
1 |v2

1v2
3v4

1 |v1
2v1

3v3
2 |v2

2v2
3v

4
2 |v1

3v1
1v1

2v
1
5v3

3 |v2
3v2

1v
2
2v2

5v4
3 |

v1
4v1

5v1
6v3

4 |v2
4v2

5v2
6v4

4 |v1
5v1

3v1
4v1

6v3
5 |v2

5v2
3v2

4v2
6v4

5 |v1
6v1

4v1
5v3

6 |v2
6v2

4v2
5v4

6 |
G2 = −v3

1v1
3 − v1

1 | − v4
1v2

3 − v2
1 | − v3

2v1
3 − v1

2 | − v4
2v2

3 − v2
2 |

−v3
3v1

5v1
2v1

1 − v1
3 | − v4

3v2
5v2

2v2
1 − v2

3 | − v3
4v1

6v1
5 − v1

4 | − v4
4v2

6v
2
5 − v2

4 |
−v3

5v1
6v1

4v1
3 − v1

5 | − v4
5v2

6v2
4v2

3 − v2
5 | − v3

6v1
5v1

4 − v1
6 | − v4

6v2
5v

2
4 − v2

6 |
H1 = v1

1v1
3v3

1 |v1
2v1

3v3
2 |v1

3v1
1v1

2v1
5v3

3 |v1
4v1

5v1
6v3

4 |v1
5v1

3v1
4v1

6v3
5 |v1

6v1
4v1

5v3
6 |

v2
1 − v4

1 |v2
2 − v4

2 |v2
3 − v4

3 |v2
4 − v4

4 |v2
5 − v4

5 |v2
6 − v4

6

H2 = −v3
1v1

3 − v1
1 | − v3

2v1
3 − v1

2 | − v3
3v1

5v1
2v1

1 − v1
3 |

−v3
4v1

6v1
5 − v1

4 | − v3
5v1

6v1
4v1

3 − v1
5 | − v3

6v1
5v1

4 − v1
6 |

−v4
6v2

6 | − v4
5v2

5 | − v4
4v

2
4 | − v4

3v2
3 | − v4

2v2
2 | − v4

1v2
1

Claim A. The given graph T has a dominating set of size K if and only if there
are exemplar genomes gi for Gi and hi for Hi for i = 1, 2, such that we have,
letting G∗ = {g1, g2} and H∗ = {h1, h2},
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1

v

v v

v

v

3

4

5

v6

2

Fig. 1. Illustration of a simple graph for the reduction

(1) NG∗ = 2K

(2) NH∗ = K

(3) NG∗∪H∗ = K

Note that (1), (2) and (3) together imply d(G∗,H∗) = K.
We now prove the above claim. The “only if part” is easy. We only show the

proof for (2) as the proofs for (1) and (3) would be similar. If T has a dominating
set of size K, then for all those vj which is not in the dominating set we delete
all B1

j in H1 and B1
j in H2. For those remaining B1

i in H1 and B1
i in H2, we

delete the duplications (say v1
l ) consistently in H1 and H2. It is easy to see that

the conserved intervals we have are [v1
i , v3

i ] in H1 and [−v3
i ,−v1

i ] in H2, which
correspond to the vertices in the dominating set.

The “if part” is slightly more tricky. Assume that (1), (2) and (3) are all
true. In this case, we only need to focus on (2), i.e., NH∗ = K. First, notice
that the second half of H1 and H2 (i.e., those involved with v2

j − v4
j or their

unsigned reversals) will not contribute anything to the number of conserved
intervals in H∗. Notice also that only these [v1

i , v3
i ] from the first half of H1 can

possibly form conserved intervals with the corresponding [−v3
i ,−v1

i ] from the
first half of H2. If the number of conserved intervals in H∗ is K, then those K
conserved intervals must come from [v1

i , v3
i ] in h1 and [−v3

i , v1
i ] in h2. Moreover,

if there is any deletion in B1
i in H1 and in B1

i in H2, then the deletion has to be
consistent. If v1

j appears in B1
i and B1

i , then unless it appears in B1
l and B1

l we
must keep them to avoid extra conserved intervals in the form of [v1

j , v3
j ] in H1

and [−v3
j ,−v1

j ] in H2. Therefore, from the K conserved intervals in H∗ we can
construct the K vertices which form the dominating set for T .

