
On the Negation-Limited Circuit Complexity of
Sorting and Inverting k-tonic Sequences

Takayuki Sato1, Kazuyuki Amano2, and Akira Maruoka3

1 Dept. of Information Engineering, Sendai National College of Technology
Chuo 4-16-1, Ayashi, Aoba, Sendai 989-3128, Japan

taka@info.sendai-ct.ac.jp
2 Dept. of Computer Science, Gunma University

Tenjin 1-5-1, Kiryu, Gunma 376-8515, Japan
amano@cs.gunma-u.ac.jp

3 Graduate School of Information Sciences, Tohoku University
Aoba 6-6-05, Aramaki, Sendai 980-8579, Japan

maruoka@ecei.tohoku.ac.jp

Abstract. A binary sequence x1, . . . , xn is called k-tonic if it contains
at most k changes between 0 and 1, i.e., there are at most k indices
such that xi �= xi+1. A sequence ¬x1, . . . , ¬xn is called an inversion of
x1, . . . , xn. In this paper, we investigate the size of a negation-limited
circuit, which is a Boolean circuit with a limited number of NOT gates,
that sorts or inverts k-tonic input sequences. We show that if k = O(1)
and t = O(log log n), a k-tonic sequence of length n can be sorted by a
circuit with t NOT gates whose size is O((n log n)/2ct) where c > 0 is
some constant. This generalizes a similar upper bound for merging by
Amano, Maruoka and Tarui [4], which corresponds to the case k = 2. We
also show that a k-tonic sequence of length n can be inverted by a circuit
with O(k log n) NOT gates whose size is O(kn) and depth is O(k log2 n).
This reduces the size of the negation-limited inverter of size O(n log n)
by Beals, Nishino and Tanaka [6] when k = o(log n). If k = O(1), our
inverter has size O(n) and depth O(log2 n) and contains O(log n) NOT
gates. For this case, the size and the number of NOT gates are optimal
up to a constant factor.

1 Introduction

To derive a strong lower bound on the size of a Boolean circuit for a function
in NP is one of the most challenging open problems in theoretical computer
science. But so far, the best known lower bound is only a linear in the number
of input variables. This is quite contrast to the case of monotone circuit, which
consists only of AND and OR gates, no NOT gates. Exponential lower bounds
on the size of monotone circuits for explicit functions have been derived (e.g.,
[2,5,8,13]).

This motivates us to study the complexity of circuits with a limited number of
NOT gates, which are usually called the negation-limited circuits. About a half

D.Z. Chen and D.T. Lee (Eds.): COCOON 2006, LNCS 4112, pp. 104–115, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

On the Negation-Limited Circuit Complexity 105

century ago, Markov [11] proved that r = �log(n+1)� NOT gates are enough to
compute any function on n variables, and that there is a function that requires
r NOT gates to compute1. Beals, Nishino and Tanaka [6] constructed a circuit
with r NOT gates that computes the inverter Invn(x1, . . . , xn) = (¬x1, . . . , ¬xn)
whose size is O(n log n). Thus, for every function f , the size of a smallest circuit
with at most r NOT gates that computes f is at most 2Size(f) + O(n log n),
where Size(f) is the size of a smallest circuit for f . This shows that restricting
the number of NOT gates in a circuit to O(log n) entails only a small blowup
in circuit size. Recently, several lower bounds on the size of a negation-limited
circuit for an explicit function were obtained [3,4], and the relationship between
the number of NOT gates and circuit size was also studied [9,14]. However, it is
still unclear the effect on circuit complexity of restricting the number of NOT
gates available.

In the first half of the paper (Section 3), we focus on the negation-limited
circuit complexity of the sorting function, which is a function that sorts n bi-
nary inputs. This is motivated by the result of Amano, Maruoka and Tarui [4]
showing that for every t = 0, . . . , log log n, the size complexity of the merging
function with t NOT gates is Θ((n log n)/2t). Roughly speaking, the size of a
smallest circuit for merging is halved when the number of available NOT gates
increases by one. The merging function is a function that takes two presorted
binary sequences each of length n as inputs and merges into a sorted sequence of
length 2n. The merging function can be viewed as the special case of the sorting
function in which an input is restricted to the form of the concatenation of two
sorted sequences. Interestingly, it is known that both merging and sorting have
monotone circuit complexity of Θ(n log n) and (non-monotone) circuit complex-
ity of Θ(n). So it is natural to consider the negation-limited circuit complexity
of sorting, or an intermediate function between merging and sorting.

