
Lower Bounds and Parameterized Approach
for Longest Common Subsequence

Xiuzhen Huang

Department of Computer Science,
Arkansas State University,

P.O. Box 9, State University,
Arkansas 72467, USA

xzhuang@csm.astate.edu

Abstract. In this paper, different parameterized versions of the
longest common subsequence (LCS) problem are extensively investi-
gated and computational lower bound results are derived based on cur-
rent research progress in parameterized computation. For example, with
the number of sequences as the parameter k, the problem is unlikely to
be solvable in time f(k)no(k), where n is the length of each sequence
and f is any recursive function. The lower bound result is asymptot-
ically tight in consideration of the dynamic programming approach of
time O(nk). Computational lower bounds for polynomial-time approx-
imation schemes (PTAS) for the LCS problem are also derived. It is
shown that the LCS problem has no PTAS of time f(1/ε)no(1/ε) for any
recursive function f , unless all SNP problems are solvable in subexpo-
nential time. Compared with former results on this problem, this result
has its significance. Finally a parameterized approach for the LCS prob-
lem is discussed, which is more efficient than the dynamic programming
approach, especially when applied to large scale sequences.

1 Introduction

A string s is a subsequence of a string s′ if s can be obtained from s′ by deleting
some characters in s′. For example, “ac” is a subsequence of “atcgt”. Given a
set of strings over an alphabet Σ, the longest common subsequence prob-
lem is to find a common subsequence that has the maximum length. The al-
phabet Σ may be of fixed size or of unbounded size. The longest common

subsequence (LCS) problem is a well-known optimization problem because
of its applications, especially in bioinformatics. The fixed alphabet version of
the problem is of particular interest considering the importance of sequence
comparison (e.g. multiple sequence alignment) in the fixed size alphabet world
of DNA and protein sequences. (Note that in computational biology, DNA se-
quences are in a four-letter alphabet, and protein sequences are in a twenty-letter
alphabet).

D.Z. Chen and D.T. Lee (Eds.): COCOON 2006, LNCS 4112, pp. 136–145, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Lower Bounds and Parameterized Approach for LCS 137

We study the longest common subsequence problem in parameterized
computation in this paper. We first give a brief review on parameterized com-
plexity theory and some recent progress on parameterized intractability. A pa-
rameterized problem Q is a decision problem consisting of instances of the form
(x, k), where the integer k ≥ 0 is called the parameter. The parameterized prob-
lem Q is fixed-parameter tractable [15] if it can be solved in time f(k)|x|O(1),
where f is a recursive function1. Certain NP-hard parameterized problems, such
as vertex cover, are fixed-parameter tractable, and hence can be solved prac-
tically for small parameter values [10]. On the other hand, the inherent com-
putational difficulty for solving many other NP-hard parameterized problems
with even small parameter values has motivated the theory of fixed-parameter
intractability [15]. The W -hierarchy

⋃
t≥1 W [t] has been introduced to charac-

terize the inherent level of intractability for parameterized problems. Examples
of W [1]-hard problems include problems such as clique and dominating set.
It has become commonly accepted that no W [1]-hard problem can be solved in
time f(k)nO(1) for any function f , i.e., W [1] �= FPT. W [1]-hardness has served
as the hypothesis for fixed-parameter intractability.

Based on the W[1]-hardness of the clique algorithm, computational intrac-
tability of problems in computational biology has been derived [2,3,16,17,23,25].
For example, in [25], the author point out that “unless an unlikely collapse in
the parameterized hierarchy occurs, this (This refers to the results proved in
[25] that the problems longest common subsequence and shortest com-

mon supersequence are W [1]-hard) rules out the existence of exact algorithms
with running time f(k)nO(1) (i.e., exponential only in k) for those problems.
This does not mean that there are no algorithms with much better asymptotic
time-complexity than the known O(nk) algorithms based on dynamic program-
ming, e.g., algorithms with running time n