Let opt(T ) denote the size of the minimum dominating set of the graph T ,
and let opt(G,H) denote the minimum exemplar conserved interval distance
between G and H. It follows from Claim A that opt(T ) = opt(G,H). The size
of T is |V | + |E| = n + m. It is easy to see that the size of G and H is at
most 8(n + m). Raz and Safra [14] proved that the Dominating Set Problem
cannot be approximated within a factor of c1 log(n + m) from some constant
c1 > 0. Let c = c1/4. If there is an algorithm that can approximate the exemplar
conserved interval distance problem within a factor of c1 log(|G| + |H|), where
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|G| (resp. |H|) denotes size of G (resp. H), i.e., the number of genes in it. Then,
this algorithm can be used to solve the Dominating Set Problem: the returned
exemplar conserved interval distance for opt(G,H) is also for opt(T ). Let app(T ),
which is app(G,H), denote the result returned by the algorithm. Then, we have

app(T ) = app(G,H) ≤ c log(8(n + m))opt(G,H) = c log(8(n + m))opt(T )
≤ 4c log |T |opt(T ) = c1 log |T |opt(T )

Hence, opt(T ) can be approximated within a factor of c1 log |T |, a contradiction
to the result obtained by Raz and Safra [14]. Therefore, the exemplar conserved
interval distance problem cannot be approximated with a factor of c log(|G|+|H|)
for a constant c > 0. ��

4 The Zero Exemplar Conserved Interval Distance
Problem

Recently, Chen, Fu and Zhu proved in [6] that the zero exemplar breakpoint dis-
tance problem is NP-complete. Following the spirit of [6], in this section we shall
consider the zero exemplar conserved interval distance problem, i.e., the problem of
deciding whether the exemplar conserved interval distance between any two given
sets of genomes G and H is zero or not. We shall show that this problem, like the
zero exemplar breakpoint distance problem, is also NP-complete.

Lemma 1. Let G and H be two genomes such that each has n trivial genes and
the set of genes in G is the same as the set of genes in H. (In other word, G
is a signed permutation of H.) Then, the conserved interval distance between G
and H is zero, i.e., d(G,H) = 0, if and only if either G = H or G is the signed
reversal of H.

Proof. It follows from the given condition that d(G,H) = 2(n
2 ) − 2NG∪H . If

G = H or G is a signed reversal of H, then every two genes in G form a
conserved interval in G and H. Thus, NG∪H = (n

2 ). This implies d(G,H) = 0.
Now, suppose d(G,H) = 0. Then, we have NG∪H = (n

2 ), i.e., every two genes
in G form a conserved interval in G and H. We can prove by induction on n
that either G = H or G is the singed reversal of H. The details are omitted due
to space limit. ��
Theorem 2. Given any two genomes G and H which are both 3-repetitive, it is
NP-complete to decide whether the exemplar conserved interval distance between
G and H is zero or not.

Proof. It is easy to see that this ZECID problem is in NP. To prove its NP-
hardness, we will construct a reduction from the 3SAT problem to the ZECID
problem, following the reduction for proving the NP-hardness for the zero break-
point distance problem in [6].

Let F = f1
∧

f2
∧

· · ·
∧

fq be a conjunctive normal form, where each fi is a 3-
disjunctive clause like (x1

∨
x4

∨
¬x7). We construct two genomes G and H such

that F is satisfiable iff G and H have zero exemplar conserved interval distance.
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We consider fi, 1 ≤ i ≤ q, as names of genes. Assume that F has n boolean
variables xi, 1 ≤ i ≤ n. Let G = S1g1S2g2 · · · gn−1Sn and H = S∗

1g1S
∗
2g2 · · · gn−1

S∗
n, where g1, · · · , gn−1 are peg genes that occur only once in G or H. For 1 ≤

i ≤ n, Si = fi1 · · · fiu
fj1 · · · fjv

and S∗
i = fj1 · · · fjv

fi1 · · · fiu
, where fi1 , · · · , fiu

are the clauses containing xi, and fj1 , · · · , fjv
are the clauses containing ¬xi.

Since each clause has at most 3 literals, S and H are 3-repetitive.
Following the approach in [6], if F is satisfiable, then we have an exemplar

genomes G′ and H ′ such that G′ = H ′. Hence, by Lemma 1 we have d(G′,H ′) =
0. If there are two exemplar genomes G′′ and H ′′ such that d(G′′,H ′′) = 0, then
by Lemma 1 we have G′′ = H ′′, because G′′ and H ′′ contain all unsigned genes
in the set {f1, · · · , fq, g1, · · · , gn−1} and no genes are repetitive. If Si becomes
empty in G′′ then we can assign a value to xi arbitrarily. Otherwise, we assign
xi = 1 if it becomes a subsequence of fi1 · · · fiu

in G′′, or we assign xi = 0 if
it becomes a subsequence of fj1 · · · fjv

. It is easy to verify that such a truth
assignment will make F true. ��

Example. F = (x1∨¬x2∨x4)
∧

(¬x1∨x3∨x4)
∧

(x2∨x3∨¬x4)
∧

(¬x1∨¬x2∨¬x3),
where F1 = (x1 ∨ ¬x2 ∨ x4), F2 = (¬x1 ∨ x3 ∨ x4), F3 = (x2 ∨ x3 ∨ ¬x4), and
F4 = (¬x1 ∨ ¬x2 ∨ ¬x3).
G = F1F2F4g1F3F1F4g2F2F3F4g3F1F2F3 and
H = F2F4F1g1F1F4F3g2F4F2F3g3F3F1F2.
d(G”,H”) = 0, with G” = H” = F4g1F3g2g3F1F2, corresponds to the truth as-
signment that x1 = False(0), x3 = False(0) or True(1), and x2 = x4 = True(1).