In this paper, we parameterize a binary sequence with the number of changes
of the values when it is read from left to right. Formally, a binary sequence
x1, . . . , xn is called k-tonic if there are at most k indices i such that xi �= xi+1.
The k-tonic sorting function is a function that outputs a sorted sequence of
x1, . . . , xn if an input is k-tonic, and arbitrarily otherwise. The merging function
can be regarded as the 2-tonic sorting function since input sequences x1 ≥ · · · ≥
xn and y1 ≥ · · · ≥ yn are 2-tonic if we reorder them to x1, . . . , xn, yn, . . . , y1.
We show that if k is a constant, the k-tonic sorting function can be computed
by a circuit with t(≤ log n) NOT gates whose size is O((n log n)/2ct) for some
constant 1 > c > 0. This can be viewed as a generalization of a similar upper
bound for the merging function in [4], which corresponds to the case k = 2.

In the second half of the paper (Section 4), we investigate the negation-limited
complexity of the inverter Invn. As described before, Beals, Nishino and Tanaka
[6] constructed an inverter of size O(n log n) and depth O(log n) that contains
�log(n + 1)� negation gates. In the same paper [6], they stated the following
question as an open problem (which is credited to Turán in [6]) : is the size of
any c log n depth inverter using c log n NOT gates superlinear?

1 All logarithms in this paper are base 2.

106 T. Sato, K. Amano, and A. Maruoka

We give the construction of an inverter for k-tonic sequences whose size is
O(kn) and depth is O(k log2 n) that contains O(k log n) NOT gates. If k = O(1),
our inverter has size O(n) and depth O(log2 n) and contains O(log n) NOT
gates. This shows that the answer of Turán’s problem is “no” if we relax the
depth requirement from O(log n) to O(log2 n) and restrict the inputs to k-tonic
sequence with k being a constant. Both of our results suggest that limiting the
number of changes in an input sequence may boost the power of NOT gates in
a computation of Boolean functions.

2 Preliminaries and Results

A circuit is a combinational circuit that consists of AND gates of fan-in two, OR
gates of fan-in two and NOT gates. In particular, a circuit without NOT gates
is called monotone circuit. The size of a circuit C is the number of gates in C.

Let F be a collection of m Boolean functions f1, f2, . . . , fm. The circuit com-
plexity of F , denoted by Size(F), is the size of a smallest circuit that computes
F . The monotone circuit complexity of F , denoted by Sizemon(F), is the size of
a smallest circuit that computes F . Following Beals et al. [6], we call a circuit
including at most t NOT gates a t-circuit. The t-negation limited circuit com-
plexity of F , denoted by Sizet(F), is the size of a smallest t-circuit that computes
F . If F cannot be computed by a t-circuit, then Sizet(F) is undefined.

For a binary sequence x, the length of x is denoted by |x|. For x = (x1, . . . , xt)
∈ {0, 1}t, (x)2 denotes the integer whose binary representation is x where x1 is
the most significant bit, i.e., (x)2 =

∑t
i=1 xi2t−i. The number of 1’s in a binary

sequence x is denoted by �1(x). For two integers a < b, [a, b] denotes the set
{a, a + 1, . . . , b}. The set [1, n] is simply denoted by [n].

Definition 1. The sorting function on n inputs, denoted by Sortn, is a collection
of Boolean functions that sorts an n-bit binary sequence x1, . . . , xn, i.e.,

Sortn(x1, . . . , xn) = (z1, . . . , zn),

such that z1 ≥ · · · ≥ zn and
∑

i xi =
∑

i zi. The merging function Mergen

is a collection of Boolean functions that merges two presorted binary sequences
x1 ≥ · · · ≥ xn and y1 ≥ · · · ≥ yn into a sequence z1 ≥ · · · ≥ z2n, i.e., zi = 1 if
and only if the total number of 1’s in the input sequences is at least i. ��

The following results are known for the complexities of sorting and merging.

Theorem 1. [12,1] All of the following are true:

– Size(Sortn) = Θ(n) and Sizemon(Sortn) = Θ(n log n).
– Size(Mergen) = Θ(n) and Sizemon(Mergen) = Θ(n log n).

For the merging function, there is a clear tradeoff between the size of a circuit
and the number of NOT gates.

