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Abstract. In this paper, we study an interesting matrix decomposi-
tion problem that seeks to decompose a “complicated” matrix into two
“simpler” matrices while minimizing the sum of the horizontal complex-
ity of the first sub-matrix and the vertical complexity of the second
sub-matrix. The matrix decomposition problem is crucial for improving
the “step-and-shoot” delivery efficiency in Intensity-Modulated Radia-
tion Therapy, which aims to deliver a highly conformal radiation dose to
a target tumor while sparing the surrounding normal tissues. Our algo-
rithm is based on a non-trivial graph construction scheme, which enables
us to formulate the decomposition problem as computing a minimum
s-t cut in a 3-D geometric multi-pillar graph. Experiments on randomly
generated intensity map matrices and on clinical data demonstrated the
efficiency of our algorithm.

1 Introduction

In this paper, we study an interesting matrix orthogonal decomposition problem
arising in intensity-modulated radiation therapy (IMRT) [15]. IMRT is a modern
cancer therapy technique that aims to deliver a highly conformal radiation dose
to a target tumor while sparing the surrounding normal tissues. The prescribed
dose distribution of radiation is commonly described by an intensity map (IM),
which is specified by a set of nonnegative integers on a 2-D grid (see Figure
1(a)). The number in a grid cell indicates the amount (in unit) of radiation
to be delivered. The delivery is done by a set of cylindrical radiation beams
orthogonal to the IM grid.

An advanced tool today for IM delivery is the multileaf collimator (MLC) [15].
An MLC consists of many pairs of tungsten alloy leaves of the same rectangular
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Fig. 1. (a) An example of intensity map. (b) and (c) MLC apertures used to deliver
the IM in (a). (d) and (e) The corresponding collimator configurations in (b) and (c).

shape and size. The leaves can move left and right to form a rectilinear region,
called an MLC-aperture. Each MLC-aperture is associated with an integer rep-
resenting the radiation units delivered by its radiation beam.

One of the most popular IMRT delivery technique [14] is called the static
leaf sequencing (SLS) or step-and-shoot approach [5, 15, 18] Mathematically,
the “step-and-shoot” delivery planning can be viewed as the following matrix
decomposition problem: Given an intensity map M (i.e., a matrix), decompose
M into the form of M =

∑κ
i=1 αiSi, where Si is a special 0-1 matrix specifying

an MLC-aperture, αi is the amount of radiation delivered through Si, and κ is
the number of MLC-apertures used to deliver M (see Figure 1). (The reader is
referred to [18, 1, 7, 4] for more details on the step-and-shoot IMRT technique.)
There are two obvious measures for the quality of the step-and-shoot delivery:
(1) the beam-on time which is given by

∑κ
i=1 αi, and (2) the number of MLC-

apertures used. The beam-on time is the actual time that the patient is exposed
under the radiation beams. Minimizing beam-on time is crucial to reduce the
patient’s risk under irradiation and to reduce the delivery error caused by the
tumor motion [1]. On the other hand, minimizing the number of MLC-apertures
used for each IM (hence, minimizing the treatment time of each IM) is also
important because it not only lowers the treatment cost for each patient but
also enables hospitals to treat more patients [4].

To deliver the IMs, in current SLS method MLC leaves move along one di-
rection (say, horizontally or vertically) during the entire delivery process. This
uni-direction delivery may not fully utilize the capacity of the advanced MLC,
which is rotatable. In fact, in order to improve the efficiency of the IMRT de-
livery, it was proposed recently to rotate the MLC between the delivery of the
MLC-apertures for an IM [9, 2, 8].

