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Abstract. This paper considers the quantum query complexity of ε-
biased oracles that return the correct value with probability only 1/2 +
ε. In particular, we show a quantum algorithm to compute N-bit OR
functions with O(

√
N/ε) queries to ε-biased oracles. This improves the

known upper bound of O(
√

N/ε2) and matches the known lower bound;
we answer the conjecture raised by the paper [1] affirmatively. We also
show a quantum algorithm to cope with the situation in which we have no
knowledge about the value of ε. This contrasts with the corresponding
classical situation, where it is almost hopeless to achieve more than a
constant success probability without knowing the value of ε.

1 Introduction

Quantum computation has attracted much attention since Shor’s celebrated
quantum algorithm for factoring large integers [2] and Grover’s quantum search
algorithm [3]. One of the central issues in this research field has been the quan-
tum query complexity, where we are interested in both upper and lower bounds
of a necessary number of oracle calls to solve certain problems [4,5,6]. In these
studies, oracles are assumed to be perfect, i.e., they return the correct value with
certainty.

In the classical case, there have been many studies (e.g., [7]) that discuss
the case of when oracles are imperfect (or often called noisy), i.e., they may
return incorrect answers. In the quantum setting, Høyer et al. [8] proposed an
excellent quantum algorithm, which we call the robust quantum search algorithm
hereafter, to compute the OR function of N values, each of which can be accessed
through a quantum “imperfect” oracle. Their quantum “imperfect” oracle can
be described as follows: When the content of the query register is x (1 ≤ x ≤ N),
the oracle returns a quantum pure state from which we can measure the correct
value of f(x) with a constant probability. This noise model naturally fits into
quantum subroutines with errors. (Note that most existing quantum algorithms
have some errors.) More precisely, their algorithm robustly computes N -bit OR
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functions with O(
√

N) queries to an imperfect oracle, which is only a constant
factor worse than the perfect oracle case. Thus, they claim that their algorithm
does not need a serious overhead to cope with the imperfectness of the oracles.
Their method has been extended to a robust quantum algorithm to output all the
N bits by using O(N) queries [9] by Buhrman et al. This obviously implies that
O(N) queries are enough to compute the parity of the N bits, which contrasts
with the classical Ω(N log N) lower bound given in [7].

It should be noted that, in the classical setting, we do not need an overhead
to compute OR functions with imperfect oracles either, i.e., O(N) queries are
enough to compute N -bit OR functions even if an oracle is imperfect [7]. Never-
theless, the robust quantum search algorithm by Høyer et al. [8] implies that we
can still enjoy the quadratic speed-up of the quantum search when computing
OR functions, even in the imperfect oracle case, i.e., O(

√
N) vs. O(N). How-

ever, this is not true when we consider the probability of getting the correct
value from the imperfect oracles explicitly by using the following model: When
the query register is x, the oracle returns a quantum pure state from which we
can measure the correct value of f(x) with probability 1/2 + εx, where we as-
sume ε ≤ εx for any x and we know the value of ε. In this paper, we call this
imperfect quantum oracle an ε-biased oracle (or a biased oracle for short) by
following the paper [1]. Then, the precise query complexity of the above robust
quantum search algorithm to compute OR functions with an ε-biased oracle can
be rewritten as O(

√
N/ε2), which can also be found in [9]. For the same prob-

lem, we need O(N/ε2) queries in the classical setting since O(1/ε2) instances
of majority voting of the output of an ε-biased oracle is enough to boost the
success probability to some constant value. This means that the above robust
quantum search algorithm does not achieve the quadratic speed-up anymore if
we consider the error probability explicitly.

Adcock et al. [10] first considered the error probability explicitly in the quan-
tum oracles, then Iwama et al. [1] continued to study ε-biased oracles: they
show the lower bound of computing OR is Ω(

√
N/ε) and the matching upper

bound when εx are the same for all x. Unfortunately, this restriction to oracles
obviously cannot be applied in general. Therefore, for the general biased ora-
cles, there have been a gap between the lower and upper bounds although the
paper [1] conjectures that they should match at Θ(

√
N/ε).