On the Negation-Limited Circuit Complexity 107

Theorem 2. [4] For every 0 ≤ t ≤ log log n, Sizet(Mergen) = Θ((n log n)/2t).

So it is interesting to consider whether such a tradeoff exists for more general
functions.

Definition 2. A turning point of a binary sequence x1, . . . , xn is an index i such
that xi �= xi+1. A binary sequence is called k-tonic if it has at most k turning
points.

Note that every n-bit binary sequence is (n− 1)-tonic, and that input sequences
to the merging function x1 ≥ · · · ≥ xn and y1 ≥ · · · ≥ yn can be regarded as
2-tonic if we reorder the sequences to x1, . . . , xn, yn, . . . , y1. Thus, we can define
an “intermediate” function between merging and sorting based on the notion of
k-tonic.

Definition 3. A function {0, 1}n to {0, 1}n whose output is equal to the output
of Sortn for every k-tonic input is called a k-sorting function and is denoted by
Sortkn. Note that the output of Sortkn is arbitrary if an input is not k-tonic.

We show in Section 3 that a small number of NOT gates can reduce the size of a
circuit for Sortkn, which extends the results on the upper bounds in Theorem 2.
Precisely, we will show:

Theorem 3. Suppose that k = O(log n) and t ≤ log n. Then there exists a
constant c such that Sizectk2(Sortkn) = O(kn + (n log n)/2t). In particular, if
k = O(1) and t = O(log log n), then Sizet(Sortkn) = O((n log n)/2c′t) for some
constant c′ > 0.

In Section 4, we give the construction of an inverter for k-tonic sequences.

Definition 4. An inverter with n binary inputs, denoted by Invn, is defined by

Invn(x1, x2, . . . , xn) = (¬x1, ¬x2, . . . , ¬xn).

A function {0, 1}n to {0, 1}n whose output is equal to the output of Invn for every
k-tonic input is called a k-tonic inverter and is denoted by Invk

n. Note that the
output of Invk

n is arbitrary if an input is not k-tonic.

We will show:

Theorem 4. The function Invk
n can be computed by a circuit of size O(kn) and

of depth O(k log2 n) that contains O(k log n) NOT gates. In particular, if k =
O(1), then Invk

n can be computed by a linear size circuit of depth O(log2 n) that
contains O(log n) NOT gates.

We remark that we need Ω(log n) NOT gates to compute Invk
n even if k = 1.

This can be easily proved by the result of Markov [11] (see also [6]). Thus, for
the case k = O(1), the size and the number of NOT gates are optimal up to a
constant factor.

108 T. Sato, K. Amano, and A. Maruoka

3 Negation-Limited Sorter for k-tonic Sequences

In this section, we describe the construction of a negation-limited circuit for the
k-sorting function to prove Theorem 3.

As for the construction of a linear size sorter by Muller and Preparata [12],
the construction is in two stages: the first computes the binary representation of
the number of 1’s in inputs, and the second generates appropriate outputs from
this representation. Throughout this section, we assume that the length n of an
input sequence is n = 2l for some natural number l.

Definition 5. A counter Countn is a function from {0, 1}n to {0, 1}logn+1 that
outputs the binary representation of the number of 1’s in an input sequence. A de-
coder Decoden is a function from {0, 1}logn+1 to {0, 1}n such that Decoden(u) =
(x1, . . . , xn) with x1 = · · · = x(u)2 = 1 and x(u)2+1 = · · · = xn = 0.

It is obvious that Sortn(x) = Decoden(Countn(x)), and thus the size of a circuit
for Sortn is given by the sum of the sizes of circuits for Decoden and Countn.
The linear sized sorter by Muller and Preparata [12] follows from:

Theorem 5. [12] Sizen(Countn) = Θ(n) and Sizemon(Decoden) = Θ(n).

Since there is a monotone circuit for Decoden whose size is linear, one may think
that it is sufficient to focus on the construction of a negation-limited circuit for
Countn. However, the last bit of the output of Countn is the parity function, and
so we need log n NOT gates to compute it [11]. In order to avoid to use such
a large number of NOT gates, we only compute a limited number of significant
bits of the number of 1’s in inputs at the first stage of the construction.