In this paper, we propose to use two orthogonal directions to deliver an IM
(i.e., horizontal and vertical) and formulate the following matrix orthogonal
decomposition (MOD) problem: Given an m×n non-negative integer matrix
A = (ai,j) ∈ Z

+m×n (i.e., an IM) and an integer λ ≥ 1, find two matrices (i.e.,
sub-IMs) Q = (qi,j), R = (ri,j) ∈ Z

+m×n such that:

(1) A = λQ + R,
(2) the sum of the horizontal complexity CH(Q) of Q and the vertical

complexity CV (R) of R is minimized, where
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CH(Q) =
m∑

i=1

⎛

⎝qi,1 +
n∑

j=2

max(0, qi,j − qi,j−1)

⎞

⎠

CV (R) =
n∑

j=1

(

r1,j +
m∑

i=2

max(0, ri,j − ri−1,j)

)

(1)

Then, the sub-IM Q and R are delivered in two orthogonal directions. The
rational behind this decomposition is based on the following observations. The
beam-on time Tbot(B[i]) for delivering each row B[i] of B equals to(
bi,1 +

∑n
j=2 max(0, bi,j − bi,j−1)

)
[7]. The horizontal complexity CH(Q) mea-

sures the total beam-on time of all rows of the IM Q when it is delivered hor-
izontally, while the vertical complexity CV (R) is the total beam-on time of
all columns of R when it is delivered vertically. Hence, the complexity of an
IM that we use is closely related to the beam-on time of the IM. It is help-
ful to note that two IMs A and B with A = λ · B for some integer λ >
1, can be delivered by the same set of MLC-apertures. By adding the fac-
tor λ, it is very likely to reduce the total number of MLC-apertures since
this can reduce the elements in R and thus the number of MLC-apertures
used to deliver R. Most of current approaches for the SLS problem are based
on a method for reducing the intensity level of IM matrices, then compute
a set of MLC-apertures for the IM matrices with a smaller maximum inten-
sity level [18, 4, 11, 12, 13, 3]. Our decomposition results in two “simpler”
sub-IMs with smaller maximum intensity level, which, in turn, yields a more
efficient delivery plan using fewer MLC-apertures and/or less total beam-on
time.

We model the MOD problem as a minimum s-t cut problem. As an approach
of partitioning, the minimum s-t cut has been extensively used. For example,
several medical image segmentation techniques based on minimum s-t cuts were
developed by, to name a few, Boykov and Jolly [19], Kim and Zabih [20], and
Wu and Chen [16].

To our best knowledge, no previous work specifically for solving the matrix
orthogonal decomposition problem discussed in this paper was known before.
The closely related work is Chen et al.’s optimal linear time algorithm [3] for
partitioning an IM matrix A into two sub-IMs of the form λ · Q + R, without
introducing new delivery error while minimizing the maximum intensity level of
the sub-IM R.

In this paper, we develop an T (mn�H
λ �, mn�H

λ �) time algorithm for the IM
matrix orthogonal decomposition problem, where T (n′, m′) is the time for com-
puting a minimum s-t cut in an edge-weighted directed graph with O(n′) vertices
and O(m′) edges. Our algorithm is based on a non-trivial graph construction
scheme, which enables us to formulate the decomposition problem as computing
a minimum s-t cut in a 3-D geometric multi-pillar graph (defined in Section 2.1).
Experiments on randomly generated IM matrices and on clinical data are
performed.
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2 Our Algorithm for the IM Orthogonal Decomposition
Problem

This section presents our efficient IM matrix orthogonal decomposition (MOD)
algorithm. We model the MOD problem as a minimum s-t cut problem on a 3-D
geometric multi-pillar graph by a complicated graph transformation scheme.

2.1 Modeling the MOD Problem

We define a 3-D geometric multi-pillar graph G = (V, E) on a 2-D m × n grid Γ
from the given IM matrix A = (ai,j)m×n and the integer λ > 0, as follows.

Let g(i, j) (0 < i ≤ m and 0 < j ≤ n) denote a grid point in Γ . For each grid
point g(i, j) ∈ Γ , there is a set Col(i, j) of �ai,j

λ � + 2 (defined as height hi,j of
the pillar) vertices in G corresponding to ai,j of the IM matrix A; Col(i, j) =
{g(i, j, k) | k = 1, 2, . . . , hi,j}, called the (i, j)-pillar of G (see Figure 2(a) and
(b) for an example). In addition, we add two dumbing vertices, a source s and
a sink t, in G since we want to formulate our MOD problem as computing a
minimum s-t cut in G.