Corollary 1. Given any two sets of genomes G and H, it is NP-complete to
decide whether the exemplar conserved interval distance between G and H is
zero or not.

Theorem 2 and the above corollary imply that the ECID problem does not ad-
mit any approximation unless P=NP—if such a polynomial-time approximation
existed then it would be able to decide whether G and H have zero exemplar
conserved interval distance in polynomial time hence contradicting Theorem 2.

5 Weak Inapproximability Bound

Let opt(G,H) be the optimal exemplar conserved interval distance between G
and H. We also use d(X,Y ) to denote the minimum conserved interval distance
between two genomes X and Y , where X and Y do not have to be exemplar.
We also adopt a similar approach as in [6] but with some more involved analysis.
We obtain the following inapproximability bounds under a much weaker model
of approximation. Notice that the m factor in the bounds here are stronger than
the m1−ε factor in the bounds in [6] for exemplar break point distance problem.

Theorem 3. Let g(x) : N → N be a function computable in polynomial time.
If there is a polynomial time algorithm such that given two genomes G and H of
length at most m it can return exemplar genomes G and H satisfying d(G,H) ≤
g(m)opt(G,H) + m, then P=NP.
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Proof. Let f be a given CNF formula. Let G(f),H(f) be the genomes as con-
structed in Theorem 2 such that f is satisfiable if and only if d(G(f),H(f)) = 0.
Let |G(f)| = |H(f)| = u, i.e., the number of all the genes occurred in G(f)
(or H(f)). Let Σ(S) be the alphabet of a sequence S. If Σi is a different set of
letters with |Σi| = |Σ(S)|, we define S(Σi) to be a new sequence obtained by
replacing all letters in S, in one to one fashion, by those in Σi.

For M ≥ 1, Let Σ1, Σ2, · · · , ΣM be M disjoint sets of letters of size |Σ(G(f))|.
Let G1 = G(f)(Σ1), G2 = G(f)(Σ2), · · · , GM = G(f)(ΣM ) be the sequences
derived from G(f). Let H1 = H(f)(Σ1),H2 = H(f)(Σ2), · · · ,HM = H(f)(ΣM )
be the sequences derived from H(f).

Define G = G1s1G2s2 · · · GMsM and H = H1s1H2s2 · · · HMsM , where si is a
peg gene appearing only once in G and H, respectively. Let m = |G| = |H|. In
fact, m is the number of all the genes in G (or H).

Assume that some polynomial time algorithm A outputs respectively two
exemplar genomes G and H of G and H, and d(G,H) ≤ g(m)d(G,H) + m, we
can then decide if f is satisfiable by checking whether d(G,H) ≤ m. If f is
satisfiable, as in the proof of Theorem 2, two identical exemplar genomes can be
obtained from G and H. Hence, we have d(G,H) = 0 by Lemma 1. This implies
that d(G,H) ≤ m. If f is not satisfiable, then from Theorem 2, d(Gi,Hi) ≥ 1;
namely, there is at least one conserved interval in Gi but not in Hi. This implies
one of the following is true: (1) a · · · b in Gi but b · · · a in Hi; (2) c ∈ [a, b]
in Gi but c 	∈ [a, b] in Hi; and (3) c 	∈ [a, b] in Gi but c ∈ [a, b] in Hi. For
case (1), for any d in Gjsj , j 	= i, either [a, d] or [d, a]is a conserved interval
in Gj but not in Hj . Similarly, for any e in Hjsj , j 	= i, either [a, e] or [e, a]is
a conserved interval in Hj but not in Gj . Thus, in this case, we have at least
(u + 1)(M − 1) conserved interval in either G or H but not in both. Hence,
we have d(G,H) ≥ 2(u + 1)(M − 1). It follows from some similar analysis that
d(G,H) ≥ 2(u+1)(M − 1) is true for the other two cases. Therefore, in either of
the three cases, when M ≥ 2, we have d(G,H) ≥ 2(u+1)(M−1) > (u+1)M = m.
Since G,H are exemplar genomes of G and H, we have d(G,H) > m. ��

Corollary 2. If there is a polynomial time algorithm such that given G and
H of length at most m it can return exemplar genomes G and H satisfying
d(G,H) ≤ m[opt(G,H) + 1], then P=NP.

This negative result shows that even under a much weaker model, unless P=NP,
it is not possible to obtain a good approximation to the optimal exemplar con-
served interval distance problem.

6 Concluding Remarks

We prove several lower bounds on the approximation of the Exemplar Conserved
Interval Distance problem. Although it seems that the general problem does
not admit any approximation, good approximation may exist for special cases
of genomes, and good heuristics may perform well empirically or on average. It
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would be interesting to study some meaningful special cases. For example, in
real-world datasets repetitions of genes are typically pegged and not very far
away [12]. Are these cases easier to solve/approximate?
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