Our Contribution. In this paper, we show that the robust quantum search can
be done with O(

√
N/ε) queries. Thus, we answer the conjecture raised by the

paper [1] affirmatively, meaning that we can still enjoy the quantum quadratic
speed-up to compute OR functions even when we consider the error probability
explicitly. The overhead factor of 1/ε2 in the complexity of the original robust
quantum search (i.e., O(

√
N/ε2)) essentially comes from the classical majority

voting in their recursive algorithm. Thus, our basic strategy is to utilize quan-
tum amplitude amplification and estimation [11] instead of majority voting to
boost the success probability to some constant value. This overall strategy is
an extension of the idea in the paper [1], but we carefully perform the quantum
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amplitude amplification and estimation in quantum parallelism with appropriate
accuracy to avoid the above-mentioned restriction to oracles assumed in [1].

In most existing (classical and quantum) algorithms with imperfect oracles, it
is implicitly assumed that we know the value of ε. Otherwise, it seems impossible
to know when we can stop the trial of majority voting with a guarantee of a
more than constant success probability of the whole algorithm. However, we
show that, in the quantum setting, we can construct a robust algorithm even
when ε is unknown. More precisely, we can estimate unknown ε with appropriate
accuracy, which then can be used to construct robust quantum algorithms. Our
estimation algorithm also utilizes quantum amplitude estimation, thus it can
be considered as an interesting application of quantum amplitude amplification,
which seems to be impossible in the classical setting.

2 Preliminaries

In this section we introduce some definitions, and basic algorithms used in this
paper.

The following unitary transformations are used in this paper.

Definition 1. For any integer M ≥ 1, a quantum Fourier transform FM is

defined by FM : |x〉 �−→ 1√
M

M−1∑

y=0

e2πıxy/M |y〉 (0 ≤ x < M).

Definition 2. For any integer M ≥ 1 and any unitary operator U, the operator
ΛM (U) is defined by

|j〉|y〉 �−→
{

|j〉Uj |y〉 (0 ≤ j < M)
|j〉UM |y〉 (j ≥ M).

ΛM is controlled by the first register |j〉 in this case. ΛM (U) uses U for M times.

In this paper, we deal with the following biased oracles.

Definition 3. A quantum oracle of a Boolean function f with bias ε is a unitary
transformation Oε

f or its inverse Oε
f
† such that

Oε
f |x〉|0m−1〉|0〉 = |x〉(αx|wx〉|f(x)〉 + βx|w′

x〉|f(x)〉),

where |αx|2 = 1/2 + εx ≥ 1/2 + ε for any x ∈ [N ]. Let also εmin = min
x

εx.

Note that 0 < ε ≤ εmin ≤ εx ≤ 1/2 for any x. In practice, ε is usually given in
some way and εmin or εx may be unknown. Unless otherwise stated, we discuss
the query complexity with a given biased oracle Oε

f in the rest of the paper.
We can also consider phase flip oracles instead of the above-defined bit flip ora-

cles. A (perfect) phase flip oracle is defined as a map: |x〉|0m−1〉 �−→
(−1)f(x)|x〉|0m−1〉, which is equivalent to the corresponding bit flip oracle in
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the perfect case, since either oracle can be easily simulated by the other ora-
cle with a pair of Hadmard gates. In a biased case, however, the two oracles
cannot always be converted to each other. We need to take care of interference
of the work registers, i.e., |wx〉 and |w′

x〉, which are dealt with carefully in our
algorithm.

Now we briefly introduce a few known quantum algorithms often used in
following sections. In [11], Brassard et al. presented amplitude amplification as
follows.

Theorem 4. Let A be any quantum algorithm that uses no measurements and
χ : Z → {0, 1} be any Boolean function that distinguishes between success or fail
(good or bad). There exists a quantum algorithm that given the initial success
probability p > 0 of A, finds a good solution with certainty using a number of
applications of A and A−1, which is in O( 1√

p ) in the worst case.

