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Abstract. We show that membership is decidable for languages defined
by iterated template-guided recombination systems when the set of tem-
plates is regular and the initial language is context-free. Using this result
we show that when the set of templates is regular and the initial language
is context-free (respectively, regular) we can effectively construct a push-
down automaton (respectively, finite automaton) for the corresponding
iterated template-guided recombination language.

1 Introduction

The spirotrichous ciliates are a type of unicellular protozoa which possess a
unique and fascinating genetic behaviour. Each ciliate cell contains two types
of nuclei, macronuclei which are responsible for the day-to-day “genetic house-
keeping” of the cell, and micronuclei which are functionally inert, but used in
reproduction. This is in contrast to, e.g., mammalian cells which have only one
micronucleus. Although they reproduce asexually, ciliates are also capable of
sexual activity in which they exchange haploid micronuclear genomes. This re-
sults in each ciliate getting a “genetic facelift” by combining its own genes with
those of a mate. After creating a new, hybrid, micronucelus, each ciliate will
then regenerate its macronucleus. It is this process of macronuclear regeneration
that is of principle interest to us here.

In the spirotrichous ciliates in particular, this macronuclear regeneration in-
volves an intricate process of genetic gymnastics. Suppose that a functional
gene in the macronucleus can be divided into 5 sections and written as follows:
1-2-3-4-5. In many cases, the micronuclear form of the same gene may have the
segments in a completely different order and include additional segments not
found in the macronucleus. For the example given above, a micronuclear gene
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may appear as: 3-x-5-y-1-z-4-2. For the ciliate to produce a functional macronu-
cleus and continue living, it must descramble these micronuclear genes. (See, e.g.,
[10] for further detail).

A biological model for this descrambling process, based on template-guided
DNA recombination, was proposed in [11]. This model was formalized as an
operation on words and languages in [3] which also introduced the notion of a
template-guided recombination system (TGR system). It was then shown in [4]
that a TGR system with a regular set of templates preserves regularity, that is,
for a regular initial language, the language resulting from iterated application of
the TGR system is always regular. This is in striking contrast to splicing systems
since the splicing language generated by a regular set of rules and a finite initial
language need not be recursive [8]. In fact, [4] shows much more generally that
the operation defined by a TGR system with a regular set of templates preserves
any language family that is a full AFL [7,12].

However, the above results are non-constructive and, in particular, do not
give an algorithm to decide the membership problem for the language defined
by a TGR system, even in the case where the initial language is finite and the
set of templates is regular. Here we show that the uniform membership problem
for the language defined by a TGR system is decidable when the initial language
is context-free and the set of templates is regular. The nonuniform membership
problem (where the TGR system is fixed) can be decided in polynomial time. The
decidability result is extended for languages that are extensions of the context-
free languages, such as the indexed languages, or, more generally, for languages
that belong to a full AFL satisfying certain natural effectiveness conditions.

Moreover, we use this result to positively solve the main open problem from [4].
That is, given a context-free (respectively, regular) initial language and a regular
set of templates, we can effectively construct a pushdown automaton (respec-
tively, a finite automaton) for the language defined by the TGR system. Using
a variant of the decision algorithm for the membership problem, we effectively
find a deterministic finite automaton (DFA) for the subset of templates that
can be used in some recombination operation and this, together with the results
of [4], enables us to construct the pushdown automaton (respectively, the finite
automaton) for the language defined by the TGR system. This result also holds
for regular sets of templates and initial languages from an arbitrary full AFL
that satisfies certain effectiveness conditions.

Both the algorithm for the membership problem and the method for finding
the set of useful templates use expensive brute-force techniques. It remains an
open question, whether it is possible to find a more efficient algorithm, at least
in the case where both the initial language and the set of templates are regular.

2 Preliminaries

Here we recall some basic definitions needed in the next section. For all un-
explained notions related to formal languages we refer the reader e.g. to [12].
Recent work on language classes and bio-operations can be found e.g. in [2].
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In the following Σ is a finite alphabet and the set of all words over Σ is
Σ∗. The length of a word w ∈ Σ∗ is |w|. The ith symbol of a word w ∈ Σ∗ is
denoted w[i], i = 1, . . . |w|. A language is a subset of Σ∗. The sets of all prefixes,
all suffixes and all subwords of words in L are denoted, respectively, pref(L),
suf(L), subw(L).

A family of languages is said to be a full abstract family of languages (full
AFL) [7,12] if it contains a nonempty language and is closed under the follow-
ing operations: union, Kleene plus, homomorphism, inverse homomorphism, and
intersection with regular languages.