√
k are not deemed impossible by our

results.”
Recent investigation in [7,8] has derived stronger computational lower bounds

for well-known NP-hard parameterized problems. For example, for the clique

problem, which asks if a given graph of n vertices has a clique of size k, it is proved
that unless an unlikely collapse occurs in parameterized complexity theory, the
problem is not solvable in time f(k)no(k) for any function f . Note that this
lower bound is asymptotically tight in the sense that the trivial algorithm that
enumerates all subsets of k vertices in a given graph to test the existence of
a clique of size k runs in time O(nk). Based on the hardness of the clique

problem, lower bound results for a number of computational biology problems
have been derived [18,9].

In this paper, we extensively investigate different parameterized versions of
the longest common subsequence problem. Our results for the problem
strengthen the results in the literature (such as [25]) significantly and advance
our understanding on the complexity of the problems.

1 In this paper, we always assume that complexity functions are “nice” with both
domain and range being non-negative integers and the values of the functions and
their inverses can be easily computed.

138 X. Huang

2 Terminologies in Approximation

We provide some basic terminologies for studying approximation algorithms and
its relationship with parameterized complexity. For a reference of the theory of
approximation, the readers are referred to [1].

An NP optimization problem Q is a 4-tuple (IQ, SQ, fQ, optQ), where
1. IQ is the set of input instances. It is recognizable in polynomial time;
2. For each instance x ∈ IQ, SQ(x) is the set of feasible solutions for x, which

is defined by a polynomial p and a polynomial time computable predicate π (p
and π only depend on Q) as SQ(x) = {y : |y| ≤ p(|x|) and π(x, y)};

3. fQ(x, y) is the objective function mapping a pair x ∈ IQ and y ∈ SQ(x) to
a non-negative integer. The function fQ is computable in polynomial time;

4. optQ ∈ {max, min}. Q is called a maximization problem if optQ = max, and
a minimization problem if optQ = min.

An optimal solution y0 for an instance x ∈ IQ is a feasible solution in SQ(x)
such that fQ(x, y0) = optQ{fQ(x, z) | z ∈ SQ(x)}. We will denote by optQ(x)
the value optQ{fQ(x, z) | z ∈ SQ(x)}.

An algorithm A is an approximation algorithm for an NP optimization prob-
lem Q = (IQ, SQ, fQ, optQ) if, for each input instance x in IQ, A returns a feasible
solution yA(x) in SQ(x). The solution yA(x) has an approximation ratio r(n) if
it satisfies the following condition:

optQ(x)/fQ(x, yA(x)) ≤ r(|x|) if Q is a maximization problem
fQ(x, yA(x))/optQ(x) ≤ r(|x|) if Q is a minimization problem

The approximation algorithm A has an approximation ratio r(n) if for any in-
stance x in IQ, the solution yA(x) constructed by the algorithm A has an ap-
proximation ratio bounded by r(|x|).

Definition 1. An NP optimization problem Q has a polynomial-time approxi-
mation scheme (PTAS) if there is an algorithm AQ that takes a pair (x, ε) as
input, where x is an instance of Q and ε > 0 is a real number, and returns a
feasible solution y for x such that the approximation ratio of the solution y is
bounded by 1+ ε, and for each fixed ε > 0, the running time of the algorithm AQ

is bounded by a polynomial of |x|.

An NP optimization problem Q can be parameterized in a natural way as follows.
The following definition offers the possibility to study the relationship between
the approximability and the parameterized complexity of NP optimization prob-
lems.

Definition 2. Let Q = (IQ, SQ, fQ, optQ) be an NP optimization problem. The
parameterized version of Q is defined as follows:

(1) If Q is a maximization problem, then the parameterized version of Q is
defined as Q≥ = {(x, k) | x ∈ IQ ∧ optQ(x) ≥ k};

(2) If Q is a minimization problem, then the parameterized version of Q is
defined as Q≤ = {(x, k) | x ∈ IQ ∧ optQ(x) ≤ k}.