For the ease to introducing edges in G, we here give some notation. We say that
two pillars Col(i, j) and Col(i′, j′) are adjacent to each other if |i−i′|+|j−j′| = 1.
For each pillar Col(i, j), g(i, j, 1) (resp., g(i, j, hi,j)) is called the base (resp., top)
vertex of the pillar. For every vertex g(i, j, k) in G with i < m and 0 < k < hi,j ,
we define its lower neighbor and its upper neighbor on the pillar Col(i + 1, j):
(1) if 1 ≤ (�ai+1,j−ai,j

λ � + k) ≤ hi+1,j − 1, the lower neighbor of g(i, j, k) is
g(i + 1, j, �ai+1,j−ai,j

λ � + k); (2) if g(i + 1, j, k′) is the lower neighbor of g(i, j, k)
and k′ < hi+1,j , the upper neighbor of g(i, j, k) is g(i + 1, j, k′ + 1). Intuitively,
the upper neighbor of g(i, j, k) is the vertex on Col(i+1, j) immediately “above”
the lower neighbor of g(i, j, k).

We are now ready to put directed edges in G. We introduce four subsets, Evt,
Ehz, Eq, and Er, of directed edges into G, which are used to realize different
parts of the complexity equation.

Fig. 2. (a) A 2-D grid. (b) Multi-pillar vertices of the IM in Figure 1. (c) Illustrating
Ehz (thin edges) and Eq (thick edges) of the case ai,j = 9, ai,j+1 = 13, and λ = 3. (d)
Illustrating Evt (thin) and Er (thick) of the case ai,j = 9, ai+1,j = 13, and λ = 3.
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– The edges in Evt: Consider pillar Col(i, j) and Col(i + 1, j) , for 0 < i < m
and 0 < j ≤ n. For each non-base vertex g(i, j, k), two directed edges are
put in Evt: (1) a lower edge to its lower neighbor, and (2) an upper edge
to its upper neighbor (see Figure 2(d)). The weight of the lower edge is
(λ − [ai+1,j − ai,j ]%λ) (note that “%” denotes a modulate operation), and
the weight of the upper edge is ([ai+1,j − ai,j ]%λ). Meanwhile, for the base
vertex g(i, j, 1), we put an upper-base edge with a weight of ([ai+1,j −ai,j ]%λ)
to its upper neighbor. If the lower neighbor g(i+1, j, lw) of g(i, j, k) is not a
base vertex, a set of directed edges (called the lower-base edges) from g(i, j, k)
to g(i + 1, j, k′) for every 2 ≤ k′ ≤ lw is introduced into Evt; the weight of
each of these edge is λ. Note that all the above edges are added only when
the corresponding neighbor exists and the neighbor is not the base vertex.

– The edges in Ehz: Consider pillar Col(i, j) and Col(i, j + 1), for 0 < i ≤ m
and 0 < j < n. For each non-base vertex g(i, j, k) on Col(i, j), if k <
min{hi,j , hi,j+1}, we put an edge from g(i, j, k) to g(i, j +1, k) with a weight
of 1. (see Figure 2(c)). If the height hi,j+1 of Col(i, j + 1) is larger than the
height hi,j of Col(i, j), a directed edge of weight 1 is also introduced from
each vertex g(i, j+1, k) on the pillar Col(i, j+1) to the top vertex g(i, j, hi,j)
of Col(i, j), for k = hi,j , . . . , hi,j+1 − 1.

– The edges in Eq: For each non-base vertex g(i, 1, k) of every pillar Col(i, 1),
i = 1, 2, . . . , m, we put a directed edge of weight 1 from g(i, 1, k) to the sink
t (see Figure 2(c) when j = 1).

– The edges in Er: The top vertex of each pillar Col(1, j), for j = 1, 2, . . . , n,
has a directed edge with a weight of [a1,j%λ] from the source s. Additionally,
For each non-base, non-top vertex g(1, j, k) of every pillar Col(1, j)we add a
directed edge of weight λ from the source s. Figure 2(d) shows an example
for this construction when i = 1.