Brassard et al. also presented amplitude estimation in [11]. We rewrite it in
terms of phase estimation as follows.

Theorem 5. Let A, χ and p be as in Theorem 4 and θp = sin−1(
√

p) such
that 0 ≤ θp ≤ π/2. There exists a quantum algorithm Est Phase(A, χ, M) that
outputs θ̃p such that |θp − θ̃p| ≤ π

M , with probability at least 8/π2. It uses exactly
M invocations of A and χ, respectively. If θp = 0 then θ̃p = 0 with certainty,
and if θp = π/2 and M is even, then θ̃p = π/2 with certainty.

Our algorithm is based on the idea in [1], which makes use of the amplitude
amplification. We refer interested users to [11] and [1].

3 Computing OR with ε-Biased Oracles

In this section, we assume that we have information about bias rate of the given
biased oracle: a value of ε such that 0 < ε ≤ εmin. Under this assumption,
in Theorem 9 we show that N -bit OR functions can be computed by using
O(

√
N/ε) queries to the given oracle Oε

f . Moreover, when we know εmin, we can
present an optimal algorithm to compute OR with Oε

f . Before describing the
main theorem, we present the following key lemma.

Lemma 6. There exists a quantum algorithm that simulates a single query to
an oracle O

1/6
f by using O(1/ε) queries to Oε

f if we know ε.

To prove the lemma, we replace the given oracle Oε
f with a new oracle Õε

f for
our convenience. The next lemma describes the oracle Õε

f and how to construct
it from Oε

f .

Lemma 7. There exists a quantum oracle Õε
f that consists of one Oε

f and one
Oε

f
† such that for any x ∈ [N ] Õε

f |x, 0m, 0〉 = (−1)f(x)2εx|x, 0m, 0〉 + |x, ψx〉,
where |x, ψx〉 is orthogonal to |x, 0m, 0〉 and its norm is

√
1 − 4εx

2.



120 T. Suzuki et al.

Proof. We can show the construction of Õε
f in a similar way in Lemma 1 in [1].

�	

Now, we describe our approach to Lemma 6. The oracle O
1/6
f is simulated by

the given oracle Oε
f based on the following idea. According to [1], if the query

register |x〉 is not in a superposition, phase flip oracles can be simulated with
sufficiently large probability: by using amplitude estimation through Õε

f , we can
estimate the value of εx, then by using the estimated value and applying ampli-
tude amplification to the state in (7), we can obtain the state (−1)f(x)|x, 0m, 0〉
with high probability. In Lemma 6, we essentially simulate the phase flip oracle
by using the above algorithm in a superposition of |x〉. Note that we convert the
phase flip oracle into the bit flip version in the lemma.

We will present the proof of Lemma 6 after the following lemma, which shows
that amplitude estimation can work in quantum parallelism. Est Phase in The-
orem 5 is straightforwardly extended to Par Est Phase in Lemma 8, whose
proof can be found in [12].

Lemma 8. Let χ : Z → {0, 1} be any Boolean function, and let O be any quan-
tum oracle that uses no measurements such that O|x〉|0〉 = |x〉Ox|0〉 = |x〉|Ψx〉 =
|x〉(|Ψ1

x〉 + |Ψ0
x〉), where a state |Ψx〉 is divided into a good state |Ψ1

x〉 and a bad
state |Ψ0

x〉 by χ. Let sin2(θx) = 〈Ψ1
x |Ψ1

x〉 be the success probability of Ox|0〉 where
0 ≤ θx ≤ π/2. There exists a quantum algorithm Par Est Phase(O, χ, M)

that changes states as follows: |x〉|0〉|0〉 �−→ |x〉 ⊗
M−1∑

j=0

δx,j|vx,j〉|θ̃x,j〉, where

∑

j:|θx−θ̃x,j|≤ π
M

|δx,j |2 ≥ 8
π2 for any x, and |vx,i〉 and |vx,j〉 are mutually orthonor-

mal vectors for any i, j. It uses O and its inverse for O(M) times.