Lower Bounds and Parameterized Approach for LCS 139

3 Lower Bound Results for LCS

In the following we derive the lower bounds for the exact algorithms for the
parameterized versions of the longest common subsequence (LCS) problem.
We also extend the techniques and derive the lower bounds for the approximation
algorithms for the optimization versions of the problem.

3.1 Formal Problem Definitions

Several parameterized versions of the LCS problem are discussed in [2,3,17,25].
We present the four parameterized versions of the problem.

The LCS-k problem:
Instance: a set S = {s1, s2, ..., sk} of strings over an alphabet Σ, and an
integer λ > 0, where the alphabet Σ is of unbounded size.
Parameter: k.
Question: is there a string s ∈ Σ∗ of length λ, which is a subsequence of
each string in S?
The FLCS-k problem:
Instance: a set S = {s1, s2, ..., sk} of strings over an alphabet Σ, and an
integer λ > 0, where the alphabet Σ is of fixed size.
Parameter: k.
Question: is there a string s ∈ Σ∗ of length λ, which is a subsequence of
each string in S?
The LCS-λ problem:
Instance: a set S = {s1, s2, ..., sk} of strings over an alphabet Σ, and an
integer λ > 0, where the alphabet Σ is of unbounded size.
Parameter: λ.
Question: is there a string s ∈ Σ∗ of length λ, which is a subsequence of
each string in S?
The FLCS-λ problem:
Instance: a set S = {s1, s2, ..., sk} of strings over an alphabet Σ, and an
integer λ > 0, where the alphabet Σ is of fixed size.
Parameter: λ.
Question: is there a string s ∈ Σ∗ of length λ, which is a subsequence of
each string in S?

The following results on the parameterized complexity of these parameterized
problems are known:

– The LCS-k problem is W[t]-hard for t ≥ 1 [3].
– The FLCS-k problem is W[1]-hard [25].
– The LCS-λ problem is W[2]-hard [3].
– The FLCS-λ problem is in FPT [25].

In particular, we are interested in the FLCS-k problem and the LCS-λ problem,
which we discuss in the following sections.

140 X. Huang

3.2 FLCS-k

In [25], the FLCS-k problem is proved to be W [1]-hard. Unless W [1] = FPT,
for the FLCS-k problem, the W [1]-hardness result rules out the existence of
algorithms of time f(k)nO(1) for any function f , where k is the number of strings.
In the conclusion of [25], the author pointed out that the W [1]-hardness of
FLCS-k does not exclude the possibility of having an algorithm of time, say
O(n

√
k), which is much more efficient than the O(nk) time dynamic programming

algorithm for the FLCS-k problem.
However, it is proved that

Theorem 1 ([9]). The FLCS-k problem has no algorithm of time f(k)no(k) for
any function f , unless all SNP problems are solvable in subexponential time.

Interested readers are referred to [9,18] for a detailed proof of this result.
The class SNP introduced by Papadimitriou and Yannakakis [22] contains

many well-known NP-hard problems including, for any fixed integer q ≥ 3, cnf

q-sat, q-colorability, q-set cover, and vertex cover, clique, and inde-

pendent set [19]. It is commonly believed that it is unlikely that all problems
in SNP are solvable in subexponential time2.

We define an optimization problem FLCS-kopt and its corresponding param-
eterized problem FLCS’-k.

The FLCS-kopt problem:
given a set S = {s1, s2, ..., sl} of strings over a fixed alphabet Σ, and an
integer λ > 0, try to find a string s ∈ Σ∗ of length λ maximizing the
size of a subset S′ of S, such that s is a common subsequence of all the
strings in S′.