Definition 6. A t-counter, denoted by Countn,t, is a function from {0, 1}n to
{0, 1}t+n/2t

defined as

Countn,t(x) = (z, u),

where z ∈ {0, 1}t is the t most significant bits of the binary representation of
the number of 1’s in x and u = (u1, . . . , un/2t) ∈ {0, 1}n/2t

is a sorted sequence
u1 ≥ u2 ≥ · · · ≥ un/2t such that �1(x) = (z)2 · n/2t + �1(u). A function whose
output coincides with Countn,t(x) for every k-tonic sequence x is denoted by
Countkn,t.

A t-decoder, denoted by Decoden,t, is a function from {0, 1}t+n/2t

to {0, 1}n

defined as: For any binary sequence z of length t and any sorted sequence u of
length n/2t,

Decoden,t(z, u) = (y1, . . . , yn)

such that y1 = · · · = yw = 1 and yw+1 = · · · = yn = 0 where w = (z)2 · n/2t +
�1(u).

Note that Sortkn(x) = Decoden,t(Countkn,t(x)). We first construct a negation-
limited circuit for Countkn,t.

On the Negation-Limited Circuit Complexity 109

Theorem 6. Suppose that k = O(log n) and t ≤ log n. Then there exists a
constant c such that Sizectk2(Countkn,t) = O(kn + (n log n)/2t).

Proof. We first show an algorithm for computing Countkn,t, and then we will
describe a construction of a circuit which follows the algorithm.

A binary sequence is called clean if it consists of 0’s only or 1’s only, otherwise
it is called dirty. Let x be an input sequence for Countkn,t. The key observation
to the algorithm is the fact that if we divide a k-tonic sequence x into 2k blocks,
then at least half of them are clean. For simplicity, we suppose that |x| = n = 2l

and k = 2a for some natural numbers l and a with l > a.

Algorithm C. This algorithm takes a binary sequence x of length n as an input
and outputs (z, u) satisfying Countkn,t(x) = (z, u).

C1. For each i = 1, 2, . . . , t, do the following:
1. Divide x into 2k blocks of equal length: B1, B2, . . . , B2k.
2. Let p1, p2, . . . , pk ∈ [2k] be the first k indices of clean blocks.
3. For each j ∈ [k], let ci,j = 1 if Bpj is all 1’s and ci,j = 0 if Bpj is all 0’s.
4. Let x̃ be a sequence of length |x|/2 obtained from x by removing Bp1 , Bp2 ,

. . . , Bpk
(i.e., the first k clean blocks).

5. Substitute x by x̃.
C2. Let zH and zL be two binary sequences of length t and of length a such

that

(zH)2 =
k∑

j=1

(c1,jc2,j · · · ct,j)2 div 2a, (zL)2 =
k∑

j=1

(c1,jc2,j · · · ct,j)2 mod 2a,

where “div” and “mod” denote the quotient and remainder of two integers.
C3. Let u1 be a sorted sequence of length n/2t that contains (zL)2 ·2l−(a+t) 1’s,

and u2 be a sorted sequence of length n/2t obtained by sorting x.
C4. If �1(u1) + �1(u2) ≥ n/2t, then let z be a sequence of length t such that

(z)2 = (zH)2 +1 and let u be a sorted sequence of length n/2t that contains
{�1(u1) + �1(u2) − n/2t} 1’s. Otherwise, let z = zH and let u be a sorted
sequence of length n/2t that contains {�1(u1) + �1(u2)} 1’s.

C5. Output (z, u).

In the following we show the correctness of the above algorithm. Consider the
i-th iteration of the for loop at step C1 of the algorithm. Let x and x̃ be binary
sequences before and after the i-th iteration. Suppose that a sequence x is k-
tonic. This means that there are at most k dirty blocks, or equivalently, at least
k clean blocks in B1, . . . , B2k. So we can always choose k indices p1, . . . , pk. It
is easy to check that the sequence x̃ is also k-tonic. Since each block has length
n/(k · 2i) = 2l−(a+i), it is obvious that

�1(x) =
k∑

j=1

ci,j · 2l−(a+i) + �1(x̃).

110 T. Sato, K. Amano, and A. Maruoka

By summing the above equation over i = 1, . . . , t, the number of 1’s in an initial
input sequence is given by

k∑

j=1

(c1,jc2,j · · · ct,j)2 · 2l−(a+t) + �1(u2) = (zH)2 · 2l−t + (zL)2 · 2l−(a+t) + �1(u2)

= (zH)2 · 2l−t + �1(u1) + �1(u2)
= (z)2 · 2l−t + �1(u).