Proof. (of Lemma 6)
We will show a quantum algorithm that changes states as follows: |x〉|0〉|0〉

�−→ |x〉(αx|wx〉|f(x)〉+βx|w′
x〉|f(x)〉), where |αx|2 ≥ 2/3 for any x, using O(1/ε)

queries to Oε
f . The algorithm performs amplitude amplification following ampli-

tude estimation in a superposition of |x〉.
At first, we use amplitude estimation in parallel to estimate εx or to know how

many times the following amplitude amplification procedures should be repeated.
Let sin θ = 2ε and sin θx = 2εx such that 0 < θ, θx ≤ π/2. Note that Θ(θ) = Θ(ε)
since sin θ ≤ θ ≤ π

2 sin θ when 0 ≤ θ ≤ π/2. Let also M1 =
⌈

3π(π+1)
θ

⌉

and χ be a Boolean function that divides a state in (7) into a good state
(−1)f(x)2εx|0m+1〉 and a bad state |ψx〉. The function χ checks only whether
the state is |0m+1〉 or not; therefore, it is implemented easily. By Lemma 8,

Par Est Phase(Õε
f ,χ,M1) maps |x〉|0〉|0〉|0〉 �−→ |x〉 ⊗

M−1∑

j=0

δx,j|vx,j〉|θ̃x,j〉|0〉,

where
∑

j:|θx−θ̃x,j|≤ θ
3(π+1)

|δx,j|2 ≥ 8
π2 for any x, and |vx,i〉 and |vx,j〉 are mutually
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orthonormal vectors for any i, j. This state has the good estimations of θx in the
third register with high probability. The fourth register |0〉 remains large enough
to perform the following steps.

The remaining steps basically perform amplitude amplification by using the
estimated values θ̃x,j , which can realize a phase flip oracle. Note that in the
following steps a pair of Hadmard transformations are used to convert the phase
flip oracle into our targeted oracle.

Based on the de-randomization idea as in [1], we calculate m∗
x,j =⌈

1
2

(
π

2θ̃x,j
− 1

)⌉
, θ∗x,j = π

4m∗
x,j+2 , p∗x,j = sin2(θ∗x,j) and p̃x,j = sin2(θ̃x,j) in the

superposition, and apply an Hadmard transformation to the last qubit. Thus we
have

|x〉
(M−1∑

j=0

δx,j|vx,j〉|θ̃x,j〉|m∗
x,j〉|θ∗x,j〉|p∗x,j〉|p̃x,j〉 ⊗ |0m+1〉|0〉 ⊗ 1√

2
(|0〉 + |1〉)

)
.

Next, let R : |p∗x,j〉|p̃x,j〉|0〉 → |p∗x,j〉|p̃x,j〉
(√

p∗
x,j

p̃x,j
|0〉 +

√
1 − p∗

x,j

p̃x,j
|1〉

)
be a rota-

tion and let O = Õε
f ⊗ R be a new oracle. We apply O followed by ΛM2(Q),

where M2 =
⌈

1
2

(
3π(π+1)
2(3π+2)θ + 1

)⌉
and Q = −O(I ⊗ S0)O−1(I ⊗ Sχ); S0 and Sχ

are defined appropriately. ΛM2 is controlled by the register |m∗
x,j〉, and Q is ap-

plied to the registers |x〉 and |0m+1〉|0〉 if the last qubit is |1〉. Let Ox denote the
unitary operator such that O|x〉|0m+1〉|0〉 = |x〉Ox|0m+1〉|0〉. Then we have the
state (From here, we write only the last three registers.)