By our definition, the parameterized version of the optimization problem
FLCS-kopt is

The FLCS’-k problem:
Instance: given a set S = {s1, s2, ..., sl} of strings over a fixed alphabet
Σ, and an integer λ > 0.
Parameter: an integer k, 0 < k ≤ l.
Question: is there a string s ∈ Σ∗ of length λ such that s is a common
subsequence of at least k strings in the set S?

From the definitions of the two parameterized problems FLCS-k and FLCS’-
k, we can see that FLCS-k is a special case of FLCS’-k. There is a trivial linear
fpt-reduction from FLCS-k to FLCS’-k: given an instance I1 of FLCS-k, I1 =
(S1 = {s1, s2, ..., sk}, λ and the parameter k), we build an instance I2 of FLCS’-
k, I2 = (S2 = {s1, s2, ..., sk}, λ and the parameter k), which asks if there is a
string s ∈ Σ∗ of length λ that is a common subsequence of at least k strings
2 A recent result showed the equivalence between the statement that all SNP problems

are solvable in subexponential time, and the collapse of a parameterized class called
Mini[1] to FPT [14].

Lower Bounds and Parameterized Approach for LCS 141

(i.e., all strings) in the set S2. Obviously, the instance I2 is a yes-instance for the
problem FLCS’-k if and only if the instance I1 is a yes-instance for the problem
FLCS-k, .

Theorem 2 ([8,9]). Suppose that a problem Q1 has no algorithm of time
f(k)no(k) for any function f , and that Q1 is linear fpt-reducible to Q2. Then
the problem Q2 has no algorithm of time f ′(k)no(k) for any function f ′.

By the above linear fpt-reduction, Theorem 1 and Theorem 2, we have

Lemma 1. The FLCS’-k problem has no algorithm of time f(k)no(k) for any
function f , unless all SNP problems are solvable in subexponential time.

Theorem 3 ([8,9]). Let Q be an NP optimization problem. If the parameterized
version of Q has no algorithm of time f(k)no(k), then Q has no PTAS of running
time f(1/ε)no(1/ε) for any function f , unless all problems in SNP are solvable
in subexponential time.

Therefore, by Lemma 1 and Theorem 3, we have

Theorem 4. The FLCS-kopt problem has no PTAS of time f(1/ε)no(1/ε) for
any function f , unless all SNP problems are solvable in subexponential time.

3.3 LCS-λ

The LCS-λ problem is proved to be W [2]-hard in [2,3]. Therefore, unless W [2]
= FPT, for the LCS-λ problem, there is no algorithm of time f(λ)nO(1) for any
function f . We prove

Theorem 5. The LCS-λ problem has no algorithm of time f(λ)no(λ) for any
function f , unless all SNP problems are solvable in subexponential time.

Proof. We first give an linear fpt-reduction from dominating set to the LCS-λ
problem. Based on the linear fpt-reduction, the lower bound result for domi-

nating set [8] and Theorem 2, the theorem is proved.
The fpt-reduction from dominating set to the LCS-λ problem in [3] for

proving the LCS-λ problem is W [2]-hard is essentially an linear fpt-reduction.
Given a graph G = (V, E), |V | = n, and a parameter λ, and suppose an

ascending order of the vertices {u1, u2, ..., un} of G, we will construct a set S of
strings such that they have a common subsequence of length λ if and only if G has
a dominating set of size λ. The alphabet is Σ = {a[i, j] : 1 ≤ i ≤ λ, 1 ≤ j ≤ n}.
We use the notations: Σi = {a[i, j] : 1 ≤ j ≤ n}, Σ[t, u] = {a[i, j] : (i �= t) or
(i = t and j ∈ N [u])}.

If Γ ⊆ Σ, let (↑ Γ) be the string of length |Γ | which consists of one occurrence
of each symbol in Γ in ascending order, and let (↓ Γ) be the string of length |Γ |
which consists of one occurrence of each symbol in Γ in descending order.

The set S consists of the following strings.
Control strings:

142 X. Huang

X1 = Πλ
i=1(↑ Σi),

X2 = Πλ
i=1(↓ Σi).