In addition, we introduce two more sets of edges, Emo and Ead, into G. The
set of edges in Emo is used to guarantee the monotonicity property of the result.
While the edges in Ead is employed to avoid the degeneracy of the solution.

– The edges in Emo: On each pillar Col(i, j), an edge of weight +∞ is added
from every vertex g(i, j, k) to vertex g(i, j, k − 1) for k = 2, 3, . . . , hi,j .

– The edges in Ead: An edge of weight +∞ is put in Ead from the source s to
the base vertex of each pillar. Meanwhile, an edge of weight +∞ is added
from the top vertex of each pillar to the sink t.

Hence, the edge set E of G is Evt ∪ Ehz ∪ Eq ∪ Er ∪ Emo ∪ Ead. We thus
complete the construction of the multi-pillar graph G.

2.2 Computing an Optimal Matrix Orthogonal Decomposition

The graph G thus constructed allows us to find the optimal matrix orthogonal
decomposition for the given IM matrix A, by computing a minimum-weight
s-t cut in G. In order to do that, below we prove that following facts: (1) Any
valid s-t cut C (i.e., the total edge weight w(C) of C is finite) defines a feasible
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decomposition of A (i.e., A = λ · Q + R), such that CH(Q) + CV (R) = w(C);
(2) any feasible decomposition of A = λ · Q + R specifies a valid s-t cut C in G,
such that w(C) = CH(Q) + CV (R). Consequently, a valid s-t cut in G with the
minimum total edge weight can be used to specify an optimal matrix orthogonal
decomposition of A.

We first argue that any valid s-t cut in G corresponds to a feasible decomposition
of A and any feasible decomposition of A corresponds to a valid s-t cut in G.

We have these two obvious observations:

Observation 1. For a valid s-t cut C = (S, S̄) in G, the base vertices of all
pillars are included in the source set S and the all top vertices of pillars are
included in the sink set S̄.

Observation 2. For a valid s-t cut C = (S, S̄) in G, if a vertex g(i, j, k) ∈
Col(i, j) is in the source set S, each vertex g(i, j, k′) with k′ < k is also in S;
if a vertex g(i, j, k) ∈ Col(i, j) is in the sink set S̄, every vertex g(i, j, k′) with
k′ > k is also in the sink set S̄.

Thus, we can define a matrix D = (di,j)m×n, di,j ∈ Z
+, 1 ≤ di,j ≤ hi,j − 1

to describe a valid s-t cut C = (S, S̄) in G, such that for each pillar Col(i, j),
S ∩ Col(i, j) = {g(i, j, k) | k = 1, 2, . . . di,j} and S̄ ∩ Col(i, j) = {g(i, j, k) | k =
di,j +1, di,j +2, . . . hi,j}. Then, a feasible decomposition of A, with A = λ ·Q+R,
can be defined, as follows. For every pair (i, j) (1 ≤ i ≤ m and 1 ≤ j ≤ n),
qi,j = di,j − 1 (Note that ri,j is uniquely defined by qi,j).

On the other hand, given a feasible decomposition A = λ · Q + R, a valid s-t
cut in G can be specified by letting di,j = qi,j +1 for every pair (i, j) ∈ Γ . Hence,
the following lemma holds.

Lemma 1. Any valid s-t cut in G has a one-to-one correspondence to a feasible
decomposition of the IM matrix A.

Next, we show that the total edge weight w(C) of C equals to the complexity of
the decomposition.

From Observations 1 and 2, edges in Emo or in Ead cannot be in C. We thus
only need to consider edges in Evt, Ehz, Eq, and Er. Actually, we are able to
show that the total edge weight of the intersection of C with Evt, Ehz, Eq, and
Er, equals to

∑n
j=1

∑m
i=2 max(0, ri,j − ri−1,j),

∑m
i=1

∑n
j=2 max(0, qi,j − qi,j−1),∑m

i=1 qi,1, and
∑n

j=1 r1,j , respectively.

Lemma 2. For a valid s-t cut C = (S, S̄) in G, the total edge weight of C ∩ Evt

equals to
∑n

j=1
∑m

i=2 max(0, ri,j − ri−1,j).