M−1∑

j=0

δx,j√
2

(
|0m+1〉|0〉|0〉 + Qmx,j

x Ox

(
|0m+1〉|0〉

)
|1〉

)
, (1)

where Qx = −OxS0O−1
x Sχ and mx,j = min(m∗

x,j, M2) for any x, j. We will show
that the phase flip oracle is simulated if the third register |θ̃x,j〉 has the good
estimation of θx and the last register has |1〉. Equation (1) can be rewritten as

M−1∑

j=0

δx,j√
2

(
|0m+1, 0〉|0〉 +

(
(−1)f(x)γx,j|0m+1, 0〉 + |ϕx,j〉

)
|1〉

)
,

where |ϕx,j〉 is orthogonal to |0m+1, 0〉 and its norm is
√

1 − γ2
x,j. Suppose that

the third register has |θ̃x,j〉 such that |θx − θ̃x,j| ≤ θx

3(π+1) . It can be seen that

mx,j ≤ M2 if |θx − θ̃x,j| ≤ θx

3(π+1) . Therefore, Qx is applied for m∗
x,j times, i.e.,

the number specified by the fourth register. Like the analysis of Lemma 2 in [1],

it is shown that γx,j ≥
√

1 − 1
9 .

Finally, applying an Hadmard transformation to the last qubit again, we have
the state

M−1∑

j=0

δx,j

2

(
(1+(−1)f(x)γx,j)|0m+2〉|0〉+(1−(−1)f(x)γx,j)|0m+2〉|1〉+ |ϕx,j〉(|0〉− |1〉)

)
.
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If we measure the last qubit, we have |f(x)〉 with probability

M−1∑

j=0

⎛

⎜⎝
∣∣∣∣
δx,j(1 + γx,j)

2

∣∣∣∣
2

+

∣∣∣∣∣∣

δx,j

√
1 − γ2

x,j

2

∣∣∣∣∣∣

2⎞

⎟⎠≥ 1
2

∑

j:|θx−θ̃x,j|≤ θ
3(π+1)

|δx,j |2(1+γx,j) ≥ 2
3
.

Thus, the final quantum state can be rewritten as |x〉(αx|wx〉|f(x)〉 +
βx|w′

x〉|f(x)〉, where |αx|2 ≥ 2/3 for any x.
The query complexity of this algorithm is the cost of amplitude estimation M1

and amplitude amplification M2, thus a total number of queries is O(1
θ ) = O(1

ε ).
Therefore, we can simulate a single query to O

1/6
f using O(1

ε ) queries to Oε
f . �	

Now, we describe the main theorem to compute OR functions with quantum
biased oracles.

Theorem 9. There exists a quantum algorithm to compute N -bit OR with prob-
ability at least 2/3 using O(

√
N/ε) queries to a given oracle Oε

f if we know ε.
Moreover, if we know εmin, the algorithm uses Θ(

√
N/εmin) queries.

The upper bound is derived from Lemma 6 and [8] straightforwardly. Also, The-
orem 6 in [1] can prove the lower bound Ω(

√
N/εmin).

4 Estimating Unknown ε

In Sect.3, we described algorithms by using a given oracle Oε
f when we know ε.

In this section, we assume that there is no prior knowledge of ε.
Our overall approach is to estimate ε (in precise εmin) with appropriate accu-

racy in advance, which then can be used in the simulating algorithm in Lemma 6.
We present the estimating algorithm in Theorem 12 after some lemmas, which
are used in the main theorem.

Lemma 10. Let O be any quantum algorithm that uses no measurements such
that O|x〉|0〉 = |x〉|Ψx〉 = |x〉(|Ψ1

x〉 + |Ψ0
x〉). Let χ : Z → {0, 1} be a Boolean

function that divides a state |Ψx〉 into a good state |Ψ1
x〉 and a bad state |Ψ0

x〉
such that sin2(θx) = 〈Ψ1

x |Ψ1
x〉 for any x (0 < θx ≤ π/2). There exists a quantum

algorithm Par Est Zero(O, χ, M) that changes states as follows:

|x〉|0〉|0〉 → |x〉 ⊗ (αx|ux〉|1〉 + βx|u′
x〉|0〉) ,

where |αx|2 =
sin2(Mθx)
M2 sin2(θx)

for any x. It uses O and its inverse for O(M) times.