Check strings: For u = 1, ..., n:
Xu = Πλ

i=1(↑ Σ[i, u]),
We observe that any sequence C of length λ that is a common subsequence of

both control strings must consist of exactly one symbol from each Σi in ascending
order. For such a sequence C we may associate the set Vc of vertices represented
by C: if C = a[1, u1]...a[λ, uλ], then Vc = {ui : 1 ≤ i ≤ λ} = {x : ∃i a[i, x] ∈ C}.

We will prove that if C is also a subsequence of the check strings {Xu}, then
Vc is a dominating set in G. Let u ∈ V (G) and fix a substring Cu of Xu, with
Cu = C. We have the fact [3]:

Fact. For some index j, 1 ≤ j ≤ λ, the symbol a[j, uj] occurs in the
(↑ Σ[j, u]) portion of Xu, thus uj ∈ N [u] by the definition of Σ[j, u].

By the above fact, if C is a subsequence of the control and check strings, then
every vertex of G has a neighbor in Vc, that is, Vc is a dominating set in G.

On the other hand, if D = {u1, .., uλ} is a dominating set in G with u1 <
... < uλ, then the sequence C = a[1, u1]...a[λ, uλ] is easily seen to be a common
subsequence of the strings in S.

The reduction from dominating set to LCS-λ is an linear fpt-reduction.
�

Formally, we give the definition of the optimization problem LCS-λopt.

The LCS-λopt problem:
given a set S = {s1, s2, ..., sk} of strings over an alphabet Σ of unbounded
size, try to find a string s ∈ Σ∗ of maximum length such that s is a
common subsequence of all the strings in S.

By our definition, the parameterized version of the optimization problem LCS-
λopt is

The LCS’-λ problem:
Instance: given a set S = {s1, s2, ..., sk} of strings over an alphabet Σ of
unbounded size.
Parameter: an integer λ > 0.
Question: is there a string s ∈ Σ∗ of length at least λ such that s is a
common subsequence of all strings in the set S?

Since that there is a string s of length at least λ such that s is a common
subsequence of all strings in S is equivalent to that there is a string s of length
exactly λ such that s is a common subsequence of all strings in S, the two
problems LCS-λ and LCS’-λ are equivalent. By Theorem 5, the problem LCS’-λ
has no algorithm of time f(λ)no(λ) for any function f , unless all SNP problems
are solvable in subexponential time. This result plus Theorem 3 gives us the
following theorem:

Theorem 6. The LCS-λopt problem has no PTAS of time f(1/ε)no(1/ε) for any
function f , unless all SNP problems are solvable in subexponential time.

Lower Bounds and Parameterized Approach for LCS 143

In [20], the authors showed that the LCS-λopt problem is inherently hard to
approximate in the worst case. In particular, they proved that there exists a
constant δ > 0 such that, the LCS-λopt has no polynomial time approximation
algorithm with performance ratio nδ, unless P = NP. It is obvious to see that
this lower bound holds only when the objective function value λ is larger than nd

for a constant d > 0. In particular, the lower bound result in [20] does not apply
to the case when the value of λ is small. For example, in case λ = nδ, a trivial
common subsequence of length one is a ratio-nδ approximation solution. This
implies that for the LCS problem, when the length λ of the common subsequence
is a small function of n, no strong lower bound result as that of [20] has been
derived.

On the other hand, our lower bound result in Theorem 6 for the LCS problem
can be applied when the length of the common subsequence λ is any small
function of the length n of each string.

4 Parameterized Approach for LCS

Given k sequences with each sequence of length n, we discuss in this section a
parameterized approach, which choose a proper parameter, the diagonal band
width b. The time complexity of the approach is O(b ∗ n(k−1)).