Definition 2.1. [3,4] A template-guided recombination system (TGR system)
is a tuple � = (T, Σ, n1, n2), where Σ is a finite alphabet, T ⊆ Σ∗ is the template
language, and n1, n2 ∈ IN.

Let x, y ∈ Σ∗ and t ∈ T . The recombination operation defined by � is given
by: (x, y) ��

t w if and only if we can write

x = uαβd, y = eβγv, t = αβγ and w = uαβγv

for some u, v, d, e ∈ Σ∗, α, γ ∈ Σ≥n1 and β ∈ Σn2 . For L ⊆ Σ∗ we define
�(L) = {w ∈ Σ∗ | (x, y) ��

t w for some x, y ∈ L, t ∈ T }.

Let � = (T, Σ, n1, n2) be a TGR system and let L ⊆ Σ∗. We define the iteration
�(∗) of the operation � by setting �(0)(L) = L, and defining

�(i+1)(L) = �(i)(L) ∪ �(�(i)(L)) for all i ≥ 0. (1)

Denote �(∗)(L) =
⋃∞

i=0 �(i)(L).
Let � = (T, Σ, n1, n2) be a TGR system and let L ⊆ Σ∗. A word t ∈ T is

said to be useful on (L, �) if t can be used in iterated application of � on the
initial language L. It is shown in [4] that t ∈ T is useful on (L, �) if and only if
|t| ≥ 2n1 + n2 and t is a subword of some word in �(∗)(L). The TGR system �
is said to be useful on L if every word of T is useful on (L, �). The useful subset
of � on L is the set of all words in T which are useful on (L, �).

3 Membership Problem

Here we show that for a context-free language L and a TGR system � =
(T, Σ, n1, n2) where T is regular, the uniform membership problem for the lan-
guage �(∗)(L) is decidable.

We want to establish properties concerning how many recombination opera-
tions are required to produce some subword of a word w when it is known that w
requires a given number of recombination operations. For this purpose it turns
out to be useful to consider “marked variants” of words over Σ. The marked
variants associate states of a DFA recognizing the set of templates T and length
information with certain positions in the word. This additional control infor-
mation is used to keep track of the templates (or strictly speaking equivalence
classes of templates) that can be used in the recombination operations.
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For the above purpose we next introduce some technical notation. Let � =
(T, Σ, n1, n2) be a TGR system and

A = (Σ, Q, q0, F, δ) (2)

be a DFA that recognizes T . Denote
→
Q= {

→
q | q ∈ Q},

←
Q= {

←
q | q ∈ Q}. For

n ∈ IN let [n] = {0, 1, . . . , n}. We define the extended alphabet Σ[�] as

Σ[�] = Σ × P((
→
Q ∪

←
Q) × [n1]). (3)

The first component of elements of Σ[�] is an element of Σ and the second
component consists of a set of states of Q each marked with a “right arrow”
or a “left arrow”. Additionally, each state is associated with an index from
{0, 1, . . . , n1}.

The projections from Σ[�] to Σ and to P((
→
Q ∪

←
Q)× [n1]) are denoted, respec-

tively, π�
1 and π�

2 . When � is clear from the context, we denote the projections
simply as π1 and π2. The projection π1 is in the natural way extended to a
morphism Σ[�]∗ −→ Σ∗.

Let L ⊆ Σ∗. The T -controlled marked variant of L is the largest language
CT (L) ⊆ Σ[�]∗ such that the below conditions (i) and (ii) hold1. The notations
refer to (2) that gives a DFA for the language T .

(i) For every w ∈ CT (L), π1(w) ∈ L.

(ii) Assume that w ∈ CT (L) and (p, j) ∈ π2(w[i]), 1 ≤ i ≤ |w|, p ∈
→
Q ∪

←
Q,

j ∈ [n1].

(a) If p ∈
→
Q, then π1(w) has a subword u starting at the (i + 1)th position

such that |u| ≥ j and δ(p, u) ∈ F .

(b) If p ∈
←
Q, then π1(w) has a subword u ending at the (i − 1)th position

such that |u| ≥ j and δ(q0, u) = p.

Note that for any w ∈ L, the word w′ is in CT (L) where w′ is obtained from w
by replacing each symbol c ∈ Σ by (c, ∅) ∈ Σ[�]. We identify words w and w′

and in this way we can view L to be a subset of CT (L).