This completes the proof of the correctness of the algorithm.
Now we describe the construction of a circuit along the algorithm C starting

from step C1, which is the most complex part of the construction. As for the
above discussion, we first concentrate on the i-th iteration of the for loop, and
so describe the construction of a circuit that takes sequences B1, . . . , B2k each of
length n/(k · 2i) as an input and outputs ci,j for j ∈ [k] and Bs1 , . . . , Bsk

where
(s1, . . . , sk) = [2k]\(p1, . . . , pk).

Given (B1, . . . , B2k), we put B(0) = (B(0)
1 , . . . , B

(0)
2k) = (B1, . . . , B2k). For

each p ∈ [k], define B(p) = (B(p)
1 , . . . , B

(p)
2k−p) as

B(p)
q =

{
B

(p−1)
q if all of B

(p−1)
1 , . . . , B

(p−1)
q are dirty,

B
(p−1)
q+1 there exists a clean block in B

(p−1)
1 , . . . , B

(p−1)
q .

(1)

In other words, B(p) is a sequence obtained from B(p−1) by removing the first
clean block in it. Then B(p) is equal to a sequence obtained from B(0) by remov-
ing the first p clean blocks. Hence B(k) = (B(k)

1 , . . . , B
(k)
k) is a desired sequence.

Now we introduce two types of auxiliary Boolean functions. For p ∈ [0, k] and
for q ∈ [2k − p], let Is Clean(p)

q be a function that outputs 1 if and only if B
(p)
q

is clean and let Exist Clean(p)
q be a function that outputs 1 if and only if there

exists a clean block in B
(p)
1 , . . . , B

(p)
q−1. These functions can be easily computed

in a following way:

Is Clean(0)
q = (

∧

v∈B
(0)
q

v) ∨ (
∨

v∈B
(0)
q

v), (for q ∈ [2k]),

Exist Clean(p)
0 = 0, (for p ∈ [0, k]),

Exist Clean(p)
q = Exist Clean(p)

q−1 ∨ Is Clean(p)
q , (for p ∈ [0, k], q ∈ [2k − p]),

Is Clean(p)
q = (Is Clean(p−1)

q+1 ∧ Exist Clean(p−1)
q)

∨(Is Clean(p−1)
q ∧ Exist Clean(p−1)

q), (for p ∈ [k], q ∈ [2k − p]).

Thus by Eq. (1), for each l = 1, 2, . . ., the l-th bit of B
(p)
q is given by

(B(p−1)
q+1 [l] ∧ Exist Clean(p−1)

q) ∨ (B(p−1)
q [l] ∧ Exist Clean(p−1)

q),

On the Negation-Limited Circuit Complexity 111

where B[l] denotes the l-th bit of the block B. We also have

ci,j =
k+1∨

q=1

(
Is Clean(j−1)

q ∧ Exist Clean(j−1)
q−1 ∧ B(j−1)

q [1]
)

,

where B
(j−1)
q [1] denotes the first bit of the block B

(j−1)
q .

Now we estimate the number of gates needed to compute these functions. Let
ni = n/(2i−1), which is the length of an input sequence at the beginning of the
i-th iteration of step C1. We use NOT gates at the computation of Is Clean(0)

q

for each q ∈ [2k] and Exist Clean(p)
q for each p ∈ [0, k] and q ∈ [2k − p]. So the

number of NOT gates we need is at most 2k + 2k2 ≤ 3k2. The total number of
gates is easily shown to be O(k2 + kni). Summing these over i = 1, . . . , t, we
need at most 3tk2 NOT gates and

∑t
i=1 O(k2 + kni) = O(tk2 + kn) gates in

total to simulate step C1 of the algorithm.
In step C2, all we have to do is to compute the addition of k integers of t bits.

Since it is well known that the addition of two t-bit integers can be computed by
a circuit of linear size (see e.g., [16, Chapter 3]), the number of gates needed to
compute the addition of k integers of t bits is O(k(t+ log k)). The term t+ log k
here comes from the fact that the summand has at most t + log k digits. Here
we use kt NOT gates, which is equal to the number of total input variables.

In step C3, we obtain u1 as Decoden/2t(0zL0l−(a+t)), which can be computed
by a monotone circuit of size O(n) by Theorem 5, and obtain u2 as Sortn/2t(x),
which can be computed by a monotone circuit of size O((n/2t) log(n/2t)) =
O((n log n)/2t) by using the AKS-sorting network [1].