Proof. In the construction of the edge set Evt, all edges are added between two
adjacent pillars on the same column of Γ , we thus can first consider the edges
that are between pillars Col(i, j) and Col(i + 1, j), and sum on the whole grid.

Recall our construction scheme and the constraint of range of k (the starting
vertex must be in the source set and the ending vertex must be in the sink set),
the number of lower edges in the cut C is,
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max
{

0, min
{

hi+1,j − 1 − �ai+1,j − ai,j

λ
�, qi,j + 1

}

− max
{

2, qi+1,j + 2 − �ai+1,j − ai,j

λ
�
}

+ 1
}

. (2)

For the upper edges between Col(i, j) and Col(i+1, j), in a similar way, we can
calculate that the number of such edges in the cut C is

max
{

0, min
{

hi+1,j − 1 − �ai+1,j − ai,j

λ
�, qi,j + 1

}

− max
{

1, qi+1,j + 1 − �ai+1,j − ai,j

λ
�
}

+ 1
}

. (3)

The number of the upper-base and lower-base edges between Col(i, j) and
Col(i + 1, j) that are in the cut C is

max(�ai+1,j − ai,j

λ
� − qi+1,j , 0). (4)

When 0 ≤ ai+1,j − ai,j < λ or �ai+1,j−ai,j

λ � = 0, number of edges in equation
(2), (3), and (4) can be reduced to max(0, qi,j − qi+1,j), max(0, qi,j − qi+1,j + 1),
and 0. Thus the total weight of these edges can be calculated as max(ri+1,j −
ri,j , 0).

Fig. 3. Examples illustrating the proof of Lemma 2. (a) An example with
�ai+1,j−ai,j

λ
� < 0, wherein ai,j = 9, ai+1,j = 7, qi,j = 2, qi+1,j = 0, and λ = 3. (b)

Increasing ai+1,j to 10 and qi+1,j to 1, ri,j will not be changed, neither are the edges
across the cut. (c) An example with �ai+1,j−ai,j

λ
� > 0, wherein ai,j = 9, ai+1,j = 13,

qi,j = 2, qi+1,j = 0, and λ = 3. (d) Decreasing ai+1,j to 10 and keeping qi+1,j un-
changed, ri+1,j is decreased by 3, but an edge of weight 3 can counteract this change.

When �ai+1,j−ai,j

λ � > 0, we can decrease ai+1,j by λ�ai+1,j−ai,j

λ � and qi+1,j by

min
{
qi+1,j , �ai+1,j−ai,j

λ �
}

(to make sure that q′i+1,j ≥ 0) to a′
i+1,j and q′i+1,j ,

respectively. Observe that the case for qi+1,j ≥ �ai+1,j−ai,j

λ � is the same as the
case for �ai+1,j−ai,j

λ � < 0. However, if qi+1,j < �ai+1,j−ai,j

λ �, the new r′i+1,j =
a′

i+1,j −λq′i+1,j will be (�ai+1,j−ai,j

λ �− qi+1,j)×λ less than the actual ri+1,j . The

term max
{

�ai+1,j−ai,j

λ � − qi+1,j , 0
}

× λ can then counteract the change. Hence,
in this case, we again have the total weight of the edges in the intersection of the
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s-t cut C and the edges between Col(i, j) and Col(i+1, j), is max(ri+1,j −ri,j , 0).
Figure 3 (c) and (d) illustrate the essential idea using an example.

When �ai+1,j−ai,j

λ � < 0, the situation is similar and Figure 3 (a) and (b) show
an example to illustrate the idea.

Taking all the above possibilities into account, we conclude that the total
weight of the edges in the intersection of the s-t cut C and the edges between
Col(i, j) and Col(i + 1, j), is max(ri+1,j − ri,j , 0).

By considering all pairs of adjacent pillars on the same columns of Γ , we have
w(C ∩ Evt) =

∑n
j=1

∑m
i=2 max(0, ri,j − ri−1,j). Thus, Lemma 2 follows. �

Using a similar argument as for Lemma 2, we have the following lemmas.