According to (i) and (ii) above, the elements (p, j), p ∈
→
Q ∪

←
Q occurring in

symbols of a word w ∈ CT (L) place conditions on what kind of subwords w must

have starting directly after or ending directly before that position. If p ∈
→
Q, this

means that π1(w) must have a subword u starting from the next position that
is a suffix of a word in T , u is of length at least j, and the state p corresponds

to this suffix (that is, δ(p, u) ∈ F ). If p ∈
←
Q, this means that π1(w) must have a

subword u ending at the previous position that is a prefix of a word in T , u has
length at least j, and the state p corresponds to this prefix.

1 Note that the union of languages satisfying this property also satisfies this property,
and so the largest language must exist.



98 I. McQuillan, K. Salomaa, and M. Daley

We still need the following notation to manipulate words over the alphabet

Σ[�]. Let w ∈ Σ[�]∗, 1 ≤ i ≤ w, p ∈ (
→
Q ∪

←
Q) and j ∈ [n1]. Then w[i ← (p, j)]

denotes the word obtained from w by adding (p, j) to the second component of
the ith symbol, that is, the second component of the ith symbol is changed to
be π2(w[i]) ∪ {(p, j)}.

We say that a word w ∈ Σ[�]∗ is well formed if |w| ≥ 2 and the following

three conditions hold: (i) π2(w[1]) ⊆
←
Q ×[n1], (ii) π2(w[|w|]) ⊆

→
Q ×[n1], and (iii)

π2(w[j]) = ∅ when 1 < j < |w|.
In a well formed marked word the first symbol contains only elements of the

type (
←
p , j) as markers, and the last symbol contains only elements of the type

(
→
p , j) as markers, p ∈ Q, j ∈ [n1]. Symbols of w other than the first or the last

symbol have ∅ as the second component.
The set of all well formed words over Σ[�] is denoted by WF(Σ[�])
The following lemma says, very roughly speaking, that if w is a subword of

�(k+1)(L) but w is not a subword of �(k)(L), then w has a proper subword that
is a subword of �(k)(L) but not a subword of �(k−1)(L). The statement in the
previous sentence is oversimplified and does not hold as such. To be precise, in
order to be able to establish the required property we need to add to the subwords
information on the states of the DFA for T associated with the templates used
in the recombination operations, that is, we need to consider subwords of the
T -controlled marked variant of �(k)(L), k ≥ 1.

For m, n ∈ IN we define the non-negative difference of m and n, m 
 n, as
m − n if m ≥ n and m 
 n = 0 otherwise.

Lemma 3.1. Let � = (T, Σ, n1, n2) where T is regular and let A as in (2) be a
DFA that recognizes T . Let k ≥ 1 and L ⊆ Σ∗.

We claim that if w ∈ WF(Σ[�]) and

w ∈ subw(CT (�(k+1)(L))) − subw(CT (�(k)(L))) (4)

then one of the below cases (P1)–(P4) holds:

(P1) w = uαβγv, π1(αβγ) ∈ T , |β| = n2, |α|, |γ| ≥ n1, uαβ ∈
subw(CT (�(k)(L))) ∩ WF(Σ[�]), βγv ∈ subw(CT (�(k)(L))) ∩ WF(Σ[�]),

(P2) w = uαβγ′, |β| = n2, |α| ≥ n1, |γ′| ≥ 1, uαβ ∈
subw(CT (�(k)(L))) ∩ WF(Σ[�]), βγ′[|βγ′| ← (

→
p , n1 
 |γ′|) ∈

subw(CT (�(k)(L))) ∩ WF(Σ[�]), where p = δ(q0, αβγ′).
(P3) w = α′βγv, |β| = n2, |γ| ≥ n1, |α′| ≥ 1, α′β[1 ← (

←
p , n1 
 |α′|)] ∈

subw(CT (�(k)(L))) ∩ WF(Σ[�]), p ∈ Q, βγv ∈
subw(CT (�(k)(L))) ∩ WF(Σ[�]), where δ(p, α′βγ) ∈ F .

(P4) w = α′βγ′, |β| = n2, |α′|, |γ′| ≥ 1, α′β[1 ← (
←
p , n1 
 |α′|)] ∈

subw(CT (�(k)(L))) ∩ WF(Σ[�]), p ∈ Q, βγ′[|βγ′| ← (
→
p1, n1 
 |γ′|)] ∈

subw(CT (�(k)(L))) ∩ WF(Σ[�]), where δ(p, α′βγ′) = p1.