We can now proceed to step C4. Let ũ be a sorted sequence of the con-
catenation of u1 and u2, which can be computed by a monotone circuit of
size O((2n/2t) log(2n/2t)) = O((n log n)/2t) by using the AKS-sorting net-
work [1]. Let w ∈ {0, 1} be the n/2t-th bit of ũ. Then w = 1 if and only if
�1(u1) + �1(u2) ≥ n/2t. Thus, the desired sequence u is obtained by taking the
first half of ũ if w = 0 and the last half of ũ if w = 1, which can be computed
as ui = wũi ∨ wũi+n/2t where ui and ũi denote the i-th bit of u and ũ, respec-
tively. Clearly, z is given by the binary representation of (zH)2 + w which can
be computed by a t-bit adder. All these can be computed by a circuit of size
O((n log n)/2t) with O(t) NOT gates.

The following table summarizes the number of gates used in each step.

Step NOT gates Total Size
C1 O(tk2) O(tk2 + kn)
C2 kt O(k(t + log k))
C3 0 O((n log n)/2t)
C4 O(t) O((n log n)/2t)

By summing these numbers, we conclude that the number of NOT gates in
our circuit is O(tk2), and the total size is

O(tk2 + kn + k(t + log k) + (n log n)/2t) = O(kn + (n log n)/2t).

112 T. Sato, K. Amano, and A. Maruoka

Here we use the assumption that k = O(log n) and t ≤ log n. This completes the
proof of the theorem. ��

We can now proceed to the construction of a circuit for Decoden,t.

Theorem 7. Suppose that t ≤ log n. Then Sizemon(Decoden,t) = O(n).

Proof. Let z ∈ {0, 1}t and u ∈ {0, 1}n/2t

be inputs to Decoden,t. For such inputs,
the output of Decoden,t should be

(z)2·n/2t

︷ ︸︸ ︷
11 · · · 11u1 · · · un/2t00 · · · 00.

For a binary sequence S, S[i] denotes the i-th bit of S. Let A be an n-bit
binary sequence given by 2t copies of u. Put B = Decoden(0z0l−t) and C =
Decoden(0z1l−t) Recall that n = 2l. Let D be an n-bit binary sequence given by
D[i] = (A[i] ∨ B[i]) ∧ C[i] for i ∈ [n]. Then the sequence D is

(z)2·n/2t

︷ ︸︸ ︷
11 · · ·11u1 · · ·un/2t−100 · · ·00,

which is very close to the desired sequence, i.e., it misses the last bit of u. This
discrepancy is fixed by putting D[in/2t] = (D[in/2t − 1] ∧ un/2t) ∨ D[in/2t] for
each i ∈ [2t]. Since Decoden has a linear size monotone circuit (Theorem 5), the
sequence D can also be computed by a monotone circuit of linear size. ��

Theorem 3 follows immediately from Theorems 6 and 7.

4 Negation-Limited Inverter for k-tonic Sequences

In this section, we describe the construction of a negation-limited circuit for the
k-tonic inverter to prove Theorem 4. Throughout this section, we suppose that
the length n of an input is 2a − 1 for some natural number a. We first introduce
several auxiliary functions.

Definition 7. Let b ∈ {0, 1}. Let Leftbn : {0, 1}n → {0, 1}a be the collection
of Boolean functions defined as Leftbn(x) = p if x1 = · · · = x(p)2−1 = 1 − b
and x(p)2 = b, i.e., p is the binary representation of the smallest index i with
xi = b. If there are no b’s in x, then the output of Leftbn is unspecified. Let
Decodeb

n : {0, 1}a → {0, 1}n be the collection of Boolean functions defined as
Decodeb

n(p) = b(p)2−1(1− b)n−(p)2+1. If p is all 0’s then the output of Decodeb
n is

unspecified. Let Orn and Andn denote the functions that output bitwise OR and
AND of two input sequences, respectively.

Lemma 8. For each b ∈ {0, 1}, Leftbn can be computed by a circuit of size O(n)
and of depth O(log2 n) that contains O(log n) NOT gates.

On the Negation-Limited Circuit Complexity 113

Proof. We first give an algorithm to compute Left1n.

Algorithm L. This algorithm takes an n-bit binary sequence x = (x1, . . . , xn)
as an input and outputs p = (p1, . . . , pa) which satisfies x1 = · · · = x(p)2−1 = 0
and x(p)2 = 1.