The parameterized approach for finding the longest common subsequence of
two given sequences is of time O(bn), where n is the length of the given se-
quence, b is the parameter, the value of the diagonal band width. This is a
great improvement over the well known dynamic programming approach of time
O(n2). Especially when the length of the given sequence n is very large and the
two given sequences are very similar, the parameterized approach with a small
value of the diagonal band width b can find the optimal solution more efficiently.

The banded alignment idea has been investigated in [6], but the parameter-
ized approach here incorporates the idea of how to guarantee to find the optimal
solution, which is discussed in [26]. To illustrate the basic idea of the parame-
terized approach, consider the case of two given sequences s1 and s2 with the
same length n. The well known dynamic programming approach for solving the
LCS problem is to build a two dimensional table where each entry represents
the length of the longest common subsequence between the corresponding prefix
of s1 and the corresponding prefix of s2 [11]. There are n2 entries of the two di-
mensional table. Consider a diagonal band with width b of entries starting from
the middle diagonal. The basic idea of the parameterized approach is to ignore
entries outside the diagonal band. If an alignment goes outside of the diagonal
band with width b, it is easy to see that the corresponding longest common sub-
sequence cannot have a length of more than n − b. This is because the search
loses one pair of match each time it moves one entry away from the diagonal.
Therefore, if the search stays within the diagonal band with width b and finally
gets a common subsequence of length at least n − b, it is guaranteed that this
solution is optimal. That is, it finds the longest common subsequence of the two
given sequences s1 and s2. Since this parameterized approach needs to fill up a

144 X. Huang

band with width b of the two dimensional table, it takes linear time O(bn), with
b as the parameter.

Our experiment results show the efficiency of the parameterized approach.
Especially when the two given sequences are very similar, one could pick a rel-
atively small value for the band b in order to achieve the optimal solution, i.e.,
the longest common subsequences of the given two sequences.

5 Summary

In this paper computational lower bounds on the running time of the algorithms
for different parameterized versions of the longest common subsequence

(LCS) problem are extensively investigated. It is proved that the problem FLCS-
k is unlikely to have an algorithm of time f(k)no(k), where n is the length of
the sequence, k is the total number of sequences and f is any recursive func-
tion. In consideration of the known upper bound of O(nk), we point out that
the lower bound result is asymptotically tight. Computational lower bounds for
polynomial-time approximation schemes (PTAS) for the optimization versions of
the LCS problem are also derived. We then discuss a parameterized approach for
the problem. Compared with the well known dynamic programming approach,
the parameterized approach is much more efficient, especially when it is applied
to find the longest common subsequence of very large scale sequences, which is
common in sequence comparisons in bioinformatics.

References

1. G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela, and
M. Protasi, Complexity and Approximation, Combinatorial Optimization Problems
and Their Approximability Properties, New York: Springer-Verlag, (1999).

2. H. L. Bodlaender, R. G. Downey, M. R. Fellows, M. T. Hallett, and H. T. Ware-
ham, Parameterized complexity analysis in computational biology, Computer Ap-
plications in the Biosciences, vol. 11, pp. 49-57, (1995).

3. H. L. Bodlaender, R. G. Downey, M. R. Fellows, and H. T. Wareham, The param-
eterized complexity of sequence alignment and consensus, Theoretical Computer
Science, vol. 147, pp. 31-54, (1995).

4. L. Cai and J. Chen, On fixed-parameter tractability and approximability of NP
optimization problems, Journal Of Computer and System Sciences, vol. 54, pp.
465-474, (1997).

5. M. Cesati and L. Trevisan, On the efficiency of polynomial time approximation
schemes, Information Processing Letters, vol. 64, pp. 165-171, (1997).

6. K. M. Chao, W. R. Pearson, and W. Miller, Aligning two sequences within a
specific diagonal band, Computer Applications in the Biosciences, vol. 8, pp.
481-487, (1992).

7. J. Chen, B. Chor, M. Fellows, X. Huang, D. Juedes, I. Kanj, and G. Xia, Tight
lower bounds for parameterized NP-hard problems, Information and Computation,
vol. 201, pp. 216-231, (2005).