Furthermore, in any decomposition of w as in (P1)–(P4) at most one of the two
mentioned marked words of subw(CT (�(k)(L))) can be in subw(CT (�(k−1)(L))).
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We should note that in (P2), (P3) and (P4) in Lemma 3.1 it is essential that
we add the new marker states to the resulting subwords. For example, using
the notations of (P4), it is quite possible that π1(α′β) ∈ subw(�(k−1)(L)) and
π1(βγ′) ∈ subw(�(k−1)(L)) because α′β could be part of a word that does not
allow recombination using any template of T with the words where βγ′ occurs as
a subword. The marked variants of the words prevent this possibility by storing
the appropriate states and length information in the first symbol of α′ and in
the last symbol of γ′. The marker information forces that α′β (respectively,
βγ′) must occur in a position where the immediately preceding (respectively,
immediately following) subword contains a suffix (respectively, a prefix) that
allows us to complete α′βγ′ into a template of T .

Due to length restrictions the technical proof of Lemma 3.1 is omitted. We
refer the reader to [9] for the proof of Lemma 3.1.

Using Lemma 3.1 we get the following property that will be essential for
deciding the membership problem. Also we note that Lemma 3.2 (i) is not a
special case of (ii) (although their proofs are similar) and hence we include both
statements. The proof of Lemma 3.2 is available in [9].

Lemma 3.2. Let � = (T, Σ, n1, n2) be a TGR-system where T is regular and
L ⊆ Σ∗.

(i) If w ∈ �(k)(L) − �(k−1)(L), k ≥ 1, then |w| − n2 − 1 ≥ k.
(ii) If w ∈ subw(�(k)(L)) − subw(�(k−1)(L)), then |w| − n2 − 1 ≥ k.

Theorem 3.1. Given a TGR system � = (T, Σ, n1, n2) with T regular, a
context-free language L and a word w ∈ Σ∗, it is decidable whether or not
w ∈ �(∗)(L).

Furthermore, it is decidable whether or not w ∈ subw(�(∗)(L)).

Proof. Let A = (Σ, Q, q0, F, δ) be a DFA that recognizes T . Given a pushdown
automaton Bi for �(i)(L), i ≥ 0, we can construct a pushdown automaton Bi+1
for �(i+1)(L) as follows. Let β ∈ Σn2 and q ∈ Q. We define L1(Bi, β, q) =
{ w ∈ pref(L(Bi)) | w = uαβ, |α| ≥ n1, δ(q0, αβ) = q }, L2(Bi, β, q) = { w ∈
β−1suf(L(Bi)) | w = γv, |γ| ≥ n1, δ(q, γ) ∈ F }. Now it is clear that

�(i+1)(L) = �(i)(L) ∪
⋃

β∈Σn2 , q∈Q

L1(Bi, β, q) · L2(Bi, β, q). (5)

Since context-free languages are effectively closed under prefix, suffix, union, and
quotient and intersection with a regular language, using (5) we can construct a
pushdown automaton Bi+1 for �(i+1)(L).

By Lemma 3.2, it is sufficient to construct the pushdown automaton B|w|−n2−1
and decide whether or not B|w|−n2−1 accepts w. The latter can be done effectively
since membership is decidable for context-free languages.

Also, context-free languages are effectively closed under subword. Thus, we
can test whether w ∈ subw(�(|w|−n2−1)(L)) and, by Lemma 3.2 (ii), this holds if
and only if w ∈ subw(�(∗)(L)).
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The operation (5) uses union indexed over all words of length n2 and conse-
quently the algorithm given by Theorem 3.1 for the uniform membership problem
requires exponential time. However, if � is fixed, i.e., if we consider the non-
uniform membership problem then the algorithm given by Theorem 3.1 uses
polynomial time. The same is true even if only the value of n2 is fixed. Note
that the number of iterations of (5) is upper bounded by the length of w, i.e.,
the number of iterations is given in unary notation.

Corollary 3.1. Let n2 be fixed. Given a TGR system � = (T, Σ, n1, n2) with
T regular, a context-free language L and a word w ∈ Σ∗, it is decidable in
polynomial time whether or not w ∈ �(∗)(L).

Lemma 3.2 does not make any assumptions on the initial language. The proof of
Theorem 3.1 uses certain closure and decidability properties of context-free lan-
guages. A full AFL satisfies the required conditions, assuming that membership
is decidable and closure under the AFL operations is effective, and a correspond-
ing extended result is stated below in Corollary 3.2. Before that we introduce
some terminology dealing with AFL’s consisting of recursive languages. The ter-
minology will be useful also in the next section in order to be able to rely in a
uniform way on results from [4] that are formulated in terms of AFL’s.