L1. Let x0 = x and flag0 = 1.
L2. For i = 1, . . . , a − 1 do the following:

1. pi = ¬(
2a−i−1∨

j=1

xi−1
j) ∧ flagi−1,

2. xi
j = ¬pix

i−1
j ∨ pix

i−1
j+2a−i (for j = 1, . . . , 2a−i − 1),

3. flagi = ¬(pi ∧ xi−1
2a−i) ∧ flagi−1,

L3. pa = xa−1
1 ∧ flaga−1.

L4. Outputs (p1, . . . , pa).

We now consider the correctness of algorithm L. We focus on the i-th iteration of
step L2. In the case pi = 1, since the number of 0-bits before the leftmost 1 in xi−1

is at least 2a−i −1, we can show (p1 · · · pi−110a−i)2 ≤ (p)2 ≤ (p1 · · · pi−111a−i)2.
In particular, if pi = 1 and xi−1

2a−i = 1 (which implies flagi = 0), then the
number of 0-bits before the leftmost 1 is equal to 2a−i − 1. Hence (p)2 =
(p1 · · · pi−110a−i)2, i.e., pi+1, . . . , pa should be all 0’s. This will be satisfied since
flagi = 0. In the case pi = 0, the number of 0-bits before the leftmost 1 in
xi−1 is at most 2a−i − 2. Thus (p1 · · · pi−100a−i)2 ≤ (p)2 ≤ (p1 · · · pi−101a−i)2.
Therefore algorithm L outputs pi correctly.

We now estimate the size of a circuit. For the i-th iteration of the for loop at
step L2, pi can be computed by a circuit of size 2a−i and depth a − i + 2 with
one NOT gate. A sequence xi

j can be obtained by a circuit of size 3 · (2a−i −1) =
3 · 2a−i − 3 with one NOT gate, and flagi can be computed by using three gates
including one NOT gate. For each i, step L2 can be done by a circuit of size
4 · 2a−i + 1 with three NOT gates and depth a − i + 4. We only need one AND
gate at step L3. Therefore, algorithm L can be simulated by a circuit of size∑a−1

i=1 (4 · 2a−i + 1) + 1 = 4(2a−1 − 1) + (a − 1) + 1 = O(n) with 3(a − 1) =
O(log n) NOT gates and of depth

∑a−1
i=1 (a− i+4)+1 = O(a2) = O(log2 n). The

construction of a circuit for Left0n is similar to that for Left1n and is omitted. ��

Lemma 9. For each b ∈ {0, 1}, Decodeb
n can be computed by a circuit of size

O(n) and of depth O(log n) that contains O(log n) NOT gates.

Proof. It is obvious that Decode1
n(p) = Decoden(q) with (q)2 = (p)2 − 1, and

Decode0
n(p) is equal to the reverse of Decoden(q′) with (q′)2 = n − (p)2 + 1. We

can easily see that each of q and q′ can be computed by a circuit of size O(log n)
and of depth O(log n) with O(log n) NOT gates. Since it is well known that
Decoden has a linear size O(log n) depth monotone circuit [12], we can obtain a
desired circuit for Decodeb

n. ��

114 T. Sato, K. Amano, and A. Maruoka

Proof. (of Theorem 4) As for the proof of Theorem 6, we first show an algorithm
to compute Invk

n. Suppose that x is a k-tonic sequence starting with “0”.

Algorithm I. This algorithm takes an n-bit binary sequence x = (x1, . . . , xn)
as an input and outputs z = (z1, . . . , zn) where zi = ¬xi if x is k-tonic.
I1. Let x0 = x and z0 = 1n.
I2. For i = 1, . . . , k do the following:

If i is odd then
1. si = Decode1

n(Left1n(xi−1)),
2. xi = Orn(xi−1, si),
3. zi = Andn(zi−1, si),

else
1. si = Decode0

n(Left0n(xi−1)),
2. xi = Andn(xi−1, si),
3. zi = Orn(zi−1, si),

I3. Outputs z = zk.

The correctness of the algorithm I can be verified as follows: For some non-
negative integers p0, . . . , pk ≥ 0, we can write x0 as

x0 = 0p01p10p21p30p4 · · · 0pk .

Then we have

s1 = 1p00p10p20p30p4 · · · 0pk ,

x1 = 1p01p10p21p30p4 · · · 0pk ,

z1 = 1p00p10p20p30p4 · · · 0pk ,

s2 = 0p00p11p21p31p4 · · · 1pk ,

x2 = 0p00p10p21p30p4 · · · 0pk ,

z2 = 1p00p11p21p31p4 · · · 1pk .