Lemma 3. For a valid s-t cut C = (S, S̄) in G, the total edge weight of C ∩Ehz

equals to
∑m

i=1
∑n

j=2 max(0, qi,j − qi,j−1).

Lemma 4. For a valid s-t cut C = (S, S̄) in G, the total edge weight of C ∩ Eq

equals to
∑m

i=1 qi,1.

Lemma 5. For a valid s-t cut C = (S, S̄) in G, the total edge weight of C ∩ Er

equals to
∑n

j=1 r1,j.

Putting Lemmas 2 - 5 all together, we have the following fact.

Lemma 6. For any valid s-t cut C in G and its specified decomposition of A,
with A = λ · Q + R, we have w(C) = CH(Q) + CV (R).

From Lemmas 1 and 6, an minimum-weight s-t C∗ in G can be used to define
an optimal matrix orthogonal decomposition of A, with A = λ · Q∗ + R∗, such
that CH(Q∗) + CV (R∗) is minimized. Note that |V | = O(mn�H

λ �) and |E| =
O(mn�H

λ �), where H is the largest intensity level in the IM matrix A. Denote by
T (n′, m′) the time for finding a minimum s-t cut in an edge-weighted directed
graph with O(n′) vertices and O(m′) edge. We have our main result.

Theorem 3. The MOD problem can be solved in T (mn�H
λ �, mn�H

λ �) time.

3 Experiment Results

To evaluate our algorithm, we performed some statistical studies using 1000
randomly generated 15 × 15 IM matrices each with intensity levels range from
4 to 64 in powers of 2. The number of MLC-apertures are computed using Xia
and Verhey’s algorithm [18] without considering interleaf motion constraint.

Table 1 shows percentage of IMs getting improved and the average results
(both beam-on time and number of MLC-apertures) before and after performing
our decomposition method (the average is calculated based only on those IMs
getting improved). We observed that our MOD algorithm generated as much as
38.1% less MLC-apertures and 33.3% less beam-on time than single direction
delivery.



164 X. Dou et al.

Table 1. The average beam-on time and the number of MLC-apertures

# of MLC-apertures beam-on time
%improved avg before avg after %improved avg before avg after

4 9% 5.98±0.60 5.78±0.44 25% 7.75±0.99 7.32±0.80
8 24% 9.07±0.64 8.46±0.66 66% 17.09±1.96 15.47±1.56
16 25% 12.04±0.71 11.44±0.58 73% 35.33±4.27 32.05±3.95
32 45% 14.91±0.85 14.20±0.69 81% 69.71±8.93 63.41±6.46
64 54% 18.16±0.94 17.11±0.72 94% 144.15±18.23 129.04±13.08

We have also experimented with some real medical data sets available to us.
77% IMs that we tested on got improved number of MLC-apertures. Our MOD
algorithm produced as much as 27.3% less MLC-apertures with an average of
13.1% comparing with the SLS method using a single direction for delivery.

The experiments are performed on a Pentium-D 2.8GHz computer with 3.5GB
of memory. We used a program provided by Matlab to compute the minimum
s-t cut in a graph, and expected to have a much faster execution time by im-
plementing the minimum cut algorithm using C. The average execution time of
decomposition is shown in Table 2. Our experiments on randomly generated IMs
and on the clinical data demonstrated the efficiency of our MOD algorithm. Al-
though the worst cast running time of our MOD algorithm is pseudo-polynomial
with respect to the maximum intensity level H of the IM matrix, its practical
execution time on real medical data is expected to be quite short, since on the
medical data sets used in current clinical treatments, the maximum intensity
level of an IM matrix is rarely larger than 100 and is mostly about tens.

Table 2. Execution Times (in seconds)

Maximum intensity Size 10 × 10 Size 15 × 15
level (H) λ = 1 λ = �

√
H� λ = 1 λ = �

√
H�

4 0.3125 0.1955 0.9925 0.6330
8 0.6090 0.3360 2.2420 1.2815
16 1.6570 0.4135 5.7425 1.3360
32 5.1560 0.7265 19.1880 2.6635
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