Definition 3.1. We say that a property P of Turing machines is syntactic if
given a Turing machine M it is decidable whether or not M has property P . The
class of Turing machines satisfying a property P is denoted TM[P ].

A language family L is said to be a constructive full AFL if L contains a
nonempty language and there exists a syntactic property of Turing machines PL
such that

(i) a language L is in L if and only if L is recognized by some Turing machine
in TM[PL],

(ii) given M ∈ TM[PL] and an input word w, it is decidable whether or not
w ∈ L(M), and

(iii) languages recognized by machines in TM[PL] are effectively closed under
the AFL operations. That is, there is an algorithm that for given M1, M2 ∈
TM[PL] constructs Munion ∈ TM[PL] such that L(Munion) = L(M1)∪L(M2),
and for any AFL operation σ other than union there is an algorithm to
construct M ∈ TM[PL] such that L(M) = σ(L(M1)).

Well known examples of constructive full AFL’s are the regular and the context-
free languages. An example of a more general constructive full AFL is the
family of languages recognized by (one-way, single head) k-iterated pushdown
automata, k ≥ 1, [6]. It is easy to verify that any (k-iterated) pushdown automa-
ton can be simulated by a Turing machine where the transition relation satisfies
a suitably defined syntactic property that forces the work tape to simulate a
(k-iterated) pushdown store. It seems that any full AFL consisting only of re-
cursive languages that is defined by a “reasonable” machine model could be
characterized in the above way. The family of recursively enumerable languages
is a full AFL that is not a constructive full AFL.
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Corollary 3.2. Let L be a constructive full AFL. Given a TGR system � =
(T, Σ, n1, n2) where T is regular and L ∈ L, the membership problem for �(∗)(L)
is decidable.

The set of useful templates of a TGR system � = (T, Σ, n1, n2) with an initial
language L is the set T ∩ subw(�(∗)(L)) ∩ Σ≥2n1+n2 [4]. Thus by Theorem 3.1:

Corollary 3.3. Given a TGR system � = (T, Σ, n1, n2) where T is regular and
a context-free initial language L, we can effectively decide whether or not a given
template is useful on (L, �).

Corollary 3.4. Let L be a constructive full AFL. Given a TGR system � =
(T, Σ, n1, n2) where T is regular and L ∈ L, we can effectively decide whether or
not a given template is useful on (L, �).

To conclude this section we make a couple of remarks on limitations in attempt-
ing to extend the previous results. The 2-iterated pushdown automata recognize
the indexed languages [1] and, thus, from Corollary 3.2 we get a decidability
result for the membership problem when the initial language is an indexed lan-
guage. However, there is no known polynomial time parsing algorithm for general
indexed languages and Corollary 3.1 cannot be extended for the case where the
initial language is indexed.

4 Effective Closure Properties

We would now like to attack the question of, given � = (T, Σ, n1, n2), with
T regular, and L recognized by a pushdown automaton (respectively, a finite
automaton), can we effectively construct a pushdown automaton (respectively,
a finite automaton) which recognizes �(∗)(L)? Note that in the former case it is
known that �(∗)(L) is context-free (and in the latter case regular) [4] but the
results are non-constructive.

We first need to provide some details from [4]. The main non-constructive
proof from this paper shows that, for an arbitrary TGR system � = (T, Σ, n1, n2)
with T regular, and an arbitrary full AFL L the following holds: If L ∈ L, then
�(∗)(L) ∈ L. The proof of this result relies on two auxiliary results, the first one
of which is the following:

Proposition 4.1. (Theorem 4.2 of [4]) Let � = (T, Σ, n1, n2) be a TGR system
and let L ⊆ Σ∗. Let Tu be the useful subset of � on L. If T is a regular language,
then Tu is also regular.

The proof of the above result [4] is not constructive, even in the case where
we have some effective representation for L. However, the proof does give some
information as to the structure of the DFA which accepts Tu. If Q is the state set
of a DFA which accepts T , then the proof creates a finite set of automata XT,L,
each automaton with a state set of size qT,L = (|Q| + 1)n · (|Σ| + 1)n−1 where
n = 2n1 + n2 − 1. Moreover, the proof establishes that one of these automata
accepts Tu, but does not tell us which one is the correct automaton.
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Indeed, let � = (T, Σ, n1, n2) be a TGR system where T is regular and let L
be a constructive full AFL, and let L ∈ L. Then, by Corollary 3.4, we can decide
whether or not a given template is useful on (L, �). Consider Tu ∩ Σ≤2·qT,L , the
finite set of all words which are useful on (L, �) and which are of length less than
or equal to 2 · qT,L. Using Corollary 3.4 we can now effectively determine this
set. In addition, for each automaton M = (Q, Σ, q0, F, δ) ∈ XT,L, we can check
whether or not Tu ∩ Σ≤2·qT,L = L(M) ∩ Σ≤2·qT,L .