Note that x1 is a k − 1 tonic sequence starting with 1p0+p1 and x2 is a k − 2
tonic sequence starting with 0p0+p1+p2 . Similarly, we can show that xi is a k − i
tonic sequence and that

zi = 1p00p1 · · · bpibpi+1 · · · bpk .

Hence

zk = 1p00p11p20p31p4 · · · 0pk ,

which is a desired output.
We now estimate the size of a circuit. For each iteration of the for loop at step

I2, a sequence si can be computed by a circuit of size O(n) and depth O(log2 n)
with O(log n) NOT gates, and sequences xi and zi can be computed by n gates
and depth 1 without NOT gates. Hence the size and depth of an entire circuit are
O(kn) and O(k log2 n), respectively. The total number of NOT gates is clearly
O(k log n). ��

We finally remark that if we can improve the depth of our circuit for Leftb
n to

O(log n), then we will have a negation-limited k-tonic inverter of depth O(k log n)
which gives a negative answer to Turán’s problem for the case k = O(1).

On the Negation-Limited Circuit Complexity 115

Acknowledgment

The authors would like to thank Eiji Takimoto for helpful discussions and en-
couragement. This work was supported in part by Grant-in-Aid for Scientific
Research on Priority Areas “New Horizons in Computing” from MEXT of Japan.

References

1. M. Ajtai, J. Komós and E. Szemerédi, An O(n log n) Sorting Network, Proc.
15th STOC, pp. 1–9, 1983.

2. N. Alon and R.B. Boppana, The Monotone Circuit Complexity of Boolean Func-
tions, Combinatorica, 7(1), pp. 1–22, 1987.

3. K. Amano and A. Maruoka, A Superpolynomial Lower Bound for a Circuit
Computing the Clique Function with At Most (1/6) log log n Negation Gates, SIAM
J. Comput., 35(1), pp. 201–216, 2005.

4. K. Amano, A. Maruoka and J. Tarui, On the Negation-Limited Circuit Com-
plexity of Merging, Discrete Applied Mathematics, 126(1), pp. 3–8, 2003.

5. A.E. Andreev, On a Method for Obtaining Lower Bounds for the Complexity of
Individual Monotone Functions, Sov. Math. Dokl., 31(3), pp. 530–534, 1985.

6. R. Beals, T. Nishino and K. Tanaka, More on the Complexity of Negation-
Limited Circuits, Proc. 27th STOC, pp. 585–595, 1995.

7. M.J. Fischer, The Complexity of Negation-Limited Network–A Brief Survey,
LNCS, 33, pp. 71–82, 1974.

8. D. Harnik, R. Raz, Higher Lower Bounds on Monotone Size, Proc. 32nd STOC,
pp. 378–387, 2000.

9. S. Jukna, On the Minimum Number of Negations Leading to Super-Polynomial
Savings, Inf. Process. Lett., 89(2), pp. 71–74, 2004.

10. E. A. Lamagna, The Complexity of Monotone Networks for Certain Bilinear
Forms, Routing Problems, Sorting and Merging, IEEE Trans. of Comput., 28(10),
pp. 773–782, 1979.

11. A.A. Markov, On the Inversion Complexity of a System of Functions, J. ACM,
5, pp. 331–334, 1958.

12. D. E. Muller and F. P. Preparata, Bounds to Complexities of Networks for
Sorting and Switching, J. ACM, 22, pp. 195–201, 1975.

13. A.A. Razborov, Lower Bounds on the Monotone Complexity of Some Boolean
Functions, Soviet Math. Dokl., 281, pp. 798–801, 1985.

14. S. C. Sung and K. Tanaka, An Exponential Gap with the Removal of One
Negation Gates, Inf. Process. Let., 82(3), pp. 155–157, 2002.

15. K. Tanaka and T. Nishino, On the Complexity of Negation-Limited Boolean
Networks, SIAM J. Comput., 27(5), pp. 1334–1347, 1998.

16. I. Wegener, The Complexity of Boolean Functions, Wiley-Teubner, 1987.

	Introduction
	Preliminaries and Results
	Negation-Limited Sorter for k-tonic Sequences
	Negation-Limited Inverter for k-tonic Sequences

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