Lower Bounds and Parameterized Approach for LCS 145

8. J. Chen, X. Huang, I. Kanj, and G. Xia, Linear FPT reductions and computational
lower bounds, in Proc. of the 36th ACM Symposium on Theory of Computing, pp.
212-221, (2004).

9. J. Chen, X. Huang, I Kanj and G. Xia, W-hardness linear FPT-reductions: struc-
tural properties and further applications, in proceedings of the Eleventh Interna-
tional Computing and Combinatorics Conference (COCOON 2005), Lecture Notes
in Computer Science, vol. 3595, pp. 975-984, (2005).

10. J. Chen, I. Kanj, and W. Jia, Vertex Cover: Further observations and further
improvements, Journal of Algorithms, vol. 41, pp. 280-301, (2001).

11. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algo-
rithms, Second Edition, MIT Press, (2001).

12. X. Deng, G. Li, Z. Li, B. Ma, and L. Wang, A PTAS for distinguishing (sub)string
selection, Lecture Notes in Computer Science, vol. 2380, pp. 740-751, (2002).

13. X. Deng, G. Li, Z. Li, B. Ma, and L. Wang, Genetic design of drugs without
side-effects, SIAM Journal on Computing, vol. 32, pp. 1073-1090, (2003).

14. R. G. Downey, V. Estivill-Castro, M. R. Fellows, E. Prieto, and F. A. Rosamond,
Cutting Up is Hard to Do: the Parameterized Complexity of k-Cut and Related
Problems, Electr. Notes Theor. Comput. Sci. 78: (2003).

15. R. Downey and M. Fellows, Parameterized Complexity, Springer, New York, (1999).
16. M. Fellows, J. Gramm, and R. Niedermeier, Parameterized intractability of motif

search problems, Lecture Notes in Computer Science, vol. 2285, pp. 262-273, (2002).
17. M. Hallett, An Integrated Complexity Analysi of Problems for Computational Bi-

ology, Ph.D. Thesis, University of Victoria, (1996).
18. X. Huang, Parameterized Complexity and Polynomial-time Approximation

Schemes, Ph.D. Dissertation, Texas A&M University, (2004).
19. R. Impagliazzo, R. Paturi, and F. Zane, Which problems have strongly exponen-

tial complexity? Journal Of Computer and System Sciences, vol. 63, pp. 512-530,
(2001).

20. T. Jiang and M. Li, On the approximation of shortest common supersequence and
longest common subsequences, SIAM Journal on Computing, vol. 24, pp. 1112-
1139, (1995).

21. M. Li, B. Ma, and L. Wang, On the closest string and substring problems, Jounal
of the ACM, vol. 49, pp. 157-171, (2002).

22. C. Papadimitriou and M. Yannakakis, Optimization, approximation, and complex-
ity classes, Journal Of Computer and System Sciences, vol. 43, pp. 425-440, (1991).

23. C. Papadimitriou and M. Yannakakis, On limited nondeterminism and the com-
plexity of VC dimension, Journal Of Computer and System Sciences, vol. 53,
161-170, (1996).

24. C. Papadimitriou and M. Yannakakis, On the complexity of database queries, Jour-
nal Of Computer and System Sciences, vol. 58, pp. 407-427, (1999).

25. K. Pietrzak, On the parameterized complexity of the fixed alphabet shortest com-
mon supersequence and longest common subsequence problems, Journal Of Com-
puter and System Sciences, vol. 67, pp. 757-771, (2003).

26. S.-H. Sze, Lectures notes of Special Topics in Computational Biology, Texas A&M
University, (2002).

	Introduction
	Terminologies in Approximation
	Lower Bound Results for LCS
	Formal Problem Definitions
	FLCS-k
	LCS-λ

	Parameterized Approach for LCS
	Summary

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