Claim. Tu ∩ Σ≤2·qT,L = L(M) ∩ Σ≤2·qT,L if and only if Tu = L(M).

Proof of the claim. It is sufficient to show the implication from left to right.
According to Proposition 6.3 of [5], the following is true: Let M1, M2 be two
DFAs with state sets Q1, Q2 respectively. Then L(M1) = L(M2) whenever for
all s ∈ Σ∗ such that |s| < |Q1|+|Q2| we have s ∈ L(M1) if and only if s ∈ L(M2).

Assume by contradiction that Tu �= L(M). But there exists M ′ ∈ XT,L (also
with a state set of size qT,L) such that L(M ′) = Tu, and hence

L(M ′) ∩ Σ≤2qT,L = Tu ∩ Σ≤2qT,L = L(M) ∩ Σ≤2qT,L .

However, according to the proposition from [5], this implies L(M ′) = L(M), a
contradiction. This concludes the proof of the claim.

By the above claim, we can find from XT,L the correct automaton which
accepts Tu. Hence, we can effectively construct a deterministic finite automaton
which accepts Tu. Thus we have shown that the following holds:

Lemma 4.1. Let L be a constructive full AFL. Given � = (T, Σ, n1, n2) with T
regular and L ∈ L, we can construct a DFA for the useful subset of � on L.

Corollary 4.1. Let L be a constructive full AFL. Given � = (T, Σ, n1, n2) with
T regular and L ∈ L, we can effectively find a regular set of templates T1 such
that if �1 = (T1, Σ, n1, n2) then �

(∗)
1 (L) = �(∗)(L) and �1 is useful on L.

The second result from [4] that turns out to be useful is the following:

Proposition 4.2. (Theorem 4.1 of [4]) If L is a full AFL, � = (T, Σ, n1, n2)
is a TGR system and L, T ∈ L, L ⊆ Σ∗, are such that � is useful on L, then
�(∗)(L) ∈ L.

The proof of Proposition 4.2 in [4] establishes that �(∗)(L) is in L by showing
that �(∗)(L) is obtained from L using a finite number of operations that can be
expressed as compositions of AFL operations. This gives the following:

Corollary 4.2. Let L be a constructive full AFL. Given a TGR system � =
(T, Σ, n1, n2) where T ∈ L, an intial language L ∈ L, L ⊆ Σ∗, such that �
is useful on L, we can effectively construct (a Turing machine in TM[PL] for)
�(∗)(L) ∈ L.

Now we are ready to prove the main result of this section.

Theorem 4.1. Let L be a constructive full AFL. Given L ∈ L and a TGR
system � = (T, Σ, n1, n2) where T is regular, we can effectively construct (a
Turing machine in TM[PL] for) the language �(∗)(L) (which is always in L).
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Proof. By Corollary 4.1 we can effectively find a regular set of templates
T1 (⊆ T ) such that if �1 = (T1, Σ, n1, n2) then �1 is useful on L and �

(∗)
1 (L) =

�(∗)(L).
Since any full AFL contains all regular languages, we have T1 ∈ L. Now, by
Corollary 4.2, given L and T1 we can effectively construct a Turing machine for
�
(∗)
1 (L) and we are done.

Since the regular and the context-free languages are examples of constructive full
AFL’s, as particular cases Theorem 4.1 implies that if � is a TGR system with
a regular set of templates, given a finite automaton (respectively, a pushdown
automaton) for a language L, we can effectively construct a finite automaton
(respectively, a pushdown automaton) for the language �(∗)(L).

Finally, it can be noted that Theorem 4.1 relies on Corollary 4.1 and Corol-
lary 3.4 (that in turn relies on Corollary 3.2), and these results use brute-force
constructions that basically enumerate all words up to a given length. It would
be interesting to know whether for a regular initial language L and a regular
set of templates there is some reasonably efficient algorithm to construct a (not
necessarily deterministic) finite automaton for �(∗)(L).
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