Par Est Zero can be based on Par Est Phase. We omit the proof. See [12] for
more details.
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Lemma 11. Let O be any quantum oracle such that O|x〉|0〉|0〉 = |x〉(αx|wx〉|1〉
+ βx|ux〉|0〉). There exists a quantum algorithm Chk Amp Dn(O) that outputs
b ∈ {0, 1} such that b = 1 if ∃x; |αx|2 ≥ 9

10 , b = 0 if ∀x; |αx|2 ≤ 1
10 , and b =

don′t care otherwise, with probability at least 8/π2 using O(
√

N log N) queries
to O.

Proof. Using O(log N) applications of O and majority voting, we have a new
oracle O′ such that O′|x〉|0〉|0〉 = |x〉(α′

x|w′
x〉|1〉 + β′

x|u′
x〉|0〉), where |α′

x|2 ≥
1 − 1

16N if |αx|2 ≥ 9
10 , and |α′

x|2 ≤ 1
16N if |αx|2 ≤ 1

10 . Note that work bits |w′
x〉

and |u′
x〉 are likely larger than |wx〉 and |ux〉.

Now, let A be a quantum algorithm that makes the uniform superposition
1√
N

∑
x |x〉|0〉|0〉 by the Fourier transform FN and applies the oracle O′. We

consider (success) probability p that the last qubit in the final state A|0〉 has
|1〉. If the given oracle O satisfies ∃x; |αx|2 ≥ 9

10 (we call Case 1), the probability
p is at least 1

N ×(1− 1
16N ) ≥ 15

16N . On the other hand, if O satisfies ∀x; |αx|2 ≤ 1
10

(we call Case 2), then the probability p ≤ N× 1
N × 1

16N = 1
16N . We can distinguish

the two cases by amplitude estimation as follows.
Let θ̃p denote the output of the amplitude estimation Est Phase(A, χ,

�11
√

N�). The whole algorithm Chk Amp Dn(O) performs Est Phase(A, χ,
�11

√
N�) and outputs whether θ̃p is greater than 0.68/

√
N or not. We will show

that it is possible to distinguish the above two cases by the value of θ̃p. Let
θp = sin−1(

√
p) such that 0 ≤ θp ≤ π/2. Note that x ≤ sin−1(x) ≤ πx/2 if

0 ≤ x ≤ 1. Theorem 5 says that in Case 1, the Est Phase outputs θ̃p such that

θ̃p ≥ θp − π

11
√

N
≥

√
15

16N
− π

11
√

N
>

0.68√
N

,

with probability at least 8/π2. Similarly in Case 2, the inequality θ̃p < 0.68√
N

is
obtained.

Chk Amp Dn(O) uses O for O(
√

N log N) times since Chk Amp Dn(O) calls
the algorithm A for �11

√
N� times and A uses O(log N) queries to the given

oracle O. �	

Theorem 12. Given a quantum biased oracle Oε
f , there exists a quantum algo-

rithm Est Eps Min(Oε
f ) that outputs ε̃min such that εmin/5π2 ≤ ε̃min ≤ εmin

with probability at least 2/3. The query complexity of the algorithm is expected
to be O

(√
N log N
εmin

log log 1
εmin

)
.

Proof. Let sin(θx) = 2εx and sin(θmin) = 2εmin such that 0 < θx, θmin ≤ π
2 .

Let χ also be a Boolean function that divides the state in (7) into a good
state (−1)f(x)2εx|0m+1〉 and a bad state |ψx〉. Thus Par Est Zero(Õε

f , χ, M)
in Lemma 10 makes the state |x〉 ⊗ (αx|ux〉|1〉 + βx|u′

x〉|0〉) such that |αx|2 =
sin2(Mθx)

M2 sin2(θx) . As stated below, if M ∈ o(1/θx), then |αx|2 ≥ 9/10. We can use
Chk Amp Dn to check whether there exists x such that |αx|2 ≥ 9/10. Based on
these facts, we present the whole algorithm Est Eps Min(Oε

f ).
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Algorithm( Est Eps Min(Oε
f ) )

1. Start with � = 0.
2. Increase � by 1.
3. Run Chk Amp Dn(Par Est Zero(Õε

f , χ, 2�)) for O(log �) times and use ma-
jority voting. If “1” is output as the result of the majority voting, then return
to Step 2.

4. Output ε̃min = 1
2 sin

( 1
5·2�

)
.

Now, we will show that the algorithm almost keeps running until
� >

⌊
log2

1
5θmin

⌋
. We assume � ≤

⌊
log2

1
5θmin

⌋
. Under this assumption, a proposi-

tion ∃x; |αx|2 ≥ 9
10 holds since the equation εmin = minx εx guarantees that there

exists some x such that θmin = θx and |αx|2 = sin2(2�θx)
22� sin2(θx) ≥ cos2(1

5 ) > 9
10 when

2� ≤ 1
5θx

. Therefore, a single Chk Amp Dn run returns “1” with probability at
least 8/π2. By O(log �) repetitions and majority voting, the probability that we
obtain “1” increases to at least 1− 1

5�2 . Consequently, the overall probability that

we return from Step 3 to Step 2 for any � such that � ≤
⌊
log2

1
5θmin

⌋
is at least

∏
⌊
log2

1
5θmin

⌋

�=1

(
1 − 1

5�2

)
> 2

3 . This inequality can be obtained by considering an in-

finite product expansion of sin(x), i.e., sin(x) = x
∏∞

n=1

(
1 − x2

n2π2

)
at x = π/

√
5.

Thus the algorithm keeps running until � >
⌊
log2

1
5θmin

⌋
, i.e., outputs ε̃min such

that ε̃min = 1
2 sin

( 1
5·2�

)
≤ 1

2 sin(θmin) = εmin, with probability at least 2/3.

We can also show that the algorithm almost stops in � <
⌈
log2

2π
θmin

⌉
. Since

sin2(Mθ)
M2 sin2(θ) ≤ π2

(2Mθ)2 when 0 ≤ θ ≤ π
2 , |αx|2 = sin2(2�θx)

22� sin2(θx) ≤ 1
16 for any x if 2� ≥

2π
θmin

. Therefore, in Step 3, “0” is returned with probability at least 8/π2 when

� ≥
⌈
log2

2π
θmin

⌉
. The algorithm, thus, outputs ε̃min = 1

2 sin
( 1

5·2�

)
≥ 1

2 sin( θmin
10π ) ≥

εmin
5π2 with probability at least 8/π2.

Let �̃ satisfy
⌊
log2

1
5θmin

⌋
< �̃ <

⌈
log2

2π
θmin

⌉
. If the algorithm runs until � = �̃,

its query complexity is

�̃∑

�=1

O(2�
√

N log N log �) = O(2�̃
√

N log N log �̃) = O

(√
N log N

εmin
log log

1
εmin

)
,

since 2�̃ ∈ Θ
(

1
θmin

)
= Θ

(
1

εmin

)
. �	

5 Conclusion

In this paper, we have shown that O(
√

N/ε) queries are enough to compute
N -bit OR with an ε-biased oracle. This matches the known lower bound while
affirmatively answering the conjecture raised by the paper [1]. The result in this
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paper implies other matching bounds such as computing parity with Θ(N/ε)
queries. We also show a quantum algorithm that estimates unknown value of ε
with an ε-biased oracle. Then, by using the estimated value, we can construct a
robust algorithm even when ε is unknown. This contrasts with the corresponding
classical case where no good estimation method seems to exist.

Until now, unfortunately, we have had essentially only one quantum algorithm,
i.e., the robust quantum search algorithm [8], to cope with imperfect oracles.
(Note that other algorithms, including our own algorithm in Theorem 9, are all
based on the robust quantum search algorithm [8].) Thus, it should be interesting
to seek another essentially different quantum algorithm with imperfect oracles.
If we find a new quantum algorithm that uses O(T ) queries to imperfect oracles
with constant probability, then we can have a quantum algorithm that uses
O(T/ε) queries to imperfect oracles with an ε-biased oracle based on our method.
This is different from the classical case where we need an overhead factor of
O(1/ε2) by majority voting.
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